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Preface

This proceedings volume contains peer-reviewed contributions accepted at the 32st Interna-
tional Conference on Concurrency Theory (CONCUR), 2021.

The CONCUR conference series brings together researchers, developers, and students
in order to advance the theory of concurrency, and promote its applications. Amid the
COVID-19 situation, CONCUR 2021 could not take place at University Paris-Est Créteil
(Créteil, France), as it was originally planned. Instead it was organized as a virtual conference,
as part of the umbrella conference QONFEST 2021. In addition to CONCUR 2021, the
QONFEST 2021 comprised also the 26th International Conference on Formal Methods for
Industrial Critical Systems (FMICS) 2021, the 19th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS) 2021 and the 18th International
Conference on Quantitative Evaluation of SysTems (QEST) 2021, alongside with several
workshops and tutorials.

Despite the COVID-19 crisis, we have received a high number of submissions. Out of 96
submissions, we have accepted 35 papers for presentation at CONCUR 2021. Given great
quality of many submissions, the acceptance bar was quite high. The quality criteria for
acceptance were very strict and we thank our program committee and external reviewers
for their excellent job in reviewing the CONCUR 2021 submissions. We are especially very
grateful to all our reviewers for their efforts in providing high-quality and timely reviews and
conducting active discussions on each submission at CONCUR 2021.

We thank the authors of our proceeding’s papers for repaying the efforts of our reviewers
and submitting their revised works to the CONCUR 2021 proceedings. We hope that
details of the papers included in the present proceedings will bring lively discussions within
the virtual conference platform of CONCUR 2021, initiating new research directions and
collaboration within the CONCUR scientific community and beyond.

We are delighted to have had Senior Researcher Patricia Bouyer-Decitre (CNRS and
LMF, France) and Prof. Davide Sangiorgi (University of Bologna, Italy) as our invited
speakers. The invited talk of Prof. Boudewijn Haverkort (Tilburg University, Netherlands)
was shared with QEST 2021.

Starting in 2020, a CONCUR Test-of-Time(ToT) Award has been established by the
CONCUR conference and the IFIP 1.8 Working Group on Concurrency Theory. The purpose
of this award is to recognize important achievements in Concurrency Theory that were
published at CONCUR conferences and have stood the test of time.

For the 2021 editions, two periods are considered. Two awards were given to papers
published in CONCUR between 1994 and 1997, and two more were given to papers published
between 1996 and 1999. The award winners for the CONCUR ToT Awards 2021 have been
selected by a jury composed of Rob van Glabbeek (chair), Luca de Alfaro, Nathalie Bertrand,
Catuscia Palamidessi, and Nobuko Yoshida. The results and winners of the CONCUR ToT
Award 2021 selection process are described in the invited contribution by Rob van Glabbeek
in these proceedings.

We finally would like to thank the University of Paris Est, Créteil for its generous
sponsorship for running CONCUR 2021. We gratefully acknowledge the sponsorship of
Nomadic Labs, in particular for the best Paper Award. We also thank INRIA and the LACL
laboratory for their support. We finally thank the EasyChair conference management system
for assisting us in the reviewing and organization process of CONCUR 2021 together with
QONFEST 2021.
32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca
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As usual, the CONCUR 2021 proceedings are open access thanks to the LIPIcs series.
We thank the authors of CONCUR 2021 papers, the CONCUR 2021 participants, as well as
the organizers, chaired by Benoît Barbot, and the student volunteers, for making CONCUR
2021 a sucessful virtual event.

Serge Haddad and Daniele Varacca
CONCUR 2021 PC Chairs
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1 Introduction

In 2020, the International Conference on Concurrency Theory (CONCUR) and the IFIP
Working Group 1.8 on Concurrency Theory established the CONCUR Test-of-Time Award to
recognize important achievements in concurrency theory that were published at the CONCUR
conference and have stood the test of time. Starting with CONCUR 2024, an award event
will take place every other year, and award one or two papers presented at CONCUR in the
4-year period from 20 to 17 years earlier.

During the present transient period two such award events are combined each year, going
back in time even further. At CONCUR 2020, awards were given to papers presented at
CONCUR during the period 1990–1995, the very first editions of this conference.

All papers published at CONCUR between 1994 and 1999 were eligible for this second
installment of the award, which is presented at the 32nd International Conference on
Concurrency Theory (CONCUR 2021). The conference is held on line from Paris, France,
in the period 23–27 August 2021, with Serge Haddad and Daniele Varacca as chairs of
the program committee. We had the honor to serve as members of the second CONCUR
Test-of-Time Award Jury, and were asked to select one or two awardees for each of the
periods 1994–1997 and 1996–1999.

After having made a shortlist of candidate award recipients and having thoroughly
discussed their relative merits and impact on the CONCUR research community and beyond,
we selected the four articles mentioned below for the award out of an abundance of excellent
candidates.
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2 The Award Winning Contributions

2.1 Period 1994–1997

David Janin & Igor Walukiewicz: On the Expressive Completeness of the Propositional
mu-Calculus with Respect to Monadic Second Order Logic. CONCUR 1996
https://doi.org/10.1007/3-540-61604-7_60

This seminal paper relates the expressive power of monadic second-order logic and the
µ-calculus, showing that the bisimulation-closed formulas of monadic second-order logic
are equivalent to the µ-calculus. This is a very deep and insightful result, providing a
contribution of foundational nature to the field of logic and computation. The paper’s
insight was one of the central factors contributing to the role of the µ-calculus in model
checking, where it provides the computational counterpart to logics for expressing system
properties. The relation between logics and the µ-calculus, which can in great part be
traced to this paper, has been an extremely fruitful one, with implications in algorithms
for the verification and analysis of transition systems, probabilistic systems, timed systems,
games, and more.

Uwe Nestmann & Benjamin C. Pierce: Decoding Choice Encodings CONCUR 1996
https://doi.org/10.1007/3-540-61604-7_55

This paper makes major strides in the study of the expressiveness of process calculi.
It shows that, in a completely distributed and asynchronous setting, input-guarded
choice can be simulated by parallel composition. More precisely, the paper constructs a
fully distributed and divergence-free encoding from the input-choice pi-calculus into the
asynchronous pi-calculus. The correctness of this encoding is demonstrated by establishing
a semantic equivalence between a process and its encoding, thereby satisfying and
strengthening the common quality criterion of full abstraction. As semantic equivalence
it employs the asynchronous version of coupled simulation, and illuminates the surprising
versatility of this notion by showing how it avoids the introduction of divergence in the
encoding. This work formalizes ideas stemming from the programming language Pict,
and has been very influential in the area of expressiveness in concurrency.

2.2 Period 1996–1999

Ahmed Bouajjani, Javier Esparza & Oded Maler: Reachability Analysis of Pushdown
Automata: Application to Model-checking CONCUR 1997
https://doi.org/10.1007/3-540-63141-0_10

This is a breakthrough paper that opened the way for the analysis of pushdown automata
via model-checking techniques. The paper proposes a general class of alternating pushdown
systems and defines new model checking algorithms for these systems against both linear
and branching-time properties. The basic idea is simple, yet extremely elegant: using
(regular) automata as representations for sets of states of pushdown automata. The paper
proceeds to show that the representation is closed with respect to Boolean operators,
makes membership of states decidable, and crucially, makes the predecessor operator
easily computable. The approach proposed in this paper is so neat and natural that it
has become a standard reference in the field of verification of infinite-state systems.
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Rajeev Alur, Thomas A. Henzinger, Orna Kupferman & Moshe Y. Vardi: Alternating
Refinement Relations CONCUR 1998
https://doi.org/10.1007/BFb0055622
This paper introduces refinement relations, based on simulation and trace containment,
for games, modeled as alternating transition systems. Refinement relations had been
a foundational notion in formal methods, and much more broadly, in the theory of
computation. In the years leading up to this paper, it had become evident that games
provided the natural model for open systems, which communicate and are reactive to
their environment; this paper extends the notion of simulation and trace containment to
games. While conceived in a formal-methods and verification setting, the paper turned
out to have broad implications, as these game refinement relations have implications
for strategies in general games, and are closely related to notions of subtyping in game
theory and in dynamic typing. The extension of refinement relations to games was thus a
fundamental tassel in the understanding of dynamic systems, finally being put into place.

3 Concluding Remark

Interviews with the award recipients, which give some information on the historical con-
text that led them to develop their award-winning work and on their research philo-
sophy, are conducted in the Process Algebra Diary, maintained by Luca Aceto at https:
//processalgebra.blogspot.com/.
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Abstract
This paper provides several optimizations of the rank-based approach for complementing Büchi
automata. We start with Schewe’s theoretically optimal construction and develop a set of techniques
for pruning its state space that are key to obtaining small complement automata in practice. In
particular, the reductions (except one) have the property that they preserve (at least some) so-called
super-tight runs, which are runs whose ranking is as tight as possible. Our evaluation on a large
benchmark shows that the optimizations indeed significantly help the rank-based approach and
that, in a large number of cases, the obtained complement is the smallest from those produced by
state-of-the-art tools for Büchi complementation.
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1 Introduction

Büchi automata (BA) complementation remains an intensively studied problem since 1962,
when Büchi introduced the automata model over infinite words as a foundation for a decision
procedure of a fragment of a second-order arithmetic [7]. Since then, efficient BA comple-
mentation became an important task from both theoretical and practical side. It is a crucial
operation in some approaches for termination analysis of programs [12, 18, 9] as well as in
decision procedures concerning reasoning about programs and computer systems, such as
S1S [7] or the temporal logics ETL and QPTL [34].

Büchi launched a hunt for an optimal and efficient complementation technique with his
doubly exponential complementation approach [7]. A couple of years later, Safra proposed
a complementation via deterministic Rabin automata with an nO(n) upper bound of the size
of the complement. Simultaneously with finding an efficient complementation algorithm,
another search for the theoretical lower bound was under way. Michel showed in [28] that
a lower bound of the size of a complement BA is n! (approx. (0.36n)n). This result was
further refined by Yan to (0.76n)n in [40]. From the theoretical point of view, it seemed that
the problem was already solved since Safra’s construction asymptotically matched the lower
bound. From the practical point of view, however, a factor in the exponent has a great impact
on the size of the complemented automaton (and, consequently, also affects the performance
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of real-world applications). This gap became a topic of many works [22, 13, 39, 19, 41]. The
efforts finally led to the construction of Schewe in [33] producing complement BAs whose
sizes match the lower bound modulo a O(n2) polynomial factor.

Schewe’s construction stores in a macrostate partial information about all runs over some
word in an input BA. In order to track the information about all runs, a macrostate contains
a set of states representing a single level in a run DAG of some word with a number assigned
to each state representing its rank. The number of macrostates (and hence the size of the
complement) is combinatorially related to the maximum rank that occurs in macrostates.

Although the construction of Schewe is worst-case optimal, it may in practice still generate
a lot of states that are not necessary. In this work, we propose novel optimizations that
(among others) reduce this maximum considered rank. We build on the novel notion of
a super-tight run, i.e., a run in the complement that uses as small ranks as possible. The
macrostates not occurring in some super-tight run can be safely removed from the automaton.
Further, based on reasoning about super-tight runs, we are able to reduce the maximum
rank within a macrostate. In particular, we reduce the maximum considered ranking using
a reasoning about the deterministic support of an input automaton or by a relation based on
direct simulation implying rank ordering computed a priori from the input automaton. The
developed optimizations give, to the best of our knowledge, the most competitive BA
complementation procedure, as witnessed by our experimental evaluation.

These optimizations require some additional computational cost, but from the perspective
of BA complementation, their cost is still negligible and, as we show in our experimental
evaluation, their effect on the size of the output is often profound, in many cases by one
or more orders of magnitude. Rank-based complementation with our optimizations is now
competitive with other approaches, in a large number of cases (21 %) obtaining a strictly
smaller complement than any other existing tool and in the majority of cases (63 %) obtaining
an automaton at least as small as the smallest automaton provided by any other tool.

2 Preliminaries

We fix a finite nonempty alphabet Σ and the first infinite ordinal ω = {0, 1, . . .}. For n ∈ ω, by
[n] we denote the set {0, . . . , n}. An (infinite) word α is represented as a function α : ω → Σ
where the i-th symbol is denoted as αi. We abuse notation and sometimes also represent α as
an infinite sequence α = α0α1 . . . The suffix αiαi+1 . . . of α is denoted by αi:ω. We use Σω to
denote the set of all infinite words over Σ. Furthermore, for a total function f : X → Y and
a partial function h : X ⇀ Y , we use f ◁ h to denote the total function g : X → Y defined
as g(x) = h(x) when h(x) is defined and g(x) = f(x) otherwise. Moreover, we use img(f) to
denote the image of f , i.e., img(f) = {f(x) ∈ Y | x ∈ X} and for a set C ⊆ X we use f|C to
denote the restriction of f to C, i.e., f|C = f ∩ (C × Y ).

Büchi automata. A (nondeterministic) Büchi automaton (BA) over Σ is a quadruple
A = (Q, δ, I, F ) where Q is a finite set of states, δ is a transition function δ : Q× Σ→ 2Q,
and I, F ⊆ Q are the sets of initial and accepting states respectively. We sometimes treat δ

as a set of transitions p
a→ q, for instance, we use p

a→ q ∈ δ to denote that q ∈ δ(p, a).
Moreover, we extend δ to sets of states P ⊆ Q as δ(P, a) =

⋃
p∈P δ(p, a). We use δ−1(q, a)

to denote the set {s ∈ Q | s a→ q ∈ δ}. For a set of states S we define reachability from S as
reachδ(S) = µZ. S ∪

⋃
a∈Σ δ(Z, a). A run of A from q ∈ Q on an input word α is an infinite

sequence ρ : ω → Q that starts in q and respects δ, i.e., ρ0 = q and ∀i ≥ 0: ρi
αi→ ρi+1 ∈ δ.

Let inf(ρ) denote the states occurring in ρ infinitely often. We say that ρ is accepting iff
inf(ρ) ∩ F ̸= ∅. A word α is accepted by A from a state q ∈ Q if there is an accepting
run ρ of A from q, i.e., ρ0 = q. The set LA(q) = {α ∈ Σω | A accepts α from q} is called
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Figure 1 (a) Aex . (b) The run DAG of Aex over bω. (c) A part of KV(Aex). (d) Schewe(Aex); we
highlight the waiting and the tight parts. Delay (Section 4.1) will remove the 4 wobbly transitions
and macrostate ({s:1}, ∅, 0).

the language of q (in A). Given a set of states R ⊆ Q, we define the language of R as
LA(R) =

⋃
q∈R LA(q) and the language of A as L(A) = LA(I). For a pair of states p and q

in A, we use p ⊆L q to denote LA(p) ⊆ LA(q). A is complete iff for every state q and
symbol a, it holds that δ(q, a) ̸= ∅. In this paper, we fix a BA A = (Q, δ, I, F ).

Simulation. The (maximum) direct simulation on A is the relation ⪯di ⊆ Q×Q defined as
the largest relation s.t. p ⪯di q implies

(i) p ∈ F ⇒ q ∈ F and
(ii) p

a→ p′ ∈ δ ⇒ ∃q′ ∈ Q : q
a→ q′ ∈ δ ∧ p′ ⪯di q′ for each a ∈ Σ.

Note that ⪯di is a preorder and ⪯di ⊆ ⊆L [27].

3 Complementing Büchi Automata

In this section we first describe the basic rank-based complementation algorithm proposed by
Kupferman and Vardi in [22] and then its optimization presented by Schewe in [33]. After
that, we present some results related to runs with the minimal ranking. Missing proofs for
this and the following section can be found in [16].

3.1 Run DAGs
In this section, we recall the terminology from [33] (which is a minor modification of the
terminology from [22]), which we use heavily in the paper. We fix the definition of the run
DAG of A over a word α to be a DAG (directed acyclic graph) Gα = (V, E) of vertices V

and edges E where
V ⊆ Q× ω s.t. (q, i) ∈ V iff there is a run ρ of A from I over α with ρi = q,
E ⊆ V × V s.t. ((q, i), (q′, i′)) ∈ E iff i′ = i + 1 and q′ ∈ δ(q, αi).

Given Gα as above, we will write (p, i) ∈ Gα to denote that (p, i) ∈ V . We call (p, i) accepting
if p is an accepting state. Gα is rejecting if it contains no path with infinitely many accepting
vertices. A vertex v ∈ Gα is finite if the set of vertices reachable from v is finite, infinite if it
is not finite, and endangered if v cannot reach an accepting vertex.
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2:4 Reducing (To) the Ranks

We assign ranks to vertices of run DAGs as follows: Let G0
α = Gα and j = 0. Repeat the

following steps until the fixpoint or for at most 2n + 1 steps, where n = |Q|.
Set rankα(v) := j for all finite vertices v of Gj

α and let Gj+1
α be Gj

α minus the vertices
with the rank j.
Set rankα(v) := j + 1 for all endangered vertices v of Gj+1

α and let Gj+2
α be Gj+1

α minus
the vertices with the rank j + 1.
Set j := j + 2.

For all vertices v that have not been assigned a rank yet, we assign rankα(v) := ω. See
Figure 1a for an example BA Aex and Figure 1b for the run DAG of Aex over bω.

3.2 Basic Rank-Based Complementation
The intuition in rank-based complementation algorithms is that states in the complemented
automaton C track all runs of the original automaton A on the given word and the possible
ranks of each of the runs. Loosely speaking, an accepting run of a complement automaton C
on a word α /∈ L(A) represents the run DAG of A over α (in the complement, each state in
a macrostate is assigned a rank)1.

The complementation procedure works with the notion of level rankings of states of A,
originally proposed in [22, 13]. For n = |Q|, a (level) ranking is a function f : Q → [2n]
such that {f(qf ) | qf ∈ F} ⊆ {0, 2, . . . , 2n}, i.e., f assigns even ranks to accepting states
of A. We use R to denote the set of all rankings and odd(f) to denote the set of states given
an odd ranking by f , i.e. odd(f) = {q ∈ Q | f(q) is odd}. For a ranking f , the rank of f is
defined as rank(f) = max{f(q) | q ∈ Q}. We use f ≤ f ′ iff for every state q ∈ Q we have
f(q) ≤ f ′(q) and f < f ′ iff f ≤ f ′ and there is a state p ∈ Q with f(p) < f ′(p).

The simplest rank-based procedure, called KV, constructs the BA KV(A) = (Q′, δ′, I ′, F ′)
whose components are defined as follows [22]:

Q′ = 2Q × 2Q ×R is a set of macrostates denoted as (S, O, f),
I ′ = {I} × {∅} ×R,
(S′, O′, f ′) ∈ δ′((S, O, f), a) iff

S′ = δ(S, a),
for every q ∈ S and q′ ∈ δ(q, a) it holds that f ′(q′) ≤ f(q), and

O′ =
{

δ(S, a) \ odd(f ′) if O = ∅,
δ(O, a) \ odd(f ′) otherwise, and

F ′ = 2Q × {∅} ×R.

The macrostates (S, O, f) of KV(A) are composed of three components. The S component
tracks all runs of A over the input word in the same way as determinization of an NFA. The
O component, on the other hand, tracks all runs whose rank has been even since the last
cut-point (a point where O = ∅). The last component, f , assigns every state in S a rank.
Note that the f component is responsible for the nondeterminism of the complement (and
also for the content of the O component). A run of KV(A) is accepting if it manages to empty
the O component of states occurring on the run infinitely often. We often merge S and f

components and use, e.g., ({r:4, s:4}, ∅) to denote the macrostate ({r, s}, ∅, {r 7→ 4, s 7→ 4})
(we also omit ranks of states not in S). See Figure 1c for a part of KV(Aex) that starts in

1 This is not entirely true; there may be more accepting runs of C over α, with ranks assigned to states
of A that are higher than the ranks in the run DAG. There will, however, be a minimum run of C that
matches the run DAG (in the terminology of Section 3.4, such a run corresponds to a super-tight run).
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({r:4, s:4}, ∅) and keeps ranks as high as possible (the whole automaton is prohibitively large
to be shown here – the implementation of KV in GOAL [37] outputs a BA with 98 states).
Note that in order to accept the word bω, the accepting run needs to nondeterministically
decrease the rank of the successor of s (the transition ({s:4, t:4}, {s, t}) b→ ({s:3, t:4}, {t})).

In the worst case, KV constructs a BA with approximately (6n)n states [22].

3.3 Optimal Rank-Based Complementation
Friedgut, Kupferman, and Vardi observed in [13] that the KV construction generates
macrostates with many rankings that are not strictly necessary in the loop part of the lasso
for an accepting run on a word. Their optimization is based on composing the complement
automaton from two parts: the first part (called by us the waiting part) just tracks all runs
of A over the input word (in a similar manner as in a determinized NFA) and the second
part (the tight part) in addition tracks the rank of each run in a similar manner as the KV
construction, with the difference that the rankings are tight. For a set of states S ⊆ Q, we
call f to be S-tight if

(i) it has an odd rank r,
(ii) {f(s) | s ∈ S} ⊇ {1, 3, . . . , r}, and
(iii) {f(q) | q /∈ S} = {0}.
A ranking is tight if it is Q-tight; we use T to denote the set of all tight rankings.

An optimal algorithm whose space complexity matches the theoretical lower bound
O((0.76n)n) was given by Schewe in [33, Section 3.1]. We denote this algorithm as Schewe.
Apart from the optimization from [13], in Schewe, macrostates of the tight part contain one
additional component, i.e., a macrostate has the form (S, O, f, i), where the last component
i ∈ {0, 2, . . . , 2n − 2}, for n = |Q|, denotes the rank of states that are in O. Then, at
a cut-point (when O is being reset), O is not filled with all states having an even rank, but
only those whose rank is i (at every cut-point, i changes to i + 2 modulo the rank of f).

Formally, Schewe(A) = (Q′, δ′, I ′, F ′) is constructed as follows:
Q′ = Q1 ∪Q2 where

Q1 = 2Q and
Q2 = {(S, O, f, i) ∈ 2Q × 2Q × T × {0, 2, . . . , 2n− 2} | f is S-tight, O ⊆ S ∩ f−1(i)},

I ′ = {I},
δ′ = δ1 ∪ δ2 ∪ δ3 where

δ1 : Q1 × Σ→ 2Q1 such that δ1(S, a) = {δ(S, a)},
δ2 : Q1 × Σ→ 2Q2 such that δ2(S, a) = {(S′, ∅, f, 0) | S′ = δ(S, a), f is S′-tight}, and
δ3 : Q2 × Σ→ 2Q2 such that (S′, O′, f ′, i′) ∈ δ3((S, O, f, i), a) iff
∗ S′ = δ(S, a),
∗ for every q ∈ S and q′ ∈ δ(q, a) it holds that f ′(q′) ≤ f(q),
∗ rank(f) = rank(f ′),
∗ and ◦ i′ = (i + 2) mod (rank(f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or

◦ i′ = i and O′ = δ(O, a) ∩ f ′−1(i) if O ̸= ∅, and
F ′ = {∅} ∪ ((2Q × {∅} × T × ω) ∩Q2).

We call the part of Schewe(A) with the states in Q1 the waiting part and the part with
the states in Q2 the tight part (an accepting run in Schewe(A) simulates the run DAG of
A over a word w by waiting in Q1 until it can generate tight rankings only; then it moves
to Q2). See Figure 1d for Schewe(Aex). Note that in order to accept the word bω, the
accepting run needs to nondeterministically move from the waiting to the tight part.

▶ Theorem 1 ([33, Corollary 3.3]). Let B = Schewe(A). Then L(B) = L(A).
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In the following, we assume that Schewe(A) contains only the states and transitions
reachable from I ′. We use Schewe as the base algorithm in the rest of the paper.

3.4 Super-Tight Runs
Let B = Schewe(A). Each accepting run of B on α ∈ L(B) is tight, i.e., the rankings of
macrostates it traverses in Q2 are tight (this follows from the definition of Q2). In this
section, we show that there exists a super-tight run of B on α, which is, intuitively, a run
that uses as little ranks as possible. Our optimizations in Section 4 are based on preserving
super-tight runs of B.

Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1)(Sm+2, Om+2, fm+2, im+2) . . . be an accepting
run of B over a word α ∈ Σω. Given a macrostate (Sk, Ok, fk, ik) for k > m, we define
its rank as rank((Sk, Ok, fk, ik)) = rank(fk). Further, we define the rank of the run ρ

as rank(ρ) = min{rank((Sk, Ok, fk, ik)) | k > m}. Let Gα be the run DAG of A over α

and rankα be the ranking of vertices in Gα. We say that the run ρ is super-tight if for
all k > m and all q ∈ Sk, it holds that fk(q) = rankα(q, k). Intuitively, super-tight runs
correspond to runs whose ranking faithfully copies the ranks assigned in Gα (from some
position m corresponding to the transition from the waiting to the tight part of B).

▶ Lemma 2. Let α ∈ L(B). Then there is a super-tight accepting run ρ of B on α.

Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1)(Sm+2, Om+2, fm+2, im+2) . . . be a run and
consider a macrostate (Sk, Ok, fk, ik) for k > m. We call a set Ck ⊆ Sk a tight core of
a ranking fk if fk(Ck) = {1, 3, . . . , rank(fk)} and fk|Ck

is injective (i.e., every state in the
tight core has a unique odd rank). Moreover, Ck is a tight core of a macrostate (Sk, Ok, fk, ik)
if it is a tight core of fk. We say that an infinite sequence τ = Cm+1Cm+2 . . . is a trunk
of run ρ if for all k > m it holds that Ck is a tight core of ρ(k) and there is a bijection
θ : Ck → Ck+1 s.t. if θ(qk) = qk+1 then qk+1 ∈ δ(qk, αk). We will, in particular, be interested
in trunks of super-tight runs. In these runs, a trunk (there can be several) represents runs
of A that keep the super-tight ranks of ρ. The following lemma shows that every state in any
tight core in a trunk of such a run has at least one successor with the same rank.

▶ Lemma 3. Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1) . . . be an accepting super-tight run
of B on α. Then there is a trunk τ = Cm+1Cm+2 . . . of ρ and, moreover, for every k > m and
all states qk ∈ Ck, it holds that there is a state qk+1 ∈ Ck+1 such that fk(qk) = fk+1(qk+1).

4 Optimized Complement Construction

In this section, we introduce our optimizations of Schewe that are key to producing small
complement automata in practice.

4.1 Delaying the Transition from Waiting to Tight
Our first optimization of the construction of the complement automaton reduces the number
of nondeterministic transitions between the waiting and the tight part. This optimization is
inspired by the idea of partial order reduction in model checking [14, 38, 29]. In particular,
since in each state of the waiting part, it is possible to move to the tight part, we can
arbitrarily delay such a transition (but need to take it eventually) and, therefore, significantly
reduce the number of transitions (and, as our experiments later show, also significantly
reduce the number of reachable states in Q2).
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Algorithm 1 The Delay construction.

Input: A Büchi automaton A = (Q, I, δ, F )
Output: A Büchi automaton C s.t. L(C) = L(A)

1 S ← {I}, Q1 ← {I}, θ2 ← ∅, (·, δ1 ∪ δ2 ∪ δ3, I ′, F ′)← Schewe(A);
2 while S ̸= ∅ do
3 Take a waiting-part macrostate R ⊆ Q from S;
4 foreach a ∈ Σ do
5 if ∃T ∈ δ1(R, a) s.t. R

a→ T closes a cycle in Q1 then
6 θ2 ← θ2 ∪ {R

a→ U | U ∈ δ2(R, a)};
7 foreach T ∈ δ1(R, a) s.t. T /∈ Q1 do
8 S ← S ∪ {T};
9 Q1 ← Q∪ {T};

10 Q2 ← reachδ3(img(θ2));
11 return C = (Q1 ∪Q2, δ1 ∪ θ2 ∪ δ3, I ′, F ′ ∩Q2);

Speaking in the terms of partial order reduction, when constructing the waiting part of
the complement BA, given a macrostate S ∈ Q1 and a symbol a ∈ Σ, we can set θ2 ⊆ δ2
such that θ2(S, a) := ∅ if the cycle closing condition holds and θ2(S, a) := δ2(S, a) otherwise.
Informally, the cycle closing condition (often denoted as C3) holds for S and a if the successor
of S over a in the waiting part does not close a cycle where the transition to the tight part
would be infinitely often delayed. Practically, it means that when constructing Q1, we need
to check whether successors of a macrostate close a cycle in the so-far generated part of Q1.
We give the construction in Algorithm 1 and refer to it as Delay. Using this optimisation
on the example in Figure 1d, we would remove the b-transitions from {r, s} and {s} to the
macrostate ({s:1, t:0}, ∅, 0) and also the macrostate ({s:1}, ∅, 0) (including the transitions
incident with it).

▶ Lemma 4. Let A be a BA. Then L(Delay(A)) = L(Schewe(A)). Moreover, for
every accepting super-tight run of Schewe(A) on α, there is an accepting super-tight run
of Delay(A) on α.

Since Delay does not affect the rankings in the macrostates and only delays the transition
from the waiting to the tight part, we can freely use it as the base algorithm instead of
Schewe in all following optimizations.

4.2 Successor Rankings
Our next optimization is used to reduce the maximum considered ranking of a macrostate in
the tight part of B = Schewe(A). For a given macrostate, the number of tight rankings
that can occur within the macrostate rises combinatorially with the macrostate’s maximum
rank (in particular, the number of tight rankings for a given set of states corresponds to
the Stirling number of the second kind of the maximum rank [13]). It is hence desirable to
reduce the maximum considered rank as much as possible.

The idea of our optimization called SuccRank is the following. Suppose we have
a macrostate (S, O, f, i) from the tight part of B. Further, assume that the maximum
number of non-accepting states in the S-component of a macrostate that is infinitely often
reachable from (S, O, f, i) is ⌈S⌉. Then, we know that a super-tight accepting run that goes
through (S, O, f, i) will never need a rank higher than 2⌈S⌉ − 1 (any accepting state will
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2:8 Reducing (To) the Ranks

be assigned an even rank, so we can omit them). Therefore, if the rank of f is higher than
2⌈S⌉ − 1, we can safely discard (S, O, f, i) (since there will be a super-tight accepting run
that goes over (S, O′, f ′, i′) with f ′ < f). This part of the optimization is called coarse.

Moreover, let q ∈ S and let ⌊{q}⌋ be the smallest size of a set of states (again without
accepting states) reachable from q over some (infinite) word infinitely often. Then, we know
that those states will have a rank bounded by the rank of f(q), so there are only (at most)
⌈S⌉ − ⌊{q}⌋ states whose rank can be higher than f(q). Therefore, the rank of f , which is
tight, can be at most f(q) + 2(⌈S⌉ − ⌊{q}⌋). We call this part of the optimization fine.

We now formalize the intuition. Let us fix a BA A = (Q, δ, I, F ). Then, let us consider
a BA RA = (2Q, δR, ∅, ∅), with δR = {R a→ S | S = δ(R, a)}, which is tracking reachability
between set of all states of A (we only focus on its structure and not the language). Note
that RA is deterministic and complete. Further, given S ⊆ Q, let us use SCC (S) ⊆ 22Q to
denote the set of all strongly connected components reachable from S in RA. We will use
inf-reach(S) to denote the set of states

⋃
SCC (S), i.e., the set of states such that there is an

infinite path in RA starting in S that passes through a given state infinitely many times.
We define the maximum and minimum sizes of macrostates reachable infinitely often from S:

⌈S⌉ = max{|R \ F | : R ∈ inf-reach(S)} and ⌊S⌋ = min{|R \ F | : R ∈ inf-reach(S)}.

For a macrostate (S, O, f, i), we define φcoarse((S, O, f, i)) def≡ rank(f) ≤ 2⌈S⌉ − 1. If
(S, O, f, i) does not satisfy φcoarse, we can omit it from the output of Schewe(A) (as allowed
by Lemma 5). See Figure 2a for an example of such a macrostates. For instance, macrostate
({r:3, t:1}, ∅, 0) can be removed since its rank is 3 and ⌈{r, t}⌉ = 1, so 3 ̸≤ 2⌈{r, t}⌉ − 1.

Moreover, we also define the condition

φfine((S, O, f, i)) def≡ rank(f) ≤ min{f(q) + 2(⌈S⌉ − ⌊{q}⌋) | q ∈ S}. (1)

Again, we can omit (S, O, f, i) if it does not satisfy φfine. See Figure 2b for an example
of such a macrostate. Note that the rank of ({r:1, s:5, t:3}, ∅, 0) is 5, ⌈{r, s, t}⌉ = 3 and
⌊{r}⌋ = 2, ⌊{s}⌋ = 1, ⌊{t}⌋ = 0. Then, min{f(r)+2(3−2), f(s)+2(3−1), f(t)+2(3−0)} =
min{1 + 2, 5 + 4, 3 + 6} = 3, so the macrostate does not satisfy φfine and can be removed.

We emphasize that φcoarse and φfine are incomparable. For example, the macrostates
removed due to φcoarse in Figure 2a satisfy φfine (since, e.g., 3 ≤ min{3+2(1−1), 1+2(1−0)})
and the macrostate removed due to φfine in Figure 2b satisfies φcoarse (since 5 ≤ 2 · 3− 1).

Putting the conditions together, we define the predicate

SuccRank((S, O, f, i)) def≡ φcoarse((S, O, f, i)) ∧ φfine((S, O, f, i)). (2)

We abuse notation and use SuccRank(A) to denote the output of Schewe(A) =
(Q′, δ′, I ′, F ′) where the states from the tight part of Q′ are restricted to those that satisfy
SuccRank.

▶ Lemma 5. Let A be a BA. Then L(SuccRank(A)) = L(Schewe(A)).

4.3 Rank Simulation
The next optimization RankSim is a modification of optimization Purgedi from [8]. Intuit-
ively, Purgedi is based on the fact that if a state p is directly simulated by a state r, i.e.,
p ⪯di r, then any macrostate (S, O, f, i) where f(p) > f(r) can be safely removed (intuitively,
any run from p can be simulated by a run from r, where the run from r may contain more
accepting states and so needs to decrease its rank more times). Purgedi is compatible with
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Schewe but, unfortunately, it is incompatible with the MaxRank construction (one of
our further optimizations introduced in Section 4.5) since in MaxRank, several runs are
represented by one maximal run (w.r.t. the ranks) and removing such a run would also
remove the smaller runs. We, however, change the condition and obtain a new reduction,
which is incomparable with Purgedi but compatible with MaxRank.

Consider the following relation of odd-rank simulation on Q defined such that p ⪯ors r iff

∀α ∈ Σω, ∀i ≥ 0: (rankα(p, i) is odd∧ rankα(r, i) is odd)⇒ rankα(p, i) ≤ rankα(r, i). (3)

Intuitively, if p ⪯ors r holds, then in any super-tight run and a macrostate (S, O, f, i) in such
a run, if p, r ∈ S and both f(p) and f(r) are odd, then it needs to hold that f(p) ≤ f(r).
Such a reasoning can also be applied transitively (⪯ors is by itself not transitive): if, in
addition, t ∈ S, the rank f(t) is odd, and r ⪯ors t, then it also needs to hold that f(p) ≤ f(t).

Formally, given a ranking f , let ⪯f
ors be a modification of ⪯ors defined as

p ⪯f
ors r

def≡ f(p) is odd ∧ f(r) is odd ∧ p ⪯ors r (4)

and ⪯fT
ors be its transitive closure. We use ⪯fT

ors to define the following condition:

RankSim((S, O, f, i)) def≡ ∀p, r ∈ S : p ⪯fT
ors r ⇒ f(p) ≤ f(r). (5)

Abusing the notation, let RankSim(A) denotes the output of Schewe(A) = (Q′, δ′, I ′, F ′)
where states from the tight part of Q′ are restricted to those that satisfy RankSim.

▶ Lemma 6. Let A be a BA. Then L(RankSim(A)) = L(Schewe(A)).

From the definition of ⪯ors, it is not immediate how to compute it, since it is defined over
all infinite runs of A over all infinite words. The computation of a rich under-approximation
of ⪯ors will be the topic of the rest of this section. We first note that ⪯di ⊆ ⪯ors, which is
a consequence of the following lemma.

▶ Lemma 7 (Lemma 7 in [8]). Let p, r ∈ Q be such that p ⪯di r and Gα = (V, E) be the run
DAG of A over α. For all i ≥ 0, ((p, i) ∈ V ∧ (r, i) ∈ V )⇒ rankα(p, i) ≤ rankα(r, i).

We extend ⪯di into a relation ⪯R, which is computed statically on A, and then show that
⪯R ⊆ ⪯ors. The relation ⪯R is defined recursively as the smallest binary relation over Q s.t.

(i) ⪯di ⊆ ⪯R and
(ii) for p, r ∈ Q, if ∀a ∈ Σ : (δ(p, a) \ F ) ⪯∀∀

R (δ(r, a) \ F ), then p ⪯R r.
Here, S1 ⪯∀∀

R S2 holds iff ∀x ∈ S1, ∀y ∈ S2 : x ⪯R y. The relation ⪯R can then be computed
using a standard worklist algorithm, starting from ⪯di and adding pairs of states for which
condition 2 holds until a fixpoint is reached.

▶ Lemma 8. We have ⪯R ⊆ ⪯ors.

Putting it all together, we modify (5) by substituting ⪯fT
ors with ⪯fT

R , which denotes the
transitive closure of ⪯f

R, where ⪯f
R is a relation defined (by modifying (4)) as

p ⪯f
R r

def≡ f(p) is odd ∧ f(r) is odd ∧ p ⪯R r. (6)

Because ⪯R ⊆ ⪯ors, Lemma 6 still holds. We denote the modification of RankSim that uses
⪯fT

R instead of ⪯fT
ors as RankSim′.

▶ Example 9. Consider the BA A (top) and the part of Schewe(A) (bottom) in Figure 2c.
Note that r2 ⪯di q2 and q2 ⪯di r2 so r2 ⪯R q2 and q2 ⪯R r2. From the definition of ⪯R, we
can deduce that r1 ⪯R q1 (since {r2} ⪯∀∀

R {q2}) and q1 ⪯R r1 (since {q2} ⪯∀∀
R {r2}). Note

that q1 ̸⪯di r1). As a consequence and due to the odd ranks of q1 and r1, we can eliminate
the macrostates ({q1:1, r1:3}, ∅, 0) and ({q1:3, r1:1}, ∅, 0).
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Figure 2 (a) Illustration of SuccRank reduction (φcoarse), focusing on the transitions from the
waiting to the tight part. (b) Illustration of SuccRank reduction (φfine), focusing on one particular
macrostate. (c) Illustration of RankSim′. (d) Illustration of RankRestr.

4.4 Ranking Restriction
Another optimization, called RankRestr, restricts ranks of successors of states with an
odd rank. In particular, in a super-tight run, every odd-ranked state has a successor with
the same rank (this follows from the construction of the run DAG). Let A be a BA and
B = Schewe(A) = (Q, δ1 ∪ δ2 ∪ δ3, I, F ). We define the following restriction on transitions:

RankRestr((S, O, f, i) a→ (S′, O′, f ′, i′)) def≡
∀q ∈ S : f(q) is odd ⇒ (∃q′ ∈ δ(q, a) : f ′(q′) = f(q)). (7)

We abuse notation and use RankRestr(A) to denote B with transitions from δ3 restricted
to those that satisfy RankRestr. See Figure 2d for an example of a transition (and a newly
unreachable macrostate) removed using RankRestr.

▶ Lemma 10. Let A be a BA. Then L(RankRestr(A)) = L(Schewe(A)).

4.5 Maximum Rank Construction
Our next optimization, named MaxRank, has the biggest practical effect. We introduce it
as the last one because it depends on our previous optimizations (in particular SuccRank
and RankSim′). It is a modified version of Schewe’s “Reduced Average Outdegree” con-
struction [33, Section 4], named ScheweRedAvgOut, which may omit some runs, the so-called
max-rank runs, that are essential for our other optimizations (we discuss the particular issue
later).2

The main idea of MaxRank is that a set of runs of B = Schewe(A) (including super-
tight runs) that assign different ranks to non-trunk states is represented by a single, “maximal,”
not necessarily super-tight (but having the same rank), run in C = MaxRank(A). We call
such runs max-rank runs. More concretely, when moving from the waiting to the tight part,
C needs to correctly guess a rank that is needed on an accepting run and the first tight core

2 We believe that this property was not originally intended by the author, since it is not addressed in the
proof. As far as we can tell, the construction is correct, although the original argument of the proof
in [33] needs to be corrected.
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of a trunk of the run. The ranks of the rest of states are made maximal. Then, the tight
part of C contains for each macrostate and symbol at most two successors: one via η3 and
one via η4. Loosely speaking, the η3-successor keeps all ranks as high as possible, while
the η4-successor decreases the rankings of all non-accepting states in O (and can therefore
help emptying O, which is necessary for an accepting run).

Before we give the construction, let us first provide some needed notation. We now use
(S, O, f, i) ≤ (S, O, g, i) to denote that f ≤ g and similarly for < (note that non-ranking
components of the macrostates need to match).

The construction is then formally defined as MaxRank(A) = (Q1 ∪Q2, η, I ′, F ′) with
η = δ1 ∪ η2 ∪ η3 ∪ η4 such that Q1, Q2, I ′, F ′, δ1 are the same as in Schewe. Let B =
Delay(A) = (·, δ1 ∪ θ2 ∪ δ3, ·, ·) where δ1, θ2, and δ3 are defined as in Delay. We define an
auxiliary transition function that uses our previous optimizations as follows:

∆•(q, a) = {q′ | q′ ∈ θ2(q, a) ∧RankSim′(q′) ∧ SuccRank(q′))}. (8)

(We note that q is from the waiting and q′ is from the tight part of B.) Given a macrostate
(S, O, f, i) and a ∈ Σ, we define the maximal successor ranking f ′

max = max-rank((S, O, f, i), a)
as follows. Consider q′ ∈ δ(S, a) and the rank r = min{f(s) | s ∈ δ−1(q′, a) ∩ S}. Then

f ′
max(q′) := r − 1 if r is odd and q′ ∈ F and

f ′
max(q′) := r otherwise.

Let δ3 be the transition function of the tight part of Schewe(A). We can now proceed
to the definition of the missing components of MaxRank(A):

η2(S, a) :={(S′, ∅, f ′, 0) ∈ ∆•(S, a) | (S′, ∅, f ′, 0) is a maximal element of ≤ in ∆•(S, a)}.
η3((S, O, f, i), a): Let f ′

max = max-rank((S, O, f, i), a). Then, we set
η3((S, O, f, i), a) := {(S′, O′, f ′

max , i′)} when (S′, O′, f ′
max , i′) ∈ δ3((S, O, f, i), a) (i.e.,

if f ′
max is tight; note that, in general, the result of max-rank may not be tight) and

η3((S, O, f, i), a) := ∅ otherwise.
η4((S, O, f, i), a): Let η3((S, O, f, i), a) = {(S′, P ′, h′, i′)} and let

f ′ = h′ ◁ {u 7→ h′(u)− 1 | u ∈ P ′ \ F} and
O′ = P ′ ∩ f ′−1(i′).

Then, if i′ ̸=0, we set η4((S, O, f, i), a) :={(S′, O′, f ′, i′)}, else we set η4((S, O, f, i), a) :=∅.

MaxRank differs from ScheweRedAvgOut in the definition of η2 and η4. In particular,
in the η4 of ScheweRedAvgOut (named γ4 therein), the condition that only non-accepting
states (u ∈ P ′ \F ) decrease rank is omitted. Instead, the rank of all states in P ′ is decreased
by one, which might create a “false ranking” (not an actual ranking since an accepting state
is given an odd rank), so the target macrostate is omitted from the complement. Due to this,
some max-rank runs may also be removed. Our construction preserves max-rank runs, which
makes the proof of the theorem significantly more involved.

▶ Theorem 11. Let A be a BA and C = MaxRank(A). Then L(C) = L(A).

Note that MaxRank is incompatible with RankRestr since RankRestr optimizes
the transitions in the tight part of the complement BA, which are abstracted in MaxRank.

4.6 Backing Off
Our final optimization, called BackOff, is a strategy for guessing when our optimized
rank-based construction is likely (despite the optimizations) to generate too many states
and when it might be helpful to give up and use a different complementation procedure
instead. We evaluate this after the initial phase of Schewe, which constructs δ2 (η2 in
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Figure 3 Evaluation of the effectiveness of our optimizations on the generated state space (axes are
logarithmic). The horizontal and vertical dashed lines represent timeouts.

MaxRank, θ2 in Delay; we will just use δ2 now), finishes. We provide a set of pairs
{(StateSizej , RankMaxj)}j∈J for an index set J (obtained experimentally) and check (after δ2
is constructed) that for all (S, O, f, i) ∈ img(δ2) and all j ∈ J it holds that either |S| <

StateSizej or rank(f) < RankMaxj . If for some (S, O, f, i) and j the condition does not hold,
we terminate the construction and execute a different, surrogate, procedure.

5 Experimental Evaluation

Used tools and evaluation environment. We implemented the optimizations described in
the previous sections in a tool called Ranker [17] in C++ (we tested the correctness of our
implementation using Spot’s autcross on all BAs in our benchmark). We compared our
complementation approach with other state-of-the-art tools, namely, GOAL [37] (including
the Fribourg plugin [1]), Spot 2.9.3 [11], Seminator 2 [4], LTL2dstar 0.5.4 [21], and
ROLL [24]. All tools were set to the mode where they output an automaton with the
standard state-based Büchi acceptance condition. We note that some of the tools are aimed
at complementing more general flavours of ω-automata, such as Seminator 2 focusing on
generalized transition-based Büchi automata. The experimental evaluation was performed on
a 64-bit GNU/Linux Debian workstation with an Intel(R) Xeon(R) CPU E5-2620 running
at 2.40 GHz with 32 GiB of RAM. The timeout was set to 5 minutes.

Dataset. The source of our main benchmark are the 11,000 BAs used in [36], which were
randomly generated using the Tabakov-Vardi approach [35] over a two letter alphabet,
starting from 15 states and with various different parameters (see [36] for more details). In
preprocessing, the automata were reduced using a combination of Rabit [27] and Spot’s
autfilt (using the –high simplification level) and converted to the HOA format [2]. From
this set, we removed automata that are

(i) semi-deterministic,
(ii) inherently weak, or
(iii) unambiguous,
since for these kinds of automata there exist more efficient complementation procedures than
for unrestricted BAs [3, 4, 5, 26]. Moreover, we removed BAs with an empty language or
empty language of complement. We were left with 2,393 hard automata.
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Table 1 Statistics for our experiments. The upper part compares different optimizations of
the rank-based procedure (no postprocessing). The lower part compares our approach with other
methods (with postprocessing). “BO” denotes the BackOff optimization. In the left-hand side of
the table, the column “med.” contains the median, “std. dev” contains the standard deviation,
and “TO” contains the number of timeouts (5 mins). In the right-hand side of the table, we
provide the number of cases where our tool (RankerMaxR without postprocessing in the upper part
and with postprocessing in the lower part) was strictly better (“wins”) or worse (“losses”). The
“(TO)” column gives the number of times this was because of the timeout of the loser. Approaches
implemented in GOAL are labelled with G.

method max mean med. std. dev TO wins (TO) losses (TO)
RankerMaxR 319 119 8 051.58 185 28 891.4 360 — — — —
RankerRRestr 330 608 9 652.67 222 32 072.6 854 1810 (495) 109 (1)
ScheweRedAvgOut G 67 780 5 227.3 723 10 493.8 844 2030 (486) 3 (2)
RankerMaxR 1 239 61.83 32 103.18 360 — — — —
RankerMaxR+BO 1 706 73.65 33 126.8 17 — — — —
Piterman G 1 322 88.30 40 142.19 12 1 069 (3) 469 (351)
Safra G 1 648 99.22 42 170.18 158 1 171 (117) 440 (319)
Spot 2 028 91.95 38 158.13 13 907 (6) 585 (353)
Fribourg G 2 779 113.03 36 221.91 78 996 (51) 472 (333)
LTL2dstar 1 850 88.76 41 144.09 128 1 156 (99) 475 (331)
Seminator 2 1 772 98.63 33 191.56 345 1 081 (226) 428 (241)
ROLL 1 313 21.50 11 57.67 1 106 1 781 (1 041) 522 (295)

Selection of Optimizations. We use two settings of Ranker with different optimizations
turned on. Since the RankRestr and MaxRank optimizations are incompatible, the
main difference between the settings is which one of those two they use. The particular
optimizations used in the settings are the following:

RankerMaxR = Delay + SuccRank + RankSim′ + MaxRank
RankerRRestr = Delay + SuccRank + RankSim′ + RankRestr + Purgedi

(The Purgedi optimization is from [8].) Note that the two settings include all optimizations
compatible with MaxRank and RankRestr respectively. Due to space constraints, we
cannot give a detailed analysis of the effect of individual optimizations on the size of the
obtained complement automaton. Let us, at least, give a bird’s-eye view. The biggest effect
has MaxRank, followed by Delay– their use is key to obtaining a small state space. The
rest of the optimizations are less effective, but they still remove a significant number of states.

5.1 Comparison of Rank-Based Procedures
First, we evaluated how our optimizations reduce the generated state space, i.e., we compared
the sizes of complemented BAs with no postprocessing. Such a use case represents applications
like testing inclusion or equivalence of BAs, where postprocessing the output is irrelevant.

More precisely, we first compared the sizes of automata produced by our settings
RankerMaxR and RankerRRestr to see which of them behaves better (cf. Figure 3a) and
then we compared RankerMaxR, which had better results, with the ScheweRedAvgOut pro-
cedure implemented in GOAL (parameters -m rank -tr -ro). Scatter plots of the results
are given in Figure 3b and summarizing statistics in the upper part of Table 1.

We note that although RankerMaxR produces in the vast majority of cases (1,810)
smaller automata than RankerRRestr, in a few cases (109) RankerRRestr still outputs
a smaller result (in 1 case this is due to the timeout of RankerMaxR). The comparison with
ScheweRedAvgOut shows that our optimizations indeed have a profound effect on the size of
the generated state space. Although the mean and maximum size of complements produced by
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Figure 4 Comparison of the sizes of the BAs constructed using our optimized rank-based
construction and other approaches. Timeouts are on the dashed lines.

RankerMaxR and RankerRRestr are larger than those of ScheweRedAvgOut, this is because
for cases where the complement would be large, the run of ScheweRedAvgOut in GOAL
timeouted before it could produce a result. Therefore, the median is a more meaningful
indicator, and it is significantly (3–4×) lower for both RankerMaxR and RankerRRestr.

5.2 Comparison with Other Approaches
Further, we evaluated the complements produced by RankerMaxR and other approaches. In
this setting, we focused on the size of the output BA after postprocessing (we, again, used
autfilt with simplification –high; we denote this using “+PP”). We evaluated the following
algorithms: Safra [32], its optimization Piterman [30] the optimization implemented in
LTL2dstar [21], Fribourg [1], Spot (Redziejowski’s algorithm [31]), ROLL’s learning-
based algorithm [25], and a semideterminization-based algorithm [3] in Seminator 2.

In Figure 4, we give scatter plots of selected comparisons; we omitted the results for
Safra, Spot, and LTL2dstar, which on average performed slightly worse than Piterman.
We give summarizing statistics in the lower part of Table 1 and the run times in Table 2.

Let us now discuss the data in the lower part of Table 1. In the left-hand side, we can see
that the mean and median size of BAs obtained by RankerMaxR are both the lowest with
the exception of ROLL. ROLL implements a learning-based approach, which means that it
works on the level of the language of the input BA instead of the structure. Therefore, it can
often find a much smaller automaton than other approaches. Its practical time complexity,



V. Havlena and O. Lengál 2:15

Table 2 Run times of the tools [s].

method mean med. std. dev
RankerMaxR 10.21 0.84 28.43
RankerMaxR+BO 9.40 3.03 16.00
Piterman G 7.47 6.03 8.46
Safra G 15.49 7.03 35.59
Spot 1.07 0.02 8.94
Fribourg G 19.43 10.01 32.76
LTL2dstar 4.17 0.06 22.19
Seminator 2 11.41 0.37 34.97
ROLL 42.63 14.92 67.31

Table 3 Wins and losses for RankerMaxR+BO.

method wins (TO) losses (TO)
Piterman G 1 160 (4) 112 (9)
Safra G 1 255 (147) 222 (6)
Spot 985 (8) 328 (12)
Fribourg G 1 076 (71) 287 (10)
LTL2dstar 1 208 (118) 272 (7)
Seminator 2 1 236 (333) 253 (5)
ROLL 1 923 (1 096) 360 (7)

however, seems to grow much faster with the number of states of the output BA than other
approaches (cf. Table 2). RankerMaxR by itself had more timeouts than other approaches,
but when used with the BackOff strategy, is on par with Piterman and Spot.

In the right-hand side of Table 1, we give the numbers of times where RankerMaxR gave
strictly smaller and strictly larger outputs respectively. Here, we can see that the output
of RankerMaxR is often at least as small as the output of the other method (this is not
in the table, but can be computed as 2, 393 − losses; the losses were caused mostly by
timeouts; results with the BackOff strategy would increase the number even more) and
often a strictly smaller one (the wins column). When comparing RankerMaxR with the best
result of any other tool, it obtained a strictly smaller BA in 539 cases (22.5 %) and a BA at
least as small as the best result of any other tool in 1,518 cases (63.4 %). Lastly, we note
that there were four BAs in the benchmark that no tool could complement and one BA that
only RankerMaxR was able to complement; there was no such a case for any other tool.

Let us now focus on the run times of the tools in Table 2. GOAL and ROLL are
implemented in Java, which adds a significant overhead to the run time (e.g., the fastest run
time of GOAL was 3.15 s; it is hard to predict how their performance would change if they
were reimplemented in a faster language); the other approaches are implemented in C++.

BackOff. Our BackOff setting in the experiments used the set of constraints
{(StateSize1 = 9, RankMax1 = 5), (StateSize2 = 8, RankMax2 = 6)} and Piterman as
the surrogate algorithm. The BackOff strategy was executed 873 times and managed to
decrease the number of timeouts of RankerMaxR from 360 to 17 (row RankerMaxR+BO in
Table 1).

Discussion. The results of our experiments show that our optimizations are key to making
rank-based complementation competitive to other approaches in practice. Furthermore, with
the optimizations, the obtained procedure in the majority of cases produces a BA at least as
small as a BA produced by any other approach, and in a large number of cases the smallest
BA produced by any existing approach. We emphasize the usefulness of the BackOff
heuristic: as there is no clear “best” complementation algorithm – different techniques having
different strengths and weaknesses – knowing which technique to use for an input automaton
is important in practice. In Table 3, we give a modification of the right-hand side of Table 1
giving wins and losses for RankerMaxR+BO. It seems that the combination of these two
completely different algorithms yields a quite strong competitor.
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6 Related Work

The problem of BA complementation has attracted researchers since Büchi’s seminal work [7].
Since then, there have appeared several directions of BA complementation approaches.
Ramsey-based complementation using Büchi’s original argument, decomposing the language
accepted by an automaton into a finite number of equivalence classes, was later improved
in [6]. Determinization-based complementation was introduced by Safra in [32], later im-
proved by Piterman in [30]. Determinization-based approaches convert an input BA into
an equivalent intermediate deterministic automaton with different accepting condition (e.g.
Rabin automaton) that can be easily complemented. The result is then converted back into
a BA (often for the price of some blow-up). Slice-based complementation uses a reduced
abstraction on a run tree to track the acceptance condition [39, 19]. A learning-based ap-
proach was presented in [25, 24]. A novel optimal complementation algorithm by Allred and
Utes-Nitsche was presented in [1]. There are also specific approaches for complementation
of special types of BAs, e.g., deterministic [23], semi-deterministic [3], or unambiguous [26].
Semi-determinization based complementation then uses a conversion of a standard BA to
a semi-deterministic version [10] followed by its complementation [4].

Rank-based complementation, studied in [22, 15, 13, 33, 20], extends the subset construc-
tion for determinizing finite automata with additional information kept in each macrostate
to track the acceptance condition of all runs of the input automaton. We have described
the refinement of the basic procedure from [22] towards [13] and [33] in Section 3. The
work in [15] contains optimizations of an alternative (sub-optimal) rank-based construction
from [22] that goes through alternating Büchi automata. Furthermore, the work in [20]
proposes an optimization of Schewe that in some cases produces smaller automata (the
construction is not compatible with our optimizations). Rank-based construction can be
optimized using simulation relations as shown in [8]. Here the direct and delayed simulation
relations can be used to prune macrostates that are redundant for accepting a word or to
saturate macrostates with simulation-smaller states.
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3:2 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

1 Introduction

Deciding whether a formal language contains another one is a fundamental problem with
diverse applications ranging from automata-based verification to compiler construction [6, 13,
25, 42]. In this work, we deal with the inclusion problem for ω-languages, namely languages of
words of infinite length (ω-words) over a finite alphabet. In particular, we are interested in the
case of ω-regular languages, which is known to be PSPACE-complete [26], and in the inclusion
of ω-context-free languages into ω-regular, which is known to be EXPTIME-complete [21, 32].

1.1 Main Contributions
We put forward a number of language inclusion algorithms that are systematically designed
from an abstraction-based perspective of the inclusion problem. Our starting point was
a recent abstract interpretation-based algorithmic framework for the inclusion problem
for languages of finite words [15, 16]. Extending this framework to ω-words raises several
challenges. First, the finite word case crucially relies on least fixpoint characterizations
of languages which we are not aware of for languages of ω-words (while greatest fixpoint
characterizations exist). The second challenge is to define suitable abstractions for languages
of ω-words and effective representations thereof.

We overcome the first challenge by reducing the inclusion problem for ω-languages to
an equivalent inclusion problem between their so-called ultimately periodic subsets. The
ultimately periodic subset of an ω-language L consists of those ω-words of the form uvω ∈ L,
where u and v are finite words referred to as, resp., a prefix and a period of an ω-word.
It turns out that an underlying Büchi (pushdown) automaton accepting L enables a least
fixpoint characterization of the ultimately periodic subset of L. To guarantee convergence
in finitely many Kleene iterations of such a least fixpoint, we resort to a conceptually
simple approach based on abstract interpretation [8]. Roughly speaking, we define over-
approximating abstractions of sets of finite words which “enlarge” these sets with new words
picked according to a quasiorder relation on finite words. Our abstractions rely on two distinct
quasiorder relations which, resp., enlarge the sets of prefixes and periods of an ultimately
periodic set representing an ω-language. The quasiorders inducing our abstractions have to
satisfy two basic properties: (1) to be well-quasiorders to guarantee finite convergence of
fixpoint computations; (2) some monotonicity conditions w.r.t. word concatenation in order
to yield a sound and complete inclusion algorithm (soundness holds for mere quasiorders).
Once the abstract least fixpoint has been computed, an inclusion check L ⊆? M reduces to a
finite number of tests uvω ∈? M for finitely many prefixes u and periods v taken from the
abstract least fixpoint representing L. We introduce different well-quasiorders to be used in
our inclusion algorithm and we show that using distinct well-quasiorder-based abstractions
for prefixes and periods pays off.

For a language inclusion check L ⊆ M , where L and M are accepted by Büchi automata,
some quasiorders enable a further abstraction step where finite words are abstracted by states
relating these words in the underlying Büchi automaton accepting M , and this correspondingly
defines a purely “state-based” inclusion algorithm that operates on automaton states only.
We further demonstrate the generality of our algorithmic framework by instantiating it to
the inclusion problem of Büchi pushdown automata into Büchi automata.

We implemented our language inclusion algorithm in a tool called BAIT (Büchi Automata
Inclusion Tester) [10]. We put together an extensive suite of benchmarks [11], notably
verification tasks as defined by the RABIT tool [1, 2], logical implication tasks in word
combinatorics as defined by the Pecan theorem prover [34], and termination tasks as defined
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by Ultimate Automizer [18]. We conducted an experimental comparison of BAIT against
some state-of-the-art language inclusion checking tools: GOAL [41], HKCω [24], RABIT
[37, 7] and ROLL [27]. The experimental results show that BAIT advances the state-of-
the-art of the tools for checking inclusion of ω-languages on an overwhelming majority of
benchmarks.

1.2 Related Works
Due to space constraints, we limit our discussion to Ramsey-based algorithms, as our inclusion
procedure, and to methods based on automata complementation. Kuperberg et al. [24] also
reduce the language equivalence problem over Büchi automata to that of their ultimately
periodic subsets. A further commonality is that the algorithm of [24] handles prefixes
and periods differently: for the prefixes they leverage a state-of-the-art up-to congruence
algorithm [3], while up-to congruences are not used for the periods1. Fogarty and Vardi [14]
for the universality problem, and later Abdulla et al. [1, 2] for the inclusion problem between
languages accepted by Büchi automata, all reduce their decision problems to the ultimately
periodic subsets. Their approach is based on a partition of nonempty words whose blocks
are represented and manipulated through so-called supergraphs. The equivalence relation
underlying their partition can be obtained from one of our quasiorders. Moreover, by
equipping their supergraphs with a subsumption order [2, Def. 6], they define a relation
which coincides with one of our quasiorders. Hofmann and Chen [20], whose approach
based on abstract interpretation inspired our work, also tackle the inclusion problem for
ω-languages. They construct an abstract (finite) lattice using the same equivalence relation
which is derived from a given Büchi atomaton, and define a Galois connection between it and
the (infinite) lattice of languages of infinite words. However, they do not relax this relation
into a quasiorder. Finally, the complementation-based approaches reduce language inclusion
to a language emptiness check by using intersection and an explicit complementation of a
Büchi automaton. Despite that there are Büchi automata of size n whose complement cannot
be represented with less than n! states [33], algorithms to complement Büchi automata
have been defined, implemented and are effective in practice [40]. In our approach, explicit
complementation is avoided altogether.

2 Overview

We assume familiarity with the basics of language theory (see, e.g., [22, 35]). Throughout the
paper, we fix Σ to be a finite nonempty alphabet. Furthermore, let ϵ denote the empty word,
Σ∗ the set of finite words over Σ, Σ+ ≜ Σ∗ \ {ϵ}, Σω the set of infinite words (or ω-words)
over Σ, |w| ∈ N denote the length of w ∈ Σ∗. The ultimately periodic words are the words
ξ ∈ Σω such that ξ = uvω for some finite prefix u ∈ Σ∗ and some finite period v ∈ Σ+. Given
L ⊆ Σω, we associate pairs of finite words to ultimately periodic words and define

IL ≜ {(u, v) ∈ Σ∗ × Σ+ | uvω ∈ L} .

In the following we give an outline of our approach. Given two ω-languages L and
M such that the inclusion check reduces to that of their ultimately periodic words, i.e.
L ⊆ M ⇔ IL ⊆ IM holds, we reduce the inclusion problem L ⊆ M to finitely many
membership queries in the candidate “larger” language M .

1 In the technical report thereof, the authors work out up-to union and up-to equivalence reasoning for
periods but not their combination (up-to congruence).
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A quasiorder (qo) relation on a set S is a reflexive and transitive binary relation on S. Any
qo ≤ ⊆ S ×S induces a map ρ≤ : ℘(S) → ℘(S) defined by ρ≤(X) ≜ {y ∈ S | ∃x ∈ X, x ≤ y},
which turns out to be a closure operator on the complete lattice ⟨℘(S), ⊆⟩. Let us recall that
a closure operator is a monotone (X ⊆ X ′ ⇒ ρ(X) ⊆ ρ(X ′)), idempotent (ρ(X) = ρ(ρ(X))),
and increasing (X ⊆ ρ(X)) map. Given X ∈ ℘(S), the set ρ≤(X) is called the upward
closure of X w.r.t. ≤. We say that a qo relation ⪯ on Σ∗ × Σ+ preserves IM if ρ⪯(IM ) = IM

holds. Given a qo ⪯ that preserves IM , since ρ⪯ is monotone and increasing, we have that:

L ⊆ M ⇐⇒ IL ⊆ IM ⇐⇒ ρ⪯(IL) ⊆ IM . (1)

A qo ≤ is a well-quasiorder (wqo) if for any upward closure ρ≤(X) there is a finite subset
X ′ ⊆fin X such that ρ≤(X) = ρ≤(X ′). Hence, if a relation ⪯ on Σ∗ × Σ+ is a wqo then there
exists a finite subset T ⊆fin IL such that ρ⪯(T ) = ρ⪯(IL). By exploiting the properties of
closures, this reduces the inclusion check to finitely many membership queries in M :

L ⊆ M ⇐⇒ ρ⪯(T ) ⊆ IM ⇐⇒ T ⊆ IM ⇐⇒ ∀(u, v) ∈ T, uvω ∈ M . (2)

Following this approach, we design inclusion algorithms in the cases where both languages
L and M are ω-regular and where the “left” language L is ω-context-free and the “right”
language M is ω-regular. In Section 3, we define wqos that preserve IM as required
by (1). Section 4 gives a detailed account of each step so as to end up designing our
inclusion algorithms. Section 5 shows how to obtain algorithms deciding L(A) ⊆ L(B) and
L(P) ⊆ L(B), where A and B are Büchi automata and P is a Büchi pushdown automaton,
by reasoning exclusively on the automata states/configurations. Section 6 describes the
experimental results of our implementation BAIT.

3 Well-Quasiorders for ω-Regular Languages

The equivalence (1) holds because the qo ⪯ on Σ∗ × Σ+ is such that ρ⪯(IM ) = IM . In the
following, we focus on pairs of qos ≤ and ≼ on, resp., Σ∗ and Σ+, such that their product
relation ≤ ×≼ on Σ∗ × Σ+ preserves IM , i.e., ρ≤×≼(IM ) = IM holds. We define different
pairs of qos preserving IM and show how they compare. All these qos are well-quasiorders
and right-monotonic. The first property guarantees the existence of a finite representation
for IL and the convergence after finitely many steps of the fixpoint computations, while the
second property ultimately yields a (sound and) complete inclusion algorithm.

A qo ≤ on Σ∗ is left-monotonic (right-monotonic) if

∀u, v, w ∈ Σ∗, u ≤ v ⇒ wu ≤ wv (uw ≤ vw) ,

while ≤ is monotonic if it is both left- and right-monotonic. Given any relation R ⊆ X × X,
R∗ ≜

⋃
n∈N Rn denotes its reflexive and transitive closure.

A Büchi automaton (BA) on an alphabet Σ is a tuple A = (Q, δ, i, F ) where Q is a finite set
of states including a unique initial state i ∈ Q, δ : Q × Σ → ℘(Q) is a transition function, and
F ⊆ Q is a subset of final states. We write a transition q

a→ q′ when q′ ∈ δ(q, a) and lift this
relation to finite words by transitive and reflexive closure, thus writing q

u−→∗q′ with u ∈ Σ∗.
We write q

u−→F
∗q′ if there exists qf ∈ F and u1, u2 ∈ Σ∗ such that q

u1−→∗qf , qf
u2−→∗q′ and

u = u1u2. The language of finite words accepted by A is L∗(A) ≜ {u ∈ Σ∗ | i
u−→∗q, q ∈ F}.

A trace of A on an ω-word w = a0a1 · · · ∈ Σω is an infinite sequence q0
a0→ q1

a1→ q2 · · · , which
is called initial when q0 = i and fair when qj ∈ F for infinitely many j’s. The ω-language
accepted by A is Lω(A) ≜ {w ∈ Σω | there exists an initial and fair trace on w}. An
ω-language L ⊆ Σω is ω-regular if L = Lω(A) for some BA A.
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(a) C i a, b (b) D q0 qb
a ab

Figure 1 Büchi automata C and D over the alphabet Σ = {a, b}.

State-Based Quasiorders. We define quasiorders that compare words in Σ∗ based on the
states of a BA A = (Q, δ, i, F ). To do so, we associate with each word u ∈ Σ∗ its context
cA[u] ⊆ Q2 and final context f A[u] ⊆ Q2 in A as follows:

cA[u] ≜ {(q, q′) ∈ Q2 | q
u−→∗q′} ,

f A[u] ≜ {(q, q′) ∈ Q2 | q
u−→F

∗q′} .

We also define the successor set sA[u] ⊆ Q in A through a word u ∈ Σ∗ as follows:

sA[u] ≜ {q ∈ Q | i
u−→∗q} .

Based on this, we define the following qos on words in Σ∗:

u ≤A v
△⇔ sA[u] ⊆ sA[v] ,

u ⊴A v
△⇔ cA[u] ⊆ cA[v] ,

u ≼A v
△⇔ u ⊴A v ∧ f A[u] ⊆ f A[v] .

▶ Example 3.1. Consider the BA D in Fig. 1 (b). Since for all u ∈ Σ∗, sD[ua] = {q}
and sD[ub] = sD[ϵ] = {q0}, we have that u ≤D v iff either u, v ∈ Σ∗a or u, v ∈ Σ∗b ∪ {ϵ}.
Similarly, we find that u ⊴D v iff either u, v /∈ {ϵ} and u ≤D v, or u, v ∈ {ϵ}. For u ∈ Σ∗

we have f D[ua] = {(q0, q), (q, q)}. For u ∈ Σ∗ \ b∗ we have f D[ub] = {(q0, q0), (q, q0)} and
f D[bk] = {(q, q0)}, for any k ≥ 1. As for the empty word, f D[ϵ] = {(q, q)}. Hence, for
all u, v ∈ Σ∗, it turns out that u ≼C v holds iff one of the following four cases holds:
(i) u, v ∈ Σ∗a; (ii) u ∈ Σ∗b and v ∈ Σ∗b\b∗; (iii) u, v ∈ b+; (iv) u, v ∈ {ϵ}. ⌟

The qos ⊴A and ≤A appeared in [15] while ≼A was obtained by relaxing an equivalence
defined in [20]. By definition, we have that ≼A ⊆ ⊴A, and since q ∈ sA[u] iff (i, q) ∈ cA[u],
we deduce that ≼A ⊆ ⊴A ⊆ ≤A holds. Since Q is a finite set, it turns out that all these three
state-based qos are indeed wqos. It is easily seen that ⊴A and ≼A are monotonic and that
≤A is right-monotonic. Finally, we turn to the preservation property with respect to ILω(A).
Let (u, v) ∈ ILω(A). Then, uvω ∈ Lω(A) and there is an initial fair trace of A on uvω. Hence,
we can find two states p, q ∈ Q and two integers n, m ≥ 1 such that i

u−→∗p, p
vn

−→∗q and
q

vm

−−→∗
F q. Let (s, t) ∈ Σ∗ × Σ+ be such that u ≤A s and v ≼A t. By monotonicity of ≼A,

we deduce that vk ≼A tk holds for all k ∈ N. Hence, by definition of the state-based qos,
we also have i

s−→∗p, p
tn

−→∗q and q
tm

−−→∗
F q. Therefore, (s, t) ∈ ILω(A) holds. The argument

remains the same if u ⊴A s or u ≼A s, so that we conclude that the pair ≤A,≼A, as well as
the pairs ⊴A,≼A and ≼A,≼A are pairs of wqos preserving ILω(A).

4 An Algorithmic Framework for Checking Inclusion

We start with the ω-regular ⊆ ω-regular case and then leverage the generality of our
algorithmic framework to tackle the ω-context-free ⊆ ω-regular case in Section 4.2.
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3:6 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

4.1 Language Inclusion ω-regular ⊆ ω-regular
Let us first recall the following fundamental theorem for languages of ω-words.

▶ Theorem 4.1 ([5]). The equivalence L ⊆ M ⇐⇒ IL ⊆ IM holds for all ω-regular
languages L, M ⊆ Σω.

Fix an ω-regular language M , a pair ≤,≼ of right-monotonic wqos on, resp., Σ∗ and
Σ+, with ρ≤×≼(IM ) = IM , as given in Section 3, and a BA A = (Q, δ, iA, F ) such that
L = Lω(A).

A Representation for the Ultimately Periodic Words of L. We slightly generalize the
approach presented in Section 2 and represent the ultimately periodic words of L by a subset
S ⊆ IL such that {uvω | (u, v) ∈ S} = {uvω | (u, v) ∈ IL} holds, so that L ⊆ M ⇔ S ⊆ IM

holds. The definition of such a subset S representing IL relies on the following result.

▶ Lemma 4.2. Let A = (Q, δ, iA, F ) be a BA. Then, uvω ∈ Lω(A) iff there exist p ∈ F ,
u′ ∈ Σ∗, v′ ∈ Σ+ such that uvω = u′v′ω, iA

u′

−→∗p and p
v′

−→∗p.

For each pair of states q, q′ ∈ Q, we define the automaton Aq
q′ ≜ (Q, δ, q, {q′}). By

Lemma 4.2, it turns out that the ultimately periodic words generated by the pairs of finite
words in

SA ≜
⋃

p∈F L∗(AiA
p ) × (L∗(Ap

p)\{ϵ})

coincide with the ultimately periodic words of Lω(A). Hence, by reasoning as in Section 2,
it turns out that:

Lω(A) ⊆ M ⇐⇒ SA ⊆ IM ⇐⇒ ρ≤×≼(SA) ⊆ IM . (1′)

Fixpoint Characterization of SA. For a function f : X → X over a set X and for all n ∈ N,
the n-th power fn : X → X of f is inductively defined as usual: f0 ≜ λx.x; fn+1 ≜ f ◦ fn.
The denumerable sequence of Kleene iterates of f starting from an initial value a ∈ X is
given by {fn(a)}n∈N. This sequence finitely converges to some fk(a), with k ∈ N, when for
all n ≥ k, fn(a) = fk(a). Let us recall that when X is a directed-complete partial order with
bottom ⊥ and f is monotone, if the Kleene iterates starting from the bottom {fn(⊥)}n∈N
finitely converge to some fk(⊥) then fk(⊥) is the least fixpoint of f , denoted by lfp f .

Given X ∈ ℘(Σ∗)Q, we define

PostA(X) ≜ ⟨
⋃

a∈Σ,q∈δ(q′,a) Xq′a⟩q∈Q ∈ ℘(Σ∗)Q ,

where, for all q ∈ Q, Xq denotes the q-indexed component of the vector X. In turn, for each
p ∈ F , we define the maps

PA ≜ λX.⟨{ϵ | q = iA} ∪ (PostA(X))q⟩q∈Q ,

RA,p ≜ λX.⟨{a ∈ Σ | q ∈ δ(p, a)} ∪ (PostA(X))q⟩q∈Q ,

which allows us to give the following least fixpoint characterization of SA.

▶ Lemma 4.3. SA =
⋃

p∈F (lfp PA)p × (lfp RA,p)p.

▶ Example 4.4. Consider the BA C in Fig. 1. Since L∗(Ci
i) = {a, b}∗, we have that

SC = {a, b}∗ × {a, b}+. Since C has only one state, vectors have dimension one. We have
that PC = λX.{ϵ} ∪ Xa ∪ Xb and RC = λX.{a, b} ∪ Xa ∪ Xb, so that their Kleene iterates
are P n

C (∅) = {u ∈ {a, b}∗ | |u| ≤ n − 1} and Rn
C (∅) = {v ∈ {a, b}+ | |v| ≤ n}, for n ∈ N. ⌟
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A Finite Representation of SA. Given two vectors X, X ′ ∈ ℘(Σ∗)k, we abuse notations
and write X ∪ X ′ for the vector ⟨Xj ∪ X ′

j⟩j∈[1,k], and we write X ⊆ X ′ when Xj ⊆ X ′
j for

all j ∈ [1, k]. Given two functions f : ℘(Σ∗)k → ℘(Σ∗)k and ρ : ℘(Σ∗) → ℘(Σ∗) we write
fn(∅) for fn(∅, · · · , ∅), and ρ ◦ f for the function λX.⟨ρ((f(X))j)⟩j∈[1,k].

Since ≤ is a wqo, ρ≤(lfp PA) = ρ≤(D) for some finite subset D ⊆fin lfp PA. Since
lfp PA =

⋃
n∈N P n

A(∅), there exists some index N1 ∈ N such that D ⊆ P N1
A (∅). Hence,

ρ≤(P N1
A (∅)) = ρ≤(lfp PA) holds. This also applies to ≼ and RA,p, for each p ∈ F , so that

there exists an index N2 ∈ N such that ρ≼(RN2
A,p(∅)) = ρ≼(lfp RA,p). Thus, by taking

Tp ≜ P N1
A (∅) × RN2

A,p(∅), for each p ∈ F , we obtain a finite representation of SA, as required
by step (2). By plugging the least fixpoint characterisation of SA of Lemma 4.3 inside (1′),
by observing that the closures preserve unions, and that ρ≤×≼ and ρ≤ × ρ≼ coincide on
Cartesian products, we derive the following equivalences as in Section 2:

Lω(A) ⊆ M ⇐⇒ ∀p ∈ F, ρ≤×≼((lfp PA)p × (lfp RA,p)p) ⊆ IM

⇐⇒ ∀p ∈ F, ρ≤×≼(Tp) ⊆ IM ⇐⇒ ∀p ∈ F, Tp ⊆ IM .
(2′)

▶ Remark 4.5. Assume that {Xn}n∈N and {Yn}n∈N are two sequences of vectors in ℘(Σ∗)Q

such that for each n ∈ N: (i) the Q-indexed components of Xn and Yn, for all n, are finite
sets; (ii) for each n ∈ N, ρ≤(Xn) = ρ≤(P n

A(∅)) and ρ≼(Yn) = ρ≼(Rn
A,p(∅)). We call such a

sequence {Xn}n∈N (resp. {Yn}n∈N) a sequence of correct pruning steps w.r.t. ≤ (resp. ≼).
Then, the vector XN1 × YN2 can be used to achieve (2′), likewise Tp was used above. ⌟

Convergence Check. Let us now turn to the definition of a procedure for deciding when
to stop the computations of ρ≤(P n

A(∅)) and ρ≼(Rn
A,p(∅)). Here, we exploit a completeness

property of the closures ρ≤ and ρ≼, commonly used in abstract interpretation [8, 9]: a
closure ρ : C → C is called complete for a function f : C → C when ρ ◦ f = ρ ◦ f ◦ ρ

holds. Completeness is often used in abstract interpretation because it transfers to fixpoints,
meaning that if ρ is complete for f then ρ(lfp f) = lfp(ρ ◦ f) holds [9, Theorem 7.1.0.4].
The following result provides a sufficient condition on a qo on Σ∗ so as the induced closure
operator turns out to be complete for the functions PA and RA,p, for each p ∈ F .

▶ Lemma 4.6. Let A = (Q, δ, iA, F ) be a BA on Σ and ≤ be a right-monotonic qo on Σ∗.
Then, ρ≤ is complete for PA and RA,p, for each p ∈ F .

We are now in position to show that if the qos ≤ and ≼ are right-monotonic and
decidable, then a finite representation of SA can be computed. First, observe that for all
n ≥ 0, P n

A(∅) is finite and computable (an easy induction can prove this). Let us also
notice that PA is a monotone function, hence ρ≤ ◦ PA is monotone as well. Suppose that
ρ≤(P N1+1

A (∅)) ⊆ ρ≤(P N1
A (∅)) holds for some N1 ∈ N. Thus, by monotonicity of ρ≤ ◦ PA,

it turns out that ρ≤ ◦ PA ◦ ρ≤(P N1+1
A (∅)) ⊆ ρ≤ ◦ PA ◦ ρ≤(P N1

A (∅)). By Lemma 4.6, ρ≤ is
complete for PA, hence this latter inclusion is equivalent to ρ≤(P N1+2

A (∅)) ⊆ ρ≤(P N1+1
A (∅)). A

simple induction based on this argument proves that for all k ≥ N1, ρ≤(P k
A(∅)) ⊆ ρ≤(P N1

A (∅))
holds, so that we obtain that {ρ≤(P n

A(∅))}n∈N finitely converges at iteration N1. Hence, to
detect convergence of the iterates we check whether ρ≤(P n+1

A (∅)) ⊆ ρ≤(P n
A(∅)) holds or not.

When the qo ≤ is decidable, this test boils down to check if for each x ∈ P n+1
A (∅), there

exists y ∈ P n
A(∅) such that y ≤ x. This same reasoning also applies to ≼ and RA,p.

Word-based Inclusion Algorithms. Our “word-based” algorithm BAIncW for checking
Lω(A) ⊆ M is parameterized by a pair of right-monotonic wqos ≤,≼ (on, resp., Σ∗, Σ+)
preserving IM . It computes the Kleene iterates P n

A(∅) and Rn
A,p(∅), for each final state
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p ∈ F , until ρ≤((P N1+1
A (∅))q) ⊆ ρ≤((P N1

A (∅))q) and ρ≼((RN2+1
A,p (∅))q) ⊆ ρ≼((RN2

A,p(∅))q) hold
for each q ∈ Q and some N1, N2 ∈ N. The resulting finite sets of words (P N1

A (∅))p and
(RN2

A,p(∅))p, for each final state p ∈ F , are used by the membership check procedure enabled
by (2′):

Lω(A) ⊆ M ⇐⇒ ∀p ∈ F, ∀u ∈ (P N1
A (∅))p, ∀v ∈ (RN2

A,p(∅))p, uvω ∈ M.

BAIncW Word-based algorithm for checking Lω(A) ⊆ M .

Data: Büchi automaton A = (Q, δ, iA, F )
Data: Procedure deciding uvω ∈? M given (u, v) ∈ Σ∗ × Σ+

Data: Decidable right-monotonic wqos ≤,≼ s.t. ρ≤×≼(IM ) = IM

1 Compute P N1
A (∅) with least N1 s.t. ∀q ∈ Q, ρ≤((P N1+1

A (∅))q) ⊆ ρ≤((P N1
A (∅))q);

2 foreach p ∈ F do
3 Compute RN2

A,p(∅) with least N2 s.t. ∀q ∈ Q, ρ≼((RN2+1
A,p (∅))q) ⊆ ρ≼((RN2

A,p(∅))q);
4 foreach u ∈ (P N1

A (∅))p, v ∈ (RN2
A,p(∅))p do

5 if uvω /∈ M then return false;
6 return true;

▶ Theorem 4.7. Given all the required input data, BAIncW decides Lω(A) ⊆ M .

▶ Remark 4.8. The for-loop at lines 2-5 of BAIncW is restricted to the final states p ∈ F of
the BA A. Thus, in general, the less they are the better is for BAIncW. ⌟

▶ Example 4.9. Consider the BAs C and D in Fig. 1. From Example 4.4 we have that
PC(∅) = {ϵ}, P 2

C (∅) = {ϵ, a, b} and P 3
C (∅) = {ϵ, a, b, aa, ab, ba, bb}. From Example 3.1, for

u ∈ {aa, ba} and v ∈ {ab, bb}, we have that a ≤D u and b ≤D v, while a and ϵ are
incomparable for ≤D. Hence, ρ≤D (PC(∅)) ̸= ρ≤D (P 2

C (∅)) and ρ≤D (P 2
C (∅)) = ρ≤D (P 3

C (∅)) hold,
so that a finite representation of lfp PC is achieved by P 2

C (∅). Since ρ≼D (R2
C(∅)) = ρ≼D (R1

C(∅)),
the membership check is performed on the elements of P 2

C (∅) × R1
C(∅) = {ϵ, a, b} × {a, b},

and for (a, b) ∈ P 2
C (∅) × R1

C(∅), the word abω is a witness that Lω(C) ̸⊆ Lω(D). ⌟

As explained by Remark 4.5, any sequence of correct pruning steps for the Kleene iterates
can be safely exploited to compute a finite representation of SA. This is formalized by the
algorithm BAIncW given in App. A.

The pairs of qos derived from M as defined in Section 3, are all pairs of decidable
right-monotonic wqos that verify the preservation property w.r.t. M . Each of them yields
a slightly different algorithm deciding whether Lω(A) ⊆ M holds (see the discussion in
Section 4.3).

4.2 Language Inclusion ω-context-free ⊆ ω-regular
A (Büchi) pushdown automaton ((B)PDA) on Σ is a tuple P = (Q, Γ, δ, i, F ) where Q

is a finite set of states including an initial state i, Γ is the stack alphabet including an
initial stack symbol ⊥, δ ⊆ Q × (Σ ∪ {ϵ}) × Γ × Q × Γ∗ is the finite set of transitions,
and F ⊆ Q is a subset of accepting states. Configurations of the PDA P are pairs in
Q × Γ∗ and, for each a ∈ Σ, the transition relation ⊢a between configurations is defined
by (q, γw) ⊢a (p, βw), for some w ∈ Γ∗, when (q, a, γ, p, β) ∈ δ, and it is lifted to words by
reflexivity and transitivity, that is, for all u ∈ Σ∗, (q, w) ⊢∗u (p, w′) when the configurations
(q, w) and (p, w′) are related by a sequence of transitions such that the concatenation of
the corresponding labels is the word u. We write (q, w) ⊢∗u

F (p, w′) when such a sequence
includes a configuration whose state is final. The language of finite words accepted by a
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PDA P is L∗(P) ≜ {u ∈ Σ∗ | (i, ⊥) ⊢∗u (p, w), p ∈ F, w ∈ Γ∗}. A natural extension from
finite to infinite words relies on infinite sequences of configurations as follows. A trace of P
for an ω-word ξ = a0a1 · · · ∈ Σω is an infinite sequence (q0, w0) ⊢∗a0 (q1, w1) ⊢∗a1 · · ·, which
is initial when (q0, w0) = (i, ⊥) and fair when qj ∈ F for infinitely many j’s. The ω-language
accepted by P is Lω(P) ≜ {ξ ∈ Σω | there exists an initial and fair trace of P for ξ}. An
ω-language L ⊆ Σω is ω-context-free if L = Lω(P) for some BPDA P on Σ.

We fix an ω-regular language M , a pair ≤,≼ of monotonic wqos on Σ∗, Σ+ such that
ρ≤×≼(IM ) = IM holds, and a BPDA P such that L = Lω(P). Theorem 4.1 still holds when
the “left” language L is ω-context-free, so that L ⊆ M ⇐⇒ IL ⊆ IM holds. The following
result generalises Lemma 4.2 to BPDAs.

▶ Lemma 4.10. Let P = (Q, Γ, δ, i, F ) be a BPDA. Then, uvω ∈ Lω(P) iff there exist (q, γ) ∈
Q × Γ, u′ ∈ Σ∗, v′ ∈ Σ+ such that uvω = u′v′ω, (i, ⊥) ⊢∗u′

(q, γs) and (q, γ) ⊢∗v′

F (q, γw), for
some s, w ∈ Γ∗.

Similarly to the ω-regular case described in Section 4.1, Lemma 4.10 allows us to define
two PDAs P1

qγ and P2
qγ , where for each (q, γ) ∈ Q × Γ, P1

qγ deals with the prefixes, P2
qγ deals

with the periods, and are such that the ultimately periodic words generated by the pairs in
SP ≜

⋃
(q,γ)∈Q×Γ L∗(P1

qγ) × L∗(P2
qγ) coincide with those of Lω(P). Hence, similarly to (1′)

for the ω-regular case, it turns out that:

Lω(P) ⊆ M ⇐⇒ SP ⊆ IM ⇐⇒ ρ≤×≼(SP) ⊆ IM . (1′′)

Moreover, analogously to Lemma 4.3 for the ω-regular case, SP admits a least fixpoint
characterisation.

▶ Lemma 4.11. Any PDA P induces a monotone map FP : ℘(Σ∗)m → ℘(Σ∗)m, for some
m ∈ N, such that L∗(P) = (lfp FP)0.

Let us mention that the definition of FP relies on the production rules of a context-free
grammar (CFG) accepting L∗(P) and that (lfp FP)0 denotes the first vector component
corresponding to the start variable of the CFG. Let Pqγ and Rqγ be the functions provided
by Lemma 4.11 for the two PDAs P1

qγ and P2
qγ defined above for each (q, γ) ∈ Q × Γ. By (1′′)

and Lemma 4.11, it turns out that:

Lω(P) ⊆ M ⇐⇒ ∀(q, γ) ∈ Q × Γ, ρ≤((lfp Pqγ)0) × ρ≼((lfp Rqγ)0)) ⊆ IM . (2′′)

Since both ≤ and ≼ are wqos, the corresponding upward-closed sets in (2′′) can be
obtained as upward closure of some finite subsets. In particular, by reasoning as for the
ω-regular case, we have that for each (q, γ) ∈ Q × Γ there exist N1, N2 ∈ N such that
ρ≤((lfp Pqγ)0) = ρ≤((P N1

qγ (∅))0) and ρ≼((lfp Rqγ)0) = ρ≼((RN2
qγ (∅))0) hold.

Let us now turn to the convergence of the sequences of Kleene iterates. Being induced
by the rules of a CFG, the function FP(⟨X1, ..., Xm⟩) of Lemma 4.11 may rely on nonlinear
concatenations of type XiXj for some i, j ∈ [1, m], so that prefixes and periods in SP can be
obtained both by left- and right-concatenations. This is different from the ω-regular case,
where only right-concatenations were needed. Thus, in contrast to the ω-regular case of
Lemma 4.6, we need stronger monotonicity conditions on the qos ≤ and ≼ in order to ensure
the completeness of the closures ρ≤ and ρ≼ for, resp., Pqγ and Rqγ : both qos need to be
(left- and right-) monotonic.

▶ Lemma 4.12. Let P be a BPDA on Σ and ≤ be a monotonic qo on Σ∗. Then, ρ≤ is
complete for all the functions Pqγ and Rqγ induced by P.
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Figure 2 The families {An}n≥2 (left) and {Bn}n≥2 (right) s.t. Lω(An) ⊆ Lω(Bn) for all n.

Hence, by Lemma 4.12, the same arguments used for the ω-regular case entail that the
convergence of the Kleene iterates of Pqγ and Rqγ boils down to check, resp., the conditions:
ρ≤(P n+1

qγ (∅)) ⊆ ρ≤(P n
qγ(∅)) and ρ≼(Rn+1

qγ (∅)) ⊆ ρ≼(Rn
qγ(∅)), for some n ∈ N.

Summing up, our “word-based” algorithm for Lω(P) ⊆ M follows the same template of
BAIncW for the ω-regular case. First, it computes the iterates of Pqγ and Rqγ for, resp., the
prefix and period languages, until finite convergence is reached. Then, the resulting finite
sets of words (P N1

qγ (∅))0 and (RN2
qγ (∅))0 are used by the following membership check:

Lω(P) ⊆ M ⇐⇒ ∀(q, γ) ∈ Q × Γ, ∀u ∈ (P N1
qγ (∅))0, ∀v ∈ (RN1

qγ (∅))0, uvω ∈ M .

The pairs of state-based wqos that can be used to decide the inclusion Lω(P) ⊆ M are
⊴B,≼B and ≼B,≼B, where B is a BA recognising M , as defined in Section 3.

4.3 Discussion
Let us discuss how the inclusion algorithms provided by pairs of qos defined in Section 3
can be related to each other. Consider two wqos ≤, ≤′ ⊆ Σ∗ × Σ+ such that ≤ is coarser
than ≤′, i.e., ≤′ ⊆ ≤ holds. It turns out that ρ≤′(X) ⊆ ρ≤′(Y ) implies ρ≤(X) ⊆ ρ≤(Y ),
so that if some Kleene iterates of BAIncW converge in N ′ steps w.r.t. ≤′, then the same
Kleene iterates converge in N ≤ N ′ steps w.r.t. ≤, namely, convergence can be “faster”
with a coarser qo. Also, given a wqo ≤ and a nonempty set X ∈ ℘(Σ∗), consider the set
CX ≜ {Y ⊆fin X | ρ≤(Y ) = ρ≤(X)} of finite subsets of X inducing the same ≤-upward
closure as X, which is not empty because ≤ is a wqo. An element of CX of minimal size is
called a minor of X and denoted by ⌊X⌋≤. If ≤ is coarser than ≤′ then any minor ⌊X⌋≤ w.r.t.
≤ has at most as many elements as any minor ⌊X⌋≤′ w.r.t. ≤′. Thus, a coarser pair of wqos
may achieve a smaller minimal representation on which to perform the membership queries
of BAIncW. The following example shows the benefits of using the coarsest state-based pair
of wqos on the family of inclusion problems between the BAs depicted in Fig. 2.

▶ Example 4.13. Consider the families of BAs {An}n≥2 and {Bn}n≥2 in Fig. 2. Let Xn ≜
{aibaj+1 ∈ Σ∗ | i, j ≥ 0, i+j ≤ n−1} such that L∗(An

in
pn

) = Xn{b}∗ and L∗(An
pn
pn

)\{ϵ} = b+.
For any w ∈ L∗(An

in
pn

) we have that qn ∈ sBn [w], and, since sBn [aba] = {qn}, it holds that
aba ≤Bn w. Since aba ∈ L∗(An

in
pn

), we deduce that any minor ⌊L∗(An
in
pn

)⌋≤Bn has size one.
Similarly, any minor ⌊L∗(An

pn
pn

)\{ϵ}⌋≼Bn has size one. We also have that cBn [aibaj+1] =
{(n − i, j + 2), (0, qn), (qn, qn)}. Hence, if w ≼Bn w′, for w, w′ ∈ Xn, then w = w′. Since Xn

has size n(n+1)
2 , all the minors ⌊L∗(An

in
pn

)\{ϵ}⌋≼Bn and ⌊L∗(An
in
pn

)\{ϵ}⌋⊴Bn have at least
n(n+1)

2 elements. Hence, using the pair of qos ≤Bn ,≼Bn , a single membership query (i.e.,
uvω ∈ Lω(Bn)) is needed to decide the inclusion Lω(An) ⊆ Lω(Bn), as opposed to no less
than n(n+1)

2 membership queries for the other pairs of qos. ⌟
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▶ Remark 4.14. The supergraphs of [2, Def. 6] endowed with their subsumption orders
coincide with our qo ≼. Without the subsumption order they coincide with ≼ ∩≼−1. ⌟

5 State-Based Inclusion Algorithms

In this section, we show how to derive state-based inclusion algorithms, namely, algorithms
that, given two BAs A = (QA, δA, iA, FA) and B = (QB, δB, iB, FB), decide whether
Lω(A) ⊆ Lω(B) by operating on the states of A and B only. The intuition is that words are
abstracted into states and, correspondingly, operations/tests on words are abstracted into
operations/tests on states. Of course, the key to enable such abstractions are the state-based
qos defined in Section 3, whose definitions rely just on the states of a BA representing an ω-
language. Due to lack of space, we focus on the ω-regular case, while a state-based algorithm
for the context-free case is given in App. B and is designed by following an analogous pattern.

We focus on the pair of qos ≤B,≼B defined in Section 3. The state-based algorithms for
different pairs of qos can be analogously derived. Given an ultimately periodic word uvω,
the prefix u ∈ Σ∗ is abstracted by the set of its successor states in B given by sB[u] ∈ ℘(QB),
while the period v is abstracted by the pair (cB[v], f B[v]) ∈ ℘(Q2

B) × ℘(Q2
B) providing its

context and final context in B. Thus, the state abstraction of SA, as given in Lemma 4.3, is:

SA,B ≜
⋃

p∈FA
{sB[u] | u ∈ (lfp PA)p} × {(cB[v], f B[v]) | v ∈ (lfp RA,p)p} .

We give a fixpoint characterisation of SA,B using the state abstractions of the functions
PA and RA,p w.r.t., resp., the qos ≤B and ≼B.

Let us define the maps Post≤B

A : ℘(℘(QB))QA → ℘(℘(QB))QA and Post≼
B

A : ℘(℘(Q2
B) ×

℘(Q2
B))QA → ℘(℘(Q2

B) × ℘(Q2
B))QA as follows:

Post≤B

A (X) ≜ ⟨
⋃

a∈Σ,q∈δA(q′,a){y ⋆ a | y ∈ Xq′}⟩q∈QA

Post≼
B

A (Y ) ≜ ⟨
⋃

a∈Σ,q∈δA(q′,a){
(
y1 ◦ cB[a], y1 ◦ f B[a] ∪ y2 ◦ cB[a]

)
| (y1, y2) ∈ Yq′}⟩q∈QA

where y ⋆ a ≜
⋃

q′∈y{q ∈ QB | (q′, q) ∈ cB[a]}, for y ∈ ℘(QB) and a ∈ Σ. The intuition for
this latter definition is the following: if y = sB[u], for some u ∈ Σ∗, then y ⋆ a = sB[ua]. Also,
given two binary relations y1, y2 ∈ ℘(Q2

B) on states of B, the notation y1 ◦ y2 denotes their
composition. Here, the intuition is similar: if y1 = cB[u] and y2 = f B[u], for some u ∈ Σ∗,
then y1 ◦ cB[a] = cB[ua] and y1 ◦ f B[a] ∪ y2 ◦ cB[a] = f B[ua]. In turn, the functions:

PA,B ≜ λX ∈ ℘(℘(QB))QA . ⟨{{iB} | q = iA}⟩q∈QA ∪ Post≤B

A (X)

RA,B,p ≜ λY ∈ ℘(℘(Q2
B) × ℘(Q2

B))QA . ⟨{(cB[a], f B[a]) | q ∈ δA(p, a)}⟩q∈QA ∪ Post≼
B

A (Y )

with p ∈ QA, give us the following least fixpoint characterization:

▶ Lemma 5.1. SA,B =
⋃

p∈FA
(lfp PA,B)p × (lfp RA,B,p)p.

Let us now turn to the convergence check for the Kleene iterates of PA,B and RA,B,p.
The qo ≤B on words translates into the inclusion order ⊆ on ℘(QB) and, analogously, ≼B

translates into the componentwise inclusion order ⊆2 ≜ ⊆×⊆ on ℘(Q2
B) × ℘(Q2

B). Hence,
the convergence of the iterates P n

A,B(∅) is checked by ρ⊆(P n+1
A,B (∅)) ⊆ ρ⊆(P n

A,B(∅)) (where ⊆
is componentwise on vectors). Similarly, for the iterates Rn

A,B,p(∅) w.r.t. ⊆2. Let us remark
that since the inclusion ⊆ is a partial order (rather than a mere qo), each set X ∈ ℘(℘(QB))
admits a unique minor ⌊X⌋ w.r.t. ⊆, and similarly for ⊆2. Hence, the sequences of minors
{⌊P n

A,B(∅)⌋}n∈N and {⌊Rn
A,B,p(∅)⌋}n∈N w.r.t., resp., ⊆ and ⊆2, are uniquely defined. Since
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these are sequences of correct pruning steps according to Remark 4.5, they can be exploited
to achieve a smaller representation of SA,B. Hence, the clear rationale to use these uniquely
defined minors is to keep at each iteration the minimum number of elements of the Kleene
iterates for representing them.

Finally, let us discuss the state abstraction of the membership check uvω ∈ Lω(B). For
x ∈ ℘(QB) and (y1, y2) ∈ ℘(Q2

B)×℘(Q2
B), define the following state-based inclusion predicate:

IncB(x, (y1, y2)) ≜ ∃q, q′ ∈ QB, q ∈ x ∧ (q, q′) ∈ y∗
1 ∧ (q′, q′) ∈ y∗

1 ◦ y2 ◦ y∗
1 .

This is the correct state-based membership check because for all u ∈ Σ∗, v ∈ Σ+, it turns
out that uvω ∈ Lω(B) ⇔ IncB(sB[u], (cB[v], f B[v])).

Summing up, we are now in a position to put forward our state-based algorithm BAIncS
for checking Lω(A) ⊆ Lω(B). An illustrative run on the example of Fig. 1 is given in
Section 5.1.

BAIncS State-based algorithm for checking Lω(A) ⊆ Lω(B).

Data: Büchi automata A = (QA, δA, iA, FA) and B = (QB, δB, iB, FB)
1 Compute ⌊P N1

A,B(∅)⌋ with least N1 s.t. ∀q ∈ QA, ρ⊆((P N1+1
A,B (∅))q) ⊆ ρ⊆((P N1

A,B(∅))q);
2 foreach p ∈ FA do
3 Compute ⌊RN2

A,B,p(∅)⌋ with least N2 s.t. ∀q ∈ QA, ρ⊆2 ((RN2+1
A,B,p(∅))q) ⊆ ρ⊆2 ((RN2

A,B,p(∅))q);
4 foreach x ∈ (⌊P N1

A,B(∅)⌋)p, (y1, y2) ∈ (⌊RN2
A,B,p(∅)⌋)p do

5 if ¬IncB(x, (y1, y2)) then return false;
6 return true;

▶ Theorem 5.2. The algorithm BAIncS decides Lω(A) ⊆ Lω(B).

5.1 Illustrative Example of BAIncS
We show the execution of a run of BAIncS on the BAs C and D depicted in Fig. 1. As a result,
the algorithm will correctly decide that Lω(C) is not included in Lω(D) (e.g., abω ∈ Lω(C)
but abω /∈ Lω(D)). Observe that since C consists of a single state, vectors are not needed.

First, the algorithm evaluates the sequence {⌊P n
C,D(∅)⌋}n∈N ∈ (℘(℘(QD)))N, where

PC,D(X) = {{q0}} ∪ {x ⋆ a | x ∈ X} ∪ {x ⋆ b | x ∈ X}.
(1) ⌊P 1

C,D(∅)⌋ = {{q0}},
(2) ⌊P 2

C,D(∅)⌋ = ⌊{{q0}} ∪ {{q0} ⋆ a, {q0} ⋆ b}⌋ = {{q0}, {q}},
(3) ⌊P 3

C,D(∅)⌋ = ⌊{{q0}} ∪ {{q0} ⋆ a, {q0} ⋆ b, {q} ⋆ a, {q} ⋆ b}⌋ = {{q0}, {q}}.

Hence, ⌊P 3
C,D(∅)⌋ = ⌊P 2

C,D(∅)⌋ and the computations for the prefix iterates stop at the
third iteration.

Next, the algorithm evaluates the sequence {⌊Rn
C,D(∅)⌋}n∈N ∈ (℘(℘(Q2

D)×℘(Q2
D)))N. Let

y ≜ {(q0, q), (q, q)}, z1 ≜ {(q0, q0), (q, q0)} and z2 ≜ {(q, q0)}. We have that y, z1, z2 ∈ ℘(Q2
D),

y = cD[a] = f D[a], z1 = cD[b], z2 = f D[b] and {(cD(c), f D(c)) | i
c−→ i ∧ c ∈ {a, b}} =

{(y, y), (z1, z2)}. For each pair p = (p1, p2) ∈ ℘(Q2
D) × ℘(Q2

D) and each c ∈ Σ∗, we define
p ∗ c ≜ p1 ◦ f D(c) ∪ p2 ◦ cD(c) ∈ ℘(Q2

D). We then have:

(1) R1
C,D(X) = {(y, y), (z1, z2)} ∪ Post≼

D

C (X)

= {(y, y), (z1, z2)} ∪ {(p1 ◦ cD[c], p ∗ c) | i
c−→ i ∧ c ∈ {a, b} ∧ (p1, p2) ∈ X},

so that ⌊R1
C,D(∅)⌋ = ⌊{(y, y), (z1, z2)}⌋ = {(y, y), (z1, z2)}.
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(2) ⌊R2
C,D(∅)⌋ =

⌊{(y, y), (z1, z2)} ∪ {(y ◦ cD[a], (y, y) ∗ a), (z1 ◦ cD[a], (z1, z2) ∗ a),
(y ◦ cD[b], (y, y) ∗ b), (z1 ◦ cD[b], (z1, z2) ∗ b)}⌋ =

⌊{(y, y), (z1, z2)} ∪ {(y, y), (z1, z2), (z1, z1)}⌋.

Since (z1, z2) ⊆2 (z1, z1), ⌊R2
C,D(∅)⌋ = ⌊{(y, y), (z1, z2), (z1, z1)}⌋ = {(y, y), (z1, z2)}.

Thus, ⌊R2
C,D(∅)⌋ = ⌊R1

C,D(∅)⌋ and the computations for the period iterates stop at the
second iteration.

It turns out that ¬IncD({q}, (z1, z2)): this, intuitively, corresponds to the counterexample
abω that belongs to Lω(C) but not Lω(D). Hence, the inclusion Lω(C) ⊆ Lω(D) does not
hold.

6 Implementation and Experimental Evaluation

Benchmarks. We collected new benchmarks from various trusted sources that significantly
expand the set of problem instances available to the research community on language inclusion.
In this section, a benchmark means an ordered pair of BAs.

The first set of benchmarks consists of verification tasks defined together with the early
versions of the RABIT tool [37]. The BAs are models of mutual exclusion algorithms [2],
where in each benchmark one BA is the result of translating a set of guarded commands
defining the protocol while the other BA translates a modified set of guarded commands,
typically obtained by randomly weakening or strengthening one guard. The resulting BAs
are on the binary alphabet {0, 1} and their sizes range from 20 to 7 963 states. Even though
more details about transition labels and acceptance conditions are given [1, 2], it is unclear
which basic properties this reduction satisfies, for instance, whether inclusion is preserved
when the modified version of the protocol is the result of adding to the original version
some “nop” statements. Moreover, we are not aware of any use of this reduction other than
generating the RABIT examples.

Our second collection of benchmarks stems from an automated theorem prover for
combinatorics on words called Pecan [34]. Here, BAs encode sets of solutions of predicates,
hence logical implication between predicates reduces to a language inclusion problem between
BAs. The benchmarks correspond to theorems of type ∀x, P (x) → Q(x) about Sturmian
words [19]. We collected 58 benchmarks from Pecan for which inclusion holds, where these
BAs have alphabets of varying size (from 3 to 256) and their sizes range from 1 to 21 395 states.
The third collection of benchmarks stems from software verification. Ultimate Automizer
(UA) [17, 18] is a well-known software model checker that verifies program correctness using
automata-based reasoning, and that reduces termination problems to inclusion problems
between BAs. Overall, we collected 600 benchmarks from UA for which inclusion holds. The
BAs have alphabets of varying size (from 6 to 13 173) and sizes ranging from 3 to 6 972 states.

The addition of the Pecan and UA benchmarks significantly expands the set of available
benchmarks while, at the same time, increases the diversity of their provenance. This
set of benchmarks, which is available on GitHub [11], is biased towards instances where
inclusion holds (as opposed to instances where inclusion does not hold). The rationale for this
choice is that non-inclusion should be somehow viewed as a separate problem. This claim is
supported by the existence of orthogonal approaches explicitly devoted to the non-inclusion
problem [30] and specifically tailored approaches and optimizations within tools, like in
RABIT. Nevertheless, let us remark that our approach decides the generic inclusion problem
and has been evaluated on both positive and negative instances.
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Table 1 Runtime in milliseconds on the BAs of Fig. 2. M/O means memory out.

Value of n 1 10 100 1 000 10 000 20 000 30 000 40 000 50 000

BAIT 34 48 100 531 92 102 342 526 821 234 1 284 618 2 074 829
RABIT 75 71 114 919 55 247 M/O M/O M/O M/O

Table 2 Runtimes for RABIT benchmarks in millisec. GOAL− is Piterman inclusion algorithm
without simulations (invocation flag containment -m piterman). M/O means memory out.

Included Not-included
Tools bk bkv2 Fis Fisv2 Fisv3 Fisv4 mcs Pet Φ bkv3 Fisv5 Φv2 Φv3 Φv4

RABIT 2 220 4 552 2 260 213 3 985 1 271 49 193 71 136 2 697 6 002 334 265 287
ROLL 4 340 7 590 4 170 1 910 6 690 3 320 14 900 690 1 000 750 600 290 370 310
GOAL 88 320 71 090 128 680 3 500 41 620 18 120 456 480 1 380 2 260 2 450 12 580 1 480 1 510 2 260
GOAL− M/O M/O 857 840 6 470 306 370 75 960 3 194 940 2 240 4 360 48 010 85 880 4 110 2 430 2 960
BAIT 1 180 770 M/O M/O 1 153 654 385 M/O M/O 321 278 794 6 347 M/O 1 749 997 65 629

Tools. We implemented our state-based inclusion algorithm BAIncS in a tool called BAIT,
developed in Java and which is available on GitHub [10]. We compared BAIT with the
following language inclusion checking tools: RABIT 2.5.0, ROLL 1.0, GOAL (20200822),
and HKCω (fall 2018). RABIT [7] implements a Ramsey-based algorithm and an advanced
preprocessor using simulation relations. ROLL [27, 28] also uses the preprocessor of RABIT
but then it relies on automata learning and word sampling techniques to decide inclusion.
GOAL [41] implements a “complement-then-intersect-and-check-emptiness” approach using
advanced complementation algorithms for BAs. HKCω [24] decides inclusion using up-to
techniques. Further details on these tools are given in App. C.

Results. We ran our experiments on a server with 20 GB of RAM, 2 Xeon E5640 2.6 GHz
CPUs and Debian stretch 64 bit. In what follows, “left”/“right” BAs refer, resp., to the
automata on the left/right of a language inclusion instance.

We start with the following research question: What is the impact in having separate
qos for prefixes and periods? To answer it, we first examine the performance of BAIT on
the contrived family of examples of Fig. 2. In this set of instances, almost no computation
is carried out in the fixpoints for the periods (RA,B,p of BAIncS), since they converge in
one iteration. Tab. 1 displays the corresponding runtime comparison with RABIT, which
processes prefixes and periods the same way. It turns out that for sufficiently large values of
n, RABIT runs out of memory while BAIT safely terminates (in max 35 minutes).

Beyond the contrived family of BAs of Fig. 2, we claim that reasoning with separate
qos for prefixes and periods gives an advantage to BAIT. Actually, we found that BAIT is
the state-of-the-art on all but the RABIT benchmarks. On the RABIT benchmarks, Tab. 2
shows that BAIT runs out of memory on 4/9 of the included benchmarks and on 1/5 of the
not-included benchmarks. On these benchmarks, simulation relations are key enablers for
RABIT, ROLL and GOAL. Since the pair of BAs in each benchmark stems from two close
revisions of the same mutual exclusion protocol, it turns out that the simulation relations
being used retain enough information to dramatically lower the effort of showing inclusion
(in many cases, these simulation relations alone are sufficient to show language inclusion).

To interpret these outcomes for BAIT, we looked at the graph structure of the “left” BAs
of these RABIT benchmarks and we found that they roughly consist of one large strongly
connected component (SCC): this is expected since these BAs model agents running a mutual
exclusion protocol in an infinite loop. The computations of BAIT on these benchmarks are
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Figure 3 Each benchmark has a timeout value of 12h. Survival plot with a logarithmic y axis
and linear x axis. No plot for abscissa value x and tool r means that, for 60−x Pecan benchmarks
(or 600−x for the case of Ultimate), r did not return an answer.

dominated by the fixpoints of RA,B,p for the periods, which compute over sets of pairs of
states, as opposed to the fixpoints of PA,B for the prefixes which compute over sets of states.
Also, the computations for RA,B,p dominate the memory use. However, this scenario of BAs
consisting of one large SCC does not occur for the other benchmarks: the “left” automata for
Pecan and UA benchmarks tend to have few SCCs including final states and each of them
are rather small. Here, BAIT is at an advantage because most computations are carried out
on the fixpoints of PA,B for the prefixes.

Because of the large number of available Pecan (60) and UA (600) benchmarks, we use
survival plots for displaying our experimental results. Let us recall how to obtain them for a
family of benchmarks {pi}n

i=1: (1) run the tool on each benchmark pi and store its runtime
ti (or timeout event); (2) sort the ti’s in increasing order (discarding the timeouts); (3) plot
the points (t1, 1), (t1 + t2, 2),. . . , and in general (

∑k
i=1 ti, k); (4) repeat for each tool under

evaluation. The runtimes for BAIT include a phase of preprocessing that reduced the set
of final states of the “left” BA while preserving the accepted language, in accordance with
Remark 4.8. This preprocessing used the function acc -min of the tool GOAL, a polynomial
time algorithm that relies on computing SCCs. The survival plots in compact form are
depicted in Fig. 3 and with more detail in App. D.

These results show that BAIT is the state-of-the-art approach for the Pecan and UA
benchmarks. They also show that GOAL performs quite well on the Pecan and UA bench-
marks compared to RABIT and ROLL whose approaches are less efficacious. This is expected
because both Pecan and UA rely on complementation for their decision procedure, so that
they produce their “right” BAs through some heuristics to make them easy to complement
(as confirmed to us by the developers of Pecan and UA). Indeed, we claim that GOAL’s
performance quickly degrades when the “right” BAs are hard to complement. Our claim is
supported by Fig. 4 where GOAL and BAIT are compared on a contrived family of bench-
marks based on Michel’s family of hard to complement BAs (see [33] and [39, Theorem 5.3]
for further details).
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0, 1
0

1

1
Σ

Σ = {0, 1, 2, 3} Σ = {0, 1, 2, 3, 4} Σ = {0, 1, 2, 3, 4, 5}
Value of n BAIT GOAL− BAIT GOAL− BAIT GOAL−

3 45 13 550 ⊈ ⊈ ⊈ ⊈
4 45 14 040 77 9 187 680 ⊈ ⊈
5 46 13 120 89 9 148 710 225 T/O

10 54 13 840 100 T/O 291 T/O
100 123 17 020 282 T/O 1 301 T/O

Figure 4 Runtime in milliseconds using Michel’s family for the “right” BAs (parameterized by n)
and the depicted BA for the “left”. GOAL− refers to containment -m piterman (as in Table 2). ⊈
means not included, T/O is time out (12h).

7 Conclusion and Future Work

We designed a family of algorithms for the inclusion problem between ω-regular and ω-
context-free languages into ω-regular languages, represented by automata. Our algorithms
are conceptually simple: least fixpoint computations for the languages of finite prefixes and
periods of ultimately periodic infinite words. The functions to iterate for these fixpoints
are readily derived from the “left” automaton and the fixpoints converge in finitely many
iterations thanks to a well-quasiorder abstraction on words. Finally, language inclusion
is decided by a straightforward membership check. The height of the lattices of our least
fixpoint computations allows us to derive some information about the worst case complexity
of our algorithms. For each least fixpoint computation performed at line 3 of BAIncS,
the worst case is adding exactly one element in a subset of ℘(Q2

B) × ℘(Q2
B) to some entry

of the |QA|-dimensional vector at each iteration step, so that |QA| × 22|QB |2 is an upper
bound on N2 in BAIncS. We leave as future work a detailed worst case complexity analysis
of our algorithms. In practice, a simple Java implementation of our inclusion algorithm
was competitive against state-of-the-art tools, thus showing the benefits of having separate
well-quasiorders for prefixes and periods. We expect that this latter approach can be further
refined using, for instance, family of right-congruences [31], paving the way to even more
efficient inclusion algorithms.
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gBAIncW Word-based algorithm for checking Lω(A) ⊆ M .

Data: Büchi automaton A = (Q, δ, iA, F )
Data: Procedure deciding uvω ∈? M given u, v ∈ Σ∗

Data: Decidable right-monotonic wqos ≤,≼ s.t. ρ≤×≼(IM ) = IM

Data: For each p ∈ F and n ∈ N, sequences {Xn}n∈N and {Yp,n}n∈N in ℘(Σ∗)|Q| s.t.
ρ≤(P n

A(∅)) = ρ≤(Xn) and ρ≼(Rn
A,p(∅)) = ρ≼(Yp,n).

1 Compute XN1 with least N1 s.t. ∀q ∈ Q, ρ≤((XN1+1)q) ⊆ ρ≤((XN1 )q)
2 foreach p ∈ F do
3 Compute Yp,N2 with least N2 s.t. ∀q ∈ Q, ρ≼((Yp,N2+1)q) ⊆ ρ≤((Yp,N2 )q)
4 foreach u ∈ (XN1 )p, v ∈ (Yp,N2 )p do
5 if uvω /∈ M then return false;
6 return true;

B State-Based Algorithm for ω-context-free ⊆ ω-regular

We derive a state-based inclusion algorithm that, given a BPDA P = (QP , Γ, δP , iP , FP) and
a BA B = (QB, δB, iB, FB), decides whether Lω(P) ⊆ Lω(B) holds or not by operating on
the states of P and B only. Similarly to the ω-regular case, words and operations/tests on
words are abstracted, resp., into states and operations/tests on states, using the state-based
qos derived from B, as explained in Section 3. Recall that in the context-free case we need
qos that are both right- and left- monotonic. Hence, we consider the pair of qos ⊴B,≼B (see
Section 3).

Given a CFG G = (V, P ) in CNF, we define the functions R1,G over ℘(Q2
B)V and R2,G

over (℘(℘(Q2
B) × ℘(Q2

B)))V as follows:

R1
G(S) ≜ ⟨{x ◦ y | ∃Xj → XkXl ∈ P, x ∈ Sk ∧ y ∈ Sl}⟩j∈[0,n] ,

R2
G(S) ≜ ⟨{(x1 ◦ y1, (x1 ◦ y2) ∪ (x2 ◦ y1)) | ∃Xj → XkXl ∈ P,

(x1, x2) ∈ Sk, (y1, y2) ∈ Sl}⟩j∈[0,n] .

Let us define the vectors b1
G ∈ ℘(Q2

B)V and b2
G ∈ (℘(℘(Q2

B) × ℘(Q2
B)))V as follows:

b1
G ≜ ⟨{cB[β] | Xj → β, β ∈ Σ ∪ {ϵ}}⟩j∈[0,n] ,

b2
G ≜ ⟨{(cB[β], fB[β]) | Xj → β, β ∈ Σ ∪ {ϵ}}⟩j∈[0,n] .

Let P1
qγ and P2

qγ , for each q ∈ QP and γ ∈ Γ, be the two PDAs defined from P and such
that the ultimately periodic words generated by the pairs in

⋃
(q,γ)∈Q×Γ L∗(P1

q,γ) × L∗(P2
q,γ)

coincide with the ultimately periodic words in Lω(P). Let G1
qγ ≜ PDA2CFG(P1

qγ) and
G2

qγ ≜ PDA2CFG(P2
qγ), where PDA2CFG is a procedure to convert a PDA into a CFG in

CNF. For each q ∈ QP and each γ ∈ Γ, we define the functions PqγB ≜ λX.b1
G1

qγ
∪ R1

G1
qγ

(X)
and RqγB ≜ λX.b2

G ∪R2
G2

qγ
(X). Let us define the following state-abstraction of the membership

test:

IncBcf (x, y1, y2) ≜ ∃p, q ∈ QB, (iB, p) ∈ x ∧ (p, q) ∈ y∗
1 ∧ (q, q) ∈ y∗

1 ◦ y2 ◦ y∗
1 .

▶ Lemma B.1. uvω ∈ Lω(B) ⇐⇒ IncBcf (cB[u], cB[v], fB[v]).
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Algorithm BPDAIncS: State-based algorithm for Lω(P) ⊆ Lω(B).

Data: BPDA P = (Q, Γ, δ, q0, Z0, F ) and BA B = (QB, δB, iB, FB)
1 foreach q ∈ Q, γ ∈ Γ do
2 G1 := PDA2CFG(P1

[qγ]); G2 := PDA2CFG(P2
[qγ]);

3 Compute ⌊P N1
qγB⌋ with least N1 s.t. ∀j ∈ VG1

qγ
, ρ⊆((P N1+1

qγB (∅))j) ⊆ ρ⊆((P N1
qγB(∅))j);

4 Compute ⌊RN2
qγB⌋ with least N2 s.t. ∀j ∈ VG2

qγ
, ρ⊆2 ((RN2+1

qγB (∅))j) ⊆ ρ⊆2 ((RN2
qγB(∅))j);

5 foreach x ∈ (⌊P N1
qγB⌋)0, (y1, y2) ∈ (⌊RN2

qγB⌋)0 do
6 if ¬IncBcf (x, y1, y2) then return false;
7 return true;

▶ Theorem B.2. Given a BPDA P and BA B, BPDAIncS decides Lω(P) ⊆ Lω(B).

C Language Inclusion Checking Tools

RABIT [7] consists of about 20K lines of Java code and its source code is publicly available
[37]. To check a language inclusion RABIT combines several techniques controlled via
command line options. In our experiments we ran RABIT with options -fast -jf which
RABIT states as providing the “best performance”. Roughly speaking, RABIT performs
the following operations: (1) Removing dead states and minimizing the automata with
simulation-based techniques, thus yielding a smaller instance; (2) Witnessing inclusion by
simulation already during the minimization phase; (3) Using the Ramsey-based method to
witness inclusion or non-inclusion.

ROLL [27, 28] contains an inclusion checker that does a preprocessing similar to that
of RABIT and then relies on automata learning and word sampling techniques to decide
inclusion. ROLL consists of about 19K lines of Java code which is publicly available [29].

GOAL [41] contains several language inclusion checkers available with multiple options.
We used the Piterman check (containment -m piterman -sim -pre on the command line)
that constructs on-the-fly the intersection of the “left” BA and the complement of the “right”
BA which is itself built on-the-fly by the Piterman construction [36]. The options -sim -pre
compute and use simulation relations to further improve performance. The Piterman check
was deemed the “best effort” (cf. [7, Section 9.1] and [40]) among the inclusion checkers
provided in GOAL. GOAL is written in Java and the source code of the release we used is
not publicly available.

HKCω [24] includes an inclusion checker using the so-called up-to techniques. HKCω

consists of 3K lines of OCaml code which is publicly available [23]. Up-to techniques form the
state-of-the-art approach to decide equivalence for languages of finite words given by finite
state automata [3, 4]. The extension of up-to techniques to ω-words has been implemented
in HKCω, although only partially. Indeed, as stated in the code documentation, even if up-to
techniques have been defined for both prefixes and periods of ultimately periodic words,
HKCω only implements them for prefixes. HKCω also includes some preprocessing of the
BAs using simulation relations.

As far as we know all these implementations are sequential except for RABIT which,
using the -jf option, performs some computations in a separate thread.

BAIT is our implementation of the BAIncS algorithm defined in Section 5. BAIT consists
of less than 1 750 lines of Java code. BAIT relies exclusively on a few standard packages
from the Java SE Platform, notably standard collections such as HashSet or HashMap. One
of the design goals of BAIT was to have simple and unencumbered code. Unlike RABIT,
HKCω, ROLL and GOAL, BAIT does not compute or exploit simulation relations. Also,
BAIT is implemented as a purely sequential algorithm although some computations are
easily parallelizable such as the fixpoints for the prefixes and for the periods.
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SPOT We did not consider the Spot tool [12] in our evaluation because we believe
GOAL is a better fit in our setting as we argue below. First, Spot works with a symbolic
alphabet where symbols are encoded using Boolean propositions, and sets of symbols are
represented and processed using OBDDs. We used GOAL in the classical alphabet mode
where symbols are explicitly represented as in ROLL, RABIT and BAIT. Second, the inclusion
algorithm of Spot complements the “right” BA using Redziejowski’s method with some
additional optimizations including simulation-based optimizations [12]. GOAL implements
Piterman’s complementation method [36], which inspired that of Redziejowski [38]. The
Piterman’s method of GOAL also offers simulation-based optimizations and, furthermore,
GOAL specialized Piterman’s method to the inclusion problem by constructing on-the-fly
the intersection of the “left” automaton and the complement of the “right” automaton
constructed on-the-fly by the Piterman’s method [40]. Finally, Spot is written in C++ while
GOAL is written in Java as ROLL, RABIT and BAIT, thus making their runtime comparison
more meaningful.

Experimental Setup. We ran our experiments on a server with 20 GB of RAM, 2 Xeon
E5640 2.6 GHz CPUs and Debian stretch 64 bit. We used openJDK 11.0.9.1 2020-11-04
when compiling Java code and ran the JVM with default options. For RABIT and BAIT
the execution time is computed using timers internal to their implementations. For ROLL
and GOAL the execution time is given by the “real” value of the time(1) command.

D Detailed Graphs of the Experimental Comparison
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Figure 5 Survival plot with a logarithmic y axis and linear x axis. Plot not depicted between
1 and 539 for clarity. Each benchmark has a timeout value of 12h. No plot for abscissa value x

and tool r means that, for 600−x benchmarks, r did not return an answer (i.e. it either ran out of
memory or time). HKCω not depicted: more than 60 memory out (8 GB virtual memory limit).
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Figure 6 Survival plot with a logarithmic y axis and linear x axis. Plot not depicted between 1
and 24 for clarity. Each benchmark has a timeout value of 12h. No plot for abscissa value x and
tool r means that, for 60−x Pecan benchmarks, r did not return an answer (i.e., it either ran out of
memory or time).
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Abstract
Infinite words over infinite alphabets serve as models of the temporal development of the allocation
and (re-)use of resources over linear time. We approach ω-languages over infinite alphabets in the
setting of nominal sets, and study languages of infinite bar strings, i.e. infinite sequences of names
that feature binding of fresh names; binding corresponds roughly to reading letters from input
words in automata models with registers. We introduce regular nominal nondeterministic Büchi
automata (Büchi RNNAs), an automata model for languages of infinite bar strings, repurposing
the previously introduced RNNAs over finite bar strings. Our machines feature explicit binding
(i.e. resource-allocating) transitions and process their input via a Büchi-type acceptance condition.
They emerge from the abstract perspective on name binding given by the theory of nominal sets.
As our main result we prove that, in contrast to most other nondeterministic automata models over
infinite alphabets, language inclusion of Büchi RNNAs is decidable and in fact elementary. This
makes Büchi RNNAs a suitable tool for applications in model checking.
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1 Introduction

Classical automata models and formal languages for finite words over finite alphabets have
been extended to infinity in both directions: Infinite words model the long-term temporal
development of systems, while infinite alphabets model data, such as nonces [19], object
identities [14], or abstract resources [5]. We approach data ω-languages, i.e. languages of
infinite words over infinite alphabets, in the setting of nominal sets [25] where elements
of sets are thought of as carrying (finitely many) names from a fixed countably infinite
reservoir. Following the paradigm of nominal automata theory [3], we take the set of names
as the alphabet; we work with infinite words containing explicit name binding in the spirit of
previous work on nominal formalisms for finite words such as nominal Kleene algebra [11]
and regular nondeterministic nominal automata (RNNAs) [26]. Name binding may be viewed
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as the allocation of resources, or (yet) more abstractly as an operation that reads fresh
names from the input. We refer to such infinite words as infinite bar strings, in honour of
the vertical bar notation we employ for name binding. In the present paper, we introduce
a notion of nondeterministic nominal automata over infinite bar strings, and show that it
admits inclusion checking in elementary complexity.

Specifically, we reinterpret the mentioned RNNAs to accept infinite rather than finite
bar strings by equipping them with a Büchi acceptance condition; like over finite alphabets,
automata with more expressive acceptance conditions including Muller acceptance can be
translated into the basic (nondeterministic) Büchi model. Our mentioned main result then
states that language inclusion of Büchi RNNAs is decidable in parametrized polynomial
space [27], with a parameter that may be thought as the number of registers. This is in sharp
contrast to other nondeterministic automata models for infinite words over infinite alphabets,
which sometimes have decidable emptiness problems but whose inclusion problems are
typically either undecidable or of prohibitively high complexity even under heavy restrictions
(inclusion is not normally reducible to emptiness since nondeterministic models typically do
not determinize, and in fact tend to fail to be closed under complement); details are in the
related work section.

Infinite bar strings can be concretized to infinite strings of names (i.e. essentially to
data words) by interpreting name binding as reading either globally fresh letters (in which
case Büchi RNNAs may essentially be seen as a variant of session automata [4] for infinite
words) or locally fresh letters. Both interpretations arise from disciplines of α-renaming
as known from λ-calculus [1], with global freshness corresponding to a discipline of clean
naming where bound names are never shadowed, and local freshness corresponding to an
unrestricted naming discipline that does allow shadowing. The latter implies that local
freshness can only be enforced w.r.t. names that are expected to be seen again later in the
word. It is precisely this fairly reasonable-sounding restriction that buys the comparatively low
computational complexity of the model, which on the other hand allows full nondeterminism
(and, e.g., accepts the language ‘some letter occurs infinitely often’, which is not acceptable
by deterministic register-based models) and unboundedly many registers. Büchi RNNAs
thus provide a reasonably expressive automata model for infinite data words whose main
reasoning problems are decidable in elementary complexity.

Related Work. Büchi RNNAs generally adhere to the paradigm of register automata,
which in their original incarnation over finite words [16] are equivalent to the nominal
automaton model of nondeterministic orbit-finite automata [3]. Ciancia and Sammartino [5]
study deterministic nominal Muller automata accepting infinite strings of names, and show
Boolean closure and decidability of inclusion. This model is incomparable to ours; details
are in Section 7. For alternating register automata over infinite data words, emptiness is
undecidable even when only one register is allowed (which over finite data words does ensure
decidability) [9]. For the one-register safety fragment of the closely related logic Freeze LTL,
inclusion (i.e. refinement) is decidable, but even the special case of validity is not primitive
recursive [21], in particular not elementary.

Many automata models and logics for data words deviate rather substantially from the
register paradigm, especially models in the vicinity of data automata [2], whose emptiness
problem is decidable but at least as hard as Petri net reachability, which by recent results is
not elementary [7], in fact Ackermann-complete [8, 22]. For weak Büchi data automata [17],
the emptiness problem is decidable in elementary complexity. Similarly, Büchi generalized
data automata [6] have a decidable emptiness problem; their Büchi component is deterministic.
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(Throughout, nothing appears to be said about inclusion of data automata.) Variable finite
automata [15] apply to both finite and infinite words; in both versions, the inclusion problem
of the nondeterministic variant is undecidable.

2 Preliminaries: Nominal Sets

Nominal sets form a convenient formalism for dealing with names and freshness; for our
present purposes, names play the role of data. We briefly recall basic notions and facts
and refer to [25] for a comprehensive introduction. Fix a countably infinite set A of names,
and let Perm(A) denote the group of finite permutations on A, which is generated by the
transpositions (a b) for a ̸= b ∈ A (recall that (a b) just swaps a and b). A nominal set is a
set X equipped with a (left) group action Perm(A) × X → X, denoted (π, x) 7→ π · x, such
that every element x ∈ X has a finite support S ⊆ A, i.e. π · x = x for every π ∈ Perm(A)
such that π(a) = a for all a ∈ S. Every element x of a nominal set X has a least finite
support, denoted supp(x). Intuitively, one should think of X as a set of syntactic objects
(e.g. strings, λ-terms, programs), and of supp(x) as the set of names needed to describe an
element x ∈ X. A name a ∈ A is fresh for x, denoted a # x, if a /∈ supp(x). The orbit of
an element x ∈ X is given by {π · x : π ∈ Perm(A)}. The orbits form a partition of X. The
nominal set X is orbit-finite if it has only finitely many orbits.

Putting π · a = π(a) makes A into a nominal set. Moreover, Perm(A) acts on subsets
A ⊆ X of a nominal set X by π · A = {π · x : x ∈ A}. A subset A ⊆ X is equivariant
if π · A = A for all π ∈ Perm(A). More generally, it is finitely supported if it has finite
support w.r.t. this action, i.e. there exists a finite set S ⊆ A such that π · A = A for all
π ∈ Perm(A) such that π(a) = a for all a ∈ S. The set A is uniformly finitely supported if⋃

x∈A supp(x) is a finite set. This implies that A is finitely supported, with least support
supp(A) =

⋃
x∈A supp(x) [10, Theorem 2.29]. (The converse does not hold, e.g. the set A

is finitely supported but not uniformly finitely supported.) Uniformly finitely supported
orbit-finite sets are always finite (since an orbit-finite set contains only finitely many elements
with a given finite support). We respectively denote by Pufs(X) and Pfs(X) the nominal sets
of (uniformly) finitely supported subsets of a nominal set X.

A map f : X → Y between nominal sets is equivariant if f(π · x) = π · f(x) for all
x ∈ X and π ∈ Perm(A). Equivariance implies supp(f(x)) ⊆ supp(x) for all x ∈ X. The
function supp itself is equivariant, i.e. supp(π · x) = π · supp(x) for π ∈ Perm(A). Hence
| supp(x1)| = | supp(x2)| whenever x1, x2 are in the same orbit of a nominal set.

We denote by Nom the category of nominal sets and equivariant maps. The object
maps X 7→ Pufs(X) and X 7→ Pfs(X) extend to endofunctors Pufs : Nom → Nom and
Pfs : Nom → Nom sending an equivariant map f : X → Y to the map A 7→ f [A].

The coproduct X + Y of nominal sets X and Y is given by their disjoint union with
the group action inherited from the two summands. Similarly, the product X × Y is
given by the cartesian product with the componentwise group action; we have supp(x, y) =
supp(x) ∪ supp(y). Given a nominal set X equipped with an equivariant equivalence relation,
i.e. an equivalence relation ∼ that is equivariant as a subset ∼ ⊆ X × X, the quotient X/∼
is a nominal set under the expected group action defined by π · [x]∼ = [π · x]∼.

A key role in the technical development is played by abstraction sets, which provide a
semantics for binding mechanisms [12]. Given a nominal set X, an equivariant equivalence
relation ∼ on A × X is defined by (a, x) ∼ (b, y) iff (a c) · x = (b c) · y for some (equivalently,
all) fresh c. The abstraction set [A]X is the quotient set (A× X)/∼. The ∼-equivalence class
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4:4 Nominal Büchi Automata with Name Allocation

of (a, x) ∈ A × X is denoted by ⟨a⟩x ∈ [A]X. We may think of ∼ as an abstract notion of
α-equivalence, and of ⟨a⟩ as binding the name a. Indeed we have supp(⟨a⟩x) = supp(x) \ {a}
(while supp(a, x) = {a} ∪ supp(x)), as expected in binding constructs.

The object map X 7→ [A]X extends to an endofunctor [A] : Nom → Nom sending an
equivariant map f : X → Y to the equivariant map [A]f : [A]X → [A]Y given by ⟨a⟩x 7→
⟨a⟩f(x) for a ∈ A and x ∈ X.

3 The Notion of α-Equivalence for Bar Strings

In the following we investigate automata consuming input words over the infinite alphabet

A := A ∪ { a : a ∈ A}.

A finite bar string is a finite word σ1σ2 · · · σn over A, and infinite bar string is an infinite
word σ1σ2σ3 · · · over A. We denote the sets of finite and infinite bar strings by A∗ and Aω,
respectively. Given w ∈ A∗ ∪ Aω the set of names in w is defined by

N(w) = {a ∈ A : the letter a or a occurs in w}.

An infinite bar string w is finitely supported if N(w) is a finite set; we let Aω

fs ⊆ Aω denote
the set of finitely supported infinite bar strings. Note that A∗ and Aω

fs are nominal sets w.r.t.
the group action defined pointwise. The least support of a bar string is its set of names.

A bar string containing only letters from A is called a data word. We denote by A∗ ⊆ A∗,
Aω ⊆ Aω and Aω

fs ⊆ Aω

fs the sets of finite data words, infinite data words, and finitely
supported infinite data words, respectively.

We interpret a as binding the name a to the right. Accordingly, a name a ∈ A is said to
be free in a bar string w ∈ A∗ ∪Aω if (i) the letter a occurs in w, and (ii) the first occurrence
of a is not preceded by any occurrence of a. For instance, the name a is free in a aba but
not free in aaba, while the name b is free in both bar strings. We put

FN(w) = {a ∈ A : a is free in w}.

We obtain a natural notion of α-equivalence for both finite and infinite bar strings; the finite
case is taken from [26].

▶ Definition 3.1 (α-equivalence). Let =α be the least equivalence relation on A∗ such that

x av =α x bw for all a, b ∈ A and x, v, w ∈ A∗ such that ⟨a⟩v = ⟨b⟩w.

This extends to an equivalence relation =α on Aω given by

v =α w iff vn =α wn for all n ∈ N,

where vn and wn are the prefixes of length n of v and w. We denote by A∗
/=α and Aω

/=α

the sets of α-equivalence classes of finite and infinite bar strings, respectively, and we write
[w]α for the α-equivalence class of w ∈ A∗ ∪ Aω.

▶ Remark 3.2.
1. For any v, w ∈ A∗ the condition ⟨a⟩v = ⟨b⟩w holds if and only if

a = b and v = w, or b # v and (a b) · v = w.
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2. The α-equivalence relation is a left congruence:

v =α w implies xv =α xw for all v, w ∈ A∗ ∪ Aω and x ∈ A∗.

Moreover, the right cancellation property holds:

vx =α wx implies v =α w for all v, w ∈ A∗ and x ∈ A∗ ∪ Aω.

3. The equivalence relation =α is equivariant. Therefore, both A∗
/=α and Aω

fs/=α are
nominal sets with the group action π · [w]α = [π · w]α for π ∈ Perm(A) and w ∈ A∗ ∪ Aω

fs.
The least support of [w]α is the set FN(w) of free names of w.

▶ Remark 3.3. Our notion of α-equivalence on infinite bar strings differs from the equivalence
relation generated by relating x av and x bw whenever ⟨a⟩v = ⟨b⟩w (as in Definition 3.1 but
now for infinite bar strings v, w ∈ Aω

fs): The latter equivalence relates two bar strings iff they
can be transformed into each other by finitely many α-renamings, while the definition of
α-equivalence as per Definition 3.1 allows infinitely many simultaneous α-renamings; e.g. the
infinite bar string (|aa)ω = aa aa aa aa · · · is α-equivalent to (|aa|bb)ω = aa bb aa bb · · · .

▶ Definition 3.4. A literal language, bar language or data language is a subset of A∗, A∗
/=α

or A∗, respectively. Similarly, a literal ω-language, bar ω-language or data ω-language is a
subset of Aω, Aω

/=α or Aω, respectively.

▶ Notation 3.5. Given a finite or infinite bar string w ∈ A∗ ∪ Aω we let ub(w) denote the
data word obtained by replacing every occurrence of a in w by a; e.g. ub( aa a bb) = aaabb.
To every bar (ω-)language L we associate the data (ω-)language D(L) given by

D(L) = {ub(w) : [w]α ∈ L}.

▶ Definition 3.6. A finite or infinite bar string w is clean if for each a ∈ FN(w) the letter a

does not occur in w, and for each a ̸∈ FN(w) the letter a occurs at most once.

▶ Lemma 3.7. Every bar string w ∈ A∗ ∪ Aω

fs is α-equivalent to a (not necessarily finitely
supported) clean bar string.

Proof. Since w has finite support, for every occurrence of the letter a for which a or a

has already occurred before, one can replace a by b for some fresh name b and replace the
suffix v after a by (a b)v. Iterating this yields a clean bar string α-equivalent to w. ◀

▶ Example 3.8.
1. The finitely supported infinite bar string aa bb aa bb · · · is α-equivalent to the clean

bar string a1a1 a2a2 a3a3 a4a4 · · · where the ai are pairwise distinct names. Note that
aa bb aa bb · · · is not α-equivalent to any finitely supported clean bar string.

2. For non-finitely supported bar strings the lemma generally fails: if A = {a1, a2, a3, · · · }
then the bar string a1 a1a2a3a4a5a6a7 · · · is not α-equivalent to any other bar string, in
particular not to a clean one.

For readers familiar with the theory of coalgebras we note that on infinite bar strings with
finite support, α-equivalence naturally emerges from a coinductive point of view. Kurz et
al. [20] use coinduction to devise a general notion of α-equivalence for infinitary terms over
a binding signature, which form the final colgebra for an associated endofunctor on Nom.
The following is the special case for the endofunctors

GX = A × X ∼= A × X + A × X and FX = A × X + [A]X.
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4:6 Nominal Büchi Automata with Name Allocation

Let νF and νG denote their respective final coalgebras. The coalgebra νG is carried by the
nominal set Aω

fs with the usual coalgebra structure ⟨hd, tl⟩ : Aω

fs → A × Aω

fs decomposing an
infinite string into its head and tail. The natural transformation

σX : GX ↠ FX given by (a, x) 7→ (a, x), ( a, x) 7→ ⟨a⟩x,

then induces a canonical map eα : Aω

fs → νF , viz. the unique homomorphism from the
F -coalgebra νG

⟨hd,tl⟩−−−−−→ G(νG) σνG−−−−→ F (νG) into the final coalgebra νF .

▶ Proposition 3.9. For every v, w ∈ Aω

fs we have v =α w if and only if eα(v) = eα(w).

4 Automata over Infinite Bar Strings

We proceed to introduce Büchi RNNAs, our nominal automaton model for bar ω-languages
and data ω-languages. It modifies regular nominal nondeterministic automata (RNNAs) [26],
originally introduced for bar languages and data languages of finite words, to accept infinite
words. Roughly, Büchi RNNAs are to RNNAs what classical Büchi automata [13] are to
nondeterministic finite automata. We first recall:

▶ Definition 4.1 (RNNA [26]).
1. An RNNA A = (Q, R, q0, F ) is given by an orbit-finite nominal set Q of states, an

equivariant relation R ⊆ Q ×A× Q specifying transitions, an initial state q0 ∈ Q and an
equivariant set F ⊆ Q of final states. We write q

σ−−→ q′ if (q, σ, q′) ∈ R. The transitions
are subject to two conditions:
(1) α-invariance: if q

a−−→ q′ and ⟨a⟩q′ = ⟨b⟩q′′, then q
b−−→ q′′.

(2) Finite branching up to α-invariance: For each q ∈ Q the sets {(a, q′) : q
a−−→ q′} and

{⟨a⟩q′ : q
a−−→ q′} are finite (equivalently, uniformly finitely supported).

The degree of A, denoted deg(A), is the maximum of all | supp(q)| where q ∈ Q.
2. Given a finite bar string w = σ1σ2 · · · σn ∈ A∗ and a state q ∈ Q, a run for w from q is a

sequence of transitions

q
σ1−−−→ q1

σ2−−−→ · · · σn−−−→ qn.

The run is accepting if qn is final. The state q accepts w if there exists an accepting run
for w from q, and the automaton A accepts w if its initial state q0 accepts w. We define

L0(A) = {w ∈ A∗ : A accepts w}, the literal language accepted by A,

Lα(A) = {[w]α : w ∈ A∗
, A accepts w}, the bar language accepted by A,

D(A) = D(Lα(A)), the data language accepted by A.

▶ Remark 4.2. Equivalently, an RNNA is an orbit-finite coalgebra

Q −→ 2 × Pufs(A × Q) × Pufs([A]Q)

for the functor FX = 2 × Pufs(A × X) × Pufs([A]X) on Nom, with an initial state q0 ∈ Q.

▶ Definition 4.3 (Büchi RNNA). A Büchi RNNA is an RNNA A = (Q, R, q0, F ) used to
recognize infinite bar strings as follows. Given w = σ1σ2σ3 · · · ∈ Aω and a state q ∈ Q, a run
for w from q is an infinite sequence of transitions

q0
σ1−−−→ q1

σ2−−−→ q2
σ3−−−→ · · · .
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The run is accepting if qn is final for infinitely many n ∈ N. The state q accepts w if there
exists an accepting run for w from q, and the automaton A accepts w if its initial state q0
accepts w. We define

L0,ω(A) = {w ∈ Aω : A accepts w}, the literal ω-language accepted by A,

Lα,ω(A) = {[w]α : w ∈ Aω
, A accepts w}, the bar ω-language accepted by A,

Dω(A) = D(Lα,ω(A)), the data ω-language accepted by A.

▶ Example 4.4. Consider the Büchi RNNA A with states {q0} ∪ A × {0, 1} and transitions
as displayed below, where a, b range over distinct names in A. Note that the second node
represents the orbit A × {0} and the third one the orbit A × {1}.

q0start (a, 0) (a, 1)

a

a

a

b

b

a

The data ω-language Dω(A) consists of all infinite words w ∈ Aω where some name a ∈ A
occurs infinitely often.

▶ Remark 4.5. For automata consuming infinite words over infinite alphabets, a slightly subtle
point is whether to admit arbitrary infinite words as inputs or restrict to finitely supported
ones. For the bar language semantics of Büchi RNNAs this choice is inconsequential: we
shall see in Proposition 4.7 below that modulo α-equivalence all infinite bar strings accepted
by Büchi RNNA are finitely supported. However, for the data language semantics admitting
strings with infinite support is important for the decidability of language inclusion, see
Remark 6.8.

▶ Lemma 4.6 ([26, Lem. 5.4]). Let A = (Q, R, q0, F ) be an RNNA, q, q′ ∈ Q and a ∈ A.
1. If q

a−−→ q′ then supp(q′) ∪ {a} ⊆ supp(q).
2. If q

a−−→ q′ then supp(q′) ⊆ supp(q) ∪ {a}.
3. For every bar string w ∈ A∗ ∪ Aω with a run from q one has FN(w) ⊆ supp(q).
The next proposition will turn out to be crucial in the development that follows. It asserts
that, up to α-equivalence, one can always restrict the inputs of a Büchi RNNA to bar strings
with a finite number of names, bounded by the degree of the automaton.

▶ Proposition 4.7. Let A be a Büchi RNNA accepting the infinite bar string w ∈ Aω. Then
it also accepts some w′ ∈ Aω

fs such that

w′ =α w and | supp(q0) ∪ N(w′)| ≤ deg(A) + 1.

Proof sketch. Put m := deg(A), and choose m + 1 pairwise distinct names a1, . . . , am+1
such that supp(q0) ⊆ {a1, . . . , am+1}.

1. One first shows that for every finite bar string σ1σ2 · · · σn ∈ A∗ and every run

q0
σ1−−−→ q1

σ2−−−→ q2
σ3−−−→ · · · σn−−−→ qn

in A there exists σ′
1σ′

2 · · · σ′
n ∈ A∗ and a run

q0
σ′

1−−−→ q′
1

σ′
2−−−→ q′

2
σ′

3−−−→ · · · σ′
n−−−→ q′

n (4.1)
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4:8 Nominal Büchi Automata with Name Allocation

such that (1) qi and q′
i lie in the same orbit for i = 1, . . . , n, (2) σ′

1σ′
2 · · · σ′

n =α σ1σ2 · · · σn,
and (3) N(σ′

1σ′
2 · · · σ′

n) ⊆ {a1, . . . , am+1}. The proof is by induction on n and rests on the
observation that for every state q at least one of the names a1, . . . , am+1 is fresh for q.

2. Now suppose that the infinite bar string w = σ1σ2σ3 · · · ∈ Aω is accepted by A via the
accepting run

q0
σ1−−−→ q1

σ2−−−→ q2
σ3−−−→ · · ·

Consider the set of all partial runs (4.1) satisfying the above conditions (1)–(3). This
set organizes into a tree with the edge relation given by extension of runs; its nodes of
depth n are exactly the runs (4.1). By part 1 at least one such run exists for each n ∈ N,
i.e. the tree is infinite. It is finitely branching because supp(q′

i) ⊆ {a1, . . . , am+1} for all i

by Lemma 4.6, i.e. there are only finitely many runs (4.1) for each n. Hence, by Kőnig’s
lemma the tree contains an infinite path. This yields an infinite run

q0
σ′

1−−−→ q′
1

σ′
2−−−→ q′

2
σ′

3−−−→ · · ·

such that q′
i and qi lie in the same orbit for each i and σ′

1 · · · σ′
n =α σ1 · · · σn for each n.

It follows that the Büchi RNNA A accepts the infinite bar string

w′ = σ′
1σ′

2σ′
3 · · · .

Moreover w′ =α w and supp(q0) ∪ N(w′) ⊆ {a1, . . . , am+1} as required. ◀

5 Name-Dropping Modification

Although the transitions of a Büchi RNNA are α-invariant, its literal ω-language generally
fails to be closed under α-equivalence. For instance, consider the Büchi RNNA with states
{q0} ∪ A ∪ A2 and transitions displayed below, where a, b range over distinct names in A:

q0start a (a, b)a b
b

The automaton accepts the infinite bar string a b b b b b · · · for a ≠ b but does not accept
the α-equivalent a a a a a a · · · : the required transitions a

a−−→ (a, b) and (a, b) a−−→ (a, b)
do not exist since a is in the least support of the state (a, b), which prevents α-renaming of
the given transitions a

b−−→ (a, b) and (a, b) b−−→ (a, b). A possible fix is to add a new state
“(⊥, b)” that essentially behaves like (a, b) but has the name a dropped from its least support.

This idea can be generalized: We will show below how to transform any Büchi RNNA
A into a Büchi RNNA Ã such that L0,ω(Ã) is the closure of L0,ω(A) under α-equivalence,
using the name-dropping modification (Definition 5.3). The latter simplifies a construction of
the same name previously given for RNNA over finite words [26], and it is the key to the
decidability of bar language inclusion proved later on. First, some technical preparations:

▶ Remark 5.1 (Strong nominal sets). A nominal set Y is called strong [28] if for every
π ∈ Perm(A) and y ∈ Y one has π · y = y if and only if π(a) = a for all a ∈ supp(y). (Note
that “if” holds in all nominal sets.) As shown in [24, Lem. 2.4.2] or [23, Cor. B.27(2)] strong
nominal sets are up to isomorphism precisely the nominal sets of the form Y =

∑
i∈I A#Xi

where Xi is a finite set and A#X denotes the nominal set of all injective maps from X

to A, with the group action defined pointwise; A#X may be seen as the set of possible
configurations of an X-indexed set of registers containing pairwise distinct names. The set of
orbits of Y is in bijection with I; in particular, Y is orbit-finite iff I is finite. Strong nominal
sets can be regarded as analogues of free algebras in categories of algebraic structures:
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1. For every nominal set Z there exists a strong nominal set Y and a surjective equivariant
map e : Y ↠ Z that is supp-nondecreasing, i.e. supp(e(y)) = supp(y) for all y ∈ Y [23,
Cor. B.27.1]. (Recall that supp(e(y)) ⊆ supp(y) always holds for equivariant maps.)
Specifically, one can choose Y =

∑
i∈I A#ni where I is the set of orbits of Z and ni is

the size of the support of any element of the orbit i. In particular, if Z is orbit-finite
then Y is orbit-finite with the same number of orbits.

2. Strong nominal sets are projective w.r.t. supp-nondecreasing quotients [23, Lem. B.28]:
given a strong nominal set Y , an equivariant map h : Y → Z and a supp-nondecreasing
quotient e : X ↠ Z, there exists an equivariant map g : Y → X such that h = e · g.

▶ Proposition 5.2. For every Büchi RNNA there exists a Büchi RNNA accepting the same
literal ω-language whose states form a strong nominal set.

Proof sketch. Given a Büchi RNNA viewed as a coalgebra

Q
γ−−→ 2 × Pufs(A × Q) × Pufs([A]Q),

express the nominal set Q of states as a supp-nondecreasing quotient e : P ↠ Q of an
orbit-finite strong nominal set P using Remark 5.1. Note that the type functor F (−) =
2×Pufs(A×−)×Pufs([A](−)) preserves supp-nondecreasing quotients because all the functors
Pufs(−),A × − and [A](−) do. Therefore, the right vertical arrow in the square below is
supp-nondecreasing, so projectivity of P yields an equivariant map β making it commute:

P 2 × Pufs(A × P ) × Pufs([A]P )

Q 2 × Pufs(A × Q) × Pufs([A]Q)

e

β

2×Pufs(A×e)×Pufs([A]e)

γ

Thus e is a coalgebra homomorphism from (P, β) to (Q, γ). It is not difficult to verify that
for every p ∈ P the states p and e(p) accept the same literal ω-language. In particular,
equipping P with an initial state p0 ∈ P such that e(p0) = q0 we see that the Büchi RNNAs
P and Q accept the same literal ω-language. ◀

A Büchi RNNA with states Q =
∑

i∈I A#Xi can be interpreted as an automaton with a
finite set I of control states each of which comes equipped with an Xi-indexed set of registers.
The following construction shows how to modify such an automaton, preserving the accepted
bar ω-language, to become lossy in the sense that after each transition some of the register
contents may be nondeterministically erased. Technically, this involves replacing Q with
Q̃ =

∑
i∈I A$Xi where A$Xi is a the nominal set of partial injective maps from Xi to A,

again with the pointwise group action. (Note that while A#Xi has only one orbit, A$Xi has
one orbit for every subset of Xi.) We represent elements of Q̃ as pairs (i, r) where i ∈ I and
r : Xi → A is a partial injective map. The least support of (i, r) is given by

supp(i, r) = supp(r) = {r(x) : x ∈ dom(r)},

where dom(r) is the domain of r, i.e. the set of all x ∈ Xi for which r(x) is defined. We
say that a partial map r : Xi → A extends r if dom(r) ⊆ dom(r) and r(x) = r(x) for all
x ∈ dom(r).

▶ Definition 5.3 (Name-dropping modification). Let A be a Büchi RNNA whose states
form a strong nominal set Q =

∑
i∈I A#Xi (with I and all Xi finite). The name-dropping

modification of A is the Büchi RNNA Ã defined as follows:
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1. The states are given by Q̃ =
∑

i∈I A$Xi .
2. The initial state of Ã is equal to the initial state of A.
3. (i, r) is final in Ã iff some (equivalently, every1) state (i, −) in A is final.
4. (i, r) a−−→ (j, s) in Ã iff supp(s) ∪ {a} ⊆ supp(r) and (i, r) a−−→ (j, s) in A for some r, s

extending r, s.
5. (i, r) a−−→ (j, s) in Ã iff supp(s) ⊆ supp(r) ∪ {a} and (i, r) b−−→ (j, s) in A for some b # s

and some r, s extending r, (a b)s.

▶ Theorem 5.4. For every Büchi RNNA A, the literal ω-language of Ã is the closure of that
of A under α-equivalence.

Proof sketch.
1. One first verifies that the literal ω-language of Ã is closed under α-equivalence. To this

end, one proves more generally that given α-equivalent infinite bar strings w = σ1σ2σ3 · · ·
and w′ = σ′

1σ′
2σ′

3 · · · and a run

(i0, r0) σ1−−−→ (i1, r1) σ2−−−→ (i2, r2) σ3−−−→ · · ·

for w in Ã there exists a run of the form

(i0, r′
0) σ′

1−−−→ (i1, r′
1) σ′

2−−−→ (i2, r′
2) σ′

3−−−→ · · · .

for w′ in Ã. In particular, by definition of the final states of Ã, the first run is accepting
iff the second one is. Similar to the proof of Proposition 4.7, one first establishes the
corresponding statement for finite runs by induction on their length, and then extends to
the infinite case via Kőnig’s lemma.

2. In view of part 1 it remains to prove that A and Ã accept the same bar ω-language.
Again, this follows from a more general observation: for every infinite run

(i0, r0) σ1−−−→ (i1, r1) σ2−−−→ (i2, r2) σ3−−−→ · · ·

in A there exists an infinite run of the form

(i0, r′
0) σ′

1−−−→ (i1, r′
1) σ′

2−−−→ (i2, r′
2) σ′

3−−−→ · · ·

in Ã such that σ′
1σ′

2σ′
3 · · · =α σ1σ2σ3 · · · . Moreover, the symmetric statement holds where

the roles of A and Ã are swapped. As before, one first shows the corresponding statement
for finite bar strings and then invokes Kőnig’s lemma. ◀

6 Decidability of Inclusion

With the preparations given in the previous sections, we arrive at our main result: language
inclusion of Büchi RNNA is decidable, both under bar language semantics and data language
semantics. The main ingredients of our proofs below are the name-dropping modification
(Theorem 5.4) and the name restriction property stated in Proposition 4.7. We will employ
them to show that the language inclusion problems for Büchi RNNA reduce to the inclusion
problem for ordinary Büchi automata over finite alphabets. The latter is well-known to be
decidable with elementary complexity; in fact, it is PSPACE-complete [18].

1 This is due to the equivariance of the subset F ⊆ Q of final states.
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▶ Remark 6.1. For algorithms deciding properties of Büchi RNNAs, a finite representation of
the underlying nominal sets of states and transitions is required. A standard representation of
a single orbit X is given by picking an arbitrary element x ∈ X with supp(x) = {a1, . . . , am}
and forming the subgroup GX ⊆ Perm({a1, . . . , am}) of all permutations π : {a1, . . . , am} →
{a1, . . . , am} such that π · x = x. The finite group GX determines X up to isomorphism [25,
Thm. 5.13]. More generally, an orbit-finite nominal set consisting of the orbits X1, . . . , Xn is
represented by a list of n finite permutation groups GX1 , . . . , GXn

.

We first consider the bar language semantics:

▶ Theorem 6.2. Bar ω-language inclusion of Büchi RNNAs is decidable in parametrized
polynomial space.

Proof. Let A and B be Büchi RNNAs; the task is to decide whether Lα,ω(A) ⊆ Lα,ω(B).
Put m = deg(A), and choose a set S ⊆ A of m + 1 distinct names containing supp(q0),
where q0 is the initial state of A. Moreover, form the finite alphabet S = S ∪ { s : s ∈ S}.

1. We claim that

Lα,ω(A) ⊆ Lα,ω(B) iff L0,ω(A) ∩ S
ω ⊆ L0,ω(B̃) ∩ S

ω
, (6.1)

where B̃ is the name-dropping modification of B.
(⇒) Suppose that Lα,w(A) ⊆ Lα,ω(B). Then L0,ω(A) ⊆ L0,ω(B̃) because L0,ω(B̃) is the
closure of L0,ω(B) under α-equivalence by Theorem 5.4. In particular, L0,ω(A) ∩ S

ω ⊆
L0,ω(B̃) ∩ S

ω.
(⇐) Suppose that L0,ω(A) ∩ S

ω ⊆ L0,ω(B̃) ∩ S
ω, and let [w]α ∈ Lα,ω(A). Thus, w =α v

for some v ∈ L0,ω(A). By Proposition 4.7 we know that there exists v′ ∈ S
ω accepted by

A such that v′ =α v. Then

v′ ∈ L0,ω(A) ∩ S
ω ⊆ L0,ω(B̃) ∩ S

ω ⊆ L0,ω(B̃).

Thus [w]α = [v]α = [v′]α ∈ Lα,ω(B̃) = Lα,ω(B), proving Lα,ω(A) ⊆ Lα,ω(B).
2. Now observe that both L0,ω(A) ∩ S

ω and L0,ω(B̃) ∩ S
ω are ω-regular languages over the

alphabet S: they are accepted by the Büchi automata obtained by restricting the Büchi
RNNAs A and B, respectively, to the finite set of states with support contained in S

and transitions labeled by elements of S. Inclusion of ω-regular languages is decidable
in polynomial space [18]. Let kA/kB and mA/mB denote the number of orbits and the
degree of A/B. Since the support of every state of the Büchi automaton derived from A

is contained in the set S and the latter has (mA + 1)! permutations, there are at most

kA · (mA + 1)! ∈ O(kA · 2(mA+1) log(mA+1))

states. The Büchi automaton derived from B̃ has at most

kB · 2mB · (mA + 1)! ∈ O(kB · 2mB+(mA+1) log(mA+1))

states since B̃ has at most kB · 2mB orbits. Thus, the space required for the inclusion
check is polynomial in kA, kB and exponential in mB + (mA + 1) log(mA + 1). ◀

Next, we turn to the data language semantics.

▶ Notation 6.3. Given infinite bar strings w = σ1σ2σ3 · · · and w′ = σ′
1σ′

2σ′
3 · · · we write

w ⊑ w′ if, for all a ∈ A and n ∈ N,

σn = a implies σ′
n ∈ {a, a} and σn = a implies σ′

n = a.

Thus, w′ arises from w by arbitrarily putting bars in front of letters in w.
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▶ Lemma 6.4. If v =α w and v ⊑ v′, then there exists w′ ∈ Aω such that w ⊑ w′ and
v′ =α w′.

Proof. Let v′ = σ′
1σ′

2σ′
3 · · · and w = ρ1ρ2ρ3 · · · . We define w′ to be the following modification

of w: for every n ∈ N, if ρn = a and σ′
n = b for some a, b ∈ A, replace ρn by a. Then w ⊑ w′

and v′ =α w′ as required. ◀

In the following, we write D(w) for D({[w]α}); thus, D(w) is the set of all ub(v) ∈ Aω where
v =α w (cf. Notation 3.5).

▶ Lemma 6.5. Let L be a bar ω-language accepted by some Büchi RNNA and let w ∈ Aω

fs.
Then D(w) ⊆ D(L) if and only if there exists w′ ⊒ w such that [w′]α ∈ L.

▶ Corollary 6.6. Let K and L be bar ω-languages accepted by Büchi RNNA. Then D(K) ⊆
D(L) if and only if for every w ∈ Aω

fs with [w]α ∈ K there exists w′ ⊒ w such that [w′]α ∈ L.

Proof. This follows from Lemma 6.5 using that D(K) =
⋃

[w]α∈K D(w) and that every
α-equivalence class [w]α ∈ K has a finitely supported representative by Proposition 4.7. ◀

▶ Theorem 6.7. Data ω-language inclusion of Büchi RNNAs is decidable in parametrized
polynomial space.

Proof. Let A and B be Büchi RNNAs; the task is to decide whether Dω(A) ⊆ Dω(B). Put
m = deg(A), and choose a set S ⊆ A of m + 1 distinct names containing supp(q0), where q0
is the initial state of A. Moreover, form the finite alphabet S = S ∪ { s : s ∈ S}.

1. For every language L ⊆ S
ω let L↓ denote the downward closure of L with respect to ⊑:

L↓ = {v ∈ S
ω : there exists w ∈ L such that v ⊑ w}.

Every Büchi automaton accepting L can be turned into a Büchi automaton accepting L↓
by adding the transition q

a−−→ q′ for every transition q
a−−→ q′ where a ∈ S.

2. We claim that

Dω(A) ⊆ Dω(B) iff L0,ω(A) ∩ S
ω ⊆ (L0,ω(B̃) ∩ S

ω)↓, (6.2)

where B̃ is the name-dropping modification of B.
(⇒) Suppose that Dω(A) ⊆ Dω(B), that is D(Lα,w(A)) ⊆ D(Lα,ω(B)), and let w ∈
L0,ω(A) ∩ S

ω. Then [w]α ∈ Lα,ω(A), hence by Corollary 6.6 there exists w′ ⊒ w such
that [w′]α ∈ Lα,ω(B). Then w′ ∈ L0,ω(B̃) ∩ S

ω because L0,ω(B̃) is the closure of
L0,ω(B) under α-equivalence by Theorem 5.4. Thus w ∈ (L0,ω(B̃) ∩ S

ω)↓, which proves
L0,ω(A) ∩ S

ω ⊆ (L0,ω(B̃) ∩ S
ω)↓.

(⇐) Suppose that L0,ω(A) ∩ S
ω ⊆ (L0,ω(B̃) ∩ S

ω)↓. To prove Dω(A) ⊆ Dω(B), that
is D(Lα,ω(A)) ⊆ D(Lα,ω(B)), we use Corollary 6.6. Thus, let [w]α ∈ Lα,ω(A). Then
w =α v for some v ∈ L0,ω(A). By Proposition 4.7 we may assume that v ∈ S

ω.
By hypothesis this implies v ∈ (L0,ω(B̃) ∩ S

ω)↓, that is, there exists v′ ⊒ v such
that v′ ∈ L0,ω(B̃). By Lemma 6.4, there exists w′ ⊒ w such that w′ =α v′. Then
[w′]α = [v′]α ∈ Lα,ω(B̃) = Lα,ω(B), as required.

3. The decidability of Dω(A) ⊆ Dω(B) now follows from part 1 and (6.2) in complete
analogy to the proof of Theorem 6.2. ◀

▶ Remark 6.8. In the above theorem it is crucial to admit non-finitely supported data words:
it is an open problem whether the inclusion Dω(A) ∩Aω

fs ⊆ Dω(B) ∩Aω
fs is decidable. In fact,

our decidability proof relies on Corollary 6.6 as a key ingredient, and the latter fails if the
condition D(K) ⊆ D(L) is replaced by the weaker condition D(K) ∩ Aω

fs ⊆ D(L) ∩ Aω
fs.

To see this, let K and L be the bar ω-languages accepted by the two Büchi RNNAs
displayed below, where a, b range over names in A and a ̸= b:
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q0start

a

q0start a qf

a

a

b

a

a

We have D(K) = Aω and D(L) consists of all data words in Aω in which some name
occurs at least twice. Thus, D(K) ∩ Aω

fs = D(L) ∩ Aω
fs = Aω

fs, in particular the inclusion
D(K) ∩ Aω

fs ⊆ D(L) ∩ Aω
fs holds. Consider the infinite bar string w = a a a · · · and note that

w′ ⊒ w implies w′ = w. Then [w]α ∈ K but [w]α ̸∈ L since every bar string accepted by the
right-hand automaton contains some letter from A. Thus, “only if” fails in Corollary 6.6.

7 Relation to Other Automata Models

We conclude this paper by comparing Büchi RNNA with two related automata models
over infinite words. Ciancia and Sammartino [5] consider deterministic nominal automata
accepting data ω-languages L ⊆ Aω via a Muller acceptance condition. More precisely, a
nominal deterministic Muller automaton (nDMA) A = (Q, δ, q0, F) is given by an orbit-finite
nominal set Q of states, and equivariant map δ : Q × A → Q representing transitions, an
initial state q0 ∈ Q, and a set F ⊆ P(orb(Q)) where orb(Q) is the finite set of orbits of Q.
Every input word w = a1a2a3 · · · ∈ Aω has a unique run q0

a1−−−→ q1
a2−−−→ q2

a3−−−→ · · ·
where qi+1 = δ(qi, ai+1) for i = 0, 1, 2, . . .. The word w is accepted if the set {O ∈ orb(Q) :
qn ∈ O for infinitely many n} lies in F . The data ω-language accepted by the automaton is
the set of all words w ∈ Aω whose run is accepting.

As for Büchi RNNA, language inclusion is decidable for nDMA [5, Thm. 4]. In terms of
expressive power the two models are incomparable, as witnessed by the data ω-languages

K = {w ∈ Aω : some a ∈ A occurs infinitely often in w},

L = {w ∈ Aω : w does not have the suffix aω for any a ∈ A}.

▶ Proposition 7.1.
1. The language K is accepted by a Büchi RNNA but not by any nDMA.
2. The language L is accepted by an nDMA but not by any Büchi RNNA.

Proof.
1. We have seen in Example 4.4 that the language K is accepted by a Büchi RNNA. We

claim that K is not accepted by any nDMA. Since the class of languages accepted by
nDMA is closed under complement, it suffices to show that the language

K = {w ∈ Aω : each a ∈ A occurs only finitely often in w}

is not accepted by any nDMA. Suppose towards a contradiction that A = (Q, δ, q0, F) is
an nDMA accepting K. Let m be the maximum of all | supp(q)| where q ∈ Q. Fix m + 1
pairwise distinct names a1, . . . , am+1 ∈ A and an arbitrary word w0 ∈ K.
Choose a factorization w0 = v1w1 (v1 ∈ A∗, w1 ∈ Aω) such that all occurrences of
a1, . . . , am+1 in w0 lie in the finite prefix v1. Let q1 be the state reached from q0 on
input v1. Then supp(q1) does not contain all of the names a1, . . . , am+1, say ai # q1.
Choose any name a ∈ A occurring in w1 such that a#q1. Then q1 = (a ai)q1 accepts
(a ai)w1 since by equivariance the run of (a ai)w1 from q1 visits the same orbits as the
run of w1.
Now repeat the same process with q1 and (a ai)w1 in lieu of q0 and w0, and let
(a ai)w1 = v2w2 denote the corresponding factorization; note that v2 is nonempty be-
cause (a ai)w1 contains the name ai. Continuing in this fashion yields an infinite word
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v = v1v2v3 . . . such that each vi (i > 1) contains at least one of the letters a1, . . . , am+1,
and the run of v traverses the same orbits (in the same order) as the run of w. Thus v is
accepted by the nDMA A although v ̸∈ K, a contradiction.

2. The language L is accepted by the nDMA with states {q0} ∪ A × {0, 1} and transitions
as displayed below, where a, b range over distinct names in A. The acceptance condition
is given by F = {{A × {0},A × {1}}}.

q0start (a, 0) (b, 1)a

a

b

b

a

We claim that L is not accepted by any Büchi RNNA. Suppose to the contrary that
A = (Q, R, q0, F ) is a Büchi RNNA with Dω(A) = L. By Theorem 5.4 we may assume
that L0,ω(A) is closed under α-equivalence. Fix an arbitrary word w = a1a2a3 · · ·
whose names are pairwise distinct and not contained in supp(q0). Then w ∈ L, so there
exists v ∈ L0,ω(A) such that ub(v) = w. We claim that v = a1 a2 a3 · · · . Indeed, if
the nth letter of v is an, then in an accepting run for v in A the state q reached before
reading an must have an ∈ supp(q) by Lemma 4.6.3. But this is impossible because
supp(q) ⊆ supp(q0) ∪ {a1, . . . , an−1} again by Lemma 4.6.
Thus v =α a a a · · · . This implies aω ∈ Dω(A) although aω ̸∈ L, a contradiction. ◀

Let us note that the above result does not originate in weakness of the Büchi acceptance
condition. One may generalize Büchi RNNA to Muller RNNA where the final states F ⊆ Q

are replaced by a set F ⊆ P(orb(Q)), and a bar string w ∈ Aω is said to be accepted if there
exists a run for w such that the set of orbits visited infinitely often lies in F . However, as for
classical nondeterministic Büchi and Muller automata, this does not affect expressivity:

▶ Proposition 7.2. A literal ω-language is accepted by a Büchi RNNA if and only if it is
accepted by a Muller RNNA.

Finally, we mention a tight connection between Büchi RNNA and session automata [4]. The
data (ω-)language associated to a (Büchi) RNNA uses a local freshness semantics in the
sense that its definition considers possibly non-clean bar strings accepted by A. In some
applications, e.g. nonce generation, a more suitable semantics is given by global freshness
where only clean bar strings are admitted, i.e. one associates to A the data languages

D#(A) = {ub(w) : w ∈ A∗ clean and [w]α ∈ Lα(A)},

Dω,#(A) = {ub(w) : w ∈ Aω clean and [w]α ∈ Lα,ω(A)}.

For instance, for the Büchi RNNA A from Example 4.4 the language Dω,#(A) consists of
all infinite words w ∈ Aω where exactly one name a ∈ A occurs infinitely often and every
name b ̸= a occurs at most once.

Under global freshness semantics, it has been observed in previous work [26] that a data
language L ⊆ A∗ is accepted by some session automaton iff L = D#(A) for some RNNA
A whose initial state q0 has empty support. An analogous correspondence holds for Büchi
RNNA and data ω-languages L ⊆ Aω if the original notion of session automata is generalized
to infinite words with a Büchi acceptance condition.
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8 Conclusions and Future Work

We have introduced Büchi regular nondeterministic nominal automata (Büchi RNNAs), an
automaton model for languages of infinite words over infinite alphabets. Büchi RNNAs allow
for inclusion checking in elementary complexity (parametrized polynomial space) despite
the fact that they feature full nondeterminism and do not restrict the number of registers
(contrastingly, even for register automata over finite words [16], inclusion checking becomes
decidable only if the number of registers is bounded to at most 2).

An important further step will be to establish a logic-automata correspondence of Büchi
RNNAs with a suitable form of linear temporal logic on infinite data words.

A natural direction for generalization is to investigate RNNAs over infinite trees with
binders, modeled as coalgebras of type PufsF for a functor F associated to a binding signature
and equipped with the ensuing notion of α-equivalence due to Kurz et al. [20].

Finally, we would like to explore the bar language and data language semantics of Büchi
RNNA from the perspective of coalgebraic trace semantics [29], where infinite behaviours
emerge as solutions of (nested) fixed point equations in Kleisli categories.
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Abstract
Restarts are used in many computer systems to improve performance. Examples include reloading
a webpage, reissuing a request, or restarting a randomized search. The design of restart strategies
has been extensively studied by the performance evaluation community. In this paper, we address
the problem of designing universal restart strategies, valid for arbitrary finite-state Markov chains,
that enforce a given ω-regular property while not knowing the chain. A strategy enforces a property
φ if, with probability 1, the number of restarts is finite, and the run of the Markov chain after the
last restart satisfies φ. We design a simple “cautious” strategy that solves the problem, and a more
sophisticated “bold” strategy with an almost optimal number of restarts.
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1 Introduction

Many computing systems offer the possibility to restart a computation or an interaction that is
suspected to have failed, in order to improve performance. The standard example is the reload
button of a web browser: when a download seems to “hang”, pressing the button can lead to a
faster, even to an immediate download. Similar situations appear in networks, where resending
a message can lead to a faster acknowledgment, in randomized search, where the search can be
restarted with a new seed, or in software rejuvenation, where performing a garbage collection,
flushing caches, or simply rebooting may improve performance (see e.g. [7, 10, 12, 13, 20, 22]).
Performance evaluation has extensively explored how to find optimal restart strategies in
stochastic timed systems, usually under strong assumptions on the distribution of the times
at which events occur.

In verification, liveness properties are abstractions of performance requirements: “every
requested webpage will eventually be downloaded” is an abstraction of “every requested
webpage will be downloaded within at most 3 seconds”, or of some more complicated statement.
The advantage is that they can be checked even when timing information is not available.
However, to the best of our knowledge restart strategies for liveness properties have not been
studied in the probabilistic, untimed setting. In this paper we study this question.
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5:2 Enforcing ω-Regular Properties in Markov Chains by Restarting

Consider a liveness property φ like “every requested webpage will eventually be downloaded”.
Assume that the system is modelled by a finite-state Markov chain, including faulty behaviour
of the TCP protocol, or the congestion phenomena causing requests to hang. We only know
the initial state of the chain, and we can execute a probabilistic program that, given a state
of the chain, returns a successor state according to the transition probabilities; we do not
have access to the code of this program, or it could be very complex, and so we do not know
the probabilities. We can monitor runs of the chain and record the sequence of states they
visit; further, we are allowed to restart the system at any moment. The problem is to design a
universal restart strategy, valid for every chain, satisfying the following two properties:
(1) With probability 1, the number of restarts is finite, and the run of the Markov chain after

the last restart satisfies φ.1

(2) The expected number of restarts R, and the expected number of steps S to a restart
(conditioned on the occurrence of the restart) are not too high (we make this more precise
later).

We say that strategies satisfying (1) enforce φ. If φ has zero probability, then no strategy
can enforce φ, and so we assume that φ has non-zero probability. Under this assumption, it
is easy to design naive enforcing strategies for safety and co-safety properties. For a safety
property like Gp it suffices to restart whenever the current state does not satisfy p; indeed,
since Gp has positive probability by assumption, eventually the chain executes a run satisfying
Gp almost surely, and this run is not aborted. Similarly, for Fp we can abort the first execution
after one step, the second after two steps etc., until a state satisfying p is reached. Since Fp

has positive probability by assumption, at least one reachable state satisfies p, and we will
almost surely visit it. However, these naive strategies lead to far too many restarts on average.
Further, for reactivity properties like “every requested webpage will eventually be downloaded”
even the problem of finding any enforcing strategy is already challenging: Unlike for Gp and
Fp, the strategy can never be sure that every extension of the current execution will satisfy
the property, or that every extension will violate it.

Our first result shows that, perhaps surprisingly, ideas introduced in [6] on the detection
of strongly connected components at runtime lead to a very simple enforcing strategy. Let M
be the (unknown) Markov chain of the system, and let A be a deterministic Rabin automaton
for φ. Say that a run of the product chain M×A is good if it satisfies φ, and bad otherwise.
We define a set of suspect finite executions satisfying two properties:
(a) bad runs almost surely have a suspect prefix; and
(b) if the set of good runs has nonzero probability, then the set of runs without suspect

prefixes also has nonzero probability.
The strategy restarts the chain whenever the current execution is suspect. We call it the
cautious strategy, or, since it must be implemented by monitoring the system, the cautious
monitor. By property (a) the cautious monitor aborts bad runs almost surely, and by property
(b) almost surely the system eventually executes a run without suspect prefixes, which by (a)
is necessarily good.

While the cautious monitor is very simple, it does not satisfy condition (2): in the worst
case, both R and S are exponential in the number of states of the chain. A simple analysis
shows that, without further information on the chain, the exponential dependence of S on the
number of states is unavoidable. However, the exponential dependence of R on the number

1 More precisely, the property is enforced only under the assumption that φ has non-zero probability,
otherwise there is no such strategy.
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of states can be avoided: using a technique of [6], we define a bold monitor for which the
expected number of restarts is almost optimal. Observe that if the property φ has probability
pφ, then the number of restarts needed by any monitor, even those that know the chain, is
1/pφ, because, loosely speaking, that is the expected number of runs until the chain executes
a run satisfying φ. Our bold monitor achieves c + 1/(pφ(1− ϵ)) restarts on average for any
given ϵ > 0, where c is a constant independent of both the chain and φ.

We also develop an efficient data structure that the monitor may use to keep track of the
relevant parameters of the current run. Finally, we illustrate the behaviour of our monitors on
models from the standard PRISM Benchmark Suite [15], and compare our theoretical bounds
to the experimental values.

Related work. Our work is related to runtime enforcement [17]. In this approach a property
is enforced by automatically constructing a monitor that inspects the execution online in an
incremental way, and takes action whenever it violates the property; only safety properties are
enforceable. The ideas of [17] have been extended to some non-safety properties and timed
properties (see e.g. [3, 16, 8, 9]). To the best of our knowledge, restarts as runtime enforcers
in a probabilistic setting have not been considered. Runtime monitoring of stochastic systems
modelled as Hidden Markov Chains (HMM) has been studied by Sistla et al. in a number of
papers [18, 11, 19], but these papers concentrate on monitoring violations of a property, not
on enforcing it.

Our problem is also related to learning Markov chains, e.g., [5, 4, 21, 1]. A simple and
correct restart strategy based on learning is to store all the states and transitions of the chain
M×A visited so far, yielding a currently explored graph, and restart whenever the current
state belongs to a non-accepting and non-trivial bottom strongly connected component of
this graph. However, the memory consumption of such a strategy is very high. We focus on
strategies that only store (part of) the current run, at lower memory cost. Moreover, many
real systems exhibit a “fat but shallow” topology, i.e., a large ratio between the number of
paths and their length [6]. In such chains, states are rarely revisited, and so storing all past
states for eventual use in future runs is inefficient. Our strategies only need a few restarts;
more precisely, the number of restarts only depends on the inverse of the probability of φ, but
not on the size of the chain. These points are discussed in more detail in Remark 5 and in
Section 4.3.

2 Preliminaries and running example

Directed graphs. A directed graph is a pair G = (V, E), where V is the set of vertices and
E ⊆ V × V is the set of edges. A path (infinite path) of G is a finite (infinite) sequence
π = v0, v1 . . . of vertices such that (vi, vi+1) ∈ E for every i = 0, 1 . . .. We denote the empty
path by λ and concatenation of paths π1 and π2 by π1 . π2. A graph G is strongly connected
if for every two vertices v, v′ there is a path leading from v to v′. A graph G′ = (V ′, E′) is
a subgraph of G, denoted G′ ⪯ G, if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′); we write G′ ≺ G if
G′ ⪯ G and G′ ≠ G. A graph G′ ⪯ G is a strongly connected component (SCC) of G if it is
strongly connected and no graph G′′ satisfying G′ ≺ G′′ ⪯ G is strongly connected. An SCC
G′ = (V ′, E′) of G is a bottom SCC (BSCC) if v ∈ V ′ and (v, v′) ∈ E imply v′ ∈ V ′.

Markov chains. A Markov chain (MC) is a tuple M = (S, P, µ), where S is a finite set of
states, P : S × S → [0, 1] is the transition probability matrix, such that for every s ∈ S it
holds

∑
s′∈S P(s, s′) = 1, and µ is a probability distribution over S. The graph of M has S
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as vertices and {(s, s′) | P(s, s′) > 0} as edges. Abusing language, we also use M to denote
the graph of M. We let pmin := min({P(s, s′) > 0 | s, s′ ∈ S}) denote the smallest positive
transition probability in M. A run of M is an infinite path ρ = s0s1 · · · of M; we let ρ[i]
denote the state si. Each (finite) path π in M determines the set of runs Cone(π) consisting
of all runs that start with π. To M we assign the probability space (Runs,F ,P), where Runs
is the set of all runs in M, F is the σ-algebra generated by all Cone(π), and P is the unique
probability measure such that P[Cone(s0s1 · · · sk)] = µ(s0) ·

∏k
i=1 P(si−1, si), where the empty

product equals 1. The expected value of a random variable f : Runs→ R is E[f ] =
∫

Runs f dP.
Given a finite set Ap of atomic propositions, a labelled Markov chain (LMC) is a tuple

M = (S, P, µ, Ap, L), where (S, P, µ) is a MC and L : S → 2Ap is a labelling function.
Given a labelled Markov chain M and an ω-regular property φ, we are interested in the
measure P[M |= φ] := P[{ρ ∈ Runs | L(ρ) |= φ}], where L is naturally extended to runs by
L(ρ)[i] = L(ρ[i]) for all i.

In this work, we assume that M, and in particular S, are unknown to the algorithms;
when a simulation run is observed, we can distinguish whether the current state has already
been seen and at which step, but we cannot match the state with any concrete element of S

even if we knew M.

Deterministic Rabin Automata and product Markov chain. For every ω-regular property
(in particular, for every LTL property) φ there is a deterministic Rabin automaton (DRA)
A = (Q, 2Ap, γ, qo, Acc) that accepts all runs that satisfy φ [2]. Here Q is a finite set of states,
γ : Q× 2Ap → Q is the transition function, qo ∈ Q is the initial state, and Acc ⊆ 2Q × 2Q is
the acceptance condition.

The product of a MC M and DRA A is the Markov chain M⊗ A = (S × Q, P′, µ′),
where P′((s, q), (s′, q′)) = P(s, s′) if q′ = γ(q, L(s′)) and P′((s, q), (s′, q′)) = 0 otherwise, and
µ′(s, q) = µ(s) if γ(qo, L(s)) = q and µ′(s, q) = 0 otherwise. Note that M⊗A has the same
smallest transition probability pmin as M.

A run of M⊗A is good if it satisfies φ, i.e., if it is accepted by A, and bad otherwise. An
SCC B of M⊗A is good if there exists a Rabin pair (E, F ) ∈ Acc such that B ∩ (S ×E) = ∅
and B ∩ (S × F ) ̸= ∅. Otherwise, the SCC is bad. Observe that good runs of M⊗A almost
surely reach a good BSCC (i.e., more formally, the probability that a run satisfies φ and
does not reach a good BSCC is 0), and bad runs almost surely reach a bad BSCC (i.e., more
formally, the probability that a run does not satisfy φ and does not reach a bad BSCC is
also 0).

▶ Example 1 (running). We present a strongly idealized but illustrative running example.
Consider a concurrent system where multiple threads execute transactions (e.g., the database
of an online shop). Every thread first acquires locks on a number of variables (which may
dynamically depend on the values of the variables it has already acquired), then executes its
task, and releases all locks. A thread may have to repeatedly try to acquire a lock on a given

s0 s1 s2 · · · sn−1 sn

dead

pa pa pa

pd pd pd pd

pf pf pf pf 1

1

Figure 1 An idealized example.
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variable, since it can be currently held by another thread. Moreover a thread that acquires a
lock on a variable, say v, reaches a deadlock if the next variable it needs, say v′, is currently
held by another thread trying to get a lock on v.

The deadlock problem can be solved by maintaining a dependency graph of all transactions,
and breaking all cyclic dependencies by restarting at least one of the threads involved. However,
this graph is usually too large to be practical. Under the assumption that threads are scheduled
stochastically, there are simpler mechanisms requiring no communication between threads:
Each thread counts the number of attempts it makes at acquiring the same variable, and
restarts (i.e., releases all its locks) when the number becomes “too high”. We want to
design such a mechanism, assuming that the thread has only the following information (or,
equivalently, assumes that the following hypotheses are correct): (1) its interaction with the
rest of the system can be modelled by a discrete finite-state Markov chain, whose states store
the sequence of locks acquired by the thread so far; (2) the probability that an attempt to
acquire a lock fails, and that it succeeds but leads to a deadlock only depend on the current
state, not on the number of attempts; and (3) the probability of the runs of the chain in which
the thread eventually acquires all locks it needs is positive. The thread does not know any
probability, or even the number of locks it needs. At every moment in time, the thread can
choose between trying to acquire the next lock, or restarting and releasing all locks. The
challenge is to design a restarting strategy ensuring that the thread will execute its task with
probability 1 while keeping the number of resets low. Observe that, even though the thread
does not know the chain, it can tell at each step whether it stays in the same state, or moves
to a new state it has not yet visited. Indeed, an attempt to acquire a lock either fails, in which
case the thread stays in the same state, or succeeds, in which case it moves to a new state
not visited so far, because the set of acquired locks is larger. In particular, the thread can
maintain a list k0, k1, k2, . . . indicating the number ki of visits to the i-th state. However, the
thread does not know if the current state is a deadlock or not.

Consider a simple case in which the thread always needs locks on the same n variables,
the probability of acquiring the lock and not reaching a deadlock afterwards, acquiring the
lock and reaching a deadlock, and failing to acquire the lock are pa, pd and pf = 1− (pa + pd).
The interaction of the thread with the rest of the system is then modelled by the Markov
chain depicted in Figure 1.

3 The cautious monitor

We assume the existence of a deterministic Rabin automaton A = (Q, 2Ap, γ, qo, Acc) for φ.
Our monitors keep track of the path π of the product chain M⊗A corresponding to the path
of M executed so far. In order to present the cautious monitor we need some definitions.

Candidate of a path. Given a finite or infinite path ρ = s0s1 · · · ofM⊗A, the support of ρ is
the set ρ = {s0, s1, . . .}. The graph of ρ is Gρ = (ρ, Eρ), where Eρ = {(si, si+1) | i = 0, 1, . . .};
i.e., Gρ has exactly the vertices and edges of M⊗A explored by ρ.

Let π be a finite path of M⊗A. If π has a suffix κ such that Gκ is a BSCC of Gπ (i.e.,
the suffix κ of π “looks like” the path π has entered a BSCC), we call κ the candidate of π.
Given a path π, we define K(π) as follows: If π has a candidate κ, then K(π) := κ; otherwise,
K(π) := ⊥, meaning that K(π) is undefined.

▶ Example 2. We have K(s0s1s1) = {s1}, K(s0s1s1s2) = ⊥, and K(s0s1s1s2s2) = {s2}
(Figure 1). Also K(s0) = K(s0s1) = K(s0s0s1) = ⊥, K(s0s0) = {s0}, and K(s0s1s0s1) =
{s0, s1} (Figure 2).
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s0 s1 s2 · · · sn−1 sn

sgood

sbad

1/2

1/2 1/2 1/2

1/2

1/2

1/2 1

1

1/2

1/2

Figure 2 A family of Markov chains.

Good and bad candidates. A candidate K is good if A has a Rabin pair (E, F ) ∈ Acc such
that K ∩ (S × E) = ∅ and K ∩ (S × F ) ̸= ∅. Otherwise, K is bad. A finite path π of M⊗A
is suspect if K(π) ̸= ⊥ and K(π) is a bad candidate. The function Suspect(π) returns true
if π is suspect, and false otherwise.

▶ Proposition 3.
(a) Bad runs of M⊗A almost surely have a suspect finite prefix.
(b) If the good runs of M⊗A have nonzero probability, then the set of runs without suspect

prefixes also has nonzero probability.

▶ Example 4 (running). Consider the running example from Figure 1, with {sn} and {dead} as
good and bad BSCC, respectively. The good paths of the chain are those reaching {sn}. They
have nonzero probability. The candidate of any bad path is either {si} for some 0 ≤ i ≤ n− 1,
or the bad BSCC. Since all these candidates are bad, every bad run is suspect. The only good
run without suspect prefixes is the one that reaches sn without ever looping (i.e., all locks are
acquired at the first attempt). It has probability pn

a .

The cautious monitor. The cautious monitor is shown in Algorithm 1. The algorithm
samples a run of M⊗A step by step, and restarts whenever the current path π is suspect.

Algorithm 1 CautiousMonitor.

1: while true do
2: π ← λ ▷ Initialize path with empty path
3: repeat
4: π ← π . NextState(π) ▷ Extend path
5: until Suspect(π)

▶ Remark 5. The cautious monitor only needs to store the first-appearance record of π (i.e.,
the list of states appearing in π, sorted according to their first appearance), since this is
enough to compute Suspect(π). Even further, it only needs the suffix of length mxsc of the
record, where mxsc is the maximal size of the SCCs of the chain. So there exists a universal
restart strategy that only needs to store mxsc states. Strategies based on learning the Markov
chain, which store all states visited so far, also in previous runs, do not satisfy this property.

To state the correctness of Algorithm 1 formally, we define another Markov chain. Consider
the infinite-state Markov chain C (for cautious) defined as follows. The states of C are pairs
⟨π, r⟩, where π is a finite path of M⊗A, and r ≥ 0. Intuitively, r counts the number of
restarts so far. The initial probability distribution assigns probability 1 to ⟨λ, 0⟩, and 0 to all
others. The transition probability matrix PC(⟨π, r⟩, ⟨π′, r′⟩) is defined as follows.
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If π is suspect, then PC(⟨π, r⟩, ⟨π′, r′⟩) = 1 if π′ = λ and r′ = r + 1, and 0 otherwise. We
call such a transition a restart.
If π is not suspect, then PC(⟨π, r⟩, ⟨π′, r′⟩) = P(p, p′) if r′ = r, π = π′′ . p and π′ = π . p′,
and 0 otherwise.

A run of CautiousMonitor corresponds to a run ρ = ⟨π1, r1⟩⟨π2, r2⟩ · · · of C. Let R be the
random variable that assigns to ρ the supremum of r1, r2 · · · . Further, let Sφ be the set of
runs ρ such that R(ρ) <∞ and the suffix of ρ after the last restart satisfies φ. The following
theorem states that CautiousMonitor satisfies the properties that were mentioned in the
introduction.

▶ Theorem 6. Let φ be an ω-regular property such that P[M |= φ] > 0. Let C be the
Markov chain obtained from M and φ as above. We have (a) PC [R < ∞] = 1, and (b)
PC [Sφ | R <∞] = PC [Sφ] = 1.

Proof. Since P[M |= φ] > 0, the good runs of M⊗A have nonzero probability. By part
(b) of Proposition 3, the set of runs of M⊗ A without suspect prefixes also has nonzero
probability, say p. So, by construction of C, after each restart the probability that C executes
a run of M⊗A without suspect prefixes, and so of executing no more restarts, is at least p.
So PC [R =∞] = 0. ◀

Performance. Let T be the random variable that assigns to ρ the number of steps till the
last restart, or ∞ if the number of restarts is infinite. First of all, we observe that, if we do
not make any assumption on the system, E(T ) can grow exponentially in the number of states
of the chain. Indeed, consider the family of Markov chains of Figure 2 and the property Fp.
Assume the only state satisfying p is sgood. Then the product of each chain in the family with
the DRA for Fp is essentially the same chain, and the good runs are those reaching sgood. We
show that E(T ) grows at least exponentially for any monitor, even for those that have full
knowledge of the chain. Indeed, since restarting brings the chain back to s0, optimal monitors
never do a restart when the chain is in any of the states s0, . . . , sn; further, they always restart
in state sbad, because there is zero probability of reaching sgood. So the optimal monitor (i.e.,
the one with the least expected number of steps) is the one that restarts if, and only when, the
chain reaches sbad. Since the chain eventually reaches each of sgood and sbad with probability
1/2, the probability that this monitor performs exactly k restarts is 1

2k+1 , and so the average
number of restarts is 1. Hence, E(T ) is the expected number of steps needed to reach sbad,
under the assumption that it is indeed reached. To reach sbad the chain must execute a run
ending with the suffix s0s1 . . . sn. Since the probability of executing that suffix is 1/2n, we get
E(T ) ≥ 2n. We formulate this result as a proposition.

▶ Proposition 7. Let Mn be the Markov chain of Figure 2 with n states. Given a monitor N
for the property Fp, let TN be the random variable that assigns to a run of the monitor on
Mn the number of steps till the last restart, or ∞ if the number of restarts is infinite. Then
E(TN ) ≥ 2n for every monitor N .

This shows that all monitors have bad performance when the time needed to traverse a
non-bottom SCC of the chain is very large. So we conduct a parametric analysis in the maximal
size mxsc of the SCCs of the chain. This reveals the weak point of CautiousMonitor: E(T )
remains exponential even for families satisfying mxsc = 1. Consider our running example in
Figure 1. CautiousMonitor restarts whenever it takes any of the self-loops in a state si for
i < n. Indeed, after that the current path π ends in sisi, and so K(π) = {si}, which is a bad
candidate. So after the last restart the chain must follow the path s0s1s2 · · · sn, which has
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probability pn
a , and so E(T ) ≥ p−n

a . Intuitively, the monitor introduced in the next section is
“bolder”; instead of restarting whenever it does not immediately acquire the next lock, it only
restarts after trying to acquire a certain number of times, making it “more likely” that the
state is dead.

4 The bold monitor

We proceed in two steps. In Section 4.1, inspired by [6], we design a bold monitor that knows
the minimum probability pmin appearing in M (more precisely, a lower bound on it). In
Section 4.2 we modify this monitor to produce another one that works correctly without any
prior knowledge about M, at the price of a performance penalty.

4.1 Chains with known minimal probability
The cautious monitor aborts a run if the current candidate is bad. In contrast, the bold
monitor keeps track of the strength of the current candidate (defined below), a measure of
how confident the monitor can be that the current candidate is a BSCC. In deciding whether
a restart should be triggered, the bold monitor also takes into account how many candidates
it has already seen since the last restart. Intuitively, the monitor becomes bolder over time,
which prevents it from restarting too soon on the family of Figure 1, independently of the
length of the chain. The monitor is designed so that it restarts almost all bad runs and only a
fixed fraction ε of the good runs. Lemma 11 below shows how to achieve this. We need some
additional definitions.

Strength of a candidate and strength of a path. Let π be a finite path of M⊗A. The
strength of K(π) in π is undefined if K(π) = ⊥. Otherwise, write π = π′ s κ, where s ∈ S ×Q

and π′ is the shortest prefix of π such that K(π′s) = K(π); the strength of K(π) is the largest
k such that every state of K(π) occurs at least k times in s κ, and the last element of s κ

occurs at least k + 1 times. Intuitively, if the strength is k then every state of the candidate
has been been exited at least k times but, for technical reasons, we start counting only after
the candidate is discovered. The function Str(π) returns the strength of K(π) if K(π) ̸= ⊥,
and 0 otherwise.

▶ Example 8. The following table illustrates the definition of strength.

π K(π) π′ s κ Str(π)
p0p1 ⊥ − − − 0
p0p1p1 {p1} p0p1 p1 ϵ 0
p0p1p1p1 {p1} p0p1 p1 p1 1
p0p1p1p1p0 {p0, p1} p0p1p1p1 p0 ϵ 0
p0p1p1p1p0p1 {p0, p1} p0p1p1p1 p0 p1 0
p0p1p1p1p0p1p0 {p0, p1} p0p1p1p1 p0 p1p0 1
p0p1p1p1p0p1p0p1p0 {p0, p1} p0p1p1p1 p0 p1p0p1p0 2

▶ Example 9 (running). Assume that for the first variable, we need three tries before finally
acquiring the lock. Thus, after looping twice in s0, the strength of the candidate {s0} is 2.
If afterwards all variables are acquired on the first try, there are no further candidates until
reaching the good BSCC {sn}. Then (according to the Markov chain), in state sn we loop
infinitely often and the strength of this candidate goes to infinity in the limit.
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Sequence of candidates of a run. Let ρ = s0s1 · · · be a run ofM⊗A. Consider the sequence
of random variables defined by K(s0 . . . sj) for j ≥ 0, and let (Ki)i≥1 be the subsequence
without undefined elements and with no repetition of consecutive elements. For example, for
ϱ = p0p1p1p1p0p1p2p2 · · · , we have K1 = {p1}, K2 = {p0, p1}, K3 = {p2}, etc. Given a run
ρ with a sequence of candidates K1, K2 . . . , Kk (observe that this sequence is always finite),
we call Kk the final candidate. We define the strength of Ki in ρ as the supremum of the
strengths of Ki in all prefixes π of ρ such that K(π) = Ki. For technical convenience, we
define Kℓ := Kk for all ℓ > k and K∞ := Kk. Observe that ρ satisfies φ iff its final candidate
is good. The next lemma follows immediately from the definitions, and the fact that almost
surely the runs of a finite-state Markov chain eventually get trapped in a BSCC and visit
every state of it infinitely often.

▶ Lemma 10. The final candidate of a run ρ is almost surely a BSCC of M⊗A. Moreover,
for every k there exists a prefix πk of ρ such that K(πk) is the final candidate and Str(πk) ≥ k.

The bold monitor. The bold monitor for chains with minimal probability pmin is shown in
Algorithm 2. For every ρ and i ≥ 1, we define two random variables:

Stri(ρ) is the strength of Ki(ρ) in ρ;
Badi(ρ) is true if Ki(ρ) is a bad candidate, and false otherwise.

Let αmin := −1/ log(1− pmin). The following lemma states that, for every α ≥ αmin and ε > 0,
the runs that satisfy φ and in which some bad candidate, say Ki, reaches a strength of at
least α(i− log ε), have probability at most εpφ. This leads to the following strategy for the
monitor: when the monitor is considering the i-th candidate, abort only if the strength reaches
α(i− log ε).

▶ Lemma 11. Let φ be an ω-regular property with positive probability pφ. For every Markov
chain M with minimal probability pmin, for every α ≥ αmin and ε > 0:

P
[ {

ρ | ρ |= φ ∧ ∃i ≥ 1 . Badi(ρ) ∧ Stri(ρ) ≥ α(i− log ε)
} ]
≤ εpφ

The monitor is parametric in α and ε. The variable C stores the current candidate, and is
used to detect when the candidate changes. The variable i maintains the index of the current
candidate, i.e., in every reachable configuration of the algorithm, if C ̸= ⊥ then C := Ki.

Algorithm 2 BoldMonitorα,ϵ.

1: while true do
2: π ← λ ▷ Initialize path
3: C ← ⊥, i← 0 ▷ Initialize candidate and candidate counter
4: repeat
5: π ← π . NextState(π) ▷ Extend path
6: if ⊥ ̸= K(π) ̸= C then
7: C ← K(π); i← i + 1 ▷ Update candidate and candidate counter
8: until Suspect(π) and Str(π) ≥ α(i− log ε)

The infinite-state Markov chain B of the bold monitor is defined as the chain C for the
cautious monitor; we just replace the condition that π is suspect (and thus has strength at
least 1) by the condition that K(π) is bad and has strength ≥ α(i − log ε). The random
variable R and the event Sφ are also defined as for CautiousMonitor.
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5:10 Enforcing ω-Regular Properties in Markov Chains by Restarting

▶ Theorem 12. Let M be a finite-state Markov chain with minimum probability pmin, and let
φ be an ω-regular property with probability pφ > 0 in M. Let B be the Markov chain, defined
as above, corresponding to the execution of BoldMonitorα,ϵ on M⊗A, where α ≥ αmin and
ε > 0. We have:
(a) The random variable R is geometrically distributed, with parameter (success probability)

at least pφ(1− ε). Hence, we have PB[R <∞] = 1 and EB(R) ≤ 1/pφ(1− ε).
(b) PB[Sφ | R <∞] = PB[Sφ] = 1.

Proof. (a) By Lemma 10, almost all bad runs are restarted. By Lemma 11, runs, conditioned
under being good, are restarted with probability at most ε. It follows that the probability that
a run is good and not restarted is at least pφ(1− ε). (b) In runs satisfying R <∞, the suffix
after the last restart almost surely reaches a BSCC of M⊗A and visits all its states infinitely
often, increasing the strength of the last candidate beyond any bound. So runs satisfying
R <∞ belong to Sφ with probability 1. ◀

In particular, after each restart, the probability that no further restart occurs is at least
pφ(1 − ε). The theoretical optimum would be pφ, as bad runs need to be restarted almost
surely.

Performance. Recall that T is the random variable that assigns to a run the number of steps
until the last restart. Let Tj be the number of steps between the j-th and (j + 1)-st restart.
Observe that all the Tj are identically distributed. We have Tj = T ⊥

j + T C
j , where T ⊥

j and
T C

j are the number of prefixes π such that K(π) = ⊥ (no current candidate) and K(π) ̸= ⊥
(a candidate), respectively. By deriving bounds on E(T ⊥

j ) and E(T C
j ), we obtain:

▶ Theorem 13. Let M be a finite-state Markov chain with minimum probability pmin. Let
φ be an ω-regular property with probability pφ > 0 in M. Suppose the product M⊗A has n

states and maximal SCC size mxsc. Let α ≥ αmin and ε > 0. Let T be the number of steps
taken by BoldMonitorα,ϵ until the last restart (or ∞ if there are infinitely many restarts,
or 0 if there is no restart). We have:

E(T ) ≤ 1
pφ(1− ε) · 2n α (n− log ε) mxsc

(
1

pmin

)mxsc
. (1)

Observe the main difference with CautiousMonitor: Instead of the exponential dependence
on n of Proposition 7, we only have an exponential dependence on mxsc. So if mxsc << n the
bold monitor performs much better than the cautious one.

4.2 General chains
We adapt BoldMonitor so that it works for arbitrary finite-state Markov chains, at the
price of a performance penalty. The main idea is very simple: given any non-decreasing
sequence {αn}∞

n=1 of natural numbers such that α1 = 1 and limn→∞ αn = ∞, we sample
as in BoldMonitorα,ϵ but, instead of using the same value α for every sample, we use αj

for the j-th sample. See Algorithm 3, where Sample(α) is the body of the while loop of
BoldMonitorα,ε (lines 2–8 of Algorithm 2) for a given value of α. The intuition is that
αj ≥ αmin holds from some index j0 onwards, and so, by the previous analysis, after the j0-th
restart the monitor almost surely only executes a finite number of restarts. More formally, the
correctness follows from the following two properties.
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Algorithm 3 BoldMonitorε for {αn}∞
n=1.

1: j ← 0
2: while true do
3: j = j + 1
4: Sample(αj)

For every j ≥ 1, if Sample(αj) does not terminate then it executes a good run almost
surely.
Indeed, if Sample(αj) does not terminate then it almost surely reaches a BSCC of M⊗A
and visits all its states infinitely often. So from some moment on K(π) is and remains
equal to this BSCC, and Str(π) grows beyond any bound. Since Sample(αj) does not
terminate, the BSCC is good, and it executes a good run.
If αj ≥ αmin then the probability that Sample(αj) does not terminate is at least εpφ.
Indeed, by Lemma 11, if αj ≥ αmin, the probability is already at least εpφ. Increasing α

strengthens the exit condition of the until loop. So the probability that the loop terminates
is lower, and the probability of non-termination higher.

These two observations immediately lead to the following proposition:

▶ Proposition 14. Let M be an arbitrary finite-state Markov chain, and let φ be an ω-regular
property such that pφ > 0. Let B be the Markov chain corresponding to the execution of
BoldMonitorε on M⊗A with sequence {αn}∞

n=1. Let pmin be the minimum probability of
the transitions of M (which is unknown to BoldMonitorε). We have
(a) PB[R <∞] = 1.
(b) PB[Sφ|R <∞] = PB[Sφ] = 1.
(c) E(R) ≤ jmin + 1/pφ(1− ϵ), where jmin is the smallest index j such that αj ≥ αmin.

Performance. Different choices of the sequence {αn}∞
n=1 lead to versions of BoldMonitorε

with different performance features. Intuitively, if the sequence grows very fast, then jmin
is very small, and the expected number of restarts E(R) is only marginally larger than the
number for the case in which the monitor knows pmin. However, in this case the last 1/pφ(1− ϵ)
aborted runs are performed for very large values αj , and so they take many steps. If the
sequence grows slowly, then the opposite happens; there are more restarts, but aborted runs
have shorter length. Let us analyze two extreme cases: αj := 2j and αj := j.

Denote by f(α) the probability that a run is restarted, i.e., the probability that a call
Sample(α) terminates. Let g(α) further denote the expected number of steps done in
Sample(α) of a run that is restarted (taking the number of steps as 0 if the run is not
restarted). According to the analysis underlying Theorem 13, for α ≥ αmin we have g(α) ≤ cα

with c := 2n (n − log ε) mxsc p−mxsc
min . We can write T = T1 + T2 + · · · , where Tj = 0 when

either the j-th run or a previous run is not restarted, and otherwise Tj is the number of steps
of the j-th run. For j ≤ jmin we obtain E(Tj) ≤ g(αjmin) and hence we have:

E(T ) =
∞∑

j=0
E(Tj) ≤ jming(αjmin) +

∞∑
i=0

f(αjmin)ig(αjmin+i).

By Theorem 12(a) we have f(αjmin) ≤ 1− pφ(1− ε). It follows that choosing αj := 2j does
not in general lead to a finite bound on E(T ). Choosing instead αj := j, we get

E(T ) ≤ cj2
min +

∞∑
i=0

(1 − pφ(1 − ε))ic(jmin + i) ≤
(

j2
min + jmin

pφ(1 − ε) + 1
(pφ(1 − ε))2

)
c ,
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where jmin can be bounded by jmin ≤ −1/ log(1 − pmin) + 1 ≤ 1/pmin. So with c =
2n(n− log ε)mxsc p−mxsc

min we arrive at

E(T ) ≤
(

1
p2

min
+ 1

pminpφ(1− ε) + 1
(pφ(1− ε))2

)
2n (n− log ε) mxsc

(
1

pmin

)mxsc
, (2)

a bound broadly similar to the one from Theorem 13, but with the monitor not needing to
know pmin.

4.3 Implementing the bold monitor
A straightforward implementation of the bold monitor in which the candidate K(π) and its
strength are computed anew each time the path is extended is very inefficient. We present a
far more efficient algorithm that continuously maintains the current candidate and its strength.
Maintaining them until the path has length n takes O(n log n) time and O(sn log sn) memory,
where sn denotes the number of states visited by π (which can be much smaller than n when
states are visited multiple times). So one update takes O(log n) amortized time.

Let π be a path of M⊗A, and let s ∈ π. (Observe that s now denotes a state of M⊗A,
not of M.) We let Gπ = (Vπ, Eπ) denote the subgraph of M⊗A where Vπ and Eπ are the
sets of states and edges visited by π, respectively. Intuitively, Gπ is the fragment of M⊗A
explored by the path π.

In the following we define some additional notions related to Gπ. Afterwards we show
how to use these notions to keep track of the current candidate and its strength during the
operation of the bold monitor.

The discovery index of a state s, denoted by dπ(s), is the number of states that appear in
the prefix of π ending with the first occurrence of s. Intuitively, dπ(s) = k if s is the k-th
state discovered by π. Since different states have different discovery times, and they do
not change when the path is extended, we also call dπ(s) the identifier of s.
A root of Gπ is a state r ∈ Vπ such that dπ(r) ≤ dπ(s) for every state s ∈ SCCπ(r), where
SCCπ(r) denotes the SCC of Gπ containing r. Intuitively, r is the first state of SCCπ(r)
visited by π.
The root sequence Rπ of π is the sequence of roots of Gπ, ordered by ascending discovery
index.
Let Rπ = r1 r2 · · · rm be the root sequence of π. The sequence Sπ = Sπ(r1) Sπ(r2) · · ·Sπ(rm)
of sets is defined by Sπ(ri) := {s ∈ Vπ | dπ(ri) ≤ dπ(s) < dπ(ri+1)} for every 1 ≤ i < m,
i.e., Sπ(ri) is the set of states discovered after ri (including ri) and before ri+1 (excluding
ri+1); and Sπ(rm) := {s ∈ Vπ | dπ(rm) ≤ dπ(s)}.
Birthdayπ is defined as ⊥ if K(π) = ⊥, and as the length of the shortest prefix π′ of π

such that K(π′) = K(π) otherwise. Intuitively, Birthdayπ is the time at which the current
candidate of π was created.
For every state s of π, let πs be the longest prefix of π ending at s. We define Visitsπ(s) as
the pair (Birthdayπs

, v), where v is 0 if Birthdayπs
= ⊥, and v is the number of times πs has

visited s since Birthdayπs
otherwise. We define a total order on these pairs: (b, v) ⪯ (b′, v′)

iff b > b′ (where ⊥ > n for every number n), or b = b′ and v ≤ v′. Observe that, if π has a
candidate, then the smallest pair w.r.t. ⪯ corresponds to the state that is among the states
visited since the creation of the candidate, and has been visited the least number of times.

The following lemma is an immediate consequence of the definitions.

▶ Lemma 15. Let Gπ = (Vπ, Eπ). The SCCs of Gπ are the sets of Sπ. Let Sπ(rm) be the
last set of Sπ, and let (b, v) = min{Visitsπ(s) | s ∈ Sπ(rm)}, where the minimum is w.r.t. ⪯.
We have K(π) = ⊥ iff b = ⊥, and if b ̸= ⊥ then Str(π) = v.



J. Esparza, S. Kiefer, J. Křetínský, and M. Weininger 5:13

By the lemma, in order to efficiently implement BoldMonitor it suffices to maintain
Rπ, Sπ, and a mapping Visitsπ that assigns Visitsπ(s) to each state s of π. More precisely,
assume that the current path π leads to a state s, and now it is extended to π′ = π · s′ by
traversing a transition s→ s′ ofM⊗A; it suffices to compute Rπ′ , Sπ′ and Visitsπ′ from Rπ,
Sπ, and Visitsπ′ in O(log n) amortized time, where n is the length of π. We first show how to
update Rπ, Sπ, and Visitsπ, and then describe data structures to maintain them in O(log n)
amortized time. We consider four cases:
(1) s′ /∈ Vπ. That is, the monitor discovers s′ by traversing s→ s′. Then the SCCs of Gπ′ are

those of Gπ, plus a new trivial SCC containing only s′, with s′ as root. So Rπ′ = Rπ · s′

and Sπ′ = Sπ · {s′}. Since s′ has just been discovered, there is no candidate, and so
Visitsπ′(s′) = (⊥, 0).

(2) s′ ∈ Vπ and dπ(s) < dπ(s′). That is, the monitor had already discovered s′, and it had
discovered it after s. Then Gπ′ = (Vπ, Eπ∪{(s, s′)}), but the SCCs of Gπ and Gπ′ coincide,
and so Rπ′ = Rπ, Sπ′ = Sπ, and if Visitsπ(s′) = (b, v), then Visitsπ′(s′) = (b, v + 1).

(3) s′ ∈ Vπ and dπ(s) = dπ(s′), i.e., s′ = s. Then as before the SCCs of Gπ and Gπ′ coincide,
and so Rπ′ = Rπ, Sπ′ = Sπ. If Visitsπ(s) = (⊥, 0) then Visitsπ′(s) = (n + 1, 1) (recall
that n is the length of π), and if Visitsπ(s) = (b, v) for b ̸= ⊥ then Visitsπ′(s) = (b, v + 1).

(4) s′ ∈ Vπ and dπ(s) > dπ(s′). That is, the monitor discovered s′ before s. Let Rπ =
r1 r2 · · · rm and let ri be the root of SCCπ(s′). Then Gπ′ has a path ri

∗−→ rm
∗−→ s −→ s′ ∗−→

ri. So, if Visitsπ(s′) = (b, v), we get

Rπ′ = r1 r2 · · · ri Sπ′ = Sπ(r1) · · ·Sπ(ri−1)
(⋃m

j=i Sπ(rj)
)

Visitsπ′(s′) = (b, v + 1)

In order to efficiently update Rπ, Sπ and Visitsπ we represent them using the following
data structures.

The number N of different states visited so far.
A hash map D that assigns to each state s discovered by π its discovery index. When s is
visited for the first time, D(s) is set to N + 1. Subsequent lookups return N + 1.
A structure R containing the identifiers of the roots of Rπ, and supporting the following
operations in amortized O(log n) time: insert(r), which inserts the identifier of r in R;
extract-max, which returns the largest identifier in R; and find(s), which returns the
largest identifier of R smaller than or equal to the identifier of s. (This is the identifier of
the root of the SCC containing s.) For example, this is achieved by implementing R both
as a balanced search tree and a heap.
For each root r a structure S(r) representing a set of states and a map assigning to each
state s the key Visitsπ(s), and supporting the following operations in amortized O(log n)
time: find-min, which returns the minimum value of Visitsπ(s) over the states of S(r);
increment-key(s), which increases the value of the second component of Visitsπ(s) by 1,
and merge, which returns the union of two given maps. For example, this is achieved by
implementing S(r) as a Fibonacci heap.

▶ Proposition 16. Rπ, Sπ and Visitsπ can be updated in O(log n) amortized time using N ,
D, R, and S as data structures.

▶ Remark 17. The implementation above needs O(sn log sn) memory, where sn denotes the
number of states visited by π. Applying the same trick as for the cautious monitor (see
Remark 5), the memory consumption can be reduced to O(mxsc log sn), where mxsc is the
maximal size of the SCCs of the chain.
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5 Experimental results

In this section, we illustrate the behaviour of our monitors on concrete models from the
standard PRISM Benchmark Suite [15] and compare the obtained theoretical bounds to the
experimental values.

For our implementation, we have re-used the code provided in [6], which in turn is based
on the PRISM model checker [14]. Note that whenever the obtained candidate is a good
BSCC, no restart will ever happen and we can safely terminate the experiment.

Models. Table 1 lists the models and the properties type, in order of increasing satisfaction
probability, which corresponds to increasing optimal number of restarts. The Table contains
models from the standard PRISM benchmark suite [15]; the gridworld example, also with the
corresponding property negated (written as gridworld), in order to represent cases with also
very low pφ; and the example of [6, Fig. 4], called “scale” here, with parameter 10.

Table 1 List of models and types of properties considered. We give the satisfaction probability
pφ, size |S| minimum transition probability pmin, number of bottom SCCs, total number of states in
them (an upper bound on mxsc), and number of non-bottom SCCs (NSCC). For the model crowds,
the “–” denotes the time-out of the PRISM model checker after 2 hours when trying to compute the
characteristics.

Model Property pφ |S| pmin #BSCC BSCC-states #NSCC

gridworld ¬(GF→ FG) 0.09 309 327 0.001 98 238 053 3
nand GF 0.15 7 014 252 0.02 51 51 0
bluetooth GF 0.20 143 291 0.008 3 072 3,072 24
scale10 GF 0.50 121 0.5 2 100 20
crowds FG – 10 633 591 0.067 – – –
gridworld GF→ FG 0.91 309 327 0.001 98 244 902 1
hermann FG 1.00 524 288 1.9e-6 1 38 9

Compared monitors. The comparison on these models is performed for the following monitors.
Firstly, we consider the cautious monitor, which corresponds to the fixed candidate strength 1.
Moreover, we also consider the straightforward modification, which requires a different (but
still constant) strength, here 10, to practically alleviate the issue with frequent premature
restarts. We call these monitors Cautious1 and Cautious10. Secondly, we consider the bold
monitor using knowledge of the minimal probability pmin, once with low precision of ε = 0.5
and once with a higher one of ε = 0.1, called Bold0.5 and Bold0.1. Finally, we list the optimal
expected number of restarts, corresponding to an ideal (omniscient) monitor, which always
makes the correct decision. Note that in our experiments sometimes the average number of
restarts is slightly lower than the optimum, since when computing the empirical average of
100 runs, it can vary around the expected value to some extent.

Interpretation of results. Table 2 compares the efficiency of the monitors on the models, in
terms of (i) the number of restarts until the monitors leaves the system uninterrupted as it
generates a satisfying path, and (ii) the number of steps taken until the last restart when the
infinite satisfying run starts. Due to the hugely varying characteristics of the models, we also
provide detailed comments on the results model by model in Appendix B.



J. Esparza, S. Kiefer, J. Křetínský, and M. Weininger 5:15

Table 2 Experimental comparison of the monitors, showing the average number of restarts :
average total length of all runs until the final restart. The average is taken over 100 runs of the
algorithm. We compare cautious monitors with required candidate strengths 1 and 10, bold monitor
with precisions 0.5 and 0.1 and the expected number of restarts for the omniscient monitor. Time-outs
are set to two hours, but whenever the monitor finishes successfully, it so happens within a single
minute for all considered models. For those models where a time-out occurs, we double-checked three
times and the time-out always occurred. Then we ran 100 experiments for one minute and report the
average number of restarts per minute.

gridw. nand bluetoooth scale10 crowds gridw. hermann

Cautious1 T O 14000
min 6.1 : 8 510 4.2 : 2 105 2033 : 6 131 0.98 : 96 0.08 : 3 814 T O 1500

min

Cautious10 T O 3
min 4.9 : 6 900 4.8 : 2 425 0.97 : 3 670 1.0 : 101 0.09 : 26 361 T O 1400

min

Bold0.5 T O 0
min 5.3 : 8 949 4.2 : 4 851 2.4 : 15 323 1.0 : 220 T O 0

min 0
Bold0.1 T O 0

min 5.8 : 10 583 3.7 : 4 637 1.3 : 14 528 1.0 : 199 T O 0
min 0

(1/pφ) − 1 9.9 5.7 4.1 1.0 ? 0.1 0

In summary, the following phenomena can be observed:

In cases with small BSCCs and few NSCCs (non-bottom SCCs), such as nand or bluetooth,
all monitors manage to refute bad BSCCs and find the good one.

Large BSCCs, as in gridworlds, give a hard time to all monitors. Interestingly, premature
restarts of Cautious monitors may quickly yield another chance to hit a good BSCC, where
others take long in bad BSCCs to get high confidence to restart. In contrast, premature
restarts in intermediate candidates make Cautious monitors keep restarting even in the
cases where every simulation goes to the good BSCC, as in hermann.

Many NSCCs make Cautious1 restart too often. However, if there is a good chance of
leaving the NSCC soon, as in scale10, then the simple modification to Cautious10 fixes the
issue.

Since crowds has more than ten million states the PRISM model checker times out after
two hours, not yielding information beyond the size. All the simulations are quite short
here, indicating the frequent pattern of “fat but shallow” systems. None of the monitors
experiences any difficulties, indicating essentially optimal number of restarts (around 1),
hence the property seems to be satisfied with roughly 50% probability. The model checker
could not conclude that. While the large size prevents a thorough numeric analysis, it did
not prevent our monitors from determining satisfaction on single runs.

6 Conclusions

We have presented a universal restart strategy for enforcing arbitrary ω-regular properties
in arbitrary finite-state Markov chains. The monitors following the strategy restart the
chain whenever the current run is suspect of not satisfying the property. The strategies need
no information at all about the chain, its probabilities, or its structure. Contrary to the
non-probabilistic settings of [17, 3, 16, 8, 9], they work for arbitrary liveness properties. We
have given estimates of the number of steps until the last restart and the total number of
steps. The design of dedicated strategies that exploit information on these parameters is an
interesting topic for future research.
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A Technical Proofs

A.1 Proof of Proposition 3
(a) By standard properties of Markov chains, bad runs of M⊗A almost surely reach a BSCC

of M⊗A and then traverse all edges of that BSCC infinitely often. Therefore, a bad
run ρ almost surely has a finite prefix π that has reached a bad BSCC, say B, of M⊗A
and has traversed all edges of B at least once. Then K(π) = B, and so π is suspect.

(b) Suppose the good runs of M⊗A have nonzero probability. We construct a finite path
π, starting at s0, so that K(π′) is good for all extensions π′ of π, and K(π′′) is good or
undefined for all prefixes π′′ of π.

Since the good runs of M⊗A have nonzero probability, M⊗A has a good BSCC B. Let
π′

1 be a simple (i.e., no repeated states) path from s0 to a state s1 ∈ B ∩ (S × F ). Extend π′
1

by a shortest path back to the set π′
1 (forming a lasso) and denote the resulting path by π1.

Observe that K(π1) ⊆ B is good, and K(π′) = ⊥ holds for all proper prefixes π′ of π1. If
K(π1) = B, then we can choose π := π1 and π has the required properties. Otherwise, let
π′

2 be a shortest path extending π1 such that π′
2 leads to a state in B \K(π1). Extend that

path by a shortest path back to K(π1) and denote the resulting path by π2. Then we have
K(π1) ⊊ K(π2) ⊆ B, and K(π2) is good, and K(π′) ∈ {K(π1),⊥} holds for all paths π′ that
extend π1 and are proper prefixes of π2. Repeat this process until a path π is found with
K(π) = B. This path has the required properties.

A.2 Proof of Lemma 11
Let BSCC denote the set of BSCCs of the chain-automaton product and SCC the set of its
SCCs.

For a subset K of states of the product, Candk(K) denotes the event (random predicate)
of K being a candidate with strength at least k on a run of the product. Further, the “weak”
version WCandk(K) denotes the event that K has strength k when counting visits even prior
to discovery of K, i.e. each state of K has been visited and exited at least k times on a prefix
π of the run with K(π) = K. Previous work bounds the probability that a non-BSCC can be
falsely deemed BSCC based on the high strength it gets.

▶ Lemma 18 ([6]). For every set of states K /∈ BSCC, and every s ∈ K, k ∈ N,

Ps[WCandk(K)] ≤ (1− pmin)k .

Proof. Since K is not a BSCC, there is a state t ∈ K with a transition to t′ /∈ K. The set of
states K becomes a k-candidate of a run starting from s, only if t is visited at least k times
by the path and was never followed by t′ (indeed, even if t is the last state in the path, by
definition of a k-candidate, there are also at least k previous occurrences of t in the path).
Further, since the transition from t to t′ has probability at least pmin, the probability of not
taking the transition k times is at most (1− pmin)k. ◀

In contrast to [6], we need to focus on runs where φ is satisfied. For clarity of notation, we
let K |= φ denote that K is good, and K ̸|= φ denote that K is bad. In particular, K∞ |= φ

denotes the event that the run satisfies φ.

▶ Lemma 19. For every set of states K /∈ BSCC, and every s ∈ K, k ∈ N,

Ps[WCandk(K) | K∞ |= φ] ≤ (1− pmin)k .
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Proof. The previous argument applies also in the case where we assume that after this strength
is reached the run continues in any concrete way (also satisfying φ) due to the Markovian
nature of the product. In the following derivation, K⟨t → t′⟩ denotes the event that the
candidate K is exited through the transition t→ t′:

Ps[WCandk(K) | K∞ |= φ]

=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩ | K∞ |= φ]

=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩, K∞ |= φ]/Ps[K∞ |= φ]

=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩] · Ps[K∞ |= φ |WCandk(K), K⟨t→ t′⟩] / Ps[K∞ |= φ]

(1)=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩] · Ps[K∞ |= φ | K⟨t→ t′⟩] / Ps[K∞ |= φ]

(2)=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩] · Pt′ [K∞ |= φ] / Ps[K∞ |= φ]

≤
∑

t→t′ exiting K

Ps[reach t] · Pt[not take t→ t′in k visits of t] ·P(t, t′) · Pt′ [K∞ |= φ]
Ps[K∞ |= φ]

=
∑

t→t′ exiting K

Pt[not take t→ t′in k visits of t] · Ps[reach t] ·P(t, t′) · Pt′ [K∞ |= φ]
Ps[K∞ |= φ]

≤
∑

t→t′ exiting K

(1− pmin)k · Ps[reach t′ as the first state outside K] · Pt′ [K∞ |= φ]
Ps[K∞ |= φ]

=(1− pmin)k · Ps[K∞ |= φ] / Ps[K∞ |= φ]
=(1− pmin)k

where (1) follows by the Markov property and by (almost surely) K ≠ K∞, (2) by the Markov
property. ◀

In the next lemma, we lift the results from fixed designated candidates to arbitrary
discovered candidates, at the expense of requiring the (strong version of) strength instead of
only the weak strength. To that end, let birthday bi be the moment when ith candidate on
a run is discovered, i.e., a run is split into ρ = πbiρ

′ so that Ki = K(πbi) ̸= K(π). In other
terms, bi is the moment we start counting the occurences for the strength, whereas the weak
strength is already 1 there.

▶ Lemma 20. For every i, k ∈ N, we have

P[Candk(Ki) | Ki /∈ BSCC, K∞ |= φ] ≤ (1− pmin)k .

Proof.
P[Candk(Ki) | Ki /∈ BSCC, K∞ |= φ]

= P[Candk(Ki), Ki /∈ BSCC, K∞ |= φ]
P[Ki /∈ BSCC, K∞ |= φ]

= 1
P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Candk(C), Ki = C, bi = s, K∞ |= φ]

= 1
P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s] · Ps[WCandk(C), K∞ |= φ]
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= 1
P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s] · Ps[WCandk(C) | K∞ |= φ] · Ps[K∞ |= φ]

≤ (1 − pmin)k

P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s] · Ps[K∞ |= φ] (by Lemma 19)

≤ (1 − pmin)k

P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s, K∞ |= φ]

= (1 − pmin)k

with the last equality due to

Ki /∈ BSCC ∩K∞ |= φ =
⊎

C∈SCC\BSCC
s∈C

Ki = C, bi = s, K∞ |= φ ◀

The set Err of the next lemma is actually exactly the set considered in Lemma 11 but in a
more convenient notation for the computation.

▶ Lemma 21. For (ki)∞
i=1 ∈ NN, let Err be the set of runs such that for some i ∈ N, we have

Candki
(Ki) despite Ki ̸|= φ and K∞ |= φ. Then

P[Err ] ≤ pφ

∞∑
i=1

(1− pmin)ki .

Proof.

P[Err ] = P

[
∞⋃

i=1

(
Candki (Ki) ∩ Ki ̸|= φ ∩ K∞ |= φ

)]

≤ P

[
∞⋃

i=1

(
Candki (Ki) ∩ Ki /∈ BSCC ∩ K∞ |= φ

)]

≤
∞∑

i=1

P[Candki (Ki) ∩ Ki /∈ BSCC ∩ K∞ |= φ] (by the union bound)

=
∞∑

i=1

P[Candki (Ki) | Ki /∈ BSCC ∩ K∞ |= φ] · P[Ki /∈ BSCC | K∞ |= φ] · P[K∞ |= φ]

≤
∞∑

i=1

P[Candki (Ki) | Ki /∈ BSCC ∩ K∞ |= φ] · 1 · pφ

≤ pφ

∞∑
i=1

(1 − pmin)ki . (by Lemma 20)

◀

Proof of Lemma 11. Lemma 11 claims that

P[Err ] ≤ εpφ

where ki is the smallest natural number with ki ≥ (i− log ε) · −1
log(1−pmin) . Directly from the

previous lemma, by plugging in these ki, we obtain

P[Err ] ≤ pφ

∞∑
i=1

(1− pmin)ki ≤ pφ

∞∑
i=1

2−i2log ε = pφε . ◀
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A.3 Proof of Theorem 13
Let Iji,k be the number of steps between the j-th and (j + 1)th reset such that the current
candidate is Ki, and its strength is k. Observe that for a Markov chain with n states we have
Iji,k = 0 if i > n or j > α(i − log ε). Indeed, if the Markov chain has n states, then along
the run there are at most n candidates; moreover, the strength of the Ki stays strictly below
α(i− log ε), because otherwise the run is aborted. So we have

T =
∞∑

j=1
Tj =

∞∑
j=1

T ⊥
j +

∞∑
j=1

T C
j =

∞∑
j=1

T ⊥
j +

∞∑
j=1

n∑
i=1

α(i−log ε)∑
k=1

Iji,k (3)

and so, by linearity of expectations,

E(T ) = E

 ∞∑
j=1

T ⊥
j +

n∑
i=1

α(i−log ε)∑
k=1

Iji,k

 = E

 ∞∑
j=1

T ⊥
j

 +
n∑

i=1

α(i−log ε)∑
k=1

∞∑
j=1

E (Iji,k)

(4)

Let us bound the first summand. Since K(π) = ⊥ only holds when the last state of π is visited
for the first time, we have T ⊥

j ≤ n. Moreover, T ⊥
j = 0 for every j ≥ R, the number of restarts.

So we get

E

 ∞∑
j=1

T ⊥
j

 ≤ E(n ·R) = n · E(R) (5)

Consider now the variables Iji,k. If j ≥ R then Iji,k = 0 by definition, since there is no
(j +1)-th restart. Moreover, under the condition j < R the variables Iji,k and I(j+1)i,k have the
same expectation, because they refer to different runs. By Theorem 12(a) R is geometrically
distributed with parameter at least pφ(1− ε), and so we get

E(I(j+1)i,k) ≤ E(Iji,k) · (1− pφ(1− ε)) (6)

Plugging (4) and (5) into (3), and taking into account that E(R) ≤ 1/pφ(1− ε), we obtain

E(T ) ≤ E(n ·R) +
n∑

i=1

α(i−log ε)∑
k=1

E(I0i,k)
∞∑

j=0
(1− pφ(1− ε))j


= n · E(R) +

n∑
i=1

α(i−log ε)∑
k=1

E(I0i,k)
pφ(1− ε)

≤ 1
pφ(1− ε)

n +
n∑

i=1

α(i−log ε)∑
k=1

E(I0i,k)


(7)

If we can find an upper bound I ≥ E(I0i,k) for every i, k, then we finally get:

E(T ) ≤ 1
pφ(1− ε) · n · (1 + α(n− log ε) · I) ≤ 1

pφ(1− ε) · 2nα(n− log ε) · I (8)

We now compute a bound I ≥ E(I0i,k) valid for arbitrary chains. Recall that E(I0i,k) is
the number of steps it takes to increase the strength of the i-th candidate Ki of the 0-th run
from k to k + 1. This is bounded by the number of steps it takes to visit every state of Ki

once. Let mxsc ∈ O(n) be the maximal size of a SCC. Given any two states s, s′ of an SCC,
the probability of reaching s′ from s after at most mxsc steps is at least pmxsc

min . So the expected
time it takes to visit every state of an SCC at least once is bounded by mxsc · p−mxsc

min . So
taking I := mxsc · p−mxsc

min we obtain the final result.
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A.4 Proof of Proposition 16
When the algorithm explores an edge s→ s′ of the Markov chain M⊗A, it updates N , D,
R, and S as follows. The algorithm first computes D(s′), and then proceeds according to the
cases (1)-(4):
(1) If s′ had not been visited before (i.e., D(s′) = N + 1), then the algorithm sets N := N + 1,

inserts D(s′) in R, and creates a new Fibonacci heap S(s′) containing only the state s′

with key (⊥, 0).
(2) If s′ had been visited before (i.e., D(s′) ≤ N), and D(s) < D(s′), then the algorithm

executes find(s) to find the root r of the SCC containing s, and updates S(r).
(3) If s′ had been visited before (i.e., D(s′) ≤ N), and D(s) = D(s′), then the algorithm

updates the key of s in S(s).
(4) If s′ had been visited before (i.e., D(s′) ≤ N), and D(s) > D(s′), then the algorithm

executes the following pseudocode, where σ is an auxiliary Fibonacci heap:
1: σ ← ∅
2: repeat
3: r ← extract-max(R)
4: σ ← merge(σ, S(r))
5: until D(r) ≤ D(s′)
6: insert(r, R)

At every moment in time the current candidate is the set S(r), where r = extract-max(R),
and its strength can be obtained from find-min(S(r)).

Let us now examine the amortized runtime of the implementation. Let n be the total
number of updates, and let n1, . . . , n4 be the number of steps executed by the algorithm
corresponding to the cases (1)-(4). In cases (1)-(3), the algorithm executes a constant number
of heap operations per step, and so it takes O((n1 + n2 + n3) log n) amortized time for all
steps together. This is no longer so for case (4) steps. For example, if the Markov chain is
a big elementary circuit s0 −→ s1 −→ · · · −→ sn−1 −→ s0, then at each step but the last one we
insert one state into the heap, and at the last step we extract them all; that is, the last step
takes O(n) heap operations. However, observe that each state is inserted in the heap exactly
once, when it is discovered, and extracted at most once. So the algorithm executes at most n

extract-max and merge heap operations for all case (3) steps together, and the amortized
time over all of them is O(n3 log n). This gives an overall runtime of O(n log n), and so an
amortized time of O(log n).

B Detailed Experimental Results

We briefly interpret the results for every single model.

gridworld has a very low satisfaction probability and large BSCCs. Hence Bold monitors
(and even Cautious10) are easily trapped in a large bad BSCC, so it takes very long
to realize that with high confidence (also due to small pmin) and restart. In contrast,
Cautious1 restarts very often and thus has many chances to get to the good BSCC. Still,
the probability of going to the right BSCC and additionally not looping before it has been
explored enough to conclude that it satisfies the property is very low, resulting in many
restarts and the time-out.

nand also has a low satisfaction probability, but now small BSCCs and no NSCCs (non-bottom
SCCs). Hence all monitors manage to refute bad ones and find the good one. Bold monitors
spend a bit more time in the bad BSCCs, while Cautious monitors cut earlier. The number
of restarts is the same for all (modulo statistical imprecision on 100 runs) since all simply
wait for their 1 in 5.7 chance.
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bluetooth is similar to nand, but with a few NSCCs. Hence Cautious monitors may occasion-
ally give up on the way, very slightly increasing the number of restarts. But again, Bold
monitors need a bit more time in BSCCs to become confident, and thus need more steps.

scale10 is designed to have multiple NSCCs on each way, each with 50% self-loop and 50%
leaving. Hence Cautious1 can get very easily stuck in one of them, drastically increasing
the number of restarts. However, since each NSCC is very probably left within a very
few steps, the simple modification to Cautious10 fixes the issue, getting essentially the
optimum. Bold0.1 has no problem with the false restarts, but as it sees many NSCCs, it
increases the required strength on the way, resulting in more time to get confidence in the
BSCC. Bold0.5 has a more relaxed requirements on the strength (starting with less than
10, which is constant for Cautious10), making it restart occasionally at the earlier NSCC.

crowds has more than ten million states, making the PRISM model checker time out after
two hours, not yielding information beyond the size. All the simulations are quite short,
indicating the frequent pattern of “fat but shallow” systems. None of the monitors
experiences any difficulties, indicating essentially optimal number of restarts (around 1),
hence the property seems to be satisfied with roughly 50%. The model checker could
not conclude that. While the large size prevents a thorough numeric analysis, it did not
prevent our monitors from determining satisfaction on single runs.

gridworld has a high satisfaction probability and large BSCCs. There is a single NSCC and
the good BSCC has 2499 states, hence many simulations just run into the good BSCC. For
the one-in-ten chance (1− pφ) of reaching a bad BSCC, Cautious monitors just restart,
while Bold monitors need to stay there for an impractically large amount of steps to realize
they are stuck and want to restart.

hermann satisfies the property almost surely. Bold monitors thus have no problem reaching
a good BSCC and exploring the whole of it, which guarantees they will never restart
(although the required strength is large, also due to small pmin). In contrast, Cautious
monitors keep restarting due to many intermediate candidates, although actually every
simulation goes to the good BSCC.



Linear-Time Model Checking Branching Processes
Stefan Kiefer
University of Oxford, UK

Pavel Semukhin
University of Oxford, UK

Cas Widdershoven
University of Oxford, UK

Abstract
(Multi-type) branching processes are a natural and well-studied model for generating random infinite
trees. Branching processes feature both nondeterministic and probabilistic branching, generalizing
both transition systems and Markov chains (but not generally Markov decision processes). We
study the complexity of model checking branching processes against linear-time omega-regular
specifications: is it the case almost surely that every branch of a tree randomly generated by
the branching process satisfies the omega-regular specification? The main result is that for LTL
specifications this problem is in PSPACE, subsuming classical results for transition systems and
Markov chains, respectively. The underlying general model-checking algorithm is based on the
automata-theoretic approach, using unambiguous Büchi automata.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Verification by model checking

Keywords and phrases model checking, Markov chains, branching processes, automata, computa-
tional complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.6

Related Version Full Version: https://arxiv.org/abs/2107.01687

Funding Stefan Kiefer : supported by a Royal Society University Research Fellowship.

1 Introduction

Checking whether a (labelled) transition system satisfies a linear-time specification is a staple
in verification. The specification is often given as a formula of linear temporal logic (LTL).
While early procedures for LTL model checking work directly with the formula [25], the
automata-theoretic approach translates LTL formulas into finite automata on infinite words,
such as Büchi automata, and analyzes a product of the system and the automaton [37]. This
approach can lead to clean and modular model-checking algorithms.

Although LTL captures only a subset of ω-regular languages, model-checking algorithms
based on the automata-theoretic approach can be made optimal from the point of view of
computational complexity. In particular, model checking finite transition systems against
LTL specifications is PSPACE-complete [32], and the algorithm [37] that, loosely speaking,
translates (the negation of) the LTL formula into a Büchi automaton and checks the product
with the transition system for emptiness can indeed be implemented in PSPACE.

The same approach does not directly work for probabilistic systems modelled as finite
Markov chains: intuitively, the nondeterminism in a Büchi automaton causes issues in a
stochastic setting where the specification should hold with probability 1, i.e., almost surely
but not necessarily surely. A possible remedy is to translate the nondeterministic Büchi
automaton further into a deterministic automaton, e.g., a deterministic Rabin automaton
(deterministic Büchi automata are less expressive), with which the Markov chain can be
naturally instrumented and subsequently analyzed. This determinization step causes a
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(second) exponential blowup and does not lead to algorithms that are optimal from a
computational-complexity point of view. However, for Markov decision processes (MDPs),
which allow for nondeterminism in the probabilistic system, this approach is adequate and
leads to an optimal, double-exponential time, model-checking algorithm.

Checking whether a Markov chain satisfies an LTL specification with probability 1 is
PSPACE-complete, but membership in PSPACE was proved only in [10, 11], not using the
automata-theoretic approach but by a recursive procedure on the formula. This raised the
question if there is also an optimal algorithm based on the automata-theoretic approach; see
[36] for a survey of the state of the art at the end of the 90s.

The answer is yes and was first given in [12], using a single-exponential translation
from LTL to separated Büchi automata. Such automata are special unambiguous Büchi
automata, which restrict nondeterministic Büchi automata by requiring that every word
have at most one accepting run. Another algorithm, using alternating Büchi automata, was
proposed in [6], exploiting reverse determinism, a property also related to unambiguousness.
A polynomial-time (even NC) model-checking algorithm for Markov chains against general
unambiguous Büchi automata was given in [2]. These works all imply optimal PSPACE
algorithms for LTL model checking of Markov chains via the automata-theoretic approach.

In this paper we exhibit an LTL model checking algorithm that has the following features:
(1) it applies to (multi-type) branching processes, a well established model for random trees,
generalizing both nondeterministic transition systems and Markov chains; (2) it runs in
PSPACE, which is the optimal complexity both for nondeterministic transition systems and
Markov chains; and (3) it is based on the automata-theoretic approach (using unambiguous
Büchi automata). The fact that there exists an algorithm with the first two features
might seem surprising, as one might think that any system model that encompasses both
nondeterminism and probability will generalize MDPs, for which LTL model checking is
2EXPTIME-complete [11].

Branching processes (BPs) are a well-studied model in mathematics with applications
in numerous fields including biology, physics and natural language processing; see, e.g.,
[23, 1, 22]. BPs randomly generate infinite trees, and, from a computer-science point of view,
they might be the most natural model to do so: (multi-type) BPs can be thought of as a
version of stochastic context-free grammars without terminal symbols, randomly generating
infinite derivation trees. For example, consider the following BP, taken from [8], with 3 types
I, B, D:

I
0.9

↪−−→ I B
0.2

↪−−→ D D
1

↪−→ D

I
0.1

↪−−→ IB B
0.5

↪−−→ B (1)
B

0.3
↪−−→ BB

This BP might generate a tree with the following prefix:

I

I B

I

I B

B B

B D

The probability that the BP generates a tree with the shown prefix is the product of the
probabilities of the fired transition rules, i.e., (in breadth-first order) 0.1 · 0.9 · 0.3 · 0.1 · 0.5 · 0.2.
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BPs generalize transition systems. Consider the following transition system:

X Y

It is equivalent to the BP with X
1

↪−→ Y and Y
1

↪−→ XY , which generates with probability 1
the following unique tree:

X

Y

X Y

Y X Y

The branches of this unique tree are exactly the executions of the transition system. As a
consequence, any LTL formula holds on all executions of the transition system if and only if
it holds (with probability 1) on all branches of the generated tree.

BPs also generalize Markov chains. Consider the following Markov chain:

X Y

1

0.3

0.7

It is equivalent to the BP with X
1

↪−→ Y and Y
0.3

↪−−→ X and Y
0.7

↪−−→ Y , which generates, with
probabilities 0.3, 0.7 · 0.3, 0.7 · 0.7, respectively, the following prefixes of (degenerated) trees:

X X X

Y Y Y

X Y Y

Y X Y

Here, each possible “tree” has only a single branch, and the possible “trees” are distributed
in the same way as the possible executions of the Markov chain. As a consequence, any LTL
formula holds with probability 1 on a random execution of the Markov chain if and only if it
holds with probability 1 on the (single) branch of the generated tree.

Hence, both for the transition system and for the Markov chain, the respective model-
checking question reduces to the BP model-checking problem which asks whether with
probability 1 the property holds on all branches.

For LTL specifications, we refer to this BP model-checking problem as P(LTL) = 1.
Our main result is that it is in PSPACE, generalizing the corresponding classical results
on transition systems and Markov chains. As mentioned, our model-checking algorithm is
based on the automata-theoretic approach, in particular on unambiguous Büchi automata.
Another important technical ingredient is the algorithmic analysis of certain nonnegative
matrices in terms of their spectral radius.
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6:4 Linear-Time Model Checking Branching Processes

The latter points to the fact that the numbers in the system generally matter, even
though we only consider the qualitative problem of comparing the satisfaction probability
with 1. For example, for the BP given in (1), one can show that the probability that all
branches eventually hit a node of type D is less than 1 (in fact, it is 0). Intuitively, this
is because the probability of “branching” via B

0.3
↪−−→ BB is larger than the probability of

“dying” via B
0.2

↪−−→ D. Were the probabilities 0.3 and 0.2 swapped, the probability that all
branches eventually hit a node of type D would be 1; cf. [8, Section 1].

We also consider the problem P(LTL = 0), which asks whether the probability that
all branches satisfy a given LTL formula is 0. Even though it is trivial to negate an LTL
formula, this problem is (unlike in Markov chains) not equivalent to the complement of
P(LTL = 1), because even when the probability is less than 1 that the formula holds on all
branches, the probability may still be 0 that the negated formula holds on all branches. We
will show that P(LTL = 0) is much more computationally complex than P(LTL = 1): it is
2EXPTIME-complete.

Besides LTL, we also consider automata-based specifications. Büchi automata are relevant
from a verification point of view, as a way of specifying desired or undesired executions of the
system. Unambiguous Büchi automata are useful from a technical point of view, in particular,
to facilitate our main result on P(LTL = 1). See Section 2 and Table 1 for definitions of our
problems and a map of our results.

▶ Remark 1. Readers familiar with MDPs may wonder how the problem P(LTL) = 1 can
have lower computational complexity than the problem whether all schedulers of an MDP
satisfy an LTL specification almost surely. Consider the BP

X
1

↪−→ Y1Y2 Y1
0.7

↪−−→ X Y1
0.3

↪−−→ Z Y2
0.5

↪−−→ X Y2
0.5

↪−−→ Z Z
1

↪−→ Z ,

which might be depicted graphically as follows:

X

Y1

Y2

Z
0.7

0.5

0.3

0.5
1

One might view this BP as an MDP where in an X-node the scheduler nondeterministically
picks either the Y1- or the Y2-successor, and in an Yi-node, the X- or the Z-successor is
chosen randomly. In such an MDP, regardless of the scheduler, a random run reaches with
probability 1 a Z-node. However, in the BP above, the probability is positive that some
branch of a random tree never reaches a Z-node. Although each branch of a random tree
could be thought of as being witnessed by at least one scheduler, this is not a contradiction,
as there are uncountably many schedulers (over which one cannot take a sum). Hence, if
an MDP is interpreted as a BP in the way sketched above, then the requirement that the
BP satisfy an LTL formula almost surely on all branches is stronger, and computationally
less complex to check, than the requirement that the MDP satisfy, for each scheduler, the
formula almost surely.

Related work. We have already discussed related work concerning model checking transition
systems and Markov chains.
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In addition to the mentioned applications of BPs in various fields, there has also been
work on BPs in computer science, especially in the last 10 years. This paper builds on [8],
where specifications in terms of deterministic parity tree automata are considered. The
work [8] implies decidability of the problems considered in this paper and some basic upper
complexity bounds. For example, it is not hard to derive from [8] that P(LTL = 1) is in
2EXPTIME. Lowering this to PSPACE is the main achievement of this paper.

A related strand of work considers regular tree languages; i.e., the specification is not in
terms of a word automaton that is run on each branch but in terms of tree automata. Even
measurability is not easy to show in this case [20], and fundamental decidability questions
around computing the measure have been answered positively only for subclasses of regular
tree languages [26, 27].

Fundamental results on the complexity of algorithmically analyzing BPs have been
obtained in [18]. Indeed, in Section 3.1 we build on and improve results from [18] on
finiteness (more often called “extinction” in the literature) of BPs.

Another recent line of work considers extensions of BPs with nondeterminism, focusing
on algorithmic questions about properties such as reachability. Branching MDPs, which
are BPs where a controller chooses actions to influence the evolution of the tree, have been
investigated, e.g., in [16, 17]. Even branching games, featuring two adversarial controllers,
have been studied recently [14].

The work [21] also considers BPs with “internal” nondeterminism (as opposed to the
“external” nondeterminism manifested as branching in the generated tree), along with model-
checking problems against the logic GPL. This expressive, µ-calculus based modal logic
had been introduced in [9]. The system model therein, called reactive probabilistic labeled
transition systems (RPLTSs), is essentially equivalent to BPs as considered in this paper.

BPs are related to models for probabilistic programs with recursion, such as Recursive
Markov chains, for which model-checking problems have been studied in detail; see, in
particular, [19]. Very loosely speaking, a run of a (“1-exit”) Recursive Markov chain can
be viewed as a depth-first traversal of a tree generated by a BP. Indeed, for a lower bound
in the present paper (Theorem 11) we adapt a proof from [19]. However, most qualitative
model-checking problems for Recursive Markov chains are EXPTIME-complete [19], and so
many of the BP problems we study turn out to have different computational complexity.

As a key technical tool we use unambiguous Büchi automata, as recently proposed for
Markov chains [2]. It is non-trivial to extend their use to random trees, as the branching
behaviour of BPs interferes with the spectral-radius based analysis from [2]. One may view
as the main technical insight of this paper that the limited nondeterminism in unambiguous
automata can be combined with the tree branching of BPs, so that, in a sense, BP model
checking reduces to comparing the spectral radius of a certain nonnegative matrix with 1
(Proposition 16).

2 Preliminaries

Let N and N0 denote the set of positive and nonnegative integers, respectively. For a finite
set Γ, we write Γ∗ (resp., Γ+) for the set of words (resp., nonempty words) over Γ.

Branching processes. A (multi-type) branching process (BP) is a tuple B = (Γ, ↪−→, Prob, X0),
where Γ is a finite set of types, ↪−→ ⊆ Γ × Γ+ is a finite set of transition rules, Prob is a
function assigning positive rational probabilities to transition rules so that for every X ∈ Γ
we have

∑
X↪−→w Prob(X ↪−→ w) = 1, and X0 ∈ Γ is the start type. We write X

p
↪−→ w to
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6:6 Linear-Time Model Checking Branching Processes

denote that Prob(X ↪−→ w) = p. Given a BP B and a type X ∈ Γ we write B[X] for the BP
obtained from B by making X the start type. For X, Y ∈ Γ we call Y a successor of X if
there is a rule X ↪−→ uY v for some u, v ∈ Γ∗.

A BP with ε-rules allowed relaxes the requirement ↪−→ ⊆ Γ × Γ+ to ↪−→ ⊆ Γ × Γ∗, i.e.,
there may be rules of the form X ↪−→ ε, where ε denotes the empty word. In the following,
we disallow ε-rules unless specified otherwise; but the definitions generalize in a natural way.

Fix a BP B = (Γ, ↪−→, Prob, X0) for the rest of the section.

Trees. Write JBK for the set of trees generated by B; i.e., JBK denotes the set of ordered
Γ-labelled trees t such that for each X ∈ Γ and each X-labelled node v in t, there is a rule
X ↪−→ X1 · · · Xk, denoted by rule(v), such that the k ordered children of v are labelled with
X1, . . . , Xk, respectively. We say a node has type X ∈ Γ if the node is labelled with X. A
finite prefix of a tree t ∈ JBK is an ordered Γ-labelled finite tree obtained from t by designating
some nodes as leaves, and removing all their children, grandchildren, etc. Write LBM for the
set of finite prefixes of trees generated by B. For t ∈ LBM write t↓ ⊆ JBK for the (“cylinder”)
set of trees t′ ∈ JBK such that t is a finite prefix of t′. For X ∈ Γ write JBKX ⊆ JBK and
LBMX ⊆ LBM for the subsets of trees whose root has type X; the trees in JBKX are called
X-trees. A branch of a tree t is a sequence v0v1 · · · of nodes in t, where v0 is the root of t and
vi+1 is a child of vi for all i ∈ N0. See [8] for equivalent, more formal tree-related definitions.

Probability space. For each X ∈ Γ we define the probability space (JBKX , ΣX ,PX), where
ΣX is the σ-algebra generated by {t↓ | t ∈ LBMX}, and PX is the probability measure
generated by PX(t↓) :=

∏
v Prob(rule(v)) for all t ∈ LBMX , where the product extends over

all non-leaf nodes v in t. This is analogous to the standard definition of the probability space
of a Markov chain. We may write PB for PX0 , omitting the subscript when B is understood.
We often talk about events (i.e., measurable sets of trees) and their probability in text form.
For example, by saying “a B-tree has with positive probability infinitely many nodes of
type X” we mean that PB(E) > 0 where E ⊆ JBKX0 is the set of X0-trees with infinitely
many nodes of type X.

Linear-Time Properties. We are particularly interested in sets of trees all whose branches
(more precisely, their associated sequences of types) satisfy an ω-regular linear-time property
L ⊆ Γω. Given L ⊆ Γω, we write PB(L) for the probability that all branches of a B-tree
satisfy L. Linear temporal logic (LTL) formulas specify linear-time properties; see, e.g.,
[34] for a definition of LTL. An important example for us are formulas of the form FT ,
where T ⊆ Γ, which denotes the linear-time property {uXw | u ∈ Γ∗, X ∈ T, w ∈ Γω}.
Accordingly, PB(FT ) denotes the probability that all branches of a B-tree have a node whose
type is in T (equivalently, the probability that a B-tree has a finite prefix all whose leaves
have a type in T ).

Automata. We use finite automata on infinite words over Γ, where Γ is the set of types of
a BP. We use deterministic parity automata (DPAs), deterministic Büchi automata (DBAs),
nondeterministic Büchi automata (NBAs), and unambiguous Büchi automata (UBAs). The
definitions are standard; see, e.g., [34]. In the following we fix some terms and notation.
Let A = (Q, Γ, δ, Q0, F ) be an NBA, where Q is a finite set of states, Γ is the alphabet,
δ ⊆ Q × Γ × Q is the transition relation, Q0 ⊆ Q is the set of initial states, and F ⊆ Q is
the set of accepting states. We write q

X−→ r to denote that (q, X, r) ∈ δ. A finite sequence
q0

X1−−→ q1
X2−−→ · · · Xn−−→ qn is called a path and can be summarized as q0

X1···Xn−−−−−→∗ qn. An
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Table 1 Results and organization of the paper. The complexity classes indicate completeness
results, except “in NC”, which only means membership in NC.

= 1 = 0
P(finite) in NC
Section 3.1 Proposition 6

P(DPA) in NC P
Section 3.2 Theorem 8 Theorem 9

P(NBA) PSPACE EXPTIME
Section 3.3 Theorem 10 Theorem 11

= 1 = 0
P(coNBA) PSPACE EXPTIME
Section 4 Theorem 14 Theorem 15

P(coUBA) in NC
Section 5 Proposition 16

P(LTL) PSPACE 2EXPTIME
Section 6 Theorem 18 Theorem 19

infinite sequence q0
X1−−→ q1

X2−−→ · · · is called a run of X1X2 · · · . We call the run accepting
if q0 ∈ Q0 and qi ∈ F holds for infinitely many qi. The NBA A accepts (resp., rejects) an
infinite word w ∈ Γω if w has (resp., does not have) an accepting run in A. The NBA A is
called an unambiguous Büchi automaton (UBA) if every w ∈ Γω has at most one accepting
run. An automaton A defines ω-regular linear-time properties {w ∈ Γω | A accepts w}
and {w ∈ Γω | A rejects w}. In keeping with previous definitions, we write PB(A accepts)
(resp., PB(A rejects)) for the probability that all branches of a B-tree (more precisely, their
associated sequences of types) are accepted (resp., rejected) by A.

Problems. We consider the following computational problems. The problem P(finite) = 1
asks, given a BP B with ε-rules allowed, whether the probability that a B-tree is finite is 1.
The problem P(LTL) = 1 asks, given a BP B and an LTL formula φ, whether PB(φ) = 1.
The problems P(DPA) = 1 (resp., P(NBA) = 1) ask, given a BP B and a DPA (resp.,
NBA) A, whether PB(A accepts) = 1. The problems P(coNBA) = 1 (resp., P(coUBA) = 1)1

ask, given a BP B and an NBA (resp., UBA) A, whether PB(A rejects) = 1. The problems
P(LTL) = 0,P(DPA) = 0, . . . are defined similarly, where “= 1” is replaced with “= 0”. See
Table 1 for a map of our results in those terms, as well as for an overview of the rest of the
paper. As explained in the introduction, the problem P(LTL) = 1 is of particular interest
from a model-checking point of view, and the technically most challenging one.

Complexity Classes. In addition to standard complexity classes between P and 2EXPTIME,
we use the class NC, the subclass of P comprising those problems solvable in polylogarithmic
time by a parallel random-access machine using polynomially many processors; see, e.g., [28,
Chapter 15]. To prove membership in PSPACE in a modular way, we will use the following
pattern:

▶ Lemma 2. Let P1, P2 be two problems, where P2 is in NC. Suppose there is a reduction
from P1 to P2 implemented by a PSPACE transducer, i.e., a Turing machine whose work
tape (but not necessarily its output tape) is PSPACE-bounded. Then P1 is in PSPACE.

Proof. Note that the output of the transducer is (at most) exponential. Problems in NC
can be decided in polylogarithmic space [4, Theorem 4]. Using standard techniques for
composing space-bounded transducers (see, e.g., [28, Proposition 8.2]), it follows that P1 is
in PSPACE. ◀

1 We do not explicitly define or use a notion of “co-Büchi automata” to avoid possible confusion about
accepting/rejecting. If one were to do so, one would define a “co-NBA” A like an NBA A, but the
“co-NBA” A would accept a word w ∈ Γω if and only if A viewed as an NBA rejects w. Similarly for
“co-UBAs”.
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6:8 Linear-Time Model Checking Branching Processes

Matrices. We use finite sets S to index matrices M ∈ RS×S and vectors v ∈ RS . The graph
of a nonnegative matrix M ∈ [0, ∞)S×S is the directed graph (S, E) with E = {(s, t) ∈ S×S |
Ms,t > 0}. The spectral radius of a matrix is the largest absolute value of its eigenvalues.
The following lemma allows to efficiently compare the spectral radius of a nonnegative matrix
with 1.

▶ Lemma 3. Given a nonnegative rational matrix M , one can determine in NC whether
ρ < 1 or ρ = 1 or ρ > 1, where ρ denotes the spectral radius of M .

Proof. Use the algorithm from [13, Proposition 2.2], but not with Gaussian elimination as sug-
gested there, but by solving the systems of linear equations described in [13, Proposition 2.2]
in NC. The latter is possible in NC [5, Theorem 5]. ◀

3 Basic Results

In this section we develop the more basic results indicated in Table 1, on finiteness (Section 3.1),
deterministic parity automata (Section 3.2), and Büchi automata (Section 3.3), on the one
hand rounding off the complexity map in Table 1, and on the other hand building the
foundation for more challenging results in the following sections. In particular, Proposition 6
is indirectly used throughout the paper.

3.1 Finiteness
In this section we consider BPs with ε-rules allowed, i.e., rules of the form X ↪−→ ε. Such
BPs may generate finite trees. We are interested in the almost-sure finiteness problem, also
denoted as P(finite) = 1, i.e., the problem whether the probability that a given BP with
ε-rules allowed generates a finite tree is equal to 1. In Proposition 6 below we show that this
problem is in NC. All upper bounds on the complexity of P(·) = 1 problems in this paper
build directly or indirectly on this result.

While the almost-sure finiteness (or “extinction”) problem has often been studied and is
known to be in (strongly) polynomial time [18, 13], its membership in NC is, to the best
of the authors’ knowledge, new. For instance, since linear programming is P-complete, one
cannot use linear programming (as in [18]) to show membership in NC. Nor can one directly
use the strongly polynomial-time algorithm of [13], as it computes, in a sub-procedure, the
set of types X for which there exists a finite X-tree. But the latter problem is P-complete.

For the rest of the section, fix a BP B = (Γ, ↪−→, Prob, X0) with ε-rules allowed. Define
a directed graph G = (Γ, E) (i.e., the types of B are the vertices of G) with an edge
(X, Y ) ∈ E if and only if Y is a successor of X (i.e., there is a rule X ↪−→ uY v for some
u, v ∈ Γ∗). Given a strongly connected component (SCC) S ⊆ Γ of G and X ∈ S, define a BP
B[S, X] = (S, ↪−→S , ProbS , X) obtained from B by restricting the types to S and deleting on
all right-hand sides of the rules those types not in S. The following lemma is straightforward:

▶ Lemma 4. A B-tree is infinite with positive probability if and only if there exist an SCC
S ⊆ Γ of G and X ∈ S such that X is reachable from X0 in G and a B[S, X]-tree is infinite
with positive probability.

Let M ∈ QΓ×Γ be the nonnegative Γ × Γ-matrix with MX,Y =
∑

X
p

↪−→w
p|w|Y , where

|w|Y ∈ N0 is the number of occurrences of Y in w. That is, MX,Y is the expected number
of direct Y -successors of the root of a B[X]-tree. By induction, M i, the ith power of M , is
such that (M i)X,Y is the expected number of Y -nodes that are exactly i levels under the
root of a B[X]-tree. The graph of M is exactly the previously defined graph G.
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Let S ⊆ Γ be an SCC of G. Denote by MS ∈ QS×S the (square) principal submatrix
obtained from M by restricting it to the rows and columns indexed by elements of S. Let ρS

denote the spectral radius of MS . Call S supercritical if ρS > 1. Call S linear if for all rules
X ↪−→ w with X ∈ S there is exactly one occurrence in w of a type in S. Observe that if S is
linear then MS is stochastic, i.e., MS 1⃗ = 1⃗ where 1⃗ is the all-1 vector, i.e., the element of
{1}S . In that case, by the Perron-Frobenius theorem [3, Theorem 2.1.4 (b)], we have ρS = 1
and, thus, S is not supercritical.

The following characterization can be proved using [13, Section 3] (which builds on [18,
Section 8.1]):

▶ Lemma 5. A B-tree is infinite with positive probability if and only if there exist an SCC
S ⊆ Γ of G and X ∈ S such that X is reachable from X0 in G and S is supercritical or
linear.

It follows:

▶ Proposition 6. The problem P(finite) = 1 is in NC.

3.2 Deterministic Parity Automata
In this section we consider deterministic parity automata (DPAs) on words. In [8, Section 3]
it was shown that the problem P(DPA) = 1 can be decided in polynomial time. We improve
this to membership in NC.

By the following lemma we can check in NC whether a B-tree almost surely has a finite
prefix all whose leaves have types in a given set T . The proof is by reduction to almost-sure
finiteness.

▶ Lemma 7. Given a BP B = (Γ, ↪−→, Prob, X0) and a set of types T ⊆ Γ, the problem
whether PX0(FT ) = 1 is in NC.

By combining Lemma 7 with results from [8] we obtain:

▶ Theorem 8. The problem P(DPA) = 1 is in NC.

The hardness result in the following theorem highlights the different complexities of
P(·) = 0 and P(·) = 1 problems in this paper.

▶ Theorem 9. The problem P(DPA) = 0 is P-complete. It is P-hard even for deterministic
Büchi automata with two states, the accepting state being a sink.

3.3 Büchi Automata
▶ Theorem 10. The problem P(NBA) = 1 is PSPACE-complete.

Proof. PSPACE-hardness is immediate in two different ways. It follows from the PSPACE-
hardness of model checking Markov chains against NBAs [35]. It also follows from the
PSPACE-hardness of model checking transition systems against NBAs. (The latter follows
easily from the PSPACE-hardness of NBA universality [32].) Both model-checking problems
are special cases of P(NBA) = 1.

Towards membership in PSPACE, we use a translation from NBA to DPA [29]. This
translation causes an exponential blow-up, but an inspection of the construction [29, Sec-
tion 3.2] reveals that it can be computed by a PSPACE transducer. By Theorem 8 the
problem P(DPA) = 1 is in NC. By Lemma 2 it follows that P(NBA) = 1 is in PSPACE. ◀
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6:10 Linear-Time Model Checking Branching Processes

▶ Theorem 11. The problem P(NBA) = 0 is EXPTIME-complete. It is EXPTIME-hard
even for NBAs whose only accepting state is a sink.

Proof. Towards membership in EXPTIME, an NBA can be translated, in exponential time,
to a DPA of exponential size; see, e.g., [29]. Since P(DPA) = 0 is in P by Theorem 9, it
follows that P(NBA) = 0 is in EXPTIME.

Concerning EXPTIME-hardness, we adapt the proof (in the online appendix) of [19,
Theorem 17] on model checking recursive Markov chains against NBAs. The details are
in [24]. ◀

4 Co-Büchi Automata

In this section we consider the problem P(coNBA) = 1, which asks, given a BP B and a Büchi
automaton A, whether B almost surely generates a tree whose branches are all rejected by A;
i.e., whether PB(A rejects) = 1. Dually, one might ask whether the probability is positive
that a B-tree has a branch accepted by A. Intuitively, we view the Büchi automaton A as
specifying “bad” branches, and we would like the tree almost surely not to have any bad
branches.

This problem is in PSPACE, which can be shown via a translation to DPAs, as in The-
orem 10. However, with a view on the following sections, in particular on LTL specifications,
we pursue a different approach to the problem P(coNBA) = 1. In this section we lay the
groundwork for arbitrary Büchi automata A. By building on these results, we will show in
the next section that if A is unambiguous then the problem is in NC, which will allow us to
derive our headline result, namely that P(LTL) = 1 is in PSPACE.

Let B = (Γ, ↪−→, Prob, X0) be a BP and A = (Q, Γ, δ, Q0, F ) a (not necessarily unambigu-
ous) Büchi automaton.

Define a Büchi automaton, A ×B, by A×B := (Q × Γ, Γ, δA×B, Q0 × {X0}, F × Γ), where

δA×B((q1, X1), X2) =
{

δ(q1, X1) × {X2} if X2 is a successor of X1

∅ otherwise.

The remainder of the section is organized as follows. In Section 4.1 we show that the
problem P(coNBA) = 1 reduces to the analysis of certain SCCs within A × B. In Section 4.2
we introduce a key lemma, Lemma 13, which allows us to “forget” about the distinction
between accepting and non-accepting states: the lemma reduces P(coNBA) = 1 to a pure
reachability problem in an exponential-sized BP, Bdet . This leads us to prove PSPACE-
completeness of P(coNBA) = 1, but more importantly, Lemma 13 plays a key role in the rest
of the paper. We prove it in [24].

4.1 The Automaton A[f, Xf ]
For any (f, Xf ) ∈ F × Γ on a cycle of the transition graph of A × B, define the Büchi
automaton

A[f, Xf ] := ({q̄0} ∪ Q[f, Xf ], Γ, δ[f, Xf ], {q̄0}, {(f, Xf )})

as the Büchi automaton obtained from A × B by
1. making (f, Xf ) the only accepting state,
2. restricting the set of states, Q[f, Xf ] ⊆ Q × Γ, to those (q, X) that, in the transition

graph of A × B, are reachable from (f, Xf ) and can reach (f, Xf ), i.e., those (q, X) in
the SCC containing (f, Xf ),
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3. restricting the transition function δ[f, Xf ] accordingly, i.e.,

δ[f, Xf ]((q, X), Y ) := δA×B((q, X), Y ) ∩ Q[f, Xf ] ,

4. making q̄0 the only initial state, and
5. setting δ[f, Xf ](q̄0, Xf ) := {(f, Xf )} and δ[f, Xf ](q̄0, X) := ∅ for all X ∈ Γ \ {Xf }.

The following lemma follows from the pigeonhole principle and basic probability argu-
ments:

▶ Lemma 12. The probability that some branch of a B-tree is accepted by A is positive if and
only if there are q0 ∈ Q0 and f ∈ F and Xf ∈ Γ such that (f, Xf ) is reachable from (q0, X0)
in the transition graph of A × B and the probability that some branch of a B[Xf ]-tree is
accepted by A[f, Xf ] is positive.

For the rest of the section let (f, Xf ) ∈ F × Γ be on a cycle of the transition graph of
A × B.

4.2 The Determinization Adet and the BP Bdet

Let

Adet := (2{q̄0}∪Q[f,Xf ], Γ, δdet , {q̄0}, 2{q̄0}∪Q[f,Xf ] \ {∅})

be the determinization of A[f, Xf ] obtained by the standard subset construction. Which
states are accepting will not actually be relevant. Note that every state reachable via a
nonempty path from {q̄0} is of the form P × {X} with P ⊆ Q and X ∈ Γ.

Define a BP Bdet based on Adet as

Bdet := (Γ′, ↪−→′, Prob′, {(f, Xf )}) ,

where the set of types Γ′ ⊆ 2Q[f,Xf ] is the set of those states in Adet that are reachable
(in Adet) from {q̄0} via a nonempty path (recall that they are of the form P × {X} with
P ⊆ Q and X ∈ Γ), and

X ′ p
↪−→′ δdet(X ′, X1) · · · δdet(X ′, Xk)

for all X ′ = P × {X} ∈ Γ′ with P ̸= ∅ and all X
p

↪−→ X1 · · · Xk, and ∅ 1
↪−→′ ∅. Here is the key

lemma of this section:

▶ Lemma 13. The following statements are equivalent:
(i) The probability that some branch of a B[Xf ]-tree is accepted by A[f, Xf ] is positive.
(ii) The probability that some branch of a Bdet-tree does not have any nodes of type ∅ is

positive.
We prove Lemma 13 in [24]. It will be used in the proof of Theorem 14 below; but more

importantly, Lemma 13 is the foundation of Section 5.
Given that Lemma 13 reflects the key insight of this section, let us comment further.

Considering that condition (ii) does not mention a notion of acceptance, one might have two
concerns at this point:
(a) Condition (ii) does not obviously imply that with positive probability there is even a

branch with infinitely many nodes of types containing (f, Xf ).
(b) Even if with positive probability there is such a branch, it is not obvious that such

branches would necessarily correspond to branches of B[Xf ] that are accepted by A[f, Xf ].
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Even for the special case of Markov chains (i.e., every tree has only a single branch),
Lemma 13 is not at all obvious, and both concerns (a) and (b) apply. Indeed, for Markov
chains, Courcoubetis and Yannakakis prove a statement related to Lemma 13, namely [11,
Proposition 4.1.4], with a proof related to ours and dealing explicitly with concern (b) above.
For the special case of transition systems (i.e., the BP generates exactly one tree), Lemma 13
is simple though: consider the branch that follows a cycle around (f, Xf ). For the general
case, we need a result on BPs from [8], dealing with concern (a) above. The high-level
principle behind the proof of Lemma 13 is often used in the analysis of Markov chains: if it
is possible, infinitely often, to reach a state with a probability bounded away from 0, then
this state is almost surely reached infinitely often. See [24] for a full proof of Lemma 13.

We can now derive a PSPACE procedure for the problem P(coNBA) = 1 without resorting
to DPAs:

▶ Theorem 14. The problem P(coNBA) = 1 is PSPACE-complete.

Theorem 11 (for NBAs) has a coNBA-analogue:

▶ Theorem 15. The problem P(coNBA) = 0 is EXPTIME-complete. It is EXPTIME-hard
even for NBAs all whose states are accepting.

5 Co-Unambiguous Büchi Automata

In this section we build on the previous section, in particular on Lemma 13, to derive our
main technical result: given a BP B and an unambiguous Büchi automaton (UBA) A, one
can decide in NC whether B almost surely generates a tree all whose branches are rejected
by A:

▶ Proposition 16. The problem P(coUBA) = 1 is in NC.

The rest of the section is devoted to the proof of this theorem. Fix a BP B and a UBA A.
Since NC is closed under complement, we can focus on the problem whether the probability is
positive that a B-tree has some branch accepted by A. We use Lemma 12. Since reachability
in a graph is in NL and, hence, in NC, it suffices to decide in NC whether the probability
that some branch of a B[Xf ]-tree is accepted by A[f, Xf ] is positive. By Lemma 13 it suffices
to decide in NC whether the probability that some branch of a Bdet-tree does not have any
nodes of type ∅ is positive. The challenge is that Bdet may be exponentially larger than A,
so we need to exploit the unambiguousness of A and the regular structure it gives to Bdet .

Let B′′
det be the BP (with ε-rules allowed) obtained from Bdet by removing the type ∅

and eliminating all occurrences of type ∅ from all right-hand sides. The probability that a
Bdet-tree has an infinite branch of non-∅ nodes is equal to the probability that a B′′

det-tree is
infinite. Hence, it remains to show that one can decide in NC whether the probability that a
B′′

det-tree is infinite is positive.
Define a matrix M ∈ QQ[f,Xf ]×Q[f,Xf ] whose rows and columns are indexed with the

non-q̄0 states of A[f, Xf ]:

M(q,X),(r,Y ) :=


∑

X
p

↪−→u

p|u|Y if (q, X) Y−→ (r, Y ) in A[f, Xf ]

0 otherwise ,

where |u|Y ∈ N0 is the number of occurrences of Y in u. (Think of M(q,X),(r,Y ) as the
expected number of (r, Y )-“successors” of (q, X).) The graph of M is equal to the transition
graph of A[f, Xf ] (excluding q̄0), which is strongly connected.
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Say that A[f, Xf ] has proper branching if there exist (q, Y ) Z1−−→ (r1, Z1) and (q, Y ) Z2−−→
(r2, Z2) in A[f, Xf ] and a rule Y

p
↪−→ u1Z1u2Z2u3 in B with u1, u2, u3 ∈ Γ∗. Now we can

state the key lemma:

▶ Lemma 17. Let ρ be the spectral radius of M . The probability that a B′′
det-tree is infinite

is positive if and only if either ρ > 1 or ρ = 1 and A[f, Xf ] does not have proper branching.

Observe the similarity between Lemmas 5 and 17. In fact, the proof of Lemma 17,
given below, is based on Lemma 5. Lemma 17 shows that properties of A[f, Xf ] and M

(which are polynomial-sized objects) determine a property of the exponential-sized BP B′′
det .

Unambiguousness of A[f, Xf ] is crucial for that connection.
Given that Lemma 17 reflects the key insight of this section (if not of this paper), let

us comment further. Suppose A[f, Xf ] has two outgoing transitions in a state (q, Y ), say
(q, Y ) Z1−−→ (r1, Z1) and (q, Y ) Z2−−→ (r2, Z2). This branching could be “proper branching” as
defined before Lemma 17, or the original UBA A could be nondeterministic when reading Y

in q and have transitions q
Y−→ r1 and q

Y−→ r2. Either type of branching causes non-0 entries
in the matrix M and, intuitively, increases its spectral radius ρ. Lemma 17 tells us that
the probability that a B′′

det-tree is infinite is governed by the combined effect on ρ of both
types of branching: if ρ > 1 then a B′′

det-tree is infinite with positive probability; only in the
borderline case, ρ = 1, the type of branching matters. Again, this characterization is only
correct if the nondeterminism in A does not cause ambiguousness.

Let us consider what Lemma 17 states for the special case of Markov chains. In that case,
clearly there is no proper branching. One can show, using unambiguousness, that for Markov
chains the spectral radius ρ of the matrix M is at most 1. Hence, Lemma 17 states for
Markov chains that the probability that a B′′

det-tree (consisting of a single branch) is infinite
is positive if and only if ρ = 1. Indeed, a related statement can be found in [2, Lemma 6].

To finish the proof of Proposition 16 it suffices to show that we can check the conditions
of Lemma 17 in NC. Indeed, for comparing the spectral radius with 1, we employ Lemma 3.
One can check for proper branching in logarithmic space, hence in NC. This completes the
proof of Proposition 16.

6 LTL

With Proposition 16 from the previous section, we can now show our headline result:

▶ Theorem 18. The problem P(LTL) = 1 is PSPACE-complete.

Proof. PSPACE-hardness is immediate in two different ways. It follows both from the
PSPACE-hardness of model checking Markov chains against LTL and from the PSPACE-
hardness of model checking transition systems against LTL [31]. Both model-checking
problems are special cases of P(LTL) = 1.

Towards membership in PSPACE, there is a classical PSPACE procedure that translates
an LTL formula into an (exponential-sized) Büchi automaton [37]. As noted by several authors
(e.g., [12, 7]), this procedure can easily be adapted to ensure that the Büchi automaton be a
UBA. By applying this translation to the negation ¬φ of the input formula φ, we obtain
a UBA that rejects exactly those words that satisfy φ. By Proposition 16 the problem
P(coUBA) = 1 is in NC. By Lemma 2 it follows that P(LTL) = 1 is in PSPACE. ◀

Finally we show the following result, exhibiting a big complexity gap between the problems
P(LTL) = 1 and P(LTL) = 0.
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▶ Theorem 19. The problem P(LTL) = 0 is 2EXPTIME-complete.

Proof. For membership in 2EXPTIME, we use again the classical procedure that translates
an LTL formula into an exponential-sized Büchi automaton [37] and then invoke Theorem 11.

For 2EXPTIME-hardness we adapt the reduction from [11, Theorem 3.2.1] for MDPs.
The details are in [24]. ◀

7 Conclusions

We have devised a PSPACE procedure for P(LTL) = 1, i.e., qualitative LTL model checking
of BPs. The best previously known procedure ran in 2EXPTIME [8]. Since BPs naturally
generalize both transition systems and Markov chains (for both of which LTL model checking
is PSPACE-complete), one might view our model-checking algorithm as an optimal general
procedure. The same holds for NBA-specifications instead of LTL.

The main technical ingredients have been the automata-theoretic approach and the
algorithmic analysis of UBAs, nonnegative matrices, and finiteness of BPs. Our proofs were
inspired by the observation that the spectral radii of certain nonnegative matrices are central
to model checking Markov chains against UBAs, and also determine fundamental properties
of BPs. Very loosely speaking, when model checking Markov chains against UBAs, the
spectral radius measures the amount of nondeterministic branching in the UBA, whereas
when analyzing BPs, the spectral radius measures the amount of tree branching. The “general
case”, i.e., model checking BPs, features both kinds of branching. Serendipitously, an analysis
of spectral radii still leads, as we have seen, to optimal algorithms.

We have also established the complexities of related problems, partially as a tool for the
mentioned LTL and NBA problems and partially to map out the landscape. We have shown
that the P(·) = 0 variants are more complex than their P(·) = 1 counterparts. An intuitive
explanation of this phenomenon is that for an instance of an P(·) = 1 problems to be negative,
tree branching and probabilistic branching “work together” to falsify the specification on
some branch. In contrast, for P(·) = 0 problems, tree branching and probabilistic branching
are “adversaries”, like in MDPs. Indeed, for lower bounds on P(·) = 0 problems we have
encoded alternation in various forms.

One might ask about the complexity of P(UBA) = 1. Indeed, in trying to solve P(LTL) = 1
efficiently, the authors set out to solve P(UBA) = 1 efficiently (perhaps in P or even NC),
with the PSPACE transduction from LTL to UBA in mind. However, the complexity of UBA
universality is an open problem [30]; only membership in PSPACE is known. So even for the
fixed transition system with a

1
↪−→ ab and b

1
↪−→ ab the problem P(UBA) = 1 cannot be placed

in P without improving the complexity of UBA universality. A PSPACE-hardness proof of
P(UBA) = 1 might have to make use of both types of branching in BPs, as P(UBA) = 1 is
in NC for Markov chains [2].

Model checking BPs quantitatively, i.e., computing the satisfaction probability, comparing
it with a threshold, or approximating it, is left for future work. Exact versions of these
problems are computationally complex, as they are at least as hard as the corresponding
P(·) = 0 problem. The paper [8] describes, for DPAs, nonlinear equation systems whose least
nonnegative solution characterizes the satisfaction probabilities. Newton’s method is efficient
for approximating the solution of such equation systems; see [33, 15].
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Abstract
Quantified linear temporal logic (QLTL) is an ω-regular extension of LTL allowing quantification
over propositional variables. We study the model checking problem of QLTL-formulas over Markov
chains and Markov decision processes (MDPs) with respect to the number of quantifier alternations
of formulas in prenex normal form. For formulas with k−1 quantifier alternations, we prove that
all qualitative and quantitative model checking problems are k-EXPSPACE-complete over Markov
chains and k+1-EXPTIME-complete over MDPs.

As an application of these results, we generalize vacuity checking for LTL specifications from the
non-probabilistic to the probabilistic setting. We show how to check whether an LTL-formula is
affected by a subformula, and also study inherent vacuity for probabilistic systems.
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1 Introduction

In the formal verification of probabilistic systems, a central problem is the model-checking
problem: Given a system model M and a specification φ, decide whether the probability
PrM(φ) that φ holds on an execution of M is 1 or whether it is positive, respectively, (quali-
tative model checking) or compute the probability PrM(φ) (quantitative model checking).
In case the system exhibits non-deterministic behavior, the model-checking problems address
the worst- or best-case resolution of the non-determinism, i.e., the minimal or maximal satis-
faction probability among all possible resolutions of the non-deterministic choices. Common
probabilistic system models are finite-sate Markov chains that are purely probabilistic and
Markov decision processes (MDPs) that also model non-deterministic behavior. Specifications
can be formulated in temporal logics, such as linear temporal logic (LTL) as an important
example, or be given by automata, such as non-deterministic Büchi automata (NBA). The
choice of the specification formalism is a balancing act between expressive power, succinctness,
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and the complexity of the respective model-checking problems. Additionally, the formalism
should allow one to describe desired system behaviors in a way comprehensible to a human
user as writing down the specification is itself an error-prone process in practice.

Quantified linear temporal logic (QLTL), introduced by Sistla [21], is an extension of LTL
with quantification over propositional variables lifting the expressive power from star-free
to all ω-regular languages. A formula of the form ∃x.φ holds on a word w if one can
choose a set of positions at which x holds such that the word w extended with this choice
satisfies φ. The quantification hence ranges over all sets of positions, i. e., sets of natural
numbers. In QLTL, LTL-formulas can be extended with the quantification over propositions
that, for example, capture hidden variables or encode annotations of a trace. This can
be useful if we want to define properties not expressible in LTL in a context in which one
often works with LTL. Examples include definitions of refinement relations in which internal
variables are quantified to express equivalence of two specifications with respect to the
observable variables [14], a necessary and sufficient condition expressed as a QLTL-formula
on the serializability of histories in concurrent database scheduling produced by a scheduler
whose behavior is expressed by an LTL-formula [13], or the QLTL-expressible existence of
finite counterexamples witnessing the unrealizability of an LTL-specification for distributed
fault-tolerant systems [8]. Furthermore, the vacuous satisfaction of a specification in a
transitions system indicating that parts of the specification are irrelevant for the satisfaction
has been defined using QLTL [1]. We transfer this definition of vacuous satisfaction to the
probabilistic setting in this paper and explain the notion of vacuity in more detail below. In
all of these successful applications of QLTL to questions in formal verification, the necessary
QLTL-formulas require only few quantifier alternations; often even a single block of quantifiers
without alternation is sufficient.

The full logic, however, is not suitable for practical applications: the non-probabilistic
model-checking problem of QLTL on transition systems has non-elementary complexity [22].
The lower bounds can be pinpointed to the different levels of quantifier alternation of formulas
in prenex normal form. Model-checking of QLTL-formulas with k− 1 quantifier alternations
in transition systems is k-EXPSPACE-complete. Distinguishing whether the first block
of quantifiers is existential (ΣQLTLk ) or universal (ΠQLTLk ) refines the result as for ΠQLTLk -
formulas the complexity of model-checking drops to k−1-EXPSPACE-completeness [22].
The increase of the complexity by one exponential per quantifier alternation is theoretically
intriguing on the one hand, and on the other hand leads to reasonable complexity results for
properties that can be expressed succinctly with the use of few quantifier alternations. A
similar complexity hierarchy is observed in other settings. The complexity of model checking
quantified computation tree logic (CTL) with k quantifier alternations is k-EXPTIME-
complete, and it is k + 1-EXPTIME-complete for quantified CTL∗ in the tree semantics;
while in the structure semantics, these problems span the polynomial hierarchy [17]. The
hardness of the fragments of QLTL [22] was used to show that model checking strategy logic
is k-EXPSPACE-hard when restricted to k quantifier alternations.

In this paper, we study the model-checking problem of QLTL in probabilistic systems.
Our main result is that the complexity of the model-checking problems on Markov chains
and MDPs match the upper bounds obtained via straight-forward automata constructions:
For Markov chains and ΣQLTLk - and ΠQLTLk -formulas, all model-checking problems are k-
EXPSPACE-complete, while for MDPs the problems are k+ 1-EXPTIME-complete. These
complexity results are summarized in Table 1. As the upper bounds are easily obtained, the
main contribution lies in proving the lower bounds. The hardness proofs for Markov chains,
encode a tiling problem of a k-exponentially wide rectangle with arbitrary height. For the
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hardness proofs for MDPs, we encode the computation of an alternating k-exponentially
space-bounded Turing machine. The alternation can be mimicked in an MDP by letting one
player in the acceptance game of the alternating Turing machine be played randomly, while
the scheduler takes the role of the other player. We obtain the result that the complexities of
the model-checking problems for ΣQLTLk and ΠQLTLk coincide in the probabilistic setting in
contrast to the asymmetry known for the non-probabilistic setting. It is remarkable that the
complexities of ΣQLTL1 - and ΠQLTL1 -model checking in MDPs are the same as the complexity
of LTL-model checking. For each further quantifier alternation, the complexity increases by
one exponential. In contrast, we see an exponential increase in complexity already for the
first block of quantifiers in ΣQLTL1 and ΠQLTL1 compared to LTL-model checking in Markov
chains.

Table 1 Complexity results for the model-checking problems of fragments of QLTL. All entries
state completeness results.

transition system Markov chain MDP

LTL PSPACE [23,25] PSPACE [7] 2-EXPTIME [7]

ΠQLTL1 PSPACE [22] EXPSPACE 2-EXPTIME

ΣQLTL1 EXPSPACE [22] EXPSPACE 2-EXPTIME

ΠQLTLk k-1-EXPSPACE [22] k-EXPSPACE k+1-EXPTIME

ΣQLTLk k-EXPSPACE [22] k-EXPSPACE k+1-EXPTIME

On the one hand, knowledge of the precise complexities of the model-checking problems
for ΣQLTLk - and ΠQLTLk -formulas over probabilistic systems might be useful to determine
the complexity of other problems in the formal verification of probabilistic systems – in
particular, by using the new lower bounds provided in this paper for new hardness results.
On the other hand, the upper bounds are obtained via the construction of automata. It
follows easily that all investigated model-checking problems can be solved in time polynomial
in the size of the model, i.e., the Markov chain or the MDP. This means that efficient model
checking for low levels of the quantifier alternation hierarchy of QLTL might be possible in
many application areas despite the high complexities of the model-checking problems because
formulas are typically small compared to the size of the models.

As an application of our main results, we extend the definition of vacuous satisfaction of
a specification from [1] to the probabilistic setting. For an illustration of vacuous satisfaction,
consider the specification: “Whenever a request is sent, it is eventually granted.” If in a
system model no requests are ever sent, the specification is satisfied and a model checker
would report this result. However, something is obviously wrong with either the specification
or – in this case more likely – the system model. We say the specification is vacuously true.
The formal definition of vacuity that we generalize to the probabilistic setting captures the
fact that the truth values of the grants in the specification do not influence the satisfaction
of the specification at all. We could replace “it is eventually granted” with any arbitrary
requirement or even choose an arbitrary set of positions at which that part of the specification
should be true and the specification would still hold in the system model. We say that this
subformula does not affect the satisfaction of the specification. Perturbing the truth values
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7:4 Quantified Linear Temporal Logic over Probabilistic Systems

in arbitrary ways is expressed by a universal quantification over a proposition in the formal
definition. A vacuity check during the model checking process can be an invaluable help as it
can detect such severe errors in the design of the model or the specification in an early stage
of the development that would otherwise stay undetected if the model checker returns the
desired result.

We provide a generalization of the definition of affection that is suitable for the probabilistic
setting. We prove that ΠQLTL1 -model checking is inter-reducible with the question whether a
subformula affects a formula in a probabilistic system. Hence, an additional vacuity check
according to this definition does not increase the complexity of model checking in MDPs. For
Markov chains, however, the additional vacuity check would lead to an exponential blow-up
of the procedure as shown by our new lower bound for ΠQLTL1 -model checking over Markov
chains. Consequently, we turn our attention to the notion of inherent vacuity introduced in
[9]. This notion captures that a specification is vacuous, i.e. not affected by some subformula,
in all models. So, while disregarding the interplay between model and specification, inherent
vacuity indicates a severe error in the specification. For all natural variants of this definition
for Markov chains and MDPs that can be obtained using our notion of affection, we obtain
the result that inherent vacuity of a specification can be checked by a (non-probabilistic)
validity check of a ΠQLTL1 -formula. Therefore, inherent vacuity for Markov chains and MDPs
can be checked in polynomial space rendering the addition of a check for inherent vacuity to
the model checking procedure potentially useful and reasonable in practice.

Related Work

Closest to our main complexity hierarchy result is the complexity hierarchy result for QLTL
in the non-probabilistic setting [22]. Over probabilistic systems, the model-checking problems
for Wolper’s ETL [26], another ω-regular extension of LTL, which uses automata operators,
is investigated in [7] and shown to lie in EXPTIME. We are not aware of any explicit
investigations of QLTL or further ω-regular extensions of LTL, such as Gabbay’s USF [10],
an extension with fixed-point operators, over probabilistic systems.

Concerning vacuity checking, various notions have been studied for non-probabilistic
systems. In [3] and [16], a notion of formula vacuity for fragments of CTL∗ is investigated in
which the underlying notion of non-affection means that a subformula can be replaced by any
other formula without affecting the truth of the formula in a model. Trace vacuity for LTL,
which we generalize to the probabilistic setting, was introduced in [1]. The authors argue that
trace vacuity has advantages over formula vacuity as it is more robust with respect to changes
of the model or the specification language. Based on this definition, the notion of inherent
vacuity, which we adapt to the probabilistic setting, was introduced in [9]. Trace vacuity
has been extended to various other logics such as CTL∗ [11] relying on a propositionally
quantified version of the logic, or to the logic RELTL, an extension of LTL with regular
layers, by universally quantifying interval variables [4]. In [12], a variety of degrees to which
a formula can be vacuous is defined and analyzed in the context of CTL-model checking. For
a survey covering different approaches of vacuity checking, we refer the reader to [15].

2 Preliminaries

We suppose familiarity with basic concepts of discrete Markovian models, LTL, and ω-
automata, and only provide a brief summary of the notions and our notation. Details can be
found in textbooks, e.g., [2, 6, 20]. Furthermore, we provide definitions regarding QLTL and
state basic results.
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2.1 Basic definitions
Markov decision processes (MDPs)

An MDP is a tuple M = (S, Act,P, sinit, AP, L) where S is a finite state space, Act a finite
set of actions, P : S × Act × S → [0, 1] ∩ Q the transition probability function satisfying∑
t∈S P(s,α, t) ∈ {0, 1} for all (s,α) ∈ S × Act, sinit ∈ S the initial state, AP a finite set

of atomic propositions, and L : S → 2AP a labeling function. The triples (s,α, t) with
P(s,α, t) > 0 are called transitions of M. The actions enabled in s form Act(s) = {α ∈ Act :∑
t∈S P(s,α, t) = 1}. The size of an MDP is the number of states and actions plus the sum

of the logarithmic lengths of the transition probabilities. Intuitively, when M is at a state
s, then an action α of Act(s) is selected nondeterministically; afterwards the next state is
obtained by probabilistically choosing one of the potential successor states according to the
probability distribution P(s,α, ·). Paths in MDP are alternating sequences of states and
actions: π = s0 α0 s1 α1 . . . where αi ∈ Act(si) and P(si,αi, si+1) > 0 for all i ⩾ 0. We write
π[i...] for the suffix starting from si. The trace of π is the word L(π) = L(s0) L(s1) L(s2) . . .
over 2AP obtained by projecting states to their labels. We do not distinguish between a
path and its trace when the intended meaning is clear from context. A scheduler for M is a
function S that maps a finite path ζ to a probability distribution over Act(last(ζ)) where
last(ζ) is the last state of ζ. The function PrSM,s denotes the probability measure induced
by S, when s is the initial state. It is well-known that all ω-regular path properties φ are
measurable and there exist schedulers maximizing or minimizing the probability for φ (see,
e.g., [2]). This justifies the notations Prmax

M,s(φ) = maxS PrSM,s(φ) and analogously Prmin
M,s(φ)

for ω-regular properties.
A Markov chain is a tuple M = (S,P, sinit, AP, L) which can be seen as an MDP with only

one action. The transition probability function P : S× S→ [0, 1] ∩Q does not include the
action anymore and satisfies

∑
t∈S P(s, t) ∈ {0, 1} for all s ∈ S. There are no non-deterministic

choices and PrM,s denotes the induced probability measure on maximal paths starting in s.

ω-automata

A non-deterministic Büchi automaton (NBA) is a tuple A = (Q,Σ, δ,Q0, F) where Q is a
finite set of states, Σ an alphabet, δ ⊆ S× Σ× S the transition relation, Q0 ⊆ Q the set of
initial states and F ⊆ Q the set of final states. A word w = w0w1 . . . in Σω is accepted by
A if there is a run q0w0 q1w1 q2 . . . such that q0 ∈ Q0, (qi,wi,qi+1) ∈ δ for all i, and for
infinitely many i, qi ∈ F. The language L(A) is the set of words accepted by A.

2.2 Quantified linear temporal logic (QLTL)
Let AP be a finite set of atomic propositions. The syntax of linear temporal logic (LTL) is
given by

φ ::= a|φ∧φ|¬φ|⃝φ|φUφ

where a ∈ AP. The semantics is given on words in (2AP)ω: For a word w = w0,w1, . . . , we
have w ⊨ a if a ∈ w0; w ⊨ ⃝φ if w1,w2, · · · ⊨ φ; and w ⊨ φUψ if there is a j ∈ N such
that wj,wj+1, · · · ⊨ ψ and wi,wi+1, · · · ⊨ φ for all i < j. The semantics of the Boolean
connectives is defined as usual. For more details, consult, e.g., [2]. The logic QLTL is an
extension of LTL with quantification over atomic propositions. We extend the syntax of LTL
by allowing existential quantification ∃x.φ over additional, fresh atomic propositions x ̸∈ AP
where φ is an LTL-formula over AP ∪ {x}. We further allow the common abbreviations ⊤ for
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7:6 Quantified Linear Temporal Logic over Probabilistic Systems

true, ⊥ for false, ∨, →, ↔, ♢, □, and ∀x. For a word w ∈ (2AP)ω, we define that w ⊨ ∃x.φ
if and only if there is a set X ⊆ N such that the word w′ with w′[i] = w[i] if i ̸∈ X and
w′[i] = w[i] ∪ {x} if i ∈ X satisfies w′ ⊨ φ. Consider the following example to illustrate the
semantics of QLTL:

{a} {b} {a} {c} . . . ⊨ ∃x.□(x↔ ¬a) because
{a} {b, x} {a} {c, x} . . . ⊨ □(x↔ ¬a).

For a QLTL-formula ϑ over AP, we allow arbitrarily many additional atomic propositions
but require that all atomic propositions not in AP are quantified. We distinguish QLTL-
formulas in prenex normal form according to the number of quantifier alternations. For
k ⩾ 1, let ΣQLTLk be the set of QLTL-formulas of the form

∃∗∀∗∃∗ . . .︸ ︷︷ ︸
k blocks of quantifiers

φ ≡ ∃∗¬∃∗¬∃∗ . . .︸ ︷︷ ︸
k blocks of quantifiers

(¬)φ

where φ is quantifier-free, i.e. an LTL-formula. Likewise, let ΠQLTLk be the set of QLTL-
formulas starting with k blocks of quantifiers followed by a quantifier-free formula such that
the first block is ∀∗. The negation of a ΣQLTLk -formula is equivalent to a ΠQLTLk -formula.

QLTL, and in particular ΣQLTL1 , can express exactly all ω-regular properties. In fact,
the existence of an accepting run on a word in an NBA A with states Q can be expressed by
a ΣQLTL1 -formula with |Q|-many existential quantifications followed by an LTL-formula [21].

Conversely, for a ΣQLTLk -formula ϑ = ∃∗¬∃∗ . . . (¬)φ, we can build an NBA of k-
exponential size accepting exactly the words satisfying ϑ: For the LTL-part (¬)φ, we
first construct an NBA of exponential size (see [25]). Existential quantification on the
NBA-level is easy as it corresponds to standard projection onto the non-quantified variables;
a quantified variable x is simply removed from the labels of the transition relation. This
introduces new non-deterministic choices between the options to take a transition requiring
a letter, i.e. a set of atomic propositions, P or a transition requiring P ∪ {x} when reading P.
The quantifier prefix contains k− 1 negations in addition to the existential quantifiers. Each
of these negations requires a complementation of the automaton constructed so far before we
can use projection again to account for the next block of quantifiers. Each complementation
increases the size by one further exponential. Hence, the procedure produces an NBA for ϑ
of k-exponential size in k-exponential time (see [22] for more details).

3 QLTL model checking in probabilistic systems

This section is devoted to proving the complexity hierarchy results in terms of the quantifier
alternation for the model-checking problem of QLTL in probabilistic systems. More precisely,
our goal is to pinpoint the complexities of the following problems, for ΠQLTLk - or ΣQLTLk -
formulas φ:

Qualitative model-checking problems:
For a Markov chain M, decide whether PrM,sinit (φ) = 1, or whether PrM,sinit (φ) > 0,
respectively.
For an MDP M, decide whether Prmax

M,sinit
(φ) = 1, whether Prmax

M,sinit
(φ) > 0, whether

Prmin
M,sinit

(φ) = 1, or whether Prmin
M,sinit

(φ) > 0, respectively.
Quantitative model-checking problems:

For a Markov chain M, compute PrM,sinit (φ). For hardness results, we consider the
decision versions whether PrM,sinit (φ) ▷◁ ϑ for a given ϑ ∈ Q and ▷◁∈ {⩽,<,>,⩾}.



J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:7

For an MDP M, compute Propt
M,sinit

(φ) for opt ∈ {max, min}. For hardness results, we
consider the decision versions whether Propt

M,sinit
(φ) ▷◁ ϑ for a given ϑ ∈ Q, ▷◁∈ {⩽,<

,>,⩾}, and opt ∈ {max, min}.

We restrict our attention to QLTL-formulas in prenex normal form. While we have
seen that all QLTL-formulas are equivalent to a ΣQLTL1 -formula, the transformation from
arbitrary QLTL-formulas to ΣQLTL1 -formulas has non-elementary complexity. The lower
bound for this transformation is a direct consequence of the complexity hierarchy result
for the non-probabilistic model-checking problem mentioned above. However, there is a
polynomial-time transformation to prenex normal form for QLTL-formulas: After renaming
all quantified variables such that each quantifier quantifies a unique variable not occurring
outside the scope of this quantifier, we can pull out quantifiers using the following equivalences
for arbitrary QLTL-formula φ and ψ where ψ does not contain the atomic proposition x
and both formulas do not contain t:
1. (∃xφ)Uψ ≡ ∀t∃x((tU(¬t∧φ))∨ (tUψ)).
2. (∀xφ)Uψ ≡ ∀x(φUψ).
3. ψU(∃xφ) ≡ ∃x(ψUφ).
4. ψU(∀xφ) ≡ ∃t∀x((ψ∧ t)U(φ∧ ¬t)).
Note that in the first and last equivalence where t is quantified, only the first position where
¬t holds is important for the subsequent formulas. In this way, the quantification over t
corresponds to the quantification over positions in the semantics of the U-operator. For
Q ∈ {∃, ∀}, we further have ⃝Qxφ ≡ Qx⃝ φ and moving quantifiers to the front over
Boolean connectives can be done as usual. So, we can transform a QLTL-formula to prenex
normal form in polynomial time while introducing new quantifiers to account for the implicit
quantification over positions of the U-operator.

In applications of QLTL in formal verification, however, quantified variables are mostly
used to describe possible annotations of a trace or traces of hidden variables. Hence, the
quantified traces are supposed to be constant once chosen and not to be reassigned when
evaluating subformulas on different suffixes. Thus, these formulas often are already in prenex
normal form.

Our main result concerning QLTL-model checking over probabilistic systems is the
following complexity hierarchy result:

▶ Theorem 1 (Main Result). All qualitative and quantitative model-checking problems for
ΣQLTLk and ΠQLTLk in Markov chains are k-EXPSPACE-complete and can be solved in time
polynomial in the size of the Markov chain.

All qualitative and quantitative model-checking problems for ΣQLTLk and ΠQLTLk with k ⩾ 1
in MDPs are k+ 1-EXPTIME-complete and can be solved in time polynomial in the size of
the MDP.

The upper bounds are obtained by the straight-forward construction of NBAs as described
above (Section 2.2). The main contribution hence is the proof of the lower bounds. For
Markov chains, we provide a reduction from a tiling problem that simultaneously shows
hardness for all qualitative model-checking problems (Theorem 2). We afterwards conclude
the same complexity result for all quantitative model-checking problems (Corollary 3). For
MDPs, the result requires two different hardness proofs (Theorem 4): The hardness results for
model-checking problems regarding the maximal satisfaction probability of ΠQLTLk -formulas
(or analogously the minimal satisfaction probability of ΣQLTLk -formulas) are somewhat simpler.
We encode computations of an alternating Turing machine that is k-exponentially space
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7:8 Quantified Linear Temporal Logic over Probabilistic Systems

bounded and can directly use sequences of k-exponentially many extended tape symbols
for the encoding. For the hardness proof concerning the minimal satisfaction probability of
ΠQLTLk -formulas, we have to include a binary counter of k− 1-exponential length separating
two successive tape symbols in the encoding. In the hardness proof for Markov chains,
we use a similar counter. So, the final hardness proof combines the ideas behind the first
hardness proof for MDPs and the hardness proof for Markov chains. The same complexity
results for all quantitative model-checking problems in MDPs can be concluded afterwards
(Corollary 5).

3.1 Markov chains
We first address the qualitative model-checking problems in Markov chains. We provide a
proof sketch for the hardness proof. The full proof can be found in [19].

▶ Theorem 2. For any k, all qualitative model-checking problems for ΣQLTLk and ΠQLTLk in
Markov chains are k-EXPSPACE-complete and can be solved in time polynomial in the size
of the Markov chain.

Proof sketch. The upper bounds are obtained by building NBAs of k-exponential size for
ΣQLTLk -formulas as described in Section 2. The negation of a ΠQLTLk -formula is equivalent to
a ΣQLTLk -formula of the same length. As all qualitative model-checking problems for NBAs
in Markov chains are PSPACE-complete and can be solved in time polynomial in the size of
the Markov chain [7], we obtain the upper bounds.

For the hardness results, we use a reduction from k-exponential tiling problems. We define
the following function h : N2 → N: Let h(0,n) = n for all n and h(k+1,n) = 2h(k,n) ·h(k,n)
for all k. So, h(k,n) is k-exponential in n. The following k-exponential tiling problem is
known to be k-EXPSPACE-complete [24]:

Given: a finite set of tiles T , two relations H ⊆ T2 and V ⊆ T2, an initial tile t0 ∈ T and
a final tile tf ∈ T as well as a natural number n in unary.

Question: Is there an m ∈ N such that the 2h(k−1,n) × (m+ 1)-grid {0, . . . , 2h(k−1,n) −

1}× {0, . . . ,m} can be tiled, i. e., is there a function f : {0, . . . , 2h(k−1,n) − 1}× {0, . . . ,m}→ T ,
such that:
1. the tile at position (0, 0) is the initial tile t0 and the tile at position (0,m) is the final

tile tf; in other words, f(0, 0) = t0 and f(0,m) = tf,
2. two tiles placed next to each other horizontally satisfy the relation H; more precisely, for

any 0 ⩽ i < 2h(k−1,n) − 1 and 0 ⩽ j ⩽ m, the pair (f(i, j), f(i+ 1, j)) ∈ H, and
3. two tiles placed next to each other vertically satisfy the relation V; more precisely, for

any 0 ⩽ i ⩽ 2h(k−1,n) − 1 and 0 ⩽ j < m, the pair (f(i, j), f(i, j+ 1)) ∈ V?

Given an instance of the k-exponential tiling problem, we construct a Markov chain M

and a ψ in ΠQLTLk such that PrM(ψ) = 1 iff PrM(ψ) > 0 iff there is a valid tiling. This
establishes k-EXPSPACE-hardness for both qualitative model checking problems for ΠQLTLk .
As the negation of ψ is in ΣQLTLk and k-EXPSPACE is closed under complementation, the
same result holds for ΣQLTLk .

Let T = {t0, . . . , tℓ} be the set of tiles that we also use as atomic propositions and let
{start, end, 0, 1} be further atomic propositions. We construct a simple Markov chain M,
depicted in Figure 1, that almost surely produces a concatenation of infinitely many words
from start(T ∪ {0, 1})+end that contains each of the finite words in start(T ∪ {0, 1})+end.
Some of these finite words will encode potential tilings. Namely, we encode a function
f : {0, . . . , 2h(k−1,n) − 1}× {0, . . . ,m}→ T in the word



J. Piribauer, C. Baier, N. Bertrand, and O. Sankur 7:9

start

t1 . . . tℓ 10

end

Figure 1 The Markov chain M.

start, f(0, 0),
h(k−1,n) steps︷ ︸︸ ︷
0, 0, 0, . . . , 0 , f(1, 0),

h(k−1,n) steps︷ ︸︸ ︷
1, 0, 0, . . . , 0 , . . . , f(2h(k−1,n) − 1, 0),

h(k−1,n) steps︷ ︸︸ ︷
1, 1, 1, . . . , 1 ,

f(0, 1), . . . ,

f(0,m),
h(k−1,n) steps︷ ︸︸ ︷
0, 0, 0, . . . , 0 , f(1,m),

h(k−1,n) steps︷ ︸︸ ︷
1, 0, 0, . . . , 0 , . . . , f(2h(k−1,n) − 1,m),

h(k−1,n) steps︷ ︸︸ ︷
1, 1, 1, . . . , 1 , end.

For a valid encoding, the blocks of h(k− 1,n) bits have to encode a correct binary counter
modulo 2h(k−1,n), where the first bit is the least significant one, starting with 0 . . . 0 after
start and ending in 1 . . . 1 before end. The encoding of the counter makes sure that indeed a
function from a rectangle {0, . . . , 2h(k−1,n) − 1}× {0, . . . ,m} for some m is encoded.

Further, we construct a ΠQLTLk -formula valid_tiling that expresses that at some point
a valid tiling is encoded in a run. Several of the conditions including the initial, final and
horizontal condition can easily be expressed. As tiles that are vertically adjacent in a tiling are
separated by h(k,n) = h(k− 1,n) · 2h(k−1,n) steps, however, we have to employ additional
ideas to express that all conditions on a valid encoding of a valid tiling are satisfied at
some point. An important ingredient for our reduction is the collection of ΣQLTLk−1 -formulas
φk−1,n(p,q) from [22]. For each n and k from N, the formula φk−1,n(p,q) holds on a word
if p and q occur exactly once and, if the position at which p occurs is i, the position at
which q occurs is i+ h(k− 1,n). In addition to the use of these formulas, we use universally
quantified propositions that mark potential violations of the conditions. To illustrate this
idea, we sketch a formula that expresses that a run of M eventually contains a finite word
starting with start and ending in end in which tiles are followed by exactly h(k− 1,n)-many
bits. The atomic proposition tile holds if the current letter encodes a tile.

∀d.
([
∀p∀q

(
φk−1,n(p,q)→ □[(d∧ tile ∧ p)→

next occurrence of tile or end not one step after q]
)]
→ ♢(start ∧ (¬(dU end))

)
.

The quantified proposition d can be used to mark any tiles for which the next tile or end
does not follow exactly h(k− 1,n) + 1 steps later. The quantified variables p and q and the
formula φk−1,n(p,q) are used to check that the markers are placed correctly, i.e., that indeed
the next occurrence of tile or end after the marked position is not exactly h(k − 1,n) + 1
steps later. If the markers d are not placed correctly, the formula holds. Otherwise, it holds
if a finite word between start and end is contained in the run in which no tile is marked
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7:10 Quantified Linear Temporal Logic over Probabilistic Systems

by d. As d is universally quantified, the formula hence holds on a run of M iff it contains
a finite word starting with start and ending in end in which tiles are followed by exactly
h(k− 1,n)-many bits. Note that φk−1,n(p,q) occurs in the scope of two negations due to
the implications while ∀p∀q occurs in the scope of one negation. So, the formula is in ΠQLTLk .

The correctness of the counter can be expressed using the same idea of marking bits that
violate the correctness of the counter with a universally quantified variable and the fact that
a bit in a binary counter changes during an increment of the counter if and only if all less
significant bits are 1. The vertical condition of the tiling is checked by using universally
quantified markers v1 and v2 that have to be placed on vertically adjacent tiles. The correct
placement of the markers is checked by stating that there exists a proposition b that encodes
a correct binary counter with h(k−1,n)-many bits that starts with 0 . . . 0 after v1 and counts
up to 1 . . . 1 right before v2. The correctness of the counter is checked as for the counter
using the bits 0 and 1. The additional existential quantification over b does not yield an
additional quantifier alternation. The resulting formula valid_tiling is in ΠQLTLk and holds
on a run of M if an encoding of a valid tiling is produced. As a run of M almost surely
contains all words in start(T ∪ {0, 1})+end, the formula valid_tiling holds with probability 1
iff it holds with positive probability iff there is a valid tiling for the given instance of the
k-exponential tiling problem. ◀

As the upper bounds are obtained via the construction of NBAs for the QLTL-formulas,
we can conclude the same results for the quantitative model-checking problems over Markov
chains.

▶ Corollary 3 (Quantitative model checking). Given a ΣQLTLk - or ΠQLTLk -formula φ and a
Markov chain M, the probability PrM(φ) can be computed in k-exponential space and in
time polynomial in the size of M. Given a rational ϑ ∈ [0, 1] and ▷◁∈ {⩽,<,>,⩾}, deciding
whether PrM(φ) ▷◁ ϑ is k-EXPSPACE-complete.

Proof. The lower bounds follow directly from the previous theorem. The upper bound
follows from the fact that, given a Markov chain M and an NBA A, the probability PrM(A)

that a word produced by M is accepted by A can be computed in time polynomial in M

[7] and in space polynomial in the total size of the input. We sketch a proof of the latter
claim: In the algorithm provided by Courcoubetis and Yannakakis in [7] to compute this
probability, an exponentially large Markov chain N is constructed from M and A. The states
of N have a polynomial representation in the size of M and A and one can compute the
transition probabilities between any two states in polynomial time. The probability PrM(A)

now equals the probability to reach a recurrent state in N – as it is called in [7], but which we
do not define here. It is only important to us that one can decide whether a state is recurrent
in polynomial space polynomial in the size of A (and polylogarithmic in the size of M) as
shown in [7]. The probability to reach a recurrent state in N can be computed by solving a
linear equation system. As transition probabilities and whether states are recurrent in N can
be computed in space polynomial in A, each entry of the matrix and vector representing
this linear equation system, which is of size exponential in A and polynomial in M, can be
computed in space polynomial in A. Using the fact that solving linear equation systems
lies in the complexity class NC and can hence be done in polylogarithmic space (see, e.g.,
[18, Section 15]) and standard results on the composition of space-bounded transductions (see,
e.g., [18, Section 8]), we can conclude that the probability PrM(A) can be computed in space
polynomial in the size of A. Applied to the k-exponentially sized NBAs for ΣQLTLk -formulas,
this result leads to the claim of the corollary. ◀
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3.2 Markov decision processes
We now provide the complexity results for QLTL-model checking over MDPs.

▶ Theorem 4. Given an MDP M, a ΠQLTLk -formula φ, and opt ∈ {max, min}, deciding
whether Propt

M (φ) = 1 and deciding whether Propt
M (φ) > 0 are k+ 1-EXPTIME-complete for

any k ⩾ 1. The problems are solvable in time polynomial in the size of M.

As ΠQLTLk is not closed under negation, the model-checking problems in MDPs concerning
the maximal and minimal satisfaction probability, respectively, require different hardness
proofs. We sketch the two proof ideas in the sequel. The full proofs can be found in [19].

Proof sketch. The upper bounds are obtained via the straight-forward construction of
deterministic automata (e.g., deterministic Rabin automata; see, e.g., [2]). This requires the
determinization of the k-exponentially large NBAs for ΣQLTLk -formulas, which are computable
in k-exponential time, and leads to a k+ 1-exponential-time procedure.

For the lower bounds, first consider the problems with opt = max. We prove k + 1-
EXPTIME-hardness by encoding the computation of k-exponentially space-bounded alter-
nating Turing machines (ATM). It is well-known that the class of problems decidable by
such ATMs coincides with k+ 1-EXPTIME [5]. So, given a k-exponentially space-bounded
ATM T and an input word w, we construct an MDP M and a ΠQLTLk -formula φ such that
Prmax

M (φ) > 0 iff Prmax
M (φ) = 1 iff w is accepted by T. Recall that acceptance in an ATM

can be specified in terms of a game between a universal player choosing the next move in
universal states and an existential player choosing the next move in existential state. A word
is accepted if the existential player has a strategy that ensures that an accepting state is
reached from the initial configuration with the input word on the tape.

The idea for the reduction is to construct an MDP M in which the scheduler can produce
a sequence of (k-exponentially long) configurations of T. The sequence of configurations in
turn represents a sequence of infinitely many finite computations. The first configuration
of each computation has to be the initial configuration with w on the tape. After each
configuration, the scheduler has to specify whether the universal or existential player has to
choose the next move, or whether the computation ended and a new computation is about to
start. If it is the existential player’s turn, the scheduler chooses a move and has to construct
the successor configuration accordingly. If it is the universal player’s turn, the successor
move is specified by a random choice and again the scheduler has to construct the correct
successor configuration. The constructed MDP is sketched in Figure 2.

The ΠQLTLk -formulaφ we construct, on the one hand, expresses that the sequence produced
by the scheduler obeys all these requirements. Checking that the successor configurations
are constructed correctly is possible with the use of the ΣQLTLk -formulas φk,n(p,q) from [22]
that express that the positions at which p and q are a fixed k-exponentially large number of
steps apart. On the other hand, the formula φ expresses that all (infinitely many) encoded
computations end in an accepting state. If w is accepted by T, the scheduler can construct
correct accepting computations no matter what moves are chosen by the universal player and
so Prmax

M (φ) = 1. If w is not accepted, however, the universal player will play according to a
winning strategy in any of the encoded computations with positive probability. So, almost
surely at some point any scheduler has to violate one of the requirements or construct a
rejecting computation. In this case, Prmax

M (φ) = 0.
In contrast to the case just discussed, the statement Prmin

M (φ) = 1 is a statement about
all schedulers. So, we cannot let a scheduler construct sequences of computations anymore.
Instead, we construct an MDP M′ that randomly generates sequences that potentially encode
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comp

step1,
zero,E

step2,
one,E

step3,
zero,U

step4,
one,U

⃝ ⃝ ⃝
⃝ ⃝

⃝ Γ ⃝
⃝ ⃝

⃝ ⃝ ⃝

Figure 2 The MDP M. The state depicted as Γ represents the behavior of each state γ ∈ Γ . I.e.
from each state, there is one action to each state in Γ with probability 1. Further, from all states in Γ ,
there are actions leading to states comp, step1 and step2 with probability 1, as well as a randomized
action (bold lines) leading to states step3 and step4 with probability 1/2 each. The labels zero and
one indicate which successor move was chosen according to which the new configuration has to be
constructed. The labels E and U indicate which player has chosen the move and are used to check
whether the successor move was indeed chosen randomly iff it is the universal player’s move.

correct computations. In the acceptance game of the given ATM, we also switch roles and let
the choices of the existential player be made randomly while the scheduler can specify which
successor move should be chosen in universal states. With positive probability, the correct
successor configuration will be generated afterwards. Hence, if the existential player has a
winning strategy, a correct accepting computation will eventually be produced randomly
with probability 1 no matter what successor moves a scheduler chooses. Otherwise, there is
a scheduler that prohibits this.

In order to express that eventually a correct accepting computation is generated in ΠQLTLk ,
however, it turns out that we cannot use the ΣQLTLk -formulas φk,n(p,q) from [22] as before.
This is in part due to the implicit existential quantification in the eventually-modality. For
this reason, we do not encode the computations simply as concatenations of configurations.
Instead, we employ the ideas that were also used in the hardness proof for Markov chains
(Theorem 2): We separate the symbols of the configurations by k − 1-exponentially long
binary counters to check that configurations have the correct length and use universally
quantified variables to mark violations to any of the requirements of a valid encoding of an
accepting computation. The blocks of the potential binary counter values are also randomly
generated as sketched in Figure 3. An existentially quantified proposition encoding a further
binary counter with k− 1-exponentially many bits is then used to compare tape cells at the
same position in two successive configurations, which are k-exponentially many steps apart
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comp

step1,
zero,E

step2,
one,E

step3,
zero,U

step4,
one,U

⃝ ⃝ ⃝
⃝ ⃝

⃝ Γ ⃝
⃝ ⃝

⃝ ⃝ ⃝

0 1aux

Figure 3 The MDP M′. The behavior is probabilistic except for the choice in the state aux.
When entering the cluster of states Γ or the cluster with the two bits 0 and 1, one of the states in
the cluster is chosen randomly. Further all states in Γ have only the outgoing transition randomly
moving to 0 or 1. The state aux is only an auxiliary state for the graphical representation. That
means that in states 0 and 1 two actions are enabled. The first moving randomly to any state except
for step3; the second moving randomly to any state except for step4.

in the encoding. Under any scheduler, the resulting ΠQLTLk -formula φ holds on an execution
of M almost surely if w is accepted by T. Similar to before, each of the randomly generated
potential computations is correct with positive probability and in each of these computations
the randomly chosen moves of the existential player are in accordance with a winning strategy
with positive probability against any scheduler, which chooses the moves of the universal
player. If w is not accepted by T, however, there is a strategy for the universal player and
hence a scheduler that makes sure that no correct accepting computation is generated. In
this case, Prmin

M (φ) = 0. ◀

These results allow us to conclude that all qualitative model-checking problems for ΣQLTLk -
formulas in MDPs are k + 1-EXPTIME-complete for any k ⩾ 1, too, as the negation of a
ΣQLTLk -formula is a ΠQLTLk -formula. Furthermore, as the upper bounds are obtained via the
naive construction of deterministic automata, also the quantitative model checking problems
have the same complexity as the minimal and maximal probabilities that an execution of
an MDP is accepted by a suitable deterministic automaton (such as a deterministic Rabin
automaton) can be computed in polynomial time (for details see, e.g., [2]).

▶ Corollary 5 (Quantitative model checking). Given a ΣQLTLk - or ΠQLTLk -formula φ and an
MDP M, the probabilities Prmin

M (φ) and Prmax
M (φ) can be computed in time k+ 1-exponential

in the size of φ and polynomial in the size of M. Given a rational ϑ ∈ [0, 1], ▷◁∈ {⩽,<,>,⩾}

and opt ∈ {min, max}, deciding whether Propt
M (φ) ▷◁ ϑ is k+ 1-EXPSPACE-complete.
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4 Trace Vacuity in Probabilistic Systems

Vacuity notions have been studied for non-probabilistic systems in order to express, roughly,
that the truth of a formula is not affected by the truth of one of its subformulae [1, 3, 16].
Among the existing definitions of vacuity in the literature, trace vacuity is the strongest.

▶ Definition 6. Let φ be an LTL-formula and ψ a subformula. Let T be a transition system.
We say that ψ does not affect φ in T if for every execution π in T:

π ⊨ ∀x.φ[ψ← x] ⇐⇒ π ⊨ ∃x.φ[ψ← x].

We say that φ holds vacuously in T if there is a subformula that does not affect φ in T.

The above definition of non-affection generalizes the one from [1] by relaxing the hypothesis
that φ holds on T. For any execution π, π ⊨ ∀x.φ[ψ ← x] ⇒ π ⊨ φ ⇒ π ⊨ ∃x.φ[ψ ← x].
We thus merely require that the three sets of executions that satisfy, ∀x.φ[ψ← x], φ, and
∃x.φ[ψ← x] respectively, coincide. Also, this generalisation allows us to naturally extend
the notions of non-affection and vacuity to probabilistic systems. In the remainder of this
section, we introduce trace vacuity for probabilistic systems, and establish tight complexity
bounds for checking probabilistic vacuity. As in the non-probabilistic case, vacuity checking
reduces to checking a ΠQLTL1 -formula. Conversely, one can reduce the qualitative model
checking of ΠQLTL1 to probabilistic vacuity.

4.1 Probabilistic trace vacuity
▶ Definition 7. Let φ be an LTL-formula and ψ a subformula. Let M be an MDP or a
Markov chain. We say that ψ does not affect φ in M iff

Prmin
M (∀x.(φ[ψ← x]↔ φ)) = 1.

We say that φ is vacuous in M if there is a subformula that does not affect φ in M.

Note that it does make sense for Markov chains and MDPs to consider that a formula is
vacuous if its satisfaction probability (under any scheduler) is not affected when replacing a
subformula, even if the global formula does not hold almost-surely. In MDPs, the definition
of non-affection generalizes the non-probabilistic definition. This is made more precise in the
following proposition. Paths in a transition system correspond to schedulers not making use
of randomization when we view a transition system as an MDP.

▶ Proposition 8. A subformula ψ does not affect a formula φ in an MDP (or a Markov chain)
M if and only if for all schedulers S, PrSM(∀x.φ[ψ← x]) = PrSM(φ) = PrSM(∃x.φ[ψ← x]).

Proof. Let us rewrite ∀x.(φ[ψ ← x] ↔ φ) as (∀x.(φ → φ[ψ ← x])) ∧ (∀x.(φ[ψ ← x] →
φ)). The latter is equivalent to (φ → ∀x.φ[ψ ← x]) ∧ (∀x.¬φ[ψ ← x] ∨ φ). Rewritten
as implications, we obtain (φ → ∀x.φ[ψ ← x]) ∧ (∃x.φ[ψ ← x] → φ). As the two
implications (φ← ∀x.φ[ψ← x]) and (∃x.φ[ψ← x]← φ) are tautologies, the claim follows
easily considering that the minimal probability in Definition 7 can be read as a universal
quantification over schedulers. ◀

▶ Example 9. We provide a short example of non-affection in Markov chains, also to
shed light on the difference with the non-probabilistic setting. Consider the Markov chain
on Fig. 4, where we assume arbitrary non-zero probabilities on edges, and the following
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a b

a,b

Figure 4 A Markov chain to illustrate the notion of affection.

formulas: φ = □♢(a ∧ b) ∨ □(a ∨ b) and ψ = □(a ∨ b). Clearly enough, PrM(φ) =

PrM(∃x.φ[ψ← x]) = PrM(∀x.φ[ψ← x]) = 1 so that ψ does not affect φ, and φ is vacuous
in this Markov chain. However, if one views the graph as a transition system T, then T ⊨ φ
and T ̸⊨ ∀x.φ[ψ← x]. So, ψ affects φ.

Armoni et al. [1] observed that if ψ appears only positively in φ, for every execution π in
the transition system T then: T,π ⊨ ∀x.φ[ψ← x]⇐⇒ T,π ⊨ φ[ψ← ⊥]. As a consequence,
a pure polarity subformulas ψ does not affect φ if and only if Prmin

M (φ[ψ← ⊤]↔ φ[ψ←
⊥]) = 1. Therefore, checking whether a pure polarity subformula affects a formula reduces
to quantitative model checking of LTL formulas and can be done in PSPACE for Markov
chains and in 2-EXPTIME for MDPs.

As also argued in [1], restricting attention to subformulas with pure polarity or to consider
single occurrences of subformulas separately is insufficient for a satisfactory vacuity check.
For example, a formula like □(p → p) ≡ □(p ∨ ¬p), in which p occurs positively and
negatively, should be rendered vacuous in any system. Restricting attention to only one of
the two occurences of p, however, would in general lead to the insight that each of the two
occurrences on its own does affect the formula. Beyond pure polarity formulas, checking
affectation is harder for Markov chains. Indeed, hardness of ΠQLTL1 model checking transfers
to hardness of vacuity checking. As stated in the next theorem, for MDPs affection checking
has the same complexity as quantitative LTL model checking, whereas Markov chains exhibit
an exponential complexity blowup.

▶ Theorem 10. Checking whether a subformula ψ affects an LTL-formula φ in a Markov
chain M is EXPSPACE-complete. In MDPs, the problem is 2-EXPTIME-complete.

Proof. The upper bounds follow directly from the upper bounds of qualitative model-checking
of ΠQLTL1 in Markov chains and MDPs. For the lower bound, we first concentrate on MDPs.
We provide a reduction from the problem whether a ΠQLTL1 -formula ϑ = ∀x.φ satisfies
Prmin

M (ϑ) = 1 in an MDP M. A proof that the restriction to one quantified variable does
not influence the complexity is given in [19]. So, let M be labeled with atomic propositions
from AP. Let ϑ = ∀x.φ where φ is an LTL-formula over AP ∪ {x} with x ̸∈ AP be given.
We construct the MDP M′ by adding a new initial state s′init from which the original
initial state sinit is reached in one step with probability 1. Further, we let β be an LTL-
formula that is valid and does not occur in φ. Finally, we define φ′ to be the LTL-formula
φ′ = β∨⃝φ[x← β]. Of course, Prmin

M′,s′init
(φ′) = 1 as β is valid. We claim that β does not

affect φ′ in M′ if and only if Prmin
M (∀x.φ) = 1. The subformula β does not affect φ′ in M′ iff

Prmin
M′,s′init

(∀x.(x∨⃝φ)) = 1 by definition and the fact that β does not occur anywhere else
in φ. But Prmin

M′,s′init
(∀x.(x∨⃝φ)) = 1 holds if and only if Prmin

M′,s′init
(∀x.⃝ φ) = 1 because

the universal quantifier can choose x not to hold in the first position of any trace produced
by M′. After the first step M′ behaves exactly like M and hence Prmin

M′,s′init
(∀x.⃝φ) = 1 if

and only if Prmin
M,sinit

(∀x.φ) = 1. So, checking affection in MDPs is as hard as the respective
qualitative model-checking problem for ΠQLTL1 and hence 2-EXPTIME-complete.
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For Markov chains, the argument goes analogously. Note that the constructed MDP
M′ is a Markov chain if M is a Markov chain. So, checking affection in Markov chains is
also as hard as the respective qualitative model-checking problem for ΠQLTL1 and hence
EXPSPACE-complete. ◀

In Markov chains, the exponential blow-up in complexity of non-affection checking
compared to LTL-model checking constitutes a major obstacle for vacuity checking. To
provide a possibility to check that a specification is not obviously faulty without such an
exponential blow-up, we turn our attention to the notion of inherent vacuity.

4.2 Inherent vacuity in probabilistic systems
Inherent vacuity for transition systems expresses whether a formula holds vacuously in every
model in which it holds [9]. Using our generalized definition, we do not restrict ourselves
to the models in which the formula holds anymore and provide an analogous definition
for probabilistic systems. As in [9], we consider two natural variants of the definition and
investigate how to check whether a formula is inherently vacuous.

▶ Definition 11. Let φ be an LTL-formula. Let C be the class of all transition systems, all
Markov chains, or all MDPs, respectively. We say that φ is inherently vacuous over C, if φ
is vacuous in all models M ∈ C. For a subformula ψ of φ we say that ψ inherently does not
affect φ over C, if for every M ∈ C, ψ does not affect φ in M. If there is a subformula that
inherently does not affect φ over C, we say that φ is uniformly inherently vacuous.

In [9], it is shown that inherent vacuity and uniform inherent vacuity coincide for
transition systems. Dropping the restriction to models in which a formula φ holds, the
results of [9] show that the notions are equivalent to the existence of a subformula ψ such
that ∀x.(φ[ψ← x]↔ φ) is valid. We prove that inherent and uniform inherent vacuity for
Markov chains and MDPs are also equivalent to this condition and hence to inherent vacuity
in transition systems. First, we show that uniform inherent vacuity coincides with inherent
vacuity.

▶ Proposition 12. Let φ be an LTL-formula and let C be the class of all Markov chains
or all MDPs. The formula φ is uniformly inherently vacuous over C if and only if it is
inherently vacuous over C.

Proof. One direction is clear. For the other direction, suppose that φ is inherently vacuous
over C, but not uniformly inherently vacuous. Hence, for each subformula ψ of φ, there is a
model Mψ ∈ C such that ψ affects φ over Mψ. Let N be the disjoint union of the models
Mψ for all subformulas ψ with an initial uniform probability distribution over the initial
states of these models. We claim that φ is not vacuous in M. For each subformula ψ, there
is a positive probability that Mψ is chosen. As there is a scheduler S (for Markov chains,
the unique scheduler) with PrSMψ

(∀x.(φ[ψ← x]↔ φ) < 1, the same holds in N. This is a
contradiction to the inherent vacuity of φ. ◀

The following proposition establishes that all variants of inherent vacuity considered
coincide:

▶ Proposition 13. Let φ be an LTL-formula and ψ a subformula. Then, ψ inherently
does not affect φ over Markov chains or MDPs, respectively, if and only if the formula
∀x.(φ↔ φ[ψ← x]) is valid.
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Proof. Only the left-to-right implication deserves a proof, and we prove the contrapositive.
Assume the formula χ = ∀x.(φ ↔ φ[ψ ← x]) is not valid. Since χ expresses a regular
property, there exists an ultimately periodic word w that violates χ. It suffices to consider
the Markov chain or MDP M that has only one path, and produces w with probability 1,
and observe that ψ does affect φ in M. ◀

As a consequence, checking inherent vacuity for probabilistic systems is as simple as in
the non-probabilistic case, and can be done in polynomial space. In particular for Markov
chains, an inherent vacuity check might be an interesting option for practical applications as
it avoids the exponential blow-up in complexity over LTL-model checking.

5 Conclusion

We determined the precise complexities of the model-checking problems for the different levels
of the quantifier alternation hierarchy of QLTL over probabilistic systems. The knowledge of
the precise complexities, in particular the established lower bounds, has the potential to serve
as the basis for hardness proofs for other questions in the formal verification of probabilistic
systems. Despite the high complexities that we obtained, efficient model checking for formulas
with few quantifier alternations might still be possible because all problems are solvable in
time polynomial in the size of the system and typically formulas are small compared to the
size of the models.

These results have been applied to the notion of trace vacuity known from the non-
probabilistic setting that we adapted to the probabilistic setting. It turned out that checking
whether a formula is affected by a subformula in a system is inter-reducible with ΠQLTL1 -model
checking. For Markov chains, our new lower bounds allowed us to conclude that affection
checking is EXPSPACE-complete and hence exponentially harder than LTL-model checking,
while the complexity of affection checking and LTL-model checking are the same in MDPs.
Furthermore, we showed that the notion of inherent vacuity – expressing that a formula is
vacuous in a class of system models – is invariant under the switch from non-probabilistic
to probabilistic models, and hence, known polynomial-space algorithms are applicable for
Markov chains and MDPs. In addition to the vacuity notions we studied here, an interesting
direction for future research is the investigation of “more probabilistic” notions of vacuity that
express that a perturbation of a subformula does not influence the satisfaction probability of
a formula in a system.
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Abstract
In this paper, we provide an effective characterization of all the subgame-perfect equilibria in infinite
duration games played on finite graphs with mean-payoff objectives. To this end, we introduce the
notion of requirement, and the notion of negotiation function. We establish that the plays that are
supported by SPEs are exactly those that are consistent with the least fixed point of the negotiation
function. Finally, we show that the negotiation function is piecewise linear, and can be analyzed
using the linear algebraic tool box. As a corollary, we prove the decidability of the SPE constrained
existence problem, whose status was left open in the literature.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Solution concepts in game theory

Keywords and phrases Games on graphs, subgame-perfect equilibria, mean-payoff objectives.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.8

Related Version Full Version: https://arxiv.org/abs/2101.10685 [3]

Funding This work is partially supported by the ARC project Non-Zero Sum Game Graphs:
Applications to Reactive Synthesis and Beyond (Fédération Wallonie-Bruxelles), the EOS project
Verifying Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO), the COST Action 16228
GAMENET (European Cooperation in Science and Technology), and by the PDR project Subgame
perfection in graph games (F.R.S.- FNRS).

1 Introduction

The notion of Nash equilibrium (NE) is one of the most important and most studied solution
concepts in game theory. A profile of strategies is an NE when no rational player has
an incentive to change their strategy unilaterally, i.e. while the other players keep their
strategies. Thus an NE models a stable situation. Unfortunately, it is well known that, in
sequential games, NEs suffer from the problem of non-credible threats, see e.g. [18]. In those
games, some NE only exists when some players do not play rationally in subgames and so use
non-credible threats to force the NE. This is why, in sequential games, the stronger notion
of subgame-perfect equilibrium is used instead: a profile of strategies is a subgame-perfect
equilibrium (SPE) if it is an NE in all the subgames of the sequential game. Thus SPE
imposes rationality even after a deviation has occured.

In this paper, we study sequential games that are infinite-duration games played on
graphs with mean-payoff objectives, and focus on SPEs. While NEs are guaranteed to
exist in infinite duration games played on graphs with mean-payoff objectives, it is known
that it is not the case for SPEs, see e.g. [19, 5]. We provide in this paper a constructive
characterization of the entire set of SPEs, which allows us to decide, among others, the SPE
(constrained) existence problem. This problem was left open in previous contributions on
the subject. More precisely, our contributions are described in the next paragraphs.
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8:2 Subgame-Perfect Equilibria in Mean-Payoff Games

Contributions. First, we introduce two important new notions that allow us to capture NEs,
and more importantly SPEs, in infinite duration games played on graphs with mean-payoff
objectives1: the notion of requirement and the notion of negotiation function.

A requirement λ is a function that assigns to each vertex v ∈ V of a game graph a value
in R ∪ {−∞, +∞}. The value λ(v) represents a requirement on any play ρ = ρ0ρ1 . . . ρn . . .

that traverses this vertex: if we want the player who controls the vertex v to follow ρ and to
give up deviating from ρ, then the play must offer a payoff to this player that is at least λ(v).
An infinite play ρ is λ-consistent if, for each player i, the payoff of ρ for player i is larger than
or equal to the largest value of λ on vertices occurring along ρ and controlled by player i.

We first use those notions to rephrase a classical result about NEs: if λ maps a vertex v to
the largest value that the player that controls v can secure against a fully adversarial coalition
of the other players, i.e. if λ(v) is the zero-sum worst-case value, then the set of plays that
are λ-consistent is exactly the set of plays that are supported by an NE (Theorem 24).

As SPEs are forcing players to play rationally in all subgames, we cannot rely on the
zero-sum worst-case value to characterize them. Indeed, when considering the worst-case
value, we allow adversaries to play fully adversarially after a deviation and so potentially
in an irrational way w.r.t. their own objective. In fact, in an SPE, a player is refrained to
deviate when opposed by a coalition of rational adversaries. To characterize this relaxation
of the notion of worst-case value, we rely on our notion of negotiation function.

The negotiation function nego operates from the set of requirements into itself. To
understand the purpose of the negotiation function, let us consider its application on the
requirement λ that maps every vertex v on the worst-case value as above. Now, we can
naturally formulate the following question: given v and λ, can the player who controls v

improve the value that they can ensure against all the other players, if only plays that are
consistent with λ are proposed by the other players? In other words, can this player enforce
a better value when playing against the other players if those players are not willing to give
away their own worst-case value? Clearly, securing this worst-case value can be seen as a
minimal goal for any rational adversary. So nego(λ)(v) returns this value; and this reasoning
can be iterated. One of the contributions of this paper is to show that the least fixed point
λ∗ of the negotiation function is exactly characterizing the set of plays supported by SPEs
(Theorem 28).

To turn this fixed point characterization of SPEs into algorithms, we additionally draw
links between the negotiation function and two classes of zero-sum games, that are called
abstract and concrete negotiation games (see Theorem 32). We show that the latter can be
solved effectively and allow, given λ, to compute nego(λ) (Lemma 36). While solving concrete
negotiation games allows us to compute nego(λ) for any requirement λ, and even if the
function nego(·) is monotone and Scott-continuous, a direct application of the Kleene-Tarski
fixed point theorem is not sufficient to obtain an effective algorithm to compute λ∗. Indeed,
we give examples that require a transfinite number of iterations to converge to the least
fixed point. To provide an algorithm to compute λ∗, we show that the function nego(·) is
piecewise linear and we provide an effective representation of this function (Theorem 41).
This effective representation can then be used to extract all its fixed points and in particular
its least fixed point using linear algebraic techniques, hence the decidability of the SPE
(constrained) existence problem (Theorem 45). Finally, all our results are also shown to
extend to ε-SPEs, those are quantitative relaxations of SPEs.

1 A large part of our results apply to the larger class of games with prefix-independent objectives. For the
sake of readability of this introduction, we focus here on mean-payoff games but the technical results in
the paper are usually covering broader classes of games.
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Related works. Non-zero sum infinite duration games have attracted a large attention in
recent years, with applications targeting reactive synthesis problems. We refer the interested
reader to the following survey papers [2, 7] and their references for the relevant literature.
We detail below contributions more closely related to the work presented here.

In [6], Brihaye et al. offer a characterization of NEs in quantitative games for cost-prefix-
linear reward functions based on the worst-case value. The mean-payoff is cost-prefix-linear.
In their paper, the authors do not consider the stronger notion of SPE, which is the central
solution concept studied in our paper. In [8], Bruyère et al. study secure equilibria that are
a refinement of NEs. Secure equilibria are not subgame-perfect and are, as classical NEs,
subject to non-credible threats in sequential games.

In [20], Ummels proves that there always exists an SPE in games with ω-regular objectives
and defines algorithms based on tree automata to decide constrained SPE problems. Strategy
logics, see e.g. [12], can be used to encode the concept of SPE in the case of ω-regular
objectives with application to the rational synthesis problem [15] for instance. In [13],
Flesch et al. show that the existence of ε-SPEs is guaranteed when the reward function
is lower-semicontinuous. The mean-payoff reward function is neither ω-regular, nor lower-
semicontinuous, and so the techniques defined in the papers cited above cannot be used in
our setting. Furthermore, as already recalled above, see e.g. [21, 5], contrary to the ω-regular
case, SPEs in games with mean-payoff objectives may fail to exist.

In [5], Brihaye et al. introduce and study the notion of weak subgame-perfect equilibria,
which is a weakening of the classical notion of SPE. This weakening is equivalent to the
original SPE concept on reward functions that are continuous. This is the case for example
for the quantitative reachability reward function, on which Brihaye et al. solve the problem
of the constrained existence of SPEs in [4]. On the contrary, the mean-payoff cost function
is not continuous and the techniques used in [5], and generalized in [10], cannot be used to
characterize SPEs for the mean-payoff reward function.

In [17], Meunier develops a method based on Prover-Challenger games to solve the
problem of the existence of SPEs on games with a finite number of possible outcomes. This
method is not applicable to the mean-payoff reward function, as the number of outcomes in
this case is uncountably infinite.

In [14], Flesch and Predtetchinski present another characterization of SPEs on games
with finitely many possible outcomes, based on a game structure that we will present here
under the name of abstract negotiation game. Our contributions differ from this paper in
two fundamental aspects. First, it lifts the restriction to finitely many possible outcomes.
This is crucial as mean-payoff games violate this restriction. Instead, we identify a class of
games, that we call with steady negotiation, that encompasses mean-payoff games and for
which some of the conceptual tools introduced in that paper can be generalized. Second, the
procedure developed by Flesch and Predtetchinski is not an algorithm in CS acceptation: it
needs to solve infinitely many games that are not represented effectively, and furthermore
it needs a transfinite number of iterations. On the contrary, our procedure is effective and
leads to a complete algorithm in the classical sense: with guarantee of termination in finite
time and applied on effective representations of games.

Structure of the paper. In Sect. 2, we introduce the necessary background. Sect. 3 defines
the notion of requirement and the negotiation function. Sect. 4 shows that the set of plays
that are supported by an SPE are those that are λ∗-consistent, where λ∗ is the least fixed
point of the negotiation function. Sect. 5 draws a link between the negotiation function and
negotiation games. Sect. 6 establishes that the negotiation function is effectively piecewise
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8:4 Subgame-Perfect Equilibria in Mean-Payoff Games

linear. Finally, Sect. 7 applies those results to prove the decidability of the SPE constrained
existence problem on mean-payoff games, and adds some complexity considerations. The
detailed proofs of our results, as well as additional examples, can be found in appendices
of [3], the full version of this paper.

2 Background

In all what follows, we will use the word game for the infinite duration turn-based quantitative
games on finite graphs with complete information.

▶ Definition 1 (Game). A game is a tuple G = (Π, V, (Vi)i∈Π, E, µ), where:
Π is a finite set of players;
(V, E) is a finite directed graph, whose vertices are sometimes called states and whose
edges are sometimes called transitions, and in which every state has at least one outgoing
transition. For the simplicity of writing, a transition (v, w) ∈ E will often be written vw.
(Vi)i∈Π is a partition of V , in which Vi is the set of states controlled by player i;
µ : V ω → RΠ is an outcome function, that maps each infinite word ρ to the tuple
µ(ρ) = (µi(ρ))i∈Π of the players’ payoffs.

▶ Definition 2 (Initialized game). An initialized game is a tuple (G, v0), often written G↾v0 ,
where G is a game and v0 ∈ V is a state called initial state. Moreover, the game G↾v0 is
well-initialized if any state of G is accessible from v0 in the graph (V, E).

▶ Definition 3 (Play, history). A play (resp. history) in the game G is an infinite (resp.
finite) path in the graph (V, E). It is also a play (resp. history) in the initialized game
G↾v0 , where v0 is its first vertex. The set of plays (resp. histories) in the game G (resp. the
initialized game G↾v0) is denoted by PlaysG (resp. PlaysG↾v0 , HistG, HistG↾v0). We write
HistiG (resp. HistiG↾v0) for the set of histories in G (resp. G↾v0) of the form hv, where v is
a vertex controlled by player i.

▶ Remark. In the literature, the word outcome can be used to name plays, and the word
payoff to name what we call here outcome. Here, the word payoff will be used to refer to
outcomes, seen from the point of view of a given player – or in other words, an outcome will
be seen as the collection of all players’ payoffs.

▶ Definition 4 (Strategy, strategy profile). A strategy for player i in the initialized game G↾v0

is a function σi : HistiG↾v0 → V , such that vσi(hv) is an edge of (V, E) for every hv. A
history h is compatible with a strategy σi if and only if hk+1 = σi(h0 . . . hk) for all k such
that hk ∈ Vi. A play ρ is compatible with σi if all its prefixes are.

A strategy profile for P ⊆ Π is a tuple σ̄P = (σi)i∈P , where for each i, σi is a strategy for
player i in G↾v0 . A complete strategy profile, usually written σ̄, is a strategy profile for Π. A
play or a history is compatible with σ̄P if it is compatible with every σi for i ∈ P .

When i is a player and when the context is clear, we will often write −i for the set Π \ {i}.
We will often refer to Π \ {i} as the environment against player i. When τ̄P and τ̄ ′

Q are
two strategy profiles with P ∩ Q = ∅, (τ̄P , τ̄ ′

Q) denotes the strategy profile σ̄P ∪Q such that
σi = τi for i ∈ P , and σi = τ ′

i for i ∈ Q.

Before moving on to SPEs, let us recall the notion of Nash equilibrium.

▶ Definition 5 (Nash equilibrium). Let G↾v0 be an initialized game. The strategy profile σ̄ is
a Nash equilibrium – or NE for short – in G↾v0 if and only if for each player i and for every
strategy σ′

i, called deviation of σi, we have the inequality µi (⟨σ′
i, σ̄−i⟩v0) ≤ µi (⟨σ̄⟩v0).
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To define SPEs, we need the notion of subgame.

▶ Definition 6 (Subgame, substrategy). Let hv be a history in the game G. The subgame
of G after hv is the initialized game (Π, V, (Vi)i, E, µ↾hv)↾v, where µ↾hv maps each play to
its payoff in G, assuming that the history hv has already been played: formally, for every
ρ ∈ PlaysG↾hv, we have µ↾hv(ρ) = µ(hρ).

If σi is a strategy in G↾v0 , its substrategy after hv is the strategy σi↾hv in G↾hv, defined
by σi↾hv(h′) = σi(hh′) for every h′ ∈ HistiG↾hv.

▶ Remark. The initialized game G↾v0 is also the subgame of G after the one-state history v0.

▶ Definition 7 (Subgame-perfect equilibrium). Let G↾v0 be an initialized game. The strategy
profile σ̄ is a subgame-perfect equilibrium – or SPE for short – in G↾v0 if and only if for every
history h in G↾v0 , the strategy profile σ̄↾h is a Nash equilibrium in the subgame G↾h.

The notion of subgame-perfect equilibrium can be seen as a refinement of Nash equilibrium:
it is a stronger equilibrium which excludes players resorting to non-credible threats.
▶ Example 8. In the game represented in Figure 1a, where the square state is controlled by
player 2 and the round states by player #, if both players get the payoff 1 by reaching the
state d and the payoff 0 in the other cases, there are actually two NEs: one, in blue, where 2
goes to the state b and then player # goes to d, and both win, and one, in red, where player
2 goes to the state c because player # was planning to go to e. However, only the blue one
is an SPE, as moving from b to e is irrational for player # in the subgame G↾ab.

An ε-SPE is a strategy profile which is almost an SPE: if a player deviates after some
history, they will not be able to improve their payoff by more than a quantity ε ≥ 0.

▶ Definition 9 (ε-SPE). Let G↾v0 be an initialized game, and ε ≥ 0. A strategy profile σ̄

from v0 is an ε-SPE if and only if for every history hv, for every player i and every strategy
σ′

i, we have µi(⟨σ̄−i↾hv, σ′
i↾hv⟩v) ≤ µi(⟨σ̄↾hv⟩v) + ε.

Note that a 0-SPE is an SPE, and conversely.
Hereafter, we focus on prefix-independent games, and in particular mean-payoff games.

▶ Definition 10 (Mean-payoff game). A mean-payoff game is a game G = (Π, V, (Vi)i, E, µ),
where µ is defined from a function π : E → QΠ, called weight function, by, for each player i:

µi : ρ 7→ lim inf
n→∞

1
n

n−1∑
k=0

πi (ρkρk+1) .

In a mean-payoff game, the weight given by the function π represents the immediate
reward that each action gives to each player. The final payoff of each player is their average
payoff along the play, classically defined as the limit inferior over n (since the limit may not
be defined) of the average payoff after n steps.

▶ Definition 11 (Prefix-independent game). A game G is prefix-independent if, for every
history h and for every play ρ, we have µ(hρ) = µ(ρ). We also say, in that case, that the
outcome function µ is prefix-independent.

Mean-payoff games are prefix-independent. We now recall a classical result about two-
player zero-sum games.

▶ Definition 12 (Zero-sum game). A game G, with Π = {1, 2}, is zero-sum if µ2 = −µ1.
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(a) Two NEs and one SPE.
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(b) A game without SPE.

Figure 1 Two examples of games.

a b

#
2
2
2#

0
2
1

#
1
2
0

Just to get it centered

(a) The game G.
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(b) The outcomes of plays and SPE
plays in G.

Figure 2 A game with an infinity of SPEs.

▶ Definition 13 (Borel game). A game G is Borel if the function µ, from the set V ω equipped
with the product topology to the Euclidian space RΠ, is Borel, i.e. if, for every Borel set
B ⊆ RΠ, the set µ−1(B) is Borel.

▶ Proposition 14 (Determinacy of two-player zero-sum Borel games, [16]). Let G↾v0 be an
initialized zero-sum Borel game, with Π = {1, 2}. Then, we have the following equality:

sup
σ1

inf
σ2

µ1(⟨σ̄⟩v0) = inf
σ2

sup
σ1

µ1(⟨σ̄⟩v0).

That quantity is called value of G↾v0 , denoted by val1(G↾v0); solving the game G means
computing its value.

The following examples illustrate the SPE existence problem in mean-payoff games.

▶ Example 15. Let G be the mean-payoff game of Figure 1b, where each edge is labelled by
its weights π# and π2. No weight is given for the edges ac and bd since they can be used
only once, and therefore do not influence the final payoff. As shown in [9], this game does
not have any SPE, neither from the state a nor from the state b.

Indeed, the only NE plays from the state b are the plays where player 2 eventually leaves
the cycle ab and goes to d: if he stays in the cycle ab, then player # would be better off
leaving it, and if she does, player 2 would be better off leaving it before. From the state a, if
player # knows that player 2 will leave, she has no incentive to do it before: there is no NE
where # leaves the cycle and 2 plans to do it if ever she does not. Therefore, there is no
SPE where # leaves the cycle. But then, after a history that terminates in b, player 2 has
actually no incentive to leave if player # never plans to do it afterwards: contradiction.

▶ Example 16. Let us now study the game of Figure 2a. Using techniques from [11], we can
represent the outcomes of possible plays in that game as in Figure 2b (gray and blue areas).
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Following exclusively one of the three simple cycles a, ab and b of the game graph during
a play yields the outcomes 01, 10 and 22, respectively. By combining those cycles with well
chosen frequencies, one can obtain any outcome in the convex hull of those three points. Now,
it is also possible to obtain the point 00 by using the properties of the limit inferior: it is for
instance the outcome of the play a2b4a16b256 . . . a22n

b22n+1

. . . . In fact, one can construct a
play that yields any outcome in the convex hull of the four points 00, 10, 01, and 22.

We claim that the outcomes of SPEs plays correspond to the entire blue area in Figure 2b:
there exists an SPE σ̄ in G↾a with ⟨σ̄⟩a = ρ if and only if µ2(ρ), µ#(ρ) ≥ 1. That statement
will be a direct consequence of the results we show in the remaining sections, but let us give
a first intuition: a play with such an outcome necessarily uses infinitely often both states. It
is an NE play because none of the players can get a better payoff by looping forever on their
state, and they can both force each other to follow that play, by threatening them to loop
for ever on their state whenever they can. But such a strategy profile is clearly not an SPE.

It can be transformed into an SPE as follows: when a player deviates, say player 2, then
player # can punish him by looping on a, not forever, but a great number of times, until
player 2’s mean-payoff gets very close to 1. Afterwards, both players follow again the play
that was initially planned. Since that threat is temporary, it does not affect player #’s payoff
on the long term, but it really punishes player 2 if that one tries to deviate infinitely often.

3 Requirements and negotiation

We will now see that SPEs are strategy profiles that respect some requirements about
the payoffs, depending on the states it traverses. In this part, we develop the notions of
requirement and negotiation.

3.1 Requirement
In the method we will develop further, we will need to analyze the players’ behaviour when
they have some requirement to satisfy. Intuitively, one can see requirements as rationality
constraints for the players, that is, a threshold payoff value under which a player will not
accept to follow a play. In all what follows, R denotes the set R ∪ {±∞}.

▶ Definition 17 (Requirement). A requirement on the game G is a function λ : V → R.
For a given state v, the quantity λ(v) represents the minimal payoff that the player

controlling v will require in a play beginning in v.

▶ Definition 18 (λ-consistency). Let λ be a requirement on a game G. A play ρ in G is λ-
consistent if and only if, for all i ∈ Π and n ∈ N with ρn ∈ Vi, we have µi(ρnρn+1 . . . ) ≥ λ(ρn).
The set of the λ-consistent plays from a state v is denoted by λCons(v).

▶ Definition 19 (λ-rationality). Let λ be a requirement on a mean-payoff game G. Let i ∈ Π.
A strategy profile σ̄−i is λ-rational if and only if there exists a strategy σi such that, for
every history hv compatible with σ̄−i, the play ⟨σ̄↾hv⟩v is λ-consistent. We then say that the
strategy profile σ̄−i is λ-rational assuming σi. The set of λ-rational strategy profiles in G↾v

is denoted by λRat(v).

Note that λ-rationality is a property of a strategy profile for all the players but one,
player i. Intuitively, their rationality is justified by the fact that they collectively assume
that player i will, eventually, play according to the strategy σi: if player i does so, then
everyone gets their payoff satisfied. Finally, let us define a particular requirement: the
vacuous requirement, that requires nothing, and with which every play is consistent.

CONCUR 2021
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ac b d

#
0
2
3 #

2
2
2

#
1
2
1
(λ0) −∞ −∞−∞ −∞

(λ1) 1 21 2
(λ2) 2 21 2

Figure 3 A game without SPE.

▶ Definition 20 (Vacuous requirement). In any game, the vacuous requirement, denoted by
λ0, is the requirement constantly equal to −∞.

3.2 Negotiation
We will show that SPEs in prefix-independent games are characterized by the fixed points of
a function on requirements. That function can be seen as a negotiation: when a player has a
requirement to satisfy, another player can hope a better payoff than what they can secure in
general, and therefore update their own requirement.

▶ Definition 21 (Negotiation function). Let G be a game. The negotiation function is the
function that transforms any requirement λ on G into a requirement nego(λ) on G, such
that for each i ∈ Π and v ∈ Vi, with the convention inf ∅ = +∞, we have:

nego(λ)(v) = inf
σ̄−i∈λRat(v)

sup
σi

µi(⟨σ̄⟩v).

▶ Remarks. There exists a λ-rational strategy profile from v against the player controlling v

if and only if nego(λ)(v) ̸= +∞. The negotiation function is monotone: if λ ≤ λ′ (for the
pointwise order, i.e. if for each v, λ(v) ≤ λ′(v)), then nego(λ) ≤ nego(λ′). The negotiation
function is also non-decreasing: for every λ, we have λ ≤ nego(λ).

In the general case, the quantity nego(λ)(v) represents the worst case value that the
player controlling v can ensure, assuming that the other players play λ-rationally.
▶ Example 22. Let us consider the game of Example 15: in Figure 3, on the two first lines
below the states, we present the requirements λ0 and λ1 = nego(λ0), which is easy to compute
since any strategy profile is λ0-rational: for each v, λ1(v) is the classical worst-case value or
antagonistic value of v, i.e. the best value the player controlling v can enforce against a fully
hostile environment. Let us now compute the requirement λ2 = nego(λ1).

From c, there exists exactly one λ1-rational strategy profile σ̄−# = σ2, which is the empty
strategy since player 2 has never to choose anything. Against that strategy, the best and
the only payoff player # can get is 1, hence λ2(c) = 1. For the same reasons, λ2(d) = 2.

From b, player # can force 2 to get the payoff 2 or less, with the strategy profile σ# : h 7→ c.
Such a strategy is λ1-rational, assuming the strategy σ2 : h 7→ d. Therefore, λ2(b) = 2.

Finally, from a, player 2 can force # to get the payoff 2 or less, with the strategy profile
σ2 : h 7→ d. Such a strategy is λ1-rational, assuming the strategy σ# : h 7→ c. But, he cannot
force her to get less than the payoff 2, because she can force the access to the state b, and the
only λ1-consistent plays from b are the plays with the form (ba)kbdω. Therefore, λ2(a) = 2.

3.3 Steady negotiation
In what follows, we will often need a game to be with steady negotiation, i.e. such that there
always exists a worst λ-rational behaviour for the environment against a given player.
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▶ Definition 23 (Game with steady negotiation). A game G is with steady negotiation if
and only if for every player i, for every vertex v, and for every requirement λ, the set{

supσi
µi(⟨σ̄−i, σi⟩v)

∣∣ σ̄−i ∈ λRat(v)
}

is either empty, or has a minimum.

▶ Remark. In particular, when a game is with steady negotiation, the infimum in the
definition of negotiation is always reached.

It will be proved in Section 5 that mean-payoff games are with steady negotiation.

3.4 Link with Nash equilibria
Requirements and the negotiation function are able to capture Nash equilibria. Indeed, if λ0
is the vacuous requirement, then nego(λ0) characterizes the plays that are supported by a
Nash equilibrium (abbreviated by NE plays), in the following formal sense:

▶ Theorem 24. Let G be a game with steady negotiation. Then, a play ρ in G is an NE
play if and only if ρ is nego(λ0)-consistent.

▶ Example 25. Let us consider again the game of Example 15, with the requirement λ1 given
in Figure 3. The only λ1-consistent plays in this game, starting from the state a, are acω,
and (ab)kdω with k ≥ 1. One can check that those plays are exactly the NE plays in that
game.

In the following section, we will prove that as well as nego(λ0) characterizes the NEs, the
requirement that is the least fixed point of the negotiation function characterizes the SPEs.

4 Link between negotiation and SPEs

The notion of negotiation will enable us to find the SPEs, but also more generally the ε-SPEs,
in a game. For that purpose, we need the notion of ε-fixed points of a function.

▶ Definition 26 (ε-fixed point). Let ε ≥ 0, let D be a finite set and let f : RD → RD be a
mapping. A tuple x̄ ∈ RD is a ε-fixed point of f if for each d ∈ D, for ȳ = f(x̄), we have
yd ∈ [xd − ε, xd + ε].

▶ Remark. A 0-fixed point is a fixed point, and conversely.

The set of requirements, equipped with the componentwise order, is a complete lattice.
Since the negotiation function is monotone, Tarski’s fixed point theorem states that the
negotiation function has a least fixed point. That result can be generalized to ε-fixed points:

▶ Lemma 27. Let ε ≥ 0. On each game, the function nego has a least ε-fixed point.

Intuitively, the ε-fixed points of the negotiation function are the requirements λ such
that, from every vertex v, the player i controlling v cannot enforce a payoff greater than
λ(v) + ε against a λ-rational behaviour. Therefore, the λ-consistent plays are such that if
one player tries to deviate, it is possible for the other players to prevent them improving
their payoff by more than ε, while still playing rationally. Formally:

▶ Theorem 28. Let G↾v0 be an initialized prefix-independent game, and let ε ≥ 0. Let λ∗

be the least ε-fixed point of the negotiation function. Let ξ be a play starting in v0. If there
exists an ε-SPE σ̄ such that ⟨σ̄⟩v0 = ξ, then ξ is λ∗-consistent. The converse is true if the
game G is with steady negotiation.
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ac b d

#
0
2
3 #

2
2
2

#
1
2
1
(λ2) 2 21 2
(λ3) 2 31 2
(λ4) +∞ +∞1 2

Figure 4 A game without SPE.

5 Negotiation games

We have now proved that SPEs are characterized by the requirements that are fixed points
of the negotiation function; but we need to know how to compute, in practice, the quantity
nego(λ) for a given requirement λ. In other words, we need a algorithm that computes, given
a state v0 controlled by a player i in the game G, and given a requirement λ, which value
player i can ensure in G↾v0 if the other players play λ-rationally.

5.1 Abstract negotiation game
We first define an abstract negotiation game, that is conceptually simple but not directly
usable for an algorithmic purpose, because it is defined on an uncoutably infinite state space.

A similar definition was given in [14], as a tool in a general method to compute SPE plays
in games whose payoff functions have finite range, which is not the case of mean-payoff games.
Here, linking that game with our concepts of requirements, negotiation function and steady
negotiation enables us to present an effective algorithm in the case of mean-payoff games, by
constructing a finite version of the abstract negotiation game, the concrete negotiation game,
and afterwards by analyzing the negotiation function with linear algebra tools.

The abstract negotiation game from a state v0, with regards to a player i and a requirement
λ, is denoted by Absλi(G)↾[v0] and opposes two players, Prover and Challenger, as follows:

Prover proposes a λ-consistent play ρ from v0 (or loses, if she has no play to propose).
Then, either Challenger accepts the play and the game terminates; or, he chooses an edge
ρkρk+1, with ρk ∈ Vi, from which he can make player i deviate, using another edge ρkv

with v ̸= ρk+1: then, the game starts again from v instead of v0.
In the resulting play (either eventually accepted by Challenger, or constructed by an
infinity of deviations), Prover wants player i’s payoff to be low, and Challenger wants it
to be high.

That game gives us the basis of a method to compute nego(λ) from λ: the maximal
outcome that Challenger – or C for short – can ensure in Absλi(G)↾[v0], with v0 ∈ Vi, is also
the maximal payoff that player i can ensure in G↾v0 , against a λ-rational environment; hence
the equality valC

(
Absλi(G)↾[v0]

)
= nego(λ)(v0). A proof of that statement, with a complete

formalization of the abstract negotiation game, is presented in [3].
▶ Example 29. Let us consider again the game of Example 15: the requirement λ2 = nego(λ1),
computed in Section 3.2, is given again in Figure 4. Let us use the abstract negotiation game
to compute the requirement λ3 = nego(λ2).

From a, Prover can propose the play abdω, and the only deviation Challenger can do is
going to c; he has of course no incentive to do it. Therefore, λ3(a) = 2. From b, whatever
Prover proposes at first, Challenger can deviate and go to a. Then, from a, Prover cannot
propose the play acω, which is not λ2-consistent: she has to propose a play beginning by ab,
and to let Challenger deviate once more. He can then deviate infinitely often that way, and
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generate the play (ba)ω: therefore, λ3(b) = 3. The other states keep the same values. Note
that there exists no λ3-consistent play from a or b, hence nego(λ3)(a) = nego(λ3)(b) = +∞.
This proves that there is no SPE in that game.

5.2 Concrete negotiation game
In the abstract negotiation game, Prover has to propose complete plays, on which we can
make the hypothesis that they are λ-consistent. In practice, there will often be an infinity
of such plays, and therefore it cannot be used directly for an algorithmic purpose. Instead,
those plays can be given edge by edge, in a finite state game. Its definition is more technical,
but it can be shown that it is equivalent to the abstract one. In order to make the definition
as clear as possible, we give it only when the original game is a mean-payoff game. However,
one could easily adapt this definition to other classes of prefix-independent games.

▶ Definition 30 (Concrete negotiation game). Let G↾v0 be an initialized mean-payoff game,
and let λ be a requirement on G, with either λ(V ) ⊆ R, or λ = λ0.

The concrete negotiation game of G↾v0 for player i is the two-player zero-sum game
Concλi(G)↾s0 = ({P,C}, S, (SP, SC), ∆, ν)↾s0

, defined as follows:
The set of states controlled by Prover is SP = V ×2V , where the state s = (v, M) contains
the information of the current state v on which Prover has to define the strategy profile,
and the memory M of the states that have been traversed so far since the last deviation,
and that define the requirements Prover has to satisfy. The initial state is s0 = (v0, {v0}).
The set of states controlled by Challenger is SC = E × 2V , where in the state s = (uv, M),
the edge uv is the edge proposed by Prover.
The set ∆ contains three types of transitions: proposals, acceptations and deviations.

The proposals are transitions in which Prover proposes an edge of the game G:

Prop =
{

(v, M)(vw, M)
∣∣ vw ∈ E, M ∈ 2V

}
;

the acceptations are transitions in which Challenger accepts to follow the edge proposed
by Prover (it is in particular his only possibility when that edge begins on a state that
is not controlled by player i) – note that the memory is updated:

Acc = {(vw, M) (w, M ∪ {w}) | j ∈ Π, w ∈ Vj } ;

the deviations are transitions in which Challenger refuses to follow the edge proposed
by Prover, as he can if that edge begins in a state controlled by player i – the memory
is erased, and only the new state the deviating edge leads to is memorized:

Dev = {(uv, M)(w, {w}) | u ∈ Vi, w ̸= v, uw ∈ E } .

On those transitions, we define a multidimensional weight function π̂ : ∆ → RΠ∪{⋆},
with one dimension per player (non-main dimensions) plus one special dimension (main
dimension) denoted by the symbol ⋆. For each non-main dimension j ∈ Π, we define:

on proposals: π̂j ((v, M)(vw, M)) = 0;

on acceptations and deviations: π̂j ((uv, M)(w, N)) = 2
(

πj(uw) − max
vj∈M∩Vj

λ(vj)
)

;

and on the main dimension:
on proposals: π̂⋆ ((v, M), (vw, M)) = 0;
on acceptations and deviations: π̂⋆ ((uv, M), (w, N)) = 2πi(uw).
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For each dimension d, we write µ̂d the corresponding mean-payoff function:

µ̂d(ρ) = lim inf
n∈N

1
n

n−1∑
k=0

π̂d(ρkρk+1).

Thus, the mean-payoff along the main dimension corresponds to player i’s payoff, while
the mean-payoff along a non-main dimension j corresponds to player j’s payoff... minus
the maximal requirement player j has to satisfy.
Then, the outcome function νC = −νP measures player i’s payoff, with a winning condition
if the constructed strategy profile is not λ-rational, that is to say if after finitely many
player i’s deviations, it can generate a play which is not λ-consistent:

νC(η) = +∞ if after some index n ∈ N, the play ηnηn+1 . . . contains no deviation, and
if µ̂j(η) < 0 for some j ∈ Π;
νC(η) = µ̂⋆(η) otherwise.

Like in the abstract negotiation game, the goal of Challenger is to find a λ-rational
strategy profile that forces the worst possible payoff for player i, and the goal of Prover is to
find a possibly deviating strategy for player i that gives them the highest possible payoff.

A play or a history in the concrete negotiation game has a projection in the game on
which that negotiation game has been constructed, defined as follows:

▶ Definition 31 (Projection of a history, of a play). Let G be a prefix-independent game.
Let λ be a requirement and i a player, and let Concλi(G) be the corresponding concrete
negotiation game. Let H = (h0, M0)(h0h′

0, M0) . . . (hnh′
n, Mn) be a history in Concλi(G):

the projection of the history H is the history Ḣ = h0 . . . hn in the game G. That definition
is naturally extended to plays.

▶ Remark. For a play η without deviations, we have µ̂j(η) ≥ 0 for each j ∈ Π if and only if
η̇ is λ-consistent.

The concrete negotiation game is equivalent to the abstract one: the only differences are
that the plays proposed by Prover are proposed edge by edge, and that their λ-consistency is
not written in the rules of the game but in its outcome function.

▶ Theorem 32. Let G↾v0 be an initialized mean-payoff game. Let λ be a requirement and i a
player. Then, we have:

valC (Concλi(G)↾s0) = inf
σ̄−i∈λRat(v0)

sup
σi

µi(⟨σ̄⟩v0).

▶ Example 33. Let us consider again the game from Example 15. Figure 5 represents the
game Concλ1#(G) (with λ1(a) = 1 and λ1(b) = 2), where the dashed states are controlled by
Challenger, and the other ones by Prover. The dotted arrows indicate the deviations, and
the transitions that are not labelled have either the weight 0 on the three dimensions, or
meaningless weights since they cannot be used more than once. The red arrows indicate a
(memoryless) optimal strategy for Challenger. Against that strategy, the lowest outcome
Prover can ensure is 2. Therefore, nego(λ1)(v0) = 2, in line with the abstract game in
Example 29.

5.3 Solving the concrete negotiation game
We now know that nego(λ)(v), for a given requirement λ, a given player i and a given state
v ∈ Vi, is the value of the concrete negotiation game Concλi(G)↾(v,{v}). Let us now show
how, in the mean-payoff case, that value can be computed.
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Figure 5 A concrete negotiation game.

▶ Definition 34 (Memoryless strategy). A strategy σi in a game G is memoryless if for all
vertices v ∈ Vi and for all histories h and h′, we have σi(hv) = σi(h′v).

For any game G and any memoryless strategy σi, G[σi] denotes the graph induced by σi,
that is the graph (V, E′), with E′ = {vw ∈ E | v ̸∈ Vi or w = σi(v)} . For any finite set D

and any set X ⊆ RD, ConvX denotes the convex hull of X.
We can now prove that in the concrete negotiation game constructed from a mean-payoff

game, Challenger has an optimal strategy that is memoryless.

▶ Lemma 35. Let G↾v0 be an initialized mean-payoff game, let i be a player, let λ be a
requirement and let Concλi(G)↾s0 be the corresponding concrete negotiation game. There
exists a memoryless strategy τC that is optimal for Challenger, i.e. such that:

inf
τP

νC(⟨τ̄⟩s0) = valC (Concλi(G)↾s0) .

For every game G↾v0 and each player i, MLi (G↾v0), or ML (G↾v0) when the context
is clear, denotes the set of memoryless strategies for player i in G↾v0 . When (V, E) is
a graph, SC(V, E) denotes the set of its simple cycles, and SConn(V, E) the set of its
strongly connected components. For any closed set C ⊆ RΠ∪{⋆}, the quantity min⋆C =
min {x⋆ | x̄ ∈ C, ∀j ∈ Π, xj ≥ 0} is the ⋆-minimum of C: it will capture, in the concrete
negotiation game, the least payoff that can be imposed on player i while keeping every
player’s payoff above their requirements, among a set of possible outcomes.

With Lemma 35, we can now solve the concrete negotiation game.

▶ Lemma 36. Let G↾v0 be an initialized mean-payoff game, and let Concλi(G)↾s0 be its
concrete negotiation game for some λ and some i. Then, the value of the game Concλi(G)↾s0

is given by the formula:

max
τC∈MLC(Concλi(G))

min
K ∈ SConn (Concλi(G)[τC])

accessible from s0

opt(K),

where opt(K) is the minimal value νC(ρ) for ρ among the infinite paths in K.
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If K contains a deviation, then Prover can choose among its simple cycles the one that
minimizes player i’s payoff:

opt(K) = min
c∈SC(K)

µ̂⋆(cω).

If K does not contain a deviation, then Prover must choose a combination of its simple
cycles that minimizes the main dimension while keeping the other dimensions above 0:

opt(K) = min⋆ Conv
c∈SC(K)

µ̂(cω).

▶ Corollary 37. For each player i and every state v ∈ Vi, the value nego(λ)(v) can be
computed with the formula given in Lemma 36 applied to the game Concλi(G)↾(v,{v})

Another corollary of that result is that there always exists a best play that Prover can
choose, i.e. Prover has an optimal strategy; by Theorem 32, this is equivalent to saying that:

▶ Corollary 38. Mean-payoff games are games with steady negotiation.

6 Analysis of the negotiation function in mean-payoff games

When one wants to compute the least fixed point of a function, the usual method is to iterate
it on the minimal element of the considered set, to go until that fixed point. That approach
is valid if the negotiation function is Scott-continuous, i.e. such that for every non-decreasing
sequence (λn)n of requirements on G, we have nego (supn λn) = supn nego(λn).

▶ Proposition 39. In mean-payoff games, the negotiation function is Scott-continuous.

By Kleene-Tarski fixed-point theorem, the least fixed point of the negotiation function is,
then, the limit of the negotiation sequence, defined as the sequence (λn)n∈N = (negon(λ0))n.

In many cases, the negotiation sequence is stationary, and in such a case, it is possible to
compute its limit: whenever a term is equal to the previous one, we know that we reached it.
But actually, the negotiation sequence is not always stationary.

▶ Example 40. Let us consider the game of Figure 6. Since all player 3’s weights are equal
to 0, for all n > 0, we have λn(d) = λn(f) = 0. It comes that for all n > 0, we also have
λn(c) = λn(e) = 0. Moreover, by symmetry of the game, we always have λn(a) = λn(b).
Therefore, to compute the negotiation sequence, it suffices to compute λn+1(a) as a function
of λn(b), knowing that λ1(a) = λ1(b) = 1, and therefore that for all n > 0, λn(a) = λn(b) ≥ 1.

From a, the worst play that player 2 could propose to player # would be a combination
of the cycles cd and d giving her exactly 1. But then, player # will deviate to go to b, from
which if player 2 proposes plays in the strongly connected component containing c and d,
then player # will always deviate and generate the play (ab)ω, and then get the payoff 2.

Then, in order to give her a payoff lower than 2, player 2 has to go to the state e. Since
player # does not control any state in that strongly connected component, the play he will
propose will be accepted: he will, then, propose the worst possible combination of the cycles
ef and f for player #, such that he gets at least his requirement λn(b). The payoff λn+1(a)
is then the minimal solution of the system:

λn+1(a) = x + 2(1 − x)
2(1 − x) ≥ λn(b)

0 ≤ x ≤ 1
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Figure 6 A game where the negotiation sequence is not stationary.
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Figure 7 The negotiation function on the games of Examples 16 and 15.

that is to say λn+1(a) = 1 + λn(b)
2 = 1 + λn(a)

2 , and by induction, for all n > 0:

λn(a) = λn(b) = 2 − 1
2n−1 ,

which converges to 2 but never reaches it.
Therefore, we need a different approach to compute that least fixed point. We will now

show that, in the case of mean-payoff games, the negotiation function is a piecewise linear
function from the vector space of requirements into itself, which can therefore be computed
and analyzed using classical linear algebra techniques. Then, it becomes possible to search
for the fixed points or the ε-fixed points of such a function, and to decide the existence or
not of SPEs or ε-SPEs in the game studied.

▶ Theorem 41. Let G be a mean-payoff game. Let us assimilate any requirement λ on G

with finite values to the tuple λ̄ = (λ(v))v∈V , element of the vector space RV . Then, for each
player i and every vertex v0 ∈ Vi, the quantity nego(λ)(v0) is a piecewise linear function of
λ̄, and an effective expression of that function can be computed in 2-ExpTime.

▶ Example 42. Let us consider the game of Example 16. If a requirement λ is represented by
the tuple (λ(a), λ(b)), the function nego : R2 → R2 can be represented by Figure 7a, where
in any one of the regions delimited by the dashed lines, we wrote a formula for the couple
(nego(λ)(a), nego(λ)(b)). The orange area indicates the fixed points of the function, and the
yellow area the other 1

2 -fixed points.

▶ Example 43. Now, let us consider the game of Example 15. If we fix λ(c) = 1 and λ(d) = 2,
and represent the requirements λ by the tuples (λ(a), λ(b)), as in the previous example.
Then, the negotiation function can be represented as in Figure 7b. One can check that there
is no fixed point here, and even no 1

2 -fixed point – except (+∞, +∞).
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7 Conclusion: algorithm and complexity

Thanks to all the previous results, we are now able to compute the least fixed point, or the
least ε-fixed point, of the negotiation function, on every mean-payoff game, and to use it as
a characterization of all the SPEs or all the ε-SPEs. A direct application is an algorithm
that solves the ε-SPE constrained existence problem, i.e. that decides, given an initialized
mean-payoff game G↾v0 , two thresholds x̄, ȳ ∈ QΠ, and a rational number ε ≥ 0, whether
there exists an SPE σ̄ such that x̄ ≤ µ(⟨σ̄⟩v0) ≤ ȳ.

We leave for future work the optimal complexity of that problem. However, we can easily
prove that it cannot be solved in polynomial time, unless P = NP.

▶ Theorem 44. The ε-SPE constrained existence problem is NP-hard.

Given G↾v0 , by Theorem 41, computing a general expression of the negotiation function
as a piecewise linear function can be done in time double exponential in the size of G. Then,
for each linear piece of nego, computing its set of ε-fixed points is a polynomial problem.
Since the number of pieces is at most double exponential in the size of G, computing its
entire set of fixed points, and thus its least ε-fixed point λ, can be done in double exponential
time.

Then, from the requirement λ and the thresholds x̄ and ȳ, we can construct a multi-
mean-payoff automaton Aλ of exponential size, that accepts an infinite word ρ ∈ V ω, if and
only if ρ is a λ-consistent play of G↾v0 , and x̄ ≤ µ(ρ) ≤ ȳ – see [3] for the construction of Aλ.

Finally, by Theorem 28, there exists an SPE σ̄ in G↾v0 with x̄ ≤ µ(⟨σ̄⟩v0) ≤ ȳ if and only
if the language of the automaton Aλ is nonempty, which can be known in a time polynomial
in the size of Aλ (see for example [1]), i.e. in a time exponential in the size of G. We can
therefore conclude on the following result:

▶ Theorem 45. The ε-SPE constrained existence problem is decidable and 2-ExpTime-easy.
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Abstract
Two-player mean-payoff Stackelberg games are nonzero-sum infinite duration games played on a
bi-weighted graph by Leader (Player 0) and Follower (Player 1). Such games are played sequentially:
first, Leader announces her strategy, second, Follower chooses his best-response. If we cannot impose
which best-response is chosen by Follower, we say that Follower, though strategic, is adversarial
towards Leader. The maximal value that Leader can get in this nonzero-sum game is called the
adversarial Stackelberg value (ASV) of the game.

We study the robustness of strategies for Leader in these games against two types of deviations:
(i) Modeling imprecision - the weights on the edges of the game arena may not be exactly correct, they
may be delta-away from the right one. (ii) Sub-optimal response - Follower may play epsilon-optimal
best-responses instead of perfect best-responses. First, we show that if the game is zero-sum then
robustness is guaranteed while in the nonzero-sum case, optimal strategies for ASV are fragile.
Second, we provide a solution concept to obtain strategies for Leader that are robust to both
modeling imprecision, and as well as to the epsilon-optimal responses of Follower, and study several
properties and algorithmic problems related to this solution concept.
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1 Introduction

Stackelberg games [16] were first introduced to model strategic interactions among rational
agents in markets that consist of Leader and Follower(s). Leader in the market makes her
strategy public and Follower(s) respond by playing an optimal response to this strategy. Here,
we consider Stackelberg games as a framework for the synthesis of reactive programs [15, 3].
These programs maintain a continuous interaction with the environment in which they
operate; they are deterministic functions that given a history of interactions so far choose an
action. Our work is a contribution to rational synthesis [9, 14], a nonzero-sum game setting
where both the program and the environment are considered as rational agents that have
their own goals. While Boolean ω-regular payoff functions have been studied in [9, 14], here
we study the quantitative long-run average (mean-payoff) function.
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9:2 Fragility and Robustness in Mean-Payoff Adversarial Stackelberg Games

We illustrate our setting with the example in Figure 1. The set V of vertices is partitioned
into V0 (represented by circles) and V1 (represented by squares) that are owned by Leader
(also called Player 0) and Follower (also called Player 1) respectively. In the tuple on the edges,
the first element is the payoff of Leader, while the second one is the payoff of Follower (weights
are omitted if they are both equal to 0). Each player’s objective is to maximize the long run
average of the payoffs that she receives (a.k.a. mean-payoff). In the adversarial Stackelberg
setting, Player 0 (Leader) first announces how she will play then Player 1 (Follower) chooses
one of his best-responses to this strategy. Here, there are two choices for Player 0: L or R.
As Player 1 is assumed to be rational, Player 0 deduces that she must play L. Indeed, the
best response of Player 1 is then to play LL and the reward she obtains is 10. This is better
than playing R, for which the best-response of Player 1 is RL, and the reward is 8 instead of
10. Note that if there are several possible best responses for Player 1, then we consider the
worst-case: Player 0 has no control on the choice of best-responses by Player 1.

Quantitative models and robustness. The study of adversarial Stackelberg games with
mean-payoff objectives has been started in [8] with the concept of adversarial Stackelberg
value (ASV for short). ASV is the best value that Leader can obtain by fixing her strategy
and facing any rational response by Follower. As this setting is quantitative, it naturally
triggers questions about robustness that were left open in this first paper.

Robustness is a highly desirable property of quantitative models: small changes in the
quantities appearing in a model M (e.g. rewards, probabilities, etc.) should have small
impacts on the predictions made from M , see e.g. [2]. Robustness is thus crucial because it
accounts for modelling imprecision that are inherent in quantitative modelling and those
imprecision may have important consequences. For instance, a reactive program synthesized
from a model M should provide acceptable performances if it is executed in a real environment
that differ slightly w.r.t. the quantities modeled in M .

Some classes of models are robust. For instance, consider two-player zero-sum mean-payoff
games where players have fully antagonistic objectives. The value of a two-player zero-sum
mean-payoff G is the maximum mean-payoff that Player 0 can ensure against all strategies of
Player 1. A strategy σ0 that enforces the optimal value c in G is robust in the following sense.
Let G±δ be the set of games obtained by increasing or decreasing the weights on the edges
of G by at most δ. Then for all δ > 0, and for all H ∈ G±δ, the strategy σ0 ensures in H a
mean-payoff of at least c − δ for Player 0 against any strategy of Player 1 (Proposition 1).
So slight changes in the quantities appearing in the model have only a small impact on the
worst-case value enforced by the strategy.

The situation is more complex and less satisfactory in nonzero-sum games. Strategies
that enforce the ASV proposed in [8] may be fragile: slight differences in the weights of the
game, or in the optimality of the response by Player 1, may lead to large differences in the
value obtained by the strategy. We illustrate these difficulties on our running example. The
strategy of Player 0 that chooses L in v0 ensures her a payoff of 10 which is the ASV. Indeed,
the unique best-response of Player 1 against L is to play LL from v1. However, if the weights
in G are changed by up to ±δ = ±0.6 then there is a game H ∈ G±δ in which the weight
on the self-loop over vertex v4 changes to e.g. 9.55, and the weight on the self-loop over v3
changes to e.g. 9.45, and the action LR becomes better for Player 1. So the value of L in H
against a rational adversary is now 0 instead of 10. Thus a slight change in the rewards for
Player 1 (due to e.g. modelling imprecision) may have a dramatic effect on the value of the
optimal strategy L computed on the model G when evaluated in H.
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v0 v2 v5 v6v1v3v4

start

RL RL

RR

LL

LR

(8, 9) (4, 5)(10, 10)(0, 9)

Figure 1 A game in which the strategy of Leader that maximizes the adversarial Stackelberg is
fragile while the strategy of Leader that maximizes the ϵ = 1-adversarial Stackelberg value is robust.

Contributions. As a remedy to this situation, we provide an alternative notion of value that
is better-suited to synthesize strategies that are robust against perturbations. We consider
two types of perturbations. First, the strategies computed for this value are robust against
modeling imprecision: if a strategy has been synthesized from a weighted game graph with
weights that are possibly slightly wrong, the value that this strategy delivers is guaranteed
to be close to what the model predicts. Second, strategies computed for this value are robust
against sub-optimal responses: small deviations from the best-response by the adversary have
only limited effect on the value guaranteed by the strategy.

Our solution relies on relaxing the notion of best-responses of Player 1 in the original
model G: we define the ϵ-adversarial Stackelberg value (ASVϵ, for short) as the value that
Leader can enforce against all ϵ-best responses of Follower. Obviously, this directly accounts
for the second type of perturbations. But we show that, additionally, this accounts for the
first type of perturbations: if a strategy σ0 enforces an ASVϵ equal to c then for all games
H ∈ G± ϵ

2 , we have that σ0 enforce a value larger than c− ϵ in H (Theorem 5 and Theorem 6).
We illustrate this by considering again the example of Figure 1. Here, if we consider

that the adversary can play 2δ = 1.2-best responses instead of best responses only, then the
optimal strategy of Player 0 is now R and it has a ASVϵ equal to 8. This value is guaranteed
to be robust for all games H ∈ G±δ as R is guaranteed to enforce a payoff that is larger than
8 − δ in all games in G±δ. Stated otherwise, we use the notion of ASVϵ in the original game
to find a strategy for Player 0 that she uses in the perturbed model while playing against a
rational adversary. Thus we show that in the event of modelling imprecision resulting in a
perturbed model, the solution concept to be used is ASVϵ instead of ASV since the former
provides strategies that are robust to such perturbations.

Table 1 Summary of our results.

Robustness Threshold Problem Computing ASV Achievability

Adversarial
best responses

of Follower

No

[Proposition 2]

NP [8]

Finite Memory
Strategy [1]

Memoryless
Strategy [1]

Theory of Reals [8] No [8]

Adversarial
ϵ-best responses

of Follower

Yes

[Thm 5]

NP

Finite Memory
Strategy [Thm 8]

Memoryless
Strategy [Thm 10]

Theory of Reals
[Thm 12]

Solving LP
in EXPTime
[Thm 12]

Yes [Thm 16]

(Requires
Infinite Memory

[Thm 19])

In addition to proving the fragility of the original concept introduced in [8] (Proposition 2)
and the introduction of the new notion of value ASVϵ that is robust against modelling
imprecision (Theorem 5), we provide algorithms to handle ASVϵ. First, we show how to
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9:4 Fragility and Robustness in Mean-Payoff Adversarial Stackelberg Games

decide the threshold problem for ASVϵ in nondeterministic polynomial time and that finite
memory strategies suffice (Theorem 8). Second, we provide an algorithm to compute ASVϵ

when ϵ is fixed (Theorem 12). Third, we provide an algorithm that given a threshold value
c, computes the largest possible ϵ such that ASVϵ > c (Corollary 15). These three results
form the core technical contributions of this paper and they are presented in Section 4 and
Section 5. Additionally, in Section 6, we show that ASVϵ is always achievable (Theorem 16),
which is in contrast to the case in [8] where Follower only plays best-responses. Finally, we
provide results that concern the memory needed for players to play optimally, and complexity
results for subcases (for example when Players are assumed to play memoryless). Our
contributions have been summarized in Table 1, where the results obtained in this work are
in bold. The new results corresponding to ASV can be found in [1].

Related Works. Stackelberg games on graphs have been first considered in [9], where the
authors study rational synthesis for ω-regular objectives with co-operative Follower(s). In [8],
Stackelberg mean-payoff games in adversarial setting, and Stackelberg discounted sum games
in both adversarial and co-operative setting have been considered. However, as pointed out
earlier, the model of [8] is not robust to perturbations. In [10], mean-payoff Stackelberg
games in the co-operative setting have been studied. In [13], the authors study the effects
of limited memory on both Nash and Stackelberg (or leader) strategies in multi-player
discounted sum games. Incentive equilibrium over bi-matrix games and over mean-payoff
games in a co-operative setting have been studied in [11] and [12] respectively. In [14],
adversarial rational synthesis for ω-regular objectives have been studied. In [7], precise
complexity results for various ω-regular objectives have been established for both adversarial
and co-operative settings. In [6, 4], secure Nash equilibrium has been studied, where each
player first maximises her own payoff, and then minimises the payoff of the other player;
Player 0 and Player 1 are symmetric there unlike in Stackelberg games. For discounted sum
objectives, in [8], the gap problem has been studied. Given rationals c and δ, a solution to
the gap problem can decide if ASV > c + δ or ASV < c − δ. The threshold problem was left
open in [8], and is technically challenging. We leave the case of analysing robustness for
discounted sum objective for future work.

A full version of this work with detailed proofs appears in [1].

2 Preliminaries

We denote by N, N+, Q, and R the set of naturals, the set of naturals excluding 0, the set of
rationals, and the set of reals respectively.

Arenas. An (bi-weighted) arena A = (V, E, ⟨V0, V1⟩, w0, w1) consists of a finite set V of
vertices, a set E ⊆ V × V of edges such that for all v ∈ V there exists v′ ∈ V and (v, v′) ∈ E,
a partition ⟨V0, V1⟩ of V , where V0 (resp. V1) is the set of vertices for Player 0 (resp. Player 1),
and two edge weight functions w0 : E → Z, w1 : E → Z. In the sequel, we denote the
maximum absolute value of a weight in A by W . A strongly connected component of a
directed graph is a subgraph that is strongly connected. Unless otherwise mentioned, SCC

denotes a subgraph that is strongly connected, and which may or may not be maximal.

Plays and histories. A play in A is an infinite sequence of vertices π = π0π1 · · · ∈ V ω such
that for all k ∈ N, we have (πk, πk+1) ∈ E. A history in A is a (non-empty) prefix of a play
in A. Given π = π0π1 · · · ∈ PlaysA and k ∈ N, the prefix π0π1 . . . πk of π is denoted by π⩽k.
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We denote by inf(π) the set of vertices v that appear infinitely many times along π, i.e.,
inf(π) = {v ∈ V | ∀i ∈ N · ∃j ∈ N, j ⩾ i : π(j) = v}. It is easy to see that inf(π) forms an
SCC in the underlying graph of the arena A. We denote by PlaysA and HistA the set of
plays and the set of histories in A respectively; the symbol A is omitted when clear from
the context. Given i ∈ {0, 1}, the set Histi

A denotes the set of histories such that their last
vertex belongs to Vi. We denote the first vertex and the last vertex of a history h by first(h)
and last(h) respectively.

Games. A mean-payoff game G = (A, ⟨MP0, MP1⟩) consists of a bi-weighted arena A, payoff
functions MP0 : PlaysA → R and MP1 : PlaysA → R for for Player 0 and Player 1 respectively
which are defined as follows. Given a play π ∈ PlaysA and i ∈ {0, 1}, the payoff MPi(π) is
given by MPi(π) = lim inf

k→∞
1
k wi(π⩽k), where the weight wi(h) of a history h ∈ Hist is the sum

of the weights assigned by wi to its edges. In our definition of the mean-payoff, we have used
lim inf as the limit of the successive average may not exist.

Strategies and payoffs. A strategy for Player i ∈ {0, 1} in the game G is a function
σ : Histi

A → V that maps histories ending in a vertex v ∈ Vi to a successor of v. The set
of all strategies of Player i ∈ {0, 1} in the game G is denoted by Σi(G), or Σi when G is
clear from the context. A strategy has memory M if it can be realized as the output of
a state machine with M states. A memoryless strategy is a function that only depends
on the last element of the history h ∈ Hist. We denote by ΣML

i the set of memoryless
strategies of Player i, and by ΣFM

i her set of finite memory strategies. A profile is a pair
of strategies σ = (σ0, σ1), where σ0 ∈ Σ0(G) and σ1 ∈ Σ1(G). As we consider games with
perfect information and deterministic transitions, any profile σ yields, from any history h, a
unique play or outcome, denoted Outh(G, σ). Formally, Outh(G, σ) is the play π such that
π⩽|h|−1 = h and ∀k ⩾ |h| − 1 it holds that πk+1 = σi(π⩽k) if πk ∈ Vi. We write h ⩽ π

whenever h is a prefix of π. The set of outcomes compatible with a strategy σ ∈ Σi∈{0,1}(G)
after a history h is Outh(G, σ) = {π|∃σ′ ∈ Σ1−i(G) such that π = Outh(G, (σ, σ′))}. Each
outcome π ∈ G = (A, ⟨MP0, MP1⟩) yields a payoff MP(π) = (MP0(π), MP1(π)).

Usually, we consider instances of games such that the players start playing at a fixed
vertex v0. Thus, we call an initialized game a pair (G, v0), where G is a game and v0 ∈ V

is the initial vertex. When v0 is clear from context, we use G, Out(G, σ), Out(G, σ), MP(σ)
instead of Gv0 , Outv0(G, σ), Outv0(G, σ), MPv0

(σ). We sometimes omit G when it is clear
from the context.

Best-responses, ϵ-best-responses. Let G = (A, ⟨MP0, MP1⟩) be a two-dimensional mean-
payoff game on the bi-weighted arena A. Given a strategy σ0 for Player 0, we define
1. Player 1’s best responses to σ0, denoted by BR1(σ0), as:

{σ1 ∈ Σ1 | ∀v ∈ V.∀σ′
1 ∈ Σ1 : MP1(Outv(σ0, σ1)) ⩾ MP1(Outv(σ0, σ′

1))}

2. Player 1’s ϵ-best-responses to σ0, for ϵ > 01, denoted by BRϵ
1(σ0), as:

{σ1 ∈ Σ1 | ∀v ∈ V · ∀σ′
1 ∈ Σ1 : MP1(Outv(σ0, σ1)) > MP1(Outv(σ0, σ′

1)) − ϵ}

1 Since we will use ϵ in ASVϵ to add robustness, we only consider the cases in which ϵ is strictly greater
than 0.
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9:6 Fragility and Robustness in Mean-Payoff Adversarial Stackelberg Games

We also introduce the following notation for zero-sum games (that are needed as interme-
diary steps in our algorithms). Let A be an arena, v ∈ V one of its states, and O ⊆ PlaysA
be a set of plays (called objective), then we write A, v ⊨≪ i ≫ O, if:

∃σi ∈ Σi · ∀σ1−i ∈ Σ1−i : Outv(A, (σi, σ1−i)) ∈ O, for i ∈ {0, 1}

All the zero-sum games we consider in this paper are determined meaning that for all A, for
all objectives O ⊆ PlaysA we have that A, v ⊨≪ i ≫ O ⇐⇒ A, v ⊭≪ 1 − i ≫ PlaysA \ O.
We sometimes omit A when the arena being referenced is clear from the context.

Convex hull and Fmin. Given a finite dimension d, a finite set X ⊂ Qd of rational vectors, we
define the convex hull CH(X) = {v | v =

∑
x∈X αx · x ∧ ∀x ∈ X : αx ∈ [0, 1] ∧

∑
x∈X αx = 1}

as the set of all their convex combinations. Let fmin(X) be the vector v = (v1, v2, . . . , vd)
where vi = min{c | ∃x ∈ X : xi = c} i.e. the vector v is the pointwise minimum of the
vectors in X. For S ⊆ Qd, we define Fmin(S) = {fmin(P ) | P is a finite subset of S}.

Mean-payoffs induced by simple cycles. A cycle c is a sequence of edges that starts and
stops in a given vertex v, it is simple if it does not contain repetition of any other vertex.
Given an SCC S, we write C(S) for the set of simple cycles inside S. Given a simple cycle c,
for i ∈ {0, 1}, let MPi(c) = wi(c)

|c| be the mean of the weights2 in each dimension along the
edges in the simple cycle c, and we call the pair (MP0(c), MP1(c)) the mean-payoff coordinate
of the cycle c. We write CH(C(S)) for the convex-hull of the set of mean-payoff coordinates
of simple cycles of S.

Adversarial Stackelberg Value for MP. Since the set of best-responses in mean-payoff
games can be empty (See Lemma 3 of [8]), we use the notion of ϵ-best-responses for the
definition of ASV which are guaranteed to always exist3. We define

ASV(v) = sup
σ0∈Σ0,ϵ>0

inf
σ1∈BRϵ

1(σ0)
MP0(Outv(σ0, σ1)).4

We also associate a (adversarial) value to a strategy σ0 ∈ Σ0 of Player 0, denoted

ASV(σ0)(v) = sup
ϵ>0

inf
σ1∈BRϵ

1(σ0)
MP0(Outv(σ0, σ1)).

Clearly, we have that ASV(v) = supσ0∈Σ0
ASV(σ0)(v).

We define the adversarial Stackelberg values, where strategies of Player 0 are restricted
to finite memory strategies, as

ASVFM(v) = sup
σ0∈ΣFM

0

inf
σ1∈BR1(σ0)

MP0(Outv(σ0, σ1))

where ΣFM
0 refers to the set of all finite memory strategies of Player 0. We note that for

every finite memory strategy σ0 of Player 0, a best-response of Player 1 to σ0 always exists
as noted in [8].

We also define the adversarial Stackelberg values, where Player 0 is restricted to using
memoryless strategies, as

ASVML(v) = sup
σ0∈ΣML

0

inf
σ1∈BR1(σ0)

MP0(Outv(σ0, σ1))

where ΣML
0 is the set of all memoryless strategies of Player 0.

2 We do not use MPi since lim inf and lim sup are the same for a finite sequence of edges.
3 For a game G, we also use ASVG and ASVϵ

G , and drop the subscript G when it is clear from the context.
4 The definition of ASV, as it appears in [8], is syntactically different but the two definitions are equivalent,

and the one presented here is simpler.
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In the sequel, unless otherwise mentioned, we refer to a two-dimensional nonzero-sum
two-player mean-payoff game simply as a mean-payoff game.

Zero-sum case. Zero-sum games are special cases of nonzero-sum games, where for all
edges e ∈ E, we have that w0(e) = −w1(e), i.e. the gain of one player is always equal to
the opposite (the loss) of the other player. For zero-sum games, the classical concept is the
notion of (worst-case) value. It is defined as

ValG(v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP0(Outv(σ0, σ1)).

Additionally, we define the value of a Player 0 strategy σ0 from a vertex v in a zero-sum
mean-payoff game G as ValG(σ0)(v) = inf

σ1∈Σ1
MP0(Outv(σ0, σ1)).

3 Fragility and robustness in games

In this section, we study fragility and robustness properties in zero-sum and nonzero-sum
games. Additionally, we provide a notion of value, for the nonzero-sum case, that is well-suited
to synthesize strategies that are robust against two types of perturbations:

Modeling imprecision: We want guarantees about the value that is obtained by a strategy
in the Stackelberg game even if this strategy has been synthesized from a weighted game
graph with weights that are possibly slightly wrong: small perturbations of the weight
should have only limited effect on the value guaranteed by the strategy.
Sub-optimal responses: We want guarantees about the value that is obtained by a strategy
in the Stackelberg game even if the adversary responds with an ϵ-best response instead
of a perfectly optimal response (for some ϵ > 0): small deviations from the best-response
by the adversary should have only limited effect on the value guaranteed by the strategy.

Formalizing deviations. To formalize modeling imprecision, we introduce the notion of a
perturbed game graph. Given a game G with arena AG = (V, E, ⟨V0, V1⟩, w0, w1), and a value
δ > 0, we write G±δ for the set H of games with arena AH = (V, E, ⟨V0, V1⟩, w′

0, w′
1) where

edge weight functions respect the following constraints:

∀(v1, v2) ∈ E, ∀i ∈ {0, 1}, w′
i(v1, v2) ∈ (wi(v1, v2) + δ, wi(v1, v2) − δ).

We note that as the underlying game graph (V, E) is not altered, for both players, the set
of strategies in G is identical to the set of strategies in H. Finally, to formalize sub-optimal
responses, we naturally use the notion of ϵ-best response introduced in the previous section.

Robustness in zero-sum games. In zero-sum games, the worst-case value ValG(σ0) is robust
against both modeling imprecision and sub-optimal responses of Player 1.

▶ Proposition 1 (Robustness in zero-sum games). For all zero-sum mean-payoff games G
with a set V of vertices, for all Player 0 strategies σ0,and for all vertices v ∈ V we have that:

∀δ, ϵ > 0 : ∀H ∈ G±δ : inf
σ1∈BRϵ

1,H(σ0)
MPH

0 (Outv(σ0, σ1)) > ValG(σ0)(v) − δ.

CONCUR 2021
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v1 v2start

(0, 0)

(µ′, 2δ) (0, 0)
(0, 0)

Figure 2 In this game G, all vertices are
controlled by Player 1. Here, ASVG(v1) = µ′.

v1 v2start

(0, 0)

(µ′ − ι, 2δ − ι) (ι, ι)
(0, 0)

Figure 3 An δ-perturbed game H of G in
Figure 2. Here, we consider 0 < ι < δ. Here,
ASVH(v1) = µ′ − ι.

Fragility in non-zero sum games. On the contrary, the adversarial Stackelberg value
ASV(σ0) is fragile against both modeling imprecision and sub-optimal responses.

▶ Proposition 2 (Fragility - modeling imprecision). For all µ > 0, we can construct a nonzero-
sum mean-payoff game G and a Player 0 strategy σ0, such that there exist δ > 0, a perturbed
game H ∈ G±δ, and a vertex v in G with ASVH(σ0)(v) < ASVG(σ0)(v) − µ.

▶ Proposition 3 (Fragility - sub-optimal responses). For all µ > 0, we can construct a
nonzero-sum mean-payoff game G and a Player 0 strategy σ0, such that there exist ϵ > 0 and
a vertex v in G with inf

σ1∈BRϵ
1(σ0)

MPG
0 (Outv(σ0, σ1)) < ASVG(σ0)(v) − µ.

Note that µ can be arbitrarily large and thus the adversarial Stackelberg value in the model
under deviations can be arbitrarily worse than in the original model.

Relation between the two types of deviations. In nonzero-sum mean-payoff games, robust-
ness against modeling imprecision does not imply robustness against sub-optimal responses.

▶ Lemma 4. For all µ, δ, ϵ > 0, we can construct a nonzero-sum mean-payoff game G such
that for all Player 0 strategies σ0 and vertex v in G, we have that:

∀H ∈ G±δ : ASVH(σ0)(v) > inf
σ1∈BRϵ

1,G
MPG

0 (Outv(σ0, σ1)) + µ.

Proof. Consider the game G shown in Figure 2. Here, since all the vertices are controlled
by Player 1, the strategy of Player 0 is inconsequential. For every δ > 0, we claim that the
best strategy for Player 1 across all perturbed games H ∈ G±δ is to play v1 → v1 forever.
One such example of a perturbed game is shown in Figure 3. Here, for every 0 < ι < δ,
we have that v1 → v1 is the only best-response for Player 1. Therefore, we have that

inf
H∈G±δ

ASVH(σ0)(v1) = µ′ − δ, for all δ > 0.

However, if we relax the assumption that Player 1 plays optimally and assume that
he plays an ϵ-best response in the game G, we note that Player 1 can play a strategy
(vk1+1

1 vk2+1
2 )ω, for some k1, k2 ∈ N, such that 2δ·k1

k1+k2+2 > 2δ − ϵ, and Player 0 gets a payoff
of k1·µ′

k1+k2+2 > µ′(1 − ϵ
2δ ). Thus, we have that inf

σ1∈BRϵ
1,G

MPG
0 (Outv(σ0, σ1)) = µ′(1 − ϵ

2δ ). We

note that the choice of µ′ is arbitrary, and we can have a µ′ such that µ′ − δ > µ′(1 − ϵ
2δ ) + µ,

i.e, we choose µ′ to be large enough so that µ < µ′ · ϵ
2δ − δ. ◀

On the contrary, robustness against sub-optimal responses implies robustness against modeling
imprecision.



M. Balachander, S. Guha, and J.-F. Raskin 9:9

▶ Theorem 5 (Robust strategy in non-zero sum games). For all non-zero sum mean-payoff
games G with a set V of vertices, for all ϵ > 0, for all vertices v ∈ V , for all strategies σ0 of
Player 0, we have that ∀H ∈ G±ϵ : ASVH(σ0)(v) > inf

σ1∈BR2ϵ
1,G

MPG
0 (Outv(σ0, σ1)) − ϵ.

Proof. Consider a nonzero-sum mean-payoff game G and a vertex v in G and a strategy σ0
of Player 0. We let inf

σ1∈BR2ϵ
1,G

MPG
0 (Outv(σ0, σ1)) = c , for some c ∈ Q. Let the supremum of

the payoffs that Player 1 gets when Player 0 plays σ0 be y, where y ∈ Q, i.e., sup{MP1(ρ) |
ρ ∈ Outv(G, σ0))} = y. For all outcomes ρ which are in Player 1’s 2ϵ-best response of σ0, we
have that MP1(ρ) > y − 2ϵ and MP0(ρ) ⩾ c.

Now, consider a game H ∈ G±ϵ and a Player 0 strategy σ0 played in H. We can see that
the maximum payoff that Player 1 gets when Player 0 plays σ0 is bounded by y + ϵ and
y − ϵ, i.e., y − ϵ < sup{MP1(ρ) | ρ ∈ Outv(H, σ0))} < y + ϵ. We let this value be denoted by
yH. We note that if supρ∈Outv(H,σ0)(MP1(ρ)) = yH, then for the corresponding play ρH in
the game G, the mean-payoff of Player 1 in ρH is MP1(ρH) > y − 2ϵ. Thus, in the game G,
we note that MP0(ρH) ⩾ c and for the corresponding play in H, we have MP0(ρH) > c − ϵ.
Thus, we have ASVH(σ0)(v) > c − ϵ = inf

σ1∈BR2ϵ
1,G

MPG
0 (Outv(σ0, σ1)) − ϵ. ◀

We note that in the above theorem, we need to consider a strategy that is robust against
2ϵ-best-responses to ensure robustness against ϵ weight perturbations.

ϵ-Adversarial Stackelberg Value. The results above suggest that, in order to obtain some
robustness guarantees in nonzero-sum mean-payoff games, we must consider a solution
concept that accounts for ϵ-best responses of the adversary. This leads to the following
definition: Given an ϵ > 0, we define the adversarial value of Player 0 strategy σ0 when
Player 1 plays ϵ-best-responses as

ASVϵ(σ0)(v) = inf
σ1∈BRϵ

1(σ0)
MP0(Outv(σ0, σ1)) (1)

and the ϵ-Adversarial Stackelberg value at vertex v is: ASVϵ(v) = supσ0∈Σ0 ASVϵ(σ0)(v),
and we note that ASV(v) = supϵ>0 ASVϵ(v). We can now state a theorem about combined
robustness of ASVϵ.

▶ Theorem 6 (Combined robustness of ASVϵ). For all nonzero-sum mean-payoff games G
with a set V of vertices, for all ϵ > 0, for all δ > 0, for all H ∈ G±δ, for all vertices v ∈ V ,
and for all strategies σ0, we have that if ASV2δ+ϵ

G (σ0)(v) > c, then for all H ∈ G±δ, we have
that infσ1∈BRϵ

H(σ0) MPH
0 (Outv(σ0, σ1)) > c − δ.

Proof. The proof for Theorem 6 is very similar to the proof of Theorem 5 and involves
looking at the set of ϵ-best-responses in the game H and showing that the corresponding
plays lie in the set of (2δ + ϵ)-best-responses in the game G. This would imply that the
corresponding Player 0 mean-payoffs for the ϵ-best-responses of Player 1 in every perturbed
game H ∈ G±δ would always be greater than c − δ. Therefore, we can extrapolate that
ASVϵ

H(σ0)(v) > c − δ. ◀

In the rest of the paper we study properties of ASVϵ and solve the following two problems:
Threshold Problem of ASVϵ: Given G, c ∈ Q, an ϵ > 0, and a vertex v, we provide a
nondeterministic polynomial time algorithm to decide if ASVϵ(v) > c (see Theorem 8).
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Computation of ASVϵ and largest ϵ: Given G, an ϵ > 0, and a vertex v, we provide an
exponential time algorithm to compute ASVϵ(v) (see Theorem 12). We also establish
that ASVϵ is achievable (see Theorem 16). Then we show, given a fixed threshold
c, how to computation of largest ϵ such that ASVϵ(v) > c. Formally, we compute
sup{ϵ > 0 | ASVϵ(v) > c} (See Corollary 15).

4 Threshold problem for the ASVϵ

In this section, given c ∈ Q, and a vertex v in game G, we study the threshold problem which
is to determine if ASVϵ(v) > c.

Witnesses for ASVϵ. For a game G and ϵ > 0, we associate with each vertex v in G, a
set Λϵ(v) of pairs or real numbers (c, d) such that Player 1 has a strategy that ensures a
mean-payoff greater than d - ϵ for himself while restricting the payoff of Player 0 to at most
c. Formally, we have:

Λϵ(v) = {(c, d) ∈ R2 | v ⊨≪ 1 ≫ MP0 ⩽ c ∧ MP1 > d − ϵ}.

A vertex v is (c, d)ϵ-bad if (c, d) ∈ Λϵ(v). Let c′ ∈ R. A play π of G is called a (c′, d)ϵ-witness
of ASVϵ(v) > c if (MP0(π), MP1(π)) = (c′, d) where c′ > c, and π does not contain any
(c, d)ϵ-bad vertex. A play π is called a witness for ASVϵ(v) > c if it is a (c′, d)ϵ-witness for
ASVϵ(v) > c for some c′, d. We now show that polynomial-size witnesses for ASVϵ > c exist:

▶ Theorem 7. For all mean-payoff games G, for all vertices v in G, for all ϵ > 0, and c ∈ Q,
we have that ASVϵ(v) > c if and only if there exists a (c′, d)ϵ-witness of ASVϵ(v) > c, where
d ∈ Q. Furthermore, the (c′, d)ϵ-witness can be chosen as a regular witness π = u · vω, where
u and v are finite paths of polynomial size.

Proof sketch. We consider only the left to right direction here since the other direction
of the proof is similar to showing that existence of a witness for ASV(v) > c implies
ASV(v) > c [1]. We are given that ASVϵ(v) > c. First we show that ASVϵ(v) > c iff there
exists a strategy σ0 of Player 0 such that ASVϵ(σ0)(v) > c. Thus, there exists a δ > 0, such
that inf

σ1∈BRϵ
1(σ0)

MP0(Outv(σ0, σ1)) = c′ = c + δ Let d = sup
σ1∈BRϵ

1(σ0)
MP1(Outv(σ0, σ1)). We

show that for all σ1 ∈ BRϵ
1(σ0), we have that Outv(σ0, σ1) does not cross a (c, d)ϵ-bad vertex.

We then consider a sequence (σi)i∈N of Player 1 strategies such that σi ∈ BRϵ
1(σ0) for all

i ∈ N, and lim
i→∞

MP1(Outv(σ0, σi)) = d. Let πi = Outv(σ0, σi). W.l.o.g., we can have that all
the plays Outv(σ0, σi) end up in the same SCC, say S.

Now using the fact that Fmin(CH(C(S))) is a closed set, and using a result from [8, 5]
which states that for every pair of points (x, y) in Fmin(CH(C(S))), there exists a play π

in the SCC S such that (MP0(π), MP1(π)) = (x, y), we can show that there exists a play
π∗ ∈ Outv(σ0) with (MP0(π∗), MP1(π∗)) = (c∗, d) and c∗ ⩾ c′. That π∗ is a (c∗, d)ϵ-witness
now follows since the vertices appearing in π∗ are not (c, d)ϵ-bad. We have thus shown
that if ASVϵ(v) > c, then there exists a (c∗, d)ϵ-witness. Finally, by using the Carathéodory
baricenter theorem, we show that two simple cycles, and three acyclic finite plays suffice to
construct a regular witness. ◀

The following statement can be obtained by exploiting the existence of finite regular
witnesses of polynomial size proved above.
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▶ Theorem 8. For all mean-payoff games G, for all vertices v in G, for all ϵ > 0, and
for all c ∈ Q, it can be decided in nondeterministic polynomial time if ASVϵ(v) > c, and a
pseudopolynomial memory strategy of Player 0 suffices for this threshold. Furthermore, this
decision problem is at least as hard as solving zero-sum mean-payoff games.

As a corollary of Theorem 8, we can deduce that the ϵ-adversarial Stackelberg value
achievable using finite memory strategies which defined as :

ASVϵ
FM(v) = sup

σ0∈ΣFM
0

inf
σ1∈BRϵ

1 (σ0)
MP0(Outv(σ0, σ1))

where ΣFM
0 refers to the set of all finite memory strategies of Player 0, is equal to ASVϵ:

▶ Corollary 9. For all games G, for all vertices v in G, and for all ϵ > 0, we have that
ASVϵ

FM(v) = ASVϵ(v).

This corollary is important from a practical point of view as it implies that the ASVϵ

value can be approached to any precision with a finite memory strategy. Nevertheless, we
show in Theorem 16 that infinite memory is necessary to achieve the exact ASVϵ.

Memoryless strategies of Player 0. We now establish that the threshold problem is
NP-complete when Player 0 is restricted to play memoryless strategies. First we define

ASVϵ
ML(v) = sup

σ0∈ΣML
0

inf
σ1∈BRϵ

1 (σ0)
MP0(Outv(σ0, σ1))

where ΣML
0 is the set of all memoryless strategies of Player 0.

▶ Theorem 10. For all mean-payoff games G, for all vertices v in G, for all ϵ > 0, and for
all rationals c, the problem of deciding if ASVϵ

ML(v) > c is NP-Complete.

The proof of hardness is a reduction from the partition problem while easiness is straightfor-
wardly obtained by techniques used in the proof of Theorem 8.

5 Computation of the ASVϵ and the largest ϵ possible

Here, we express the ASVϵ as a formula in the theory of reals by adapting a method provided
in [8] for ASV. We then provide a new EXPTime algorithm to compute the ASVϵ based on
construction of linear programs (LPs) which in turn is applicable to ASV as well.

Extended mean-payoff game. Given a mean-payoff game G with a set V of vertices in its
arena, we construct an extended mean-payoff game Gext, whose arena consists of vertices
V ext = V × 2V . With a history h in G, we associate a vertex in Gext which is a pair (v, P ),
where v = last(h) and P is the set of the vertices traversed along h. The set Eext of edges,
and the weight functions wext

i for i ∈ {0, 1} are defined as Eext = {((v, P ), (v′, P ′)) | (v, v′) ∈
E, P ′ = P ∪ {v′}} and wext

i ((v, P ), (v′, P ′)) = wi(v, v′) respectively. There exists a bijection
between the plays π in G and the plays πext in Gext. Note that the second component of the
vertices of the play πext stabilises into a set of vertices of G which we denote by V ∗(πext).

We characterize ASVϵ(v) with the notion of witness introduced earlier and the decompos-
ition of Gext into SCCs. For a vertex v in V , let SCCext(v) be the set of strongly-connected
components in Gext which are reachable from (v, {v}).
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▶ Lemma 11. For all mean-payoff games G and for all vertices v in G, we have

ASVϵ(v) = max
S∈SCCext(v)

sup{c ∈ R |∃πext : πext is a witness for ASVϵ(v, {v}) > c

and V ∗(πext) = S}.

By definition of Gext, for every SCC S of Gext, there exists a set V ∗(S) of vertices
of G such that every vertex of S is of the form (v′, V ∗(S)), where v′ is a vertex in G.
Now, we define Λext

S =
⋃

v∈V ∗(S) Λϵ(v) as the set of (c, d) such that Player 1 can ensure
v ⊨≪ 1 ≫ MP0 ⩽ c ∧ MP1 > d − ϵ from some vertex v ∈ S. The set Λext

S can be represented
by a formula Ψϵ

S(x, y) in the first order theory of reals with addition, ⟨R, +, <⟩, with two
free variables. We refer the reader to [1] for a formal statement and a proof of this. We can
now state the following theorem about the computability of ASVϵ(v):

▶ Theorem 12. For all mean-payoff games G, for all vertices v in G and for all ϵ > 0, the
ASVϵ(v) can be effectively expressed by a formula in ⟨R, +, <⟩, and can be computed from this
formula. Furthermore, the formula can be effectively transformed into exponentially many
linear programs which establish membership in EXPTime.

Proof sketch. Using Lemma 11, we have that for every S in SCCext(v), a value of c such
that ASVϵ(v) > c can be encoded by the formula ρS

v (c) ≡ ∃x, y · x > c ∧ ΦS(x, y) ∧ ¬Ψϵ
S(c, y)

where the formula ΦS(x, y) expresses the symbolic encoding of the pair of values (x, y) which
represents the mean-payoff values of some play in S, and the formula ¬Ψϵ

S(c, y) expresses that
the play does not cross a (c, y)ϵ-bad vertex. We then construct a formula ρS

max,v(z) which is
satisfied by a value that is the supremum over the set of values c such that c satisfies the
formula ρS

v . From the formula ρS
max,v, we can compute the ASVϵ(v) by quantifier elimination,

and by finding the maximum across all the SCCs S in SCCext(v).
For the EXPTime algorithm, first note that for each SCC S in Gext, the set satisfying the

formula ΦS(x, y), which is the symbolic encoding of Fmin(CH(C(S))), can be expressed as a
set of exponentially many inequalities [5]. Also the formula Ψϵ

S(x, y) can be expressed using
exponentially many LPs. We refer the interested reader to [1] for more details. It follows that
the formula ρS

v (c) can be expressed with exponentially many LPs. In each LP, the objective
is to maximize c. The algorithm runs in EXPTime since there can be exponentially many
SCCs. ◀

▶ Example 13. We illustrate the computation of ASVϵ with an example. Consider the
mean-payoff game G depicted in Figure 4 and its extension Gext as shown in Figure 5.

Note that in Gext there exist three SCCs which are S1 = {v′
02 , v′

1}, S2 = {v′
21}, and

S3 = {v′
22}. The SCCs S2 and S3 are similar, and thus ρS2

max,v0
(z) and ρS3

max,v0
(z) would be

equivalent. We start with SCC S1 that contains two cycles v′
1 → v′

1 and v′
02 → v′

1, v′
1 → v′

02 ,
and SCC S2 contains one cycle v′

21 → v′
21 . Since S3 is similar to S2, we consider only S2 in our

example. Thus, the set Fmin(CH(C(S1))) is represented by the Cartesian points within the
triangle represented by (0, 2), (1, 1) and (0, 1) 5 and Fmin(CH(C(S2))) = {(0, 1)}. Thus, we get
that ΦS1(x, y) ≡ (x ⩾ 0∧x ⩽ 1)∧ (y ⩾ 1∧y ⩽ 2)∧ (x+y) ⩽ 2 and ΦS2(x, y) ≡ x = 0∧y = 1.
Now, we calculate Λϵ(v′

02), Λϵ(v′
21) and Λϵ(v′

1) for some value of ϵ less tan 1. We note that the
vertex v′

1 is not (0, 2 + ϵ − δ)ϵ-bad, for all 0 < δ < 1, as Player 0 can always choose the edge
(v′

1, v′
02) from v′

1, thus giving Player 1 a mean-payoff of 1. Additionally, the vertex v′
02 is both

(0, 1 + ϵ − δ)ϵ-bad, for all δ > 0, since Player 1 can choose the edge (v′
02 , v′

22) from v′
02 , and

5 Note that the coordinate (0, 1) is obtained as the pointwise minimum over the two coordinates separately.
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v0v1 v2

start

(1,1)

(0,1)

(0,2)
(1,1)

(0,1)

Figure 4 Example to calculate
ASVϵ(v).

v′
02v′

1

v′
01

v′
22

v′
21start

(1,1)

(0,1)

(1,1)

(0,1)

(0,2)
(1,1)

(0,1)

(0,1)

Figure 5 Extended Mean-Payoff Game where v′
01 =

(v0, {v0}), v′
02 = (v0, {v0, v1}), v′

1 = (v1, {v0, v1}),
v′

21 = (v1, {v0, v2}), and v′
22 = (v2, {v0, v1, v2}).

x

y

P1(0, 2)

P2(1, 1)P3(0, 1)

Figure 6 The red
triangle represents the
set of points in ΦS1 .

x

y

(0, 1 + ϵ)

Figure 7 The blue
region under and ex-
cluding the line y =
(1 − ϵ) represents the
set of points in Ψϵ

S1 and
Ψϵ

S2 .

x

y

P1(0, 2)

P2(1, 1)P3(0, 1)

A(1 − ϵ, 1 + ϵ)
(0, 1 + ϵ)

Figure 8 The formula ρS1 (c) is represented
by the points in ΦS1 and not in Ψϵ

S1 , i.e., the
points in the triangle which are not strictly
below the line y = (1 − ϵ). Here, the max c

value is represented by point A.

(1, 1 + ϵ − δ)ϵ-bad, for all δ > 0, since Player 1 can choose the edge (v′
02 , v′

1) from v′
02 . Thus,

we get that Λϵ(v′
1) = Λϵ(v′

02) = {(c, d) | (c ⩾ 1 ∧ d < 1 + ϵ)}
⋃

{(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}
which is the same as {(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}, and Λϵ(v′

21) = {(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}.
Therefore, we have that Λext

S1
= Λext

S2
= {(c, d) | (c ⩾ 0 ∧ d < 1 + ϵ)}. Hence, we get that

Ψϵ
S1

(x, y) = Ψϵ
S2

(x, y) ≡ (x ⩾ 0∧y < 1 + ϵ) as shown in Figure 7. From Figure 8, the formula
ρS1(c) holds true for values of c less than (1 − ϵ) and the formula ρS2(c) holds for values of c

less than 0. Hence, by assigning (1 − ϵ) to x, and (1 + ϵ) to y, we get that ρS1
max,v0

(z) holds
true for z = (1 − ϵ). Additionally, by assigning 0 to x, and 1 to y, we get that ρS2

max,v0
(z)

holds true for z = 0. It follows that ASVϵ(v0) = 1 − ϵ for ϵ < 1 as it is the maximum of the
values over all the SCCs. ◀

We now illustrate the LP formulation for ρS
v (c) for each SCC S with the following example,

and provide details for computing ASVϵ(v0).

▶ Example 14. We previously showed that the ASVϵ(v0) can be computed by quantifier
elimination of a formula in the theory of reals with addition. Now, we compute the ASVϵ(v0)
by solving a set of linear programs for every SCC in Gext. We recall that there are three
SCCs S1, S2 and S3 in Gext. From a result in [5], we have that Fmin(CH(C(Si))) for i ∈
{1, 2, 3} can be defined using a set of linear inequalities. Now recall that Fmin(CH(C(S2)) =
Fmin(CH(C(S3))) = {(0, 1)}, and Fmin(CH(C(S1))) is represented by the set of points enclosed
by the triangle formed by connecting the points (0, 1), (1, 1) and (0, 2) as shown in Figure 6,
and Λϵ(v′

02) = Λϵ(v′
21) = Λϵ(v′

22) = Λϵ(v′
1) = {(c, y) | c ⩾ 0 ∧ y < 1 + ϵ}. Now, we consider the
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SCC S1, and the formula ¬Ψϵ
S1

. We start this by finding the complement of Λϵ(v′
02) and Λϵ(v′

1),
that is, Λϵ(v′

02) = Λϵ(v′
1) = R × R − Λϵ(v′

02) = R × R − Λϵ(v′
1) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ}.

Now, we get that ¬Ψϵ
S1

= Λϵ(v′
02)

⋂
Λϵ(v′

1) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ}.
Similarly for the SCC S2 and SCC S3, we calculate the complement of Λϵ(v′

21) and Λϵ(v′
22),

that is, Λϵ(v′
22) = Λϵ(v′

21) = R×R− Λϵ(v′
21) = R×R− Λϵ(v′

22) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ}
and obtain ¬Ψϵ

S2
= Λϵ(v′

21) = {(c, y) | c < 0 ∨ y ⩾ 1 + ϵ} and ¬Ψϵ
S3

= Λϵ(v′
22) = {(c, y) | c <

0 ∨ y ⩾ 1 + ϵ}. Note that the formulaes ΦS2(x, y) and ΦS3(x, y) are represented by the set
of linear inequations x = 0 ∧ y = 1 and the formula ΦS1(x, y) is represented by the set of
linear inequations y ⩾ 1 ∧ y ⩽ 2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2. Now the formula ρS1

v0
(c) can be

expressed using a set of linear equations and inequalities as follows: x > c ∧ y ⩾ 1 ∧ y ⩽
2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2 ∧ (c < 0 ∨ y ⩾ 1 + ϵ) and the formula ρS2

v0
(c) can be expressed using a

set of linear equations and inequalities as follows: x > c ∧ x = 0 ∧ y = 1 ∧ (c < 0 ∨ y ⩾ 1 + ϵ).
We maximise the value of c in the formula ρS1

v0
(c) to get the following two linear programs:

maximise c in (x > c ∧ y ⩾ 1 ∧ y ⩽ 2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2 ∧ c < 0) which gives a solution
{0} and maximise c in (x > c ∧ y ⩾ 1 ∧ y ⩽ 2 ∧ x ⩽ 1 ∧ (x + y) ⩽ 2 ∧ y ⩾ (1 + ϵ)) which gives
us a solution {(1 − ϵ)}. Similarly, maximising c in the formulaes ρS2

v0
(c) and ρS3

v0
(c) would

give us the following two linear programs: maximise c in (x > c ∧ x = 0 ∧ y = 1 ∧ c < 0)
which gives a solution {0} and maximise c in (x > c ∧ x = 0 ∧ y = 1 ∧ y ⩾ (1 + ϵ)) which
gives us a solution {0}. Thus, we conclude that ASVϵ(v0) = 1 − ϵ which is the maximum
value amongst all the SCCs. Note that in an LP, the strict inequalities are replaced with
non-strict inequalities, and computing the supremum in the objective function is replaced by
maximizing the objective function.

Again, for every SCC S and for every LP corresponding to that of S, we fix a value of
c and change the objective function to maximise ϵ from maximise c in order to obtain the
maximum value of ϵ that allows ASVϵ(v0) > c. For example, consider the LP (x > c ∧ y ⩾
1∧y ⩽ 2∧x ⩽ 1∧ (x+y) ⩽ 2∧y ⩾ (1+ϵ)) in SCC S1 and fix a value of c, and then maximize
the value of ϵ. Doing this over all linear programs in an SCC, and over all SCCs, reachable
from v0 for a fixed c gives us the supremum value of ϵ such that we have ASVϵ(v0) > c. ◀

On the other hand, we note that in every SCC S, the value c is a function of ϵ, for
illustration, in the example above, ρS1(c) holds true for values of c less than 1 − ϵ. Thus if
we fix a value of c, we can find the supremum over ϵ which allows ASVϵ(v) > c in S. Again,
taking the maximum over all SCCs reachable from (v, {v}) gives us the largest ϵ possible so
that we have ASVϵ(v) > c. We state the following corollary.

▶ Corollary 15. For all mean-payoff games G, for all vertices v in G, and for all c ∈ Q, we
can compute in EXPTime the maximum possible value of ϵ such that ASVϵ(v) > c.

6 Additional Properties of ASVϵ

In this section, we first show that the ASVϵ is achievable, i.e., there exists a Player 0 strategy
that achieves the ASVϵ. Then we study the memory requirement in strategies of Player 0
for achieving the ASVϵ, as well as the memory requirement by Player 1 for playing the
ϵ-best-responses.

Achievability of the ASVϵ. We formally define achievability as follows. Given ϵ > 0, we
say that ASVϵ(v) = c is achievable from a vertex v, if there exists a strategy σ0 for Player 0
such that ∀σ1 ∈ BRϵ

1(σ0) : MP0(Outv(σ0, σ1)) ⩾ c. We note that this result is in contrast to
the case for ASV as shown in [8].
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▶ Theorem 16. For all mean-payoff games G, for all vertices v in G, and for all ϵ > 0, we
have that the ASVϵ(v) is achievable.

The rest of this section is devoted to proving Theorem 16. We start by defining the
notion of a witness for ASVϵ(σ0)(v) for a strategy σ0 of Player 0.

Witness for ASVϵ(σ0)(v). Given a mean-payoff game G, a vertex v in G, and an ϵ > 0,
we say that a play π is a witness for ASVϵ(σ0)(v) > c for a strategy σ0 of Player 0 if
(i) π ∈ Outv(σ0), and (ii) π is a witness for ASVϵ(v) > c when Player 0 uses strategy σ0
where the strategy σ0 is defined as follows:
1. σ0 follows π if Player 1 does not deviate from π.
2. If Player 1 deviates π, then for each vertex v ∈ π, we have that σ0 consists of a memoryless

strategy that establishes v ⊭≪ 1 ≫ MP0 ⩽ c ∧ MP1 > d − ϵ, where d = MP1(π). The
existence of such a memoryless strategy of Player 0 has been established in Section 4.

Assume that the ASVϵ(v) cannot be achieved by a finite memory strategy. We show that
for such cases, it can indeed be achieved by an infinite memory strategy.

Let ASVϵ(v) = c. For every c′ < c, from Theorem 8, there exists a finite memory strategy
σ0 such that ASVϵ(σ0)(v) > c′, and recall from Theorem 7 that there exists a corresponding
regular witness. First we state the following proposition.

▶ Proposition 17. There exists a sequence of increasing real numbers, c1 < c2 < c3 < . . . < c,
such that the sequence converges to c, and a set of finite memory strategies σ1

0 , σ2
0 , σ3

0 , . . . of
Player 0 such that for each ci, we have ASVϵ(σi

0)(v) > ci, and there exists a play πi that is
a witness for ASVϵ(σi

0)(v) > ci, where πi = π1(lα·ki
1 · π2 · lβ·ki

2 · π3)ω, and π1, π2 and π3 are
simple finite plays, and l1, l2 are simple cycles in the arena of the game G.

These witnesses or plays in the sequence are regular, and they differ from each other only in
the value of ki that they use.

To show that lim
i→∞

ASVϵ(σi
0)(v) = c, we construct a play π∗ that starts from v, follows

π1 until the mean-payoff of Player 0 over the prefix becomes greater than c1. Then for
i ∈ {2, 3, . . . }, starting from first(l1), it follows πi, excluding the initial simple finite play π1,
until the mean-payoff of the prefix of πi becomes greater than ci. Then the play π∗ follows
the prefix of the play πi+1, excluding the initial finite play π1, and so on. Clearly, we have
that MP1(π∗) = c. We let MP1(π∗) = d = α · MP1(l1) + β · MP1(l2).

For the sequence of plays (πi)i∈N+ which are witnesses for (ASVϵ(σi
0)(v) > ci)i∈N+ for

the strategies (σi
0)i∈N+ , we let MP1(πi) = di. We state the following proposition.

▶ Proposition 18. The sequence (di)i∈N+ is monotonic, and it converges to d in the limit.

The above two propositions establish the existence of an infinite sequence of regular
witnesses ASVϵ(σi

0)(v) > ci for a sequence of increasing numbers c1 < c2 < . . . < c, such that
the mean-payoffs of the witnesses are monotonic and at the limit, the mean-payoffs of the
witnesses converge to c and d for Player 0 and Player 1 respectively. These observations show
the existence of a witness π∗ which gives Player 0 a mean-payoff value at least c and Player 1
a mean-payoff value equal to d. Assuming that Player 0 has a corresponding strategy σ0, we
show that Player 1 does not have an ϵ-best response to σ0 that gives Player 0 a payoff less
than c. Now, we have the ingredients to prove Theorem 16.

Proof sketch of Theorem 16. We consider a sequence of increasing numbers c1 < c2 < c3 <

. . . < c such that for every i ∈ N+, by Theorem 8, we consider a finite memory strategy σi
0

of Player 0 that ensures ASVϵ(σi
0)(v) > ci.
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v0v1 v2

start

(0,0)

(0,1)

(2,0)(0,2+2ϵ)
(0,0)

(0,1)

Figure 9 Finite memory strategy of Player 0 may not achieve ASVϵ(v0). Also, no finite memory
ϵ-best response exists for Player 1 for the strategy σ0 of Player 0.

If the ASVϵ is not achievable, then there exists a strategy of Player 1 to enforce some
play π′ such that MP0(π′) = c′ < c and MP1(π′) = d′ > d − ϵ. Now, we use the monotonicity
of the sequence (di)i∈N+ established in Proposition 18 to show a contradiction. Since the
sequence (di)i∈N+ is monotonic, there can be two cases:
1. The sequence (di)i∈N+ is monotonically non-decreasing.
2. The sequence (di)i∈N+ is monotonically decreasing.

For each of these cases, we reach a contradiction if we assume that ASVϵ(v) is not
achievable, i.e. Player 1 deviates from π∗ to enforce the play π′ where MP0(π′) = c′ < c and
MP1(π′) = d′. ◀

Memory requirements of the players’ strategies. First we show that there exists a mean-
payoff game G in which Player 0 needs an infinite memory strategy to achieve the ASVϵ.

▶ Theorem 19. There exist a mean-payoff game G, a vertex v in G, and an ϵ > 0 such that
Player 0 needs an infinite memory strategy to achieve the ASVϵ(v).

Proof sketch. Consider the example in Figure 9. We show that in this example the
ASVϵ(v0) = 1, and that this value can only be achieved using an infinite memory strategy.
Assume a strategy σ0 for Player 0 such that the game is played in rounds. In round k: (i) if
Player 1 plays v0 → v0 repeatedly at least k times before playing v0 → v1, then from v1,
play v1 → v1 repeatedly k times and then play v1 → v0 and move to round k + 1; (ii) else, if
Player 1 plays v0 → v0 less than k times before playing v0 → v1, then from v1 , play v1 → v0.
Note that σ0 is an infinite memory strategy. The best-response for Player 1 to strategy σ0
would be to choose k sequentially as k = 1, 2, 3, . . . , to get a play π = ((v0)i(v1)i)i∈N. We
have that MP1(π) = 1 + ϵ and MP0(π) = 1. Player 1 can only sacrifice an amount that is
less than ϵ to minimize the mean-payoff of Player 0, and thus he would not play v0 → v2.
We can show that ASVϵ(σ0)(v0) = ASVϵ(v0), and that no finite memory strategy of Player 0
can achieve an ASVϵ(v0) of 1. ◀

There also exist mean-payoff games in which a finite memory (but not memoryless)
strategy for Player 0 can achieve the ASVϵ.

Further, we show that there exist games such that for a strategy σ0 of Player 0, and an
ϵ > 0, there does not exist any finite memory best-response of Player 1 to the strategy σ0.

▶ Theorem 20. There exist a mean-payoff game G, an ϵ > 0, and a Player 0 strategy σ0 in
G such that every Player 1 strategy σ1 ∈ BRϵ

1(σ0) is an infinite memory strategy.
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Continuous Positional Payoffs
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Abstract
What payoffs are positionally determined for deterministic two-player antagonistic games on finite
directed graphs? In this paper we study this question for payoffs that are continuous. The main
reason why continuous positionally determined payoffs are interesting is that they include the
multi-discounted payoffs.

We show that for continuous payoffs positional determinacy is equivalent to a simple property
called prefix-monotonicity. We provide three proofs of it, using three major techniques of establishing
positional determinacy – inductive technique, fixed point technique and strategy improvement
technique. A combination of these approaches provides us with better understanding of the structure
of continuous positionally determined payoffs as well as with some algorithmic results.
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1 Introduction

We study games of the following kind. A game takes place on a finite directed graph. There
is a token, initially located in one of the nodes. Before each turn there is exactly one node
containing the token. In each turn one of the two antagonistic players called Max and Min
chooses an edge starting in a node containing the token. As a result the token moves to the
endpoint of this edge, and then the next turn starts. To determine who makes a move in a
turn we are given in advance a partition of the nodes into two sets. If the token is in a node
from the first set, then Max makes a move, otherwise Min.

Players make infinitely many moves, and this yields an infinite trajectory of the token.
Technically, we assume that each node of the graph has at least one out-going edge so that
there is always at least one available move. To introduce competitiveness, we should somehow
compare the trajectories of the token with each other. For that we first fix some finite set A
and label the edges of the game graph by elements of A. We also fix a payoff φ which is
a function from the set of infinite sequences of elements of A to R. Each possible infinite
trajectory of the token is then mapped to a real number called the reward of this trajectory
as follows: we form an infinite sequence of elements of A by taking the labels of edges along
the trajectory, and apply φ to this sequence. The larger the reward is the more Max is happy;
on the contrary, Min wants to minimize the reward.

For both of the players we are interested in indicating an optimal strategy, i.e., an optimal
instruction of how to play in all possible developments of the games. To point out among all
the strategies the optimal ones we first introduce a notion of a value of a strategy. The value
of a Max’s strategy σ is the infimum of the payoff over all infinite trajectories, consistent
with the strategy. The reward of a play against σ cannot be smaller than its value, but can
be arbitrarily close to it. Now, a strategy of Max is called optimal if its value is maximal over
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all Max’s strategies. Similarly, the value of a Min’s strategy is the supremum of the payoff
over all infinite trajectories, consistent with this Min’s strategy. Min’s strategies minimizing
the value are called optimal.

Observe that the value of any Min’s strategy is at least as large as the value of any Max’s
strategy. A pair (σ, τ) of a Max’s strategy σ and a Min’s strategy τ is called an equilibrium
if the value of σ equals the value of τ . Both strategies appearing in an equilibrium must be
optimal – one proves the optimality of the other. In this paper we only study the so-called
determined payoffs – payoffs for which all games on finite directed graphs with this payoff
have an equilibrium.

For general determined payoffs an optimal strategy might be rather complicated (since
the game is infinite, it might even have no finite description). For what determined payoffs
both players always have a “simple” optimal strategy? A word “simple” can be understood
in different ways [2], and this leads to different classes of determined payoffs. Among these
classes we study one for which “simple” is understood in, perhaps, the strongest sense possible.
Namely, we study a class of positionally determined payoffs.

For a positionally determined payoff all game graphs must have a pair of positional
strategies which is an equilibrium no matter in which node the game starts. Now, a positional
strategy is a strategy which totally ignores the previous trajectory of the token1 and only
looks at its current location. Formally, a positional strategy of Max maps each Max’s node
to an edge which starts in this node (i.e., to a single edge which Max will use whenever this
node contains the token). Min’s positional strategies are defined similarly.

A lot of works are devoted to concrete positionally determined payoffs that are of particular
interest in other areas of computer science. Classical examples of such payoffs are parity
payoffs, mean payoffs and (multi-)discounted payoffs [5, 21, 20, 23]. Their applications range
from logic, verification and finite automata theory [6, 12] to decision-making [22, 24] and
algorithm design [3].

Along with this specialized research, in [9, 10] Gimbert and Zielonka undertook a thorough
study of positionally determined payoffs in general. In [9] they showed that all the so-called
fairly mixing payoffs are positionally determined. They also demonstrated that virtually
all classical positionally determined payoffs are fairly mixing. Next, in [10] they established
a property of payoffs which is equivalent to positional determinacy. Despite being rather
technical, this property has a remarkable feature: if a payoff does not satisfy it, then this
payoff violates positional determinacy in some one-player game graph (where one of the
players owns all the nodes). As Gimbert and Zielonka indicate, this means that to establish
positional determinacy of a payoff it is enough to do so only for one-player game graphs.

One could try to gain more understanding about positionally determined payoffs that
satisfy certain additional requirements. Of course, this is interesting only if there are
practically important positionally determined payoffs that satisfy these requirements. One
such requirement studied in the literature is called prefix-independence [4, 8]. A payoff is
prefix-independent if it is invariant under throwing away any finite prefix from an infinite
sequence of edge labels. For instance, the parity and the mean payoffs are prefix-independent.

In [9] Gimbert and Zielonka briefly mention another interesting additional requirement,
namely, continuity. They observe that the multi-discounted payoffs are continuous (they
utilize this in showing that the multi-discounted payoffs are fairly mixing). In this paper
we study continuous positionally determined payoffs in more detail. Continuity of a payoff,

1 In particular, a node in which the game has started.
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loosely speaking, means that its range converges to just a single point as more and more
initial characters of an infinite sequence of edge labels are getting fixed. This contrasts with
prefix-independent payoffs (such as the parity and the mean payoffs), for which any initial
finite segment is irrelevant. Thus, continuity serves as a natural property which separates
the multi-discounted payoffs from the other classical positionally determined payoffs. This is
our main motivation to study continuous positionally determined payoffs in general, besides
the general importance of the notion of continuity.

We show that for continuous payoff positional determinacy is equivalent to a simple
property which we call prefix-monotonicity. Loosely speaking, prefix-monotonicity means the
result of a comparison of the payoff on two infinite sequences of labels does not change after
appending or deleting the same finite prefix. In fact, we prove this result in three different
ways, using three major techniques of establishing positional determinacy:

An inductive argument. Here we use a sufficient condition of Gimbert and Zielonka [9],
which is proved by induction on the number of edges of a game graph. This type of
argument goes back to a paper of Ehrenfeucht and Mycielski [5], where they provide an
inductive proof of the positional determinacy of the Mean Payoff Games.
A fixed point argument. Then we give a proof which uses a fixed point approach due to
Shapley [23]. Shapley’s technique is a standard way of establishing positional determinacy
of Discounted Games. In this argument one derives positional determinacy from the
existence of a solution to a certain system of equations (sometimes called Bellman’s
equations). In turn, to establish the existence of a solution one uses Banach’s fixed point
theorem.
A strategy improvement argument. For Discounted Games the existence of a solution to
Bellman’s equations can also be proved by strategy improvement. This technique goes
back to Howard [16]; for its thorough treatment (as well as for its applications to other
payoffs) we refer the reader to [7]. We generalize it to arbitrary continuous positionally
determined payoffs.

The simplest way to obtain our main result is via the inductive argument (at the cost of
appealing without a proof to the results of Gimbert and Zielonka). We provide two other
proofs for the following reasons.

First, they have applications (and it is unclear how to get these applications within
the framework of the inductive approach). The fixed point approach provides a precise
understanding of what do continuous positionally determined payoffs look like in general. In
the full version of this paper [19] we use this to answer a question of Gimbert [8] regarding
positional determinacy in more general stochastic games. In turn, the strategy improvement
approach has algorithmic consequences. More specifically, we show that a problem of finding
a pair of optimal positional strategies is solvable in randomized subexponential time for any
continuous positionally determined payoff.

Second, as far as we know, these two approaches were never used in such an abstract
setting before. Thus, we believe that our paper makes a useful addition to these approaches
from a technical viewpoint. For example, the main problem for the fixed point approach is
to identify a metric with which one can carry out the same “contracting argument” as in
the case of multi-discounted payoffs. To solve it, we obtain a result of independent interest
about compositions of continuous functions. As for the strategy improvement approach, our
main contribution is a generalization of such well-established tools as “modified costs” and
“potential transformation lemma” [15, Lemma 3.6].
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Organization of the paper. In Section 2 we formalize the concepts discussed in the
introduction. Then in Sections 3–6 we expose our results in more detail. In Section 7
we indicate some possible future directions. Most of the proofs are omitted due to space
constraints. In this version we provide only one of the three proofs of our main result
completely (namely, one by the induction argument). Missing proofs can be found in the full
version of this paper [19].

2 Preliminaries

We denote the function composition by ◦.

Sets and sequences. For two sets A and B by AB we denote the set of all functions from
B to A (sometime we will interpret AB as the set of vectors consisting of elements of A and
with coordinates indexed by elements of B). We write C = A ⊔B for three sets A,B,C if A
and B are disjoint and C = A ∪B.

For a set A by A∗ we denote the set of all finite sequences of elements of A and by Aω

we denote the set of all infinite sequences of elements of A. For w ∈ A∗ we let |w| be the
length of w. For α ∈ Aω we let |α| = ∞.

For u ∈ A∗ and v ∈ A∗ ∪ Aω we let uv denote the concatenation of u and v. We call
u ∈ A∗ a prefix of v ∈ A∗ ∪ Aω if for some w ∈ A∗ ∪ Aω we have v = uw. For w ∈ A∗ by
wAω we denote the set {wα | α ∈ Aω}. Alternatively, wAω is the set of all β ∈ Aω such that
w is a prefix of β.

For u ∈ A∗ and k ∈ N we use a notation

uk = uu . . . u︸ ︷︷ ︸
k times

.

In turn, we let uω ∈ Aω be a unique element of Aω such that uk is a prefix of uω for every
k ∈ N. We call α ∈ Aω ultimately periodic if α is a concatenation of u and vω for some
u, v ∈ A∗.

Graphs notation. By a finite directed graph G we mean a pair G = (V,E) of two finite
sets V and E equipped with two functions source, target : E → V . Elements of V are called
nodes of G and elements of E are called edges of G. For an edge e ∈ E we understand
source(e) (respectively, target(e)) as the node in which e starts (respectively, ends). We allow
parallel edges; i.e., there might be two distinct edges e, e′ ∈ E with source(e) = source(e′),
target(e) = target(e′). We allow self-loops as well (i.e., edges with source(e) = target(e)).

The out-degree of a node a ∈ V is |{e ∈ E | source(e) = a}|. A node a ∈ V is called a
sink if its out-degree is 0. We call a graph G sinkless if there are no sinks in G.

A path in G is a non-empty (finite or infinite) sequence of edges of G with a property
that target(e) = source(e′) for any two consecutive edges e and e′ from the sequence. For a
path p we define source(p) = source(e), where e is the first edge of p. For a finite path p we
define target(p) = target(e′), where e′ is the last edge of p.

For technical convenience we also consider 0-length paths. Each 0-length path is associated
with some node of G (so that there are |V | different 0-length paths). For a 0-length path p,
associated with a ∈ V , we define source(p) = target(p) = a.

When we write pq for two paths p and q we mean the concatenation of p and q (viewed
as sequences of edges). Of course, this is well-defined only if p is finite. Note that pq is not
necessarily a path. Namely, pq is a path if and only if target(p) = source(q).
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2.1 Deterministic infinite duration games on finite directed graphs

Mechanics of the game. By a game graph we mean a sinkless finite directed graph
G = ⟨V,E, source, target⟩, equipped with two sets VMax and VMin such that V = VMax ⊔VMin.

A game graph G = ⟨V = VMax ⊔ VMin, E, source, target⟩ induces a so-called infinite
duration game (IDG for short) on G. The game is always between two players called Max
and Min. Positions of the game are finite paths in G (informally, these are possible finite
trajectories of the token). We call a finite path p a Max’s (a Min’s) position if target(p) ∈ VMax
(if target(p) ∈ VMin). Max makes moves in Max’s positions and Min makes moves in Min’s
positions. We do not indicate any position as the starting one – it can be any node of G.

The set of moves available at a position p is the set {e ∈ E | source(e) = target(p)}. A
move e from a position p leads to a position pe.

A Max’s strategy σ in a game graph G is a mapping assigning to every Max’s position p a
move available at p. Similarly, a Min’s strategy τ in a game graph G is a mapping assigning
to every Min’s position p a move available at p.

Let P = e1e2e3 . . . be an infinite path in G. We say that P is consistent with a Max’s
strategy σ if the following conditions hold:

if s = source(P) ∈ VMax, then σ(s) = e1;

for every i ≥ 1 it holds that target(e1e2 . . . ei) ∈ VMax =⇒ ei+1 = σ(e1e2 . . . ei).
For a ∈ V and for a Max’s strategy σ we let Cons(a, σ) be a set of all infinite paths in G that
start in a and are consistent with σ. We use similar terminology and notation for strategies
of Min.

Given a Max’s strategy σ, a Min’s strategy τ and a ∈ V , we let the play of σ and τ from
a be a unique element of the intersection Cons(a, σ) ∩ Cons(a, τ). The play of σ and τ from
a is denoted by Pσ,τ

a .

Positional strategies. A Max’s strategy σ in a game graph G = ⟨V = VMax ⊔
VMin, E, source, target⟩ is called positional if σ(p) = σ(q) for all finite paths p and q in
G with target(p) = target(q) ∈ VMax. Clearly, a Max’s positional strategy σ can be repres-
ented as a mapping σ : VMax → E satisfying source(σ(u)) = u for all u ∈ VMax. We define
Min’s positional strategies analogously.

We call an edge e ∈ E consistent with a Max’s positional strategy σ if either source(e) ∈
VMin or source(e) ∈ VMax, e = σ(source(e)). We denote the set of edges that are consistent
with σ by Eσ. If τ is a Min’s positional strategy, then we say that an edge e ∈ E is consistent
with τ if either source(e) ∈ VMax or source(e) ∈ VMin, e = τ(source(e)). The set of edges that
are consistent with a Min’s positional strategy τ is denoted by Eτ .

Labels and payoffs. Let A be a finite set. A game graph G = ⟨, V = VMax ⊔
VMin, E, source, target⟩ equipped with a function lab : E → A is called an A-labeled game
graph. If p = e1e2e3 . . . is a (finite or infinite) path in an A-labeled game graph G = ⟨V =
VMax ⊔ VMin, E, source, target, lab⟩, we define lab(p) = lab(e1)lab(e2)lab(e3) . . . ∈ A∗ ∪Aω. A
payoff is a bounded function from Aω to R. Some papers allow A to be infinite and consider
only infinite sequences that contain finitely many elements of A (as any game graph contains
only finitely many labels). So basically we just have to deal with finite subsets of A, and this
can be done with our approach.
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Values, optimal strategies and equilibria. Let A be a finite set, φ : Aω → R be a payoff
and G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game graph. Take a Max’s
strategy σ in G. The value of σ in a node a ∈ V is the following quantity:

Val[σ](a) = inf φ ◦ lab
(
Cons(a, σ)

)
.

Similarly, if τ is a Min’s strategy in G, then the value of τ in a node a ∈ V is the following
quantity:

Val[τ ](a) = supφ ◦ lab
(
Cons(a, τ)

)
.

A Max’s strategy σ is called optimal if Val[σ](a) ≥ Val[σ′](a) for any a ∈ V and for any
Max’s strategy σ′. Similarly, A Min’s strategy τ is called optimal if Val[τ ](a) ≤ Val[τ ′](a) for
any a ∈ V and for any Min’s strategy τ ′.

Observe that for any Max’s strategy σ, for any Min’s strategy τ and for any a ∈ V we
have:

Val[σ](a) ≤ φ ◦ lab
(
Pσ,τ

a

)
≤ Val[τ ](a).

In particular, this inequality gives us the following. If a pair (σ, τ) of a Max’s strategy σ

and a Min’s strategy τ is such that Val[σ](a) = Val[τ ](a) for every a ∈ V , then both σ and
τ are optimal for their players. We call any pair (σ, τ) with Val[σ](a) = Val[τ ](a) for every
a ∈ V an equilibrium2. In fact, if at least one equilibrium exists, then the following holds:
the Cartesian product of the set of the optimal strategies of Max and the set of the optimal
strategies of Min is exactly the set of equilibria. We say that φ is determined if in every
A-labeled game graph there exists an equilibrium (with respect to φ).

Positionally determined payoffs . Let A be a finite set and φ : Aω → R be a payoff. We
call φ positionally determined if all A-labeled game graphs have (with respect to φ) an
equilibrium consisting of two positional strategies.

▶ Proposition 1. If A is a finite set, φ : Aω → R is a positionally determined payoff and
g : φ(Aω) → R is a non-decreasing3 function, then g ◦ φ is a positionally determined payoff.

2.2 Continuous payoffs
For a finite set A, we consider the set Aω as a topological space. Namely, we take the discrete
topology on A and the corresponding product topology on Aω. In this product topology
open sets are sets of the form

S =
⋃

u∈S

uAω,

where S ⊆ A∗. When we say that a payoff φ : Aω → R is continuous we always mean
continuity with respect to this product topology (and with respect to the standard topology
on R). The following proposition gives a convenient way to establish continuity of payoffs.

2 This definition is equivalent to a more standard one: (σ, τ) is an equilibrium if and only if σ is a “best
response” to τ in every node, and vice versa.

3 Throughout the paper we call a function f : S → R, S ⊆ R non-decreasing if for all x, y ∈ S with x ≤ y
we have f(x) ≤ f(y).
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▶ Proposition 2. Let A be a finite set. A payoff φ : Aω → R is continuous if and only if for
any α ∈ Aω and for any infinite sequence {βn}∞

n=1 of elements of Aω the following holds. If
for all n ≥ 1 the sequences α and βn coincide in the first n elements, then lim

n→∞
φ(βn) exists

and equals φ(α).

For a finite A by Tychonoff’s theorem the space Aω is compact (because any finite set
A with the discrete topology is compact). This has the following consequence which is
important for this paper: if φ : Aω → R is a continuous payoff, then φ(Aω) is a compact
subset of R.

3 Statement of the Main Result and Preliminary Discussion

Our main result establishes a simple property which is equivalent to positional determinacy
for continuous payoffs.

▶ Definition 3. Let A be a finite set. A payoff φ : Aω → R is called prefix-monotone if
there are no u, v ∈ A∗, β, γ ∈ Aω such that φ(uβ) > φ(uγ) and φ(vβ) < φ(vγ).

(One can note that prefix-independence trivially implies prefix-monotonicity. On the
other hand, no prefix-independent payoff which takes at least 2 values is continuous.)

▶ Theorem 4. Let A be a finite set and φ : Aω → R be a continuous payoff. Then φ is
positionally determined if and only if φ is prefix-monotone.

The fact that any continuous positionally determined payoff must be prefix-monotone4 is
proved in Appendix A. Three different proofs of the “if” part of Theorem 4 are discussed in,
respectively, Sections 4, 5 and 6. Before going into the proofs, let us discuss the notions of
continuity and prefix-monotonicity by means of the multi-discounted payoffs.

▶ Definition 5. A payoff φ : Aω → R for a finite set A is multi-discounted if there are
functions λ : A → [0, 1) and w : A → R such that

φ(a1a2a3 . . .) =
∞∑

n=1
λ(a1) · . . . · λ(an−1) · w(an) (1)

for all a1a2a3 . . . ∈ Aω.

A few technical remarks: since the set A is finite, the coefficients λ(a) are bounded away
from 1 uniformly over a ∈ A. This ensures that the series (1) converges. In fact, this
means that a tail of this series converges to 0 uniformly over a1a2a3 . . . ∈ Aω. Thus, the
multi-discounted payoffs are continuous. As the multi-discounted payoffs are positionally
determined, by Theorem 4 they also must be prefix-monotone. Of course, prefix-monotonicity
of the multi-discounted payoffs can be established without Theorem 4. Indeed, from (1) it is
easy to derive that φ(aβ) − φ(aγ) = λ(a) · (φ(β) − φ(γ)) for all a ∈ A, β, γ ∈ Aω. Due to
the condition λ(a) ≥ 0, we have that φ(aβ) > φ(aγ) implies that φ(β) > φ(γ). Moreover,
the same holds if we append more than one character to β and γ. Hence it is impossible
to simultaneously have φ(uβ) > φ(uγ) and φ(vβ) < φ(vγ) for u, v ∈ A∗, as required in the
definition of prefix-monotonicity.

4 Here it is crucial that in our definition of positional determinacy we require that some positional strategy
is optimal for all the nodes. Allowing each starting node to have its own optimal positional strategy
gives us a weaker, “non-uniform” version of positional determinacy. It is not clear whether non-uniform
positional determinacy implies prefix-monotonicity. At the same time, we are not even aware of a payoff
which is positional only “non-uniformly”.

CONCUR 2021
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4 Inductive Argument

Here we show that any continuous prefix-monotone payoff is positionally determined using a
sufficient condition of Gimbert and Zielonka [9, Theorem 1], which, in turn, is proved by
an inductive argument. As Gimbert and Zielonka indicate [9, Lemma 2], their sufficient
condition takes the following form for continuous payoffs5.

▶ Proposition 6. Let A be a finite set. Any continuous payoff φ : Aω → R, satisfying the
following two conditions:

(a) for all u ∈ A∗ and α, β ∈ Aω we have that φ(α) ≤ φ(β) =⇒ φ(uα) ≤ φ(uβ);
(b) for all non-empty u ∈ A∗ and for all α ∈ Aω we have that

min{φ(uω), φ(α)} ≤ φ(uα) ≤ max{φ(uω), φ(α)};

is positionally determined.

We observe that one can get rid of the condition (b) in this Proposition.

▶ Proposition 7. For continuous payoffs the condition (a) of Proposition 6 implies the
condition (b) of Proposition 6.

Proof. See Appendix B. ◀

So to establish positional determinacy of a continuous payoff it is enough to demonstrate
that this payoff satisfies the condition (a) of Proposition 6. Let us now reformulate this
condition using the following definition.

▶ Definition 8. Let A be a finite set. A payoff φ : Aω → R is called shift-deterministic if
for all a ∈ A, β, γ ∈ Aω we have φ(β) = φ(γ) =⇒ φ(aβ) = φ(aγ).

▶ Observation 9. Let A be a finite set. A payoff φ : Aω → R satisfies the condition (a) of
Proposition 6 if and only if φ is prefix-monotone and shift-deterministic.

The above discussion gives the following sufficient condition for positional determinacy.

▶ Proposition 10. Let A be a finite set. Any continuous prefix-monotone shift-deterministic
payoff φ : Aω → R is positionally determined.

Still, some argument is needed for continuous prefix-monotone payoffs that are not
shift-deterministic. To tie up loose ends we prove the following:

▶ Proposition 11. Let A be a finite set and let φ : Aω → R be a continuous prefix-monotone
payoff. Then φ = g ◦ ψ for some continuous prefix-monotone shift-deterministic payoff
ψ : Aω → R and for some continuous6 non-decreasing function g : ψ(Aω) → R.

Proof. See Appendix C. ◀

Due to Proposition 1 this finishes our first proof of Theorem 4. In fact, we do not need
continuity of g here, but it will be useful later.

5 Lemma 2 can only be found in the HAL version of their paper.
6 Throughout the paper we call a function f : S → R, S ⊆ Rn continuous if f is continuous with respect

to a restriction of the standard topology of Rn to S.
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5 Fixed point argument

Here we present a way of establishing positional determinacy of continuous prefix-monotone
shift-deterministic payoffs (Proposition 10) via a fixed point argument. Together with
Proposition 11 this constitutes our second proof of Theorem 4.

Obviously, for any shift-deterministic payoff φ : Aω → R and for any a ∈ A there is
a unique function shift[a, φ] : φ(Aω) → φ(Aω) such that shift[a, φ]

(
φ(β)

)
= φ(aβ) for all

β ∈ Aω.

▶ Observation 12. A shift-deterministic payoff φ : Aω → R is prefix-monotone if and only
if shift[a, φ] is non-decreasing for every a ∈ A.

We use this notation to introduce the so-called Bellman’s equations, playing a key role in
our fixed point argument.

▶ Definition 13. Let A be a finite set, φ : Aω → R be a shift-deterministic payoff and
G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game graph.

The following equations in x ∈ φ(Aω)V are called Bellman’s equations for φ in G:

xu = max
e∈E,source(e)=u

shift[lab(e), φ]
(
xtarget(e)

)
, for u ∈ VMax, (2)

xu = min
e∈E,source(e)=u

shift[lab(e), φ]
(
xtarget(e)

)
, for u ∈ VMin. (3)

The most important step of our argument is to show the existence of a solution to
Bellman’s equations.

▶ Proposition 14. For any finite set A, for any continuous prefix-monotone shift-deterministic
payoff φ : Aω → R and for any A-labeled game graph G there exists a solution to Bellman’s
equations for φ in G.

(One can also show the uniqueness of a solution, but we do not need this for the argument).
This proposition requires some additional work, and we first discuss how to derive

positional determinacy of continuous prefix-monotone shift-deterministic payoffs from it.
Assume that we are give a solution x to (2–3). How can one extract an equilibrium of
positional strategies from it? For that we take any pair of positional strategies that use
only x-tight edges. Now, an edge e is x-tight if xsource(e) = shift[a, φ](xtarget(e)). Note
that each node must contain an out-going x-tight edge (this will be any edge on which
the maximum/minimum in (2–3) is attained for this node). So clearly each player has at
least one positional strategy which only uses x-tight edges. It remains to show that for
continuous prefix-monotone shift-deterministic φ any two such strategies of the players form
an equilibrium.

▶ Lemma 15. If A is a finite set, φ : Aω → R is a continuous prefix-monotone shift-
deterministic payoff, and x ∈ φ(Aω)V is a solution to (2–3) for an A-labeled game graph
G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩, then the following holds. Let σ∗ be a positional
strategy of Max and τ∗ be a positional strategy of Min such that σ∗(VMax) and τ∗(VMin)
consist only of x-tight edges. Then (σ∗, τ∗) is an equilibrium in G.

We now proceed to details of our proof of Proposition 14. Consider a function
T : φ(Aω)V → φ(Aω)V , mapping x ∈ φ(Aω)V to the vector of the right-hand sides of
(2–3). We should argue that T has a fixed point. For that we will construct a continuous
metric D : φ(Aω)V × φ(Aω)V → [0,+∞) with respect to which T is contracting. More
precisely, D(Tx, Ty) will always be smaller than D(x,y) as long as x and y are distinct.
Due to the compactness of the domain of T this will prove that T has a fixed point.
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10:10 Continuous Positional Payoffs

Now, to construct such D we show that for continuous shift-deterministic φ there must
be a continuous metric d : φ(Aω) × φ(Aω) → [0,+∞) such that for all a ∈ A the function
shift[a, φ] is d-contracting. Once we have such d, we let D(x,y) be the maximum of
d(xa,ya) over a ∈ V . Checking that T is contracting with respect to such D will be rather
straightforward (technically, we will need an additional property of d which can be derived
from the prefix-monotonicity of φ).

The main technical challenge is to prove the existence of d. In the full version of this
paper we do so via the following general fact about compositions of continuous functions.

▶ Theorem 16. Let K ⊆ R be a compact set, m ≥ 1 be a natural number and f1, . . . , fm : K →
K be m continuous functions. Then the following two conditions are equivalent:

(a) for any a1a2a3 . . . ∈ {1, 2, . . . ,m}ω we have limn→∞ diam
(
fa1 ◦fa2 ◦ . . .◦fan

(K)
)

= 0
(by diam(S) for S ⊆ R we mean supx,y∈S |x− y|);
(b) there exists a continuous metric d : K ×K → [0,+∞) such that f1, f2, . . . , fm are all
d-contracting (a function h : K → K is called d-contracting if for all x, y ∈ K with x ≠ y

we have d(h(x), h(y)) < d(x, y)).
If f1, . . . , fm are non-decreasing, then one can strengthen item (b) by demanding that
d satisfies the following property: for all x, y, s, t ∈ K with x ≤ s ≤ t ≤ y we have
d(s, t) ≤ d(x, y).

Namely, we apply this theorem to the functions shift[a, φ] for a ∈ A (for that we first
show that the continuity of φ implies that these functions satisfy item (a) of Theorem 16).

Applications of the fixed point technique
Theorem 16 additionally provides an exhaustive method of generating continuous positionally
determined payoffs.

▶ Theorem 17. Let m be a natural number. The set of continuous positionally determined
payoffs from7 {1, 2, . . . ,m}ω to R coincides with the set of φ that can be obtained in the
following 5 steps.

Step 1. Take a compact set K ⊆ R.
Step 2. Take a continuous metric d : K ×K → [0,+∞).
Step 3. Take m non-decreasing d-contracting functions f1, f2, . . . , fm : K → K (they
will automatically be continuous due to continuity of d).
Step 4. Define ψ : {1, . . . ,m}ω → K so that

{ψ(a1a2a3 . . .)} =
∞⋂

n=1
fa1 ◦ fa2 ◦ . . . ◦ fan

(K)

for every 8 a1a2a3 . . . ∈ {1, 2, . . . ,m}ω.
Step 5. Choose a continuous non-decreasing function g : ψ({1, 2, . . . ,m}ω) → R and set
φ = g ◦ ψ.

▶ Remark 18. Recall that we did not use continuity of g from Proposition 11 in the inductive
argument. It becomes important for Theorem 17 – otherwise we could not argue that all
continuous positionally payoffs can be obtained in these 5 steps.

7 Of course, in this theorem a set of labels can be any finite set, we let it be {1, 2, . . . , m} for some m ∈ N
just to simplify the notation.

8 Note that this intersection always consists of a single point due to Cantor’s intersection theorem and
item (a) of Theorem 16. This will also be limn→∞ fa1 ◦ fa2 ◦ . . . ◦ fan (x) for any x ∈ K.
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We get the multi-discounted payoffs when the functions f1, f2, . . . , fm are affine, each
with the slope from [0, 1). In this case they will be contracting with respect to a standard
metric d(x, y) = |x − y|. We get the whole set of continuous positionally determined
payoffs by relaxing the multi-discounted payoffs in the following three regards: (a) functions
f1, f2, . . . , fm do not have to be affine; (b) d can be an arbitrary continuous metric; (c) any
continuous non-decreasing function g can be applied to a payoff.

We use Theorem 17 to construct a continuous positionally determined payoff which does
not “reduce” to the multi-discounted ones, in a sense of the following definition.

▶ Definition 19. Let A be a finite set, φ,ψ : Aω → R be two payoffs, and G be an A-labeled
game graph. We say that φ positionally reduces to ψ inside G if any pair of positional
strategies in G which is an equilibrium for ψ is also an equilibrium for φ.

This definition has an algorithmic motivation. Namely, note that finding a positional
equilibrium for ψ in G is at least as hard as for φ, provided that φ reduces to ψ inside
G. There are classical reductions from Parity to Mean Payoff games [17] and from Mean
Payoff to Discounted games [25] that work in exactly this way. See also [11] for a reduction
from Priority Mean Payoff games to Multi-Discounted games. As far as we know, our next
proposition provides the first example of a positionally determined payoff which does not
reduce to the multi-discounted ones in this sense.

▶ Proposition 20. There exist a finite set A, a continuous positionally determined payoff
φ : Aω → R and an A-labeled game graph G such that there exists no multi-discounted payoff
to which φ reduces inside G.

Proposition 20 means, in particular, that there exists a continuous positionally determined
payoff which differs from all the multi-discounted ones (as was stated in Section 3). This fact
alone can be used to disprove a conjecture of Gimbert [8]. Namely, Gimbert conjectured the
following: “Any payoff function which is positional for the class of non-stochastic one-player
games is positional for the class of Markov decision processes”. To show that this is not the
case, in the full version of this paper [19] we establish that all continuous payoffs that are
positionally determined in Markov decision processes are multi-discounted.

6 Strategy improvement argument

Here we establish the existence of a solution to Bellman’s equations (Proposition 14) via
the strategy improvement. This will yield our third proof of Theorem 4. We start with an
observation that a vector of values of a positional strategy always gives a solution9 to a
restriction of Bellman’s equations to edges that are consistent with this strategy.

▶ Lemma 21. Let A be a finite set, φ : Aω → R be a continuous prefix-monotone shift-
deterministic payoff and G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game
graph. Then for every positional strategy σ of Max in G we have:

Val[σ](u) = shift[lab(σ(u)), φ]
(

Val[σ]
(
target(σ(u))

))
for u ∈ VMax,

Val[σ](u) = min
e∈E,source(e)=u

shift[lab(e), φ]
(

Val[σ](target(e))
)

for u ∈ VMin.

9 Bellman’s equations involve the functions shift[a, φ] for a ∈ A, and these functions are defined on φ(Aω).
So formally we should argue that the values of any strategy belong to φ(Aω). Indeed, for continuous
φ the set φ(Aω) is compact and hence is closed, and all values are the infimums/supremums of some
subsets of φ(Aω).
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Next, take a positional strategy σ of Max. If the vector {Val[σ](u)}u∈V happens to
be a solution to the Bellman’s equations, then we are done. Otherwise by Lemma 21
there must exist an edge e ∈ E with source(e) ∈ VMax such that Val[σ](source(e)) <

shift[lab(e), φ]
(
Val[σ](target(e))

)
. We call edges satisfying this property σ-violating. We show

that switching σ to any σ-violating edge gives us a positional strategy which improves σ.

▶ Lemma 22. Let A be a finite set, φ : Aω → R be a continuous prefix-monotone shift-
deterministic payoff and G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game
graph. Next, let σ be a positional strategy of Max in G. Assume that the vector Val[σ] =
{Val[σ](u)}u∈V does not satisfy (2–3) and let e′ ∈ E be any σ-violating edge. Define a
positional strategy σ′ of Max as follows:

σ′(u) =
{
e′ u = source(e′),
σ(u) otherwise.

Then
∑

u∈V

Val[σ′](u) >
∑

u∈V

Val[σ](u).

By this lemma, a Max’s positional strategy σ∗ maximizing the quantity
∑

u∈V Val[σ](u) (over
positional strategies σ of Max) gives a solution to (2–3). Such σ∗ exists just because there are
only finitely many positional strategies of Max. This finishes our strategy improvement proof
of Proposition 14. Let us note that the same argument can be carried out with positional
strategies of Min (via analogues of Lemma 21 and Lemma 22 for Min).

Applications of the strategy improvement technique
In this subsection we discuss implications of our strategy improvement argument to the
strategy synthesis problem. Strategy synthesis for a positionally determined payoff φ is an
algorithmic problem of finding an equilibrium (with respect to φ) of two positional strategies
for a given game graph. It is classical that strategy synthesis for classical positionally
determined payoffs admits a randomized algorithm which is subexponential in the number
of nodes [14, 1]. We obtain the same subexponential bound for all continuous positionally
determined payoffs. From a technical viewpoint, we just observe that a technique which
was used for classical positionally determined payoffs is applicable in a more general setting.
Specifically, we use a framework of recursively local-global functions due to Björklund and
Vorobyov [1].

Let us start with an observation that for continuous positionally determined shift-
deterministic payoffs a non-optimal positional strategy can always be improved by changing
it just in a single node.

▶ Proposition 23. Let A be a finite set and φ : Aω → R be a continuous positionally
determined shift-deterministic payoff. Then for any A-labeled game graph G = ⟨V =
VMax ⊔ VMin, E, source, target, lab⟩ the following two conditions hold:

if σ is a non-optimal positional strategy of Max in G, then in G there exists a Max’s
positional strategy σ′ such that |{u ∈ VMax | σ(u) ̸= σ′(u)}| = 1 and

∑
u∈V Val[σ′](u) >∑

u∈V Val[σ](u);
if τ is a non-optimal positional strategy of Min in G, then in G there exists a Min’s
positional strategy τ ′ such that |{u ∈ VMin | τ(u) ̸= τ ′(u)}| = 1 and

∑
u∈V Val[τ ′](u) <∑

u∈V Val[τ ](u).

It is instructive to visualize this proposition by imagining the set of positional strategies
of one of the players (say, Max) as a hypercube. Namely, in this hypercube there will be as
many dimensions as there are nodes of Max. A coordinate corresponding to a node u ∈ VMax
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will take values in the set of edges that start at u. Obviously, vertices of such hypercube are
in a one-to-one correspondence with positional strategies of Max. Let us call two vertices
neighbors of each other if they differ in exactly one coordinate. Now, Proposition 23 means
in this language the following: any vertex σ, maximizing

∑
u∈V Val[σ](u) over its neighbors,

also maximizes this quantity over the whole hypercube.
So an optimization problem of maximizing

∑
u∈V Val[σ](u) (equivalently, finding an

optimal positional strategy of Max) has the following remarkable feature: all its local maxima
are also global. For positional strategies of Min the same holds for the minima. Optimization
problems with this feature are in a focus of numerous works, starting from a classical area of
convex optimization.

Observe that in our case this local-global property is recursive; i.e., it holds for any
restriction to a subcube of our hypercube. Indeed, subcubes correspond to subgraphs of
our initial game graph, and for any subgraph we still have Proposition 23. Björklund and
Vorobyov [1] noticed that a similar phenomenon occurs for all classical positionally determined
payoffs. In turn, they showed that any optimization problem on a hypercube with this
recursive local-global property admits a randomized algorithm which is subexponential in the
dimension of a hypercube. In our case this yields a randomized algorithm for the strategy
synthesis problem which is subexponential in the number of nodes of a game graph.

Still, this only applies to continuous payoffs that are shift-deterministic (as we have
Proposition 23 only for shift-deterministic payoffs). One more issue is that we did not specify
how our payoffs are represented. We overcome these difficulties in the following result.

▶ Theorem 24. Let A be a finite set and φ : Aω → R be a continuous positionally determined
payoff. Consider an oracle which for given u, v, a, b ∈ A∗ tells, whether there exists w ∈ A∗

such that φ(wu(v)ω) > φ(wa(b)ω). There exists a randomized algorithm which with this
oracle solves the strategy synthesis problem for φ in expected e

O
(

log m+
√

n log m
)

time for
game graphs with n nodes and m edges. In particular, every call to the oracle in the
algorithm is for u, v, a, b ∈ A∗ that are of length O(n), and the expected number of the calls
is eO

(
log m+

√
n log m

)
.

So to deal with the issue of representation we assume a suitable oracle access to φ. Still,
the oracle from Theorem 24 might look unmotivated. Here it is instructive to recall that
all continuous positionally determined φ must be prefix-monotone. For prefix-monotone
φ a formula ∃w ∈ A∗ φ(wα) > φ(wβ) defines a total preorder on Aω, and our oracle
just compares ultimately periodic sequences according to this preorder. In fact, it is easy
to see that the formula ∃w ∈ A∗ φ(wα) > φ(wβ) defines a total preorder on Aω if and
only if φ is prefix-monotone. This indicates a fundamental role of this preorder for prefix-
monotone φ and justifies a use of the corresponding oracle in Theorem 24. Let us note that[
∃w ∈ A∗ φ(wα) > φ(wβ)

]
⇐⇒ φ(α) > φ(β) if φ is additionally shift-deterministic.

7 Discussion

As Gimbert and Zielonka show by their characterization of the class of positionally determined
payoffs [10], positional determinacy can always be proved by an inductive argument. Does
the same hold for two other techniques that we have considered in the paper – the fixed
point technique and the strategy improvement technique? The answer is positive in the
continuous case, so this suggests that the answer might also be positive at least in some
other special cases, for instance, for prefix-independent payoffs. E.g., for the mean payoff,
a major example of a prefix-independent positionally determined payoff, both the strategy
improvement and the fixed point arguments are applicable [13, 18].
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These questions are specifically interesting for the strategy improvement argument. Indeed,
strategy improvement usually leads to subexponential-time (randomized) algorithms for the
strategy synthesis. So this resonates with a question of how hard strategy synthesis for a
positionally determined payoff can be. Loosely speaking, do we have this subexponential
bound for all positionally determined payoffs (as we do, by Theorem 24, for all such payoffs
that are additionally continuous)?

Finally, is it possible to characterize positionally determined payoffs more explicitly (say,
as in Theorem 17)? This question sounds more approachable in special cases, and a natural
special case to start is again the prefix-independent case.
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A The “Only If” Part of Theorem 4

Assume that φ is not prefix-monotone. Then for some u, v ∈ A∗ and α, β ∈ Aω we have

φ(uα) > φ(uβ) and φ(vα) < φ(vβ). (4)

First, notice that by continuity of φ we may assume that α and β are ultimately periodic.
Indeed, consider any two sequences {αn}n∈N and {βn}n∈N of ultimately periodic sequences
from Aω such that αn and α (respectively, βn and β) have the same prefix of length n. Then
from continuity of φ (by Proposition 2) we have:

lim
n→∞

φ(uαn) = φ(uα), lim
n→∞

φ(vαn) = φ(vα),

lim
n→∞

φ(uβn) = φ(uβ), lim
n→∞

φ(vβn) = φ(vβ).

So if u, v, α, β violate prefix-monotonicity, then so do u, v, αn, βn for some n ∈ N.
Now, if α, β are ultimately periodic, then α = p(q)ω and β = w(r)ω for some p, q, w, r ∈ A∗.

Consider an A-labeled game graph from Figure 1 (all nodes there are owned by Max).

a

b

c

a

a
u

v w

p
q

r

Figure 1 A game graph where φ is not positionally determined.

In this game graph there are two positional strategies of Max, one which from c goes by
p and the other which goes from c by w. The first one is not optimal when the game starts
in b, and the second one is not optimal when the game starts in a (because of (4)). So φ is
not positionally determined in this game graph.
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B Proof of Proposition 7

We only show that φ(uα) ≤ max{φ(uω), φ(α)}, the other inequality can be proved similarly.
If φ(uα) ≤ φ(α), then we are done. Assume now that φ(uα) > φ(α). By repeatedly applying
(a) we obtain φ(ui+1α) ≥ φ(uiα) for every i ∈ N. In particular, for every i ≥ 1 we get that
φ(uiα) ≥ φ(uα). By continuity of φ the limit of φ(uiα) as i → ∞ exists and equals φ(uω).
Hence φ(uω) ≥ φ(uα).

C Proof of Proposition 11

Define a payoff ψ : Aω → R as follows:

ψ(γ) =
∑

w∈A∗

(
1

|A| + 1

)|w|

φ(wγ), γ ∈ Aω. (5)

First, why is ψ well-defined, i.e., why does this series converge? Since Aω is compact, so is
φ(Aω) ⊆ R, because φ is continuous. Hence φ(Aω) ⊆ [−W,W ] for some W > 0 and (5) is
bounded by the following absolutely converging series:

∑
w∈A∗

W ·
(

1
|A| + 1

)|w|

.

We shall show that ψ is continuous, prefix-monotone and shift-deterministic, and that
φ = g ◦ ψ for some continuous non-decreasing g : ψ(Aω) → R.

Why is ψ continuous? Consider any α ∈ Aω and any infinite sequence {βn}n∈N of elements
of Aω such that for all n the sequences α and βn coincide in the first n elements. We have
to show that ψ(βn) converges to ψ(α) as n → ∞. By definition:

ψ(βn) =
∑

w∈A∗

(
1

|A| + 1

)|w|

φ(wβn), ψ(α) =
∑

w∈A∗

(
1

|A| + 1

)|w|

φ(wα).

The first series, as we have seen, is bounded uniformly (in n) by an absolutely converging
series. So it remains to note that the first series converges to the second one term-wise, by
continuity of φ.

Why is ψ prefix-monotone? Let α, β ∈ Aω. We have to show that either ψ(uα) ≥ ψ(uβ)
for all u ∈ A∗ or ψ(uα) ≤ ψ(uβ) for all u ∈ A∗.

Since φ is prefix-monotone, then either φ(wα) ≥ φ(wβ) for all w ∈ A∗ or φ(wα) ≤ φ(wβ)
for all w ∈ A∗. Up to swapping α and β we may assume that φ(wα) ≥ φ(wβ) for all w ∈ A∗.
Then for any u ∈ A∗ the difference

ψ(uα) − ψ(uβ) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wuα) − φ(wuβ)

]
consists of non-negative terms. Hence ψ(uα) ≥ ψ(uβ) for all u ∈ A∗, as required.
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Why is ψ shift-deterministic? Take any a ∈ A and β, γ ∈ Aω with ψ(β) = ψ(γ). We have
to show that ψ(aβ) = ψ(aγ). Indeed, assume that

0 = ψ(β) − ψ(γ) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wβ) − φ(wγ)

]
.

If this series contains a non-zero term, then it must contain a positive term and a negative
term. But this contradicts prefix-monotonicity of φ. So all the terms in this series must be 0.
The same then must hold for a series:

ψ(aβ) − ψ(aγ) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(waβ) − φ(waγ)

]
(all the terms in this series also appear in the series for ψ(β) − ψ(γ)). So we must have
ψ(aβ) = ψ(aγ).

Why φ = g ◦ ψ for some continuous non-decreasing g : ψ(Aω) → R? Let us first show
that

φ(α) > φ(β) =⇒ ψ(α) > ψ(β) for all α, β ∈ Aω. (6)

Indeed, if φ(α) > φ(β), then we also have φ(wα) ≥ φ(wβ) for every w ∈ A∗, by prefix-
monotonicity of φ. Now, by definition,

ψ(α) − ψ(β) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wα) − φ(wβ)

]
.

All the terms in this series are non-negative, and the term corresponding to the empty w is
strictly positive. So we have ψ(α) > ψ(β), as required.

Now, let us demonstrate that (6) implies that φ = g ◦ ψ for some non-decreasing
g : ψ(Aω) → R. Namely, define g as follows. For x ∈ ψ(Aω) take an arbitrary γ ∈ ψ−1(x)
and set g(x) = φ(γ). First, why do we have φ = g ◦ ψ? By definition, g(ψ(α)) = φ(γ) for
some γ ∈ Aω with ψ(α) = ψ(γ). By (6) we also have φ(α) = φ(γ), so g(ψ(α)) = φ(γ) = φ(α),
as required. Now, why is g non-decreasing? I.e., why for all x, y ∈ ψ(Aω) we have x ≤ y =⇒
g(x) ≤ g(y)? Indeed, g(x) = φ(γx), g(y) = φ(γy) for some γx ∈ ψ−1(x) and γy ∈ ψ−1(y).
Now, since x ≤ y, we have x = ψ(γx) ≤ ψ(γy) = y. By taking the contraposition of (6) we
get that g(x) = φ(γx) ≤ φ(γy) = g(y), as required.

Finally, we show that any g : ψ(Aω) → R with φ = g ◦ψ must be continuous. For that we
show that |g(x)−g(y)| ≤ |x−y| for all x, y ∈ ψ(Aω). Take any α, β ∈ Aω with x = ψ(α) and
y = ψ(β). By prefix-monotonicity of φ we have that either φ(wα) ≥ φ(wβ) for all w ∈ A∗

or φ(wα) ≤ φ(wβ) for all w ∈ A∗. Up to swapping x and y we may assume that the first
option holds. Then

ψ(α) − ψ(β) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wα) − φ(wβ)

]
≥ φ(α) − φ(β) ≥ 0.

On the left here we have x− y, and on the right we have φ(α) −φ(β) = g ◦ψ(α) − g ◦ψ(β) =
g(x) − g(y).
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Abstract
The Transience objective is not to visit any state infinitely often. While this is not possible in any
finite Markov Decision Process (MDP), it can be satisfied in countably infinite ones, e.g., if the
transition graph is acyclic.

We prove the following fundamental properties of Transience in countably infinite MDPs.
1. There exist uniformly ε-optimal MD strategies (memoryless deterministic) for Transience, even

in infinitely branching MDPs.
2. Optimal strategies for Transience need not exist, even if the MDP is finitely branching. However,

if an optimal strategy exists then there is also an optimal MD strategy.
3. If an MDP is universally transient (i.e., almost surely transient under all strategies) then

many other objectives have a lower strategy complexity than in general MDPs. E.g., ε-optimal
strategies for Safety and co-Büchi and optimal strategies for {0, 1, 2}-Parity (where they exist)
can be chosen MD, even if the MDP is infinitely branching.
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1 Introduction

Those who cannot remember the past
are condemned to repeat it.

George Santayana (1905) [22]

The famous aphorism above has often been cited (with small variations), e.g., by Winston
Churchill in a 1948 speech to the House of Commons, and carved into several monuments all
over the world [22].

We prove that the aphorism is false. In fact, even those who cannot remember anything
at all are not condemned to repeat the past. With the right strategy they can avoid repeating
the past equally well as everyone else. More formally, playing for Transience does not require
any memory. We show that there always exist ε-optimal memoryless deterministic strategies
for Transience, and if optimal strategies exist then there also exist optimal memoryless
deterministic strategies.1

1 Our result applies to MDPs (also called games against nature). It is an open question whether it
generalizes to countable stochastic 2-player games. (However, it is easy to see that the adversary needs
infinite memory in general, even if the player is passive [14, 16].)
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Background. We study Markov decision processes (MDPs), a standard model for dynamic
systems that exhibit both stochastic and controlled behavior [21]. MDPs play a prominent role
in many domains, e.g., artificial intelligence and machine learning [26, 24], control theory [5, 1],
operations research and finance [25, 12, 6, 23], and formal verification [2, 25, 11, 8, 3, 7].

An MDP is a directed graph where states are either random or controlled. Its observed
behavior is described by runs, which are infinite paths that are, in part, determined by the
choices of a controller. If the current state is random then the next state is chosen according
to a fixed probability distribution. Otherwise, if the current state is controlled, the controller
can choose a distribution over all possible successor states. By fixing a strategy for the
controller (and initial state), one obtains a probability space of runs of the MDP. The goal
of the controller is to optimize the expected value of some objective function on the runs.

The strategy complexity of a given objective characterizes the type of strategy necessary
to achieve an optimal (resp. ε-optimal) value for the objective. General strategies can take
the whole history of the run into account (history-dependent; (H)), while others use only
bounded information about it (finite memory; (F)) or base decisions only on the current
state (memoryless; (M)). Moreover, the strategy type depends on whether the controller can
randomize (R) or is limited to deterministic choices (D). The simplest type, MD, refers to
memoryless deterministic strategies.

Acyclicity and Transience. An MDP is called acyclic iff its transition graph is acyclic.
While finite MDPs cannot be acyclic (unless they have deadlocks), countable MDPs can. In
acyclic countable MDPs, the strategy complexity of Büchi/Parity objectives is lower than
in the general case: ε-optimal strategies for Büchi/Parity objectives require only one bit of
memory in acyclic MDPs, while they require infinite memory (an unbounded step-counter,
plus one bit) in general countable MDPs [14, 15].

The concept of transience can be seen as a generalization of acyclicity. In a Markov chain,
a state s is called transient iff the probability of returning from s to s is < 1 (otherwise the
state is called recurrent). This means that a transient state is almost surely visited only
finitely often. The concept of transient/recurrent is naturally lifted from Markov chains to
MDPs, where they depend on the chosen strategy.

We define the Transience objective as the set of runs that do not visit any state infinitely
often. We call an MDP universally transient iff it almost-surely satisfies Transience
under every strategy. Thus every acyclic MDP is universally transient, but not vice-versa;
cf. Figure 1. In particular, universal transience does not just depend on the structure of the
transition graph, but also on the transition probabilities. Universally transient MDPs have
interesting properties. Many objectives (e.g., Safety, Büchi, co-Büchi) have a lower strategy
complexity than in general MDPs; see below.

We also study the strategy complexity of the Transience objective itself, and how it
interacts with other objectives, e.g., how to attain a Büchi objective in a transient way.

Our contributions.
1. We show that there exist uniformly ε-optimal MD strategies (memoryless deterministic)

for Transience, even in infinitely branching MDPs. This is unusual, since (apart from
reachability objectives) most other objectives require infinite memory if the MDP is
infinitely branching, e.g., all objectives generalizing Safety [17].
Our result is shown in several steps. First we show that there exist ε-optimal deterministic
1-bit strategies for Transience. Then we show how to dispense with the 1-bit memory and
obtain ε-optimal MD strategies for Transience. Finally, we make these MD strategies
uniform, i.e., independent of the start state.
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2. We show that optimal strategies for Transience need not exist, even if the MDP is
finitely branching. If they do exist then there are also MD optimal strategies. More
generally, there exists a single MD strategy that is optimal from every state that allows
optimal strategies for Transience.

3. If an MDP is universally transient (i.e., almost surely transient under all strategies) then
many other objectives have a lower strategy complexity than in general MDPs, e.g.,
ε-optimal strategies for Safety and co-Büchi and optimal strategies for {0, 1, 2}-Parity
(where they exist) can be chosen MD, even if the MDP is infinitely branching.

For our proofs we develop some technical results that are of independent interest. We
generalize Ornstein’s plastering construction [20] from reachability to tail objectives and
thus obtain a general tool to infer uniformly ε-optimal MD strategies from non-uniform
ones (cf. Theorem 7). Secondly, in Section 6 we develop the notion of the conditioned MDP
(cf. [17]). For tail objectives, this allows to obtain uniformly ε-optimal MD strategies wrt.
multiplicative errors from those with merely additive errors.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑

s∈S f(s) = 1.
We write D(S) for the set of all probability distributions over S.

Markov Decision Processes. We define Markov decision processes (MDPs for short) over
countably infinite state spaces as tuples M = (S, S2, S#, −→, P ) where S is the countable
set of states partitioned into a set S2 of controlled states and a set S# of random states.
The transition relation is −→ ⊆ S × S, and P : S# → D(S) is a probability function. We
write s−→s′ if (s, s′) ∈ −→, and refer to s′ as a successor of s. We assume that every state
has at least one successor. The probability function P assigns to each random state s ∈ S#

a probability distribution P (s) over its set of successors. A sink is a subset T ⊆ S closed
under the −→ relation.

An MDP is acyclic if the underlying graph (S, −→) is acyclic. It is finitely branching if
every state has finitely many successors and infinitely branching otherwise. An MDP without
controlled states (S2 = ∅) is a Markov chain.

Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that si−→si+1 for all i ∈ N; a partial run is a finite prefix of a run. We write ρ(i) = si

and say that (partial) run s0s1 · · · visits s if s = si for some i. It starts in s if s = s0.
A strategy is a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a

distribution over the successors of s. We write ΣM for the set of all strategies in M. A
strategy σ and an initial state s0 ∈ S induce a standard probability measure on sets of infinite
runs. We write PM,s0,σ(R) for the probability of a measurable set R ⊆ s0Sω of runs starting
from s0. It is defined for the cylinders s0s1 . . . snSω ∈ Sω as PM,s0,σ(s0s1 . . . snSω) def=∏n−1

i=0 σ̄(s0s1 . . . si)(si+1), where σ̄ is the map that extends σ by σ̄(ws) = P (s) for all
ws ∈ S∗S#. By Carathéodory’s theorem [4], the measure for cylinders extends uniquely to a
probability measure PM,s0,σ on all measurable subsets of s0Sω. We will write EM,s0,σ for
the expectation w.r.t. PM,s0,σ.

Strategy Classes. Strategies σ : S∗S2 → D(S) are in general randomized (R) in the sense
that they take values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution
for all partial runs ρ ∈ S∗S2.
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A formal definition of the amount of memory needed to implement strategies can be found
in the full version [13]. The two classes of memoryless and 1-bit strategies are central to this
paper. A strategy σ is memoryless (M) if σ bases its decision only on the last state of the
run: σ(ρs) = σ(ρ′s) for all ρ, ρ′ ∈ S∗. We may view M-strategies as functions σ : S2 → D(S).
A 1-bit strategy σ may base its decision also on a memory mode m ∈ {0, 1}. Formally, a
1-bit strategy σ is given as a tuple (u, m0) where m0 ∈ {0, 1} is the initial memory mode and
u : {0, 1} × S → D({0, 1} × S) is an update function such that

for all controlled states s ∈ S2, the distribution u((m, s)) is over {0, 1} × {s′ | s−→s′}.
for all random states s ∈ S#, we have that

∑
m′∈{0,1} u((m, s))(m′, s′) = P (s)(s′).

Note that this definition allows for updating the memory mode upon visiting random states.
We write σ[m0] for the strategy obtained from σ by setting the initial memory mode to m0.

MD strategies are both memoryless and deterministic; and deterministic 1-bit strategies
are both deterministic and 1-bit.

Objectives. The objective of the controller is determined by a predicate on infinite runs. We
assume familiarity with the syntax and semantics of the temporal logic LTL [9]. Formulas are
interpreted on the underlying structure (S, −→) of the MDP M. We use JφKM,s ⊆ sSω to
denote the set of runs starting from s that satisfy the LTL formula φ, which is a measurable
set [27]. We also write JφKM for

⋃
s∈SJφKM,s. Where it does not cause confusion we will

identify φ and JφK and just write PM,s,σ(φ) instead of PM,s,σ(JφKM,s).
Given a set T ⊆ S of states, the reachability objective Reach(T ) def= FT is the set of runs

that visit T at least once. The safety objective Safety(T ) def= G¬T is the set of runs that
never visit T .

Let C ⊆ N be a finite set of colors. A color function Col : S → C assigns to each state s

its color Col(s). The parity objective, written as Parity(Col), is the set of infinite runs
such that the largest color that occurs infinitely often along the run is even. To define this
formally, let even(C) = {i ∈ C | i ≡ 0 mod 2}. For � ∈ {<, ≤, =, ≥, >}, n ∈ N, and Q ⊆ S,
let [Q]Col�n def= {s ∈ Q| Col(s) � n} be the set of states in Q with color �n. Then

Parity(Col) def=
∨

i∈even(C)

(
GF[S]Col=i ∧ FG[S]Col≤i

)
.

We write C-Parity for the parity objectives with the set of colors C ⊆ N. The classical
Büchi and co-Büchi objectives correspond to {1, 2}-Parity and {0, 1}-Parity, respectively.

An objective φ is called a tail objective (in M) iff for every run ρ′ρ with some finite prefix
ρ′ we have ρ′ρ ∈ φ ⇔ ρ ∈ φ. For every coloring Col, Parity(Col) is tail. Reachability
objectives are not always tail but in MDPs where the target set T is a sink Reach(T ) is tail.

Optimal and ε-optimal Strategies. Given an objective φ, the value of state s in an
MDP M, denoted by valM,φ(s), is the supremum probability of achieving φ. Formally,
we have valM,φ(s) def= supσ∈Σ PM,s,σ(φ) where Σ is the set of all strategies. For ε ≥ 0
and state s ∈ S, we say that a strategy is ε-optimal from s iff PM,s,σ(φ) ≥ valM,φ(s) − ε.
A 0-optimal strategy is called optimal. An optimal strategy is almost-surely winning iff
valM,φ(s) = 1.

Considering an MD strategy as a function σ : S2 → S and ε ≥ 0, σ is uniformly ε-optimal
(resp. uniformly optimal) if it is ε-optimal (resp. optimal) from every s ∈ S.

Throughout the paper, we may drop the subscripts and superscripts from notations, if it
is understood from the context. The missing proofs can be found in the full version [13].
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w0 w1 w2 w3 w4 · · ·1 p p p p

1 − p1 − p1 − p1 − p1 − p

Figure 1 Gambler’s Ruin with restart: The state wi illustrates that the controller’s wealth is i,
and the coin tosses are in the controller’s favor with probability p. For all i, Pwi (Transience) = 0 if
p ≤ 1

2 ; and Pwi (Transience) = 1 otherwise.

3 Transience and Universally Transient MDPs

In this section we define the transience property for MDPs, a natural generalization of the
well-understood concept of transient Markov chains. We enumerate crucial characteristics of
this objective and define the notion of universally transient MDPs.

Fix a countable MDP M = (S, S2, S#, −→, P ). Define the transience objective, denoted
by Transience, to be the set of runs that do not visit any state of M infinitely often, i.e.,

Transience def=
∧
s∈S

FG ¬s.

The Transience objective is tail, as it is closed under removing finite prefixes of runs. Also
note that Transience cannot be encoded in a parity objective.

We call M universally transient iff for all states s0, for all strategies σ, the Transience
property holds almost-surely from s0, i.e.,

∀s0 ∈ S ∀σ ∈ Σ PM,s0,σ(Transience) = 1.

The MDP in Figure 1 models the classical Gambler’s Ruin Problem with restart; see [10,
Chapter 14]. It is well-known that if the controller starts with wealth i and if p ≤ 1

2 , the
probability of ruin (visiting the state w0) is Pwi(F w0) = 1. Consequently, the probability of
re-visiting w0 infinitely often is 1, implying that Pwi

(Transience) = 0. In contrast, for the
case with p > 1

2 , for all states wi, the probability of re-visiting wi is strictly below 1. Hence,
the Transience property holds almost-surely. This example indicates that the transience
property depends on the probability values of the transitions and not just on the underlying
transition graph, and thus may require arithmetic reasoning. In particular, the MDP in
Figure 1 is universally transient iff p > 1

2 .
In general, optimal strategies for Transience need not exist:

▶ Lemma 1. There exists a finitely branching countable MDP with initial state s0 such that
valTransience(s) = 1 for all controlled states s,
there does not exist any optimal strategy σ such that Ps0,σ(Transience) = 1.

Proof. Consider a countable MDP M with set S = {ℓi, ℓ′
i, ri, xi | i ≥ 1} ∪ {ℓ0, ⊥} of states;

see Figure 2. For all i ≥ 1 the state xi+1 is the unique successor of xi so that (xi)i≥1 form
an acyclic ladder; the value of Transience is 1 for all xi. The state ⊥ is sink, and its value
is 0. The states (ri)i≥1 are all random, and ri

1−2−i

−−−−→ xi and ri
2−i

−−→ ⊥. Observe that the
value of Transience is 1 − 2−i for the ri.

The states (ℓi)i∈N are controlled whereas the states (ℓ′
i)i≥1 are random. By interleaving

of these states, we construct a “recurrent ladder” of decisions: ℓ0 → ℓ1 and for all i ≥ 1,
state ℓi has two successors ℓ′

i and ri. In random states ℓ′
i, as in Gambler’s Ruin with a fair

coin, the successors are ℓi−1 or ℓi+1, each with equal probability. In each state (ℓi)i≥1, the
controller decides to either stay on the ladder by going to ℓ′

i or leaves the ladder to ri. As in
Figure 1, if the controller stays on the ladder forever, the probability of Transience is 0.
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ℓ0 ℓ1 ℓ′
1 · · · ℓi−1 ℓ′

i−1 ℓi ℓ′
i · · ·

r1 ⊥ · · · ri−1 ⊥ ri ⊥ · · ·
x1 · · · xi−1 xi · · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 − 1
2

1
2

1 − 1
2i−1

1
2i−1

1 − 1
2i

1
2i

Figure 2 A partial illustration of the MDP in Lemma 1, in which there is no optimal strategy
for Transience, starting from states ℓi. For readability, we have three copies of the state ⊥. We
call the ladder consisting of the interleaved controlled states ℓi and random states ℓ′

i a “recurrent
ladder”: if the controller stays on this ladder forever, it faithfully simulates a Gambler’s Ruin with a
fair coin, and the probability of Transience will be 0.

Starting in ℓ0, for all i > 0, strategy σi that stays on the ladder until visiting ℓi (which
happens eventually almost surely) and then leaves the ladder to ri achieves Transience with
probability 1 − 2i. Hence, valTransience(ℓ0) = 1.

Recall that transience cannot be achieved with a positive probability by staying on the
acyclic ladder forever. But any strategy that leaves the ladder with a positive probability
comes with a positive probability of falling into ⊥, thus is not optimal either. Thus there is
no optimal strategy for Transience. ◀

Reduction to Finitely Branching MDPs. In our main results, we will prove that for
the Transience property there always exist ε-optimal MD strategies in finitely branching
countable MDPs; and if an optimal strategy exists, there will exist an optimal MD strategy.
We generalize these results to infinitely branching countable MDPs by the following reduction:

▶ Lemma 2. Given an infinitely branching countable MDP M with an initial state s0, there
exists a finitely branching countable M′ with a set S′ of states such that s0 ∈ S′ and
1. each strategy α1 in M is mapped to a unique strategy β1 in M′ where

Ps0,α1(Transience) = Ps0,β1(Transience),

2. and conversely, every MD strategy β2 in M′ is mapped to an MD strategy α2 in M where

Ps0,α2(Transience) ≥ Ps0,β2(Transience).

Properties of Universally Transient MDPs. Notice that acyclicity implies universal transi-
ence, but not vice-versa.

▶ Lemma 3. For every countable MDP M = (S, S2, S#, −→, P ), the following conditions
are equivalent.
1. M is universally transient, i.e., ∀s0, ∀σ. PM,s0,σ(Transience) = 1.
2. For every initial state s0 and state s, the objective of re-visiting s infinitely often has

value zero, i.e., ∀s0, s supσ PM,s0,σ(GF(s)) = 0.
3. For every state s the value of the objective to re-visit s is strictly below 1, i.e.,

Re(s) def= supσ PM,s,σ(XF(s)) < 1.
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4. For every state s there exists a finite bound B(s) such that for every state s0 and strategy
σ from s0 the expected number of visits to s is ≤ B(s).

5. For all states s0, s, under every strategy σ from s0 the expected number of visits to s is
finite.

Proof. Towards (1) ⇒ (2), consider an arbitrary strategy σ from the initial state s0 and some
state s. By (1) we have ∀σ.PM,s0,σ(Transience) = 1 and thus 0 = PM,s0,σ(¬Transience) =
PM,s0,σ(

⋃
s′∈S GF(s′)) ≥ PM,s0,σ(GF(s)) which implies (2).

Towards (2) ⇒ (1), consider an arbitrary strategy σ from the initial state s0. By (2) we
have 0 =

∑
s∈S PM,s0,σ(GF(s)) ≥ PM,s0,σ(

⋃
s∈S GF(s)) = PM,s0,σ(¬Transience) and thus

PM,s0,σ(Transience) = 1.
We now show the implications (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (2).
Towards ¬(3) ⇒ ¬(2), ¬(3) implies ∃s.Re(s) = 1 and thus ∀ε > 0.∃σε PM,s,σε(XF(s)) ≥

1 − ε. Let εi
def= 2−(i+1). We define the strategy σ to play like σεi between the i-th

and (i + 1)th visit to s. Since
∑∞

i=1 εi < ∞, we have
∏∞

i=1(1 − εi) > 0. Therefore
PM,s,σ(GF(s)) ≥

∏∞
i=1(1 − εi) > 0, which implies ¬(2), where s0 = s.

Towards (3) ⇒ (4), regardless of s0 and the chosen strategy, the expected number of
visits to s is upper-bounded by B(s) def=

∑∞
n=0(n + 1) · (Re(s))n < ∞.

The implication (4) ⇒ (5) holds trivially.
Towards ¬(2) ⇒ ¬(5), by ¬(2) there exist states s0, s and a strategy σ such that

PM,s0,σ(GF(s)) > 0. Thus the expected number of visits to s is infinite, which implies ¬(5).
◀

We remark that if an MDP is not universally transient (unlike in Lemma 3(5)), for a
strategy σ, the expected number of visits to some state can be infinite, even if σ attains
Transience almost surely.

Consider the MDP M with controlled states {s0, s1, . . . }, initial state s0 and transitions
s0 → s0 and sk → sk+1 for every k ≥ 0. We define a strategy σ that, while in state s0,
proceeds in rounds i = 1, 2, . . . . In the i-th round it tosses a fair coin. If Heads then it goes
to s1. If Tails then it loops around s0 exactly 2i times and then goes to round i + 1. In
every round the probability of going to s1 is 1/2 and therefore the probability of staying in
s0 forever is (1/2)∞ = 0. Thus PM,s0,σ(Transience) = 1. However, the expected number of
visits to s0 is ≥

∑∞
i=1
( 1

2
)i · 2i = ∞.

4 MD Strategies for Transience

We show that there exist uniformly ε-optimal MD strategies for Transience and that optimal
strategies, where they exist, can also be chosen MD.

First we show that there exist ε-optimal deterministic 1-bit strategies for Transience (in
Corollary 5) and then we show how to dispense with the 1-bit memory (in Lemma 6).

It was shown in [14] that there exist ε-optimal deterministic 1-bit strategies for Büchi
objectives in acyclic countable MDPs (though not in general MDPs). These 1-bit strategies
will be similar to the 1-bit strategies for Transience that we aim for in (not necessarily
acyclic) countable MDPs. In Lemma 4 below we first strengthen the result from [14] and
construct ε-optimal deterministic 1-bit strategies for objectives Büchi(F ) ∩ Transience.
From this we obtain deterministic 1-bit strategies for Transience (Corollary 5).

▶ Lemma 4. Let M be a countable MDP, I a finite set of initial states, F a set of states
and ε > 0. Then there exists a deterministic 1-bit strategy for Büchi(F ) ∩ Transience that
is ε-optimal from every s ∈ I.
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11:8 Transience in Countable MDPs

Proof sketch. It follows the proof of [14, Theorem 5], which considers Büchi(F ) conditions
for acyclic (and hence universally transient) MDPs. The only part of that proof that requires
modification is [14, Lemma 10], which is replaced here by [13, Lemma 18] to deal with general
MDPs.

In short, from every s ∈ I there exists an ε-optimal strategy σs for φ
def= Büchi(F ) ∩

Transience. We observe the behavior of the finitely many σs for s ∈ I on an infinite,
increasing sequence of finite subsets of S. Based on [13, Lemma 18], we can define a second
stronger objective φ′ ⊆ φ and show ∀s∈I PM,s,σs

(φ′) ≥ valM,φ(s) − 2ε. We then construct
a deterministic 1-bit strategy σ′ that is optimal for φ′ from all s ∈ I and thus 2ε-optimal for
φ. Since ε can be chosen arbitrarily small, the result follows. ◀

Unlike for the Transience objective alone (see below), the 1-bit memory is strictly
necessary for the Büchi(F ) ∩ Transience objective in Lemma 4. The 1-bit lower bound for
Büchi(F ) objectives in [14] holds even for acyclic MDPs where Transience is trivially true.

▶ Corollary 5. Let M be a countable MDP, I a finite set of initial states, F a set of states
and ε > 0.
1. If ∀s ∈ I valM,Büchi(F )(s) = valM,Büchi(F )∩Transience(s) then there exists a determin-

istic 1-bit strategy for Büchi(F ) that is ε-optimal from every s ∈ I.
2. If M is universally transient then there exists a deterministic 1-bit strategy for Büchi(F )

that is ε-optimal from every s ∈ I.
3. There exists a deterministic 1-bit strategy for Transience that is ε-optimal from every

s ∈ I.

Proof. Towards (1), since ∀s ∈ I valM,Büchi(F )(s) = valM,Büchi(F )∩Transience(s),
strategies that are ε-optimal for Büchi(F ) ∩ Transience are also ε-optimal for Büchi(F ).
Thus the result follows from Lemma 4.

Item (2) follows directly from (1), since the precondition always holds in universally
transient MDPs.

Towards (3), let F
def= S. Then we have Büchi(F ) ∩ Transience = Transience and we

obtain from Lemma 4 that there exists a deterministic 1-bit strategy for Transience that is
ε-optimal from every s ∈ I. ◀

Note that every acyclic MDP is universally transient and thus Corollary 5(2) implies the
upper bound on the strategy complexity of Büchi(F ) from [14] (but not vice-versa).

In the next step we show how to dispense with the 1-bit memory and obtain non-uniform
ε-optimal MD strategies for Transience.

▶ Lemma 6. Let M = (S, S2, S#, −→, P ) be a countable MDP with initial state s0, and
ε > 0. There exists an MD strategy σ that is ε-optimal for Transience from s0, i.e.,
PM,s0,σ(Transience) ≥ valM,Transience(s0) − ε.

Proof. By Lemma 2 it suffices to prove the property for finitely branching MDPs. Thus
without restriction in the rest of the proof we assume that M is finitely branching.

Let ε′ def= ε/2. We instantiate Corollary 5(3) with I
def= {s0} and obtain that there exists

an ε′-optimal deterministic 1-bit strategy σ̂ for Transience from s0.
We now construct a slightly modified MDP M′ as follows. Let Sbad ⊆ S be the subset

of states where σ̂ attains zero for Transience in both memory modes, i.e., Sbad
def= {s ∈ S |

PM,s,σ[0](Transience) = PM,s,σ[1](Transience) = 0}. Let Sgood
def= S \ Sbad . We obtain M′

from M by making all states in Sbad losing sinks (for Transience), by deleting all outgoing
edges and adding a self-loop instead. It follows that



S. Kiefer, R. Mayr, M. Shirmohammadi, and P. Totzke 11:9

PM,s0,σ̂(Transience) = PM′,s0,σ̂(Transience) (1)

∀σ. PM,s0,σ(Transience) ≥ PM′,s0,σ(Transience) (2)

In the following we show that it is possible to play in such a way that, for every s ∈ Sgood ,
the expected number of visits to s is finite. We obtain the deterministic 1-bit strategy σ′

in M′ by modifying σ̂ as follows. In every state s and memory mode x ∈ {0, 1} where σ̂[x]
attains 0 for Transience and σ̂[1 − x] attains > 0 the strategy σ′ sets the memory bit to
1 − x. (Note that only states s ∈ Sgood can be affected by this change.) It follows that

∀s ∈ S. PM′,s,σ′(Transience) ≥ PM′,s,σ̂(Transience) (3)

Moreover, from all states in Sgood in M′ the strategy σ′ attains a strictly positive
probability of Transience in both memory modes, i.e., for all s ∈ Sgood we have

t(s, σ′) def= min
x∈{0,1}

PM′,s,σ′[i](Transience) > 0.

Let r(s, σ′, x) be the probability, when playing σ′[x] from state s, of reaching s again in the
same memory mode x. For every s ∈ Sgood we have r(s, σ′, x) < 1, since t(s, σ′) > 0.

Let R(s) be the expected number of visits to state s when playing σ′ from s0 in M′, and
Rx(s) the expected number of visits to s in memory mode x ∈ {0, 1}. For all s ∈ Sgood we
have that

R(s) = R0(s) + R1(s) ≤
∞∑

n=1
n · r(s, σ′, 0)n−1 +

∞∑
n=1

n · r(s, σ′, 1)n−1 < ∞ (4)

where the first equality holds by linearity of expectations. Thus the expected number of
visits to s is finite.

Now we upper-bound the probability of visiting Sbad . We have PM′,s0,σ′(Transience) ≥
PM′,s0,σ̂(Transience) = PM,s0,σ̂(Transience) ≥ valM,Transience(s0) − ε′ by (3), (1) and
the ε′-optimality of σ̂. Since states in Sbad are losing sinks in M′, it follows that

PM′,s0,σ′(FSbad) ≤ 1 − PM′,s0,σ′(Transience) ≤ 1 − valM,Transience(s0) + ε′ (5)

We now augment the MDP M′ by assigning costs to transitions as follows. Let i : S → N
be an enumeration of the state space, i.e., a bijection. Let S′

good
def= {s ∈ Sgood | R(s) > 0} be

the subset of states in Sgood that are visited with non-zero probability when playing σ′ from
s0. Each transition s′ → s is assigned a cost:

If s′ ∈ Sbad then s ∈ Sbad by def. of M′. We assign cost 0.
If s′ ∈ Sgood and s ∈ Sbad we assign cost K/(1 − valM,Transience(s0) + ε′) for K

def=
(1 + ε′)/ε′.
If s′ ∈ Sgood and s ∈ S′

good we assign cost 2−i(s)/R(s). This is well defined, since R(s) > 0.
s′ ∈ Sgood and s ∈ Sgood \ S′

good we assign cost 1.
Note that all transitions leading to states in Sgood are assigned a non-zero cost, since R(s) is
finite by (4).

When playing σ′ from s0 in M′, the expected total cost is upper-bounded by

PM′,s0,σ′(FSbad) · K/(1 − valM,Transience(s0) + ε′) +
∑

s∈S′
good

R(s) · 2−i(s)/R(s)
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The first part is ≤ K by (5) and the second part is ≤ 1, since R(s) < ∞ by (4). Therefore
the expected total cost is ≤ K + 1, i.e., σ′ witnesses that it is possible to attain a finite
expected cost that is upper-bounded by K + 1.

Now we define our MD strategy σ. Let σ be an optimal MD strategy on M′ (from s0)
that minimizes the expected cost. It exists, as a finite expected cost is attainable and M′ is
finitely branching; see [21, Theorem 7.3.6].

We now show that σ attains Transience with high probability in M′ (and in M).
Since σ is cost-optimal, its attained cost from s0 is upper-bounded by that of σ′, i.e.,
≤ K + 1. Since the cost of entering Sbad is K/(1 − valM,Transience(s0) + ε′), we have
PM′,s0,σ(FSbad) · K/(1 − valM,Transience(s0) + ε′) ≤ K + 1 and thus

PM′,s0,σ(FSbad) ≤ K + 1
K

(1 − valM,Transience(s0) + ε′) (6)

For every state s ∈ Sgood , all transitions into s have the same fixed non-zero cost. Thus every
run that visits some state s ∈ Sgood infinitely often has infinite cost. Since the expected cost
of playing σ from s0 is ≤ K + 1, such runs must be a null-set, i.e.,

PM′,s0,σ(¬Transience ∧ GSgood) = 0 (7)

Thus

PM,s0,σ(Transience)
≥ PM′,s0,σ(Transience) by (2)
= 1 − PM′,s0,σ(FSbad) by (7)

≥ 1 − K + 1
K

(1 − valM,Transience(s0) + ε′) by (6)

= valM,Transience(s0) − ε′ − (1/K)(1 − valM,Transience(s0) + ε′)
≥ valM,Transience(s0) − ε′ − (1/K)(1 + ε′)
= valM,Transience(s0) − 2ε′ def. of K

= valM,Transience(s0) − ε def. of ε′ ◀

Now we lift the result of Lemma 6 from non-uniform to uniform strategies (and to optimal
strategies) and obtain the following theorem. The proof is a generalization of a “plastering”
construction by Ornstein [20] (see also [16]) from reachability to tail objectives, which works
by fixing MD strategies on ever expanding subsets of the state space.

▶ Theorem 7. Let M = (S, S2, S#, −→, P ) be a countable MDP, and let φ be an objective
that is tail in M. Suppose for every s ∈ S there exist ε-optimal MD strategies for φ. Then:
1. There exist uniform ε-optimal MD strategies for φ.
2. There exists a single MD strategy that is optimal from every state that has an optimal

strategy.

▶ Theorem 8. In every countable MDP there exist uniform ε-optimal MD strategies for
Transience. Moreover, there exists a single MD strategy that is optimal for Transience
from every state that has an optimal strategy.

Proof. Immediate from Lemma 6 and Theorem 7, since Transience is a tail objective. ◀
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5 Strategy Complexity in Universally Transient MDPs

The strategy complexity of parity objectives in general MDPs is known [15]. Here we show
that some parity objectives have a lower strategy complexity in universally transient MDPs.
It is known [14] that there are acyclic (and hence universally transient) MDPs where ε-optimal
strategies for {1, 2}-Parity (and optimal strategies for {1, 2, 3}-Parity, resp.) require 1 bit.

We show that, for all simpler parity objectives in the Mostowski hierarchy [19], universally
transient MDPs admit uniformly (ε-)optimal MD strategies (unlike general MDPs [15]).
These results (Theorems 10 and 11) ultimately rely on the existence of uniformly ε-optimal
strategies for safety objectives. While such strategies always exist for finitely branching
MDPs – simply pick a value-maximal successor – this is not the case for infinitely branching
MDPs [17]. However, we show that universal transience implies the existence of uniformly
ε-optimal strategies for safety objectives even for infinitely branching MDPs.

▶ Theorem 9. For every universally transient countable MDP, safety objective and ε > 0
there exists a uniformly ϵ-optimal MD strategy.

Proof. Let M = (S, S2, S#, −→, P ) be a universally transient MDP and ε > 0. Assume
w.l.o.g. that the target T ⊆ S of the objective φ = Safety(T ) is a (losing) sink and let
ι : S → N be an enumeration of the state space S.

By Lemma 3(3), for every state s we have Re(s) def= supσ PM,s,σ(XF(s)) < 1 and thus
R(s) def=

∑∞
i=0 Re(s)i < ∞. This means that, independent of the chosen strategy, Re(s)

upper-bounds the chance to return to s, and R(s) bounds the expected number of visits to s.
Suppose that σ is an MD strategy which, at any state s ∈ S2, picks a successor s′ with

val(s′) ≥ val(s) − ε

2ι(s)+1 · R(s)
.

This is possible even if M is infinitely branching, by the definition of value and the fact that
R(s) < ∞. We show that PM,s0,σ(Safety(T )) ≥ val(s0) − ε holds for every initial state s0,
which implies the claim of the theorem.

Towards this, we define a function cost that labels each transition in the MDP with a real-
valued cost: For every controlled transition s−→s′ let cost((s, s′)) def= val(s) − val(s′) ≥ 0.
Random transitions have cost zero. We will argue that when playing σ from any start state
s0, its attainment w.r.t. the objective Safety(T ) equals the value of s0 minus the expected
total cost, and that this cost is bounded by ε.

For any i ∈ N let us write si for the random variable denoting the state just after step i,
and Cost(i) def= cost(si, si+1) for the cost of step i in a random run. We observe that under
σ the expected total cost is bounded in the limit, i.e.,

lim
n→∞

E

(
n−1∑
i=0

Cost(i)
)

≤ ε. (8)

We moreover note that for every n,

E(val(sn)) = E(val(s0)) − E

(
n−1∑
i=0

Cost(i)
)

. (9)

Full proofs of the above two equations can be found in [13]. Together they imply

lim inf
n→∞

E(val(sn)) = val(s0) − lim
n→∞

E

(
n−1∑
i=0

cost(i)
)

≥ val(s0) − ε. (10)
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11:12 Transience in Countable MDPs

Finally, to show the claim let [sn /∈ T ] : Sω → {0, 1} be the random variable that indicates
that the n-th state is not in the target set T . Note that [sn /∈ T ] ≥ val(sn) because target
states have value 0. We have:

PM,s0,σ(Safety(T )) = PM,s0,σ

( ∞∧
i=0

Xi¬T

)
semantics of Safety(T ) = G¬T

= lim
n→∞

PM,s0,σ

(
n∧

i=0
Xi¬T

)
continuity of measures

= lim
n→∞

PM,s0,σ(Xn¬T ) T is a sink

= lim
n→∞

E([sn /∈ T ]) definition of [sn /∈ T ]

≥ lim inf
n→∞

E(val(sn)) as [sn /∈ T ] ≥ val(sn)

≥ val(s0) − ε Equation (10). ◀

We can now combine Theorem 9 with the results from [15] to show the existence of MD
strategies assuming universal transience.

▶ Theorem 10. For universally transient MDPs optimal strategies for {0, 1, 2}-Parity,
where they exist, can be chosen uniformly MD.

Formally, let M be a universally transient MDP with states S, Col : S → {0, 1, 2}, and
φ = Parity(Col). There exists an MD strategy σ′ that is optimal for all states s that have
an optimal strategy:

(
∃σ ∈ Σ. PM,s,σ(φ) = valM(s)

)
=⇒ PM,s,σ′(φ) = valM(s).

Proof. Let M+ be the conditioned version of M w.r.t. φ (see [15, Def. 19] for a precise
definition). By Lemma 17, M+ is still a universally transient MDP and therefore by
Theorem 9, there exist uniformly ε-optimal MD strategies for every safety objective and
every ε > 0. The claim now follows from [15, Theorem 22]. ◀

▶ Theorem 11. For every universally transient countable MDP M, co-Büchi objective and
ε > 0 there exists a uniformly ε-optimal MD strategy.

Formally, let M be a universally transient countable MDP with states S, Col : S → {0, 1}
be a coloring, φ = Parity(Col) and ε > 0.

There exists an MD strategy σ′ s.t. for every state s, PM,s,σ′(φ) ≥ valM(s) − ε.

Proof. This directly follows from Theorem 9 and [15, Theorem 25]. ◀

6 The Conditioned MDP

Given an MDP M and an objective φ that is tail in M, a construction of a conditioned
MDP M+ was provided in [17, Lemma 6] that, very loosely speaking, “scales up” the
probability of φ so that any strategy σ is optimal in M if it is almost surely winning in M+.
For certain tail objectives, this construction was used in [17] to reduce the sufficiency of MD
strategies for optimal strategies to the sufficiency of MD strategies for almost surely winning
strategies, which is a special case that may be easier to handle.

However, the construction was restricted to states that have an optimal strategy. In fact,
states in M that do not have an optimal strategy do not appear in M+. In the following, we
lift this restriction by constructing a more general version of the conditioned MDP, called M∗.
The MDP M∗ will contain all states from M that have a positive value w.r.t. φ in M.
Moreover, all these states will have value 1 in M∗. It will then follow from Lemma 13(3)
below that an ε-optimal strategy in M∗ is εvalM(s0)-optimal in M. This allows us to
reduce the sufficiency of MD strategies for ε-optimal strategies to the sufficiency of MD
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strategies for ε-optimal strategies for states with value 1. In fact, it also follows that if an
MD strategy σ is uniform ε-optimal in M∗, it is multiplicatively uniform ε-optimal in M,
i.e., PM,s,σ(φ) ≥ (1 − ε) · valM(s) holds for all states s.

▶ Definition 12. For an MDP M = (S, S2, S#, −→, P ) and an objective φ that is tail in M,
define the conditioned version of M w.r.t. φ to be the MDP M∗ = (S∗, S∗2, S∗#, −→∗, P∗)
with

S∗2 = {s ∈ S2 | valM(s) > 0}
S∗# = {s ∈ S# | valM(s) > 0} ∪ {s⊥} ∪ {(s, t) ∈ −→ | s ∈ S2, valM(s) > 0}

−→∗ = {(s, (s, t)) ∈ (S2 × −→) | valM(s) > 0, s−→t} ∪
{(s, t) ∈ S# × S | valM(s) > 0, valM(t) > 0} ∪
{((s, t), t) ∈ (−→ × S) | valM(s) > 0, valM(t) > 0} ∪
{((s, t), s⊥) ∈ (−→ × {s⊥}) | valM(s) > valM(t)} ∪
{(s⊥, s⊥)}

P∗(s, t) = P (s, t) · valM(t)
valM(s) P∗((s, t), t) = valM(t)

valM(s)

P∗((s, t), s⊥) = 1 − valM(t)
valM(s) P∗(s⊥, s⊥) = 1

for a fresh state s⊥.

The conditioned MDP is well-defined. Indeed, as φ is tail in M, for any s ∈ S# we have
valM(s) =

∑
s−→t P (s, t)valM(t), and so if valM(s) > 0 then

∑
s−→t P∗(s, t) = 1.

▶ Lemma 13. Let M = (S, S2, S#, −→, P ) be an MDP, and let φ be an objective that is
tail in M. Let M∗ = (S∗, S∗2, S∗#, −→∗, P∗) be the conditioned version of M w.r.t. φ. Let
s0 ∈ S∗ ∩ S. Let σ ∈ ΣM∗ , and note that σ can be transformed to a strategy in M in a
natural way. Then:
1. For all n ≥ 0 and all partial runs s0s1 · · · sn ∈ s0S∗

∗ in M∗ with sn ∈ S:

valM(s0) · PM∗,s0,σ(s0s1 · · · snSω
∗ ) = PM,s0,σ(s0s1 · · · snSω) · valM(sn) ,

where w for a partial run w in M∗ refers to its natural contraction to a partial run in M;
i.e., w is obtained from w by deleting all states of the form (s, t).

2. For all measurable R ⊆ s0(S∗ \ {s⊥})ω we have

PM,s0,σ(R) ≥ valM(s0) · PM∗,s0,σ(R) ≥ PM,s0,σ(R ∩ JφKs0) ,

where R is obtained from R by deleting, in all runs, all states of the form (s, t).
3. We have valM(s0) · PM∗,s0,σ(φ) = PM,s0,σ(φ). In particular, valM∗(s0) = 1, and, for

any ε ≥ 0, strategy σ is ε-optimal in M∗ if and only if it is εvalM(s0)-optimal in M.
Lemma 13.3 provides a way of proving the existence of MD strategies that attain, for

each state s, a fixed fraction (arbitrarily close to 1) of the value of s:

▶ Theorem 14. Let M = (S, S2, S#, −→, P ) be an MDP, and let φ be an objective that is tail
in M. Let M∗ = (S∗, S∗2, S∗#, −→∗, P∗) be the conditioned version of M w.r.t. φ. Let ε ≥ 0.
Any MD strategy σ that is uniformly ε-optimal in M∗ (i.e., PM∗,s,σ(φ) ≥ valM∗(s) − ε

holds for all s ∈ S∗) is multiplicatively ε-optimal in M (i.e., PM,s,σ(φ) ≥ (1 − ε)valM(s)
holds for all s ∈ S).

Proof. Immediate from Lemma 13.3. ◀
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11:14 Transience in Countable MDPs

As an application of Theorem 14, we can strengthen the first statement of Theorem 8
towards multiplicatively (see Theorem 14) uniform ε-optimal MD strategies for Transience.

▶ Corollary 15. In every countable MDP there exist multiplicatively uniform ε-optimal MD
strategies for Transience.

Proof. Let M be a countable MDP, and M∗ its conditioned version w.r.t. Transience. Let
ε > 0. By Theorem 8, there is a uniform ε-optimal MD strategy σ for Transience in M∗.
By Theorem 14, strategy σ is multiplicatively uniform ε-optimal in M. ◀

The following lemma, stating that universal transience is closed under “conditioning”, is
needed for the proof of Lemma 17 below.

▶ Lemma 16. Let M = (S, S2, S#, −→, P ) be an MDP, and let φ be an objective that is tail
in M. Let M∗ = (S∗, S∗2, S∗#, −→∗, P∗) be the conditioned version of M w.r.t. φ, where
s⊥ is replaced by an infinite chain s1

⊥−→s2
⊥−→ · · · . If M is universally transient, then so

is M∗.

In [17, Lemma 6] a variant, say M+, of the conditioned MDP M∗ from Definition 12 was
proposed. This variant M+ differs from M∗ in that M+ has only those states s from M
that have an optimal strategy, i.e., a strategy σ with PM,s,σ(φ) = valM(s). Further, for any
transition s−→t in M+ where s is a controlled state, we have valM(s) = valM(t), i.e., M+
does not have value-decreasing transitions emanating from controlled states. The following
lemma was used in the proof of Theorem 10:

▶ Lemma 17. Let M be an MDP, and let φ be an objective that is tail in M. Let M+ be
the conditioned version w.r.t. φ in the sense of [17, Lemma 6]. If M is universally transient,
then so is M+.

7 Conclusion

The Transience objective admits ε-optimal (resp. optimal) MD strategies even in infinitely
branching MDPs. This is unusual, since ε-optimal strategies for most other objectives require
infinite memory if the MDP is infinitely branching (in particular all objectives generalizing
Safety [17]).

Transience encodes a notion of continuous progress, which can be used as a tool to
reason about the strategy complexity of other objectives in countable MDPs. E.g., our result
on Transience is used in [18] as a building block to show upper bounds on the strategy
complexity of certain threshold objectives w.r.t. mean payoff, total payoff and point payoff.
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Abstract
We study countably infinite Markov decision processes (MDPs) with real-valued transition rewards.
Every infinite run induces the following sequences of payoffs: 1. Point payoff (the sequence of directly
seen transition rewards), 2. Total payoff (the sequence of the sums of all rewards so far), and 3.
Mean payoff. For each payoff type, the objective is to maximize the probability that the lim inf is
non-negative. We establish the complete picture of the strategy complexity of these objectives, i.e.,
how much memory is necessary and sufficient for ε-optimal (resp. optimal) strategies. Some cases
can be won with memoryless deterministic strategies, while others require a step counter, a reward
counter, or both.
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1 Introduction

Background. Markov decision processes (MDPs) are a standard model for dynamic systems
that exhibit both stochastic and controlled behavior [18]. Applications include control
theory [5, 1], operations research and finance [2, 6, 20], artificial intelligence and machine
learning [23, 21], and formal verification [9, 3].

An MDP is a directed graph where states are either random or controlled. In a random
state the next state is chosen according to a fixed probability distribution. In a controlled
state the controller can choose a distribution over all possible successor states. By fixing
a strategy for the controller (and an initial state), one obtains a probability space of runs
of the MDP. The goal of the controller is to optimize the expected value of some objective
function on the runs. The type of strategy necessary to achieve an ε-optimal (resp. optimal)
value for a given objective is called its strategy complexity.

Transition rewards and liminf objectives. MDPs are given a reward structure by assigning
a real-valued (resp. integer or rational) reward to each transition. Every run then induces
an infinite sequence of seen transition rewards r0r1r2 . . . . We consider the lim inf of this
sequence, as well as two other important derived sequences.
1. The point payoff considers the lim inf of the sequence r0r1r2 . . . directly.
2. The total payoff considers the lim inf of the sequence

{∑n−1
i=0 ri

}
n∈N

, i.e., the sum of all
rewards seen so far.

3. The mean payoff considers the lim inf of the sequence
{

1
n

∑n−1
i=0 ri

}
n∈N

, i.e., the mean of
all rewards seen so far in an expanding prefix of the run.

For each of the three cases above, the lim inf threshold objective is to maximize the probability
that the lim inf of the respective type of sequence is ≥ 0.
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12:2 Strategy Complexity of Mean/Total/Point Payoff Objectives in Countable MDPs

Our contribution. We establish the strategy complexity of all the lim inf threshold objectives
above for countably infinite MDPs. (For the simpler case of finite MDPs, see the paragraph
on related work below.) We show the amount and type of memory that is sufficient for
ε-optimal strategies (and optimal strategies, where they exist), and corresponding lower
bounds in the sense of Remark 1. This is not only the distinction between memoryless, finite
memory and infinite memory, but the type of infinite memory that is necessary and sufficient.
A step counter is an integer counter that merely counts the number of steps in the run (i.e.,
like a discrete clock), while a reward counter is a variable that records the sum of all rewards
seen so far. (The reward counter has the same type as the transition rewards in the MDP,
i.e., integers, rationals or reals.) While these use infinite memory, it is a very restricted
form, since this memory is not directly controlled by the player. Strategies using only a step
counter are also called Markov strategies [18].

Some of the lim inf objectives can be attained by memoryless deterministic (MD) strategies,
while others require (in the sense of Remark 1) a step counter, a reward counter, or both. It
depends on the type of objective (point, total, or mean payoff) and on whether the MDP is
finitely or infinitely branching. For clarity of presentation, our counterexamples use large
transition rewards and high degrees of branching. However, the lower bounds hold even for
just binary branching MDPs with transition rewards in {−1, 0, 1}; cf. [17].

For our objectives, the strategy complexities of ε-optimal and optimal strategies (where
they exist) coincide, but the proofs are different. Table 1 shows the results for all combinations.

Table 1 Strategy complexity of ε-optimal/optimal strategies for point, total and mean payoff
objectives in infinitely/finitely branching MDPs. MD stands for memoryless deterministic, SC for
step counter, RC for reward counter and SC+RC for both. All strategies are deterministic and
randomization does not help. For each result, we list the numbers of the theorems that show the
upper and lower bounds on the strategy complexity. The lower bounds hold in the sense of Remark 1,
but work for integer rewards. The upper bounds hold even for real-valued rewards.

Point payoff Total payoff Mean payoff
ε-optimal, infinitely branching SC 17, 32 SC+RC 17, 9, 34 SC+RC 15, 8, 33
optimal, infinitely branching SC 17, 35 SC+RC 14, 17, 35 SC+RC 13, 16, 35
ε-optimal, finitely branching MD 27 RC 9, 30 SC+RC 15, 8, 33
optimal, finitely branching MD 31 RC 14, 31 SC+RC 13, 16, 35

Some complex new proof techniques are developed to show these results. E.g., the
examples showing the lower bound in cases where both a step counter and a reward counter
are required use a finely tuned tradeoff between different risks that can be managed with
both counters, but not with just one counter plus arbitrary finite memory. The strategies
showing the upper bounds need to take into account convergence effects, e.g., the sequence
of point rewards −1/2, −1/3, −1/4, . . . does satisfy lim inf ≥ 0, i.e., one cannot assume that
rewards are integers.

Due to space constraints, we sketch some proofs in the main body. Full proofs can be
found in [17].

Related work. Mean payoff objectives for finite MDPs have been widely studied; cf. survey
in [8]. There exist optimal MD strategies for lim inf mean payoff (which are also optimal
for lim sup mean payoff since the transition rewards are bounded), and the associated
computational problems can be solved in polynomial time [8, 18]. Similarly, see [7] for a survey
on lim sup and lim inf point payoff objectives in finite stochastic games and MDPs, where
there also exist optimal MD strategies, and the more recent paper by Flesch, Predtetchinski
and Sudderth [11] on simplifying optimal strategies.
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All this does not carry over to countably infinite MDPs. Optimal strategies need not exist
(not even for much simpler objectives), (ε-)optimal strategies can require infinite memory,
and computational problems are not defined in general, since a countable MDP need not
be finitely presented [16]. Moreover, attainment for lim inf mean payoff need not coincide
with attainment for lim sup mean payoff, even for very simple examples. E.g., consider the
acyclic infinite graph with transitions sn → sn+1 for all n ∈ N with reward (−1)n2n in the
n-th step, which yields a lim inf mean payoff of −∞ and a lim sup mean payoff of +∞.

Mean payoff objectives for countably infinite MDPs have been considered in [18, Section
8.10], e.g., [18, Example 8.10.2] shows that there are no optimal MD (memoryless determin-
istic) strategies for lim inf/lim sup mean payoff. [19, Counterexample 1.3] shows that there
are not even ε-optimal memoryless randomized strategies for lim inf/lim sup mean payoff.
(We show much stronger lower/upper bounds; cf. Table 1.)

Sudderth [22] considered an objective on countable MDPs that is related to our point payoff
threshold objective. However, instead of maximizing the probability that the lim inf/lim sup
is non-negative, it asks to maximize the expectation of the lim inf/lim sup point payoffs, which
is a different problem (e.g., it can tolerate a high probability of a negative lim inf/lim sup
if the remaining cases have a huge positive lim inf/lim sup). Hill & Pestien [12] showed
the existence of good randomized Markov strategies for the lim sup of the expected average
reward up-to step n for growing n, and for the expected lim inf of the point payoffs.

2 Preliminaries

Markov decision processes. A probability distribution over a countable set S is a function
f : S → [0, 1] with

∑
s∈S f(s) = 1. We write D(S) for the set of all probability distributions

over S. A Markov decision process (MDP) M = (S, S2, S#, −→, P, r) consists of a countable
set S of states, which is partitioned into a set S2 of controlled states and a set S# of random
states, a transition relation −→ ⊆ S × S, and a probability function P : S# → D(S). We
write s−→s′ if (s, s′) ∈ −→, and refer to s′ as a successor of s. We assume that every state
has at least one successor. The probability function P assigns to each random state s ∈ S#

a probability distribution P (s) over its (non-empty) set of successor states. A sink in M is a
subset T ⊆ S closed under the −→ relation, that is, s ∈ T and s−→s′ implies that s′ ∈ T .

An MDP is acyclic if the underlying directed graph (S, −→) is acyclic, i.e., there is no
directed cycle. It is finitely branching if every state has finitely many successors and infinitely
branching otherwise. An MDP without controlled states (S2 = ∅) is called a Markov chain.

In order to specify our mean/total/point payoff objectives (see below), we define a function
r : S × S → R that assigns numeric rewards to transitions.

Strategies and Probability Measures. A run ρ is an infinite sequence of states and
transitions s0e0s1e1 · · · such that ei = (si, si+1) ∈ −→ for all i ∈ N. Let Runss0

M be the set
of all runs from s0 in the MDP M. A partial run is a finite prefix of a run, pRunss0

M is the
set of all partial runs from s0 and pRunsM the set of partial runs from any state.

We write ρs(i) def= si for the i-th state along ρ and ρe(i) def= ei for the i-th transition
along ρ. We sometimes write runs as s0s1 · · · , leaving the transitions implicit. We say that a
(partial) run ρ visits s if s = ρs(i) for some i, and that ρ starts in s if s = ρs(0).

A strategy is a function σ : pRunsM ·S2 → D(S) that assigns to partial runs ρs, where
s ∈ S2, a distribution over the successors {s′ ∈ S | s−→s′}. The set of all strategies in
M is denoted by ΣM (we omit the subscript and write Σ if M is clear from the context).
A (partial) run s0e0s1e1 · · · is consistent with a strategy σ if for all i either si ∈ S2 and
σ(s0e0s1e1 · · · si)(si+1) > 0, or si ∈ S# and P (si)(si+1) > 0.

CONCUR 2021



12:4 Strategy Complexity of Mean/Total/Point Payoff Objectives in Countable MDPs

An MDP M = (S, S2, S#, −→, P, r), an initial state s0 ∈ S, and a strategy σ induce a
probability space in which the outcomes are runs starting in s0 and with measure PM,s0,σ

defined as follows. It is first defined on cylinders s0e0s1e1 . . . snRunssn

M: if s0e0s1e1 . . . sn

is not a partial run consistent with σ then PM,s0,σ(s0e0s1e1 . . . snRunssn

M) def= 0. Other-
wise, PM,s0,σ(s0e0s1e1 . . . snRunssn

M) def=
∏n−1

i=0 σ̄(s0e0s1 . . . si)(si+1), where σ̄ is the map that
extends σ by σ̄(ws) = P (s) for all partial runs ws ∈ pRunsM ·S#. By Carathéodory’s
theorem [4], this extends uniquely to a probability measure PM,s0,σ on the Borel σ-algebra
F of subsets of Runss0

M. Elements of F , i.e., measurable sets of runs, are called events or
objectives here. For X ∈ F we will write X

def= Runss0
M \ X ∈ F for its complement and

EM,s0,σ for the expectation wrt. PM,s0,σ. We drop the indices if possible without ambiguity.
Objectives. We consider objectives that are determined by a predicate on infinite runs. We

assume familiarity with the syntax and semantics of the temporal logic LTL [10]. Formulas
are interpreted on the structure (S, −→). We use JφKs to denote the set of runs starting
from s that satisfy the LTL formula φ, which is a measurable set [24]. We also write JφK
for
⋃

s∈SJφKs. Where it does not cause confusion we will identify φ and JφK and just write
PM,s,σ(φ) instead of PM,s,σ(JφKs). The reachability objective of eventually visiting a set of
states X can be expressed by JFXK def= {ρ | ∃i. ρs(i) ∈ X}. Reaching X within at most k steps
is expressed by JF≤kXK def= {ρ | ∃i ≤ k. ρs(i) ∈ X}. The definitions for eventually visiting
certain transitions are analogous. The operator G (always) is defined as ¬F¬. So the safety
objective of avoiding X is expressed by G¬X.

The PP lim inf≥0 objective is to maximize the probability that the lim inf of the point payoffs
(the immediate transition rewards) is ≥ 0, i.e., PP lim inf≥0

def= {ρ | lim infn∈N r(ρe(n)) ≥ 0}.
The TP lim inf≥0 objective is to maximize the probability that the lim inf of the total
payoff (the sum of the transition rewards seen so far) is ≥ 0, i.e., TP lim inf≥0

def= {ρ |
lim infn∈N

∑n−1
j=0 r(ρe(j)) ≥ 0}.

The MP lim inf≥0 objective is to maximize the probability that the lim inf of the mean
payoff is ≥ 0, i.e., MP lim inf≥0

def= {ρ | lim infn∈N
1
n

∑n−1
j=0 r(ρe(j)) ≥ 0}.

An objective φ is called tail in M if for every run ρ′ρ in M with some finite prefix ρ′ we
have ρ′ρ ∈ JφK ⇔ ρ ∈ JφK. An objective is called a tail objective if it is tail in every MDP.
PP lim inf≥0 and MP lim inf≥0 are tail objectives, but TP lim inf≥0 is not. Also PP lim inf≥0 is
more general than co-Büchi. (The special case of integer transition rewards coincides with
co-Büchi, since rewards ≤ −1 and accepting states can be encoded into each other.)

Strategy Classes. Strategies are in general randomized (R) in the sense that they take
values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution for all ρ.
General strategies can be history dependent (H), while others are restricted by the size or
type of memory they use, see below. We consider certain classes of strategies:

A strategy σ is memoryless (M) (also called positional) if it can be implemented with a
memory of size 1. We may view M-strategies as functions σ : S2 → D(S).
A strategy σ is finite memory (F) if there exists a finite memory M implementing σ.
Hence FR stands for finite memory randomized.
A step counter strategy bases decisions only on the current state and the number of steps
taken so far, i.e., it uses an unbounded integer counter that gets incremented by 1 in
every step. Such strategies are also called Markov strategies [18].
k-bit Markov strategies use k extra bits of general purpose memory in addition to a step
counter [15].
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A reward counter strategy uses infinite memory, but only in the form of a counter that
always contains the sum of all transition rewards seen to far.
A step counter + reward counter strategy uses both a step counter and a reward counter.

See [17] for a formal definition how strategies use memory. Step counters and reward counters
are very restricted forms of memory, since the memory update is not directly under the
control of the player. These counters merely record an aspect of the partial run.

Optimal and ε-optimal Strategies. Given an objective φ, the value of state s in an
MDP M, denoted by valM,φ(s), is the supremum probability of achieving φ. Formally,
valM,φ(s) def= supσ∈Σ PM,s,σ(φ) where Σ is the set of all strategies. For ε ≥ 0 and state s ∈ S,
we say that a strategy is ε-optimal from s if PM,s,σ(φ) ≥ valM,φ(s)−ε. A 0-optimal strategy
is called optimal. An optimal strategy is almost-surely winning if valM,φ(s) = 1. Considering
an MD strategy as a function σ : S2 → S and ε ≥ 0, σ is uniformly ε-optimal (resp. uniformly
optimal) if it is ε-optimal (resp. optimal) from every s ∈ S.
▶ Remark 1. To establish an upper bound X on the strategy complexity of an objective φ in
countable MDPs, it suffices to prove that there always exist good (ε-optimal, resp. optimal)
strategies in class X (e.g., MD, MR, FD, FR, etc.) for objective φ.

Lower bounds on the strategy complexity of an objective φ can only be established in the
sense of proving that good strategies for φ do not exist in some classes Y , Z, etc. Classes of
strategies that use different types of restricted infinite memory are generally not comparable,
e.g., step counter strategies are incomparable to reward counter strategies. In particular,
there is no weakest type of infinite memory with restricted use. Therefore statements like
“good strategies for objective φ require at least a step counter” are always relative to the
considered alternative strategy classes. In this paper, we only consider the strategy classes of
memoryless, finite memory, step counter, reward counter and combinations thereof. Thus,
when we write in Table 1 that an objective requires a step counter (SC), it just means that a
reward counter (RC) plus finite memory is not sufficient.
For our upper bounds, we use deterministic strategies. Moreover, we show that allowing
randomization does not help to reduce the strategy complexity, in the sense of Remark 1.

3 When is a step counter not sufficient?

In this section we will prove that strategies with a step counter plus arbitrary finite memory
are not sufficient for ε-optimal strategies for MP lim inf≥0 or TP lim inf≥0. We will construct
an acyclic MDP where the step counter is implicit in the state such that ε-optimal strategies
for MP lim inf≥0 and TP lim inf≥0 still require infinite memory.

3.1 Epsilon-optimal strategies
We construct an acyclic MDP M in which the step counter is implicit in the state as follows.

The system consists of a sequence of gadgets. Figure 1 depicts a typical building block in
this system. The system consists of these gadgets chained together as illustrated in Figure 2,
starting with n sufficiently high at n = N∗. In the controlled choice, there is a small chance
in all but the top choice of falling into a ⊥ state. These ⊥ states are abbreviations for an
infinite chain of states with −1 reward on the transitions and are thus losing. The intuition
behind the construction is that there is a random transition with branching degree k(n) + 1.
Then, the only way to win, in the controlled states, is to play the i-th choice if one arrived
from the i-th choice. Thus intuitively, to remember what this choice was, one requires at
least k(n) + 1 memory modes. That is to say, the one and only way to win is to mimic, and
mimicry requires memory.
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Figure 1 A typical building block with k(n) + 1 choices, first random then controlled. The
number of choices k(n) + 1 grows unboundedly with n. This is the n-th building block of the MDP
in Figure 2. The δi(n) and εi(n) are probabilities depending on n and the ±imn are transition
rewards. We index the successor states of sn and cn from 0 to k(n) to match the indexing of the δ’s
and ε’s such that the bottom state is indexed with 0 and the top state with k(n).

▶ Remark 2. M is acyclic, finitely branching and for every state s ∈ S, ∃ns ∈ N such that
every path from s0 to s has length ns. That is to say the step counter is implicit in the state.

Additionally, the number of transitions in each gadget now grows unboundedly with n

according to the function k(n). Consequently, we will show that the number of memory
modes required to play correctly grows above every finite bound. This will imply that no
finite amount of memory suffices for ε-optimal strategies.

Notation. All logarithms are assumed to be in base e.

log1n
def= logn, logi+1n

def= log(login)

δ0(n) def= 1
logn

, δi(n) def= 1
logi+1n

, δk(n)(n) def= 1 −
k(n)−1∑

j=0

δj(n)

ε0(n) def= 1
nlogn

, εi+1(n) def= εi(n)
logi+2n

, i.e. εi(n) = 1
n · logn · log2n · · · logi+1n

, εk(n)(n) def= 0

Tower(0) def= e0 = 1, Tower(i + 1) def= eTower(i), Ni
def= Tower(i)

▶ Lemma 3. The family of series
∑

n>Nj
δj(n) · εi(n) is divergent for all i, j ∈ N, i < j.

Additionally, the related family of series
∑

n>Ni
δi(n) · εi(n) is convergent for all i ∈ N.

Proof. These are direct consequences of Cauchy’s Condensation Test. ◀

▶ Definition 4. We define k(n), the rate at which the number of transitions grows. We define
k(n) in terms of fast growing functions g, Tower and h defined for i ≥ 1 as follows:

g(i) def= min
{

N :
(∑

n>N

δi−1(n)εi−1(n)
)

≤ 2−i

}
, h(1) def= 2
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Figure 2 The buildings blocks from Figure 1 represented by black boxes are chained together (n

increases as you go to the right). The chain of white boxes allows to skip arbitrarily long prefixes
while preserving path length. The positive rewards from the white states to the black boxes reimburse
the lost reward accumulated until then. The −1 rewards between white states ensure that skipping
gadgets forever is losing.

h(i + 1) def=

max

g(i + 1), Tower(i + 2), min

m + 1 ∈ N :
m∑

n=h(i)

εi−1(n) ≥ 1



 .

Note that function g is well defined by Lemma 3, and h(i + 1) is well defined since for
all i,

∑∞
n=h(i) εi−1(n) diverges to infinity. k(n) is a slow growing unbounded step function

defined in terms of h as k(n) def= h−1(n). The Tower function features in the definition to
ensure that the transition probabilities are always well defined. g and h are used to smooth
the proofs of e.g. Lemma 6. Notation: N∗ def= min{n ∈ N : k(n) = 1}. This is intuitively the
first natural number for which the construction is well defined.

The reward mn which appears in the n-th gadget is defined such that it outweighs any
possible reward accumulated up to that point in previous gadgets. As such we define mn

def=
2k(n)

∑n−1
i=N∗ mi, with mN∗

def= 1 and where k(n) is the branching degree.

To simplify the notation, the state s0 in our theorem statements refers to sN∗ .

▶ Lemma 5. For k(n) ≥ 1, the transition probabilities in the gadgets are well defined.

▶ Lemma 6. For every ε > 0, there exists a strategy σε with PM,s0,σε
(MP lim inf≥0) ≥ 1 − ε

that cannot fail unless it hits a ⊥ state. Formally, PM,s0,σε
(MP lim inf≥0 ∧ G(¬ ⊥)) =

PM,s0,σε
(G(¬ ⊥)) ≥ 1 − ε. So in particular, valM,MPlim inf≥0(s0) = 1.

Proof sketch. We define a strategy σ which in cn always mimics the choice in sn. Playing
according to σ, the only way to lose is by dropping into the ⊥ state. This is because by
mimicking, the player finishes each gadget with a reward of 0. From s0, the probability of
surviving while playing in all the gadgets is

∏
n≥N∗

1 −
k(n)−1∑

j=0
δj(n) · εj(n)

 > 0.

Hence the player has a non zero chance of winning when playing σ.
When playing with the ability to skip gadgets, as illustrated in Figure 2, all runs not

visiting a ⊥ state are winning since the total reward never dips below 0. We then consider the
strategy σε which plays like σ after skipping forwards by sufficiently many gadgets (starting
at n ≫ N∗). Its probability of satisfying MP lim inf≥0 corresponds to a tail of the above
product, which can be made arbitrarily close to 1 (and thus ≥ 1 − ε). Thus the strategies σε

for arbitrarily small ε > 0 witness that valM,MPlim inf≥0(s0) = 1. ◀
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12:8 Strategy Complexity of Mean/Total/Point Payoff Objectives in Countable MDPs

▶ Lemma 7. For any FR strategy σ, almost surely either the mean payoff dips below −1
infinitely often, or the run hits a ⊥ state, i.e. PM,σ,s0(MP lim inf≥0) = 0.

Proof sketch. Let σ be some FR strategy with k memory modes. We prove a lower bound
en on the probability of a local error (reaching a ⊥ state, or seeing a mean payoff ≤ −1) in
the current n-th gadget. This lower bound en holds regardless of events in past gadgets,
regardless of the memory mode of σ upon entering the n-th gadget, and cannot be improved
by σ randomizing its memory updates.

The main idea is that, once k(n) > k + 1 (which holds for n ≥ N ′ sufficiently large) by
the Pigeonhole Principle there will always be a memory mode confusing at least two different
branches i(n), j(n) ̸= k(n) of the previous random choice at state sn. This confusion yields a
probability ≥ en of reaching a ⊥ state or seeing a mean payoff ≤ −1, regardless of events in
past gadgets and regardless of the memory upon entering the n-th gadget. We show that∑

n≥N ′ en is a divergent series. Thus,
∏

n≥N ′(1 − en) = 0. Hence, PM,σ,s0(MP lim inf≥0) ≤∏
n≥N ′(1 − en) = 0. ◀

Lemma 6 and Lemma 7 yield the following theorem.

▶ Theorem 8. There exists a countable, finitely branching and acyclic MDP M whose step
counter is implicit in the state for which valM,MPlim inf≥0(s0) = 1 and any FR strategy σ

is such that PM,s0,σ(MP lim inf≥0) = 0. In particular, there are no ε-optimal k-bit Markov
strategies for any k ∈ N and any ε < 1 for MP lim inf≥0 in countable MDPs.

All of the above results/proofs also hold for TP lim inf≥0, giving us the following theorem.

▶ Theorem 9. There exists a countable, finitely branching and acyclic MDP M whose step
counter is implicit in the state for which valM,TPlim inf≥0(s0) = 1 and any FR strategy σ

is such that PM,s0,σ(TP lim inf≥0) = 0. In particular, there are no ε-optimal k-bit Markov
strategies for any k ∈ N and any ε < 1 for TP lim inf≥0 in countable MDPs.

3.2 Optimal strategies
Even for acyclic MDPs with the step counter implicit in the state, optimal (and even almost
sure winning) strategies for MP lim inf≥0 require infinite memory. To prove this, we consider a
variant of the MDP from the previous section which has been augmented to include restarts
from the ⊥ states. For the rest of the section, M is the MDP constructed in Figure 3.
▶ Remark 10. M is acyclic, finitely branching and the step counter is implicit in the state.
We now refer to the rows of Figure 3 as gadgets, i.e., a gadget is a single instance of Figure 2
where the ⊥ states lead to the next row.

▶ Lemma 11. There exists a strategy σ such that PM,σ,s0(MP lim inf≥0) = 1.

Proof sketch. Recall the strategy σ1/2 defined in Lemma 6 which achieves at least 1/2 in
each gadget that it is played in. We then construct the almost surely winning strategy σ

by concatenating σ1/2 strategies in the sense that σ plays just like σ1/2 in each gadget from
each gadget’s start state.

Since σ achieves at least 1/2 in every gadget that it sees, with probability 1, runs generated
by σ restart only finitely many times. The intuition is then that a run restarting finitely many
times must spend an infinite tail in some final gadget. Since σ mimics in every controlled state,
not restarting anymore directly implies that the total payoff is eventually always ≥ 0. Hence
all runs generated by σ and restarting only finitely many times satisfy MP lim inf≥0. Therefore
all but a nullset of runs generated by σ are winning, i.e. PM,s0,σ(MP lim inf≥0) = 1. ◀
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Figure 3 Each row represents a copy of the MDP depicted in Figure 2. Each white circle labeled
with a number i represents the correspondingly numbered gadget (like in Figure 1) from that MDP.
Now, instead of the bottom states in each gadget leading to an infinite losing chain, they lead to a
restart state ri,j which leads to a fresh copy of the MDP (in the next row). Each restart incurs a
penalty guaranteeing that the mean payoff dips below −1 before refunding it and continuing on in
the next copy of the MDP. The states ri,j are labeled such that the j indicates that if a run sees
this state, then it is the jth restart. The i indicates that the run entered the restart state from the
ith gadget of the current copy of the MDP. The black states are dummy states inserted in order to
preserve path length throughout.

▶ Lemma 12. For any FR strategy σ, PM,σ,s0(MP lim inf≥0) = 0.

Proof sketch. Let σ be any FR strategy. We partition the runs generated by σ into runs
restarting infinitely often, and those restarting only finitely many times. Any runs restarting
infinitely often are losing by construction. Those runs restarting only finitely many times, once
in the gadget they spend an infinite tail in, let the mean payoff dip below −1 infinitely many
times with probability 1 by Lemma 7. Hence we have that PM,σ,s0(MP lim inf≥0) = 0. ◀

From Lemma 11 and Lemma 12 we obtain the following theorem.

▶ Theorem 13. There exists a countable, finitely branching and acyclic MDP M whose
step counter is implicit in the state for which s0 is almost surely winning MP lim inf≥0, i.e.,
∃σ̂ PM,s0,σ̂(MP lim inf≥0) = 1, but every FR strategy σ is such that PM,s0,σ(MP lim inf≥0) = 0.
In particular, almost sure winning strategies, when they exist, cannot be chosen k-bit Markov
for any k ∈ N for countable MDPs.

All of the above results/proofs also hold for TP lim inf≥0, giving us the following theorem.

▶ Theorem 14. There exists a countable, finitely branching and acyclic MDP M whose
step counter is implicit in the state for which s0 is almost surely winning TP lim inf≥0, i.e.,
∃σ̂ PM,s0,σ̂(TP lim inf≥0) = 1, but every FR strategy σ is such that PM,s0,σ(TP lim inf≥0) = 0.
In particular, almost sure winning strategies, when they exist, cannot be chosen k-bit Markov
for any k ∈ N for countable MDPs.
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4 When is a reward counter not sufficient?

In this part we show that a reward counter plus arbitrary finite memory does not suffice for
(ε-)optimal strategies for MP lim inf≥0, even if the MDP is finitely branching.

The same lower bound holds for TP lim inf≥0/PP lim inf≥0, but only in infinitely branching
MDPs. The finitely branching case is different for TP lim inf≥0/PP lim inf≥0; cf. Section 5.

The techniques used to prove these results are similar to those in Section 3 and proofs
can be found in [17].

▶ Theorem 15. There exists a countable, finitely branching, acyclic MDP MRI with initial
state (s0, 0) with the total reward implicit in the state such that

valMRI,MPlim inf≥0((s0, 0)) = 1,
for all FR strategies σ, we have PMRI,(s0,0),σ(MP lim inf≥0) = 0.

▶ Theorem 16. There exists a countable, finitely branching and acyclic MDP MRestart
whose total reward is implicit in the state where, for the initial state s0,

there exists an HD strategy σ s.t. PMRestart,s0,σ(MP lim inf≥0) = 1.
for every FR strategy σ, PMRestart,s0,σ(MP lim inf≥0) = 0.

▶ Theorem 17. There exists an infinitely branching MDP M with reward implicit in the
state and initial state s such that

every FR strategy σ is such that PM,s,σ(TP lim inf≥0) = 0 and PM,s,σ(PP lim inf≥0) = 0
there exists an HD strategy σ s.t. PM,s,σ(TP lim inf≥0) = 1 and PM,s,σ(PP lim inf≥0) = 1.

Hence, optimal (and even almost-surely winning) strategies and ε-optimal strategies for
TP lim inf≥0 and PP lim inf≥0 require infinite memory beyond a reward counter.

▶ Remark 18. The MDPs from Section 3 and Section 4 show that good strategies for
MP lim inf≥0 require at least (in the sense of Remark 1) a reward counter and a step counter,
respectively. There does, of course, exist a single MDP where good strategies for MP lim inf≥0
require at least both a step counter and a reward counter. We construct such an MDP by
“gluing” the two different MDPs together via an initial random state which points to each
with probability 1/2.

5 Upper bounds

We establish upper bounds on the strategy complexity of lim inf threshold objectives for mean
payoff, total payoff and point payoff. It is noteworthy that once the reward structure of an
MDP has been encoded into the states, then these threshold objectives take on a qualitative
flavor not dissimilar to Safety or co-Büchi (cf. [16]). Indeed, if the transition rewards are
restricted to integer values, then TP lim inf≥0 boils down to eventually avoiding all transitions
with negative reward (since negative rewards would be ≤ −1). This is a co-Büchi objective.
However, if the rewards are not restricted to integers, then the picture is not so simple.

For finitely branching MDPs, we show that there exist ε-optimal MD strategies for
PP lim inf≥0. In turn, this yields the requisite upper bound for finitely branching TP lim inf≥0,
i.e., using just a reward counter.

For infinitely branching MDPs, a step counter suffices in order to achieve PP lim inf≥0
ε-optimally. Then, by encoding the total reward into the states, this will also give us SC+RC
upper bounds for MP lim inf≥0 as well as infinitely branching TP lim inf≥0 (i.e., using both a
step counter and a reward counter).

First we show how to encode the total reward level into the state in a given MDP.
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▶ Remark 19. Given an MDP M and initial state s0, we can construct an MDP R(M) with
initial state (s0, 0) and with the reward counter implicit in the state such that strategies in
R(M) can be translated back to M with an extra reward counter.

By labeling transitions in R(M) with the state encoded total reward of the target state,
we ensure that the point rewards in R(M) correspond exactly to the total rewards in M.

▶ Lemma 20. Let M be an MDP with initial state s0. Then given an MD (resp. Markov)
strategy σ′ in R(M) attaining c ∈ [0, 1] for PP lim inf≥0 from (s0, 0), there exists a strategy σ

attaining c for TP lim inf≥0 in M from s0 which uses the same memory as σ′ plus a reward
counter.

▶ Remark 21. Given an MDP M and initial state s0, we can construct an acyclic MDP
S(M) with initial state (s0, 0) and with the step counter implicit in the state such that MD
strategies in S(M) can be translated back to M with the use of a step counter to yield
deterministic Markov strategies in M; cf. [15, Lemma 4].
▶ Remark 22. In order to tackle the mean payoff objective MP lim inf≥0 on M, we define a
new acyclic MDP A(M) which encodes both the step counter and the average reward into
the state. However, since we want the point rewards in A(M) to coincide with the mean
payoff in the original MDP M, the transition rewards in A(M) are given as the encoded
rewards divided by the step counter (unlike in R(M)).

▶ Lemma 23. Let M be an MDP with initial state s0. Then given an MD strategy σ′ in
A(M) attaining c ∈ [0, 1] for PP lim inf≥0 from (s0, 0, 0), there exists a strategy σ attaining c

for MP lim inf≥0 in M from s0 which uses just a reward counter and a step counter.

Proof. The proof is very similar to that of Lemma 20. ◀

▶ Lemma 24 ([15, Lemma 23]). For every acyclic MDP with a safety objective and every
ε > 0, there exists an MD strategy that is uniformly ε-optimal.

▶ Theorem 25 ([13, Theorem 7]). Let M = (S, S2, S#, −→, P, r) be a countable MDP, and
let φ be an event that is tail in M. Suppose for every s ∈ S there exist ε-optimal MD
strategies for φ. Then:
1. There exist uniform ε-optimal MD strategies for φ.
2. There exists a single MD strategy that is optimal from every state that has an optimal

strategy.

5.1 Finitely Branching Case
In order to prove the main result of this section, we use the following result on the Transience
objective, which is the set of runs that do not visit any state infinitely often. Given an MDP
M = (S, S2, S#, −→, P, r), Transience def=

∧
s∈S FG¬s.

▶ Theorem 26 ([13, Theorem 8]). In every countable MDP there exist uniform ε-optimal
MD strategies for Transience.

▶ Theorem 27. Consider a finitely branching MDP M = (S, S2, S#, −→, P, r) with initial
state s0 and a PP lim inf≥0 objective. Then there exist ε-optimal MD strategies.

Proof. Let ε > 0. We begin by partitioning the state space into two sets, Ssafe and S \ Ssafe.
The set Ssafe is the subset of states which is surely winning for the safety objective of
only using transitions with non-negative rewards (i.e., never using transitions with negative
rewards at all). Since M is finitely branching, there exists a uniformly optimal MD strategy
σsafe for this safety objective [18, 16].
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We construct a new MDP M′ by modifying M. We create a gadget Gsafe composed
of a sequence of new controlled states x0, x1, x2, . . . where all transitions xi → xi+1 have
reward 0. Hence any run entering Gsafe is winning for PP lim inf≥0. We insert Gsafe into M by
replacing all incoming transitions to Ssafe with transitions that lead to x0. The idea behind
this construction is that when playing in M, once you hit a state in Ssafe, you can win surely
by playing an optimal MD strategy for safety. So we replace Ssafe with the surely winning
gadget Gsafe. Thus

valM,PPlim inf≥0(s0) = valM′,PPlim inf≥0(s0) (1)

and if an ε-optimal MD strategy exists in M, then there exists a corresponding one in M′,
and vice-versa.

We now consider a general (not necessarily MD) ε-optimal strategy σ for PP lim inf≥0 from
s0 on M′, i.e.,

PM′,s0,σ(PP lim inf≥0) ≥ valM′,PPlim inf≥0(s0) − ε. (2)

Define the safety objective Safetyi which is the objective of never seeing any point rewards
< −2−i. This then allows us to characterize PP lim inf≥0 in terms of safety objectives.

PP lim inf≥0 =
⋂
i∈N

F(Safetyi). (3)

Now we define the safety objective Safetyk
i

def= F≤k(Safetyi) to attain Safetyi within at
most k steps. This allows us to write

F(Safetyi) =
⋃
k∈N

Safetyk
i . (4)

By continuity of measures from above we get

0 = PM′,s0,σ

(
F(Safetyi) ∩

⋂
k∈N

Safetyk
i

)
= lim

k→∞
PM′,s0,σ

(
F(Safetyi) ∩ Safetyk

i

)
.

Hence for every i ∈ N and εi
def= ε · 2−i there exists ni such that

PM′,s0,σ

(
F(Safetyi) ∩ Safetyni

i

)
≤ εi. (5)

Now we can show the following claim (proof in [17]).

▷ Claim 28.

PM′,s0,σ

(⋂
i∈N

Safetyni
i

)
≥ valM′,PPlim inf≥0(s0) − 2ε.

Since M′ does not have an implicit step counter, we use the following construction to
approximate one. We define the distance d(s) from s0 to a state s as the length of the
shortest path from s0 to s. Let Bubblen(s0) def= {s ∈ S | d(s) ≤ n} be those states that can
be reached within n steps from s0. Since M′ is finitely branching, Bubblen(s0) is finite for
every fixed n. Let

Badi
def= {t ∈−→M′ | t = s −→M′ s′, s /∈ Bubbleni

(s0) and r(t) < −2−i}
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be the set of transitions originating outside Bubbleni(s0) whose reward is too negative. Thus
a run from s0 that satisfies Safetyni

i cannot use any transition in Badi, since (by definition
of Bubbleni

(s0)) they would come after the ni-th step.
Now we create a new state ⊥ whose only outgoing transition is a self loop with reward −1.

We transform M′ into M′′ by re-directing all transitions in Badi to the new target state ⊥
for every i. Notice that any run visiting ⊥ must be losing for PP lim inf≥0 due to the negative
reward on the self loop, but it must also be losing for Transience because of the self loop.

We now show that the change from M′ to M′′ has decreased the value of s0 for PP lim inf≥0
by at most 2ε, i.e.,

valM′′,PPlim inf≥0(s0) ≥ valM′,PPlim inf≥0(s0) − 2ε. (6)

Equation (6) follows from the following steps.

valM′′,PPlim inf≥0(s0) ≥ PM′′,s0,σ

(⋂
i∈N

Safetyni
i

)

= PM′,s0,σ

(⋂
i∈N

Safetyni
i

)
by def. of M′′

≥ valM′,PPlim inf≥0(s0) − 2ε by Claim 28

In the next step (proof in [17]) we argue that under every strategy σ′′ from s0 in M′′ the
attainment for PP lim inf≥0 and Transience coincide, i.e.,

▷ Claim 29.

∀σ′′. PM′′,s0,σ′′(PP lim inf≥0) = PM′′,s0,σ′′(Transience).

By Theorem 26, there exists a uniformly ε-optimal MD strategy σ̂ from s0 for Transience
in M′′, i.e.,

PM′′,s0,σ̂(Transience) ≥ valM′′,Transience(s0) − ε. (7)

We construct an MD strategy σ∗ in M which plays like σsafe in Ssafe and plays like σ̂

everywhere else.

PM,s0,σ∗(PP lim inf≥0) = PM′,s0,σ̂(PP lim inf≥0) def. of σ∗ and σsafe

≥ PM′′,s0,σ̂(PP lim inf≥0) new losing sink in M′′

= PM′′,s0,σ̂(Transience) by Claim 29
≥ valM′′,Transience(s0) − ε by (7)
= valM′′,PPlim inf≥0(s0) − ε by Claim 29
≥ valM′,PPlim inf≥0(s0) − 2ε − ε by (6)
= valM,PPlim inf≥0(s0) − 3ε by (1)

Hence σ∗ is a 3ε-optimal MD strategy for PP lim inf≥0 from s0 in M as required. ◀

▶ Corollary 30. Given a finitely branching MDP M, there exist ε-optimal strategies for
TP lim inf≥0 which use just a reward counter.

Proof. By Theorem 27 and Lemma 20. ◀

CONCUR 2021



12:14 Strategy Complexity of Mean/Total/Point Payoff Objectives in Countable MDPs

▶ Corollary 31. Given a finitely branching MDP M and initial state s0, optimal strategies,
where they exist,

for PP lim inf≥0 can be chosen MD.
for TP lim inf≥0 can be chosen with just a reward counter.

Proof. Since PP lim inf≥0 is tail, the first claim follows from Theorem 27 and Theorem 25.
Towards the second claim, we place ourselves in R(M) where TP lim inf≥0 is tail. Moreover,

in R(M) the objectives TP lim inf≥0 and PP lim inf≥0 coincide. Thus we can apply Theorem 27
to obtain ε-optimal MD strategies for TP lim inf≥0 from every state of R(M). From Theorem 25
we obtain a single MD strategy that is optimal from every state of R(M) that has an optimal
strategy. By Lemma 20 we can translate this MD strategy on R(M) back to a strategy on
M with just a reward counter. ◀

5.2 Infinitely Branching Case

For infinitely branching MDPs, ε-optimal strategies for PP lim inf≥0 require more memory
than in the finitely branching case. However, the proofs are similar to those in Section 5.1
and can be found in [17].

▶ Theorem 32. Consider an MDP M with initial state s0 and a PP lim inf≥0 objective. For
every ε > 0 there exist

ε-optimal MD strategies in S(M).
ε-optimal deterministic Markov strategies in M.

▶ Corollary 33. Given an MDP M and initial state s0, there exist ε-optimal strategies σ for
MP lim inf≥0 which use just a step counter and a reward counter.

▶ Corollary 34. Given an MDP M with initial state s0,
there exist ε-optimal MD strategies for TP lim inf≥0 in S(R(M)),
there exist ε-optimal strategies for TP lim inf≥0 which use a step counter and a reward
counter.

▶ Corollary 35. Given an MDP M and initial state s0, optimal strategies, where they exist,
for PP lim inf≥0 can be chosen with just a step counter.
for MP lim inf≥0 and TP lim inf≥0 can be chosen with just a reward counter and a step
counter.

6 Conclusion and Outlook

We have established matching lower and upper bounds on the strategy complexity of lim inf
threshold objectives for point, total and mean payoff on countably infinite MDPs; cf. Table 1.

The upper bounds hold not only for integer transition rewards, but also for rationals or
reals, provided that the reward counter (in those cases where one is required) is of the same
type. The lower bounds hold even for integer transition rewards, since all our counterexamples
are of this form.

Directions for future work include the corresponding questions for lim sup threshold
objectives. While the lim inf point payoff objective generalizes co-Büchi (see Section 2), the
lim sup point payoff objective generalizes Büchi. Thus the lower bounds for lim sup point
payoff are at least as high as the lower bounds for Büchi objectives [14, 15].
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Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we
initialise the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time
system, we specify the temporal properties on QCTMC by signal temporal logic (STL). To effectively
check the atomic propositions in STL, we develop a state-of-the-art real root isolation algorithm
under Schanuel’s conjecture; further, we check the general STL formula by interval operations with
a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula
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1 Introduction

Aiming to study nature, physicists use different mechanics depending on the scale of the
objects they are interested in. Classical mechanics describes nature at a macroscopic scale
(far larger than 10−9 meters), while quantum mechanics is applied at a microscopic scale
(near or less than 10−9 meters).
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In physics, a closed quantum system is a physical system that does not interchange
information (i.e. energy and/or matter) with another system. The behavior of a closed
quantum system can be described as follows: A particle at this level can be mathematically
represented by a normalised complex vector |s⟩ in a Hilbert space H. The time evolution of
a single particle closed system is described by the Schrödinger equation:

d |s(t)⟩
dt = −ıH |s(t)⟩ (1)

with some Hamiltonian H (a Hermitian matrix on H), where |s(t)⟩ is the state of the system
at time t.

More practically, an open quantum system interacting with the surrounding environment
need to be considered. An open quantum system is a quantum-mechanical system that
interacts with an external quantum system, which is known as the environment or a bath.
In general, these interactions significantly change the dynamics of the system and result
in quantum dissipation, such that the information contained in the system is lost to its
environment. Suffering noises from the environment, the state of the system cannot be
completely known. Thus a density operator ρ (positive semidefinite matrix with unit trace)
on H is introduced to describe the uncertainty of the possible states: ρ =

∑
i∈I pi |si⟩⟨si|,

where {(pi, |si⟩)}i∈I is a mixed state or an ensemble expressing that the quantum state is at
|si⟩ with probability pi, and ⟨si| is the complex conjugate and transpose of |si⟩. In this case,
the evolution is described by the Lindblad’s master equation:

dρ(t)
dt = L(ρ(t)) (2)

where ρ(t) stands for the (possibly mixed) state of the system, and L is a linear function of
ρ(t) (to be formally described in Subsection 2.2), which is generally irreversible.

To reveal physical phenomenon, physicists have intensively studied the properties of
closed and open quantum systems case by case in the last decades, such as long-term behavi-
ors (e.g. [18]) and stabilities (e.g. [10]). In recent years, the computer science community
has stepped into this field and adopted model checking technique to study quantum sys-
tems [16, 17]. Specifically, the quantum systems can be simulated by some mathematical
models and a bulk of physical properties can be reformulated as formulas in some temporal
logic with atomic propositions of quantum interpretation. In particular, a quantum discrete-
time Markov chain (QDTMC) (H, E) has been introduced as quantum generalisations of
classical discrete-time Markov chains (DTMC) to model the evolution in Eq. (2) in a single
time unit:

ρ(t+ 1) = E(ρ(t)) (3)

where E is a discretised quantum operation obtained from the Lindblad’s master equation,
usually called a super-operator in the field of quantum information and computation. Sev-
eral fundamental model checking-related problems for QDTMCs have been studied in the
literature, including limiting states [40, 21], reachability [45, 41], repeated reachability [14],
linear time properties [30], and persistence based on irreducible and periodic decomposi-
tion techniques [8, 21]. These techniques were equipped to solve real-world problems in
several different areas. For example, [15] proposed algorithms to model check quantum
cryptographic protocols against a quantum extension of probabilistic computation tree logic
(PCTL); and linear temporal logic (LTL) was adopted to specify a bulk of properties of
quantum many-body and statistical systems, and corresponding model checking algorithm
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was developed [20]. For quantum concurrent systems, the reachability and the termination are
studied in [47]. Very recently, Yu investigated a quantum temporal logic for the specification
of the system and studied the model checking problem for basic formulas [46]. See [43, 44]
for the comprehensive review of this research line.

However, to the best of our knowledge, there is no work on model checking the quantum
continuous-time system of Eq. (2). In contrast, there are fruitful results in the classical
counterpart, which is usually modelled by a continuous-time Markov chain (CTMC).

The seminal work on verifying CTMCs is Aziz et al.’s paper [3, 4]. The authors introduced
continuous stochastic logic (CSL) interpreted on CTMCs. Roughly speaking, the syntax of
CSL amounts to that of PCTL plus the multiphase until formula Φ1U I1Φ2 · · ·U IK ΦK+1, for
some K ≥ 1. Because [3] restricts probabilities in Pr>c to c ∈ Q, they can show decidability
of model checking for CSL using number-theoretic analysis. An approximate model checking
algorithm for a reduced version of CSL was provided by Baier et al. [6], who restrict path
formulas to binary until: Φ1U IΦ2. Under this logic, they successfully applied efficient
numerical techniques for transient analysis [5] using uniformisation [37]. The approximate
algorithms have been extended for multiphase until formulas using stratification [48, 49].
Xu et al. considered the multi-phase until formulas over the CTMC with rewards [42].
An integral-style algorithm was proposed to attack this problem, whose effectiveness is
ensured by number-theoretic results and algebraic methods. Recently, continuous linear logic
was introduced to specify on CTMCS, whose decidability was established [23]. Most the
above algorithms have been implemented in probabilistic model checkers, like PRISM [29],
Storm [13], and ePMC [24].

Unfortunately, these results from CTMCs cannot directly tackle the problem of auto-
matically verifying quantum continuous-time systems. The main obstacle is that the state
space of classical case is finite, while the space of quantum states in even a finite-dimensional
Hilbert space is a continuum. Even though the probability space of a CTMC is also a
continuum, a probability distribution can only represent one ensemble (i.e. the uncertainty of
the possible states), while a quantum state generally admits infinitely many ensembles, such
as 1

2 |0⟩⟨0|+
1
2 |1⟩⟨1| =

1
2 |ψ1⟩⟨ψ1|+ 1

2 |ψ2⟩⟨ψ2| for any two orthogonal normalised complex
vectors |ψ1⟩ and |ψ2⟩ on the Hilbert space linearly spanned by orthonormal basis {|0⟩ , |1⟩}.
In this paper, we cross the difficulty by introducing quantum continuous-time Markov chains
(QCTMC) to model the evolution of quantum continuous-time systems in Eq. (2) and con-
verting them into a distribution transformer that preserves the laws of quantum mechanics.
Then, we consider a wide logic, signal temporal logic (STL), to specify real-time properties
against QCTMC. The STL is more expressible than LTL and CTL. Finally we present an
exact method to decide the STL formula using real root isolation and interval operations,
whose query complexity turns out to be linear in the size of the input formula by calling the
real root isolation routine.

The key contributions of the present paper are three-fold:
1. In the field of formal verification, the model checking on DTMC, QDTMC and CTMC

has been well studied in the past decades, but no work on checking QCTMCs as far as
we know. The first contribution is filling this blank.

2. In order to solve the atomic propositions in STL, we develop a state-of-the-art real root
isolation algorithm for a rich class of real-valued functions based on Schanuel’s conjecture.

3. We provide a running example – open quantum walk equipped with an absorbing boundary,
which drops the restriction on the underlying graph being symmetric/Hermitian. The
non-Hermitian structure brings real technical hardness. Fortunately, it is overcome by
Eq. (2) employed for describing the dynamical system of QCTMC.

CONCUR 2021
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Organisation. The rest of the paper is structured as follows. Section 2 reviews some notions
and notations from quantum computing, the Lindblad’s master equation and number theory.
In Sections 3 and 4, we introduce the model of quantum continuous-time Markov chains and
the signal temporal logic (STL), respectively. We solve the atomic propositions in STL in
Section 5, and decide the general STL formulas in Section 6. Section 7 is the conclusion.

2 Preliminaries

2.1 Quantum Computing

Let H be a Hilbert space with dimension d. We employ the Dirac notations that are standard
in quantum computing:
|s⟩ stands for a unit column vector in H labelled with s;
⟨s| := |s⟩† is the Hermitian adjoint (complex conjugate and transpose) of |s⟩;
⟨s1|s2⟩ := ⟨s1| |s2⟩ is the inner product of |s1⟩ and |s2⟩;
|s1⟩⟨s2| := |s1⟩ ⊗ ⟨s2| is the outer product, where ⊗ denotes tensor product; and
|s1, s2⟩ := |s1⟩ |s2⟩ is a shorthand of the product state |s1⟩ ⊗ |s2⟩.

A linear operator γ is Hermitian if γ = γ†; and it is positive if ⟨s| γ |s⟩ ≥ 0 holds for all
|s⟩ ∈ H. A projector P is a positive operator of the form

∑m
i=1 |si⟩⟨si| with m ≤ d, where

|si⟩ are orthonormal. Clearly, there is a bijective map between projectors P =
∑m

i=1 |si⟩⟨si|
and subspaces of H that are spanned by {|si⟩ : 1 ≤ i ≤ m}. In sum, positive operators are
Hermitian ones whose eigenvalues are nonnegative; and projectors are positive operators
whose eigenvalues are 0 or 1. Besides, a linear operator U is unitary if UU† = U†U = I
where I is the identity operator.

The trace of a linear operator γ is defined as tr(γ) :=
∑d

i=1 ⟨si| γ |si⟩ for any orthonormal
basis {|si⟩ : 1 ≤ i ≤ d} of H. A density operator ρ on H is a positive operator with unit trace.
It gives rise to a generic way to describe quantum states: if a density operator ρ is |s⟩⟨s| for
some |s⟩ ∈ H, ρ is said to be a pure state; otherwise it is a mixed one, i.e. ρ =

∑m
i=1 pi |si⟩⟨si|

with m ≥ 2 by spectral decomposition, where pi are positive eigenvalues (interpreted as
the probabilities of taking the pure states |si⟩) and their sum is 1. In other words, a pure
state indicates the system state which we completely know; a mixed state gives all possible
system states, with total probability 1, which we know. We denote by DH the set of density
operators on H. The subscript H of DH will be omitted if it is clear from the context.

The system evolution between pure states is characterised by some unitary operator U, i.e.
|s(t)⟩⟨s(t)| = U(t) |s(0)⟩⟨s(0)|U†(t) where U(t) comes from exp(−ıHt) for the Hermitian
operator H in Eq. (1); the system evolution between density operators (pure or mixed
states) is characterised by some completely positive operator-sum, a.k.a. super-operator, i.e.
ρ(t) =

∑m
j=1 Lj(t)ρ(0)L†

j(t) where Lj are linear operators satisfying the trace preservation∑m
j=1 L†

jLj = I. The latter dynamical system is obtained in such a way: an enlarged unitary
operator acts on the purified composite state (

∑m
i=1
√
pi |si, envi⟩)(

∑m
i=1
√
pi ⟨si, envi|) with

ρ(0) =
∑m

i=1 pi |si⟩⟨si| for some orthonormal environment states |envi⟩ [34, Section 2.5],
then the environment in the resulting composite state is traced out, which turns out to be
the aforementioned operator-sum form. We call it an open system as it interacts with the
environment. Whereas, the former dynamical system, independent from the environment, is
called a closed system. Open systems are more common than closed systems in practice.
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2.2 Lindblad’s Master Equation
To characterise state evolution of the continuous-time open system with the memoryless
property, we employ the Lindblad’s master equation [31, 19] that is

ρ′ = L(ρ) = −ıHρ+ ıρH +
m∑

j=1

(
LjρL†

j − 1
2 L†

jLjρ− 1
2ρL†

jLj

)
, (4)

where H is a Hermitian operator and Lj are linear operators. The terms −ıHρ+ ıρH describe
the evolution of the internal system; the terms LjρL†

j − 1
2L†

jLjρ − 1
2ρL

†
jLj describe the

interaction between system and environment. In other words, to characterise the evolution of
an open system, it is necessary to use those linear operators Lj besides the Hermitian operator
H. It is known to be the most general type of Markovian and time-homogeneous master
equation describing (in general non-unitary) evolution of the system state that preserves
the laws of quantum mechanics (i.e., completely positive and trace-preserving for any initial
condition).

In the following, we will derive the solution of Eq. (4). We first define two useful functions:
L2V(γ) :=

∑d
i=1

∑d
j=1 ⟨i| γ |j⟩ |i, j⟩ that rearranges entries of the linear operator γ on

the Hilbert space H with dimension d as a column vector; and
V2L(v) :=

∑d
i=1

∑d
j=1 ⟨i, j|v |i⟩⟨j| that rearranges entries of the column vector v as a

linear operator.
Here, L2V and V2L are read as “linear operator to vector” and “vector to linear operator”,
respectively. They are mutually inverse functions, so that if a linear operator (resp. its
vectorisation) is determined, its vectorisation (resp. the original linear operator) is determined.
Using the fact that D = ABC⇐⇒ L2V(D) = (A⊗CT)L2V(B) holds for any linear operators
A,B,C,D, we can reformulate Eq. (4) as the linear ordinary differential equation

L2V(ρ′) =

−ıH⊗ I + ıI⊗HT +
m∑

j=1

(
Lj ⊗ L∗

j − 1
2 L†

jLj ⊗ I− 1
2 I⊗ LT

j L∗
j

) L2V(ρ)

= M · L2V(ρ),

(5)

where ∗ denotes entry-wise complex conjugate. We call M = −ıH⊗I+ ıI⊗HT +
∑m

j=1
(
Lj⊗

L∗
j − 1

2 L†
jLj ⊗ I− 1

2 I⊗LT
j L∗

j

)
the governing matrix of Eq. (5). As a result, we get the desired

solution L2V(ρ(t)) = exp(M · t) ·L2V(ρ(0)) or equivalently ρ(t) = V2L(exp(M · t) ·L2V(ρ(0)))
in a closed form. It can be obtained in polynomial time by the standard method [27].

2.3 Number Theory
▶ Definition 1. A number α is algebraic, denoted by α ∈ A, if there is a nonzero Q-polynomial
fα(z) of least degree, satisfying fα(α) = 0; otherwise α is transcendental.

In the above definition, such a polynomial fα(z) is called the minimal polynomial of α. The
degree D of α is degz(fα). The standard encoding of α is the minimal polynomial fα plus an
isolation disk in the complex plane that distinguishes α from other roots of fα.

▶ Definition 2. Let µ1, . . . , µm be irrational complex numbers. Then the field extension
Q(µ1, . . . , µm) : Q is the smallest set that contains µ1, . . . , µm and is closed under arithmetic
operations, i.e. addition, subtraction, multiplication and division.

Here those irrational complex numbers µ1, . . . , µm are called the generators of the field
extension. A field extension is simple if it has only one generator. For instance, the field
extension Q(

√
2) : Q is exactly the set {a+ b

√
2 : a, b ∈ Q}.
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▶ Lemma 3 ([32, Algorithm 2]). Let α1 and α2 be two algebraic numbers of degrees D1 and
D2, respectively. There is an algebraic number µ of degree at most D1D2, such that the field
extension Q(µ) : Q is exactly Q(α1, α2) : Q.

For a collection of algebraic numbers α1, . . . , αm appearing in the input instance, by repeatedly
applying this lemma, we can obtain a simple field extension Q(µ) : Q that can span all
α1, . . . , αm.

▶ Lemma 4 ([11, Corollary 4.1.5]). Let α be an algebraic number of degree D, and g(z) an
A-polynomial with degree Dg and coefficients taken from Q(α) : Q. There is a Q-polynomial
f(z) of degree at most DDg, such that roots of g(z) are those of f(z).

The above lemma entails that roots of any A-polynomial are also algebraic.

▶ Theorem 5 (Lindemann [7, Theorem 1.4]). For any nonzero algebraic numbers β1, . . . , βm

and any distinct algebraic numbers λ1, . . . , λm, the sum
∑m

i=1 βieλi with m ≥ 1 is nonzero.

▶ Conjecture 6 (Schanuel [2]). Let λ1, . . . , λm be Q-linearly independent complex numbers.
Then the field extension Q(λ1, eλ1 , . . . , λm, eλm) : Q has transcendence degree at least m.

Let A[z1, . . . , zm] denote the ring that contains all A-polynomials in variables z1, . . . , zm.
Assuming Schanuel’s conjecture, we could get:

▶ Corollary 7 ([9, Proposition 5]). Let λ1, . . . , λm be Q-linearly independent algebraic numbers.
Then two co-prime elements φ1 and φ2 in the ring A[t, exp(λ1t), . . . , exp(λmt)] have no
common root except for 0.

3 Quantum Continuous-Time Markov Chain

In this section, we propose the model of quantum continuous-time Markov chain (QCTMC).
We will reveal that it extends the classical continuous-time Markov chain (CTMC). To show
the practical usefulness, an example is further provided for modelling open quantum walk.

For the sake of clarity, we start with the QCTMC without classical states:

▶ Definition 8. A quantum continuous-time Markov chain Q is a pair (H,L), in which
H is the Hilbert space,
L is the transition generator function given by a Hermitian operator H and a finite set
of linear operators Lj on H.

Usually, a density operator ρ(0) ∈ D is appointed as the initial state of Q.

In the model, the transition generator function L gives rise to a universal way to describe
the bahavior of the QCTMC, following the generality of the Lindblad’s master equation. Thus
the state ρ(t) is given by the closed-form solution to Eq. (5), i.e., V2L(exp(M · t) ·L2V(ρ(0))),
where M is the governing matrix for L, is a computable function from R≥0 to Cd×d. We
notice that 0 ≤ tr(Pρ(t)) ≤ 1 holds for any projector P on H, as ρ(t) is a density operator
on D. Considering computability, the entries of H, Lj and ρ(0) are supposed to be algebraic.

Next, we equip the QCTMC in Definition 8 with finitely many classical states.

▶ Definition 9. A quantum continuous-time Markov chain Q with a finite set S of classical
states is a pair (Hcq,L), in which
Hcq := C ⊗H is the classical–quantum system with C = span({|s⟩ : s ∈ S}), and
L is the transition generator function given by a Hermitian operator H and a finite set
of linear operators Lj on the enlarged Hcq.

Usually, a density operator ρ(0) ∈ DHcq is appointed as the initial state of Q.
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In fact, the models in Definitions 8 and 9 have the same expressibility: The QCTMC in
Definition 8 can be obtained by setting the singleton state set S = {s} of the QCTMC in
Definition 9; conversely, the QCTMC in Definition 9 can be obtained by setting the Hilbert
space as Hcq of the QCTMC in Definition 8. Hence, we can freely choose one of the two
definitions for convenience. As an immediate result, using Definition 9, we can easily see
that the QCTMC extends the CTMC by the following lemma:

▶ Lemma 10. Given a CTMC C = (S,Q), it can be modelled by a QCTMC Q = (C ⊗H,L)
with C = span({|s⟩ : s ∈ S}) and dim(H) = 1.

Proof. It suffices to show that the states of a CTMC C can be obtained by those of some
QCTMC Q. The state x = (xs)s∈S of C is given by the dynamical system x′(t) = x(t) ·Q
or equivalently its closed-form solution x(t) = x(0) · exp(Q · t), where x(0) is a row vector
interpreted as the initial state. We construct the QCTMC by setting Hermitian operator
H = 0 and linear operators Ls,t = |t⟩⟨s| ⊗Q[s, t] in Q for each pair s, t ∈ S. It is not hard
to validate that the state ρ(t) of Q is diag(x(t)) of C, thus the lemma follows. ◀

▶ Example 11 (Open Quantum Walk [35, 36]). Open quantum walk (OQW) is a quantum
analogy of random walk, whose system evolution interacts with environment. For the sake of
clarity, we suppose that a particle walking along the 2-dimensional hypercube is shown in
Figure 1. The position set is S = {s00, s01, s10, s11}, where s00 denotes the starting position,
a.k.a. the entrance, s01 and s10 denote transient positions, and s11 denotes the exit, an
absorbing boundary. The direction set is {F,S}, where F means the particle takes the
external transition along the first coordinate, while S means the particle takes the external
transition along the second coordinate. The particle will choose a direction at every moment
by the inner quantum “coin-tossing” before being absorbed. This action is implemented by
the Hadamard operator H = |+⟩⟨F|+ |−⟩⟨S| with |±⟩ = (|F⟩± |S⟩)/

√
2, which denotes a fair

selection between F and S as the probability amplitudes of both directions are 1
2 = (±1/

√
2)2.

The OQW is modelled by a QCTMC Q1 = (C ⊗ H,L) with C = span({|s⟩ : s ∈ S}),
where each position in S represents a classical state, and the transition function L is given
by the Hermitian operator H = 0 and the unique linear operator

L = |s10⟩⟨s00| ⊗ |F⟩⟨+|+ |s01⟩⟨s00| ⊗ |S⟩⟨−|+ |s11⟩⟨s01| ⊗ |F⟩⟨+| +
|s00⟩⟨s01| ⊗ |S⟩⟨−|+ |s00⟩⟨s10| ⊗ |F⟩⟨+|+ |s11⟩⟨s10| ⊗ |S⟩⟨−| .

For instance, when the particle is in the position |s00⟩, we first apply the quantum coin-tossing
H to the state in H, then we get the result F or S leading to the position |s10⟩ or |s01⟩. The
composite operations are (|F⟩⟨F|)H = |F⟩⟨+| and (|S⟩⟨S|)H = |S⟩⟨−|, which makes up the
first two terms in the above L.

From L, we could get the governing matrix M = L⊗ L∗ − 1
2 L†L⊗ I− 1

2 I⊗ LTL∗. Let
ρ(0) = |s00⟩⟨s00| ⊗ |F⟩⟨F| be an initial state. Then the states ρ(t) of the OQW could be
computed as V2L(exp(M · t) · L2V(ρ(0))) (we omit the detailed value due to space limit). ⌟

As an absorbing boundary s11 is introduced here, two transitions from it (in dashed
line) do not exist anymore. The absorbing boundary makes it impossible to characterise
the system evolution by a closed system, i.e., using some Hermitian operator H only, as
usual in [36]. Fortunately, we could characterise it by an open system, i.e., using the linear
operators Lj .
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s01

s00entrance s10

s11 exit

S S

F

F
S S

F

F

Figure 1 A sample OQW with an absorbing boundary.

4 Signal Temporal Logic

Here we recall the signal temporal logic (STL) [33], which is widely used to express real-time
properties. Using it we could specify richer properties of QCTMC than linear temporal logic
(LTL) and computation tree logic (CTL) in the time-bounded fragment.

▶ Definition 12. The syntax of the STL formulas are defined as follows:

ϕ := Φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U Iϕ2

in which the atomic propositions Φ, interpreted as signals, are of the form p(x) ∈ I where p
is a Q-polynomial in x = (xs)s∈S and I is a rational interval, and I is a finite time interval.
Here U is called the until operator, and ϕ1U Iϕ2 is the until formula.

▶ Definition 13. The semantics of the STL formulas interpreted on a QCTMC Q in
Definition 9 are given by the satisfaction relation |=:

ρ(t) |= Φ if p(x) ∈ I holds with xs = tr(Ps(ρ(t))),
ρ(t) |= ¬ϕ if ρ(t) ̸|= ϕ,

ρ(t) |= ϕ1 ∧ ϕ2 if ρ(t) |= ϕ1 ∧ ρ(t) |= ϕ2,

ρ(t) |= ϕ1U Iϕ2 if there exists a real number t′ ∈ I,
such that ∀ t1 ∈ [t, t+ t′) : ρ(t1) |= ϕ1 and ρ(t+ t′) |= ϕ2,

where Ps is the projector |s⟩⟨s| ⊗ I onto classical state s.

From the semantics, we can see that Φ1U I1(Φ2U I2Φ3) and (Φ1U I1Φ2)U I2Φ3 have
different meanings: The former formula requires there exist t′ ∈ I1 and t′′ ∈ I2 such that
∀ t1 ∈ [t, t+ t′) : ρ(t1) |= Φ1, ∀ t2 ∈ [t+ t′, t+ t′ + t′′) : ρ(t2) |= Φ2 and ρ(t+ t′ + t′′) |= Φ3;
while the latter formula requires there exists a t′′ ∈ I2 such that ρ(t + t′′) |= Φ3 and for
each t1 ∈ [t, t + t′′), there exists a t′ ∈ I1 such that ∀ t2 ∈ [t1, t1 + t′) : ρ(t2) |= Φ1 and
ρ(t1 + t′) |= Φ2. We usually use the parse tree to clarify the structure of an STL formula ϕ.

The logic is very generic. STL has more expressive atomic propositions than LTL, as
true ≡ p(x) ∈ (−∞,+∞) and false ≡ p(x) ∈ ∅. CTL has a two-stage syntax consisting
of state and path formulas. Negation and conjunction are allowed in only state formulas,
not path ones. Whereas, STL allows negation and conjunction in any subformulas. Besides
the standard Boolean calculus, we can easily obtain a few derivations: ♢Iϕ ≡ trueU Iϕ,
□Iϕ ≡ ¬(♢I¬ϕ), and ϕ1RIϕ2 ≡ ¬(¬ϕ1U I¬ϕ2) where R is the release operator.
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▶ Example 14. Consider the open quantum walk Q1 described in Example 11. It is not
hard to get the probabilities of the particle staying respectively in s00, s01, s10, s11 as follows:

x0,0 = tr(Ps0,0(ρ(t))) = 1
2 exp(− 2+

√
2

2 t) + 1
2 exp(− 2−

√
2

2 t),

x0,1 = tr(Ps0,1(ρ(t))) = −
√

2
4 exp(− 2+

√
2

2 t) +
√

2
4 exp(− 2−

√
2

2 t)
+ 1

4 [exp(− 3
2 t)− exp(− 1

2 t)] cos( 1
2 t) + 1

4 [exp(− 3
2 t) + exp(− 1

2 t)] sin( 1
2 t),

x1,0 = tr(Ps1,0(ρ(t))) = −
√

2
4 exp(− 2+

√
2

2 t) +
√

2
4 exp(− 2−

√
2

2 t)
− 1

4 [exp(− 3
2 t)− exp(− 1

2 t)] cos( 1
2 t)−

1
4 [exp(− 3

2 t) + exp(− 1
2 t)] sin( 1

2 t),

x1,1 = tr(Ps1,1(ρ(t))) = 1 + −1+
√

2
2 exp(− 2+

√
2

2 t)− 1+
√

2
2 exp(− 2−

√
2

2 t).

We can see that the probability of exiting via s11 would be one as t approaches infinity.
A further question is asking how fast the particle would reach the exit. This is actually
a question about convergence performance. It is worth monitoring the critical moment at
which the probability of exiting via s11 equals that of staying at transient positions s01, s10.
A requirement to be studied is like the following property.

Property A: At each moment t ∈ [0, 5], whenever the probability of staying at s01 or
s10 is greater than 1

5 , the probability of exiting via s11 would exceed that of staying
at s01 or s10 within the coming one unit of time.

We formally specify it with the rich STL formula

ϕ1 ≡ □I1 (Φ1 → ♢I2Φ2) ≡ ¬(true U I1 (Φ1 ∧ ¬(true U I2Φ2))),

where I1 = [0, 5], I2 = [0, 1] are time intervals and Φ1 ≡ x0,1+x1,0 >
1
5 ,Φ2 ≡ x1,1 ≥ x0,1+x1,0

are atomic propositions, a.k.a. signals. ⌟

5 Solving Atomic Propositions

As a basic step to decide the STL formula, we need to solve the atomic proposition Φ.
That is, we will compute all solutions w.r.t. t, in which ρ(t) |= Φ holds. We achieve it
by a reduction to the real root isolation for a class of real-valued functions, exponential
polynomials. Although real roots of exponential polynomials have been studied in many
existing literature [1, 9, 26], the ones to be isolated in this paper involve the complicated
complex exponents. So we develop a state-of-the-art real root isolation for them, whose
completeness is established on Conjecture 6.

Given an atomic proposition Φ ≡ p(x) ∈ I (assuming that I is bounded), we would like
to determine the algebraic structure of

φ(t) = (p(x(t))− inf I)(p(x(t))− sup I), (6)

with which we will design an algorithm for solving Φ ≡ p(x) ∈ I. The structure of φ(t)
depends on that of xs(t) = tr(Ps(ρ(t))). We claim that each entry of ρ(t) is of the exponential
polynomial form

β1(t) exp(α1t) + β2(t) exp(α2t) + · · ·+ βm(t) exp(αmt), (7)

where β1(t), . . . , βm(t) are nonzero A-polynomials and α1, . . . , αm are distinct algebraic
numbers. It follows the facts:
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Figure 2 Flow chart of the whole isolation procedure.

1. The governing matrix M in the state ρ(t) = V2L(exp(M · t) · L2V(ρ(0))) of the QCTMC
takes algebraic numbers as entries.

2. The characteristic polynomial of M is an A-polynomial. The eigenvalues α1, . . . , αm of
M are algebraic, as they are roots of that A-polynomial by Lemma 4. Those eigenvalues
make up all exponents in (7).

3. The entries of the matrix exponential exp(M · t) are in the form (7).

The same structure holds for xs(t), as xs(t) = tr(Ps(ρ(t))) is simply a sum of some entries
of ρ(t). Furthermore, φ(t) is also of the exponential polynomial form (7), since it is a
Q-polynomial in x(t) = (xs(t))s∈S . If I is unbounded from below (resp. above), the left
(resp. right) factor could be removed from (6) for further consideration.

Next, we will isolate all real roots λ1, . . . , λn of φ(t) in a bounded interval B (to be
specified in the next section). Before stating the core isolation algorithm – Algorithm 1, an
overview of the isolation procedure is provided in Fig. 2. The instances to be treated can be
roughly divided into two classes: one is trivial that can be solved by the classical methods,
e.g., [12], for ordinary polynomials; the other is nontrivial that can be solved by Algorithm 1
but should meet three requirements of the input in Algorithm 1. After the preprocesses
Basis Finding, Polynomialisation and Factoring, the two classes of instances can be
separated and solved by the corresponding methods. In the end, the Refinement process
outputs the pairwise disjoint isolation intervals.

The technical details along the flow chart in Fig. 2 are described below.
Basis Finding. For a given set of algebraic numbers {α1, . . . , αm} extracted from the
exponents of the input exponential polynomial φ(t), we can compute a simple extension
Q(µ) : Q = Q(α1, . . . , αm) : Q by Lemma 3, such that each αi = qi(µ) with qi ∈ Z[x] and
deg(qi) < deg(µ); and further construct a Q-linearly independent basis {µ1, . . . , µk} of
those exponents {α1, . . . , αm} by [26, Section 3], such that each αi can be Z+-linearly
expressed by {µ1, . . . , µk}.
Polynomialisation. Thus we can get a polynomial representation f(t, exp(µ1t), . . . ,
exp(µkt)) of φ(t), where f is a (k+1)-variate polynomial with algebraic coefficients. That
is, φ(t) is obtained by substituting t, exp(µ1t), . . . , exp(µkt) (as k + 1 variables) into f .
Factoring. Factoring φ(t) into irreducible factors φi(t) (1 ≤ i ≤ ℓ) corresponds to
factoring the (k + 1)-variate A-polynomial f into irreducible factors fi (1 ≤ i ≤ ℓ), which
has been implemented in polynomial time, e.g. [28].
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Univariate? If the irreducible exponential polynomial φi(t) corresponds to a univariate
polynomial fi, isolating the real roots of φi(t) can be treated by classical methods [12];
otherwise we will resort to Algorithm 1, for which we can infer:

1. The exponential polynomial φ(t) in the form (7) is plainly an analytic function that is
infinitely differentiable; and it is a real-valued function, or equivalently the imaginary
part of φ(t) is identically zero, since each variable xs(t) is exactly the real-valued
function tr(Psρ(t)). The same holds for any factor φi(t) of φ(t), which ensures the
first requirement of the input in Algorithm 1.

2. By Theorem 5, thanks to the irreducibility of φi(t), we have φi(λ) ̸= 0 holds for any
λ ∈ A \ {0}, which ensures the second requirement of the input in Algorithm 1.

3. By Conjucture 6 and Corollary 7, each irreducible factor φi(t) and its derivative φ′
i(t)

are co-prime, and thus have no common real root except for 0, which ensures the last
requirement of the input in Algorithm 1.

Refinement. After performing Algorithm 1 with each individual irreducible factor φi(t)
of φ(t), we would obtain a list of disjoint isolation intervals Ii,1, . . . , Ii,ni . The isolation
intervals of different irreducible factors may be overlapping. However, by Corollary 7
again, we have that each pair of co-prime factors of φ(t) has no common real root except
for 0. So all these isolation intervals Ii,1, . . . , Ii,ni

(1 ≤ i ≤ ℓ) can be further refined to
be pairwise disjoint. That would be the complete list of isolation intervals I1, . . . , In for
φ(t), and thereby completes the whole isolation procedure.

Algorithm 1 Real Root Isolation for a Real-valued Function.

{I1, . . . , In} ⇐ Isolate(φ, I)

Input: φ(t) is a real-valued function defined on a rational interval I = [l, u], satisfying:
1. φ(t) is twice-differentiable,
2. φ(t) has no rational root in I, and
3. φ(t) and φ′(t) have no common real root in I.

Output: I1, . . . , In are finitely many disjoint intervals, such that each contains exactly one
real root of φ in I, and together contain all.

1: compute an upper bound M of {|φ′(t)| : t ∈ I};
2: compute an upper bound M ′ of {|φ′′(t)| : t ∈ I};
3: i← 0, N ← 2 and δ ← (u− l)/N ; ▷ Here N > 1 is a free parameter to indicate the

number of subintervals to be split. We predefine it simply as 2.
4: while i ≤ N do
5: if |φ(l + iδ)| > Mδ then i← i+ 1; ▷ φ has no local real root
6: else if |φ(l + iδ + δ)| > Mδ then i← i+ 2; ▷ φ has no local real root
7: else if |φ′(l + iδ)| ≥M ′δ then ▷ φ is locally monotonic
8: if φ(l + iδ)φ(l + iδ + δ) < 0 then output (l + iδ, l + iδ + δ);
9: i← i+ 1;

10: else if |φ′(l + iδ + δ)| ≥M ′δ then ▷ φ is locally monotonic
11: if φ(l + iδ)φ(l + iδ + 2δ) < 0 then output (l + iδ, l + iδ + 2δ);
12: i← i+ 2;
13: else
14: Isolate(φ, [l + iδ, l + iδ + δ]);
15: i← i+ 1.
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Soundness. We justify three groups of treatment in the loop body in turn.
1. If the condition in Line 5 (resp. 6) holds, φ has no real root in the neighborhood centered

at l + iδ (resp. l + (i+ 1)δ) with radius δ. So we exclude the neighborhood.
2. If the condition in Line 7 (resp. 10) holds, φ is monotonic in the neighborhood centered

at l+ iδ (resp. l+ (i+ 1)δ) with radius δ. Then, if the condition in Line 8 (resp. 11) holds,
i.e. φ has different signs at endpoints of the neighborhood, the unique real root in the
neighborhood exists and should be output; otherwise we just exclude the neighborhood.

3. If it is not in the two decisive cases listed above, we perform Algorithm 1 recursively in a
subinterval [l + iδ, l + (i+ 1)δ] of [l, u]. ⌟

Completeness. The termination of Algorithm 1 entails the completeness. In other words, it
suffices to show that for any real-valued function φ that satisfies the requirements, Algorithm 1
can always output all real roots of φ within finitely many times of recursion. Since φ and
φ′ are real-valued functions defined on the closed and bounded interval I and they have no
common real root in I, there is a positive constant τ , such that either |φ| ≥ τ or |φ′| ≥ τ

holds everywhere of I. Then, at any point c in I, we can get a neighborhood with constant
radius rad := min(τ/M, τ/M ′), in which either φ has no real root or is monotonic. So the
two decisive cases must take place, provided that the subinterval has a length not greater
than rad. It implies that the recursion depth of Algorithm 1 is bounded by ⌈log2(∥I∥/rad)⌉,
where ∥I∥ = sup I − inf I. Hence the termination is guaranteed. ⌟

After obtaining all real roots λ1, . . . , λn of φ(t) in the bounded interval B by Algorithm 1,
we have that on each interval Ji (0 ≤ i ≤ n) of the n+ 1 intervals in B \ {λ1, . . . , λn}:

[inf B, λ1), (λ1, λ2), . . . , (λn−1, λn), (λn, supB], (8)

p(x(t)) ∈ I holds everywhere of t ∈ Ji or nowhere. Finally, we can obtain the desired solution
set J (to be used in the next section) of p(x(t)) ∈ I by a finite union as follows⋃

0≤i≤n
p(x(Ji))⊆I

Ji ∪
⋃

1≤i≤n
p(x(λi))∈I

{λi}. (9)

▶ Example 15. Reconsider Example 14. The exponential polynomial extracted from Φ1 is

φ1(t) = x0,1(t) + x1,0(t)− 1
5 = − 1

5 −
√

2
2 exp(− 2+

√
2

2 t) +
√

2
2 exp(− 2−

√
2

2 t),

and the exponential polynomial extracted from Φ2 is

φ2(t) = x1,1(t)− x0,1(t)− x1,0(t) = 1 + (
√

2− 1
2 ) exp(− 2+

√
2

2 t)− (
√

2 + 1
2 ) exp(− 2−

√
2

2 t).

To solve Φ1 and Φ2 in a bounded interval, say B = [0, 6], we need to determine the real roots
of φ1 and φ2. Since both φ1 and φ2 are irreducible and their corresponding polynomial
representations are bivariate, they have no rational root, repeated real root, nor common
real root. After invoking Algorithm 1 on φ1 with B, we obtain two isolation intervals [0, 25

64 ]
(containing real root λ1 ≈ 0.352097) and [ 275

64 ,
575
128 ] (containing λ2 ≈ 4.49181), which could

be easily refined up to any precision. For φ2, as φ2(0) = 0, we make a slight shift on the
left endpoint of B under consideration, e.g., [ 1

1000 , 6]. After invoking Algorithm 1 on φ2 with
[ 1

1000 , 6], we could get the unique isolation intervals [ 125059
64000 ,

275117
128000 ], which contains the real

root λ3 ≈ 2.14897. The three isolation intervals are pairwise disjoint.
Finally, we have that the solution set of Φ1 is (λ1, λ2) in B, and the solution set of Φ2 is

{0} ∪ [λ3, 6]. ⌟
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Under Conjecture 6, we get the following computability result:

▶ Lemma 16. The atomic propositions in STL are solvable over QCTMCs.

The solvability here means that given an atomic proposition Φ and a bounded interval
B, we can always compute all solutions J of Φ in B, which consists of a finite number of
pairwise disjoint solution intervals Ji with computable real numbers as endpoints. The
solving procedure is an exact one, i.e., no numerical error is allowed. Although it is efficient
in practice, its complexity is still an open problem, as is left in existing literature [9, 26].
To pursue the guarantee of polynomial time, we could allow some numerical errors, which
results in an approximate solving procedure.

In fact, Conjecture 6 is a powerful tool to treat roots of the general exponential polynomial.
For some special subclasses of exponential polynomials, there are solid theorems to treat
them: one is Theorem 5 that has been employed [1] for the exponential polynomials in the
ring Q[t, exp(t)], the other is the Gelfond–Schneider theorem employed [26, Subsection 4.1]
for the exponential polynomials in Q[exp(µ1t), exp(µ2t)] where µ1 and µ2 are two Q-linear
independent real algebraic numbers. In Example 15, the Gelfond–Schneider theorem is
sufficient to treat roots of the exponential polynomials φ1 and φ2, thus the termination
is guaranteed. Algorithm 1 can isolate roots of elements in Q[t, exp(µ1t), . . . , exp(µkt)] for
arbitrarily many Q-linear independent complex algebraic numbers µ1, . . . , µk. Additionally,
Conjecture 6 has been employed to isolate simple roots of more expressible functions than
exponential polynomials [38, 39], but fails to find repeated roots. Hence, this paper makes a
trade-off between the expressibility of functions and the completeness of methodologies.

6 Checking STL Formulas

In the previous section, we have solved atomic propositions. Now we consider the general
STL formula ϕ. For a given formula ϕ, we compute the so-called post-monitoring period
mnt(ϕ), independent from the initial time t0, such that the truth of ρ(t0) |= ϕ could be
affected by those ρ(t) with t ∈ [t0, t0 + mnt(ϕ)]. Then we decide ϕ with a bottom-up fashion.
The complexity turns out to be linear in the size ∥ϕ∥ of the input STL formula ϕ, which is
defined as the number of logic connectives in ϕ as standard.

Given an STL formula ϕ, we need to post-monitor a time period to decide the truth
of ρ(t0) |= ϕ at an initial time t0, especially for the until formula ϕ1U Iϕ2. For example,
according to the semantics of STL, to decide ρ(t0) |= ϕ2 with ϕ2 ≡ Φ1U I1(Φ2U I2Φ3), we
have to monitor the states ρ(t) from time t0 to t0 + sup I1 + sup I2. It inspires us to calculate
the post-monitoring period mnt(ϕ) as

mnt(ϕ) =


0 if ϕ = Φ,
mnt(ϕ1) if ϕ = ¬ϕ1,

max(mnt(ϕ1),mnt(ϕ2)) if ϕ = ϕ1 ∧ ϕ2,

sup I + max(mnt(ϕ1),mnt(ϕ2)) if ϕ = ϕ1U Iϕ2.

(10)

▶ Lemma 17. Given an STL formula ϕ, the satisfaction ρ(t0) |= ϕ is entirely determined by
the states ρ(t) with t0 ≤ t ≤ t0 + mnt(ϕ).

Proof. We discuss it upon the syntactical structure of the STL formula ϕ.
For the atomic proposition Φ, ρ(t0) |= Φ is plainly determined by ρ(t0).
For the negation ¬ϕ1, if ρ(t0) |= ϕ1 is determined by ρ(t) with t0 ≤ t ≤ t0 + mnt(ϕ1), so

is ρ(t0) |= ¬ϕ1.
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For the conjunction ϕ1 ∧ ϕ2, if ρ(t0) |= ϕ1 (resp. ρ(t0) |= ϕ2) is determined by ρ(t) with
t0 ≤ t ≤ t0 + mnt(ϕ1) (resp. t0 ≤ t ≤ t0 + mnt(ϕ2)), ρ(t0) |= ϕ1 ∧ ϕ2 is determined by the
union of those states, i.e. ρ(t) with t0 ≤ t ≤ t0 + max(mnt(ϕ1),mnt(ϕ2)).

For the until formula ϕ1U Iϕ2, if ρ(t0) |= ϕ1 (resp. ρ(t0) |= ϕ2) is determined by ρ(t) with
t0 ≤ t ≤ t0 + mnt(ϕ1) (resp. t0 ≤ t ≤ t0 + mnt(ϕ2)), ρ(t0) |= ϕ1U Iϕ2 is determined by ρ(t)
with t0 ≤ t ≤ t0 + sup I + max(mnt(ϕ1),mnt(ϕ2)), where sup I is caused by the admissible
transition at the latest time in the until formula, since then we have to determine ρ(t) |= ϕ1
from time t0 to t0 + sup I and determine ρ(t0 + sup I) |= ϕ2. ◀

To decide ρ(0) |= ϕ, our method is based on the parse tree T of ϕ as follows.
Basically, for each leaf of T that represents an atomic proposition Φ, we compute the

solution set J (possibly a union of maximal solution intervals J ) of Φ within the monitoring
interval B := [0,mnt(ϕ)] by Algorithm 1.

Inductively, for each intermediate node of T that represents the subformula ψ of ϕ, we
tackle it into three classes.

If ψ = ¬ϕ1, supposing that J1 is the solution set of ϕ1, the solution set J′ of ψ is B \ J1.
If ψ = ϕ1 ∧ ϕ2, supposing that J1 (resp. J2) is the solution set of ϕ1 (resp. ϕ2), the
solution set J′ of ψ is J1 ∩ J2.
If ψ = ϕ1U Iϕ2, supposing that J1 (resp. J2) is the solution set of ϕ1 (resp. ϕ2), the
solution set J′ of ψ is

{t : (t′ ∈ I) ∧ ([t, t+ t′) ⊆ J1) ∧ (t+ t′ ∈ J2)}.

directly from the semantics of the until formula ϕ1U Iϕ2 in Definition 13, as
[t, t+ t′) ⊆ J1 if and only if ∀ t1 ∈ [t, t+ t′) : ρ(t1) |= ϕ1, and
t+ t′ ∈ J2 if and only if ρ(t+ t′) |= ϕ2.

Note that the inductive steps of the above procedure do not generally produce all solutions of
the subformula ψ in B. Since by Lemma 17 ρ(t0) |= ψ is entirely determined by ρ(t) with t0 ≤
t ≤ t0 +mnt(ψ), the resulting solution set J′ contains all solutions of ψ in [0,mnt(ϕ)−mnt(ψ)]
and possibly misses some solutions in the right subinterval (mnt(ϕ) − mnt(ψ),mnt(ϕ)].
Anyway, the subinterval [0,mnt(ϕ)−mnt(ψ)] has the left-closed endpoint 0, which suffices
to decide ρ(0) |= ϕ.

With a bottom-up fashion, we could eventually get the solution set J of ϕ, by which
ρ(0) |= ϕ can be decided to be true if and only if 0 ∈ J. Overall, the procedure costs ∥ϕ∥
times of the interval operations and at most ∥ϕ∥ times of calling Algorithm 1 for getting the
solution set of an atomic proposition. That is, the query complexity of model checking STL
formulas is linear in ∥ϕ∥ by calling Algorithm 1. The query complexity addresses the issue of
the number of calls to a black box routine with unknown complexities and is commonly used
in quantum computing, where the routine is usually called an oracle. For example, oracles
can be a procedure of encoding an entry of a matrix into a quantum state [25] or a quantum
circuit of preparing a specific quantum state [22].

▶ Example 18. For the STL formula ϕ1 ≡ ¬(true U I1 (Φ1 ∧ ¬(true U I2Φ2))), the post-
monitoring period mnt(ϕ1) is sup I1 + sup I2 = 6 by Eq. (10), implying B = [0, 6] as used in
Example 15. We construct the parse tree of ϕ1 in Figure 3. Based on it, we could calculate
the solution sets of all nodes in a bottom-up fashion:

Basically, the solution set for Φ1 is (λ1, λ2) where λ1 ≈ 0.352097 and λ2 ≈ 4.49181, the
solution set for Φ2 is {0} ∪ [λ3, 6] where λ3 ≈ 2.14897, and the solution set for true is
plainly [0, 6]. The post-monitoring periods of the three distinct leaves are 0. Since B is
[0, 6], we have got all the solutions in [0, 6].
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The solution set for true U I2Φ2 is [λ3− 1, 6], and that for the negation is [0, λ3− 1). The
post-monitoring periods of the two nodes are 1, thus we have got all solutions in [0, 5].
The solution set for Φ1 ∧ ¬(true U I2Φ2) is (λ1, λ3 − 1). Its post-monitoring period is 1,
thus we have got all solutions in [0, 5].
Finally, the solution set for true U I1 (Φ1 ∧ ¬(true U I2Φ2)) is [0, λ3 − 1), and that for
the negation (the root, representing the whole STL formula ϕ1) is [λ3 − 1, 6]. Their
post-monitoring periods are 6, thus we have got the solution in [0, 0].

Since 0 /∈ [λ3 − 1, 6], we can decide ρ(0) |= ϕ1 to be false. Hence the particle walking along
Figure 1 does not satisfy the desired convergence performance – Property A. ⌟

¬ U I1 ∧

true

¬

Φ1

U I2 Φ2

true

Figure 3 Parse tree of the STL formula ϕ1

Finally, under Conjecture 6, we obtain the main result:

▶ Theorem 19. The STL formulas are decidable over QCTMCs.

7 Concluding Remarks

In this paper, we introduced the model of QCTMC that extends CTMC, and established
the decidability of the STL formulas over it. To this goal, we firstly solved the atomic
propositions in STL by real root isolation of a wide class of exponential polynomials, whose
completeness was based on Schanuel’s conjecture. Then we decided the general STL formula
using interval operations with a bottom-up fashion, whose query complexity turned out to
be linear in the size of the input formula by calling the developed state-of-the-art real root
isolation routine. We demonstrated our method by a running example of an open quantum
walk. For future work, we would like to explore the following aspects:

how to apply the proposed method to verify non-Markov models in the real world [35];
how to design an efficient numerical approximation of the exact method in this paper;
and checking other formal logics, e.g. [3], over the QCTMC.
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Abstract
Several notions of synchronizability of a message-passing system have been introduced in the
literature. Roughly, a system is called synchronizable if every execution can be rescheduled so that
it meets certain criteria, e.g., a channel bound. We provide a framework, based on MSO logic and
(special) tree-width, that unifies existing definitions, explains their good properties, and allows one
to easily derive other, more general definitions and decidability results for synchronizability.
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1 Introduction

Communication systems. The model of concurrent processes communicating asynchron-
ously through FIFO channels is used since the 1960s in applications such as communication
protocols [28], hardware design, MPI programs, and more recently for designing and verifying
session types [23], web contracts, choreographies, concurrent programs, Erlang, Rust, etc.
Since communication systems use FIFO channels, it is well known that all non-trivial proper-
ties (e.g., are all channels bounded?) are undecidable [9], essentially because a FIFO channel
may simulate the tape of Turing machines and the counters of Minsky machines. However,
there are many subclasses of communication systems for which the control-state reachability
problem becomes decidable: e.g., synchronizable systems and existentially bounded systems
(executions can be reorganized or decomposed into a finite number of sequences in which all
channels are bounded), flat FIFO machines [15,17] (the graph of the machine does not contain
nested loops), channel-recognizable systems [4], unreliable (lossy, insertion, duplication) FIFO
systems [11], input-bounded FIFO machines [5], and half-duplex systems [10].
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On the boundedness problem. We focus on the boundedness problem, which is known
to be undecidable. We could limit our analysis to decide whether for a given integer k ≥ 0,
known in advance, the FIFO channels are k-bounded, and this property is generally decidable
in PSPACE. Unfortunately, the k-boundedness property is too binding since we could want
to design an unbounded system that is able, for example, to make unbounded iterations of
sending and receiving messages. Hence, to cope with this limitation, one can find variants of
the boundedness property that essentially reduce to say that every unbounded execution
of a system (i.e., channels are unbounded along the execution) is equivalent (for instance,
causally equivalent) to another bounded execution.

About synchronizability. To mention some examples, Lohrey and Muscholl introduced
existentially k-bounded systems [25] (see also [18,19,24]) where all accepting executions leading
to a stable (with empty channels) final configuration can be re-ordered into a k-bounded
execution. This property is undecidable, even for a given k [18]. A more general definition,
still called existentially bounded, is given in 2014 where the considered executions are not
supposed to be final or stable [22]. In [21,25], the notion of universally k-bounded (all possible
schedulings of an execution are k-bounded) is also discussed and the authors show that the
property is undecidable in general. In 2011, Basu and Bultan introduced synchronizable
systems [3], for which every execution is equivalent (for the projection on sending messages)
to one of the same system but communicating by rendezvous; to avoid ambiguity, we call such
systems send-synchronizable. In 2018, Bouajjani et al., called a system S k-synchronizable [8]
(to avoid confusion we call such systems weakly k-synchronizable) if every MSC of S admits a
linearization (which is not necessarily an execution) that can be divided into blocks of at most
k messages. After each block, a message is either read, or will never be read. This constraint
seems to imply that buffers are bounded to k messages. However, as the linearization need
not be an execution, this implies that a weakly k-synchronizable execution, even with the
more efficient reschedule, can need unbounded channels to be run by the system.

Communication architecture and variants. A key difference between these works is that
they consider different communication architectures. Existentially bounded systems have
been studied for p2p (with one queue per pair of processes), whereas k-synchronizability has
been studied for mailbox communication, for which each process merges all its incoming
messages in a unique queue. The decidability results for k-synchronizability have been
extended to p2p communications [14], but it is unknown whether the decidability results
for existentially bounded systems extend to mailbox communication. Moreover, variants of
those definitions can be obtained depending on if we consider messages that are sent but
never read, called unmatched messages. Indeed the challenges that arise in [8] are due to
mailbox communication and unmatched messages blocking a channel so that all messages
sent afterwards will never be read. To clarify and overcome this issue, we propose strong
k-synchronizability, a new definition that is suitable for mailbox communication: an execution
is called strongly k-synchronizable if it can be rescheduled into another k-bounded execution
such that there are at most k messages in the channels before emptying them.

Contributions. Our contributions can be summarized as follows:
In order to unify the notions of synchronizability, we introduce a general framework based
on monadic second-order (MSO) logic and (special) tree-width that captures most existing
definitions of systems that may work with bounded channels. Moreover, reachability and
model checking are shown decidable in this framework.
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We show that existentially bounded systems can be expressed in our framework and, as a
consequence, the existentially k-bounded property is decidable by using the generic proof.
We generalize the existing notion of (weak) k-synchronizability in [8] and we introduce
three new classes of synchronizable systems: weakly synchronizable (which are more gen-
eral than weakly k-synchronizable), strongly synchronizable and strongly k-synchronizable
(which are particular cases of weakly synchronizable). We then prove that these properties
all fit in our framework and are all shown decidable using the generic proof.
We then deduce that reachability and model checking are decidable for these classes
(only control-state reachability was shown to be decidable for weakly k-synchronizable
in [8] and it is clearly also decidable for existentially/universally bounded systems but
reachability properties are generally not studied for these classes of systems).
In order to obtain better complexity results for some classes (strongly and weakly
synchronizable systems), we also use the fragment of propositional dynamic logic with
loop and converse (LCPDL) instead of MSO logic in our framework.
We provide a comparison between synchronizable classes both for p2p and mailbox
semantics (see Fig. 8 for p2p systems and Fig. 9 for mailbox systems). In particular,
we clarify the link between weakly synchronizable and existentially bounded systems for
both p2p and mailbox systems, which was left open in [8] and solved only for p2p systems
in [23, Theorem 7] where weakly synchronizable systems are shown to be included into
existentially bounded ones when considering executions (and not MSCs as in our case).

Outline. Section 2 defines some preliminary notions such as p2p/mailbox message sequence
charts (MSCs), and communicating systems. Section 3 presents the unifying MSO framework
and two general theorems on k-synchronizability and model checking. In Section 4, we apply
the MSO framework to different existing definitions of synchronizability, and we introduce
a new decidable one. Section 5 studies the relations between the classes. In Section 6, we
conclude with some final remarks. Due to space constraints, some proofs are given in the full
version of the paper, available at: https://hal.archives-ouvertes.fr/hal-03278370

2 Preliminaries

2.1 Message Sequence Charts
Assume a finite set of processes P and a finite set of messages M. The set of (p2p) channels
is C = {(p, q) ∈ P × P | p ≠ q}. A send action is of the form send(p, q, m) where (p, q) ∈ C
and m ∈ M. It is executed by p and sends message m to q. The corresponding receive action,
executed by q, is rec(p, q, m). For (p, q) ∈ C, let Send(p, q, ) = {send(p, q, m) | m ∈ M}
and Rec(p, q, ) = {rec(p, q, m) | m ∈ M}. For p ∈ P, we set Send(p, , ) = {send(p, q, m) |
q ∈ P \ {p} and m ∈ M}, etc. Moreover, Σp = Send(p, , ) ∪ Rec( , p, ) will denote the
set of all actions that are executed by p. Finally, Σ =

⋃
p∈P Σp is the set of all the actions.

Peer-to-peer MSCs. A p2p MSC (or simply MSC ) over P and M is a tuple M = (E , →,◁, λ)
where E is a finite (possibly empty) set of events and λ : E → Σ is a labeling function. For
p ∈ P, let Ep = {e ∈ E | λ(e) ∈ Σp} be the set of events that are executed by p. We require
that → (the process relation) is the disjoint union

⋃
p∈P →p of relations →p ⊆ Ep × Ep such

that →p is the direct successor relation of a total order on Ep. For an event e ∈ E , a set of
actions A ⊆ Σ, and a relation R ⊆ E × E , let #A(R, e) = |{f ∈ E | (f, e) ∈ R and λ(f) ∈ A}|.
We require that ◁ ⊆ E × E (the message relation) satisfies the following:
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Figure 1 MSC M1.

(1) for every pair (e, f) ∈ ◁, there is a send action send(p, q, m) ∈ Σ such that λ(e) =
send(p, q, m), λ(f) = rec(p, q, m), and #Send(p,q, )(→+, e) = #Rec(p,q, )(→+, f),

(2) for all f ∈ E such that λ(f) is a receive action, there is e ∈ E such that e◁ f .
Finally, letting ≤M = (→ ∪◁)∗, we require that ≤M is a partial order.

Condition (1) above ensures that every (p2p) channel (p, q) behaves in a FIFO manner.
By Condition (2), every receive event has a matching send event. Note that, however, there
may be unmatched send events in an MSC. We let SendEv(M) = {e ∈ E | λ(e) is a send
action}, RecEv(M) = {e ∈ E | λ(e) is a receive action}, Matched(M) = {e ∈ E | there is
f ∈ E such that e◁ f}, and Unm(M) = {e ∈ E | λ(e) is a send action and there is no f ∈ E
such that e ◁ f}. We do not distinguish isomorphic MSCs and let MSC be the set of all
MSCs over the given sets P and M.

▶ Example 1. For a set of processes P = {p, q, r} and a set of messages M = {m1, m2, m3, m4},
M1 = (E , →,◁, λ) is an MSC where, for example, e2 ◁ e′

2 and e′
3 → e4. The dashed

arrow means that the send event e1 does not have a matching receive, so e1 ∈ Unm(M1).
Moreover, e2 ≤M1 e4, but e1 ̸≤M1 e4. We can find a total order ⇝ ⊇ ≤M1 such that
e1 ⇝ e2 ⇝ e′

2 ⇝ e3 ⇝ e′
3 ⇝ e4 ⇝ e′

4. We call ⇝ a linearization, which is formally defined
below.

Mailbox MSCs. For an MSC M = (E , →,◁, λ), we define an additional binary relation
that represents a constraint under the mailbox semantics, where each process has only one
incoming channel. Let ⊏M ⊆ E × E be defined by: e1 ⊏M e2 if there is q ∈ P such that
λ(e1) ∈ Send( , q, ), λ(e2) ∈ Send( , q, ), and one of the following holds:

e1 ∈ Matched(M) and e2 ∈ Unm(M), or
e1 ◁ f1 and e2 ◁ f2 for some f1, f2 ∈ Eq such that f1 →+ f2.

We let ⪯M = (→ ∪ ◁ ∪ ⊏M )∗. Note that ≤M ⊆ ⪯M . We call M ∈ MSC a mailbox
MSC if ⪯M is a partial order. Intuitively, this means that events can be scheduled in a
way that corresponds to the mailbox semantics, i.e., with one incoming channel per process.
Following the terminology in [8], we also say that a mailbox MSC satisfies causal delivery.
The set of mailbox MSCs M ∈ MSC is denoted by MSCmb.

▶ Example 2. MSC M1 is a mailbox MSC. Indeed, even though the order ⇝ defined in
Example 1 does not respect all mailbox constraints, particularly the fact that e4 ⊏M1 e1,
there is a total order ⇝ ⊇ ⪯M1 such that e2 ⇝ e3 ⇝ e′

3 ⇝ e4 ⇝ e1 ⇝ e′
2 ⇝ e′

4. We call ⇝ a
mailbox linearization, which is formally defined below.

Linearizations, Prefixes, and Concatenation. Consider M = (E , →,◁, λ) ∈ MSC. A p2p
linearization (or simply linearization) of M is a (reflexive) total order ⇝ ⊆ E × E such that
≤M ⊆ ⇝. Similarly, a mailbox linearization of M is a total order ⇝ ⊆ E × E such that
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⪯M ⊆⇝. That is, every mailbox linearization is a p2p linearization, but the converse is not
necessarily true (Example 2). Note that an MSC is a mailbox MSC iff it has at least one
mailbox linearization.

Let M = (E , →,◁, λ) ∈ MSC and consider E ⊆ E such that E is ≤M -downward-
closed, i.e, for all (e, f) ∈ ≤M such that f ∈ E, we also have e ∈ E. Then, the MSC
(E, → ∩ (E × E),◁ ∩ (E × E), λ′), where λ′ is the restriction of E to E, is called a prefix of
M . In particular, the empty MSC is a prefix of M . We denote the set of prefixes of M by
Pref (M). This is extended to sets L ⊆ MSC as expected, letting Pref (L) =

⋃
M∈L Pref (M).

▶ Lemma 3. Every prefix of a mailbox MSC is a mailbox MSC.

Let M1 = (E1, →1,◁1, λ1) and M2 = (E2, →2,◁2, λ2) be two MSCs. Their concatenation
M1 · M2 = (E , →,◁, λ) is defined if, for all (p, q) ∈ C, e1 ∈ Unm(M1), and e2 ∈ E2 such
that λ(e1) ∈ Send(p, q, ) and λ(e2) ∈ Send(p, q, ), we have e2 ∈ Unm(M2). As expected,
E is the disjoint union of E1 and E2, ◁ = ◁1 ∪ ◁2, λ is the “union” of λ1 and λ2, and
→ = →1 ∪ →2 ∪ R. Here, R contains, for all p ∈ P such that (E1)p and (E2)p are non-empty,
the pair (e1, e2) where e1 is the maximal p-event in M1 and e2 is the minimal p-event in M2.
Note that M1 · M2 is indeed an MSC and that concatenation is associative.

2.2 Communicating Systems
We now recall the definition of communicating systems (aka communicating finite-state
machines or message-passing automata), which consist of finite-state machines Ap (one for
every process p ∈ P) that can communicate through the FIFO channels from C.

▶ Definition 4. A communicating system over P and M is a tuple S = (Ap)p∈P. For each
p ∈ P, Ap = (Locp, δp, ℓ0

p) is a finite transition system where Locp is a finite set of local
(control) states, δp ⊆ Locp × Σp × Locp is the transition relation, and ℓ0

p ∈ Locp is the initial
state.

Given p ∈ P and a transition t = (ℓ, a, ℓ′) ∈ δp, we let source(t) = ℓ, target(t) = ℓ′,
action(t) = a, and msg(t) = m if a ∈ Send( , , m) ∪ Rec( , , m).

There are in general two ways to define the semantics of a communicating system. Most
often it is defined as a global infinite transition system that keeps track of the various local
control states and all (unbounded) channel contents. As, in this paper, our arguments are
based on a graph view of MSCs, we will define the language of S directly as a set of MSCs.
These two semantic views are essentially equivalent, but they have different advantages
depending on the context. We refer to [1] for a thorough discussion.

Let M = (E , →,◁, λ) be an MSC. A run of S on M is a mapping ρ : E →
⋃

p∈P δp that
assigns to every event e the transition ρ(e) that is executed at e. Thus, we require that

(i) for all e ∈ E , we have action(ρ(e)) = λ(e),
(ii) for all (e, f) ∈ →, target(ρ(e)) = source(ρ(f)),
(iii) for all (e, f) ∈ ◁, msg(ρ(e)) = msg(ρ(f)), and
(iv) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with f → e, we have source(ρ(e)) =

ℓ0
p.

Letting run S directly on MSCs is actually very convenient. This allows us to associate
with S its p2p language and mailbox language in one go. The p2p language of S is Lp2p(S) =
{M ∈ MSC | there is a run of S on M}. The mailbox language of S is Lmb(S) = {M ∈ MSCmb |
there is a run of S on M}.

CONCUR 2021



14:6 A Unifying Framework for Deciding Synchronizability

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) rec(q, p, m2)
Ap ℓ0

q ℓ1
q

ℓ2
qℓ3

q

send(q, p, m2)

send(q, r, m3)
rec(r, q, m4)

Aq

ℓ0
r ℓ1

r ℓ2
r

rec(q, r, m3) send(r, q, m4)
Ar

Figure 2 System S1.

Note that, following [8, 14], we do not consider final states or final configurations, as our
purpose is to reason about all possible traces that can be generated by S. The next lemma
is obvious for the p2p semantics and follows from Lemma 3 for the mailbox semantics.

▶ Lemma 5. For all com ∈ {p2p, mb}, Lcom(S) is prefix-closed: Pref (Lcom(S)) ⊆ Lcom(S).

▶ Example 6. Fig. 2 depicts S1 = (Ap, Aq, Ar) such that MSC M1 in Fig. 1 belongs to
Lp2p(S1) and to Lmb(S1). There is a unique run ρ of S1 on M1. We can see that (e′

3, e4) ∈ →
and target(ρ(e′

3)) = source(ρ(e4)) = ℓ1
r, (e2, e′

2) ∈ ◁M1 , and msg(ρ(e2)) = msg(ρ(e′
2)) = m2.

2.3 Conflict Graph
We now recall the notion of a conflict graph associated to an MSC defined in [8]. This graph
is used to depict the causal dependencies between message exchanges. Intuitively, we have
a dependency whenever two messages have a process in common. For instance, an SS−−→
dependency between message exchanges v and v′ expresses the fact that v′ has been sent after
v, by the same process. This notion is of interest because it was seen in [8] that the notion of
synchronizability in MSCs (which is studied in this paper) can be graphically characterized
by the nature of the associated conflict graph. It is defined in terms of linearizations in [14],
but we equivalently express it directly in terms of MSCs.

For an MSC M = (E , →,◁, λ) and e ∈ E , we define the type τ(e) ∈ {S, R} of e by
τ(e) = S if e ∈ SendEv(M) and τ(e) = R if e ∈ RecEv(M). Moreover, for e ∈ Unm(M), we
let µ(e) = e, and for (e, e′) ∈ ◁, we let µ(e) = µ(e′) = (e, e′).

▶ Definition 7 (Conflict graph). The conflict graph CG(M) of an MSC M = (E , →,◁, λ)
is the labeled graph (Nodes, Edges), with Edges ⊆ Nodes × {S, R}2 × Nodes, defined by
Nodes = ◁ ∪ Unm(M) and Edges = {(µ(e), τ(e)τ(f), µ(f)) | (e, f) ∈ →+}. In particular, a
node of CG(M) is either a single unmatched send event or a message pair (e, e′) ∈ ◁.

3 Model Checking and Synchronizability

In this section, we survey two classical decision problems for communicating systems. The
first problem is the model-checking problem, in which one checks whether a given system
satisfies a given specification. A canonical specification language for MSCs is monadic
second-order (MSO) logic. However, model checking in full generality is undecidable. A
common approach is, therefore, to restrict the behavior of the given system to MSCs of
bounded (special) tree-width. Next, we introduce MSO logic and special tree-width.

3.1 Logic and Special Tree-Width
Monadic Second-Order Logic. The set of MSO formulas over MSCs (over P and M) is given
by the grammar φ ::= x → y | x ◁ y | λ(x) = a | x = y | x ∈ X | ∃x.φ | ∃X.φ | φ ∨ φ | ¬φ,
where a ∈ Σ, x and y are first-order variables, interpreted as events of an MSC, and X is a
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M |= Eσ if JσKM ̸= ∅ J→KM := → and J◁KM := ◁
JaKM := {e ∈ E | λ(e) = a} Jtest(σ)KM := {(e, e) | e ∈ JσKM }
J⟨π⟩σKM := {e ∈ E | ∃f ∈ JσKM : (e, f) ∈ JπKM } JjumpKM := E × E
JLoop⟨π⟩KM := {e ∈ E | (e, e) ∈ JπKM } Jπ1 + π2KM := Jπ1KM ∪ Jπ2KM

Jπ−1KM := {(e, f) ∈ E × E | (f, e) ∈ JπKM } Jπ∗KM :=
⋃

n∈NJπKn
M

Jπ1 · π2KM := {(e, f) ∈ E × E | ∃g ∈ E : (e, g) ∈ Jπ1KM and (g, f) ∈ Jπ2KM }

Figure 3 Semantics of LCPDL.

second-order variable, interpreted as a set of events. We assume that we have an infinite
supply of variables, and we use common abbreviations such as ∧, ∀, etc. The satisfaction
relation is defined in the standard way and self-explanatory. For example, the formula
¬∃x.(

∨
a∈Send( , , ) λ(x) = a ∧ ¬matched(x)) with matched(x) = ∃y.x◁ y says that there

are no unmatched send events. It is not satisfied by MSC M1 of Fig. 1, as message m1 is not
received, but by M4 from Fig. 6.

Given a sentence φ, i.e., a formula without free variables, we let L(φ) denote the set of
(p2p) MSCs that satisfy φ. It is worth mentioning that the (reflexive) transitive closure of a
binary relation defined by an MSO formula with free variables x and y, such as x → y, is
MSO-definable so that the logic can freely use formulas of the form x →+ y or x ≤ y (where
≤ is interpreted as ≤M for the given MSC M). Therefore, the definition of a mailbox MSC
can be readily translated into the formula φmb = ¬∃x.∃y.(¬(x = y) ∧ x ⪯ y ∧ y ⪯ x) so that
we have L(φmb) = MSCmb. Here, x ⪯ y is obtained as the MSO-definable reflexive transitive
closure of the union of the MSO-definable relations →, ◁, and ⊏. In particular, we may
define x ⊏ y by:

x ⊏ y =
∨
q∈P

a,b∈Send( ,q, )

λ(x) = a ∧ λ(y) = b∧

(
matched(x) ∧ ¬matched(y)

∨ ∃x′.∃y′.(x◁ x′ ∧ y ◁ y′ ∧ x′ →+ y′)

)
.

Propositional Dynamic Logic (PDL). For better complexity, we also consider PDL with
Loop and Converse, henceforth called LCPDL (cf. [6, 7, 27] for more details). Its syntax is:

Φ ::= Eσ | Φ ∨ Φ | ¬Φ (sentence)
σ ::= a | σ ∨ σ | ¬σ | ⟨π⟩σ | Loop⟨π⟩ (event formula)
π ::= → | ◁ | test(σ) | jump | π + π | π · π | π∗ | π−1 (path formula)

where a ∈ Σ. We use the symbol ⊤ to denote a tautology event formula (such as a ∨ ¬a).
We describe the semantics for the logic in Fig. 3 (apart from the obvious cases). A sentence
Φ is evaluated wrt. an MSC M = (E , →,◁, λ). An event formula σ is evaluated wrt. M and
an event e ∈ E so that it defines a unary relation JσKM ⊆ E . Finally, a path formula π is
evaluated over two events, and so it defines a binary relation JπKM ⊆ E × E . Finally, we let
L(Φ) = {M ∈ MSC | M |= Φ}. Note that every LCPDL-definable property is MSO-definable.

It can be seen below that the mailbox semantics can be readily translated into the LCPDL
formula Φmb = ¬E (Loop⟨(◁+ → +⊏)+⟩) such that L(Φmb) = MSCmb. Hereby, we let

⊏ = ◁ · →+ ·◁−1 +
∑
q∈P

a,b∈Send( ,q, )

test(a) ·◁ · jump · test(b ∧ ¬⟨◁⟩⊤) .
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Special Tree-Width. Special tree-width [12], is a graph measure that indicates how close a
graph is to a tree (we may also use classical tree-width instead). This or similar measures are
commonly employed in verification. For instance, tree-width and split-width have been used
in [26] and, respectively, [2, 13] to reason about graph behaviors generated by pushdown and
queue systems. There are several ways to define the special tree-width of an MSC. We adopt
the following game-based definition from [7].

Adam and Eve play a two-player turn based “decomposition game” whose positions are
MSCs with some pebbles placed on some events. More precisely, Eve’s positions are marked
MSC fragments (M, U), where M = (E , →,◁, λ) is an MSC fragment (an MSC with possibly
some edges from ◁ or → removed) and U ⊆ E is the subset of marked events. Adam’s
positions are pairs of marked MSC fragments. A move by Eve consists in the following steps:
1. marking some events of the MSC resulting in (M, U ′) with U ⊆ U ′ ⊆ E ,
2. removing (process and/or message) edges whose endpoints are marked,
3. dividing (M, U) in (M1, U1) and (M2, U2) such that M is the disjoint (unconnected)

union of M1 and M2 and marked nodes are inherited.
When it is Adam’s turn, he simply chooses one of the two marked MSC fragments. The
initial position is (M, ∅) where M is the (complete) MSC at hand. A terminal position is
any position belonging to Eve such that all events are marked. For k ∈ N, we say that the
game is k-winning for Eve if she has a (positional) strategy that allows her, starting in the
initial position and independently of Adam’s moves, to reach a terminal position such that,
in every single position visited along the play, there are at most k + 1 marked events.

▶ Fact 8 ([7]). The special tree-width of an MSC is the least k such that the associated game
is k-winning for Eve.

The set of MSCs whose special tree-width is at most k is denoted by MSCk-stw.

3.2 Model Checking
In general, even simple verification problems, such as control-state reachability, are unde-
cidable for communicating systems [9]. However, they are decidable when we restrict to
behaviors of bounded special tree-width, which motivates the following definition of a generic
bounded model-checking problem for com ∈ {p2p, mb}:
Input: Two finite sets P and M, a communicating system S, an MSO sentence φ, and k ∈ N
(given in unary).
Question: Do we have Lcom(S) ∩ MSCk-stw ⊆ L(φ)?

▶ Fact 9 ([7]). The bounded model-checking problem for com = p2p is decidable. When the
formulas φ are from LCPDL, then the problem is solvable in exponential time.

Note that [7] does not employ the LCPDL modality jump, but it can be integrated easily.
Using φmb or Φmb, we obtain the corresponding result for mailbox systems as a corollary:

▶ Theorem 10. The bounded model-checking problem for com = mb is decidable. When the
formulas φ are from LCPDL, then the problem is solvable in exponential time.

3.3 Synchronizability
The above model-checking approach is incomplete in the sense that a positive answer does
not imply correctness of the whole system. The system may still produce behaviors of special
tree-width greater than k that violate the given property. However, if we know that a system
only generates behaviors from a class whose special tree-width is bounded by k, we can still
conclude that the system is correct.
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Table 1 Summary of the decidability of the synchronizability problem in various classes.

Peer-to-Peer Mailbox
Weakly synchronous Undecidable [Thm. 22] EXPTIME [Thm. 21]
Weakly k-synchronous Decidable [8, 14] and [Thm. 29]
Strongly k-synchronous — Decidable [Thm. 35]
Existentially k-p2p-bounded Decidable [18, Prop. 5.5]
Existentially k-mailbox-bounded — Decidable [Prop. 40]

This motivates the synchronizability problem. Several notions of synchronizability have
been introduced in the literature. However, they all amount to asking whether all behaviors
generated by a given communicating system have a particular shape, i.e., whether they are
all included in a fixed (or given) set of MSCs C. Thus, the synchronizability problem is
essentially an inclusion problem, namely Lp2p(S) ⊆ C or Lmb(S) ⊆ C. We show that, for
decidability, it is enough to have that C is MSO-definable and special-tree-width-bounded
(STW-bounded): We call C ⊆ MSC

(i) MSO-definable if there is an MSO-formula φ such that L(φ) = C,
(ii) LCPDL-definable if there is an an LCPDL-formula Φ such that L(Φ) = C,
(iii) STW-bounded if there is k ∈ N such that C ⊆ MSCk-stw.

An important component of the decidability proof is the following lemma, which shows
that we can reduce synchronizability wrt. an STW-bounded class to bounded model-checking.

▶ Lemma 11. Let S be a communicating system, com ∈ {p2p, mb}, k ∈ N, and C ⊆ MSCk-stw.
Then, Lcom(S) ⊆ C iff Lcom(S) ∩ MSC(k+2)-stw ⊆ C.

The result follows from the following lemma. Note that a similar property was shown
in [18, Proposition 5.4] for the specific class of existentially k-bounded MSCs.

▶ Lemma 12. Let k ∈ N and C ⊆ MSCk-stw. For all M ∈ MSC \ C, we have (Pref (M) ∩
MSC(k+2)-stw) \ C ̸= ∅.

We now have all ingredients to state a generic decidability result for synchronizability:

▶ Theorem 13. Fix finite sets P and M. Suppose com ∈ {p2p, mb} and let C ⊆ MSC be an
MSO-definable and STW-bounded class (over P and M). The following problem is decidable:
Given a communicating system S, do we have Lcom(S) ⊆ C?

Proof. Consider the MSO-formula φ such that L(φ) = C, and let k ∈ N such that C ⊆
MSCk-stw. We have Lcom(S) ⊆ C Lemma 11⇐⇒ Lcom(S) ∩ MSC(k+2)-stw ⊆ C ⇐⇒ Lcom(S) ∩
MSC(k+2)-stw ⊆ L(φ). The latter can be solved thanks to Fact 9 and Theorem 10. ◀

▶ Remark 14. Note that, in some cases (cf. Section 4), P and M are part of the input and the
concrete class C may be parameterized by a natural number so that it is part of the input,
too. Then, we need to be able to compute the MSO formula characterizing the class as well
as the bound on the special tree-width.

4 Application to Concrete Classes of Synchronizability

In this section, we instantiate our general framework by specific classes. Table 1 gives a
summary of the results.
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Figure 4 MSC M2.

4.1 A New General Class: Weakly Synchronous MSCs
We first introduce the class of weakly synchronous MSCs. This is a generalization of
synchronous MSCs studied earlier, in [8, 14], which we shall discuss later. We say an MSC
is weakly synchronous if it is breakable into exchanges where an exchange is an MSC that
allows one to schedule all sends before all receives. Let us define this formally:

▶ Definition 15 (exchange). Let M = (E , →,◁, λ) be an MSC. We say that M is an exchange
if SendEv(M) is a ≤M -downward-closed set.

▶ Definition 16 (weakly synchronous). We say that M ∈ MSC is weakly synchronous if it is
of the form M = M1 · . . . · Mn such that every Mi is an exchange.

We use the term weakly to distinguish from variants introduced later.

▶ Example 17. Consider the MSC M2 in Fig. 4. It is is weakly synchronous. Indeed, m1,
m2, and m5 are independent and can be put alone in an exchange. Repetitions of m3 and
m4 are interlaced, but they constitute an exchange, as we can do all sends and then all
receptions.

An easy adaptation of a characterization from [14] yields the following result for weakly
synchronous MSCs:

▶ Proposition 18. Let M be an MSC. Then, M is weakly synchronous iff no RS edge occurs
on any cyclic path in the conflict graph CG(M).

It is easily seen that the characterization from Proposition 18 is LCPDL-definable:

▶ Corollary 19. The sets of weakly synchronous MSCs and weakly synchronous mailbox
MSCs are LCPDL-definable. Both formulas have polynomial size.

Moreover, under the mailbox semantics, we can show:

▶ Proposition 20. The set of weakly synchronous mailbox MSCs is STW-bounded (in fact,
it is included in MSC4|P|-stw).

Proof. Let M be fixed, and let us sketch Eve’s winning strategy. Let n = |P|.
The first step for Eve is to split M in exchanges. She first disconnects the first exchange

from the rest of the graph (2n pebbles are needed), then she disconnects the second exchange
from the rest of the graph (2n pebbles needed, plus n pebbles remaining from the first round),
and so on for each exchange.

So we are left with designing a winning strategy for Eve with 4n + 1 pebbles on the graph
of an exchange M0, where initially there are (at most) n pebbles placed on the first event
of each process and also (at most) n pebbles placed on the last event of each process. Eve
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also places (at most) n pebbles on the last send event of each process and also (at most)
n pebbles on the first receive event of each process. Eve erases the (at most) n →-edges
between the last send event and the first receive event.

We are now in a configuration that will be our invariant.
Let us fix a mailbox linearization of M0 and let e be the first send event in this linearization.
if e is an unmatched send of process p, Eve places her last pebble on the next send event
of p (if it exists), let us call it e′. Then Eve erases the →-edge (e, e′), and now e is
completely disconnected, so it can be removed and the pebble can be taken back.
if e ◁ e′, with e′ a receive event of process q, then due to the mailbox semantics e′ is
the first receive event of q, so it has a pebble placed on it. Eve removes the ◁-edge
between e and e′, then using the extra pebble she disconnects e and places a pebble on
the →-successor of e, then she also disconnects e′ and places a pebble on the →-successor
of e′.

After that, we are back to our invariant, so we can repeat the same strategy with the second
send event of the linearization, and so on until all edges have been erased. ◀

We obtain the following result as a corollary. Note that it assumes the mailbox semantics.

▶ Theorem 21. The following problem is decidable in exponential time: Given P, M, and a
communicating system S (over P and M), is every MSC in Lmb(S) weakly synchronous?

Proof. According to Corollary 19, we determine the LCPDL formula Φwsmb such that
L(Φwsmb) is the set of weakly synchronous mailbox MSCs. Moreover, recall from Propos-
ition 20 that the special tree-width of all weakly synchronous mailbox MSCs is bounded
by 4|P|. By Lemma 11, Lmb(S) ⊆ L(Φwsmb) iff Lmb(S) ∩ MSC(4|P|+2)-stw ⊆ L(Φwsmb). The
latter is an instance of the bounded model-checking problem. As the length of Φwsmb is
polynomial in |P|, we obtain that the original problem is decidable in exponential time by
Theorem 10. ◀

For the same reasons, the model-checking problem for “weakly synchronous” systems
is decidable. Interestingly, a reduction from Post’s correspondence problem shows that
decidability fails when adopting the p2p semantics:

▶ Theorem 22. The following problem is undecidable: Given finite sets P and M as well as
a communicating system S, is every MSC in Lp2p(S) weakly synchronous?

4.2 Weakly k-Synchronous MSCs
This negative result for the p2p semantics motivates the study of other classes. In fact, our
framework captures several classes introduced in the literature.

▶ Definition 23 (k-exchange). Let M = (E , →,◁, λ) be an MSC and k ∈ N. We call M a
k-exchange if M is an exchange and |SendEv(M)| ≤ k.

Let us now recall the definition from [8,14], but (equivalently) expressed directly in terms
of MSCs rather than via executions. It differs from the weakly synchronous MSCs in that
here, we insist on constraining the number of messages sent per exchange to be at most k.

▶ Definition 24 (weakly k-synchronous). Let k ∈ N. We say that M ∈ MSC is weakly
k-synchronous if it is of the form M = M1 · . . . · Mn such that every Mi is a k-exchange.

▶ Example 25. MSC M3 in Fig. 5 is weakly 1-synchronous, as it can be decomposed into
three 1-exchanges (the decomposition is depicted by the horizontal dashed lines). We remark
that M3 ∈ MSCmb. Note that there is a p2p linearization that respects the decomposition.
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Figure 5 MSC M3.

On the other hand, a mailbox linearization needs to reorganize actions from different MSCs:
the sending of m3 needs to be done before the sending of m1. Note that M1 in Fig. 1 is also
weakly 1-synchronous.

▶ Proposition 26. Let k ∈ N. The set of weakly k-synchronous p2p (mailbox, respectively)
MSCs is effectively MSO-definable.

In fact, MSO-definability essentially follows from the following known theorem:

▶ Theorem 27 ([14]). Let M be an MSC. Then, M is weakly k-synchronous iff every SCC
in its conflict graph CG(M) is of size at most k and no RS edge occurs on any cyclic path.

This property is similar to the graphical characterization of weakly synchronous MSCs,
except for the condition that every SCC in the conflict graph is of size at most k. Furthermore,
it is easy to establish a bound on the special tree-width:

▶ Proposition 28. Let k ∈ N. The set of MSCs that are weakly k-synchronous have special
tree-width bounded by 2k + |P|.

Hence, we can conclude that the class of weakly k-synchronous MSCs is MSO-definable
and STW-bounded. As a corollary, we get the following (known) decidability result, but via
an alternative proof:

▶ Theorem 29 ([8, 14]). For com ∈ {p2p, mb}, the following problem is decidable: Given
finite sets P and M, a communicating system S, and k ∈ N, is every MSC in Lcom(S) weakly
k-synchronous?

Proof. We proceed similarly to the proof of Theorem 21. For the given P, M, and k, we
first determine, using Proposition 26, the MSO formula φk such that L(φk) is the set of
weakly k-synchronous p2p/mailbox MSCs. From Proposition 28, we know that the special
tree-width of all weakly k-synchronous MSCs is bounded by 2k + |P|. By Lemma 11, we have
Lcom(S) ⊆ L(φk) iff Lcom(S) ∩ MSC(2k+|P|+2)-stw ⊆ L(φk). The latter is an instance of the
bounded model-checking problem. By Fact 9 and Theorem 10, we obtain decidability. ◀

▶ Remark 30. The set of weakly k-synchronous MSCs is not directly expressible in LCPDL
(the reason is that LCPDL does not have a built-in counting mechanism). However, its
complement is expressible in the extension of LCPDL with existentially quantified propositions
(we need k + 1 of them). The model-checking problem for this kind of property is still in
EXPTIME and, therefore, so is the problem from Theorem 29 when k is given in unary. It is
very likely that our approach can also be used to infer the PSPACE upper bound from [8]
by showing bounded path width and using finite word automata instead of tree automata.
Finally, note that the problem to decide whether there exists an integer k ∈ N such that all
MSCs in Lcom(S) are weakly k-synchronous has recently been studied in [20] and requires
different techniques.
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Figure 6 MSC M4.

Observe also that we can remove the constraint of all the sends preceding all the receives
in a k-exchange, and still have decidability. We then have the following definition.

▶ Definition 31 (modified k-exchange). Let M = (E , →,◁, λ) be an MSC and k ∈ N. We
call M a modified k-exchange if |SendEv(M)| ≤ k.

We extend this notion to consider modified weakly k-synchronous executions as before,
and the graphical characterization of this property is that there are at most k nodes in every
SCC of the conflict graph. Hence, this class is also MSO-definable, and since each modified
k-exchange has at most 2k events, it also has bounded special tree-width.

4.3 Strongly k-Synchronous MSCs and Other Classes
Our framework can be applied to a variety of other classes. Here we show how the decidability
results can be shown for a variant of the class of weakly k-synchronous MSCs.

▶ Definition 32. Let M = (E , →,◁, λ) ∈ MSCmb. We call M strongly k-synchronous if
it can be written as M = M1 · . . . · Mn such that every MSC Mi = (Ei, →i,◁i, λi) is a
k-exchange and, for all (e, f) ∈ ⊏M , there are 1 ≤ i ≤ j ≤ n such that e ∈ Ei and f ∈ Ej.

▶ Example 33. MSC M4 ∈ MSCmb in Fig. 6 is strongly 1-synchronous. Indeed, we can
decompose it into 1-exchanges and this decomposition allows for a total order compatible with
⊏M4 . Moreover, MSC M3 in Fig. 5, which is weakly 1-synchronous, is strongly 3-synchronous.
Indeed, we need to put the three messages in the same k-exchange to regain our total order.
Finally, for all k, MSC M1 in Fig. 1 is not strongly k-synchronous, as we cannot put all
messages in the same k-exchange, where all sends are followed by all receptions. Here, this is
not possible as the reception of m3 has to take place before the sending of m4.

▶ Proposition 34. For all k ∈ N, the set of strongly k-synchronous mailbox MSCs is
MSO-definable and STW-bounded.

The proof proceeds similarly to what has been shown in the previous cases, but MSO-
definability now relies on an extended conflict graph. As a corollary, we thus obtain:

▶ Theorem 35. The following problem is decidable: Given finite sets P and M, a commu-
nicating system S, and k ∈ N, is every MSC in Lmb(S) strongly k-synchronous?

▶ Remark 36. Only mailbox MSCs are considered for the definition of strongly k-synchronous
MSCs for the following reason: A natural p2p analogue of Definition 32 would require from
the decomposition that, for all (e, f) ∈ ≤M , there are indices 1 ≤ i ≤ j ≤ n such that e ∈ Ei

and f ∈ Ej . But this is always satisfied. So the natural definition of “strongly k-synchronous
MSCs” would coincide with weakly k-synchronous MSCs.
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Figure 7 MSC M5.

Like the variant for the case of weakly synchronous MSCs, we can also generalize strongly
k-synchronous MSCs by removing the restriction on the number of messages per exchange:

▶ Definition 37. Let M = (E , →,◁, λ) ∈ MSCmb. We call M strongly synchronous if it can
be written as M = M1 · . . . · Mn such that every MSC Mi = (Ei, →i,◁i, λi) is an exchange
and, for all (e, f) ∈ ⊏M , there are indices 1 ≤ i ≤ j ≤ n such that e ∈ Ei and f ∈ Ej.

Similarly to the constructions for strongly k-synchronous MSCs, we can obtain a graphical
characterization where we only look for the absence of RS-edges in a cycle. Hence, this class
is also MSO-definable (in fact, even LCPDL-definable) and STW-bounded.

4.4 Existentially k-Bounded MSCs
Now, we turn to existentially k-bounded MSCs [18,19,24]. Synchronizability has been studied
for the p2p case in [18], so we only consider the mailbox case here. A linearization ⇝ of an
MSC M = (E , →,◁, λ) ∈ MSC is called k-mailbox-bounded if, for all e ∈ Matched(M), say
with λ(e) = send(p, q, m), we have #Send( ,q, )(⇝, e) − #Rec( ,q, )(⇝, e) ≤ k .

▶ Definition 38. Let M = (E , →,◁, λ) ∈ MSC and k ∈ N. We call M existentially
k-mailbox-bounded if it has some mailbox linearization that is k-mailbox-bounded.

Note that every existentially k-mailbox-bounded MSC is a mailbox MSC.

▶ Example 39. MSC M5 in Fig. 7 is existentially 1-mailbox-bounded, as witnessed by
the (informally given) linearization s(q, p, m2) ⇝ s(p, q, m1) ⇝ s(q, r, m3) ⇝ r(q, r, m3) ⇝
r(p, q, m1) ⇝ s(p, q, m1) ⇝ r(q, p, m2) ⇝ s(q, r, m3) . . . Note that M5 is neither weakly nor
strongly synchronous as we cannot divide it into exchanges.

▶ Proposition 40. For all k ∈ N, the set of existentially k-mailbox-bounded MSCs is
MSO-definable and STW-bounded.

This extension is also valid for the p2p definition of existentially k-bounded MSCs, which
were addressed in [18]. Finally, our framework can also be adapted to treat universally
bounded systems [21,24].

5 Relations Between Classes

In this section we study how the classes introduced and recalled so far are related to each
other. Notably, depending on the semantics (p2p or mailbox), we obtain two different
classifications. The results are summed up in Figures 8 and 9. Here, we define existentially
k-p2p-bounded MSCs and universally bounded counterparts as expected.
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Figure 9 Hierarchy of classes for mailbox systems.

To refer to those systems we use the following terminology: a system S is called weakly
synchronizable (resp. strongly synchronizable) if all MSCs M in the respective language
are weakly synchronous (resp. strongly synchronous). A system is called weakly k-synchro-
nizable (resp. strongly k-synchronizable, existentially bounded or universally bounded) if all
MSCs are weakly k-synchronous (resp. strongly k-synchronous, existentially k-bounded or
universally k-bounded). A similar comparison relating existentially bounded systems, weakly
k-synchronizable systems, as well as other systems that have not been described here, can
also be found in [23] for p2p systems.

We give some results showing the inclusion of certain classes. Recall that strong k-
synchronizability is tailored to mailbox systems (cf. also Remark 36) so that, for p2p systems,
we only consider the case of weak (k-)synchronizability.

▶ Proposition 41. Every weakly k-synchronous MSC is existentially k-p2p-bounded.
Moreover, every strongly k-synchronous mailbox MSC is existentially k-mailbox-bounded.

Finally, if a system is weakly synchronizable and universally k-bounded then, there is
a k′ such that it is also weakly k′-synchronizable. The equivalent property is also valid for
strong classes.

▶ Proposition 42. Every weakly (resp. strongly) synchronizable and universally k-bounded
system is weakly (resp. strongly) k′-synchronizable for a k′.

6 Conclusion and Perspectives

We have presented a unifying framework based on MSO logic and (special) tree-width, that
brings together existing definitions, explains their good properties, and allows one to easily
derive other, more general definitions and decidability results for synchronizability. Let us
notice that the send-synchronizability does not fit in our framework because the question
Lp2p(S) ⊆ C0 would be decidable (by Theorem 13), where C0 is the set of send-synchronizable
MSCs, but this property is equivalent to checking whether the system S is send-synchronizable
and this last property is undecidable [16].

Many other related questions could be studied in the future. For example, we could
think about the hypotheses to add to our general framework to make the problem “does
there exist an k ≥ 0 such that Lp2p(S) ⊆ Ck?” decidable. From very recent work [20], one
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knows that the problem “does there exist an k ≥ 0 such that the system is (weakly/strongly)
k-synchronizable?" is decidable; but it remains to be seen if it would be possible to obtain
these results by showing that these properties can be expressed in a decidable extension of
our framework. Let us remark that the decidability of the question whether there exists
an k ≥ 0 such that Lp2p(S) ⊆ Ck allows us to build a bounded model checking strategy by
first deciding whether there exists such an k ≥ 0 and then by testing if Lp2p(S) ⊆ Ck for
k = 0, 1, 2 . . . . One may use this strategy for weakly/strongly synchronizable systems, but
not for existentially bounded systems (except for deadlock-free systems) or for deterministic
deadlock-free universally bounded systems. In [23], Lange and Yoshida introduced an
asynchronous compatibility property and it would also be interesting to verify whether this
property could be expressed into our framework.
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distributed algorithms into finite-state guard automata. The soundness of the approach corresponds
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of distributed algorithms.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Distributed algorithms

Keywords and phrases Verification, Distributed algorithms, Domain theory

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.15

Related Version Full Version: https://hal.inria.fr/hal-03283388

Funding This project has received funding from Interchain Foundation (Switzerland).

1 Introduction

Under the umbrella of parameterized verification, the verification of systems formed of an
arbitrary number of agents executing the same code, has attracted quite some attention
in the recent years, see for instance [18, 9]. Application examples range from distributed
algorithms (e.g., for clock synchronization [28] or robot coordination [27]), cache-coherence
protocols [25, 1], to chemical or biological systems [10]. In all cases, the systems are designed
to operate correctly independently of the number of agents.

More specifically, distributed algorithms are central to various emblematic applications,
including telecommunications, scientific computing, and Blockchain. Automatically proving
the correctness of distributed algorithms is a particularly relevant, as stated by Lamport:
“Model-checking algorithms prior to submitting them for publication should become the
norm” [22]. The task, that the verification community has started to address, is quite
challenging, since it aims at validating at once all instances of the algorithm for arbitrarily
many processes.

Distributed algorithms with threshold guards are omni-present in solutions for consensus
and agreement problems. Typically, these guards also are parameterized, e.g., if the number
of processes in a distributed system is n, then it is natural to require that certain actions
are taken only if a majority of processes is ready to do so; this results in a parameterized
threshold expression of n/2. Due to Blockchain and other current applications these kinds of
distributed algorithm enjoy recent attention from the algorithm design community as well as
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the verification community. the algorithm design community has been studying them for a
long time, (see e.g., [11]) and typically provides hand-written proofs based on mathematical
models without formal semantics.

For computer-aided verification the first challenge is to develop appropriate modeling
formalisms that maintain all behaviors of the original algorithms on the one hand, and on
the other hand are abstract and succinct to allow for efficient verification. Several approaches
towards efficient verification have recently been proposed.

The threshold automata framework [20] targets asynchronous distributed algorithms
with threshold guards and reductions (similar to [23, 17]) have been used to show that
SMT-based bounded model checking is complete [19]. Later this framework was generalized
and generalizations were analyzed regarding decidability [21], and complexity [5]. The current
paper also targets threshold distributed algorithms, yet eventually provides an even coarser
abstraction to represent their behaviors, thus reducing the overall verification complexity.
Moreover, the semantics of distributed algorithms and the soundness of the abstraction rely
on domain theory concepts, thus providing a solid mathematical framework to our work.
Last but not least, our approach can handle infinite behaviours, in contrast to the threshold
automata framework.

The logical fragment of the IVy toolset has also been shown to allow to model threshold
guards by axiomising their semantics as quorum systems [7]. For instance, the reason
for waiting for quorums of more than n/2 messages is that any two such quorums must
intersect at one sender. IVy allows to express these quorum axioms and reduce verification
to decidable fragments. Similar intuitions underlie verification results in the heard-of model
(HO model) [13]. This computational model for distributed algorithms already targets a high
level of abstractions that are sound for communication closed distributed algorithms [12].
Here a consensus logic was introduced in [16] that could be used for deductive verification
and cut-off results where provided in [24] that reduce the parameterized verification problem
to small finite instances. Compared to this line of work, the distributed algorithms we target
share some similarities with these round-based communication closed models. Recently, a
threshold automata framework for round-based algorithms was introduced that also uses a
small counterexample property for verification in [29]. In contrast, we use domain theory, and
particularly Scott continuity to be able to reason on infinite behaviors and thus to capture
algorithms that do not necessarily terminate.

Other less related verification frameworks also target distributed algorithms with quite
different techniques such as event B [26], array systems [4] or logic and automata theory [3].

Contributions

Using basic domain theory concepts, we provide a rigorous framework to model and verify
(asynchronous) distributed algorithms. Our methodology applies to distributed algorithms
that are structured in layers (that can be seen as a fine-grain notion of rounds), and may
consist of countably many layers, thus capturing round-based distributed algorithms (with
no a priori bound on the number of rounds).

In Section 2, we define partially ordered transition systems, which serve to express the
semantics our models.
Section 3 introduces the low-level model of layered distributed systems to represent
threshold based distributed algorithms. The state-space of layered distributed systems
being infinite (and even not necessarily finitely representable), we provide several abstrac-
tion steps, up to a so-called guard abstraction. The soundness of each step is justified by
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the Scott-continuity of the corresponding abstraction. Some steps are also complete, and
thus do not introduce spurious behaviors.
Finally, towards practical verification, we define in Section 4 the guard automaton, a
finite-state abstraction of (cyclic) layered distributed systems. It overapproximates the
set of infinite behaviors of distributed algorithms, and thus enabling the verification of
safety as well as liveness properties. Its construction can be automated with the help of
an SMT solver, paving the way to the automated verification of round-based threshold
distributed algorithms.

2 A Fistful of Domain Theory

2.1 Mathematical Preliminaries

This section presents mathematical notions as well as notations that are used throughout the
paper. In particular, it introduces partially ordered sets and Scott topology. The interested
reader is referred to [2] for an thorough introduction to domain theory.

Sets and multisets. A multiset over a set X is an element of NX . Addition and inclusion
over multisets are defined in a natural way. For ξ, ξ′ ∈ NX two multisets, ξ + ξ′ ∈ NX is
the multiset such that for every x ∈ X, (ξ + ξ′) (x) = ξ(x) + ξ′(x). We write ξ ⊑ ξ′ if for
every x ∈ X, ξ(x) ≤ ξ′(x). Standard sets can be seen as special cases of multisets with the
canonical bijection between the set of subsets of X (2X) and the set of functions from X to
{0, 1}.

Sequences. For X a set and n ∈ N a natural number, a sequence of elements of X of length
n is some u ∈ X{0,...,n−1}. Its length is |u| = n and for i < n, u(i) ∈ X denotes the letter at
index i. X∗ =

⋃
n∈N X{0,...,n−1} (resp. X+ =

⋃
n>0 X{0,...,n−1}) denotes the set of all finite

(resp. finite and non-empty) sequences of elements of X. Moreover, X∗ = X∗ ∪XN is the
set of finite or infinite sequences of X. For u ∈ X∗ a finite sequence and v ∈ X∗ a finite or
infinite sequence, we write u · v for the concatenation of u and v. For u and w two sequences,
we write u ≺ w and say that u is a prefix of w if either w is finite and there exists v ∈ X∗

such that u · v = w or u = w. For w a sequence and i ≤ |w|, wi is the prefix w of length i.

Closures and bounds for partially ordered sets. Let (X,⊑) be a partially ordered set, and
ξ ⊂ X. The upward-closure of ξ is ↑ξ = {x ∈ X | ∃x′ ∈ ξ, x′ ⊑ x}, and ξ is upward-closed if
↑ξ = ξ. Dually, one defines the downward-closure ↓ξ and downward-closed sets. An element
x ∈ X is an upper-bound of ξ if for any element x′ ∈ ξ, x′ ⊑ x. We write ub(ξ) for the set of
upper-bounds of ξ. If it exists (it is then unique), the greatest element of ξ is x ∈ X such
that x ∈ ξ and x ∈ ub(ξ). Dually, one defines the notion of least element by reversing the
order. If it exists, the least upper bound of ξ is the least element of ub(ξ), and we denote
it by

⊔
ξ. Finally ξ is directed if it is non-empty and if for every two elements x, x′ ∈ ξ,

ub({x, x′})∩ ξ ̸= ∅; intuitively, any finite subset of ξ has an upper-bound in ξ. An interesting
particular case of directed case are completely ordered sets which are called chains in this
context.

Directed Complete Partially ordered sets (DCPO). A DCPO is a partially ordered set
(X,⊑) such that any directed subset ξ ⊂ X has a (unique) least upper bound. These partially
ordered sets are particularly important in semantics of programming languages.
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The Scott Topology on DCPO. Directed complete partial orders are naturally equipped
with the Scott topology. A subset ξ of a DCPO (X,⊑) is Scott-closed if it is downward-closed
and if for any directed subset ξ′ ⊂ ξ,

⊔
ξ′ ∈ ξ. A subset is Scott-open if its complement in X is

Scott-closed. Functions that are continuous for the Scott topology are called Scott-continuous.
A function f : X → Y is monotonous if for any x, x′ ∈ X, if x ⊑ x′ then f(x) ⊑ f(x′). A
Scott-continuous function is always monotonous. A function f : X → Y is Scott-continuous
if and only if for any directed subset ξ ⊂ X, f(

⊔
(ξ)) =

⊔
(f(ξ)). In this paper, a partial

function f : X → Y is called Scott-continuous if its domain dom(f) is Scott-closed and if for
any directed subset ξ ⊂ dom(f), f(

⊔
ξ) =

⊔
f(ξ).

2.2 Partially Ordered Transition Systems
Building on domain theory, this section introduces a generic model for distributed transition
systems, that will capture the semantics of distributed algorithms. An ordering naturally
appears on sets of sent messages –that can only grow– and the asynchrony requires the order
to be partial only.

▶ Definition 1. A partially ordered transition system (POTS) is a tuple O = (X,⊑, A) where:
(X,⊑) forms a DCPO.
A is a set of partial functions, called actions, from X to itself and such that for every
a ∈ A and every x ∈ dom(a), x ⊑ a(x).

▶ Definition 2. A schedule is a (finite or infinite) sequence of actions: σ = (at)t<T , with
T ∈ N. A schedule σ = (at)t<T is applicable at x ∈ X if there exists a sequence (xt)t<T +1
with x0 = x, and for every t < T , xt ∈ dom(at) and at(xt) = xt+1. In this case, we write
configs(x, σ) for the sequence (xt)t<T +1, and x ⋆ σ for

⊔
{xt | t < T+1}.

The above definition uses the convention that∞+1 =∞. Note that if σ is applicable at x,
then the sequence (xt)t<T +1 is unique. Moreover, the least upper bound

⊔
{xt | t < T + 1}

exists because for any t < T , xt ⊑ xt+1 and {xt | t < T + 1} is therefore a chain. When
σ = (at)t<T is finite, x ⋆ σ = x ⋆ a0 ⋆ · · · ⋆ aT −1 denotes the last element of the monotonous
sequence configs(x, σ). In particular, for a ∈ A and x ∈ dom(a), x⋆a = a(x). When σt ∈ At is
defined as the prefix of length t of σ, xt = x⋆σt and it follows: x⋆σ =

⊔
{x⋆σt | t < T, t ∈ N}.

The following lemma will be useful throughout the paper:

▶ Lemma 3. For x ∈ X, the set App(x) of schedules applicable at x is Scott-closed for the
prefix ordering and the function: [x ⋆ _] : App(x)→ X is Scott-continuous.

▶ Definition 4. An abstraction between POTS O = (X,⊑, A) and O′ = (X ′,⊑, A′) consists
of

a set abstraction abX : X → X ′ which is a Scott-continuous function;
a monoid abstraction abA : A∗ → A′∗ which is a monoid morphism (with slight abuse of
notation, abA also denotes its Scott-continuous extension A∗ → A′∗);

both such that for every a ∈ A and every x ∈ dom(a), abA(a) ∈ A′∗ is applicable at
abX(x) ∈ X ′ and abX(x ⋆ a) = abX(x) ⋆ abA(a).

The last condition of the definition of abstraction translates into the commutativity of the
diagram in Figure 1a. The soundness of the abstraction for any (possibly infinite) schedule
is stated in the following proposition and illustrated on Figure 1b.

▶ Proposition 5. Let (abX , abA) be an abstraction between O = (X,⊑, A) and O′ =
(X ′,⊑, A′), x ∈ X be an element, and σ ∈ A∗ a schedule. If σ is applicable at x, then
abA(σ) is applicable at abX(x) and abX(x ⋆ σ) = abX(x) ⋆ abA(σ).
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dom(a) ⊂ X X

dom(abA(a)) ⊂ X ′ X ′

a

abX abX

abA(a)

(a) By Definition 4 diagram commutes for any
action a ∈ A.

X X · · · X

X ′ X ′ · · · X ′

a0 a1

abA(a0) abA(a1)

abX abX abX

σ

abA(σ)

(b) By Proposition 5 diagram commutes for any sched-
ule σ.

Figure 1 (abX , abA) forms an abstraction between the POTS (X,⊑, A) and (X ′,⊑, A′).

The proof of this proposition is by transfinite induction on the length of schedules:
showing that the result holds for finite schedules is easy, and continuity arguments (such as
Lemma 3) are then used to extend to infinite schedules.

3 Layered Distributed Systems and their Abstractions

This section introduces a low-level model for distributed algorithms, whose semantics will be
expressed as a POTS. The model is structured in layers, thus restricting the application to
algorithms with a specific shape. However, many distributed algorithms from the literature
fall in this class, and minor modifications of other algorithms make them amenable to
our techniques. The restriction to layered models is used several times in the theoretical
developments that follow.

3.1 Layered Distributed Transition Systems
This section introduces Layered Distributed Transition Systems (LDTSs) as a model for
distributed algorithms, such as the Phase King algorithm [8]. A simplified version of the
algorithm is provided in Algorithm 1. This algorithm operates in rounds, each consisting of
three steps:

Broadcast a message (ℓ, m) to all process where ℓ is the round index (line 3)
Receive the messages (ℓ, _) sent in this round (line 4)
Update the process variables according to the received messages (lines 5 to 12)

In general, such a series of three instructions, indexed by ℓ ∈ N, is called a layer and it refines
the classical notion of rounds: for instance, in Ben-Or’s consensus algorithm [6], each round
comprises two layers. Note that layers are assumed to be communication-closed [17, 14]: the
update instruction at layer ℓ only depends on received messages from the same layer.

Distributed algorithms run over a finite set of processes, and at every point in time, the
local state of a process is defined by the valuation of its local variables. In this paper, the
contents of a sent message is not particularly relevant as it can be deduced from the local
state of its sender. Therefore, the communications can be encoded by guards that prevent
a process from taking a transition if a condition on the state of other processes is not met.
Formally, the syntax of layered distributed transition systems is as follows:

CONCUR 2021
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Algorithm 1 Inspired by the Phase King Algorithm, this algorithm is a synchronous
algorithm targetting the resolution of binary consensus. It executes t+1 rounds. In round
ℓ ∈ {0 . . . t}, the local value v of each process is updated either according to the majority, or
to the value of the process with id ℓ (the King process).

1 Process PhaseKing(n, t, id, v):
Data: n processes, t < n

4 Byzantine faults, id ∈ {0 . . . n− 1}, v ∈ {0, 1}.
2 for ℓ = 0 to t do
3 broadcast (ℓ, id, v)
4 receive all the messages (ℓ, _, _)
5 n0 ← number of messages (ℓ, _, 0) received
6 n1 ← number of messages (ℓ, _, 1) received
7 if n0 > n

2 + t then
8 v ← 0
9 else if n1 > n

2 + t then
10 v ← 1
11 else
12 v ← v′ where (ℓ, ℓ, v′) is a received message
13 end
14 return v;

▶ Definition 6. A layered distributed transition system (LDTS) is a tuple D = (P, S, guard)
where:

P is a finite set of processes
S is a set of states partitioned in layers: S =

⋃
ℓ∈N Sℓ.

For ⊥ a new element, set S⊥ = S ∪ {⊥} and for ℓ ∈ N, S⊥
ℓ = Sℓ ∪ ⊥.

The set S⊥ is partially ordered with s ⊑ s′ if s = ⊥ or s = s′.
guard : S2 → 2[P →S⊥] associates to each pair of states a guard.
Additionally, the following layered hypothesis is imposed:
For ℓ ∈ N, s ∈ Sℓ and s′ ∈ S, guard(s, s′) ∈ 2[P →S⊥

ℓ ], and if s′ /∈ Sℓ+1, then
guard(s, s′) = ∅.

Intuitively, for ℓ ∈ N, Sℓ is the set of states a process can be in at layer ℓ, and ⊥ is used to
represent that a process has not reached that layer yet. Although trivial, the ordering on S⊥

shows sufficient to represent the semantics of distributed algorithms. Moreover, the guards
correspond to a condition on messages received from other processes. Having x ∈ guard(s, s′)
with x(p) = ⊥ means that there are no conditions on the messages received from process p,
so that a process in state s can go to s′ even if it has not received any message from p.

To define the semantics of LDTS, recall that the system a priori runs fully asynchronously,
so that processes may be in different layers1. However, messages may be received by processes
even if the sender has later reached a layer. This means that the state of each process at
each layer should be recorded in the semantics of a LDTS. An agglomeration of local states
is called a configuration. A full configuration additionally stores the messages received by
each process, as formalized below:

▶ Definition 7. Let D = (P, S, guard) be an LDTS. A full configuration of D is a pair
cf = (state(cf ), received(cf )) where

state(cf ) : P → S+ is such that for every p ∈ P and ℓ ∈ N

if ℓ <
∣∣state(cf )(p)

∣∣, then state(cf )(p)(ℓ) ∈ Sℓ and the latter is the state of p in ℓ;
if ℓ ≥

∣∣state(cf )(p)
∣∣, then state(cf )(p)(ℓ) = ⊥ ∈ S⊥

ℓ .
received(cf ) : P → P → N→ S⊥ such that for every p ∈ P , received(cf )(p) ⊑ state(cf ).

1 Synchronous systems can also be represented by LDTS, as illustrated with the Phase King algorithm.
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The set of full configurations is denoted Cf . It is partially ordered with ⊑ defined by cf ⊑ cf ′ if
state(cf ) ⊑ state(cf ′) pointwise with the prefix ordering on S+ and received(cf ) ⊑ received(cf ′)
pointwise.

Note that S⊥ is a DCPO since each of its directed subsets is finite. Cf is isomorphic to the
Cartesian product

[
(P, =)→ (S+,≺)

]
×

[
(P 2 ×N, =)→ (S⊥,⊑)

]
and is therefore a DCPO

too.
At a full configuration cf ∈ Cf , two types of actions may happen, corresponding to

receptions and internal transitions. First, a process p ∈ P may receive a message that was
sent in layer ℓ ∈ N by a process p′ ∈ P ; this action is denoted rec (p, ℓ, p′). Second, a process
p ∈ P may move from a state s ∈ Sℓ to state s′ ∈ Sℓ+1, denoted tr (p, s, s′). The effect of
actions on full configurations is formally defined as follows:

▶ Definition 8. The set of actions of an LDTS D = (P, S, guard) is

Af = {rec (p, p′, ℓ) | p, p′ ∈ P, ℓ ∈ N} ∪
⋃
ℓ∈N

{tr (p, s, s′) | p ∈ P, s ∈ Sℓ, s′ ∈ Sℓ+1} .

For cf ∈ Cf and rec (p, p′, ℓ) ∈ Af , the full configuration cf ′ = rec (p, p′, ℓ) (cf ) is defined by:
state(cf ′) = state(cf )
received(cf ′)(p)(p′)(ℓ) = state(cf )(p′)(ℓ) and received(cf ′) equals received(cf ) elsewhere.

For cf ∈ Cf and tr (p, s, s′) ∈ Af , writing ℓ =
∣∣state(cf )(p)

∣∣− 1, then tr (p, s, s′) is enabled
at cf ∈ Cf if: ℓ < ∞, state(cf )(p)(ℓ) = s and received(cf )(p)(_)(ℓ) ∈ guard(s)(s′). In this
case, the full configuration cf ′ = tr (p, s, s′) (cf ) is defined with:

state(cf ′)(p) = state(cf )(p) · s′ and state(cf ′) equals state(cf ) elsewhere.
received(cf ′) = received(cf )

Note that the reception actions are always enabled. So defined, the semantics of an LDTS is
a POTS Of

D =
(
Cf ,⊑, Af

)
; in particular, the notions of schedules and abstractions apply.

▶ Example 9. Consider the Phase King algorithm run by three correct processes and a
Byzantine one. The Byzantine process is not represented explicitly (P = {p0, p1, p2} only
contains correct processes) but the guards of the LDTS account for the messages it may
send. Also, the King is chosen at each round non-deterministically, abstracting process ids.

A correct process in layer ℓ may be in one of four states Sℓ = {v0, v1, k0, k1}, where
kx (resp. vx) represents that the local value of v is x ∈ {0, 1} and that the process is
currently King (resp. not King). A full configuration, say cf , is depicted top-left of Figure 2.
The sequence states process p0 went through so far is state(cf )(p0) = v0 · k1 · v1. Also,
received(cf )(p0)(p2)(0) = v1 represents that process p0 received the message that process p2
was in state v1 at layer 0. In contrast, p0 does not know the state of p2 at layer 2 (represented
by a blank space instead of ⊥ for commodity). Thus, in cf , the message sent by process p2 at
layer 2 has yet to be received by p0. The action rec (p0, p2, 2) corresponding to this reception
is therefore enabled at cf . The resulting configuration cf ⋆ rec (p0, p2, 2) would be identical
to cf except for received(cf ⋆ rec (p0, p2, 2))(p0)(p2)(2) = state(cf )(p2)(2) = v1 instead of ⊥.
The reception rec (p0, p1, 2) can also happen at cf ⋆ rec (p0, p2, 2). The resulting configuration
cf ′ = cf ⋆ rec (p0, p2, 2) ⋆ rec (p0, p1, 2) coincides with cf except for

received(cf ′)(p0) =
p0 : v0 k1 v1
p1 : v1 v1 k1
p2 : v1 v0 v1

Now p0 has received more than n
2 + t messages in {v1, k1} so that it updates its value to 1 in

the next round. Therefore, the action tr (p0, v1, v1) is enabled at cf ′ and the configuration
cf ′

⋆ tr (p0, v1, v1) is equal to cf ′ except for state
(
cf ′

⋆ tr (p0, v1, v1)
)

= v0 · k1 · v1 · v1.
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3.2 Abstracting Received Messages
The partially ordered transition system Of

D is fine-grained and rather complex to analyze,
therefore the aim of the rest of this section is to define simpler POTS, that preserve or
overapproximate the semantics of Of

D. The successive steps are represented in Figure 2.

Full Configuration

state p0 v0 k1 v1 · ·
p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

received(p0) p0 v0 k1 v1 · ·
p1 v1 v1 · · ·
p2 v1 v0 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

Succinct Configuration

p0 v0 k1 v1 · ·
p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

Counter Configuration, n = 4, t = 1, f = 1

v0 :

k0 :

v1 :

k1 :

1

0

2

0

1

0

1

1

0

0

2

1

0

0

1

0

· · ·

· · ·

· · ·

· · ·

Guard Configuration

v0 > 0 T T · · · · ·
k0 > 0 · · · · · · ·
v1 > 0 T T T T · · ·
k1 > 0 · T T · · · ·

2(v0 + k0 + f) > n + 2t · · · · · · ·
2(v1 + k1 + f) > n + 2t · · T · · · ·

2(v0 + k0) > n + 2t · · · · · · ·
2(v1 + k1) > n + 2t · · · · · · ·

v0 + k0 + v1 + k1 + f ≥ n T T T · · · ·

Succinct Abstraction
state : Cf → Cs

Prop. 10

Th. 12

Counter Abstraction
count : Cs → C

Prop. 17
Th. 19

Guard Abstraction
evalG : C → 2G

Prop. 21

Figure 2 An illustration of the successive abstractions.

The information of messages received by each process is used to check enabledness of
transitions. However, the received messages necessarily form a subset of the sent messages.
Using the notion of abstraction, this section proves that received messages can be forgotten
without losing any information. Instead, it suffices to require the existence of a subset of sent
messages that would enable a transition. Changing views from received messages to sent ones
is often implicit [21, 20] and without restrictions it may introduce spurious counter-examples
(see Example 13). By imposing that each message appears in at most one guard in the
transitions taken by a process, the layering hypothesis guarantees that the abstraction is
complete (Theorem 12). This abstraction is then used to provide a characterization of
reachable configurations (Theorem 15), including those reachable via an infinite schedule.

A succinct configuration is an element of Cs = P → S+. For cs ∈ Cs, p ∈ P , ℓ < |cs(p)|
and s ∈ S, cs(p)(ℓ) = s means that process p is/was in state s at layer ℓ. As before, if ℓ ≥
|cs(p)|, then cs(p)(ℓ) = ⊥, representing that process p has not reached layer ℓ yet. So-defined,
the projection state : Cf → Cs abstracts Cf into Cs, so that the reception actions become
useless. The set of succinct actions is then As =

⋃
ℓ∈N {[p : s→ s′] | p ∈ P, s ∈ Sℓ, s′ ∈ Sℓ+1}

and the monoid morphism simpl : Af ∗ → As∗ is defined by ignoring reception actions.
Formally:

for rec (p, p′, ℓ) ∈ Af , simpl (rec (p, p′, ℓ)) = ε;
for tr (p, s, s′) ∈ Af , simpl (tr (p, s, s′)) = [p : s→ s′].

One can define enabledness of a succinct action, and its effect. For a succinct configuration cs ∈
Cs and a succinct action [p : s→ s′] ∈ As, writing ℓ = |cs(p)| − 1, then [p : s→ s′] is enabled
at cs if ℓ <∞, cs(p)(ℓ) = s and cs(_)(ℓ) ∈↑guard(s)(s′). In this case, ([p : s→ s′](cs)) (p) =
cs(p) · s′ and ([p : s→ s′](cs)) coincides with cs for any other process.
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The first two conditions of enabledness are analogous to the case of the full semantics
(see Definition 8). The last condition however replaces the guard of the edge with its upper
closure. This derives from the fact that the condition now deals with sent messages instead
of received ones, and the latter can only be smaller than the former.

Altogether, the succinct semantics of the LDTS consists of the POTS Os
D = (Cs,⊑, As),

whose definition is justified by the following proposition:

▶ Proposition 10. The mappings state : Cf → Cs and simpl : Af ∗ → As∗ define an
abstraction from the full POTS Of

D =
(
Cf ,⊑, Af

)
to the succinct POTS Os

D = (Cs,⊑, As).

▶ Example 11. Consider the succinct configuration cs in the top right of Figure 2. It is
obtained by applying state to the full configuration cf on the left. In Example 9, the full
schedule σf = rec (p0, p2, 2) · rec (p0, p1, 2) · tr (p0, v1, v1) is shown to be applicable at cf .
Therefore, Proposition 10 implies that simpl(σf ) = [p0 : v1 → v1] is applicable at cs.

Propositions 10 and 5 entail that the succinct abstraction is sound in the sense that it does
not remove any existing behavior, and properties that hold on every execution of the succinct
model also hold on the full semantics. However, in general, abstractions are not complete
and they may introduce new behaviors (for instance, schedules without any reception actions
may be applicable in the simplification but not in the full model). Nevertheless, the succinct
abstraction is complete: there always exists an applicable full schedule corresponding to each
applicable succinct schedule.

▶ Theorem 12. Let σs ∈ As∗ be a succinct schedule applicable at an initial configuration
cs ∈ Cs. Then, there exists a full schedule σf ∈ Af ∗ applicable at a full configuration cf ∈ Cf

such that: state(cf ) = cs, simpl(σf ) = σs, and state(cf ⋆ σf ) = cs ⋆ σs.

To prove Theorem 12 one transforms each action [p : s→ s′] into a finite schedule of
the form (rec (p, pu, ℓ))u<U · tr (p, s, s′), carefully choosing the receptions to ensure that the
last transition is enabled. To do so, the difficulties are twofold. First, the full schedule
(rec (p, pu, ℓ))u<U · tr (p, s, s′) not only depends on [p : s→ s′], but also on the current con-
figuration. Therefore one cannot define a trivial abstraction. Second, this method requires
a way to control the buffers of received messages throughout the schedule. Indeed, one
should avoid that a process receives too many messages to take a transition, as ‘un-receiving’
messages in impossible. This is where the layered structure comes into play, and ensures that
when a process receives messages enabling a transition, no earlier transition required these.

▶ Example 13. As explained, the layering assumption is crucial in Theorem 12. Consider the
non layered distributed transition system with four states a, b, c, x, and two processes p, p′. Let
cf be the initial full configuration with state(cf )(p) = a and state(cf )(p′) = x. Intuitively, in
this counterexample, the guards are set such that the first transition tr (p, a, b) is enabled only
if received(cf )(p)(p′) = x while the next transition tr (p, b, c) requires received(cf )(p)(p′) =
⊥ ̸= x. Process p would thus have to “forget” that it received a message from p′ in order to
take the second transition, which is impossible in the full semantics.

In contrast, the succinct semantics does not record whether p has already received the
message from p′ when approaching the second transition. The succinct schedule [p : a→ b] ·
[p : b→ c] is therefore applicable at state(cf ) which would contradict Theorem 12 for unlayered
distributed transition systems. Imposing that each message appears at most in one guard
along the execution of a process, the layered hypothesis prevents this type of counterexamples.

The advantage of the succinct semantics over the full one is that the guards can only
become true during an execution. This monotony property, combined with the layered
hypothesis, entail the possibility to check that a configuration is reachable a posteriori,
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simply by verifying that the guards of the transitions that are taken are verified in the last
configuration. In particular, this avoids building explicitly the schedule at all intermediate
configurations. This is formally stated in the following definition and theorem.

▶ Definition 14. A succinct configuration cs ∈ Cs is coherent if for any p ∈ P and ℓ ∈ N,
if cs(p)(ℓ) = s ̸= ⊥ and cs(p)(ℓ + 1) = s′ ̸= ⊥, then cs(_)(ℓ) ∈↑guard(s, s′).

▶ Theorem 15. Let cs, cs′ ∈ Cs be two succinct configurations such that cs is coherent.
Then the following statements are equivalent:

cs ⊑ cs′ and cs′ is coherent.
There exists a (possibly infinite) schedule σs ∈ As∗ applicable at cs such that cs ⋆ σs = cs′.

3.3 Counter Abstraction
The theory presented so far dealt with a fixed set P of processes. As an advantage, the
guards of the edges could be any condition on the set of received messages, but as a drawback,
it is impossible to represent parameterised systems where the number of processes is not
fixed. To remedy this downside, this section introduces layered threshold automata (LTA).
While this model is syntactically similar to threshold automata [20], its semantics in terms
of a POTS is novel. Natural abstractions between the semantics of LDTS and LTA can then
be presented, proving that LTA form a faithful representation of distributed algorithms, in
contrast to unrestricted threshold automata.

▶ Definition 16. A Layered Threshold Automaton (LTA) is a tuple T = (R, S, guard) where:
R is a set of parameters
S is a set of states partitioned into layers: S =

⋃∞
i=0 Si, with S0 the set of initial states.

guard : S2 → PA(S ∪R) associates a guard, in Presburger arithmetic over free variables
in S ∪R, to each pair of states. The layered hypothesis assumes that for ℓ ∈ N, s ∈ Sℓ,
and s′ ∈ S, guard(s, s′) ∈ PA(Sℓ ∪R) and if s′ /∈ Sℓ+1, guard(s, s′) = false.

The guards are monotonous, i.e. for any guard g ∈ guard(S2), for any valuation ρ ∈ NR,
κ, κ′ ∈ NS, if κ ≤ κ′ when ordered pointwise and if ρ, κ |= g, then ρ, κ′ |= g as well.

The set of parameters R typically includes the number n of processes and an upper bound
t on the number of faulty processes. Intuitively, the guards represent the conditions on
sent messages for taking the corresponding transition. The monotony assumption therefore
requires that guards in the algorithms concern received messages only, which may be any
subset of the sent messages.

In the remainder of this section, T = (R, S, guard) is a fixed LTA. A configuration c of T
is defined by:

a parameter valuation param(c) ∈ R→ N that remains constant during an execution;
a counting mapping κ(c) ∈ S → N where κ(c)(s) = k means that k processes have visited
the state s;
flow counters flow(c) ∈

(⋃
ℓ∈N Sℓ × Sℓ+1

)
→ N where flow(c)(s, s′) = k means that k

processes moved from s to s′.
Moreover, processes that leave a state must have entered it, therefore, configuations should
also verify the following flow conditions:
- in: for every ℓ ∈ N \ {0} and every s ∈ Sℓ,

∑
s′∈Sℓ−1

flow(c)(s′, s) = κ(c)(s)
- out: for every ℓ ∈ N and every s ∈ Sℓ,

∑
s′∈Sℓ+1

flow(c)(s, s′) ≤ κ(c)(s).
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The set C of all configurations is equipped with the natural order ⊑ defined by c ⊑ c′ if
param(c) = param(c′), κ(c) ≤ κ(c′) and flow(c) ≤ flow(c′).

An action over C is an element of A =
⋃

ℓ∈N Aℓ where for ℓ ∈ N, Aℓ =
{[s→ s′] | s ∈ sℓ, s′ ∈ Sℓ+1}. For c ∈ C, an action [s→ s′] ∈ Aℓ is enabled at c if:∑

s′′∈Sℓ+1
flow(c)(s, s′′) < κ(c)(s), and

param(c), κ(c) |= guard(s, s′), written c |= guard(s, s′) for short.
In so, the successor configuration [s→ s′] (c) = c′ ∈ C is defined by:

param(c′) = param(c)
flow(c′) = flow(c) + 1(s,s′) where 1(s,s′)(s, s′) = 1 and 1(s,s′)(e) = 0 elsewhere.
κ(c′) = κ(c) + 1s′ where 1s′(s′) = 1 and 1s′(s′′) = 0 elsewhere.

One can easily check that configuration c′ verifies the flow conditions.
The semantics of the LTA T is defined as the POTS OT = (C,⊑, A).
For ρ ∈ NR, the set of configurations that have ρ as parameters and n processes initially

is Cρ = {c ∈ C | param(c) = ρ, and
∑

s∈S0
κ(c)(s) = ρ(n)}. Let Oρ

T = (Cρ,⊑, A) denote the
POTS restricted to these configurations.

There is a strong link between LTA and LDTS. More precisely, fix a valuation ρ ∈ NR.
Consider Pρ a set of ρ(n) processes, and the LDTS Dρ =

(
Pρ, S, guardρ

)
where the function

guardρ ∈
⋃

ℓ∈N

(
Sℓ × Sℓ+1 → 2[Pρ→S⊥

ℓ ]
)

is defined for every ℓ ∈ N, s ∈ Sℓ and s′ ∈ Sℓ+1 by:

guardρ(s, s′) =
{

x ∈ P → S⊥ | ρ,
[
s 7→

∣∣x−1({s})
∣∣] |= guard(s, s′)

}
.

Let Cs
ρ = Pρ → S+ denote the set of succinct configurations of Dρ. Consider cs ∈ Cs

ρ and
define countCs

ρ
(cs) ∈ Cρ with:

param
(
countCs

ρ
(cs)

)
= ρ

for ℓ ∈ N and s ∈ Sℓ: κ
(
countCs

ρ
(cs)

)
(s)(ℓ) = |{p ∈ Pρ | cs(p)(ℓ) = s}|

For ℓ ∈ N, s ∈ Sℓ and s′ ∈ Sℓ+1:

flow
(
countCs

ρ
(cs)

)
(s, s′) =

∣∣∣∣∣
{

p ∈ Pρ |
cs(p)(ℓ) = s

cs(p)(ℓ + 1) = s′

}∣∣∣∣∣
Let As

ρ =
⋃

ℓ∈N {[p : s→ s′] | p ∈ Pρ, s ∈ Sℓ, s′ ∈ Sℓ+1} denotes the set of succinct actions
of Dρ. Define a monoid morphism countAs

ρ
: As

ρ
∗ → A∗ such that for [p : s→ s′] ∈ As

ρ,
countAs

ρ
(tr (p, s, s′)) = [s→ s′]. So defined:

▶ Proposition 17. The mappings countCs
ρ

: Cs
ρ → Cρ and countAs

ρ
: As

ρ
∗ → A∗ define an

abstraction from the POTS
(
Cs

ρ ,⊑, As
ρ

)
to the counter POTS (Cρ,⊑, A).

Proposition 17 holds for any parameter valuation ρ ∈ NR. Thus, a single LTA represents
infinitely-many LDTS, one for each parameter valuation.

Similarly to the case of LTA, one can define coherence of configurations for LDTS, and
obtain an equivalent of Theorem 15 at the counter abstraction level.

▶ Definition 18. Configuration c ∈ C is said counter coherent when for every ℓ ∈ N, s ∈ Sℓ

and s′ ∈ Sℓ+1, if flow(c)(s, s′) > 0, then c |= guard(s, s′).

▶ Theorem 19. Let c, c′ ∈ Cρ be two configurations such that c is counter coherent. Then
the following statements are equivalent:

c ⊑ c′ and c′ is counter coherent;
There exists a (possibly infinite) schedule σ ∈ A∗ applicable at c such that c ⋆ σ = c′.
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The flow conditions and the counter coherence can easily be encoded as a set of linear
arithmetic formulas that do not depend on the number of processes. In particular, if the
LTA is finite, then the resulting set of equations is finite as well, making the reachability
problem decidable in this case (for initial and target states represented by linear arithmetic
formulas). This can be used to verify not only safety properties, but also liveness properties
as configurations represent potentially infinite behaviors and contain information about the
whole execution. Theorem 19 differs from the threshold automata approach [20] because a
schedule does not need to be explicitely built. In particular, the layering assumption implies
that the order in which guards become true is irrelevant, which simplifies a lot the SMT
queries. More importantly, our approach applies to infinite automata where methods based
on bounding the diameter of the transition system have little chance of succeeding.

v0 v1 acc
v1 ≥ t + 1− f v1 ≥ n− t− f

(a) Non-layered.

v0

v1

x acc

v1 ≥ t + 1− f
x ≥ n− t− f

(b) Layered.

Figure 3 Two threshold automata for the reliable broadcast algorithm [11].

▶ Example 20. Theorem 19 heavily relies on the layered hypothesis. To see that, consider the
non layered model of Figure 3a. Let c be a configuration with flow(c)(v0, v1) > 0. Then the
counter coherence would require that c |= v1 ≥ t+1−f , however, this last condition may only
hold because the transition was taken in the first place, resulting in spurious configurations.
This can be fixed by tweaking the model in order to make it layered as seen on Figure 3b.

3.4 Guard Abstraction
Consider an LTA T = (R, S, guard). Even when S is finite, its configuration set C is infinite
as the number of processes n is unbounded. When S is infinite, then C is infinite in two
dimensions: it consists of infinitely many variables that may take infinitely many values. The
guard abstraction presented here aims at partitioning these values into finitely many classes.
The resulting model will however remain infinite, if S is.

Consider a set G ⊂ PA(S ∪ R) of monotonous guards, that is, every g ∈ G is a linear
arithmetic formulas with free variables in S ∪ R such that for ρ ∈ NR and κ, κ′ ∈ NS , if
κ ≤ κ′ pointwise and if ρ, κ |= g, then ρ, κ′ |= g as well.

Intuitively, the guard abstraction only records the valuations of the guards, not the
number of processes in each state. For this idea to succeed, the valuations of the guards
must converge during an execution, which is guaranteed by the following proposition.

▶ Proposition 21. The mapping evalG : (C,⊑) →
(
2G,⊆

)
defined by evalG(c) =

{g ∈ G | c |= g} is Scott-continuous.

4 Guard Automata towards Practical Implementation

While Theorem 19 suffices to verify finite LTA through the counter abstraction, it falls short
at capturing infinite models that arise for instance from round-based algorithms. This section
introduces guard automata as a finite-state abstraction which is sound, yet, unsurprisingly,
not complete in general and may introduce spurious counterexamples.
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4.1 Cyclic LTA
Towards algorithmic considerations and practical implementations, the rest of the paper
focuses on round-based distributed algorithms, which can be captured by cyclic LTA. Intuit-
ively, a cyclic LTA is used to model an LTA that repeats a finite series of layers indefinitely.
For k ∈ N>0, a k-cyclic LTA (k-CLTA) is a tuple T c = (R, Sc, guardc) where:

R is a finite set of parameters.
Sc is a finite set of states partitioned into k layers Sc = Sc

0 ∪ · · · ∪ Sc
k−1.

guardc : Sc2 → PA(R ∪ Sc) is a finite set of guards such that for ℓ < k, sc ∈ Sc
ℓ and

sc′ ∈ Sc, guardc(sc, sc′) ∈ PA(R ∪ Sc
ℓ ) and if sc′ /∈ Sc

ℓ+1 mod k, then guardc(sc, sc′) = false.
Unfolding a k-CLTA yields an infinite-state acyclic LTA unfold (R, Sc, guardc). Formally
unfold (R, Sc, guardc) = (R, S, guard) with:

S = {(sc, ℓ) | ℓ ∈ N, sc ∈ Sc
ℓ mod k}

For ℓ ∈ N, sc ∈ Sc
ℓ mod k and sc′ ∈ Sc

ℓ+1 mod k, guard
(
(sc, ℓ), (sc′, ℓ + 1)

)
=

guardc(sc, sc′)[sc′′ ← (sc′′, ℓ) for sc′′ ∈ Sc
ℓ mod k] meaning that any free variable sc′′ ∈ Sc

that appears in guardc(sc, sc′) gets replaced with (sc′′, ℓ). In any other case, guard is false.

4.2 Guard Automaton
From the guard abstraction, one can construct a finite-state automaton that represents the
set of reachable configurations of a cyclic LTA.

Let T c = (R, Sc, guardc) be a k-CLTA equipped with a finite set of guards expressed in
Presburger arithmetic: Gc =

⋃
ℓ<k Gc

ℓ such that for ℓ < k, Gc
ℓ ∈ PA(Sc

ℓ ∪R). In practice, Gc

will include all guards appearing in the LTA, as well as the events that need to be observed.
A CLTA can be unfolded into an infinite-state LTA, by concatenating copies of T c.

In order for the guard abstraction to be formally defined, copies of the guards in Gc

for each new layer are required. For ℓ ∈ N a layer index and gc ∈ Gc
ℓ mod k a guard,

unfoldG
ℓ(gc) = gc[sc ← (sc, ℓ) for sc ∈ Sc

ℓ mod k] denotes the guard obtained by replacing
every free occurrence of a variable sc ∈ Sc

ℓ mod k in gc by (sc, ℓ). The converse folding operation
is defined by: foldG

ℓ(g) = g[(sc, ℓ)← sc, for sc ∈ Sc
ℓ mod k]. Finally, Gℓ = unfoldG (Gc

ℓ mod k)
is the set of guards at layer ℓ and G =

⋃
ℓ∈N Gℓ the set of all guards.

The guard abstraction maps every configuration of unfold(T c) to a set of guards that
hold in that configuration. Formally, evalG : C → 2G. A set of guards γ ∈ 2G can be
represented with the sequence γ0γ1 . . . , where for ℓ ∈ N, γℓ = γ ∩Gℓ. foldG(γ) then denotes
the sequence foldG

0(γ0) · foldG
1(γ1) · · · · ∈

(
2Gc)ω and unfoldG is the converse operation

that applies unfoldG
ℓ to the elements of layer ℓ in the sequence. Doing so, a configuration

c ∈ C defines a (possibly infinite) word γc
0γc

1 . . . over the finite alphabet Σ =
⋃

ℓ<k 2Gc
ℓ as

represented in Figure 4.

c ∈ C

γ0 ⊂ G0

γ1 ⊂ G1

γ2 ⊂ G2

...
γk−1 ⊂ Gk−1

γk ⊂ Gk

γk+1 ⊂ Gk+1

...

γc
0 ⊂ Gc

0

γc
1 ⊂ Gc

1

γc
2 ⊂ Gc

2

...
γc

k−1 ⊂ Gc
k−1

γc
k ⊂ Gc

0

γc
k+1 ⊂ Gc

1

...

evalG : C → 2G ≈
∏

ℓ∈N 2Gℓ foldG :
∏

ℓ∈N 2Gℓ →
∏

ℓ∈N 2Gc
ℓ mod k

unfoldG :
∏

ℓ∈N 2Gc
ℓ mod k →

∏
ℓ∈N 2Gℓ

Figure 4 From a configuration to a word over the finite alphabet of the guard automaton.
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For ℓ < k a layer index, γc ∈ 2Gc
ℓ and γc′ ∈ 2Gc

ℓ+1 mod k guard valuations of layer ℓ and
the next layer, one can use an SMT solver to check whether γc′ is a successor γc. Precisely,
the SMT query asks for the existence of x ∈ NSc

ℓ , y ∈ NSc
ℓ+1 mod k and e ∈ NSc

ℓ ×Sc
ℓ+1 mod N such

that the valuation of guards (1), flow condition (2) and counter coherence (3) are verified.

x |=
∧

gc∈γc

gc ∧
∧

gc∈Gc
ℓ
\γc

¬gc y |=
∧

gc′∈γc′

gc′ ∧
∧

gc′∈Gc
ℓ+1 mod k

\γc′

¬gc′ (1)

e, x |=
∧

sc∈Sc
ℓ

sc ≥
∑

sc′∈Sc
ℓ+1 mod k

[
sc, sc′] e, y |=

∧
sc′∈Sc

ℓ+1 mod k

∑
sc∈Sc

ℓ

[
sc, sc′] = sc′ (2)

e, x |=
∧

(sc,sc′)∈Sc
ℓ

×Sc
ℓ+1 mod N

[
sc, sc′] > 0 −→ guardc(sc, sc′) (3)

The guard automaton is a finite automaton whose language overapproximates the set
of reachable configurations. It bears similarities with de Bruijn graphs [15] used e.g. in
bioinformatics. If Eℓ ⊂ 2Gc

ℓ × 2Gc
ℓ+1 mod k denotes the set of all pairs γc, γc′ that verify

conditions (1) and and (3), one can build the set E =
⋃

ℓ<k Eℓ.

▶ Definition 22. The guard automaton of T c is GAG(T c) =
(
Σ, E, 2Gc

0 , src, dest, label
)

where:
Σ is both the alphabet and the set of states.
2Gc

0 ⊂ Σ is the set of initial states.
E ⊂ Σ2 defined above is the set of edges, equipped with src : E → Σ (resp. dest : E → Σ)
that defines the source state (resp. destination state) of every edge, and label : E → Σ
associates a label to each edge defined by label(γc, γc′) = γc.

An infinite run (eℓ)ℓ<∞ of the guard automaton defines a word word
(
(eℓ)ℓ<∞

)
= label(e0) ·

label(e1) · · · · , and L(GAG(T c)) ⊂ Σω denotes the language of GAG(T c).

▶ Example 23. Algorithm 1 can be described by the following CLTA with k = 1. The
parameters are R = {n, t, f} where f denotes the actual number of Byzantine faults. States
are Sc = {v0, k0, v1, k1}. The guards here only depend on the next value of v. For instance:

guard(_, v0) = (v0 + k0 + v1 + k1 + f = n)

∧
((

2(v0 +k0 +f) > n+2t
)
∨

(
(2v0 +2k0 ≤ n+2t)∧(2v1 +2k1 ≤ n+2t)∧(k1 = 0)

))
.

Also, guard(_, k0) = guard(_, v0) and guard(_, v1) = guard(_, k1) is defined symmetrically.
A configuration c of the unfolded LTA is depicted bottom-right of Figure 2, where the array

contains the valuation κ(c) and the arrows represent the flow. For example κ(c)(v1, 0) = 2,
flow(c)((v0, 0), (k1, 1)) = 1 and flow(c)((v0, 0), (v0, 1)) = 0.

The guard abstraction transforms c into the guard configuration bottom-left of Figure 2.
Here, we chose the set of guards Gc to consist of s > 0 for each s ∈ Sc and of the guards
of the LTA. The alphabet Σ contains e.g., (T · T · · · · · T ). SMT queries determine whether
two letters may appear successively, in order to build the guard automaton. For instance,
according to the first two layers of evalG(c), (T · T · · · · · T ) can be followed by (T · TT · · · ·T ).
There will therefore be a transition between these two states in the guard automaton.

▶ Theorem 24. Let c ∈ C be a configuration of unfold(T c) and evalG(c) ∈ 2G its guard
abstraction. If c is counter-coherent, then foldG (evalG(c)) ∈ L(GAG(T c)).

By soundness of the guard automaton construction, a property which holds on configur-
ations that correspond to runs of GAG(T c) also holds on the configurations of unfold(T c).
A simple verification procedure thus consists in checking that L(GAG(T c)) is included in a
given language of correct configurations. At a first glance, it might seem that only safety
properties can be checked. However, the guard automaton also represents configurations
reachable by infinite schedules, making the verification of liveness properties feasible.
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v0

v1

k0,0

k0,1

p0

p1

k1,0

k1,1

v0

v1

P = {n, t, f} and for x, y ∈ {0, 1}:

guard(vx, px) = true

guard(vx, kx,y) = [2(vy + f) ≥ n]
guard(_, vx) = [2(px + kx,0 + kx,1) > n + 2t]∨2(p0 + k0,0 + k0,1) ≤ n + 2t∧

2(p1 + k1,0 + k1,1) ≤ n + 2t∧
k0,x + k1,x = 0


Figure 5 A 2-CLTA for the Phase King algorithm with non-deterministic choice of the king. A

process in kx,y is king of the current round, its current value is x and it thinks the majority is y.

▶ Example 25. For presentation purposes, Algorithm 1 is an overly simplified version of
the Phase King algorithm [8]. The latter can be faithfully encoded by the 2-CLTA T c of
Figure 5, where the updated value when there is no clear majority is not the king’s value,
but rather the majority of the values received by the king. Each round consists of two
layers of communication, a first in which each process broadcasts its value, and a second
in which the king broadcasts what it thinks is the majority. The set of guards at the
first layer is Gc

0 = {v0 > 0, v1 > 0} and at the second layer Gc
1 consists of k0,0+k1,0 > 0,

k0,1+k1,1 > 0, p0+k0,0+k0,1 > 0, p1+k1,0+k1,1 > 0, 2(k0,0+k0,1+p0+f) > n+2t and
2(k1,0+k1,1+p1+f) > n+2t.

Restricting to valuations with
∑

s∈Sℓ
s+f = n (fairness) and k0,0+k0,1+k1,0+k1,1 ≤ 1

(at most one king), the resulting guard automaton has 3 states in even layers and 11 in odd
layers. Writing [formula] for the set of letters in 2Gc for which formula holds, one can show:

L(GAG(T c)) ⊂ [¬(k0,0 + k1,0 > 0) ∧ ¬(k0,1 + k1,1 > 0)]ω (4)
∪ Σ∗[(k0,0 + k1,0 > 0) ∨ (k0,1 + k1,1 > 0)][¬(p0 + k0,0 + k0,1 > 0)]ω (5)
∪ Σ∗[(k0,0 + k1,0 > 0) ∨ (k0,1 + k1,1 > 0)][¬(p1 + k1,0 + k1,1 > 0)]ω . (6)

Therefore, either every chosen king is Byzantine (4), or all processes agree on a value after a
non-Byzantine king is chosen (5 or 6).

In general, although is it sound, the guard automaton construction is not complete: the
language may contain words that correspond to no configuration of the LTA. As usual for
incomplete methods, heuristics can be used to remove some spurious counterexamples.

5 Conclusion

This paper presented a methodology, based on domain theory, to represent and analyze
distributed algorithms. Infinite-state models are abstracted into finite-state guard automata,
on which one can check safety and liveness properties.

Optimizing and benchmarking the guard automaton implementation is on our current
agenda to demonstrate the applicability of our methodology to standard distributed al-
gorithms. A more long-term research objective is to build on the current contribution to
develop a rigorous framework for the verification of randomized distributed algorithms.
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Abstract

Data races are among the most common bugs in concurrency. The standard approach to data-race
detection is via dynamic analyses, which work over executions of concurrent programs, instead of
the program source code. The rich literature on the topic has created various notions of dynamic
data races, which are known to be detected efficiently when certain parameters (e.g., number of
threads) are small. However, the fine-grained complexity of all these notions of races has remained
elusive, making it impossible to characterize their trade-offs between precision and efficiency.

In this work we establish several fine-grained separations between many popular notions of
dynamic data races. The input is an execution trace σ with N events, T threads and L locks.
Our main results are as follows. First, we show that happens-before HB races can be detected in
O(N ·min(T ,L)) time, improving over the standard O(N · T ) bound when L = o(T ). Moreover,
we show that even reporting an HB race that involves a read access is hard for 2-orthogonal vectors
(2-OV). This is the first rigorous proof of the conjectured quadratic lower-bound in detecting HB
races. Second, we show that the recently introduced synchronization-preserving races are hard to
detect for 3-OV and thus have a cubic lower bound, when T = Ω(N ). This establishes a complexity
separation from HB races which are known to be strictly less expressive. Third, we show that
lock-cover races are hard for 2-OV, and thus have a quadratic lower-bound, even when T = 2 and
L = ω(logN ). The similar notion of lock-set races is known to be detectable in O(N · L) time, and
thus we achieve a complexity separation between the two. Moreover, we show that lock-set races
become hitting-set (HS)-hard when L = Θ(N ), and thus also have a quadratic lower bound, when
the input is sufficiently complex. To our knowledge, this is the first work that characterizes the
complexity of well-established dynamic race-detection techniques, allowing for a rigorous comparison
between them.
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1 Introduction

Concurrent programs that communicate over shared memory are prone to data races. Two
events are conflicting if they access the same memory location and one (at least) modifies that
location. Data races occur when conflicting accesses happen concurrently between different
threads, and form one of the most common bugs in concurrency. In particular, data races are
often symptomatic of bugs in software like data corruption [5, 20, 27], and they have been
deemed pure evil [6] due to the problems they have caused in the past [44]. Moreover, many
compiler optimizations are unsound in the presence of data races [37, 41], while data-race
freeness is often a requirement for assigning well-defined semantics to programs [7].
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The importance of data races in concurrency has led to a multitude of techniques for
detecting them efficiently [4, 40]. By far the most standard approach is via dynamic analyses.
Instead of analyzing the full program, dynamic analyzers try to predict the existence of data
races by observing and analyzing concurrent executions [38, 21, 29]. As full dynamic data
race prediction is NP-hard in general [25], researchers have developed several approximate
notions of dynamic races, accompanied by efficient techniques for detecting each notion.

Happens-before races. The most common technique for detecting data races dynamically
is based on Lamport’s happens-before (HB) partial order [23]. Two conflicting events form
an HB race if they are unordered by HB, as the lack of ordering between them indicates
the fact that they may execute concurrently, thereby forming a data race. The standard
approach to HB race detection is via the use of vector clocks [19], and has seen wide success
in commercial race detectors [36]. As vector clock computation is known to require Θ(N · T )
time on traces of N events and T threads [10], HB race detection is often assumed to suffer
the same bound, and has thus been a subject of further practical optimizations [30, 16].

Synchronization preserving races. HB races were recently generalized to sync(hronization)-
preserving races [26]. Intuitively, two conflicting events are in a sync-preserving race if the
observed trace can be soundly reordered to a witness trace in which the two events are
concurrent, but without reordering synchronization events (e.g., locking events). Similar to
HB races, sync-preserving races can be detected in linear time when the number of threads
is constant. However, the dependence on the number of threads is cubic for sync-preserving
races, as opposed to the linear dependence for HB races. On the other hand, sync-preserving
races are known to offer better precision in program analysis.

Races based on the locking discipline. The locking discipline dictates that threads that
access a common memory location must do so inside critical sections, using a common lock,
when performing the access [40]. Although this discipline is typically not enforced, it is
considered good practice, and hence instances that violate this principle are often considered
indicators of erroneous behavior. For this reason, there have been two popular notions of
data races based on the locking discipline, namely lock-cover races [14] and lock-set races [34].
Both notions are detectable in linear time when the number of locks is constant, however,
lock-set race detection is typically faster in practice, which also comes at the cost of being
less precise.

Observe that, although techniques for all aforementioned notions of races are generally
thought to operate in linear time, they only do so assuming certain parameters, such as the
number of threads, are constant. However, as these techniques are deployed in runtime, often
with extremely long execution traces, they have to be as efficient as absolutely possible, often
in scenarios when these parameters are very large. When a data-race detection technique is
too slow for a given application, the developers face a dilemma: do they look for a faster
algorithm, or for a simpler abstraction (i.e., a different notion of dynamic races)? For these
reasons, it is important to understand the fine-grained complexity of the problem at hand
with respect to such parameters. Fine-grained lower bounds can rule out the possibility of
faster algorithms, and thus help the developers focus on new abstractions that are more
tractable for the given application. Motivated by such questions, in this work we settle the
fine-grained complexity of dynamically detecting several popular notions of data races.
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1.1 Our Contributions
Here we give a full account of the main results of this work, while we refer to later sections for
precise definitions and proofs. We also refer to Section 2.3 for relevant notions in fine-grained
complexity and popular hypotheses. The input is always a concurrent trace σ of length N ,
consisting of T threads, L locks, and V variables.

Happens-before race. We first study the fine-grained complexity of HB races, as they form
the most popular class of dynamic data races. The task of most techniques is to report all
events in σ that participate in an HB race, which is known to take O(N · T ) time [19]. Note
that the bound is quadratic when T = Θ(N ), and multiple heuristics have been developed
to address it in practice (see e.g., [16]). Our first result shows that polynomial improvements
below this quadratic bound are unlikely.

▶ Theorem 1. For any ϵ > 0, there is no algorithm that detects even a single HB race that
involves a read in time O(N 2−ϵ), unless the OV hypothesis fails.

Orthogonal vectors (OV) is a well-studied problem with a long-standing quadratic worst-
case upper bound. The associated hypothesis states that there is no sub-quadratic algorithm
for the problem [43]. It is also known that the strong exponential time hypothesis (SETH)
implies the Orthogonal Vectors hypothesis [42]. Thus, under the OV hypothesis, Theorem 1
establishes a quadratic lower bound for HB race detection.

Note that the hardness of Theorem 1 arises out of the requirement to detect HB races
that involve a read. A natural follow-up question is whether detecting if the input contains
any HB race (i.e., not necessarily involving a read) has a similar lower bound based on SETH.
Our next theorem shows that under the non-deterministic SETH (NSETH) [9], there is no
fine-grained reduction from SETH that proves any lower bound for this problem above N 3/2.

▶ Theorem 2. For any ϵ > 0, there is no (2N ,N 3/2+ϵ)-fine-grained reduction from SAT to
the problem of detecting any HB race, unless NSETH fails.

Given the impossibility of Theorem 2, it would be desirable to at least show a super-linear
lower bound for detecting any HB data race. To tackle this question, we show that detecting
any HB race is hard for the general problem of model checking first-order formulas quantified
by ∀∃∃ on structures of size n with m relational tuples (denoted FO(∀∃∃)).

▶ Theorem 3. For any ϵ > 0, if there is an algorithm for detecting any HB race in time
O(N 1+ϵ), then there is an algorithm for FO(∀∃∃) formulas in time O(m1+ϵ).

It is known that FO(∀∃∃) can be solved in O(m3/2) time [17], which yields a bound
O(n3) for dense structures (i.e., when m = Θ(n2)). Theorem 3 implies that if m3/2 is the
best possible bound for FO(∀∃∃), then detecting any HB race cannot take O(N 1+ϵ) time for
any ϵ < 1/2. Although improvements for FO(∀∃∃) over the current O(m3/2) bound might
be possible, we find that a truly linear bound O(m) would require major breakthroughs 1.
Under this hypothesis, Theorem 3 implies a super-linear bound for HB races.

Finally, we give an improved upper bound for this problem when L = o(T ).

▶ Theorem 4. Deciding whether σ has an HB race can be done in time O(N ·min(T ,L)).

In fact, similar to existing techniques [16], the algorithm behind Theorem 4 detects all
variables that participate in an HB race (instead of just reporting σ as racy).

1 Even the well-studied problem of testing triangle freeness, which is a special case of the similarly flavored
FO(∃∃∃), has the super-linear bound O(nω), where ω is the matrix multiplication exponent.
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Synchronization-preserving races. Next, we turn our attention to the recently introduced
sync-preserving races [25]. It is known that detecting sync-preserving races takes O(N ·V ·T 3)
time. As sync-preserving races are known to be more expressive than HB races, the natural
question is whether sync-preserving races can be detected more efficiently, e.g., by an
algorithm that achieves a bound similar to Theorem 4 for HB races. Our next theorem
answers this question in negative.

▶ Theorem 5. For any ϵ > 0, there is no algorithm that detects even a single sync-preserving
race in time O(N 3−ϵ), unless the 3-OV hypothesis fails. Moreover, the statement holds even
for traces over a single variable.

As HB races take at most quadratic time, Theorem 5 shows that the increased ex-
pressiveness of sync-preserving races incurs a complexity overhead that is unavoidable in
general.

Races based on the locking discipline. We now turn our attention to data races based on
the locking discipline, namely lock-cover races and lock-set races. It is known that lock-cover
races are more expressive than lock-set races. On the other hand, existing algorithms run
in O(N 2 · L) time for lock-cover races and in O(N · L) time for lock-set races, and thus
hint that the former are computationally harder to detect. Our first theorem makes this
separation formal, by showing that even with just two threads, having slightly more that
logarithmically many locks implies a quadratic hardness for lock-cover races.

▶ Theorem 6. For any ϵ > 0, any T ≥ 2 and any L = ω(logN ), there is no algorithm that
detects even a single lock-cover race in time O(N 2−ϵ), unless the OV hypothesis fails.

Observe that the O(N · L) bound for lock-set races also becomes quadratic, when the
number of locks is unbounded (i.e., L = Θ(N )). Is there a SETH-based quadratic lower
bound similar to Theorem 6 for this case? Our next theorem rules out this possibility, again
under NSETH.

▶ Theorem 7. For any ϵ > 0, there is no (2N ,N 1+ϵ)-fine-grained reduction from SAT to
the problem of detecting any lock-set race, unless NSETH fails.

Hence, even though we desire a quadratic lower bound, Theorem 7 rules out any super-
linear lower-bound based on SETH. Alas, our next theorem shows that a quadratic lower
bound for lock-set races does exist, based on the hardness of the hitting set (HS) problem.

▶ Theorem 8. For any ϵ > 0 and any T = ω(log n), there is no algorithm that detects even
a single lock-set race in time O(N 2−ϵ), unless the HS hypothesis fails.

Hitting set is a problem similar to OV, but has different quantifier structure. Just like
the OV hypothesis, the HS hypothesis states that there is no sub-quadratic algorithm for
the problem [3]. Although HS implies OV, the opposite is not known, and thus Theorem 8
does not contradict Theorem 7. In conclusion, we have that both lock-cover and lock-set
races have (conditional) quadratic lower bounds, though the latter is based on a stronger
hypothesis (HS), and requires more threads and locks for hardness to arise.

Finally, on our way to Theorem 7, we obtain the following theorem.

▶ Theorem 9. Deciding whether a trace σ has a lock-set race on a given variable x can be
performed in O(N ) time. Thus, deciding whether σ has a lock-set race can be performed in
O(N ·min(L,V)) time.

Hence, Theorem 9 strengthens the O(N ·L) upper bound for lock-set races when V = o(L).
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1.2 Related Work
Dynamic data-race detection. There exists a rich literature in dynamic techniques for
data race detection. Methods based on vector clocks (Djit algorithm [19]) using Lamport’s
Happens Before (HB) [23] and the lock-set principle in Eraser [34] were the first ones to
popularize dynamic analysis for detecting data races. Later work attempted to increase the
performance of these notions using optimizations as in [30] and FastTrack [16], altogether
different algorithms (e.g., the GoldiLocks algorithm [15]), and hybrid techniques [28]. HB
and lock-set based race detection are respectively sound (but incomplete) and complete (but
unsound) variants of the more general problem of data-race prediction [35]. While earlier
work on data race prediction focused on explicit [35] or symbolic [32, 33] enumeration, recent
efforts have focused on scalability [38, 24, 21, 29, 31, 39]. The more recent notion [26] of
sync-preserving races generalizes the notion of HB. As the complexity of race prediction is
prohibitive (NP-hard in general [25]), this work characterizes the fine-grained complexity of
popular, more relaxed notions of dynamic races that take polynomial time.

Fine-grained complexity. Traditional complexity theory usually shows a problem is in-
tractable by proving it NP-hard, and tractable by showing it is in P. For algorithms with
large input sizes, this distinction may be too coarse. It becomes important to understand,
even for problems in P, whether algorithms with smaller degree polynomials than the known
are possible, or if there are fine-grained lower bounds making this unlikely. Fine-grained
complexity involves proving such lower bounds, by showing relationships between problems
in P, with an emphasis on the degree of the complexity polynomial, and is nowadays a field
of very active study. We refer to [8] for an introductory, and to [43] for a more extensive
exposition on the topic. Fine-grained arguments have also been instrumental in characterizing
the complexity of various problems in concurrency, such as bounded context-switching [11],
safety verification [12], data-race prediction [25] and consistency checking [13].

2 Preliminaries

2.1 Concurrent Program Executions and Data Races
Traces and Events. We consider execution traces (or simply traces) generated by concurrent
programs, under the sequential consistency memory model. Under this memory model, a
trace σ is a sequence of events. Each event e is labeled with a tuple lab(e) = ⟨t, op⟩, where t
is the (unique) identifier of the thread that performs the event e, and op is the operation
performed in e. We will often write e = ⟨t, op⟩ instead of lab(e) = ⟨t, op⟩. For the purpose of
this presentation, an operation can be one of
(a) read (r(x)) from, or write (w(x)) to, a shared memory variable x, or
(b) acquire (acq(ℓ)) or release (rel(ℓ)) of a lock ℓ.

For an event e = ⟨t, op⟩, we use tid(e) and op(e) to denote respectively the thread identifier
t and the operation op. For a trace σ, we use Eventsσ to denote the set of events that appear
in σ. Similarly, we will use Threadsσ, Locksσ and Varsσ to denote respectively the set of
threads, locks and shared variables that appear in trace σ. We denote by N = |Eventsσ|,
T = |Threadsσ|, L = |Locksσ|, and V = |Varsσ|. The set of read events and write events
on variable x ∈ Varsσ will be denoted by Readsσ(x) and Writesσ(x), and further we let
Accessesσ(x) = Readsσ(x) ∪ Writesσ(x). Similarly, we let Acquiresσ(ℓ) and Releasesσ(ℓ)
denote the set of lock-acquire and lock-release events, respectively, of σ on lock ℓ. The trace
order of σ, denoted ≤σ

tr, is the total order on Eventsσ induced by the sequence σ. Finally,
the thread-order of σ, denoted ≤σ

TO is the smallest partial order on Eventsσ such that for any
two events e1, e2 ∈ Eventsσ, if e1 ≤σ

tr e2 and tid(e1) = tid(e2), then e1 ≤σ
TO e2.
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Traces are assumed to be well-formed in that critical sections on the same lock do not
overlap. For a lock ℓ ∈ Locksσ, let σ|ℓ be the projection of the trace σ on the set of events
Acquiresσ(ℓ) ∪ Releasesσ(ℓ). Also, let t1, . . . tk be the thread identifiers in Threadsσ. Well-
formedness then entails that for each lock ℓ, the projection σ|ℓ is a prefix of some string
in the language of the grammar with production rules S → ε|S · St1 |S · St2 | · · · |S · Stk

and
Sti → ⟨ti, acq(ℓ)⟩ · ⟨ti, rel(ℓ)⟩ and start symbol S. Thus, every release event e has a unique
matching acquire event, which we denote by matchσ(e). Likewise for an acquire event e,
matchσ(e) denotes the unique matching release event if one exists. For an acquire event e, the
critical section of e is the set of events CSσ(e) = {f | e ≤σ

TO f ≤σ
TO matchσ(e)} if matchσ(e)

exists, and CSσ(e) = {f | e ≤σ
TO f} otherwise.

Data Races. Two events e1, e2 ∈ Eventsσ are said to be conflicting if they are performed by
different threads, they are access events touching the same memory location, and at least one
of them is a write access. Formally, we have (i) tid(e1) ̸= tid(e2), (ii) e1, e2 ∈ Accessesσ(x)
for some x ∈ Varsσ, and (iii) {e1, e2} ∩Writesσ(x) ̸= ∅. An event e ∈ Eventsσ is said to be
enabled in a prefix ρ of σ, if for every event e′ ̸= e with e′ ≤σ

TO e, we have e′ ∈ Eventsρ. A
data race in σ is a pair of conflicting events (e1, e2) such that there is a prefix ρ in which
both e1 and e2 are simultaneously enabled.

2.2 Notions of Dynamic Data Races
As the problem of determining whether a concurrent program has an execution with a data
race is undecidable, dynamic techniques observe program traces and report whether certain
events indicate the presence of a race. Here we describe in detail some popular approaches
to dynamic race detection that are the subject of this work.

Happens-Before Races. Given a trace σ, the happens before order ≤σ
HB is the smallest

partial order on Eventsσ such that
(a) ≤σ

TO⊆≤σ
HB, and

(b) for any lock ℓ ∈ Locksσ and for events e ∈ Releasesσ(ℓ) and f ∈ Acquiresσ(ℓ), if e ≤σ
tr f

then e ≤σ
HB f .

A pair of conflicting events (e1, e2) is an HB-race in σ if they are unordered by HB, i.e.,
e1 ̸≤σ

HB e2 and e2 ̸≤σ
HB e1. The associated decision question is, given a trace σ, determine

whether σ has an HB race. Typically HB race detectors are tasked to report all events that
form HB race with an earlier event in the trace [36, 2, 1]). That is, they solve the following
function problem:given a trace σ, determine all events e2 ∈ Eventsσ for which there exists
an event e1 ∈ Eventsσ such that e1 ≤σ

tr e2, and (e1, e2) is an HB race of σ. The standard
algorithm for solving both versions of the problem is a vector-clock algorithm that runs in
O(N · T ) time [19].

Synchronization Preserving Races. Next, we present the notion of sync(hronization)-
preserving races [25]. For a trace σ and a read event e, we use lwσ(e) to denote the write
event observed by e. That is, e′ = lwσ(e) is the last (according to the trace order ≤σ

tr) write
event e′ of σ such that e and e′ access the same variable and e′ ≤σ

tr e; if no such e′ exists,
then we write lwσ(e) = ⊥. A trace ρ is said to be a correct reordering of trace σ, if
(a) Eventsρ ⊆ Eventsσ

(b) Eventsρ is downward closed with respect to ≤σ
TO, and further ≤ρ

TO⊆≤σ
TO, and

(c) for every read event e ∈ Eventsρ, lwρ(e) = lwσ(e).
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t1 t2

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 w(x)
5 acq(ℓ)
6 rel(ℓ)

t1 t2

1 w(x)
2 acq(ℓ)
3 rel(ℓ)
4 acq(ℓ)
5 rel(ℓ)
6 w(x)

t1 t2

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 acq(ℓ)
5 r(x)
6 rel(ℓ)
7 w(x)

t1 t2

1 acq(ℓ1)
2 acq(ℓ2)
3 w(x)
4 rel(ℓ2)
5 rel(ℓ1)
6 acq(ℓ2)
7 acq(ℓ3)
8 w(x)
9 rel(ℓ3)

10 rel(ℓ2)
11 acq(ℓ1)
12 acq(ℓ3)
13 w(x)
14 rel(ℓ3)
15 rel(ℓ1)

(a) HB-race. (b) Sync-preserving race. (c) Lock-cover race. (d) Lockset race.

Figure 1 Types of data races.

Further, ρ is sync-preserving with respect to σ if for every lock ℓ and for any two acquire
events e1, e2 ∈ Acquiresρ(ℓ), we have e1 ≤ρ

tr e2 iff e1 ≤σ
tr e2. Thus, the order of critical sections

on the same lock is the same in σ and ρ.
A pair of conflicting events (e1, e2) is a sync-preserving race in σ if σ has a sync-preserving

correct reordering ρ such that (e1, e2) is a data race of ρ. The associated decision question
is, given a trace σ, determine whether σ has a sync-preserving race. As with HB races, we
are typically interested in reporting all events e2 ∈ Eventsσ for which there exists an event
e1 ∈ Eventsσ such that e1 ≤σ

tr e2, and (e1, e2) is an sync-preserving race of σ. It is known
one can report all such events e2 in time O(N · V · T 3).

Lock-Cover and Lock-Set Races. Lock-cover and lock-set races indicate violations of the
locking discipline. For an event e in a trace σ, let locksHeldσ(e) = {ℓ | ∃f ∈ Acquiresσ(ℓ), such
that e ∈ CSσ(f)}, i.e., locksHeldσ(e) is the set of locks held by thread tid(e) when e is
executed. A pair (e1, e2) of conflicting events might indicate a data race if locksHeldσ(e1) ∩
locksHeldσ(e2) = ∅. Although this condition doesn’t guarantee the presence of a race, it
constitutes a violation of the locking discipline and can be further investigated.

A pair of conflicting events (e1, e2) is a lock-cover race if locksHeldσ(e1)∩ locksHeldσ(e2) =
∅. The decision question is, given a trace σ, determine if σ has a lock-cover race. The
problem is solvable in O(N 2 · L) time, by checking the above condition over all conflicting
event pairs.

As the algorithm for lock-cover races takes quadratic time, developers often look for less
expensive indications of violations of locking discipline, called lock-set races (as proposed by
Eraser race detector [34]). A trace σ has a lock-set race on variable x ∈ Varsσ if
(a) there exists a pair of conflicting events (e1, e2) ∈Writesσ(x)× Accessesσ(x), and
(b)

⋂
e∈Accessesσ(x) locksHeldσ(e) = ∅.

The associated decision question is, given a trace σ, determine if σ has a lock-set race.
Note that a lock-cover race implies a lock-set race, but not vice versa. On the other hand,
determining whether σ has a lock-set race is easily performed in O(N · L) time.

Example. We illustrate the different notions of races in Figure 1. We use ei to denote the
ith event of the trace in consideration. First consider the trace σa in Figure 1a. The events e2
and e4 are conflicting and unordered by ≤σa

HB, thus (e2, e4) is an HB-race. Second, in trace σb
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of Figure 1b, the pair (e1, e6) is not an HB-race as e1 ≤σb

HB e6. But this is a sync-preserving
race witnessed by the correct reordering e4, e5, as both e1 and e6 are enabled. Third, in trace
σc of Figure 1c, the pair (e2, e7) is neither a sync-preserving race nor an HB race, but is a
lock-cover race as locksHeldσc(e2) ∩ locksHeldσc(e7) = ∅. Finally, the trace σd in Figure 1d
has no HB, sync-preserving or lock-cover race, as all w(x) are protected by a common lock.
But there is a lock-set race on x as there is no single lock that protects all w(x).

2.3 Fine-Grained Complexity and Popular Hypotheses
In this section we present notions of fine-grained complexity theory that are relevant to
our work. We refer to the survey [43] for a detailed exposition on the topic. This theory
relates the computational complexity of problems under the popular notion of fine-grained
reductions (See Appendix A for a formal definition).

Such a reduction A(a)⪯(b)B would be interesting for B if a(n) was a proven or well-believed
conjectured lower bound on A, thus implying a believable lower bound on B. One such
well-believed conjecture in complexity theory is SETH [18] (See Appendix A for a formal
definition) for the classic CNF-SAT problem.SETH implies a lower bound conjecture, denoted
by OVH, on the Orthogonal Vectors problem OV, as shown by a reduction from CNF-SAT
to k-OV [42]. Thus, a conditional lower bound under OVH implies one under SETH as well,
leading to numerous conditional lower bound results under OVH [See [43] for a detailed
literature review]. We next formally define k-OV and OVH.

An instance of k-OV is an integer d = ω(log n) and k sets Ai ⊆ {0, 1}d, i ∈ [k] such that
|Ai| = n, and denoted by OV(n, d, k).

▶ Problem 1 (Orthogonal Vectors (k-OV)). Given an instance OV(n, d, k), the k-OV problem
is to decide if there are k vectors ai ∈ Ai for all i ∈ [k] such that the sum of their point wise
product is zero, i.e.,

∑d
j=1

∏k
i=1 ai[j] = 0.

For ease of exposition, we denote OV(n, d, 2) and 2-OV by OV(n, d) and OV respectively.

▶ Hypothesis 1 (Orthogonal Vectors Hypothesis (OVH)). No randomized algorithm can solve
k-OV for an instance OV(n, d, k) in time O(n(k−ϵ) · poly(d)) for any constant ϵ > 0.

The following impossibility result from [9] proves that a reduction under SETH, and hence
under OVH, is not possible unless the NSETH conjecture (definition included in Appendix A)
is false.

▶ Theorem 10. If NSETH holds and a problem C ∈ NTIME[TC] ∩ coNTIME[TC], then for
any problem B that is SETH-hard under deterministic reductions with time TB , and γ > 0,
we cannot have a fine-grained reduction B (TB)⪯(c) C where c = T

(1+γ)
C .

We show some of our problems satisfy the conditions of Theorem 10, and hence show
lower bounds for these conditioned on two other hypotheses described below.

An instance of the hitting set problem, denoted by HS, is an integer d = ω(log n) and
sets X,Y ⊆ {0, 1}d, i ∈ [n] such that |X| = |Y | = n, and denoted by HS(n,d).

▶ Problem 2 (Hitting Sets (HS)). Given an instance HS(n,d), the HS problem is to decide if
there is a vector x ∈ X such that for all y ∈ Y we have x · y ̸= 0, or informally, some vector
in X hits all vectors in Y.

▶ Hypothesis 2 (Hitting Sets Hypothesis (HSH)). No randomized algorithm can solve HS for
an instance HS(n,d) in time O(n(2−ϵ) · poly(d)) for any constant ϵ > 0.

HSH implies OVH, but the reverse direction is not known.
Finally we consider the subclass of first order formulae over structures of size n and with

m relational tuples [17].
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▶ Problem 3 (FO(∀∃∃)). Decide if a given a first-order formula quantified by ∀∃∃ has a
model on a structure of size n with m relational tuples.

It is known that FO(∀∃∃) can be solved in O(m3/2) time using ideas from triangle
detection algorithms [17]. For dense graph structures (m = Θ(n2)), this yields the bound
O(n3). Although sub-cubic algorithms might be possible, achieving a truly quadratic bound
seems unlikely or at least highly non-trivial.

3 Happens-Before Races

In this section we prove the results for detecting HB races, i.e., Theorem 1 to Theorem 4.

3.1 Algorithm for HB Races
We first outline our O(N ·L)-time algorithm for checking if a trace σ has an HB-race, thereby
proving Theorem 4. As with the standard vector clock algorithm [19], our algorithm is
based on computing timestamps for each event. However, unlike the standard algorithm that
assigns thread-indexed timestamps, we use lock-indexed timestamps, or lockstamps, which we
formalize next. We fix the input trace σ in the rest of the discussion.

Lockstamps. A lockstamp is a mapping from locks to natural numbers (including infinity)
L : Locksσ → N ∪ {∞}. Given lockstamps L,L1, L2 and lock ℓ, we use the notation

(i) L[ℓ 7→ c] to denote the the lockstamp λm· if m = ℓ then c else L(m),
(ii) L1 ⊔ L2 to denote the pointwise maximum, i.e., (L1 ⊔ L2)(ℓ) = max(L1(ℓ), L2(ℓ)) for

every ℓ,
(iii) L1 ⊓ L2 to denote the pointwise minimum, and
(iv) L1 ⊑ L2 to denote the predicate ∀ℓ·L1(ℓ) ≤ L2(ℓ).

Our algorithm computes acquire and release lockstamps AcqLSσ
e and RelLSσ

e for every
event e ∈ Eventsσ, defined next. For a lock ℓ and acquire event f ∈ Acquiresσ(ℓ) (resp. release
event g ∈ Releasesσ(ℓ)), let posσ(f) = |{f ′ ∈ Acquiresσ(ℓ) | f ′ ≤σ

tr f}| (resp. posσ(g) = |{g′ ∈
Releasesσ(ℓ) | g′ ≤σ

tr g}|) denote the relative position of f (resp. g) among all acquire events
(resp. release events) of ℓ. Then, for an event e ∈ Eventsσ the lockstamps AcqLSσ

e and RelLSσ
e

are defined as follows (we assume that max∅ = 0 and min∅ =∞.)

AcqLSσ
e (ℓ) = λℓ ·max{posσ(f) | f ∈ Acquiresσ(ℓ), f ≤σ

HB e}

RelLSσ
e (ℓ) = λℓ ·min{posσ(g) | g ∈ Releasesσ(ℓ), e ≤σ

HB g}
(1)

Our O(N · L) algorithm now relies on the following observations. First, the HB partial
order can be inferred by comparing lockstamps of events (Lemma 11). Second, there is an
O(N · L) time algorithm that computes the acquire and release lockstamps for each event
in the input trace. Third, the existence of an HB race can be determined by examining
only O(N ) pairs of conflicting events (using their lockstamps), instead of all possible O(N 2)
pairs (Lemma 12). Finally, we can also examine all the O(N ) pairs in time O(N · L) (using
O(N ) lockstamp comparisons) and thus determine the existence of an HB race in the same
asymptotic running time. Let us first state how we use lockstamps to infer the HB relation.

▶ Lemma 11. Let e1 ≤σ
tr e2 be events in σ such that tid(e1) ̸= tid(e2). We have, e1 ≤σ

HB
e2 ⇐⇒ ¬(AcqLSσ

e2
⊑ RelLSσ

e1
)

The proof of Lemma 11 is presented in Appendix B.1.
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Computing Lockstamps. We now illustrate how to compute the acquire lockstamps for
all events, by processing the trace σ in a forward pass. For each thread t and lock ℓ, we
maintain lockstamp variables Ct and Lℓ. We also maintain an integer variable pℓ for each
lock ℓ that stores the index of the latest acq(ℓ) event in σ. Initially, we set Ct and Lm to
the bottom map λℓ · 0, and pm to 0, for each thread t and lock m. We traverse σ left to right,
and perform updates to the data structures as described in Algorithm 1, by invoking the
appropriate handler based on the thread and operation of the current event e = ⟨t, op⟩. At
the end of each handler, we assign the lockstamp AcqLSσ

e to e. The computation of release
lockstamps is similar, albeit in a reverse pass, and presented in Appendix B.1. Observe that
each step takes O(L) time giving us a total running time of O(N · L) to assign lockstamps.

Algorithm 1 Assigning acquire lockstamps to events in the trace.

1 acquire(t, ℓ):
2 pℓ ← pℓ + 1
3 Ct ← Ct[ℓ 7→ pℓ] ⊔ Lℓ

4 AcqLSσ
e ← Ct

5 release(t, ℓ):
6 Lℓ ← Ct

7 AcqLSσ
e ← Ct

8 read(t, x):
9 AcqLSσ

e ← Ct

10 write(t, x):
11 AcqLSσ

e ← Ct

We say that a pair of conflicting access events (e1, e2) (with e1 ≤σ
tr e2) to a variable x is a

consecutive conflicting pair if there is no event f ∈Writesσ(x) such that e1 <
σ
tr f <

σ
tr e2. We

make the following observation.

▶ Lemma 12. A trace σ has an HB-race iff there is pair of consecutive conflicting events in
σ that is an HB-race. Moreover, σ has at most O(N ) many consecutive conflicting pairs of
events.

Checking for an HB race. We now describe the algorithm for checking for an HB race in σ.
We perform a forward pass on σ while storing the release lockstamps of some of the earlier
events. When processing an access event e, we check if it is in race with an earlier event
by comparing the acquire lockstamp of e with a previously stored release lockstamp. More
precisely, we maintain a variable Wx to store the release lockstamp of the last write event on
x, a variable tw

x to store the thread that performed this write and set Sx to store pairs (t, L)
of threads and release lockstamps of all the read events performed since the last write on x

was observed. Initially, tw
x = NIL, Wx = λℓ · ∞ and Sx = ∅. The updates performed at each

read or write event e are presented in the corresponding handler in Algorithm 2; no updates
need to be performed at acquire or release events in this case.

Algorithm 2 Determining the existence of an HB-race using lockstamps.

1 read(t, x):
2 if tw

x ̸∈ {NIL, t} ∧ AcqLSσ
e ⊑Wx then

3 declare “race” and exit
4 Sx ← Sx ∪ {(t, RelLSσ

e )}

5 write(t, x):
6 if tw

x ̸∈ {NIL, t} ∧ AcqLSσ
e ⊑Wx then

7 declare “race” and exit
8 if ∃(u, L) ∈ Sx, t ̸= u ∧ AcqLSσ

e ⊑ L then
9 declare “race” and exit

10 tw
x = t; Sx ← ∅; Wx ← RelLSσ

e

We refer to Appendix B.1 for the correctness, which concludes the proof of Theorem 4.
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3.2 Hardness Results for HB
We now turn our attention to the hardness results for HB race detection. To this end, we
prove Theorem 1, Theorem 2, and Theorem 3. We start with defining the graph Gσ

HB, which
can be thought of as a form of transitive reduction of the HB relation.For an integer n ≥ 1,
we use [n] to denote {1, . . . , n}.

The graph Gσ
HB. Given a trace σ, the graph Gσ

HB is a directed graph with node set Eventsσ,
and we have an edge (e1, e2) in Gσ

HB iff
(i) e2 is the immediate successor of e1 in thread order ≤σ

TO, or
(ii) e1 ∈ Acquiresσ(ℓ), e2 ∈ Releasesσ(ℓ), e1 ≤σ

tr e2, and there is no intermediate event in σ

that accesses the common lock ℓ.
It follows easily that for any two distinct events e1, e2, we have e1 ≤σ

HB e2 iff e2 is reachable
from e1 in Gσ

HB. Moreover, every node has out-degree ≤ 2 and thus Gσ
HB is sparse, while it

can be easily constructed in O(N ) time.

OV hardness of write-read HB races
Given a OV instance OV(n, d) on two vector sets A1, A2, we create a trace σ as follows. For
the part A1 of OV, we introduce n·(d+ 1) threads {t(x,i)}x∈A1,i∈{0}∪[d], and d locks {li}i∈[d].
For the second part A2 we introduce n·d locks denoted by {l(y,i)}y∈A2,i∈[d], and n threads
{ty}y∈A2 . Finally, we have a single variable z.

We first describe the threads t(x, i). For each vector x, for each i ∈ [d] with x[i] = 1,
we introduce a critical section on the lock li. If x is the last vector of A1 with x[i] = 1, we
also insert the critical sections l(y,i) for all y ∈ [n], to t(x, i) after the critical section of lx.
Finally, we construct a thread tx,0 which starts with a write event w(z), followed by a critical
section on lock lx. We also insert a critical section on lock lx to all threads t(x, i), for i ∈ [d].
Hence the w(z) event is ordered by HB before all other events of t(x, i).

Now we describe the threads ty. For each i ∈ [d], if y[i] = 1, we add a critical section of
the lock l(y, i) in ty. We end the thread with a read event r(z).

Finally, we construct σ by first executing each thread t(x, i) in the pre-determined order
of x ∈ A1, followed by executing the traces ty in any order. See Figure 2 for an illustration.
We refer to Appendix B for the correctness, which concludes the proof of Theorem 1.

Conditional impossibility for SETH-based hardness
We now turn our attention to the problem of detecting a single HB race (i.e., not necessarily
involving a read event). We define a useful multi-connectivity problem on graphs.

w(z) w(z) w(z)

cs(lx1) cs(lx2) cs(lx3)

cs(l1)

cs(l3)

cs(l1,3)

cs(l2,3)

cs(l3,3)

cs(l1)

cs(l1,1)

cs(l2,1)

cs(l3,1)

cs(l2)

cs(l1,2)

cs(l2,2)

cs(l3,2)

cs(l1,1)

cs(l1,2)

cs(l1,3)

cs(l2,2)

cs(l2,3)

cs(l3,1)

cs(l3,2)

r(z)

r(z) r(z)

A1

101
100
010

A2

111
011
110

OV instance
For vectors in Y, n threads with

n × d locks, where thread i has crit-
ical section of lock (i, k) if yi[k] = 1.

We end each thread with r(z).

Figure 2 Reducing OV to finding HB races. For simplicity, we show the graph Gσ
HB instead of the

trace σ. The HB race is marked in red, corresponding to the orthogonal pair (x2, y2).
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▶ Problem 4 (MCONN). Given a directed graph G with n nodes and m edges, and k pairs
of nodes (si, ti), i ∈ [k], decide if there is a path in G from every si to the corresponding ti.

Due to Lemma 12, detecting whether there is an HB race in σ reduces to testing MCONN
between all O(N ) pairs of consecutive conflicting events in σ.

Short witnesses for HB races. We now prove Theorem 2. Following [9, Corollary 2], it
suffices to show that deciding MCONN can be done in NTIME[N 3/2] ∩ coNTIME[N 3/2]. At
a first glance, the bound NTIME[N 3/2] may seem too optimistic, as there are Θ(N ) paths
Pi : si ⇝ ti, and each of them can have size Θ(N ). Hence even just guessing these paths
appears to take quadratic time. Our proof shows that more succinct witnesses exist.
Proof of Theorem 2. First consider the simpler case where σ has an HB-race. Phrased as a
MCONN problem on Gσ

HB, it suffices to show that there is a pair (si, ti) such that si does not
reach ti. We construct a non-deterministic algorithm for this task that simply guesses the
pair (si, ti), and verifies that there is no si ⇝ ti path. Since Gσ

HB is sparse, this can be easily
verified in O(N ) time.

Now consider the case when there is no HB-race. Phrased as a MCONN problem on Gσ
HB,

it suffices to verify that for every pair (si, ti), we have that si reaches ti. We construct a
non-deterministic algorithm for this task, as follows. The algorithm operates in two phases,
using a set A, initialized as A = {(si, ti)}i∈k.
1. In the first phase, the algorithm repeatedly guesses a node u that lies on at least N 1/2

paths si ⇝ ti, for (si, ti) ∈ A. It verifies this guess via a backward and a forward traversal
from u. The algorithm then removes all such (si, ti) from A, and repeats.

2. In the second phase, the algorithm guesses for every remaining (si, ti) ∈ A a path
Pi : si ⇝ ti, and verifies that Pi is a valid path.

Phase 1 can be execute at most N 1/2 iterations, while each iteration takes O(N ) time since
Gσ

HB is sparse. Hence the total time for phase 1 is O(N 3/2). Phase 2 takes O(N 3/2) time, as
every node of Gσ

HB appears in at most N 1/2 paths Pi. The desired result follows. ◀

A super-linear lower bound for general HB races
Finally, we turn our attention to Theorem 3. The problem FO(∀∃∃) takes as input a first-order
formula ϕ with quantifier structure ∀∃∃ and whose atoms are tuples, and the task is to verify
whether ϕ has a model on a structure of n elements and m relational tuples. For simplicity,
we can think of the structure as a graph G of n nodes and m edges, and ϕ a formula that
characterizes the presence/absence of edges (e.g., ϕ = ∀x∃y∃z e(x, y) ∧ ¬e(y, z)).

The crux of the proof of Theorem 3 is showing the following lemma.

▶ Lemma 13. FO(∀∃∃) reduces to MCONN on a graph G with O(n) nodes in O(n2) time.

Finally, we arrive at Theorem 3 by constructing in O(n2) time a trace σ with N = Θ(n2)
such that Gσ

HB is similar in structure to the graph G of Lemma 13. In the end, detecting an
HB race in σ in O(N 1+ϵ) time yields an algorithm for FO(∀∃∃) in Θ(n2+ϵ′) time. We refer
to Appendix B for the details, which conclude the proof of Theorem 3.

4 Synchronization-Preserving Races

In this section, we discuss the dynamic detection of sync-preserving races, and prove The-
orem 5.

For notational convenience, we will frequently use the composite sync events. A sync(ℓ)
event represents the sequence acq(ℓ), r(xℓ), w(xℓ), rel(ℓ). The key ideas behind the sync
events are as follows. First, if Xℓ appears only in sync(ℓ) events, then there can be no race
involving these. Second, assume that in a trace σ we have two sync(ℓ) events e1 and e2 with
e1 <

σ
tr e2. Then any correct reordering ρ of σ with e2 ∈ Eventsρ satisfies the following.
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A1

11
11

A2

11
01

A3

11
10

3-OV instance.

tx

34 acq(l1)
35 rel(l1)
36 acq(l2)
37 rel(l2)
50 acq(X)
51 w(z)
52 rel(X)

ty1

42 sync(s1)
43 acq(l′1)
44 rel(l′1)
45 acq(l′2)
46 rel(l′2)
59 acq(Y )
60 r(z)
61 rel(Y )

ty2

47 sync(s2)
48 acq(l′2)
49 rel(l′2)
62 acq(Y )
63 r(z)
64 rel(Y )

t1

1 acq(l1)
2 sync(ℓ1)
3 acq(l′1)
4 rel(l1)

13 sync(ℓ1)
14 rel(l′1)

-z1 ends-
20 acq(l1)
21 sync(ℓ1)
22 acq(l′1)
23 rel(l1)
28 sync(ℓ1)
29 rel(l′1)

t2

5 acq(l2)
6 sync(ℓ2)
7 acq(l′2)
8 rel(l2)

15 sync(ℓ2)
16 rel(l′2)

-z1 ends-
24 sync(ℓ2)
30 sync(ℓ2)

tAux

9 sync(ℓ1)
10 sync(ℓ2)
11 sync(s1)
12 sync(s2)
17 acq(Y )
18 sync(ℓ1)
19 sync(ℓ2)
25 sync(ℓ1)
26 sync(ℓ2)
27 rel(Y )
31 acq(Y )
32 sync(ℓ1)
33 sync(ℓ2)
56 acq(X)
57 rel(X)
58 rel(Y )

Figure 3 Example reduction from 3-OV to sync race detection. The trace orders events as shown
by their numbering. We only show one thread tx, as the two x vectors are identical.

(a) We have e1 ∈ Eventsρ. This is because, for any two consecutive sync(ℓ) events e ≤σ
tr e

′,
lwσ(e′

r) = ew, where e′
r is the r(xℓ) event in the sync sequence e, and ew is the w(xℓ) event

in the sync sequence e.
(b) For every e′

1, e
′
2 ∈ Eventsρ such that e′

1 ≤σ
TO e1 and e2 ≤σ

TO e′
2, we have e′

1 <
ρ
tr e

′
2.

We hence use sync events to ensure certain orderings in any sync-preserving correct reordering
of σ that exposes a sync-preserving data race.

Informal Description
Before we proceed with the detailed reduction, we provide a high-level description. The input
to 3-OV is three sets of vectors A1 = {xi}i∈[n], A2 = {yi}i∈[n], and A3 = {zi}i∈[n]. Every vec-
tor x ∈ A1 is represented by a thread tx, ending with the critical section acq(X), w(z), rel(X).
Similarly, every vector y ∈ A2 is represented by a thread ty, ending with the critical section
acq(Y ), r(z), rel(Y ). There are no further access events, hence we can only have a race
between the write event of a thread tx and the read event of a thread ty. To encode the
vectors in A3, we use k threads tk, for k ∈ [d]. Each thread tk has n segments such that the
ith segment of tk encodes zi[k]. Finally, there is a single thread t that will have the property
(enforced using sync events) that it must be included in any reordering if and only if all the
threads encoding A3 are included entirely. The thread t also has locks that, if present in a
reordering, prevent the access events of z from being in race with each other.

If there is a triplet of vectors x ∈ A1, y ∈ A2 and z ∈ A3 that is orthogonal, then a valid
reordering of the trace σ need only contain the threads corresponding to A3 up to the events
of z; the thread t is not required to be a part of this reordering, causing the events of x and
y to be in race. If no such triple exists, then the notion of sync-preservation ensures that
all events of the threads representing A3 must be present in any valid reordering of σ, thus
enforcing t also to be a part of such a reordering. Thus, the access events belonging to some
threads tx and ty will be in race if and only if there is a vector z ∈ A3 that makes the triplet
x, y, z orthogonal.

Reduction
Given a 3-OV instance OV(n, d, 3) on vector sets A1 = {xi}i∈[n], A2 = {yi}i∈[n], and
A3 = {zi}i∈[n], we create a trace σ as follows (see Figure 3). We have T = 2 · n + d + 1
threads, while all access events (not counting the sync events) are of the form w(z)/r(z) in a
single variable z. We first describe the threads, and then how they interleave in σ.
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Threads. We introduce a thread tx for every vector x ∈ A1 and a lock lk for every k ∈ [d].
Each thread tx consists of two segments t1x and t2x. We create t1x as follows. For every k ∈ [d]
where x[k] = 1, we add an empty critical section acq(lk), rel(lk) in t1x. We create t2x as the
sequence acq(X), w(z), rel(X), where X is a new lock, common for all t2x.

For the vectors in A2, we introduce threads similar to those of part A1, as follows. We
have a thread ty for every vector y ∈ A2 and a lock l′k for every k ∈ [d]. Each thread ty
consists of two segments t1y and t2y. For every k ∈ [d] where y[k] = 1, we add an empty critical
section acq(l′k), rel(l′k) in t1y. In contrast to the t1x, every t1y also has an event sync(sy) at
the very beginning. We create t2y as the sequence acq(Y ), r(z), rel(Y ), where Y is a new
lock, common for all t2y.

The construction of the threads corresponding to the vectors in A3 is more involved.
We have one thread tk for every k ∈ [d]. Each thread has some fixed sync events, as
well as critical sections corresponding to one coordinate of all n vectors in A3. In par-
ticular, we construct each tk as follows. We iterate over all zi, and if zi[k] = 0, we
simply append two events sync(ℓk), sync(ℓk) to tk. On the other hand, if zi[k] = 1,
we interleave these sync events with two critical sections, by appending the sequence
acq(lk), sync(ℓk), acq(l′k), rel(lk), sync(ℓk), rel(l′k).

Lastly, we have a single auxiliary thread t that consists of three parts t1, t2 and t3, where

t1 = sync(ℓ1), . . . , sync(ℓk), sync(sy1), . . . sync(syn
)

t2 = (acq(Y ), sync(ℓ1), . . . , sync(ℓk), sync(ℓ1), . . . , sync(ℓk), rel(Y ))n−1

t3 = acq(Y ), sync(ℓ1), . . . , sync(ℓk), acq(X), rel(X), rel(Y )

Concurrent trace. We are now ready to describe the interleaving of the above threads in
order to obtain the concurrent trace σ.
1. We execute the auxiliary thread t and all threads tk, for k ∈ [d] (i.e., the threads

corresponding to the vectors of A3) arbitrarily, as long as for every k ∈ [d], every sequence
of sync(ℓk) events
(a) starts with the sync(ℓk) event of tk and proceeds with the sync(ℓk) event of t,
(b) strictly alternates in every two sync(ℓk) events between t and tk, and
(c) ends with the last sync(ℓk) event of tk.

2. We execute all t1x and t1y (i.e., the first parts of all threads that correspond to the vectors
in A1 and A2) arbitrarily, but after all threads tk, for k ∈ [d].

3. We execute all t2x (i.e., the second parts of all threads that correspond to the vectors in
A1) arbitrarily, but before the segment acq(X), rel(X), rel(Y ) of t.

4. We execute all t2y (i.e., the second parts of all threads that correspond to the vectors in
A2) arbitrarily, but after the segment acq(X), rel(X), rel(Y ) of t.

We refer to the full paper [22] for the correctness of the reduction and thus the proof of
Theorem 5.

5 Violations of the Locking Discipline

5.1 Lock-Cover Races
We start with a simple reduction from OV to detecting lock-cover races. Given a OV instance
OV(n,d) on two vector sets A1, A2, we create a trace σ as follows. We have a single variable
x and two threads t1, t2. We associate with each vector of the set Ai a write access event
e = ⟨ti, w(x)⟩. Moreover, each such event holds up to d locks, so that e holds the kth lock
iff kth coordinate of the vector corresponding to the event is 1. The trace σ is formed by
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ordering the sequence of events corresponding to vectors of A1 of OV first, in a fixed arbitrary
order, followed by the sequence of events corresponding to A2, again in arbitrary order. We
refer to [22] for the correctness, which concludes the proof of Theorem 6.

5.2 Lock-Set Races
We now turn our attention to lock-set races. We first prove Theorem 9, i.e., that determining
whether a trace σ has a lock-set race on a specific variable x can be performed in linear time.

A linear-time algorithm per variable. Verifying that there are two conflicting events on x

is straightforward by a single pass of σ. The more involved part is in computing the lock-set
of x, i.e., the set

⋂
e∈Accessesσ(x) locksHeldσ(e), in linear time. Indeed, each intersection alone

requires Θ(L) time, resulting to Θ(N · L) time overall.
Here we show that a somewhat more involved algorithm achieves the task. The algorithm

performs a single pass of σ, while maintaining three simple sets A, B, and C. While processing
an event e, the sets are updated to maintain the invariant

A = locksHeldσ(e) B = Locksσ ∩
⋂

e′∈Accessesσ(x),e′≤σ
tr e

locksHeldσ(e′) C = A ∩B (2)

The sets are initialized as A = ∅, B = C = Locksσ. Then the algorithm performs a pass
over σ and processes each event e according to the description of Algorithm 3.

Algorithm 3 Computing the lock-set of variable x.

1 acquire(t, ℓ):
2 A← A ∪ {ℓ}
3 if ℓ ∈ B then
4 C ← C \ {ℓ}

5 release(t, ℓ):
6 A← A \ {ℓ}
7 if ℓ ∈ B then
8 C ← C ∪ {ℓ}

9 read(t, y):
10 if x = y then
11 B ← B \ C
12 C ← ∅

13 write(t, y):
14 if x = y then
15 B ← B \ C
16 C ← ∅

The correctness of Algorithm 3 follows by proving the invariant in Equation (2). We refer
to [22] for the details, which concludes the proof of Theorem 9.

Short witnesses for lock-set races. Besides the advantage of a faster algorithm, Theorem 9
implies that lock-set races have short witnesses that can be verified in linear time. This
allows us to prove that detecting a lock-set race is in NTIME[N ] ∩ coNTIME[N ], and we can
thus use [9, Corollary 2] to prove Theorem 7.

Proof of Theorem 7. First we argue that the problem is in NTIME[N ]. Indeed, the certific-
ate for the existence of a lock-set race is simply the variable x on which there is a lock-set
race. By Theorem 9, verifying that we indeed have a lock-set race on x takes O(N ) time.

Now we argue that the problem is in coNTIME[N ], by giving a certificate to verify in linear
time that σ does not have a race of the required form. The certificate has size O(|Varsσ|),
and specifies for every variable, either the lock that is held by all access events of the variable,
or a claim that there exist no two conflicting events on that variable. The certificate can be
easily verified by one pass over σ. ◀

Lock-set races are Hitting-Set hard. Finally we prove Theorem 8, i.e., that determining a
single lock-set race is HS-hard, and thus also carries a conditional quadratic lower bound. We
establish a fine-grained reduction from HS. Given a HS instance HS(n,d) on two vector sets
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X

1 001
2 100
3 101
4 011

Y

001
010
111
110

HS instance: n = 4, d = 3.

t1

1 acq(ℓ1)
2 acq(ℓ2)
3 w(z2)
4 w(z3)
5 rel(ℓ2)
6 rel(ℓ1)

t2

7 acq(ℓ1)
8 w(z4)
9 rel(ℓ1)

t3

10 acq(ℓ2)
11 acq(ℓ4)
12 w(z1)
13 w(z3)
14 w(z4)
15 rel(ℓ4)
16 rel(ℓ2)

t0

17 acq(ℓ1)
18 ...
19 acq(ℓ4)
20 w(z1)
21 ...
22 w(z4)
23 rel(ℓ4)
24 ...
25 rel(ℓ1)

Figure 4 Reducing HS to detecting a lock-set race on trace σ with d threads. Thread tk uses lock
li if yi[k] = 0, and w(zj) if xj [k] = 1. Vector x4 hits all vectors in Y , implying a lock-set race on z4.

X,Y , we create a trace σ using d+ 1 threads {tj}j∈{0}∪[d], n locks {ℓi}i∈[n], and n variables
{zi}k∈[n]. Thread t0 that executes acq(ℓ1), . . . , acq(ℓn), w(z1), . . . w(zn), rel(ℓn), . . . rel(ℓ1).
Each of the threads tj , for j ∈ [d], has a single nested critical section consisting of the locks
ℓi ∈ [n] such that the ith vector of Y has its jth coordinate 0, i.e, yi[j] = 0. The events in
the critical section are all write events of all variables zk ∈ [n] with xk[j] = 1. The trace
orders all events of each thread td consecutively, and all the events overall in increasing order
of d. See Figure 4 for an illustration. We refer to [22] for the correctness, which concludes
the proof of Theorem 8.

6 Conclusion

In this work we have taken a fine-grained view of the complexity of popular notions of
dynamic data races. We have established a range of lower bounds on the complexity of
detecting HB races, sync-preserving races, as well as races based on the locking discipline
(lock-cover/lock-set races). Moreover, we have characterized cases where lower bounds based
on SETH are not possible under NSETH. Finally, we have proven new upper bounds for
detecting HB and lock-set races. To our knowledge, this is the first work that characterizes
the complexity of well-established dynamic race-detection techniques, allowing for a rigorous
characterization of their trade-offs between expressiveness and running time.
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A Fine-grained Complexity

Fine-grained Reductions. Assume that A and B are computational problems and a(n)
and b(n) are their conjectured running time lower bounds, respectively. Then we say A
(a, b)-reduces to B, denoted by A (a)⪯(b) B, if for every ϵ > 0, there exists δ > 0, and an
algorithm R for A that runs in time a(n)(1−δ) on inputs of length n, making q calls to an
oracle for B with query lengths n1, . . . , nq, where,

∑q
1(b(n))(1−ϵ) ≤ (a(n))(1−δ).

▶ Hypothesis 3 (Strong Exponential Time Hypothesis (SETH)). For every ϵ > 0 there exists
an integer k ≥ 3 such that CNF-SAT on formulas with clause size at most k and n variables
cannot be solved in O(2(1−ϵ)n) time even by a randomized algorithm.

▶ Hypothesis 4 (Non-deterministic SETH (NSETH)). For every ϵ > 0, there exists a k so
that k-TAUT is not in NTIME[2n(1−ϵ)], where k-TAUT is the language of all k-DNF formulas
which are tautologies.

B Proofs of Section 3

B.1 Proofs from Section 3.1
▶ Lemma 11. Let e1 ≤σ

tr e2 be events in σ such that tid(e1) ̸= tid(e2). We have, e1 ≤σ
HB

e2 ⇐⇒ ¬(AcqLSσ
e2
⊑ RelLSσ

e1
)

Proof. (⇒) Let e1 ≤σ
HB e2. Using the definition of ≤σ

HB, there must be a sequence of events
f1, f2 . . . fk with k > 1, f1 = e1, fk = e2, and for every 1 ≤ i < k, fi ≤σ

tr fi+1 and either
fi ≤σ

TO fi+1 or there is a lock ℓ, such that fi ∈ Releasesσ(ℓ) and fi+1 ∈ Acquiresσ(ℓ). Let j
be the smallest index i such that tid(fi) ̸= tid(fi+1); such an index exists as tid(e1) ̸= tid(e2).
Observe that there must be a lock ℓ for which op(fj) = rel(ℓ) and op(fj+1) = acq(ℓ).
Observe that posσ(fj) < posσ(fj+1), RelLSσ

e1
(ℓ) ≤ posσ(fj) and posσ(fj+1) ≤ AcqLSσ

e2
,

giving us RelLSσ
e1

(ℓ) < AcqLSσ
e2

(ℓ).
(⇐) Let ℓ be a lock such that RelLSσ

e1
(ℓ) < AcqLSσ

e2
(ℓ). Then, there is a release event f

and an acquire event g on lock ℓ such that posσ(f) < posσ(g),e1 ≤σ
HB f and g ≤σ

HB e2. This
means f ≤σ

HB g and thus e1 ≤σ
HB e2. ◀
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For the sake of completeness, we present the computation of release lockstamps. The
computation of release lockstamps takes place in the reverse order of ≤σ

tr (i.e., from right to
left), unlike the case of acquire lockstamps. As with Algorithm 1, we maintain the following
variables. For each thread t and lock ℓ, we will maintain variables Ct and Lℓ that take values
from the space of all lockstamps. We also additionally maintain an integer variable pℓ for
each lock ℓ that stores the index (or relative position) of the earliest (according to the trace
order ≤σ

tr) release event of lock ℓ in the trace suffix seen so far. Initially, we set Ct and Lm to
λℓ · ∞, for each thread t and lock m. Further, for each lock m, we set pm to nm + 1, where
nm is the number of release events of m in the trace; this can be obtained in a linear scan
(or by reading the value of pm at the end of a run of Algorithm 1). We traverse the events in
reverse, and perform updates to the data structures as described in Algorithm 4, by invoking
the appropriate handler based on the thread and operation of the event e = ⟨t, op⟩ being
visited. At the end of each handler, we assign the lockstamp RelLSσ

e to the event e.

Algorithm 4 Assigning release lockstamps to events in the trace. Events are processed in
reverse order.

1 acquire(t, ℓ):
2 Lℓ ← Ct

3 RelLSσ
e ← Ct

4 release(t, ℓ):
5 pℓ ← pℓ − 1
6 Ct ← Ct[ℓ 7→ pℓ] ⊓ Lℓ

7 RelLSσ
e ← Ct

8 read(t, x):
9 RelLSσ

e ← Ct

10 write(t, x):
11 RelLSσ

e ← Ct

Let us now state the correctness of Algorithm 1 and Algorithm 4.

▶ Lemma 14. On input trace σ, Algorithm 1 and Algorithm 4 correctly compute the lockstamps
AcqLSσ

e and RelLSσ
e respectively for each event e ∈ Eventsσ.

Proof Sketch. We focus on the correctness proof of Algorithm 1; the proof for Algorithm 4
is similar. The proof relies on the invariant maintained by Algorithm 1 the variables Ct, Lℓ

and pℓ for each thread t and lock ℓ, which we state next. Let π be the prefix of the trace
processed at any point in the algorithm. Let Cπ

t , Lπ
ℓ and pπ

ℓ be the values of the variables
Ct, Lℓ and pℓ after processing the prefix π. Then, the following invariants are true:

Cπ
t = AcqLSπ

eπ
t

= AcqLSσ
eπ

t
, where eπ

t is the last event in π performed by thread t

Lπ
ℓ = AcqLSπ

eπ
ℓ

= AcqLSσ
eπ

ℓ
, where eπ

ℓ is the last acquire event on lock ℓ in π.
pπ

ℓ = posπ
ℓ (eπ

ℓ ), where eπ
ℓ is the last acquire event on lock ℓ in π.

These invariants can be proved using a straightforward induction on the length of the trace,
each time noting the definition of ≤σ

HB. ◀

▶ Lemma 15. For a trace with N events and L locks, Algorithm 1 and Algorithm 4 both
take O(T · L) time.

Proof. We focus on Algorithm 1; the analysis for Algorithm 4 is similar. At each acquire
event, the algorithm spends O(1) time for updating pℓ, O(L) time for doing the ⊔ operation,
and O(L) time for the copy operation (‘AcqLSσ

e ← Ct’). For a release event, we spend O(L)
for the two copy operations. At read and write events, we spend O(L) for copy operations.
This gives a total time of O(N · L). ◀

▶ Lemma 12. A trace σ has an HB-race iff there is pair of consecutive conflicting events in
σ that is an HB-race. Moreover, σ has at most O(N ) many consecutive conflicting pairs of
events.
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Proof. We first prove that if there is a an HB-race in σ, then there is a pair of consecutive
conflicting events that is in HB-race. Consider the first HB-race, i.e., an HB-race (e1, e2)
such that for every other HB-race (e′

1, e
′
2), either e2 ≤σ

tr e
′
2 or e2 = e′

2 and e′
1 ≤σ

tr e1. We
remark that such a race (e1, e2) exists if σ has any HB-race. We now show that (e1, e2)
are a consecutive conflicting pair (on variable x). Assume on the contrary that there is an
event f ∈Writesσ(x) such that e1 <

σ
tr f <

σ
tr e2. If either (e1, f) or (f, e2) is an HB-race, then

this contradicts our assumption that (e1, e2) is the first HB-race in σ. Thus, e1 ≤σ
HB f and

f ≤σ
HB e2, which gives e1 ≤σ

HB e2, another contradiction.
We now turn our attention to the number of consecutive conflicting events in σ. For every

read or write event e2, there is at most one write event e1 such that (e1, e2) is a consecutive
conflicting pair (namely the latest conflicting write event before e2). Further, for every read
event e1, there is at most one write event e2 such that (e1, e2) is a consecutive conflicting
pair (namely the earliest conflicting write event after e1). This gives at most 2N consecutive
conflicting pairs of events. ◀

Let us now state the correctness of Algorithm 2.

▶ Lemma 16. For a trace σ, Algorithm 2 reports a race iff σ has an HB-race.

Proof Sketch. The proof relies on the following straightforward invariants; we skip their
proofs as they are straightforward. In the following, eπ

x is the last event with op(eπ
x) = w(x)

in a trace π.
After processing the prefix π of σ, tw

x = tid(eπ
x) and Wx = RelLSσ

eπ
x
.

After processing the prefix π of σ, the set Sx is {(tid(e),RelLSσ
e ) | e ∈ Readsπ(x), eπ

x ≤π
tr e}.

The rest of the proof follows from Lemma 11 and Lemma 12. ◀

Let us now characterize the time complexity of Algorithm 2.

▶ Lemma 17. On an input trace with N events and L locks, Algorithm 2 runs in time
O(N · L).

Proof Sketch. Each pair (t, L) of thread identifier and lockstamp is added atmost once in
some set Sx (for some x). Also, each such pair is also compared against another timestamp
atmost once. Each comparison of timestamps take O(L) time. This gives a total time of
O(N · L). ◀

▶ Theorem 4. Deciding whether σ has an HB race can be done in time O(N ·min(T ,L)).

Proof. We focus on proving that there is an O(N ·L) time algorithm, as the standard vector-
clock algorithm [19] for checking for an HB-race runs in O(N · T ) time. Our algorithm’s
correctness is stated in Lemma 14 and Lemma 16 and its total running time is O(N · L)
(Lemma 17 and Lemma 15). ◀

B.2 Proofs from Section 3.2
▶ Theorem 1. For any ϵ > 0, there is no algorithm that detects even a single HB race that
involves a read in time O(N 2−ϵ), unless the OV hypothesis fails.

Proof. Consider a pair of events w(z) from the d threads t(x, i), i ∈ [d], and r(z) ∈ ty for
some x, i, y. We have w(z) ≤σ

HB r(z) iff there is some path from w(z) to r(z) in Gσ
HB. As w(z)

and r(z) are in different threads, such a path can only be through lock events in a sequence
of threads such that the first and last threads are t(x, i) for some i ∈ [d] and ty, and every
consecutive pair of threads in the sequence holds a common lock. Now all the locks in ty
are l(y, i) for all i where y[i] = 1. Consider the lock corresponding to any i ∈ [d]. The only
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thread t(x′, i) that also holds this lock corresponds to the last x′ such that x′[i] = 1. The
only other lock held by t(x′, i) is li. If w(z) is in t(x′, i), we are done. Otherwise the only
common lock between these threads t(x′, i) and those of w(z) can be one of the li. The
threads of w(z) contain all li where x[i] = 1. Hence, for there to be a common lock between
these threads, there must be at least one i such that x′[i] = 1 and x[i] = 1. As this thread
also has the lock l(y, i), y[i] is also 1.

Thus, there is a path from w(z) to r(z) if and only if there is at least one i ∈ [d] such
that x[i] = y[i] = 1, hence x and y are not orthogonal. A pair of orthogonal vectors of OV
thus corresponds to a write-read HB-race in the reduced trace.

Finally we turn our attention to the complexity. In time O(n · d), we have reduced an OV
instance to determining whether there is a write-read HB race in a trace of N = O(nd) events.
If there was a sub-quadratic i.e. O((n · d)(2−ϵ)) = n(2−ϵ) · poly(d) algorithm for detecting a
write-read HB race, then this would also solve OV in n(2−ϵ) · poly(d) time, refuting the OV
hypothesis. ◀

▶ Lemma 13. FO(∀∃∃) reduces to MCONN on a graph G with O(n) nodes in O(n2) time.

Proof. For intuition, assume the first order property is on an undirected graph with n

variables and m edges. Let the property be specified in quantified 3-DNF form with a
constant number of predicates, i.e., ϕ = ∀x∃y∃z (ψ1 ∨ ψ2 ∨ . . . ψk), where x, y, z represent
nodes of the graph, and each ψi is a conjunction of 3 variables representing edges of the
graph, for example e(x, y) ∧ ¬e(y, z) ∧ e(x, z). The property is then true if and only if some
predicate is satisfied, which is true if all of its variables are satisfied (e(x, y) is satisfied when
edge (x, y) is in the graph). Denote the graph on which ϕ is defined by H(I, J), where I and
J are respectively the sets of nodes and edges of H.

The instance of MCONN is constructed given H and ϕ as follows. Construct a (2k + 2)-
partite graphG(V,E) by first creating 2k+2 copies of I. Denote these copies by S, Yi, Zi, T, i ∈
[k], and the copy of each node x ∈ I in any part, say S, by x(S). ψi = (e1 ∧ e2 ∧ e3) is
encoded by connecting the sets (S, Yi) to represent e1, (Yi, Zi) for e2 and (Zi, T ) for e3 as
follows. If ei is of the form e(x, y) (and not its negation), then draw a copy of H between
its corresponding sets, say S and Yi without loss of generality. That is, for every x, y,

(x, y) ∈ J ⇔ (x(S), y(Yi)) ∈ E. If on the other hand ei is of the form ¬e(x, y) then connect
a copy of the complement of H, i.e., (x, y) /∈ J ⇔ (x(S), y(Yi)) ∈ E.

Finally define |I| pairs (x(S), x(T )) as the (s, t) pairs for MCONN.
We now prove this reduction is correct. First, assume ϕ is true. Then for every node x,

there exist nodes y, z such that some predicate is true. If ψi is the predicate that is satisfied
for some node u, then there is a path between u(S) and u(T ) through the parts S, Yi, Zi and
T as follows. As the first variable is satisfied, then if it is e(x, y), then (x, y) ∈ J, and x(S)
is connected to y(Yi), and if it is ¬e(x, y), then (x, y) /∈ J and again x(S) is connected to
y(Yi). Similarly, y(Yi) is connected to z(Zi), and z(Zi) to x(T ). These edges form a 3 length
path between x(S) and x(T ).

Now consider the reverse case, and assume the MCONN problem is true, that is , there is
a path between every (x(S), x(T )) pair. Note that the construction of edges in G is such
that any path from x(S) to x(T ) has to be a 3 length path, connecting the copy of x in S

to its copy in some Yi, from this Yi to its corresponding Zi, and from Zi to T. Also, this
path exists only if all variables of the corresponding ψi are true. Hence, as there is a path
between every pair (x(S), x(T )), and one pair is defined for every variable x, some predicate
is satisfied for every x. Thus ϕ is also true.

Finally, the time of the reduction is equal to the size of G. This is 2k + 2 = O(1) graphs,
each of which is either H or its complement. Hence |G| = O(m+n+(n2−m)+n) = O(n2). ◀



R. Kulkarni, U. Mathur, and A. Pavlogiannis 16:23

▶ Theorem 3. For any ϵ > 0, if there is an algorithm for detecting any HB race in time
O(N 1+ϵ), then there is an algorithm for FO(∀∃∃) formulas in time O(m1+ϵ).

Proof. We first reduce the instance of FO(∀∃∃) to MCONN as in the proof of Lemma 13.
Let G(V,E) be the multi-partite graph for MCONN and S, T the first and last parts of nodes
of G. We add a sufficient number of nodes, referred as dummy nodes, to make G sparse. Let
every node x of V \T correspond to a distinct thread tx and form one write access event to a
distinct variable vx in the thread. Let each node t in T also correspond to a write access
event of the variable corresponding to the copy of t in S, and be in a new thread. Define
|E| locks, and for every edge (a, b) ∈ E, let the events corresponding to va and vb hold the
lock l(a,b) corresponding to (a, b). The trace σ for first lists all threads corresponding to the
dummy nodes in some fixed arbitrary order, then the threads corresponding to nodes in S,

followed by those in each Yi, followed by those in each Zi, in a fixed arbitrary order, and
finally those in T .

This reduction is seen to be correct by observing that G was modified to be the transitive
reduction graph of σ, and the only HB-race events can be the pairs of write events corres-
ponding to the pairs of nodes given as input to MCONN. Thus, each pair of events does not
form an HB-race if and only if G has a path between its corresponding pair of nodes.

To analyze the time of the reduction, first we see that the size of σ is the size of G,
with dummy nodes added to have n = O(n2), and hence O(n2). There are O(n2) variables,
locks and threads in σ. If deciding if the given trace has an HB-race has an O((n2)1+ϵ)
time algorithm, then FO(∀∃∃) can be solved in O(n2+ϵ′) time, which is O(m1+ϵ′) time for
properties on dense structures. ◀

Due to space constraints, we include the remaining proofs of the Theorems from Sections 4
and 5 in the full paper [22].
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We introduce the notion of adaptive synchronisation for pushdown automata, in which there is
an external observer who has no knowledge about the current state of the pushdown automaton,
but can observe the contents of the stack. The observer would then like to decide if it is possible
to bring the automaton from any state into some predetermined state by giving inputs to it in
an adaptive manner, i.e., the next input letter to be given can depend on how the contents of
the stack changed after the current input letter. We show that for non-deterministic pushdown
automata, this problem is 2-EXPTIME-complete and for deterministic pushdown automata, we show
EXPTIME-completeness.

To prove the lower bounds, we first introduce (different variants of) subset-synchronisation and
show that these problems are polynomial-time equivalent with the adaptive synchronisation problem.
We then prove hardness results for the subset-synchronisation problems. For proving the upper
bounds, we consider the problem of deciding if a given alternating pushdown system has an accepting
run with at most k leaves and we provide an nO(k2) time algorithm for this problem.
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1 Introduction

The notion of a synchronizing word for finite-state machines is a classical concept in computer
science which consists of deciding, given a finite-state machine, whether there is a word which
brings all of its states to a single state. Intuitively, assuming that we initially do not know
which state the machine is in, such a word synchronises it to a single state and assists in
regaining control over the machine.

This idea has been studied for many types of finite-state machines [24, 22, 2, 9] with
applications in biocomputing [3], planning and robotics [10, 19] and testing of reactive
systems [18, 14]. In recent years, the notion of a synchronizing word has been extended
to various infinite-state systems such as timed automata [8], register automata [20], nested
word automata [7], pushdown and visibly pushdown automata [11, 12]. In particular, for the
pushdown case, Fernau, Wolf and Yamakami [12] have shown that this problem is undecidable
even for deterministic pushdown automata.
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When the finite-state machine can produce outputs, the notion of synchronisation has
been further refined to give rise to synchronisation under partial observation or adaptive
synchronisation (See Chapter 1 of [5] and [17]). In this setting, there is an external observer
who does not know the current state of the machine, however she can give inputs to the
machine and observe the outputs given by the machine. Depending on the outputs of the
machine, she can adaptively decide which input letter to give next. In this manner, the
observer would like to bring the machine into some predetermined state. Larsen, Laursen
and Srba [17] describe an example of adaptive synchronisation pertaining to the orientation
of a simplified model of satellites, in which they observe that adaptively choosing the input
letter is sometimes necessary in order to achieve synchronisation. In this paper, we extend
this notion of adaptive synchronisation to pushdown automata (PDA). In our model, the
observer does not know which state the PDA is currently in, but can observe the contents of
the stack. She would then like to decide if it is possible to synchronise the PDA into some
state by giving inputs to the PDA adaptively, i.e., depending on how the stack changes after
each input. To the best of our knowledge, the notion of adaptive synchronisation has not
been considered before for any class of infinite-state systems.

This question is a natural extension of the notion of adaptive synchronisation from finite-
state machines to pushdown automata. Further, it is mentioned in the works of Lakhotia,
Uday Kumar and Venable as well as Song and Touili [21, 16] that several antivirus systems
determine whether a program is malicious by observing the calls that the program makes to
the operating system. With this in mind, Song and Touili use pushdown automata [21] as
abstractions of programs where a stack stores the calls made by the program and use this
abstraction to detect viruses. Hence, we believe that our setting of being able to observe the
changes happening to the stack can be practically motivated.

Our main results regarding adaptive synchronisation are as follows: We show that for
non-deterministic pushdown automata, the problem is 2-EXPTIME-complete. However,
by restricting our input to deterministic pushdown automata, we show that we can get
EXPTIME-completeness, thereby obtaining an exponential reduction in complexity.

We also consider a natural variant of this problem, called subset adaptive synchronisation,
which is similar to adaptive synchronisation, except the observer has more knowledge about
which state the automaton is initially in. We obtain a surprising result that shows that
this variant is polynomial-time equivalent to adaptive synchronisation, unlike in the case
of finite-state machines. Furthermore, for the deterministic case of this variant, we obtain
an algorithm that runs in time O

(
nck3

)
where n is the size of the input and k is the size

of the subset of states that the observer believes the automaton is initially in. This gives a
polynomial time algorithm if k is fixed and a quasi-polynomial time algorithm if k = O(log n).

Used as a subroutine in the above decision procedure, is an O
(

nck2
)

time algorithm to
the following question, which we call the sparse-emptiness problem: Given an alternating
pushdown system and a number k, decide whether there is an accepting run of the system
with at most k leaves. Intuitively, such a run means that the system has an accepting run in
which it uses only “limited universal branching”. We note that such a notion of alternation
with “limited universal branching” has recently been studied by Keeler and Salomaa for
alternating finite-state automata [15]. Our problem can be considered as a generalisation of
one of their problems (Corollary 2 of [15]) to pushdown systems. We think that this problem
and its associated algorithm might be of independent interest.
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Roadmap. In Section 2, we introduce notations. In Section 3, we discuss different variations
of the problem. In Sections 4 and 5 we prove lower and upper bounds respectively. Proofs
of some of our technical results can be found in the long version of this extended abstract
available on arXiv [1].

2 Preliminaries

Given a finite set X, we let X∗ denote the set of all words over the alphabet X. As usual,
the concatenation of two words x, y ∈ X∗ is denoted by xy.

2.1 Pushdown Automata
We recall the well-known notion of a pushdown automaton. A pushdown automaton (PDA)
is a 4-tuple P = (Q, Σ, Γ, δ) where Q is a finite set of states, Σ is the input alphabet, Γ is
the stack alphabet and δ ⊆ (Q × Σ × Γ) × (Q × Γ∗) is the transition relation. Alternatively,
sometimes we will describe the transition relation δ as a function Q × Σ × Γ 7→ 2Q×Γ∗ . We
will always use small letters a, b, c, . . . to denote elements of Σ, capital letters A, B, C, . . . to
denote elements of Γ and Greek letters γ, η, ω, . . . to denote elements of Γ∗.

If (p, a, A, q, γ) ∈ δ then we sometimes denote it by (p, A) a
↪−→ (q, γ). We say A is the top

of the stack that is popped and γ is the string that is pushed onto the stack. A configuration
of the automaton is a tuple (q, γ) where q ∈ Q and γ ∈ Γ∗. Given two configurations (q, Aγ)
and (q′, γ′γ) of P with A ∈ Γ, we say that (q, Aγ) a−→ (q′, γ′γ) iff (q, A) a

↪−→ (q′, γ′).
As is usual, we assume that there exists a special bottom-of-the-stack symbol ⊥ ∈ Γ, such

that whenever some transition pops ⊥, it pushes it back in the bottom-most position. A
PDA is said to be deterministic if for every q ∈ Q, a ∈ Σ and A ∈ Γ, δ(q, a, A) has exactly
one element. If a PDA is deterministic, we further abuse notation and denote δ(q, a, A) as a
single element and not as a set.

2.2 Adaptive Synchronisation
We first expand upon the intuition given in the introduction for adaptive synchronisation
with the help of a running example. Consider the pushdown automaton as given in Figure 1
where we do not know which state the automaton is in currently, but we do know that the
stack content is ⊥. To synchronise the automaton to the state 4 when the stack is visible,
the observer has a strategy as depicted in Figure 2. The labelling of the nodes of the tree
intuitively denotes the “knowledge of the observer” at the current point in the strategy and
the labelling of the edges denotes the letter that she inputs to the PDA. Initially, according to
the observer, the automaton could be in any one of the 4 states. The observer first inputs the
letter 2. If the top of the stack becomes •, then she knows that the automaton is currently
either in state 1 or 2. On the other hand, if the top of the stack becomes •, then the observer
can deduce that the automaton is currently in state 3 or 4. From these two scenarios, by
following the appropriate strategy depicted in the figure, we can see that she can synchronise
the automaton to state 4. However, if the stack was hidden to the observer, reading either 3
or 2 does not change the knowledge of the observer and therefore, there is no word that can
be read that would synchronise the automaton to any state.

We now formalize the notion of an adaptive synchronizing word that we have so far
described. Let P = (Q, Σ, Γ, δ) be a PDA. Given S ⊆ Q, a ∈ Σ and A ∈ Γ, let T a

S,A := {t ∈
δ | t = (p, a, A, q, γ) where p ∈ S}. Intuitively, if the observer knows that P is currently
in some state in S and the top of the stack is A and she chooses to input a, then T a

S,A is
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1

2

4

3

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

Figure 1 A label of the form a, A → γ

means that if the input is a and if the top of
the stack is A, then pop A and push γ.

{1, 2} {4}

{4}

{4} {3}

{4}

{1, 2, 3, 4}

{3, 4}

{3, 4}

{1, 2}

{3}

2

2

2

3

3

3

3

Figure 2 A synchroniser between
({1, 2, 3, 4},⊥) and state 4 for the PDA
in Figure 1.

the set of transitions that might take place. We define an equivalence relation ∼a
S,A on

the elements of T a
S,A as follows: t1 ∼a

S,A t2 ⇐⇒ ∃γ ∈ Γ∗ such that t1 = (p1, a, A, q1, γ)
and t2 = (p2, a, A, q2, γ). Notice that if t1 ∼a

S,A t2 then the observer cannot distinguish
occurrences of t1 from occurrences of t2. In our running example, if we take S = {3, 4},
a = 3 and A = •, it is easy to see that T a

S,A is {(3,3, •, 4, ••), (4,3, •, 3, ••)} and these two
transitions are not in the same equivalence class under ∼a

S,A.
The relation ∼a

S,A partitions the elements of T a
S,A into equivalence classes. If E is an

equivalence class of ∼a
S,A, then notice that there is a word γ ∈ Γ∗ such that all the transitions

in E pop A and push γ onto the stack. This word γ will be denoted by word(E). If we
define next(E) := {q | (p, a, A, q, word(E)) ∈ E}, then next(E) contains all the states that
the automaton can move to if any of the transitions from E occur. Now, suppose the observer
knows that P is currently in some state in S with A being at the top of the stack. Assuming
she inputs the letter a and observes that A has been popped and word(E) has been pushed,
she can deduce that P is currently in some state in next(E). In our running example of
S = {3, 4}, a = 3 and A = •, there are two equivalence classes E1 = {(3,3, •, 4, ••)}
and E2 = {(4,3, •, 3, ••)} with next(E1) = {3}, next(E2) = {4}, word(E1) = {••} and
word(E2) = {••}.

A pseudo-configuration of the automaton P is a pair (S, γ) such that S ⊆ Q and
γ ∈ Γ∗. The pseudo-configuration (S, γ) captures the knowledge of the observer at any given
point. Given a pseudo-configuration (S, Aγ) and an input letter a, let Succ(S, Aγ, a) :=
{(next(E1), word(E1)γ), . . . , (next(Ek), word(Ek)γ)} where E1, . . . , Ek are the equivalence
classes of ∼a

S,A. Each element of Succ(S, Aγ, a) will be called a possible successor of (S, Aγ)
under the input letter a. The function Succ captures all the possible pseudo-configurations
that could happen when the observer inputs a at the pseudo-configuration (S, Aγ).

We now define the notion of a synchroniser which will correspond to a strategy for the
observer to synchronise the automaton into some state. Let I ⊆ Q, s ∈ Q and γ ∈ Γ∗. (The
I stands for Initial set of states, and the s stands for synchronising state). A synchroniser
between the pseudo-configuration (I, γ) and the state s, is a labelled tree T such that

All the edges are labelled by some input letter a ∈ Σ such that, for every vertex v, all its
outgoing edges have the same label.
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The root is labelled by the pseudo-configuration (I, γ).
Suppose v is a vertex which is labelled by the pseudo-configuration (S, Aη). Let a be
the unique label of its outgoing edges and let Succ(S, Aη, a) be of size k. Then v has k

children, with the ith child labelled by the ith pseudo-configuration in Succ(S, Aη, a).
For every leaf, there exists η ∈ Γ∗ such that its label is ({s}, η).

In addition, if all the leaves are labelled by ({s}, ⊥), then T is called a super-synchroniser
between (I, γ) and s. We use the notation (I, γ) =⇒

P
s (resp. (I, γ) sup==⇒

P
s) to denote that

there is a synchroniser (resp. super-synchroniser) between (I, γ) and s in the PDA P . (When
P is clear from context, we drop it from the arrow notation).

2.3 Different Formulations
We now formally introduce the problem which we will refer to as the adaptive synchronising
problem (Ada-Sync) and it is defined as the following:

Given: A PDA P = (Q, Σ, Γ, δ) and a word γ ∈ Γ∗

Decide: Whether there is a state s such that (Q, γ) ⇒ s

The Det-Ada-Sync problem is the same as Ada-Sync, except that the given pushdown
automaton is deterministic. Notice that we can generalise the adaptive synchronising problem
by the following subset adaptive synchronising problem (Subset-Ada-Sync): Given a PDA
P = (Q, Σ, Γ, δ), a subset I ⊆ Q and a word γ ∈ Γ∗, decide if there is a state s such that
(I, γ) ⇒ s. Similarly, we can define Det-Subset-Ada-Sync.
▶ Remark 1. One can also frame both of these problems in various other ways such as “Given
P, γ and q does (Q, γ) ⇒ q?” or “Given P, γ, I, is there a q such that (I, γ) sup==⇒ q” etc. We
chose this version, because this is similar to the way it is defined for the finite-state version
(Problem 1 of [17]). In order to make the lower bounds easier to understand, we introduce a
few different variants of Ada-Sync and Subset-Ada-Sync in Section 3 and conclude that
they are all polynomial-time equivalent with Ada-Sync. We defer a detailed analysis of the
different variants of this problem to future work.
▶ Remark 2. One can relax the notion of a synchroniser and ask instead for an adaptive
“homing” word, which is the same as a synchroniser, except that we now only require that if
(S, γ) is the label of a leaf then S is any singleton. Intuitively, in an adaptive homing word,
we are content with knowing the state the automaton is in after applying the strategy, rather
than enforcing the automaton to synchronise into some state. To keep the discussion focused
on the synchronising problem, in the main paper, we present only the results regarding
Ada-Sync and Subset-Ada-Sync. In the full version of the paper, we state the homing
word problem formally and prove that it is polynomial-time equivalent to Ada-Sync.

The main results of this paper are now as follows:

▶ Theorem 3. Ada-Sync and Subset-Ada-Sync are both 2-EXPTIME-complete. Det-
Ada-Sync and Det-Subset-Ada-Sync are both EXPTIME-complete.

3 Equivalence of Various Formulations

In this section, we show that the problems Ada-Sync and Subset-Ada-Sync are polynomial-
time equivalent to each other. A similar result is also shown for their corresponding
deterministic versions. We note that such a result is not true for finite-state (Moore)
machines (Table 1 of [17]) and so we provide a proof of this here, because it illustrates the
significance of the stack in the pushdown version.
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17:6 Adaptive Synchronisation of Pushdown Automata

▶ Lemma 4. Ada-Sync (resp. Det-Ada-Sync) is polynomial time equivalent to Subset-
Ada-Sync (resp. Det-Subset-Ada-Sync).

Proof. It suffices to show that Subset-Ada-Sync (resp. Det-Subset-Ada-Sync) can be
reduced to Ada-Sync (resp. Det-Ada-Sync) in polynomial time.

Let P = (Q, Σ, Γ, δ) be a PDA with I ⊆ Q and γ ∈ Γ∗. Let qI be some fixed state in
the subset I. Construct P ′ from P by adding a new stack letter # and the following new
transitions: Upon reading any a ∈ Σ, if the top of the stack is #, then any state q ∈ I

pops # and stays at q whereas any state q /∈ I pops # and moves to qI . Notice that P ′ is
deterministic if P is.

It is clear that if (I, γ) =⇒
P

s for some state s, then (Q, #γ) ==⇒
P′

s. We now claim that
the other direction is true as well. To see this, suppose there is a synchroniser in P ′ (say
T ) between (Q, #γ) and some state s. It is easy to see that, irrespective of the label of the
outgoing edge from the root of T , there is only one child of the root which is labelled by
(I, γ). Now, no transition pushes # onto the stack and so nowhere else in the synchroniser
does # appear in the label of some vertex. It is then easy to see that if we remove the root
of T , we get a synchroniser between (I, γ) and s in P. ◀

Lemma 4 allows us to introduce a series of problems which we can prove are poly-time
equivalent to Ada-Sync. The reason to consider these problems is that lower bounds for
these are substantially easier to prove than for Ada-Sync. The three problems are as follows:
1. Given-Sync: Given a PDA P , a subset I, a word γ and also a state s, check if (I, γ) ⇒ s.
2. Super-Sync has the same input as Given-Sync, except we ask if (I, γ) sup==⇒ s.
3. Special-Sync is the same as Super-Sync but restricted to inputs where γ is ⊥.

▶ Lemma 5. Subset-Ada-Sync, Given-Sync, Super-Sync and Special-Sync are all
poly. time equivalent. Further the same applies for their corresponding deterministic versions.

Because of this lemma, for the rest of this paper, we will only be concerned with the
Special-Sync problem, where given a PDA P , a subset I and a state s, we have to decide
if (I, ⊥) sup==⇒ s.

4 Lower Bounds

To prove the lower bounds, we introduce the notion of an alternating extended pushdown
system (AEPS), which is an extension of pushdown systems with Boolean variables and
alternation.

4.1 Alternating Extended Pushdown Systems
An alternating extended pushdown system (AEPS) A is a tuple (Q, V, Γ, ∆, init, fin) where Q

and V are finite sets of states and Boolean variables respectively, Γ is the stack alphabet,
init, fin ∈ Q are the initial and final states respectively. A has no input letters but it has a
stack to which it can pop and push letters from Γ. Each variable in V is of Boolean type and
a transition of A can apply simple tests on these variables and depending on the outcome,
can update their values. A configuration of A is a tuple (q, γ, F ) where q ∈ Q, γ ∈ Γ∗ and
F : V → {0, 1} is a function assigning a Boolean value to each variable.

Let test denote the set of tests given by {v
?= b : v ∈ V, b ∈ {0, 1}} and let cmd

denote the set of commands given by {v → b : v ∈ V, b ∈ {0, 1}}. A consistent com-
mand is a conjunction of elements from cmd such that for every v ∈ V , both v → 0 and
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v → 1 are not present in cmd. The transition relation ∆ consists of transitions of the form
(q, A, G) ↪→ {(q1, γ1, C1), . . . , (qk, γk, Ck)} where q, q1, . . . , qk ∈ Q, A ∈ Γ, γ1, . . . , γk ∈ Γ∗, G

is a conjunction of elements from test and each Ci is a consistent command. Intuitively, at
a configuration (q, Aγ, F ) the machine non-deterministically selects a transition of the form
(q, A, G) ↪→ {(q1, γ1, C1), . . . , (qk, γk, Ck)} such that the assignment F satisfies the conjunc-
tion G and then forks into k copies in the configurations (q1, γ1γ, F [C1]), . . . , (qk, γkγ, F [Ck])
where F [Ci] is the function obtained by updating F according to the command Ci. With
this intuition in mind, we say that a transition (q, A, G) ↪→ {(q1, γ1, C1), . . . , (qk, γk, Ck)} is
enabled at a configuration (p, Bγ, F ) iff p = q, B = A and F satisfies all the tests in G.

A run from a configuration (q, η, H) to a configuration (q′, η′, H ′) is a tree satisfying
the following properties: The root is labelled by (q, η, H). If an internal node n is la-
belled by the configuration (p, Aγ, F ) then there exists the following transition: (p, A, G) ↪→
{(p1, γ1, C1), (p2, γ2, C2), . . . , (pk, γk, Ck)} which is enabled at (p, Aγ, F ) such that the chil-
dren of n are labelled by (p1, γ1γ, F [C1]),. . . , (pk, γkγ, F [Ck]), where F [Ci](v) = b if Ci

contains a command of the form v → b and F [Ci](v) = F (v) otherwise. Finally all the leaves
are labelled by (q′, η′, H ′). If a run exists between (q, η, H) and (q′, η′, H ′) then we denote
it by (q, η, H) ∗−→

A
(q′, η′, H ′). An accepting run from a configuration (q, η, H) is a run from

(q, η, H) to (fin, ⊥, 0) where 0 is the zero function. An accepting run of an AEPS is simply
an accepting run from the initial configuration (init, ⊥, 0). The emptiness problem is then
to decide whether a given AEPS has an accepting run.

By a simple adaptation of the EXPTIME-hardness proof for emptiness of alternating
pushdown systems which have no Boolean variables (Theorem 5.4 of [6], Prop. 31 of [23])
we prove that

▶ Lemma 6. The emptiness problem for AEPS is 2-EXPTIME-hard.

An AEPS A is called a non-deterministic extended pushdown system (NEPS) if every
transition of A is of the form (p, A, F ) ↪→ {(q, γ, C)}. By Theorem 2 of [13] we have that

▶ Lemma 7. The emptiness problem for NEPS is EXPTIME-hard.

▶ Remark 8. The hardness result for AEPS could also be inferred from Theorem 10 of [13].
Because we use a different notation, for the sake of completeness, we provide the proofs of
both of these lemmas in the full version of the paper.

4.2 Reduction from Alternating Extended Pushdown Systems
▶ Theorem 9. Special-Sync, Subset-Ada-Sync and Ada-Sync are all 2-EXPTIME-hard.
Det-Special-Sync, Det-Subset-Ada-Sync and Det-Ada-Sync are all EXPTIME-hard.

In this subsection, we provide the proof sketches of Theorem 9 by a reduction from the
emptiness problem for AEPS to Special-Sync. Let A = (Q, V, Γ, ∆, init, fin) be an AEPS.
Without loss of generality, we can assume that if (q, A, G) ↪→ {(q1, γ1, C1), (q2, γ2, C2), . . . ,

(qk, γk, Ck)} ∈ ∆, then γi ≠ γj for i ̸= j. (This can be accomplished, by prefixing new
characters to each γi, moving to some intermediate states and then popping the new characters
and moving to the respective qi’s). Having made this assumption, the reduction is described
below.

From the given AEPS A, we now construct a pushdown automaton P as follows. The
stack alphabet of P will be Γ. For each transition t ∈ ∆, P will have an input letter
in(t). P will also have another input letter end. The state space of P will be the set
Q ∪ (V × {0, 1}) ∪ {qacc, qrej}, where qacc and qrej are two states, which on reading any input
letter, will leave the stack untouched and simply stay at qacc and qrej respectively.
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,

q1 q2 q3

v1, 0 v2, 0 v3, 0

qacc qrej

v1, 1 v2, 1 v3, 1

q1 q2 q3

v1, 0 v2, 0 v3, 0

qacc qrej

v1, 1 v2, 1 v3, 1

q1 q2

v1, 0 v2, 0 v3, 0

qacc qrej

v1, 1 v2, 1 v3, 1⊥
A
B

A

⊥
A
B

⊥
A
B

B

A q3

Figure 3 Let t be the transition (q1, A, [v1? = 0, v3? = 1]) ↪→{(q2, AB, [v1←1, v2←0]), (q3, ϵ, [v2←
0])} in A. In A, using t, the configuration C1 := (q1, ABA⊥, [v1 = 0, v2 = 1, v3 = 1]) can fork into
C2 := (q2, ABBA⊥, [v1 = 1, v2 = 0, v3 = 1]) and C3 := (q3, BA⊥, [v1 = 0, v2 = 0, v3 = 1]).

We now give an intuition behind the transitions of P . Given an assignment F : V → {0, 1}
of the Boolean variables V , and a state q of A, we use the notation [q, F ] to denote the
subset {q} ∪ {(v, F (v)) : v ∈ V } of states of P. Intuitively, a configuration (q, γ, F ) of A is
simulated by its corresponding pseudo-configuration ([q, F ], γ) in P.

▶ Example 10. The caption of Figure 3 describes an example, where there is a transition
t in A, and a configuration C1 forks into two configurations C2 and C3 in A by using
t. The diagram in Figure 3 illustrates the simulation of the forking on the corresponding
pseudo-configurations of C1, C2, C3 that the automaton P will achieve when reading the letter
in(t). The shaded part along with the stack content on the left before the arrow denotes the
pseudo-configuration of C1 and upon reading in(t) from this pseudo-configuration, we get
two possible successors, each of which correspond to the pseudo-configurations of C2 and C3
respectively.

Now we give a formal description of the transitions of P. Let t = (q, A, G) ↪→
{(q1, γ1, C1), . . . , (qk, γk, Ck)} be a transition of A. Let p ∈ Q. Upon reading in(t), if
p ≠ q then p immediately moves to the qrej state. Further, even state q moves to the qrej
state if the top of the stack is not A. However, if the top of the stack is A, then q pops A

and non-deterministically pushes any one of γ1, . . . , γk onto the stack and if it pushed γi,
then q moves to the state qi.

Let (v, b) ∈ V × {0, 1}. Upon reading in(t), if the test v
?= (1 − b) appears in the guard

G, then (v, b) immediately moves to the qrej state. (Notice that this is a purely syntactical
condition on A). Further, if the top of the stack is not A, then once again (v, b) moves to
qrej . If these two cases do not hold, then (v, b) pops A and non-deterministically picks an
i ∈ {1, . . . k} and pushes γi onto the stack. Having pushed γi, if Ci does not update the
variable v, it stays in state (v, b); otherwise if Ci has a command v → b′, it moves to (v, b′).

Finally, upon reading end, the states in [fin, 0] move to the qacc state and all the other
states in Q∪ (V ×{0, 1}) move to the qrej state. Notice that there are no outgoing transitions
from qrej and so there is no way to move from qrej to qacc.

The following two facts can be easily inferred from the construction of P:

Fact A: Suppose t is a transition of A which is not enabled at the configuration
(q, Aγ, F ). Then, upon reading in(t), there is at least one possible successor (S, η) of
the pseudo-configuration ([q, F ], Aγ) such that qrej ∈ S.

Fact B: Suppose the configuration (q, Aγ, F ) forks into the following configurations
(q1, γ1γ, F1), . . . , (qk, γkγ, Fk) using the transition t in the AEPS A. Then, the possible
successors from the pseudo-configuration ([q, F ], Aγ) upon reading in(t) in the PDA
P are ([q1, F1], γ1γ), . . . , ([qk, Fk], γkγ).
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Using these 2 facts, we can then prove that A has an accepting run iff there is a super-
synchroniser in P between ([init, 0], ⊥) and qacc. Intuitively, if we have an accepting run
of A, then the observer, using Fact B, has a strategy to force P into one of the states in
([fin, 0]) with the stack content being ⊥. Once she does that, she can input the letter end
and synchronise to the state qacc.

For the reverse direction, with a little case-analysis, we can show that in any super-
synchroniser between ([init, 0], ⊥) and qacc, all non-leaf nodes must be a pseudo-configuration
of some configuration in A, and all the parents of a leaf must be labelled by ([fin, 0], ⊥)
Intuitively, then by Facts A and B, such a super-synchroniser must be a simulation of a run
in A (similar to Figure 3) and hence, we can translate it back to an accepting run in A.

Notice that P is deterministic if A is non-deterministic. Hence, by Lemmas 6 and 7, we
obtain Theorem 9.

5 Upper Bounds

In this section, we will give algorithms that solve Special-Sync and Det-Special-Sync.
We first give a reduction from Special-Sync to the problem of checking emptiness in
an alternating pushdown system, which we define below. Then, we show that for Det-
Special-Sync, the same reduction produces alternating pushdown systems with a “modular”
structure, which we exploit to reduce the running time.

5.1 Adaptive Synchronisation for Non-deterministic PDA
An alternating pushdown system (APS) is an alternating extended pushdown system which
has no Boolean variables. Since there are no variables, we can suppress any notation
corresponding to the variables, e.g., configurations can be just denoted by (q, γ). It is known
that the emptiness problem for APS is in EXPTIME (Theorem 4.1 of [4]). We now give an
exponential time reduction from Special-Sync to the emptiness problem for APS.

Let P = (Q, Σ, Γ, δ) be a PDA with I ⊆ Q, s ∈ Q. Construct the following APS
AP = (2Q, Γ, ∆, I, {s}) where ∆ is defined as follows: Given S ⊆ Q, a ∈ Σ and A ∈ Γ, let
E1, . . . , Ek be the equivalence classes of the relation ∼a

S,A as defined in subsection 2.2. Then,
we have the following transition in AP :

(S, A) ↪→ {(next(E1), word(E1)), (next(E2), word(E2)), . . . , (next(Ek), word(Ek)} (1)

The following fact is immediate from the definition of a super-synchroniser and from the
construction of AP .

▶ Proposition 11. Let S ⊆ 2Q, γ ∈ Γ∗. Then a labelled tree T is a super-synchroniser
between (S, γ) and s in P if and only if T is an accepting run from (S, γ) in AP .

By Theorem 4.1 of [4], emptiness for APS can be solved in exponential time and so

▶ Theorem 12. Special-Sync is in 2-EXPTIME

5.2 Adaptive Synchronisation for Deterministic PDA
Let P = (Q, Σ, Γ, δ) be a deterministic PDA with I ⊆ Q, s ∈ Q. We have the following
proposition, whose proof follows from the fact that P is deterministic.

▶ Proposition 13. Suppose S ⊆ Q, a ∈ Σ, A ∈ Γ and suppose E1, . . . , Ek are the equivalence
classes of ∼a

S,A. Then, |S| ≥
∑k

i=1 |next(Ei)|.
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Now, given P, consider the APS AP = (2Q, Γ, ∆, I, {s}) that we have constructed in
subsection 5.1. By Proposition 13, we now have the following lemma.

▶ Lemma 14. For any S ∈ 2Q, γ ∈ Γ∗, any accepting run of AP from the configuration
(S, γ) has at most |S| leaves.

The following corollary follows from the lemma above.

▶ Corollary 15. Any accepting run of AP has at most |I| leaves.

▶ Example 16. Let P be the deterministic PDA from Figure 1. Figure 4 shows an example
of an accepting run in the corresponding APS AP from I := {1, 2, 3, 4}. Notice that there
are |I| = 4 leaves in this run.

Corollary 15 motivates the study of the following problem, which we call the sparse
emptiness problem for APSs (Sparse-Empty):

Given: An APS A and a number k in unary.
Decide: Whether there exists an accepting run for A with at most k leaves

We prove the following theorem about Sparse-Empty in the next section.

▶ Theorem 17. Given A and k, the Sparse-Empty problem can be solved in time O(|A|ck2)
for a fixed constant c.

Now, because of Proposition 13 and because of the structure of the transitions of AP (as
given by equation (1)), it is sufficient to restrict the construction of AP to only those states
which have cardinality at most |I| and hence, it can be assumed that |AP | ≤ |P|4|I|. This
fact, along with Proposition 11, Corollary 15 and Theorem 17 implies the following theorem.

▶ Theorem 18. Given an instance (P, I, s) of Det-Special-Sync, checking if (I, ⊥) sup==⇒
P

s

in time O(n4ck3) where n = |P| and k = |I| and c is some fixed constant.

▶ Remark 19. Note that the algorithm to solve Det-Special-Sync on an instance (P, I, s),
although in EXPTIME, is polynomial if |I| is fixed and quasi-polynomial if |I| is O(log |P|).

5.3 “Sparse Emptiness” Checking of Alternating Systems
This subsection is dedicated to proving Theorem 17. We fix an alternating pushdown

system A = (Q, Γ, ∆, init, fin) and a number k for the rest of this subsection. A k-accepting
run of A is defined to be an accepting run of A with at most k leaves. We now split the
desired algorithm for Sparse-Empty into three parts. Finally, we give its runtime analysis.

Compressing k-accepting runs of A

We define a non-deterministic pushdown system (NPS) to be a non-deterministic extended
pushdown system which has no Boolean variables. From A, we can derive a NPS obtained
by deleting all transitions which produces a universal branching, i.e, of the form (q, A) ↪→
{(q1, γ1), . . . , (qk, γk)} with k > 1. We will denote this NPS by N . Emptiness of NPS is
known to be solvable in polynomial time (Theorem 2.1 of [4]). To exploit this fact for our
problem, we propose the following notion of a compressed accepting run of A. Intuitively, a
compressed accepting run is obtained from an accepting run of A by “compressing” a series of
transitions belonging to the non-deterministic part N , into a single transition. An intuition
of a compressed accepting run is captured by Figure 5, which is obtained by compressing the
run depicted in Figure 4.
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Figure 4 An accepting run of AP for the
deterministic PDA P given in Figure 1.
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Figure 5 A compressed accepting run
of AP for the deterministic PDA P given
in Figure 1, obtained by compressing the
run from Figure 4.

Given a tree, we say that a vertex v in the tree is simple if it has exactly one child
and otherwise we say that it is complex (Note that all leaves are complex). A compressed
accepting run of A from the configuration (p, η) is a labelled tree such that: The root is
labelled by (p, η). If v is a simple vertex labelled by (q, γ) and u is its only child labelled
by (q′, γ′) then u is a complex vertex and (q, γ) ∗−→

N
(q′, γ′). If v is a complex vertex

labelled by (q, Aγ) and v1, . . . , vk are its children with k > 1, then there is a transition
(q, A) ↪→ {(q1, A1), . . . , (qk, Ak)} in A such that the label of vi is (qi, Aiγ). Finally, all the
leaves are labelled by (fin, ⊥). A compressed accepting run of A is a compressed accepting
run from (init, ⊥) and a k-compressed accepting run is a compressed accepting run with at
most k leaves. We now have the following lemma.

▶ Lemma 20. There is a k-accepting run of A from a configuration (p, η) iff there is a
k-compressed accepting run of A from (p, η).

Searching for k-compressed accepting runs

To fully use the result of Lemma 20, we need some results about non-deterministic pushdown
systems, which we state here. Recall that N is an NPS over the states Q and stack
alphabet Γ obtained from the APS A. We say that M = (QM , Γ, δM , F M ) is an N -
automaton if M is a non-det. finite-state automaton over the alphabet Γ with accepting
states F M such that for each state q ∈ Q, there is a unique state qM ∈ QM . The set
of configurations of A that are stored by M (denoted by C(M)) is defined to be the set
{(q, γ) : γ is accepted in M from the state qM }. In the above definition, note that QM can
potentially have more states other than the set {qM | q ∈ Q}.
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▶ Example 21. Let us consider the pushdown automaton in Figure 1, and let N be the NPS
obtained by ignoring the input alphabets 2 and 3. Then observe that from all the states
1,2,3 and 4, with any content on the stack, one can reach state 4 with an empty stack, by
popping out all the elements. So, the set of configurations from wich there is an accepting
run is {(i, γ) | i ∈ {1, 2, 3, 4}, γ ∈ ⊥ · {•, •}∗}. One can define the N -automaton M for it, as
an automaton with five states {q1, q2, q3, q4, qf } where qf is a final state and each of q1, q2, q3
and q4 on reading ⊥ goes to qf and stays in qf on reading • or •. It is easy to see that this
automaton accepts all words of the form ⊥ · {•, •}∗.

▶ Theorem 22 (Section 2.3 and Theorem 2.1 of [4]). Given an N -automaton M , in time
polynomial in N and M , we can construct an N -automaton M ′ which has the same states
as M such that M ′ stores the set of predecessors of M , i.e., C(M ′) = {(q′, γ′) : ∃(q, γ) ∈
C(M) such that (q′, γ′) ∗−→

N
(q, γ)}.

We say that an unlabelled tree is structured, if the child of every simple vertex is a
complex vertex. An ℓ-structured tree is simply a structured tree which has at most ℓ leaves.
Notice that the height of an ℓ-structured tree is O(ℓ) and since it has at most ℓ leaves, it
follows that a ℓ-structured tree can be described using a polynomial number of bits in ℓ.
Hence, the number of ℓ-structured trees is O(2ℓc) for some fixed c.

Now let us come back to the problem of searching for k-accepting runs of A. By
Lemma 20 it suffices to search for a k-compressed accepting run of A. Notice that if we take a
k-compressed accepting run and remove its labels, we get a k-structured tree. Now, suppose
we have an algorithm Check that takes a k-structured tree T and checks if T can be labelled
to make it a k-compressed accepting run of A. Then, by calling Check on every k-structured
tree, we have an algorithm to check for the existence of a k-compressed accepting run of A.
Hence, it suffices to describe this procedure Check which is what we will do now.

The algorithm Check

Let T be a k-structured tree. For each vertex v in the tree T , Check will assign a N -automaton
Mv such that Mv will have the following property:

Invariant (*) : A configuration (q, γ) ∈ C(Mv) iff all the vertices of the subtree rooted
at v can be labelled such that the resulting labelled subtree is a compressed accepting
run of A from (q, γ).

The construction of each Mv is as follows: Let Q be the states and ∆ be the transitions
of the alternating pushdown system A.

Suppose vertex v is a leaf. We let Mv be an automaton such that C(Mv) = {(fin, ⊥)}.
Notice that such a Mv can be easily constructed in polynomial time.
Suppose vertex v is simple and u is its child. We take Mu and use Theorem 22 to
construct the N -automaton Mv. Note that Mv has the same set of states as Mu.
Suppose v is complex and suppose v1, . . . , vℓ are its children. For each 1 ≤ i ≤ ℓ

and for every configuration (q, γ) of A, let δi(qMvi , γ) denote the set of states that the
automaton Mvi will be in after reading γ from the state qMvi . To construct Mv first do
a product construction Mv1 × Mv2 × · · · × Mvℓ

, so that the resulting product automaton
stores precisely the set of configurations which are stored by each of the individual
automata Mv1 , . . . , Mvℓ

. Then, for each q ∈ Q, add a state qMv . Then for each transition
(p, A) ↪→ {(p1, γ1), . . . , (pℓ, γℓ)} in ∆, add a transition in Mv, which upon reading A, takes
pMv to any of the states in δ1(p1

Mv1 , γ1) × δ2(p2
Mv2 , γ2) × · · · × δl(pℓ

Mvℓ , γℓ). Intuitively,
we accept a word Aγ from the state pMv if for each i, the word γiγ can be accepted from
the state pi

Mvi .
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▶ Proposition 23. For each vertex v of the tree T , Mv satisfies invariant (*)

Finally, we accept iff (init, ⊥) ∈ C(Mr) where r is the root of the tree. The correctness of
Check follows from the proposition above.

Running time analysis

Let us analyse the running time of Check. Let T be a k-structured tree and therefore T has
O(k2) vertices. Check assigns to each vertex v of T an automaton Mv. We claim that the
running time of Check is O(k2 · |A|ck2) (for some fixed constant c) because of the following
facts:
1) By induction on the structure of the tree T , it can be proved that, there exists a constant

d, such that if hv is the height of a vertex v and lv is the number of leaves in the sub-tree
of v, then the number of states of Mv is O(|A|dhvlv ) (Recall that hvlv is at most O(k2)).

2) If an N -automaton has n states, then the number of transitions it can have is O(|A| · n2).
3) For a vertex v with children v1, . . . , vℓ, Mv can be constructed in polynomial time in the

size of |Mv1 | × |Mv2 | × . . . |Mvℓ
| and |A|.

Notice that everything else apart from Fact 1) is easy to see. To prove Fact 1), we
proceed by bottom-up induction on the structure of the tree T . For the base case when the
vertex v is a leaf, notice that we can easily construct the required automaton Mv with at
most O(|A|) states. Suppose, v is a simple vertex and u its only child. By Theorem 22,
Mv has the same set of states as Mu. By induction hypothesis, the number of states of Mu

is O
(
|A|dhulu

)
and so the number of states of Mv is O

(
|A|dhvlv

)
. Suppose v is a complex

vertex and v1, . . . , vℓ are its children. Let h be the maximum height amongst the vertices
v1, . . . , vℓ. By induction hypothesis, the number of states of each Mvi

is O
(
|A|dhlvi

)
. It is

then clear that the number of states of Mv is O
(∏ℓ

i=1 |A|dhlvi + |A|
)

= O
(
|A|dhlv + |A|

)
=

O
(
|A|d(h+1)lv

)
= O

(
|A|dhvlv

)
.

Now the final algorithm for Sparse-Empty simply iterates over all k-structured trees
and calls Check on all of them. Since the number of k-structured trees is at most f(k) where
f is an exponential function, it follows that the total running time is O

(
f(k) · k2 · |A|ck2

)
=

O(|A|ek2) for some constant e.

6 Conclusion

Our results can be considered as a step in the research direction recently proposed by Fernau,
Wolf and Yamakami in [12], in which the authors prove that the synchronisation problem for
PDAs is undecidable when the stack is not visible. They also suggest looking into different
variants of synchronisation for PDAs with a view towards the decidability and complexity
frontier. Within this context, we believe we have proposed a natural variant of synchronisation
in which the observer can see the stack and given decidability and complexity-theoretic
optimal results for both the non-deterministic and the deterministic cases.

As future work, it might be interesting to consider the adaptive synchronising problem
for subclasses of pushdown automata such as one-counter automata and visibly pushdown
automata. It might also be interesting to consider the problem of looking for short adaptive
synchronisers, i.e., adaptive synchronisers whose size is not bigger than a given bound.
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Abstract
A deterministic finite automaton (DFA) A is composite if its language L(A) can be decomposed
into an intersection

⋂k

i=1 L(Ai) of languages of smaller DFAs. Otherwise, A is prime. This notion
of primality was introduced by Kupferman and Mosheiff in 2013, and while they proved that we
can decide whether a DFA is composite, the precise complexity of this problem is still open, with a
doubly-exponential gap between the upper and lower bounds. In this work, we focus on permutation
DFAs, i.e., those for which the transition monoid is a group. We provide an NP algorithm to decide
whether a permutation DFA is composite, and show that the difficulty of this problem comes from the
number of non-accepting states of the instance: we give a fixed-parameter tractable algorithm with
the number of rejecting states as the parameter. Moreover, we investigate the class of commutative
permutation DFAs. Their structural properties allow us to decide compositionality in NL, and even
in LOGSPACE if the alphabet size is fixed. Despite this low complexity, we show that complex
behaviors still arise in this class: we provide a family of composite DFAs each requiring polynomially
many factors with respect to its size. We also consider the variant of the problem that asks whether
a DFA is k-factor composite, that is, decomposable into k smaller DFAs, for some given integer
k ∈ N. We show that, for commutative permutation DFAs, restricting the number of factors makes
the decision computationally harder, and yields a problem with tight bounds: it is NP-complete.
Finally, we show that in general, this problem is in PSPACE, and it is in LOGSPACE for DFAs with a
singleton alphabet.
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1 Introduction

Compositionality is a fundamental notion in numerous fields of computer science [3]. This
principle can be summarised as follows: Every system should be designed by composing
simple parts such that the meaning of the system can be deduced from the meaning of
its parts, and how they are combined. For instance, this is a crucial aspect of modern
software engineering: a program split into simple modules will be quicker to compile and
easier to maintain. The use of compositionality is also essential in theoretical computer
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Figure 1 DFAs recognising specifications. Accepting states are drawn in black. The DFAs A1 and
A2 check that every request of the first, resp. second, client is eventually granted, A checks both.

science: it is used to avoid the state explosion issues that usually happen when combining
parallel processes together, and also to overcome the scalability issues of problems with a
high theoretical complexity. In this work, we study compositionality in the setting of formal
languages: we show how to make languages simpler by decomposing them into intersections
of smaller languages. This is motivated by the model-checking problems. For instance,
the LTL model-checking problem asks, given a linear temporal logic formula φ and a finite
state machine M , whether every execution of M satisfies φ. This problem is decidable, but
has a high theoretical complexity (PSPACE) with respect to the size of φ [1]. If φ is too
long, it cannot be checked efficiently. This is where compositionality comes into play: if we
can decompose the specification language into an intersection of simple languages, that is,
decompose φ into a conjunction φ = φ1 ∧ φ2 ∧ · · · ∧ φk of small specifications, it is sufficient
to check whether all the φi are satisfied separately.

Our aim is to develop the theoretical foundations of the compositionality principle for
formal languages by investigating how to decompose into simpler parts one of the most basic
model of abstract machines: deterministic finite automata (DFAs). We say that a DFA A is
composite if its language can be decomposed into the intersection of the languages of smaller
DFAs. More precisely, we say that A is k-factor composite if there exist k DFAs (Ai)1≤i≤k

with less states than A such that L(A) =
⋂k

i=1 L(Ai). We study the two following problems:

DFA Decomp
Given: DFA A.
Question: Is A composite?

DFA Bound-Decomp
Given: DFA A and integer k ∈ N.
Question: Is A k-factor composite?

The next example shows that decomposing DFAs can result in substantially smaller machines.

Example. Consider Figure 1. We simulate the interactions between a system and two
clients by using finite words on the alphabet {r1, r2, g1, g2, i}: At each time step, the system
either receives a request from a client (r1, r2), grants the open requests of a client (g1, g2), or
stays idle (i). A basic property usually required is that every request is eventually granted.
This specification is recognised by the DFA A, which keeps track in its state of the current
open requests, and only accepts if none is open when the input ends. Alternatively, this
specification can be decomposed into the intersection of the languages defined by the DFAs A1
and A2: each one checks that the requests of the corresponding client are eventually granted.
While in this precise example both ways of defining the specification are comparable, the
latter scales drastically better than the former when the number of clients increases: Suppose
that there are now n ∈ N clients. In order to check that all the requests are granted with a
single DFA, we need 2n states to keep track of all possible combinations of open requests,
which is impractical when n gets too big. However, decomposing this specification into an
intersection yields n DFAs of size two, one for each client. Note that, while in this specific
example the decomposition is obvious, in general computing such a conjunctive form can be
challenging: currently the best known algorithm needs exponential space.
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Decomp Bound-Decomp

DFAs EXPSPACE [9] PSPACE
Permutation DFAs NP/FPT PSPACE

Commutative permutation DFAs NL NP-complete
Unary DFAs LOGSPACE [7] LOGSPACE

Figure 2 Complexity of studied problems with containing classes, with our contribution in bold.

DFAs in hardware. Our considered problems are of great interest in hardware implement-
ations of finite state machines [13] where realizing large DFAs poses a challenge [5]. In [2]
the authors describe a state machine language for describing complex finite state hardware
controllers, where the compiled state tables can automatically be input into a temporal logic
model checker. If the control mechanism of the initial finite state machine can be split up
into a conjunction of constraints, considering a decomposition instead could improve this
work-flow substantially. Decomposing a complex DFA A can lead to a smaller representation
of the DFA in total, as demonstrated in the previous example in Figure 1, and on top of
that the individual smaller DFAs Ai in the decomposition L(A) =

⋂k
i=1 L(Ai) can be placed

independently on a circuit board, as they do not have to interact with each other and only
need to read their common input from a global bus and signal acceptance as a flag to the bus.
This allows for a great flexibility in circuit designs, as huge DFAs can be broken down into
smaller blocks which fit into niches giving space for inflexible modules such as CPU cores.

Reversible DFAs. We focus our study on permutation DFAs, which are DFAs whose transition
monoids are groups: each letter induces a one-to-one map from the state set into itself. These
DFAs are also called reversible DFAs [8, 14]. Reversibility is stronger than determinism: this
powerful property allows to deterministically navigate back and forth between the steps of a
computation. This is particularly relevant in the study of the physics of computation, since
irreversibility causes energy dissipation [10]. Remark that in the setting of DFAs, this power
results in a loss of expressiveness: contrary to more powerful models (for instance Turing
machines), reversible DFAs are less expressive than general DFAs.

Related work. The DFA Decomp problem was first introduced in 2013 by Kupferman
and Moscheiff [9]. They proved that it is decidable in EXPSPACE, but left open the exact
complexity: the best known lower bound is hardness for NL. They gave more efficient
algorithms for restricted domains: a PSPACE algorithm for permutation DFAs, and a PTIME
algorithm for normal permutation DFAs, a class of DFAs that contains all commutative
permutation DFAs. Recently, the Decomp problem was proved to be decidable in LOGSPACE
for DFAs with a singleton alphabet [7]. The trade-off between number and size of factors was
studied in [12], where automata showing extreme behavior are presented, i.e., DFAs that can
either be decomposed into a large number of small factors, or a small number of large factors.

Contribution. We expand the domain of instances over which the Decomp problem is
tractable. We focus on permutation DFAs, and we propose new techniques that improve
the known complexities. All proofs omitted due to space restrictions can be found in the
full version. Unless specified otherwise, the complexity of our algorithms do not depend on
the size of the alphabet of the DFA. Our results, summarised by Figure 2, are presented as
follows.
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Section 3. We give an NP algorithm for permutation DFAs, and we show that the complexity
is directly linked to the number of non-accepting states. This allows us to obtain a fixed-
parameter tractable algorithm with respect to the number of non-accepting states (Theorem 1).
Moreover, we prove that permutation DFAs with a prime number of states cannot be
decomposed (Theorem 2).

Section 4. We consider commutative permutation DFAs, where the Decomp problem was
already known to be tractable, and we lower the complexity from PTIME to NL, and even
LOGSPACE if the size of the alphabet is fixed (Theorem 9). While it is easy to decide whether
a commutative permutation DFA is composite, we show that rich and complex behaviours
still appear in this class: there exist families of composite DFAs that require polynomially
many factors to get a decomposition. More precisely, we construct a family (Am

n )m,n∈N of
composite DFAs such that Am

n is a DFA of size nm that is (n − 1)m−1-factor composite but
not (n − 1)m−1 − 1-factor composite (Theorem 10). Note that, prior to this result, only
families of composite DFAs with sublogarithmic width were known [7].

Section 5. Finally, we study the Bound-Decomp problem. High widths are undesirable
for practical purposes: dealing with a huge number of small DFAs might end up being more
complex than dealing with a single DFA of moderate size. The Bound-Decomp problem
copes with this issue by limiting the number of factors allowed in the decompositions. We
show that this flexibility comes at a cost: somewhat surprisingly, this problem is NP-complete
for commutative permutation DFAs (Theorem 17), a setting where the Decomp problem is
easy. We also show that this problem is in PSPACE for the general setting (Theorem 16),
and in LOGSPACE for unary DFAs i.e. with a singleton alphabet (Theorem 18).

2 Definitions

We denote by N the set of non-negative integers {0, 1, 2, . . .}. For a word w = w1w2 . . . wn

with wi ∈ Σ for 1 ≤ i ≤ n, we denote with wR = wn . . . w2w1 the reverse of w. Moreover, for
every σ ∈ Σ, we denote by #σ(w) the number of times the letter σ appears in w. A natural
number n > 1 is called composite if it is the product of two smaller numbers, otherwise we
say that n is prime. Two integers m, n ∈ N are called co-prime if their greatest common
divisor is 1. We will use the following well known results [6, 11]:

Bertrand’s Postulate. For all n > 3 there is a prime number p satisfying n < p < 2n − 2.

Bézout’s Identity. For every pair of integers m, n ∈ N, the set {λm − µn | λ, µ ∈ N}
contains exactly the multiples of the greatest common divisor of m and n.

Deterministic finite automata. A deterministic finite automaton (DFA hereafter) is a
5-tuple A = ⟨Σ, Q, qI , δ, F ⟩, where Q is a finite set of states, Σ is a finite non-empty
alphabet, δ : Q × Σ → Q is a transition function, qI ∈ Q is the initial state, and F ⊆ Q is
a set of accepting states. The states in Q \ F are called rejecting states. We extend δ to
words in the expected way, thus δ : Q × Σ∗ → Q is defined recursively by δ(q, ε) = q and
δ(q, w1w2 · · · wn) = δ(δ(q, w1w2 · · · wn−1), wn). The run of A on a word w = w1 . . . wn is
the sequence of states s0, s1, . . . , sn such that s0 = qI and for each 1 ≤ i ≤ n it holds that
δ(si−1, wi) = si. Note that sn = δ(qI , w). The DFA A accepts w iff δ(qI , w) ∈ F . Otherwise,
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A rejects w. The set of words accepted by A is denoted L(A) and is called the language of
A. A language accepted by some DFA is called a regular language.

We refer to the size of a DFA A, denoted |A|, as the number of states in A. A DFA A is
minimal if every DFA B such that L(B) = L(A) satisfies |B| ≥ |A|.

Composite DFAs. We call a DFA A composite if there exists a family (Bi)1≤i≤k of DFAs
with |Bi| < |A| for all 1 ≤ i ≤ k such that L(A) =

⋂
1≤i≤k L(Bi) and call the family

(Bi)1≤i≤k a decomposition of A. Note that, all Bi in the decomposition satisfy |Bi| < |A|
and L(A) ⊆ L(Bi). Such DFAs are called factors of A, and (Bi)1≤i≤k is also called a
k-factor decomposition of A. The width of A is the smallest k for which there is a k-factor
decomposition of A, and we say that A is k-factor composite iff width(A) ≤ k. We call a
DFA A prime if it is not composite. We call a DFA A trim if all of its states are accessible
from the initial state. As every non-trim DFA A is composite, we assume all given DFAs to
be trim in the following.

We call a DFA a permutation DFA if for each letter σ ∈ Σ, the function mapping each state
q to the state δ(q, σ) is a bijection. For permutation DFAs the transition monoid is a group.
Further, we call a DFA A = ⟨Σ, Q, qI , δ, F ⟩ a commutative DFA if δ(q, uv) = δ(q, vu) for every
state q and every pair of words u, v ∈ Σ∗. In the next sections we discuss the problem of
being composite for the classes of permutation DFA, and commutative permutation DFAs.

3 Decompositions of Permutation DFAs

In this section, we study permutation DFAs. Our main contribution is an algorithm for the
Decomp problem that is FPT with respect to the number of rejecting states:

▶ Theorem 1. The Decomp problem for permutation DFAs is in NP. It is in FPT with
parameter k, being the number of rejecting states of DFA A, solvable in time O(2kk2 · |A|).

We prove Theorem 1 by introducing the notion of orbit-DFAs: an orbit-DFA AU of a DFA
A is the DFA obtained by fixing a set of states U of A as the initial state, and letting the
transition function of A act over it (thus the states of AU are subsets of the state space of
A). We prove three key results:

A permutation DFA is composite if and only if it can be decomposed into its orbit-DFAs
(Corollary 6);
A permutation DFA A can be decomposed into its orbit-DFAs if and only if for each of
its rejecting states q, there exists an orbit-DFA AU smaller than A that covers q, that is,
one of the states of AU contains q and no accepting states of A (Lemma 7);
Given a permutation DFA A and a rejecting state q, we can determine the existence of
an orbit-DFA covering q in non-deterministic time O(|A|2), and in deterministic time
O(2kk · |A|), where k is the number of rejecting states of A (Lemma 8, (apx) Algorithm 1).

These results directly imply Theorem 1. We also apply them to show that the Decomp
problem is trivial for permutation DFAs with a prime number of states.

▶ Theorem 2. Let A be a permutation DFA with at least one accepting state and one rejecting
state. If the number of states of A is prime, then A is prime.

3.1 Proof of Theorem 1
Consider a DFA A = ⟨Σ, Q, qI , δ, F ⟩. We extend δ to subsets U ⊆ Q in the expected way:

δ(U, w) = {q ∈ Q | q = δ(p, w) for some p ∈ U} for every word w ∈ Σ∗.
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Figure 3 A DFA A together with some of its orbit-DFAs. Accepting states are depicted in black,
an orbit-DFA can be obtained by setting a subset containing a 1 as an initial state. For instance the
orbit-DFAs A{1,2,3} and A{1,5,6} form a decomposition of A.

The orbit of U is the collection CU = {δ(U, w) ⊆ Q | w ∈ Σ∗} of subsets of Q that can be
reached from U by the action of δ. If the subset U ⊆ Q contains the initial state qI of A, we
define the orbit-DFA AU = ⟨Σ, CU , U, δ, C′⟩, where the state space CU is the orbit of U , and
the set C′ of accepting states is composed of the sets U ′ ∈ CU that contain at least one of
the accepting states of A : U ′ ∩ F ̸= ∅. Note that AU can alternatively be defined as the
standard subset construction starting with the set U ⊆ Q as initial state. The definition of
the accepting states guarantees that L(A) ⊆ L(AU ):

▶ Proposition 3. Every orbit-DFA AU of a DFA A satisfies L(A) ⊆ L(AU ).

Example. Let us detail the orbits of the DFA A depicted in Figure 3. This DFA contains
six states, and generates the following non-trivial orbits on its subsets of states:

The 15 subsets of size 2 are split into two orbits: one of size 3, and one of size 12;
The 20 subsets of size 3 are split into three orbits: two of size 4, and one of size 12;
The 15 subsets of size 4 are split into two orbits, one of size 3, and one of size 12.

Figure 3 illustrates the four orbits smaller than |A|: they induce seven orbit-DFAs, obtained
by setting as initial state one of the depicted subsets containing the initial state 1 of A.

In order to prove that a DFA is composite if and only if it can be decomposed into its
orbit-DFAs, we prove that every factor B of a permutation DFA A can be turned into an
orbit-DFA AU that is also a factor of A, and satisfies L(AU ) ⊆ L(B). Our proof is based on
a known result stating that factors can be turned into permutation DFAs:

▶ Lemma 4 ([9, Theorem 7.4]). Let A be a permutation DFA. For every factor B of A, there
exists a permutation DFA C satisfying |C| ≤ |B| and L(A) ⊆ L(C) ⊆ L(B).

We strengthen this result by showing how to transform factors into orbit-DFAs:

▶ Lemma 5. Let A be a permutation DFA. For every factor B of A, there exists an orbit-DFA
AU of A satisfying |AU | ≤ |B| and L(A) ⊆ L(AU ) ⊆ L(B).

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a permutation DFA, and let B be a factor of A. By
Lemma 4, there exists a permutation DFA B′ = ⟨Σ, S, sI , η, G⟩ satisfying |B′| ≤ |B| and
L(A) ⊆ L(B′) ⊆ L(B). We build, based on B′, an orbit-DFA AU of A satisfying the statement.

We say that a state q ∈ Q of A is linked to a state s ∈ S of B′, denoted q ∼ s, if there
exists a word u ∈ Σ∗ satisfying δ(qI , u) = q and η(sI , u) = s. Let f : S → 2Q be the function
mapping every state s ∈ S to the set f(s) ⊆ Q containing all the states q ∈ Q that are linked
to s (i.e. satisfying q ∼ s). We set U = f(sI). In particular, the initial state qI of A is in U

since δ(qI , ε) = qI and η(sI , ε) = sI . We show that the orbit-DFA AU satisfies the desired
conditions: |AU | ≤ |B′| and L(A) ⊆ L(AU ) ⊆ L(B′).
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First, we show that |AU | ≤ |B′| by proving that the function f defined earlier maps S

surjectively into the orbit of U , which is the state space of AU . Since both A and B′ are
permutation DFAs, we get that for all q ∈ Q, s ∈ S and a ∈ Σ, then q ∼ s if and only if
δ(q, a) ∼ η(s, a) holds.1 Therefore, for every word v ∈ Σ∗, f(η(sI , v)) = δ(f(sI), v) = δ(U, v).
This shows that, as required, the image of the function f is the orbit of U , and f is surjective.

To conclude, we show that L(A) ⊆ L(AU ) ⊆ L(B′). Proposition 3 immediately implies
that L(A) ⊆ L(AU ). Therefore it is enough to show that L(AU ) ⊆ L(B′). Let v ∈ L(AU ).
By definition of an orbit-DFA, this means that the set δ(U, v) contains an accepting state qF

of A. Since, as stated earlier, f(η(sI , v)) = δ(U, v), this implies (by definition of the function
f) that the accepting state qF of A is linked to η(sI , v), i.e., there exists a word v′ ∈ Σ∗

such that δ(qI , v′) = qF and η(sI , v′) = η(sI , v). Then δ(qI , v′) = qF implies that v′ is in the
language of A. Moreover, since L(A) ⊆ L(B′) by supposition, v′ is also accepted by B′, i.e.,
η(sI , v′) is an accepting state of B′. Therefore, since η(qI , v′) = η(qI , v), the word v is also
in the language of B′. This shows that L(AU ) ⊆ L(B′), which concludes the proof. ◀

As an immediate corollary, every decomposition of a permutation DFA can be transformed,
factor after factor, into a decomposition into orbit-DFAs.

▶ Corollary 6. A permutation DFA is composite if and only if it can be decomposed into its
orbit-DFAs.

Orbit cover. Given a rejecting state q ∈ Q \ F of A, we say that the orbit-DFA AU covers
q if |AU | < |A|, and AU contains a rejecting state U ′ ⊆ Q that contains q. Remember that,
by definition, this means that U ′ contains no accepting state of A, i.e., U ′ ∩ F = ∅. We
show that permutation DFAs that can be decomposed into their orbit-DFAs are characterized
by the existence of orbit-DFAs covering each of their rejecting states.

▶ Lemma 7. A permutation DFA A is decomposable into its orbit-DFAs if and only if every
rejecting state of A is covered by an orbit-DFA A′ of A satisfying |A′| < |A|.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a permutation DFA. We prove both implications.
Suppose that A can be decomposed into its orbit-DFAs (AUi)1≤i≤k, and let q ∈ Q \ F be

a rejecting state of A. We show that q is covered by every orbit-DFA AUi that rejects a word
w ∈ Σ∗ satisfying δ(qI , w) = q. Formally, let w ∈ Σ∗ be a word satisfying δ(qI , w) = q. Then
w /∈ L(A) =

⋂n
i=1 L(AUi), hence there exists 1 ≤ i ≤ n such that w /∈ L(AUi). Let U ′ ⊆ Q

be the state visited by AUi after reading w. Then, by applying the definition of an orbit-DFA,
we get that q ∈ U ′ since δ(qI , w) = q, and U ′ ∩ F = ∅ since U ′ is a rejecting state of AUi

(as w /∈ L(AUi)). Therefore, AUi covers q. Moreover, |AUi | < |A| since AUi is a factor of A.
Conversely, let us fix an enumeration q1, q2, . . . , qm of the rejecting states of A, and suppose

that for all 1 ≤ i ≤ m there is an orbit-DFA AUi of A that covers qi and satisfies |AUi | < |A|.
Let (Ui.j)1≤j≤ni be an enumeration of the subsets in the orbit of Ui that contain the initial
state qI of A. We conclude the proof by showing that S = {AUi.j | 1 ≤ i ≤ m, 1 ≤ j ≤ ni} is
a decomposition of A. Note that we immediately get |AUi.j | = |AUi | < |A| for all 1 ≤ i ≤ m

and 1 ≤ j ≤ ni. Moreover, Proposition 3 implies L(A) ⊆
⋂

A′∈S L(A′). To complete the
proof, we show that

⋂
A′∈S L(A′) ⊆ L(A). Let w ∈ Σ∗ be a word rejected by A. To prove the

desired inclusion, we show that there is a DFA A′ ∈ S that rejects w. Since w /∈ L(A), the

1 Remark that for general DFAs we only get that q ∼ s implies δ(q, a) ∼ η(s, a) from the determinism. It
is the backward determinism of the permutation DFAs A and B′ that gives us the reverse implication.
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run of A on w starting from the initial state ends in a rejecting state qi, for some 1 ≤ i ≤ m.
By supposition the orbit-DFA AUi covers qi, hence the orbit of Ui contains a set U ′ ⊆ Q that
contains qi and no accepting state. Note that there is no guarantee that AUi rejects w: while
the set δ(Ui, w) contains qi, it is not necessarily equal to U ′, and might contain accepting
states. However, as A is a permutation DFA, we can reverse all of the transitions of A to get
a path labeled by the reverse of w that starts from U ′ (that contains qi), and ends in one of
the sets Ui.j (that contains qI).2 Therefore, by reversing this path back to normal, we get
that δ(Ui.j , w) = U ′, hence the orbit-DFA AUi.j ∈ S rejects w. Therefore, every word rejected
by A is rejected by an orbit-DFA A′ ∈ S, which shows that

⋂
A′∈S L(A′) ⊆ L(A). ◀

This powerful lemma allows us to easily determine whether a permutation DFA is composite
if we know its orbits. For instance, the DFA A depicted in Figure 3 is composite since the
orbit-DFA A{1,2,3} covers its five rejecting states. Following the proof of Lemma 7, we get
that (A{1,2,3}, A{1,5,6}) is a decomposition of A, and so is (A{1,2,6}, A{1,3,5}).

To conclude, we give an algorithm checking if a rejecting state is covered by an orbit-DFA.

▶ Lemma 8. Given a permutation DFA A and a rejecting state q, we can determine
the existence of an orbit-DFA that covers q in nondeterministic time O(k · |A|2), and in
deterministic time O(2kk · |A|2), where k is the number of rejecting states of A.

Proof. We can decide in NP whether there exists an orbit-DFA AU of A that covers p: we
non-deterministically guess among the set of rejecting states of A a subset U ′ containing p.
Then, we check in polynomial time that the orbit of U ′ is smaller than |A|. This property can
be checked in time O(|A|2). Since A is trim, in the orbit of U ′ there is a set U containing the
initial state of A. Moreover, since A is a permutation DFA, U and U ′ induce the same orbit.
Hence, p is covered by the orbit-DFA AU . Finally, we can make this algorithm deterministic
by searching through the 2k possible subsets U ′ of the set of rejecting states of A. ◀

3.2 Proof of Theorem 2
Thanks to the notion of orbit DFAs we are able to prove that a permutation DFA which has
a prime number of states with at least one accepting and one rejecting, is prime.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a trim permutation DFA with a state space Q of prime
size that contains at least one accepting state and one rejecting state. We show that the
only orbit of A smaller than |Q| is the trivial orbit {Q}. This implies that A cannot be
decomposed into its orbit-DFAs, which proves that A is prime by Lemma 5.

Let us consider a strict subset U1 ̸= ∅ of the state space Q, together with its orbit
CU1 = {U1, U2, . . . , Um}. We prove that m ≥ |Q|. First, we show that all the Ui have the
same size: since Ui is an element of the orbit of U1, there exists a word ui ∈ Σ∗ satisfying
δ(U1, ui) = Ui, and, as every word in Σ∗ induces via δ a permutation on the state space,
|Ui| = |δ(U1, ui)| = |U1|. Second, for every q ∈ Q, we define the multiplicity of q in CU1 as
the number λ(q) ∈ N of distinct elements of CU1 containing the state q. We show that all the
states q have the same multiplicity: since A is trim, there exists a word uq ∈ Σ∗ satisfying
δ(qI , uq) = q, hence uq induces via δ a bijection between the elements of CU1 containing qI

and those containing q, and λ(q) = λ(δ(qI , uq)) = λ(qI). By combining these results, we
obtain m · |U1| = Σm

i=1|Ui| = Σq∈Qλ(q) = λ(qI) · |Q|. Therefore, as |Q| is prime by supposition,
either m or |U1| is divisible by |Q|. However, U1 ⊊ Q, hence |U1| < |Q|, which shows that m

is divisible by |Q|. In particular, we get m ≥ |Q|, which concludes the proof. ◀

2 Remark that, if A is not a permutation DFA, then some states might not have incoming transitions for
every letter. Thus, the reversal of w might not be defined.
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4 Decompositions of Commutative Permutation DFAs

We now study commutative permutation DFAs: a DFA A = ⟨Σ, Q, qI , δ, F ⟩ is commutative if
δ(q, uv) = δ(q, vu) for every state q and every pair of words u, v ∈ Σ∗. Our main contribution
is an NL algorithm for the Decomp problem for commutative permutation DFAs. Moreover,
we show that the complexity goes down to LOGSPACE for alphabets of fixed size.

▶ Theorem 9. The Decomp problem for commutative permutation DFAs is in NL, and in
LOGSPACE when the size of the alphabet is fixed.

The proof of Theorem 9 is based on the notion of covering word: a word w ∈ Σ∗ covers a
rejecting state q of a DFA A = ⟨Σ, Q, qI , δ, F ⟩ if δ(q, w) ̸= q, and for every λ ∈ N, the state
δ(q, wλ) is rejecting. We prove two related key results:

A commutative permutation DFA is composite if and only if each of its rejecting states is
covered by a word (Lemma 12).
We can decide in NL (LOGSPACE when the size of the alphabet is fixed) if a given rejecting
state of a DFA is covered by a word (Lemma 13, and Algorithm 2 in appendix)

These results immediately imply Theorem 9. We conclude this section by showing an upper
bound on the width and constructing a family of DFAs of polynomial width.

▶ Theorem 10. The width of every composite permutation DFA is smaller than its size.
Moreover, for all m, n ∈ N such that n is prime, there exists a commutative permutation
DFA of size nm and width (n − 1)m−1.

We show that the width of a commutative permutation DFA is bounded by its number of
rejecting states (Lemma 12). Then, for each m, n ∈ N with n prime, we define a DFA Am

n

of size nm that can be decomposed into (n − 1)m−1 factors (Proposition 14), but not into
(n − 1)m−1 − 1 (Proposition 15).

4.1 Proof of Theorem 9
The proof is based on the following key property of commutative permutation DFAs: In a
permutation DFA A, every input word acts as a permutation on the set of states, generating
disjoint cycles, and if A is commutative these cycles form an orbit.

▶ Proposition 11. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a commutative permutation DFA. For all
u ∈ Σ∗, the sets ({δ(q, uλ) | λ ∈ N})q∈Q partition Q and form an orbit of A.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a commutative permutation DFA. Given u ∈ Σ∗ and
q ∈ Q, the sequence of states δ(q, u), δ(q, u2), . . . , δ(q, ui) visited by applying δ on iterations
of u eventually repeats i.e. δ(q, ux) = δ(q, uy) = p for some x, y ∈ N and p ∈ Q. Since A is a
permutation DFA, it is both forward and backward deterministic, thus the set of visited states
{δ(q, uλ) | λ ∈ N} is a cycle that contain both p and q. The collection ({δ(q, uλ) | λ ∈ N})q∈Q

forms an orbit of A by commutativity. Formally, for all u, v ∈ Σ∗ and every q ∈ Q, we have:
δ({δ(q, uλ)|λ ∈ N}, v) = {δ(q, uλv)|λ ∈ N} = {δ(q, vuλ)|λ ∈ N} = {δ(δ(q, v), uλ)|λ ∈ N}. ◀

We proved with Corollary 6 and Lemma 7 that a permutation DFA is composite if and
only if each of its rejecting states is covered by an orbit-DFA. We now reinforce this result
for commutative permutation DFAs. As stated before, we say that a word u ∈ Σ∗ covers
a rejecting state q of a DFA A = ⟨Σ, Q, qI , δ, F ⟩ if u induces from q a non-trivial cycle
composed of rejecting states: δ(q, u) ̸= q, and δ(q, uλ) is rejecting for all λ ∈ N. Note that
the collection ({δ(q, uλ) | λ ∈ N})q∈Q forms an orbit of A by Proposition 11. We show that
we can determine if A is composite by looking for words covering its rejecting states.
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▶ Lemma 12. For every k ∈ N, a commutative permutation DFA A is k-factor composite if
and only if there exist k words that, together, cover all the rejecting states of A.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a commutative permutation DFA and k ∈ N. We start
by constructing k factors based on k covering words. Suppose that there exist k words
u1, u2, . . . , uk such that every rejecting state q ∈ Q \ F is covered by one of the ui. Note that
all the ui covering at least one state q do not act as the identity on Q (since δ(q, ui) ̸= q),
therefore we suppose, without loss of generality, that none of the ui acts as the identity
on Q. For every 1 ≤ i ≤ k, let Ui = {δ(qI , uλ

i ) | λ ∈ N}. We show that (AUi)1≤i≤k is a
decomposition of A. As none of the ui acts as the identity on Q, Proposition 11 implies that
every AUi is smaller than A. Moreover, Proposition 3 implies that L(A) ⊆ L(AUi), hence
L(A) ⊆

⋂k
j=1 L(AUj ). To conclude, we show that

⋂k
j=1 L(AUj ) ⊆ L(A). Let u /∈ L(A). By

supposition, there exists 1 ≤ i ≤ k such that ui covers δ(qI , u). As a consequence, the set

δ(Ui, u) = δ({δ(qI , uλ
i ) | λ ∈ N}, u) = {δ(qI , uλ

i u) | λ ∈ N} = {δ(qI , uuλ
i ) | λ ∈ N}

= {δ(δ(qI , u), uλ
i ) | λ ∈ N}

contains no accepting state of A, hence it is a rejecting state of AUi . As a consequence, we
get u /∈ L(AUi) ⊇

⋂k
j=1 L(AUj ), which proves that

⋂k
j=1 L(AUj ) ⊆ L(A).

We now construct k covering words based on k factors. Suppose that A has a k-
factor decomposition (Bi)1≤i≤k. Lemma 4 directly implies that this decomposition can
be transformed into a decomposition (Ci)1≤i≤k of A, where Ci = ⟨Σ, Si, si

I , ηi, Gi⟩ are
permutation DFAs. For every 1 ≤ i ≤ k, we build a word ui based on Ci, we prove that every
rejecting state of A is covered by one of these ui. Consider 1 ≤ i ≤ k. Since Ci is a factor
of A, in particular |Ci| < |A|, hence there exist two input words vi, wi ∈ Σ∗ such that A
reaches different states on vi and wi, but Ci reaches the same state: δ(qI , vi) ̸= δ(qI , wi) but
ηi(si

I , vi) = ηi(si
I , wi). Note that both A and Ci are permutation DFAs, hence there exists a

power vκi
i of vi that induces the identity function on both state spaces Q and Si. We set

ui = wiv
κi−1
i , which guarantees that:

δ(qI , ui) = δ(δ(qI , wi), vκi−1
i ) ̸= δ(δ(qI , vi), vκi−1

i ) = δ(qI , vκi
i ) = qI ;

ηi(si
I , ui) = ηi(ηi(si

I , wi), vκi−1
i ) = ηi(ηi(si

I , vi), vκi−1
i ) = ηi(si

I , vκi
i ) = si

I .

In other words, ui moves the initial state qI of A, but fixes the initial state si
I of Ci.

We now prove that each rejecting state of A is covered by one of the ui. Let q ∈ Q \ F be
a rejecting state of A. Since A is trim, there exists a word uq ∈ Σ∗ such that δ(qI , uq) = q.
Then, as uq /∈ L(A) and (Ci)1≤i≤k is a decomposition of A, there exists 1 ≤ i ≤ k such that
uq /∈ L(Ci). We show that the word ui covers the rejecting state q: we prove that δ(q, ui) ̸= q,
and that δ(q, uλ

i ) is rejecting for every λ ∈ N. First, since A is a commutative permutation DFA
and ui moves qI , we get that δ(q, ui) = δ(qI , uqui) = δ(qI , uiuq) ̸= δ(qI , uq) = q. Moreover,
for all λ ∈ N, Since uq /∈ L(Ci) by supposition and ui fixes si

I , the DFA Ci also rejects the word
uλ

i uq. Therefore, as L(A) ⊆ L(Ci), we finally get that δ(q, uλ
i ) = δ(qI , uquλ

i ) = δ(qI , uλ
i uq) is

a rejecting state of A. ◀

By Lemma 12, to conclude the proof of Theorem 9 we show that we can decide in NL
(and in LOGSPACE when the size of the alphabet is fixed) whether a given rejecting state of
a DFA is covered by a word (since in the Decomp problem we can afford to pick a covering
word for each state). As we consider commutative permutation DFAs, we can represent a
covering word by the number of occurrences of each letter, which are all bounded by |Q|.

▶ Lemma 13. Let A be a commutative permutation DFA and p a rejecting state.
1. We can determine the existence of a word covering p in space O(|Σ| · log |Q|);
2. We can determine the existence of a word covering p in NL;
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Figure 4 The DFA A2
5 recognising the language L2

5, together with its decomposition into four
non-trivial orbit-DFAs. Final states are depicted in black.

4.2 Proof of Theorem 10
As a direct consequence of Lemma 12, the width of every commutative permutation DFA A
is bounded by the number of rejecting states of A, hence, it is smaller than |A|. To conclude
the proof of Theorem 10, for all m, n ∈ N with n prime, we define a DFA Am

n of size nm

and width (n − 1)m−1 on the alphabet Σ = {a1, a2, . . . , am}. For all ℓ ∈ N, let [ℓ] denote the
equivalence class of ℓ modulo n. Let Lm

n ⊆ Σ∗ be the language composed of the words w

such that for at least one letter ai ∈ Σ the number #ai(w) of ai in w is a multiple of n, and
for at least one (other) letter aj ∈ Σ, the number #aj

(w) of aj in w is not a multiple of n:

Lm
n = {w ∈ Σ∗ | [#ai

(w)] = [0] and [#aj
(w)] ̸= [0] for some 1 ≤ i, j ≤ m}.

The language Lm
n is recognised by a DFA Am

n of size nm that keeps track of the value modulo
n of the number of each ai already processed. The state space of Am

n is the direct product
(Z/nZ)m of m copies of the cyclic group Z/nZ = ([0], [1], . . . , [n − 1]); the initial state is
([0], [0], . . . , [0]); the final states are the ones containing at least one component equal to [0] and
one component distinct from [0]; and the transition function increments the ith component
when an ai is read: δ(([j1], [j2], . . . , [jm]), ai) = ([j1], [j2], . . . , [ji−1], [ji + 1], [ji+1], . . . , [jm]).
Figure 4 illustrates the particular case n = 5 and m = 2.

To prove that the width of Am
n is (n − 1)m−1, we first show that the (n − 1)m−1 words

{a1aλ2
2 . . . aλm

m | 1 ≤ λi ≤ n − 1} cover all the rejecting states, thus by Lemma 12:

▶ Proposition 14. The DFA Am
n is (n − 1)m−1-factor composite.

Then, we prove that there exist no word that covers two states among the (n − 1)m−1

rejecting states {([1], [k2], [k3], . . . , [km]) | 1 ≤ ki ≤ m − 1}. Therefore, we need at least
(n − 1)m−1 words to cover all of the states, thus by Lemma 12:

▶ Proposition 15. The DFA Am
n is not ((n − 1)m−1 − 1)-factor composite.

5 Bounded Decomposition

We finally study the Bound-Decomp problem: Given a DFA A and an integer k ∈ N encoded
in unary, can we determine whether A is decomposable into k factors? For the general
setting, we show that the problem is in PSPACE: it can be solved by non-deterministically
guessing k factors, and checking that they form a decomposition.
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18:12 Decomposing Permutation Automata

▶ Theorem 16. The Bound-Decomp problem is in PSPACE.
For commutative permutation DFAs, we obtain a better algorithm through the use of the

results obtained in the previous sections, and we show a matching hardness result.

▶ Theorem 17. The Bound-Decomp problem for commutative permutation DFAs is NP-
complete.
Both parts of the proof of Theorem 17 are based on Lemma 12: a commutative permutation
DFA is k-factor composite if and only if there exist k words covering all of its rejecting states.
We prove the two following results:

Bounded compositionnality is decidable in NP, as it is sufficient to non-deterministically
guess a set of k words, and check whether they cover all rejecting states (Lemma 19);
The NP-hardness is obtained by reducing the Hitting Set problem, a well known NP-
complete decision problem. We show that searching for k words that cover the rejecting
states of a DFA is as complicated as searching for a hitting set of size k (Lemma 20).

We finally give a LOGSPACE algorithm based on known results for DFAs on unary alphabets [7].

▶ Theorem 18. The Bound-Decomp problem for unary DFAs is in LOGSPACE.

Sketch. Recall that a unary DFA A = ⟨{a}, Q, qI , δ, F ⟩ consists of a chain of states leading
into one cycle of states. The case where the chain is non-empty is considered in Lemmas 8
and 10 of [7]. We prove that the criteria of these lemmas can be checked in LOGSPACE. If
the chain of A is empty, then A is actually a commutative permutation DFA. In this case,
by Proposition 11 for every word u = ai ∈ {a}∗, the orbit of the set {δ(qI , uλ) | λ ∈ N}
is a partition ρ on Q, and every set in ρ has the same size sρ. Both sρ and |ρ| divide |Q|.
For u = ai where i and |Q| are co-prime, the induced orbit DFA has a single state and thus
cannot be a factor of A. Further, if i1 < |Q| divides i2 < |Q|, then all states covered by ai1

are also covered by ai2 . Hence, w.l.o.g., we only consider words of the form ai where i is
a maximal divisor of |Q| in order to generate orbit-DFAs of A that are candidates for the
decomposition. Now, let pj1

1 · pj2
2 · . . . · pjm

m = |Q| be the prime factor decomposition of |Q|.
By Lemma 12 we have that A is k-factor composite if and only if a selection of k words
from the set W = {a|Q|/pi | 1 ≤ i ≤ m} cover all the rejecting states of A. As |W| = m is
logarithmic in |Q|, we can iterate over all sets in 2W of size at most k in LOGSPACE using a
binary string indicating the characteristic function. By Lemma 13, checking whether a state
q ∈ Q is covered by the current collection of k words can also be done in LOGSPACE. ◀

5.1 Proof of Theorem 17
By Lemma 12, a commutative permutation DFA A is k-factor composite if and only if its
rejecting states can be covered by k words. As we can suppose that covering words have size
linear in |A| (see proof of Lemma 13), the Bound-Decomp problem is decidable in NP: we
guess a set of k covering words and check in polynomial time if they cover all rejecting states.

▶ Lemma 19. The Bound-Decomp problem for commutative permutation DFAs is in NP.

We show that the problem is NP-hard by a reduction from the Hitting Set problem.

▶ Lemma 20. The Bound-Decomp problem is NP-hard for commutative permutation DFAs.

Proof. The proof goes by a reduction from the Hitting Set problem (HIT for short), known
to be NP-complete [4]. The HIT problem asks, given a finite set S = {1, 2, . . . , n} ⊆ N, a
finite collection of subsets F = {C1, C2, . . . , Cm} ⊆ 2S , and an integer k ∈ N, whether there
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Figure 5 DFA representing the instance of HIT with S = {1, 2} and F = {{1}, {1, 2}, {2}} using
µ = 3 and τ = 5. Accepting states are filled black while rejecting states are sectored.

is a subset X ⊆ S with |X| ≤ k and X ∩ Ci ̸= ∅ for all 1 ≤ i ≤ m. We describe how to
construct a DFA A = ⟨Σ, Q, qI , δ, F ⟩ that is (k + 1)-factor composite if and only if the HIT
instance ⟨S, F , k⟩ has a solution.

Automaton construction. To be constructed, the automaton A requires µ, τ defined as
the smallest prime numbers that fulfill n < µ and m < τ and 2 < µ < τ . By Bertrand’s
postulate [11], µ and τ have a value polynomial in m + n. The state space of A is defined as
Q = {0, 1, . . . , µ − 1} × {0, 1, . . . , µ − 1} × {0, 1, . . . , τ − 1} × {0, 1} with qI = (0, 0, 0, 0) as
initial state. Let us define the subset of states Q⊥ = {(q1, q2, q3, q4) ∈ Q | q4 = 0} to encode
instances of HIT and the subset Q⊤ = {(q1, q2, q3, q4) ∈ Q | q4 = 1} which is a copy of Q⊥
with minor changes. The example in Figure 5 gives some intuition on the construction of A.
The DFA A is defined over the alphabet Σ = {a, b, c, d} with the transition function defined
for each state q = (q1, q2, q3, q4) by δ(q, a) = (q1 + 1 mod µ, q2, q3, q4), δ(q, b) = (q1, q2 + 1
mod µ, q3, q4), δ(q, c) = (q1, q2, q3 + 1 mod τ, q4) and δ(q, d) = (q1, q2, q3, q4 + 1 mod 2).
Note that, A can be seen as a product of four prime finite fields. In particular, for every
q3 ∈ {0, . . . , τ −1} the subset of states {(x, y, q3, 0) ∈ Q⊥ | 0 ≤ x, y ≤ µ−1} can be seen as the
direct product of two copies of the field of order µ (a.k.a. Fµ), thus inheriting the structure of
a Fµ-vector space of origin (0, 0, q3, 0). We use these τ disjoint vector spaces to represent the
collections of F thanks to the acceptance of states. More precisely, each collection Ci ∈ F is
encoded through the vector space {(x, y, i, 0) ∈ Q⊥ | 1 ≤ i ≤ m} and each v ∈ Ci is encoded
by the non-acceptance of all states belonging to the line {(x, y, i, 0) ∈ Q⊥ | y = vx mod µ}.
In Figure 5, each Ci is presented by an instance of F3 × F3 and each v ∈ Ci is depicted by
rejecting states with the same emphasized sector. Since τ > m, there are extra vector spaces
for which all states are accepting i.e. {(q1, q2, q3, 0) ∈ Q⊥ | q3 /∈ {1, 2, . . . , m}} ⊆ F . The
acceptance of states of Q⊤ is defined similarly as for Q⊥ except that the origins of vector
spaces are accepting in Q⊤ (see Figure 5). Formally, the rejecting states of A is defined by
F = R⊥ ∪ R⊤ where R⊥ = {(q1, q2, q3, 0) ∈ Q⊥ | q2 = vq1 mod µ, 1 ≤ q3 ≤ m, v ∈ Cq3}
and R⊤ = {(q1, q2, q3, 1) ∈ Q⊤ | (q1, q2, q3, 0) ∈ R⊥, q1 ̸= 0, q2 ̸= 0}. All other states are
accepting, i.e., we set F = Q \ F . So, the acceptance of the subsets of states Q⊥ and Q⊤
only differ by O ∩ Q⊥ ⊆ F and O ∩ Q⊤ ⊆ F where O = {(0, 0, q3, q4) ∈ Q | q3 ∈ {1, . . . , m}}.

The cornerstone which holds the connection between the two problems is the way the
rejecting states of O can be covered. In fact, since Q⊤ mimics Q⊥ for states in Q \ O, all
rejecting states of Q \ O can be covered by the single word d ∈ Σ. In addition, most words do
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18:14 Decomposing Permutation Automata

not cover any rejecting states of A, as stated by the following claim. Hereafter, we say that
a word w ∈ Σ∗ is concise when it satisfies #σ(w) < hσ for all σ ∈ Σ, where hσ ∈ {2, µ, τ} is
the size of the cycle induced by σ.

▷ Claim 21. Let u ∈ Σ∗ be a concise word that covers some rejecting state of A:
1. u must belong either in {d}∗ or in {a, b}∗ \ ({a}∗ ∪ {b}∗).
2. u covers some rejecting state of Q⊤ iff u covers all rejecting states of Q⊤ iff u = d.
3. u covers (0, 0, i, 0) ∈ O iff u ∈ {a, b}∗ and #b(u) ≡ v · #a(u) mod µ for some v ∈ Ci.

Proof of Item 1. The statement is a direct consequence of the following:
i. Every concise word u satisfying #c(u) > 0 covers no rejecting state of A;
ii. Every concise word u ∈ {a}∗ ∪ {b}∗ covers no rejecting state of A;
iii. Every concise word u satisfying #a(u) > 0 and #d(u) > 0 covers no rejecting state of A;
iv. Every concise word u satisfying #b(u) > 0 and #d(u) > 0 covers no rejecting state of A.
In order to prove these four properties, we now fix a state q = (q1, q2, q3, q4) ∈ Q, and we
show that, in each case, iterating a word of the corresponding form starting from q will
eventually lead to an accepting state:

(i.) Let u be a concise word satisfying #c(u) > 0. Since u is concise we have #c(u) < τ .
Hence, as τ is prime, there exists λ ∈ N such that λ · #c(u) ≡ −q3 mod τ . Therefore the
third component of δ(q, uλ) is 0, thus it is an accepting state of A.

(ii.) Let u ∈ {a}∗ be a concise word (if u ∈ {b}∗ instead, the same proof works by
swapping the roles of q1 and q2). Since u is concise we have 0 < #a(u) < µ. Hence, as µ is
prime there exists λ1, λ2 ∈ N satisfying λ1 · #a(u) ≡ −q1 mod µ and λ2 · #a(u) ≡ −q1 + 1
mod µ. Therefore, if q2 ≠ 0, we get that δ(q, uλ1) = (0, q2, q3, q4) is an accepting state of A,
and if q2 = 0, we get that δ(q, uλ2) = (1, 0, q3, q4) is an accepting state of A.

(iii.) Let u be a concise word satisfying #a(u) > 0 and #d(u) > 0. Since µ is a prime
number greater than 2, there exist α ∈ N such that µ − 2α = 1, thus 2α ≡ −1 mod µ.
Moreover, since u is concise we have #d(u) = 1 and #a(u) < µ. Hence there exists β ∈ N
such that β · #a(u) ≡ 1 mod µ. Therefore, if we let λ = 2αβq1 + µ(1 − p4), we get

#a(uλ) = 2α · β#a(u) · q1 + µ(1 − p4) · #a(u) ≡ −q1 mod µ;
#d(uλ) = 2αβq1 + µ · (1 − p4) ≡ 1 − p4 mod 2;

As a consequence, the first component of δ(q, uλ) is 0 and its fourth component is 1, hence it
is an accepting state of A.

(iv.) Let u be a concise word satisfying #b(u) > 0 and #d(u) > 0. Then we can prove
that u does not cover q as in point (3), by swapping the roles of q1 and q2. ◁

Proof of Item 2. First, remark that d is the only concise word of {d}∗. By construction of A,
we have (q1, q2, q3, 0) ∈ F if and only if (q1, q2, q3, 1) ∈ F holds for all (q1, q2, q3, q4) ∈ Q \ O.
Thus, for all (q1, q2, q3, q4) ∈ F \ O we have

{δ((q1, q2, q3, q4), dλ) | λ ∈ N} = {(q1, q2, q3, x) | x ∈ {0, 1}} ⊆ F .

Hence, if u = d then u covers all rejecting states of of Q⊤.
Now suppose that u ∈ Σ∗ covers some rejecting state q = (q1, q2, q3, 1) ∈ Q⊤. By Item (1.),

either u ∈ {d}∗ or u ∈ {a, b}∗ \ ({a}∗ ∪ {b}∗). We show that u ∈ {d}∗, by supposing that
#a(u) > 0 and deriving a contradiction. Since µ is prime, there exists λ ∈ N satisfying
λ · #a(u) ≡ −q1 mod µ. Therefore the first component of δ(q, uλ) is 0 and its fourth
component is 1, hence it is accepting, which contradicts the assumption that u covers q. ◁
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Proof of Item 3. Consider a rejecting state q = (0, 0, i, 0) ∈ O. First, remark that no word in
{d}∗ covers q since (0, 0, i, 1) is accepting. Therefore, by Item (1.), the only concise words
that can cover q are the words u ∈ {a, b}∗ \ ({a}∗ ∪{b}∗). For such a word u, since µ is prime,
by Bezout’s identity there exists 0 < v < µ satisfying #b(x) ≡ v · α#a(x) mod µ, hence

{δ((0, 0, i, 0), uλ) | λ ∈ N} = {(q1, q2, i, 0) ∈ Q | q2 ≡ vq1 mod µ}.

If v ∈ Ci, all the states in this set are rejecting, thus u covers (0, 0, i, 0), but if v /∈ Ci, all
these states except from (0, 0, i, 0) are accepting, thus u does not cover (0, 0, i, 0). ◁

We finally conclude the proof of Lemma 20 by proving that the sets of the initial instance
of HIT are hitting if and only if the automaton A is composite.

If sets are hitting then the automaton is composite. Thanks to Lemma 12, we can show
that A is (k + 1)-factor composite by finding (k + 1) words, namely w⊤, w1, w2, . . . , wk, which
all together cover all the rejecting states of A. From the HIT solution X = {v1, v2, . . . , vk} ⊆ S,
we define wj = abvj for all 1 ≤ j ≤ k. We prove now that for all 1 ≤ i ≤ m, the rejecting state
(0, 0, i, 0) ∈ O is covered by some wj . Since X ∩ Ci ̸= ∅, there exists vj ∈ X ∩ Ci. Moreover,
by definition of wj , we have wj ∈ {a, b}∗ and #b(wj) ≡ vj · #a(wj) mod µ. Therefore, by
Claim 21.3, (0, 0, i, 0) is covered by wj . Finally, we take w⊤ = d which covers all rejecting
states F \ O by Claim 21.2.

If the automaton is composite then the sets are hitting. Suppose that A is (k + 1)-factor
composite. Hence, by Lemma 12, there exists a set W of at most k + 1 words such that
all rejecting states of A can be covered by some w ∈ W . In addition, we assume that each
w ∈ W is concise: if this is not the case, we can remove the superfluous letter to obtain
a concise words that cover the same rejecting states. As a consequence of Claim 21.2, to
cover the rejecting states of Q⊤, the set W needs the word d, thus W contains at most k

words in {a, b}∗. Moreover, by Claim 21.3, for every 1 ≤ i ≤ m, to cover (0, 0, i, 0) ∈ O the
set W needs a word ui ∈ {a, b}∗ satisfying #b(ui) ≡ vi · #a(ui) mod µ for some vi ∈ Ci.
To conclude, we construct X = {vi | 1 ≤ i ≤ m} which is a solution since |X| ≤ k due to
W ∩ {d}∗ ̸= ∅, and for each C ∈ F we have X ∩ C ̸= ∅. ◀

6 Discussion

We introduced in this work powerful techniques to treat the Decomp problem for permutation
DFAs. We discuss how they could help solving the related questions that remain open:

How do the insights obtained by our results translate to the general setting?
How can we use our techniques to treat other variants of the Decomp problem?

Solving the general setting. The techniques presented in this paper rely heavily on the
group structure of transition monoids of permutation DFAs, thus cannot be used directly
in the general setting. They still raise interesting questions: Can we also obtain an FPT
algorithm with respect to the number of rejecting states in the general setting? Some known
results point that bounding the number of states is not as useful in general as it is for
permutation DFAs: while it is known that every permutation DFA with a single rejecting
state is prime [9], there exist (non-permutation) DFAs with a single rejecting state that are
composite. However, we still have hope to find a way to adapt our techniques: maybe, instead
of trying to cover rejecting states, we need to cover rejecting behaviours of the transition
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monoid. Another way to improve the complexity in the general setting would be to bound
the width of DFAs: we defined here a family of DFAs with polynomial width, do there
exist families with exponential width? If this is not the case (i.e., every composite DFA has
polynomial width), we would immediately obtain a PSPACE algorithm for the general setting.

Variants of the Decomp problem. In this work, we focused on the Bound-Decomp
problem, that limits the number of factors in the decompositions. Numerous other restrictions
can be considered. For instance, the Fragmentation problem bounds the size of the factors:
Given a DFA A and k ∈ N, can we decompose A into DFAs of size smaller than k? Another
interesting restriction is proposed by the Compression problem, that proposes a trade-off
between limiting the size and the number of the factors: given a DFA A, can we decompose A
into DFAs (Ai)1≤i≤k satisfying Σn

i=1|Ai| < |A|? How do these problems compare to the ones
we studied? We currently conjecture that the complexity of the Fragmentation problem
matches the Decomp problem, while the complexity of the Compression problem matches
the Bound-Decomp problem: for commutative permutation DFAs, the complexity seems to
spike precisely when we limit the number of factors.
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A Algorithm: Section 3

Algorithm 1 NP-algorithm for the Decomp problem for permutation DFAs.

Function isComposite(A = ⟨Σ, Q, qI , δ, F ⟩ : permutation DFA)
foreach p ∈ Q \ F do

guess U with {p} ⊆ U ⊆ Q \ F /* guess rejecting state U of some
orbit-DFA, such that U contains rejecting state p of A */

if not cover(A, p, U) then return False
return True

Function cover(A = ⟨Σ, Q, qI , δ, F ⟩ : permutation DFA, p ∈ Q \ F , U ⊆ Q \ F)
Cold

U = ∅
CU := {U}
while CU ̸= Cold

U and |CU | < |Q| do
Cold

U := CU

CU := CU ∪ {δ(S, σ) | S ∈ CU , σ ∈ Σ}
if |CU | ≥ |Q| then return False /* check that orbit-DFA is factor */
foreach S ∈ CU do

if qI ∈ S then return True /* check that U is reachable from the
inital state of the orbit-DFA */

return False

CONCUR 2021

https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/BFb0023844


18:18 Decomposing Permutation Automata

B Algorithm: Section 4

Algorithm 2 Deterministic and non-deterministic version of the algorithm solving the
Decomp problem for commutative permutation DFAs.

Function isComposite(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA)
foreach p ∈ Q \ F do

cover_found:=False
foreach q ∈ Q \ F with q ̸= p do

if cover(A, p, q) then cover_found:=True /* covering p with wp,q */

if not cover_found then return False /* no cover found for p */

return True /* all state p are covered */

Function cover(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA, p, q ∈ Q \ F)
s := q

while s ̸= p do /* eventually s = p A is a permuation DFA */
s := mimic(p, q, s) /* thus s := δ(s, wp,q) */
if s ∈ F then return False /* contradiction of covering */

return True /* encountered p again without hitting state in F */

Function mimic(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA,
p, q, s ∈ Q \ F)

Assumption: |Σ| is fixed, let Σ = {σ1, σ2, . . . , σm}
foreach 1 ≤ x1 + · · · + x|Σ| ≤ |Q| do /* possible since |Σ| is fixed */

if δ(p, σx1
1 σx2

2 . . . σxm
m ) = q then return δ(s, σx1

1 σx2
2 . . . σxm

m )

Function mimic(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA,
p, q, s ∈ Q \ F)

Assumption: this algorithm is allowed to use non-determinism
p′ := p, ℓ := 0
while p′ ̸= q and ℓ < |Q| do

guess σ ∈ Σ /* iteratively contruct wp,q of length ℓ */
p′ := δ(p′, σ), s := δ(s, σ), ℓ := ℓ + 1

if ℓ = |Q| then return error else return s /* check q = δ(p, wp,q) */
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C Algorithms: Section 5

Algorithm 3 LOGSPACE-algorithm solving the Bound-Decomp problem for unary DFAs.

Function isBoundedComposite(A = ⟨{a}, Q, qI , δ, F ⟩ : unary DFA, integer k)
if A is permutation DFA then

foreach binaryString wordCombination ∈ {0, 1}log |Q| with ≤ k ones do
/* wordCombination represents current set in 2W */

if testWordCombination(A, wordCombination) then return True
/* Set of words covering all rejecting states found */

return False /* No covering set found */
else

call [7, Algorithm 1]

Function testWordCombination(A = ⟨{a}, Q, qI , δ, F ⟩ : unary DFA,
wordCombination : binaryString)

foreach q ∈ Q \ F do
if not cover (A, q, wordCombination) then return False /* Found state
not covered by current set */

return True
Function coverBySet(A = ⟨{a}, Q, qI , δ, F ⟩ : unary DFA, q ∈ Q \ F ,
wordCombination : binaryString)

foreach int i with wordCombination[i] ?= 1 do /* Go through all ≤ k

words in the set and test if q is covered */
compute p1 := i’th prime divisor of |Q|
if cover(A, q, δ(q, a|Q|/pi)) then return True /* Function cover from
Algorithm 2 */

return False

Algorithm 4 NP-algorithm solving the Bound-Decomp problem for commutative per-
mutation DFAs.

Function isBoundedComposite(commutative permutation DFA A, integer k)
guess W := {wi ∈ Σ≤|Q| | i ≤ k}
foreach p ∈ Q \ F do

if not cover(A, p, W) then return False /* Some p not covered? */

return True /* all p are covered */

Function cover(commutative permutation DFA A, state p, set of words W)
foreach wi ∈ W do

compute Qq,wi
:= {δ(q, wλ

i ) | λ ≤ |Q|}
if Qq,wi

∩ F = ∅ then return True
return False
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Abstract
We study connections among polynomials, differential equations and streams over a field K, in terms
of algebra and coalgebra. We first introduce the class of (F, G)-products on streams, those where
the stream derivative of a product can be expressed as a polynomial of the streams themselves
and their derivatives. Our first result is that, for every (F, G)-product, there is a canonical way
to construct a transition function on polynomials such that the induced unique final coalgebra
morphism from polynomials into streams is the (unique) K-algebra homomorphism – and vice-versa.
This implies one can reason algebraically on streams, via their polynomial representation. We apply
this result to obtain an algebraic-geometric decision algorithm for polynomial stream equivalence,
for an underlying generic (F, G)-product. As an example of reasoning on streams, we focus on
specific products (convolution, shuffle, Hadamard) and show how to obtain closed forms of algebraic
generating functions of combinatorial sequences, as well as solutions of nonlinear ordinary differential
equations.
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1 Introduction

We investigate a connection among polynomials, differential equations and streams, i.e.,
infinite sequences of elements from a set [20]. At a very informal level, this connection can be
expressed by the following correspondences: polynomials = syntax; differential equations =
operational semantics; streams = abstract (denotational) semantics. There are two important
motivations behind this standpoint. (1) Diverse notions of product (convolution, shuffle,...)
arise in streams, in relation to different models – discrete computations, combinatorial
sequences, analytic functions, and more [4, 20]. There is also a close analogy between
several forms of products and forms of parallelism arising in concurrency. Our aim is to
uniformly accommodate such diverse notions, by automatically deriving an operational
semantics for polynomials that is adequate for a given generic stream product. (2) Once
adequate polynomial syntax and operational semantics have been obtained, one can apply
powerful techniques both from algebraic geometry (Gröbner bases [12]) and from coalgebra
(coinduction [20]) for reasoning on streams. This includes devising algorithms for deciding
stream equivalence. Again, one would like to do so in a uniform fashion w.r.t. an underlying
notion of stream product.

Technically, achieving these goals amounts to defining a fully abstract semantics from
polynomials to streams, which is essential for algebraic-geometric reasoning on streams.
Moreover, one wants the resulting construction to be as much as possible parametric with
respect to the underlying notion of stream product.
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As hinted above, we will pursue these goals relying on tools from algebra and coalgebra
(Section 2). Indeed, it is well-known that, when polynomial coefficients and stream elements
are drawn from a field K, both polynomials and streams form K-algebras, i.e., rings with an
additional vector space structure over K. Note that, while this algebra structure is fixed for
polynomials, it varies with the underlying product for streams. On the other hand, streams
also possess a coalgebraic structure, arising from the operation of stream derivative. On
the side of polynomials, it is also natural to interpret a differential equation ẋi = pi as a
transition xi → pi: thus one expects a transition structure, hence a coalgebra, over over
polynomials as well. How to extend appropriately transitions from individual variables xi to
monomials and polynomials, though, depends nontrivially on the notion of stream product
one wants to model.

Our first result (Section 3) is that the above outlined goals can be achieved for the class
of (F, G)-products on streams, where, basically, the derivative of a product of two streams
can be expressed as a polynomial of the streams themselves and their derivatives. One can
then define a coalgebra structure on polynomials, depending on the given (F, G)-product and
differential equations, such that the unique morphism from this coalgebra to the coalgebra
of streams is also a K-algebra homomorphism (and vice-versa: every homomorphism that
satisfies the given differential equations is the unique morphism). Thus, full abstraction is
achieved.

A major application of this result, which we view as our main contribution, is an algorithm
based on an algebraic-geometric construction for deciding equivalence, i.e. if two polynomials
denote the same stream (Section 4). Next, focusing on specific (F, G)-products (convolution,
shuffle and Hadamard; Section 5), we show how establishing polynomial (algebraic) equalities
on streams may lead to closed forms for generating functions of combinatorial sequences [13],
and to solutions of nonlinear ordinary differential equations (ODEs). In the case of convolution
product, we also show that the image of the coalgebra morphism is included in the set of
algebraic sequences in the sense of [13].

To sum up, we make the following contributions. (1) A unifying treatment of stream
products, implying that, under reasonable assumptions, coalgebra morphisms from polyno-
mials to streams are also K-algebra homomorphisms (full abstraction) – and viceversa. (2)
An algorithm for deciding polynomial stream equivalence, that relies on the full abstraction
result. (3) Based on that, methods for reasoning on generating functions and ordinary
differential equations.

Due to space limitations, most proofs, as well as additional technical material, have been
omitted and can be found in the full version of this paper [11].

Related work. Rutten’s stream calculus [20, 21], a coinductive approach to the analysis
of infinite sequences (streams), is a major source of inspiration for our work. [20] studies
streams, automata, languages and formal power series in terms of coalgebra morphisms and
bisimulation. In close analogy with classical analysis, [21] presents coinductive definitions
and proofs for a calculus of behavioural differential equations, also called stream differential
equations (SDEs) in later works. A number of applications to difference equations, analytical
differential equations, continued fractions and problems from combinatorics, are presented.
Convolution and shuffle product play a central role in the stream calculus; a duality between
them, mediated by a variation of Laplace transform, exists. This duality also plays a role in
our work in relation to generating functions and solutions of ODEs (Section 5). A coinductive
treatment of analytic functions and Laplace transform is also presented by Escardo and
Pavlovic [19]. Basold et al. [4] enrich the stream calculus with two types of products,
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Hadamard and infiltration, and exhibit a duality between the two, mediated by a so-called
Newton transform. Although these works form a conceptual prerequisite of our study, they
do not offer a unifying treatment of the existing disparate notions of stream product, nor
any algorithmic treatment of the induced stream equivalences. Bonchi et al. [5] consider
an operational approach to streams and convolution product based on weighted automata,
which correspond to linear expressions. They offer an equivalence checking algorithm for such
automata, and the recognized streams, based on a linear-algebraic construction; however,
the polynomial case is not addressed. A related work is Bonchi et al. [3], where it is shown
how linear algebra and fractions can be used to decide the equality of streams specified by
linear SDEs. Here, differently from them, we can also work with polynomial SDEs.

Most closely related to the present work is Hansen, Kupke and Rutten’s [14]. There
the authors prove that, when the SDEs defining given operations on streams obey a GSOS
syntactic format, then the final coalgebra morphism is also a homomorphism from the
free term algebra to the algebra (w.r.t. the given operations) of streams [14, Sect.8]. In
contrast, we work with the algebra of polynomials, which besides being a ring and vector
space over K, possesses additional structure arising from monomials. All this structure is
essential for algebraic-geometric reasoning, and sets our approach apart from those based
on term algebras: for one thing, in term algebras there is no obvious analog of Hilbert’s
basis theorem, a result deeply related to the well-ordering of monomials (cf. Dickson’s
lemma, [12, Ch.2]), and a crucial ingredient in our decision algorithm. One might consider
more complicated GSOS frameworks enriched with equational theories, but even so we doubt
one could naturally capture the relevant polynomial structure, in particular as arising from
monomials. Nevertheless, a thorough exploration of these issues is an interesting direction
for future research.

The GSOS format has also been discussed in the framework of bialgebras [14, Sect.9].
Bialgebras are a unified categorical framework that encompass both algebras, viewed as a
way of modeling syntax, and coalgebras, viewed as way of describing behaviours; see [16]
for a general introduction. The theory of bialgebras is very abstract in spirit, and it is not
immediate to pinpoint concrete relations to our results. Furthermore, it requires a substantial
background in category theory, which we have preferred to avoid here so as to keep our
approach as elementary and accessible as possible. In any case, we anticipate for bialgebras
similar difficulties to those discussed above for term algebras. For these reasons, we have
preferred to leave the exploration of connections with bialgebras for future work.

Somewhat related to ours is the work of Winters on coalgebra and polynomial systems: see
e.g. [23, Ch.3]. Importantly, Winter considers polynomials in noncommuting variables: under
suitable assumptions, this makes his systems of equations isomorphic to certain context-free
grammars; see also [17]. The use of noncommuting variables sets Winter’s treatment in a
totally different mathematical realm, where the algebraic geometric concepts we rely on here,
like ideals and Gröbner bases, are not applicable.

We also mention [7, 10], that adopt a coinductive approach to reason on polynomial ODEs.
The ring of multivariate polynomials is employed as a syntax, with Lie derivatives inducing
a transition structure. An algebraic-geometric algorithm to decide polynomial equivalence is
presented. This algorithm as well has inspired our decision method: in particular, as Lie
derivatives are precisely the transition structure induced in our framework by the shuffle
product, the decision algorithms of [7, 10] are in essence a special case of our algorithm
in Section 4. Furthermore, [8, 9] extend the framework of [7, 10] to polynomial partial
differential equations, which pose significative additional challenges.

Relations with work in enumerative combinatorics [13, 22] are discussed in Section 5.
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2 Background

2.1 Polynomials and differential equations
Let us fix a finite, non empty set of symbols or variables X = {x1, . . . , xn} and a distinct
variable x /∈ X. Informally, x will act as the independent variable, while x1, ..., xn will
act as dependent variables, or functions, defined by differential equations (see below). We
fix a generic field K of characteristic 0; K = R and K = C are typical choices. We let
P := K[x, x1, ..., xn], ranged over by p, q, ..., be the set of polynomials with coefficients
in K and indeterminates in {x} ∪ X. We let M, ranged over by m, m′, ..., be the set of
monomials, that is the free commutative monoid generated by {x} ∪ X. As usual, we shall
denote polynomials as formal finite sums of distinct monomials with nonzero coefficients
in K: p =

∑
i∈I rimi, for ri ∈ K. By slight abuse of notation, we shall write the zero

polynomial and the empty monomial as 0 and 1, respectively. Over P, one can define the
usual operations of sum p + q and product p · q, with 0 and 1 as identities, and enjoying
commutativity, associativity and distributivity, which make P a ring; multiplication of p ∈ P
by a scalar r ∈ K, denoted rp, is also defined and makes (P, +, 0) a vector space over K.
Therefore, (P, +, ×, 0, 1) forms a K-algebra.

We shall also fix a set D = {ẋ1 = p1, ..., ẋn = pn} of differential equations, one for each
xi ∈ X, with pi ∈ P. An initial condition for D is a vector ρ = (r1, ..., rn) ∈ Kn. The
pair (D, ρ) forms an initial value problem. The vectors pi on the right-hand side of the
equations are called drifts, and F = (p1, ..., pn) is a vector field. Informally, each xi ∈ X

represents a placeholder for a function whose derivative is given by pi, and whose value at the
origin is xi(0) = ri. This terminology is borrowed from the theory of differential equations.
Note, however, that depending on the semantics of polynomial product one adopts (see next
section), D can be given diverse interpretations, including stream differential equations (SDE,
for convolution, see next subsection) in the sense of Rutten [20], and of course ordinary
differential equations (ODEs, for shuffle).

Notationally, it will be sometimes convenient to regard D and ρ as functions D : X → P
and ρ : X → K, respectively, such that D(xi) = pi and ρ(xi) = ri. It is also convenient to
extend D and ρ to x by letting D(x) = 1 and ρ(x) = 0; note that, seen as an initial value
problem, the last two equations define the identity function. Finally, we let x0 denote x and,
when using D and ρ as functions, use xi as a metavariable on {x} ∪ X: this makes D(xi)
and ρ(xi) well defined for 0 ≤ i ≤ n.

2.2 Streams
We let Σ⟨K⟩ := Kω, ranged over by σ, τ, ..., denote the set of streams, that is infinite sequences
of elements from K: σ = (r0, r1, r2, ...) with ri ∈ K. Often K is understood from the context
and we shall simply write Σ rather than Σ⟨K⟩. When convenient, we shall explicitly consider
a stream σ as a function from N to K and, e.g., write σ(i) to denote the i-th element of σ.
By slightly overloading the notation, and when the context is sufficient to disambiguate, the
stream (r, 0, 0, ...) (r ∈ K) will be simply denoted by r, while the stream (0, 1, 0, 0, ...) will be
denoted by x; see [20] for motivations behind these notations1. Furthermore, a stream made
up of all the same element r ∈ K will be denoted as r = (r, r, ...). One defines the sum of two
streams σ and τ as the stream σ +τ defined by: (σ +τ)(i) := σ(i)+τ(i) for each i ≥ 0, where
the + on the right-hand side denotes the sum in K. Sum enjoys the usual commutativity

1 In particular, overloading of the symbol x is motivated by the fact that our semantics of polynomials
maps the variable x to the stream (0, 1, 0, 0, ...).
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and associativity properties, and has the stream 0 = (0, 0, ...) as an identity. Various forms
of stream products can also be considered – this is indeed a central theme of our paper.
In particular, the convolution product σ × τ and the shuffle product σ ⊗ τ are defined as
follows: (σ × τ)(i) :=

∑
0≤j≤i σ(j) · τ(i − j) and (σ ⊗ τ)(i) :=

∑
0≤j≤i

(
i
j

)
σ(j) · τ(i − j), where

operations on the right-hand side are carried out in K and i ≥ 0. The above operations enjoy
alternative, easier to handle formulations based on stream differential equations – see next
subsection; there, a crucial notion will be the derivative of a stream σ, that is the stream σ′

obtained from σ by removing its first element.
Both products are commutative, associative, have 1 = (1, 0, 0, ...) as an identity, and dis-

tribute over +; multiplication of σ = (r0, r1, ...) by a scalar r ∈ K, denoted rσ = (r r0, r r1, ...),
is also defined and makes (Σ, +, 0) a vector space over K. Therefore, (Σ, +, π, 0, 1) forms
a K-algebra for each of the considered product operations π. Let us record the following
useful properties for future use: x × σ = (0, r0, r1, ...) and r π σ = (r r0, r r1, ...), where r ∈ K
and π ∈ {×, ⊗}. In view of the second equation above, r π σ coincides with rσ. The first
equation above leads to the so called fundamental theorem of the stream calculus, whereby
for each σ ∈ Σ

σ = σ(0) + x × σ′ . (1)

Less commonly found forms of products, like Hadamard and Infiltration products, will be
introduced in the next subsection; equations similar to (1) exist also for such products [4, 14].

2.3 Coalgebras and bisimulation
We quickly review some basic definitions and results about coalgebras and bisimulation;
see e.g. [20] for a comprehensive treatment. A (stream) coalgebra with outputs in K is an
automaton C = (S, δ, o), where S is a nonempty set of states, δ : S → S is the transition
function, and o : S → K is the output function. A bisimulation on C is a binary relation
R ⊆ S × S such that, whenever (s, t) ∈ R, then o(s) = o(t) and (δ(s), δ(t)) ∈ R. As usual,
there always exists a largest bisimulation on C, denoted ∼; it is the union of all bisimulations
and it is an equivalence relation on S. Given two coalgebras C1 and C2, a coalgebra morphism
between them is a function µ : S1 → S2 from the states of C1 to the states of C2 that
preserves transitions and outputs, that is (with obvious notation): µ(δ1(s)) = δ2(µ(s)) and
o1(s) = o2(µ(s)), for each s ∈ S1. Coalgebra morphisms preserve bisimilarity, in the sense
that s ∼1 t in C1 if and only if µ(s) ∼2 µ(t) in C2. A coalgebra C0 is final in the class of
coalgebras with outputs in K if, from every coalgebra C in this class, there exists a unique
morphism µ from C0 to C. In this case, ∼0 in C0 coincides with equality, and the following
coinduction principle holds: for every C and s ∼ t in C, it holds that µ(s) = µ(t) in C0.

The set of streams Σ can be naturally given a stream coalgebra structure (Σ, (·)′, o(·)),
as follows. The output of a stream σ = (r0, r1, . . .) is o(σ) := r0 and its derivative is
σ′ := (r1, r2, ...), that is σ′ is obtained from σ by removing its first element, that constitutes
the output of σ. In fact, this makes Σ final in the class of all coalgebras with outputs in K [20].
This also implies that one can prove equality of two streams by exhibiting an appropriate
bisimulation relation relating them (coinduction).

It is sometimes convenient to consider an enhanced form of bisimulation on Σ that relies
on the notion of linear closure.2 Given a relation R ⊆ Σ × Σ, its linear closure R̂ is the set
of pairs of the form (

∑n
i=1 riσi ,

∑n
i=1 riτi), where n ∈ N, (σi, τi) ∈ R and ri ∈ K, for every

2 More general notions that we could have used here are contextual closure (see [4, Thm. 2.4] and works
on distributive laws for bialgebras [6]. However, the simpler notion of linear closure suffices for our
purposes here.

CONCUR 2021



19:6 (Co)algebra and Streams Products

i ∈ {1, . . . , n}. We say that R is a bisimulation up to linearity if, for every (σ, τ) ∈ R, it
holds that o(σ) = o(τ) and (σ′, τ ′) ∈ R̂. If R is a bisimulation up to linearity, then R̂ is a
bisimulation [20]; since by definition R ⊆ R̂, this implies that R ⊆ ∼, the bisimilarity on
streams, which coincides with equality.

A stream differential equation (SDE) in the unknown σ is a pair of equations of the form
σ(0) = r and σ′ = ϕ, for r ∈ K and a stream expression ϕ (that can depend on σ or its
components, or even on σ′ itself). Under certain conditions on ϕ [14, 20], it can be proven
that there is a unique stream σ satisfying the above SDE. In this paper, we shall focus on
the case where ϕ is represented by a polynomial expression – this will be formalized in the
next section. For the time being, we observe that the product operations defined in the
preceding subsection enjoy a formulation in terms of SDEs. In particular (see [4, 14, 20]),
for given σ and τ , their convolution and shuffle products are the unique streams satisfying
the following SDEs (recall that, as a stream, x denotes (0, 1, 0, 0, ...)):

(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = σ′ × τ + σ × τ ′ − x × σ′ × τ ′ (2)
(σ ⊗ τ)(0) = σ(0) · τ(0) (σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ . (3)

From the last equation, note the analogy between shuffle and interleaving of languages.
Moreover, the derivative of convolution product is usually defined as (σ×τ)′ = σ′×τ+σ(0)×τ ′;
however, we prefer the formulation in (2) because it is symmetric. Two additional examples of
stream products are introduced below; see [4] for the underlying motivations. The Hadamard
product ⊙ and the infiltration product ↑ can be defined by the following two SDEs.

(σ ⊙ τ)(0) = σ(0)τ(0) (σ ⊙ τ)′ = σ′ ⊙ τ ′ (4)
(σ ↑ τ)(0) = σ(0)τ(0) (σ ↑ τ)′ = (σ′ ↑ τ) + (σ ↑ τ ′) + (σ′ ↑ τ ′) . (5)

Hadamard product ⊙ is reminiscent of synchronization in concurrency theory and has
1 := (1, 1, 1, ...) as an identity; it is just the componentwise product of two streams, i.e.
(σ ⊙ τ)(i) = σ(i)τ(i), for every i ≥ 0. Infiltration product ↑ is again reminiscent of a notion
in concurrency theory, namely the fully synchronized interleaving; it has 1 = (1, 0, 0, ...) as
an identity.

3 (Co)algebraic semantics of polynomials and differential equations

The main result of this section is that, once fixed an initial value problem (D, ρ), for every
product π (with identity 1π) defined on streams and satisfying certain syntactic conditions,
one can build a coalgebra over polynomials such that the corresponding final morphism into
Σ is also a K-algebra homomorphism from (P, +, ×, 0, 1) to (Σ, +, π, 0, 1π). In essence, the
polynomial syntax and operational semantics reflects exactly the algebraic and coalgebraic
properties of the considered π on streams.

To make polynomials a coalgebra, we need to define the output o : P → K and transition
δ : P → P functions. The definition of o(·) is straightforward and only depends on the given
initial conditions ρ: we let o := oρ be the homomorphic extension of ρ, seen as a function
defined over {x} ∪ X, to P. Equivalently, seeing ρ as a point in Kn+1, we let oρ(p) := p(ρ),
that this the polynomial p evaluated at the point ρ. It can be easily checked that oρ(1) = 1.

The definition of δ, on the other hand, depends on π and is not straightforward. We
will confine to products π satisfying SDEs of the form: (σ π τ)′ = F (σ, τ, ...), for a given
polynomial function F . Then we will require that δ on polynomials mimics this equation.
For instance, in the case of shuffle product, we expect that δ(pq) = pδ(p) + qδ(p). Therefore,



M. Boreale and D. Gorla 19:7

our first step is to precisely define the class of products on streams that satisfy a polynomial
SDE. To this purpose, in what follows we shall consider polynomials G(y1) ∈ K[y1] and
F (x, y1, ..., y4) ∈ K[x, y1, y2, y3, y4]. These can be identified with polynomial functions on
streams: we shall write G(σ1), F (x, σ1, ..., σ4) for the evaluation of G, F in (Σ, +, π, 0, 1π)
with specific streams x = (0, 1, 0, ...) and σ1, ..., σ4.

▶ Definition 3.1 ((F, G)-product on streams). Let (Σ, +, π, 0, 1π) be a K-algebra, F ∈
K[x, y1, y2, y3, y4] and G ∈ K[y1]. We say that π is a (F, G)-product if, for each σ, τ ∈ Σ,
the following equations are satisfied:
1. (σ π τ)(0) = σ(0)τ(0);
2. (σ π τ)′ = F (x, σ, σ′, τ, τ ′);
3. 1π(0) = 1 and 1′

π = G(1π) .

▶ Remark 3.2. Notice that 1π(0) = 1 in Definition 3.1(3) is a necessary condition, that follows
from Definition 3.1(1). Indeed, let 1π(0) = r ∈ K. Since 1π is the identity of π, for every σ

we must have σ π 1π = σ, hence (σ π 1π)(0) = σ(0). On the other hand, by Definition 3.1(1),
(σ π 1π)(0) = σ(0) 1π(0) = σ(0) r. As σ is arbitrary, we can take σ(0) ̸= 0 and multiply
σ(0) r = σ(0) by σ(0)−1; this gives r = 1. However, we prefer to keep 1π(0) = 1 explicit in
the definition, for the sake of clarity. Finally, let us note that the general theory of SDEs
[14] ensures that conditions (1), (2), (3) in Definition 3.1 univocally define a binary operation
π on streams, but in general not that π enjoys the ring axioms for product, a fact that we
must assume from the outset.

▶ Example 3.3. For the products introduced in Section 2, the pairs of polynomials (F, G)
are as defined as follows.

F× = y2y3 +y1y4 −xy2y4. Note that F× = y2y3 +(y1 −xy2)y4, where y1 −xy2 corresponds
to σ − x × σ′ = σ(0); this gives the asymmetric definition of convolution.
F⊗ = y2y3 + y1y4.
F⊙ = y2y4.
F↑ = y2y3 + y1y4 + y2y4.

The identity stream for convolution, shuffle and infiltration is defined by 1π(0) = 1 and
1′

π = 0, i.e., in these cases the polynomial G is 0. For the Hadamard product, the identity is
given by 1π(0) = 1 and 1′

π = 1π, i.e., the polynomial G in this case is y1.

Given a (F, G)-product π on streams, δπ is defined in a straightforward manner on
monomials, then extended to polynomials by linearity. Below, we assume a total order
on variables x0 < x1 < · · · < xn and, for m ̸= 1, let min(m) denote the smallest variable
occurring in m w.r.t. such a total order3.

▶ Definition 3.4 (transition function δπ). Let π be a (F, G)-product on streams. We define
δπ : P → P by induction on the size of p ∈ P as follows.

δπ(1) = G(1) (6)
δπ(xi) = D(xi) (7)

δπ(xi m) = F (x, xi, δπ(xi), m, δπ(m)) (m ̸= 1, xi = min(xim)) (8)

δπ

(∑
i∈I

ri mi

)
=
∑
i∈I

ri δπ(mi) . (9)

3 In Definition 3.4, we are in effect totally ordering monomials by graded lexicographic order (grlex, see
[12, Ch.1]), and then proceeding by induction on this order.
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Returning to the products defined in Section 2, we have:

δπ(1) =
{

0 for π ∈ {×, ⊗, ↑} (convolution, shuffle, infiltration)
1 for π = ⊙ (Hadamard)

δπ(xi m) =


D(xi) · m + xi · δπ(m) − x · D(xi) · δπ(m) for π = × (convolution)
D(xi) · m + xi · δπ(m) for π = ⊗ (shuffle)
D(xi) · δπ(m) for π = ⊙ (Hadamard)
D(xi) · m + D(xi) · δπ(m) + xi · δπ(m) for π = ↑ (infiltration) .

We must now impose certain additional sanity conditions on F , to ensure that the final coal-
gebra morphism induced by δπ, as just defined, is also an algebra homomorphism. In the rest
of the paper, we will make use of the following abbreviation Fπ[p; q] := F (x, p, δπ(p), q, δπ(q)).
The necessity of the following conditions is self-evident, if one thinks of Fπ[p; q] as δπ(p · q)
(see Lemma 3.6 below).

▶ Definition 3.5 (well-behaved F ). Let π be a (F, G)-product on streams. We say that
π is well-behaved if the following equalities hold, for every p, q ∈ P, m1, m2, mi ∈ M,
xi ∈ {x} ∪ X and ri ∈ K :

Fπ[1; q] = δπ(q) (10)
Fπ[xim1; m2] = Fπ[m1; xim2] (11)

Fπ

[∑
i∈I

ri mi ; q

]
=
∑
i∈I

ri Fπ[mi; q] (12)

Fπ[p; q] = Fπ[q; p] . (13)

All products defined in Section 2 are well-behaved. The following key technical result
connects morphism to homomorphism properties induced by π and is crucial in the proof of
Theorem 3.7, that is the main result of this section.

▶ Lemma 3.6. Let π be a well-behaved (F, G)-product. Then, for every p, q ∈ P, it holds
that δπ(p · q) = Fπ[p; q].

▶ Theorem 3.7. Let π be a well-behaved (F, G)-product. Then the (unique) coalgebra
morphism µπ from (P, δπ, oρ) to (Σ, (·)′, o) is a K-algebra homomorphism from (P, +, · , 0, 1)
to (Σ, +, π, 0, 1π).

Intuitively, the proof consists in showing that µπ preserves all the operations in P, by
exhibiting in each case an appropriate bisimulation relation in Σ × Σ and then applying
coinduction. The most crucial case is product, where one shows that the relation consisting
of all pairs (µπ(p1 · . . . · pk) , µπ(p1) π . . . π µπ(pk)) (k > 0) is a bisimulation up to linearity.
Lemma 3.6 is used to prove that µπ preserves transitions: e.g., by letting p = p2 · . . . · pk, it
allows one to conclude that the pair of derivatives µπ(p1 · p)′ = µπ(Fπ[p1; p]) and (slightly
abusing the Fπ[·; ·] notation) (µπ(p1) π µπ(p))′ = Fπ[µπ(p1); µπ(p)] are still in relation, up to
linearity.

To conclude the section, we also present a sort of converse of the previous theorem. That
is, µπ is the only K-algebra homomorphism that respects the initial value problem, i.e. that
satisfies µπ(xi)′ = µπ(D(xi)) and µπ(xi)(0) = ρ(xi). This is an immediate corollary of the
following result and of the uniqueness of the final coalgebra morphism.

▶ Proposition 3.8. Let π be a well-behaved (F, G)-product and ν be a K-algebra homomorph-
ism from (P, +, · , 0, 1) to (Σ, +, π, 0, 1π) that respects the initial value problem (D, ρ). Then,
ν is a coalgebra morphism from (P, δπ, oρ) to (Σ, (·)′, o).
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4 Deciding stream equality

One benefit of a polynomial syntax is the possibility of applying techniques from algebraic
geometry to reason about stream equality. We will devise an algorithm for checking whether
two given polynomials are semantically equivalent, that is, are mapped to the same stream
under µπ. Note that, by linearity of µπ(·), we have that µπ(p) = µπ(q) if and only if
µπ(p) − µπ(q) = µπ(p − q) = 0. Therefore, checking semantic equivalence of two polynomials
reduces to the problem of checking if a polynomial is equivalent (bisimilar) to 0. Before
introducing the actual algorithm for checking this, we quickly recall a few notions from
algebraic geometry; see [12, Ch.1–4] for a comprehensive treatment.

A set of polynomials I ⊆ P is an ideal if 0 ∈ I and, for all p1, p2 ∈ I and q ∈ P , it holds
that p1 + p2 ∈ I and q · p1 ∈ I. Given a set of polynomials S, the ideal generated by S is

⟨ S ⟩ :=


k∑

j=1
qj · pj : k ≥ 0 ∧ ∀j ≤ k.(qj ∈ P ∧ pj ∈ S)

 .

By the previous definition, we have that ⟨ ∅ ⟩ := {0}. Trivially, I = ⟨ S ⟩ is the smallest ideal
containing S, and S is called a set of generators for I. It is well-known that every ideal I

admits a finite set S of generators (Hilbert’s basis theorem). By virtue of this result, any
infinite ascending chain of ideals, I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ P , stabilizes in a finite number of
steps: that is, there is k ≥ 0 s.t. Ik+j = Ik for each j ≥ 0 (Ascending Chain Condition, ACC).
A key result due to Buchberger is that, given a finite S ⊆ P , it is possible to decide whether
p ∈ I = ⟨ S ⟩, for any polynomial p. As a consequence, also ideal inclusion I1 ⊆ I2 is decidable,
given finite sets of generators for I1, I2. These facts are consequences of the existence of a
set of generators B for I, called Gröbner basis, with a special property: p ∈ I if and only if
p mod B = 0, where “mod B” denotes the remainder of the multivariate polynomial division
of p by B. There exist algorithms to build Gröbner bases which, despite their exponential
worst-case complexity, turn out to be effective in many practical cases [12, Ch.4].

In what follows, we fix a well-behaved (F, G)-product π, and let δπ and µπ denote the
associated transition function and coalgebra morphism. Moreover, we denote by p(j) the
j-th derivative of p, i.e. p(0) := p and p(j+1) := δπ(p(j)). The actual decision procedure is
presented below as Algorithm 1. Intuitively, to prove that µπ(p) = 0, one might check if
oρ(p(j)) = 0 for every j, which is of course non effective. But due to ACC, at some point
p(j) ∈ ⟨ {p(0), . . . , p(j−1)} ⟩, which implies the condition oρ(p(j)) = 0 holds for all j’s. The
correctness of this algorithm can be proven easily, under an additional mild condition on F :
we require that F ∈ ⟨ {y3, y4} ⟩ seen as an ideal in K[x, y1, ..., y4]. Explicitly, F = h1y3 + h2y4
for some h1, h2 ∈ K[x, y1, ..., y4]. The polynomials F for the products in Section 2 all satisfy
this condition: for example, F× = y2y3 + (y1 − xy2)y4.

Algorithm 1 Checking equivalence to zero.

Input: p ∈ P , a well-behaved (F, G)-product π

Output: YES (µπ(p) = 0) or NO (µπ(p) ̸= 0)
1: for all k ≥ 0 do
2: if oρ(p(k)) ̸= 0 then return NO
3: if p(k) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩ then return YES
4: end for

▶ Theorem 4.1. Let π be a well-behaved (F, G)-product, with F ∈ ⟨ {y3, y4} ⟩. Algorithm 1
terminates, and returns YES if and only if µπ(p) = 0.
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Proof. Non termination for some input polynomial p would imply that, for all k ≥ 0,
p(k+1) ̸∈ Ik := ⟨ {p(0), . . . , p(k)} ⟩. This in turn would imply an ever ascending chain of ideals
I0 ⊊ I1 ⊊ · · · , contradicting ACC.

If the algorithm returns NO, then for some k we must have (recall that σ(k) stands for
the k-th stream derivative of σ): oρ(p(k)) = o(µπ(p)(k)) = (µπ(p)(k))(0) ̸= 0, thus µπ(p) ̸= 0.

Assume now the algorithm returns YES. Then there exists k ≥ 0 such that oρ(p(j)) = 0,
for every 0 ≤ j ≤ k, and p(k) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩. Excluding the trivial case p = 0,
we can assume k ≥ 1. If we prove that p(k+j) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩ for every j ≥ 0, the
thesis follows: indeed, by p(k+j) =

∑k−1
i=0 qi · p(i), for some qi ∈ P, and by oρ(p(i)) = 0

for every 0 ≤ i ≤ k − 1, it also follows (µπ(p))(j) = (µπ(p))(j)(0) = oρ(p(k+j)) = 0. Now
the proof that p(k+j) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩ is by induction on j. The base case (j = 0)
holds by assumption. For the induction step, let us consider p(k+j+1). By definition,
p(k+j+1) = δπ(p(k+j)); by induction p(k+j) =

∑k−1
i=0 qi · p(i), for some qi ∈ P. By (9) and

Lemma 3.6, p(k+j+1) =
∑k−1

i=0 δπ(qi · p(i)) =
∑k−1

i=0 Fπ[qi; p(i)]. By hypothesis F ∈ ⟨ {y3, y4} ⟩,
hence Fπ[qi; p(i)] ∈ ⟨ {p(i), p(i+1)} ⟩, for every i, therefore Fπ[qi; p(i)] ∈ ⟨ {p(0), . . . , p(k−1)} ⟩,
as by hypothesis p(k) ∈ ⟨ {p(0), . . . , p(k−1)} ⟩. This suffices to conclude. ◀

We first illustrate the algorithm with a simple, linear example.

▶ Example 4.2 (Fibonacci numbers). Consider the initial value problem (D, ρ) given by the
following equations.{

ẋ1 = x2
ẋ2 = x1 + x2

{
ρ(x1) = 0
ρ(x2) = 1 .

(14)

Let us consider here the convolution product ×. It is easily checked that x1 defines the
Fibonacci numbers: µ×(x1) = (0, 1, 1, 2, 3, 5, 8, 13, . . .). We want to prove the following
equation:

µ×(x1 · (1 − x − x2)) = µ×(x) . (15)

Equivalently, using Algorithm 1, we check that µ×(x1 · (1 − x − x2) − x) = 0. Let p(x, x1) :=
x1 · (1 − x − x2) − x. Then, an execution of Algorithm 1 consists of the following steps.

(k = 0): ρ(p) = p(0, 1) = 0 and p(0) = p(x, x1) /∈ ⟨ ∅ ⟩ = {0}.
(k = 1): p(1) = x2 · (1 − x − x2) − x1 · (1 + x) − x · x2 · (1 + x) − 1 = x2 − x1 − x1x − 1.
Hence, ρ(p(1)) = 1 − 1 = 0 and p(1) ̸∈ ⟨ p ⟩.
(k = 2): p(2) = x1 + x2 − x2 − (x2x + x1 − xx2) = 0. Hence, ρ(p(2)) = 0 and trivially
p(2) ∈ ⟨ p, p(1) ⟩.

We conclude that µ×(p) = 0.

We now discuss a nonlinear example based on shuffle product.

▶ Example 4.3 (double factorial of odd numbers). Consider the initial value problem (D, ρ)
given by the following equation.

ẏ = y3 ρ(y) = 1 . (16)

Let us consider here the shuffle product ⊗. It is easily checked that µ⊗(y) =
(1, 1, 3, 15, 105, 945, 10395, 135135, . . .), the sequence of double factorials of odd numbers
(sequence A001147 in [1]). We want to check the following equation

µ⊗(y2(x − 1/2) + 1/2) = 0 . (17)

using Algorithm 1. Let q(x, y) := y2(x − 1/2) + 1/2. An execution of Algorithm 1 consists of
the following steps.
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(k = 0): ρ(q) = q(0, 1) = 0 and q(0) = q(x, y) /∈ ⟨ ∅ ⟩ = {0}.
(k = 1): q(1) = 2y4x − y4 + y2 = 2y2q, hence q(1) ∈ ⟨ q ⟩.

We conclude that µ⊗(q) = 0.

▶ Remark 4.4. Note that we can define the generating function associated to Fibonacci
numbers, that is the function g(z) whose Taylor series expansion is

∑
j≥0 fjzj (where fj are

the Fibonacci numbers); such a generating function is

g(z) = z

1 − z − z2 . (18)

Now, from [4] it is known that the convolution product admits an inverse of a given stream
σ whenever σ(0) ̸= 0. Thus, from (15) we obtain µ×(x1) = µ×(x) × (µ×(1 − x − x2))−1 =

µ×(x)
1−µ×(x)−µ×(x)2 , where we use the usual notation σ

τ to denote σ × τ−1. This equation for
µ×(x1) is structurally identical to (18): this is of course no coincidence, as algebraic identities
on streams correspond exactly to algebraic identities on generating functions. This will be
made precise in the next section – see in particular Proposition 5.2.

Similarly, the equivalence µ⊗(p) = 0 obtained for the double factorial equations, when
solved algebraically for x1 yields the exponential generating function for A001147, that is
g(z) =

√
1/(1 − 2z): see Example 5.8 in Subsection 5.3.

We finally point out that Algorithm 1 can be easily modified to actually find all polynomials
p, up to a prescribed degree, s.t. µπ(p) = 0, along the lines of a similar procedure in [10].
Indeed, we actually found the polynomials in both examples above using this modified
algorithm4.

5 Shuffle, convolution and generating functions

We study the relation of the shuffle and convolution products, and of the corresponding
morphisms, with algebraic sequences arising in enumerative combinatorics [13, 22], and with
solutions of ordinary differential equations; Hadamard product plays also a role in connecting
the other two products. Our aim here is not to prove any new identity, but rather to relate
our framework with certain well established notions and results in these fields. In particular,
we will argue that our results can be useful for combinatorial reasoning on sequences and
ODEs: this means chiefly finding generating functions of sequences, ODE solutions, and/or
establishing nontrivial relations among them.

5.1 Generating functions
For a stream σ = (r0, r1, ..., rj , ...), we let the ordinary generating function [13, 22] of σ

in the variable z be the power series G[σ](z) :=
∑

j≥0 rjzj . We shall normally understand
G[σ](z) as a formal power series, which is just another convenient, functional notation for
the stream σ. When K = R or K = C, it is sometimes convenient to consider z as a real
or complex variable5: in this case, G[σ](z) defines a (real or complex) analytic function
around 0, provided that its radius of convergence is positive. In fact, we shall see that, when
σ = µ×(p), then G[σ](z) is analytic. We denote by G−1[g(z)] the inverse transformation,

4 Python code, with instructions and examples, available at https://local.disia.unifi.it/boreale/
papers/streams.py.

5 For example, the study of the generating function in a complex analytic sense, in particular of its poles,
provides detailed information on the asymptotic growth of the elements of σ; see [13].
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mapping a power series g(z) =
∑

j≥0 rjzj back to σ = (r0, r1, ...). More precisely, for any
(formal or analytic) power series g(z) around the origin, G−1[g(z)] can be obtained by taking
the Taylor coefficients of g(z):

G−1[g(z)] =
(

g(0)(0)
0! ,

g(1)(0)
1! ,

g(2)(0)
2! , ...

)
(19)

where g(j)(z) denotes the j-th derivative of g(z), in either formal or analytic sense. With
the same convention on z, we let the exponential generating function of σ to be the Taylor
series E [σ](z) :=

∑
j≥0

rj

j! zj . Again, E−1[g(z)] denotes the inverse transformation, mapping
a (formal or analytic) power series g(z) to the stream of its derivatives evaluated at 0:

E−1[g(z)] = (g(0)(0), g(1)(0), g(2)(0), ...) . (20)

Letting fact := (0!, 1!, 2!, ...) and exp(z) :=
∑

j≥0
zj

j! , the relation between G and E can be
written as follows, where the Hadamard product on power series is defined as (

∑
j ajzj) ⊙

(
∑

j bjzj) :=
∑

j(ajbj)zj as expected:

E [σ](z) = exp(z) ⊙ G[σ](z) (21)
E−1[g(z)] = fact ⊙ G−1[g(z)] . (22)

Again, for σ = µ⊗(p), we will see that E [σ](z) is analytic. The maps G[·] and E [·] act as
K-algebra homomorphisms between streams and functions. In particular, products of streams
is transformed into product of functions6, that is [13, 22]:

G[σ × τ ](z) = G[σ](z) · G[τ ](z) E [σ ⊗ τ ](z) = E [σ](z) · E [τ ](z) .

These relations allow one to transform algebraic equations on streams into algebraic equations
on generating functions. One reason to perform this transformation is that, if a closed
expression for the generating function can be found via analytic manipulations, the actual
stream can be recovered by applying the inverse transforms (19) and (20) – that is essentially
via Taylor expansion.

5.2 Algebraic streams
In what follows, we let p range over P = K[x, x1, ..., xn] and q = q(x, y) over K[x, y], while
g(z) still denotes a formal power series or analytic function at the origin.

▶ Definition 5.1 (algebraic streams, [13]). A function g(z) is algebraic if there is a nonzero
polynomial q(x, y) such that q(z, g(z)) is identically 0. In this case, g(z) is called a branch
of q(x, y). A stream σ is algebraic if G[σ](z) is algebraic.

If the degree of q(x, y) in y is k, then q(x, y) has at most k branches. For example,
q(x, y) = y2 + x − 1 has two distinct branches, that is algebraic functions: g(z) = ±

√
1 − z.

When the coefficients of q are drawn from a subfield of C, then it can be shown that the
corresponding branches are also complex analytic (hence real analytic when restricted to R);
see [2]. Our starting point in the study of the connections between coalgebra morphisms and
algebraic streams is the following simple result, whose easy proof relies on the fact that both
µπ and G are K-algebra homomorphisms.

6 When interpreted in a purely formal sense, hence in terms of streams: the equation for G just defines
an alternative notation for convolution product; the equation for E reduces to (25).
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▶ Proposition 5.2. Let p ∈ P and σ = µ×(p). Suppose there is a polynomial q(x, y) ̸= 0
such that µ×(q(x, p)) = 0. Then G[σ](z) is a branch of q. The corresponding statement for
µ⊗(·) and E [·] is also true.

Pragmatically, the above result implies that, if one proves a nontrivial polynomial equation
q(x, σ) = 0 for σ = µπ(p) (π ∈ {×, ⊗}), e.g. by using the algorithm in the previous section,
then one can recover σ by Taylor expansion of one of the branches of q; see Example 5.4
below.

In the case of the convolution product ×, the result also implies that, under the given
hypotheses, σ is algebraic. In fact, something more general can be said. Let the considered
system of differential equations and initial conditions be D = {ẋ1 = p1, ..., ẋn = pn} and
ρ = (r1, ..., rn) ∈ Kn, respectively; let σi := µ×(xi) for i = 1, ..., n. As a consequence of
(1), it is easy to check that the streams σi, hence the corresponding generating functions
G[σ1](z), ..., G[σn](z), satisfy the following system of polynomial equations in the variables
x1, ..., xn:

x1 = r1 + xp1 · · · xn = rn + xpn . (23)

In the terminology of Kuich and Salomaa [17, Ch.14], (23) is a weakly strict polynomial
system (in the single letter alphabet {x}). They prove that there is a unique tuple of formal
power series that solves this system, which therefore coincides with (σ1, ..., σn). Moreover, by
invoking elimination theory, Kuich and Salomaa prove that, for each i = 1, ..., n, (23) implies
a nontrivial polynomial equation q(x, xi) = 0 for the variable xi: see [17, Ch.16, Cor.16.11],
which covers the case K = Q. We sum up the above discussion in the following.

▶ Corollary 5.3 (algebraicity of µ×). Suppose that K = Q. Then, for each p ∈ P, µ×(p) is
an algebraic stream in the sense of Definition 5.1.

When K = Q, the above result implies that G[µ×(p)](z) is analytic. At present we do not
know if the converse of this corollary is true, i.e. if all algebraic functions are expressible via
polynomial SDE.

▶ Example 5.4 (Catalan numbers). Let K = R. Consider the differential equation in one
dependent variable (here y = x1)

ẏ = y2 (24)

with the initial condition y(0) = 1. Let us analyse this equation from the point of view of
convolution product. By (1), we have µ×(y) = µ×(y)(0)+x×(µ×(y))′ = 1+x×µ×(δ×(y)) =
1 + x × µ×(y2) = 1 + x × µ×(y)2. Let σ = µ×(y), this leads to the polynomial equation
q(x, σ) = 0, where q(x, y) = y − xy − y2 − 1. Solving for y as a function of x (and renaming
x to z), we obtain two branches, y(z) = (1 ±

√
1 − 4z)/2z. By Proposition 5.2, σ must be

the series of Taylor coefficients of one or the other of these two functions. One checks that
the stream obtained using the minus sign solves the equation:

σ = G−1
[

1 −
√

1 − 4z

2z

]
= (1, 1, 2, 5, 14, 42, 132, ...) .

These are the Catalan numbers, sequence A000108 in [1].

5.3 Solutions of ODEs
The shuffle product ⊗ provides a connection between streams and differential equations. A
recurrent motif here is that streams and their generating functions can be used to reason
on solutions of ODEs – and the other way around. In what follows, solutions might be
considered in both formal and analytic sense.

CONCUR 2021



19:14 (Co)algebra and Streams Products

When applied to ⊗, Proposition 5.2 may help one to recover closed forms for algebraic
solutions of a ODE system, in case they exist. This is entailed by Corollary 5.6 below.
In the rest of the section, we let x(z) = (x1(z), ..., xn(z)) denote a solution around 0 of
D = {ẋ1 = p1, ..., ẋn = pn}, considered as a system of ODEs, with the given initial conditions
x(0) := ρ ∈ Kn. In particular, note that, when K = R, a solution always exists, is unique
and analytic (Picard-Lindelöf theorem). For p(x, x1, ..., xn) ∈ P, we let p(z, x(z)) denote
the composition of p as a function with (z, x(z)); in turn, p(z, x(z)) is a formal power series
or analytic function around the origin. The following proposition provides a link between
solutions of ODEs and shuffle product and the induced morphism, via exponential generating
functions. The essential point here is that δ⊗ coincides with Lie derivative.

▶ Proposition 5.5. p(z, x(z)) = E [µ⊗(p)](z).

When K = R, the above result implies that E [µ⊗(p)](z) is always real analytic.

▶ Corollary 5.6 (algebraic solutions of ODEs). Suppose that, for some nonzero q = q(x, y),
we have µ⊗(q(x, p)) = 0. Then p(z, x(z)) is a branch of q(x, y).

Proof. By Proposition 5.2, we deduce that E [µ⊗(p)](z) is a branch of q(x, y). But, by
Proposition 5.5, p(z, x(z)) = E [µ⊗(p)](z). ◀

A discussion on the relation of µ⊗ with algebraic and other classes of streams is deferred
to the end of the section. We illustrate now the above results with a simple example.

▶ Example 5.7 (factorial numbers and the solution of ẏ = y2). Consider again the equation
ẏ = y2 with y(0) = 1 of Example 5.4. This time we analyse this equation from the point of
view of shuffle product. Let σ = µ⊗(y). Consider the polynomial q = q(x, y) := yx − y + 1.
One checks that q ∼ 0 in the coalgebra over P induced by δ⊗: to see this, one applies the
algorithm in Section 4, noting that o(q) = q(0, 1) = 0 and that δ⊗(q) = yq ∈ ⟨q⟩. This
implies µ⊗(q(x, y)) = 0, hence, according to Proposition 5.2, E [σ](z) is a branch of q(x, y).
Now q(x, y) defines a unique branch, y(z) = 1

1−z . Then using also (22):

σ = E−1
[

1
1 − z

]
= fact ⊙ G−1

[
1

1 − z

]
= fact ⊙ (1, 1, 1, ...) = (0!, 1!, 2!, ...) .

Finally, by Corollary 5.6, the solution of (24) as an ODE with the initial condition y(0) = 1
is the unique branch of q, that is y(z) = 1

1−z .

▶ Example 5.8 (double factorials, again). Consider again the equation ẏ = y3 with y(0) = 1
of Example 4.3, and the equivalence µ⊗(q) = 0, for q(x, y) := y2(x − 1/2) + 1/2, we proved
there. Let σ = µ⊗(y). According to Proposition 5.2, the exponential generating function
E [σ](z) is a branch of q(x, y). Now q(x, y) has two branches, which are obtained by solving
for y the corresponding quadratic equation. Of these, y(z) =

√
1/(1 − 2z) solves the ODE

and, by Proposition 5.5, is the exponential generating function of σ.

Let us also point out an interesting interplay between × and ⊗, that may ease composi-
tional reasoning on streams. Depending on the equations at hand, the convolution of two
streams might be more easily understood and described than their shuffle product; or a
stream can be better understood in terms of the solution of an ODE. The following equality,
that can be readily checked, allows one to transform convolution into stream product, and
back. We let fact−1 := (1/0!, 1/1!, ..., 1/j!, ...).

fact−1 ⊙ (σ ⊗ τ) = (fact−1 ⊙ σ) × (fact−1 ⊙ τ) . (25)

We illustrate this idea with a simple example.
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▶ Example 5.9 (harmonic numbers). Consider the system of two equations ẏ = y2, ẇ = y

with initial conditions y(0) = 1 and w(0) = 0. We want to analyze this system in terms of ⊗.
In Example 5.7, we have seen that y(z) = 1

1−z and that σ := µ⊗(y) = fact. We can obtain
µ⊗(w) via Proposition 5.5 and (22), after solving the second ODE: w(z) =

∫ z

0 y(u)du =
ln( 1

1−z ), hence τ := µ⊗(w) = E−1[w(z)] = fact ⊙ (0, 1, 1/2, ..., 1/j, ...). To understand what
µ⊗(yw) = µ⊗(y) ⊗ µ⊗(w) represents, it is convenient to switch to the convolution product,
by applying (25). We have

fact−1 ⊙ µ⊗(yw) = fact−1 ⊙ (σ ⊗ τ) = (fact−1 ⊙ σ) × (fact−1 ⊙ τ)

= (1, 1, 1, ...) × (0, 1, 1/2, ..., 1/j, ...) = (0, 1, 3/2, ...,

j∑
i=1

1
i
, ...)

which is the sequence α = (h0, h1, ...) of the harmonic numbers. Therefore µ⊗(yw) = fact⊙α,
and y(z)w(z) = 1

1−z ln( 1
1−z ) = E [fact ⊙ α](z) =

∑
j≥0 hjzj = G[α](z) is the ordinary

generating function of the harmonic numbers.

Another example of interplay between the two products arises in connection with the
solutions of linear ODEs and Laplace transform; this is elaborated in the full version of the
present article [11].
▶ Remark 5.10. One would like to prove for µ⊗ a result analogous to Corollary 5.3. In this
respect, let us first note that µ⊗(p) need not be algebraic: as we have seen in Example 5.4,
µ⊗(y) = fact = (0!, 1!, 2!, ...), which is not an algebraic stream – cf. [22], or simply note that
G[fact](z) is not analytic. The next natural candidate class to consider for inclusion is that
of streams with a holonomic (a.k.a. D-finite) ordinary generating function [22]: that is, a
function y(z) satisfying a linear differential equation with polynomial coefficients in z. This
class includes strictly algebraic streams, but µ⊗(p) need not be holonomic either. To see this,
consider the single ODE ḟ = 1 + f2 with f(0) = 0, which defines the trigonometric tangent
function: f(z) = tan(z). It is known that σ = G−1[tan(z)] is not holonomic, see e.g. [18,
Ch.1]. It is also known that fact is holonomic, and that the class of holonomic functions is
closed under the Hadamard product [22]. Now, from Proposition 5.5 and (22), we have that:
µ⊗(f) = E−1[tan(z)] = fact ⊙ σ. This equality implies that µ⊗(f) is not holonomic, because
otherwise σ would be as well. At present, we also ignore if algebraic and/or holonomic
streams are included in streams obtainable via µ⊗.

6 Conclusion

We have studied connections between polynomials, differential equations and streams, in
terms of algebra and coalgebra. Our main result shows that, given any stream product that
satisfies certain reasonable assumptions, there is a way to define a transition function on
polynomials such that the induced unique coalgebra morphism into streams is a K-algebra
homomorphism – and vice-versa. We have applied this result to the design of a decision
algorithm for polynomial stream equivalence, and to reasoning on generating functions and
ordinary differential equations.

As for future work, it would be interesting to see whether we can define new notions of
products that respect the format we devised in this paper. Somewhat orthogonal to this, the
relation of our framework with bialgebras [16] deserves further investigation. Finally, in the
field of nonlinear dynamical systems [15], convolution of discrete sequences arises as a means
to describe the composition of distinct signals or subsystems (e.g., a plant and a controller);
we would like to understand if our approach can be useful to reason on such systems as well.
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Abstract
Simulation and formal verification are important complementary techniques necessary in high
assurance model-based systems development. In order to support coherent results, it is necessary to
provide unifying semantics and automation for both activities. In this paper we apply Interaction
Trees in Isabelle/HOL to produce a verification and simulation framework for state-rich process
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1 Introduction

Simulation is an important technique for prototyping system models, which is widely used in
several engineering domains, notably robotics and autonomous systems [9]. For such high
assurance systems, it is also necessary that controller software be formally verified, to ensure
absence of faults. In order for results from simulation and formal verification to be used
coherently, it is important that they are tied together using a unifying formal semantics.

Interaction trees (ITrees) have been introduced by Xia et al. [43] as a semantic technique
for reactive and concurrent programming, mechanised in the Coq theorem prover. They are
coinductive structures, and therefore can model infinite behaviours supported by a variety of
proof techniques. Moreover, ITrees are deterministic and executable structures and so they
can provide a route to both verified simulators and implementations.

Previously, we have demonstrated an Isabelle-based theory library and verification
tool for reactive systems [15, 16]. This supports verification and step-wise development
of nondeterministic and infinite state systems, based on the CSP [8, 21] and Circus [42]
process languages. This includes a specification mechanism, called reactive contracts, and
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calculational proof strategy. Extensions of our theory support reasoning about hybrid
dynamical systems, which make it ideal for verifying autonomous robots. Recently, the
set-based theory of CSP has also been mechanised [39]. However, such reactive specifications,
even if deterministic, are not executable and so there is a semantic gap with implementations.

In this paper, we demonstrate how ITrees can be used as a foundation for verification
and simulation of state-rich concurrent systems. For this, we present a novel mechanisation
of ITrees in Isabelle/HOL, which requires substantial adaptation from the original work.
The benefit is access to Isabelle’s powerful proof tools, notably the sledgehammer automated
theorem prover integration [5], but also the variety of other tools we have created in
Isabelle/UTP [14], such as Hoare logic and refinement calculus [1, 30]. Isabelle’s code
generator allows us to automatically produce ITree-based simulations, which allows a tight
development loop, where simulation and verification activities are intertwined. All our results
have been mechanised, and can be found in the accompanying repository1, and clickable icon
links next to each specific result, with for Isabelle code and for Haskell code.

The structure of our paper is as follows. In §2 we show how ITrees are mechanised in
Isabelle/HOL, including the core operators, and strong and weak bisimulation techniques.
In §3 we show how deterministic CSP and Circus processes can be semantically embedded
into ITrees, including operators like external choice and parallel composition. In §4 we link
ITrees with the standard failures-divergences semantic model for CSP, which justifies their
integration with other CSP-based techniques. In §5 we show how the code generator can be
used to generate simulations. In §6 we briefly consider related work, and in §7 we conclude.

2 Interaction Trees in Isabelle/HOL

Here, we introduce Interaction Trees (ITrees) and develop the main theory in Isabelle/HOL,
along with several novel results. ITrees were originally mechanised in Coq by Xia et al. [43].
Our mechanisation in Isabelle/HOL brings unique advantages, including a flexible frontend
syntax, an array of automated proof tools, and code generation to several languages.

ITrees are potentially infinite trees whose edges are decorated with events, representing
the interactions between a process and its environment. They are parametrised over two sorts
(types): E of events and R of return values (or states). There are three possible interactions:
(1) termination, returning a value in R; (2) an internal event (τ); or (3) a choice between
several visible events. In Isabelle/HOL, we encode ITrees using a codatatype [4, 7]:

▶ Definition 1 (Interaction Tree Codatatype).
codatatype (’e, ’r) itree =

Ret ’r | Sil "(’e, ’r) itree" | Vis "’e 7→ (’e, ’r) itree"

Type parameters ’e and ’r encode the sorts E and R. Constructor Ret represents a return
value, and Sil an internal event, which evolves to a further ITree. A visible event choice (Vis)
is represented by a partial function (A 7→ B) from events to ITrees, with a potentially infinite
domain. This representation is the main deviation from ITrees in Coq [43] (see §6). Here,
A 7→ B is isomorphic to A⇒ B option, where B option can take the value None or Some x

for x::B. We usually specify partial functions using λ x ∈ A • f (x), which restricts a function
f to the domain A. We write {7→} for an empty function, and adopt several operators from
the Z notation [38], such as dom, override (F ⊕G), and domain restriction (A◁F). With the
associated theorems, we can use Isabelle’s simplifier to equationally calculate the domain and
other properties of choice partial functions, which provides a high degree of proof automation.

1 https://github.com/isabelle-utp/interaction-trees

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L21
https://github.com/isabelle-utp/interaction-trees
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We sometimes use ✓v to denote Ret v, τP to denote Sil P, and [] e ∈ E → P(e) to
denote Vis(λ e ∈ E • P(e)), which are more concise and suggestive of their process algebra
equivalents. We write e1 → P1 [] · · · [] en → Pn when E = {e1, · · · , en}. We use τnP for an
ITree prefixed by n ∈ N internal events. We define stop ≜ Vis {7→}, a deadlock situation
where no event is possible. An example is a → τ(✓x) [] b → stop, which can either perform
an a followed by a τ , and then terminate returning x , or perform a b and then deadlock.

We call an ITree unstable if it has the form τP, and stable otherwise. An ITree stabilises,
written P ⇓ , if it becomes stable after a finite sequence of τ events, that is ∃n P ′ • P =

τnP ′ ∧ stable(P ′). An ITree that does not stabilise is divergent, written P ⇑ ≜ ¬(P ⇓).
Using the operators mentioned so far, we can specify only ITrees of finite depth. Infinite

ITrees can be specified using primitive corecursion [4], as exemplified below.

primcorec div :: "(’e, ’s) itree" where "div = τ div"

primcorec run :: "’e set ⇒ (’e, ’s) itree" where
"run E = Vis (map_pfun (λ x. run E) (pId_on E))"

The primcorec command requires that every corecursive call on the right-hand side of an
equation is guarded by a constructor. ITree div represents the divergent ITree that does
not terminate, and only performs internal activity. It is divergent, div ⇑ , since it never
stabilises. Moreover, we can show that div is the unique fixed-point of τn+1 for any n ∈ N,
τn+1P = P ⇔ P = div , and consequently div is the only divergent ITree: P ⇑ ⇒ P = div .

ITree run E can repeatedly perform any e ∈ E without ceasing. It has the equivalent
definition of run E ≜ []e ∈ E → run E , and thus the special case run ∅ = stop. The formulation
above uses the function map pfun :: (’b⇒’c)⇒ (’a 7→’b)⇒ (’a 7→’c) which maps a total
function over every output of a partial function. Function pId on E is the identity partial
function with domain E. This formulation is required to satisfy the syntactic guardedness
requirements. For the sake of readability, we elide these details in the definitions that follow.

Corecursive definitions can have several equations ordered by priority, like a recursive
function. We specify a monadic bind operator for ITrees [43] using such a set of equations.

▶ Definition 2 (Interaction Tree Bind). We fix P,P ′ : (E ,R)itree, K : R⇒ (E , S)itree, r : R,
and F : E 7→ (E ,S)itree. Then, P >>= K is defined corecursively by the equations

✓r >>=K = K r τP ′>>=K = τ(P ′>>=K ) Vis F >>=K = Vis (λ e ∈ dom(F) • F(x)>>=K )

The intuition of P >>= K is to execute P, and whenever it terminates (✓x), pass the given
value x on to the continuation K . We term K a Kleisli tree [43], or KTree, since it is a Klesli
lifting of an ITree. KTrees are of great importance for defining processes that depend on a
previous state. For this, we define the type synonym (E ,S)htree ≜ (S ⇒ (E ,S)itree) for a
homogeneous KTree. We define the Kleisli composition operator P # Q ≜ (λ x .Px >>= Q), so
symbolised because it is used as sequential composition. Bind satisfies several algebraic laws:

▶ Theorem 3 (Interaction Tree Bind Laws).
Ret x >>= K = K x

P >>= Ret = P
P >>= (λ x.(Q x >>= R)) = (P >>= Q)>>= R

div >>= K = div

Ret # K = K
K # Ret = K

K1 # (K2 # K3) = (K1 # K2) # K3

run E >>= K = run E

Bind satisfies the three monad laws: it has Ret as left and right units, and is essentially
associative. Moreover, both div and run are left annihilators for bind, since they do not
terminate. From the monad laws, we can show that (#,Ret) also forms a monoid.

The laws of Theorem 3 are proved by coinduction, using the following derivation rule.
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▶ Theorem 4 (ITree Coinduction). We fix a relation R : (E ,R)itree↔ (E ,R)itree and then
given (P,Q) ∈ R we can deduce P = Q provided that the following conditions of R hold:

∀(P ′,Q′) ∈ R • is Ret(P ′) = is Ret(Q′) ∧ is Sil(P ′) = is Sil(Q′) ∧ is Vis(P ′) = is Vis(Q′);

∀(x, y) • (Ret x,Ret y) ∈ R ⇒ x = y;
∀(P ′,Q′) • (Sil P ′, Sil Q′) ∈ R ⇒ (P ′,Q′) ∈ R;

∀(F ,G) • (Vis F ,Vis G) ∈ R ⇒ (dom(F) = dom(G) ∧ (∀ e ∈ dom(F) • (F(e),G(e)) ∈ R))

To show P = Q, we need to construct a (strong) bisimulation R and show that (P,Q) ∈ R.
There are four provisos to show that R is a bisimulation. The first requires that only ITrees
of the same kind are related, where is Ret, is Sil , and is Vis distinguish the three cases.
The second proviso states that if (✓x ,✓y) ∈ R then x = y. The third proviso states that
internal events must yield bisimilar continuations: (τP, τQ) ∈ R ⇒ (P,Q) ∈ R. The final
proviso states that for two visible interactions the two functions must have the same domain
(dom(F) = dom(G)) and every event e ∈ dom(F) must lead to bisimilar continuations. The
majority of our ITree proofs in Isabelle apply this law, and then use a mixture of equational
simplification and automated reasoning with sledgehammer to discharge the resulting provisos.

Next, we define an operator for iterating ITrees:

corec while :: "(’s ⇒ bool) ⇒ (’e, ’s) htree ⇒ (’e, ’s) htree" where
"while b P s = (if (b s) then Sil (P s >>= while b P) else Ret s)"

This is not primitively corecursive, since the corecursive call uses >>=, and so we define it
using the corec command [6, 3] instead of primcorec. This requires us to show that >>= is a
“friendly” corecursive function [3]: it consumes at most one input constructor to produce one
output constructor. A while loop iterates whilst the condition b is satisfied by state s. In this
case, a τ event is followed by the loop body and the corecursive call. If the condition is false,
the current state is returned. We introduce the special cases loop F ≜ while (λ s • True)F and
iter P ≜ loop (λ s • P) (), which represent infinite loops with and without state, respectively.
We can show that iter (✓()) = div , since it never terminates and has no visible behaviour.

Though strong bisimulation is a useful equivalence, we often wish to abstract over τs.
We therefore also introduce weak bisimulation, P ≈ Q, as a coinductive-inductive predicate.
It requires us to construct a relation R such that whenever (P,Q) in R both stabilise, all
their visible event continuations are also related by R. For example, τm P ≈ τn Q whenever
P ≈ Q. We have proved that ≈ is an equivalence relation, and P ≈ div ⇒ P = div .

3 CSP and Circus

Here, we give an ITree semantics to deterministic fragments of the CSP [8, 21] and Circus [42,
32] languages. Our deterministic CSP fragment is consistent with the one identified by
Roscoe [36, Section 10.5]. The standard CSP denotational semantics is provided by the
failures-divergences model [8, 36], and we provide preliminary results on linking to this in §4.

3.1 CSP
CSP processes are parametrised by an event alphabet (Σ), which specifies the possible ways a
process communicates with its environment. For ITrees, Σ is provided by the type parameter
E . Whilst E is typically infinite, it is usually expressed in terms of a finite set of channels,
which can carry data of various types. Here, we characterise channels abstractly using
prisms [33], a concept well known in the functional programming world:

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L63
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_Divergence.thy#L352
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Weak_Bisim.thy
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▶ Definition 5 (Prisms). A prism is a quadruple (V,Σ,match, build) where V and Σ are
non-empty sets. Functions match : Σ 7→ V and build : V ⇒ Σ satisfy the following laws:

match(build x) = x y ∈ dom(match)⇒ build (match y) = y

We write X : V ∆−→E if X is a prism with ΣX = E and VX = V .

Intuitively, a prism abstractly characterises a datatype constructor, E , taking a value of
type V. Then, build is the constructor, and match is the destructor, which is partial due to
the possibility of several disjoint constructors. For CSP, each prism models a channel in E
carrying a value of type V. We have created a command chantype, which automates the
creation of prism-based event alphabets.

CSP processes typically do not return data, though their components may, and so they
are typically denoted as ITrees of type (E , ())itree, returning the unit type (). An example is
skip ≜ Ret (), which is a degenerate form of Ret. We now define the basic CSP operators.

▶ Definition 6 (Basic CSP Constructs).

inp :: (V ∆−→E)⇒ V set⇒ (E ,V )itree
inp c A ≜ Vis (λ e ∈ dom(matchc) ∩ buildc(| A |) • Ret (matchc e))

outp :: (V ∆−→E)⇒ V ⇒ (E , ())itree
outp c v ≜ Vis {buildc v 7→ Ret ()}

guard b :: B⇒ (E , ())itree
guard b ≜ (if b then skip else stop)

An input event (inp c A) permits any event over the channel c, that is e ∈ dom(matchc),
provided that its parameter is in A (e ∈ buildc(| A |)), and it returns the value received for
use by a continuation. It corresponds to the trigger construct in [43]. An output event
(outp c v) permits a single event, v on channel c, and returns a null value of type (). We also
define the special case sync e ≜ outp e () for a basic event e :: ()

∆−→E . A guard b behaves as
skip if b = true and otherwise deadlocks. It corresponds to the guard in CSP, which can be
defined as b & P ≜ (guard b >>= (λ x • P)).

Using the monadic “do” notation, which boils down to applications of >>=, we can now
write simple reactive programs such as do{x ← inp c; outp d (2 · x); Ret x}, which inputs x
over channel c : N ∆−→E , outputs 2 · x over channel d, and finally terminates, returning x .

Next, we define the external choice operator, P ✷ Q, where the environment resolves the
choice with an initial event of P or Q. In CSP, ✷ can also introduce nondeterminism, for
example (a → P) ✷ (a → Q) introduces an internal choice, since the a event can lead to
P or Q, and is equal to a → (P ⊓ Q). Since we explicitly wish to avoid introducing such
nondeterminism, we make a design choice to exclude this possibility by construction. There
are other possibilities for handling nondeterminism in ITrees, which we consider in §7. As
for >>=, we define external choice corecursively using a set of ordered equations.

▶ Definition 7 (External choice). P ✷ Q, is defined by the following set of equations:

(Vis F) ✷ (Vis G) = Vis (F ⊙G)

(Sil P ′) ✷ Q = Sil (P ′ ✷ Q)

P ✷ (Sil Q′) = Sil (P ✷ Q′)

(Ret x) ✷ (Vis G) = Ret x
(Vis F) ✷ (Ret y) = Ret y
(Ret x) ✷ (Ret y) = (if x = y then (Ret x) else stop)

where F ⊙G ≜ (dom(G)−◁ F)⊕ (dom(F)−◁G)

An external choice between two functions F and G essentially combines all the choices
presented using F ⊙ G. The caveat is that if the domains of F and G overlap, then any
events in common are excluded. Thus, ⊙ restricts the domain of F to maplets e 7→ P

CONCUR 2021
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where e /∈ dom(G), and vice-versa. This has the effect that (a → P) ✷ (a → Q) = stop, for
example. In the special case that dom(F) ∩ dom(G) = ∅, P ⊙Q = P ⊕Q. We chose this
behaviour to ensure that ✷ is commutative, though we could alternatively bias one side.

Internal steps on either side of ✷ are greedily consumed. Due to the equation order, τ
events have the highest priority, following a maximal progress assumption [20]. Return events
also have priority over visible events. If two returns are present then they must agree on the
value, otherwise they deadlock. External choice satisfies several important properties:

▶ Theorem 8 (External Choice Properties).

P ✷ Q = Q ✷ P stop ✷ P = P div ✷ P = div P ✷ (τn Q) = (τn P) ✷ Q = τn(P ✷ Q)

(Vis F ✷ Vis G)>>= H = (Vis F >>= H ) ✷ (Vis G >>= H )

External choice is commutative and has stop as a unit. It has div as an annihilator, because
the τ events means that no other activity is chosen. A finite number of τ events on either
the left or right can be extracted to the front. Finally, bind distributes from the left across a
visible event choice. We prove these properties using coinduction (Theorem 4), followed by
several invocations of sledgehammer to discharge the resulting provisos.

Using the operators defined so far, we can implement a simple buffer process:

chantype Chan = Input::integer Output::integer State::"integer list"

definition buffer :: "integer list ⇒ (Chan, integer list) itree" where
"buffer = loop (λ s.

do { i ← inp Input {0..}; Ret (s @ [i]) }

✷ do { guard(length s > 0); outp Output (hd s); Ret (tl s) }

✷ do { outp State s; Ret s })"

We first create a channel type Chan, which has channels (prisms) for inputs and outputs,
and to view the current buffer state. We define the buffer process as a simple loop with a
choice with three branches inside. The variable s::integer list denotes the state. The
first branch allows a value to be received over Input, and then returns s with the new value
added, and then iterates. The second branch is only active when the buffer is not empty. It
outputs the head on Output, and then returns the tail. The final branch simply outputs the
current state. In §5 we will see how such an example can be simulated.

Next, we tackle parallel composition. The objective is to define the usual CSP operator
P |[E ]|Q, which requires that P and Q synchronise on the events in E and can otherwise
evolve independently. We first define an auxiliary operator for merging choice functions.

mergeE(F ,G) = (λ e ∈ dom(F) \ (dom(G) ∪ E) • Left(F(e)))
⊕ (λ e ∈ dom(G) \ (dom(F) ∪ E) • Right(G(e)))
⊕ (λ e ∈ dom(F) ∩ dom(G) ∩ E • Both(F(e),G(e))

Operator mergeE(F ,G) merges two event functions. Each event is tagged depending on
whether it occurs on the Left, Right, or Both sides of a parallel composition. An event in
dom(F) can occur independently when it is not in E , and also not in dom(G). The latter
proviso is required, like for ✷, to prevent nondeterminism by disallowing the same event
from occurring independently on both sides. An event in dom(G) can occur independently
through the symmetric case for dom(F). An event can synchronise provided it is in the
domain of both choice functions and the set E . We use this operator to define generalised
parallel composition. For the sake of presentation, we present partial functions as sets.

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/ITree_CSP.thy#L231
https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/examples/ITree_CSP_Examples.thy#L23
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▶ Definition 9. P ∥E Q is defined corecursively by the following equations:

(Vis F) ∥E (Vis G) = Vis

 {e 7→ (P ′ ∥E (Vis G)) | (e 7→ Left(P ′)) ∈ mergeA(F ,G)}
⊕{e 7→ ((Vis F) ∥E Q′) | (e 7→ Right(Q′)) ∈ mergeE(F ,G)}
⊕{e 7→ (P ′ ∥E Q′) | (e 7→ Both(P ′,Q′)) ∈ mergeE(F ,G)}


(Sil P ′) ∥E Q = Sil (P ′ ∥E Q) P ∥E (Sil Q′) = Sil (P ∥E Q′)

(Ret x) ∥E (Ret y) = Ret (x , y)
(Ret x) ∥E (Vis G) = Vis {e 7→ Ret x ∥E Q′ | (e 7→ Q′) ∈ G}
(Vis F) ∥E (Ret y) = Vis {e 7→ P ′ ∥E Ret y | (e 7→ P ′) ∈ F}

The most complex case is for Vis, which constructs a new choice function by merging F and
G. The three cases are again represented by three partial functions. The first two allow the
left and right to evolve independently to P ′ and Q′, respectively, using one of their enabled
events, leaving their opposing side, Vis G and Vis F respectively, unchanged. The third case
allows them both to evolve simultaneously on a synchronised event.

The Sil cases allow τ events to happen independently and with priority. If both sides can
return a value, x and y, respectively then the parallel composition returns a pair, which can
later be merged if desired. The final two cases show what happens when only one side has a
return value, and the other side has visible events. In this case, the Ret value is retained and
pushed through the parallel composition, until the other side also terminates.

We use ∥E to define two special cases for CSP: P |[E ]|Q ≜ (P ∥E Q)>>= (λ(x , y) • Ret ())
and P ||| Q ≜ P |[ ∅ ]| Q. As usual in CSP, these operators do not return any values and
so P,Q :: (E , ())itree. The P |[ E ]| Q operator is similar to ∥E , except that if both sides
terminate any resultant values are discarded and a null value is returned. This is achieved
by binding to a simple merge function. P and Q do not return values, and so this has no
effect on the behaviour, just the typing. The interleaving operator P ||| Q, where there is no
synchronisation, is simply defined as P |[ ∅ ]|Q. We prove several algebraic laws:

(P ∥E Q) = (Q ∥E P)>>= (λ(x , y) • Ret (y, x)) div ∥E P = div

P |[E ]|Q = Q |[E ]| P P ||| Q = Q ||| P skip ||| P = P

Parallel composition is commutative, except that we must swap the outputs, and so |[E]| and
||| are commutative as well. Parallel has div as an annihilator for similar reasons to ✷. For |||,
skip is a unit since there is no possibility of communication and no values are returned.

The final operator we consider is hiding, P \ A, which turns the events in A into τs:

▶ Definition 10 (Hiding). P \ A is defined corecursively by the following equations:

Vis(F) \ A =


Sil (F(e) \ A) if A ∩ dom(F) = {e}
Vis {(e,P \ A) | (e,P) ∈ F} if A ∩ dom(F) = ∅
stop otherwise

Sil(P) \ A = Sil(P \ A) Ret x \ A = Ret x

We consider a restricted version of hiding where only one event can be hidden at a time, to
avoid nondeterminism. When hiding the events of A in the choice function F there are three
cases: (1) there is precisely one event e ∈ A enabled, in which case it is hidden; (2) no enabled
event is in A, in which case the event remains visible; (3) more than one e ∈ A is enabled,
and so we deadlock. We again impose maximal progress here, so that an enabled event to be

CONCUR 2021
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hidden is prioritised over other visible events: (a → P [] b → Q) \ {a} = τP, for example.
In spite of the significant restrictions on hiding, it supports the common pattern where one
output event is matched with an input event. Moreover, a priority can be placed on the
order in which events are hidden, rather than deadlocking, by sequentially hiding events.
Hiding can introduce divergence, as the following theorem shows: (iter (sync e)) \ e = div .

3.2 Circus
Whilst CSP processes can be parametrised to allow modelling state, there is no support for
explicit state operators like assignment. The do notation somewhat allows variables, but
these are immutable and are not preserved across iterations. Circus [42, 32] is an extension
of CSP that allows state variables. Given a state variable buf::integer list, the buffer
example can be expressed in Circus as follows:

buf := [] # loop((Input?(i)→ buf := buf @ [i])
✷ ((length(buf ) > 0) & Output!(hd buf )→ buf := tl buf )
✷ State!(buf )→ Skip)

We update the state with assignments, which are threaded through sequential composition.
In our work [15, 14, 16], each state variable is modelled as a lens [12], x :: V =⇒ S. This

is a pair of functions get :: V ⇒ S and put :: S ⇒ V ⇒ S, which query and update the
variables present in state S, and satisfy intuitive algebraic laws [14]. They allow an abstract
representation of state spaces, where no explicit model is required to support the laws of
programming [22]. Lenses can be designated as independent, x ▷◁ y, meaning they refer to
different regions of S. An expression on state variables is simply a function e :: S ⇒ V , where
V is the return type. We can check whether an expression e uses a lens x using unrestriction,
written x ♯ e. If x ♯ e, then e does not use x in its valuation, for example x ♯ (y + 1), when
x ▷◁ y. Updates to variables can be expressed using the notation [x1 ⇝ e1, x2 ⇝ e2, · · · ], with
xi :: Vi =⇒ S and ei :: S ⇒ Vi , which represents a function S ⇒ S.

We can characterise Circus through a Kleisli lifting of CSP processes that return values,
so that Circus actions are simply homogeneous KTrees. We define the core operators below:

▶ Definition 11 (Circus Operators).

⟨σ⟩ ≜ (λ s • Ret(σ(s)))
x := e ≜ ⟨[x ⇝ e]⟩

c?x :A→ F(x) ≜ (λ s • inp c A >>= (λ x • F(x) s))
c!e → P ≜ (λ s • outp c (e s)>>= (λ x • P s))

P ✷ Q ≜ (λ s • P(s) ✷ Q(s))
P |[ns1|E |ns2]|Q ≜ (λ s • (P(s) ∥E Q(s))>>= (λ(s1, s2) • s ◁ns1 s1 ◁ns2 s2))

Operator ⟨σ⟩ lifts a function σ : S ⇒ S to a KTree. It is principally used to represent
assignments, which can be constructed using our maplet notation, such that a single assign-
ment x := e is ⟨[x ⇝ e]⟩. Most of the remaining operators are defined by lifting of their
CSP equivalents. An output c!e → P carries an expression e, rather than a value, which
can depend on the state variables. The main complexity is the Circus parallel operator,
P |[ns1|E |ns2]|Q, which allows P and Q to act on disjoint portions of the state, characterised
by the name sets ns1 and ns2. We represent ns1 and ns2 as independent lenses, ns1 ▷◁ ns2,
though they can be thought of as sets of variables with ns1 ∩ ns2 = ∅. The definition of

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/examples/ITree_Circus_Examples.thy#L9
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the operator first lifts ∥E , and composes this with a merge function. The merge function
constructs a state that is composed of the ns1 region from the final state of P, the ns2 region
from Q, and the remainder coming from the initial state s. This is achieved using the lens
override operator s1 ◁X s2, which extracts the region described by X from s2 and overwrites
the corresponding region in s1, leaving the complement unchanged.

Our Circus operators satisfy many standard laws [32, 16], beyond the CSP laws:

⟨σ⟩ # ⟨ρ⟩ = ⟨ρ ◦ σ⟩
⟨σ⟩ # (P ✷ Q) = (⟨σ⟩ # P) ✷ (⟨σ⟩ # Q)

x := e # y := f = y := f # x := e if x ▷◁ y, x ♯ f , y ♯ e
P |[ns1|E |ns2]|Q = Q |[ns2|E |ns1]|P if ns1 ▷◁ ns2

Sequential composition of two state updates σ and ρ entails their functional composition.
State updates distribute through external choice from the left. Two variable assignments
commute provided their variables are independent (x ▷◁ y) and their respective expressions
do not depend on the adjacent variable. Circus parallel composition is commutative, provided
that we also switch the name sets.

4 Linking to Failures-Divergences Semantics

Next, we show how ITrees are related to the standard failures-divergences semantics of CSP [8].
The utility of this link is to both allow symbolic verification of ITrees and allow them to act
as a target of step-wise refinement. In this way, we can use existing the mechanisations of the
CSP set-based and relational semantics [39, 16] to capture and reason about nondeterministic
specifications, and use ITrees to provide executable implementations.

In the failures-divergences model, a process is characterised by two sets: F :: (E✓ list ×
E set) set and D :: P(E list), which are, respectively, the set of failures and divergences. A
failure is a trace of events plus a set of events that can be refused at the end of the interaction.
A divergence is a trace of events that leads to divergent behaviour. A distinguished event
✓ ∈ E is used as the final element of a trace to indicate that this is a terminating observation.

For example, consider the process a → c → skip ✷ b → div , which initially permits an a
or b event, and following a permits a c event. It exhibits the failure ([], {c}), since before
any events are performed, the event c is being refused. A second failure is ([a], {a, b}), since
after performing an a, only c is enabled and the other events are refused. A third failure
is ([a, c,✓], {a, b, c}), which represents successful termination, after which all events are
refused. This process also has a divergence trace [b], since after performing event b, the
process diverges. If a divergent state is unreachable then D is empty. Here, we show how to
extract F and D from any ITree, and thus processes constructed from the operators of §3.

We begin by giving a big-step operational semantics to ITrees, using an inductive predicate.

▶ Definition 12 (Big-Step Operational Semantics).

−

P []−→ P
P tr−→ P ′

τP tr−→ P ′

e ∈ E F(e) tr−→ P ′

([] x ∈ E • F(x)) e#tr−−−→ P ′

The relation P tr−→ Q means that P can perform the trace of visible events contained in the
list tr : E list and evolve to the ITree Q. This relation skips over τ events. The first rule
states that any ITree may perform an empty trace ([]) and remain at the same state. The
second rule states that if P can evolve to P ′ by performing tr , then so can τP. The final rule

CONCUR 2021
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states that if e is an enabled visible event, and P(e) can evolve to P ′ by doing tr , then the
event choice can evolve to P ′ via e#tr , which is tr with e inserted at the head. This inductive
predicate is different from the trace predicate (is trace of) in [43], since P tr−→ P ′ records
both the trace and the continuation ITree. It is therefore more general, and provides the
foundation for characterising both structural operational and denotational semantics. With
these laws, we can prove the usual operational laws for sequential composition as theorems:

▶ Theorem 13 (Sequential Operational Semantics).

−
skip→ ✓()

P tr−→ P ′

(P >>= Q)
tr−→ (P ′ >>= Q)

P tr1−−→ ✓x Q(x) tr2−−→ Q′

(P >>= Q)
tr1 @ tr2−−−−−→ Q′

The skip process immediately terminates, returning (). If the left-hand side P of >>= can
evolve to P ′ performing the events in tr , then the overall bind evolves similarly. If P can
terminate after doing tr1, returning x , and the continuation Q(x) can evolve over tr2 to Q′

then the overall >>= can also evolve over the concatenation of tr1 and tr2, tr1 @ tr2, to Q′.
Often in CSP, one likes to show that there are no divergent states, a property called

divergence freedom. It is captured by the following inductive-coinductive definition:

▶ Definition 14 (Divergence Freedom).

−
✓x
⇒ R

P ⇒ R
τP ⇒ R

ran(F) ⊆ R
Vis F ⇒ R div-free ≜

⋃
{R | R ⊆ {P | P ⇒ R}}

Predicate P ⇒ R is defined inductively. It requires that P stabilises to a Ret, or to a Vis
whose coninuations are all contained in R. Then, div-free is the largest set consisting of all
sets R = {P | P ⇒ R}, and is coinductively defined. If we can find an R such that for every
P ∈ R, it follows that P ⇒ R, that is R is closed under stabilisation, then any P ∈ R is
divergence free. Essentially, R needs to enumerate the symbolic post-stable states of an
ITree; for example R = {run E} satisfies the provisos and so run E is divergence free. We
have proved that P ∈ div-free ⇔ (∄s • P s−→ div), which gives the operational meaning.

With our transition relation, we can define Roscoe’s step relation, which is used to link
the operational and denotational semantics of CSP [36, Section 9.5]. The utility of this
definition, and the theorems that follow, is to permit symbolic verification of CSP processes
by calculating their set-based characterisation.

▶ Definition 15 (Roscoe’s Step Relation).

(P s
=⇒ P ′) ≜ ((∃ t ∈ Σ list • s = t @ [✓x ] ∧ P t−→ ✓x ∧ P ′ = stop) ∨ (set(s) ⊆ Σ ∧ P s−→ P ′))

Here, set(s) extracts the set of elements from a list. The step relation is similar to s−→, except
that the event type is adjoined with a special termination event ✓. We define the enlarged
set Σ✓ ≜ Σ ∪ {✓x | x ∈ S}, which adds a family of events parametrised by return values, as
in the semantics of Occam [34], which derives from CSP. A termination is signalled when the
transition relation reaches a Ret x in the ITree, in which case the trace is augmented with ✓x
and the successor state is set to stop. We often use a condition of the form set(s) ⊆ Σ to mean
that no ✓x event is in s. We can now define the sets of traces, failures, and divergences [36]:

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/Interaction_Trees.thy#L420
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Divergence.thy#L30
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_FDSem.thy#L46
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▶ Definition 16 (Traces, Failures, and Divergences).

traces(P) ≜ {s | set(s) ⊆ Σ✓ ∧ (∃P ′ • P s
=⇒ P ′)}

P ref E ≜ ((∃F • P = Vis F ∧ E ∩ dom(F) = ∅) ∨ (∃ x • P = Ret x ∧ ✓x /∈ E))

failures(P) ≜
{
(s,X) | set(s) ⊆ Σ✓ ∧ (∃Q • P s

=⇒ Q ∧ Q ref X)
}

divergences(P) ≜ {s @ t | set(s) ⊆ Σ ∧ set(t) ⊆ Σ ∧ (∃Q • P s
=⇒ Q ∧ Q⇑ )}

The set traces(P) is the set of all possible event sequences that P can perform. For failures(P),
we need to determine the set of events that an ITree is refusing, P ref E . If P is a visible
event, Vis F , then any set of events E outside of dom(F) is refused. If P is a return event,
Ret x , then every event other than ✓x is refused. With this, we can implement Roscoe’s form
for the failures. Finally, the divergences is simply a trace s leading to a divergent state Q⇑ ,
followed by any trace t. We exemplify these definitions with two calculations of failures:

failures(inp c A) =
{([],E) | ∀ x ∈ A • c.x /∈ E} ∪ {([c.x ],E) | x ∈ A ∧ ✓ /∈ E}
∪ {([c.x ,✓()],E) | x ∈ A}

failures(P >>= Q) =
{(s,X) | set(s) ⊆ Σ ∧ (s,X ∪ {✓x | x ∈ S}) ∈ failures(P)}
∪ {(s @ t,X) | ∃ v • s @ [✓v] ∈ traces(P) ∧ (t,X) ∈ failures(Q(v))}

The failures of inp c A consists of (1) the empty trace, where no valid input on c is refused;
(2) the trace where an input event c.x occurred, and ✓() is not being refused; and (3) the
trace where both c.x and ✓() occurred, and every event is refused. The failures of P >>= Q
consist of (1) the failures of P that do not reach a return, and (2) the terminating traces
of P, ending in ✓v appended with a failure of Q(v), the continuation. With the help of
Isabelle’s simplifier, these equations can be used to automatically calculate the failures and
divergences, which can be easier to reason with than directly applying coinduction.

We conclude this section with some important properties of our semantic model:

▶ Theorem 17 (Semantic Model Properties).

(s,X) ∈ failures(P) ∧ (Y ∩ {x | s @ [x ] ∈ traces(P)} = ∅)⇒ (s,X ∪Y ) ∈ failures(P)

s ∈ divergences(P) ∧ set(t) ⊆ Σ⇒ s @ t ∈ divergences(P)

P ≈ Q ⇒ (failures(P) = failures(Q) ∧ divergences(P) = divergences(Q))

P ∈ div-free⇔ divergences(P) = ∅
P ∈ div-free⇒ (∀ s a • s @ [a] ∈ traces(P)⇒ (s, {a}) /∈ failures(P))

The first two are standard healthiness conditions of the failures-divergences model [36], called
F3 and D1, respectively. F3 states that if (s,X) is a failure of P then any event that cannot
subsequently occur after s, according to the traces, must also be refused. D1 states that
the set of divergences is extension closed. We have also proved that two weakly bisimilar
processes have the same set of divergences and failures. The next result links the coinductive
definition of divergence freedom and the set of divergences. The final result demonstrates
that ITrees satisfy Roscoe’s definition of determinism for CSP [36]: if an ITree P is divergence
free then there is no trace after which an event can be both accepted and also refused.
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5 Simulation by Code Generation

The Isabelle code generator [19, 18] can be used to extract code from (co)datatypes, functions,
and other constructs, to functional languages like SML, Haskell, and Scala. Although ITrees
can be infinite, this is not a problem for languages with lazy evaluation, and so we can step
through the behaviour of an ITree. Code generation then allows us to support generation of
verified simulators, and provides a potential route to correct implementations.

The main complexity is a computable representation of partial functions. Whilst A 7→ B
is partly computable, all that we can do is apply it to a value and see whether it yields an
output or not. For simulations and implementations, however, we typically want to determine
a menu of enabled events for the user to select from. Moreover, calculation of a semantics for
CSP operators like ✷ and ∥ requires us to compute with partial functions. For this, we need
a way of calculating values for functions dom, ◁, and ⊕, which is not possible for arbitrary
partial functions. Instead, we need a concrete implementation and a data refinement [18].

We choose associative lists as an implementation, A 7→ B ≈ (A × B) list, which limits
us to finite constructions. However, it has the benefit of being easily pretty printed and so
makes the simulator easier to implement. More sophisticated implementations are possible,
as the core theory of ITrees is separated from the code generation setup. To allow us to
represent partial functions by associative lists, we need to define a mapping function:

fun pfun_alist :: "(’a × ’b) list ⇒ (’a 7→ ’b)" where
"pfun_alist [] = {7→}" | "pfun_alist ((k,v) # f) = pfun_alist f ⊕ {k 7→ v}"

This recursive function converts an associative list to a partial function, by adding each pair
in the list as a maplet. We generally assume that associative lists preserve distinctness of
keys. However, for this function, keys which occur earlier take priority. With this function
we can then demonstrate how the different partial function operators can be computed. We
prove the following congruence equations as theorems in Isabelle/HOL.

(pfun alist f )⊕ (pfun alist g) = pfun alist (g @ f )
A◁ (pfun alist f ) = pfun alist (AList.restrict A m)

(λ x ∈ (set xs) • f (x)) = pfun alist (map (λ k • (k, f k)) xs)

Override (⊕) is expressed by concatenating the associative lists in reverse order. Domain
restriction (◁) has an efficient implementation in Isabelle, AList.restrict, which we use. For a
partial λ-abstraction, we assume that the domain set is characterised by a list (set xs). Then,
a λ term can be computed by mapping the body function f over xs.

With these equations, we can set up the code generator. The idea is to designate certain
representations of abstract types as code datatypes in the target language, of which each
mapping function is a constructor. For sets, the following Haskell code datatype is produced:

data Set a = Set [a] | Coset [a] deriving (Read, Show);

A set is represented as a list of values using the constructor Set, which corresponds to the
function set. It is often the case that we wish to capture a complement of another set, and so
there is also the constructor Coset for a set whose elements are all those not in the given list.
Functions on sets are then computed by code equations, which provide the implementation
for each concrete representation. The membership function member is implemented like this:
member :: forall a. (Eq a) => a -> Set a -> Bool;
member x (Coset xs) = not (x ‘elem‘ xs); member x (Set xs) = xs ‘elem‘ x;

https://github.com/isabelle-utp/Z_Toolkit/blob/b51b75fa419fb69d33d542238238e6f692732c37/Partial_Fun.thy#L700
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Figure 1 Simulating the CSP buffer in the Glasgow Haskell Interpreter.

Each case for the function corresponds to a code equation. The function elem is the Haskell
prelude function that checks whether a value is in a list. This kind of representation ensures
correctness of the generated code with respect to the Isabelle specifications. Similarly to
sets, we can code generate the following representation for partial functions:

data Pfun a b = Pfun_alist [(a, b)];

dom :: forall a b. Pfun a b -> Set a;

dom (Pfun_alist xs) = Set (map fst xs);

A partial function has a single constructor, although it is possible to augment this with
additional representations. Each code equation likewise becomes a case for the corresponding
recursive function, as illustrated by the domain function. Finally, we can code generate
interaction trees, which are represented by a very compact datatype:

data Itree a b = Ret b | Sil (Itree a b) | Vis (Pfun a (Itree a b));

Each semantic definition, including corecursive functions, are also automatically mapped to
Haskell functions. We illustrate the code generated for external choice below:

extchoice :: (Eq a, Eq b) => Itree a b -> Itree a b -> Itree a b;

extchoice p q = (case (p, q) of {

(Ret r, Ret y) -> (if r == y then Ret r else Vis zero_pfun);

(Ret _, Sil qa) -> Sil (extchoice p qa); (Ret r, Vis _) -> Ret r;

(Sil pa, _) -> Sil (extchoice pa q); (Vis _, Ret a) -> Ret a;

(Vis _, Sil qa) -> Sil (extchoice p qa);

(Vis f, Vis g) -> Vis (map_prod f g); });

The map_prod function corresponds to ⊙, and is defined in terms of the corresponding code
generated functions for partial functions. The external choice operator (✷) is simply defined
as an infinitely recursive function with each of the corresponding cases in Definition 7.

For constructs like inp (Definition 6), there is more work to support code generation,
since these can potentially produce an infinite number of events which cannot be captured
by an associative list. Consider, for example, inp c {0..}, for c : N ∆−→E , which can produce
any event c.i for i ≥ 0. We can code generate this by limiting the value set to be finite, for
example {0..3}. Then, the code generator maps this to a list [0, 1, 2, 3], which is computable.
Thus, we can finally export code for concrete examples using the operator implementations.
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We can now implement a simple simulator, the code for which is shown below:

sim_cnt :: (Eq e, Show e, Read e, Show s) => Int -> Itree e s -> IO ();
sim_cnt n (Ret x) = putStrLn ("Terminated:␣" ++ show x);
sim_cnt n (Sil p) =
do { if (n == 0) then putStrLn "Internal␣Activity..." else return ();

if (n >= 20)
then do { putStr "Many␣steps␣(>␣20);␣Continue?"; q <- getLine;

if (q=="Y") then sim_cnt 0 p else putStrLn "Ended."; }
else sim_cnt (n + 1) p };

sim_cnt n (Vis (Pfun_alist [])) = putStrLn "Deadlocked.";
sim_cnt n t@(Vis (Pfun_alist m)) =
do { putStrLn ("Events:␣" ++ show (map fst m)); e <- getLine;

case (reads e) of
[] -> do { putStrLn "No␣parse"; sim_cnt n t }
[(v, _)] -> case (lookup v m) of

Nothing -> do { putStrLn "Rejected"; sim_cnt n t }
Just k -> sim_cnt 0 k };

simulate = sim_cnt 0;

The idea is to step through τs until we reach either a ✓x , in which case we terminate, or a Vis,
in which we case the user can choose an option. Since divergence is a possibility, we limit the
number of τs that the will be skipped. After 20 τ steps, the user can choose to continue or
abort the simulation. If an empty event choice is encountered, then the simulation terminates
due to deadlock. Otherwise, it displays a menu of events, allows the user to choose one,
and then recurses following the given continuation. The simulator currently depends on
associative lists to represent choices, but other implementations are possible.

In order to apply the simulator, we need only augment the generated code for a particular
ITree with the simulator code. Figure 1 shows a simulation of the CSP buffer in §3, with the
possible inputs limited to {0..3}. We provide an empty list as a parameter for the initial
state. The simulator tells us the events enabled, and allows us to pick one. If we try and
pick a value not enabled, the simulator rejects this. Since lenses and expressions can also be
code generated, we can also simulate the Circus version of the buffer, with the same output.

As a more sophisticated example, we have implemented a distributed ring buffer, which
is adopted from the original Circus paper [42]. The idea is to represent a buffer as a ring of
one-place cells, and a controller that manages the ring. It has the following form:

(Controller |[ {rd.c,wrt.c | c ∈ N} ]| (||| i ∈ {0..maxbuff } • Cell(i))) \ {rd.c,wrt.c | c ∈ N}

where rd.c and wrt.c are internal channels for the controller to communicate with the ring.
Each cell is a single place buffer with a state variable val, and has the form

Cell(i) ≜ wrt?c → val := v # loop(wrt?c → val := v ✷ rd!val → Skip)

The cells are arranged through indexed interleaving, and maxbuff is the buffer size. The
channels Input and Output are used for communicating with the overall buffer. Space will
not permit further details. The simulator can efficiently simulate this example, for a small
ring with 5 cells, with a similar output to Figure 1, which is a satisfying result.

We were also able to simulate the ring buffer with 100 cells, which requires about 3
seconds to compute the next step. With 1000 cells, the simulator takes more than a minute
to calculate the next transition. The highest number of cells we could reasonably simulate
is around 250. However, we have made no attempt to optimise the code, and several data
types could be replaced with efficient implementations to improve scalability. Thus, as an
approach to simulation and potentially implementation, this is very promising.

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L222
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/RingBuffer.thy#L96
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/RingBuffer.hs
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6 Related Work

Infinite trees are a ubiquitous model for concurrency [40]. In particular, ITrees can be seen
as a restricted encoding of Milner’s synchronisation trees [27, 41, 28]. In contrast to ITrees,
synchronisation trees allow multiple events from each node, including both visible and τ

events. They have seen several generalisations, most recently by Ferlez et al. [10], who
formalise Generalized Synchronisation Trees based on partial orders, define bisimulation
relations [11], and apply them to hybrid systems. Our work is different, because ITrees use
explicit coinduction and corecursion, but there are likely mutual insights to be gained.

ITrees naturally support deterministic interactions, which makes them ideal for imple-
mentations. Milner extensively discusses determinism in [28, chapter 11], a property which is
imposed by construction in our operators. Similarly, Hoare defines a deterministic choice
operator a → P | b → Q in [21, page 29], which is similar to ours except that Hoare’s
operator imposes determinism syntactically, where we introduce deadlock.

ITrees [43], and their mechanisation in Coq, have been applied in various projects as a
way of defining abstract yet executable semantics [23, 44, 26, 45, 46, 25, 37]. They have been
used to verify C programs [23] and a HTTP key-value server [25]. The Coq mechanisation
uses features not available in Isabelle, notably type constructor variables. Specifically, in
[43] the Vis constructor has two parameters, rather than one, for the enabled events (i.e.
channels) e : E A and k : A → itree E R, a total function, for the continuation. There, E is a
type constructor over A, the type of data. Our work avoids this, with no apparent loss of
generality, by fixing an event universe, E ; using partial functions to represent visible event
choices; and using prisms [33] to characterise channels. We can encode the two parameter
Vis e k as [] x∈dom(matche)→ k(matche(x)) with e : A ∆−→E . The benefit of having a fixed
E is that ITrees become much simpler semantic objects. Traces can be represented as lists,
rather than the bespoke type used in [43]. These are amenable to first-order automated
proof [5], which has allowed us to develop our library quickly and with minimal effort.

7 Conclusions

In this paper we showed how Interaction Trees [43] can be used to develop verified simulations
for state-rich process languages with the help of Isabelle codatatypes [4] and the code
generator [19, 18]. Our early results indicate that the technique provides both tractable
verification, with the help of Isabelle’s proof automation [5] and efficient simulation. We
applied our technique to the CSP and Circus process languages, though it is applicable to a
variety of other process algebraic languages.

So far, we have focused primarily on deterministic processes, since these are easier to
implement. This is not, however, a limitation of the approach. There are at least three
approaches that we will investigate to handling nondeterminism in the future: (1) use of a
dedicated indexed nondeterminism event; (2) extension of ITrees to permit a computable
set of events following a τ ; (3) a further Kleisli lifting of ITrees into sets. Moreover, we will
formally link ITrees to our formalisation of reactive contracts [15, 16], which provides both a
denotational semantics for Circus and a refinement calculus for reactive systems, building on
our link with failures-divergences. We will implement the remaining CSP operators, such as
renaming and interruption. We will also further investigate the failures-divergence semantics
of our ITree process operators, and determine whether failures-divergences equivalence entails
weak bisimulation. Finally we will provide a more user friendly interface for our simulator as
found in animators like FDR4’s probe tool [17] and ProB [24] for Event-B.
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Our work has many practical applications in production of verified simulations. We
intend to use it to mechanise a semantics for the RoboChart [29] and RoboSim [9] languages,
which are formal UML-like languages for modelling robots with denotational semantics based
in CSP. This will require us to consider discrete time, which we believe can be supported
using a dedicated time event in ITrees, similar to tock-CSP [35]. This will build on our
colleagues’ work with ✓-tock [2], a new semantics for tock-CSP. This will open up a pathway
from graphical models to verified implementations of autonomous robotic controllers. In
concert with this, we will also explore links to our other theories for hybrid systems [31, 13],
to allow verification of controllers in the presence of a continuously evolving environment.
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Abstract
The coincidence between initial algebras (IAs) and final coalgebras (FCs) is a phenomenon that
underpins various important results in theoretical computer science. In this paper, we identify a
general fibrational condition for the IA-FC coincidence, namely in the fiber over an initial algebra
in the base category. Identifying (co)algebras in a fiber as (co)inductive predicates, our fibrational
IA-FC coincidence allows one to use coinductive witnesses (such as invariants) for verifying inductive
properties (such as liveness). Our general fibrational theory features the technical condition of
stability of chain colimits; we extend the framework to the presence of a monadic effect, too, restricting
to fibrations of complete lattice-valued predicates. Practical benefits of our categorical theory are
exemplified by new “upside-down” witness notions for three verification problems: probabilistic
liveness, and acceptance and model-checking with respect to bottom-up tree automata.
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1 Introduction

Categorical Algebras and Coalgebras. Categorical algebras and coalgebras are omnipresent
in theoretical computer science. For a category C and an endofunctor F : C → C, an
F -algebra is a C-morphism a : FX → X, while an F -coalgebra is c : X → FX. These
structures occur in many different settings with different C and F ; the identification of such
(co)algebras has yielded a number of concrete benefits, such as rigorous system/program
semantics, verification methods, and programming language constructs.

One principal use of categorical (co)algebras is as models of data structures such as
terms and state-based systems. Examples include modeling of inductive datatypes by initial
algebras [6], and the theory of coalgebras [18,26] that captures state-based behaviors. Here,
the base category C is typically that of (structured) sets and (structure-preserving) maps.
(In this paper, such a category will constitute a base category of a fibration).
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Another principal use of (co)algebras is as logical recursive specifications. Here the base
category C is typically a complete lattice of truth values (such as 2 = {⊥, ⊤}) and the functor
F : C → C is identified with a monotone function. Liveness properties are modeled by least
fixed points (lfp’s); safety properties are greatest ones (gfp’s); and by the classic Knaster–
Tarski theorem, these are identified with initial algebras and final coalgebras, respectively.
(In this paper, such a category will appear as a fibre category of a fibration).

Initial Algebras and Final Coalgebras. In the above variety of occurrences of (co)algebras,
initial algebras and final coalgebras play key roles. Their definition is by suitable universality:
β : F (µF ) → µF is initial if there is a unique algebra morphism from β to an arbitrary
algebra a : FX → X; and dually for final coalgebras.

F (µF )
∼=init. ��

// FX
��

µF // X

FX // F (νF )

X //

OO

νF
∼= final
OO

Their (co)algebra structures are isomorphisms by the Lambek lemma. The latter extends
the Knaster–Tarski theorem from lattices to categories.

In many occurrences of (co)algebras in computer science, initial algebras represent finitary
entities while final coalgebras represent infinitary entities. For example, when C = Set (the
category of sets and functions) and F is a functor that models a datatype constructor, the
carrier µF of an initial algebra represents the inductive datatype – collecting all finite trees
“of shape F” – while the carrier νF of a final coalgebra is for the coinductive datatype and
collects all (finite and infinite) trees. This intuition is found also in the logical (co)algebras:
liveness properties (initial algebras) can be witnessed within finitely many steps, while safety
properties (final coalgebras) are verified only after infinitely many steps.

Initial Algebra-Final Coalgebra Coincidence. In this paper, we are interested in the
coincidence of an initial algebra and a final coalgebra (the IA-FC coincidence). While it may
sound unlikely in view of the contrast between finitary and infinitary, the coincidence has
been found in different areas in computer science, underpinning fundamental results.

One example is in domain theory: cpo-enrichment yields the IA-FC coincidence, which
is used to solve recursive domain equations of mixed variance [11, 13, 27, 32]. Another
example is in process semantics: specifically, in the coalgebraic characterization of finite trace
semantics [15], the IA-FC coincidence in some Kleisli categories Kl(T ) has been observed.

Contribution: the Fibrational IF/I Coincidence and Application to Verification Witnesses.
In this paper, we identify a general fibrational condition for the IA-FC coincidence: under mild
assumptions, we have the IA-FC coincidence in the fiber over an initial algebra in the base
category (the IF/I coincidence). Identifying the base IA as a datatype, and the fibre IA/FC
as lfp/gfp specifications, the IF/I coincidence implies the coincidence between induction and
coinduction as reasoning principles, assuming they are over a (finitary) algebraic datatype.

This coincidence allows us to turn witness notions upside down, that is, to use coinductive
witness notions for establishing inductive properties. In general, inductive witness notions
for lfp properties (such as ranking functions) tend to be more complex than coinductive
witness notions for gfp properties (such as invariants). When we have the IF/I coincidence,
the latter can now be used for lfp properties.

Our technical contributions are as follows. We work with a fibration p : E → B, where B
is intuitively a category of sets and functions, and E equips these sets with predicates.
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We identify a general fibrational framework for what we call the IF/I coincidence – the
coincidence of IAs (lfp predicates) and FCs (gfp predicates) in the fiber over an initial
algebra in B (an inductive datatype). The IF/I coincidence relies only on mild fibrational
assumptions, notable among which are fibredness of functors and stability of certain
colimits. Although we restrict fibrations to posetal ones in the main text (§4), a similar
result for general fibrations can be shown (Appendix A).
As a notable class of examples, in §5 we show that the fibration of Ω-valued predicates
exhibits the IF/I coincidence (where Ω is an arbitrary complete lattice for truth values).
Furthermore, we study the IF/I coincidence in the presence of monadic effects [23],
building on the fibrational framework from [4].
These theoretical results are used to obtain coinductive (invariant-like) witness notions
for inductive (lfp, liveness) properties. Specifically, we present new witness notions for
probabilistic verification (§6) and verification with tree automata as specifications (§7).

Related Work. Many works are discussed in the technical sections; we discuss some others.
The work [25] shows uniqueness of fixed points above what is called a minimal invariant;

the latter corresponds to the lifting of a morphism which is both an initial algebra and a
final coalgebra. Our IF/I coincidence can yield such lifting under some assumptions (see
Thm. 3.6). The proof in [25] relies on homset enrichment, unlike our fibrational framework.

One of our main ideas is to use the IA-FC coincidence for novel proof methods for
recursive specifications (§6–7), mixing lfp’s and gfp’s. This is pursued also in [8,31] where
corecursive algebras induce the lfp-gfp coincidence.

Organization. After recalling fibrations and the chain construction of initial algebras in §2,
we formulate our IF/I coincidence in §3 and present sufficient conditions for the coincidence
in §4. In §5, these results are specialized to fibrations of Ω-valued predicates, where we
additionally include monadic effects. This paves the way to the concrete applications in §6–7,
where we present seemingly new verification techniques for probabilistic liveness and witnesses
of tree automata. We defer many proofs to the appendix.

2 Preliminaries

2.1 Fibrations

A fibration p : E → B is a functor that models indexing and substitution. That is, a functor
p : E → B can be seen as a family of categories (EX)X∈B that is equipped with substitution
functors that change the index X.

In our examples, the base category B is that of sets and (potentially effectful) functions;
and the total category E models “predicates” over sets in B. We review a minimal set of
definitions and results on fibrations. See [19] for details.

▶ Definition 2.1 (fibre, fibration). Let p : E → B be a functor.
For each X ∈ B, the fibre category (or simply fibre) EX over X is the category with

objects P ∈ E such that pP = X and morphisms f : P → Q such that pf = idX . An object
P ∈ EX is said to be above X and a morphism f ∈ EX is said to be vertical.

A morphism f : P → Q in E is cartesian if it satisfies the following universality: for each
g : R → Q in E and k : pR → pP in B with pg = pf ◦ k, there exists a unique morphism
h : R → P satisfying g = f ◦ h and ph = k. See the diagram below.

CONCUR 2021
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E

p

��

R
g

%%
h

&&
P

f
// Q l∗Q

l // Q

pR
pg

%%
k
%%

B pP
pf
// pQ X

l
// pQ

The functor p : E → B is a fibration if, for each Q ∈ E and each l : X → pQ in B, there
exists l∗Q ∈ E and a morphism l : l∗Q → Q such that pl = l and l is cartesian.

The functor p : E → B is an opfibration if pop : Eop → Bop is a fibration. A functor that
is both a fibration and an opfibration is called a bifibration.

When p is a fibration, the correspondence from Q to l∗Q described above induces the
substitution functor l∗ : EY → EX which replaces the index. The following characterization
of bifibrations is useful for us: a fibration p is a bifibration if and only if each substitution
functor l∗ : EY → EX (often called a pullback) has a left adjoint l∗ : EX → EY (often called
a pushforward).

We are interested in reasoning over algebraic datatypes, that is in categorical terms,
predicates in EµF over the carrier µF of the initial algebra for F : B → B. For this purpose
we often consider a tuple (p, F, Ḟ ) in the following definition.

▶ Definition 2.2 ((fibred) lifting). Let p : E → B be a functor and F be an endofunctor on B.
We say that an endofunctor Ḟ on E is a lifting of F along p if p ◦ Ḟ = F ◦ p (see above).

Assuming that p is a fibration, a lifting Ḟ is fibred if Ḟ preserves cartesian morphisms.

In this paper, we focus on a certain class of posetal fibrations called CLat∧-fibrations.
They can be seen as topological functors [17] whose fibres are posets. This class abstracts
treatment of spacial and logical structures.

▶ Definition 2.3 (CLat∧-fibration). A CLat∧-fibration is a fibration p : E → B where each
fibre EX is a complete lattice and each substitution f∗ : EY → EX preserves all meets

∧
.

In each fibre EX , the order is denoted by ≤X or ≤. Its least and greatest elements are
denoted by ⊥X and ⊤X ; its join and meet are denoted by

∨
and

∧
.

The above simple axioms of CLat∧-fibrations induce many useful structures [20, 28]. One of
them is that a CLat∧-fibration is always a bifibration whose pushforwards f∗ arise essentially
by Freyd’s adjoint functor theorem. Another one is that CLat∧-fibrations lift colimits. This
is proved by [19, Prop. 9.2.2 and Exercise 9.2.4].

▶ Proposition 2.4. Let p : E → B be a CLat∧-fibration.
1. p is a bifibration.
2. If B is (co)complete then E is also (co)complete and p strictly preserves (co)limits.

▶ Example 2.5 (CLat∧-fibration).
(Pre → Set, Pred → Set) These forgetful functors are CLat∧-fibrations. Here Pre is
the category of preordered sets (X, ≤X) and order-preserving functions between them.
Pred is that of predicates: objects are P ⊆ X, and morphisms f : (P ⊆ X) → (Q ⊆ Y )
are functions f : X → Y satisfying f(P ) ⊆ Q.
(ERel → Set) The functor ERel → Set defined by the change-of-base [19], as shown
below, is a CLat∧-fibration. Concretely, ERel is the category of sets with binary relations
(X, R ⊆ X × X) as objects, and relation-preserving maps as morphisms.

ERel //

��

Pred
��

Set
(−)2

// Set



M. Kori, I. Hasuo, and S.-y. Katsumata 21:5

(Domain fibration dΩ : Set/Ω → Set) For each complete lattice Ω, we introduce a
CLat∧-fibration dΩ : Set/Ω → Set defined as follows.

X
h

≤X

//

f ��

Y

g��

Ω

Here, Set/Ω is a lax slice category defined as follows: objects of Set/Ω are pairs
(X, f : X → Ω) of a set and a function (an “Ω-valued predicate on X”); we shall often
write simply f : X → Ω for the pair (X, f). Its morphisms from f : X → Ω to g : Y → Ω
are functions h : X → Y such that f ≤X g ◦ h, as shown above.
Then dΩ is the evident forgetful functor, extracting the upper part of the above triangle.
The order ≤X used there is the pointwise order between functions of the type X → Ω;
the same order ≤X defines the order in each fiber (Set/Ω)X = Set(X, Ω). Following [4,
Def. 4.1], we call dΩ a domain fibration (from the lax slice category).

2.2 Chain Construction of Initial Algebras
▶ Definition 2.6 (chain-cocomplete category). A category C is chain-cocomplete if C has a
colimit of every chain. We write 0 for a colimit of the empty chain (i.e. an initial object).

Noteworthy is that chain-cocompleteness is equivalent to existence of an initial object and
filtered colimits, see [2, Cor. 1.7] for further details.

▶ Definition 2.7 (initial chain [1], [3, Def. 3.2]). Let C be a chain-cocomplete category, and
F : C → C be an endofunctor. The initial chain of F is the following diagram:

0 α0,1−−−→ F0 α1,2−−−→ · · · −→ F λ0 αλ,λ+1−−−−→ · · · . (1)

This consists of the following.
(Objects) It has objects F i0 for each i ∈ Ord (where Ord is the category of ordinals),
defined by F 00 = 0, F i+10 = F (F i0), and for a limit ordinal i, F i0 = colimj<i F j0.
(Morphisms) It has morphisms αi,j : F i0 → F j0 for all ordinals i, j such that i ≤ j,
defined inductively on i. (Base case) α0,j : 0 → F j0 is the unique morphism. (Step case)
αi+1,j+1 is Fαi,j ; for a limit ordinal j, αi+1,j is from the colimiting cocone for F j0. (Limit
case) When i is a limit ordinal, αi,j is induced by universality of F i0 = colimk<i F k0.

If αλ,λ+1 is an isomorphism, then we say that the initial chain of F converges in λ steps.

▶ Proposition 2.8 (from [1], [3, Thm. 3.5]). In the setting of Def. 2.7, assume that the initial
chain converges in λ steps. Then α−1

λ,λ+1 : F λ+10 ∼=→ F λ0 is an initial F -algebra.

The dual of the initial chain in Def. 2.7 is called the final chain. This also satisfies the
dual of Prop. 2.8 (yielding final coalgebras), see [3, Def. 3.20 and Thm. 3.21].

The converse of Prop. 2.8 holds if we restrict to Set.

▶ Proposition 2.9 (from [30], [3, Cor. 3.16]). A set functor has an initial algebra if and only
if the initial chain converges.

We often write µF for the carrier of an initial algebra of F .
The next basic lemma is important for us. Its dual (for coalgebras) is observed e.g. in [14].
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▶ Lemma 2.10. Assume that p : E → B is a fibration, that both E and B are chain-cocomplete,
and that p strictly preserves chain colimits. Let Ḟ be a lifting of F : B → B along p.

Consider the following initial chains.

E
p ��

0
α̇0,1

// Ḟ0
α̇1,2

// · · · // Ḟ λ0
α̇λ,λ+1

// · · ·

B 0
α0,1

// F0
α1,2

// · · · // F λ0
αλ,λ+1

// · · ·

1. We have αi,j = pα̇i,j for all ordinals i, j with i < j.
2. Moreover, if the upper initial chain for Ḟ converges and yield an initial Ḟ -algebra

α̇ : Ḟ (µḞ ) → µḞ , then pα̇ : Fp(µḞ ) → p(µḞ ) is an initial F -algebra.

3 Initial Algebra-Final Coalgebra Coincidence over Initial Algebras

In this section, we formulate our target coincidence called the IF/I coincidence. It is a
fibrational IA-FC coincidence over an initial algebra.

▶ Definition 3.1 (IF/I coincidence). Let p : E → B be a fibration, and Ḟ be a lifting of F .
We say that the tuple

(
p : E → B, F : B → B, Ḟ : E → E

)
satisfies the IA-FC coincidence

over an initial algebra (IF/I coincidence, for short) if the following is satisfied.
1. There is an initial F -algebra β : F (µF ) ∼=→ µF .
2. There is an initial Ḟ -algebra β̇ : Ḟ (µḞ ) ∼=→ µḞ above β.
3. Moreover, β̇−1 is final over β−1 in the following sense: for each Ḟ -coalgebra γ above β−1

(shown below diagram on the left), there exists a unique vertical coalgebra morphism f

from γ to β̇−1 (below diagram on the right, where vertical means pf = idµF ).

EḞ 99

p

��

Ḟ (µḞ ) µḞ
β̇−1

∼=
oo

ḞP P
γ

oo =⇒ ḞP
Ḟ f

OO

P
γ

oo

f
OO

BF 99 F (µF ) µF ;β−1

∼=
oo F (µF ) µF ;β−1

∼=
oo

IF/I Coincidence in Fibrations of (Co)algebras. The IF/I coincidence in Def. 3.1 is nicely
organized in terms of fibrations of (co)algebras: the last two conditions in Def. 3.1 can be
stated succinctly in advanced fibrational terms.

Given a functor F : B → B, Alg(F ) is the category of F -algebras, where an object
is a pair (X ∈ B, a : FX → X) and a morphism from (X, a) to (Y, b) is f : X → Y such
that b ◦ Ff = f ◦ a. Dually, Coalg(F ) is the category of F -coalgebras, where an object is
(X ∈ B, c : X → FX) and a morphism from (X, c) to (Y, d) is f such that d ◦ f = Ff ◦ c.

Then a fibration p and a fibred lifting Ḟ yield fibrations of (co)algebras.

▶ Proposition 3.2 (from [14, Prop. 4.1]). A lifting Ḟ of F along a fibration p induces functors
Alg(p) : Alg(Ḟ ) → Alg(F ) and Coalg(p) : Coalg(Ḟ ) → Coalg(F ), given by

Alg(p) : (ḞP
q−→ P ) 7−→ (FpP = pḞP

pq−→ pP ),

Coalg(p) : (P r−→ ḞP ) 7−→ (pP
pr−→ pḞP = FpP ).

The functor Alg(p) is a fibration. If additionally Ḟ is a fibred lifting, then Coalg(p) is a
fibration, too. For an opfibration p, we have a result dual to the above: Coalg(p) is an
opfibration; so is Alg(p) if Ḟ is an opfibred lifting (preserving cocartesian morphisms).
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The functor Coalg(p) : Coalg(Ḟ ) → Coalg(F ) in Prop. 3.2 plays an important role in
the following development. It is thought of as a functor where

(following the coalgebraic tradition) state-based transition systems c : X → FX and
behavior-preserving morphisms between them populate the base category Coalg(F ), and
invariants – i.e. predicates P ∈ EX over X that are preserved by transitions – populate the
total category Coalg(Ḟ ). The arrows in Coalg(Ḟ ) are logical implication of invariants.

The following reformulation is proved in [21, Appendix C.2], together with technical remarks.

▶ Proposition 3.3. The following is equivalent to Cond. 2 and 3 in Def. 3.1, respectively.
2’. There is an initial object β̇ in the fiber Alg(Ḟ )β.
3’. β̇−1 is a final object in the fiber Coalg(Ḟ )β−1 .

IF/I Coincidence in a CLat∧-fibration. Here we shall rewrite conditions in Def. 3.1 for
CLat∧-fibrations. But first, we need the following investigation of these conditions.

An initial Ḟ -algebra lying above an initial F -algebra is a norm (Cond. 1–2; cf. Lem. 2.10).
What is special is the finality of the initial Ḟ -algebra (Cond. 3). The intuition of the latter
is the following:

an lfp and a gfp coincide, in the fiber over the base initial algebra.

Intuitively, P with (γ : P → ḞP ) ∈ Coalg(Ḟ )β−1 is an invariant – it is a predicate that is
preserved by the transition β−1. Indeed, the morphism γ is equivalent to a morphism

γ† : P −→ (β−1)∗ḞP over idµF , that is,
P ≤ (β−1)∗ḞP if the fibration p : E → B is posetal,

by pulling back along β−1. The latter inequality signifies that P is an invariant. This
equivalence is formulated as follows.

▶ Lemma 3.4. Let p : E → B be a fibration and Ḟ be a lifting of F along p. For any
isomorphism α : X

∼=→ FX in B, Alg(Ḟ )α−1 ∼= Alg(α∗Ḟ ) and Coalg(Ḟ )α
∼= Coalg(α∗Ḟ ).

Therefore, Cond. 3 requires that β̇−1 gives a greatest invariant. In view of the Knaster–
Tarski theorem (that a greatest post-fixed point is a greatest fixed point), this means that
β̇−1 is a gfp if p is a CLat∧-fibration. Symmetrically, Cond. 2 (rephrased as Cond. 2’)
requires that β̇ is an lfp. Therefore, the IF/I coincidence yields a coincidence between an lfp
and a gfp. This plays an important role in the next section.

▶ Proposition 3.5. If p is a CLat∧-fibration then Cond. 2 and 3 in Def. 3.1 are equivalent
to the following condition: there is a unique fixed-point µḞ of (β−1)∗Ḟ : EµF → EµF .

IF/I Coincidence over Base IA-FC Coincidence. The IF/I coincidence (Def. 3.1) allows a
simpler formulation in the special case where the IA-FC coincidence is already there in the
base category. In this case, β̇−1 is final not only in a suitable fiber (Cond. 3 of Def. 3.1; cf.
Prop. 3.3), but also globally in the total category E. See [21, Appendix C.4] for details.

This special setting (the base IA-FC coincidence) is known to hold in domain-theoretic set-
tings [13,27]. We use this setting (specifically the IA-FC coincidence in a Kleisli category [15])
in one of our applications (§7).

▶ Theorem 3.6 (IF/I coincidence over the base coincidence). Let p : E → B be a bifibration
and (p, F, Ḟ ) be a tuple satisfying the IF/I coincidence. If there exists initial F -algebra
β : F (µF ) ∼= µF (in B) such that β−1 is a final F -coalgebra, then there exists an initial
Ḟ -algebra β̇ : Ḟ (µḞ ) ∼= µḞ (in E) above β such that β̇−1 is a final Ḟ -coalgebra.
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4 IF/I Coincidence from Stable Chain Colimits

We now present our main observation, namely that the IF/I coincidence is a general phe-
nomenon that relies only on a few mild assumptions. These assumptions include 1) that Ḟ is
fibred (Def. 2.2) and 2) stability of chain colimits (Def. 4.1).

Here in §4, we restrict the underlying fibration p : E → B to a CLat∧-fibration over
Set (Def. 2.3). This restriction simplifies proofs and technical developments. Nevertheless,
we have a general coincidence theorem for not necessarily posetal fibrations; it is found in
Appendix A. The general proof hinges on stable chain colimits, too.

The following is a key assumption. It is a fibrational adaptation of pullback-stable colimit,
a notion studied in (higher) topos theory and categorical logic [9, 16,22].

▶ Definition 4.1 (stable chain colimits). We say that a fibration p : E → B has stable chain
colimits if the following condition holds: for each λ ∈ Ord and each diagram D : Ord<λ → B,
1. B has a colimit of D. The i-th cocone component is denoted by κi : Di → colim D.
2. Moreover, for each object P ∈ Ecolim D above colim D, we have P ∼= colim κ∗

i P , with the
cartesian liftings (κ∗

i P → P )i∈Ord<λ
forming a colimiting cocone.

E
p��

κ∗
0P // κ∗

1P // · · · // P (∼= colim κ∗
i P )

B D0 // D1 // · · · // colim D

The first condition is equivalent to chain-cocompleteness. The situation of the second
condition is illustrated as the above diagram. Stability requires that the upper cocone
is colimiting. In the diagram, we note that morphisms κ∗

i P → κ∗
j P above D(i → j) are

well-defined (where i ≤ j ≤ λ); they are induced by universality of the cartesian liftings
κ∗

j P → P .
Letting λ = 0 in Def. 4.1 yields the following property.

▶ Lemma 4.2. Let p : E → B be a fibration with stable chain colimits. Then, all objects in
E0 are initial in E.

▶ Example 4.3. The fibrations in Example 2.5 – Pre → Set, Pred → Set, ERel → Set,
and the domain fibration dΩ for any complete lattice Ω – all have stable chain colimits.
Non-examples are deferred to [21, Appendix B].

▶ Theorem 4.4 (Main result). Let p : E → Set be a CLat∧-fibration and Ḟ be a lifting of F

along p. Assume further the following conditions:
1. there exists an initial F -algebra;
2. Ḟ is a fibred lifting of F ;
3. p has stable chain colimits.

Then (p, F, Ḟ ) satisfies the IF/I coincidence (Def. 3.1).

We prove the theorem in the rest of the section. Due to Prop. 3.5, it suffices to show that
(β−1)∗Ḟ : EµF → EµF has a unique fixed point, where β is an initial F -algebra. Cond. 1 in
Thm. 4.4 yields that the initial chain of F converges and gives an initial F -algebra (Prop. 2.8
and 2.9).

We analyze the initial chains of F and Ḟ , which is shown on the below.

E
p ��

0
α̇0,1

// Ḟ0
α̇1,2

// · · · // Ḟ λ0
α̇λ,λ+1

// Ḟ λ+10 // · · ·

Set 0
α0,1

// F0
α1,2

// · · · // F λ0
αλ,λ+1

// Ḟ λ+10 // · · ·
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Prop. 2.4 and Lem. 2.10 ensure that each chain morphism α̇i,i+1 is above αi,i+1. Then,
assuming that the initial chain of F converges in λ steps, the functor (β−1)∗Ḟ of our interest
is equal to α∗

λ,λ+1Ḟ .
Fig. 1 is the key diagram about a unique fixed-point of α∗

λ,λ+1Ḟ . For simplicity, we write
α for αλ,λ+1. We find the initial chain of Ḟ as its middle row; the initial chain of α∗Ḟ as the
bottom half of the last column; and the final chain of α∗Ḟ as the top half. The other objects
in the diagram are obtained by applying substitution to the last column.

α∗
0,λ⊤ // α∗

1,λ⊤ // α∗
2,λ⊤ // · · · // ⊤

α∗
0,λα∗Ḟ ⊤ // α∗

1,λα∗Ḟ ⊤ //

OO

α∗
2,λα∗Ḟ ⊤ //

OO

· · · // α∗Ḟ ⊤

OO

α∗
0,λ(α∗Ḟ )2⊤ // α∗

1,λ(α∗Ḟ )2⊤ // α∗
2,λ(α∗Ḟ )2⊤ //

OO

· · · // (α∗Ḟ )2⊤

OO

OO

0

...

...

α̇0,1
// Ḟ 0

...

α̇1,2
//

...
Ḟ 20 //

...

...
· · · // Ḟ λ0 (the initial Ḟ -chain)

...

...

α∗
0,λ(α∗Ḟ )2⊥ // α∗

1,λ(α∗Ḟ )2⊥ // α∗
2,λ(α∗Ḟ )2⊥ // · · · // (α∗Ḟ )2⊥

OO

α∗
0,λα∗Ḟ ⊥ // α∗

1,λα∗Ḟ ⊥ // α∗
2,λα∗Ḟ ⊥ //

OO

· · · // α∗Ḟ ⊥

OO

α∗
0,λ⊥ // α∗

1,λ⊥ //

OO

α∗
2,λ⊥ //

OO

· · · // ⊥

OO

0
α0,1

// F 0
α1,2

// F 20 // · · · // F λ0 (the initial F -chain)

Figure 1 IA-FC coincidence for CLat∧-fibrations, in Prop. 4.5. Here we write α for αλ,λ+1; the
choice of λ is arbitrary (the initial Ḟ -chain may not have stabilized).

The next result is the key technical observation. It says 1) the upper rows become closer
to the initial Ḟ -chain as we go below; and 2) symmetrically, the lower rows become closer
to the same as we go up. Its proof is by transfinite induction; the stability assumption is
crucially used in its limit case.

▶ Proposition 4.5. Consider the setting of Thm. 4.4. Let λ be an arbitrary ordinal. We
write α, α̇ for αλ,λ+1, α̇λ,λ+1 and ⊤, ⊥ for the maximum and minimum of the complete lattice
EF λ0. For each ordinal i, the objects (α∗Ḟ )i⊥ and (α∗Ḟ )i⊤ above F λ0 are defined by the
initial chain and the final chain of α∗Ḟ (the last column of Fig. 1).

Then we have α∗
i,λ(α∗Ḟ )i⊥ = Ḟ i0 = α∗

i,λ(α∗Ḟ )i⊤ for each i with i ≤ λ.

Proof sketch; a full proof is in [21, Appendix C.6]. The proof is by transfinite induction
on i. The base case is clear because E0 includes only one object by Lemma 4.2 and the
posetal assumption on p.

In the step case, fibredness of the lifting Ḟ lifts the equality for i, which is α∗
i,λ(α∗Ḟ )i⊥ =

Ḟ i0 = α∗
i,λ(α∗Ḟ )i⊤ (the induction hypothesis), to the desired equality for i + 1.

The limit case is less obvious than the other cases. We rewrite the target objects (e.g.
α∗

i,λ(α∗Ḟ )i⊥) to chain colimits (e.g. colimj<i α∗
j,λ(α∗Ḟ )i⊥) by stability of chain colimits,

and use the fact that colimits of diagonal elements (e.g. colimj<i α∗
j,λ(α∗Ḟ )j⊥) are equal to

Ḟ i0 by the induction hypothesis. See [21, Appendix C.6] for a full proof. ◀

Letting i = λ in Prop. 4.5 yields that (α∗Ḟ )λ⊥ = Ḟ λ0 = (α∗Ḟ )λ⊤. Therefore, both the
initial and final chains of α∗Ḟ (the last column in Fig. 1) converge in λ steps. We conclude
that Ḟ λ0 is both the lfp and gfp for α∗Ḟ : EF λ0 → EF λ0, hence is its unique fixed point.
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Here are some consequences of the proposition. In the next result, note that the number
of converging steps of F and that of Ḟ are not the same in general. See [21, Appendix B] for
an example.

▶ Corollary 4.6. Let p : E → Set be a CLat∧-fibration and Ḟ be a fibred lifting of F along
p. Assume p has stable chain colimits. Then, the initial chain of F converges in λ steps if
and only if that of Ḟ converges in λ steps.

▶ Corollary 4.7. In the setting of Cor. 4.6, if F has an initial algebra α, then any isomorphism
ḞP → P above α is an initial algebra of Ḟ .

We are finally in a position to prove our main theorem.

Proof of Thm. 4.4. Using Prop. 2.9 and Cor. 4.6, Cond. 1 ensures the existence of an ordinal
λ such that both the initial chains of F and Ḟ converges in the steps. Then α−1

λ,λ+1 is an
initial F -algebra by Prop. 2.8 and Ḟ λ0 is a unique fixed-point of α∗

λ,λ+1Ḟ by Prop. 4.5.
Prop. 3.5 concludes the proof. ◀

5 Coincidence for Ω-Valued Predicates, Pure and Effectful

We instantiate the above categorical results to an important family of examples, namely
Ω-valued predicates (Example 2.5). In this setting, a functor lifting Ḟ (§3) has a concrete
presentation as an F -algebra, an observation that helps identification of many examples.

Besides the “pure” setting modeled by the fibration Set/Ω → Set, we also consider the
“effectful” setting Kl(Ṫ ) → Kl(T ), where effects are modeled by a monad T [23] with its
lifting Ṫ along dΩ, and the base category is the Kleisli category for T . The categorical
construction of the fibration Kl(Ṫ ) → Kl(T ) is described later in §5.2; the construction
builds upon the recent results in [4].

The theoretical development here in §5 specializes that in §3–4, but it is still in abstract
categorical terms. The theory in §5 paves the way to the concrete applications in §6–7.

5.1 Coincidence for Ω-Valued Predicates, the Pure Setting
We first focus on the domain fibration dΩ : Set/Ω → Set (Example 2.5), where 1) a complete
lattice Ω is regarded as a truth value domain, and 2) the fibration is regarded as that of
Ω-valued predicates. If Ω is the two-element lattice 2 = {⊥, ⊤}, then d2 : Set/2 → Set is
isomorphic to Pred → Set.

Towards the IF/I coincidence for the fibration dΩ, we first need to describe a fibred lifting
Ḟ of F . It is induced by an F -algebra over Ω that is equipped with a suitable order structure.

▶ Definition 5.1 (monotone algebra [4]). Let F : Set → Set be a functor and Ω be a complete
lattice. We call σ : FΩ → Ω a monotone F -algebra over Ω if i ≤X i′ ⇒ σ ◦ Fi ≤F X σ ◦ Fi′

holds for all X ∈ Set and all i, i′ ∈ Set(X, Ω).

▶ Lemma 5.2 (from [4, 7]). Let F : Set → Set be a functor, and Ω be a complete lattice.
There is a bijective correspondence between monotone F -algebras σ : FΩ → Ω and fibred
liftings Ḟ of F along dΩ. Specifically, σ gives rise to the lifting Ḟ given by Ḟ (X x−→ Ω) =
(FX

F x−−→ FΩ σ−→ Ω); conversely, Ḟ gives rise to (FΩ σ−→ Ω) = Ḟ (Ω idΩ−−→ Ω).

Application of §4 to a domain fibration is then easy.

▶ Theorem 5.3 (coincidence for Ω-valued predicates, pure). In the setting of Def. 5.1, let
σ : FΩ → Ω be a monotone F -algebra. By Lem. 5.2, σ gives rise to a fibred lifting Ḟ of F

along dΩ. If there exists an initial F -algebra then (dΩ, F, Ḟ ) satisfies the IF/I coincidence.
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5.2 Coincidence for Ω-Valued Predicates, Effectful
In order to accommodate some concrete examples (those in §7 to be specific), we extend the
above material to the setting with monadic effects.

We aim at the situation in (2), where the domain fibration dΩ is Kleisli-embedded in the
fibration dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ) on the right. The latter is the desired fibration of effectful
computations and Ω-valued predicates; moreover, we extend a functor F and its lifting Ḟ for
the Kleisli fibration, too.

Set/Ω
dΩ
��

Ḟ ::
L̇ // Kl(Ṫ ) ḞṪdd

dΩ
T ,Ṫ��

SetF <<
L // Kl(T ) FTdd

(2)

The construction of the Kleisli fibration dΩ
T ,Ṫ is via a cartesian lifting of the monad T . It

is defined to be a monad (Ṫ , η̇, µ̇) on Set/Ω such that 1) Ṫ (as a functor) is a fibred lifting
of the functor T , and 2) η̇, µ̇ are componentwise cartesian morphisms above η, µ, respectively.
Then dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ) is defined to be the evident extension of dΩ to Kleisli categories,
and is a fibration [4]. Cartesian liftings of T from Set to Set/Ω bijectively correspond to
Eilenberg-Moore (EM) T -algebras, much like in Lem. 5.2.

▶ Definition 5.4 (EM monotone algebra [4]). Let T : Set → Set be a monad and Ω be
a complete lattice. A monotone T -algebra τ : T Ω → Ω (where T is identified with its
underlying functor) is called an Eilenberg-Moore (EM) monotone T -algebra if idΩ = τ ◦ ηΩ
and τ ◦ T τ = τ ◦ µΩ. Here η and µ are the unit and multiplication of the monad T .

▶ Lemma 5.5 (from [4, Thm. 4.4]). Let T : Set → Set be a monad and Ω be a complete
lattice. There is a bijective correspondence between

EM monotone T -algebras τ , and
Cartesian liftings Ṫ of T that is itself a monad on Set/Ω.

Specifically, τ gives rise to the lifting Ṫ given by Ṫ (X x−→ Ω) = (T X
T x−−→ T Ω τ−→ Ω);

conversely, Ṫ gives rise to (T Ω τ−→ Ω) = Ṫ (Ω idΩ−−→ Ω).

Let us now describe the fibration dΩ
T ,Ṫ between Kleisli categories – it is the one on the

right in (2). Recall that the Kleisli category Kl(T ) of a monad T on C has the same objects
as C, and its morphisms from C to D are C-morphisms C → T D (often denoted by C −p→ D).
In view of Lem. 5.5, the Kleisli category Kl(Ṫ ) is described as follows:

its objects are pairs (X, f : X → Ω) where the latter is an Ω-valued predicate;
its morphisms from (X, f : X → Ω) to (Y, g : Y → Ω) are h : X → T Y such that
f ≤X Ṫ g ◦ h as shown below, where τ is the EM monotone T -algebra that corresponds
to the lifting Ṫ (Lem. 5.5).

X
h //

f ��
≤X

T Y

Ṫ g=τ◦T g
}}

Ω

▶ Lemma 5.6 (the fibration dΩ
T ,Ṫ : Kl(Ṫ ) → Kl(T ) [4, Cor. 3.5]). Let T : Set → Set be a

monad, Ω be a complete lattice, and τ be an EM monotone T -algebra. By Lem. 5.5, τ gives
the fibred lifting Ṫ of T such that Ṫ is a monad.
1. The functor dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ), defined as follows, is a posetal fibration: (X →
Ω) 7−→ X on objects, and

(
f : (X → Ω) −p→ (Y → Ω)

)
7−→ f : X −p→ Y on morphisms.

2. For each X in Set, we have the isomorphism (Set/Ω)X
∼= Kl(Ṫ )LX between fibers. Here

L : Set → Kl(T ) is the Kleisli left adjoint that carries each object X to X.
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Now that we have described the fibration dΩ
T ,Ṫ : Kl(Ṫ ) → Kl(T ), let us extend the

functors F, Ḟ to FT , ḞṪ (cf. (2)). We can do so by specifying how F and T interact.

▶ Definition 5.7 (distributive law [24]). Let F : Set → Set be a functor and T : Set → Set
be a monad with unit η and multiplication µ. A distributive law of F over T is a natural
transformation λ : FT ⇒ T F that makes the following diagrams commute.

FX FT X

T FX

ηF X

F ηX

λX

FT 2X T FT X T 2FX

FT X T FX

λT X

F µX

T λX

µF X

λX

▶ Lemma 5.8 (from [24]). Let F : Set → Set be a functor, T : Set → Set be a monad
and L : Set → Kl(T ) be the left adjoint to the Kleisli category of T . There is a bijective
correspondence between distributive laws λ : FT ⇒ T F and extensions FT : Kl(T ) → Kl(T )
of F along L (that is, FT ◦ L = L ◦ F ).

The next lemma tells how to lift a distributive law λ of F over T to that of Ḟ over Ṫ . It
follows from [4, Thm. 4.4].

▶ Lemma 5.9. Let F : Set → Set be a functor, T : Set → Set be a monad, and Ω be a
complete lattice. Consider a fibred lifting Ḟ of F corresponding to a monotone F -algebra
σ : FΩ → Ω and a Cartesian lifting Ṫ of T corresponding to an EM monotone T -algebra
τ : T Ω → Ω (see Lem. 5.2 and 5.5). Assume further that a distributive law λ : FT ⇒ T F

is compatible with σ and τ , in the sense that σ ◦ Fτ ≤ τ ◦ T σ ◦ λΩ. Then this λ induces a
distributive law λ̇ : Ḟ Ṫ ⇒ Ṫ Ḟ of Ḟ over Ṫ above λ.

Finally, we obtain the fibrations and functors shown in (2).

▶ Definition 5.10. Assume the setting of Thm. 5.3. Let T : Set → Set be a monad; τ be an
EM monotone T -algebra on Ω; and λ be a distributive law satisfying σ ◦ Fτ ≤ τ ◦ T σ ◦ λΩ.
We define (dΩ

T ,Ṫ , FT , ḞṪ ) as follows.
The EM monotone T -algebra τ : T Ω → Ω gives rise to a Cartesian monad lifting Ṫ of T
along dΩ (Lem. 5.5) and a fibration dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ) (Lem. 5.6).
The distributive law λ : FT ⇒ T F induces FT : Kl(T ) → Kl(T ) such that FT is an
extension of F (in the sense of FT ◦ L = L ◦ F , Lem. 5.8).
Because λ satisfies σ ◦ Fτ ≤ τ ◦ T σ ◦ λΩ, Lem. 5.9 canonically induces a distributive law
λ̇ : Ḟ Ṫ ⇒ Ṫ Ḟ .
This distributive law λ̇ induces an extension ḞṪ : Kl(Ṫ ) → Kl(Ṫ ) of Ḟ (Lem. 5.8), which
is also a lifting of Ḟ along dΩ

T ,Ṫ .
(Optional) If λ satisfies the equality σ ◦ Fτ = τ ◦ T σ ◦ λΩ (instead of the inequality ≤
required in the above), then ḞṪ is a fibred lifting of FT .

The above technical material (mainly from [4]) allows us to state this section’s main result.

▶ Theorem 5.11 (coincidence for Ω-valued predicates, effectful). In the setting of Def. 5.10,
if there exists an initial F -algebra then (dΩ

T ,Ṫ , FT , ḞṪ ) satisfies the IF/I coincidence.

The proof of Thm. 5.11 is not a straightforward application of the general results in §4
to the fibration dΩ

T ,Ṫ . Notice, for example, that fibredness of the lifting ḞṪ is not mandatory
in Def. 5.10, while it is required in the general IF/I coincidence result (Thm. 4.4). Indeed,
the lifting ḞṪ is not fibred in our application in §7, so Thm. 4.4 does not apply to it.
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Our proof of Thm. 5.11 instead goes via the “pure” fibration dΩ (on the left in (2)): using
the fact that the left adjoint L preserves initial chains, we essentially lift the IF/I coincidence
from pure (dΩ) to effectful (dΩ

T ,Ṫ ). We count this proof (in [21, Appendix C.10]) as one of
our main contributions.

6 Application 1: Probabilistic Liveness by Submartingales

We use the IF/I coincidence results in §3–5 to derive a new proof method for probabilistic
liveness – more concretely, we derive the method as an instance of Thm. 5.3. Liveness
properties are usually witnessed by ranking supermartingales; see e.g. [10, 29]. Restricting to
finite trees, we show that probabilistic liveness can also be witnessed by an invariant-like
submartingale (as opposed to supermartingale) notion.

Here is the class of probabilistic systems that we analyze. It is restricted for the simplicity
of presentation; accommodating more expressive formalisms is easy by changing a functor.

▶ Definition 6.1 (finite probabilistic binary tree). A finite probabilistic binary tree is a finite
binary tree such that

each internal node n is labeled with either ✓ or ?; and
each edge is labeled with a real number p ∈ [0, 1], in such a way that two outgoing
edge-labels sum to 1. See (3).

np
~~

1−p
  

n1 n2
(3)

We restrict to finite trees; here is one application scenario that justifies it. We think
of those probabilistic trees as models of systems with internal coin toss. We assume that
there is some timeout mechanism that forces the termination of those systems, that is, that
termination of the target system is guaranteed by some external means. Such mechanism
forcing finiteness is common in real-world systems.

The liveness property we are interested in is eventually reaching a state labeled with ✓.
More precisely, we are interested in the probability of eventually seeing ✓. The following
invariant-like witness notion gives a guaranteed lower bound for the probability in question.
It is derived from the IF/I coincidence; unlike ranking supermartingales, it does not use
natural numbers or ordinals.

▶ Definition 6.2 (IF/I submartingale). Let t be a finite probabilistic binary tree; the set of
its nodes is denoted by N . We say f : N → [0, 1] is an IF/I submartingale if it satisfies the
following.
1. f(n) = 0 for each leaf node n.
2. For each internal node n labeled with ?, let its children and their edge labels be as shown

in (3). Then we have

f(n) ≤ p · f(n1) + (1 − p) · f(n2).

The direction of the inequality is indeed that of a submartingale: the current value is a lower
bound of the expected next value. Note that there is no condition for f(n) if n is an internal
node labeled with ✓. In this case, f(n) can be set to 1 to improve the lower bound.

▶ Theorem 6.3. In the setting of Def. 6.2, assume f is an IF/I submartingale. Then,
identifying the tree t with the Markov chain with suitable probabilistic branching, the probability
of eventually reaching a node labeled with ✓ from the root is at least f(rt) where rt is the
root node of t.
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The proof of Thm. 6.3 is in [21, Appendix C.11]. The main step is to apply the following
to Thm. 5.3 in order to obtain a categorical data (d[0,1], F ptr, Ḟ ptr) satisfying the IF/I
coincidence:

a complete lattice Ω is [0, 1] with the usual order between real numbers;
a set functor F is F ptr = 1 + {✓, ?} × [0, 1] × (−)2; and
a monotone F ptr-algebra σ : F Σ[0, 1] → [0, 1] is σptr defined as follows:

σptr(x) =


0 if x = ∗ ∈ 1
1 if x = (✓, p, a, b)
pa + (1 − p)b if x = (?, p, a, b).

7 Application 2: Witnesses for Bottom-Up Tree Automata

We present an application of the IF/I coincidence in §3 to tree automata, using the results
in §5 as an interface. In this paper we restrict to bottom-up tree automata, although a similar
theory can be developed for top-down ones.

We restrict the ranked alphabet Σ used for trees to Σ = Σ0 ∪ Σ2, where operations in Σ0
are 0-ary and those in Σ2 are binary. This restriction is for simplicity and not essential.

▶ Definition 7.1 ((finite) Σ-trees). A Σ-tree t is a tuple (N, rt, ct) where N is a set of nodes,
rt ∈ N is a root node and ct : N → Σ0 + Σ2 × N × N is a function which determines
labels and next nodes: if ct(n) = s ∈ Σ0 then n is a leaf node labeled with s ∈ Σ0, and if
ct(n) = (s, n1, n2) then n is an internal node labeled with s ∈ Σ2 and the next nodes of n

are n1 and n2. A finite Σ-tree is a Σ-tree which has only finitely many nodes.

▶ Definition 7.2 (bottom-up tree automaton). A bottom-up tree automaton is a quadruple
A = (Σ0 ∪ Σ2, Q, δ, qF), where 1) Σ0 ∪ Σ2 is a ranked alphabet; 2) Q is a set of states; 3)
δ : Σ0 + Σ2 × Q × Q → PQ is a transition function (note the nondeterminism modeled by
the powerset PQ); and 4) qF ∈ Q is an accepting state.

A run of A over a Σ-tree t is a function ρ from nodes n of t to states ρ(n) ∈ Q such that
1) ρ(n) ∈ δ(s) for each leaf node n with ct(n) = s, and 2) ρ(n) ∈ δ

(
s, ρ(n1), ρ(n2)

)
for each

internal node n with ct(n) = (s, n1, n2).
A finite Σ-tree t is accepted by A if there is a run ρ of A over t such that ρ(rt) = qF.

Note that allowing multiple accepting states does not change the theory because of the
nondeterminism in transition functions.

Upside-Down Witness for Acceptance. For an acceptance of a single Σ-tree by a bottom-up
tree automaton, the IF/I coincidence in §3 and §5.1 (the pure setting) yields the following
(invariant-like, top-down) witness notion.

▶ Definition 7.3. Let A = (Σ0 ∪ Σ2, Q, δ, qF) be a bottom-up tree automaton, and t =
(N, rt, ct) be a finite Σ-tree. We say f : N → PQ is an acceptance invariant if
1. for each leaf node n with ct(n) = s, we have f(n) ⊆ δ(s);
2. for each internal node n with ct(n) = (s, n1, n2), we have f(n) ⊆⋃

q1∈f(n1),q2∈f(n2) δ
(
s, q1, q2

)
;

3. for the root node rt of t, we have qF ∈ f(rt).
An acceptance invariant assigns a predicate f(n) to each node n, and the constraints on f

runs in the top-down manner. The proof of Thm. 7.4 is in [21, Appendix C.12], where we
identify suitable categorical constructs (a fibration and functors) and apply the results in
§5.1.
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▶ Theorem 7.4 (acceptance witness for a finite tree). In the setting of Def. 7.3, if there exists
an acceptance invariant f : N → PQ, then A accepts the finite Σ-tree t.

Upside-Down Witness for Model Checking. We extend the above theory from acceptance
(of a single tree) to model checking (whether every tree generated by a system is accepted).
Besides its practical relevance, the model checking problem is categorically interesting.
Specifically, for the results here, we use the extended categorical framework in §5.2 (IF/I
coincidence in presence of effects) and Thm. 3.6 (coincidence lifting).

▶ Definition 7.5 (generative tree automaton C, its language Lfin
C , and model checking). A

generative tree automaton is C = (Σ0 ∪ Σ2, X, c, x0), where 1) Σ0 ∪ Σ2 is a ranked alphabet;
2) X is a set of states; 3) c : X → P(Σ0 + Σ2 × X × X) is a transition function (note the
powerset operator P); and 4) x0 ∈ X is an initial state.

Let t = (N, rt, ct) be a (possibly infinite) Σ-tree. A run of C over t is a function ρ : N → X,
assigning a state to each node, such that 1) ρ(rt) = x0 for the root node rt; 2) s ∈ c(ρ(n))
for each leaf node n with ct(n) = s; and 3)

(
s, ρ(n1), ρ(n2)

)
∈ c(ρ(n)) for each internal node

n with ct(n) = (s, n1, n2).
We say that a Σ-tree t is generated by C if there is a run ρ of C over t. The set of all

Σ-trees generated by C is denoted by LC ; the set of all finite Σ-trees generated by C is Lfin
C .

The model checking problem takes a generative tree automaton C and a bottom-up tree
automaton A (Def. 7.2) as input, and asks if every finite Σ-tree in Lfin

C is accepted by A.

Note that we restrict to finite trees here. One possible justification is an external mechanism
that forces termination, much like in §6.

Our general theory of the IF/I coincidence derives the following (invariant-like, top-down)
witness notion for model checking (where the specification is a bottom-up tree automaton).

▶ Definition 7.6 (model checking invariant). Let A = (Σ0 ∪ Σ2, Q, δ, qF) be a bottom-up
tree automaton, and let C = (Σ0 ∪ Σ2, X, c, x0) be a generative tree automaton. We say
f : X → PQ is a model checking invariant if it satisfies the following.
1. f(x) ⊆

⋂
a∈c(x) δf (a) for each x ∈ X. Here δf : Σ0 + Σ2 × X × X → PQ is defined by 1)

δf (s) = δ(s) for s ∈ Σ0; 2) δf (s, x1, x2) =
⋃

q1∈f(x1),q2∈f(x2) δ(s, q1, q2) for s ∈ Σ2.
2. qF ∈ f(x0).

▶ Theorem 7.7. In the setting of Def. 7.6, assume that there exists a model checking invariant
f : X → PQ. Then, A accepts every finite Σ-tree t ∈ Lfin

C generated by C.
The proof is in [21, Appendix C.13]. The nondeterminism on the system side (C in Def. 7.5)
requires to work in the effectful setting (§5.2). Another challenge is that the relevant functor
lifting is not fibred (cf. the last item in Def. 5.10); we use the coincidence lifting (Thm. 3.6) to
deal with it, where the required base coincidence comes from coalgebraic trace semantics [15].

8 Conclusions and Future Work

We presented our IF/I coincidence, which is a general categorical framework for the coincidence
of initial algebras and final coalgebras, a classic topic in computer science. The IF/I
coincidence is formulated in fibrational terms, and this occurs in the fiber over an initial
algebra; it is therefore understood as the coincidence of logical lfp and gfp specifications.
Relying on mild assumptions of fibred liftings and stable chain colimits, the IF/I coincidence
accommodates many examples. As applications, we derived seemingly new verification
methods for probabilistic liveness and tree automata.
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The proofs in §6–7 suggest the possibility of a structural theory of the IA-FC coincidence,
where unique fixed points are pulled back along coalgebra homomorphisms. We will pursue
this structural theory, together with its practical consequences.

Another direction of future work is to formalize the relationship between the current
fibrational approach to the IA-FC coincidence, and the homset enrichment approach in [5,
11,12,15,27].
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A IF/I Coincidence for general fibrations

Here we show the following theorem similar to Thm. 4.4 for general fibrations.

▶ Theorem A.1 (IF/I coincidence for general fibrations). Let p : E → B be a fibration; assume
that E and B are chain-cocomplete. Let Ḟ be a lifting of F along p. Assume further the
following conditions:
1. The initial chain of Ḟ converges.
2. Ḟ is a fibred lifting of F .
3. p has stable chain colimits.
4. p strictly preserves chain colimits.
5. Substitution in p preserves chain colimits in fibers.

Then (p, F, Ḟ ) satisfies the IF/I coincidence.

The theorem follows from the next technical observation.

▶ Proposition A.2. In the setting of Thm. A.1, assume further that the initial chain of Ḟ

converges in λ steps. Consider the initial chains:

E
p ��

0
α̇0,1

// Ḟ0
α̇1,2

// · · · // Ḟ λ0 ∼=

α̇λ,λ+1
// Ḟ λ+10 // · · ·

B 0
α0,1

// F0
α1,2

// · · · // F λ0 ∼=

αλ,λ+1
// Ḟ λ+10 // · · ·

where 0 in the two lines denote initial objects in E and in B, respectively. Note that both
α̇λ,λ+1 and αλ,λ+1 are isomorphisms: the former is by the convergence assumption; the latter
is by the assumption and Lem. 2.10. Therefore their inverses are initial algebras by Prop. 2.8.

In this setting, α̇λ,λ+1 is a final object of Coalg(Ḟ )αλ,λ+1 (cf. Def. 3.1).

From now on, we aim to prove Prop. A.2.
To show finality of α̇λ,λ+1 in Coalg(Ḟ )αλ,λ+1 , we first claim the existence of a morphism

from an arbitrary Ḟ -coalgebra γ : P → ḞP in Coalg(Ḟ )αλ,λ+1 to α̇λ,λ+1. The next lemma
shows a construction of such a morphism pλ by transfinite induction along initial chains.

E

p

��

Ḟ λ0
α̇λ,λ+1

// Ḟ λ+10

P
pλ

OO

γ
// ḞP

Ḟ pλ

OO

B F λ0
αλ,λ+1

// F λ+10

This construction exploits the singleton property of E0 (Lem. 4.2) in the base case, fibredness
of the lifting Ḟ in the step case, and stability of chain colimits in the limit case.

▶ Lemma A.3. Let p : E → B be a fibration with stable chain colimits. Assume that E and
B are chain-cocomplete and p strictly preserves chain colimits. Let Ḟ be a fibred lifting of F

along p.
For each ordinal λ and each coalgebra γ : P → ḞP above αλ,λ+1 (or equivalently,

γ ∈ Coalg(Ḟ )αλ,λ+1), there exists a morphism pλ : γ → α̇λ,λ+1 in Coalg(Ḟ )αλ,λ+1 .

Proof. Let (kj,i : α∗
j,λP → α∗

i,λP )j≤i≤λ denote those morphisms induced from (α∗
i,λP →

P )i≤λ via their universality as cartesian liftings. We construct vertical morphisms (pi :
α∗

i,λP → Ḟ i0)i≤λ such that pi ◦ kj,i = α̇j,i ◦ pj for all i, j with j ≤ i ≤ λ. Such a (pi)i≤λ

makes the diagram below commute. (The rightmost square commutes, see [21, Appendix C.14]
for details.)
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E

p

��

0
α̇0,1

// Ḟ0
α̇1,2

// · · · // Ḟ λ0
α̇λ,λ+1

// Ḟ λ+10

α∗
0,λP

p0

OO

k0,1
// α∗

1,λP

p1

OO

k1,2
// · · · // α∗

λ,λP = P

pλ

OO

γ
// ḞP

Ḟ pλ

OO

B 0
α0,1

// F0
α1,2

// · · · // F λ0
αλ,λ+1

// F λ+10

Then this pλ is what we want. The construction of (pi)i≤λ is by the following transfinite
induction on i.

(Base case) Lem. 4.2 says α∗
0,λP ∼= 0 in E and this isomorphism is vertical because both

pα∗
0,λP and p0 are 0 in B. We define p0 as this isomorphism.

(Step case) If i is a successor ordinal, we define pi by

α∗
i,λP

(⋆)−−→ (Fαi−1,λ)∗ḞP
ξ−→∼= Ḟα∗

i−1,λP
Ḟ pi−1−−−−→ Ḟ i0

where ξ is from fibredness of Ḟ and (⋆) is induced as follows by universality of a cartesian
lifting.

α∗
i,λP

αi,λ

//

(⋆)��

P γ

��

(Fαi−1,λ)∗ḞP
F αi−1,λ

// ḞP

F i0
αi,λ

// F λ0
αλ,λ+1

// F λ+10.

Note that Fαi−1,λ = αλ,λ+1 ◦ αi,λ by the definition of α. We can prove α̇j,i ◦ pj = pi ◦ kj,i

for all j ≤ i by transfinite induction on j. See [21, Appendix C.14].
(Limit case) If i is a limit ordinal, we define pi by the stability of chain colimits. By
applying chain colimit stability of p to α∗

i,λP above F i0 = colimj<i F j0 (by Def. 2.7,
see below), we have α∗

i,λP ∼= colimj<i α∗
j,i(α∗

i,λP ) ∼= colimj<i α∗
j,λP . For all l, j with

l < j < i, by the induction hypothesis, we have α̇l,i ◦ pl = α̇j,i ◦ α̇l,j ◦ pl = α̇j,i ◦ pj ◦ kl,j .
Hence (Ḟ i0, (αj,i ◦ pj)j<i) is a cocone over (j 7→ α∗

j,λP ), as shown below. We define pi as
the mediating morphism from a colimit, as in the following diagram.

Ḟ i0 (colim.)

· · · // Ḟ l0

α̇l,i 00

// Ḟ j0
α̇j,i

22

// · · ·

· · · // α∗
l,λP

pl

OO

kl,i
--

// α∗
j,λP

pj

OO

kj,i

**

// · · ·

α∗
i,λP (colim.)

pi

]]

· · · // F l0
αl,j

// F j0
αj,i

// F i0 // · · ·

This concludes the proof. ◀

For Prop. A.2, it remains to show the uniqueness of pλ : γ → α̇λ,λ+1. The uniqueness
does not immediately follow from the construction of pλ in Lem. A.3.

Our uniqueness proof (in the proof of Prop. A.2 shown later), we work on a suitable chain
in the fiber EF λ0, defined as follows.

The following fact (cf. [19, Prop. 9.2.2 and Exercise 9.2.4]) shows CLat∧-fibrations have
properties suitable for colimits.
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▶ Proposition A.4. Let p : E → B be an opfibration. Assume the base category B has colimits
of shape I. Then the following statements are equivalent.
1. Each fiber of the opfibration p has colimits of shape I.
2. The total category E has colimits of shape I and p strictly preserves them.

▶ Notation A.5 (α̇, α). In the setting of Lem. A.3, let us fix λ to be a converging ordinal of
the initial Ḟ -chain, in the sense that α̇λ,λ+1 : Ḟ λ0 ∼=→ Ḟ λ+10 is an isomorphism. In the rest
of the section, we write α̇, α for α̇λ,λ+1, αλ,λ+1, respectively. Then α : F λ0 ∼=→ F λ+10 is an
isomorphism, too.

▶ Definition A.6. In Prop. A.2, we define a chain

P
β0,1−−→ α∗ḞP

β1,2−−→ (α∗Ḟ )2P
β2,3−−→ · · ·

by repeated application of α∗Ḟ . The whole chain resides in the fiber EF λ0, as shown in (4).

...
...

(α∗Ḟ )2P
α ))

OO

Ḟ (α∗Ḟ )2P

OO

α∗ḞP

β1,2
OO

α
))

Ḟα∗ḞP
Ḟ β1,2
OO

P
β0,1

OO

γ
// ḞP

Ḟ β0,1

OO

F λ0 α // F λ+10

(4)

The precise definition is as follows. It is similar to Def. 2.7, but starting from P (instead
of from 0) calls for some care.

(Objects) (α∗Ḟ )iP is given for each i ∈ Ord: (α∗Ḟ )0P = P , (α∗Ḟ )i+1P = α∗Ḟ ((α∗Ḟ )iP ),
and (α∗Ḟ )i0 = colimj<i(α∗Ḟ )j0 for a limit ordinal i.
(Morphisms) The morphism βi,i+1 : (α∗Ḟ )i0 → (α∗Ḟ )i+10 for each ordinal i is defined as
follows.

(Base case) β0,1 : P → α∗ḞP is induced from γ : P → ḞP by universality of the
cartesian lifting ᾱ : α∗ḞP → ḞP . See (4).
(Step case) βi+1,i+2 is defined by α∗Ḟ βi,i+1.
(Limit case) βi,i+1 : (α∗Ḟ )iP → (α∗Ḟ )i+1P for a limit ordinal i is induced by univer-
sality of (α∗Ḟ )iP = colimj<i(α∗Ḟ )jP . Prop. A.4 ensures this colimit vertex is above
F λ0.

We have defined βj,j+1 for each ordinal j. This induces morphisms βi,j : (α∗Ḟ )iP →
(α∗Ḟ )jP for each i < j in a straight-forward manner: one repeats the step and limit cases;
when j is a limit ordinal, βi,j is the cocone component to (α∗Ḟ )jP = colimk<j(α∗Ḟ )kP .

▶ Lemma A.7. In the setting of Prop. A.2, let us assume that λ is a converging ordinal in
the initial chain of Ḟ , and adopt Notation A.5.

Fig. 2 shows the following constructs.
The morphism γ : P → ḞP above α induces the chain P

β0,1−−→ α∗ḞP
β1,2−−→ (α∗Ḟ )2P → · · ·

as in Def. A.6.
The last chain induces, for each ordinal l such that l < λ, the chain

α∗
l,λP

α∗
l,λβ0,1−−−−−→ α∗

l,λα∗ḞP
α∗

l,λβ1,2−−−−−→ α∗
l,λ(α∗Ḟ )2P → · · ·

above F l0, via the substitution along αl,λ.
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For each ordinal i, we obtain a Ḟ -coalgebra as follows. It is above α; it is denoted by γi.

(α∗Ḟ )iP
γi := α◦βi,i+1

// Ḟ (α∗Ḟ )iP

F λ0 α
∼=

// F λ+10
(5)

We apply Lem. A.3 to the last coalgebras γi, using each of them in place of the coalgebra
γ in Lem. A.3. Following the proof of Lem. A.3, we obtain vertical morphisms (pi

j :
α∗

j,λ(α∗Ḟ )iP → Ḟ j0)j≤λ for each ordinal i.
In this case, for each i such that i ≤ λ, (i) pi

i is an isomorphism; (ii) pl
i = pm

i ◦ α∗
i,λβl,m for

all l, m with l ≤ m.

See [21, Appendix C.15] for the proof.

0 // Ḟ 0 // Ḟ 20 // · · · // Ḟ λ0 α̇ // Ḟ λ+10

...
...

...
...

...

E

p

��

α∗
0,λ(α∗Ḟ )2P //

OOp2
0

FF

α∗
1,λ(α∗Ḟ )2P //

OOp2
1

FF

α∗
2,λ(α∗Ḟ )2P //

OOp2
2

FF

· · · // (α∗Ḟ )2P

α
%%

OOp2
λ

FF

Ḟ (α∗Ḟ )2P

OO Ḟ p2
λ

XX

α∗
0,λα∗Ḟ P //

α∗
0,λβ1,2

OO

p1
0

BB

α∗
1,λα∗Ḟ P //

α∗
1,λβ1,2

OO

p1
1

BB

α∗
2,λα∗Ḟ P //

α∗
2,λβ1,2

OO

p1
2

BB

· · · // α∗Ḟ P

β1,2

OO

p1
λ

BB

α

%%

Ḟ α∗Ḟ P

Ḟ β1,2

OO

Ḟ p1
λ

\\

α∗
0,λP //

α∗
0,λβ0,1

OO

p0
0

@@

α∗
1,λP //

α∗
1,λβ0,1

OO

p0
1

@@

α∗
2,λP //

α∗
2,λβ0,1

OO

p0
2

@@

· · · // P

β0,1

OO

γ
//

p0
λ

@@

Ḟ P

Ḟ β0,1

OO

Ḟ p0
λ

^^

B 0 // F 0 // F 20 // · · · // F λ0 α // F λ+10

Figure 2 A diagram for Lem. A.7.

The last lemma shows that the Ḟ -coalgebra γi : (α∗Ḟ )iP → Ḟ (α∗Ḟ )iP gets closer to α̇

as i gets larger, with a particular consequence that γλ is isomorphic to α̇ (via pλ
λ). This is

used in the following proof of Prop. A.2.

Proof of Prop. A.2. Let γ be an arbitrary coalgebra P → ḞP above α = αλ,λ+1 (Nota-
tion A.5). Lem. A.3 shows the existence of a vertical morphism from γ to α̇λ,λ+1. We only
need to show the uniqueness of morphisms. Let f be an arbitrary vertical morphism from γ to
α̇λ,λ+1. The isomorphic correspondence in Lem. 3.4 carries f : (P γ−→ ḞP ) → (Ḟ λ0 α̇−→ Ḟ λ+10)
in Coalg(Ḟ )α to f : (P β0,1−−→ α∗ḞP ) → (Ḟ λ0 δ−→ α∗Ḟ λ+10) in Coalg(α∗Ḟ ), where δ is the
mediating morphism from α̇ by universality of the cartesian lifting α : α∗Ḟ λ+10 → Ḟ λ+10.

Using the above f in Coalg(α∗Ḟ ), we consider the following two chains and a morphism
between them. Everything here is above F λ0; cf. (4). δ is an isomorphism since the initial
chain of Ḟ converges in λ steps.

Ḟ λ0
∼=
δ // (α∗Ḟ )Ḟ λ0

∼= // · · ·
∼= // (α∗Ḟ )λḞ λ0

∼= // (α∗Ḟ )λ+1Ḟ λ0

P
β0,1

//

f

OO

(α∗Ḟ )P
(α∗Ḟ )f
OO

// · · ·
βλ−1,λ

// (α∗Ḟ )λP

(α∗Ḟ )λf
OO

βλ,λ+1

// (α∗Ḟ )λ+1P

(α∗Ḟ )λ+1f
OO

(6)
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It follows easily that βλ,λ+1 is the inverse of an initial α∗Ḟ -algebra. This is essentially
because 1) γλ is isomorphic to α̇ (see the paragraph that follows Lem. A.7); and 2) (the inverse
of) γλ = α ◦ βλ,λ+1 corresponds to (the inverse of) βλ,λ+1 in the isomorphic correspondence
Alg(Ḟ )α−1 ∼= Alg(α∗Ḟ ) in Lem. 3.4.

Consider the rightmost square in (6). By universality of the initial α∗Ḟ -algebra (βλ,λ+1)−1,
(α∗Ḟ )λf is unique; therefore the composite (α∗Ḟ )λf ◦ βλ−1,λ ◦ · · · ◦ β0,1 (on the left in (6))
is uniquely determined. By the commutativity of (6) and the fact that all the morphisms in
the first row are isomorphisms, this uniquely determines f , too. ◀



SMT-Based Model Checking of Max-Plus Linear
Systems
Muhammad Syifa’ul Mufid #

Department Computer Science, University of Oxford, UK

Andrea Micheli #

Fondazione Bruno Kessler, Trento, Italy

Alessandro Abate #

Department Computer Science, University of Oxford, UK

Alessandro Cimatti #

Fondazione Bruno Kessler, Trento, Italy

Abstract
Max-Plus Linear (MPL) systems are an algebraic formalism with practical applications in trans-
portation networks, manufacturing and biological systems. MPL systems can be naturally modeled
as infinite-state transition systems, and exhibit interesting structural properties (e.g. periodicity or
steady state), for which analysis methods have been recently proposed. In this paper, we tackle the
open problem of specifying and analyzing user-defined temporal properties for MPL systems. We
propose Time-Difference LTL (TDLTL), a logic that encompasses the delays between the discrete-
time events governed by an MPL system, and characterize the problem of model checking TDLTL
over MPL. We propose a family of specialized algorithms leveraging the periodic behaviour of an
MPL system. We prove soundness and completeness, showing that the transient and cyclicity of
the MPL system induce a completeness threshold for the verification problem. The algorithms
are cast in the setting of SMT-based verification of infinite-state transition systems over the reals,
with variants depending on the (incremental vs upfront) computation of the bound, and on the
(explicit vs implicit) unrolling of the transition relation. Our comprehensive experiments show that
the proposed techniques can be applied to MPL systems of large dimensions and on general TDLTL
formulae, with remarkable performance gains against a dedicated abstraction-based technique and a
translation to the nuXmv symbolic model checker.
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1 Introduction

Max-Plus Linear (MPL) systems are a class of discrete-event systems (DES) that are based
on the so-called max-plus algebra, an algebraic system using the two binary operations of
maximisation and addition. MPL systems are employed to model applications with features
of synchronization without concurrency, and as such are widely used for applications in
transportation networks [7], manufacturing [29] and biological systems [14, 20]. In MPL
models, the states correspond to time instances related to discrete events. Traditional
dynamical analysis of MPL systems is associated with their algebraic and graph representa-
tion (cf. Definition 2), that allows the investigation of several structural problems such as
eigenproblems [21], optimisation [13] and periodicity [24, 35].

In this paper, we tackle the problem of formally specifying and analyzing user-defined
temporal properties for MPL systems. This can be considered an open problem in practice,
despite the line of work in [3, 4, 5] that deals with reachability analysis and formal verification
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for MPL systems. These methods are in general not complete: they rely on the construction
of an abstraction that overapproximates the concrete MPL system [2, 33, 34]. Furthermore,
the underlying abstraction procedures suffer from state-explosion problems, given that the
size of the abstraction is exponential in the size of the MPL, and are unable to deal with
more than few variables. Finally, no general specification language is provided to express
properties at the MPL system level.

We make the following contributions. First, we propose Time-Difference LTL (TDLTL),
a logic that encompasses the delays between the discrete-time events governed by an MPL
system, and characterize the problem of model checking TDLTL over MPL. Second, we
propose a family of specialized algorithms for TDLTL model checking, cast in the setting
of infinite-state transition systems, with a symbolic representation in Satisfiability Modulo
Theories (SMT) over the reals [9]. The algorithms, that we prove sound and complete,
leverage the periodic behaviour of an MPL system: intuitively, the transient and cyclicity of
the MPL system induce a completeness threshold for a bounded encoding of the verification
problem. The family of algorithms has several variants, depending on two independent factors.
One is the computation of the bound, that could be carried out either upfront before calling
the SMT solver, or incrementally, interleaving it with multiple solver calls. The other is the
unrolling of the transition relation, that can either follow the explicit approach of Bounded
Model Checking (BMC), or – thanks to some algebraic properties of MPL systems – be left
implicit, so that the number of SMT variables is significantly reduced. Third, we demonstrate
the practical effectiveness of the approach. We run a comprehensive set of experiments,
showing that the proposed techniques can be applied to general TDLTL formulae on large
MPL systems that are completely out-of-reach for existing abstraction-based techniques
[33, 34]. The comparison also shows that the new algorithms yield orders-of-magnitude speed
ups against a generic translational approach to the nuXmv symbolic model checker [15].

The structure is as follows. Section 2 describes the basics of MPL systems and SMT.
In Section 3, we formalize the TDLTL logic and Sections 4 and 5 present the verification
algorithms and the related work, respectively. Our experimental analysis is reported in
Section 6 and we conclude in Section 7. Proofs and additional experiments are provided in
the appendices.

2 Model and Preliminaries

2.1 Max-Plus Linear Systems
Max-plus algebra is a modification of the canonical linear algebra, and is defined over the
max-plus semiring (Rmax,⊕,⊗), where Rmax := R ∪ {ε := −∞} and

a⊕ b := max{a, b}, a⊗ b := a+ b, ∀a, b ∈ Rmax (1)

The zero and unit elements of Rmax are ε and 0, respectively. By Rm×n
max , we denote the set of

m×n matrices over the max-plus algebra. Max-plus algebraic operations can be extended to
vectors and matrices as follows. Given A,B ∈ Rm×n

max , C ∈ Rm×p
max , D ∈ Rp×n

max and α ∈ Rmax,

[α⊗A](i, j) = α+A(i, j),
[A⊕B](i, j) = A(i, j) ⊕B(i, j),

[C ⊗D](i, j) =
p⊕

k=1
C(i, k) ⊗D(k, j),

for all i = 1, . . . ,m and j = 1, . . . , n. Given A ∈ Rn×n
max and t ∈ N, A⊗t denotes A⊗ . . .⊗A

(t times).
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A dynamical system over the max-plus algebra is called a Max-Plus Linear (MPL) system
and is defined as

x(k + 1) = A⊗ x(k), k = 0, 1, . . . , (2)

where A ∈ Rn×n
max is the system matrix, and vector x(k) = [x1(k) . . . xn(k)]⊤ encodes

the state variables [7]. Vector x is used to represent the time stamps associated to the
discrete events, while k corresponds to the event counter. Applications of MPL systems
are found in dynamical systems where modelling the time variable is essential, such as
in transportation networks [29], in scheduling [6] or manufacturing [30] problems, or for
biological systems [14, 20].

▶ Definition 1 (Orbit and Lasso). Given an MPL system (2) with an initial vector x(0), a
sequence x(0)x(1) . . . is called an orbit from x(0) w.r.t. A. Furthermore, if there exist α ∈ R
and k ≥ l ≥ 0 such that x(k + 1 + j) = α⊗ x(l + j) for j ≥ 0 then such sequence is called a
(k, l)-lasso. Furthermore, we call l the loopback bound. The illustration of a lasso is shown in
Figure 1.

x(0) . . . . . . x(l) . . . . . . x(k)

α

Figure 1 An illustration of a (k, l)-lasso. The dashed arrow represents the transition x(k + 1) =
α⊗ x(l).

Let us remark that an orbit represents the execution (or path) of (2) originating from an
initial state that is a vector. It is important to note that the definition of lasso is slightly
different from the canonical one found in literature [11, 12], which requires that the l-th and
(k + 1)-th states are the same. The notation Orb(A) = {x(0)x(1) . . . | x(0) ∈ Rn} represents
the set of all orbits w.r.t. A. Likewise, Orb(A,X) = {x(0)x(1) . . . | x(0) ∈ X} is the set
of orbits w.r.t. A starting from a set of initial vectors X. For the sake of simplicity we
may use the following notation to refer to an orbit: π = x(0)x(1) . . . . Given an orbit π
and j ≥ 0, π[j] = x(j) denotes the j-th vector of π while π[j..] is the j-th suffix of π, i.e.,
π[j..] = x(j)x(j + 1) . . . . We say that orbit π is similar to orbit σ iff there exists β ∈ R such
that π[0] = β ⊗ σ[0] (which implies π[j] = β ⊗ σ[j] for j ≥ 0).

▶ Definition 2 (Precedence Graph [7]). The precedence graph of A ∈ Rn×n
max , denoted by G(A),

is a weighted directed graph with nodes 1, . . . , n and an edge from j to i with weight A(i, j)
for each A(i, j) ̸= ε.

▶ Definition 3 (Irreducible Matrix [7]). A matrix A ∈ Rn×n
max is called irreducible if G(A) is

strongly connected.

A directed graph is strongly connected if, for any two different nodes i, j, there exists a
path from i to j. The weight of a path p = i1i2 . . . ik is equal to the sum of the edge weights
in p. A circuit, namely a path that begins and ends at the same node, is called critical if it
has maximum average weight, which is the weight divided by the length of the path [7].

Each irreducible matrix A ∈ Rn×n
max admits a unique max-plus eigenvalue λ ∈ R and a

corresponding max-plus eigenspace E(A) = {x ∈ Rn
max | A ⊗ x = λ ⊗ x}. The scalar λ is

equal to the average weight of critical circuits in G(A), and E(A) can be computed from
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A+
λ =

⊕n
k=1((−λ) ⊗ A)⊗k. A reducible matrix may have multiple eigenvalues, where the

maximum one equals to the average weight of critical circuits of G(A). Another important
property of irreducible MPL systems is the periodicity of the powers of matrix A⊗k.

▶ Proposition 4 (Transient [7, 29]). For an irreducible matrix A ∈ Rn×n
max and its max-plus

eigenvalue λ ∈ R, there exist l, c ∈ N0, such that A⊗(k+c) = (λ× c) ⊗A⊗k for all k ≥ l. The
smallest such l and c are called the transient and the cyclicity of A, respectively.

For the rest of this paper, we denote the transient and the cyclicity of A as tr(A) and
cyc(A), respectively. While cyc(A) is related to critical circuits in the precedence graph G(A)
[7, Def 3.94], tr(A) is unrelated to the dimension of A. Even for a small n, the transient of
A ∈ Rn×n

max can be large. Upper bounds of the transient have been discussed in [16, 32, 35, 36].
By Proposition 4, all orbits of an irreducible MPL system induce a periodic behaviour

with a rate λ: for each initial vector x(0) ∈ Rn we have x(k + cyc(A)) = (λ× cyc(A)) ⊗ x(k)
for all k ≥ tr(A). A similar condition may be found on reducible MPL systems: we denote the
corresponding transient and cyclicity to be global, as per Proposition 4. The local transient
and cyclicity for a specific initial vector x(0) ∈ Rn and for a set of initial vectors X ⊆ Rn

has been studied in [1] and is defined as follows.

▶ Definition 5 ([34]). Given A ∈ Rn×n
max with max-plus eigenvalue λ and an initial vector

x(0) ∈ Rn, the local transient and cyclicity of A w.r.t. x(0) are respectively the smallest
l, c ∈ N0 such that x(j + c) = λc⊗ x(j), ∀j ≥ l. We denote those scalars as tr(A,x(0)) and
cyc(A,x(0)), respectively. Furthermore, for X ⊆ Rn, tr(A,X) = max{tr(A,x(0)) | x(0) ∈ X}
and cyc(A,X) = lcm{cyc(A,x(0)) | x(0) ∈ X}, where lcm is the “least common multiple”.

Following [1], any MPL system (2) can be classified into three categories: 1) never periodic
if tr(A,x(0)) does not exist for all x(0) ∈ Rn; 2) boundedly periodic if tr(A,x(0)) exists
for all x(0) ∈ Rn and tr(A) exists; and 3) unboundedly periodic if tr(A,x(0)) exists for all
x(0) ∈ Rn but tr(A) does not. We call (2) periodic if it is either unboundedly periodic or
boundedly periodic. It has been shown in [1] that an MPL system (2) is periodic if and
only if the state matrix A admits a finite eigenvector (all elements are not equal to ε). The
following proposition shows the relation between the periodicity of the MPL system (2) and
its corresponding orbits.

▶ Proposition 6. An orbit π is a lasso iff π[0] admits local transient and cyclicity.

▶ Corollary 7. An MPL system (2) is periodic iff all orbits π ∈ Orb(A) are lassos.

▶ Remark 8. The nature of the periodicity of an MPL system (2), as discussed above, plays
an important role for the verification procedures in Section 4. For instance, over boundedly
periodic MPL systems it entails the decidability of verification problems (cf. Corollary 18).

▶ Example 9. Consider a two-dimensional MPL system

x(k + 1) = A⊗ x(k), A =
[
2 5
3 3

]
, (3)

that models a simple railway network shown in Figure 2, where xi(k) represents the time of
the k-th departure at station Si for i ∈ {1, 2}. The element A(i, j) for i ̸= j corresponds to
the time needed to travel from station Sj to Si. The element A(i, i) represents the delay for
the next departure of a train from station Si.
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2
3

3

5

S1 S2

Figure 2 A simple railway network represented by an MPL system in (3).

Suppose the vector of initial departures is x(0) = [0 1]⊤, then its corresponding orbit is

π =
[
0
1

]
,

[
6
4

]
,

[
9
9

]
,

[
14
12

]
, . . .

Notice that, the above orbit is periodic with transient tr(A,x(0)) = 1 and cyclicity cyc(A,x(0)) =
2, and is a (2, 1)-lasso.

2.2 Satisfiability Modulo Theory

Given a first-order formula ψ in a background theory T, Satisfiability Modulo Theory (SMT)
refers to the problem of deciding whether there exists a model (i.e. an assignment to the free
variables in ψ) that satisfies ψ [9]. For example, the formula (x ≤ y) ∧ (x+ 3 = z) ∨ (z ≥ y)
within the theory of real numbers is satisfiable, and a valid model is {x := 5, y := 6, z := 8}.

SMT solvers can support different theories. A widely used theory is Quantifier-Free Linear
Real Arithmetic (QF_LRA). A QF_LRA formula is an arbitrary Boolean combination of
atoms in the form

∑
i aixi ∼ α, where ∼ ∈ {>,≥}, every xi is a real variable, and every ai

and α are rational constants. Quantifier-Free Real Difference Logic (QF_RDL) is the subset
of QF_LRA in which all atoms are restricted to the form xi − xj ∼ α. Both theories are
decidable [9, Section 26.2]. Core to the main results of this work, it has been shown in [1]
that any inequality in max-plus algebra can be translated into an RDL formula as follows.

▶ Proposition 10 ([1]). Given real-valued variables x1, . . . , xn and max-plus scalars a1, . . . , an,
b1, . . . , bn ∈ Rmax, the inequality F ≡

⊕n
i=1(xi ⊗ ai) ∼

⊕n
j=1(xj ⊗ bj) is equivalent to F ∗ ≡⊕

i∈S1
(xi ⊗ai) ∼

⊕
j∈S2

(xj ⊗bj), where S1 = {1, . . . , n}\{1 ≤ k ≤ n | ak = ε or ¬(ak ∼ bk)}
and S2 = {1, . . . , n} \ {1 ≤ k ≤ n | bk = ε or ak ∼ bk}, respectively. Furthermore,

F ∗ ≡
∧

j∈S2

( ∨
i∈S1

(xi − xj ∼ bj − ai)
)

≡
∨

i∈S1

 ∧
j∈S2

(xi − xj ∼ bj − ai)

 . (4)

If S1 = ∅ then F ∗ ≡ false. On the other hand, if S2 = ∅ then F ∗ ≡ true.

Proposition 10 ensures that any inequality expression in max-plus algebra can be reduced
to a simpler one in which no a variable appears on both sides. Then, the reduced inequality
can be expressed as a QF_RDL formula either in conjunctive or disjunctive normal form1.

1 The readers are referred to the longer version of [1] in https://arxiv.org/pdf/2007.00505.pdf for a
detailed proof.
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As a direct consequence of Proposition 10, the MPL system dynamics in (2) can be
expressed as a QF_RDL formula as follows:

SymbMPL(A,V(k−1),V(k)) :=
n∧

i=1
(gei ∧ eqi), (5)

where gei =
∧

j∈fini
(x(k)

i − x(k−1)
j ≥ A(i, j)) and eqi =

∨
j∈fini

(x(k)
i − x(k−1)

j = A(i, j)). The
set V(k) = {x(k)

1 , . . . , x(k)
n } contains SMT instances to encompass the states of the MPL

system at the k-th bound while fini is the indices of the finite elements of A(i, ·).

3 Time-Difference Linear Temporal Logic

This section describes the logic we propose to express properties over MPL systems. We
start by introducing the notions of Time-Difference (TD) proposition and of TD formula.

▶ Definition 11. A time-difference proposition over a vector of variables x⃗ = ⟨x1, · · · , xn⟩ is
an atomic formula p = x(k)

i −x(l)
j ∼ α, where i, j ∈ {1, . . . , n}, k, l ∈ N, α ∈ R and ∼ ∈ {>,≥}.

We call p initial if k = l = 0: for the sake of simplicity, we write xi − xj ∼ α instead. For
m ≥ 0, we write p(m) = x(k+m)

i − x(l+m)
j ∼ α.

▶ Definition 12. A TD formula for a vector of variables x⃗ is defined according to the
following grammar

f ::= true | p | ¬f | f1 ∧ f2,

where p = x(k)
i − x(l)

j ∼ α is a TD proposition over x⃗. We call a TD formula f initial if all
TD propositions appearing in f are initial ones.

Semantically, we interpret TD formulae on orbits2: given an orbit π and a TD formula f
we say that π |= f according to the following recursive rules.

π |= true
π |= x(k)

i − x(l)
j ∼ α iff π[k]i ∼ π[l]j + α

π |= ¬f1 iff π ̸|= f1,

π |= f1 ∧ f2 iff π |= f1 ∧ π |= f2.

 (6)

In the case of MPL systems, an orbit is uniquely determined by its initial vector x(0) = π[0];
hence, one can write

π[0] |= f iff π |= f, (7)

or in general π[i] |= f iff π[i . . .] |= f . Finally, given an MPL system defined by matrix
A ∈ Rn×n

max and a TD formula f , we say that A |= f if all the orbits of A satisfy f (i.e.,
∀π ∈ Orb(A).π |= f).

Given an MPL system defined by matrix A ∈ Rn×n
max and a TD formula f , we can always

rewrite f into an initial TD formula by means of the get_initial(A, f) translation defined as
follows. First, we translate all the TD propositions of f as the following inequality

n⊕
r=1

(
xr +A⊗k(i, r)

)
∼

n⊕
s=1

(
xs + α+A⊗l(j, s)

)
, (8)

then, we can translate f into an initial TD formula by applying the rewriting (4) by
Proposition 10.

2 Equivalently, we could define the semantics on traces over x⃗.
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▶ Proposition 13. Given a TD formula f and A ∈ Rn×n
max , let g be get_initial(A, f). Then,

for any orbit π ∈ Orb(A), π |= f iff π |= g.

Therefore, each (non-initial) TD formula w.r.t. an MPL system characterised by A ∈ Rn×n
max

can be translated into an initial one, with the same satisfaction relation over any orbit
π ∈ Orb(A). It is important to note that the translation of a non-initial TD formula f into an
initial TD formula g by Proposition 13 may result in a larger formula, in terms of the number
of its propositions. Notice that the number of propositions in (4) is at most ⌊ n

2 ⌋ × (n− ⌊ n
2 ⌋).

▶ Proposition 14. Given a TD formula f and two similar orbits π, σ, π |= f iff σ |= f .

We are now in the position to discuss TD specifications, which generalise TD formulae to
temporal requirements. Formally, TD specifications are defined as LTL formulae in Release
Positive Normal Form (PNF) [8, Definition 5.23], according to the following grammar:

φ := true | false | p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | ⃝ φ | φ1 U φ2 | φ1 R φ2, (9)

where p is an initial TD proposition. We call this logic Time-Difference Linear Temporal
Logic (TDLTL). It is important to note that one can express a TDLTL specification that
contains a non-initial TD formula f by first translating f into an initial TD formula, as
per Proposition 13. Furthermore, any initial TD formula is a TDLTL formula (without any
temporal operators). Given an orbit π, the semantics of TDLTL formulae (9) is defined as:

π |= true for all π ∈ Orb(A),
π ̸|= false for all π ∈ Orb(A),
π |= p iff π[0] |= p,

π |= ¬p iff π ̸|= p,

π |= φ1 ∧ φ2 iff π |= φ1 ∧ π |= φ2,

π |= φ1 ∨ φ2 iff π |= φ1 ∨ π |= φ2,

π |= ⃝φ iff π[1..] |= φ,

π |= φ1 U φ2 iff ∃j ≥ 0. π[j..] |= φ2 and ∀0 ≤ i < j. π[i . . .] |= φ1,

π |= φ1 R φ2 iff ∀j ≥ 0. π[j] |= φ2 or ∃i ≥ 0. (π[i..] |= φ1 ∧ ∀h ≤ i. π[h..] |= φ2)
π |= ♢φ iff ∃j ≥ 0. π[j..] |= φ,

π |= □φ iff ∀j ≥ 0. π[j..] |= φ.



(10)

Similar to (7), the semantics of TDLTL formulae over initial vectors in the case of an MPL
system is as follows: π[0] |= φ iff π |= φ.

▶ Example 15. Consider a TDLTL formula φ = ♢□(
∧2

i=1(3 ≤ x(1)
i − x(0)

i ≤ 5))3 defined for
the MPL system in (3). The specification assesses whether the system eventually reaches a
state after which the delays of consecutive departures from both stations are always between
3 and 5 time units. φ has four non-initial TD propositions; the “initialised” translations are:

x(1)
1 − x(0)

1 ≥ 3 ⇔ max{x1 + 2, x2 + 5} ≥ x1 + 3 ⇔ x2 − x1 ≥ −2,
x(1)

2 − x(0)
2 ≥ 3 ⇔ max{x1 + 3, x2 + 3} ≥ x2 + 3 ⇔ true,

x(0)
1 − x(1)

1 ≥ −5 ⇔ x1 + 5 ≥ max{x1 + 2, x2 + 5} ⇔ x1 − x2 ≥ 0,
x(0)

2 − x(1)
2 ≥ −5 ⇔ x2 + 5 ≥ max{x1 + 3, x2 + 3} ⇔ x2 − x1 ≥ −2.

Hence, the “initialised version” for φ is φ′ = ♢□((x2 − x1 ≥ −2) ∧ (x1 − x2 ≥ 0)); equivalent
to ♢□(0 ≤ x1 − x2 ≤ 2).

3 We write k ≤ x− y ≤ w as a shorthand for (x− y ≤ w) ∧ (y − x ≤ −k).
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Given an MPL system (2), characterised by matrix A ∈ Rn×n
max , and a TDLTL formula φ,

we say that A |= ϕ if all the orbits of A satisfy ϕ (i.e., ∀π ∈ Orb(A). π |= ϕ). Furthermore, if
the dynamics of (2) are defined over a set of initial conditions X ⊆ Rn,

Orb(A,X) |= φ iff ∀π ∈ Orb(A). π[0] ∈ X =⇒ π |= φ. (11)

3.1 Encoding Bounded Counterexamples
This section describes the procedure to generate an SMT instance corresponding to a bounded
counterexample of the TDLTL formula φ. By Corollary 7, such a counterexample can be
generated over a lasso. First, we define the bounded version of (10) up to bound k for a
(k, l)-lasso π as follows:

π |=k p iff π[0] |= p,

π |=k ¬p iff π ̸|=k p,

π |=k φ1 ∧ φ2 iff π |=k φ1 ∧ π |=k φ2,

π |=k φ1 ∨ φ2 iff π |=k φ1 ∨ π |=k φ2,

π |=k ⃝φ iff π[1..] |=k φ,

π |=k φ1Uφ2 iff ∃0 ≤ j ≤ k. π[j..] |=k φ2 and ∀0 ≤ i < j. π[i..] |=k φ1,

π |=k φ1Rφ2 iff ∀0 ≤ j ≤ k. π[j] |=k φ2 or
∃0 ≤ i ≤ k. (π[i..] |=k φ1 ∧ ∀h ≤ i. π[h..] |=k φ2),

π |=k ♢φ iff ∃0 ≤ j ≤ k. π[j, , ] |=k φ,

π |=k □φ iff ∀0 ≤ j ≤ k. π[j..] |=k φ.



(12)

Notice that, for a (k, l)-lasso π, π[(k + 1)..] is similar to π[l..]. Thus, it is straightforward to
see that π |=k φ implies π |= φ.

▶ Example 16. For the TDLTL formula φ′ = ♢□(0 ≤ x1 − x2 ≤ 2) in Example 15 and a
(2, 1)-lasso π in Example 9, one could check that π |=k φ

′ for k = 2.

We now describe how to translate a bounded counterexample of a TDLTL formula into
an SMT instance. Suppose ψ is the negation of φ i.e. ψ ≡ ¬φ. We recall that φ and ψ

are assumed to be in positive normal form (9). The notation l[ψ]mk denotes the witness
encoding of ψ (equivalently, the counterexample encoding of φ) at position 0 ≤ m ≤ k over
a (k, l)-lasso. Similar to the description in [10], the encoding can be formulated as follows:

l[p]mk :=p(m), l[¬p]mk :=¬(l[p]mk ),

l[ψ1 ∧ ψ2]mk :=l[ψ1]mk ∧ l[ψ2]mk , l[ψ1 ∨ ψ2]mk := l[ψ1]mk ∨ l[ψ2]mk ,

l[⃝ψ]mk :=
{

l[ψ]m+1
k , if m < k

l[ψ]lk, otherwise l[♢ψ]mk :=
k∨

j=min{m,l}
l[ψ]jk

l[ψ1 U ψ2]mk :=
k∨

j=m

(
l[ψ2]jk ∧

j−1∧
n=m

l[ψ1]nk

)
∨ l[□ψ]mk :=

k∧
j=min{m,l}

l[ψ]jk

m−1∨
j=l

(
l[ψ2]jk ∧

k∧
n=m

l[ψ1]nk ∧
j−1∧
n=l

l[ψ1]nk

)

l[ψ1 R ψ2]mk :=

 k∧
j=min{m,l}

l[ψ2]jk

 ∨
k∨

j=m

(
l[ψ1]jk ∧

j∧
n=m

l[ψ2]nk

)
∨

m−1∨
j=l

(
l[ψ1]jk ∧

k∧
n=m

l[ψ2]nk ∧
j∧

n=l

l[ψ2]nk

)
,
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where p is an initial TD proposition. The final formula, which is satisfiable iff there exists a
(k, l)-lasso π such that π ̸|=k φ, is given by:

k∧
i=0

SymbMPL(A,V(i),V(i+1)) ∧ Loop(A, k + 1, l, λ) ∧ l[ψ]0k, (13)

where λ is the max-plus eigenvalue of A and Loop(A, k + 1, l, λ) represents the looping
constraint i.e.,

∧n
i=1(x(k+1)

i − x(l)
i = λ× (k− l+ 1)). Recall that, if the orbit of x(0) w.r.t. A

is (k, l)-lasso, then x(k + 1) = (λ × (k − l + 1)) ⊗ x(l). Furthermore, the first conjunct of
(13) corresponds to the executions of (2) up to bound k.

By the same procedure used in Proposition 13, one can translate Loop(A, k+1, l, λ)∧ l[ψ]0k
into an SMT formula over the variables V(0) only (i.e., instead of representing the variables
at each time in the orbit, we only define the formula over the initial state). Abusing the
notation of TD formulae, we indicate the “initialised” version of (13) as

get_initial
(
A,

k∧
i=0

Loop(A, k + 1, l, λ) ∧ l[ψ]0k

)
. (14)

The first conjunct of (13) is not included because all TD propositions in (14) are initial ones.
The number of TD propositions in (14) may be much larger compared to (13), especially for
TDLTL formulae with multiple temporal operators. On the other hand, the encoding (14)
has an advantage w.r.t. the number of variables: notice that (13) consists of variables from
V(0) ∪ . . . ∪ V(k+1), whereas (14) involves V(0) only.

3.2 An Upper Bound for the Completeness Threshold
The notion of completeness threshold refers to an index k such that, if no counterexample
with length k or less for a LTL formula φ is found, then φ in fact holds over all infinite
behaviours in the model. The discussion of how to compute the (upper bound of the)
completeness threshold is given in [19, 31]. In this section, we show that the upper bound of
the completeness threshold to verify (11) for any TDLTL formula over an MPL system (2) is
determined by its pair transient/cyclicity.

▶ Proposition 17. Given a periodic MPL system (2) with a set of initial conditions X and a
TDLTL formula φ, the upper bound of the completeness threshold to verify Orb(A,X) |= φ

is given by tr(A,X) + cyc(A,X) − 1.

4 Model Checking of Max-Plus Linear Systems

This section describes the model-checking algorithms we devise for MPL systems. We build
on the basic idea of BMC, that is to find a bounded counterexample of a given specification
with a specific length k. If no such counterexample is found, then one increases k by one and
searches corresponding counterexamples, until a known completeness threshold is reached,
or until the problem becomes intractable. The reader is referred to [10, 11, 12] for a more
detailed description.

Given an MPL system (2) with a set of initial conditions X ⊆ Rn and a TDLTL formula
φ (9), we present procedures to verify whether Orb(A,X) |= φ. In this paper, we assume that
the underlying MPL system is periodic and the set of initial conditions X can be expressed
as a general LRA formula. The procedures are integrated with the method computing the
transient and cyclicity of MPL from a given set of initial conditions in [1]. We recall that such
pair of transient and cyclicity can be used as an upper bound of the completeness threshold.
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In the first part of Section 4, we present incremental algorithms to verify (11) where the
bounded counterexample of a TDLTL formula φ is encoded for each iteration. Due to the
periodic behaviour of MPL systems, such a counterexample corresponds to an orbit with
transient l and cyclicity c. Unlike the usual BMC where the bound is increased by one, the
novel procedures increase the step bound by finding the existence of a larger orbit with
transient l′ > l or cyclicity c′ not divides c. In the second part of the section, we describe
“upfront” procedures where one only needs to encode the bounded counterexample of φ w.r.t.
the upper bound of the completeness threshold given by Proposition 17.

4.1 Incremental Approaches
Orbits of MPL systems are potentially periodic with transient l and cyclicity c. Hence, in
incremental procedures, we search a finite counterexample of a TDLTL formula φ with length
k in a shape of (k, l)-lasso, where initially we set l = 0 and c = 1 (the smallest possible
values). From these values, we generate the looping constraint Loop(A, k+ 1, l, λ) and l[¬φ]0k,
where λ is the max-plus eigenvalue of A. The formula X ∧ F , with F given by (13) or (14),
corresponds to a counterexample of φ i.e., a (k, l)-lasso π ∈ Orb(A,X), such that π ̸|= φ.

We use an SMT solver to check the satisifiability of X ∧ F . If the SMT solver reports
SAT then a counterexample is found. On the other hand, if the SMT solver reports UNSAT,
we increment the step bound. Instead of increasing the bound by one, we use the SMT
solver to check whether there exists an orbit with larger transient l′ or cyclicity c′. The
value of l′ + c′ − 1 becomes the new bound. These two steps are repeated until either 1) a
counterexample is found; 2) the bound cannot be incremented; or 3) the bound is deemed
too large. The second outcome suggests that the specification is valid, since the bound
exceeds the upper bound of the completeness threshold given by Proposition 17. For the last
outcome, we use a large integer as a termination condition.

The incremental approaches are illustrated in Figure 3. We name the procedure that
uses the encoding in (13) unrolled-incremental, since the first conjunct of (13) represents
the execution of (2) up to bound k. On the other hand, the alternative procedure with the
encoding in (14) is called initialised-incremental, due to the translation from Proposition 13.

4.2 Upfront Approaches
Upfront approaches exploit the fact that the upper bound of the completeness threshold
in Proposition 17 is unrelated to the TDLTL formula φ, and that it can be computed via
SMT-based techniques, as in [1, Algoritm 3]. Hence, the upfront versions of the procedures
in Figure 3 is obtained by generating (13) or (14) with l = tr(A,X) and k = tr(A,X) +
cyc(A,X) − 1. Together with the set of initial conditions X, we check the satisfaction of
the resulting SMT instance. If it is satisfiable, then φ is invalid. On the other hand, if it is
unsatisfiable, then φ is valid. The resulting procedures are then called unrolled-upfront and
initalised-upfront, respectively.

4.3 Completeness and Decidability
Proposition 17 suggests that the completeness of the procedures in Sections 4.1-4.2 depends
on the existence of tr(A,X) and cyc(A,X) for a given set X of initial conditions. From the
discussed classification of MPL systems over their periodic behaviour, we can conclude that
if (2) is boundedly periodic, then all procedures are complete. It is also shown in [1] that
the computation of transient for unboundedly periodic MPL systems is semi-complete. We
further summarise this discussion in Corollary 18.
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A ∈ Rn×n
max , X ⊆ Rn

TDLTL formula φ
maximum bound N

Orb←
∧k

i=0 SymbMPL(A,V(i),V(i+1))
loop← Loop(A, k + 1, l, λ)
ctx← l[¬φ]0k

check(X ∧ Orb ∧ loop ∧ ctx)

φ is invalid

check(X ∧ ¬loop) φ is valid
x← get_model()
l′ ← tr(A, x)
c′ ← cyc(A, x)

k ← l+c−1

STOP

λ

l← 0
c← 1

SAT

UNSAT
UNSATSATl← max{l, l′}

c← lcm{c, c′}
k > N

(a) Unrolled-incremental procedure using the encoding in (13).

A ∈ Rn×n
max , X ⊆ Rn

TDLTL formula φ
maximum bound N

loop← get_initial(A, Loop(A, k + 1, l, λ))
ctx← get_initial(A, l[¬φ]0k) check(X ∧ loop ∧ ctx)

φ is invalid

check(X ∧ ¬loop) φ is valid
x← get_model()
l′ ← tr(A, x)
c′ ← cyc(A, x)

k ← l+c−1

STOP

λ

l← 0
c← 1

SAT

UNSAT
UNSATSATl← max{l, l′}

c← lcm{c, c′}
k > N

(b) Initialised-incremental procedure using the encoding in (14).

Figure 3 Incremental Approaches. The function check is implemented in an SMT solver. The
integer N represents the allowed maximum bound.

▶ Corollary 18. Suppose we have an MPL system (2) with a set of initial condition X and a
TDLTL formula φ. If the underlying MPL system is boundedly periodic (resp. unboundedly
periodic) then the proposed procedures are complete (resp. semi-complete) and verifying
Orb(A,X) |= φ is a decidable (resp. semi-decidable) problem.

5 Related Work

A verification by model checking procedure for MPL systems has been firstly discussed in [2].
It employs the abstraction [8, 27] of the underlying MPL system into an equivalent Piecewise
Affine (PWA) model [28]. This results in an abstract model with a finite number of (abstract)
states expressed as Difference Bound Matrices (DBM) [25, 33]. The approach allows to verify
specifications (as LTL formulae) over the abstract model: if the specification is true, then it
is also valid for the original MPL system [8]. However, the invalidity of specification on the
abstract model does not necessarily imply the same conclusion on the concrete model. A
refinement procedure is then proposed in [2]: the abstract model can be refined, so that it
is in a bisimulation relation [8, Definition 7.1] with the original MPL system. This means
that the specification is true on MPL system iff it holds on the bisimilar abstract model.
Unfortunately, the proposed refinement procedure in general does not terminate, even for
irreducible MPL systems. A sufficient condition for the existence of bisimilar abstract model
is given in [2, Theorem 5]. The surveyed techniques suffer from the curse of dimensionality,
since the abstraction computation runs on O(n(n+3)) time where n is the dimension of the
state matrix.

The recent work [34] applies a different approach to verify MPL systems. A set of
predicates is used to generate the abstraction of an MPL system. Predicates are automatically
selected from the state matrix, as well as from the specifications under consideration. This
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predicate abstraction of MPL systems, reminiscent of [18, 27], is shown to be more scalable
than the PWA-based abstraction in [2]. A standard BMC procedure is then applied to verify
given specifications. It also has been shown in [34, Lemma 2] that the completeness threshold
for this BMC procedure is determined by the pair of transient and cyclicity.

Despite successive ameliorations, the main drawback of the aforementioned methods is
their scalability, as they can only be applied to MPL systems with relatively few variables
(the dimension n of vector x in this work). There are a few elements contributing to the
computational bottleneck (time and memory requirements) of these approaches. First,
the worst-case complexity to generate the abstraction of n-dimensional MPL systems is
O(nn+3) [2]. As a result, the number of abstract states grows exponentially, as n increases.
Second, the refinement procedures in [2, 34] potentially lead to state-explosion problems.
Another disadvantage is the limitations related to utilising the DBM data structure: in [34],
each proposition in the form of xi − xj ∼ c where 1 ≤ i, j ≤ n,∼ ∈ {>,≥} and α ∈ R is
transformed into a DBM in Rn. As such, the more propositions are in an LTL formula, the
more DBMs are needed, and therefore the larger number of abstract states.

6 Experiments

In our experimental evaluation, we compare the procedures introduced in Section 4 against
alternative approaches based on the symbolic model checker nuXmv [15] and the existing
abstraction-based techniques presented in [2, 33, 34].

6.1 Encoding in nuXmv (IC3)
We present a procedure to verify (11) using nuXmv [15], a symbolic model checker for the
analysis of synchronous, finite- and infinite-state systems. This can be done by encoding the
maximization operation into SMV language. For instance, x′1 = max{x1 + a1, x2 + a2} can
be expressed as:

TRANS ((next(x_1) >= (a_1 + x_1)) & (next(x_1) >= (a_2 + x_2))) &
((next(x_1) = (a_1 + x_1)) | (next(x_1) = (a_2 + x_2)));

Notice that the above expression is similar to (5). However, unlike the procedures in Figure 3,
nuXmv requires that the lasso is in the canonical form. This means that, in Figure 1, the
states x(l) and x(k + 1) must be equal. This condition can be achieved if the corresponding
matrix has eigenvalue equal to 0. It is straightforward that if matrix A in (2) has eigenvalue
λ then A⊗ (−λ) has eigenvalue 0.

The procedure to verify (11) using nuXmv is as follows. First, we update the matrix by
subtracting all elements with the corresponding eigenvalue. Then, we generate an SMV file
from the matrix and the specification. Finally, we call nuXmv to verify the specification
using command check_ltlspec_ic3 that implements the algorithm described in [22]. The
algorithm works by trying to prove that any existing abstract fair loop is covered by a given
set of well-founded relations, and leverages the efficiency and incrementality of the IC3ia [17]
underlying safety checker.

6.2 Experimental Setup
For the experiments, we generate 20 irreducible matrices of dimension n ∈ {4, 6, 8, 10} ∪
{12, 16, . . . , 40} with n

2 finite elements in each row, where the values of the finite elements
are integers between 1 and 20. The locations of the finite elements are chosen randomly. We
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focus on irreducible matrices to ensure the termination of the procedures. With regards to the
specifications, for each n, we generate randomly 20 TDLTL formulae where the propositions
are in the form of xi − xj ∼ α, i, j ∈ {1, . . . , n},∼ ∈ {>,≥}, and α is an integer within the
interval [−20, 20]. The randomised TDLTL formulae are generated using Spot [26], which
categorises them according to their size: namely, the size of a TDLTL formula φ is intended
as number of operators and propositions in φ. For instance, the size of p∧ q and p U q is both
3 while □p has size of 2. The experiments have been implemented using the SMT solver Z3
[23] on an Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz with 120GB of RAM memory. The
set of initial conditions for each experiment is X = Rn. The experiments are implemented
for each pair of matrix and specification. Thus, there are 20 × 20 × 2 experiments for each n.
We set 30 minutes as a timeout limit.

6.3 Results

Figure 4 illustrates the performance comparison of abstraction-based, unrolled-incremental,
and IC3-based algorithms for n ∈ {4, 6, 8, 10}. These three algorithms are similar in the
sense that they unroll the dynamics of MPL systems up to the underlying step bound.
The scattered plots (in logarithmic scale) represent the running times (in second) for a
pair of algorithms. It is clear that the abstraction-based algorithm is in general the least
efficient one. As expected, the dimension of MPL systems heavily affects the runtime of
the abstraction-based procedure: all experiments for 10-dimensional MPL systems yield
timeout (see Table 1 in Appendix B). For this reason, we do not pursue the abstraction-based
experiments for higher dimensions.
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(a) The plots of experiments with TDLTL formulae of size 5.
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(b) The plots of experiments with TDLTL formulae of size 10.

Figure 4 Comparison of abstraction-based, unrolled-incremental and IC3-based algorithms.
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The plots in Figure 4 also indicate that the unrolled-incremental algorithm is more
efficient than the IC3-based technique. To shed light on this finding, we then compare the
performance of IC3-based technique with SMT-based incremental (unrolled and initialised)
algorithms. As depicted in Figure 5, the proposed algorithms outperform the procedure that
employs IC3. We recall that, in incremental algorithms, the bound of the counterexample is
not increased by one. Hence, they are indeed more effective to find a long counterexample.
Furthermore, in each iteration, the search of counterexample is implemented with a fixed
loopback bound. Such a bound is related to the current value of transient l.
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(a) The plots of experiments with TDLTL formulae of size 5.

2 20 200 2000
unrolled-incremental

2
20

20
0

20
00

in
it

ia
lis

ed
-i

nc
re

m
en

ta
l true (817)

false (3983)

2 20 200 2000
unrolled-incremental

2
20

20
0

20
00

IC
3-

ba
se

d

2 20 200 2000
initialised-incremental

2
20

20
0

20
00

IC
3-

ba
se

d

(b) The plots of experiments with TDLTL formulae of size 10.

Figure 5 Comparison of incremental algorithms and IC3-based technique.

While the SMT-based incremental algorithms take a longer time to verify specifications
with size of 10, the performance of the IC3-based algorithm is relatively similar. In fact,
it is the dimension of the matrix which affects the running time of IC3-based procedure:
the number of experiments that yield timeout increases as the dimension grows. On the
other hand, the performance incremental algorithms are affected by the upper bound of
completeness threshold given by Proposition 17; in particular for experiments whose corre-
sponding specification is valid. Between the unrolled-incremental and initialised-incremental
algorithms, it seems that the latter one is the winner. We recall that in Figure 3(b), all
TD propositions in (14) are initial ones. Therefore, there are only one set of variables that
appeared in (14). In comparison, there are k + 1 sets of variables in (13) which correspond
to the states of MPL system (2) from bound 0 until k.

We then compare the performance between incremental and upfront algorithms, as shown
in Figure 6. As expected, upfront procedures are faster than incremental ones when the
specification is valid. On the other hand, incremental algorithms are much more efficient
when the specification is invalid. This is due to the fact that the counterexample may be
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found at a smaller bound than the completeness threshold given in Proposition 17. As in
incremental approaches, the procedure which uses one set of variables (initialised-upfront) is
faster than the other one that employs multiple sets of variables (unrolled-upfront).
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(a) The plots of experiments with TDLTL formulae of size 5.
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(b) The plots of experiments with TDLTL formulae of size 10.

Figure 6 Comparison of incremental and upfront algorithms.

7 Conclusions

In this paper, we addressed the problem of proving temporal properties over MPL systems.
We defined TDLTL as a suitable formalism for the specification of temporal properties, and
proposed a family of correct and complete SMT-based algorithms for the problem of checking
TDLTL over MPL systems. We derived suitable completeness thresholds from the periodicity
of MPL, and optimized the encoding by means of max-plus algebraic transformations. The
results from a broad set of benchmarks demonstrate that the proposed approach can handle
large models, which is completely out of reach for existing abstraction-based approaches, and
that it outperforms a the baseline encoding into nuXmv.

As future work, we plan to investigate the case of reducible matrices, and to generalize
the approach for parametric MPL, where the matrices may contain symbolic expressions.
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A Proofs of Propositions

▶ Proposition 6. An orbit π is a lasso iff π[0] admits local transient and cyclicity.

Proof. (⇐) Suppose the transient and cyclicity for π[0] is l anc c, respectively. Thus,
π[l + c+ j] = λc⊗ π[l + j] for j ≥ 0 and π is a (l + c− 1, l)-lasso.
(⇒) Suppose π is a (k, l)-lasso. Then, there exists β ∈ R such that π[k+ 1 + j] = β⊗ π[l+ j]
for j ≥ 0, or equivalently π[j + k− l+ 1] = β⊗ π[j] for j ≥ l. This means that tr(A, π[0]) = l

and cyc(A, π[0]) = k − l + 1. ◀
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▶ Corollary 7. An MPL system (2) is periodic iff all orbits π ∈ Orb(A) are lasso.

Proof. Direct consequence of Proposition 6. ◀

▶ Proposition 13. Given a TD formula f and A ∈ Rn×n
max , let g be get_initial(A, f). Then,

for any π ∈ Orb(A), π |= f iff π |= g.

Proof. Due to Definition 12 and (6), it suffices to prove for a non-initial TD proposition
p = x(k)

i − x(l)
j ∼ α. Notice that that p is equivalent to an inequality (8) which can be

translated into an initial TD formula by Proposition 10. This completes the proof. ◀

▶ Proposition 14. Given a TD formula f and two similar orbits π, σ, we have π |= f iff
σ |= f .

Proof. Suppose π = x(0)x(1) . . . and λ = y(0)y(1) . . . with x(m) = β ⊗ y(m) for β ∈ R and
m ≥ 0. The proof follows from the fact that for any TD proposition p = x(k)

i − x(l)
j ∼ α,

π |= p iff xi(k) ∼ xj(l) + α,

iff yi(k) + β ∼ yj(l) + β + α,

iff yi(k) ∼ yj(l) + α.

The last assertion indicates that σ |= p. ◀

▶ Proposition 17. Given a periodic MPL system (2) with a set of initial conditions X
and a TDLTL formula φ, the upper bound of completeness threshold to verify whether
Orb(A,X) |= φ is given by tr(A,X) + cyc(A,X) − 1.

Proof. By Corollary 7, all orbits π ∈ Orb(A,X) are lasso. Recall that, if an initial vector
x(0) ∈ X admits local transient tr(A,x(0)) = l and cyclicity cyc(A,x(0)) = c then the
corresponding orbit is a (k, l)-lasso where k = l + c − 1. Consequently, the upper bound
of completeness threshold to verify (11) is given by the largest possible of such k i.e.,
tr(A,X) + cyc(A,X) − 1. ◀

▶ Corollary 18. Suppose we have an MPL system (2) with a set of initial condition X and a
TDLTL formula φ. If the underlying MPL system is boundedly periodic (resp. unboundedly
periodic) then the proposed procedures are complete (resp. semi-complete) and verifying
Orb(A,X) |= φ is a decidable (resp. semi-decidable) problem.

Proof. The completeness of the procedures follows from the fact that computing transient
tr(A,X) is complete for boundedly periodic MPL systems, but semi-complete for unboundedly
periodic ones. As a result, and because of Proposition 17, verifying Orb(A,X) |= φ is decidable
for boundedly MPL systems and semi-decidable for unboundedly periodic ones. ◀

B The Runtime and Memory Consumption of Experiments

The following tables present the average and maximum running time (in second) and memory
consumption (in MB) of the algorithms. The notation timeout(r) means that there are r
(out of 400) failed experiments due to timeout.
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Table 1 The runtime and memory consumption of abstraction-based algorithm.

n

Experiments with TDLTL Experiments with TDLTL
formulae of size 5 formulae of size 10

runtime memory runtime memory
4 {0.08, 1.42} {26.29, 61.71} {0.12, 12.11} {28.3, 73.61}
6 timeout(9) {69.45, 427.21} timeout(5) {110.84, 1238.51}
8 timeout(96) {2715.27, 6401.11} timeout(314) {3517.04, 9837.71}
10 timeout(400) {318.0, 569.61} timeout(400) {329.22, 608.91}

Table 2 The runtime and memory consumption of IC3-based algorithm.

n

Experiments with TDLTL Experiments with TDLTL
formulae of size 5 formulae of size 10

runtime memory runtime memory
4 {0.1, 8.89} {9.94, 84.71} {0.09, 9.69} {11.21, 93.41}
6 {0.41, 22.71} {22.34, 110.11} {0.54, 24.81} {21.32, 122.21}
8 {8.04, 1101.53} {34.79, 275.71} {5.02, 194.61} {37.29, 170.11}
10 timeout(3) {61.81, 262.21} timeout(3) {63.46, 1525.81}
12 timeout(12) {69.12, 309.71} timeout(10) {71.51, 375.81}
16 timeout(150) {96.37, 427.81} timeout(115) {92.51, 301.91}
20 timeout(243) {105.9, 562.91} timeout(233) {105.39, 904.31}
24 timeout(189) {100.78, 1326.61} timeout(244) {103.34, 345.71}
28 timeout(208) {119.45, 1052.21} timeout(255) {104.97, 951.31}
32 timeout(228) {125.82, 745.61} timeout(254) {103.79, 250.21}
36 timeout(232) {126.33, 685.81} timeout(293) {118.79, 365.01}
40 timeout(245) {149.08, 398.61} timeout(268) {154.99, 677.11}

Table 3 The runtime and memory consumption of unrolled-incremental algorithm.

n

Experiments with TDLTL Experiments with TDLTL
formulae of size 5 formulae of size 10

runtime memory runtime memory
4 {0.28, 63.77} {6.63, 23.91} {0.59, 116.33} {9.24, 25.31}
6 {0.1, 5.62} {8.84, 22.51} {2.12, 457.88} {9.23, 30.21}
8 {0.18, 3.37} {10.99, 24.11} {2.51, 227.76} {11.62, 38.31}
10 {2.92, 280.91} {22.94, 73.11} timeout(1) {23.78, 91.01}
12 {0.85, 34.69} {13.76, 41.71} {2.11, 120.39} {13.44, 44.71}
16 {2.43, 57.04} {21.3, 83.91} {8.31, 1111.33} {19.94, 78.61}
20 {13.79, 428.42} {34.51, 230.91} timeout(2) {32.85, 220.91}
24 timeout(1) {51.14, 544.51} {29.31, 1130.4} {42.59, 424.01}
28 timeout(17) {120.89, 638.31} timeout(14) {66.89, 516.71}
32 timeout(16) {132.17, 693.31} timeout(24) {77.32, 787.61}
36 timeout(31) {123.9, 643.51} timeout(19) {82.76, 681.31}
40 timeout(71) {179.88, 748.51} timeout(73) {152.97, 777.01}
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Table 4 The runtime and memory consumption of initialised-incremental algorithm.

n

Experiments with TDLTL Experiments with TDLTL
formulae of size 5 formulae of size 10

runtime memory runtime memory
4 {0.03, 2.02} {6.22, 22.61} {0.15, 14.68} {10.25, 23.41}
6 {0.07, 4.42} {9.15, 22.61} {0.46, 40.3} {11.03, 23.41}
8 {0.1, 2.5} {11.57, 22.51} {0.39, 36.57} {13.58, 23.41}
10 {0.35, 10.33} {21.26, 23.41} {5.18, 584.62} {21.89, 23.91}
12 {0.39, 43.91} {14.22, 22.21} {0.64, 31.41} {14.42, 23.41}
16 {0.32, 8.44} {14.97, 18.81} {1.2, 36.03} {14.62, 18.81}
20 {0.82, 61.72} {16.02, 61.71} {1.47, 58.78} {15.64, 23.21}
24 {1.65, 141.43} {17.17, 181.51} {1.49, 51.42} {17.05, 29.41}
28 {3.27, 286.22} {19.24, 30.41} {3.8, 185.61} {17.89, 58.01}
32 {2.56, 21.97} {19.94, 29.71} timeout(3) {19.32, 58.61}
36 {8.1, 226.56} {22.18, 41.31} {8.0, 396.32} {22.06, 52.31}
40 {8.93, 84.29} {23.84, 43.01} {18.64, 918.9} {24.39, 50.91}

Table 5 The runtime and memory consumption of unrolled-upfront algorithm.

n

Experiments with TDLTL Experiments with TDLTL
formulae of size 5 formulae of size 10

runtime memory runtime memory
4 {0.41, 76.63} {18.57, 27.21} timeout(2) {20.08, 34.01}
6 {0.44, 40.4} {20.06, 29.11} {12.6, 772.53} {21.14, 33.41}
8 {0.63, 25.38} {22.55, 34.31} {8.98, 615.95} {23.27, 39.11}
10 {4.54, 274.57} {29.26, 81.31} timeout(6) {29.35, 98.21}
12 {1.44, 14.62} {28.94, 53.81} {7.41, 241.33} {30.23, 55.41}
16 {7.15, 179.75} {45.82, 169.31} {17.22, 1122.95} {44.93, 152.81}
20 {35.35, 610.82} {87.02, 431.31} timeout(4) {81.37, 451.91}
24 timeout(1) {142.51, 570.51} timeout(2) {138.93, 567.01}
28 timeout(3) {223.51, 852.31} timeout(14) {241.62, 853.41}
32 timeout(30) {307.83, 1095.81} timeout(45) {334.34, 1162.61}
36 timeout(29) {381.8, 806.91} timeout(40) {395.85, 804.91}
40 timeout(125) {587.1, 1096.21} timeout(153) {633.39, 1141.11}

Table 6 The runtime and memory consumption of initialised-upfront algorithm.

n

Experiments with TDLTL Experiments with TDLTL
formulae of size 5 formulae of size 10

runtime memory runtime memory
4 {0.05, 3.41} {16.63, 22.81} {4.49, 1393.45} {18.43, 23.61}
6 {0.15, 10.63} {18.75, 22.81} {2.71, 730.72} {18.92, 23.61}
8 {0.21, 3.94} {18.97, 23.11} {0.94, 44.02} {20.22, 23.61}
10 {1.0, 183.35} {21.68, 23.51} timeout(1) {22.24, 23.81}
12 {0.53, 15.0} {20.64, 23.01} {1.32, 20.2} {21.15, 23.51}
16 {0.6, 9.53} {21.01, 22.01} {6.28, 1725.02} {21.21, 22.81}
20 {1.66, 23.53} {21.99, 24.51} {5.05, 469.43} {22.18, 24.51}
24 {3.3, 118.33} {22.96, 27.71} timeout(1) {23.09, 28.01}
28 {7.15, 656.1} {24.03, 32.61} timeout(1) {24.26, 34.41}
32 {4.77, 82.64} {25.34, 35.81} timeout(3) {25.82, 36.61}
36 {12.3, 115.36} {27.82, 42.21} timeout(1) {27.82, 41.61}
40 {15.82, 124.64} {29.18, 47.41} timeout(1) {29.83, 47.21}
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Abstract
Fixpoint Logic with Chop (FLC) extends the modal µ-calculus with an operator for sequential
composition between predicate transformers. This makes it an expressive modal fixpoint logic which
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1 Introduction

Modal fixpoint logics form the backbone of many program specification languages. The most
prominent example is the modal µ-calculus Lµ [15] which extends modal logic with least
and greatest fixpoint quantifiers in order to express limit behaviour. Modal logic as a basis
ensures bisimulation invariance which is a desirable property for program logics.

The two main decision problems associated with program logics are model checking
and satisfiability checking. Whilst model checking for logics like Lµ is easily seen to be
decidable using fixpoint iteration for instance, satisfiability checking is computationally,
combinatorically and conceptually more difficult. A relatively easy proof of the decidability
of Lµ’s satisfiability problem is via a translation into Monadic Second-Order Logic (MSO)
on trees using bisimulation-invariance [16]. MSO is decidable over infinite trees, but this
only gives a non-elementary upper bound. Over time, this has been improved [26] until the
problem could finally be placed in the complexity class EXPTIME using a translation into
alternating tree automata [6].

The semantics of such automata can be phrased in terms of two-player games, and this can
also be done directly to formulas. Hence, there are also game-theoretic characterisations of
Lµ’s satisfiability problem as finite Rabin or parity games, which gives alternative decidability
results [24, 9].

The EXPTIME upper bound is optimal; a matching lower bound is inherited from
Propositional Dynamic Logic (PDL) – a modal logic that can be translated linearly into
Lµ and whose satisfiability problem is EXPTIME-complete [7]. The translation shows that
PDL is in fact also a modal fixpoint logic with the fixpoints being implicitly present in the
definition of regular languages used in modalities as in ⟨a∗b∗⟩p for instance.
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Regularity is also the answer to the question after Lµ’s expressiveness. The translation
into MSO on trees shows that it can only express properties which are regular in the sense
that they can be recognised by a finite automaton. Lµ is in fact the largest such program
logic as it is equi-expressive to the bisimulation-invariant fragment of MSO [12].

There is obviously a link between the decidability of satisfiability and the restriction of
the expressiveness to regularity only. However, regularity on the expressiveness side does not
constitute the border between decidability and undecidability, as there are program logics
with the capability of expressing non-regular properties whose satisfiability problem remains
decidable. The natural extension PDL[CFL] of PDL to all context-free (rather than just
regular) programs is undecidable [10] but early on it has been observed that its extension
by some context-free languages like L1 := {anbn | n ≥ 1} leads to a decidable program
logic [14, 11].

Some such extension, for instance with the similar CFL L2 := {anban | n ≥ 1} lead
to undecidability, though. This may seem odd at first sight but it makes perfect sense in
the light of a later finding, namely that the extension of PDL with all visibly pushdown
context-free languages PDL[VPL], is decidable [20]. Note that L1 is a visibly pushdown
language (VPL) but L2 is not.

PDL[VPL] and Lµ are incomparable in expressive power. The latter can express all regular
and no non-regular properties, the former can express some non-regular path properties and
by no means all regular properties. A typical PDL[VPL] property not expressible in Lµ is
⟨L1⟩p stating “there is a path with a label from anbn ending in a p-state.” A typical regular
property not expressible in PDL[VPL] (or even its extension with the ∆-operator [25]) is
µX.win ∨ ♢□X defining the set of winning positions for the beginning player in a turn-based
two-player game.

In this paper we show that the boundary of undecidability can be pushed up even
further. We introduce a modal fixpoint logic which embeds both PDL[VPL] and Lµ – the
currently known peaks in the hierarchy of decidable program logics – and is thus strictly
more expressive than either of them. The logic is obtained as a fragment of Fixpoint
Logic with Chop (FLC) [23], an extension of Lµ in which subformulas denote predicate
transformers rather than predicates. Syntactically, this extension is comparable to the step
taken from right-linear to context-free grammars, and the presence of conjunctions then
makes satisfiability undecidable in general. However, we define a fragment by restricting the
syntax such that, structurally, formulas resemble visibly pushdown grammars. This helps
to retain decidability. We call this fragment Visibly Pushdown Fixpoint Logic with Chop
(vpFLC). Conceptually, it is close to PDL[VPL] but the restriction to pure (visibly pushdown)
path properties is lifted, and the typical visibly-pushdown principles can be combined more
or less freely with modal operators to form properties like “there is an n ≥ 1 s.t. ⟨a⟩n[c]⟨b⟩np

holds.” Henceforth, we will call this the ⟨a⟩n[c]⟨b⟩n-property. From what seems to almost
be a pure side-effect of this construction, vpFLC can express all regular properties, too.
Hence, it genuinely pushes the limits of decidability amongst modal fixpoint logics as it
extends both Lµ and PDL[VPL] which are, as said above, incomparable in expressive power.
Hence, vpFLC is at least as expressive as their union. Recently, it has even been shown to
be strictly more expressive than this union, since there even are non-regular (and therefore
non-Lµ-expressible) properties like ⟨a⟩n[b]np which which can expressed in vpFLC but not
in PDL[CFL] and therefore also not in PDL[VPL] [1].

In Sect. 2 we recall necessary preliminaries from program logics, formal languages and
games. In Sect. 3 we formally define vpFLC and argue that it extends both PDL[VPL]
and Lµ such that we obtain a 2EXPTIME lower bound for satisfiability inherited from the
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former. In Sect. 4 we define satisfiability games which are sound and complete for the full
logic FLC, and show that for the fragment vpFLC they are decidable, leading to a matching
2EXPTIME upper bound. In Sect. 5 we conclude with remarks on further work in this area.

2 Preliminaries

2.1 Fixpoint Logic with Chop
Labelled transition systems. Let P = {p, q, . . .} be a set of atomic propositions and
Σ = {a, b, . . .} be a finite set of action names. A labeled transition system (LTS) over P and
Σ is a T = (S,−→, s0, λ) s.t. S is a set of states with a designated initial state s0 ∈ S, and
−→ ⊆ S × Σ × S is the transition relation. We simply write s a−→ t instead of (s, a, t) ∈ −→.
Finally, λ : S → 2P assigns a label to each state in the form of the atomic propositions which
are supposed to be true in that respective state.

Syntax. Let P and Σ be as above. Let V be a countably infinite set of variable names.
Formulas of FLC over P, Σ and V are given by the following grammar.

φ ::= q | q | X | τ | ⟨a⟩ | [a] | φ ∨ φ | φ ∧ φ | µX.φ | νX.φ | φ;φ

where q ∈ P , a ∈ Σ and X ∈ V .
We will write κ for either µ or ν. To save parentheses we introduce the convention

that the operator ; binds stronger than ∧ which binds stronger than ∨. We also use the
abbreviations ff := q ∧ q and tt := q ∨ q for some q ∈ P . Note that FLC does not contain a
negation operator to ensure well-definedness of fixpoints. Nevertheless, FLC is closed under
complements, cf. [23] for details. Hence, we may also use Boolean operators like →,↔ or
even ¬ directly in examples when it helps to make formulas more understandable.

The set Sub(φ) of subformulas of φ is defined as usual, with Sub(κX.ψ) = {κX.ψ}∪Sub(ψ)
etc. For technical convenience with the satisfiability games introduced in Sect. 4, we assume
that tt is always part of Sub(φ) for any φ, cf. also the definition of the semantics below. Let
Sub∨(φ) = {ψ0 ∨ ψ1 | ψ0 ∨ ψ1 ∈ Sub(φ)} be the set of disjunctive subformulas of φ.

Formulas of the form q or q are called literals; those of the form ⟨a⟩ or [a] are called
modalities.

Formulas are assumed to be well-named in the sense that no variable is bound by a µ or
a ν more than once in a given formula. Our main interest is with formulas that do not have
free variables, in which case there is a function fpφ : V ∩ Sub(φ) → Sub(φ) that maps each
variable X to its unique defining fixpoint formula κX.ψ in φ.

Given two variables X,Y ∈ Sub(φ) for some φ, we write X <φ Y if Y occurs free in
fpφ(X). A variable X is called outermost among a set of variables V ⊆ V ∩ Sub(φ) if it is
maximal in V w.r.t. <φ.

Semantics. Given an LTS T = (S,−→, s0, λ), an environment ρ : V → (2S → 2S) assigns to
each variable a function from sets of states to sets of states in T . We write ρ[X 7→ f ] for the
function that maps X to f and agrees with ρ on all other arguments.

The semantics J·KT
ρ : 2S → 2S of an FLC formula, relative to an LTS T and an environment,

is such a function. It is monotone with respect to the inclusion ordering on 2S . Such functions
together with the partial order given by

f ⊑ g iff ∀T ⊆ S : f(T ) ⊆ g(T )

CONCUR 2021



23:4 A Decidable Non-Regular Modal Fixpoint Logic

form a complete lattice with joins ⊔ and meets ⊓ – defined as the pointwise intersection, resp.
union. By the Knaster-Tarski Theorem [27] the least and greatest fixpoints of functionals
F : (2S → 2S) → (2S → 2S) exist. They are used to interpret fixpoint formulas of FLC. The
semantics is then inductively defined as follows.

JqKT
ρ = 7→ {s ∈ S | q ∈ λ(s)} J⟨a⟩KT

ρ = T 7→ {s ∈ S | ∃t ∈ T s.t. s a−→ t}
JqKT

ρ = 7→ {s ∈ S | q ̸∈ λ(s)} J[a]KT
ρ = T 7→ {s ∈ S | ∀t : s a−→ t ⇒ t ∈ T}

JZKT
ρ = ρ(Z) JµX.φKT

ρ =
l

{f : 2S → 2S | f mon., JφKT
ρ[X 7→f ] ⊑ f}

JτKT
ρ = T 7→ T JνX.φKT

ρ =
⊔

{f : 2S → 2S | f mon., f ⊑ JφKT
ρ[X 7→f ]}

Jφ;ψKT
ρ = JφKT

ρ ◦ JψKT
ρ Jφ ∨ ψKT

ρ = JφKT
ρ ⊔ JψKT

ρ

Jφ ∧ ψKT
ρ = JφKT

ρ ⊓ JψKT
ρ

For any FLC formula φ, any LTS T = (S,−→, s0, λ) and any environment ρ let ||φ||Tρ :=
JφKT

ρ (S). We call this the set of positions in T defined by φ and ρ. We also write T , s |=ρ φ

if s ∈ ||φ||Tρ , resp. T |=ρ φ if T , s0 |=ρ φ. If φ is closed we may omit ρ in both kinds of
notation. We say that T is a model of a closed formula φ if T |= φ. A formula is satisfiable
if it has a model.

Two formulas φ and ψ are equivalent, written φ ≡ ψ, iff their semantics are the same, i.e.
for every environment ρ and every LTS T : JφKT

ρ = JψKT
ρ . Two formulas φ and ψ are weakly

equivalent, written φ ≈ ψ, iff they define the same set of states in an LTS, i.e. for every ρ

and every T we have ||φ||Tρ = ||ψ||Tρ . Hence, we have φ ≈ φ; tt for any φ.

▶ Example 1. Take the ⟨a⟩n[c]⟨b⟩n-property mentioned in the introduction. It is definable
in FLC via φacb := ⟨a⟩; (µX.[c] ∨ ⟨a⟩;X; ⟨b⟩); ⟨b⟩; p. For better readability, i.e. to stay closer
to the syntax of more familiar fixpoint logics like Lµ we drop the sequential composition
operator when its left argument is a modality. This is semantically sound as the standard
translation from Lµ to FLC replaces ⟨a⟩φ with ⟨a⟩;φ etc. Then we can write this formula as
⟨a⟩(µX.[c] ∨ ⟨a⟩X; ⟨b⟩); ⟨b⟩p.

To see that this truly formalises the desired property, we need two principles. They are
simple consequences of the functional semantics and established truths in the theory of FLC.
1. Sequential composition is associative and left-commutes with Boolean operators, e.g.

(φ ∨ ψ);χ ≡ φ;χ ∨ ψ;χ.
2. The fixpoint unfolding principle holds, e.g. µX.φ ≡ φ[µX.φ/X].
Then we have

⟨a⟩(µX.[c] ∨ ⟨a⟩X; ⟨b⟩︸ ︷︷ ︸
φX

); ⟨b⟩p ≡ ⟨a⟩([c] ∨ ⟨a⟩φX ; ⟨b⟩); ⟨b⟩p
≡ ⟨a⟩[c]⟨b⟩p ∨ ⟨a⟩⟨a⟩φX ; ⟨b⟩⟨b⟩p
≡ ⟨a⟩[c]⟨b⟩p ∨ ⟨a⟩⟨a⟩([c] ∨ ⟨a⟩φX ; ⟨b⟩); ⟨b⟩⟨b⟩p
≡ ⟨a⟩[c]⟨b⟩p ∨ ⟨a⟩2[c]⟨b⟩2p ∨ ⟨a⟩3([c] ∨ ⟨a⟩φX ; ⟨b⟩); ⟨b⟩3p

≡ . . . ≡
∨

n≥1
⟨a⟩ . . . ⟨a⟩︸ ︷︷ ︸

n

[c] ⟨b⟩ . . . ⟨b⟩︸ ︷︷ ︸
n

p

▶ Example 2. Consider φubn := νX.τ ∧X; ⟨a⟩. Remember that φubn ≈ φubn; tt by definition
of the semantics. Using a similar unfolding approach as above, we can see that

φubn; tt ≡
∧

n≥0
⟨a⟩ntt
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stating “there are a-paths of unbounded lengths.” This is not a regular property either: take
for instance φubn; tt ∧ µY.[a]Y , i.e. its conjunction with the property stating that all a-paths
are of finite length. This formula is satisfiable but does not have finite models, hence, φubn; tt
cannot be expressed in Lµ which has the finite model property.

Later, we will need the notion of guardedness in FLC formulas which plays the same role
as it does in Lµ, requiring that fixpoint variables occur “behind” modal operators. For FLC,
this is easy to define formally.

▶ Definition 3. Let φ ∈ FLC. An occurrence of a fixpoint variable X is guarded, if it
occurs in the right argument ψ2 of a sequential composition ψ1;ψ2 within its defining fixpoint
formula fpφ(X) such that ψ1 does not contain τ . The formula φ itself is guarded if all
occurrences of fixpoint formulas in it are guarded.

For instance, φacb from Ex. 1 is guarded but φubn from Ex. 2 is not. This lifts the notion
of guardedness – useful for decision procedures – from Lµ to FLC in the most obvious way.

2.2 Visibly Pushdown Systems and Languages
A visibly pushdown alphabet is a partition Σ = Σint ⊎ Σcall ⊎ Σret of an action set into three
categories of designated internal-, call-, resp. return symbols.

The concepts introduced in the following are always defined relative to a fixed visibly
pushdown alphabet which will not be mentioned over and over again. Moreover, when
connecting multiple ones, for instance when explaining equivalence between two visibly
pushdown automata, the underlying alphabet is always assumed to be partitioned in the
same way for all participating entities.

Visibly pushdown systems. A visibly pushdown frame (VPF) over a visibly pushdown
alphabet Σ, partitioned accordingly, is a (Q,Γ, q0, δ) where Q is a finite set of states, q0 ∈ Q

is a designated starting state, Γ is a finite stack alphabet including a designated bottom-of-
stack symbol ⊥, and δ = δcall ∪ δint ∪ δret with

δcall ⊆ Q×Γ×Σcall ×Q×Γ , δint ⊆ Q×Γ×Σint ×Q×Γ , δret ⊆ Q×(Γ\{⊥})×Σret ×Q

is its transition table. A visibly pushdown system (VPS) over a set P of atomic propositions
is a A = (Q,Γ, q0, δ, λ) where (Q,Γ, q0, δ) are a visibly-pushdown frame and λ : Q → 2P

assigns to each state a set of atomic propositions.
Such a VPS gives rise to a generally infinite-state LTS TA = (Q × Γ∗⊥,−→, (q0,⊥), λ′)

where λ′(q, γ) := λ(q), and transitions are given as follows. Let q, p ∈ Q, B,C ∈ Γ, γ ∈ Γ∗

and a ∈ Σ.

(q,Bγ) a−→(p, Cγ) if (q,B, a, p, C) ∈ δint

(q,Bγ) a−→(p, CBγ) if (q,B, a, p, C) ∈ δcall

(q,Bγ) a−→(p, γ) if (q,B, a, p) ∈ δret

Remember that Σcall ∩ Σint = ∅. Hence, if (q,B, a, p, C) ∈ δcall and (q,B, a′, p, C) ∈ δint then
a ̸= a′. The underlying directed graph (Q× Γ∗⊥,−→) is also called the configuration graph of
the VPS A.

A path in (the LTS associated with the) VPS A is, as usual, an infinite sequence alternating
between states and actions π = (q0, γ0), a0, (q1, γ1), a1, . . . s.t. (qi, γi) ai−−→(qi+1, γi+1) for all
i ≥ 0. We write Paths(TA) for the set of all paths through TA starting in the initial state
(q0,⊥).
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23:6 A Decidable Non-Regular Modal Fixpoint Logic

For such a path π, the set of states (of the underlying VPS) occurring infinitely often
is inf(π) = {q ∈ Q | there are infinitely many i s.t. q = qi}. The word of such a path π is
word(π) = a0a1 . . . ∈ Σω.

Let (q0, B0γ0), (q1, B1γ1), . . . be the projection of such a path π to the states, ignoring
actions and giving names to the top stack symbols in each position. Such a position (qi, Biγi)
in π is a stair-position if for every j ≥ i: |γj | ≥ |γi|. I.e. in stair positions the top-most stack
symbol may become replaced but not removed. Moreover the content of the stack below
the top-most symbol persists throughout the entire remainder of the path since changing
it would require the top-most stack symbol to be removed. For a path π, let stairs(π) be
the projection of π onto stair-positions, i.e. stairs(π) = (q0,⊥), (qi1 , Bi1γi1), . . . for some
0 < i1 < i2 < . . .. Note that each infinite path has infinitely many stair positions since the
bottom-of-stack symbol ⊥ never gets removed.

Visibly pushdown automata. A visibly pushdown Büchi automaton (VPA) is a A =
(Q,Γ, q0, δ, F ) s.t. (Q,Γ, q0, δ) is a VPF and F ⊆ Q. Note that this can be seen as a VPS
over a singleton atomic proposition fin marking those states that belong to F . Hence, a VPA
also gives rise to an LTS TA just like a VPS does. The two are distinguished only because
of their different pragmatic use: a VPS is a finite representation of an infinite-state LTS,
serving as a model for branching-time properties expressible in logics like FLC; a VPA is a
finite representation of an ω-language, obtained as follows.

The language of the VPA A = (Q,Γ, q0, δ, F ) is

L(A) = {word(π) | π ∈ Paths(TA), F ∩ inf(π) ̸= ∅}

consisting of all paths in the associated LTS which traverse states from F infinitely often.
A stair-parity automaton (SPA) is a A = (Q,Γ, q0, δ,Ω) where (Q,Γ, q0, δ) is a VPF and

Ω : Q → N. The language of an SPA is

L(A) = {a0a1 . . . ∈ Σω | there is π = (q0, γ0), a0, (q1, γ1), a1, . . . ∈ Paths(TA) s.t.
stairs(π) = (qi0 , γi0), (qi1 , γi1), . . . and lim sup

j→∞
Ω(qij

) is even} .

Thus, a word w = a0a1 . . . is accepted by a SPA if there is a path π through the LTS
associated with the SPA s.t. the word along the transitions through π is w and the maximal
priority which occurs infinitely often in stair positions along π is an even one.

An SPA A = (Q,Γ, q0, δ,Ω) is deterministic (DSPA) if for every q, p, p′ ∈ Q, B,C,C ′ ∈ Γ
and a ∈ Σ we have

if (q,B, a, p, C), (q,B, a, p′, C ′) ∈ δcall ∪ δint then p = p′ and C = C ′, and
if (q,B, a, p), (q,B, a, p′) ∈ δret then p = p′.

The purpose of the introduction of the complicated stair-parity acceptance condition is
the fact that (nondeterministic) VPA are not determinisable, not even with Muller acceptance
conditions [2]. However, when the range of interpretation of the acceptance condition is
restricted as it is done in SPA, then determinisation becomes possible. Moreover, DSPA are
easy to complement.

We measure the size of a VPA or SPA over the VPF (Q,Γ, q0, δ) as |Q| + |Γ| + |δ|.

▶ Proposition 4 ([21]). For every VPA A of size n there is a DSPA D of size 2O(n2) s.t.
L(D) = L(A).

The main purpose of automata determinisation in the context of game solving is their
ability to reduce games with abstract winning conditions to those with very concrete ones,
see Cor. 6 below.
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2.3 Games
Graph games. Two-player games played on directed graphs play a fundamental role in
system’s verification based on formal logic. We will use the game-theoretic approach to
characterise FLC’s satisfiability problem in Sect. 4 and to show decidability of the fragment
defined in Sect. 3. This uses particular games known as stair-parity games defined below.

An (edge-labeled) game over a set Σ of labels is a G = (V, V∃, V∀, E, v0,W ) s.t. (V,E) is
a directed graph. The nodes are also called configurations or positions of the game (arena).
The edge relation E ⊆ V × Σ × V is usually assumed to be total in the sense that for each
v ∈ V and a ∈ Σ there is a u ∈ V with (v, a, u) ∈ E. This is not a strict requirement,
though, as there are easy ways to transform games without total edge relations into those
with. V∃ and V∀ partition the set of positions into those owned by player ∃, resp. player ∀.
W ⊆ (V × Σ)ω is the winning condition for player ∃.

A play is an alternating sequence of positions and actions π = v0, a0, v1, a1, . . . starting
in the initial position v0 and satisfying (vi, ai, vi+1) ∈ E for all i ≥ 0. Player ∃ wins π if
π ∈ W , otherwise it is won by player ∀.

A strategy for player p ∈ {∃, ∀} is a σp : (V × Σ)∗(Vp × Σ) → V s.t. for all ρ =
v0, a0, . . . , vn, an with vn ∈ Vp we have (vn, an, σp(ρ)) ∈ E. I.e. it prescribes, given the
history of a moment in a play, the next move to player p in terms of a successors of the
current position and a given action. A play π = v0, a0, v1, a1, . . . adheres to σp if for every
n ∈ N with vn ∈ Vp we have that vn+1 = σp(v0, a0, . . . , vn, an), i.e. in this play, player p has
always followed the advice given by σp whenever it was her turn to move.

The strategy σp is a winning strategy for player p, if every play that adheres to σp is
winning for player p. The problem of solving is: given a game G, decide whether or not
player ∃ has a winning strategy for G.

Stair-Parity Games. A stair-parity game (SPG) is a G = (Q,Q∃, Q∀,Γ, q0, δ,Ω) such that
F = (Q,Γ, q0, δ) is a VPF with its state space partitioned into Q = Q∃ ⊎Q∀, and Ω : Q → N
is a priority function as above. It gives rise to the abstract game (V, V∃, V∀, v0, E,W ) where
the arena (V,E) is the configuration graph of F . The initial position is v0 = (q0,⊥). The
partition of positions belonging to either of the players is derived from the partition Q∃ ⊎Q∀
into states belonging to them, s.t. Vp = Qp × Γ∗⊥ for p ∈ {∃, ∀}.

The winning condition derived from Ω is defined similar to the acceptance condition for
stair-parity automata, hence the name. A play π = (q0, γ0), a0, (q1, γ1), a1, . . . belongs to W
iff lim supj→∞ Ω(qij ) is even where i0, i1, i2, . . . is the set of stair positions in π.

The size of an SPG is simply defined as |δ|. Note that an SPG can easily be represented
using space that is linear in |δ|. Another important parameter for the complexity of analysing
games is its index which is defined as |{Ω(q) | q ∈ Q}|.

▶ Proposition 5 ([21]). The problem of solving an SPG is decidable in EXPTIME.

The proof is by a reduction to the problem of solving a parity game [22, 5] which is
exponential in the size of the game but polynomial in its index. There are several algorithms
showing that parity games can be solved in time polynomial in their size but exponential in
their index, cf. [13], resulting in the EXPTIME upper bound for SPGs. Recent advances
showing that parity games can be solved in quasi-polynomial [4] time do not have any impact
that is significant for our purposes here.

▶ Corollary 6. Suppose G is a game of size n, played on an arena that is a VPF with winning
condition W s.t. W is recognised by a VPA of size O(nc). Then G is solvable in 2EXPTIME.
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Proof. This uses the well-known product construction between a game and a deterministic
automaton (cf. [9]) for the winning condition, obtained here through Prop. 4. If the latter
is a DSPA, the resulting product becomes a stair-parity game of exponential size, and the
doubly exponential bound follows from Prop. 5. ◀

3 Visibly Pushdown Fixpoint Logic with Chop

3.1 Syntax
The definition of the syntax of vpFLC is inspired by the structure of visibly pushdown
grammars (VPG) [3] and PDL[VPL] (see Appendix A for a brief introduction). Again, we
assume the set of actions to be partitioned into Σ = Σint ⊎ Σcall ⊎ Σret.

▶ Definition 7. The syntax of the fragment vpFLC of FLC is given by the following grammar.

φ ::= q | q | X | φ ∨ φ | φ ∧ φ | µX.φ | νX.φ |
[⟨aint⟩] | [⟨aint⟩];φ | [⟨acall⟩]; [⟨aret⟩] | [⟨acall⟩];φ; [⟨aret⟩] | [⟨acall⟩]; [⟨aret⟩];φ | [⟨acall⟩];φ; [⟨aret⟩];φ

where q ∈ P, X ∈ V, ax ∈ Σx for m ∈ {int, call, ret}, and [⟨a⟩] can be either ⟨a⟩ or [a]. Further-
more, we postulate that the sequential composition operator is right-associative; parentheses
are not shown explicitly here for the sake of better readability.

Hence, vpFLC restricts the use of sequential composition such that the left argument is a
modality over an internal or call-action. In the latter case, the right argument contains a
modality over a return-action, possibly surrounded by formulas. The termination operator τ
– the neutral element for sequential composition – is forbidden.

▶ Example 8. The ⟨a⟩n[c]⟨b⟩n-property is definable in vpFLC provided that a ∈ Σcall, b ∈ Σret
and c ∈ Σint. Reconsider the FLC formula φacb defined in Ex. 1. It is easily seen to be a
vpFLC formula; note how the call-modality ⟨a⟩ is paired with the return-modality ⟨b⟩ both
around the fixpoint variable X as well as the entire fixpoint formula for X.

The formula µX.⟨b⟩ ∨ ⟨a⟩;X; ⟨a⟩ stating “there is a path labeled anban for some n ≥ 0”
is not a vpFLC formula because a cannot be a call- and return-modality at the same time,
see also the comment on L2 not being a VPL in the introduction.

3.2 Expressive Power
The logic vpFLC extends both Lµ and PDL[VPL] in expressive power.

▶ Theorem 9. For every formula φ ∈ Lµ ∪ PDL[VPL] there is a ψ ∈ vpFLC s.t. ψ ≡ φ and
|ψ| = O(|φ|).

Proof. (Sketch) The case of φ ∈ Lµ is easy as Lµ embeds into FLC straightforwardly via
⟨a⟩χ ≡ ⟨a⟩;χ etc., cf. [23]. By considering all action symbols to be internal, Σ = Σint, the
resulting formulas fall into vpFLC. In fact, the standard translation produces formulas that
fall into the syntax when restricted to literals, Boolean connectives, fixpoints and formulas
of the form ⟨a⟩;φ and [a];φ alone.

The other clauses in the syntax are needed to capture PDL[VPL]. We sketch the
translation here for PDL[VPL] without the test operator. A corresponding extension is just
a matter of technicality then. Take a PDL[VPL] formula of the form ⟨L⟩φ where L is a VPL.
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FLC

vpFLC

PDL[VPL] Lµ

PDL

Figure 1 The expressiveness of logics closely related to vpFLC. Dotted lines are strict inclusions.

W.l.o.g. we can assume ε ̸∈ L because of ⟨{ε} ∪ L⟩φ ≡ φ ∨ ⟨L \ {ε}⟩φ. According to [3], L is
representable by a context-free grammar with productions of the form A → ε, A → aintB,
A → acallBaretC. Using standard ε-elimination, this can be transformed into a grammar with
productions in either of the following six forms.

A → aint, A → aintB, A → acallaret, A → acallBaret, A → acallaretC, A → acallBaretC

Applying the translation of full PDL[CFL] into unrestricted FLC from [19] results in formulas
which fall into vpFLC – note how its syntax resembles the form of these six grammar
productions. ◀

For the embedding of PDL[VPL] it would indeed be easier to have τ in the syntax of
vpFLC as this would eliminate the need to argue about the elimination of ε, and we would
only need two instead of six patterns of productions. However, the inclusion of τ in vpFLC
would invalidate the relatively simple argument in the proof of Lemma 19 below which is
needed in the decidability proof.

Since PDL[VPL] and Lµ are known to be incomparable in expressive power [20] we even
have strict inclusion of both of them in vpFLC.

▶ Corollary 10. Both PDL[VPL] and Lµ are strictly less expressive than vpFLC.

In fact, vpFLC is even more expressive than the union of PDL[VPL] and Lµ, cf. [1].
Fig. 1 shows the hierarchy of expressiveness amongst the modal fixpoint logics mentioned
here. The undecidability of FLC– as opposed to vpFLC’s decidability shown in the following
section – gives a strong indication that FLC is strictly more expressive than vpFLC: there
can, at least, be no effective translation from FLC to vpFLC.

Another consequence of the embeddings, which happen to be polynomial, is the inheritance
of lower complexity bounds of the satisfiability problems from the embedded logics. For Lµ

it is “only” EXPTIME-hard, this is already the case for the smaller PDL [7]. However, the
satisfiability problem for PDL[VPL] is even 2EXPTIME-hard [20].

▶ Corollary 11. The satisfiability problem for vpFLC is 2EXPTIME-hard.

4 Satisfiability Games

4.1 Satisfiability Games for FLC
Let χ ∈ FLC be closed. The satisfiability game Gsat(χ) is played between the verifier
(V) and the refuter (R). A position in this game is a set of stacks, and a stack is a
sequential composition ψ1; . . . ;ψm of subformulas of χ. A position C is written γ1, . . . , γn,
resp. φ1; γ1 , . . . , φn; γn if we want to refer to the tops, resp. heads of the stacks particularly.
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(∨)
(φ0 ∨ φ1); γ , Φ

φi; γ , Φ
V : i ∈ {0, 1} (∧)

(φ0 ∧ φ1); γ , Φ
φ0; γ , φ1; γ , Φ

(;)
(φ0;φ1); γ , Φ
φ0;φ1; γ , Φ

(τ)
τ ; γ , Φ
γ , Φ

(fp)
κX.φ; γ , Φ
X; γ , Φ

(var)
X; γ , Φ
φ; γ , Φ

if fpχ(X) = κX.φ

(mod)
ℓ1; γ1, . . . , ℓn; γn , ⟨a1⟩; γ′

1, . . . , ⟨am⟩; γ′
m , [b1]; γ′′

1 , . . . , [bk]; γ′′
k

γ′
i, {γ′′

j | bj = ai}
R : i ∈ {1, . . . ,m}

Figure 2 The rules of the FLC satisfiability games.

We may abbreviate several elements in a set of elements, writing such a position for
instance as φ; γ , Φ, for instance when the particular shapes of elements other than φ; γ are
of no particular concern.

The initial position of the game Gsat(χ) is C0 = χ; tt, i.e. it only contains a single stack
whose head is χ and rest is the single formula tt. The game then proceeds according to
the rules shown in Fig. 2. They all, apart from (mod), operate on the head of one stack,
transforming this within a game position. If the head formula is a disjunction, then player
V performs a choice with rule (∨) to replace it by one of its disjuncts. The others are
deterministic and do not require a player to make a choice. Rule (mod), though, requires
player R to make one. It is only applicable when all heads in the current position are either
literals or modal formulas. The conclusion of this rule is called an a-child of its premise if
ai = a for the i chosen by R.

The next step to be taken is to explain under which condition a play is won by one of the
players. This requires a technical definition, though.

▶ Definition 12. Suppose π = Φ0,Φ1, . . . is a play of Gsat(χ). A thread in π is a sequence
π = γ0 , γ1, . . . of stacks s.t. for all i ≥ 0: γi ∈ Φi and the rule played in Φi either

operates on a formula different to the top of the stack γi and γi+1 = γi, or
operates on the top of γi, and γi+1 results from γi through this rule application.

Let φ0, φ1, . . . be the sequence of topmost formulas in the stacks of π, i.e. γi = φi; γ′
i for some

γ′
i. Let i0, i1, . . . be the set of stair positions in π′ according to the definition in Sect. 2.2.

We say that π is a µ-thread, if the outermost variable occurring infinitely often in the
sequence φi0 , φi1 , . . . is of type µ. Otherwise, it is a ν-thread.

Threads trace the evolution of single formulas with their appended stacks through a play,
and µ-threads witness the existence of a non-well-founded least fixpoint construct in the
configurations of a play. These should be avoided in the search for a model. In other words,
player V– who aims to prove satisfiability of the input formula – should avoid µ-threads in
her proof (in form of a winning strategy).

▶ Definition 13. The play π = Φ0,Φ1, . . . of Gsat(χ) is won by player R, if
there is an n s.t. Φn = q; γ , q; γ′ ,Φ for some q ∈ P and some γ, γ′,Φ; or
π contains a µ-thread.

Otherwise, player V wins π.

Next we show that the FLC satisfiability games are sound and complete. We make use of
model checking games for FLC [17]; for convenience they are presented in Appendix B.
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▶ Theorem 14. If χ is satisfiable then player V has a winning strategy for Gsat(χ).

Proof. Suppose there is an LTS T with a state s0 s.t. T , s0 |= χ. By definition we also
have T , s |= χ; tt. A strategy σV for V can be described as follows. She annotates each
configuration γ1, . . . , γm with a state s from T , written s ⊢ γ1, . . . , γm. We then call such
an annotated configuration safe if V has a winning strategy in Gmc

T (χ) starting from s ⊢ γi

for all i. By completeness of the model checking games, she has a winning strategy σ′ for
Gmc

T (χ) starting in s0 ⊢ χ; tt and, hence, this annotated initial configuration is safe.
The key observation here is that V can preserve safety by consulting σ′: whenever she is

required to choose a disjunct in an annotated configuration s ⊢ (φ0 ∨ φ1); γ,Φ, there is a
corresponding choice of a disjunct under σ′ in a configuration s ⊢ (φ0 ∨ φ1); γ. Moreover,
the deterministic rules and R’s choices preserve safety in general.

Now suppose π = s0 ⊢ Φ0, s1 ⊢ Φ1, . . . is an (annotated) play adhering to this strategy
σV. It remains to be seen that it is won by V. The second key observation is that any thread
in this play, together with the state annotation corresponds to a play in Gmc

T (χ) that adheres
to σ′. By assumption, it is won by V. If it is an infinite play then the outermost variable
occurring infinitely often in stair positions is of type ν, i.e. it is a ν-thread. In other words,
π cannot contain a µ-thread and is therefore won by V. π cannot be won in finite time by
player R either because there cannot be a safe configuration of the form s ⊢ q; γ, q; γ, Φ, as
by soundness of the model checking games we would have s |= q and s ̸|= q at the same time.
Hence, π is won by V, showing that σV is indeed a winning strategy. ◀

Soundness does not hold in general: take for instance (νX.X) ∧ (µY.Y ) which is unsat-
isfiable. Not every play will exhibit a µ-thread, though, as one may get caught up in the
unwinding of νX.X. Guardedness (cf. Def. 3) excludes this as it requires rule (mod) to be
played between each two unfoldings of any fixpoint formula.

▶ Theorem 15. Let χ be guarded. If player V has a winning strategy for Gsat(χ) then χ is
satisfiable.

Proof. Consider the tree of all plays adhering to V’s winning strategy σ. Guardedness
ensures that each play uses rule (mod)infinitely often. Moreover, note that this tree only
branches through applications of rule (mod) since this is the only one that gives player R the
ability to perform choices.

We extract a tree model Tσ from this tree of plays by collapsing each segment Ci, . . . , Cj

into a state ⟨Ci, . . . , Cj⟩ s.t. before Ci and in Cj rule (mod) has been applied. Transitions are
given as ⟨Ci, . . . , Cj⟩ a−→⟨Cj+1, . . . , Ck⟩ if Cj+1 is an a-child of Cj in rule (mod). The labelling
is given by q ∈ λ(⟨Ci, . . . , Cj⟩) if q; γ ∈ Cj for some γ. Write C⃗0 for the initial state of Tσ

according to this segmentation.
It remains to be seen that Tσ, C⃗0 |= χ. Suppose it was not the case. By soundness of

Gmc
Tσ

(χ), R would have a winning strategy σR for this game starting in C⃗0 ⊢ χ; tt. As in the
proof of Thm. 14, the key observation is that any infinite play adhering to σR is a µ-thread
in a play adhering to σ, contradicting the assumption that σ is a winning strategy for V
in Gsat(χ). Moreover, suppose R won a finite play with σR by ending in a configuration
C⃗ ⊢ q; γ, i.e. C⃗ ̸|= q but q ∈ λ(C⃗) by construction. This also contradicts the assumption that
σ would be a winning strategy. The other cases of winning finite plays are handled equally.
Hence, we must indeed have Tσ, C⃗0 |= χ finishing the proof. ◀

▶ Example 16. Consider φ = (µY.[c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X) ∧ νZ.[a]; (Z ∧ ⟨c⟩; tt); [b]. The
initial part of one play of the game Gsat(φ) is shown in Fig. 3. For sake of brevity, rules that
operate on separate stacks in a configuration have been compressed into a single step from
one configuration to a next one, and the first rule application is not shown.
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(µY.[c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X); tt , (νZ.[a]; (Z ∧ ⟨c⟩; tt); [b]); tt
(fp), (fp)

Y ; tt , Z; tt
(var), (var)

([c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X); tt , ([a]; (Z ∧ ⟨c⟩; tt); [b]); tt
(∨), (;)

(νX.⟨a⟩;Y ; ⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(fp)

X ; tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(var)

(⟨a⟩;Y ; ⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(;)

⟨a⟩; (Y ; ⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); tt
(mod)

(Y ; ⟨b⟩;X); tt , ((Z ∧ ⟨c⟩; tt); [b]); tt
(;), (;)

Y ; (⟨b⟩;X); tt , (Z ∧ ⟨c⟩; tt); [b]; tt
(var), (∧)

([c] ∨ νX.⟨a⟩;Y ; ⟨b⟩;X); (⟨b⟩;X); tt , Z; [b]; tt , ⟨c⟩; tt; [b]; tt
(∨), (var)

[c]; (⟨b⟩;X); tt , ([a]; (Z ∧ ⟨c⟩; tt); [b]); [b]; tt , ⟨c⟩; tt; [b]; tt
(;)

[c]; (⟨b⟩;X); tt , [a]; ((Z ∧ ⟨c⟩; tt); [b]); [b]; tt , ⟨c⟩; tt; [b]; tt
(mod)

(⟨b⟩;X); tt , tt; [b]; tt
(;)

⟨b⟩; X ; tt , tt; [b]; tt
(mod)

X ; tt
...

Figure 3 Initial part of a play on the formula from Ex. 16 with some rule applications compressed.

It would be cumbersome to try to express the property formalised by φ in English words;
in fact, φ is constructed specifically to exemplify the mechanics of the satisfiability games.
The grey background highlights the evolution of one of the stacks, particularly its elements
up to stack height 2. One can see that the stack reaches height 3 inbetween, and it is there
that Y occurs in head position for the second time. This is not a stair position, though. The
play could be continued s.t. both X and Y occur infinitely often in head positions but it is
only the inner X which does so in stair positions. Hence, this forms a ν-thread.

4.2 Satisfiability Games for Guarded vpFLC are Stair-Parity Games
Thms. 14 and 15 give a reduction from FLC’s satisfiability problem to the problem of solving
particular games on infinite-state spaces. Undecidability of the former transfers to these
games which are therefore not algorithmically solvable for arbitrary FLC formulas. They
are, however, for guarded vpFLC formulas. We prove this by revealing them as special
stair-parity games. As a first step in this direction, we reformulate them as turn-based games.
Fix some χ ∈ vpFLC over some visibly pushdown alphabet Σ.

▶ Definition 17. Configurations of the turn-based satisfiability game Gsat
tb (χ) are of the same

form as those in the original FLC satisfiability game Gsat(χ). The initial configuration is
also χ; tt. The rules, however, deviate.

Let f : Sub∨(χ) → {0, 1}. A configuration C ′ is the f-normalisation of a configuration
C, if C ′ is obtained by repeatedly applying rules (∧), (;), (fp) and (var) to C until all heads of
all stacks are either literals or modalities. Likewise, when some head of a stack is of a form
ψ0 ∨ ψ1 then it gets replaced by ψi using rule (∨) where i = f(ψ0 ∨ ψ1).

In a configuration C, the turn-based game Gsat
tb (χ) proceeds as follows.

1. V selects a function f : Sub∨(χ) → {0, 1},
2. R applies rule (mod) to the f -normalisation of C.
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The following is not difficult to see; Gsat
tb (χ) can be seen as an efficient way of playing

Gsat(χ) with several rules being played at once.

▶ Lemma 18. Player V wins Gsat
tb (χ) iff she wins Gsat(χ).

Proof. Note that all that the definition of Gsat
tb (χ) does is to condense consecutive choices

V does in selecting disjuncts and the applications of deterministic rules into a single move
by player V. All that is needed then is to see that the syntax of vpFLC guarantees the
f -normalisation of any configuration to exist (uniquely), for any f . In a sense, vpFLC
formulas are guarded, i.e. between two unfoldings of a fixpoint variable, rule (mod) needs
to be played. In Gsat

tb (χ), this just happens in two consecutive steps requiring a V choice
followed by a R choice. Hence, winning strategies can easily be transferred between these
two games. ◀

The next goal is to show that turn-based satisfiability games are in fact stair-parity
games. There are two obstacles to overcome. Note that positions in stair-parity games
contain a single stack, whereas satisfiability games on arbitrary FLC formulas can contain
an unbounded number of stacks.
1. There needs to be a representation of the set of stacks as a single one. This is possible

because on vpFLC formulas, the sizes of all stacks do not deviate by much. Secondly, we
can use a standard encoding via transition profiles in order to represent the unboundedly
many stacks by one of fixed width.

2. The winning condition for V needs to be phrased as a stair-parity condition.

To tackle the first problem, we call a configuration γ1, . . . , γm k-aligned for k ≥ 0, if the
stack heights differ by at most k: ||γi|−|γj || ≤ k for all i, j. Note that the initial configuration
of Gsat

tb (χ) is always 0-aligned as it contains only one stack. The first key observation here
is the following. It uses the fact that sequential composition is forced by the syntax to be
right-associative, and that a child under the modal rule is built from stacks all starting with
modalities for the same action symbol.

▶ Lemma 19. The following holds.
a) The f -normalisation C ′ of a 0-aligned configuration C is 1-aligned, and
b) the a-child C ′′ of any 1-aligned configuration C ′ in rule (mod) is 0-aligned, for any a ∈ Σ.

Proof. Part (b) is easier to see: note that all stacks in C ′′ are suffixes of a stack in C ′ which
started with a modality containing a. The syntax of vpFLC can only create non-0-aligned
configurations by making use of two different actions, though. Note how, for instance, a
call-modality ⟨a⟩ can only be used in a formula of the form αcall;φ;αret according to the
syntax, and this is the case for any other stack head which is either ⟨a⟩ or [a] for the same
a ∈ Σ.

For part (a) observe that sequential compositions in the syntax of vpFLC (apart from
those directly linked to call- and return-modalities) are right-associative. Hence, rule (;) can
increase the size of a stack by one but not any more as further sequential compositions can
only occur in the right argument but not the left. ◀

This reduces the complexity of a potentially unbounded number of stacks of different
height to a potentially unbounded number of stacks of essentially the same height. Next
we observe that it can be reduced further to a bounded number of stacks of (almost) equal
height. This follows from the fact that the game rules operate on the stack heads only of
which there are at most n different ones. Additional stacks can only be created using rule (∧)

which duplicates the rest of the stack that it operates on.
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▶ Lemma 20. Let C = γ1, . . . , γm be a configuration of Gsat
tb (χ) and n := |χ|. There are

1 ≤ i1, . . . , in ≤ m s.t. for all j ∈ {1, . . . ,m} there is a j′ ∈ {i1, . . . , in} s.t. γj and γj′ differ
at most in their heads.

Consequently, the m stacks in a configuration can only have been grown out of n different
ones in the previous configuration. This suggests a compact representation of a configuration
Φ = γ1, . . . , γm with γi = ψi,h; . . . ;ψi,0 as a single stack over the stack alphabet Γχ = 2[n]×[n].
Assume some enumeration φ0, . . . , φn−1 of Sub(χ). Then Φ can be represented as gh; . . . ; g1
where, for each i = h, . . . , 1: (j, k) ∈ gi if there is j′ s.t. ψj′,i = φj and ψj′,i−1 = φk. So
in order to reconstruct the stack γi, one starts with the index of its head and follows the
connections through gh; . . . ; g1 from left to right. This representation technique is also used
in the determinisation of VPA [2] and in decision procedures [8].

To overcome the second obstacle of matching V’s winning condition as a stair parity
condition, we employ automata-theory. We define a new such alphabet

Σχ := {chf | f ∈ Sub∨(χ) → {0, 1}} ∪ {mod⟨a⟩ | ⟨a⟩ ∈ Sub(χ)}

s.t. chf ∈ Σχ
int for all f , and mod⟨a⟩ ∈ Σχ

x if a ∈ Σx. Note that any play of Gsat
tb (χ) can easily

be represented by a Σ′ω-word of the form chf0 ,mod⟨a0⟩, chf1 ,mod⟨a1⟩, . . .. The Σχ-symbols
uniquely determine the players’ alternating choices and, vice-versa, given such a symbolic
representation of a play and the initial configuration, all others can be reconstructed uniquely.

▶ Lemma 21. There is a VPA Athr
χ over Σχ of size O(|χ|) which accepts exactly those

(symbolic representations of) plays which contain a µ-thread.

Proof. Athr
χ stores the current head of a stack in its state, starting with χ. Its stack alphabet

is Sub(χ) × {0, 1}. Upon reading symbols from Σχ, it guesses which thread to follow in the
play encoded in the input word and maintains its stack accordingly. The additional bit in
its stack symbols is used to guess which positions are stair positions. It also guesses the
outermost µ-variable X which will presumably be seen infinitely often in stair positions.
Final states are those in which this variable is seen as the head of the stack it follows, when
the automaton’s internal stack shows that the current position is a stair position. Athr

χ fails
immediately, when it should pop a symbol from its internal stack which was marked to be
pushed in a stair position, and when a ν-variable Y is seen in a stair position s.t. X ≺χ Y . ◀

Putting all this together gives an upper bound for vpFLC’s satisfiability problem matching
the doubly exponential lower bound from Cor. 11.

▶ Corollary 22. The satisfiability problem for vpFLC is decidable in 2EXPTIME.

Proof. Thms. 14, 15, Lemma 18 constitute an exponential reduction from general satisfiability
games for vpFLC formulas to turn-based ones. Lemmas 19 and 20 show that the arena of
these turn-based games is a visibly pushdown frame. Lemma 21 states that the winning
condition for player R, i.e. the complement of that of player V can be recognised by a VPA.
The statement then follows from Cor. 6. ◀

5 Conclusion and Further Work

We have presented a decidable fragment of the otherwise undecidable modal fixpoint logic
FLC. It makes use of visibly-pushdown principles in order to achieve decidability. However,
these principles are built into the logic syntactically and mixed with modal operators unlike
similar program logics like PDL[VPL] where the visibly-pushdown principles are separated
from the modal part of the logic in the form of so-called (recursive) programs. Consequently,
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a logic like PDL[VPL] can only make use of such visibly-pushdown principles in expressing
properties of some or all paths. Unlike that, in vpFLC these principles can be used to
form genuine branching properties. This extends the expressive power notably, making
vpFLC a strict superlogic of both PDL[VPL] and the modal µ-calculus and thus pushing the
decidability border amongst modal fixpoint logics further up.

The strictness of this extension from PDL[VPL] to vpFLC is a simple consequence of the
fact that PDL[VPL] cannot express every Lµ-definable property. Hence, we have explicit
witnesses for the strictness of this inclusion in the form of regular properties like the one
mentioned in the introduction about winning two-player games and requiring an unbounded
nesting of diamond- and box-formulas in a PDL-like logic. We believe that there are also non-
regular properties separating vpFLC from PDL[VPL], for instance the ⟨a⟩n[c]⟨b⟩n-property
mentioned in the introduction. A detailed study classifying what properties are expressible
in vpFLC but not even in PDL[CFL] is left for further research.

There is no formal separation of vpFLC from general FLC in expressive power other than
the strong indication given by the decidability border between these two. We strongly believe
that vpFLC is in fact less expressive than FLC, and that something like “there is an n s.t.
⟨a⟩n⟨b⟩⟨a⟩np holds” is not expressible in the former (while it is an easy exercise to formulate
it in FLC). Again, in order to prove this formally, techniques need to be developed that
better capture the expressive power of such expressive modal fixpoint logics. As a starting
point, it seems not to be too difficult to separate vpFLC from FLC over the class of infinite
words where the former may only be able to express visibly-pushdown word languages, while
the latter can express all properties from the Boolean closure of ω-CFLs [18].

It is possible, albeit technically tedious, to encode multiple stacks in one when they are
k-aligned for some k > 1. This would allow the syntax of vpFLC to be a bit more relaxed,
enabling more formulas to be specified, without breaking the general proof structure. For
instance, it may be possible to include τ in the syntax of vpFLC as it can be useful to specify
particular properties like “there is an n ≥ 0 s.t. ⟨a⟩n[b]np holds” via (µX.τ ∨ ⟨a⟩;X; [b]); p.
There is no reason why the expressibility of such properties should break decidability, but
the free use of τ would require a stronger version of Lemma 19 for the decidability proof to
still be valid.
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A PDL over Recursive Programs

We give a brief overview of PDL[VPL]. The underlying action set is a visibly pushdown
alphabet Σ = Σint ⊎ Σcall ⊎ Σret. Formulas are built as in modal logic, with modalities over
VPLs:

φ ::= q | φ ∧ φ | ¬φ | ⟨L⟩φ

where q ∈ P and L is a (finite representation, for instance in the form of a VPA, of) a VPL.
By introducing ∨ and [·]· as primitives, formulas can also be given in negation normal form.

Formulas of PDL[VPL] are interpreted over states s of an LTS T = (S,−→, s0, λ) in the
following way. First we extend the transition relation −→ ⊆ S × Σ × S to a path relation
−→ ⊆ S × Σ∗ × S connecting states by words via

s ε−→ s for any s ∈ S, and
s aw−−→ t if there is u ∈ S s.t. s a−→u and u w−−→ t, for s, t ∈ S.

Then the semantics can be given as follows.

T , s |= q iff q ∈ λ(s)
T , s |= φ ∧ ψ iff T , s |= φ and T , s |= ψ

T , s |= ¬φ iff T , s ̸|= φ

T , s |= ⟨L⟩φ iff there is t ∈ S s.t. s w−−→ t for some w ∈ L and T , t |= φ

PDL[VPL] can then be used to formalise nested visibly-pushdown path properties like
[(L1)∗]⟨L1⟩tt with L1 = {anbn | n ≥ 1} as mentioned in the introduction. This formula
requires every state that is reachable under a (possibly empty) sequence of words from L1
to be the source of a path with labels from L1 again. In particular, it implies (but is not
equivalent to) the existence of an infinite path with labels of the form an1bn1an2bn2 . . . for
some ni ≥ i, i = 1, . . .

B Model Checking Games for FLC

We briefly present the essentials of the model checking games for FLC defined in [17] used in
the proofs of Thms. 14 and 15.

Given an LTS T = (S,−→, s0, λ) and an FLC-formula χ, the model checking game Gmc
T (χ)

is played by players V and R on configurations of the form s ⊢ γ where γ is a stack of
subformulas of χ just like those used in the satisfiability games. The game starts in the
initial configuration s0 ⊢ χ; tt. The rules are presented in Fig. 4.

Player V wins a finite play s0 ⊢ φ0; γ0, s1 ⊢ φ1; γ1, . . . , sn ⊢ φn; γn if
φn = tt,
φn = q for some q ∈ P and sn ∈ λ(q),
φn = q for some q ∈ P and sn ̸∈ λ(q),
φn = [a] for some a ∈ Σ and there is no t s.t. sn

a−→ t.
Player R wins a finite play s0 ⊢ φ0; γ0, s1 ⊢ φ1; γ1, . . . , sn ⊢ φn; γn if

φn = ff,
φn = q for some q ∈ P and sn ̸∈ λ(q),
φn = q for some q ∈ P and sn ∈ λ(q),
φn = ⟨a⟩ for some a ∈ Σ and there is no t s.t. sn

a−→ t.
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s ⊢ (φ0 ∨ φ1); γ
s ⊢ φi; γ

V : i ∈ {0, 1}
s ⊢ (φ0 ∧ φ1); γ

s ⊢ φi; γ
R : i ∈ {0, 1}

s ⊢ (φ0;φ1); γ
s ⊢ φ0;φ1; γ

s ⊢ τ ; γ
s ⊢ γ

s ⊢ σX.φ; γ
s ⊢ X; γ

s ⊢ X; γ
s ⊢ φ; γ

if fpχ(X) = σX.φ

s ⊢ ⟨a⟩; γ
t ⊢ γ

V : s a−→ t
s ⊢ [a]; γ
t ⊢ γ

R : s a−→ t

Figure 4 The rules of the FLC model checking games.

Additionally, the winner of an infinite play s0 ⊢ φ0; γ0, s1 ⊢ φ1; γ1, . . . is determined by
the outermost variable X occurring infinitely often amongst the sequence (φij )j≥0 where
i0, i1, . . . is the sequence of stair positions of the sequence of stacks γ0, γ1, . . .

1 If this variable
X is of fixpoint type ν, then V wins this play. Otherwise, if it is type µ, R wins the play.

▶ Proposition 23 ([17]). Let T be an LTS and χ be a closed FLC formula. Player V wins
Gmc

T (χ) iff T |= χ.

1 In [17], this variable is called stack-increasing. The terminology of stair positions was coined later in
[21].
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Abstract
Hyperproperties are commonly used in computer security to define information-flow policies and
other requirements that reason about the relationship between multiple computations. In this paper,
we study a novel class of hyperproperties where the individual computation paths are chosen by
the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL∗, an
extension of computation tree logic with path variables and strategy quantifiers. HyperATL∗ can
express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to
avoid information leakage. HyperATL∗ is particularly useful to specify asynchronous hyperproperties,
i.e., hyperproperties where the speed of the execution on the different computation paths depends
on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous
hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present
a model checking algorithm for HyperATL∗ based on alternating word automata, and show that our
algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a
prototype model checker for a fragment of HyperATL∗, able to check various security properties on
small programs.
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1 Introduction
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formulation of NI for non-deterministic systems is generalized non-interference (GNI) [31, 12],
which can be expressed as the HyperLTL formula

∀π1. ∀π2. ∃π3. (
∧
a∈H

aπ1 ↔ aπ3) ∧ (
∧
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where H and O are two sets of propositions, with H representing the high-security input and
O the output. The formula states that for any pair of traces π1, π2 there exists a third trace
that agrees on the high-security inputs with π1 and on the outputs with π2 (for simplicity
we assume that no low-security inputs are present). The existence of such a trace guarantees
that any observation made on the outputs is compatible with every possible sequence of
high-security inputs. The non-determinism is thus the sole explanation for the system output.

In this paper, we introduce a novel class of hyperproperties that reason about strategic
behavior in a multi-agent system. As a motivation for why strategic hyperproperties are
desirable, consider GNI from above. As HyperLTL only quantifies existentially or universally
over the paths in the system, the entire system is treated either as fully controllable or
fully adversarial. Moreover, the witness trace π3 can be constructed with full knowledge
of both π1 and π2; this means that the entire output and input history can be used to
resolve the non-determinism of the system appropriately. Now consider a system where the
non-determinism arises from a scheduling decision between two possible subprograms P1, P2.
Each subprogram reads the next input h of the system. Suppose that P1 assumes that h is
even and otherwise leaks information, while P2 assumes that h is odd and otherwise leaks
information. In the trace-based view of GNI , the witness trace π3 is fixed knowing the entire
future input sequence, allowing the construction of a leakage-avoiding path π3; The system
satisfies GNI . An actual scheduler, who chooses which of P1, P2 handles the next input,
can only avoid a leakage if it knows what the next input will be, which is impossible in a
real-world system. The HyperLTL formulation of GNI is, in this case, unable to express the
desired property. In our scenario, we need to reason about the strategic behaviour of the
system, i.e., we want to check if there exist a strategy for the scheduler that avoids leakage.

Strategic Hyperproperties. Reasoning about strategic behavior in multi-agent systems has
been studied before. The seminal work on alternating-time temporal logic [1] introduced
an extension of CTL (and CTL∗[14]) that is centred around the idea of viewing paths as the
outcome of a game, where some agents are controlled via a strategy. The ATL∗ quantifier
⟨⟨A⟩⟩φ requires the agents in A to have a strategy that enforces the path formula φ to become
true. This makes ATL∗ an ideal logic for reasoning about open systems, where one is less
interested in the pure existence of a path, but rather in the actual realizability of an outcome
in a multi-agent system. ATL has numerous variations and extensions, which, for example,
introduce knowledge modalities [42] or imperfect observation [5]. While strategy quantifiers
in ATL∗ can be nested (like in CTL∗), the logic is still unable to express hyperproperties, as
the scope of each quantifier ends with the beginning of the next (see [16]).

It is very useful to reason about the strategic behaviour of the agents in a multi-agent
system with respect to a hyperproperty. In the example above, one would like to ask if the
scheduler has a strategy (based on the finite history of inputs only) such that unintended
information-flow (which is a hyperproperty) is prevented (in the above example such an
answer should be negative). There exist multiple angles to approach this: One could, for
instance, interpret strategic hyperproperties such that a coalition of agents tries to achieve
a set of outcomes satisfying some hyperproperty (expressed, for example, in HyperLTL).
Model checking the resulting logic would then subsume realizability of HyperLTL, which is
undecidable even for simple alternation-free formulas [19].

In this paper, we introduce a new temporal logic, called HyperATL∗, that combines
the strategic behaviour in multi-agent systems with the ability to express hyperproperties.
Crucially, we focus on the strategic behaviour of a coalition of agents along a single path,
i.e., we view path quantification as the outcome of a game. Syntactically, we follow a similar
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HyperATL∗

HyperCTL∗ ATL∗

HyperLTL CTL∗ ATL

LTL CTL

(a)

while(true)
h ← readH()
if (h mod 2 = 0 ) then

o ← !o
else

temp ← o = 0 ? 1 : 0
o ← temp

(b)

Figure 1 (a): Expressiveness of temporal logics. An arrow A→ B indicates that A is a syntactic
fragment of B. (b): Example program that violates (synchronous) observational-determinism.

approach as alternating-time temporal logic [1]. We use the strategy quantifier ⟨⟨A⟩⟩π.φ to
specify that the agents in A have a strategy such that each possible outcome, when bound
to the path variable π, satisfies φ. A formula of the form ⟨⟨A1⟩⟩π1.⟨⟨A2⟩⟩π2.φ now requires
the existence of strategy for the agents in A1 such that for all possible outcomes of the game
π1, the agents in A2 have a strategy such that for all possible outcomes π2, the combination
of π1, π2 satisfies φ (which is a formula that can refer to propositions on paths π1, π2). The
strategic behaviour chosen by each quantifier is thus limited to the current path and can
be based on the already fixed outcomes of outer quantifiers (i.e., the entire strategy for
the agents in A2 can depend on the full outcome of π1). Sometimes, however, it is useful
not to reason incrementally about the strategy for a single path at a time, but rather to
reason about a joint strategy for multiple paths. To express this, we endow our logic with an
explicit construct to resolve the games in parallel (syntactically, we surround quantifiers by
[·] brackets). The formula [⟨⟨A1⟩⟩π1.⟨⟨A2⟩⟩π2.] φ requires winning strategies for the agents in
A1 (for the first copy) and for A2 (for the second copy) where the strategies can observe the
current state of both copies. This enables collaboration between the agents in A1 and A2.

Similar to ATL∗, the empty (resp. full) agent set corresponds to universal (resp. existential)
quantification. HyperATL∗ therefore subsumes HyperCTL∗ (and thus HyperLTL) as well as
ATL∗. The logic is thus a natural extension of both the temporal logics for hyperproperties
and the alternating-time logics from the non-hyper realm (see Fig. 1a).

Strategic Non-Interference. Consider again the example of GNI expressed in HyperLTL.
In HyperATL∗, we can express a more refined, strategic notion of non-interference, that
postulates the existence of a strategy for the non-determinism. As a first step, we consider a
program no longer as a Kripke structure (a standard model for temporal hyperlogics), but
as a game structure played between two players. Player ξN is responsible for resolving the
non-determinism of the system, and player ξH is responsible for choosing the high-security
inputs to the system. We can now express that ξN has a strategy to produce matching
outputs (without knowing the future inputs by ξH). Consider the following formula stratNI :

∀π1. ⟨⟨{ξN}⟩⟩π2. (
∧
a∈O

aπ1 ↔ aπ2)

This formula requires that for every possible reference path π1, the non-determinism always
has a strategy to produce identical outputs. One can show that stratNI implies GNI : The
existence of a leakage “disproving” strategy implies the existence of a leakage “disproving”
trace. A particular strength of this formulation is that we can encode additional requirements
on the strategy. For example: if the internal non-determinism arises from the scheduling
decisions between multiple components, we can require fairness of the scheduling strategy.
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Asynchronous Hyperproperties. Strategic hyperproperties are also very natural to express
asynchronous hyperproperties. While existing hyperlogics traverse the traces of a system
synchronously, one often requires an asynchronous traversal to account, for example, for
the unknown speed of execution of software that runs on some unknown platform. In a
multi-agent system, the scheduling decision (i.e., whether a system progresses or remains
in its current state) can then be seen as the decision made by scheduling agent (called
sched in the following). If not already present, we can artificially add such a scheduling
agent via a system transformation. By either including or excluding this agent in a strategy
quantifier, we can then naturally reason about asynchronous executions of programs. Instead
of reasoning about the asynchronous scheduling of a system directly, we thus reason about
the existence of a strategy for the scheduling agent.

As an example consider the program in Fig. 1b, which continuously reads an input and
flips the output o either directly, or via a temporary variable. Based on the input, the exact
time point of the change in o differs. A synchronous formulation of observational-determinism
(OD) [26], which requires the output to be identical on all traces, does not hold. In HyperATL∗,
we can naturally express a variant of OD where we search for a strategy for the scheduling
agent sched, who aligns the outputs on both traces by stuttering them appropriately:

[⟨⟨{sched}⟩⟩π1. ⟨⟨{sched}⟩⟩π2.] (
∧
a∈O

aπ1 ↔ aπ2)

The program in Fig. 1b (with an added asynchronous scheduler) satisfies this variant, because
sched can stutter the change in o in order to align with the second trace.

To demonstrate the expressiveness of this strategic view on asynchronous hyperproperties,
we compare our approach to AHLTL, a recent temporal logic for asynchronous hyperproper-
ties [4]. While AHLTL model checking is undecidable in general, recent work [4] has identified
a large fragment for which model checking is possible. We show that this fragment can be
encoded within HyperATL∗. Every property in this (largest known) decidable fragment can
thus be expressed in HyperATL∗, for which model checking is decidable for the full logic.

Model Checking. We show that model checking of HyperATL∗ on concurrent game structures
is decidable and present an automata-theoretic algorithm. Our algorithm incrementally
reduces model checking to the emptiness of an automaton. We show that alternating
automata are well suited to keep track of all possible path assignments satisfying a formula
by encoding the game structure in the transition function of the automaton. We characterize
the model checking complexity in terms of the number of complex quantifiers (where the
agent team is non-trivial) and simple quantifiers (i.e., ∃ or ∀). We provide a lower bound,
based on a novel construction that encodes a doubly exponential counter within a single
strategy quantifier, that (in almost all cases) matches the upper bound from our algorithm.

Prototype Model Checker. On the practical side, we present a prototype model checker
for an efficient fragment of HyperATL∗ by reducing the model checking to solving of a parity
game. The fragment supported by our tool does, in particular, include all alternation free
HyperLTL formulas [20], the ∀∗∃∗-model checking approach from [12] as well as all formulas
in the decidable fragment of AHLTL [4].

Contributions. In summary, our contributions include the following:
We introduce a novel logic to express strategic hyperproperties and demonstrate that it
is well suited to express, e.g., information-flow control and, in particular, asynchronous
hyperproperties.
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We give an automata-based model checking algorithm for our logic and provide a lower
bound on the model checking problem.
We show that our logic can express all formulas in the largest known decidable fragment
of the existing hyperlogic AHLTL [4].
We provide a prototype-model checker for an efficiently checkable fragment of HyperATL∗

and use it to verify information-flow polices and asynchronous hyperproperties.

2 Preliminaries

In this section, we introduce some basic preliminaries needed in the following.

Concurrent Game Structure. As our model of multi-agent systems, we consider concurrent
game structures (CGS) [1]. The transition relation in a CGS is based on the decision by
individual agents (or players). Formally, a CGS is a tuple G = (S, s0,Ξ,M, δ,AP, L) where
S is a finite set of states, s0 ∈ S the initial state, Ξ a finite set of agents and M a finite
set of moves. We call a function σ : Ξ → M a global move vector and for a set of agent
A ⊆ Ξ a function σ : A → M a partial move vector. δ : S × (Ξ → M) → S is a transition
function that maps states and move vectors to successor states. Finally, AP is a finite set
of propositions and L : S → 2AP a labelling function. Note that every Kripke structure
(a standard model for temporal logics [3]) can be seen as a 1-player CGS. For disjoint sets
of agents A1, A2 and partial move vectors σi : Ai → M for i ∈ {1, 2} we define σ1 + σ2 as
the move vector obtained as the combination of the individual choices. For σ : A → M and
A′ ⊆ A, we define σ|A′ as the move vector obtained by restring the domain of σ to A′.

In a concurrent game structure (as the name suggests) all agents choose their next move
concurrently, i.e., without knowing what moves the other player have chosen. We introduce
the concept of multi-stage CGS (MSCGS), in which the move selection proceeds in stages
and agents can base their decision on the already selected moves of (some of the) other
agents. This is particularly useful when we, e.g., want to base a scheduling decision on the
moves selected by the other agents. Formally, a MSCGS is a CGS equipped with a function
d : Ξ → N, that orders the agents according to informedness. Whenever d(ξ1) < d(ξ2), ξ2
can base its next move on the move selected by ξ1. A CGS thus naturally corresponds to a
MSCGS with d = 0, where 0 is the constant 0 function.

Alternating Automata. An alternating parity (word) automaton (APA) is a tuple A =
(Q, q0,Σ, ρ, c) where Q is a finite set of states, q0 ∈ Q an initial state, Σ a finite alphabet,
ρ : Q× Σ → B+(Q) a transition function (B+(Q) is the set of positive boolean combinations
of states) and c : Q → N a colouring of nodes with natural numbers. For Ψ ∈ B+(Q), B ⊆ Q

we write B |= Ψ if the assignment obtained from B satisfies Ψ. A tree is a set T ⊆ N∗ that
is prefixed closed, i.e., τ · n ∈ T implies τ ∈ T . We refer to elements in τ ∈ T as nodes and
denote with |τ | the length of τ (or equivalently the depth of the node). For a node τ ∈ T we
denote with children(τ) the immediate children of τ , i.e., children(τ) = {τ · n ∈ T | n ∈ N}.
A X-labelled tree is a pair (T, r) where T is a tree and r : T → X a labelling with X. A run
of an APA A = (Q, q0,Σ, ρ, c) on a word u ∈ Σω is a Q-labelled tree (T, r) that satisfies the
following: (1) r(ϵ) = q0, (2) For all τ ∈ T , {r(τ ′) | τ ′ ∈ children(τ)} |= ρ(r(τ), u(|τ |)). A run
(T, r) is accepting if for every infinite path π in T the minimal colour (given by c) that occurs
infinitely many times is even. We denote with L(A) the set of words for which A has an
accepting run. We call an alternating automaton A non-deterministic (resp. universal) if the
transition function δ is a disjunction (resp. conjunction) of states. If δ is just a single state,
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we call A deterministic. Crucially alternating, non-deterministic, universal and deterministic
parity automaton are all equivalent in the sense that they accept the same class of languages
(namely ω-regular ones) although they can be (double) exponentially more succinct:

▶ Theorem 1 ([33, 13]). For every alternating parity automaton A with n states, there exists
a non-deterministic parity automaton A′ with 2O(n)-states that accepts the same language.
For every non-deterministic or universal parity automaton A with n states, there exists a
deterministic parity automaton A′ with 2O(n)-states that accepts the same language.

▶ Theorem 2 ([29]). For every alternating parity automaton A with n states, there exists an
alternating parity automaton A with O(n2)-states that accepts the complemented language.

3 HyperATL*

In this section, we introduce HyperATL∗. Our logic extends the standard temporal logic
CTL∗ [14] by introducing path variables and strategic quantification [1]. Assume a countably
infinite set of path variables Var , a set of agents Ξ and a set of atomic propositions AP.
HyperATL∗ formulas are generated by the following grammar

φ := ⟨⟨A⟩⟩π.φ | aπ | φ ∧ φ | ¬φ | φ U φ | φ

where π ∈ Var is a path variable, a ∈ AP an atomic proposition and A ⊆ Ξ a set of agents.
As in HyperCTL∗, aπ means that proposition a holds in the current step on path π. Via
⟨⟨A⟩⟩π.φ we can quantify over paths in a system (which we consider as the outcome of a
game). ⟨⟨A⟩⟩π.φ requires the agents in A to have a strategy (defined below) such that each
outcome under that strategy, when bound to trace variable π, satisfies φ. We abbreviate
as usual φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2), and the temporal operators globally ( ), eventually ( )
and release (R). Trivial agent sets, i.e., A = ∅ or A = Ξ correspond to classical existential or
universal quantification. We therefore write ∀π instead of ⟨⟨∅⟩⟩π and ∃π instead of ⟨⟨Ξ⟩⟩π. We
call a quantifier simple if the agent-set is trivial and otherwise complex. We call a formula
linear if it consists of an initial quantifier prefix followed by a quantifier-free (LTL) formula.

Semantics. Let us fix a MSCGS G = (S, s0,Ξ,M, δ, d,AP, L) as a model. We first need
to formalize the notion of a strategy in the game structure. A strategy for any agent is a
function that maps finite histories of plays in the game to a move in M. As the plays in an
MSCGS progress in stages, the decision can be based not only on the past sequence of states,
but also on the fixed moves of all agents in previous stages. Formally, a strategy for an agent
ξ is a function fξ : S+ × ({ξ′ | d(ξ′) < d(ξ)} → M) → M. Given a set of agents A, a set of
strategies FA = {fξ | ξ ∈ A} and a state s ∈ S, we define out(G, s, FA) as the set of all runs
u ∈ Sω such that (1) u(0) = s and (2) for every i ∈ N there exists a global move vector σ
with δ(u(i), σ) = u(i+ 1) and for all ξ ∈ A we have σ(ξ) = fξ(u[0, i], σ|{ξ′|d(ξ′)<d(ξ)}). The
agents in A choose their move in each step based on the finite history of the play and the
decision of all other agents in an earlier stage. Note that in case where d = 0, a strategy is
just a function S+ → M, ignoring the moves selected by other agents.

The semantics of a formula is now defined in terms of a path assignment Π : Var → Sω,
mapping path variables to infinite sequences of states in G. For a path t ∈ Sω we write
t[i,∞] to refer to the infinite suffix of t starting at position i. We write Π[i,∞] to denote
the path assignment defined by Π[i,∞](π) = Π(π)[i,∞]. We can then inductively define the
satisfaction relation for HyperATL∗:
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Π |=G aπ iff a ∈ L(Π(π)(0))
Π |=G ¬φ iff Π ̸|=G φ

Π |=G φ1 ∧ φ2 iff Π |=S φ1 and Π |=G φ2

Π |=G φ1 U φ2 iff ∃i ≥ 0.Π[i,∞] |=G φ2 and ∀0 ≤ j < i.Π[j,∞] |=G φ1

Π |=G φ iff Π[1,∞] |=G φ

Π |=G ⟨⟨A⟩⟩π. φ iff ∃FA : ∀t ∈ out(G,Π(ϵ)(0), FA) : Π[π 7→ t] |=G φ

Here Π(ϵ) refers to the path that was last added to the assignment (similar to the HyperLTL-
semantics [9]). If Π is the empty assignment, we define Π(ϵ)(0) as the initial state s0 of G.
Note that the games are local to each path but based on all outer paths.: In a formula of
the form ∀π1.⟨⟨A⟩⟩π2.φ the agents in A know the already fixed, full trace π1 but behave as a
strategy w.r.t. π2. We write G |= φ whenever ∅ |=G φ where ∅ is the empty path assignment.

▶ Proposition 3. HyperATL∗ subsumes HyperCTL∗(and thus HyperLTL) and ATL∗(see
Fig. 1a).

We sometimes consider HyperATL∗ formulas with extend path quantification: We write
⟨⟨A⟩⟩G π.φ to indicate that the path π is the result of the game played in G. We can thus refer
to different structures in the same formula. For example, ∀G1 π1. ⟨⟨A⟩⟩G2

π2. (oπ1 ↔ oπ2)
states that for each path π1 in G1 the agents in A have a strategy in G2 that produces the
same outputs as on π1. As for HyperLTL, extended quantification reduces to the standard
semantics [38, §5.4].

Parallel-Composition. We extend HyperATL∗ with a syntactic construct that allows multiple
traces to be resolved in a single bigger game, where individual copies of the system progress
in parallel. Consider the following modification to the HyperATL∗ syntax, where k ≥ 1:

φ := [⟨⟨A1⟩⟩π1. · · · ⟨⟨Ak⟩⟩πk.] φ | aπ | ¬φ | φ ∧ φ | φ U φ | φ

When surrounding strategy quantifiers by [·] the resulting traces are the outcome of a game
played on a bigger, parallel game of the structure. This way, the agents in each copy
can base their decisions not only on the current state of their copy but on the combined
state of all k copies (which allows for a coordinated behaviour among the copies). For
a player ξ, and a CGS G = (S, s0,Ξ,M, δ,AP, L), a k-strategy for ξ is a function fξ :
(Sk)+ → M. The strategy can thus base its decision on a finite history for each of the k
copies. For a system G, sets of k-strategies strategies FA1 , · · · , FAk

and states s1, · · · , sk,
we define out(G, (s1, · · · , sk), FA1 , · · · , FAk

) as all plays u ∈ (Sk)ω such that (1) u(0) =
(s1, · · · , sk) and (2) for every i ∈ N there exist move vectors σ1, · · · , σk such that u(i+ 1) =
(δ(t1, σ1), · · · , δ(tk, σk)) where u(i) = (t1, · · · , tk) and for every j ∈ {1, · · · , k}, agent ξ ∈ Aj
and strategy fξ ∈ FAj , σj(ξ) = fξ(u[0, i]). Agents can thus control the individual progress
of their system and base their decision on the history of the other quantifiers. Note that in
the case where k = 1 this is identical to the construction seen above. For simplicity, we gave
the semantics for a CGS (i.e., a MSCGS without stages), it can be generalized easily. We
can now extend our semantics by

Π |=G [⟨⟨A1⟩⟩π1. · · · ⟨⟨Ak⟩⟩πk.] φ iff

∃FA1 , · · · , FAk
: ∀(t1, · · · , tk) ∈ out(G, (Π(ϵ)(0), · · · , Π(ϵ)(0)), FA1 , · · · , FAk

) : Π[πi 7→ ti]ki=1 |=G φ

Note that [⟨⟨A⟩⟩π.] φ is equivalent to ⟨⟨A⟩⟩π.φ. This does, of course, not hold once we consider
multiple strategy quantifiers grouped together by [·].
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Comparison with ∀∃-HyperLTL model checking [12]. To give some more intuition for the
parallel composition, we can compare our [·]-construct with the model checking algorithm
introduced in [12]. The idea of the method from [12] is to check a ∀∃-formula by viewing the
existential quantifier as a player who has to decide on a next state (in her copy) by reacting
to the moves of the universal quantifier. If such a winning strategy exists, the ∀∃-formula
also holds, whereas the absence of a winning strategy does, in general, not imply that the
formula is invalid (as the strategy bases its decision on finite plays whereas the existential
path is chosen with the universally quantified path already fixed). This game based view of
the existential player can be natively expressed in HyperATL∗: While the HyperATL∗-formula
∀π1.∃π2.φ is equivalent to the same HyperLTL-formula (i.e., the existential trace π2 is chosen
knowing the entire trace π1), model checking of the formula [∀π1.∃π2].φ corresponds to
the strategy search for the existential player that is only based on finite prefixes of π1
(which directly corresponds to [12]). We can actually show that if any MSCGS G satisfies
[∀π1.⟨⟨A⟩⟩π2.]φ then it also satisfies ∀π1. ⟨⟨A⟩⟩π2.φ (see [6]). This gives a more general proof of
the soundness of [12]. As our prototype implementation supports [⟨⟨A1⟩⟩π1.⟨⟨A2⟩⟩π2.]-formulas,
our tool subsumes the algorithm in [12] (see Sec. 8).

4 Examples of Strategic Hyperproperties

After having introduced the formal semantics of HyperATL∗, we now demonstrate how the
strategic quantification can be useful for expressing hyperproperties. We organize our example
in two categories. We begin with examples from information-flow control and highlight the
correspondence with existing properties and security paradigms. Afterwards, we show how the
strategic hyperproperties are naturally well suited to express asynchronous hyperproperties.

4.1 Strategic Information-Flow Control
We focus our examples on game structures that result from a reactive system. Let H (resp. L)
be the set of atomic propositions forming the high-security (resp. low-security) inputs of a
system (we assume H ∩ L = ∅). The game structure then comprises 3-players ξN , ξH , ξL,
responsible for resolving non-determinism and selecting high-security and low-security inputs.
In particular, the move from ξH (resp. ξL) determines the values of the propositions in H

(resp. L) in the next step. We call a system input-total, if in each state, ξH and ξL can choose
all possible valuations for the input propositions.

Strategic Non-Interference. In the introduction, we already saw that GNI [31] is (in some
cases) a too relaxed notion of security, as it can base the existence of a witness trace on
knowledge of the entire input-sequence. Note that GNI can be extended to also allow for
input from a low-security source that may affect the output. The HyperATL∗ formula stratNI
(given in the introduction) instead postulates a strategy for ξN that incrementally constructs
a path that “disproves“ information leakage. We can show that stratNI implies GNI . Loosely
speaking, whenever there is a strategy for the non-determinism based on the finite history of
inputs, there also exists a path when given the full history of inputs (as in GNI ).

▶ Lemma 4. For any system G that is input-total, we have that if G |= stratNI then
G |= GNI .

Simulation-based Non-Interference. Other attempts to non-interference are based on
the existence of a bisimulation (or simulation) [40, 39, 30]. While trace-based notions of
non-interference (such as GNI ) only require the existence of a path that witnesses the absence
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of a leak, simulation based properties require a lock-step relation in which this holds. Given
a system G with initial states s0. For states s, s′ and evaluations iL ∈ 2L and iH ∈ 2H , we
write s ⇒iL

iH
s′ if L(s′) ∩ L = iL and L(s′) ∩H = iH and s′ is a possible successor of s. A

security simulation is a relation R on the states of S such that whenever sRt, we have (1) s
and t agree on the output propositions, and (2) for any iL ∈ 2L and iH , i′H ∈ 2H if s ⇒iL

iH
s′

then there exists a t′ with t ⇒iL
i′

H
t′ and s′Rt′. Note that this is not equivalent to the fact

that ⇒ is a simulation in the standard sense [32]. While a standard simulation relation is
always reflexive, reflexivity of security simulations guarantees the security of the system
[39, 40]. A system is thus called simulation secure if there exists a security simulation R

with s0Rs0. It is easy to see that every input-total system that is simulation secure already
satisfies GNI . The converse does, in general, not hold. We can show that HyperATL∗ can
express simulation security by using the parallel-composition of quantifiers.

[∀G π1. ⟨⟨{ξN}⟩⟩Gshift
π2.] (

∧
a∈L

aπ1 ↔ ⃝aπ2) → (
∧
a∈O

aπ1 ↔ ⃝aπ2)

Here we consider HyperATL∗ with extended quantifier, where we annotate each quantifier
with the game structure it is resolved on. Gshift is the structure G where we added a dummy
initial state, that shifts the behaviour of the system by one position, which is again corrected
via the next operator in the LTL formula. This allows the strategy for ξN in the second copy
to base its decision on an already fixed step in the first copy, i.e., it corresponds to a strategy
with a fixed lookahead of 1 step. We can show:

▶ Lemma 5. An input-total system G is simulation secure if and only if it satisfies simNI .

Non-Deducibility of Strategies. Lastly, we consider the notion of non-deducibility of
strategies (NDS) [45]. NDS requires not only that each output is compatible with each
sequence of inputs, but also with each input-strategy. This becomes important as a high-
security input player who can observe the internal state of a system might be able to leak
information deliberately. As a motivating example, consider the following (first introduced
in [45]): Suppose we have a system that reads a binary input h from a high-security source
and outputs o. The system maintains a bit b of information in its state, initially chosen
non-deterministically. In each step, the system reads the input h, outputs h ⊕ b (where ⊕ is
the xor-operation), non-deterministically chooses a new value for b and then repeats. As ⊕
essentially encodes a one-time pad it is not hard to see, that this system is secure from a purely
trace-based point of view (as expressed in e.g. GNI ): Any possible combination of input and
output can be achieved when resolving the non-deterministic choice of b appropriately. If the
high-input player is, however, able to observe the system (in the context of [45] the system
shares the internal bit on a private channel), she can communicate arbitrary sequence of bits
to the low-security environment. Whenever she wants to send bit c, she inputs c⊕ b where
b is the internal bit she has access to (note that (c⊕ b) ⊕ b = c). For such system system
we therefore do no want to specify that every possible output sequence is compatible with
all possible inputs, but instead compatible with all possible input-strategies (based on the
state of the system). Phrased differently, there should not be a output sequence such that a
strategy can reliably avoid this output. We can express NDS in HyperATL∗ as follows:

¬

(
∃π1. ⟨⟨ξH⟩⟩π2. (

∧
a∈L

aπ1 ↔ aπ2) → ♢(
∨
a∈O

aπ1 ̸↔ aπ2)
)

This formula states that there does not exist a trace π1 such that ξH has a strategy to
avoid the output of π1 (provided with the same low-security inputs). NDS is a stronger
requirement than GNI , as shown by the following Lemma:

▶ Lemma 6. For any system G, if G |= NDS then G |= GNI .
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4.2 Asynchronous Hyperproperties
Reasoning about the strategic behaviour of agents is particularly useful when reasoning about
asynchronous hyperproperties, as each asynchronous execution can be considered the result
of the decision of an asynchronous scheduler. We call a player an asynchronous scheduler
if it can decide whether the system progresses (as decided by the other agents) or stutters.
Note that this differs from the asynchronous turn-based games defined in [1]. In our setting,
the scheduler does not control which of the player controls the next move, but rather decides
if the system as a whole progresses or stutters. In cases where the system does not already
include such an asynchronous scheduler (if we e.g. use a Kripke structure interpreted as a
1-player CGS), we can include a scheduler via a simple system transformation:

▶ Definition 7. Given a MSCGS G = (Q, q0,Ξ,M, δ, d,AP, L) and a fresh agent sched not
already included in the set of agents of Ξ. We define the stutter version of G, denoted Gstut,
by Gstut := (Q× {0, 1}, (q0, 0),Ξ ⊎ {sched},M × {0, 1}, δ′, d′,AP ⊎ {stut}, L′) where

δ′((s, b), σ) =
{

(δ(s, proj1 ◦ σ|Ξ), 0) if (proj2 ◦ σ)(sched) = 0
(s, 1) if (proj2 ◦ σ)(sched) = 1

L′((s, 0)) = L(s) and L′(s, 1) = L(s)∪{stut}. Finally d′(ξ) = d(ξ) for ξ ∈ Ξ and d′(sched) =
m+ 1 where m is the maximal element in the codomain of d.

Here proji is the projection of the ith element in a tuple and ◦ denotes function composition,
i.e., (f ◦ g)(x) := f(g(x)). Gstut thus progresses as G with the exception of the additional
scheduling player. In each step, the {0, 1}-decision of sched, which can be based on the
decision by the other agents (as sched is in the last stage of the game), decides if the system
progresses or remains in its current state. The extended state-space Q× {0, 1} is used to
keep track of the stuttering which becomes visible via the new atomic proposition stut. Our
construction will be particularly useful when comparing our logic to AHLTL [4].

Observational Determinism. As an example we consider observational-determinism
which states that the output along all traces is identical (in HyperLTL OD :=
∀π1.∀π2. (

∧
a∈O aπ1 ↔ aπ2)). The example in Fig. 1b does not satisfy this property,

as the output is changed at different timepoints. If we consider any system as a multi-
agent system including the scheduler sched, we can use HyperATL∗ to naturally express an
asynchronous version of OD via:

ODasynch := [⟨⟨{sched}⟩⟩π1.⟨⟨{sched}⟩⟩π2.] fairπ1 ∧ fairπ2 ∧ (
∧
a∈O

aπ1 ↔ aπ2)

where fairπi
:= ♢¬stutπi

, asserts that the system may not be stuttered forever. Note that
we encapsulated the quantifiers by [·] thus resolving the games in parallel. The schedulers for
both copies of the system can thus observe the current state of the other copy. The example
from Fig. 1b, after a transformation via Definition 7, satisfies this formula, as the output can
be aligned by the scheduling player.

One-Sided Stuttering. By resolving the stuttered traces incrementally (i.e., omitting the
[·]-brackets) we can also express one-sided stuttering, i.e., allow only the second copy to be
stuttered. As an example assume P o is a program written in the high-level programming
language and P a the complied program into binary code. Let So and Sa be the state
systems of both programs. Using HyperATL∗ we can now verify that the compiler did not
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aπi

¬aπi

Aφ = ({qinit}, qinit , Σφ, ρ, 0)

ρ(qinit , [s1, · · · , sn]) =

{ ⊤
⊥ if a ∈ L(si)
⊥
⊤ if a ̸∈ L(si)

φ1
∨
∧φ2

Aφ = (Q1 ∪Q2 ∪ {qinit}, qinit , Σφ, ρ, c1 ⊎ c2 ⊎ [qinit 7→ 0])

ρ(q, [s1, · · · , sn]) =
{

ρ1(q0,1, [s1, · · · , sn])∨∧ ρ2(q0,2, [s1, · · · , sn]) if q = qinit

ρi(q, [s1, · · · , sn]) if q ∈ Qi

φ1

Aφ = (Q1 ∪ {qinit}, qinit , Σφ, ρ, c1 ⊎ [qinit 7→ 0])

ρ(q, [s1, · · · , sn]) =
{

q0,1 if q = qinit

ρ1(q, [s1, · · · , sn]) if q ∈ Q1

φ1
U
Rφ2

Aφ = (Q1 ∪Q2 ∪ {qinit}, qinit , Σφ, ρ, c1 ⊎ c2 ⊎ [qinit 7→ 1
0])

ρ(q, [s1, · · · , sn]) =
{

ρ2(q0,2, [s1, · · · , sn])∨∧
(
ρ1(q0,1, [s1, · · · , sn])∧∨qinit

)
if q = qinit

ρi(q, [s1, · · · , sn]) if q ∈ Qi

Figure 2 APA construction for LTL temporal operators. Aφi = (Qi, q0,i, Σφi , ρi, ci) is the
inductively constructed automaton for φi.

leak information, i.e., the assembly code does provide the same outputs as the original code.
As the compiler breaks each program statement into multiple assembly instructions, we can
not require the steps to match in a synchronous manner. Instead, the system So should be
allowed to stutter for the assembly program to catch up. We can express this as follows:

∀Sa π1. ⟨⟨{sched}⟩⟩So
stut
π2. fairπ2 ∧ (

∧
a∈O

aπ1 ↔ aπ2)

I.e., for every execution of the assembly code we can stutter the program such that the
observations align. Here, Sostut denotes the modified version obtained by introducing an
explicit scheduler (Definition 7). Note that we use extend path quantification by annotating
a quantifier with the game structure, thereby effectively comparing both systems with respect
to a hyperproperty.

5 Automata-Theoretic Model Checking

In this section we present an automata-based algorithm for HyperATL∗ model checking. The
crucial insight in our algorithm is how to deal with the strategic quantification. Let us briefly
recall ATL∗ model checking [1]: In ATL∗, checking if ⟨⟨A⟩⟩φ holds in some state s, can be
reduced to the non-emptiness check of the intersection of two tree automata. One accepting
all possible trees that can be achieved via a strategy for players in A, and one accepting
all trees whose paths satisfy the path formula φ [1]. In our hyperlogic this is not possible.
When checking ⟨⟨A⟩⟩π.φ we can not construct an automaton accepting all trees that satisfy
φ, as the satisfaction of φ depends on the paths assigned to the outer path-quantifiers (that
are not yet fixed). Instead, we construct an automaton that accepts all path assignments for
the outer quantifiers such that there exists a winning strategy for the agents in A. We show
that alternating automata are well suited to keep track of all path assignments for which a
strategy exists, as they allow us to encode the strategic behaviour of G within the transition
function of the automaton.
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We assume that the formula φ to be checked is given in negation normal form, i.e.,
negations only occur directly in front of atomic propositions or in front of a path quantifier.
By including conjunction (∧) and release (R) every formula can be translated into a negation
normal form of linear size. We, furthermore, assume that if ⟨⟨A⟩⟩π.φ occurs in the formula,
we have A ̸= ∅. Note that in this case where A = ∅ we can use that ∀π.φ ≡ ¬∃π.¬φ. For
infinite words t1, · · · , tn ∈ Σω we define zip(t1, · · · , tn) ∈ (Σn)ω as the word obtained by
combining the traces pointwise, i.e., zip(t1, · · · , tn)(i) := (t1(i), · · · , tn(i)). Our algorithm
now progresses in a bottom-up manner. Assume that some subformula φ occurs under
quantifiers binding path variables π1, · · · , πn. We say that an automaton A over Sn is
G-equivalent to φ, if for any paths t1, · · · , tn it holds that [πi 7→ ti]ni=1 |=G φ if any only if
zip(t1, · · · , tn) ∈ L(A). G-equivalence thus means that an automaton accepts a zipping of
traces exactly if the trace assignment constructed from those traces satisfies the formula. By
induction on the structure of the formula, we construct an automaton that is G-equivalent to
each sub formula.

For the standard boolean combinators and LTL temporal operators our construction
follows the typical translation from LTL to alternating automata [34, 43] given in Fig. 2.
The interesting case is now the elimination of a strategy quantifier of the form φ = ⟨⟨A⟩⟩π.ψ.
Given an inductively constructed APA Aψ over Σψ = Sn+1. We aim for an automaton Aφ

over Σφ = Sn. The automata should accept all traces t over Sn such that there exist a
strategy for agents in A such that all traces compatible with this strategy t′ when added to t
(the trace t× t′ ∈ (Sn+1)ω) is accepted by Aψ. Let G = (S, s0,Ξ,M, δ, d,AP, L) be the given
MSCGS. We distinguish between the cases where A = Ξ (i.e., existential quantification) and
A ̸= Ξ.

Existential Quantification. We first consider the case where A = Ξ, i.e., φ = ∃π.ψ.
Model checking can be done similar to [20]. Let Aψ = (Q, q0,Σψ, λ : Q × Σψ → 2Q, c) be
the inductively constructed automaton, translated into a non-deterministic automaton of
exponential size via Theorem 1. We then construct Aφ := (S × Q ∪ {qinit}, qinit ,Σφ, ρ, c

′)
where c′(s, q) = c(q) (c′(qinit) can be chosen arbitrarily) and ρ is defined via

ρ(qinit , [s1, · · · , sn]) = {(s′, q′) | q′ ∈ λ(q, [s1, · · · , sn, s◦
n]) ∧ ∃σ : Ξ → M.δ(s◦

n, σ) = s′}
ρ((s, q), [s1, · · · , sn]) = {(s′, q′) | q′ ∈ λ(q, [s1, · · · , sn, s]) ∧ ∃σ : Ξ → M.δ(s, σ) = s′}

where we define s◦
n = sn if n ≥ 1 and s◦

n = s0 (the initial state) otherwise. Note that Aφ

is again a non-deterministic automaton. Every accepting run of Aφ on zip(t1, · · · , tn) now
corresponds to a path t in G such that Aψ accepts zip(t1, · · · , tn, t).

(Complex) Strategic Quantification. We now consider the case where A ̸= Ξ. Our
automaton must encode the strategic behaviour of the agents. We achieve this, by encoding
the strategic play in the game structure within the transition function of an automaton.
Let Adet

ψ = (Q, q0,Σψ, λ : Q× Σψ → Q, c) be a deterministic automaton obtained from the
inductively constructed Aψ via Theorem 1. Note that Adet

ψ is, in the worst case, of double
exponential size (in the size of Aψ). To encode the strategic behaviour in G we use the
alternation available in an automaton by disjunctively choosing moves for controlled players
in A, followed by a conjunctive treatment of all adversarial player. The stages of a game,
naturally correspond to the order of the move selection. Define the set Ai := A ∩ d−1(i) and
Ai := (Ξ \A) ∩ d−1(i) and let m be the maximal element in the codomain of d. The choice
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of each agent in A followed by those not in A can be encoded into a boolean formula. We
define Aφ := (S ×Q ∪ {qinit}, qinit ,Σφ, ρ, c′) where ρ is defined by

ρ(qinit ,[s1, · · · , sn])

=
∨

σ1:A1→M

∧
σ′

1:A1→M

· · ·
∨

σm:Am→M

∧
σ′

m:Am→M

(
δ(s◦

n,

m∑
i=1

(σi + σ′
i)), λ(q0, [s1, · · · , sn, s◦

n])
)

ρ((s, q),[s1, · · · , sn])

=
∨

σ1:A1→M

∧
σ′

1:A1→M

· · ·
∨

σm:Am→M

∧
σ′

m:Am→M

(
δ(s,

m∑
i=1

(σi + σ′
i)), λ(q, [s1, · · · , sn, s])

)
and c′(s, q) = c(q) (we can again define c′(qinit) arbitrarily). In case n = 0, we again define
s◦
n as the initial state s0, otherwise s◦

n = sn. Note that in the case where the MSCGS is
a CGS, i.e., d = 0 the transition function has the form ∨∧, where the choices in A are
considered disjunctively and the choices by all other agents conjunctively. Our construction
can be extended to handle the self composition [⟨⟨A1⟩⟩π1. · · · ⟨⟨Ak⟩⟩πk] (see [6] for details).

Negated Quantification. We extend our construction to handle negation outside of quanti-
fiers, i.e., a formula φ = ¬⟨⟨A⟩⟩π.ψ via Aφ := A⟨⟨A⟩⟩π.ψ by using Theorem 2.

▶ Proposition 8. Aφ is G-equivalent to φ.

By following our inductive construction, we obtain an automaton over the singleton
alphabet (empty state sequences) that is non-empty iff the model satisfies the formula.
Emptiness of an alternating parity automaton can then be checked in polynomial size
(assuming a fixed number of colours) [28].

We can observe a gap in complexity of algorithm between simple and complex quan-
tification. The former case requires a translation of an alternating automaton to a non-
deterministic one whereas the latter requires a full determinisation. To capture the complexity
of our algorithm we define Tc(k, n) as a tower of k exponents in n, i.e., Tc(0, n) = nc and
Tc(k + 1, n) = cTc(k,n). For k ≥ 0 we define k-EXPSPACE as the class of languages recognised
by a deterministic Turing machine ([41]) with space Tc(k,O(n)) for some c (and similarly for
time). We define (−1)-EXPSPACE as NLOGSPACE. Note that 0-EXPSPACE = PSPACE.

▶ Theorem 9. Model checking of a HyperATL∗ formula with k complex and l simple quantifiers
is in (2k+l)-EXPTIME. If l ≥ 1 and the formula is linear, it is also in (2k+l−1)-EXPSPACE (both
in size of the formula).

The fact that we can derive a better upper bound when l > 0 follows from the fact that
we can determine the emptiness of a non-deterministic automaton in NLOGSPACE [44] and for
an alternating automaton only in polynomial time (for a fixed number of colours) [28]. Note
that for the syntactic fragment of HyperCTL∗ our algorithm matches the algorithm in [20].

6 Lower Bounds for Model Checking

Theorem 9 gives us an upper bound on the model checking problem for HyperATL∗. We can
show the following lower bound

▶ Theorem 10. Model checking of a linear HyperATL∗ formula with k complex and l simple
quantifiers is (2k + l − 1)-EXPSPACE-hard in the size of the formula, provided l ≥ 1.
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The proof of Theorem 10 proceeds by encoding space-bounded Turing machines into
HyperATL∗. We show that (complex) strategic quantification can be used to encode an
incremental counter that grows by two exponents with each quantifier, opposed to the
increment by a single exponent for simple quantification [38]. This is possible, as we can
design a formula that requires the first player to enumerate a counter, while the second
play can challenge its correctness. The only winning strategy for the former player is then
to output a correct counter that holds up against all scrutiny by the latter player. As the
construction of the counter is rather complex, we refer the interested reader to a detailed
proof in the full version [6].

Note that Theorem 10 is conditioned on l ≥ 1. This gives an interesting complexity
landscape: In cases where l ≥ 1, model checking is (2k+l−1)-EXPSPACE-complete (irrespective
of k). If l = 0 we get an upper bound of 2k-EXPTIME (Theorem 9). In the special case where
l = 0 and k = 1 we get a matching lower bound from the ATL∗ model-checking problem [1]
(subsuming LTL realizability [36, 37]) and thus 2-EXPTIME-completeness. If k > 1 the best
lower bound is (2k − 2)-EXPSPACE. The exact complexity for the case where k > 1 and l = 0
is thus still open.

7 HyperATL* vs. asynchronous HyperLTL

We have seen that our strategic logic can naturally express asynchronous hyperproperties. In
this section, we compare our logic to AHLTL [4], a recent extension of HyperLTL specifically
designed to express such asynchronous properties. AHLTL is centred around the idea of a
trajectory, which, informally speaking, is the stuttering of traces in a system. In AHLTL an
initial trace quantifier prefix is followed by a quantification over such a trajectory. For
example, a formula of the form ∀π1. · · · ∀πn.E.φ means that for all paths π1, · · · , πn in the
system there exists some stuttering of the paths, such that φ is satisfied. AHLTL follows a
purely trace-based approach where the stuttering is fixed, knowing the full paths π1, · · · , πn.
In comparison, in our logic a strategy must decide if to stutter based on finite a prefix in the
system. Model checking AHLTL is, in general, undecidable [4]. The largest known fragment
for which an algorithm is known are formulas of the form ∀π1. · · · ∀πn.E.φ where φ is an
admissible formula [4] which is a conjunction of formulas of the form

∧
a∈P aπi

↔ aπj
(where

P is a set of atomic propositions) and stutter-invariant formulas over a single path variable.
We can show the following (where Gstut is the stutter transformation from Definition 7):

▶ Theorem 11. For any Kripke structure G and AHLTL formula of the form ∀π1. · · · ∀πn.E.φ
it holds that if Gstut |= [⟨⟨{sched}⟩⟩π1. · · · ⟨⟨{sched}⟩⟩πn] φ∧

∧
i∈{1,··· ,n} fairπi

(1) then G |=AHLTL

∀π1. · · · ∀πn.E.φ (2). If φ is an admissible formula, (1) and (2) are equivalent.

Theorem 11 gives us a sound approximation of the (undecidable) AHLTL model checking.
Furthermore, for admissible formulas, AHLTL can be truthfully expressed in our logic. As
shown in [4], many interesting properties can be expressed using an admissible formula and
can thus be (truthfully) checked in our logic. Our framework can therefore express many
interesting properties, is fully decidable, and also subsumes the largest known decidable
fragment of AHLTL.

8 Experimental Evaluation

While MC for the full logic is very expensive (Theorem 10) and likely not viable in practice,
formulas of the form [⟨⟨A1⟩⟩π1. · · · ⟨⟨An⟩⟩πn.]φ where φ is quantifier free, can be checked
efficiently via a reduction to a parity game (see the full version [6] for details). Note that
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Table 1 Validity of various HyperATL∗ formulas on small benchmark programs. A ✓(resp. ✗)
means that the formula is satisfied (resp. not satisfied). The time consumption is given in milliseconds.

(OD) (NI) (simSec) (sGNI)
P1 ✓(15) ✓(16) ✓(16) ✓(46)
P2 ✗(112) ✓(80) ✓(83) ✓(432)
P3 ✗(70) ✗(44) ✓(54) ✓(112)
P4 ✗(73) ✗(64) ✗(70) ✓(191)

(a) Examples for Information-Flow Policies.

(OD) (ODasynch) (NIasynch)
Q1i ✗(112) ✓(788) ✓(812)
Q1ii ✗(281) ✓(3372) ✓(3516)
Q1iii ✗(1680) ✓(20756) ✓(24078)
Q2 ✗(985) ✗(18141) ✓(6333)

(b) Examples for Asynchronous Hyperproperties.

all alternation-free HyperLTL formulas, the reduction from the MC approach from [12] and
the reduction in Theorem 11 fall in this fragment. We implemented a prototype model
checker for this fragment to demonstrate different security notions (both synchronous and
asynchronous) on small example programs. Our tool uses rabinizer 4 [27] to convert a
LTL formula into a deterministic automaton and pgsolver [22] to solve parity games. Our
tool is publicly available (see the full version [6]).

Information-Flow Policies. We have created a small benchmark of simple programs that
distinguish different information-flow policies. We checked the following properties: (OD)
is the standard (alternation-free) formula of observational determinism, (NI) is a simple
formulation of non-interference due to [23], (simSec) is simulation security [39] as expressed
in Sec. 4.1. Finally, (sGNI) is the simple game based definition of GNI resolved on the
parallel-composition (as used in [12]). We designed small example programs that demonstrate
the difference between security guarantees and present the results in Table 1a. Note that
the model checking algorithm for ∀∗∃∗ formulas from [12] is subsumed by our approach. As
we reduce the search for a strategy for the existential player to a parity game opposed to a
SMT constraint, we can handle much bigger systems.

Asynchronous Hyperproperties. To showcase the expressiveness of our framework to handle
asynchronous properties, we implemented the stuttering transformation from Definition 7.
We evaluated our tool by checking example programs both on synchronous observational-
determinism (OD) and asynchronous versions of OD (ODasynch) and non-interference
(NI)asynch. Note that while (ODasynch) can also express in the decidable fragment of
AHLTL, (NIasynch) is not an admissible formula (and can not be handled in [4]). As non-
interference only requires the outputs to align provided the inputs do, one needs to take care
that the asynchronous scheduler does not “cheat“ by deliberately missaligning inputs and
thereby invalidating the premise of this implication. Our results are given in Table 1b. To
demonstrate the state-explosion problem we tested the same program (Q1) with different
bit-widths (programs Q1i, Q1ii, Q1iii), causing an artificial blow-up in the number of states.

9 Related Work

There has been a lot of recent interest in logics for hyperproperties. Most logics are
obtained by extending standard temporal or first-order/second-order logics with either path
quantification or by a special equal-level predicate [21]. See [11] for an overview. To the best
of our knowledge, none of these logics can express strategic hyperproperties.
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Alternating-time Temporal Epistemic Logic. The relationship between epistemic logics and
hyperlogic is interesting, as both reason about the flow of information in a system. As shown
in [7], HyperLTL and LTLK (LTL extended with a knowledge operator [15]) have incomparable
expressiveness. In HyperQPTL, which extends HyperLTL with propositional quantification [18],
the knowledge operator can be encoded by explicitly marking the knowledge positions via
propositional quantification [38, §7]. Alternating-time temporal logic has also been extended
with knowledge operators [42]. The resulting logic, ATEL, can express properties of the form
“if ξ knows ϕ, then she can enforce ψ via a strategy.” The natural extension of the logic in
[42], which allows for arbitrary nesting of quantification and operators (i.e., an extension of
ATL∗ instead of ATL) is incomparable to HyperATL∗.

Model Checking. Decidable model checking is a crucial prerequisite for the effective use
of a logic. Many of the existing (synchronous) hyperlogics admit decidable model checking,
although mostly with non-elementary complexity (see [17] for an overview). For alternating-
time temporal logic (in the non-hyper realm), model checking is efficient (especially when
one prohibits arbitrary nesting of temporal operators and quantifiers as in ATL) [1, 2]. If one
allows operators and quantifiers to be nested arbitrarily (ATL∗), model checking subsumes
LTL satisfiability and realizability. This causes a jump in the model checking complexity to
2-EXPTIME-completeness. As our lower bound demonstrates, the combination of strategic
quantification and hyperproperties results in a logic that is algorithmically harder (for model
checking) than non-strategic hyperproperties (as HyperLTL) or non-hyper strategic logics (as
ATL∗). The fragment of HyperATL∗ implemented in our prototype model checker subsumes
alteration-free HyperLTL (see MCHyper [20]), model checking via explicit strategies [12] and
the (known) decidable fragment of AHLTL [4].

Asynchronous Hyperproperties. Extending hyperlogics to express asynchronous properties
has only recently started to gain momentum [25, 4, 8]. In [4] they extend HyperLTL with
explicit trajectory quantification. [25] introduced a variant of the polyadic µ-calculus, Hµ,
able to express hyperproperties. In [8] they extended HyperLTL with new modalities that
remove redundant (for example stuttering) parts of a trace. Model checking is undecidable
for all three logics. The (known) decidable fragment of [4] can be encoded into HyperATL∗.
The only known decidable classes for Hµ [25] and HyperLTLS [8] are obtained by bounding
the asynchronous offset by a constant k, i.e., asynchronous execution may not run apart
(“diverge”) for more than k steps. For actual software, this is a major restriction.

10 Conclusion

We have introduced HyperATL∗, a temporal logic for strategic hyperproperties. Besides the
obvious benefits of simultaneously reasoning about strategic choice and information flow,
HyperATL∗provides a natural formalism to express asynchronous hyperproperties, which
has been a major challenge for previous hyperlogics. Despite the added expressiveness,
HyperATL∗ model checking remains decidable, with comparable cost to logics for synchronous
hyperproperties (cf. Theorem 9). HyperATL∗ is the first logic for asynchronous hyperproperties
where model checking is decidable for the entire logic. Its expressiveness and decidability,
as well as the availability of practical model checking algorithms, make it a very promising
choice for model checking tools for hyperproperties.



R. Beutner and B. Finkbeiner 24:17

References
1 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

J. ACM, 49(5):672–713, 2002. doi:10.1145/585265.585270.
2 Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani,

and Serdar Tasiran. MOCHA: modularity in model checking. In Computer Aided Verification,
10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998,
Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 521–525. Springer,
1998. doi:10.1007/BFb0028774.

3 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
4 Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez.

A temporal logic for asynchronous hyperproperties. In Computer Aided Verification - 33nd
International Conference, CAV 2021, Los Angeles, CA, USA, July 18-24, 2021, Lecture Notes
in Computer Science. Springer, 2021.

5 Raphaël Berthon, Bastien Maubert, and Aniello Murano. Decidability results for atl* with
imperfect information and perfect recall. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages
1250–1258. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3091299.

6 Raven Beutner and Bernd Finkbeiner. A temporal logic for strategic hyperproperties. CoRR,
abs/2107.02509, 2021. arXiv:2107.02509.

7 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic
temporal logics. In Foundations of Software Science and Computation Structures - 18th
International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9034 of Lecture Notes in Computer Science, pages 167–182. Springer, 2015. doi:
10.1007/978-3-662-46678-0_11.

8 Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous extensions of hyperltl. In
36nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,
June 29 - July 2, 2021. ACM, 2021.

9 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Principles of Security
and Trust - Third International Conference, POST 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings, volume 8414 of Lecture Notes in Computer Science, pages 265–284. Springer,
2014. doi:10.1007/978-3-642-54792-8_15.

10 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

11 Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy
of hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:
10.1109/LICS.2019.8785713.

12 Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup. Verifying hyper-
liveness. In Computer Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in
Computer Science, pages 121–139. Springer, 2019. doi:10.1007/978-3-030-25540-4_7.

13 Doron Drusinsky and David Harel. On the power of bounded concurrency I: finite automata.
J. ACM, 41(3):517–539, 1994. doi:10.1145/176584.176587.

14 E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/4904.4999.

15 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995. doi:10.7551/mitpress/5803.001.0001.

16 Bernd Finkbeiner. Temporal hyperproperties. Bull. EATCS, 123, 2017. URL: http://eatcs.
org/beatcs/index.php/beatcs/article/view/514.

CONCUR 2021

https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/BFb0028774
http://dl.acm.org/citation.cfm?id=3091299
http://arxiv.org/abs/2107.02509
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1145/176584.176587
https://doi.org/10.1145/4904.4999
https://doi.org/10.7551/mitpress/5803.001.0001
http://eatcs.org/beatcs/index.php/beatcs/article/view/514
http://eatcs.org/beatcs/index.php/beatcs/article/view/514


24:18 A Temporal Logic for Strategic Hyperproperties

17 Bernd Finkbeiner. Model checking algorithms for hyperproperties (invited paper). In Verifica-
tion, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI
2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume 12597 of Lecture
Notes in Computer Science, pages 3–16. Springer, 2021. doi:10.1007/978-3-030-67067-2_1.

18 Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Leander Tentrup. Realizing omega-
regular hyperproperties. In Computer Aided Verification - 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture
Notes in Computer Science, pages 40–63. Springer, 2020. doi:10.1007/978-3-030-53291-8_4.

19 Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander Tentrup.
Synthesizing reactive systems from hyperproperties. In Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in
Computer Science, pages 289–306. Springer, 2018. doi:10.1007/978-3-319-96145-3_16.

20 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking hyperltl
and hyperctl∗. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes
in Computer Science, pages 30–48. Springer, 2015. doi:10.1007/978-3-319-21690-4_3.

21 Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In 34th
Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany, volume 66 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.30.

22 Oliver Friedmann and Martin Lange. Solving parity games in practice. In Automated
Technology for Verification and Analysis, 7th International Symposium, ATVA 2009, Macao,
China, October 14-16, 2009. Proceedings, volume 5799 of Lecture Notes in Computer Science,
pages 182–196. Springer, 2009. doi:10.1007/978-3-642-04761-9_15.

23 Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20.
IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.

24 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Propositional dynamic logic
for hyperproperties. In 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages
50:1–50:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
CONCUR.2020.50.

25 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL):1–29, 2021. doi:
10.1145/3434319.

26 Marieke Huisman, Pratik Worah, and Kim Sunesen. A temporal logic characterisation
of observational determinism. In 19th IEEE Computer Security Foundations Workshop,
(CSFW-19 2006), 5-7 July 2006, Venice, Italy, page 3. IEEE Computer Society, 2006. doi:
10.1109/CSFW.2006.6.

27 Jan Kretínský, Tobias Meggendorfer, Salomon Sickert, and Christopher Ziegler. Rabinizer 4:
From LTL to your favourite deterministic automaton. In Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in
Computer Science, pages 567–577. Springer, 2018. doi:10.1007/978-3-319-96145-3_30.

28 Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree automata emptiness.
In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 224–233. ACM, 1998. doi:10.1145/276698.276748.

29 Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Log., 2(3):408–429, 2001. doi:10.1145/377978.377993.

30 Heiko Mantel and Henning Sudbrock. Flexible scheduler-independent security. In Computer
Security - ESORICS 2010, 15th European Symposium on Research in Computer Security,

https://doi.org/10.1007/978-3-030-67067-2_1
https://doi.org/10.1007/978-3-030-53291-8_4
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1109/CSFW.2006.6
https://doi.org/10.1109/CSFW.2006.6
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1145/276698.276748
https://doi.org/10.1145/377978.377993


R. Beutner and B. Finkbeiner 24:19

Athens, Greece, September 20-22, 2010. Proceedings, volume 6345 of Lecture Notes in Computer
Science, pages 116–133. Springer, 2010. doi:10.1007/978-3-642-15497-3_8.

31 Daryl McCullough. Noninterference and the composability of security properties. In Proceedings
of the 1988 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 18-21,
1988, pages 177–186. IEEE Computer Society, 1988. doi:10.1109/SECPRI.1988.8110.

32 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

33 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.
Comput. Sci., 32:321–330, 1984. doi:10.1016/0304-3975(84)90049-5.

34 David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable in exponential
time. In Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS
’88), Edinburgh, Scotland, UK, July 5-8, 1988, pages 422–427. IEEE Computer Society, 1988.
doi:10.1109/LICS.1988.5139.

35 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

36 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, pages 179–190. ACM Press, 1989. doi:10.1145/75277.75293.

37 Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In
Automata, Languages and Programming, 16th International Colloquium, ICALP89, Stresa,
Italy, July 11-15, 1989, Proceedings, volume 372 of Lecture Notes in Computer Science, pages
652–671. Springer, 1989. doi:10.1007/BFb0035790.

38 Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland
University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.

39 Andrei Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In Perspectives
of Systems Informatics, 5th International Andrei Ershov Memorial Conference, PSI 2003,
Akademgorodok, Novosibirsk, Russia, July 9-12, 2003, Revised Papers, volume 2890 of Lecture
Notes in Computer Science, pages 260–274. Springer, 2003. doi:10.1007/978-3-540-39866-0_
27.

40 Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs.
In Proceedings of the 13th IEEE Computer Security Foundations Workshop, CSFW ’00,
Cambridge, England, UK, July 3-5, 2000, pages 200–214. IEEE Computer Society, 2000.
doi:10.1109/CSFW.2000.856937.

41 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

42 Wiebe van der Hoek and Michael J. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Stud Logica, 75(1):125–157,
2003. doi:10.1023/A:1026185103185.

43 Moshe Y. Vardi. Alternating automata and program verification. In Computer Science Today:
Recent Trends and Developments, volume 1000 of Lecture Notes in Computer Science, pages
471–485. Springer, 1995. doi:10.1007/BFb0015261.

44 Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1–37, 1994. doi:10.1006/inco.1994.1092.

45 J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic systems. In
Proceedings of the 1990 IEEE Symposium on Security and Privacy, Oakland, California, USA,
May 7-9, 1990, pages 144–161. IEEE Computer Society, 1990. doi:10.1109/RISP.1990.63846.

CONCUR 2021

https://doi.org/10.1007/978-3-642-15497-3_8
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1109/LICS.1988.5139
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BFb0035790
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1007/978-3-540-39866-0_27
https://doi.org/10.1007/978-3-540-39866-0_27
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1023/A:1026185103185
https://doi.org/10.1007/BFb0015261
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1109/RISP.1990.63846




Time Flies When Looking out of the Window:
Timed Games with Window Parity Objectives
James C. A. Main
UMONS – Université de Mons, Belgium

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Jeremy Sproston
University of Torino, Italy

Abstract
The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff
objectives with time bounds in two-player turn-based games on graphs [17]. It has since proved
useful in a variety of settings, including parity objectives in games [14] and both mean-payoff and
parity objectives in Markov decision processes [12].

We study window parity objectives in timed automata and timed games: given a bound on the
window size, a path satisfies such an objective if, in all states along the path, we see a sufficiently
small window in which the smallest priority is even. We show that checking that all time-divergent
paths of a timed automaton satisfy such a window parity objective can be done in polynomial
space, and that the corresponding timed games can be solved in exponential time. This matches the
complexity class of timed parity games, while adding the ability to reason about time bounds. We
also consider multi-dimensional objectives and show that the complexity class does not increase. To
the best of our knowledge, this is the first study of the window mechanism in a real-time setting.
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1 Introduction

Timed automata and games. Timed automata [2] are extensions of finite automata with
real-valued variables called clocks. Clocks increase at the same rate and measure the elapse of
time between actions. Transitions are constrained by the values of clocks, and clocks can be
reset on transitions. Timed automata are used to model real-time systems [4]. Not all paths
of timed automata are meaningful; infinite paths that take a finite amount of time, called
time-convergent paths, are often disregarded when checking properties of timed automata.
Timed automata induce uncountable transition systems. However, many properties can be
checked using the region abstraction, which is a finite quotient of the transition system.

Timed automaton games [24], or simply timed games, are games played on timed automata:
one player represents the system and the other its environment. Players play an infinite
amount of rounds: for each round, both players simultaneously present a delay and an action,
and the play proceeds according to the fastest move (note that we use paths for automata and
plays for games to refer to sequences of consecutive states and transitions). When defining
winning conditions for players, convergent plays must be taken in account; we must not allow
a player to achieve its objective by forcing convergence but cannot either require a player to
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25:2 Timed Games with Window Parity Objectives

force divergence (as it also depends on its opponent). Given an objective as a set of plays,
following [20], we declare a play winning for a player if either it is time-divergent and belongs
to the objective, or it is time-convergent and the player is not responsible for convergence.

Parity conditions. The class of ω-regular specifications is widely used (e.g., it can express
liveness and safety), and parity conditions are a canonical way of representing them. In
(timed) parity games, locations are labeled with a non-negative integer priority and the parity
objective is to ensure the smallest priority occurring infinitely often along the path/play
is even. Timed games with ω-regular objectives given as parity automata are shown to be
solvable in [20]. Furthermore, a reduction from timed parity games to classical turn-based
parity games on a graph is established in [19].

Real-timed windows. The parity objective can be reformulated: for all odd priorities seen
infinitely often, a smaller even priority must be seen infinitely often. One can see the odd
priority as a request and the even one as a response. The parity objective does not specify
any timing constraints between requests and responses. In applications however, this may
not be sufficient: for example, a server should respond to requests in a timely manner.

We revisit the window mechanism introduced by Chatterjee et al. for mean-payoff and
total-payoff games [17] and later applied to parity games [14] and to parity and mean-payoff
objectives in Markov decision processes [12]: we provide the first (to the best of our knowledge)
study of window objectives in the real-time setting. More precisely, we lift the (resp. direct)
fixed window parity objective of [14] to its real-time counterpart, the (resp. direct) timed
window parity objective, and study it in timed automata and games.

Intuitively, given a non-negative integer bound λ on the window size, the direct timed
window parity objective requires that at all times along a path/play, we see a window of size
at most λ such that the smallest priority in this window is even. While time was counted
as steps in prior works (all in a discrete setting), we naturally measure window size using
delays between configurations in real-time models. The (non-direct) timed window parity
objective is simply a prefix-independent version of the direct one, thus more closely matching
the spirit of classical parity: it asks that some suffix satisfies the direct objective.

Contributions. We extend window parity objectives to a dense-time setting, and study both
verification of timed automata and realizability in timed games. We consider adaptations
of the fixed window parity objectives of [14], where the window size is given as a parameter.
We establish that (a) verifying that all time-divergent paths of a timed automaton satisfy a
timed window parity specification is PSPACE-complete; and that (b) checking the existence
of a winning strategy for a window parity objective in timed games is EXPTIME-complete.
These results (Thm. 8) hold for both the direct and prefix-independent variants, and they
extend to multi-dimensional objectives, i.e., conjunctions of window parity.

All algorithms are based on a reduction to an expanded timed automaton (Def. 4). We
establish that, similarly to the discrete case, it suffices to keep track of one window at a time
(or one per objective in the multi-dimensional case) instead of all currently open windows,
thanks to the so-called inductive property of windows (Lem. 3). A window can be summarized
using its smallest priority and its current size: we encode the priorities in a window by
extending locations with priorities and using an additional clock to measure the window’s
size. The (resp. direct) timed window parity objective translates to a co-Büchi (resp. safety)
objective on the expanded automaton. Locations to avoid for the co-Büchi (resp. safety)
objective indicate a window exceeding the supplied bound without the smallest priority
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of the window being even – a bad window. To check that all time-divergent paths of the
expanded automaton satisfy the safety (resp. co-Büchi) objective, we check for the existence
of a time-divergent path visiting (resp. infinitely often) an unsafe location using the PSPACE
algorithm of [2]. To solve the similarly-constructed expanded game, we use the EXPTIME
algorithm of [20].

Lower bounds are established by encoding safety objectives on timed automata as
(resp. direct) timed window parity objectives. Checking safety properties over time-divergent
paths in timed automata is PSPACE-complete [2] and solving safety timed games is EXPTIME-
complete [21].

Comparison. Window variants constitute conservative approximations of classical objectives
(e.g., [17, 14, 12]), strengthening them by enforcing timing constraints. Complexity-wise, the
situation is varied. In one-dimension turn-based games on graphs, window variants [17, 14]
provide polynomial-time alternatives to the classical objectives, bypassing long-standing
complexity barriers. However, in multi-dimension games, their complexity becomes worse
than for the original objectives: in particular, fixed window parity games are EXPTIME-
complete for multiple dimensions [14]. We show that timed games with multi-dimensional
window parity objectives are in the same complexity class as untimed ones, i.e., dense time
comes for free.

For classical parity objectives, timed games can be solved in exponential time [19, 20].
The approach of [19] is as follows: from a timed parity game, one builds a corresponding
turn-based parity game on a graph, the construction being polynomial in the number of
priorities and the size of the region abstraction. We recall that despite recent progress
on quasi-polynomial-time algorithms (starting with [16]), no polynomial-time algorithm is
known for parity games; the blow-up comes from the number of priorities. Overall, the
two sources of blow-up – region abstraction and number of priorities – combine in a single-
exponential solution for timed parity games. We establish that (multi-dimensional) window
parity games can be solved in time polynomial in the size of the region abstraction, the
number of priorities and the window size, and exponential in the number of dimensions. Thus
even for conjunctions of objectives, we match the complexity class of single parity objectives
of timed games, while avoiding the blow-up related to the number of priorities and enforcing
time bounds between odd priorities and smaller even priorities via the window mechanism.

Outline. Due to space constraints, we only provide an overview of our work. All technical
details, intermediary results and proofs can be found in the full version of this paper [23].
This work is organized as follows. Sect. 2 summarizes all prerequisite notions and vocabulary.
In Sect. 3, we introduce the timed window parity objective, compare it to the classical parity
objective, and establish some useful properties. Our reduction from window parity objectives
to safety or co-Büchi objectives is presented in Sect. 4. Finally, Sect. 5 presents complexity
results.

Related work. In addition to the aforementioned foundational works, the window mechanism
has seen diverse extensions and applications: e.g., [5, 3, 11, 15, 22, 26, 8]. Window parity
games are strongly linked to the concept of finitary ω-regular games: see, e.g., [18], or [14]
for a complete list of references. The window mechanism can be used to ensure a certain
form of (local) guarantee over paths: different techniques have been considered in stochastic
models, notably variance-based [10] or worst-case-based [13, 7] methods. Finally, let us recall
that game models provide a useful framework for controller synthesis [25], and that timed
automata have been extended in a number of directions (see, e.g., [9] and references therein):
applications of the window mechanism in such richer models could be of interest.
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2 Preliminaries

Timed automata. A clock variable, or clock, is a real-valued variable. Let C be a set
of clocks. A clock constraint over C is a conjunction of formulae of the form x ∼ c with
x ∈ C, c ∈ N, and ∼∈ {≤, ≥, >, <}. We write x = c as shorthand for the clock constraint
x ≥ c ∧ x ≤ c. Let Φ(C) denote the set of clock constraints over C.

Let R≥0 denote the set of non-negative real numbers. We refer to functions ν ∈ RC
≥0 as

clock valuations over C. A clock valuation ν over C satisfies a clock constraint of the form
x ∼ c if ν(x) ∼ c and a conjunction g ∧ h if it satisfies both g and h. For a clock constraint g

and clock valuation ν, we write ν |= g if ν satisfies g.
For a clock valuation ν and d ≥ 0, we let ν + d be the valuation defined by (ν + d)(x) =

ν(x) + d for all x ∈ C. For any valuation ν and D ⊆ C, we define resetD(ν) to be the
valuation agreeing with ν for clocks in C \ D and that assigns 0 to clocks in D. We denote
by 0C the zero valuation, assigning 0 to all clocks in C.

A timed automaton (TA) is a tuple (L, ℓinit, C, Σ, I, E) where L is a finite set of locations,
ℓinit ∈ L is an initial location, C a finite set of clocks containing a special clock γ which keeps
track of the total time elapsed, Σ a finite set of actions, I : L → Φ(C) an invariant assignment
function and E ⊆ L×Φ(C)×Σ×2C\{γ} ×L an edge relation. We only consider deterministic
timed automata, i.e., we assume that in any location ℓ, there are no two outgoing edges
(ℓ, g1, a, D1, ℓ1) and (ℓ, g2, a, D2, ℓ2) sharing the same action such that the conjunction g1 ∧ g2
is satisfiable. For an edge (ℓ, g, a, D, ℓ′), the clock constraint g is called the guard of the edge.

A TA A = (L, ℓinit, C, Σ, I, E) gives rise to an uncountable transition system T (A) =
(S, sinit, M, →) with the state space S = L × RC

≥0, the initial state sinit = (ℓinit, 0C), set of
actions M = R≥0 × (Σ ∪ {⊥}) and the transition relation →⊆ S × M × S defined as follows:
for any action a ∈ Σ and delay d ≥ 0, we have that ((ℓ, ν), (d, a), (ℓ′, ν′)) ∈→ if and only if
there is some edge (ℓ, g, a, D, ℓ′) ∈ E such that ν + d |= g, ν′ = resetD(ν + d), ν + d |= I(ℓ)
and ν′ |= I(ℓ′); for any delay d ≥ 0, ((ℓ, ν), (d, ⊥), (ℓ, ν + d)) ∈→ if and only if ν + d |= I(ℓ).
Let us note that the satisfaction set of clock constraints is convex: it is described by a
conjunction of inequalities. Whenever ν |= I(ℓ), the above conditions ν + d |= I(ℓ) (the
invariant holds after the delay) are equivalent to requiring ν + d′ |= I(ℓ) for all 0 ≤ d′ ≤ d

(the invariant holds at each intermediate time step).
A move is any pair in R≥0 × (Σ ∪ {⊥}) (i.e., an action in the transition system). For

any move m = (d, a) and states s, s′ ∈ S, we write s
m−→ s′ or s

d,a−−→ s′ as shorthand for
(s, m, s′) ∈→. Moves of the form (d, ⊥) are called delay moves. We say a move m is enabled
in a state s if there is some s′ such that s

m−→ s′. There is at most one successor per move in a
state, as we do not allow two guards on edges labeled by the same action to be simultaneously
satisfied.

A path in a TA A is a finite or infinite sequence s0(d0, a0)s1 . . . ∈ S(MS)∗ ∪ (SM)ω such
that for all j, sj is a state of T (A) and for all j > 0, sj−1

dj−1,aj−1−−−−−−→ sj is a transition in
T (A). A path is initial if s0 = sinit. For clarity, we write s0

d0,a0−−−→ s1
d1,a1−−−→ · · · instead of

s0(d0, a0)s1(d1, a1) . . ..

An infinite path π = (ℓ0, ν0) d0,a0−−−→ (ℓ1, ν1) . . . is time-divergent if the sequence (νj(γ))j∈N
is not bounded from above. A path which is not time-divergent is called time-convergent;
time-convergent paths are traditionally ignored in analysis of timed automata [1, 2] as they
model unrealistic behavior. This includes ignoring Zeno paths, which are time-convergent
paths along which infinitely many actions appear. We write Paths(A) for the set of paths of A.
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Priorities. A priority function is a function p : L → {0, . . . , d − 1} with d ≤ |L|. We use
priority functions to express parity objectives. A k-dimensional priority function is a function
p : L → {0, . . . , d − 1}k which assigns vectors of priorities to locations.

Timed games. We consider two player games played on TAs. We refer to the players as
player 1 (P1) for the system and player 2 (P2) for the environment. We use the notion of
timed automaton games of [20].

A timed (automaton) game (TG) is a tuple G = (A, Σ1, Σ2) where A = (L, ℓinit, C, Σ, I, E)
is a TA and (Σ1, Σ2) is a partition of Σ. We refer to actions in Σi as Pi actions for i ∈ {1, 2}.

Recall a move is a pair (d, a) ∈ R≥0 × (Σ ∪ {⊥}). Let S denote the set of states of T (A).
In each state s = (ℓ, ν) ∈ S, the moves available to P1 are the elements of the set M1(s)
where M1(s) = {(d, a) ∈ R≥0 × (Σ1 ∪ {⊥}) | ∃ s′, s

d,a−−→ s′} which contains moves with P1
actions and delay moves that are enabled in s. The set M2(s) is defined analogously with P2
actions. We write M1 and M2 for the set of all moves of P1 and P2 respectively.

At each state s along a play, both players simultaneously select a move (d(1), a(1)) ∈ M1(s)
and (d(2), a(2)) ∈ M2(s). Intuitively, the fastest player gets to act and in case of a tie, the
move is chosen non-deterministically. This is formalized by the joint destination function
δ : S × M1 × M2 → 2S , defined by

δ(s, (d(1), a(1)), (d(2), a(2))) =


{s′ ∈ S | s

d(1),a(1)

−−−−−→ s′} if d(1) < d(2)

{s′ ∈ S | s
d(2),a(2)

−−−−−→ s′} if d(1) > d(2)

{s′ ∈ S | s
d(i),a(i)

−−−−−→ s′, i = 1, 2} if d(1) = d(2).

For m(1) = (d(1), a(1)) ∈ M1 and m(2) = (d(2), a(2)) ∈ M2, we write delay(m(1), m(2)) =
min{d(1), d(2)} to denote the delay occurring when P1 and P2 play m(1) and m(2) respectively.

A play is defined similarly to a path: it is a finite or infinite sequence of the form
s0(m(1)

0 , m
(2)
0 )s1(m(1)

1 , m
(2)
1 ) . . . ∈ S((M1 × M2)S)∗ ∪ (S(M1 × M2))ω where for all indices

j, m
(i)
j ∈ Mi(sj) for i ∈ {1, 2}, and for j > 0, sj ∈ δ(sj−1, m

(1)
j−1, m

(2)
j−1). A play is initial if

s0 = sinit. For a finite play π = s0 . . . sn, we set last(π) = sn. For an infinite play π = s0 . . .,
we write π|n = s0(m(0)

0 , m
(1)
0 ) . . . sn. A play follows a path in the TA, but there need not be

a unique path compatible with a play: if along a play, at the nth step, the moves of both
players share the same delay and target state, either move can label the nth transition in a
matching path.

Similarly to paths, an infinite play π = (ℓ0, ν0)(m(1)
0 , m

(2)
0 ) · · · is time-divergent if and

only if (νj(γ))j∈N is not bounded from above. Otherwise, we say a play is time-convergent.
We define the following sets: Plays(G) for the set of plays of G; Playsfin(G) for the set of finite
plays of G; Plays∞(G) for the set of time-divergent plays of G. We also write Plays(G, s) to
denote plays starting in a state s of T (A).

Note that our games are built on deterministic TAs. From a modeling standpoint, this is
not restrictive, as we can simulate a non-deterministic TA through the actions of P2.

Strategies. A strategy for Pi is a function describing which move a player should use based
on a play history. Formally, a strategy for Pi is a function σi : Playsfin(G) → Mi such that for
all π ∈ Playsfin(G), σi(π) ∈ Mi(last(π)). This last condition requires that each move given
by a strategy be enabled in the last state of a play.

A play s0(m(1)
0 , m

(2)
0 )s1 . . . is said to be consistent with a Pi-strategy σi if for all indices

j, m
(i)
j = σi(π|j). Given a Pi-strategy σi, we define Outcomei(σi) (resp. Outcomei(σi, s)) to

be the set of plays (resp. set of plays starting in state s) consistent with σi.
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25:6 Timed Games with Window Parity Objectives

Objectives. An objective represents the property we desire on paths of a TA or a goal of a
player in a TG. Formally, we define an objective as a set Ψ ⊆ Paths(A) of infinite paths (when
studying TAs) or a set Ψ ⊆ Plays(G) of infinite plays (when studying TGs). An objective
is state-based (resp. location-based) if it depends solely on the sequence of states (resp. of
locations) in a path or play. Any location-based objective is state-based.

▶ Remark 1. In the sequel, we present objectives exclusively as sets of plays. Definitions for
paths are analogous as all the objectives defined hereafter are state-based.

We use the following classical location-based objectives. The safety objective for a set
F of locations is the set of plays that never visit a location in F . The co-Büchi objective
for a set F of locations consists of plays traversing locations in F finitely often. The parity
objective for a priority function p over the set of locations requires that the smallest priority
seen infinitely often is even.

Fix F a set of locations and p a priority function. The aforementioned objectives are
formally defined as follows:

Safe(F ) = {(ℓ0, ν0)(m(1)
0 , m

(2)
0 ) . . . ∈ Plays(G) | ∀ n, ℓn /∈ F};

coBüchi(F ) = {(ℓ0, ν0)(m(1)
0 , m

(2)
0 ) . . . ∈ Plays(G) | ∃ j, ∀ n ≥ j, ℓn /∈ F};

Parity(p) = {(ℓ0, ν0)(m(1)
0 , m

(2)
0 ) . . . ∈ Plays(G) | (lim infn→∞ p(ℓn)) mod 2 = 0}.

Winning conditions. In games, we distinguish objectives and winning conditions. We adopt
the definition of [20]. Let Ψ be an objective. It is desirable to have victory be achieved
in a physically meaningful way: for example, it is unrealistic to have a safety objective be
achieved by stopping time. This motivates a restriction to time-divergent plays. However,
this requires P1 to force the divergence of plays, which is not reasonable, as P2 can stall
using delays with zero time units. Thus we also declare winning time-convergent plays where
P1 is blameless. Let Blameless1 denote the set of P1-blameless plays, which we define in the
following way.

Let π = s0(m(1)
0 , m

(2)
0 )s1 . . . be a (possibly finite) play. We say P1 is not responsible (or

not to be blamed) for the transition at step n in π if either d
(2)
n < d

(1)
n (P2 is faster) or

d
(1)
n = d

(2)
n and sn

d(1)
n ,a(1)

n−−−−−→ sn+1 does not hold in T (A) (P2’s move was selected and did not
have the same target state as P1’s) where m

(i)
n = (d(i)

n , a
(i)
n ) for i ∈ {1, 2}. The set Blameless1

is formally defined as the set of infinite plays π such that there is some j such that for all
n ≥ j, P1 is not responsible for the transition at step n in π.

Given an objective Ψ, we set the winning condition WC1(Ψ) for P1 to be the set of plays

WC1(Ψ) = (Ψ ∩ Plays∞(G)) ∪ (Blameless1 \ Plays∞(G)).

Winning conditions for P2 are defined by exchanging the roles of the players in the former
definition. We consider that the two players are adversaries and have opposite objectives,
Ψ and ¬Ψ (shorthand for Plays(G) \ Ψ). There may be plays π such that π /∈ WC1(Ψ) and
π /∈ WC2(¬Ψ), e.g., any time-convergent play in which neither player is blameless.

A winning strategy for Pi for an objective Ψ from a state s0 is a strategy σi such that
Outcomei(σi, s0) ⊆ WCi(Ψ).

Decision problems. We consider two different problems for an objective Ψ. The first is the
verification problem for Ψ, which asks given a timed automaton whether all time-divergent
initial paths satisfy the objective. Second is the realizability problem, which asks whether in
a timed automaton game with objective Ψ, P1 has a winning strategy from the initial state.



J. C. A. Main, M. Randour, and J. Sproston 25:7

3 Window objectives

We consider the fixed window parity and direct fixed window parity problems from [14] and
adapt the discrete-time requirements from their initial formulation to dense-time requirements
for TAs and TGs. Intuitively, a direct fixed window parity objective for some bound λ

requires that at all points along a play or a path, we see a window of size less than λ in
which the smallest priority is even. The (non-direct) window parity objective requires that
the direct objective holds for some suffix. In the sequel, we drop “fixed” from the name of
these objectives.

In this section, we formalize the timed window parity objective in TGs as sets of plays.
The definition for paths of TAs is analogous (see Rmk. 1). First, we define the timed good
window objective, which formalizes the notion of good windows. Then we introduce the timed
window parity objective and its direct variant. We compare these objectives to the parity
objective and argue that satisfying a window objective implies satisfying a parity objective,
and that window objectives do not coincide with parity objectives in general, via an example.
We conclude this section by presenting some useful properties of this objective.

For this entire section, we fix a TG G = (A, Σ1, Σ2) where A = (L, ℓinit, C, Σ1 ∪ Σ2, I, E),
a priority function p : L → {0, . . . , d − 1} and a bound λ ∈ N \ {0} on the size of windows.

3.1 Definitions
Good windows. A window objective is based on a notion of good windows. Intuitively, a
good window for the parity objective is a fragment of a play in which less than λ time units
pass and the smallest priority of the locations appearing in this fragment is even.

The timed good window objective encompasses plays in which there is a good window at
the start of the play. We formally define the timed good window (parity) objective as the set

TGW(p, λ) =
{

(ℓ0, ν0)(m(1)
0 , m

(2)
0 ) . . . ∈ Plays(G) | ∃ j ∈ N, min

0≤k≤j
p(ℓk) mod 2 = 0

∧ νj(γ) − ν0(γ) < λ
}

.

The timed good window objective is a state-based objective.
We introduce some terminology related to windows. Let π = (ℓ0, ν0)(m(1)

0 , m
(2)
0 )(ℓ1, ν1) . . .

be an infinite play. We say that the window opened at step n closes at step j if minn≤k≤j p(ℓk)
is even and for all n ≤ j′ < j, minn≤k≤j′ p(ℓk) is odd. Note that, in this case, we must have
minn≤k≤j p(ℓk) = p(ℓj). In other words, a window closes when an even priority smaller than
all other priorities in the window is encountered. The window opened at step n is said to
close immediately if p(ℓn) is even.

If a window does not close within λ time units, we refer to it as a bad window: the window
opened at step n is a bad window if there is some j⋆ ≥ n such that νj⋆(γ) − νn(γ) ≥ λ and
for all j ≥ n, if νj(γ) − νn(γ) < λ, then minn≤k≤j p(ℓk) is odd.

Direct timed window objective. The direct window parity objective in graph games requires
that every suffix of the play belongs to the good window objective. To adapt this objective
to a dense-time setting, we must express that at all times, we have a good window. We
require that this property holds not only at states which appear explicitly along plays, but
also in the continuum between them (during the delay within a location). To this end, let us
introduce a notation for suffixes of play.
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ℓ0
x ≤ 2

1

ℓ1
true

2

ℓ2
x ≤ 2

0

(true, a,∅) (true, a, {x})

(true, a, {x})

Figure 1 Timed automaton A. Edges are labeled with triples guard-action-resets. Priorities are
beneath locations. The initial state is denoted by an incoming arrow with no origin.

Let π = (ℓ0, ν0)(m(1)
0 , m

(2)
0 )(ℓ1, ν1) . . . ∈ Plays(G) be a play. For all i ∈ {1, 2} and all

n ∈ N, write m
(i)
n = (d(i)

n , a
(i)
n ) and dn = delay(m(1)

n , m
(2)
n ) = νn+1(γ) − νn(γ). For any n ∈ N

and d ∈ [0, dn], let π+d
n→ be the delayed suffix of π starting in position n delayed by d time units,

defined as π+d
n→ = (ℓn, νn + d)((d(1)

n − d, a
(1)
n ), (d(2)

n − d, a
(2)
n ))(ℓn+1, νn+1)(m(1)

n+1, m
(2)
n+1) . . . If

d = 0, we write πn→ rather than π+0
n→.

Using the notations above, we define the direct timed window (parity) objective as the set

DTW(p, λ) = {π ∈ Plays(G) | ∀ n ∈ N, ∀ d ∈ [0, dn], π+d
n→ ∈ TGW(p, λ)}.

The direct timed window objective is state-based: the timed good window objective is
state-based and the delays dn are encoded in states (by clock γ), thus all conditions in the
definition of the direct timed window objective depend only the sequence of states of a play.

Timed window objective. We define the timed window (parity) objective as a prefix-
independent variant of the direct timed window objective. Formally, we let

TW(p, λ) = {π ∈ Plays(G) | ∃ n ∈ N, πn→ ∈ DTW(p, λ)}.

The timed window objective requires the direct timed window objective to hold from some
point on. This implies that the timed window objective is state-based.

3.2 Comparison with parity objectives
Both the direct and non-direct timed window objectives reinforce the parity objective with
time bounds. It can easily be shown that satisfying the direct timed window objective implies
satisfying a parity objective. Any odd priority seen along a play in DTW(p, λ) is answered
within λ time units by a smaller even priority. Therefore, should any odd priority appear
infinitely often, it is followed by a smaller even priority. As the set of priorities is finite, there
must be some smaller even priority appearing infinitely often. This in turn implies that the
parity objective is fulfilled. It follows from prefix-independence of the parity objective, that
satisfying the non-direct timed window objective implies satisfying the parity objective.

However, in some cases, the timed window objectives may not hold even though the
parity objective holds. For simplicity, we provide an example on a TA, rather than a TG.
Consider the timed automaton A depicted in Fig. 1.

All time-divergent paths of A satisfy the parity objective. We can classify time-divergent
paths in two families: either ℓ2 is visited infinitely often, or from some point on only delay
transitions are taken in ℓ1. In the former case, the smallest priority seen infinitely often is 0
and in the latter case, it is 2.

However, there is a path π such that for all window sizes λ ∈ N \ {0}, π violates the direct
and non-direct timed window objectives. Initialize n to 1. This path can be described by the
following loop: play action a in ℓ0 with delay 0, followed by action a with delay n in ℓ1 and
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action a in ℓ2 with delay 0, increase n by 1 and repeat. The window opened in ℓ0 only closes
when location ℓ2 is entered. At the n-th step of the loop, this window closes after n time
units. As we let n increase to infinity, there is no window size λ such that this path satisfies
the direct and non-direct timed window objectives for λ.

This example demonstrates the interest of reinforcing parity objectives with time bounds;
we can enforce that there is a bounded delay between an odd priority and a smaller even
priority in a path.

3.3 Properties of window objectives
We present several properties of the timed window objective. First, we show that we need
only check good windows for non-delayed suffixes πn→. Once this property is introduced, we
move on to the inductive property of windows, which is the crux of the reduction in the next
section. This inductive property states that when we close a window in less than λ time
units all other windows opened in the meantime also close in less than λ time units.

The definition of the direct timed window objective requires checking uncountably many
windows. This can be reduced to a countable number of windows: those opened when
entering states appearing along a play. Let us explain why no information is lost through
such a restriction. We rely on a timeline-like visual representation given in Fig. 2. Consider
a window that does not close immediately and is opened in some state of the play delayed
by d time units, of the form (ℓn, νn + d) (depicted by the circle at the start of the bottom
line of Fig. 2). This implies that the priority of ℓn is odd, otherwise this window would
close immediately. Assume the window opened at step n closes at step j (illustrated by the
middle line of the figure) in less than λ time units. As the priority of ℓn is odd, we must have
j ≥ n + 1 (i.e., the window opened at step n is still open as long as ℓn is not left). These
lines cover the same locations, i.e., the set of locations appearing along the time-frame given
by both the dotted and dashed lines coincide. Thus, the window opened d time units after
step n closes in at most λ − d time units, at the same time as the window opened at step n.

ℓn ℓn+1 ℓj−1 ℓj

Figure 2 A timeline representation of a play. Circles with labels indicate entry in a location. The
dotted line underneath represents a window opened at step n and closed at step j and the dashed
line underneath the window opened d time units after step n.

▶ Lemma 2. Let π = (ℓ0, ν0)(m(1)
0 , m

(2)
0 ) . . . ∈ Plays(G) and n ∈ N. Let dn denote

delay(m(1)
n , m

(2)
n ). Then πn→ ∈ TGW(p, λ) if and only if for all d ∈ [0, dn], π+d

n→ ∈ TGW(p, λ).
Furthermore, π ∈ DTW(p, λ) if and only if for all n ∈ N, πn→ ∈ TGW(p, λ).

In turn-based games on graphs, window objectives exhibit an inductive property: when
a window closes, all subsequently opened windows close (or were closed earlier) [14]. This
is also the case for the timed variant. A window closes when an even priority smaller than
all priorities seen in the window is encountered. This priority is also smaller than priorities
in all windows opened in the meantime, therefore they must close at this point (if they are
not yet closed). We state this property only for windows opened at steps along the run and
neglect the continuum in between due to Lem. 2.
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▶ Lemma 3 (Inductive property). Let π = (ℓ0, ν0)(m(1)
0 , m

(2)
0 )(ℓ1, ν1) . . . ∈ Plays(G). Let

n ∈ N. Assume the window opened at step n closes at step j. Then, for all n ≤ i ≤ j,
πi→ ∈ TGW(p, λ).

It follows from this inductive property that it suffices to keep track of one window at a
time when checking whether a play satisfies the (direct) timed window objective.

4 Reduction

We establish that the realizability (resp. verification) problem for the direct/non-direct timed
window parity objective can be reduced to the realizability (resp. verification) problem for
safety/co-Büchi objectives on an expanded TG (resp. TA). Our reduction uses the same
construction of an expanded TA for both the verification and realizability problems. A state
of the expanded TA describes the status of a window, allowing the detection of bad windows.
Due to space constraints, we only describe the reduction here and sketch the main technical
hurdles along the way. The full approach, including intermediate results, is presented in the
full version of our paper [23].

The sketch is as follows. First, we describe how a TA can be expanded with window-related
information. Second, we show that time-divergent plays in a TG and its expansion can be
related, by constructing two (non-bijective) mappings, in a manner such that a time-divergent
play in the base TG satisfies the direct/non-direct timed window parity objective if and only
if its related play in the expanded TG satisfies the safety/co-Büchi objective. These results
developed for plays are (indirectly) applied to paths in order to show the correctness of the
reduction for the verification problem. Third, we establish that the mappings developed in
the second part can be leveraged to translate strategies in TGs, and prove that the presented
translations preserve winning strategies, proving correctness of the reduction for TGs.

For this section, we fix a TG G = (A, Σ1, Σ2) with TA A = (L, ℓinit, C, Σ, I, E), a priority
function p and a bound λ on the size of windows.

Encoding the objective in an automaton. The inductive property (Lem. 3) implies that it
suffices to keep track of one window at a time when checking a window objective. Following
this, we encode the status of a window in the TA.

A window can be summarized by two characteristics: the lowest priority within it and for
how long it has been open. To keep track of the first trait, we encode the lowest priority seen
in the current window in locations of the TA. An expanded location is a pair (ℓ, q) where
q ∈ {0, . . . , d − 1}; the number q represents the smallest priority in the window currently
under consideration. We say a pair (ℓ, q) is an even (resp. odd) location if q is even (resp. odd).
To measure how long a window is opened, we use an additional clock z /∈ C that does not
appear in A. This clock is reset whenever a new window opens or a bad window is detected.

The focus of the reduction is over time-divergent plays. Some time-convergent plays may
violate a timed good window objective without ever seeing a bad window, e.g., when time
does not progress up to the supplied window size. Along time-divergent plays however, the
lack of a good window at any point equates to the presence of a bad window. We encode
the (resp. direct) timed window objective as a co-Büchi (resp. safety) objective. Locations
to avoid in both cases indicate bad windows and are additional expanded locations (ℓ, bad),
referred to as bad locations. We introduce two new actions β1 and β2, one per player, for
entering and exiting bad locations. While only the action β1 is sufficient for the reduction to
be correct, introducing two actions allows for a simpler correctness proof in the case of TGs;
we can exploit the fact that P2 can enter and exit bad locations.
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It remains to discuss how the initial location, edges and invariants of an expanded TA
are defined. We discuss edges and invariants for each type of expanded location, starting
with even locations, then odd locations and finally bad locations. Each rule we introduce
hereafter is followed by an application on an example. We depict the TA of Fig. 1 and the
reachable fragment of its expansion in Fig. 3 and use these TAs for our example. For this
explanation, we use the terminology of TAs (paths) rather than that of TGs (plays).

The initial location of an expanded TA encodes the window opened at the start of an
initial path of the original TA. This window contains only a single priority, that is the priority
of the initial location of the original TA. Thus, the initial location of the expanded TA is the
expanded location (ℓinit, p(ℓinit)). In our example, the initial location of the expanded TA is
(ℓ0, 1).

Even expanded locations encode windows that are closed and do not need to be monitored
anymore. Therefore, the invariant of an even expanded location is unchanged from the
invariant of the original location in the original TA. Similarly, we do not add any additional
constraints on the edges leaving even expanded locations. Leaving an even expanded location
means opening a new window: any edge leaving an even expanded location has an expanded
location of the form (ℓ, p(ℓ)) as its target (p(ℓ) is the only priority in the new window) and
resets z to start measuring the size of the new window. For example, the edge from (ℓ2, 0) to
(ℓ0, 1) of the expanded TA of Fig. 3 is derived from the edge from ℓ2 to ℓ0 of the original TA.

Odd expanded locations represent windows that are still open. The clock z measures how
long a window has been opened. If z reaches λ in an odd expanded location, that equates to
a bad window in the original TA. In this case, we force time-divergent paths of the expanded
TA to visit a bad location. This is done in three steps. We strengthen the invariant of odd
expanded locations to prevent z from exceeding λ. We also disable the edges that leave odd
expanded locations and do not go to a bad location whenever z = λ holds, by reinforcing
the guards of such edges by z < λ. Finally, we include two edges to a bad location (one per
additional action β1 and β2), which can only be used whenever there is a bad window, i.e.,
when z = λ. In the case of our example, if z reaches λ in (ℓ0, 1), we redirect the path to
location (ℓ0, bad), indicating a window has not closed in time in ℓ0. When z reaches λ in
(ℓ0, 1), no more non-zero delays are possible, the edge from (ℓ0, 1) to (ℓ1, 1) is disabled and
only the edges to (ℓ0, bad) are enabled.

When leaving an odd expanded location using an edge, assuming we do not go to a bad
location, the smallest priority of the window has to be updated. The new smallest priority
is the minimum between the smallest priority of the window prior to traversing the edge
and the priority of the target location. In our example for instance, the edge from (ℓ1, 1) to
(ℓ2, 0) is derived from the edge from ℓ1 to ℓ2 in the original TA. As the priority of ℓ2 is 0 and
is smaller than the current smallest priority of the window encoded by location (ℓ1, 1), the
smallest priority of the window is updated to 0 = min{1, p(ℓ2)} when traversing the edge.
Note that we do not reset z despite the encoded window closing upon entering (ℓ2, 0): the
value of z does not matter while in even locations, thus there is no need for a reset when
closing the window.

A bad location (ℓ, bad) is entered whenever a bad window is detected while in location
ℓ. Bad locations are equipped with the invariant z = 0 preventing the passage of time. In
this way, for time-divergent paths, a new window is opened immediately after a bad window
is detected. For each additional action β1 and β2, we add an edge exiting the bad location.
Edges leaving a bad location (ℓ, bad) have as their target the expanded location (ℓ, p(ℓ));
we reopen a window in the location in which a bad window was detected. The clock z is
not reset by these edges, as it was reset prior to entering the bad location and the invariant
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ℓ0
x ≤ 21

ℓ1
true2

ℓ2
x ≤ 20

(true, a,∅)

(true, a, {x})

(true, a, {x})

(ℓ0, 1)
x ≤ 2 ∧ z ≤ λ

(ℓ1, 1)
z ≤ λ

(ℓ0, bad)
z = 0

(ℓ1, bad)
z = 0

(ℓ2, 0)
x ≤ 2

(ℓ1, 2)
true

(z < λ, a,∅)

(z = λ, β, {z})(true, β,∅) (z = λ, β, {z})

(z < λ, a, {x})

(true, a, {x, z})

(true, β,∅)

(true, a, {x, z})

Figure 3 The TA of Fig. 1 (left) and the reachable fragment of its expansion (right). We write β

for actions β1 and β2.

z = 0 prevents any non-zero delay in the bad location. For instance, the edges from (ℓ1, bad)
to (ℓ1, 2) in our example represent that when reopening while in location ℓ1, the smallest
priority of this window is p(ℓ1) = 2.

The expansion depends on the priority function p and the bound on the size of windows
λ. Therefore, we write A(p, λ) for the expansion. The formal definition of A(p, λ) follows.

▶ Definition 4. Given a TA A = (L, ℓinit, C, Σ, I, E), the TA A(p, λ) is defined to be the TA
(L′, ℓ′

init, C ′, Σ′, I ′, E′) such that
L′ = L × ({0, . . . , d − 1} ∪ {bad});
ℓ′

init = (ℓinit, p(ℓinit));
C ′ = C ∪ {z} where z /∈ C is a new clock;
Σ′ = Σ ∪ {β1, β2} is an expanded set of actions with special actions β1, β2 /∈ Σ for bad
locations;
I ′(ℓ, q) = I(ℓ) for all ℓ ∈ L and even q ∈ {0, . . . , d − 1}, I ′(ℓ, q) = (I(ℓ) ∧ z ≤ λ) for all
ℓ ∈ L and odd q ∈ {0, . . . , d − 1}, and I ′(ℓ, bad) = (z = 0) for all ℓ ∈ L;
the set of edges E′ of A(p, λ) is the smallest set satisfying the following rules:

if q is even and (ℓ, g, a, D, ℓ′) ∈ E, then ((ℓ, q), g, a, D ∪ {z}, (ℓ′, p(ℓ′)) ∈ E′;
if q is odd and (ℓ, g, a, D, ℓ′) ∈ E, then ((ℓ, q), (g ∧z < λ), a, D, (ℓ′, min{q, p(ℓ′)})) ∈ E′;
for all ℓ ∈ L, odd q and β ∈ {β1, β2}, ((ℓ, q), (z = λ), β, {z}, (ℓ, bad)) ∈ E′ and
((ℓ, bad), true, β,∅, (ℓ, p(ℓ)) ∈ E′.

For a TG G = (A, Σ1, Σ2), we set G(p, λ) = (A(p, λ), Σ1 ∪ {β1}, Σ2 ∪ {β2}).

We write (ℓ, q, ν̄) for states of T (A(p, λ)) instead of ((ℓ, q), ν̄), for conciseness. The bar
over the valuation is a visual indicator of the different domain. We write Bad = L × {bad}
for the set of bad locations.

Expanding and projecting plays. A bijection between the set of plays of G and the set of
plays of G(p, λ) cannot be achieved naturally due to the additional information encoded in
the expanded TA, notably the presence of bad locations. We illustrate this by showing there
are some plays of G(p, λ) that are intuitively indistinguishable if seen as plays of G.

Consider the initial location ℓinit of G, and assume that its priority is odd and its invariant
is true. Consider the initial play π̄1 of G(p, λ) where the actions βi are used by both players
with a delay of λ at the start of the play and then only delay moves are taken in the reached
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bad location, i.e., π̄1 = (ℓ, p(ℓ), 0C∪{z})((λ, β1), (λ, β2))
(
(ℓ, bad, ν̄)((0, ⊥), (0, ⊥))

)ω, where
ν̄(x) = λ for all x ∈ C and ν̄(z) = 0. As the actions βi and z do not exist in G, π̄1 cannot be
discerned from the similar play π̄2 of G(p, λ) where instead of using the actions βi, delay moves
were used instead, i.e., π̄2 = (ℓ, p(ℓ), 0C∪{z})((λ, ⊥), (λ, ⊥))((ℓ, p(ℓ), ν̄′)((0, ⊥), (0, ⊥)))ω with
ν̄′(x) = λ for all x ∈ C ∪ {z}.

This motivates using two mappings instead of a bijection. Using the expansion mapping
Ex : Plays(G) → Plays(G(p, λ)) and projection mapping Pr : Plays(G(p, λ)) → Plays(G) defined
in the full paper [23], we obtain the following equivalence.

▶ Theorem 5. Let A = (L, ℓinit, C, Σ, I, E) be a TA, p a priority function and λ ∈ N \ {0}.
All time-divergent paths of A satisfy the (resp. direct) timed window objective if and only
if all time-divergent paths of A(p, λ) satisfy the co-Büchi (resp. safety) objective over bad
locations.

Translating strategies. We translate P1-strategies of the expanded TG to P1-strategies
of the original TG by evaluating the strategy on the expanded TG on expansions of plays
provided by the expansion mapping and by replacing any occurrences of β1 by ⊥. The fact
that translating a winning strategy of the expanded TG this way yields a winning strategy
of the original TG is not straightforward. When we translate a winning strategy σ̄ of G(p, λ)
to a strategy σ of G, the expansion of an outcome π of σ may not be consistent with σ̄,
e.g., moves of the form (d, β1) may appear along Ex(π) in places where σ̄ suggests otherwise,
therefore, it cannot be inferred from the fact that σ̄ is winning that Ex(π) satisfies the
winning condition. We circumvent this issue by constructing another play π̄ in parallel that
is consistent with σ̄ and shares the same sequence of states as Ex(π). This ensures, by the
properties of the expansion mapping, that all time-divergent outcomes of σ are also winning.
Furthermore, if the constructed play π̄ is P1-blameless and time-convergent, then π also is
P1-blameless, ensuring that all time-convergent outcomes of σ are winning.

In the other direction, we translate P1-strategies of the original TG to strategies of
the expanded TG using the projection mapping and by replacing moves that are illegal in
the expansion with suitable moves of the form (d, β1). The technical difficulties for this
translation are similar to those encountered in the first one and are handled similarly. From
these two translations, we obtain the following equivalence.

▶ Theorem 6. Let sinit be the initial state of G and s̄init be the initial state of G(p, λ). There
is a winning strategy σ for P1 for the objective TW(p, λ) (resp. DTW(p, λ)) from sinit in
G if and only if there is a winning strategy σ̄ for P1 for the objective coBüchi(Bad) (resp.
Safe(Bad)) from s̄init in G(p, λ).

Multi-dimensional objectives. The construction of the expanded TA A(p, λ) can be ex-
tended to handle generalized (resp. direct) timed window objectives, defined as conjunctions
of several (resp. direct) timed window objectives. Generalized objectives are given by k-
dimensional priority functions and vectors λ ∈ (N \ {0})k of bounds on the size of windows
for each dimension. To keep track of the windows for each dimension, locations are expanded
using k-dimensional vectors and one new clock per objective is added to the expanded
automaton. The expanded TA in this case is of size exponential in k. The objective on
the expansion is a co-Büchi or safety objective, even for multiple objectives. Due to space
constraints, we omit the full generalization, which can be found in the full paper [23].
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5 Algorithms and complexity

This section outlines algorithms for solving the verification and realizability problems for
generalized (resp. direct) timed window parity objectives. We consider the general multi-
dimensional setting and we denote by k the number of timed window parity objectives under
consideration. Technical details and a comparison with timed parity games can be found in
the full paper [23].

Algorithms. Our solution to the verification and realizability problem for generalized
(resp. direct) timed window objectives consists of a reduction to a co-Büchi (resp. safety)
objective on an expanded automaton. The following lemma establishes the time necessary
for the reduction.

▶ Lemma 7. Let A = (L, ℓinit, C, Σ, I, E) be a TA. Let p : L → {0, . . . , d − 1}k be a k-
dimensional priority function and λ ∈ (N \ {0})k be a vector of bounds on window sizes. The
expanded TA A(p, λ) = (L′, ℓ′

init, C ′, Σ′, I ′, E′) can be computed in time exponential in k and
polynomial in the size of L, the size of E, the size of C, d, the length of the encoding of the
clock constraints of A and the encoding of λ.

Let G be a TG. To solve the realizability problem on the expanded TG G(p, λ), we use the
algorithm of [20], which checks the existence of a winning strategy for P1 for location-based
objectives specified by a deterministic parity automaton. Using this algorithm, we can check
the existence of a winning strategy for P1 for the co-Büchi (resp. safety) objective on G(p, λ)
in time O

((
|L|2 · (dk + 1)2 · (|C| + k)! · 2|C|+k

∏
x∈C(2cx + 1) ·

∏
1≤i≤k(2λi + 1)

)4)
, where L

is the set of locations of G, C the set of clocks of G and cx is the largest constant to which
x ∈ C is compared to in G (recall that λi refers to the bound on window sizes for the ith
dimension). This establishes membership of the realizability problem in EXPTIME as the
construction of the expanded game can be done in exponential time by Lem. 7.

Let us move on to the verification problem. For one dimension, the verification problem
for the (resp. direct) timed window objective is reducible in polynomial time to the verification
problem for co-Büchi (resp. safety) objectives by Lem. 7. This establishes membership in
PSPACE for the case of a single dimension. For multiple dimensions, the single-dimensional
case can be used as an oracle to check that, for each individual objective, all time-divergent
paths belong to the objective. This shows membership of the verification problem for
generalized objectives in PPSPACE = PSPACE [6].

Lower bounds. Lower bounds are established by reducing the verification/realizability
problem for safety objectives to the verification/realizability problem for (resp. direct)
timed window parity objectives. The verification problem for safety objectives is PSPACE-
complete [2] and the realizability problem for safety objectives is EXPTIME-complete [21].

The reduction is as follows. Given a TA A and a set F of locations to avoid, we construct
a TA A′ obtained by extending locations of A with a Boolean indicating whether F has been
visited. We assign an odd priority to expanded locations that indicate F has been visited,
such that windows can no longer close if F has been visited.

Complexity wrap-up. We summarize our complexity results in the following theorem.

▶ Theorem 8. The verification problem for the (direct) generalized timed window parity
objective is PSPACE-complete and the realizability problem for the (direct) generalized timed
window parity objective is EXPTIME-complete.
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Abstract
We study stochastic zero-sum games on graphs, which are prevalent tools to model decision-making in
presence of an antagonistic opponent in a random environment. In this setting, an important question
is the one of strategy complexity: what kinds of strategies are sufficient or required to play optimally
(e.g., randomization or memory requirements)? Our contributions further the understanding of
arena-independent finite-memory (AIFM) determinacy, i.e., the study of objectives for which memory
is needed, but in a way that only depends on limited parameters of the game graphs. First, we
show that objectives for which pure AIFM strategies suffice to play optimally also admit pure
AIFM subgame perfect strategies. Second, we show that we can reduce the study of objectives for
which pure AIFM strategies suffice in two-player stochastic games to the easier study of one-player
stochastic games (i.e., Markov decision processes). Third, we characterize the sufficiency of AIFM
strategies through two intuitive properties of objectives. This work extends a line of research started
on deterministic games in [7] to stochastic ones.
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1 Introduction

Controller synthesis consists, given a system, an environment, and a specification, in au-
tomatically generating a controller of the system that guarantees the specification in the
environment. This task is often studied through a game-theoretic lens: the system is a
game, the controller is a player, the uncontrollable environment is its adversary, and the
specification is a game objective [45]. A game on graph consists of a directed graph, called
an arena, partitioned into two kinds of vertices: some of them are controlled by the system
(called player 1) and the others by the environment (called player 2). Player 1 is given a
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game objective (corresponding to the specification) and must devise a strategy (corresponding
to the controller) to accomplish the objective or optimize an outcome. The strategy can be
seen as a function that dictates the decisions to make in order to react to every possible chain
of events. In case of uncertainty in the system or the environment, probability distributions
are often used to model transitions in the game graph, giving rise to the stochastic game
model. We study here stochastic turn-based zero-sum games on graphs [29], also called
perfect-information stochastic games. We also discuss the case of deterministic games, which
can be seen as a subcase of stochastic games in which only Dirac distributions are used in
transitions.

Strategy complexity. A common question underlying all game objectives is the one of
strategy complexity: how complex must optimal strategies be, and how simple can optimal
strategies be? For each distinct game objective, multiple directions can be investigated, such
as the need for randomization [19] (must optimal strategies make stochastic choices?), the
need for memory [33, 34, 7] (how much information about the past must optimal strategies
remember?), or what trade-offs exist between randomization and memory [16, 26, 41].
With respect to memory requirements, three cases are typically distinguished: memoryless-
determined objectives, for which memoryless strategies suffice to play optimally; finite-
memory-determined objectives, for which finite-memory strategies suffice (memory is then
usually encoded as a deterministic finite automaton); and objectives for which infinite memory
is required. High memory requirements (such as exponential memory and obviously infinite
memory) are a major drawback when it comes to implementing controllers; hence specific
approaches are often developed to look for simple strategies (e.g., [30]).

Many classical game objectives (reachability [29], Büchi and parity [22], discounted
sum [48], energy [10]. . . ) are memoryless-determined, both in deterministic and stochastic
arenas. Nowadays, multiple general results allow for a more manageable proof for most
of these objectives: we mention [35, 4, 1] for sufficient conditions in deterministic games,
and [31, 32] for similar conditions in one-player and two-player stochastic games. One
milestone for memoryless determinacy in deterministic games was achieved by Gimbert and
Zielonka [33], who provide two characterizations of it: the first one states two necessary and
sufficient conditions (called monotony and selectivity) for memoryless determinacy, and the
second one states that memoryless determinacy in both players’ one-player games suffices
for memoryless determinacy in two-player games (we call this result the one-to-two-player
lift). Together, these characterizations provide a theoretical and practical advance. On the
one hand, monotony and selectivity improve the high-level understanding of what conditions
well-behaved objectives verify. On the other hand, only having to consider the one-player
case thanks to the one-to-two-player lift is of tremendous help in practice. A generalization
of the one-to-two-player lift to stochastic games was shown also by Gimbert and Zielonka in
an unpublished paper [34] and is about memoryless strategies that are pure (i.e., not using
randomization).

The need for memory. Recent research tends to study increasingly complex settings – such
as combinations of qualitative/quantitative objectives or of behavioral models – for which finite
or infinite memory is often required; see examples in deterministic games [17, 50, 12, 8, 14],
Markov decision processes – i.e., one-player stochastic games [46, 47, 24, 3, 11], or stochastic
games [28, 18, 25, 23, 40]. Motivated by the growing memory requirements of these endeavors,
research about strategy complexity often turns toward finite-memory determinacy. Proving
finite-memory determinacy is sometimes difficult (already in deterministic games, e.g., [6]),
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and as opposed to memoryless strategies, there are few widely applicable results. We
mention [38], which provides sufficient conditions for finite-memory determinacy in Boolean
combinations of finite-memory-determined objectives in deterministic games. Results for
multi-player non-zero-sum games are also available [37].

Arena-independent finite-memory. A middle ground between the well-understood mem-
oryless determinacy and the more puzzling finite-memory determinacy was proposed for
deterministic games in [7]: an objective is said to admit arena-independent finite-memory
(AIFM) strategies if a single finite memory structure suffices to play optimally in any arena.
In practice, this memory structure may depend on parameters of the objective (for instance,
largest weight, number of priorities), but not on parameters intrinsically linked to the arena
(e.g., number of states or transitions). AIFM strategies include as a special case memoryless
strategies, since they can be implemented with a trivial memory structure with a single state.

AIFM strategies have a remarkable feature: in deterministic arenas, AIFM generalizations
of both characterizations from [33] hold, including the one-to-two-player lift [7]. From a
practical point of view, it brings techniques usually linked to memoryless determinacy to
many finite-memory-determined objectives. The aim of this article is to show that this also
holds true in stochastic arenas.

Contributions. We provide an overview of desirable properties of objectives in which pure
AIFM strategies suffice to play optimally in stochastic games, and tools to study them.
This entails: (a) a proof of a specific feature of objectives for which pure AIFM strategies
suffice to play optimally: for such objectives, there also exist pure AIFM subgame perfect
(SP) strategies (Theorem 7), which is a stronger requirement than optimality; (b) a more
general one-to-two-player lift: we show the equivalence between the existence of pure AIFM
optimal strategies in two-player games for both players and the existence of pure AIFM
optimal strategies in one-player games, thereby simplifying the proof of memory requirements
for many objectives (Theorem 8); (c) two intuitive conditions generalizing monotony and
selectivity in the stochastic/AIFM case, which are equivalent to the sufficiency of pure
AIFM strategies to play optimally in one-player stochastic arenas (Theorem 13) for all
objectives that can be encoded as real payoff functions. In practice, (c) can be used to prove
memory requirements in one-player arenas, and then (b) can be used to lift these to the
two-player case.

These results reinforce both sides on the frontier between AIFM strategies and general
finite-memory strategies: on the one hand, objectives for which pure AIFM strategies suffice
indeed share interesting properties with objectives for which pure memoryless strategies
suffice, rendering their analysis easier, even in the stochastic case; on the other hand, our
novel result about SP strategies does not hold for (arena-dependent) finite-memory strategies,
and therefore further distinguishes the AIFM case from the finite-memory case.

The one-to-two-player lift for pure AIFM strategies in stochastic games is not surprising,
as it holds for pure memoryless strategies in stochastic games [34], and for AIFM strategies
in deterministic games [7]. However, although the monotony/selectivity characterization is
inspired from the deterministic case [33, 7], it had not been formulated for stochastic games,
even in the pure memoryless case – its proof involves new technical difficulties to which our
improved understanding of subgame perfect strategies comes in handy.

All our results are about the optimality of pure AIFM strategies in various settings: they
can be applied in an independent way for deterministic games and for stochastic games, and
they can also consider optimality under restriction to different classes of strategies (allowing
or not the use of randomization and infinite memory).

CONCUR 2021



26:4 Arena-Independent Finite-Memory Determinacy in Stochastic Games

The proof technique for the one-to-two-player lift shares a similar outline in [33, 34, 7]
and in this paper: it relies on an induction on the number of edges in arenas to show the
existence of memoryless optimal strategies. This edge-induction technique is frequently used
in comparable ways in other works about memoryless determinacy [35, 31, 32, 18]. In the
AIFM case, the extra challenge consists of applying such an induction to the right set of
arenas in order for a result about memoryless strategies to imply something about AIFM
strategies. Work in [7] paved the way to neatly overcome this technical hindrance and we
were able to factorize the main argument in Lemma 6.

Applicability. Let us discuss objectives that admit, or not, pure AIFM optimal strategies in
stochastic arenas.

Objectives for which AIFM optimal strategies exist include the aforementioned memoryless-
determined objectives [29, 22, 48, 10], as explained earlier. Such objectives could already
be studied through the lens of a one-to-two-player lift [34], but our two other main results
also apply to these.
Pure AIFM optimal strategies also exist in lexicographic reachability-safety games [23,
Theorem 4]: the memory depends only on the number of targets to visit or avoid, but
not on parameters of the arena (number of states or transitions).
Muller objectives whose probability must be maximized [15] also admit pure AIFM
optimal strategies: the number of memory states depends only on the colors and on the
Muller condition.
In general, every ω-regular objective admits pure AIFM optimal strategies, as it can
be seen as a parity objective (for which pure memoryless strategies suffice) after taking
the product of the game graph with a deterministic parity automaton accepting the
objective [42, 20]. This parity automaton can be taken as an arena-independent memory
structure. It is therefore possible to use our results to investigate precise memory
bounds in stochastic games for multiple ω-regular objectives which have been studied
in deterministic games or in one-player stochastic games: generalized parity games [21],
lower- and upper-bounded energy games [5], some window objectives [13, 11], weak parity
games [49].
There are objectives for which finite-memory strategies suffice for some player, but with
an underlying memory structure depending on parameters of the arena (an example is
provided by the Gain objective in [40, Theorem 6]). Many objectives also require infinite
memory, such as generalized mean-payoff games [18] (both in deterministic and stochastic
games) and energy-parity games (only in stochastic games [17, 39]). Our characterizations
provide a more complete understanding of why AIFM strategies do not suffice.

Deterministic and stochastic games. There are natural ways to extend classical objectives
for deterministic games to a stochastic context: typically, for qualitative objectives, a natural
stochastic extension is to maximize the probability to win. Still, in general, memory require-
ments may increase when switching to the stochastic context. To show that understanding
the deterministic case is insufficient to understand the stochastic case, we outline three
situations displaying different behaviors.

As mentioned above, for many classical objectives, memoryless strategies suffice both in
deterministic and in stochastic games.
AIFM strategies may suffice both for deterministic and stochastic games, but with a
difference in the size of the required memory structure. One such example is provided by
the weak parity objective [49], for which memoryless strategies suffice in deterministic
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games, but which requires memory in stochastic games (this was already noticed in [34,
Section 4.4]). Yet, it is possible to show that pure AIFM strategies suffice in stochastic
games using the results from our paper. This shows that to go from the deterministic to
the stochastic case, a “constant” increase in memory may be necessary and sufficient.
There are also objectives for which memoryless strategies suffice in deterministic games,
but even AIFM strategies do not suffice in stochastic games. One such example consists
in maximizing the probability to obtain a non-negative discounted sum (which is different
from maximizing the expected value of the discounted sum, for which memoryless strategies
suffice, as is shown in [48]).

Formal proofs for these last two examples are provided in the full version [9]. These three
situations further highlight the significance of establishing results about memory requirements
in stochastic games, even for objectives whose deterministic version is well-understood.

Outline. We introduce our framework and notations in Section 2. We discuss AIFM
strategies and tools to relate them to memoryless strategies in Section 3, which allows us to
prove our result about subgame perfect strategies. The one-to-two-player lift is presented in
Section 4, followed by the one-player characterization in Section 5. Due to a lack of space,
we choose to focus on Section 5 and only sketch Section 4; the complete proofs and technical
details are found in the full version of the article [9].

2 Preliminaries

Let C be an arbitrary set of colors.

Arenas. For a measurable space (Ω, F) (resp. a finite set Ω), we write Dist(Ω, F) (resp.
Dist(Ω)) for the set of probability distributions on (Ω, F) (resp. on Ω). For Ω a finite set and
µ ∈ Dist(Ω), we write Supp(µ) = {ω ∈ Ω | µ(ω) > 0} for the support of µ.

We consider stochastic games played by two players, called P1 (for player 1) and P2 (for
player 2), who play in a turn-based fashion on arenas. A (two-player stochastic turn-based)
arena is a tuple A = (S1, S2, A, δ, col), where: S1 and S2 are two disjoint finite sets of
states, respectively controlled by P1 and P2 – we denote S = S1 ⊎ S2; A is a finite set of
actions; δ : S × A → Dist(S) is a partial function called probabilistic transition function;
col : S × A → C is a partial function called coloring function. For a state s ∈ S, we write
A(s) for the set of actions that are available in s, that is, the set of actions for which δ(s, a)
is defined. For s ∈ S, function col must be defined for all pairs (s, a) such that a is available
in s. We require that for all s ∈ S, A(s) ̸= ∅ (i.e., arenas are non-blocking).

For s, s′ ∈ S and a ∈ A(s), we denote δ(s, a, s′) instead of δ(s, a)(s′) for the probability to
reach s′ in one step by playing a in s, and we write (s, a, s′) ∈ δ if and only if δ(s, a, s′) > 0.
An interesting subclass of (stochastic) arenas is the class of deterministic arenas: an arena
A = (S1, S2, A, δ, col) is deterministic if for all s ∈ S, a ∈ A(s), |Supp(δ(s, a))| = 1.

A play of A is an infinite sequence of states and actions s0a1s1a2s2 . . . ∈ (SA)ω such that
for all i ≥ 0, (si, ai+1, si+1) ∈ δ. A prefix of a play is an element in S(AS)∗ and is called a
history; the set of all histories starting in a state s ∈ S is denoted Hists(A, s). For S′ ⊆ S, we
write Hists(A, S′) for the unions of Hists(A, s) over all states s ∈ S′. For ρ = s0a1s1 . . . ansn

a history, we write out(ρ) for sn. For i ∈ {1, 2}, we write Histsi(A, s) and Histsi(A, S′) for
the corresponding histories ρ such that out(ρ) ∈ Si. For s, s′ ∈ S, we write Hists(A, s, s′) for
the histories in Hists(A, s) such that out(ρ) = s′.
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We write ĉol for the extension of col to histories and plays: more precisely, for a history
ρ = s0a1s1 . . . ansn, ĉol(ρ) is the finite sequence col(s0, a1) . . . col(sn−1, an) ∈ C∗; for π =
s0a1s1a2s2 . . . a play, ĉol(π) is the infinite sequence col(s0, a1)col(s1, a2) . . . ∈ Cω.

A one-player arena of Pi is an arena A = (S1, S2, A, δ, col) such that for all s ∈ S3−i,
|A(s)| = 1. A one-player arena corresponds to a Markov decision process (MDP) [44, 2].

An initialized arena is a pair (A, Sinit) such that A is an arena and Sinit is a non-empty
subset of the states of A, called the set of initial states. We assume w.l.o.g. that all states of
A are reachable from Sinit following transitions with positive probabilities in the probabilistic
transition function of A. In case of a single initial state s ∈ S, we write (A, s) for (A, {s}).

We will consider classes (sets) of initialized arenas, which are usually denoted by the letter
A. Typical classes that we will consider consist of all one-player or two-player, deterministic
or stochastic initialized arenas. We use initialized arenas throughout the paper for technical
reasons, but our results can be converted to results using the classical notion of arena.

Memory. We define a notion of memory based on complete deterministic automata on
colors. The goal of using colors instead of states/actions for transitions of the memory
is to define memory structures independently of arenas. A memory skeleton is a tuple
M = (M, minit, αupd) where M is a set of memory states, minit ∈ M is an initial state and
αupd : M × C → M is an update function. We add the following constraint: for all finite
sets of colors B ⊆ C, the number of states reachable from minit with transitions provided by
αupd|M×B is finite (where αupd|M×B is the restriction of the domain of αupd to M × B).

Memory skeletons with a finite state space are all encompassed by this definition, but
this also allows some skeletons with infinitely many states. For example, if C = N, the
tuple (N, 0, (m, n) 7→ max{m, n}), which remembers the largest color seen, is a valid memory
skeleton: for any finite B ⊆ C, we only need to use memory states up to max B. However,
the tuple (N, 0, (m, n) 7→ m + n) remembering the current sum of colors seen is not a memory
skeleton, as infinitely many states are reachable from 0, even if only B = {1} can be used.
We denote α̂upd : M × C∗ → M for the natural extension of αupd to finite sequences of colors.

Let M1 = (M1, m1
init, α1

upd) and M2 = (M2, m2
init, α2

upd) be memory skeletons. Their prod-
uct M1⊗M2 is the memory skeleton (M, minit, αupd) with M = M1×M2, minit = (m1

init, m2
init),

and, for all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1, m2), c) = (α1
upd(m1, c), α2

upd(m2, c)). The
update function of the product simply updates both skeletons in parallel.

Strategies. Given an initialized arena (A = (S1, S2, A, δ, col), Sinit) and i ∈ {1, 2}, a
strategy of Pi on (A, Sinit) is a function σi : Histsi(A, Sinit) → Dist(A) such that for all
ρ ∈ Histsi(A, Sinit), Supp(σi(ρ)) ⊆ A(out(ρ)). For i ∈ {1, 2}, we denote by ΣG

i (A, Sinit) the
set of all strategies of Pi on (A, Sinit).

A strategy σi of Pi on (A, Sinit) is pure if for all ρ ∈ Histsi(A, Sinit), |Supp(σi(ρ))| = 1. If
a strategy is not pure, then it is randomized. A strategy σi of Pi on (A, Sinit) is memoryless
if for all ρ, ρ′ ∈ Histsi(A, Sinit), out(ρ) = out(ρ′) implies σi(ρ) = σi(ρ′). A pure memoryless
strategy of Pi can be simply specified as a function Si → A. A strategy σi of Pi on
(A, Sinit) is finite-memory if it can be encoded as a Mealy machine Γ = (M, αnxt), with
M = (M, minit, αupd) a memory skeleton and αnxt : Si × M → Dist(A) being the next-action
function, which is such that for s ∈ Si, m ∈ M , Supp(αnxt(s, m)) ⊆ A(s). Strategy σi is
encoded by Γ if for all histories ρ ∈ Histsi(A, Sinit), σi(ρ) = αnxt(out(ρ), α̂upd(minit, ĉol(ρ))).
If σi can be encoded as a Mealy machine (M, αnxt), we say that σi is based on (memory) M.
If σi is based on M and is pure, then the next-action function can be specified as a function
Si × M → A. Memoryless strategies correspond to finite-memory strategies based on the
trivial memory skeleton Mtriv = ({minit}, minit, (minit, c) 7→ minit) that has a single state.
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We denote by ΣPFM
i (A, Sinit) (resp. ΣP

i (A, Sinit), ΣGFM
i (A, Sinit), ΣG

i (A, Sinit)) the set of
pure finite-memory (resp. pure, finite-memory, general) strategies of Pi on (A, Sinit). A type
of strategies is an element X ∈ {PFM, P, GFM, G} corresponding to these subsets.

Outcomes. Let (A = (S1, S2, A, δ, col), Sinit) be an initialized arena. When both players
have decided on a strategy and an initial state has been chosen, the generated object is a
(finite or countably infinite) Markov chain, which induces a probability distribution on the
plays. For strategies σ1 of P1 and σ2 of P2 on (A, Sinit) and s ∈ Sinit, we denote Pσ1,σ2

A,s for
the probability distribution on plays induced by σ1 and σ2, starting from state s.

We define F to be the smallest σ-algebra on Cω generated by the set of all cylinders
on C. In particular, every probability distribution Pσ1,σ2

A,s naturally induces a probability
distribution over (Cω, F) through the ĉol function, which we denote Pcσ1,σ2

A,s .

Preferences. To specify each player’s objective, we use the general notion of preference
relation. A preference relation ⊑ (on C) is a total preorder over Dist(Cω, F). The idea is
that P1 favors the distributions in Dist(Cω, F) that are the largest for ⊑, and as we are
studying zero-sum games, P2 favors the distributions that are the smallest for ⊑. For ⊑ a
preference relation and µ, µ′ ∈ Dist(Cω, F), we write µ ⊏ µ′ if µ ⊑ µ′ and µ′ ̸⊑ µ.

Depending on the context, it might not be necessary to define a preference relation as
total: it is sufficient to order distributions that can arise as an element Pσ1,σ2

A,s . For example,
in the specific case of deterministic games in which only pure strategies are considered, all
distributions that arise are always Dirac distributions on a single infinite word in Cω. In this
context, it is therefore sufficient to define a total preorder over all Dirac distributions (which
we can then see as infinite words, giving a definition of preference relation similar to [33, 7]).
We give some examples to illustrate our notion of preference relation.

▶ Example 1. We give three examples corresponding to three different ways to encode
preference relations. First, a preference relation can be induced by an event W ∈ F
called a winning condition, which consists of infinite sequences of colors. The objective
of P1 is to maximize the probability that the event W happens. An event W naturally
induces a preference relation ⊑W such that for µ, µ′ ∈ Dist(Cω, F), µ ⊑W µ′ if and only
if µ(W ) ≤ µ′(W ). For C = N, we give the example of the weak parity winning condition
Wwp [49], defined as Wwp = {c1c2 . . . ∈ Cω | maxj≥1 cj exists and is even}. In finite arenas,
the value maxj≥1 cj always exists, as there are only finitely many colors that appear. This is
different from the classical parity condition, which requires the maximal color seen infinitely
often to be even, and not just the maximal color seen.

A preference relation can also be induced by a Borel (real) payoff function f : Cω → R.
For example, if C = R and λ ∈ (0, 1), a classical payoff function [48] is the discounted
sum Discλ, defined for c1c2 . . . ∈ Cω as Discλ(c1c2 . . .) = limn

∑n
i=0 λi · ci+1. The goal of

P1 is to maximize the expected value of f , which is defined for a probability distribution
µ ∈ Dist(Cω, F) as Eµ[f ] =

∫
f dµ. A payoff function f naturally induces a preference relation

⊑f : for µ1, µ2 ∈ Dist(Cω, F), µ1 ⊑f µ2 if and only if Eµ1 [f ] ≤ Eµ2 [f ]. Payoff functions are
more general than winning conditions: for W a winning condition, the preference relation
induced by the indicator function of W corresponds to the preference relation induced by W .

It is also possible to specify preference relations that cannot be expressed as a payoff
function. An example is given in [27]: we assume that the goal of P1 is to see color c ∈ C

with probability precisely 1
2 . We denote the event of seeing color c as ♢c ∈ F . Then for

µ, µ′ ∈ Dist(Cω, F), µ ⊑ µ′ if and only if µ(♢c) ̸= 1
2 or µ′(♢c) = 1

2 . ⌟
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A (two-player stochastic turn-based zero-sum) initialized game is a tuple G = (A, Sinit, ⊑),
where (A, Sinit) is an initialized arena and ⊑ is a preference relation.

Optimality. Let G = (A, Sinit, ⊑) be an initialized game and X ∈ {PFM, P, GFM, G} be a
type of strategies. For s ∈ Sinit, σ1 ∈ ΣX

1 (A, Sinit), we define

UColX⊑(A, s, σ1) = {µ ∈ Dist(Cω, F) | ∃ σ2 ∈ ΣX
2 (A, s), Pcσ1,σ2

A,s ⊑ µ}.

The set UColX⊑(A, s, σ1) corresponds to all the distributions that are at least as good for P1
(w.r.t. ⊑) as a distribution that P2 can induce by playing a strategy σ2 of type X against σ1;
this set is upward-closed w.r.t. ⊑. For σ1, σ′

1 ∈ ΣX
1 (A, Sinit), we say that σ1 is at least as good

as σ′
1 from s ∈ Sinit under X strategies if UColX⊑(A, s, σ1) ⊆ UColX⊑(A, s, σ′

1). This inclusion
means that the best replies of P2 against σ′

1 yield an outcome that is at least as bad for
P1 (w.r.t. ⊑) as the best replies of P2 against σ1. We can define symmetrical notions for
strategies of P2.

Let G = (A, Sinit, ⊑) be an initialized game and X ∈ {PFM, P, GFM, G} be a type of
strategies. A strategy σi ∈ ΣX

i (A, Sinit) is X-optimal in G if it is at least as good under X
strategies as any other strategy in ΣX

i (A, Sinit) from all s ∈ Sinit.
When the considered preference relation ⊑ is clear, we often talk about X-optimality in an

initialized arena (A, Sinit) to refer to X-optimality in the initialized game (A, Sinit, ⊑). Given a
preference relation, a class of arenas, and a type of strategies, our goal is to understand what
kinds of strategies are sufficient to play optimally. In the following definition, abbreviations
AIFM and FM stand respectively for arena-independent finite-memory and finite-memory.

▶ Definition 2. Let ⊑ be a preference relation, A be a class of initialized arenas, X ∈
{PFM, P, GFM, G} be a type of strategies, and M be a memory skeleton. We say that pure
AIFM strategies suffice to play X-optimally in A for P1 if there exists a memory skeleton
M such that for all (A, Sinit) ∈ A, P1 has a pure strategy based on M that is X-optimal in
(A, Sinit). We say that pure FM strategies suffice to play X-optimally in A for P1 if for all
(A, Sinit) ∈ A, there exists a memory skeleton M such that P1 has a pure strategy based on
M that is X-optimal in (A, Sinit).

Since memoryless strategies are a specific kind of finite-memory strategies based on the
same memory skeleton Mtriv, the sufficiency of pure memoryless strategies is equivalent
to the sufficiency of pure strategies based on Mtriv, and is therefore a specific case of the
sufficiency of pure AIFM strategies. Notice the difference between the order of quantifiers
for AIFM and FM strategies: the sufficiency of pure AIFM strategies implies the sufficiency
of pure FM strategies, but the opposite is false in general (an example is given in [17]).

▶ Example 3. Let us reconsider the weak parity winning condition Wwp introduced in
Example 1: the goal of P1 is to maximize the probability that the greatest color seen
is even. To play optimally in any stochastic game, it is sufficient for both players to
remember the largest color already seen, which can be implemented by the memory skeleton
Mmax = (N, 0, (m, n) 7→ max{m, n}). As explained above, this memory skeleton has an
infinite state space, but as there are only finitely many colors in every (finite) arena, only a
finite part of the skeleton is sufficient to play optimally in any given arena. The size of the
skeleton used for a fixed arena depends on the appearing colors, but for a fixed number of
colors, it does not depend on parameters of the arena (such as its state and action spaces).
Therefore pure AIFM strategies suffice to play optimally for both players, and more precisely
pure strategies based on Mmax suffice for both players. ⌟
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We define a second stronger notion related to optimality of strategies, which is the notion
of subgame perfect strategy: a strategy is subgame perfect in a game if it reacts optimally to
all histories consistent with the arena, even histories not consistent with the strategy itself,
or histories that only a non-rational adversary would play [43]. This is a desirable property
of strategies that is stronger than optimality, since a subgame perfect strategy is not only
optimal from the initial position, but from any arbitrary stage (subgame) of the game. In
particular, if an opponent plays non-optimally, an optimal strategy that is not subgame
perfect does not always fully exploit the advantage that the opponent’s suboptimal behavior
provides, and may yield a result that is not optimal when starting in a subgame. We first
need extra definitions.

For w ∈ C∗, µ ∈ Dist(Cω, F), we define the shifted distribution wµ as the distribution
such that for an event E ∈ F , wµ(E) = µ({w′ ∈ Cω | ww′ ∈ E}).

For (A, Sinit) an initialized arena, for σi ∈ ΣG
i (A, Sinit), and for ρ = s0a1s1 . . . ansn ∈

Hists(A, Sinit), we define the shifted strategy σi[ρ] ∈ ΣG
i (A, out(ρ)) as the strategy such that,

for ρ′ = snan+1sn+1 . . . amsm ∈ Histsi(A, out(ρ)), σi[ρ](ρ′) = σi(s0a1s1 . . . amsm).
For ⊑ a preference relation and w ∈ C∗, we define the shifted preference relation ⊑[w] as

the preference relation such that for µ, µ′ ∈ Dist(Cω, F), µ ⊑[w] µ′ if and only if wµ ⊑ wµ′.

▶ Definition 4. Let G = (A, Sinit, ⊑) be an initialized game and X ∈ {PFM, P, GFM, G} be a
type of strategies. A strategy σi ∈ ΣX

i (A, Sinit) is X-subgame perfect (X-SP) in G if for all ρ ∈
Hists(A, Sinit), shifted strategy σi[ρ] is X-optimal in the initialized game (A, out(ρ), ⊑[ĉol(ρ)]).

Strategies that are X-SP are in particular X-optimal; the converse is not true in general.

3 Coverability and subgame perfect strategies

In this section, we establish a key tool (Lemma 6) which can be used to reduce questions
about the sufficiency of AIFM strategies in reasonable classes of initialized arenas to the
sufficiency of memoryless strategies in a subclass. We then describe the use of this lemma to
obtain our first main result (Theorem 7), which shows that the sufficiency of pure AIFM
strategies implies the existence of pure AIFM SP strategies. Technical details are in [9].

▶ Definition 5. An initialized arena ((S1, S2, A, δ, col), Sinit) is covered by memory skeleton
M = (M, minit, αupd) if there exists a function ϕ : S → M such that for all s ∈ Sinit,
ϕ(s) = minit, and for all (s, a, s′) ∈ δ, αupd(ϕ(s), col(s, a)) = ϕ(s′).

The coverability property means that it is possible to assign a unique memory state
to each arena state such that transitions of the arena always update the memory state in
a way that is consistent with the memory skeleton. A covered initialized arena carries in
some way already sufficient information to play with memory M without actually using
memory – using the memory skeleton M would not be more powerful than using no memory
at all. This property is linked to the classical notion of product arena with M: a strategy
based on M corresponds to a memoryless strategy in a product arena (e.g., [7, Lemma 1]
and [9]). For our results, coverability is a key technical definition, as the class of initialized
arenas covered by a memory skeleton is sufficiently well-behaved to support edge-induction
arguments, whereas it is difficult to perform such techniques directly on the class of product
arenas: removing a single edge from a product arena makes it hard to express as a product
arena, whereas it is clear that coverability is preserved. Every initialized arena is covered by
Mtriv, which is witnessed by the function ϕ associating minit to every state.

Definitions close to our notion of coverability by M were introduced for deterministic
arenas in [36, 7]. The definition of adherence with M in [36, Definition 8.12] is very similar,
but does not distinguish initial states from the rest (neither in the arena nor in the memory

CONCUR 2021



26:10 Arena-Independent Finite-Memory Determinacy in Stochastic Games

skeleton). Our property of (A, Sinit) being covered by M is also equivalent to A being both
prefix-covered and cyclic-covered by M from Sinit [7]. Distinguishing both notions gives
insight in [7] as they are used at different places in proofs (prefix-covered along with monotony,
and cyclic-covered along with selectivity). Here, we opt for a single concise definition.

The following lemma sums up our practical use of the idea of coverability.

▶ Lemma 6. Let ⊑ be a preference relation, M be a memory skeleton, and X ∈ {PFM, P, GFM,

G} be a type of strategies. Let A be the class of one-player or two-player, stochastic or
deterministic initialized arenas. Then, P1 has an X-optimal (resp. X-SP) strategy based on
M in all initialized arenas in A if and only if P1 has a memoryless X-optimal (resp. X-SP)
strategy in all initialized arenas covered by M in A.

We now state one of our main results, which shows that the sufficiency of pure strategies
based on the same memory skeleton M implies that pure SP strategies based on M exist.

▶ Theorem 7. Let ⊑ be a preference relation, M be a memory skeleton, and X ∈ {PFM, P,

GFM, G} be a type of strategies. Let A be the class of one-player or two-player, stochastic or
deterministic initialized arenas. If P1 has pure X-optimal strategies based on M in initialized
arenas of A, then P1 has pure X-SP strategies based on M in initialized arenas of A.

Proof sketch. By Lemma 6, we can prove instead that P1 has a pure memoryless X-SP
strategy in every initialized arena covered by M, based on the hypothesis that P1 has a pure
memoryless X-optimal strategy in every initialized arena covered by M. For (A, Sinit) ∈ A

covered by M, P1 has a pure memoryless X-optimal strategy σ0
1 . If this strategy is not X-SP,

there must be a prefix ρ ∈ Hists(A, Sinit) such that σ0
1 is not X-optimal in (A, out(ρ), ⊑[ĉol(ρ)]).

Then, we extend (A, Sinit) by adding a “chain” of states with colors ĉol(ρ) up to out(ρ), and
add as an initial state the first state of this chain. This new arena is still covered by M, thus
P1 has a pure memoryless X-optimal strategy in this arena that is now X-optimal after seeing ρ.
If this strategy is not X-SP, we keep iterating our reasoning. This iteration necessarily ends,
as we consider finite arenas, on which there are finitely many pure memoryless strategies. ◀

This result shows a major distinction between the sufficiency of AIFM strategies and
the more general sufficiency of FM strategies: if a player can always play optimally with
the same memory, then SP strategies may be played with the same memory as optimal
strategies – if a player can play optimally but needs arena-dependent finite memory, then
infinite memory may still be required to obtain SP strategies. One such example is provided
in [38, Example 16] for the average-energy games with lower-bounded energy in deterministic
arenas: P1 can always play optimally with pure finite-memory strategies [6, Theorem 13],
but infinite memory is needed for SP strategies. As will be further explained later, we will
also use Theorem 7 to gain technical insight in the proof of the main result of Section 5.

4 One-to-two-player lift

Our goal in this section is to expose a practical tool to help study the memory requirements
of two-player stochastic (or deterministic) games. This tool consists in reducing the study of
the sufficiency of pure AIFM strategies for both players in two-player games to one-player
games. We first state our result, and we then explain how it relates to similar results from
the literature and sketch its proof. A slightly generalized result with a more fine-grained
quantification on the classes of initialized arenas is in [9], with the complete proof.
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▶ Theorem 8 (Pure AIFM one-to-two-player lift). Let ⊑ be a preference relation, M1 and
M2 be two memory skeletons, and X ∈ {PFM, P, GFM, G} be a type of strategies. Let A be
the class of all initialized stochastic or deterministic arenas.

Assume that in all initialized one-player arenas of P1 in A, P1 can play X-optimally with
a pure strategy based on M1, and in all initialized one-player arenas of P2 in A, P2 can play
X-optimally with a pure strategy based on M2. Then in all initialized two-player arenas in
A, both players have a pure X-SP strategy based on M1 ⊗ M2.

The practical usage of this result can be summed up as follows: to determine whether
pure AIFM strategies are sufficient for both players in stochastic (resp. deterministic) arenas
to play X-optimally, it is sufficient to prove it for stochastic (resp. deterministic) one-player
arenas. Our theorem deals in a uniform manner with stochastic and deterministic arenas,
under different types of strategies. Studying memory requirements of one-player arenas is
significantly easier than doing so in two-player arenas, as a one-player arena can be seen as a
graph (in the deterministic case) or an MDP (in the stochastic case). Still, we bring more
tools to study memory requirements of one-player arenas in Section 5.

Theorem 8 generalizes known one-to-two-player lifts: for pure memoryless strategies in
deterministic [33] and stochastic [34] games, and for pure AIFM strategies in deterministic
games [7]. Very briefly, our proof technique consists in extending the lift for pure memoryless
strategies in stochastic games [34] in order to deal with initialized arenas. Then, we show
that this pure memoryless one-to-two-player lift can be applied to the class of initialized
arenas covered by M1 ⊗ M2 (using an edge-induction technique), and Lemma 6 permits to
go back from pure memoryless strategies to pure strategies based on M1 ⊗ M2. Thanks to
Theorem 7, we also go further in our understanding of the optimal strategies: we obtain the
existence of X-SP strategies instead of the seemingly weaker existence of X-optimal strategies.

5 AIFM characterization

For this section, we fix ⊑ a preference relation, X ∈ {PFM, P, GFM, G} a type of strategies,
and M = (M, minit, αupd) a memory skeleton. We distinguish two classes of initialized arenas:
the class AD

P1
of all initialized one-player deterministic arenas of P1, and the class AS

P1
of all

initialized one-player stochastic arenas of P1. A class of arenas will therefore be specified
by a letter Y ∈ {D, S}, which we fix for the whole section. Our aim is to give a better
understanding of the preference relations for which pure strategies based on M suffice to
play X-optimally in AY

P1
, by characterizing it through two intuitive conditions. All definitions

and proofs are stated from the point of view of P1. As we only work with one-player arenas
in this section, we abusively write Pσ1

A,s and Pcσ1
A,s for the distributions on plays and colors

induced by a strategy σ1 of P1 on (A, s), with the unique, trivial strategy for P2.
For A ∈ AY

P1
and s a state of A, we write [A]Xs = {Pcσ1

A,s | σ1 ∈ ΣX
1 (A, s)} for the set of

all distributions over (Cω, F) induced by strategies of type X in A from s.
For m1, m2 ∈ M , we write Lm1,m2 = {w ∈ C∗ | α̂upd(m1, w) = m2} for the language

of words that are read from m1 up to m2 in M. Such a language can be specified by the
deterministic automaton that is simply the memory skeleton M with m1 as the initial state
and m2 as the unique final state. We extend the shifted distribution notation to sets of
distributions: for w ∈ C∗, for Λ ⊆ Dist(Cω, F), we write wΛ for the set {wµ | µ ∈ Λ}.

Given ⊑ a preference relation, we also extend ⊑ to sets of distributions: for Λ1, Λ2 ⊆
Dist(Cω, F), we write Λ1 ⊑ Λ2 if for all µ1 ∈ Λ1, there exists µ2 ∈ Λ2 such that µ1 ⊑ µ2;
we write Λ1 ⊏ Λ2 if there exists µ2 ∈ Λ2 such that for all µ1 ∈ Λ1, µ1 ⊏ µ2. Notice that
¬(Λ1 ⊑ Λ2) is equivalent to Λ2 ⊏ Λ1. If Λ1 is a singleton {µ1}, we write µ1 ⊑ Λ2 for
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{µ1} ⊑ Λ2 (and similarly for Λ2, and similarly using ⊏). Notice that µ1 ⊑ µ2 is equivalent
to {µ1} ⊑ {µ2}, so this notational shortcut is sound. For two initialized arenas (A1, s1) and
(A2, s2), the inequality [A1]Xs1

⊑ [A2]Xs2
means that for every strategy on (A1, s1), there is a

strategy on (A2, s2) that induces a distribution that is at least as good.
For two arenas A1 and A2 with disjoint state spaces, if s1 and s2 are two states controlled

by P1 that are respectively in A1 and A2 with disjoint sets of available actions, we write
(A1, s1) ⊔ (A2, s2) for the merged arena in which s1 and s2 are merged, and everything else is
kept the same. The merged state which comes from the merge of s1 and s2 is usually called
t. Formally, let A1 = (S1

1 , S1
2 , A1, δ1, col1), A2 = (S2

1 , S2
2 , A2, δ2, col2), s1 ∈ S1

1 , and s2 ∈ S2
1 .

We assume that S1 ∩ S2 = ∅ and that A(s1) ∩ A(s2) = ∅. We define (A1, s1) ⊔ (A2, s2)
as the arena (S1, S2, A, δ, col) with S1 = S1

1 ⊎ S2
1 ⊎ {t} \ {s1, s2}, S2 = S1

2 ⊎ S2
2 ; we define

A(t) = A1(s1) ⊎ A2(s2) and for i ∈ {1, 2}, δ(t, a) = δi(t, a) and col(t, a) = coli(t, a) if
a ∈ A(si); all the other available actions, transitions and colors are kept the same as in
the original arenas (with transitions going to s1 or s2 being directed to t). A symmetrical
definition can be written if s1 and s2 are both controlled by P2.

We can now present the two properties of preference relations at the core of our character-
ization. These properties are called X-Y-M-monotony and X-Y-M-selectivity; they depend
on a type of strategies X, a type of arenas Y, and a memory skeleton M. The first appearance
of the monotony (resp. selectivity) notion was in [33], which dealt with deterministic arenas
and memoryless strategies; their monotony (resp. selectivity) is equivalent to our P-D-Mtriv-
monotony (resp. P-D-Mtriv-selectivity). In [7], these definitions were generalized to deal with
the sufficiency of strategies based on M in deterministic arenas; their notion of M-monotony
(resp. M-selectivity) is equivalent to our P-D-M-monotony (resp. P-D-M-selectivity).

▶ Definition 9 (Monotony). We say that ⊑ is X-Y-M-monotone if for all m ∈ M , for all
(A1, s1), (A2, s2) ∈ AY

P1
, there exists i ∈ {1, 2} s.t. for all w ∈ Lminit,m, w[A3−i]Xs3−i

⊑ w[Ai]Xsi
.

The crucial part of the definition is the order of the last two quantifiers: of course, given
a w ∈ Lminit,m, as ⊑ is total, it will always be the case that w[A1]Xs1

⊑ w[A2]Xs2
or that

w[A2]Xs2
⊑ w[A1]Xs1

. However, we ask for something stronger: it must be the case that the
set of distributions w[Ai]Xsi

is preferred to w[A3−i]Xs3−i
for any word w ∈ Lminit,m.

The original monotony definition [33] states that when presented with a choice once
among two possible continuations, if a continuation is better than the other one after some
prefix, then this continuation is also at least as good after all prefixes. This property is not
sufficient for the sufficiency of pure memoryless strategies as it does not guarantee that if the
same choice presents itself multiple times in the game, the same continuation should always
be chosen, as alternating between both continuations might still be beneficial in the long
run – this is dealt with by selectivity. If memory M is necessary to play optimally, then it
makes sense that there are different optimal choices depending on the current memory state
and that we should only compare prefixes that reach the same memory state. The point of
taking into account a memory skeleton M in our definition of X-Y-M-monotony is to only
compare prefixes that are read up to the same memory state from minit.

▶ Definition 10 (Selectivity). We say that ⊑ is X-Y-M-selective if for all m ∈ M , for
all (A1, s1), (A2, s2) ∈ AY

P1
such that for i ∈ {1, 2}, ĉol(Hists(Ai, si, si)) ⊆ Lm,m, for all

w ∈ Lminit,m, w[(A1, s1) ⊔ (A2, s2)]Xt ⊑ w[A1]Xs1
∪ w[A2]Xs2

(where t comes from the merge of
s1 and s2).

Our formulation of the selectivity concept differs from the original definition [33] and
its AIFM counterpart [7] in order to take into account the particularities of the stochastic
context, even if it can be proven that they are equivalent in the pure deterministic case. The
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idea is still the same: the original selectivity definition states that when presented with a
choice among multiple possible continuations after some prefix, if a continuation is better
than the others, then as the game goes on, if the same choice presents itself again, it is
sufficient to always pick the same continuation to play optimally; there is no need to alternate
between continuations. This property is not sufficient for the sufficiency of pure memoryless
strategies as it does not guarantee that for all prefixes, the same initial choice is always the
one we should commit to – this is dealt with by monotony. The point of memory skeleton
M in our definition is to guarantee that every time the choice is presented, we are currently
in the same memory state.

An interesting property is that both notions are stable by product with a memory skeleton:
if ⊑ is X-Y-M-monotone (resp. X-Y-M-selective), then for all memory skeletons M′, ⊑ is
also X-Y-(M ⊗ M′)-monotone (resp. X-Y-(M ⊗ M′)-selective). The reason is that in each
definition, we quantify universally over the class of all prefixes w that reach the same memory
state m; if we consider classes that are subsets of the original classes, then the definition still
holds. This property matches the idea that playing with more memory is never detrimental.

Combined together, it is intuitively reasonable that X-Y-M-monotony and X-Y-M-
selectivity are equivalent to the sufficiency of pure strategies based on M to play X-optimally
in AY

P1
: monotony tells us that when a single choice has to be made given a state of the

arena and a memory state, the best choice is always the same no matter what prefix has
been seen, and selectivity tells us that once a good choice has been made, we can commit to
it in the future of the game. We formalize this idea in Theorem 13. First, we add an extra
restriction on preference relations which is useful when stochasticity is involved.

▶ Definition 11 (Mixing is useless). We say that mixing is useless for ⊑ if for all sets I at
most countable, for all positive reals (λi)i∈I such that

∑
i∈I λi = 1, for all families (µi)i∈I ,

(µ′
i)i∈I of distributions in Dist(Cω, F), if for all i ∈ I, µi ⊑ µ′

i, then
∑

i∈I λiµi ⊑
∑

i∈I λiµ
′
i.

That is, if we can write a distribution as a convex combination of distributions, then it is
never detrimental to improve a distribution appearing in the convex combination.

▶ Remark 12. All preference relations encoded as Borel real payoff functions (as defined in
Example 1) satisfy this property (it is easy to show the property for indicator functions,
and we can then extend this fact to all Borel functions thanks to properties of the Lebesgue
integral). The third preference relation from Example 1 (reaching c ∈ C with probability
precisely 1

2 ) does not satisfy this property: if µ1(♢c) = 0, µ′
1(♢c) = 1

2 , and µ2(♢c) = 1, we
have µ1 ⊏ µ′

1 and µ2 ⊑ µ2, but 1
2 µ′

1 + 1
2 µ2 ⊏ 1

2 µ1 + 1
2 µ2. In deterministic games with pure

strategies, only Dirac distributions on infinite words occur as distributions induced by an
arena and a strategy, so the requirement that mixing is useless is not needed. ⌟

▶ Theorem 13. Assume that no stochasticity is involved (that is, X ∈ {P, PFM} and Y = D),
or that mixing is useless for ⊑. Then pure strategies based on M suffice to play X-optimally
in all initialized one-player arenas in AY

P1
for P1 if and only if ⊑ is X-Y-M-monotone and

X-Y-M-selective.

Proof sketch. We sketch both directions of the proof (available in [9]). The proof of the
necessary condition of Theorem 13 is the easiest direction. The main idea is to build the
right arenas (using the arenas occurring in the definitions of monotony and selectivity) so
that we can use the hypothesis about the existence of pure X-optimal strategies based on M
to immediately deduce X-Y-M-monotony and X-Y-M-selectivity. It is not necessary that
mixing is useless for ⊑ for this direction of the equivalence.
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For the sufficient condition, we first reduce as usual the statement to the existence of
pure memoryless strategies in covered initialized arenas, using Lemma 6. We proceed with
an edge-induction in these arenas (as for Theorem 8). The base case is trivial (as in an
arena in which all states have a single available action, there is a single strategy which is
pure and memoryless). For the induction step, we take an initialized arena (A′, Sinit) ∈ AY

P1

covered by M, and we pick a state t with (at least) two available actions. A memory state
ϕ(t) is associated to t thanks to coverability. We consider arenas (A′

a, Sinit) obtained from
(A′, Sinit) by leaving a single action a available in t, to which we can apply the induction
hypothesis and obtain a pure memoryless X-optimal strategy σa

1 . It is left to prove that
one of these strategies is also X-optimal in (A′, Sinit); this is where X-Y-M-monotony and
X-Y-M-selectivity come into play.

The property of X-Y-M-monotony tells us that one of these subarenas (A′
a∗ , Sinit) is

preferred to the others w.r.t. ⊑ after reading any word in Lminit,ϕ(t). We now want to use
X-Y-M-selectivity to conclude that there is no reason to use actions different from a∗ when
coming back to t, and that σa∗

1 is therefore also X-optimal in (A′, Sinit). To do so, we take
any strategy σ1 ∈ ΣX

1 (A′, s) for s ∈ Sinit and we condition distribution Pσ1
A′,s over all the ways

it reaches (or not) t, which gives a convex combination of probability distributions. We want
to state that once t is reached, no matter how, switching to strategy σa∗

1 is always beneficial.
For this, we would like to use X-subgame-perfection of σa∗

1 rather than simply X-optimality:
this is why in the actual proof, our induction hypothesis is about X-SP strategies and not
X-optimal strategies. Luckily, Theorem 7 indicates that requiring subgame perfection is
not really stronger than what we want to prove. We then use that mixing is useless for ⊑
(Definition 11) to replace all the parts that go through t in the convex combination by a
better distribution induced by σa∗

1 from t. ◀

The literature provides some sufficient conditions for preference relations to admit pure
memoryless optimal strategies in one-player stochastic games (for instance, in [31]). Here,
we obtain a full characterization when mixing is useless for ⊑ (in particular, this is a full
characterization for Borel real payoff functions), which can deal not only with memoryless
strategies, but also with the more general AIFM strategies. It therefore provides a more
fundamental understanding of preference relations for which AIFM strategies suffice or do
not suffice. In particular, there are examples in which the known sufficient conditions are
not verified even though pure memoryless strategies suffice (one such example is provided
in [10]), and that is for instance where our characterization can help.

It is interesting to relate the concepts of monotony and selectivity to other properties
from the literature to simplify the use of our characterization. For instance, if a real payoff
function f : Cω → R is prefix-independent,1 then it is also X-Y-M-monotone for any X, Y,
and M; therefore, the sufficiency of pure AIFM strategies immediately reduces to analyzing
selectivity.

6 Conclusion

We have studied stochastic games and gave an overview of desirable properties of preference
relations that admit pure arena-independent finite-memory optimal strategies. Our analysis
provides general tools to help study memory requirements in stochastic games, both with one
player (Markov decision processes) and two players, and links both problems. It generalizes
both work on deterministic games [33, 7] and work on stochastic games [34].

1 A function f : Cω → R is prefix-independent if for all w ∈ C∗, for all w′ ∈ Cω, f(ww′) = f(w′).
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A natural question that remains unsolved is the link between memory requirements of
a preference relation in deterministic and in stochastic games; our results can be called
independently to study both problems, but do not describe a bridge to go from one to
the other yet. Also, our results can only be used to show the optimality of pure strategies
with some fixed memory, but in some cases, using randomized strategies allows for lesser
memory requirements [16, 41]. Investigating whether extensions to our results dealing with
randomized strategies hold would therefore be valuable.
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Abstract
In this paper, we study the framework of two-player Stackelberg games played on graphs in which
Player 0 announces a strategy and Player 1 responds rationally with a strategy that is an optimal
response. While it is usually assumed that Player 1 has a single objective, we consider here the
new setting where he has several. In this context, after responding with his strategy, Player 1 gets
a payoff in the form of a vector of Booleans corresponding to his satisfied objectives. Rationality
of Player 1 is encoded by the fact that his response must produce a Pareto-optimal payoff given
the strategy of Player 0. We study the Stackelberg-Pareto Synthesis problem which asks whether
Player 0 can announce a strategy which satisfies his objective, whatever the rational response of
Player 1. For games in which objectives are either all parity or all reachability objectives, we show
that this problem is fixed-parameter tractable and NEXPTIME-complete. This problem is already
NP-complete in the simple case of reachability objectives and graphs that are trees.
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1 Introduction

Two-player zero-sum infinite-duration games played on graphs are a mathematical model
used to formalize several important problems in computer science, such as reactive system
synthesis. In this context, see e.g. [26], the graph represents the possible interactions between
the system and the environment in which it operates. One player models the system to
synthesize, and the other player models the (uncontrollable) environment. In this classical
setting, the objectives of the two players are opposite, that is, the environment is adversarial.
Modelling the environment as fully adversarial is usually a bold abstraction of reality as it
can be composed of one or several components, each of them having their own objective.

In this paper, we consider the framework of Stackelberg games [31], a richer non-zero-
sum setting, in which Player 0 (the system) called leader announces his strategy and then
Player 1 (the environment) called follower plays rationally by using a strategy that is
an optimal response to the leader’s strategy. This framework captures the fact that in
practical applications, a strategy for interacting with the environment is committed before
the interaction actually happens. The goal of the leader is to announce a strategy that
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guarantees him a payoff at least equal to some given threshold. In the specific case of Boolean
objectives, the leader wants to see his objective being satisfied. The concept of leader and
follower is also present in the framework of rational synthesis [17, 24] with the difference that
this framework considers several followers, each of them with their own Boolean objective. In
that case, rationality of the followers is modeled by assuming that the environment settles to
an equilibrium (e.g. a Nash equilibrium) where each component (composing the environment)
is considered to be an independent selfish individual, excluding cooperation scenarios between
components or the possibility of coordinated rational multiple deviations. Our work proposes
a novel and natural alternative in which the single follower, modeling the environment, has
several objectives that he wants to satisfy. After responding to the leader with his own
strategy, Player 1 receives a vector of Booleans which is his payoff in the corresponding
outcome. Rationality of Player 1 is encoded by the fact that he only responds in such a way
to receive Pareto-optimal payoffs, given the strategy announced by the leader. This setting
encompasses scenarios where, for instance, several components can collaborate and agree
on trade-offs. The goal of the leader is therefore to announce a strategy that guarantees
him to satisfy his own objective, whatever the response of the follower which ensures him a
Pareto-optimal payoff. The problem of deciding whether the leader has such a strategy is
called the Stackelberg-Pareto Synthesis problem (SPS problem).

Contributions. In addition to the definition of the new setting, our main contributions are
the following ones. We consider the general class of ω-regular objectives modelled by parity
conditions and also consider the case of reachability objectives for their simplicity1. We
provide a thorough analysis of the complexity of solving the SPS problem for both objectives.
Our results are interesting and singular both from a theoretical and practical point of view.

First, we show that the SPS problem is fixed-parameter tractable (FPT) for reachability
objectives when the number of objectives of the follower is a parameter and for parity
objectives when, in addition, the maximal priority used in each priority function is also
a parameter of the complexity analysis (Theorem 3). These are important results as it is
expected that, in practice, the number of objectives of the environment is limited to a few.
To obtain these results, we develop a reduction from our non-zero-sum games to a zero-sum
game in which the protagonist, called Prover, tries to show the existence of a solution to the
problem, while the antagonist, called Challenger, tries to disprove it. This zero-sum game is
defined in a generic way, independently of the actual objectives used in the initial game, and
can then be easily adapted according to the case of reachability or parity objectives.

Second, we prove that the SPS problem is NEXPTIME-complete for both reachability
and parity objectives (Theorem 6 and Theorem 9), and that it is already NP-complete in
the simple setting of reachability objectives and graphs that are trees (Theorem 7). To the
best of our knowledge, this is the first NEXPTIME-completeness result for a natural class
of games played on graphs. To obtain the hardness for NEXPTIME, we present a natural
succinct version of the set cover problem that is complete for this class (Theorem 11), a result
of potential independent interest. We then show how to reduce this problem to the SPS
problem. To obtain the NEXPTIME-membership of the SPS problem, we have shown that
exponential-size solutions exist for positive instances of the SPS problem and this allows us
to design a nondeterministic exponential-time algorithm. Unfortunately, it was not possible
to use the FPT algorithm mentioned above to show this membership due to its too high time
complexity; conversely, our NEXPTIME algorithm is not FPT.

1 Indeed, in the classical context of two-player zero-sum games, solving reachability games is in P whereas
solving parity games is only known to be in NP ∩ co-NP, see e.g. [18].
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Related Work. Rational synthesis is introduced in [17] for ω-regular objectives in a setting
where the followers are cooperative with the leader, and later in [24] where they are adversarial.
Precise complexity results for various ω-regular objectives are established in [13] for both
settings. Those complexities differ from the ones of the problem studied in this paper.
Indeed, for reachability objectives, adversarial rational synthesis is PSPACE-complete, while
for parity objectives, its precise complexity is not settled (the problem is PSPACE-hard and
in NEXPTIME). Extension to non-Boolean payoffs, like mean-payoff or discounted sum, is
studied in [19, 20] in the cooperative setting and in [1, 16] in the adversarial setting.

When several players (like the followers) play with the aim to satisfy their objectives,
several solution concepts exist such as Nash equilibrium [25], subgame perfect equilibrium [27],
secure equilibria [11, 12], or admissibility [2, 4]. The constrained existence problem, close
to the cooperative rational synthesis problem, is to decide whether there exists a solution
concept such that the payoff obtained by each player is larger than some threshold. Let us
mention [13, 29, 30] for results on the constrained existence for Nash equilibria and [5, 6, 28]
for such results for subgame perfect equilibria. Rational verification is studied in [21, 22].
This problem (which is not a synthesis problem) is to decide whether a given LTL formula is
satisfied by the outcome of all Nash equilibria (resp. some Nash equilibrium). The interested
reader can find more pointers to works on non-zero-sum games for reactive synthesis in [3, 7].

Structure. The paper is structured as follows. In Section 2, we introduce the class of
Stackelberg-Pareto games and the SPS problem. We show in Section 3 that the SPS problem
is in FPT for reachability and parity objectives. The complexity class of this problem is
studied in Section 4 where we prove that it is NEXPTIME-complete and NP-complete in case
of reachability objectives and graphs that are trees. In Section 5, we provide a conclusion
and discuss future work. Detailed proofs of our results can be found in the full version of
this paper.

2 Preliminaries and Stackelberg-Pareto Synthesis Problem

This section introduces the class of two-player Stackelberg-Pareto games in which the first
player has a single objective and the second has several. We present a decision problem on
those games called the Stackelberg-Pareto Synthesis problem, which we study in this paper.

2.1 Preliminaries
Game Arena. A game arena is a tuple G = (V, V0, V1, E, v0) where (V,E) is a finite directed
graph such that: (i) V is the set of vertices and (V0, V1) forms a partition of V where V0
(resp. V1) is the set of vertices controlled by Player 0 (resp. Player 1), (ii) E ⊆ V × V is the
set of edges such that each vertex v has at least one successor v′, i.e., (v, v′) ∈ E, and (iii)
v0 ∈ V is the initial vertex. We call a game arena a tree arena if it is a tree in which every
leaf vertex has itself as its only successor. A sub-arena G′ with a set V ′ ⊆ V of vertices and
initial vertex v′

0 ∈ V ′ is a game arena defined from G as expected.

Plays. A play in a game arena G is an infinite sequence of vertices ρ = v0v1 . . . ∈ V ω such
that it starts with the initial vertex v0 and (vj , vj+1) ∈ E for all j ∈ N. Histories in G are
finite sequences h = v0 . . . vj ∈ V + defined similarly. A history is elementary if it contains
no cycles. We denote by PlaysG the set of plays in G. We write HistG (resp. HistG,i) the set
of histories (resp. histories ending with a vertex in Vi). We use the notations Plays, Hist, and
Histi when G is clear from the context. We write Occ(ρ) the set of vertices occurring in ρ

and Inf(ρ) the set of vertices occurring infinitely often in ρ.

CONCUR 2021
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Strategies. A strategy σi for Player i is a function σi : Histi → V assigning to each history
hv ∈ Histi a vertex v′ = σi(hv) such that (v, v′) ∈ E. It is memoryless if σi(hv) = σi(h′v) for
all histories hv, h′v ending with the same vertex v ∈ Vi. More generally, it is finite-memory
if it can be encoded by a Moore machine M [18]. The memory size of σi is the number of
memory states of M. In particular, σi is memoryless when it has a memory size of one.

Given a strategy σi of Player i, a play ρ = v0v1 . . . is consistent with σi if vj+1 =
σi(v0 . . . vj) for all j ∈ N such that vj ∈ Vi. Consistency is naturally extended to histories.
We denote by Playsσi

(resp. Histσi) the set of plays (resp. histories) consistent with σi. A
strategy profile is a tuple σ = (σ0, σ1) of strategies, one for each player. We write out(σ) the
unique play consistent with both strategies and we call it the outcome of σ.

Objectives. An objective for Player i is a set of plays Ω ⊆ Plays. A play ρ satisfies the
objective Ω if ρ ∈ Ω. In this paper, we focus on the two following ω-regular objectives. Let
T ⊆ V be a subset of vertices called a target set, the reachability objective Reach(T ) =
{ρ ∈ Plays | Occ(ρ) ∩ T ̸= ∅} asks to visit at least one vertex of T . Let c : V → N be a
function called a priority function which assigns an integer to each vertex in the arena, the
parity objective Parity(c) = {ρ ∈ Plays | minv∈Inf(ρ)(c(v)) is even} asks that the minimum
priority visited infinitely often be even.

2.2 Stackelberg-Pareto Synthesis Problem
Stackelberg-Pareto Games. A Stackelberg-Pareto game (SP game) G = (G,Ω0,Ω1, . . . ,Ωt)
is composed of a game arena G, an objective Ω0 for Player 0 and t ≥ 1 objectives Ω1, . . . ,Ωt

for Player 1. In this paper, we focus on SP games where the objectives are either all
reachability or all parity objectives and call such games reachability (resp. parity) SP games.

Payoffs in SP Games. The payoff of a play ρ ∈ Plays corresponds to the vector of Booleans
pay(ρ) ∈ {0, 1}t such that for all i ∈ {1, . . . , t}, payi(ρ) = 1 if ρ ∈ Ωi, and payi(ρ) = 0
otherwise. Note that we omit to include Player 0 when discussing the payoff of a play.
Instead we say that a play ρ is won by Player 0 if ρ ∈ Ω0 and we write won(ρ) = 1, otherwise
it is lost by Player 0 and we write won(ρ) = 0. We write (won(ρ), pay(ρ)) the extended payoff
of ρ. Given a strategy profile σ, we write won(σ) = won(out(σ)) and pay(σ) = pay(out(σ)).
For reachability SP games, since reachability objectives are prefix-dependant and given a
history h ∈ Hist, we also define won(h) and pay(h) as done for plays.

We introduce the following partial order on payoffs. Given two payoffs p = (p1, . . . , pt)
and p′ = (p′

1, . . . , p
′
t) such that p, p′ ∈ {0, 1}t, we say that p′ is larger than p and write p ≤ p′

if pi ≤ p′
i for all i ∈ {1, . . . , t}. Moreover, when it also holds that pi < p′

i for some i, we say
that p′ is strictly larger than p and we write p < p′. A subset of payoffs P ⊆ {0, 1}t is an
antichain if it is composed of pairwise incomparable payoffs with respect to ≤.

Stackelberg-Pareto Synthesis Problem. Given a strategy σ0 of Player 0, we consider the
set of payoffs of plays consistent with σ0 which are Pareto-optimal, i.e., maximal with respect
to ≤. We write this set Pσ0 = max{pay(ρ) | ρ ∈ Playsσ0}. Notice that it is an antichain. We
say that those payoffs are σ0-fixed Pareto-optimal and write |Pσ0 | the number of such payoffs.
A play ρ ∈ Playsσ0

is called σ0-fixed Pareto-optimal if its payoff pay(ρ) is in Pσ0 .
The problem studied in this paper asks whether there exists a strategy σ0 for Player 0

such that every play in Playsσ0
which is σ0-fixed Pareto-optimal satisfies the objective of

Player 0. This corresponds to the assumption that given a strategy of Player 0, Player 1 will
play rationally, that is, with a strategy σ1 such that out((σ0, σ1)) is σ0-fixed Pareto-optimal.
It is therefore sound to ask that Player 0 wins against such rational strategies.
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v0

v1

v2

v3

v4

v5

v7

v6(0, (0, 0, 1))

(0, (1, 0, 0))

(1, (1, 1, 0))

(1, (0, 1, 1))

Figure 1 A reachability SP game.

▶ Definition 1. Given an SP game, the Stackelberg-Pareto Synthesis problem (SPS problem)
is to decide whether there exists a strategy σ0 for Player 0 (called a solution) such that for
each strategy profile σ = (σ0, σ1) with pay(σ) ∈ Pσ0 , it holds that won(σ) = 1.

Witnesses. Given a strategy σ0 that is a solution to the SPS problem and any payoff
p ∈ Pσ0 , for each play ρ consistent with σ0 such that pay(ρ) = p it holds that won(ρ) = 1.
For each p ∈ Pσ0 , we arbitrarily select such a play which we call a witness (of p). We denote
by Witσ0 the set of all witnesses, of which there are as many as payoffs in Pσ0 . In the
sequel, it is useful to see this set as a tree composed of |Witσ0 | branches. Additionally for
a given history h ∈ Hist, we write Witσ0(h) the set of witnesses for which h is a prefix, i.e.,
Witσ0(h) = {ρ ∈ Witσ0 | h is prefix of ρ}. Notice that Witσ0(h) = Witσ0 when h = v0 and
that Witσ0(h) decreases as h increases, until it contains a single value or becomes empty.

▶ Example 2. Consider the reachability SP game with arena G depicted in Figure 1 in which
Player 1 has t = 3 objectives. The vertices of Player 0 (resp. Player 1) are depicted as ellipses
(resp. rectangles)2. Every objective in the game is a reachability objective defined as follows:
Ω0 = Reach({v6, v7}), Ω1 = Reach({v4, v7}), Ω2 = Reach({v3}), Ω3 = Reach({v1, v6}). The
extended payoff of plays reaching vertices from which they can only loop is displayed in the
arena next to those vertices, and the extended payoff of play v0v2(v3v5)ω is (0, (0, 1, 0)).

Consider the memoryless strategy σ0 of Player 0 such that he chooses to always move to v5
from v3. The set of payoffs of plays consistent with σ0 is {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1)}
and the set of those that are Pareto-optimal is Pσ0 = {(1, 0, 0), (0, 1, 1)}. Notice that play
ρ = v0v2(v4)ω is consistent with σ0, has payoff (1, 0, 0) and is lost by Player 0. Strategy
σ0 is therefore not a solution to the SPS problem. In this game, there is only one other
memoryless strategy for Player 0, where he chooses to always move to v7 from v3. One can
verify that it is again not a solution to the SPS problem.

We can however define a finite-memory strategy σ′
0 such that σ′

0(v0v2v3) = v5 and
σ′

0(v0v2v3v5v3) = v7 and show that it is a solution to the problem. Indeed, the set of
σ′

0-fixed Pareto-optimal payoffs is Pσ′
0

= {(0, 1, 1), (1, 1, 0)} and Player 0 wins every play
consistent with σ′

0 whose payoff is in this set. A set Witσ′
0

of witnesses for these payoffs is
{v0v2v3v5v

ω
6 , v0v2v3v5v3v

ω
7 } and is in this case the unique set of witnesses. This example

shows that Player 0 sometimes needs memory in order to have a solution to the SPS problem.

3 Fixed-Parameter Complexity

In this section, we show that the SPS problem is in FPT for both cases of reachability and
parity SP games. We refer the reader to [15] for the concept of fixed-parameter complexity.

2 This convention is used throughout this paper.
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⊥

v0, P, {p1, p2} v0, P, (∅, {p1, p2})

v1, P, ∅

v2, P, {p1, p2} v2, P, ({p1, p2}, ∅)

v3, P, {p1, p2}

v4, P, ∅

v5, P, {p1, p2}

v7, P, {p1, p2}

v5, P, ({p1}, {p2})

v5, P, ({p2}, {p1})

v3, P, {p2}

v6, P, {p1}

v7, P, {p2}

v5, P, ({p1, p2}, ∅)

v6, P, ∅

v3, P, {p1}

v6, P, {p2}

v7, P, {p1}

. . .

. . . . . . . . .

. . .. . . . . .

. . . . . .

. . .

Figure 2 A part of the C-P game for Example 2 with P = {p1, p2}, p1 = (1, 1, 0), and p2 = (0, 1, 1).

▶ Theorem 3. Solving the SPS problem is in FPT for reachability SP games for parameter t
equal to the number of objectives of Player 1 and it is in FPT for parity SP games for
parameters t and the maximal priority according to each parity objective of Player 1.

3.1 Challenger-Prover Game

In order to prove Theorem 3, we provide a reduction to a specific two-player zero-sum game,
called the Challenger-Prover game (C-P game). This game is a zero-sum3 game played
between Challenger (written C) and Prover (written P). We will show that Player 0 has a
solution to the SPS problem in an SP game if and only if P has a winning strategy in the
corresponding C-P game. In the latter game, P tries to show the existence of a strategy
σ0 that is solution to the SPS problem in the original game and C tries to disprove it. The
C-P game is described independently of the objectives used in the SP game and its objective
is described as such in a generic way. We later provide the proof of our FPT results by
adapting it specifically for reachability and parity SP games.

Intuition on the C-P Game. Without loss of generality, the SP games we consider in this
section are such that each vertex in their arena has at most two successors. It can be shown
that any SP game G with n vertices can be transformed into an SP game Ḡ with O(n2)
vertices such that every vertex has at most two successors and Player 0 has a solution to the
SPS problem in G if and only if he has a solution to the SPS problem in Ḡ.

Let G be an SP game. The C-P game G′ is a zero-sum game associated with G that
intuitively works as follows. First, P selects a set P of payoffs which he announces as the
set of Pareto-optimal payoffs Pσ0 for the solution σ0 to the SPS problem in G he is trying
to construct. Then, P tries to show that there exists a set of witnesses Witσ0 in G for the
payoffs in P . After the selection of P in G′, there is a one-to-one correspondence between
plays in the arenas G and G′ such that the vertices in G′ are augmented with a set W which
is a subset of P . Initially W is equal to P and after some history in G′, W contains payoff p

if the corresponding history in G is prefix of the witness with payoff p in the set Witσ0 that
P is building. In addition, the objective ΩP of P is such that he has a winning strategy σP
in G′ if and only if the set P that he selected coincides with the set Pσ0 for the corresponding
strategy σ0 in G and the latter strategy is a solution to the SPS problem in G. A part of the
arena of the C-P game for Example 2 with a positional winning strategy for P highlighted in
bold is illustrated in Figure 2.

3 We assume that the reader is familiar with the concept of zero-sum games, see e.g. [18].
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Arena of the C-P Game. The initial vertex ⊥ belongs to P . From this vertex, he selects a
successor (v0, P,W ) such that W = P and P is an antichain of payoffs which P announces
as the set Pσ0 for the strategy σ0 in G he is trying to construct. All vertices in plays starting
with this vertex will have this same value for their P -component. Those vertices are either
a triplet (v, P,W ) that belongs to P or (v, P, (Wl,Wr)) that belongs to C. Given a play ρ
(resp. history h) in G′, we denote by ρV (resp. hV ) the play (resp. history) in G obtained by
removing ⊥ and keeping the v-component of every vertex of P in ρ (resp. h), which we call
its projection.

After history hm such that m = (v, P,W ) with v ∈ V0, P selects a successor v′ such
that (v, v′) ∈ E and vertex (v′, P,W ) is added to the play. This corresponds to Player 0
choosing a successor v′ after history hV v in G.
After history hm such that m = (v, P,W ) with v ∈ V1, P selects a successor
(v, P, (Wl,Wr)) with (Wl,Wr) a partition of W . This corresponds to P splitting the set
W into two parts according to the two successors vl and vr of v. For the strategy σ0 that
P tries to construct and its set of witnesses Witσ0 he is building, he asserts that Wl (resp.
Wr) is the set of payoffs of the witnesses in Witσ0(hV vl) (resp. Witσ0(hV vr)).
From a vertex (v, P, (Wl,Wr)), C can select a successor (vl, P,Wl) or (vr, P,Wr) which
corresponds to the choice of Player 1.

Formally, the game arena of the C-P game is the tuple G′ = (V ′, V ′
P , V

′
C , E

′,⊥) with
V ′

P = {⊥} ∪ {(v, P,W ) | v ∈ V, P ⊆ {0, 1}t is an antichain and W ⊆ P},
V ′

C = {(v, P, (Wl,Wr)) | v ∈ V1, P ⊆ {0, 1}t is an antichain and Wl,Wr ⊆ P},
(⊥, (v, P,W )) ∈ E′ if v = v0 and P = W ,
((v, P,W ), (v′, P,W )) ∈ E′ if v ∈ V0 and (v, v′) ∈ E,
((v, P,W ), (v, P, (Wl,Wr))) ∈ E′ if v ∈ V1 and (Wl,Wr) is a partition of W ,
((v, P, (Wl,Wr)), (v′, P,W )) ∈ E′ if (v, v′) ∈ E and {v′ = vl and W = Wl} or {v′ = vr

and W = Wr}.
In the definition of E′, if v has a single successor v′ in G, it is assumed to be vl and Wr is
always equal to ∅. Given the two successors vi and vj of v, vi is the left successor if i < j.

Objective of P in the C-P Game. Let us now discuss the objective ΩP of P. The W -
component of the vertices controlled by P has a size that decreases along a play ρ in G′.
We write limW (ρ) the value of the W -component at the limit in ρ. Recall that with this
W -component, P tries to construct a solution σ0 to the SPS problem with associated sets
Pσ0 and Witσ0 . Therefore, for him to win in the C-P game, limW (ρ) must be a singleton or
empty in every consistent play such that:

limW (ρ) must be a singleton {p} with p the payoff of ρV in G, showing that ρV ∈ Witσ0

is a correct witness for p. In addition, it must hold that won(ρV ) = 1 as p ∈ P and as P
wants σ0 to be a solution.
limW (ρ) must be the empty set such that either the payoff of ρV belongs to Pσ0 and
won(ρV ) = 1, or the payoff of ρV is strictly smaller than some payoff in Pσ0 .

These conditions verify that the sets P = Pσ0 and Witσ0 are correct and that σ0 is indeed a
solution to the SPS problem in G. They are generic as they do not depend on the actual
objectives used in the SP game.
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Let us give the formal definition of ΩP . For an antichain P of payoffs, we write PlaysP
G′

the set of plays in G′ which start with ⊥(v0, P, P ) and we define the following set

BP =
{
ρ ∈ PlaysP

G′ | (limW (ρ) = {p} ∧ pay(ρV ) = p ∈ P ∧ won(ρV ) = 1) ∨ (1)
(limW (ρ) = ∅ ∧ pay(ρV ) ∈ P ∧ won(ρV ) = 1) ∨ (2)
(limW (ρ) = ∅ ∧ ∃p ∈ P, pay(ρV ) < p)

}
. (3)

Objective ΩP of P in G′ is the union of BP over all antichains P . As the C-P game is
zero-sum, objective ΩC equals PlaysG′ \ ΩP . The following theorem holds.

▶ Theorem 4. Player 0 has a strategy σ0 that is solution to the SPS problem in G if and
only if P has a winning strategy σP from ⊥ in the C-P game G′.

Proof. Let us first assume that Player 0 has a strategy σ0 that is solution to the SPS problem
in G. Let Pσ0 be its set of σ0-fixed Pareto-optimal payoffs and let Witσ0 be a set of witnesses.
We construct the strategy σP from σ0 such that

σP(⊥) = (v0, P, P ) such that P = Pσ0 (this vertex exists as Pσ0 is an antichain),
σP(hm) = (v′, P,W ) if m = (v, P,W ) with v ∈ V0 and v′ = σ0(hV v),
σP(hm) = (v, P, (Wl,Wr)) if m = (v, P,W ) with v ∈ V1 and for i ∈ {l, r}, Wi = {pay(ρ) |
ρ ∈ Witσ0(hV vi)}.

It is clear that given a play ρ in G′ consistent with σP , the play ρV in G is consistent with σ0.
Let us show that σP is winning for P from ⊥ in G′. Consider a play ρ in G′ consistent with σP .
There are two possibilities. (i) ρV is a witness of Witσ0 and by construction limW (ρ) = {p}
with p = pay(ρV ); thus won(ρV ) = 1 as σ0 is a solution and ρV is a witness. (ii) ρV is not a
witness and by construction limW (ρ) = ∅; as σ0 is a solution, then p = pay(ρV ) is bounded
by some payoff of Pσ0 and in case of equality won(ρV ) = 1. Therefore ρ satisfies the objective
BP of ΩP since it satisfies condition (1) in case (i) and condition (2) or (3) in case (ii).

Let us now assume that P has a winning strategy σP from ⊥ in G′. Let P be the
antichain of payoffs chosen from ⊥ by this strategy. We construct the strategy σ0 from σP
such that σ0(hV v) = v′ given σP(hm) = (v′, P,W ) with m = (v, P,W ) and v ∈ V0. Notice
that this definition makes sense since there is a unique history hm ending with a vertex of P
associated with hV v showing a one-to-one correspondence between those histories.

Let us show σ0 is a solution to the SPS problem with Pσ0 being the set P . First notice
that P is not empty. Indeed let ρ be a play consistent with σP . As ρ belongs to ΩP and
in particular to BP , one can check that P ̸= ∅ by inspecting conditions (1) to (3). Second
notice that by definition of E′, if ((v, P,W ), (v, P, (Wl,Wr))) ∈ E′ with W ̸= ∅, then either
Wl or Wr is not empty. Therefore given any payoff p ∈ P , there is a unique play ρ consistent
with σP such that limW (ρ) = {p}. By construction of σ0 and as σP is winning, the play ρV

is consistent with σ0, has payoff p, and is won by Player 0 (see (1)).
Let ρV be a play consistent with σ0 and ρ be the corresponding play consistent with σP .

It remains to consider (2) and (3). These conditions indicate that ρV has a payoff equal to
or strictly smaller than a payoff in P and that in case of equality won(ρV ) = 1. This shows
that Pσ0 = P and that σ0 is a solution to the SPS problem. ◀

3.2 Proof of the FPT Results
We now sketch the proof of Theorem 3 which works by specializing the generic objective
ΩP to handle reachability and parity SP games. We begin with reachability SP games. We
extend the arena G′ of the C-P game such that its vertices keep track of the objectives of
G which are satisfied along a play. Given an extended payoff (w, p) ∈ {0, 1} × {0, 1}t and a
vertex v ∈ V , we define the payoff update upd(w, p, v) = (w′, p′) such that
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w′ = 1 ⇐⇒ w = 1 or v ∈ T0,

p′
i = 1 ⇐⇒ pi = 1 or v ∈ Ti, ∀i ∈ {1, . . . , t}.

We obtain the extended arena G∗ as follows: (i) its set of vertices is V ′×{0, 1}×{0, 1}t, (ii) its
initial vertex is ⊥∗ = (⊥, 0, (0, . . . , 0)), and (iii) ((m,w, p), (m′, w′, p′)) with m′ = (v′, P,W )
or m′ = (v′, P, (Wl,Wr)) is an edge in G∗ if (m,m′) ∈ E′ and (w′, p′) = upd(w, p, v′).

We define the zero-sum game G∗ = (G∗,Ω∗
P) in which the three abstract conditions (1-3) de-

tailed previously are encoded into the following Büchi objective by using the (w, p)-component
added to vertices. We define Ω∗

P = Büchi(B∗) with

B∗ =
{

(v, P,W,w, p) ∈ V ∗
P | (W = {p} ∧ w = 1) ∨ (1’)

(W = ∅ ∧ p ∈ P ∧ w = 1) ∨ (2’)
(W = ∅ ∧ ∃p′ ∈ P, p < p′)

}
. (3’)

The proof of the next proposition is a consequence of Theorem 4.

▶ Proposition 5. Player 0 has a strategy σ0 that is solution to the SPS problem in a
reachability SP game G if and only if P has a winning strategy σ∗

P in G∗.

We obtain the following FPT algorithm for deciding the existence of a solution to the
SPS problem in a reachability SP game G. First, we construct the zero-sum game G∗ whose
number of vertices is linear in the number of vertices in the original game and double
exponential in the number t of objectives of Player 1. Second, by Proposition 5, deciding
whether there exists a solution to the SPS problem in G amounts to solving the zero-sum
Büchi game G∗; this can be done in quadratic time in the number of vertices of G∗ [10].
Those two steps are in FPT for parameter t.

We now turn to parity SP games and briefly explain why solving the SPS problem in
these games is in FPT, again by reduction to the C-P game. The arena G′ of the C-P
game remains as is and its objective ΩP is replaced by a Boolean Büchi objective Ω′

P which
encodes the three conditions for parity objectives. Boolean Büchi objectives are Boolean
combinations of Büchi objectives and zero-sum games with such objectives are shown to be
solvable in FPT in [8]. It follows that the SPS problem is also in FPT.

4 Complexity Class of the SPS Problem

In this section, we study the complexity class of the SPS problem and prove its NEXPTIME-
completeness for both reachability and parity SP games.

4.1 NEXPTIME-Membership
We first show the membership to NEXPTIME of the SPS problem by providing a nondetermin-
istic algorithm with time exponential in the size of the game G. By size, we mean the number
|V | of its vertices and the number t of objectives of Player 1. Notice that the time complexity
of the FPT algorithms obtained in the previous section is too high, preventing us from directly
using the C-P game to show a tight membership result. Conversely, the nondeterministic
algorithm provided in this section is not FPT as it is exponential in |V |.

▶ Theorem 6. The SPS problem is in NEXPTIME for reachability and parity SP games.
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Figure 3 The creation of strategies σ̂0 and σ̃0 from a solution σ0 with Witσ0 = {ρ1, ρ2, ρ3, ρ4}.

We show this membership result by proving that if Player 0 has a strategy which is a
solution to the problem, he has one which is finite-memory with at most an exponential number
of memory states4. This yields a NEXPTIME algorithm in which we nondeterministically
guess such a strategy and check in exponential time that it is indeed a solution.

While our proof requires some specific arguments to treat both reachability and parity
objectives, it is based on the following common principles. We first explain why, when there
is a solution σ0 to the SPS problem, there is one that is finite-memory. We consider a fixed
set of witnesses Witσ0 . Figure 3 illustrates the two steps of the following construction.

We start by showing the existence of a strategy σ̂0 constructed from σ0, in which Player 0
follows σ0 as long as the current consistent history is prefix of at least one witness
in Witσ0 . Then when a deviation from Witσ0 occurs, Player 0 switches to a so-called
punishing strategy. A deviation is a history that leaves the set of witnesses Witσ0 after
a move of Player 1 (this is not possible by a move of Player 0). After such a deviation,
σ̂0 systematically imposes that the consistent play either satisfies Ω0 or is not σ0-fixed
Pareto-optimal, i.e., it gives to Player 1 a payoff that is strictly smaller than the payoff
of a witness in Witσ0 . This makes the deviation irrational for Player 1. We show that
this can be done, both for reachability and parity objectives, with at most exponentially
many different punishing strategies, each having a size bounded exponentially in the size
of the game. The strategy σ̂0 that we obtain is therefore composed of the part of σ0 that
produces Witσ0 and a punishment part whose size is at most exponential.
Then, we show how to decompose each witness in Witσ0 into at most exponentially many
sections that can, in turn, be compacted into finite elementary paths or lasso shaped
paths of polynomial length. As Witσ0 contains exactly |Pσ0 | witnesses ρ, those compact
witnesses cρ can be produced by a finite-memory strategy with an exponential size for
both reachability and parity objectives. This allows us to construct a strategy σ̃0 that
produces the compact witnesses and acts as σ̂0 after any deviation. This strategy is a
solution of the SPS problem and has an exponential size as announced.

We can now sketch the proof of Theorem 6, again by giving arguments that work for both
reachability and parity objectives. We guess a solution σ0 to the SPS problem that we can
assume to be finite-memory, that is, we guess it as a Moore machine M with an exponential
number of memory states. We then verify that σ0 is indeed a solution by first computing the
set Pσ0 and then checking that every σ0-fixed Pareto-optimal play satisfies the objective Ω0
of Player 0. To this end, we construct the cartesian product G× M which is an automaton
whose infinite paths are exactly the plays consistent with σ0. We then use classical results
from automata theory about the emptiness problem for an intersection of reachability (resp.
parity) objectives to get the announced exponential complexity of our verifying algorithm.

4 Recall that to have a solution to the SPS problem, memory may be necessary as shown in Example 2.
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Figure 4 The tree arena used in the reduction from the SC problem.

4.2 NP-Completeness for Tree Arenas

Before turning to the NEXPTIME-hardness of the SPS problem in the next section, we
first want to show that the SPS problem is already NP-complete in the simple setting of
reachability objectives and arenas that are trees. To do so, we use a reduction from the Set
Cover problem (SC problem) which is NP-complete [23].

▶ Theorem 7. The SPS problem is NP-complete for reachability SP games on tree arenas.

Notice that when the game arena is a tree, it is easy to design an algorithm for solving
the SPS problem that is in NP. First, we nondeterministically guess a strategy σ0 that can
be assumed to be memoryless as the arena is a tree. Second, we apply a depth-first search
algorithm from the root vertex which accumulates to leaf vertices the extended payoff of
plays which are consistent with σ0. Finally, we check that σ0 is a solution.

Let us explain why the SPS problem is NP-hard on tree arenas by reduction from the SC
problem. We recall that an instance of the SC problem is defined by a set C = {e1, e2, . . . , en}
of n elements, m subsets S1, S2, . . . , Sm such that Si ⊆ C for each i ∈ {1, . . . ,m}, and an
integer k ≤ m. The problem consists in finding k indexes i1, i2, . . . , ik such that the union of

the corresponding subsets equals C, i.e., C =
k⋃

j=1
Sij .

Given an instance of the SC problem, we construct a game with an arena consisting of
n+ k · (m+ 1) + 3 vertices. The arena G of the game is provided in Figure 4 and can be
seen as two sub-arenas reachable from the initial vertex v0. The game is such that there
is a solution to the SC problem if and only if Player 0 has a strategy from v0 in G which
is a solution to the SPS problem. The game is played between Player 0 with reachability
objective Ω0 and Player 1 with n + 1 reachability objectives. The objectives are defined
as follows: Ω0 = Reach({v2}), Ωi = Reach({ei} ∪ {Sj | ei ∈ Sj}) for i ∈ {1, 2, . . . , n} and
Ωn+1 = Reach({v2}). First, notice that every play in G1 is consistent with any strategy of
Player 0 and is lost by that player. It holds that for each ℓ ∈ {1, 2, . . . , n}, there is such a play
with payoff (p1, . . . , pn+1) such that pℓ = 1 and pj = 0 for j ̸= ℓ. These payoffs correspond to
the elements eℓ which are to be covered in the SC problem. A play in G2 visits v2 and then
a vertex c from which Player 0 selects a vertex S. Such a play is always won by Player 0
and its payoff is (p1, . . . , pn+1) such that pn+1 = 1 and pr = 1 if and only if the element er

belongs to the set S. It follows that the payoff of such a play corresponds to a set of elements
in the SC problem. It is easy to see that the following proposition holds.

▶ Proposition 8. There is a solution to an instance of the SC problem if and only if Player 0
has a strategy from v0 in the corresponding SP game that is a solution to the SPS problem.
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4.3 NEXPTIME-Hardness
Let us come back to regular game arenas and show the NEXPTIME-hardness result thanks
to the succinct variant of the SC problem presented below.

▶ Theorem 9. The SPS problem is NEXPTIME-hard for reachability and parity SP games.

Succinct Set Cover Problem. The Succinct Set Cover problem (SSC problem) is defined as
follows. We are given a Conjunctive Normal Form (CNF) formula ϕ = C1 ∧C2 ∧ · · · ∧Cp over
the variables X = {x1, x2, . . . , xm} made up of p clauses, each containing some disjunction
of literals of the variables in X. The set of valuations of the variables X which satisfy
ϕ is written JϕK. We are also given an integer k ∈ N (encoded in binary) and an other
CNF formula ψ = D1 ∧ D2 ∧ · · · ∧ Dq over the variables X ∪ Y with Y = {y1, y2, . . . , yn},
made up of q clauses. Given a valuation valY : Y → {0, 1} of the variables in Y , called
a partial valuation, we write ψ[valY ] the CNF formula obtained by replacing in ψ each
variable y ∈ Y by its valuation valY (y). We write Jψ[valY ]K the valuations of the remaining
variables X which satisfy ψ[valY ]. The SSC problem is to decide whether there exists a set
K =

{
valY | valY : Y → {0, 1}

}
of k valuations of the variables in Y such that the valuations

of the remaining variables X which satisfy the formulas ψ[valY ] include the valuations of X
which satisfy ϕ. Formally, we write this JϕK ⊆

⋃
valY ∈K

Jψ[valY ]K.

We can show that this corresponds to a set cover problem succinctly defined using CNF
formulas. The set JϕK of valuations of X which satisfy ϕ corresponds to the set of elements
we aim to cover. Parameter k is the number of sets that can be used to cover these elements.
Such a set is described by a formula ψ[valY ], given a partial valuation valY , and its elements
are the valuations of X in Jψ[valY ]K. This is illustrated in the following example.

▶ Example 10. Consider the CNF formula ϕ = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) over the vari-
ables X = {x1, x2, x3}. The set of valuations of the variables which satisfy ϕ is
JϕK = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 1)}. Each such valuation corresponds to one ele-
ment we aim to cover. Consider the CNF formula ψ = (y1 ∨ y2) ∧ (x1 ∨ y2) ∧ (x2 ∨ x3 ∨ y1)
over the variables X ∪ Y with Y = {y1, y2}. Given the partial valuation valY of the
variables in Y such that valY (y1) = 0 and valY (y2) = 1, we get the CNF formula
ψ[valY ] = (0 ∨ 1) ∧ (x1 ∨ 1) ∧ (x2 ∨ x3 ∨ 0). This formula describes the contents of the set
identified by the partial valuation (as a partial valuation yields a unique formula). The
valuations of the variables X which satisfy ψ[valY ] are the elements contained in the set. In
this case, these elements are Jψ[valY ]K = {(0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)}.
We can see that this set contains the elements {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 1)} of JϕK.

It is easy to see that the SSC problem is in NEXPTIME. Its NEXPTIME-hardness can
be obtained by reduction from the Succinct Dominating Set problem, which is NEXPTIME-
complete for graphs succinctly encoded using CNF formulas [14].

▶ Theorem 11. The SSC problem is NEXPTIME-complete.

We now describe our reduction from the SSC problem to show the NEXPTIME-hardness
of solving the SPS problem for reachability SP games. The proof of this result for parity SP
games uses similar arguments, adapted to the prefix-independent nature of parity objectives.

Given an instance of the SSC problem, we construct a reachability SP game with arena
G consisting of a polynomial number of vertices in the number of clauses and variables in the
formulas ϕ and ψ and in the length of the binary encoding of the integer k. This reduction
is such that there is a solution to the SSC problem if and only if Player 0 has a strategy
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Figure 5 The arena G used in the reduction from the SSC problem.

from v0 in G which is a solution to the SPS problem. The arena G, provided in Figure 5,
can be viewed as three sub-arenas reachable from v0. Sub-arenas G1 and G2 are completely
controlled by Player 1. Plays entering these sub-arenas are therefore consistent with any
strategy of Player 0. Sub-arena G3 starts with a gadget Qk whose vertices belong to Player 1
and which provides exactly k different paths from v0 to v3.

Objectives. The game is played between Player 0 with reachability objective Ω0 and
Player 1 with t = 1 + 2 ·m+ p+ q reachability objectives. The payoff of a play therefore
consists in a single Boolean for objective Ω1, a vector of 2 · m Booleans for objectives
Ωx1 ,Ω¬x1 , . . . ,Ωxm ,Ω¬xm , a vector of p Booleans for objectives ΩC1 , . . . ,ΩCp and a vector
of q Booleans for objectives ΩD1 , . . . ,ΩDq

. The objectives are defined as follows.
The target set for objective Ω0 of Player 0 and objective Ω1 of Player 1 is {v2, v3}.
The target set for objective Ωxi

(resp. Ω¬xi
) with i ∈ {1, . . . ,m} is the set of vertices

labeled xi (resp. ¬xi) in G1, G2 and G3.
The target set for objective ΩCi

with i ∈ {1, . . . , p} is the set of vertices in G1 and G3
corresponding to the literals of X which make up the clause Ci in ϕ. In addition, vertex
ij in G2 belongs to the target set of objective ΩCℓ

for all ℓ ∈ {1, . . . , p} such that ℓ ̸= j.
The target set of objective ΩDi

with i ∈ {1, . . . , q} is the set of vertices in G3 corresponding
to the literals of X and Y which make up the clause Di in ψ. In addition, vertices v1
and v2 satisfy every objective ΩDi

with i ∈ {1, . . . , q}.

Payoff of Plays in G1. Plays in G1 do not satisfy objective Ω0 of Player 0 nor objective
Ω1 of Player 1. A play in G1 is of the form v0 v1 z1 � · · · � (zm)ω where zi is either xi or
¬xi. It follows that a play satisfies the objective Ωxi

or Ω¬xi
for each xi ∈ X. The vector of

payoffs for these objectives corresponds to a valuation of the variables in X, expressed as a
vector of 2 ·m Booleans. In addition, due to the way the objectives are defined, objective
ΩCi

is satisfied in a play if and only if clause Ci of ϕ is satisfied by the valuation this play
corresponds to. The objective ΩDi for i ∈ {1, . . . , q} is satisfied in every play in G1.

▶ Lemma 12. Plays in G1 are consistent with any strategy of Player 0. Their payoff are of
the form (0, val, sat(ϕ, val), 1, . . . , 1) where val is a valuation of the variables in X expressed
as a vector of payoffs for objectives Ωx1 to Ω¬xm

and sat(ϕ, val) is the vector of payoffs for
objectives ΩC1 to ΩCp corresponding to that valuation. All plays in G1 are lost by Player 0.
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Payoff of Plays in G2. Plays in G2 satisfy the objectives Ω0 of Player 0 and Ω1 of Player 1.
A play in G2 is of the form v0 v2 ij � z1 � · · · � (zm)ω where zℓ is either xℓ or ¬xℓ. It follows
that a play satisfies either the objective Ωx or Ω¬x for each x ∈ X which again corresponds
to a valuation of the variables in X. The objective ΩDi for i ∈ {1, . . . , q} is satisfied in every
play in G2. Compared to the plays in G1, the difference lies in the objectives corresponding
to clauses of ϕ which are satisfied. In any play in G2, a vertex ij with j ∈ {1, . . . , p} is first
visited, satisfying all the objectives ΩCℓ

with ℓ ∈ {1, . . . , p} and ℓ ≠ j. All but one objective
corresponding to the clauses of ϕ are therefore satisfied.

▶ Lemma 13. Plays in G2 are consistent with any strategy of Player 0. Their payoff are of
the form (1, val, vec, 1, . . . , 1) where val is a valuation of the variables in X expressed as a
vector of payoffs for objectives Ωx1 to Ω¬xm and vec is a vector of payoffs for objectives ΩC1

to ΩCp
in which all of them except one are satisfied. All plays in G2 are won by Player 0.

Plays in G2 are such that their payoff is strictly larger than the payoff of plays in G1 whose
valuation of X does not satisfy ϕ. It is easy to see that, when considering G1 and G2, the
only plays in G1 with a Pareto-optimal payoff are exactly those whose valuation satisfies all
clauses of ϕ. The following lemma therefore holds.

▶ Lemma 14. The set of payoffs of plays in G1 that are σ0-fixed Pareto-optimal when
considering G1 ∪G2 for any strategy σ0 of Player 0 is equal to the set of payoffs of plays in
G1 whose valuation of X satisfy ϕ.

Problematic Payoffs in G1. The plays described in the previous lemma correspond exactly
to the valuations of X which satisfy ϕ and therefore to the elements we aim to cover in the
SSC problem. They are σ0-fixed Pareto-optimal when considering G1 ∪G2 and are lost by
Player 0. All other σ0-fixed Pareto-optimal payoffs in G1 ∪G2 are only realized by plays in
G2 which are all won by Player 0. It follows that in order for Player 0 to find a strategy σ0
from v0 that is solution to the SPS problem, it must hold that those payoffs are not σ0-fixed
Pareto-optimal when considering G1 ∪G2 ∪G3. Otherwise, a play consistent with σ0 with a
σ0-fixed Pareto-optimal payoff is lost by Player 0. We call those payoffs problematic payoffs.

In order for Player 0 to find a strategy σ0 which is a solution to the SPS problem, this
strategy must be such that for each problematic payoff in G1, there is a play in G3 consistent
with σ0 and with a strictly larger payoff. Since the plays in G3 are all won by Player 0, this
would ensure that the strategy σ0 is a solution to the problem. This corresponds in the SSC
problem to selecting a series of sets in order to cover the valuations of X which satisfy ϕ.

Payoff of Plays in G3. Plays in G3 satisfy the objectives Ω0 of Player 0 and Ω1 of Player 1. A
play in G3 consistent with a strategy σ0 is of the form v0�· · ·�v3 r1, · · · , rn�z1�· · ·�(zm)ω

where ri is either yi or ¬yi and zi is either xi or ¬xi. Since only the vertices leading to y or
¬y for y ∈ Y belong to Player 0, it holds that v3 r1, · · · , rn is the only part of any play
in G3 which is directly influenced by σ0. That part of a play comes after a history from v0
to v3 of which there are k, provided by gadget Qk. By definition of a strategy, this can be
interpreted as Player 0 making a choice of valuation of the variables in Y after each of those
k histories. After this, the play satisfies either the objective Ωx or Ω¬x for each x ∈ X which
corresponds to a valuation of X. Due to the way the objectives are defined, the objective
ΩCi (resp. ΩDi) is satisfied if and only if clause Ci of ϕ (resp. Di of ψ) is satisfied by the
valuation of the variables in X (resp. X and Y ) the play corresponds to.
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Creating Strictly Larger Payoffs in G3. In order to create a play with a payoff r′ that
is strictly larger than a problematic payoff r, σ0 must choose a valuation of Y such that
there exists a valuation of the remaining variables X which together with this valuation of Y
satisfies ψ and ϕ (since in r every objective ΩCi for i ∈ {1, . . . , p} and ΩDi for i ∈ {1, . . . , q}
is satisfied). Since the plays in G3 also satisfy the objective Ω1 and plays in G1 do not, this
ensures that r < r′.

We finally briefly explain why the proposed reduction is correct. In case of a positive
instance of the SSC problem, by carefully selecting k valuations of Y , Player 0 ensures
that for each valuation valX satisfying ϕ, there is a play in G3 with a valuation valY such
that valX ∈ Jψ[valY ]K. Therefore, when considering the whole arena, no play in G1 is
Pareto-optimal and every Pareto-optimal play is won by Player 0. In case of a negative
instance, Player 0 is not able to do so and some play in G1 thus has a Pareto-optimal payoff
and is lost by Player 0.

5 Conclusion

We have introduced in this paper the class of two-player SP games and the SPS problem in
those games. We provided a reduction from SP games to a two-player zero-sum game called
the C-P game, which we used to obtain FPT results on solving this problem. We showed how
the arena and the generic objective of this C-P game can be adapted to specifically handle
reachability and parity SP games. This allowed us to prove that reachability (resp. parity)
SP games are in FPT when the number t of objectives of Player 1 (resp. when t and the
maximal priority according to each priority function in the game) is a parameter. We then
turned to the complexity class of the SPS problem and sketched the main arguments used
in our proof of its NEXPTIME-membership, which relied on showing that any solution to
the SPS problem in a reachability or parity SP game can be transformed into a solution
with an exponential memory. We showed the NP-completeness of the problem in the simple
setting of reachability SP games played on tree arenas. We then came back to regular game
arenas and established the NEXPTIME-hardness of the SPS problem in reachability and
parity SP games. This result relied on a reduction from the SSC problem which we proved
to be NEXPTIME-complete, a result of potential independent interest.

In future work, we want to study other ω-regular objectives as well as quantitative
objectives such as mean-payoff in the framework of SP games and the SPS problem. It would
also be interesting to study whether other works, such as rational synthesis, could benefit
from the approaches used in this paper.
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28:2 The Orbit Problem for Parametric Linear Dynamical Systems

1 Introduction

The Orbit Problem for linear dynamical systems asks to decide, given a square matrix
M ∈ Qd×d and two vectors u, v ∈ Qd, whether there exists a natural number n such that
Mnu = v. The problem was shown decidable (in polynomial time) by Kannan and Lipton [26]
over ten years after Harrison first raised the question of decidability [23]. The current paper is
concerned with a generalisation of the Orbit Problem to parametric linear dynamical systems.
In general, parametric models address a major drawback in quantitative verification, namely
the unrealistic assumption that quantitative data in models are known a priori and can
be specified exactly. In applications of linear dynamical systems to automated verification,
parameters are used to model partially specified systems (e.g., a faulty component with an
unknown failure rate, or when transition probabilities are only known up to some bounded
precision) as well as to model the unknown environment of a system. Interval Markov chains
can also be considered as a type of parametric linear dynamical system.

▶ Problem 1 (Parametric Orbit Problem). Given a (d×d)-matrix M , initial and target vectors
u, v, whose entries are real algebraic functions in ℓ common real variables X = (x1, ..., xℓ),
does there exist s ∈ Rℓ, i.e., values of the parameters giving rise to a concrete matrix,
initial and target M(s) ∈ Rd×d, u(s), u(s) ∈ Rd, and a positive integer n ∈ N, such that
M(s)nu(s) = v(s)?

We prove two main results in this paper. In the case of a single parameter we show that the
Parametric Orbit Problem is decidable. On the other hand, we show that the Parametric
Orbit Problem is at least as hard as the Skolem Problem – a well-known decision problem
for linear recurrence sequences, whose decidability has remained open for many decades. Our
reduction establishes intractability in the case of two or more parameters.

Thus our main decidability result is as follows:

▶ Theorem 2. Problem 1 is decidable when there is a single parameter (i.e., ℓ = 1).

Theorem 2 concerns a reachability problem in which the parameters are existentially
quantified. It would be straightforward to adapt our methods to allow additional constraints
on the parameter, e.g., requiring that s lie in a certain specified interval. In terms of
verification, a negative answer to an instance of the above reachability problem could be seen
as establishing a form of robust safety, i.e., an “error state” is not reachable regardless of the
value of the unknown parameter.

The proof of Theorem 2 follows a case distinction based on properties of the eigenvectors
of the matrix M (whose entries are functions) and the shape of the Jordan normal form J

of M . Our theorem assumes the entries of the matrix, initial and target vectors are real
algebraic functions – in particular encompassing polynomial and rational functions. Note
that even if we were to restrict the entries of M to be polynomials in the parameters, we
would still require (complex) algebraic functions in the Jordan normal form. We assume a
suitable effective representation of algebraic functions that supports evaluation at algebraic
points, computing the range and zeros of the functions, arithmetic operations, and extracting
roots of polynomials whose coefficients are algebraic functions.

The most challenging cases arise when J is diagonal. In this situation we can reformulate
the problem as follows: given algebraic functions λi(x), γi(x) for 1 ≤ i ≤ t, does there exist
(n, s) ∈ N × R such that

λn
i (s) = γi(s) for all i = 1, . . . , t? (1)
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A further key distinction in analysing the problem in Equation (1) involves the rank
of the multiplicative group generated by the functions λ1, . . . , λt. To handle the case that
the group has rank at least two, a central role is played by the results of Bombieri, Masser,
and Zannier (see [8, Theorem 2] and [9]) concerning the intersection of a curve in Cm, with
algebraic subgroups of (C∗)m of dimension at most m − 2. To apply these results we view
the problem in Equation (1) geometrically in terms of whether a curve

C = {(λ1(s), . . . , λt(s), γ1(s), . . . , γt(s)) : s ∈ R} ⊆ C2t

intersects the multiplicative group

Gn = {(α1, . . . , αt, β1, . . . , βt) ∈ (C∗)2t : αn
1 = β1 ∧ · · · ∧ αn

t = βt}

for some n ∈ N. The above-mentioned results of Bombieri, Masser, and Zannier can be used
to derive an upper bound on n such that C ∩ Gn is non-empty under certain conditions on
the set of multiplicative relations holding among λ1, . . . , λt and γ1, . . . , γt.

We provide specialised arguments for a number of cases for which the results of Bombieri,
Masser, and Zannier cannot be applied. In particular, for the case that the multiplicative
group generated by the functions λ1, . . . , λt has rank one, we provide in Section 6 a direct
elementary method to find solutions of Equation (1).

Another main case in the proof is when matrix J has a Jordan block of size at least 2,
i.e., it is not diagonal (see Section 4.2). The key instrument here is the notion of the Weil
height of an algebraic number together with bounds that relate the height of a number to
the height of its image under an algebraic function. Using these bounds we obtain an upper
bound on the n ∈ N such that the equation M(s)nu(s) = v(s) admits a solution s ∈ R.

Related work
Reachability problems in (unparametrized) linear dynamical systems have a rich history.
Answering a question by Harrison [23], Kannan and Lipton [26] showed that the point-to-point
reachability problem in linear dynamical systems is decidable in PTIME. They also noticed
that the problem becomes significantly harder if the target is a linear subspace – a problem
that still remains open, but has been solved for low-dimensional instances [14]. This was
extended to polytope targets in [15], and later further generalized to polytope initial sets
in [2]. Orbit problems have recently been studied in the setting of rounding functions [3]. In
our analysis we will make use of a version of the point-to-point reachability problem that
allows matrix entries to be algebraic numbers. In this case the eigenvalues are again algebraic,
and decidability follows by exactly the same argument as the rational case (although the
algorithm is no longer in PTIME), and is also a special case of the main result of [10].

If the parametric matrix M is the transition matrix of a parametric Markov chain (pMC)
[24, 22, 28], then our approach combines parameter synthesis with the distribution transformer
semantics. Parameter synthesis on pMCs asks whether some (or every) parameter setting
results in a Markov chain satisfying a given specification, expressed, e.g., in PCTL [25]. An
important problem in this direction is to find parameter settings with prescribed properties
[30, 12, 19], which has also been studied in the context of model repair [4, 37]. While all
previous references use the standard path-based semantics of Markov chains, the distribution
transformer semantics [29, 27, 13] studies the transition behaviour on probability distributions.
It has, to the best of our knowledge, never been considered for parametric Markov chains.
Our approach implicitly does this in that it performs parameter synthesis for a reachability
property in the distribution transformer semantics.
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The Skolem Problem asks whether a linear recurrence sequence (un)n has a zero term
(n such that un = 0). Phrased in terms of linear dynamical systems, the Skolem Problem
asks whether a d-dimensional linear dynamical system hits a (d − 1)-dimensional hyperplane,
and decidability in this setting is known for matrices of dimension at most four [34, 39]. A
continuous version of the Skolem Problem was examined in [16]. With the longstanding
intractability of the Skolem Problem in general, it has recently been used as a reference point
for other decision problems [1, 32, 38].

Ostafe and Shparlinski [35] consider the Skolem Problem for parametric families of
simple linear recurrences. More precisely, they consider linear recurrences of the form un =
a1(x)λ1(x)n + · · · + ak(x)λn

k (x) for rational functions a1, . . . , ak, λ1, . . . , λk with coefficients
in a number field. They show that the existence of a zero of the sequence (un) can be decided
for all values of the parameter outside an exceptional set of numbers of bounded height (note
that any value of the parameter such that the sequence un has a zero is necessarily algebraic).

2 Preliminaries

We denote by R,C,Q,Q the real, complex, rational, and algebraic numbers respect-
ively. For a field K and a finite set X of variables, K[X] and K(X) respectively denote
the ring of polynomials and field of rational functions with coefficients in K. A mero-
morphic function1 f : U → C where U is some open subset U ⊆ Cℓ is called algebraic, if
P (x1, . . . , xℓ, f(x1, . . . , xℓ)) = 0 for some P ∈ Q[x1, . . . , xℓ, y]. We say that f is real algebraic
if it is real-valued on real inputs.

▶ Definition 3. A parametric Linear Dynamical System (pLDS) of dimension d ∈ N is a
tuple M = (X, M, u), where X is a finite set of parameters, M is the parametrized matrix
whose entries are real algebraic functions in parameters X and u is the parametric initial
distribution whose entries are also real algebraic functions in parameters X.

Given s ∈ R|X|, we denote by M(s) the matrix Rd×d obtained from M by evaluating
each function in M at s, provided that this value is well-defined. Likewise we obtain u(s).
We call (M(s), u(s)) the induced linear dynamical system (LDS). The orbit of the LDS
(M(s), u(s)) is the set of vectors obtained by repeatedly applying the matrix M(s) to u(s):
{u(s), M(s)u(s), M(s)2u(s), . . . }. The LDS (M(s), u(s)) reaches a target v(s) if v(s) is in
the orbit, i.e. there exists n ∈ N such that M(s)nu(s) = v(s).

We remark that M(s) is undefined whenever any of the entries of M is undefined. For
any fixed n, the elements of Mn are polynomials in the entries of M , and consequently, Mn

is defined on the same domain as M .
Unless we state that M is a constant function, all matrices should be seen as functions,

with parameters x1, . . . , x|X|, or simply x if there is a single parameter. The notation s is
used for a specific instantiation of x. We often omit x when referring to a function, either the
function is declared constant or when we do not need to make reference to its parameters.

2.1 Computation with algebraic numbers
Throughout this note we employ notions from (computational) algebraic geometry and
algebraic number theory. Our approach relies on transforming the matrices we consider in
Jordan normal form. Doing so, the coefficients of the computed matrix are not rational
anymore but algebraic. Next we recall the necessary basics and refer to [17, 40] for more
background on notions utilised throughout the text.

1 A ratio of two holomorphic functions, which are complex-valued functions complex differentiable in
some neighbourhood of every point of the domain.
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The algebraic numbers Q are the complex numbers which can be defined as some root of
a univariate polynomial in Q[x]. In particular, the rational numbers are algebraic numbers.
For every α ∈ Q there exists a unique monic univariate polynomial Pα ∈ Q[x] of minimum
degree for which Pα(α) = 0. We call Pα the minimal polynomial of α. An algebraic number
α is represented as a tuple (Pα, α∗, ε), where α∗ = a1 + a2i, a1, a2 ∈ Q, is an approximation
of α, and ε ∈ Q is sufficiently small such that α is the unique root of Pα within distance ε

of α∗ (such ε can be computed by the root-separation bound, due to Mignotte [33]). This
is referred to as the standard or canonical representation of an algebraic number. Given
canonical representations of two algebraic numbers α and β, one can compute canonical
representations of α + β, αβ, and α/β, all in polynomial time.

▶ Definition 4 (Weil’s absolute logarithmic height). Given an algebraic number α with
minimal polynomial pα of degree d, consider the polynomial adpα with ad ∈ N minimal
such that for adpα = adxd + · · · + a1x + a0 we have ai ∈ Z and gcd(a1, . . . , ad) = 1. Write
adpα = ad(x − α(1)) · · · (x − α(d)), where α(1) = α. Define the (Weil) height h(α) of α ̸= 0
by h(α) = 1

d

(
log ad +

∑d
i=1 log(max{|α(i)|, 1})

)
. By convention h(0) = 0.

For all α, β ∈ Q and n ∈ Z we have from [40, Chapt. 3]:
1. h(α + β) ≤ h(α) + h(β) + log 2;
2. h(αβ) ≤ h(α) + h(β);
3. h(αn) = |n| · h(α).
In addition, for α ̸= 0 we have h(α) = 0 if and only if α is a root of unity (α is a root of unity
if there exists k ∈ N, k ≥ 1, such that αk = 1). Notice that the set of algebraic numbers with
both height and degree bounded is always finite.

2.2 Univariate algebraic functions
Let K be an algebraic extension of a field L such that the characteristic polynomial of
M ∈ Ld×d splits into linear factors over K. It is well-known that we can factor M over K

as M = C−1JC for some invertible matrix C ∈ Kd×d and block diagonal Jordan matrix
J = ⟨J1, . . . , JN ⟩ ∈ Kd×d. Each block Ji associated with some eigenvalue λi, and Jn

i , have
the following Jordan block form for some k ≥ 1:

Ji =

 λ 1 0 ··· 0
0 λ 1 ··· 0
...

...
...

. . .
...

0 0 0 ··· 1
0 0 0 ··· λ

 and Jn
i =


λn nλn−1 (n

2)λn−2 ··· ( n
k−1)λn−k+1

0 λn nλn−1 ··· ( n
k−2)λn−k+2

...
...

...
. . .

...
0 0 0 ··· nλn−1

0 0 0 ··· λn

 .

Furthermore, each eigenvalue λ of M appears in at least one of the Jordan blocks.
In case L = Q, we may take K to be an algebraic number field. In particular, the

eigenvalues of a rational matrix are algebraic. However, in this paper, the entries of our
matrix are algebraic functions, and so too are the entries in Jordan normal form. We recall
some basics of algebraic geometry and univariate algebraic functions required for the analysis
in the single-parameter setting, and refer the reader to [5, 18] for further information.

Let U ⊆ C be a connected open set and f : U → C a meromorphic function. We say that
f is algebraic over Q(x) if there is a polynomial P (x, y) ∈ Q[x, y] such that P (x, f(x)) = 0
for all x ∈ U where f is defined. Notice that a univariate algebraic function has finitely many
zeros and poles, and furthermore, these zeros and poles (or zeros at ∞) are algebraic. Indeed,
let P (x, y) = ad(x)yd + · · · + a1(x)y + a0(x), with ai ∈ Q[x], be irreducible. Assuming that
f vanishes at s, we have that a0(s) = 0. There are only finitely many s for which this can
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occur. Furthermore, the function 1/f is meromorphic (on a possibly different domain U)
and satisfies ydP (x, 1/y) = ad(x) + . . . + a1(x)yd−1 + a0(x)yd. We conclude that a pole of f

(a zero of 1/f) is a zero of ad(x).
Let P (x, y) =

∑d
i=0 ai(x)yi ∈ Q(x)[y]. We say that c ∈ C is a critical point of P if either

ad(c) = 0 or the resultant Resy(P, ∂P
∂y ) vanishes at c. If P is irreducible, then it has only

finitely many critical points since the resultant is a univariate non-zero polynomial.
Let M be a (d × d)-matrix with univariate real algebraic functions as entries. Let its

characteristic polynomial be P (x, y) := det(Iy − M) and write c1, . . . , cm ∈ C for the critical
points of the irreducible factors of P . Then there exist a connected open subset U ⊆ C such
that R \ {c1, . . . , cm} ⊆ U , and d holomorphic functions λ1, . . . , λd : U → C (not necessarily
distinct) such that the characteristic polynomial P of M factors as

P (x, y) = (y − λ1(x))(y − λ2(x)) · · · (y − λd(x))

for all points x ∈ U (see, e.g., [21, Chapt. 1, Thm. 8.9]).
Let us fix a (d × d)-matrix M and vectors u, v with univariate real algebraic entries. We

thus have M ∈ Ld×d, u, v ∈ Ld, for some finite field extension L of Q(x). Let K be fixed to
an algebraic extension of L such that the characteristic polynomial of M splits into linear
factors over the field K. Then, over the field K we have the factorisation M = C−1JC with
J in Jordan form. The eigenvalues of M , denoted λ1, . . . , λk, appear in the diagonal of J .
Let the set of exceptional points, denoted E , consist of the finite set {c1, . . . , cm}, the poles
of the entries of M, C, C−1, J, u and v, and points where det C(s) = 0 (i.e., C(s) is singular).

Consider now a non-constant univariate algebraic function λ not necessarily real. In our
analysis, we shall need to bound the height h(λ(s)) in terms of h(s), as long as s is not a
zero or a pole of λ. The following lemma shows h(λ(s)) = Θ(h(s)):

▶ Lemma 5. Let λ be a non constant algebraic function in K. Then there exist effective
constants c1, c2, c3, c4 > 0 such that for algebraic s not a zero or pole of λ we have
c1h(s) − c2 ≤ h(λ(s)) ≤ c3h(s) + c4.

2.2.1 Multiplicative relations
Let Y = {λ1, . . . , λt} ⊂ K be a set of univariate algebraic functions.

▶ Definition 6. A tuple (a1, . . . , at) ∈ Zt for which λa1
1 · · · λat

t = 1 identically, is called a
multiplicative relation. A set of multiplicative relations is called independent if it is Z-linearly
independent as a subset of Zt. The set Y is said to be multiplicatively dependent if it satisfies
a non-zero multiplicative relation. Otherwise Y is multiplicatively independent. The rank of
Y , denoted rank Y , is the size of the largest multiplicatively independent subset of Y .

A tuple (a1, . . . , at) ∈ Zt, for which there exists c ∈ Q such that λa1
1 · · · λat

t = c identically,
is called a multiplicative relation modulo constants. We say that Y is multiplicatively
dependent modulo constants if it satisfies a non-zero multiplicative relation modulo constants.
Otherwise Y is multiplicatively independent modulo constants.

In particular, if rank⟨λ1, . . . , λt⟩ = 1, then for each pair λi, λj , we have λb
i = λa

j for
some integers a, b not both zero. In the analysis that follows, we only need to distinguish
between this case and rank⟨λ1, . . . , λt⟩ ≥ 2. We will also need to find multiplicative relations
modulo constants between algebraic functions. These can be algorithmically determined and
constructed as a consequence of the following proposition. To this end, let L and L′ ⊆ Zt

be the set of multiplicative relations and multiplicative relations modulo constants on Y ,
respectively. Both L and L′ are finitely generated as subgroups of Zt under vector addition.

▶ Proposition 7. Given a set Y = {λ1, . . . , λt} of univariate algebraic functions, one can
compute a generating set for both L and L′.



C. Baier et al. 28:7

Proof. This is essentially a special case of a result from [20]. Indeed, in Sect. 3.2, they show
how to find the generators of the group L in case the λi are elements of a finitely generated
field over Q. We apply the result to the field Q(x, λ1, . . . , λt) to obtain the claim for the
set L. For L′, Case 3 of [20, Sect. 3.2] computes a generating set as an intermediate step
in the computation of a basis of L. Specifically, L and L′ are the respective kernels of the
maps φ and φ̃ in [20, Sect. 3.2]. We give an alternative proof sketch specialised to univariate
functions in the full version. ◀

3 The Multi-Parameter Orbit Problem is Skolem-hard

The Skolem Problem asks, given a order-k linear recurrence sequence (un)n, uniquely defined
by a recurrence relation un = a1un−1 + · · · + akun−k for fixed a1, . . . , ak and initial points
u1, . . . , uk, whether there exists an n such that un = 0. The problem is famously not known
to be decidable for orders at least 5, and problems which the Skolem problem reduce to are
said to be Skolem-hard. We will now reduce the Skolem at order 5 to the two-parameter
parametric orbit problem.

It suffices to only consider the instances of Skolem Problem at order 5 of the form
un = aλn

1 + aλn
1 + bλn

2 + bλn
2 + cρn = 0 with |λ1| = |λ2| ≥ |ρ| and a, b, λ1, λ2 ∈ Q,

c, ρ ∈ Q ∩ R, as the instances of the Skolem Problem at order 5 that are not of this form
are known to be decidable [36]. We may assume that c = ρ = 1 by considering the sequence
(un/cρn) if necessary. We can also rewrite un = AReλn

1 + BImλn
1 + CReλn

2 + DImλn
2 + 1 for

A, B, C, D ∈ Q ∩ R.
Let un = aλn

1 + aλn
1 + bλn

2 + bλn
2 + 1 = AReλn

1 + BImλn
1 + CReλn

2 + DImλn
2 + 1 be a

hard instance of the Skolem Problem. Let M = diag
([

Reλ1 −Imλ1
Imλ1 Reλ1

]
,

[
Reλ2 −Imλ2
Imλ2 Reλ2

])
,

that is, the Real Jordan Normal Form of diag(λ1, λ1, λ2, λ2). We set the starting point to be
u = [1 1 1 1]⊤ and show how to define parametrized target vectors v1(s, t), . . . , vk(s, t) such
that for all n, un = 0 if and only if there exist s, t ∈ R such that Mnu = vi(s, t) for some
i. The Skolem Problem at order 5 then reduces to k instances of the two-parameter orbit
problem.

The idea of our reduction is to first construct a semiagebraic set Z ⊆ R4, Z =
⋃k

i=1 Zi such
that un = 0 if and only if (Reλn

1 , Imλn
1 , Reλn

2 , Imλn
2 ) ∈ Z, and each Zi is a semialgebraic subset

of R4 that can be described using two parameters and algebraic functions in two variables.
Observing that Mns = (Reλn

1 − Imλn
1 , Imλn

1 + Reλn
1 , Reλn

2 − Imλn
2 , Imλn

2 + Reλn
2 ), we then

compute vi(s, t) from Zi as follows. Suppose Zi = {(x(s, t), y(s, t), z(s, t), u(s, t) : s, t. ∈ R}.
Then vi(s, t) = (x(s, t) − y(s, t), y(s, t) + x(s, t), u(s, t) − v(s, t), v(s, t) + u(s, t)).

To compute Z, first observe that Imλn
2 = ±

√
(Reλn

1 )2 + (Imλn
1 )2 − (Reλn

2 )2 for all n as
|λ1| = |λ2|. Motivated by this observation, let S+, S− ⊆ R3, S+ = {(x, y, z) : Ax+By +Cz +
D
√

x2 + y2 − z2 + 1 = 0} and S− = {(x, y, z) : Ax + By + Cz − D
√

x2 + y2 − z2 + 1 = 0}.
We will choose Z = {(x, y, z,

√
x2 + y2 − z2) : (x, y, z) ∈ S+} ∪ {(x, y, z, −

√
x2 + y2 − z2) :

(x, y, z) ∈ S−}. It is easy to check that the above definition of Z satisfies the requirement that
un = 0 if and only if (Reλn

1 , Imλn
1 , Reλn

2 , Imλn
2 ) ∈ Z, and it remains to show that both S+

and S− can be parametrized using algebraic functions in two variables and two parameters.
To this end, observe that S+ and S− are both semialgebraic subsets of R3, but are also
contained in the algebraic set S = {(x, y, z) : (Ax + By + Cz + 1)2 = D2(x2 + y2 − z2)} ⊆ R3.
Since S ̸= R3 (for example, (0, 0, 0) /∈ S), and it is algebraic, S can have dimension (see [18]
for a definition) at most 2. Hence S+, S− also have semialgebraic dimension at most 2. In
the full version, we show that a semialgebraic subsets of R3 of dimension at most two can
be written as a finite union of sets of the form {v(s, t) : s, t ∈ R}, where v is an algebraic
function. This completes the construction of Z and the description of the reduction.
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4 Single Parameter Reachability: Overview of proof

In this section we show how to prove Theorem 2, that is, it is decidable, given a (d×d)-matrix
M , initial and target vectors u, v, whose entries are real algebraic functions all depending on a
single parameter, whether there exist s ∈ R giving rise to a concrete matrix, initial and target
M(s) ∈ Rd×d, u(s), v(s) ∈ Rd, and a positive integer n ∈ N, such that M(s)nu(s) = v(s).

In our case analysis, we often show that either there is a finite set of parameter values for
which the constraints could hold, or place an upper bound on the n for which the constraints
hold. The following proposition shows that the decidability of the problem in these cases is
apparent:

▶ Proposition 8.
Given a finite set S ⊂ R it is decidable if there exists (n, s) ∈ N×S s.t. M(s)nu(s) = v(s).
Given B ∈ N it is decidable if there exists n ≤ B and s ∈ R s.t. M(s)nu(s) = v(s).

Proof. The decidability of the first case is a consequence of the fact that a choice of parameter
leads to a concrete matrix, thus giving an instance of the non-parametric Orbit Problem.

In the second case, for fixed n, one can observe that the matrix Mn is itself a matrix
of real algebraic functions. Hence the equation Mnu = v can be rewritten as equations
Pi(x) = 0 for real algebraic Pi for i = 1, . . . , d. For each equation the function is either
identically zero, or vanishes at only finitely many s which can be determined, and one can
check if there is an s in the intersection of the zero sets as i varies. Repeat for each n ≤ B. ◀

As a consequence, for each n either Mnu = v holds identically (for every s), or there are
at most finitely many s such that M(s)nu(s) = v(s), and all such points are algebraic, as
they must be the roots of the algebraic functions Pi.

Our approach will be to place the problem into Jordan normal form (Section 4.1), where
we will observe that the problem can be handled if the resulting form is not diagonal
(Section 4.2). Here the relation between the Weil height of an algebraic number and its image
under an algebraic function are exploited to bound n (reducing to the second case of the
proceeding proposition).

In the diagonal case the problem can be reformulated for algebraic functions λi, γi for
i = 1 . . . , t, whether there exist (n, s) ∈ N × R \ E such that λn

i (s) = γi(s) for all i = 1, . . . , t,
where E is a finite set of exceptional points. These exceptional points can be handled
separately using the first case of the proceeding proposition.

To show decidability we will distinguish between the case where rank⟨λ1, . . . , λt⟩ is 1 and
when it is greater than 2 (recall Definition 6). As discussed in the introduction, the most
intriguing part of our development will be in the case of rank⟨λ1, . . . , λt⟩ ≥ 2, captured in
the following lemma:

▶ Lemma 9. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ ≥ 2. Given
algebraic functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E
such that

λi(s)n = γi(s) for all i = 1, . . . , t. (2)

The proof of this lemma is shown in Section 5. Here we apply two specialised arguments,
in the case of non-constant λ’s we exploit the results of Bombieri, Masser, and Zannier [8, 9]
to show there is a finite effective set of parameter values. In the case of constant λ’s we
reduce to an instance of Skolem’s problem that we show is decidable, effectively bounding n.
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It will then remain to prove a similar lemma for the case where the rank is 1. Here we
will exploit the initial use of real algebraic functions, to ensure the presence of complex
conjugates.

▶ Lemma 10. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ = 1. We
assume that, if λi is complex then λi (the complex conjugate) also appears. Given algebraic
functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E such that
λn

i (s) = γi(s) for all i = 1, . . . , t.

The proof of this lemma (in Section 6), reduces the problem to a single equation (t = 1),
for which we provide a specialised analysis on the behaviour of such functions that enable us
to decide the existence of a solution.

In the remainder of this section we will show how to place the problem in the form of
these two lemmas: first placing the matrix into Jordan normal form, eliminating the cases
where the Jordan form is not diagonal and provide some simplifying assumptions for the
proofs of Lemmas 9 and 10.

4.1 The parametric Jordan normal form
For every s ∈ R\E we have M(s) = C−1(s)J(s)C(s) and hence, for every n ∈ N, Mn(s)u(s) =
v(s) if and only if Jn(s)C(s)u(s) = C(s)v(s). On the other hand, deciding whether there
exists s ∈ E with Mn(s)u(s) = v(s) reduces to finitely many instances of the Kannan-Lipton
Orbit Problem, which can be decided separately. We have thus reduced the parametric
point-to-point reachability problem to the following one in case of a single parameter:

▶ Problem 11. Given a matrix J ∈ Kd×d in Jordan normal form, and vectors ũ, ṽ ∈ Kd,
decide whether there exists (n, s) ∈ N × R \ E such that Jn(s)ũ(s) = ṽ(s).

▶ Example 12. Define M =
(

x+ 1
2 0 0

1
2 −x 1−x 0

0 x 1

)
∈ Q(x)3×3. Then the characteristic polynomial of

M is det(yI − M) = (y − 1/2 − x)(y − 1)(y + x − 1). The irreducible factors have no critical

points. Now over K we may write M = C−1JC, where J =
(

1 0 0
0 1−x 0
0 0 x+ 1

2

)
, C =

( 1 1 1
1−2x
4x−1 −1 0

2x
1−4x 0 0

)
,

and C−1 =
(

0 0 1
2x −2

0 −1 1− 1
2x

1 1 1

)
. Notice that J is defined for all x, while C is not defined at 1/4,

and C−1 is not defined at 0 (notice also that C(0) is not invertible). Therefore E = {0, 1/4}.
For s ∈ R\E , all three are defined and we have M(s) = C−1(s)J(s)C(s), with J(s) in Jordan
normal form and C(s) invertible.

Notice, for 1/4 ∈ E , we have M(1/4) = R−1KR, where K =
( 1 0 0

0 3
4 1

0 0 3
4

)
and R =(

1 1 1
−1 −1 0
− 1

4 0 0

)
. Notice here that M(1/4) is non-diagonalisable (over Q), though M is (over K).

Let u = (u1, u2, u3) ∈ Q(x)3 and v = (v1, v2, v3) ∈ Q(x)3. The problem of whether
there exists (n, s) ∈ N × R for which M(s)nu(s) = v(s) is reduced to checking the problem

at s ∈ E , and to the associated problem Jn(s)ũ(s) = ṽ(s), where ũ =
(

u1+u2+u3
1−2x
4x−1 u1−u2

2x
1−4x u1

)
,

ṽ =
(

v1+v2+v3
1−2x
4x−1 v1−v2

2x
1−4x v1

)
, and Jn =

( 1 0 0
0 (1−x)n 0
0 0 (x+ 1

2 )n

)
.

Let us establish some notation: assume J = ⟨J1, . . . , JN ⟩, corresponding to eigenvalues
λ1, . . . , λN . Assume the dimension of Jordan block Ji is di, and let ũi,1, . . . , ũi,di be the
coordinates of ũ associated with the Jordan block Ji, where index 1 corresponds to the
bottom of the block. Similarly, let ṽi,1, . . . , ṽi,di be the corresponding entries of the target.
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Let us define the functions γ1, . . . , γN used in our reduction to Lemma 9 and Lemma 10.
We let γi(s) = ṽi,1(s)/ũi,1(s), for ũi,1(s) ̸= 0. If ũi,1 is not constant zero, then there are
finitely many s where ũi,1(s) = 0, each of which can be handled explicitly. If some ũi,1 is the
constant zero function, then there are two cases. Firstly, if ṽi,1 is also the constant zero then
we are in the degenerate case λn

i · 0 = 0, and the row can be ignored. Secondly if ṽi,1 is not
constant zero, then there are only a finite number of s s.t. 0 = ṽi,1(s). Each of these can be
checked explicitly.

We say that an eigenvalue λ ∈ K (possibly constant) is a generalised root of unity if there
exists an a ∈ N≥1, such that λa(x) is a real-valued and non-negative function. Let order(λ)
of a generalised root of unity λ be the minimal such a. Notice that any real function is a
generalised root of unity with order at most 2. When we say an eigenvalue is a root of unity,
then the eigenvalue is necessarily a constant function.

▶ Lemma 13. To decide Problem 11 it suffices to assume that no λi is identically zero and
that any λi which is a generalised root of unity is real and non-negative (in particular, the
only roots of unity are exactly 1).

Proof. If λi = 0, then Jdi+n
i = 0 for all n ∈ N, hence we only need to check n ≤ di and

the s such that ṽi,1(s) = · · · = ṽi,di
(s) = 0 (unless this holds identically, in which case the

constraints from this Jordan block can be removed).
Take L = lcm{order(λi) | λi is generalised root of unity}. Then the reachability problem

reduces to L problems: (JL)n(Jkũ(x)) = ṽ(x) for every k ∈ {0, . . . , L − 1}. The eigenvalue
λL

i corresponding to (Ji)L is now real and non-negative if it is a generalised root of unity. ◀

4.2 Jordan cells of dimension larger than 1
First, we show decidability of the problem when some Jordan block has dimension at least 2:

▶ Proposition 14. If there exists Ji such that di > 1, then Problem 11 is decidable.

There are three cases not covered by the previous section: λi is not constant, λi is
constant but not a root of unity, and λi = 1.

Let us start with the case where λi ̸= 1, that is λi is a constant but not 1, or λi is not a
constant. Here we can use the bottom two rows from the block to obtain:

λn
i (x)ũi,1(x) = ṽi,1(x) and λn

i (x)ũi,2(x) + nλn−1
i (x)ũi,1(x) = ṽi,2(x),

We reformulate these equations, defining algebraic function θ:

λn
i (x) = γi(x) = ṽi,1(x)/ũi,1(x) and n = θ(x) = λi(x)(ṽi,2(x)/ṽi,1(x)−ũi,2(x)/ũi,1(x))

Any roots or poles of ũi,1, ũi,2, ṽi,1, ṽi,2, λi can be handled manually (and we already ensured
ũi,1 is not identically zero). We can then apply the following lemma.

▶ Lemma 15. Given algebraic functions λ, γ, θ in parameter x, with λ not a root of unity,
then there is a bound on n ∈ N such that there exists an s ∈ Q with n = θ(s) and λn(s) = γ(s).

Proof sketch. We sketch the case where λ is not a constant function, a similar (but distinct)
approach is used for λ constant. Taking heights on λn(s) = γ(s) we obtain nh(λ(s)) = h(γ(s)),
applying Lemma 5 twice (on both λ and γ) we obtain nh(s) = Θ(h(s)). In particular if
n is large (say n > A) then h(s) is bounded (say h(s) < B). Taking heights on n = θ(s)
we obtain log(n) = h(n) = h(θ(s)) = Θ(h(s)). If n > A then log(n) ≤ BC. Hence
n ≤ max{A, exp(BC)}. ◀
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The remaining case where λi = 1 results only in an equation of the form n = θ(s), so
λn

j (s) = γj(s) can be taken from any other Jordan block where λj ̸= 1 and again we apply
Lemma 15 to place a bound on n.

4.3 Further simplifying assumptions for diagonal matrices
Henceforth, we may assume that J is a diagonal matrix resulting in the formulation of
Lemmas 9 and 10: given eigenvalues λ1, . . . , λt and so we want to know if there exists
(n, s) ∈ N × R \ E such that

λn
i (s) = γi(s) for all i = 1, . . . , t (3)

Finally we make some simplifications in Lemma 16:

▶ Lemma 16. To decide Problem 11, it suffices to decide the problem with instances where
the eigenvalues λi are distinct, that none of the λi’s are identically zero, that none of the
constant λi’s are roots of unity, and every constant λi is associated with non-constant γi.

Proof. Consider first the case that λ1 = λ2. If also γ1 = γ2 then the equations λn
1 = γ1 and

λn
2 = γ2 are equivalent and one of them can be removed. Otherwise, if γ1 ̸= γ2, the equations

λn
1 = γ1 and λn

2 = γ2 can only have a common solution for s ∈ R with γ1(s) = γ2(s), i.e., we
can restrict to a finite set of parameters, in which case the problem becomes decidable.

We have already established, in Lemma 13, that none of the λi’s are identically zero, and
that the only constant root of unity is 1. Indeed if λj = 1 then we have 1n = γj(s), which
holds either at finitely many s or γj is the constant 1 and the constraint can be dropped.

If there exists i with constant λi (not a root of unity) and constant γi then there is at
most a single n such that λn

i = γi. This n can be found using the Kannan-Lipton problem on
the single constraint. The remaining constraints can be verified for this n using Proposition 8
to determine if they are simultaneously satisfiable. ◀

4.4 Multiplicative dependencies
To handle cases when the eigenvalues λi’s are multiplicatively dependent, we often argue as
in the following manner. Say λa1

1 = λa2
2 · · · λat

t with a1 ̸= 0. Consider the system

λai
i (s)n = γai

i (s) for all i = 1, . . . , t. (4)

It is clear that the set E of solutions (n, s) to (3) is a subset of the set E′ of solutions to (4).
Furthermore, for (n, s) ∈ E′ we have γa1

1 (s) = λa1n
1 (s) = (λa2

2 · · · λat
t )n(s) = γa2

2 · · · γat
t (s).

We conclude that if γa1
1 ̸= γa2

2 · · · γat
t , then there can only be finitely many s solving

(4), and thus the original problem, and so the problem becomes decidable. In case γa1
1 =

γa2
2 · · · γat

t , the first equation in (4) is redundant, and we may remove it. By repeating the
process we obtain a system of the form (4) where the λi are multiplicatively independent,
and the solutions to it contain all the solutions to the original system.

Now we face the problem of separating solutions to (3) from the solutions to (4). If either
of the sets {n : (n, s) ∈ E′} or {s : (n, s) ∈ E′} is finite and effectively enumerable, we can
clearly decide whether E is empty or not, utilising either Kannan–Lipton or Proposition 8
finitely many times. This happens in the majority of cases. In the case that both the above
sets are unbounded, we bound the suitable n in case rank{λ1, . . . , λt} ≥ 2 in Section 5. For
the case of rank{λ1, . . . , λt} ≤ 1 we give a separate argument in Section 6.
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5 The case of rank⟨λ1, . . . , λt⟩ ≥ 2

In this section we recall and prove the following Lemma 9:

▶ Lemma 9. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ ≥ 2. Given
algebraic functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E
such that

λi(s)n = γi(s) for all i = 1, . . . , t. (2)

By Lemma 16 we may assume that none of λi’s are identically zero or a root of unity.

5.1 All λi’s constant
In this section we sketch the proof for the case where λi’s are all constant. We reduce to
a special case of the Skolem problem, but show that this particular instance is decidable.
Since rank ≥ 2, we have at least two constraints and so there are constants λ1 and λ2, not
roots of unity, and multiplicatively independent, with γ1, γ2 not constant.

▶ Lemma 17. Suppose λ1, λ2 are constant, not roots of unity, multiplicatively independent,
and that γ1, γ2 are non-constant functions. Then the system λn

1 = γ1(s), λn
2 = γ2(s) has only

finitely many solutions.

Proof Sketch. Let the minimal polynomials over Q[x, y] of γ1 and γ2 be P1 and P2 with
Pi ∈ Q[x, yi]. The polynomials P1 and P2 have no common factors as elements of Q[x, y1, y2].
Eliminating x from these polynomials we get a non-zero polynomial P ∈ Q[y1, y2] for which
P (α1, α2) = 0 for all α1 = γ1(s) and α2 = γ2(s), s ∈ U . The sequence (un)∞

n=0, with

un = P (λn
1 , λn

2 ) =
∑
k,ℓ

ak,ℓ(λk
1λℓ

2)n,

ak,ℓ ∈ Q, is a linear recurrence sequence over Q, and we wish to characterise those n for
which un = 0. By the famous Skolem–Mahler–Lech theorem (see, e.g., [11]), the set of such
n is the union of a finite set and finitely many arithmetic progressions. Furthermore, it is
decidable whether such a sequence admits infinitely many elements, and all the arithmetic
progressions can be effectively constructed [7]. But, in general, the elements of the finite set
are not known to be effectively enumerable – solving the Skolem problem for arbitrary LRS
essentially reduces to checking whether this finite set is empty. However, the case at hand
can be handled using now standard techniques involving powerful results from transcendental
number theory, such as Baker’s theorem for linear forms in logarithms, and similar results
on linear forms in p-adic logarithms (see, e.g., [34, 39]). We show there exists an effectively
computable n0 ∈ N such that un ̸= 0 for all n ≥ n0. We give a brief sketch (a detailed proof
appears in the full version):

Assuming first that |λ1| and |λ2| are multiplicatively independent, it is evident that the
modulus of un grows as cαn + o(αn) for some c ∈ R+, where α is the maximal modulus
of the terms λk

1λℓ
2 (there is only one term with this modulus). One can straightforwardly

compute an upper bound on any n for which un = 0.
If the values |λ1| and |λ2| are multiplicatively dependent but neither is of modulus 1, we

may again use an asymptotic argument. For this, we need Baker’s theorem on linear forms
in logarithms to show that a (related) sequence grows in modulus as cαn/nD + o(βn), with
β < α and effectively computable constants c, D. On the other hand, if |λi| = 1 but λ1 is an
algebraic integer (a root of a monic polynomial with coefficients in Z), then it will have a
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Galois conjugate (roots of the minimal polynomial of λ1) λ̃1 with |λ̃1| > 1. Hence a suitable
Galois conjugate of the sequence (un) will be of the form considered in the previous case,
and the zeros of (un) and (ũn) coincide. The asymptotic argument can be applied to (ũn).

The final case is when λ1 and λ2 are not algebraic integers. We turn to the theory of
prime-ideal decompositions of the numbers λ and argue, employing a version of Baker’s
theorem for p-adic valuations (as in [39]) to conclude similarly that the n for which un = 0
are effectively bounded above. ◀

5.2 At least one non-constant

Henceforth, we can assume that at least one λi is non-constant. We may take the λi’s to be
multiplicatively independent with t ≥ 2, otherwise consider a multiplicatively independent
subset of the functions: it always has at least two elements by the assumption on rank, and,
furthermore, at least one of them is not constant. The removal of equations will be done as
described in Section 4.4; here we show that there are only finitely many n giving solutions
(n, s) to the reduced system, so we need not worry about creating too many new solutions.

The following theorems are the main technical results from the literature utilised in the
arguments that follow, formulated in a way to suit our needs. Here C(Q) denotes the set of
algebraic points in Qd on an algebraic set C ⊆ Cd.

▶ Theorem 18 ([8, Theorem 2]). Let C be an absolutely irreducible (irreducible in Q(x)) curve
defined over Q in Cd. Assume that the coordinates of the curve are multiplicatively independent
modulo constants (i.e., the points (x1, . . . , xd) ∈ C(Q) do not satisfy xa1

1 · · · xad

d = c identically
for any (a1, . . . , ad) ∈ Zd \ 0⃗, c ∈ Q). Then the points (x1, . . . , xd) ∈ C(Q) for which x1, . . . ,
xd satisfy at least two independent multiplicative relations form a finite set.

We note that given the curve C, the finite set of points (x1, . . . , xd) on C for which x1, . . . , xd,
satisfy at least two independent multiplicative relations can be effectively constructed. Indeed,
this is explicitly mentioned in the last paragraph of the introduction of [8]: the proof goes by
showing effective bounds on the degree and height of such points.

Theorem 18 holds for curves in Cd for arbitrary d. If one allows the coordinates on the
curve to satisfy a non-trivial multiplicative relation, then there can be infinitely many such
points [8]. On the other hand, in [9] Bombieri, Masser, and Zannier consider relaxing the
assumption of multiplicative independence modulo constants to multiplicative independence
and conjecture that the conclusion of the above theorem still holds [9, Conj. A]. Supporting
the conjecture, [9] proves a theorem which will suffice for us.

▶ Theorem 19. Let C be an absolutely irreducible curve in Cd defined over Q. Assume that
the the coordinates of the curve are multiplicatively independent, but C is contained in a set
of the form b⃗H, where H is the set of points in Qd satisfying at least d − 3 independent
multiplicative relations2. Then the points (x1, . . . , xd) ∈ C(Q) for which x1, . . . , xd satisfy at
least two independent multiplicative relations form a finite set.

Again the finite set of points can be effectively computed.3

Let us proceed case by case.

2 With b = (b1, . . . , bk), here b⃗H = {(b1x1, . . . , bdxd) : (x1, . . . , xk) ∈ H} is a coset of a subgroup of
dimension at most 3 in the terminology of [9].

3 In [8, 9] the proof is given for d ≥ 4, and is constructive, while the case of d = 3 is attributed to a
(non-constructive) result of Liardet [31]. A completely effective proof of the case can be found in [6].
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▶ Lemma 20. Assume that {λ1, . . . , λt} is multiplicatively dependent modulo constants, but
is multiplicatively independent. Then there exists a computable constant n0 such that system
(2) admits no solutions for n > n0.

We may now focus on sets {λ1, . . . , λt} that are multiplicatively independent modulo
constants. We still might have multiplicative dependencies between the λi and γi. We take
care of these cases in the remainder of this section.

▶ Lemma 21. Assume that {λ1, λ2, γ1, γ2} is multiplicatively independent. Then system (2)
admits only finitely many solutions, all of which can be effectively enumerated.

Proof. We show that the set of s for which the equality can hold is finite and such s can be
computed. We employ the powerful Theorems 18 and 19 of Bombieri, Masser, and Zannier,
from which the claim is immediate. We first prime the situation as follows.

Let that λ1, λ2, γ1, γ2 have minimal polynomials P1 ∈ Q[x, x1], P2 ∈ Q[x, x2], P3 ∈
Q[x, x3], P4 ∈ Q[x, x4], respectively. Eliminating x from P1 and P2 (resp., P3, P4), we
get a polynomial Q1 ∈ Q[x1, x2] (resp., Q2 ∈ Q[x1, x3], Q3 ∈ Q[x1, x4]) for which we have
Q1(λ1(x), λ2(x)) = 0 (resp., Q2(λ1(x), γ1(x)) = 0, Q3(λ1(x), γ2(x)) = 0) for all x. Let C be
the curve defined by C := {(x1, x2, x3, x4) ∈ C4 : Q1(x1, x2) = Q2(x1, x3) = Q3(x1, x4) = 0}
and consider any of its finitely many absolutely irreducible components C′. We are now
interested in the pairs of multiplicative relations (n, 0, −1, 0) and (0, n, 0, −1) (corresponding
to xn

1 = x3, xn
2 = x4), for n ≥ 1, along the curve C′. Indeed, for any fixed n, the two relations

are independent in Q4, i.e., neither is a consequence of the other, as they involve disjoint
sets of coordinates.

First assume that λ1, λ2, γ1, γ2 are multiplicatively independent modulo constants. Then
so are the points on the curve C′, and the result follows from Theorem 18 as the result is
constructive.

Otherwise λ1, λ2, γ1, γ2 are multiplicatively dependent modulo constants but are multi-
plicatively independent. Then C′ is contained in a set of the form b⃗H, where H satisfies at
least one multiplicative relation. Applying Theorem 19 with d = 4, the points on C′ satisfying
xn

1 = x3 and xn
2 = x4 for any n ≥ 1, form an effectively constructable finite set. ◀

To complete the proof of Lemma 9, we need to show the claim holds when λ1, λ2, γ1, γ2
are multiplicatively dependent, while λ1 and λ2 are multiplicatively independent modulo
constants. The proof goes along the same lines as in the above with some extra technicalities.

▶ Lemma 22. Assume that λ1, λ2, γ1, γ2 are multiplicatively dependent, while λ1, λ2 are
multiplicatively independent modulo constants. Then there exists a computable constant n0
such that system (2) admits no solutions for n > n0.

6 The case of rank⟨λ1, . . . , λt⟩ = 1

This section recalls and sketches the proof of Lemma 10.

▶ Lemma 10. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ = 1. We
assume that, if λi is complex then λi (the complex conjugate) also appears. Given algebraic
functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E such that
λn

i (s) = γi(s) for all i = 1, . . . , t.

As sketched in Section 4.4, since there is a multiplicative dependence between functions,
we first show that, without loss of generality, there is a single equation λn(s) = γ(s).
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▶ Lemma 23. Suppose rank⟨λ1, . . . , λt⟩ = 1, then whether there is a solution (n, s) ∈ N×R\E
to λn

i (s) = γi(s) for all i = 1, . . . , t reduces to instances with t = 1.

We then separate into the case where λ is real and the case where λ is complex. Let us
start by assuming λ is a real function.

▶ Lemma 24. Given real algebraic functions λ and γ, it is decidable whether there exists
(n, s) ∈ N × R \ E such that λn(s) = γ(s).

Proof Sketch. The interesting case occurs on an interval S = (s0, s1) on which 0 <

λ(s), γ(s) < 1 for s ∈ S. Other cases either reduce to this case, or occur for finitely
many s which can be checked independently. The function γ(s) is fixed between s0, s1. Each
point λ(s)n decreases with every n. One can test for each n whether the lines λ(s) and γ(s)
intersect, or one can find some bound n0 after which λ(s)n < γ(s) for all s ∈ S and n > n0,
so one can be sure there is no solution. ◀

Secondly, we consider the case λ takes on complex values. In this case, since λi was a
complex eigenvalue of M , then so too is its conjugate λi, yet λi and λi are multiplicatively
dependent, in which case it turns out that |λ| = 1.

▶ Lemma 25. Let λ and γ be algebraic functions. Assume λ is not real, non-zero, not a root
of unity, and of modulus 1. The equation λ(s)n = γ(s) admits solutions as follows. If γ is not
of modulus 1 constantly, then there are finitely many s. If γ is of modulus 1 identically and
λ is constant, then there are infinitely many solutions and such a solution can be effectively
found. Finally, if λ is not constant, then the equation admits a solution for all n ≥ n0, and
n0 is computable.

Proof Sketch. The interesting case turns outs to be when λ and γ both define arcs on a
unit circle. By taking powers of λ the arc grows, and eventually encompasses the arc defined
by γ. The intermediate value theorem then implies there is an s satisfying λn(s) = γ(s). ◀
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Abstract
Multi-pushdown systems are a standard model for concurrent recursive programs, but they have an
undecidable reachability problem. Therefore, there have been several proposals to underapproximate
their sets of runs so that reachability in this underapproximation becomes decidable. One such
underapproximation that covers a relatively high portion of runs is scope boundedness. In such a run,
after each push to stack i, the corresponding pop operation must come within a bounded number of
visits to stack i.

In this work, we generalize this approach to a large class of infinite-state systems. For this,
we consider the model of valence systems, which consist of a finite-state control and an infinite-
state storage mechanism that is specified by a finite undirected graph. This framework captures
pushdowns, vector addition systems, integer vector addition systems, and combinations thereof. For
this framework, we propose a notion of scope boundedness that coincides with the classical notion
when the storage mechanism happens to be a multi-pushdown.

We show that with this notion, reachability can be decided in PSPACE for every storage
mechanism in the framework. Moreover, we describe the full complexity landscape of this problem
across all storage mechanisms, both in the case of (i) the scope bound being given as input and
(ii) for fixed scope bounds. Finally, we provide an almost complete description of the complexity
landscape if even a description of the storage mechanism is part of the input.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Formal languages and automata theory

Keywords and phrases multi-pushdown systems, underapproximations, valence systems, reachability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.29

Related Version Full version with proofs: https://arxiv.org/abs/2108.00963

1 Introduction

Multi-pushdown systems are a natural model for recursive programs with threads that
communicate via shared memory. Unfortunately, even safety verification (state reachability) is
undecidable for this model [21]. However, by considering underapproximations of the set of all
executions, it is still possible to discover safety violations. The first such underapproximation
in the literature was bounded context switching [20]. Here, one only considers executions that
switch between threads a bounded number of times. In terms of multi-pushdown systems,
this places a bound on the number of times we can switch between stacks.

One underapproximation that covers a relatively large portion of all executions and still
permits decidable reachability is scope-boundedness as proposed by La Torre, Napoli, and
Parlato [23, 25]. Here, instead of bounding the number of context switches across the entire
run, we bound the number of context switches per letter on a stack (i.e. procedure execution).
More precisely, whenever we push a letter on some stack i, then we can switch back to stack
i at most k times before we have to pop that letter again. This higher coverage of runs
comes at the cost of higher complexity: While reachability with bounded context switching
is NP-complete [12, 20], the scope-bounded reachability problem is PSPACE-complete (if the
number of pushdowns or the scope bound is part of the input) [25].
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Aside from multi-pushdown systems, there is a wide variety of other infinite-state models
that are used to model program behaviours. For these, reachability problems are also
sometimes undecidable or have prohibitively high complexity. For example, vector addition
systems with states (VASS) is one of the most prominent models for concurrent systems,
but its reachability problem has non-elementary complexity [8]. This raises the question
of whether underapproximations for multi-pushdown systems can be interpreted in other
infinite-state systems and what complexity would ensue.

The notion of bounded context switching has recently been generalized to a large class of
infinite-state systems [19], in the framework of valence systems over graph monoids. These
consist of a finite-state control that has access to a storage mechanism. The shape of this
storage mechanism is described by a finite, undirected graph. By choosing an appropriate
graph, one can realize many infinite-state models. Examples include (multi-)pushdown
systems, VASS, integer VASS, but also combinations thereof, such as pushdown VASS [17]
and sequential recursive Petri nets [16]. Under this notion, bounded context reachability is
in NP for each graph, and thus each storage mechanism in the framework [19]. Moreover,
the paper [19] presents some subclasses of graphs for which bounded context reachability has
lower complexity (NL or P). However, the exact complexity of reachability under bounded
context switching remains open in many cases, such as the path with four nodes [19].

Contribution. We present an abstract notion of scope-bounded runs for valence systems over
graph monoids. As we show, this notion always leads to a reachability problem decidable
in PSPACE. In particular, our notion applies to all infinite-state models mentioned above.
Moreover, applied to multi-pushdown systems, it coincides with the notion of La Torre,
Napoli, and Parlato.

We also obtain an almost complete complexity landscape of scope-bounded reachability.
First, we show that if both (i) the graph Γ describing the storage mechanism and (ii) the
scope bound k are part of the input, the problem is PSPACE-complete. Second, we study
how the complexity depends on the employed storage mechanism. We show that for each
Γ, the problem is either NL-complete, P-complete, or PSPACE-complete, depending on Γ
(Corollary 4.2). Since the complexity drops below PSPACE only in extremely restricted cases,
we also study the setting where the scope bound k is fixed. In this case, we show that the
problem is either NL-complete or P-complete, depending on Γ (Corollary 4.4).

Finally, applying scope-boundedness to classes of infinite-state systems requires under-
standing the complexity if Γ is drawn from an infinite class of graphs. For example, for each
fixed dimension d, there is a graph Γd such that valence automata over Γd correspond to
VASS of dimension d. The class of all VASS (of arbitrary dimension), however, corresponds
to valence automata over all cliques. Thus, we also study scope-bounded reachability if Γ is
restricted to a class of graphs G. Under a mild assumption on G, we again obtain a complexity
trichotomy of NL-, P-, or PSPACE-completeness, both for k as input (Theorem 4.1) and for
fixed k (Theorem 4.3). In fact, all results mentioned above follow from these general results.

Related work. Similar in spirit to our work are the lines of research on systems with bounded
tree-width by Madhusudan and Parlato [18] and on bounded split-width by Aiswarya [6]. In
these settings, the storage mechanism is represented as a class of possible matching relations on
the positions of a computation. Then, under the assumption that the resulting behavior graphs
have bounded tree-width or split-width, respectively, there are general decidability results.
In particular, decidability of scope-bounded reachability in multi-pushdown systems has been
deduced via tree-width [26] and via split-width [7]. Different from underapproximations based
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on bounded tree-width or split-width, our framework includes multi-counter systems (such as
VASS or integer VASS), but also counters nested in stacks. While VASS can be seen as special
cases of multi-pushdown systems, our framework allows us, e.g. to study the complexity
of scope-bounded reachability if the storage mechanism is restricted to multi-counters. On
the other hand, while tree-width and split-width can be considered for queues [18, 1], they
cannot be realized as storage mechanisms in valence systems.

Furthermore, after their introduction [23] scope-bounded multi-pushdown systems have
been studied in terms of accepted languages [24], temporal logic model checking [26, 3].
Moreover, scope-boundedness has been studied in the timed setting [2],[4].

Over the last decade, the framework of valence automata over graph monoids has
been used to study how several types of analysis are impacted by the choice of storage
mechanism. For example: For which storage mechanisms (i) can silent transitions be
algorithmically eliminated? [27]; (ii) do we have a Parikh’s theorem [5], (iii) is (general)
reachability decidable [31]; (iv) is first-order logic with reachability decidable? [10]; (v) can
downward closures be computed effectively? [28].

Details of all proofs can be found in the full version of the paper.

2 Preliminaries

In this section, we recall the basics of valence systems over graph monoids [29].

Graph Monoids. This class of monoids accommodate a variety of storage mechanisms.
They are defined by undirected graphs without parallel edges Γ = (V, I) where V is a finite
set of vertices and I ⊆ {e ⊆ V | 1 ≤ |e| ≤ 2} is a finite set of undirected edges, which
can be self-loops. Thus, if {v} ∈ I, we say that v is looped; otherwise, v is unlooped. The
edge relation is also called an independence relation. We also write uIv for {u, v} ∈ I. A
subset U ⊆ V is a clique if uIv for any two distinct u, v ∈ U . If in addition, all v ∈ U

are looped, then U is a looped clique. If U is a clique and all v ∈ U are unlooped, then U

is an unlooped clique. We say that U ⊆ V is an anti-clique if we do not have uIv for any
distinct u, v ∈ U . Given the graph, we define a monoid as follows. We have the alphabet
XΓ = {v+, v− | v ∈ V }, where we write xIy for x, y ∈ XΓ if for some u, v ∈ V , we have
x ∈ {u+, u−}, y ∈ {v+, v−}, x ≠ y, and uIv. Moreover, ≡Γ is the smallest congruence on
X∗

Γ with v+v− ≡Γ ε for v ∈ V and xy ≡Γ yx for xIy. Here, ε denotes the empty word. Thus,
if v has a self-loop, then v−v+ ≡Γ ε. We define the monoid MΓ := X∗

Γ/ ≡Γ.

Valence Systems. Graph monoids are used in valence systems, which are finite automata
whose edges are labeled with elements of a monoid. Then, a run is considered valid if the
product of the monoid elements is the neutral element. Here, we only consider the case
where the monoid is of the form MΓ, so we define the concept directly for graphs.

Given a graph Γ, a valence system A over Γ consists of a finite set of states Q, and a
finite transition relation →⊆ Q × X∗

Γ × Q. A configuration of A is a tuple (q, w) where q ∈ Q,
w ∈ X∗

Γ is the sequence of storage operations executed so far. From a configuration (q1, u),
on a transition q1

v→ q2, we reach the configuration (q2, uv). A run of A is a sequence of
transitions. The reachability problem in valence systems is the following: Given states qinit
and qfin , is there a run from (qinit , ε) that reaches (qfin , w) for some w ∈ X∗

Γ with w ≡Γ ε?
Many classical storage types can be realized with graph monoids. Consider Γ̄3 = (V, I)

in Figure 1. We have I = {{a, c}, {b, c}, {c}}. For w ∈ X∗
Γ̄3

we have w ≡Γ̄3
ε if and only if

two conditions are met: First, if we project to {a+, a−, b+, b−}, then the word corresponds

CONCUR 2021
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to a sequence of push- and pop-operations that transform the empty stack into the empty
stack. Here, x+ corresponds to pushing x, and x− to popping x, for x ∈ {a, b}. Second, the
number of c+ is the same as the number of c− in w. Thus, valence automata over Γ̄3 can be
seen as pushdown automata that have access to a Z-valued counter. Similarly, the storage
mechanism of Γ2 in Figure 1 is a stack, where each stack entry is not a letter, but contains
two N-valued counters. A push (c+) starts a new stack entry and a pop (c−) is only possible
if the topmost two counters are zero. For more examples and explanation, see [30].

▶ Example 2.1 (Example storage mechanisms). Let us mention a few particular (classes of)
graphs and how they correspond to infinite-state systems. In the following, the direct product
of two graphs Γ and ∆ is the graph obtained by taking the disjoint union of Γ and ∆ and
adding an edge between each vertex from Γ and each vertex from ∆.

Pushdown For s ∈ N, let Ps be the graph on s vertices without edges. Then valence
automata over Ps correspond to pushdown systems with s stack symbols.

Multi-pushdown Let MPr,s be the direct product of r disjoint copies of Ps. Then valence
systems over MPr,s correspond to multi-pushdown systems with r stacks, each of which
has s stack symbols. In Figure 1, the induced subgraph of graph Γ1 on {b1, b2, b3, c1, c2, c3}
represents MP2,3.

VASS If UCd is an unlooped clique with d vertices, then valence systems over UCd correspond
to d-dimensional vector addition systems with states.

Integer VASS If LCd is a looped clique with d vertices, then valence systems over LCd

correspond to d-dimensional integer VASS.
Pushdown VASS If UC−

d is the graph obtained from UCd+2 by removing a single edge, then
valence systems over UC−

d correspond to d-dimensional pushdown VASS.

3 Scope-bounded runs in valence systems

In this section, we introduce our notion of bounded scope to valence systems over arbitrary
graph monoids. For each of the used concepts, we will explain how they relate to the existing
notion of scope-boundedness for multi-pushdown systems. Fixing Γ = (V, I) as before, first
we introduce some preliminary notations and definitions.

Dependent sets and contexts. Recall that valence systems over the graph MPr,s realize
a storage consisting of r pushdowns, each with s stack symbols. The graph MPr,s is a
direct product of r-many disjoint anti-cliques, each with s vertices. Here, each anti-clique
corresponds to a pushdown with s stack symbols: For a vertex v in such an anti-clique, the
symbol v+ is the push operation for this stack symbol, and v− is its pop operation.

In a multi-pushdown system, a run is naturally decomposed into contexts, where each
context is a sequence of operations belonging to one stack. In [19], the notion of context
was generalized to valence systems as follows. A set U ⊆ V is called dependent if it does
not contain distinct vertices u1, u2 ∈ V such that u1Iu2. A set of operations Y ⊆ XΓ is
dependent if its underlying set of vertices {v ∈ V | v+ ∈ Y or v− ∈ Y } is dependent. A
computation is called dependent if the set of operations occurring in it is dependent. A
dependent computation is also called a context. In Γ1 of Figure 1, contexts can be formed
over {b1, b2, b3}, {c1, c2, c3} and {a}.
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b1
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Γ1 Γ1

c1

b2 c2

b3 c3
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c
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Figure 1 The storage mechanism of Γ1 is 2 stacks and one partially blind counter. Symbols of
the same stack are weakly dependent. In the storage mechanism of Γ2, a, b, c are weakly dependent.

Context decomposition. Note that a word w ∈ X∗
Γ need not have a unique decomposition

into contexts. For example, for Γ2 in Figure 1, the word a+c+b+ can be decomposed as
(a+c+)b+ and as a+(c+b+). Therefore, we now define a canonical decomposition into contexts,
which decomposes the word from left to right. Formally, the canonical context decomposition
of a computation w ∈ X+

Γ (that is, |w| > 0) is defined inductively. If w is over a dependent
set of operations, then w is a single context. Otherwise, find the maximal, non-empty prefix
w1 of w over a dependent set of operations. The canonical decomposition of w into contexts
is then w = w1w2 . . . wm where w2 . . . wm is the decomposition of the remaining word into
contexts. In the following, unless explicitly specified otherwise, when we mention the contexts
of a word, we always mean those in the canonical decomposition. Observe that in the case of
MPr,s, this is exactly the decomposition into contexts of multi-pushdown systems.

Reductions. Given a computation w = a1 · · · an where each ai ∈ XΓ, we identify each
operation ai with its position. We denote by w[i] the ith operation of w, hence w[i] = ai. A
reduction of w is a finite sequence of applications of the following rewriting rules.

(R1) w′.w[x].w[y].w′′ 7→red w′w′′, applicable if w[x] = o+, w[y] = o− for some o.
(R2) w′.w[x].w[y].w′′ 7→red w′w′′, applicable if w[x] = o−, w[y] = o+ for some oIo.
(R3) w′.w[x].w[y].w′′ 7→red w′w[y]w[x]w′′, applicable if w[x]Iw[y].
Reducing a word u to a word v using these rules is denoted by u

∗7→red v. A reduction of
w = a1 . . . an ∈ X∗

Γ to ε is the same as the free reduction of the sequence a1, a2, . . . , an. For
any computation w ∈ X∗

Γ, we have w ≡Γ ε iff w admits a reduction to ε [29, Equation (8.2)].
Assume that π = w

∗7→red ε is a reduction that transforms w into ε. The relation Rπ

relates positions of w which cancel in π:

w[x]Rπw[y] if w′.w[x].w[y].w′′ 7→red w′.w′′ or w′.w[y].w[x].w′′ 7→red w′.w′′ is used in π

Greedy reductions. A word w ∈ X∗
Γ is called irreducible if neither of the rules R1 and R2

is applicable in w. A reduction π : w
∗7→red ε is called greedy if it begins with a sequence of

applications of R1 and R2 for each context so that the resulting context is irreducible. Note
that every word w with w ≡Γ ε has a greedy reduction: One can first (greedily) apply R1
and R2 until each context is irreducible. Since the resulting word w′ still satisfies w′ ≡Γ ε,
there exists a reduction w′ ∗7→red ε. In total, this yields a greedy reduction.

Weak dependence. In the case of Γ = MPr,s, we know that any two vertices u, v are either
dependent (i.e. belong to the same pushdown) or Γ is the direct product of graphs Γu and
Γv such that u belongs to Γu and v belongs to Γv. This means, two operations that are not
dependent can, inside every computation, be moved past each other without changing the
effect on the stacks. This is not the case in general graphs. In Γ2 in Figure 1, the vertices
a and b are not dependent, but in the computation acb, they cannot be moved past each
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29:6 Scope-Bounded Valence Systems

other, because none of them commutes with c. We therefore need the additional notion of
weak dependence. We say that two vertices u, v ∈ V are weakly dependent if there is a path
between them in the complement of the graph. Here, the complement of a graph Γ = (V, I)
is obtained by complementing the independence relation (v1Iv2 in Γ iff we do not have v1Iv2
in the complement of Γ). Equivalently, u and v are not weakly dependent if Γ is the direct
product of graphs Γu and Γv such that u belongs to Γu and v belongs to Γv. As observed
above, Γ2 shows that in general, weakly dependent vertices need not be dependent.

It can be seen that weak dependence is an equivalence relation on the set of vertices V ,
where the equivalence classes are the connected components in the complement of Γ. Note
that all operations inside a context must belong to the same weak dependence class. We
therefore say that two contexts c1, c2 are weakly dependent if their operations belong to the
same weakly dependent equivalence class. Equivalently, two contexts are weakly dependent
if all their letters are pairwise weakly dependent. In particular, weak dependency is an
equivalence relation on contexts also. Let us denote the weak dependence equivalence relation
by ∼W and by [ ]∼W

the set of all equivalence classes induced by ∼W .

Scope bounded runs. We now define the notion of bounded scope computations. We first
phrase the classical notion1 of scope-boundedness [25] in our framework. If Γ = MPr,s, then
w ∈ X∗

Γ is considered k-scope bounded if there is a reduction π for w such that in between
any two symbols w[i] and w[j] related in Rπ, at most k contexts visit the same anti-clique
of w[i] and w[j]. Note that in MPr,s, for every reduction, there is a greedy reduction that
induces the same relation Rπ. Indeed, any applications of R1 and R2 that are applicable
in a context at the start will eventually be made anyway: In MPr,s, if a word reduces to ε,
then every position has a uniquely determined “partner position” with which is cancels in
every possible reduction. Therefore, we generalize scope boundedness as follows2.

▶ Definition 3.1 (Scope Bounded Computations). Consider a computation w ∈ X+
Γ . We

say w is k-scoped if there is a greedy reduction π = w
∗7→red ε such that in between any two

symbols w[i] and w[j] related by Rπ, at most k − 1 contexts between w[i] and w[j] belong to
the same weak dependence class as w[i] and w[j].

By sc(w), we denote the smallest number k so that w is k-scoped. Note that there is such
a k if and only if w ≡Γ ε. Thus, if w ̸≡Γ ε, we set sc(w) = ∞. In the example in Figure 1
(graph Γ1) the computation w = b+

1 (c+
2 a+c+

1 a+c−
1 a−c−

2 a−)mb−
1 is 3-scoped for all values of

m, even though the number of context switches grows with m.

Interaction distance. We make the notion of scope bound more formal using the notion of
interaction distance. Given a computation w ∈ X+

Γ . Let c1c2 . . . cn be the canonical decompos-
ition of w into contexts. We say that two contexts ci, cj with i < j have an interaction distance
K if there are K −1 contexts between ci and cj which are weakly dependent with ci. Consider
the computation b+

1 (a+c+
1 )m1b+

2 (a+c+
2 )m2b+

3 (a+c+
3 )m3b−

3 (c−
3 a−)m3b−

2 (c−
2 a−)m2b−

1 (c−
1 a−)m1 .

Each differently colored sequence is a context. The interaction distance between b+
1 and b−

1
is 5, since the weakly dependent contexts strictly between them are b+

2 , b+
3 , b−

3 , b−
2 .

1 The conference version [22] contains a slightly more restrictive definition. We follow the journal
version [25].

2 Another natural notion of scope-boundedness can be obtained by dropping the greediness condition.
Hence, we would ask for a reduction π such that between any two Rπ-related positions, there are at
most k − 1 contexts in the same weak dependence class. We expect that with this notion, Theorems 4.1
and 4.3 would still hold, but this would require changes to the algorithms.
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Thus, w is k-scoped if and only if there is a greedy reduction π : w 7→red ε such that
whenever w[i]Rπw[j], then the contexts of w[i] and w[j] have interaction distance at most k.

The following is the central decision problem studied in this paper.

The Bounded Scope Reachability Problem(BSREACH)
Given: Graph Γ, scope bound k, valence system A over Γ, initial state qinit , final
state qfin
Decide: Is there a run from (qinit , ε) to (qfin , w), for some w ∈ X∗

Γ with sc(w) ≤ k?

Thus, in BSREACH, both Γ and k are part of the input. We also consider versions where
certain parameters are fixed: If Γ is fixed, we denote the problem by BSREACH(Γ). If Γ is
part of the input, but can be drawn from a class G of graphs, we write BSREACH(G). Finally,
if we fix k, we use a subscript k, resulting in the problems BSREACHk, BSREACHk(Γ),
BSREACHk(G).

Deciding whether there is a run (qinit , ε) to (qfin , w) with w ≡Γ ε corresponds to general
configuration reachability [28]. Hence, we consider the scope-bounded version of configuration
reachability.

Strongly Induced Subgraphs. When we study decision problems for valence systems over
graph monoids, then typically, if ∆ is an induced subgraph of Γ, then a problem instance for
∆ can trivially be reduced to an instance over Γ. Here, induced subgraph means that ∆ can
be embedded into Γ so that there is an edge in ∆ iff there is one in Γ.

This is not necessarily the case for BSREACH: An induced subgraph might decompose into
different weak dependence classes than Γ. Therefore, we use a stronger notion of embedding.
We say that Γ′ = (V ′, I ′) is a strongly induced subgraph of Γ = (V, I) if there is an injective
map ι : V → V ′ such that for any u, v ∈ V , we have (i) uIv iff ι(u)I ′ι(v) and (ii) u ∼W v iff
ι(u) ∼W ι(v). For example, the graph Γ consisting of two adjacent vertices (without loops)
is an induced subgraph of Γ2 in Figure 1. However, Γ is not a strongly induced subgraph of
Γ2: In Γ2, a and b are weakly dependent, whereas the vertices of Γ are not.

Neighbor Antichains. Let Γ = (V, I) be a graph. In our algorithms, we will need to store
information about a dependent set U ⊆ V from which we can conclude whether for another
dependent set U ′ ⊆ V , we have UIU ′; that is, for all u ∈ U, u′ ∈ U ′, uIu′. To estimate the
required information, we use the notion of neighbor antichains. Let Γ = (V, I) be a graph.
Given v ∈ V , let N(v) represent the neighbors of v, that is N(v) = {u ∈ V | uIv}. We define
a quasi-ordering on V as follows. For u, v ∈ V , we have u ≤ v if N(u) ⊆ N(v). It is possible
that for distinct, u, v ∈ V we have u ≤ v and v ≤ u and thus ≤ is not necessarily a partial
order. In the following, we will assume that the graphs Γ are always equipped with some
linear order ≪ on V . For example, one can just take the order in which the vertices appear
in a description of Γ. Using ≪, we can turn ≤ into a partial order, which is easier to use
algorithmically: We set u ⪯ v if and only if u ≤ v and u ≪ v.

Now, given U ⊆ V , let min U = {u ∈ U | ∀v ∈ U \ {u}, v ̸⪯ u} and max U = {u ∈ U |
∀v ∈ U \ {u}, u ̸⪯ v} denote the minimal and maximal elements of U , respectively.

▶ Lemma 3.2. For sets U, U ′ ⊆ V , UIU ′ if and only if (min U)I(min U ′).

Since min U and min U ′ are antichains w.r.t. ⪯, if we bound the size of such antichains
in our graph Γ, we bound the amount of information needed to store to determine whether
UIU ′. We call a subset A ⊆ V a neighbor antichain if (i) A is dependent (i.e. an anti-clique,
no edges between any two vertices of A) and (ii) A is an antichain with respect to ⪯. For the
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29:8 Scope-Bounded Valence Systems

graph Γ1 in Figure 1, each vertex is a neighbor antichain, while for Γ1, each {a, bi, cj} is a
neighbor antichain for all i, j. By τ(Γ), we denote the maximal size of a neighbor antichain
in Γ. Thus τ(Γ1) = 1, τ(Γ1) = 3. We say that a class G of graphs is neighbor antichain
bounded if there is a number t such that τ(Γ) ≤ t for every graph Γ in G.

For example, the class of graphs G consisting of bipartite graphs Bn with nodes {ui, vi |
i ∈ {1, . . . , n}}, where {ui, vj} is an edge iff i ̸= j, is not neighbor antichain bounded.

4 Main results

In this section, we present the main results of this work. If both the graph and the scope
bound k are part of the input, the bounded scope reachability problem is PSPACE-complete
(as we will show in Theorem 4.1). Since graph monoids provide a much richer class of storage
mechanisms than multi-pushdowns, this raises the question of how the complexity is affected
if the storage mechanism (i.e. the graph) is drawn from a subclass of all graphs.

▶ Theorem 4.1 (Scope bound in input). Let G be a class of graphs. Then BSREACH(G) is
1. NL-complete if the graphs in G have at most one vertex,
2. P-complete if every graph in G is an anti-clique and G contains a graph with ≥ 2 vertices,
3. PSPACE-complete otherwise.

▶ Corollary 4.2. Let Γ be a graph. Then BSREACH(Γ) is
1. NL-complete if Γ has at most one vertex,
2. P-complete if Γ is an anti-clique with ≥ 2 vertices,
3. PSPACE-complete otherwise.

Fixed scope bound. We notice that the problem BSREACH(G) is below PSPACE only for
severely restricted classes G, where bounded scope reachability degenerates into ordinary
reachability in pushdown automata or one-counter automata. Therefore, we also study the
setting where the scope bound k is fixed. However, our result requires two assumptions on
the graph class G. The first assumption is that G be closed under taking strongly induced
subgraphs. This just rules out pathological exceptions: otherwise, it could be that there
are hard instances for BSREACHk that only occur embedded in extremely large graphs in G,
resulting in lower complexity. In other words, we restrict our attention to the cases where
an algorithm for G also has to work for strongly induced subgraphs. For each individual
graph, this is always the case: if ∆ is a strongly induced subgraph of Γ, then BSREACHk(∆)
trivially reduces to BSREACHk(Γ).

Our second assumption is that G be neighbor antichain bounded. This is a non-trivial
assumption that still covers many interesting types of infinite-state systems from the literature.
For example, every graph mentioned in Example 2.1 has neighbor antichains of size at most 1.
In particular, our result still generalizes the case of multi-pushdown systems.

Moreover, consider the graphs SCm for m ∈ N, where (i) SC0 is a single unlooped vertex,
(ii) SC2m+1 is obtained from SC2m by adding a new vertex adjacent to all existing vertices,
and (iii) SC2m+2 is obtained from SC2m+1 by adding an isolated unlooped vertex. Then
neighbor antichains in SCm are of size at most 1. Furthermore, using reductions from [31,
Proposition 3.6], it follows that whenever reachability for valence systems over Γ is decidable,
then this problem reduces in polynomial time to reachability over some SCm. Whether
reachability is decidable for the graphs SCm remains an open problem [31]. Thus the graphs
SCm form an extremely expressive class that is still neighbor antichain bounded.
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▶ Theorem 4.3 (Fixed scope bound). Let G be closed under strongly induced subgraphs and
neighbor antichain bounded. For every k ≥ 1, the problem BSREACHk(G) is
1. NL-complete if G consists of cliques of bounded size,
2. P-complete if G contains some graph that is not a clique, and the size of cliques in G is

bounded,
3. PSPACE-complete otherwise.

In Theorem 4.3, we do not know if one can lift the restriction of neighbor antichain
boundedness. In Section 8, we describe a class of graphs that is closed under strongly induced
subgraphs, but we do not know the exact complexity of BSREACHk(G).

Theorem 4.3 allows us to deduce the complexity of BSREACHk(Γ) for every Γ.

▶ Corollary 4.4. Let Γ be a graph. Then for every k ≥ 1, the problem BSREACHk(Γ) is
1. NL-complete if Γ is a clique,
2. P-complete otherwise.

Proof. Apply Theorem 4.3 to the class consisting of Γ and its strongly induced subgraphs. ◀

Discussion of results. In the case of multi-pushdown systems, La Torre, Napoli, and
Parlato [25] show that scope-bounded reachability belongs to PSPACE, and is PSPACE-hard
if either the number of stacks or the scope bound k is part of the input. Our results complete
the picture in several ways. If k is part of the input, then PSPACE-hardness even holds if we
have two N-valued counters instead of stacks (Theorem 4.1). Moreover, hardness also holds
when we have two Z-valued counters (which often exhibit lower complexities [14]). Moreover,
we determine the complexity the case that both k and the number s of stacks is fixed.

Our results can also be interpreted in terms of vector addition systems with states (VASS).
In the case of VASS (i.e. unlooped cliques), our results imply that scope-bounded reachability
is PSPACE-complete if either (i) the number d of counters or (ii) the scope-bound k are part
of the input (and d ≥ 2). The same is true if we have integer VASS [14] (looped cliques).

Thus, for VASS, scope-bounding reduces the complexity of reachability from at least
non-elementary [8] to PSPACE. Interestingly, for two counters, the complexity goes up from
NL for general reachability [11] to PSPACE. For integer VASS, we go up from NP for general
reachability [14] and for a fixed number of counters even from NL [13], to PSPACE.

Note that we obtain a much more complete picture compared to what is known for
bounded context switching [19]. There, even the complexity for many individual graphs is
not known. Moreover, the case of fixed context bounds has not been studied in the case of
bounded context switching.

5 Block decompositions

In this section, we lay the foundation for our decision procedure in Section 6. We show that
in every scope-bounded run w, each context can be decomposed into a bounded number of
“blocks”, which will guarantee that w can be reduced to ε by way of “block-wise” reductions.
In our algorithms, this will allow us to abstract from each block (which can have unbounded
length) by a finite amount of data. This is similar to the block decomposition in [19].

Let w ∈ X∗
Γ such that w ≡Γ ε with a reduction π. We call a decomposition w = w1 · · · wm

a block decomposition if it refines the canonical context decomposition3 and for each wi, there
is a wj such that Rπ relates every position in wi with a position in wi itself or in wj . Here,
we do not rule out i = j: A block may itself reduce to ε.

3 In other words, each context in w consists of a contiguous subset of the factors w1, . . . , wm.
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29:10 Scope-Bounded Valence Systems

Figure 2 Context and block decomposition for a computation over Γ2 in Figure 1. The blue and
red lined rectangles are the two contexts. The color filled rectangles represent blocks, with partner
cancelling blocks having the same color filling.

Free reductions. Block decompositions are closely related to free reductions. Let w1, . . . , wm

be a sequence of computations in X∗
Γ. A free reduction is a finite sequence of applications

of the rewriting rules below to consecutive entries of the sequence so that w1, . . . , wm gets
transformed into the empty sequence.

(FR1) wi, wj 7→free ε if wiwj ≡Γ ε

(FR2) wi, wj 7→free wj , wi if wiIwj

(FR3) wi 7→free ŵi if wi
∗7→red ŵi using rules R1 and R2

We say that w1, . . . , wn is freely reducible if it admits a free reduction to the empty sequence.
As in [19], we have:

▶ Proposition 5.1. If the decomposition w = w1 · · · wm refines the context decomposition,
then it is a block decomposition if and only if the sequence w1, . . . , wm is freely reducible.

The main result of this section is that in a scope-bounded run, there exists a block
decomposition with a bounded number of factors in each context.

▶ Theorem 5.2. Let w ∈ X∗
Γ with sc(w) ≤ k. Then, there exists a block decomposition of w

such that each context splits into at most 2k blocks.

Let us sketch the proof. The block decomposition is obtained by scanning each context c

from left to right. As long as there is another context c′ such that all symbols either cancel
inside c or with a symbol in c′, we add symbols to the current block. When we encounter a
symbol that cancels with a position outside of c and c′, we start a new block. We show that
this yields a block decomposition (see Figure 2 for an example) and with arguments similar
to [19], one can show that it results in at most 2k blocks per context.

6 Decision procedure

In this section, we present the algorithms for the upper bounds of Theorems 4.1 and 4.3.

Block abstractions. The algorithm for bounded context switching in [19] abstracts each
block by a non-deterministic automaton. This approach uses polynomial space per block,
which would not be a problem for our PSPACE algorithm. However, for our P and NL
algorithms, this would require too much space. Therefore, we begin with a new notion of
“block abstraction”, which is more space efficient.

Let w = w1 · · · wm be a block decomposition for a run of a valence system A. Then it
follows from Proposition 5.1 that there are words ŵ1, . . . , ŵm such that wi

∗7→red ŵi for each i

such that the sequence ŵ1, . . . , ŵm can be reduced to the empty sequence using the rewriting
rules FR1 and FR2. For each i, we store (i) the states occupied at the beginning and end of
wi, (ii) its first operation f ∈ XΓ in wi, (iii) a non-deterministically chosen operation o ∈ XΓ
occurring in wi, and (iv) sets Umin

i and Umax
i , such that every maximal vertex occurring in wi
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is contained in Umax
i and every minimal vertex occurring in ŵi is contained in Umin

i . In this
case, we will say that the block abstraction “represents” the word ŵi. Thus, a block abstration
is a tuple N = (q1, q2, f, o, Umin , Umax ), where q1, q2 are states in A, f, o ∈ XΓ are symbols,
and Umin , Umax ⊆ V are neighbor antichains. Note that for every set B ⊆ V , the sets min B

and max B are neighbor antichains. Formally, we say that N = (q1, q2, f, o, Umin , Umax )
represents û ∈ X∗

Γ if there is a word u ∈ X∗
Γ such that (i) u

∗7→red û, (ii) u is read on
some path from q1 to q2, (iii) u begins with f , (iv) o occurs in u, (iv) the set of vertices
B occurring in u is a dependent set, (v) we have max B ⊆ Umax , and (vi) min B̂ ⊆ Umin ,
where B̂ is the set of vertices occurring in û. Then, L(N) denotes the set of all words
represented by N . We say that two block abstractions N = (q1, q2, f, o, Umin , Umax ) and
N ′ = (q′

1, q′
2, f ′, o′, U ′min , U ′max ) are dependent if Umax ∪ U ′max is a dependent set.

Context abstractions. Similarly, we will also need to abstract contexts. For this, we need
to abstract each of its blocks. In addition, we need to store the whole context’s first symbol
(f) and some non-deterministically chosen other symbol (o). These additional symbols
will be used to verify that we correctly guessed the canonical context decomposition of w.
Thus, a context abstraction is a tuple C = (N1, . . . , N2k, f, o), where N1, . . . , N2k are pairwise
dependent block abstractions, and f and o are symbols. We say that a context abstraction
C = (N1, . . . , N2k, f, o) is independent with a context abstraction C′ = (N ′

1, . . . , N ′
2k, f ′, o′) if

(i) f ′Io and (ii) for some i ∈ {1, . . . , 2k}, the block abstraction Ni = (qi
1, qi

2, fi, oi, Umin
i , Umax

i )
satisfies o = oi. Intuitively, this means if we have a word represented by C′ and then append
a word represented by C, then these words will be the contexts in the canonical context
decomposition.

In our algorithms, we will need to check whether a block decomposition admits a free
reduction. This means, we need to check whether the words represented by block abstractions
can cancel (to apply rule FR1) or commute (to apply FR2). Let us see how to do this. We say
that the block abstractions N = (q1, q2, f, o, Umin , Umax ) and N ′ = (q′

1, q′
2, f ′, o′, U ′min , U ′max )

commute if Umin IU ′min . Note that if N and N ′ commute, then uIu′ for every u ∈ L(N) and
u′ ∈ L(N ′). We need an analogous condition for cancellation. We say that N and N ′ cancel
if there are words u ∈ L(N) and u′ ∈ L(N ′) such that uu′ ≡Γ ε. This allows us to define an
analogue of free reductions on block abstractions.

▶ Definition 6.1. A free reduction on a sequence N1, . . . , Nm of block abstractions is a
sequence of operations
(FRA1) Ni, Nj →free ε, if Ni and Nj cancel
(FRA2) Ni, Nj →free Nj , Ni, if Ni and Nj commute.

Together with Lemma 3.2, the following lemma allows us to verify the steps in a free
reduction on block abstractions.

▶ Lemma 6.2. Given Γ, a valence system over Γ, and block abstractions N1 and N2, one
can decide in P whether N1 and N2 cancel. If Γ is a clique, this can be decided in NL.

Given block abstractions N1 and N2, (i) first perform saturation [19], obtaining irreducible
blocks. Saturation can be implemented using reachability in a one counter automaton, known
to be NL-complete [9], (ii) second, construct a pushdown automaton that is non-empty if
and only if the saturated N1 and N2 cancel. Emptiness of pushdown automata is decidable
in P. If Γ is a clique, then the pushdown automaton uses only a single stack symbol. Hence,
we only need a one-counter automaton, for which emptiness is decidable in NL [9]. This
yields the two upper bounds claimed in Lemma 6.2.
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Reduction to a Reachability Graph. In all our algorithms, we reduce BSREACH for a
valence system A over Γ to reachability in a finite graph R. For the PSPACE algorithm, we
argue that each node of R requires polynomially many bits and the edge relation can be
decided in PSPACE. For the P and the NL algorithm, we argue that R is polynomial in size.
Moreover, for the P algorithm, we compute R in polynomial time. For the NL algorithm, we
show that the edge relation of R can be decided in NL.

The vertices of R maintain k context abstractions (hence 2k2 block abstractions) per weak
dependence class. Let d ≤ |V | be the number of weak dependence classes. The idea behind
this choice of vertices is to build up a computation w from left to right, by guessing k context
abstractions (Cγ

1 , Cγ
2 , · · · , Cγ

k ) per equivalence class γ which forms the “current window” of
w. The initial vertex consists of k tuples (E , . . . , E) per weak dependence equivalence class,
where E is a placeholder representing a cancelled block or an empty block. An edge is added
from a vertex v1 to a vertex v2 in the graph when the left most context in v1 corresponding
to an equivalence class γ cancels out completely, and v2 is obtained by appending a fresh
context abstraction Cγ

y to v1. Indeed if w is k scope bounded, then the blocks of the first
context abstraction Cγ

1 must cancel out with blocks from the remaining context abstractions
Cγ

2 , · · · , Cγ
k using the free reduction rules discussed above. We can guess an equivalence class

γ whose context abstraction Cγ
1 cancels out, and extend w by guessing the next context

abstraction Cγ
y in the same equivalence class. An edge between two vertices in R represents

an extension of w where a new context of an appropriate equivalence class is added, after
the leftmost context has cancelled out using some free reduction rules.

For a weak dependence class, we refer to the tuple of k contexts of interest as a configuration.
Thus, a vertex in R consists of d configurations. As discussed earlier in section 6, we represent
the 2k2 blocks in each configuration using block abstractions.

▶ Definition 6.3. Given a weak dependence class γ ∈ [ ]∼W
, a configuration of γ is a k-tuple

of the form sγ = (Cγ
1 , Cγ

2 , · · · , Cγ
k ), where each Cγ

c for 1 ≤ c ≤ k is a context abstraction.

As mentioned above, in slight abuse of terminology, in case of cancellation in free reductions,
we also allow E as a placeholder for cancelled contexts.

Intuitively, the configuration tracks the remaining non-cancelled blocks of the last k

contexts of this weak dependence class along with their relative positions in their contexts.

▶ Definition 6.4. A vertex in the graph R has the form (sγ1 , . . . , sγd
|i, q) where (i) γ1, . . . , γd

are the distinct equivalence classes in [ ]∼W
, (ii) each sγj

is a configuration, (iii) i ∈ {1, · · · , d}
is the current weak dependence class we are on, and (iv) q is the last state occurring in sγi

.

Here, if sγi
consists just of E , then the last condition is satisfied automatically.

▶ Definition 6.5. For γ ∈ [ ]∼W
, a configuration s′

γ is one-step reachable from a configuration
sγ = (Cγ

1 , . . . , Cγ
k ) iff there exists some context abstraction C and a sequence of free reduction

operations on the sequence of block abstractions

Nγ1
1 , . . . , Nγ1

2k , Nγ2
1 , . . . , Nγ2

2k , . . . Nγk
1 , . . . , Nγk

2k , N1, . . . , N2k

resulting in the new sequence (placing E in a position if the block was cancelled due to the
free reduction rules; otherwise we keep the same block abstraction)

N ′γ1
1 , . . . , N ′γ1

2k , N ′γ2
1 , . . . , N ′γ2

2k , . . . N ′γk
1 , . . . , N ′γk

2k , N
′γ(k+1)
1 , . . . , N

′γ(k+1)
2k

such that N ′γ1
ℓ = E, for all ℓ ∈ {1, . . . , 2k}, and

(
C′γ

2 , C′γ
3 , · · · , C′γ

k , C′γ
k+1

)
= s′

γ, where
C′γ

ℓ = (N ′γℓ
1 , N ′γℓ

2 , · · · , N ′γℓ
2k , fγℓ, oγℓ) for ℓ ∈ {1, . . . , k + 1}, and N1, . . . , N2k are the block

abstractions in C. In this case, we write sγ
C−→ s′

γ .
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In short, we can go from sγ to s′
γ in one step if we can add some context abstraction to

sγ so that using free reduction steps, we can reach s′
γ along with clearing the oldest context.

We are now ready to define the edge relation of R.

▶ Definition 6.6. There is an edge in R from a vertex v = (sγ1 , . . . , sγd
|j, q) to a vertex

v′ iff there is some i ∈ {1, . . . , d} and a configuration s′
γi

such that (i) sγi

C′

−→ s′
γi

for some
context abstraction C′ such that C′ is independent with the last context abstraction C of sγj

and (ii) q is the first state in C′ and (iii) v′ = (sγ1 , . . . , sγi−1 , s′
γi

, sγi+1 , . . . , sγd
|i, q′), where

q′ is the last state of C′.

Since a context is a maximal dependent sequence, this check suffices to guarantee
independence of words represented by C′ and C.

As mentioned above, our algorithm reduces scope-bounded reachability to reachability
between two nodes in R. Details can be found in the full version.

Complexity. We turn to the upper bounds in Theorems 4.1 and 4.3. Asymptotically, a
block abstraction requires log |Q| + 2t · log |V | bits, where t is an upper bound on the size
of neighbor antichains. Per context, we store 2k block abstractions and two symbols. Let
d be the number of weak dependence classes. In a node of R, we store k contexts per
weak dependence class, a number in {1, . . . , d}, and a state. Hence, asymptotically, we need
M = dk2(log |Q| + t · log |V |) + log d + log |Q| bits per node of R. To simulate the free
reduction, we only need a constant multiple of this. We can thus decide reachability in R in
PSPACE.

▶ Proposition 6.7. BSREACH is in PSPACE.

We now look at the upper bounds for the first and second cases of Theorem 4.3.

▶ Proposition 6.8. Let G be a class of graphs that is closed under strongly induced subgraphs
and neighbor antichain bounded. If G consists of cliques of bounded size, then for each k ≥ 1,
the problem BSREACHk(G) belongs to NL.

Proof. Our assumptions imply that d ≤ |V |, t, and k are bounded. Thus M is at most
logarithmic in the input. Moreover, we can simulate free reductions using logarithmic space,
because checking whether two block abstractions cancel can be done in NL by Lemma 6.2. ◀

▶ Proposition 6.9. Let G be a class of graphs that is closed under strongly induced subgraphs
and neighbor antichain bounded. If the size of cliques in G is bounded, then for every k ≥ 1,
the problem BSREACHk(G) belongs to P.

Proof. First observe that as in Proposition 6.8, the parameters d, t, and k are bounded. To
see this for d, let ℓ be an upper bound on the size of cliques in G. Then, every graph Γ in G
can have at most ℓ weak dependence classes: Otherwise, Γ would have a clique with ℓ + 1
nodes as a strongly induced subgraph, and thus G would contain a clique with ℓ + 1 nodes.
Hence, d is bounded and for a node in R, we need only logarithmic space. Moreover, by
Lemma 6.2, we can verify a free reduction step in P. ◀

Special Graphs. We turn to the NL and P upper bounds for Theorem 4.1. In each case,
all graphs are anti-cliques. Thus, every run has a single context and BSREACH reduces to
membership for pushdown automata, which is in P. If there is just one vertex, we can even
obtain a one-counter automaton, for which emptiness is in NL [9].

▶ Proposition 6.10. If G is the class of anti-cliques, then BSREACH(G) is in P. Moreover,
if Γ has only one vertex, then BSREACH(Γ) is in NL.
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7 Hardness

In this section, we show the hardness results of Theorems 4.1 and 4.3.

▶ Proposition 7.1. If Γ is not a clique, then BSREACHk(Γ) is P-hard for each k ≥ 1.

This uses standard techniques. If a valence system uses only the two non-adjacent vertices
in Γ, then scope-bounded reachability is the same as ordinary reachability. If both vertices
are looped, then this is the rational subset membership problem for a free group of rank 2,
for which P-hardness was observed in [15, Theorem III.4]. If at least one vertex is unlooped,
a standard encoding yields a reduction from emptiness of pushdown automata.

Two adjacent vertices. Our second hardness proof shows PSPACE-hardness in Theorem 4.1.

▶ Proposition 7.2. If Γ has two adjacent nodes, then BSREACH(Γ) is PSPACE-hard.

For the proof of Proposition 7.2, we employ the model of bounded queue automata. A
bounded queue automaton (BQA) is a tuple A = (Q, n, T, q0, qf ), where (i) Q is a finite set of
states, (ii) n ∈ N is the queue length, given in unary, (iii) T is its set of transitions, (iv) q0 ∈ Q

is its initial state, and (iv) qf ⊆ Q is its final state. A configuration of a BQA is a pair
(q, w) ∈ Q × {0, 1}n. A transition is of the form (q, x, y, q′), where q, q′ ∈ Q and x, y ∈ {0, 1}.
We write (q, w) → (q′, w′) if there is a transition (q, x, y, q′) such that (i) w has prefix x and
(ii) removing x from the left and appending y on the right yields w′. The reachability problem
for BQA is the following: Given a bounded queue automaton (Q, n, T, q0, qf ), is it true that
(q0, 0n) ∗−→ (qf , 0n)? It is straightforward to simulate a linear bounded automaton using a
bounded queue automaton and vice-versa, hence reachability for BQA is PSPACE-complete.

General idea and challenge. Let us first assume that the nodes u and v in Γ are not weakly
dependent. The initial approach for Proposition 7.2 is to encode the queue content in the
current window of k = n contexts. In each context, we encode a 0-bit using an occurrence
of the letter u+ that can only be cancelled with a future u−. We call this a 0-context.
Likewise, a 1-bit is encoded by two occurrences of u, which we call a 1-context. Therefore,
we abbreviate 0 = u+ and 1 = u+u+. We also have the right inverses 0̄ = u− and 1̄ = u−u−.
To start a new context, we multiply v+v− and use the abbreviation ∥ = v+v−. With this
encoding, it is easy to check that the oldest context is a 0-context: Just multiply 0̄ = u−

and then start a new context using ∥ = v+v−. This can only succeed if the oldest context
encodes a 0: If it had encoded a 1, there would be another occurrence of u+ that can never
be cancelled.

However, it is not so easy to check that the oldest context is a 1-context. One could
multiply with 1̄∥ = u−u−v+v−, but this can succeed even if the oldest context is a 0-context:
Indeed, the first occurrence of u− can cancel with the u+ in the oldest context c, but the
second u− could cancel with u+ in a context to the right of c.

Solution. We overcome this as follows. Instead of one context per bit, we use three contexts.
To encode a 0 in the queue, we use a 0-context, a 1-context, and another 1-context, resulting
in the string 011. To encode a 1, we do the same with the bit string 100. Then, we use the
above approach to check for 011 or 100: Since a successful check for a 0-context guarantees
that there was a 0-context, checking for 0, 1, 1 guarantees that the oldest context is a 0-context,
thus the three oldest contexts must carry 011. When we check for 1, 0, 0, then among the
three oldest contexts, at least two are 0-contexts, hence the three oldest contexts carry 100.
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Let us calculate the required scope bound to implement this idea. Since we only use
the operations u+, u−, v+, v−, we only have u-contexts (consisting of u+, u−) and v-contexts
(consisting of v+, v−). When we read the oldest bit in the queue, we produce three new
u-contexts (separated by v-contexts). Then, we need to write a new bit in the queue, which
requires another three u-contexts (separated by v-contexts). The interaction distance to the
oldest u-context that is part of the leftmost queue bit is always k = 3(2n − 1): The oldest bit
is encoded using three u-contexts. For each further queue entry i ∈ {2, . . . , n}, we have three
u-contexts that were used to read an even older bit, and then three u-contexts that encode
the i-th bit in the queue. In total, this yields 3(1 + 2(n − 1)) = 3(2n − 1) many u-contexts.

To initialize the queue, we use t0 = (0∥1∥1∥)(e∥e∥e∥0∥1∥1∥)n−1. Here, e = u+u− is a
“gap context” that ensures that the leftmost bit has interaction distance exactly k = 3(2n−1)
from the right end of t0. Thus, t0 puts n copies of the bit string 011, plus n−1 gap contexts into
our window of k = 3(2n − 1) contexts. To simulate a transition (p, x, y, p′), we check that x is
the bit encoded by the three oldest contexts. Afterwards, we put the new bit y into the queue.
Therefore, if x = 0, define the triple (x1, x2, x3) = (0̄, 1̄, 1̄); if x = 1, let (x1, x2, x3) = (1̄, 0̄, 0̄).
Moreover, if y = 0, then let (y1, y2, y3) = (0, 1, 1); if y = 1, then let (y1, y2, y3) = (1, 0, 0).
Then we use the string tx,y = x1∥x2∥x3∥y1∥y2∥y3∥. Finally, to check that the encoded
queue content consists entirely of 0’s, we use tf = (0̄∥1̄∥1̄∥)(e∥e∥e∥0̄∥1̄∥1̄∥)n−1. With this
encoding, it is straightforward to translate a BQA into a valence system over Γ.

Note that if u and v are weakly dependent, then the same construction works, except that
we have to set k = 6(2n − 1), because now the v-contexts ∥ = v+v− between two u-contexts
count towards the interaction distance.

Unbounded cliques. We turn to PSPACE-hardness in Theorem 4.3.

▶ Proposition 7.3. Suppose G be either the class of unlooped cliques or the class of looped
cliques. Then for every k ≥ 1, the problem BSREACHk(G) is PSPACE-hard.

Here it is convenient to reduce from bit vector automata, whose configuration consists
of a state and a bit vector. In each step, they can read and modify one of the bits. A bit
vector automaton (BVA) is a tuple (Q, n, T, q0, qf ), where (i) Q is a finite set of states, (ii) n

is the vector length, given in unary, (iii) a set T of transitions, (iv) q0 ∈ Q is its initial
state, and (v) qf ∈ Q is its final state. A transition is of the form (p, i, x, y, q) with p, q ∈ Q,
i ∈ {0, . . . , n}, and x, y ∈ {0, 1}. It checks that i-th bit is currently x, and sets the i-th bit
to y. Thus, a configuration of a bit vector automaton is a pair (q, w) ∈ Q × {0, 1}n. By ∗−→,
we denote the reachability relation. The reachability problem for BVA asks, given a BVA
(Q, n, T, q0, qf ), is it true that (q0, 0n) ∗−→ (qf , 0n)? Again, a simulation of linear bounded
automata is straightforward and this problem is PSPACE-complete.

Proof of Proposition 7.3. Let A = (Q, n, T, q0, qf ) be a BVA. Moreover, depending on
whether G is the class of looped or unlooped cliques, let Γ = (V, I) be either a looped or an
unlooped clique with 2n vertices, so let V = {ai, bi | i ∈ {1, . . . , n}}. Our construction does
not depend on whether Γ is looped or unlooped and we will show that it is correct in either
case. We first illustrate the idea for maintaining a single bit using the vertices ai, bi. To ease
notation, we now write v for v+ and v̄ for v− when v ∈ V . Consider the string

w = (ar1
i bib̄iā

s1
i bib̄i)(aiāibib̄i)k(ar2

i bib̄iā
s2
i bib̄i) · · · (aiāibib̄i)k(arm

i bib̄iā
sm
i bib̄i).

Moreover, assume that for each j = 1, . . . , m, we have rj , sj ∈ {k, 3k}. We think of a
rj

i bib̄i

as an operation that stores 0 if rj = k and stores 1 if rj = 3k. We think of ā
sj

i bib̄i as a read
operation, where again sj = k stands for 0 and sj = 3k stands for 1. Here, the purpose of
bib̄i is to start a new context (since Γ is a clique). Moreover, each factor (aiāibib̄i)k produces

CONCUR 2021



29:16 Scope-Bounded Valence Systems

k contexts in the weak dependence class of ai, where each context contains aiāi. This means,
each factor (aiāibib̄i)k enforces an interaction distance of k + 1 between ā

sj

i and a
rj+1
i , and

thus prevents them from canceling with each other.
We claim that sc(w) ≤ k if and only if each read operation reads the bit that was stored

before. In other words, we have sc(w) ≤ k if and only if rj = sj for each j ∈ {1, . . . , m}.
Moreover, this is true regardless of whether Γ is looped or unlooped. For the “if”, note that
each a

rj

i can cancel with ā
sj

i and in every other context, every letter (ai, āi, bi, b̄i) can cancel
with its direct neighbor. Conversely, suppose rj ̸= sj for some j. If rj = 3k and sj = k, then
the context a

rj

i = a3k
i sees only 3k − 1 occurrences of āi in contexts at interaction distance

≤ k: First, the context āsi
i = āk

i yields k occurrences. The other 2k − 1 contexts are of the
form aiāi and each provides one occurrence of āi. In total, we have k + 2k − 1 = 3k − 1. It
is thus impossible to cancel every letter in a

rj

i . The case rj = k and sj = 3k is symmetric.
This proves our claim. Using this encoding, it is now straightforward to simulate n bits. ◀

Propositions 7.1–7.3 complete our proofs: Theorem 4.1 follows from Propositions 7.1, 7.2,
6.7, and 6.10. Theorem 4.3 follows from Propositions 7.1, 7.3, and 6.7–6.9.

8 Conclusion

We have introduced a notion of scope-bounded reachability for valence systems over graph
monoids. In the special case of graphs that correspond to multi-pushdowns, this notion
coincides with the original notion of scope-boundedness introduced by La Torre, Napoli, and
Parlato [25]. We have shown that with this notion, scope-bounded reachability is decidable
in PSPACE, even if the graph and the scope bound k are part of the input.

In addition, we have studied the complexity of the problem under four types of restrictions:
(i) k and the graph are part of the input, and the graph is drawn from some class G of graphs,
(Theorem 4.1), (ii) k is part of the input and the graph is fixed (Corollary 4.2), (iii) k is fixed
and the graph is drawn from some class G of graphs that is neighbor antichain bounded and
closed under strongly induced subgraphs (Theorem 4.3) and (iv) k is fixed and the graph
is fixed (Corollary 4.4). We have completely determined the complexity landscape in the
situations (i)–(iv): In every case, we obtain NL-, P-, or PSPACE-completeness. These results
settle the complexity of scope-bounded reachability for most types of infinite-state systems
that fit in the framework of valence systems and have been considered in the literature.

Open Problem: Dropping neighbor antichain boundedness. We leave open what complex-
ities can arise if in case (iii) above, we drop the assumption of neighbor antichain boundedness.
In other words: k is fixed and the graph comes from a class G that is closed under strongly
induced subgraphs. For all we know, it is possible that there are classes G for which the
problem is neither NL-, nor P-, nor PSPACE-complete.

For example, for each n ≥ 0, consider the bipartite graph Bn with nodes {ui, vi | i ∈
{1, . . . , n}}, where {ui, vj} is an edge if and only if i ≠ j. Moreover, let G be the class of
graphs containing Bn for every n ∈ N and all strongly induced subgraphs. Observe that
the cliques in G have size at most 2: Bn is bipartite and thus every clique in Bn has size
at most 2. Moreover, the graphs Bn have neighbor antichains of unbounded size: The set
{u1, . . . , un} is a neighbor antichain in Bn.

We currently do not know the exact complexity of BSREACHk(G). By Theorem 4.3, the
problem is P-hard and in PSPACE. Intuitively, our P upper bound does not apply because in
each node of R, one would have to remember n bits in order to keep enough information
about commutation of blocks: For a subset S ⊆ {1, . . . , n}, let uS be the product of all
u+

1 , . . . , u+
n , where we only include u+

i if i ∈ S. Then uSv+
j ≡ v+

j uS if and only if j /∈ S.
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Abstract
We show that for every fixed degree k ≥ 3, the problem whether the termination/counter complexity
of a given demonic VASS is O(nk), Ω(nk), and Θ(nk) is coNP-complete, NP-complete, and
DP-complete, respectively. We also classify the complexity of these problems for k ≤ 2. This shows
that the polynomial-time algorithm designed for strongly connected demonic VASS in previous works
cannot be extended to the general case. Then, we prove that the same problems for VASS games
are PSPACE-complete. Again, we classify the complexity also for k ≤ 2. Tractable subclasses of
demonic VASS and VASS games are obtained by bounding certain structural parameters, which
opens the way to applications in program analysis despite the presented lower complexity bounds.
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1 Introduction

Vector addition systems with states (VASS) are a generic formalism expressively equivalent
to Petri nets. In program analysis, VASS are used to model programs with unbounded
integer variables, parameterized systems, etc. Thus, various problems about such systems
reduce to the corresponding questions about VASS. This approach’s main bottleneck is
that interesting questions about VASS tend to have high computational complexity (see,
e.g., [8, 15, 16]). Surprisingly, recent results (see below) have revealed computational
tractability of problems related to asymptotic complexity of VASS computations, allowing to
answer questions like “Does the program terminate in time polynomial in n for all inputs
of size n?”, or “Is the maximal value of a given variable bounded by O(n4) for all inputs
of size n?”. These results are encouraging and may enhance the existing software tools
for asymptotic program analysis such as SPEED [11], COSTA [2], RAML [12], Rank [3],
Loopus [18, 19], AProVE [10], CoFloCo [9], C4B [7], and others. In this paper, we give a full
classification of the computational complexity of deciding polynomial termination/counter
complexity for demonic VASS and VASS games, and solve open problems formulated in
previous works. Furthermore, we identify structural parameters making the asymptotic VASS
analysis computationally hard. Since these parameters are often small in VASS program
abstractions, this opens the way to applications in program analysis despite the established
lower complexity bounds.

The termination complexity of a given VASS A is a function L : N → N∞ assigning to
every n the maximal length of a computation initiated in a configuration with all counters
initialized to n. Similarly, the counter complexity of a given counter c in A is a function
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input i ;
while ( i >0)

i := i −1;
j := i ;
while ( j >0)

j := j −1;

input i ;
while ( i >0)

i −−;
j :=0; Aux:=0;
while ( i >0)

i −−;
j ++;
Aux++;

while (Aux>0)
i ++;
Aux−−;

while ( j >0)
j −−;

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(−1, 0, 0) /* i-- */

(0, 0, 0)

(0,−1,−1) // j:=0; Aux:=0 //

(−1,+1,+1) // i--; j++; Aux++ //

(+1, 0,−1) // i++; Aux-- //

(0,−1, 0) // j-- //

Figure 1 A skeleton of a simple imperative program (left) and its VASS model (right).

C[c] : N → N∞ such that C[c](n) is the maximal value of c along a computation initiated in
a configuration with all counters set to n. So far, three types of VASS models have been
investigated in previous works.

Demonic VASS, where the non-determinism is resolved by an adversarial environment
aiming to increase the complexity.
VASS Games, where every control state is declared as angelic or demonic, and the
non-determinism is resolved by the controller or by the environment aiming to lower and
increase the complexity, respectively.
VASS MDPs, where the states are either non-deterministic or stochastic. The non-
determinism is usually resolved in the “demonic” way.

Let us note that the “angelic” and “demonic” non-determinism are standard concepts in
program analysis [6] applicable to arbitrary computational devices including VASS. The use
of VASS termination/counter complexity analysis is illustrated in the next example.

▶ Example 1. Consider the program skeleton of Fig. 1 (left). Since a VASS cannot directly
model the assignment j:=i and cannot test a counter for zero, the skeleton is first transformed
into an equivalent program of Fig. 1 (middle), where the assignment j:=i is implemented
using an auxiliary variable Aux and two while loops. Clearly, the execution of the transformed
program is only longer than the execution of the original skeleton (for all inputs). For the
transformed program, an over-approximating demonic VASS model is obtained by replacing
conditionals with non-determinism, see Fig. 1 (right). When all counters are initialized to n,
the VASS terminates after O(n2) transitions. Hence, the same upper bound is valid also for
the original program skeleton. Actually, the run-time complexity of the skeleton is Θ(n2)
where n is the initial value of i, so the obtained upper bound is asymptotically optimal.

Existing results. In [5], it is shown that the problem whether L ∈ O(n) for a given demonic
VASS is solvable in polynomial time, and a complete proof method based on linear ranking
functions is designed. The polynomiality of termination complexity for a given demonic VASS
is also decidable in polynomial time, and if L ̸∈ O(nk) for any k ∈ N, then L ∈ 2Ω(n) [14].
The same results hold for counter complexity. In [20], a polynomial time algorithm computing
the least k ∈ N such that L ∈ O(nk) for a given demonic VASS is presented (the algorithm
first checks if such a k exists). It is also shown that if L ̸∈ O(nk), then L ∈ Ω(nk+1).
Again, the same results hold also for counter complexity. The proof is actually given only for
strongly connected demonic VASS, and it is conjectured that a generalization to unrestricted
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demonic VASS can be obtained by extending the presented construction (see the Introduction
of [20]). In [13], it was shown that the problem whether the termination/counter complexity
of a given demonic VASS belongs to a given level of Grzegorczyk hierarchy is solvable in
polynomial time, and the same problem for VASS games is shown NP-complete. The NP
upper bound follows by observing that player Angel can safely commit to a countreless1

strategy when minimizing the complexity level in the Grzegorczyk hierarchy. Intuitively,
this is because Grzegorczyk classes are closed under function composition (unlike the classes
Θ(nk)). Furthermore, the problem whether L ∈ O(n2) for a given VASS game is shown
PSPACE hard, but the decidability of this problem is left open. As for VASS MDPs, the
only existing result is [4], where it is shown that the linearity of termination complexity is
solvable in polynomial time for VASS MDPs with a tree-like MEC decomposition.

Our contribution. For demonic VASS, we refute the conjecture of [20] and prove that for
general (not necessarily strongly connected) demonic VASS, the problem whether

L ∈ O(nk) is in P for k = 1, and coNP-complete for k ≥ 2;
L ∈ Ω(nk) is in P for k ≤ 2, and NP-complete for k ≥ 3;
L ∈ Θ(nk) is in P for k = 1, coNP-complete for k = 2, and DP-complete for k ≥ 3.

The same results are proven also for counter complexity.
Since the demonic VASS constructed in our proofs are relatively complicated, we write

them in a simple imperative language with a precisely defined VASS semantics. This allows
to present the overall proof idea clearly and justify technical correctness by following the
control flow of the VASS program, examining possible side effects of the underlying “gadgets”,
and verifying that the Demon does not gain anything by deviating from the ideal execution
scenario.

When proving the upper bounds, we show that every path in the DAG of strongly
connected components can be associated with the (unique) vector describing the maximal
simultaneous increase of the counters. Here, the counters pumpable to exponential (or
even larger) values require special treatment. We show that this vector is computable in
polynomial time. Hence, the complexity of a given counter c is Ω(nk) iff there is a path in the
DAG such that the associated maximal increase of c is Ω(nk). Thus, we obtain the NP upper
bound, and the other upper bounds follow similarly. The crucial parameter characterizing
hard-to-analyze instances is the number of different paths from a root to a leaf in the DAG
decomposition, and tractable subclasses of demonic VASS are obtained by bounding this
parameter. We refer to Section 3 for more details.

Then, we turn our attention to VASS games, where the problem of polynomial termina-
tion/counter complexity analysis requires completely new ideas. In [13], it was observed that
the information about the “asymptotic counter increase performed so far” must be taken into
account by player Angel when minimizing the complexity level in the polynomial hierarchy,
and counterless strategies are therefore insufficient. However, it is not clear what information
is needed to make optimal decisions, and whether this information is finitely representable.
We show that player Angel can safely commit to a so-called locking strategy. A strategy
for player Angel is locking if whenever a new angelic state p is visited, one of its outgoing
transition is chosen and “locked” so that when p is revisited, the same locked transition
is used. The locked transition choice may depend on the computational history and the
transitions locked in previously visited angelic states. Then, we define a locking decomposition

1 A strategy is counterless if the decision depends just on the control state of the configuration currently
visited.
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1 input i ;
2 j :=0; k :=0; z :=0;
3 i f cond i t i on // demonic cho i c e //
4 then while ( i >0) do j ++; k:=k+i ; i −−; done
5 else j := i ∗ i ; k:= i ;
6 while ( i >0) do j := j+k ; i −−; done
7 choose : // a n g e l i c cho i c e //
8 while ( j >0) do j −−; z++ done
9 or : while (k>0) do k−−; z++ done

Figure 2 A simple program with both demonic and angelic non-determinism.

of a given VASS that plays a role similar to the DAG decomposition for demonic VASS.
Using the locking decomposition, the existence of a suitable locking strategy for player Angel
is decided by an alternating polynomial time algorithm (and hence in polynomial space).
Thus, we obtain the following: For every VASS game, we have that L is either in O(nk) or
in Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk) is NP-complete for k=1 and PSPACE-complete for k≥2;
L ∈ Ω(nk) is in P for k=1, coNP-complete for k=2, and PSPACE-complete for k≥3;
L ∈ Θ(nk) is NP-complete for k=1 and PSPACE-complete for k≥2.

The same results hold also for counter complexity. Similarly to demonic VASS, tractable
subclasses of VASS games are obtained by bounding the number of different paths in the
locking decomposition.

The VASS model constructed in Example 1 is purely demonic. The use of VASS games
in program analysis/synthesis is illustrated in the next example.

▶ Example 2. Consider the program of Fig. 2. The condition at line 3 is resolved by the
environment in a demonic way. The two branches of if-then-else execute a code modifying
the variables j and k. After that, the controller can choose one of the two while-loops at
lines 8, 9 with the aim of keeping the value of z small. The question is how the size of z
grows with the size of input if the controller makes optimal decisions. A closer look reveals
that when the variable i is assigned n at line 1, then

the values of j and k are Θ(n) and Θ(n2) when the condition is evaluated to true;
the values of j and k are Θ(n2) and Θ(n) when the condition is evaluated to false.

Hence, the controller can keep z in Θ(n) if an optimal decision is taken. Constructing a
VASS game model for the program of Fig. 2 is straightforward (the required gadgets are
given in Fig. 3). Using the results of this paper, the above analysis can be performed fully
automatically.

2 Preliminaries

The sets of integers and non-negative integers are denoted by Z and N, respectively, and we
use N∞ to denote N ∪ {∞}. The vectors of Zd where d ≥ 1 are denoted by v,u, . . ., and the
vector (n, . . . , n) is denoted by n⃗.

▶ Definition 3 (VASS). Let d ≥ 1. A d-dimensional vector addition system with states
(VASS) is a pair A = (Q,Tran), where Q ̸= ∅ is a finite set of states and Tran ⊆ Q×Zd×Q

is a finite set of transitions such that for every q ∈ Q there exist p ∈ Q and u ∈ Zd such
that (q,u, p) ∈ Tran.
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The set Q is split into two disjoint subsets QA and QD of angelic and demonic states
controlled by the players Angel and Demon, respectively. A configuration of A is a pair
pv ∈ Q× Nd, where v is the vector of counter values. We often refer to counters by their
symbolic names. For example, when we say that A has three counters x, y, z and the value of
x in a configuration pv is 8, we mean that d = 3 and vi = 8 where i is the index associated
to x. When the mapping between a counter name and its index is essential, we use ci to
denote the counter with index i.

A finite path in A of length m is a finite sequence ϱ = p1,u1, p2,u2, . . . , pm such that
(pi,ui, pi+1) ∈ Tran for all 1 ≤ i < m. We use ∆(ϱ) to denote the effect of ϱ, defined as∑m

i=1 ui. An infinite path in A is an infinite sequence α = p1,u1, p2,u2, . . . such that every
finite prefix p1,u1, . . . , pm of α is a finite path in A.

A computation of A is a sequence of configurations α = p1v1, p2v2, . . . of length m ∈ N∞
such that for every 1 ≤ i < m there is a transition (pi,ui, pi+1) satisfying vi+1 = vi + ui.
Note that every computation determines its associated path in the natural way.

VASS Termination Complexity. A strategy for Angel (or Demon) in A is a function η

assigning to every finite computation p1v1, . . . , pmvm where pm ∈ QA (or pm ∈ QD) a
transition (pm,u, q). Every pair of strategies (σ, π) for Angel/Demon and every initial
configuration pv determine the unique maximal computation Compσ,π(pv) initiated in
pv. The maximality means that the computation cannot be prolonged without making
some counter negative. For a given counter c, we use max[c](Compσ,π(pv)) to denote the
supremum of the c’s values in all configurations visited along Compσ,π(pv). Furthermore, we
use len(Compσ,π(pv)) to denote the length of Compσ,π(pv). Note that max[c] and len can
be infinite for certain computations.

For every initial configuration pv, consider a game where the players Angel and Demon
aim at minimizing and maximizing the max[c] or len objective, respectively. By applying
standard game-theoretic arguments (see [1] for an explicit proof), we obtain

sup
π

inf
σ

len(Compσ,π(pv)) = inf
σ

sup
π

len(Compσ,π(pv)) (1)

sup
π

inf
σ

max[c](Compσ,π(pv)) = inf
σ

sup
π

max[c](Compσ,π(pv)) (2)

where σ and π range over all strategies for Angel and Demon, respectively. Hence, there
exists a unique termination value of pv, denoted by Tval(pv), defined by (1). Similarly, for
every counter c there exists a unique maximal counter value, denoted by Cval[c](pv), defined
by (2). Furthermore, both players have optimal positional strategies σ∗ and π∗ achieving
the outcome specified by the equilibrium value or better in every configuration pv against
every strategy of the opponent (here, a positional strategy is a strategy depending only on
the currently visited configuration). We refer to [1] for details.

The termination complexity and c-counter complexity of A are functions L, C[c] : N → N∞
where L(n) = max{Tval(pn⃗) | p ∈ Q} and C[c](n) = max{Cval[c](pn⃗) | p ∈ Q}. When the
underlying VASS A is not clear, we write LA and CA[c] instead of L and C[c].

Observe that the asymptotic analysis of termination complexity for a given VASS A is
trivially reducible to the asymptotic analysis of counter complexity in a VASS B obtained
from A by adding a fresh “step counter” sc incremented by every transition of B. Clearly,
LA ∈ Θ(CB[sc]). Therefore, the lower complexity bounds for the considered problems of
asymptotic analysis are proven for L, while the upper bounds are proven for C[c].
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VASS Program 1 Aφ.

1 d2 += d1 ∗ e1; d3 += d2 ∗ e2; · · · ; dk += dk−1 ∗ ek−1;
2 foreach i = 1, . . . , v do
3 choose: xi += dk or x̄i += dk;
4 end
5 s0 += dk;
6 foreach i = 1, . . . , m do
7 choose: si += min(ℓi

1, si−1) or si += min(ℓi
2, si−1) or si += min(ℓi

3, si−1);
8 end
9 f += sm ∗ n

3 Demonic VASS

In this section, we classify the computational complexity of polynomial asymptotic analysis
for demonic VASS. The following theorem holds regardless whether the counter update
vectors are encoded in unary or binary (the lower bounds hold for unary encoding, the upper
bounds hold for binary encoding).

▶ Theorem 4. Let k ≥ 1. For every demonic VASS A we have that L is either in O(nk) or
in Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk) is in P for k = 1, and coNP-complete for k ≥ 2;
L ∈ Ω(nk) is in P for k ≤ 2, and NP-complete for k ≥ 3;
L ∈ Θ(nk) is in P for k = 1, coNP-complete for k = 2, and DP-complete for k ≥ 3.

The same results hold also for C[c] (for a given counter c of A).

The next theorem identifies the crucial parameter influencing the complexity of polynomial
asymptotic analysis for demonic VASS. Let D(A) be the standard DAG of strongly connected
components of A. For every leaf (bottom SCC) η of D(A), let Deg(η) be the total number
of all paths from a root of D(A) to η.

▶ Theorem 5. Let Λ be a class of demonic VASS such that for every A ∈ Λ and every leaf
η of D(A) we have that Deg(η) is bounded by a fixed constant depending only on Λ.

Then, the problems whether LA ∈ O(nk), LA ∈ Ω(nk), LA ∈ Θ(nk) for given A ∈ Λ and
k ∈ N, are solvable in polynomial time (where the k is written in binary). The same results
hold also for C[c] (for a given counter c of A).

The degree of the polynomial bounding the running time of the decision algorithm for
the three problems of Theorem 5 increases with the increasing size of the constant bounding
Deg(η). From the point of view of program analysis, Theorem 5 has a clear intuitive meaning.
If A is an abstraction of a program P , then the instructions in P increasing the complexity
of the asymptotic analysis of A are branching instructions such as if-then-else that are
not embedded within loops. If P executes many such constructs in a sequence, a termination
point can be reached in many ways (“zigzags” in the P ’s control-flow graph). This increases
Deg(η), where η is a leaf of D(A) containing the control state modeling the termination point
of P .

3.1 Lower bounds
Since the asymptotic analysis of L is trivially reducible to the asymptotic analysis of C[c]
(see Section 2), all lower complexity bounds of Theorem 4 follow directly from the next two
lemmata.
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in

out

– x
+ α
+ z

+ x
– α
+ z

– y

z += x ∗ y

in out

– y
+ x
+ α

+ y
– α

x += y

in out

– si−1
– ℓ

+ si

+ α
+ ℓ
– α

si += min(ℓ, si−1)

in in out in out out
ins1 ins2

ins1; ins2

in

in out

in out

out

ins1

insj

choose: ins1; or · · · or insj

Figure 3 The gadgets of Aφ.

▶ Lemma 6. Let k ≥ 2. For every propositional formula φ in 3-CNF there exists a demonic
VASS Aφ constructible in time polynomial in |φ| such that

if φ is satisfiable, then LAφ ∈ Θ(nk+1);
if φ is not satisfiable, then LAφ ∈ Θ(nk).

Proof. Let φ ≡ C1 ∧ · · · ∧Cm be a propositional formula where every Ci ≡ ℓi1 ∨ ℓi2 ∨ ℓi3 is a
clause with three literals over propositional variables X1, . . . , Xv (a literal is a propositional
variable or its negation). We construct a VASS Aφ with the counters

x1, · · · , xv, x̄1, · · · , x̄v used to encode an assignment of truth values to X1, . . . , Xv. In the
following, we identify literals ℓij of φ with their corresponding counters (i.e., if ℓij ≡ Xu,
the corresponding counter is xu; and if ℓij ≡ ¬Xu, the corresponding counter is x̄u).
s0, . . . , sm used to encode the validity of clauses under the chosen assignment,
f used to encode the (in)validity of φ under the chosen assignment,
d1, . . . , dk and e1, . . . , ek−1 used to compute nk,
and some auxiliary counters used in gadgets.

The structure of Aφ is shown in VASS Program 1. The basic instructions are implemented
by the gadgets of Fig. 3 (top). Counter changes associated to a given transition are indicated
by the corresponding labels, where −c and +c mean decrementing and incrementing a given
counter by one (the other counters are unchanged). Hence, the empty label represents no
counter change, i.e., the associated counter update vector is 0⃗. The auxiliary counter α is
unique for every instance of these gadgets and it is not modified anywhere else.

The constructs ins1; ins2 and choose: ins1; or · · · or insj are implemented by connect-
ing the underlying gadgets as shown in Fig. 3 (bottom). The foreach statements are just
concise representations of the corresponding sequences of instructions connected by ‘;’.

Now suppose that the computation of VASS Program 1 is executed from line 1 where all
counters are initialized to n. One can easily verify that all gadgets implement the operations
associated to their labels up to some “asymptotically irrelevant side effects”. More precisely,

the z += x ∗ y gadget ensures that the Demon can increase the value of counter z by
val(x) + val(y) · (val(x) + n) (but not more) if he plays optimally, where val(x) and val(y)
are the values stored in x and y when initiating the gadget. Recall that the counter α is
unique for the gadget, and its initial value is n. Also note that the value of y is decreased
to 0 when the Demon strives to maximally increase the value of z.

CONCUR 2021



30:8 Polynomial VASS Termination

The x += y gadget ensures that the Demon can add val(y) to the counter x and then reset
y to the value val(y) + n (but not more) if he plays optimally. Again, note that α is a
unique counter for the gadget with initial value n.
The si += min(ℓ, si−1) gadget allows the Demon to increase si by the minimum of val(ℓ)
and val(si−1), and then restore ℓ to val(ℓ) + n (but not more).

Now, the VASS Program 1 is easy to follow. We describe its execution under the assumption
that the Demon plays optimally. It is easy to verify that the Demon cannot gain anything
by deviating from the below described scenario where certain counters are pumped to their
maximal values (in particular, the auxiliary counters are never re-used outside their gadgets,
hence the Demon is not motivated to leave any positive values in them).

By executing line 1, the Demon pumps the counter dk to the value Θ(nk). Then, the
Demon determines a truth assignment for every Xi, where i ∈ {1, . . . , v}, by pumping either
the counter xi or the counter x̄i to the value Θ(nk). A key observation is that when the
chosen assignment makes φ true, then every clause contains a literal such that the value of
its associated counter is Θ(nk). Otherwise, there is a clause Ci such that all of the three
counters corresponding to ℓi1, ℓi2, ℓi3 have the value n. The Demon continues by pumping s0
to the value Θ(nk) at line 5. Then, for every i = 1, . . . ,m, he selects a literal ℓij of Ci and
pumps si to the minimum of val(si−1) and val(ℓij). Observe that val(si−1) is either Θ(n) or
Θ(nk), and the same holds for val(si) after executing the instruction. Hence, sm is pumped
either to Θ(nk) or Θ(n), depending on whether the chosen assignment sets every clause to
true or not, respectively. Note that the length of the whole computation up to line 9 is
Θ(nk), regardless whether the chosen assignment sets the formula φ to true or false. If sm
was pumped to Θ(nk), then the last instruction at line 9 can pump the counter f to Θ(nk+1)
in Θ(nk+1) transitions. Hence, if φ is satisfiable, the Demon can schedule a computation of
length Θ(nk+1). Otherwise, the length of the longest computation is Θ(nk). Also observe
that if the Demon starts executing Aφ in some other control state (i.e., not in the first
instruction of line 1), the maximal length of a computation is only shorter. ◀

Recall that the class DP consists of problems that are intersections of one problem in
NP and another problem in coNP. The class DP is expected to be somewhat larger than
NP ∪ coNP, and it is contained in the PNP level of the polynomial hierarchy. The standard
DP-complete problem is Sat-Unsat, where an instance is a pair φ,ψ of propositional
formulae and the question is whether φ is satisfiable and ψ is unsatisfiable [17]. Hence, the
DP lower bounds of Theorem 4 follow directly from the next lemma (a proof can be found
in [1]).

▶ Lemma 7. Let k ≥ 3. For every pair φ,ψ of propositional formulae in 3-CNF there exists
a demonic VASS Aφ,ψ such that LAφ,ψ ∈ Θ(nk) iff φ is satisfiable and ψ is unsatisfiable.

3.2 Upper bounds
The upper complexity bounds of Theorem 4 are proven for C[c]. For the sake of clarity, we
first sketch the main idea and then continue with developing a formal proof.

Intuition. For a given demonic VASS A, we compute its SCC decomposition and proceed
by analyzing the individual SCCs in the way indicated in Fig. 4. We start in a top SCC with
all counters initialized to n. Here, we can directly apply the results of [20, 14] and decide in
polynomial time whether C[c] ∈ Θ(nk) for some k ∈ N or C[c] ∈ 2Ω(n) (in the first case, we
can also determine the k). We perform this analysis for every counter c and thus obtain the
vector describing the maximal asymptotic growth of the counters (such as (n2, n, 2Ω(n)) in
Fig. 4). Observe that
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(n, n, n)

(n2, n, 2Ω(n))

(n2, n, ∞)

(n2, 2Ω(n), ∞)

(n2, n, ∞)

(n5, n, ∞)

(n5, n, ∞)

(n5, n5, ∞)

(n2, ∞, ∞)

(n2, ∞, ∞)

Figure 4 Analyzing C[c] in a demonic VASS by SCC decomposition.

although the asymptotic growth of C[c] has been analyzed for each counter independently,
all counters can be pumped to their associated asymptotic values simultaneously. Intuit-
ively, this is achieved by considering the “pumping computations” for the smaller vector
(⌊n/d⌋, . . . , ⌊n/d⌋) of initial counter values (d is the dimension of A), and then simply
“concatenating” these computations in a configuration with all counters initialized to n;
if the asymptotic growth of C[c] is Θ(n), the computation simultaneously pumping the
counters to their asymptotic values may actually decrease the value of c (the computation
can be arranged so that the resulting value of c stays above ⌊n/d⌋ for all sufficiently
large n). For example, the top SCC of Fig. 4 achieves the simultaneous asymptotic growth
of all counters from (n, n, n) to (n2, n, 2Ω(n)), but this does not imply the counters can
be simultaneously increased above the original value n (nevertheless, the simultaneous
increase in the first and the third counter above n is certainly possible for all sufficiently
large n).

A natural idea how to proceed with next SCCs is to perform a similar analysis for larger
vectors of initial counter values. Since we are interested just in the asymptotic growth of
the counters, we can safely set the initial value of a counter previously pumped to Θ(nk)
to precisely nk. However, it is not immediately clear how to treat the counters previously
pumped to 2Ω(n). We show that the length of a computation “pumping” the counters to their
new asymptotic values in the considered SCC C is at most exponential in n. Consequently,
the “pumping computation” in C can be constructed so that the resulting value of the “large”
counters stays above one half of their original value. This means the value of “large” counters
is still in 2Ω(n) after completing the computation in C. Furthermore, the large counters can
be treated as if their initial value was infinite when analyzing C. This “infinite” initial value
is implemented simply by modifying every counter update vector u in C so that u[j] = 0
for every “large” counter cj . This adjustment in the structure of C is denoted by putting
“∞” into the corresponding component of the initial counter value vector (see Fig. 4). This
procedure is continued until processing all SCCs. Note that the same SCC may be processed
multiple times for different vectors of initial counter values corresponding to different paths
from a top SCC. In Fig. 4, the bottom SCC is processed for the initial vectors (n5, n,∞) and
(n2,∞,∞) corresponding to the two paths from the top SCC. The number of such initial
vectors can be exponential in the size of A, as witnessed by the VASS constructed in the
proof of Lemma 6.
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Now we give a formal proof. Let A be a demonic VASS with d counters. For every
counter c and every v ∈ Nd, we define the function C[c,v] : N → N∞ where C[c,v](n) is the
maximum of all Cval[c](pu) where p ∈ Q and u = (nv(1), . . . , nv(d)).

▶ Proposition 8. Let A be a strongly connected demonic VASS with d counters, and let
v ∈ Nd such that v(i) ≤ 2j·d for every i ≤ d, where j < |Q|. For every counter c, we have
that either C[c,v] ∈ Θ(nk) for some 1 ≤ k ≤ 2(j+1)·d, or C[c,v] ∈ Ω(2n). It is decidable
in polynomial time which of the two possibilities holds. In the first case, the value of k is
computable in polynomial time.

In [20], a special variant of Proposition 8 covering the subcase when v = 1⃗ is proven. In
the introduction part of [20], it is mentioned that a generalization of this result (equivalent
to Proposition 8) can be obtained by modifying the techniques presented in [20]. Although
no explicit proof is given, the modification appears feasible. We give a simple explicit proof
of Proposition 8, using the algorithm of [20] for the v = 1⃗ subcase as a “black-box procedure”.
We refer to [1] for details.

Now we extend the function C[c,v] so that v ∈ Nd∞. Here, the ∞ components of v
correspond to counters that have already been pumped to “very large” values and do not
constrain the computations in A. As we shall see, “very large” actually means “at least
singly exponential in n”.

Let v ∈ Nd∞, and let Av be the VASS obtained from A by modifying every counter
update vector u into u′, where u′(i) = u(i) if v(i) ̸= ∞, otherwise u′(i) = 0. Hence, the
counters set to ∞ in v are never changed in Av. Furthermore, let v′ be the vector obtained
from v by changing all ∞ components into 1. We put CA[c,v] = CAv [c,v′].

For a given v ∈ Nd∞, we say that F : N → Nd is v-consistent if for every i ∈ {1, . . . , d} we
have that the projection Fi : N → N is either Θ(nk) if vi = k, or 2Ω(n) if vi = ∞. Intuitively,
a v-consistent function assigns to every n ∈ N a vector F (n) of initial counter values growing
consistently with v.

Given v ∈ Nd∞, a control state p ∈ Q, a v-consistent function F , an infinite family
Π = π1, π2, . . . of Demon’s strategies in A, a function S : N → N, and n ∈ N, we use
βn[v, p, F,Π, S] to denote the computation of A starting at pF (n) obtained by applying πn
until a maximal computation is produced or S(n) transitions are executed.

The next lemma says that if A is strongly connected, then all counters can be pumped
simultaneously to the values asymptotically equivalent to CA[c,v] so that the counters
previously pumped to exponential values stay exponential.

▶ Lemma 9. Let A be a strongly connected demonic VASS with d counters. Let v ∈ Nd∞,
and let F be a v-consistent function. Then for every counter ci such that vi ̸= ∞ and
CA[ci,v] ∈ Θ(nk) we have that Cval[ci](pF (n)) ∈ Θ(nk) for every p ∈ Q. Furthermore, there
exist p ∈ Q, an infinite family Π of Demon’s strategies, and a function S ∈ 2O(n) such that
for every ci, the value of ci in the last configuration of βn[v, p, F,Π, S] is

Θ(nk) if CA[ci,v] ∈ Θ(nk);
2Ω(n) if vi = ∞ or CA[ci,v] ∈ 2Ω(n).

A proof of Lemma 9 uses the result of [14] saying that counters pumpable to exponential
values can be simultaneously pumped by a computation of exponential length from a
configuration where all counters are set to n (the same holds for polynomially bounded
counters, where the length of the computation can be bounded even by a polynomial). Using
the construction of Proposition 8, these results are extended to our setting with v-consistent
initial counter values. Then, the initial counter values are virtually “split into d boxes” of



M. Ajdarów and A. Kučera 30:11

size ⌊F (n)/d⌋. The computations pumping the individual counters are then run “each in its
own box” for these smaller initial vectors and concatenated. As the computation of one “box”
cannot affect any other “box”, no computation can undo the effects of previous computations.
The details can be found in [1].

Let VA : Nd∞ → Nd∞ be a function such that, for every v ∈ Nd∞,

VA(v)(i) =
{
k if vi ̸= ∞ and CA[ci,v] ∈ Θ(nk),
∞ otherwise.

Note that every SCC (vertex) η of D(A) can be seen as a strongly connected demonic
VASS after deleting all transitions leading from/to the states outside η. If the counters are
simultaneously pumped to v-consistent values before entering η, then η can further pump
the counters to Vη(v)-consistent values (see Lemma 9). According to Lemma 8, Vη(v) is
computable in polynomial time for every v ∈ Nd∞ where every finite vi is bounded by 2j·d
for some j < |Q|.

Observe that all computations of A can be divided into finitely many pairwise disjoint
classes according to their corresponding paths in DA (i.e., the sequence of visited SCCs of DA).
For each such sequence η1, . . . , ηm, the vectors v0, . . . ,vm where v0 = 1⃗ and vi = Vηi(vi−1)
are computable in time polynomial in |A| (note that m ≤ |Q|). The asymptotic growth of
the counters achievable by computations following the path η1, . . . , ηm is then given by vm.
Hence, CA[ci] ∈ Ω(nk) iff there is a path η1, . . . , ηm in DA such that vm(i) ≥ k. Similarly,
CA[ci] ∈ O(nk) iff for every path η1, . . . , ηm in DA we have that vm(i) ≤ k. From this we
immediately obtain the upper complexity bounds of Theorem 4.

Furthermore, for every SCC η of DA, we can compute the set VectorsA(η) of all u
such that there is a path η1, . . . , ηm where η1 is a root of DA, ηm = η, and u = vm. A
full description of the algorithm is given in [1]. If Deg(η) is bounded by a fixed constant
independent of A for every leaf η of DA, then the algorithm terminates in polynomial time,
which proves Theorem 5.

4 VASS Games

The computational complexity of polynomial asymptotic analysis for VASS games is classified
in our next theorem. The parameter characterizing hard instances is identified at the end of
this section.

▶ Theorem 10. Let k ≥ 1. For every VASS game A we have that L is either in O(nk) or
in Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk) is NP-complete for k=1 and PSPACE-complete for k≥2;
L ∈ Ω(nk) is in P for k=1, coNP-complete for k=2, and PSPACE-complete for k≥3;
L ∈ Θ(nk) is NP-complete for k=1 and PSPACE-complete for k≥2.

The same results hold also for C[c] (for a given counter c of A).

Furthermore, we show that for every VASS game A, either L ∈ O(n2d|Q|) or L ∈ 2Ω(n). In
the first case, the k such that L ∈ Θ(nk) can be computed in polynomial space. The same
results hold for C[c].

In [13], it has been shown that the problem whether L ∈ O(n) is NP-complete, and if
L ̸∈ O(n), then L ∈ Ω(n2). This yields the NP and coNP bounds of Theorem 10 for k = 1, 2.
Furthermore, it has been shown that the problem whether L ∈ O(n2) is PSPACE-hard, and
this proof can be trivially generalized to obtain all PSPACE lower bounds of Theorem 10.
The details are given in [1].
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The key insight behind the proof of Theorem 10 is that player Angel can safely commit to
a simple locking strategy when minimizing the counter complexity. We start by introducing
locking strategies.

▶ Definition 11. Let A be a VASS game. We say that a strategy σ for player Angel is
locking if for every computation p1v1, . . . , pmvm where pm ∈ QA and for every k < m such
that pk = pm we have that σ(p1v1, . . . , pkvk) = σ(p1v1, . . . , pmvm).

In other words, when an angelic control state p is visited for the first time, a locking
strategy selects and “locks” an outgoing transition of p so that whenever p is revisited, the
previously locked transition is taken. Observe that the choice of a “locked” transition may
depend on the whole history of a computation.

Since a “locked” control state has only one outgoing transition, it can be seen as demonic.
Hence, as more and more control states are locked along a computation, the VASS game A
becomes “more and more demonic”. We capture these changes as a finite acyclic graph GA
called the locking decomposition of A. Then, we say that a locking strategy is simple if the
choice of a locked transition after performing a given history depends only on the finite path
in GA associated to the history. We show that Angel can achieve an asymptotically optimal
termination/counter complexity by using only simple locking strategies. Since the height of
GA is polynomial in |A|, the existence of an appropriate simple locking strategy for Angel
can be decided by an alternating polynomial-time algorithm. As AP = PSPACE, this
proves the PSPACE upper bounds of Theorem 10. Furthermore, our construction identifies
the structural parameters of GA making the polynomial asymptotic analysis of VASS games
hard. When these parameters are bounded by fixed constants, the problems of Theorem 10
are solvable in polynomial time.

4.1 Locking sets and the locking decomposition of A
Let A be a VASS game. A Demonic decomposion of A is a finite directed graph DA defined
as follows. Let ∼ ⊆ Q × Q be an equivalence where p ∼ q iff either p = q, or both p, q

are demonic and mutually reachable from each other via a finite path leading only through
demonic control states. The vertices of DA are the equivalence classes Q/∼, and [p] → [q]
iff [p] ̸= [q] and (p,u, q) ∈ Tran for some u. For demonic VASS, DA becomes the standard
DAG decomposition. For VASS games, DA is not necessarily acyclic.

A locking set of A is a set of transitions L ⊆ Tran such that (p,u, q) ∈ L implies p ∈ QA,
and (p,u, q), (p′,u′, q′) ∈ L implies p ̸= p′. A control state p is locked by L if L contains an
outgoing transition of p. We use L to denote the set of all locking sets of A. For every
L ∈ L , let AL be the VASS game obtained from A by “locking” the transitions of L. That
is, each control state p locked by L becomes demonic in AL, and the only outgoing transition
of p in AL is the transition (p,u, q) ∈ L.

▶ Definition 12. The locking decomposition of A is a finite directed graph GA where the
set of vertices and the set of edges of GA are the least sets V and → satisfying the following
conditions:

All elements of V are pairs ([p], L) where L ∈ L and [p] is a vertex of DAL . When p is
demonic/angelic in AL, we say that ([p], L) is demonic/angelic.
V contains all pairs of the form ([p], ∅).
If ([p], L) ∈ V where p is demonic in AL and [p] → [q] is an edge of DAL , then ([q], L) ∈ V

and ([p], L) → ([q], L).
If ([p], L) ∈ V where p is angelic in AL, then for every (p,u, q) ∈ Tran we have that
([q], L′) ∈ V and ([p], L) → ([q], L′), where L′ = L ∪ {(p,u, q)}.
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It is easy to see that GA is acyclic and the length of every path in GA is bounded
by |Q| + |QA|, where at most |Q| vertices in the path are demonic. Note that every
computation of A obtained by applying a locking strategy determines its associated path
in GA in the natural way. A locking strategy σ is simple if the choice of a locked transition
depends only on the path in GA associated to the performed history. (i.e., if two histories
determine the same path in GA, then the strategy makes the same choice for both histories).

4.2 Upper bounds
Let A be a VASS game with d counters. For every p ∈ Q and v ∈ Nd, let CpA[c,v](n) =
Cval[c](pu) where u = (nv(1), . . . , nv(d)). We extend this notation to the vectors v ∈ Nd∞
in the same way as in Section 3.2, i.e., for a given v ∈ Nd∞, we put CpA[c,v] = CpAv

[c,v′].
Recall that v′ is the vector obtained from v by changing all ∞ components into 1, and Av
is the VASS obtained from A by modifying every counter update vector u into u′, where
u′(i) = u(i) if v(i) ̸= ∞, otherwise u′(i) = 0. The main technical step towards obtaining the
PSPACE upper bounds of Theorem 10 is the next proposition.

▶ Proposition 13. Let A be a VASS game with d counters. Furthermore, let ([p], L) be a
vertex of GA, v ∈ Nd∞, and ci a counter such that vi ≠ ∞. Then, one of the following two
possibilities holds:

there is k ∈ N such that for every v-consistent F there exist a simple locking Angel’s
strategy σv in AL and a Demon’s strategy πv in AL such that σv is independent of F and

for every Demon’s strategy π in AL, we have that max[ci](Compσv,π
AL (pF (n))) ∈ O(nk);

for every Angel’s strategy σ in AL, we have that max[ci](Compσ,πv
AL (pF (n))) ∈ Ω(nk).

for every v-consistent F there is a Demon’s strategy πv in AL such that for every Angel’s
strategy σ in AL, we have that max[ci](Compσ,πv

AL (pF (n))) ∈ 2Ω(n).

Proposition 13 is proven by induction on the height of the subgraph rooted by ([p], L).
The case when ([p], L) is demonic (which includes the base case when ([p], L) is a leaf) follows
from the constructions used in the proof of Proposition 8. When the vertex ([p], L) is angelic,
it has immediate successors of the form ([qi], Li) where Li = L ∪ {(p,ui, qi)}. We show that
by locking one of the (p,ui, qi) transitions in p, Angel can minimize the growth of ci in
asymptotically the same way as if he used all of these transitions freely when revisiting p.
We refer to [1] for details.

Observe that every computation in A where Angel uses some simple locking strategy
determines the unique corresponding path in GA (initiated in a vertex of the form ([p], ∅)) in
the natural way. Hence, all such computations can be divided into finitely many pairwise
disjoint classes according to their corresponding paths in GA. Let ([p1], L1), . . . , ([pk], Lk) be
a path in GA where L1 = ∅. Consider the corresponding sequence v0, . . . ,vk where v0 = 1⃗
and vi is equal either to V[pi](vi−1) or to vi−1, depending on whether ([pi], Li) is demonic
or angelic, respectively. Here, V is the function defined in Section 3.2 (observe that the
component [p] of DAL containing p can be seen as a strongly connected demonic VASS after
deleting all transitions from/to the states outside [p]). The vector vk describes the maximal
asymptotic growth of the counters achievable by Demon when Angel uses the simple locking
strategy associated to the path. Furthermore, the sequence v0, . . . ,vk is computable in time
polynomial in |A| and all finite components of vk are bounded by 2d·|Q| because the total
number of all demonic ([pi], Li) in the path is bounded by |Q| (cf. Proposition 8).

The problem whether C[ci] ∈ O(nk) can be decided by an alternating polynomial-
time algorithm which selects an initial vertex of the form ([p], ∅) universally, and then
constructs a maximal path in GA from ([p], ∅) where the successors of demonic/angelic
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vertices are chosen universally/existentially, respectively. After obtaining a maximal path
([p1], L1), . . . , ([pk], Lk), the vector vk is computed in polynomial time, and the algorithm
answers yes/no depending on whether vk(i) ≤ k or not, respectively. The problem whether
C[ci] ∈ Ω(nk) is decided similarly, but here the initial vertex is chosen existentially, the
successors of demonic/angelic vertices are chosen existentially/universally, and the algorithm
answers yes/no depending on whether vk(i) ≥ k or not, respectively. This proves the
PSPACE upper bounds of Theorem 10.

Observe that the crucial parameter influencing the computational hardness of the asymp-
totic analysis for VASS games is the number of maximal paths in GA. If |QA| and Deg([p], L)
are bounded by constants, then the above alternating polynomial time algorithms can be
simulated by deterministic polynomial time algorithms. Thus, we obtain the following:

▶ Theorem 14. Let Λ be a class of VASS games such that for every A ∈ Λ we have that
|QA| and Deg([p], L), where ([p], L) is a leaf of GA, are bounded by a fixed constant depending
only on Λ. Then, the problems whether LA ∈ O(nk), LA ∈ Ω(nk), LA ∈ Θ(nk) for given
A ∈ Λ and k ∈ N, are solvable in polynomial time (where the k is written in binary). The
same results hold also for C[c] (for a given counter c of A).

5 Conclusions, future work

We presented a precise complexity classification for the problems of polynomial asymptotic
complexity of demonic VASS and VASS games. We also identified the structural parameters
making these problems computationally hard, and we indicated that these parameters may
actually stay reasonably small when dealing with VASS abstractions of computer programs.
The actual applicability and scalability of the presented results to the problems of program
analysis requires a more detailed study including experimental evaluation.

From a theoretical point of view, a natural question is whether the scope of effective
asymptotic analysis can be extended from purely non-deterministic VASS to VASS with
probabilistic transitions (i.e., VASS MDPs and VASS stochastic games). These problems are
challenging and motivated by their applicability to probabilistic program analysis.
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Abstract
An asymptotic lowerbound of Ω((m+n) logn) is established for partition refinement algorithms
that decide bisimilarity on labeled transition systems. The lowerbound is obtained by subsequently
analysing two families of deterministic transition systems – one with a growing action set and another
with a fixed action set.

For deterministic transition systems with a one-letter action set, bisimilarity can be decided
with fundamentally different techniques than partition refinement. In particular, Paige, Tarjan,
and Bonic give a linear algorithm for this specific situation. We show, exploiting the concept of an
oracle, that the approach of Paige, Tarjan, and Bonic is not of help to develop a generic algorithm
for deciding bisimilarity on labeled transition systems that is faster than the established lowerbound
of Ω((m+n) logn).
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1 Introduction

Strong bisimulation [16, 13] is the gold standard for equivalence on labeled transition systems
(LTSs). Deciding bisimulation equivalence among the states of an LTS is a crucial step for tool-
supported analysis and model checking of LTSs. The well-known and widely-used partition
refinement algorithm of Paige and Tarjan [14] has a worst-case upperbound O(m logn) for
establishing the bisimulation equivalence classes. Here, m is the number of transitions and
n is the number of states in an LTS. The algorithm of Paige and Tarjan seeks to find, starting
from an initial partition, via refinement steps, the coarsest stable partition, that in fact is
built from the bisimulation equivalence classes that are looked for. The algorithm achieves
the complexity of the logarithm of the number of states n by restricting the amount of work
for refining blocks and moving states. Refining blocks is carried out by only investigating
the smaller splitting blocks, using an intricate bookkeeping trick. Only the smaller parts of
a block that are to be moved to a new block are split off, leaving the bulk of the original
block at its place. These specific ideas go back to [8] and make the difference with the earlier
O(mn) algorithm of Kanellakis and Smolka [11].

The Paige-Tarjan algorithm, with its format of successive refinements of an initial partition
till a fixpoint is reached, has been leading for variations and generalizations for deciding
specific forms of (strong) bisimilarities, see e.g. [4, 6, 7, 18, 10]. We are interested in the
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question whether the Paige-Tarjan algorithm is computationally optimal. A result is provided
by Berkholz et al. in a paper [2] that studies stable colourings of (coloured) graphs. More
specifically, they show that for an undirected graph with n nodes and m edges, canonical
coarsest bi-stable colouring is in Ω((m + n) log n). Translated to LTSs, the result of [2]
builds on the assumption that LTSs are essentially non-deterministic, i.e., every state has
multiple outgoing transitions for the same label. A first contribution of the present paper
is a lowerbound of the class of partition refinement algorithms for deciding bisimilarity of
deterministic LTSs. We define what a partition refinement algorithm is and articulate the
complexity in terms of the number of states that are moved. Then, a particular family of
(deterministic) LTSs, called bisplitters, is shown to require n log n work. This strengthens
the result of [2], actually answering an open question in it.

We obtain our lowerbound results assuming that algorithms use partition refinement.
However, one may wonder if a different approach than partition refinement can lead to a
faster decision procedure for bisimulation. For the specific case of deterministic LTSs with a
singleton action set and a state labelling, Robert Paige, Robert Tarjan and Robert Bonic
propose a linear algorithm [15], which we will refer to as Roberts’ algorithm. In [5] it is
proven that partition refinement à la Hopcroft has a lowerbound of Ω(n log n) in this case.
Concretely, this means that Roberts’ algorithm achieves the essentially better performance by
using a completely different technique than partition refinement to determine the bisimulation
equivalence classes.

Crucial for Roberts’ algorithm is the ability to identify, in linear time, the bisimilarity
classes of cycles. In this paper we show that if the alphabet consists of at least two actions
a rapid decision on “cycles” as in [15] will not be of help to improve on the Paige-Tarjan
algorithm for general LTSs. We argue that the specialty in the algorithm of [15], viz. to be
able to quickly decide the bisimilarity of the states on cycles, can be captured by means
of a stronger notion, namely an oracle, that provides the bisimulation classes of the states
of a so-called “end structure”, the counterpart in the multiple action setting of a cycle in
the single action setting. The oracle can be consulted to refine the initial partition with
respect to the bisimilarity on the end structures of the LTS for free. We show that for the
class of partition refinement algorithms enhanced with such an oracle, thus encompassing
the algorithm of [15], the n log n lowerbound persists for non-degenerate action sets.

The family of n log n-hard LTSs we use to establish the lowerbound, involve an action
set of log n actions. Building on the two results already mentioned, and exploiting ideas
borrowed from [15] to extend the bisimulation classes for the states in the end structures, i.e.
cycles, to the states of the complete LTS, we provide another family of (deterministic) LTSs
that have only two actions. Led by these LTSs we argue that for the two-action case the
complexity of deciding bisimulation is Ω((m + n) log n), whether we use an oracle or not.

The document is structured as follows. In Section 2 we give the necessary preliminaries
on the problem. A recap of the linear algorithm of [15] is provided in Section 3. Next,
we introduce the family of deterministic LTSs Bk for which we show in Section 4 that
deciding bisimilarity is Ω(n log n) for the class of partition refinement algorithms and for
which we establish in Section 5 an Ω(n log n) lowerbound for the class of partition refinement
algorithms enhanced with an oracle for end structures. In Section 6 we introduce the family
of deterministic LTSs Ck, each involving two actions only, to take the number of transitions m

into account and establish an Ω((m + n) log n) lowerbound for partition refinement with and
without oracle for end structures. We wrap up with concluding remarks.
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2 Preliminaries

Given a set of states S, a partition of S is a set of sets of states π ⊆ 2S such that for all
B, B′ ∈ π it holds that B ̸= ∅, B ∩ B′ = ∅, and

⋃
B∈π B = S. The elements of a partition

are refered to as blocks. A partition π of S induces an equivalence relation =π ⊆ S × S,
where for two states s, t ∈ S, s =π t iff the states are in the same block, i.e. there is a block
B ∈ π such that s, t ∈ B. A partition π of S is a refinement of a partition π′ of S iff for
every block B ∈ π there is a block B′ ∈ π′ such that B ⊆ B′. It follows that each block of π′

is the union of blocks of π. The refinement is strict if π ̸= π′. The common refinement of
two partitions π and π′ is the partition with blocks { B ∩ B′ | B ∈ π, B′ ∈ π′ }. A sequence
of partitions π0, . . . , πn is called a refinement sequence iff πi+1 is a refinement of πi, for all
0 ⩽ i < n.

▶ Definition 1. A labeled transition system with initial partition (LTS) L = (S, A, →, π0)
is given by a finite set of states S, a finite alphabet of actions A, a transition relation
→ ⊆ S × A × S, and a partition π0 of S. A labeled transition system with initial partition is
called deterministic (dLTS) if the transition relation is a total function S × A → S.

Note that we omit an initial state, as it is not relevant in this article. Note also that in the
presence of an initial partition, an LTS with one action label represents a Kripke structure.
For a dLTS with a set of states S and the initial partition π0 = {S} we have that π0 itself
already represents bisimilarity, contrary to LTSs in general.

Given an LTS L = (S,A, →, π0), states s, t ∈ S, and an action a ∈ A, we write s
a−→ t

instead of (s, a, t) ∈→. For dLTSs we occasionally write L(s, a) for t, i.e., t is the image of
the pair (s, a) of the function →. We say that s reaches t via a iff s

a−→ t. A state s reaches
a set U ⊆ S iff there is a state in U that is reached by s. A set of states V ⊆ S is called
stable under a set of states U ⊆ S iff for all actions a either all states in V reach U via a, or
no state in V reaches U via a. A partition π is stable under a set of states U iff each block
B ∈ π is stable under U . A partition π is called stable iff it is stable under all its blocks.

Following [16, 13], for an LTS L a symmetric relation R ⊆ S × S is called a bisimulation
relation iff for all (s, t) ∈ R and a ∈ A, we have that s

a−→ s′ for some s′ ∈ S implies that t
a−→ t′

for some t′ ∈ S such that (s′, t′) ∈ R. In the setting of the present paper, as we incorporate
the initial partition in the definition of an LTS, bisimilarity is slightly non-standard. For a
bisimulation relation R, we additionally require that it respects the initial partition π0 of L,
i.e. (s, t) ∈ R implies s =π0 t. Two states s, t ∈ S are called (strongly) bisimilar for L iff a
bisimulation relation R exists with (s, t) ∈ R, notation s↔ L t. Bisimilarity is an equivalence
relation on the set of states of L. We write [s]↔L for the bisimulation equivalence class of the
state s in L.

Partition refinement algorithms for deciding bisimilarity on LTSs start with an initial
partition π0, which is then repeatedly refined until a stable partition is reached. This stable
partition is then the coarsest stable partition of the LTS refining π0 and coincides with
bisimilarity [11, 14].

We define that an algorithm is a partition refinement algorithm if it constructs a valid
sequence of partitions. Concretely this means that a state s in a block B is only assigned
to another block if there is reason to do so, i.e. there is a splitter block B′ in the current
partition to which s has a transition and some other state in B does not, or the other way
around. Thus, the block B is not stable under the block B′. Moreover, we insist that each
subsequent partition reflects some progress, i.e., πi+1 is a strict refinement of πi. This leads
to the following notion of a valid refinement and a valid partition sequence.

CONCUR 2021



31:4 Bisimulation by Partitioning Is Ω((m+n) logn)

1

2

3

4

5

6

7

8 9

10

11 12

13

Figure 1 dLTS with one action label (not shown) and initial partition distinguishing states
1, 4, 7, 10, 12 from states 2, 3, 5, 6, 8, 9, 11, 13.

▶ Definition 2. Let L = (S,A, →, π0) be an LTS, and π a partition of S. We call a
refinement π′ of π a valid refinement with respect to L, if the following criteria hold.
(a) π′ is a strict refinement of π;
(b) if s ̸=π′ t for s, t ∈ S, then (i) s ≠π t or (ii) s′ ∈ S exists such that s

a−→ s′ for
some a ∈ A, and for all t′ ∈ S such that t

a−→ t′ we have s′ ≠π t′, or the other way
around with t replacing s.

A sequence of partitions Π = (π0, . . . , πn) is called valid iff every successive partition πi, for
0 < i ⩽ n, is a valid refinement of πi−1, and, moreover, the partition πn is stable.

When a partition π is refined into a partition π′, states that are in the same block but can
reach different blocks can lead to a split of the block into smaller ones, each holding one
of the states. This means that a block B ∈ π is split into k blocks B1, . . . , Bk ∈ π′. The
least amount of work is done for this operation, by creating new blocks for the least number
of states possible. Thus, B ∈ π is transformed into B1 ∈ π′, say, the biggest block among
B1, . . . , Bk. Therefore, the so-called refinement cost rc of the refinement π′ of π is given by

rc(π, π′) =
∑

B∈π |B| − maxB′∈π′ : B′⊆B |B′| .

For a sequence of refinements Π = (π0, . . . , πn) we write rc(Π) for
∑n

i=1 rc(πi−1, πi). For
an LTS L, we write rc(L) for min{ rc(Π) | Π a valid refinement sequence for L }. Note that
this complexity measure is different from the one used in [2], which counts transitions. Our
costs are always less or equal.

We characterise the states of LTSs by sequences of bits. The set of bits is denoted as
B = {0, 1}. Bit sequences of length up to and including k are written as B⩽k. The inverse of
a bit b is denoted by b. Thus 0 = 1 and 1 = 0. For two bit sequences σ, σ′, we write σ ď σ′

to indicate that σ is a prefix of σ′ and write σ ≺ σ′ if σ is a strict prefix of σ′. For a bit
sequence σ ∈ Bk, for any i, j ⩽ k we write σ[i] to indicate the bit at position i starting from
position 1. We write σ[i:j] = σ[i]σ[i+1] · · · σ[j] to indicate the subword from position i to
position j.

3 Roberts’ algorithm

Most algorithms to determine bisimulation on an LTS use partition refinement. However,
there is one notable exception. On the class of dLTSs with a singleton action alphabet,
deciding the coarsest stable partition, i.e. bisimilarity, requires linear time only. This is due
to the algorithm of Robert Paige, Robert Tarjan, and Robert Bonic [15], which we therefore
aptly call Roberts’ algorithm.
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The algorithm exploits the structure of dLTSs with one label, of which examples are
depicted in Figure 1 where the initial partition is indicated by single/double circles around
the states. For each state in such a dLTS we can assign a unique cycle (also referred to as
“end structure” in the sequel), and that state is either on this cycle or following outgoing
edges lead to that (unique) cycle. Below, we roughly sketch how Roberts’ algorithm works.
See [15] for details.
1. Build lassos and mark states to identify the cycles of the dLTS.
2. Each state on a cycle encodes a sequence of states, viz. the states on the cycle in a specific

order. The sequence of the blocks these states belong to forms a word (over the alphabet
of the initial partition). Identify for each cycle the state with the lexicographic least
such word. This can be done in linear time in the size of the cycle. If there are bisimilar
states on the cycle, then the algorithm will identify them. States on different cycles can
only be bisimilar if the number of non-bisimilar states on these cycles is the same. By
comparing cycles with the same number of bisimulation equivalence classes, starting with
the lexicographic least state, it is then determined linearly for all states on final cycles
whether they are bisimilar.

3. By a backward calculation along the paths leading to the cycles the bisimilarity equivalence
classes for the states not on cycles can then be determined in linear time as well.

A striking observation is that any partition refinement algorithm, using a valid sequence of
partitions, requires a refinement cost of Ω(n log n) to calculate which states are bisimilar for
the dLTSs to which Roberts’ algorithm applies. This follows from results in [3, 5] where it
is shown that Hopcroft’s algorithm [8] cannot have a better running time than Ω(n log n).
Below we come back to this observation, showing that the ideas in Roberts’ algorithm
cannot be exploited to come up with a linear algorithm for bisimulation if the LTS is either
nondeterministic, or has more than one action label.

4 Bk is Ω(n log n) for partition refinement

In this section we introduce a family of deterministic LTSs called bisplitters on which the cost
of any partition refinement algorithm is Ω(n log n) where n is the number of states. With
some modification we obtain in Section 6 a family of LTSs that has the bound Ω((n+m) log n)
where m is the number of transitions.

▶ Definition 3. For k > 1, the bisplitter Bk = (S,Ak, →, π0) is defined as the dLTS that
has the set S = { σ | σ ∈ Bk } as its set of states, the set Ak = {a1, . . . , ak−1} as its set of
actions, the relation

{ σ
ai−→ σ | σ ∈ S, 1 ⩽ i < k : σ[i+1] = 0 } ∪

{ σ
ai−→ σ[1:i−1]σ[i]0k−i | σ ∈ S, 1 ⩽ i < k : σ[i+1] = 1 }

as its transition function, and the set π0 = { { σ ∈ S | σ[1] = 0 }, { σ ∈ S | σ[1] = 1 } } as its
initial partition.

Thus the bisplitter Bk has 2k states, viz. the bitstrings of length k, and Bk has k−1 action
labels. It has (k−1)2k transitions: (i) a self-loop for bitstring σ with label ai if the i+1-th
bit of σ equals 0; (ii) otherwise, i.e. when i+1-th bit of σ equals 1, the bitstring σ has for
label ai a transition to the bitstring that equals the first i−1 bits of σ, flips the i-th bit of σ,
and has k−i-many 0’s following. The initial partition π0 distinguishes the bitstrings starting
with 0 from those starting with 1. A drawing of bisplitter B3 is given in Figure 2. We see,
e.g., for the bitstring σ = 101 an a1-transition to itself, as σ[2] = 0, and an a2-transition to
110, as σ[3] = 1.
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Figure 2 Bisplitter B3 with initial partition {{000, 001, 010, 011}, {100, 101, 110, 111}}.

▶ Definition 4. For any string σ ∈ B⩽k, we define the prefix block Bσ of Bk to be the block
Bσ = { σ′ ∈ Bk | σ ď σ′ }.

The following lemma collects a number of results related to prefix blocks.

▶ Lemma 5. Let k ⩾ 2 and let the dLTS Bk = (Bk,Ak, →, π0) be the k-th bisplitter. Let the
sequence Π = (π0, . . . , πn) be a valid refinement sequence. Then it holds that
(a) Every partition πi of Π contains prefix blocks only.
(b) If partition πi of Π contains a prefix block Bσ with |σ| < k, then πi is not stable.
(c) If Bσ is in πi, for 0 ⩽ i < n, then either Bσ ∈ πi+1, or Bσ1 ∈ πi+1 and Bσ0 ∈ πi+1.

Proof (a). Initially, for π0 = {B0, B1} both blocks are prefix blocks by definition. We prove,
if partition πi, for 0 ⩽ i < n, has only prefix blocks then all blocks in πi+1 are prefix blocks
as well.

Assume, to arrive at a contradiction, that there is a block B ∈ πi+1 that is not a prefix
block. Because πi+1 is a refinement of πi, we have B ⊆ Bσ for some prefix block Bσ ∈ πi.
This means that σ is a common prefix of all elements of B. We can choose θ such that σθ is
the longest common prefix of all elements of B. Since every singleton of Bk is a prefix block,
B is not a singleton. This means that |σθ| < k, and that there are some elements σ1 and
σ2 of B such that σθ0 is a prefix of σ1 and σθ1 is a prefix of σ2. Because B is not a prefix
block, there must exist at least one τ ∈ Bk with a prefix σθ such that τ ̸∈ B. Obviously, we
have either (i) σθ0 is a prefix of τ , or (ii) σθ1 is a prefix of τ . We will show that in both
these cases τ in fact belongs to B in πi+1, which is a contradiction. This also means that for
any B ∈ πi+1, where B ⊆ Bσ for some prefix block Bσ ∈ πi, we have that B is a prefix block
for the prefix σθ (i.e. B = Bσθ) where σθ is the longest common prefix of all elements of B.

(i) Suppose σθ0 is a prefix of τ . We will show that τ and σ1 belong to the same block in
πi+1 because for each aj (where 1 ⩽ j < k) the states σ′

1 and τ ′, such that σ1
aj−→ σ′

1
and τ

aj−→ τ ′, belong to the same block in πi. There are three cases:
j < |σθ|: Since σθ is a prefix of both σ1 and τ , we have σ1[j + 1] = τ [j + 1].

If σ1[j + 1] = τ [j + 1] = 0, then σ′
1 = σ1 and τ ′ = τ . Obviously, both σ′

1 and τ ′

belong to Bσ (since σ1 and τ belong to Bσ).
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If σ1[j + 1] = τ [j + 1] = 1, then both σ′
1 and τ ′ are of the form ρ[1 : j − 1]ρ[j]0k−j

where ρ = σθ, and we have σ′
1 = τ ′, so they clearly belong to the same block of

πi.
j = |σθ|: Since σ1[j + 1] = τ [j + 1] = 0, we have σ′

1 = σ1 and τ ′ = τ , and obviously
both σ′

1 and τ ′ belong to Bσ (since σ1 and τ belong to Bσ).
j > |σθ|: In fact, for arbitrary ρ, performing aj with j > |σθ| in σθρ leads to σθρ′

(for both cases, where (σθρ)[j + 1] is 0 or 1). In particular this means that if j > |σθ|
and σ1

aj−→ σ′
1 and τ

aj−→ τ ′, then σθ is a prefix of both σ′
1 and τ ′, and σ′

1 and τ ′

belong to Bσ in πi.
(ii) Now, suppose σθ1 is a prefix of τ . We will show that τ and σ2 belong to the same

block in πi+1 because for each aj (where 1 ⩽ j < k) the states σ′
2 and τ ′, such that

σ2
aj−→ σ′

2 and τ
aj−→ τ ′, belong to the same block in πi. There are three cases:

j < |σθ|: Similar as in (i).
j = |σθ|: Since σ1[j + 1] = τ [j + 1] = 1, we have σ′

1 = τ ′ = ρ[1 : j − 1]ρ[j]0k−1 where
ρ = σθ, so clearly σ′

1 and τ ′ are in a same block in πi.
j > |σθ|: Similar as in (i). ◀

Proof (b). Suppose Bσ ∈ πi and |σ| = ℓ < k. Let θ ∈ B∗ be such that σ1 = σ0θ

and σ2 = σ1θ. Then we have σ1
aℓ−→ σ1 ∈ Bσ and σ2

aℓ−→ σ[1:ℓ−1]σ[ℓ]0k−ℓ /∈ Bσ. Thus Bσ

isn’t stable, and hence πi isn’t either. ◀

Proof (c). We show that for a prefix block Bσ ∈ πi, a bit b ∈ B and all θ, θ′ ∈ Bk−(|σ|+1)

the states σ1 = σbθ and σ2 = σbθ′ are not split by any action aj , for 1 ⩽ j < k, and thus
are in the same block of πi+1. Pick j, 1 ⩽ j < k, and suppose σ1

aj−→ σ′
1, σ2

aj−→ σ′
2, i.e.,

σ′
1 = Bk(σ1, aj) and σ′

2 = Bk(σ2, aj). If j ⩽ |σ| and σ[j] = 0 then σ′
1 = σ1 and σ′

2 = σ2
hence both σ′

1, σ′
2 ∈ Bσ don’t split for aj . If j ⩽ |σ| and σ[j] = 1 then σ′

1 = σ′
2 and don’t

split for aj either. If j > |σ| then both σ′
1, σ′

2 ∈ Bσ and don’t split for aj either. ◀

With the help of the above lemma, clarifying the form of the partitions in a valid refinement
sequence for the bisplitter family, we are able to obtain a lowerbound for any partition
refinement algorithm acting on it.

▶ Theorem 6. For any k > 1, application of partition refinement to the bisplitter Bk has
refinement costs rc(Bk) ∈ Ω(n log n) where n = 2k is the number of states of Bk.

Proof. Let Π = π0, . . . , πn be a valid refinement sequence for Bk. By items a and b of
Lemma 5, we have πn = { {s} | s ∈ Bk } since πn is stable. Item c of Lemma 5 implies
that in every refinement step (πi, πi+1) a block is kept or it is refined in two blocks of
equal size. The cost of refining the block Bσ, for |σ| < k, into Bσ0 and Bσ1 is the number
of states in Bσ0 or Bσ1, which are the same and equal to 1

22k−|σ|. Therefore, we have
rc(Bk, Π) =

∑k−1
ℓ=1 2ℓ 1

2 2k−ℓ =
∑k−1

ℓ=1
1
2 2k = (k − 1)2k−1. If n is the number of states of Bk,

it holds that n = 2k, thus k − 1 = log 1
2 n . Hence, rc(Bk, Π) = 1

2 n log 1
2 n which is in

Ω(n log n). ◀

5 Bk is Ω(n log n) for partition refinement with an oracle

One may wonder whether the approach of calculating bisimulation equivalence classes will
work on transition systems with non-degenerate action sets as well as the Roberts’ algorithm
guarantees a linear performance for the degenerate case. In order to capture the approach
of [15], we augment the class of partition refinement algorithms with an oracle. At the
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start of the algorithm the oracle can be consulted to identify the bisimulation classes for
designated states, viz. for those that are in an ‘end structure’, the counterpart of the cycles
in [15]. This results in a refinement of the initial partition; partition refinement then starts
from the updated partition.

Thus, we can ask the oracle to provide the bisimulation classes of all elements in an
end structure of the LTS at hand. This yields a new partition, viz. the common refinement
of the initial partition, on the one hand, and the partition induced by the bisimulation
equivalence classes as given by the oracle and the complement of their union, on the other
hand. The work that remains to be done is establishing the bisimulation equivalence classes,
with respect to the initial partition, for the states not in any end structure. We will establish
that a partition refinement algorithm strengthened with such an oracle will not improve
upon partition refinement.

We first define the notion of an end structure of an LTS and the associated notion of an end
structure partition.

▶ Definition 7. Given an LTS L = (S,A, →, π0), a non-empty subset S′ ⊆ S is called an
end structure of L, if S′ is a minimimal set of states closed under all transitions. Moreover,
es(L) = { S′ ⊆ S | S′ end structure of L } and πes = { [s]↔L | s ∈

⋃
es(L) } ∪ {S\{ [s]↔L | s ∈⋃

es(L) }} \ {∅} is called the end structure partition of L.

Like the cycles of [15], an LTS can have multiple end structures. The end structure
partition πes consists of the bisimilarity equivalence classes of L containing a state of an end
structure, completed with a block of the remaining states that are not in an end structure,
and not bisimilar to any state in an end structure (if not empty).

▶ Lemma 8. Let L = (S,A, →, π0) be a dLTS.
(a) If |A| = 1 then es(L) consists of all cycles in L.
(b) Every s ∈ S has a path to an end structure of L.

Proof. (a) Since an end structure S′ is closed under transitions, S′ is a lasso. Because S′ is
minimal and non-empty, it follows that S′ is a cycle.

(b) Let U = { t ∈ S | s
w−→∗ t, w ∈ A∗ } be the set of states reachable from state s. Then

U is closed under all transitions. The minimal subset U ′ ⊆ U which is still closed under all
transitions is an end structure of L and reachable by s. ◀

Next we enhance the notion of a partition refinement algorithm. An oracle can be consulted
for the states in the end structures. In this approach, the initial partition is replaced by a
partition in which all bisimilarity equivalence classes of states in end structures are separated
split off from the original blocks.

▶ Definition 9. A partition refinement algorithm with end structure oracle yields for an
LTS L = (S,A, →, π0) a valid refinement sequence Π = (π′

0, π1, . . . , πn) where π′
0 is the

common refinement of the initial partition π0 and the end structure partition πes of L. The
partition π′

0 is called the updated initial partition of L.

As Roberts’ algorithm shows, in the case of a singleton action set the availability of an end
structure oracle yields the asymptotic performance of a linear algorithm. In the remainder
of this section we confirm that in the case of more letters the end structure does not help
either. The next lemma states that the amount of work required for the dLTS Bk by a
partition refinement algorithm enhanced with an oracle dealing with end structures is at
least the amount of work needed by a partition refinement algorithm without oracle for the
dLTS Bk−2.
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▶ Lemma 10. For the bisplitter Bk = (S,A, →, π0), for some k > 2, let π′
0 be the updated

initial partition. Then every valid refinement sequence Π = (π′
0, π2, . . . , πn) for the updated

bisplitter B′
k = (S,A, →, π′

0) satisfies rc(Π) ⩾ rc(Bk−2).

Proof. Observe that there are only two end structures in Bk, viz. the singletons of the two
states with 0k and 10k−1. Since all other states can reach 0k or 10k−1, these states are not in
an end structure: Choose σ ∈ Bk, σ ̸= 0k, 10k−1. Then σ is of the form b0j1θ for some b ∈ B,
j ⩾ 0 and θ ∈ B∗. For j = 0 we have σ

a1−→ b0k−1 which is either 0k or 10k−1; for j > 0 we
have σ

aj+1−−−→ b0j−110k−(j+1) while b0j−110k−(j+1) reaches 0k or 10k−1 by induction.
By Lemma 5, every state σ ∈ Bk of Bk is in its own bisimulation equivalence class {σ}. It

follows that the updated initial partition π′
0 equals { {0k}, {10k−1}, B0\{0k}, B1\{10k−1} }.

We claim that if a sequence Π = (π′
0, π1, . . . , πn) for Bk exists with costs rc(Π) ⩽ rc(Bk−2),

then also a valid refinement sequence Π′ for Bk−2 exists with costs smaller than rc(Bk−2)
which yields a contradiction, since, by definition, rc(Bk−2) are the minimum costs over all
valid refinement sequence for Bk−2.

So, assume Π = (π′
0, π1, . . . πn) is a valid refinement sequence for Bk and rc(Π) ⩽ rc(Bk−2).

We obtain a valid refinement sequence Π′ for Bk−2 in two steps. First, we use the projection
function p from partitions on Bk to partitions on Bk−2 that removes the prefix 11 from strings
in a block (or ignores the block if such string is absent), i.e. p(π) = { { σ | 11σ ∈ B } | B ∈
π }\{∅}. In particular, p(π0) = {{ σ | σ ∈ Bk−2 }}. Second, the function P from refinement
sequences of Bk to refinement sequences of Bk−2, removes, in addition to application of p

to each constituent partition, duplicate partitions from the sequence. Then Π′ = P (Π), say
Π′ = (ϱ0, ϱ1, . . . , ϱℓ).

We have ϱ0 = p(π′
0) = {Bε}. Next we observe that ϱ1 = πk−2

0 = {B0, B1} the initial
partition of Bk−2, containing the prefix blocks of 0 and 1: Take any two different states
bθ, bθ′ ∈ Bk−2, for a bit b ∈ B and strings θ, θ′ ∈ Bk−3 that are not in the same block
of ϱ1. Let i, 0 ⩽ i < n be such that p(πi) = ϱ0 and p(πi+1) = ϱ1. Then 11bθ and 11bθ′

have been separated when refining πi into πi+1. But no action aj witnesses such a split:
(i) Bk(11bθ, a1) = Bk(11bθ′, a1) as both equal 0k; (ii) Bk(110θ, a2) = 110θ ∈ B1\{10k−1}
and Bk(110θ′, a2) = 110θ′ ∈ B1\{10k−1}; (iii) Bk(111θ, a2) = Bk(111θ′, a2), viz. are equal
to 10k−1; (iv) for j > 2 it holds that Bk(11bθ, aj),Bk(11bθ′, aj) ∈ B1\{10k−1}. Since
ϱ1 ̸= ϱ0, ϱ1 has at least two blocks. Hence these must be B0 and B1.

Next we prove that every refinement of ϱi into ϱi+1 of Π′, for i, 1 ⩽ i < ℓ, is valid
for Bk−2. We first observe that, for all σ, σ′ ∈ Bk−2, aj ∈ A, it holds that Bk−2(σ, aj) = σ′

iff Bk(11σ, aj+2) = 11σ′, a direct consequence of the definition of the transition functions of
Bk−2 and Bk. From this we obtain

σ =ϱi
σ′ ⇐⇒ 11σ =πh

11σ′ (1)

provided ϱi = p(πh), for 0 ⩽ i ⩽ ℓ, via the definition of the projection function p. Now,
consider subsequent partitions ϱi and ϱi in Π′. Let h, 0 ⩽ h < n, be such that ϱi = p(πh) and
ϱi+1 = p(πh+1). Clearly, ϱi+1 is a refinement of ϱi; if for B ∈ πh+1 we have B =

⋃
α∈I Bα

with Bα ∈ πh for α ∈ I, then for p[B] ∈ ϱi+1 we have p[B] =
⋃

α∈I p[Bα] with p[Bα] ∈ ϱi

for α ∈ I. The validity of the refinement of ϱi into ϱi+1 is justified by the validity of πh+1
into πh. If σ =ϱi

σ′ and σ ̸=ϱi+1 σ′ for σ, σ′ ∈ Bk−2, then σ, σ′ ∈ B0 or σ, σ′ ∈ B1 since
ϱi is a refinement of ϱ0. Moreover, 11σ =πh

11σ′ and 11σ ̸=πh+1 11σ′ by (1). Hence, by
validity, Bk(11σ, aj) ̸=πh

Bk(11σ′, aj). Clearly j ≠ 1. Also, j ̸= 2, since σ[1] = σ′[1] we have
(11σ)[3] = (11σ′)[3]. Therefore, Bk−2(σ, aj−2) ̸=πh

Bk−2(σ′, aj−2), showing the refinement
of ϱi into ϱi+1 to be valid.
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Finally, since every block in πn is a singleton, this is also the case for ϱℓ. Thus, ϱℓ is
indeed the coarsest partition as required for Π′ to be a valid refinement sequence for Bk−2.
Every refinement of ϱi into ϱi+1 of Π′ is projected from a refinement of some πh into πh+1
of Π as argued above. Therefore, since ϱi = p(πi) and ϱi+1 = p(πi+1), we have rc(ϱi, ϱi+1) ⩽
rc(πh, πh+1), and hence rc(Π) =

∑n
h=1 rc(πh−1, πh) ⩾

∑ℓ
i= rc(ϱi−1, ϱi) = rc(Π′) ⩾ rc(Bk−2),

as was to be shown. ◀

Next we combine the above lemma with the lowerbound provided by Theorem 6 in order to
prove the main result of this section.

▶ Theorem 11. Any partition refinement algorithm with end structure oracle to decide
bisimilarity for a dLTS is Ω(n log n).

Proof. Let B′
k be the updated bisplitter (with the initial partition π′

0 containing {0k},
B0\{0k}, {10k−1}, and B1\{10k−1} as given by the oracle for end structures rather than the
partition π0 containing B0 and B1). By Lemma 10 we have, for k > 2, that rc(B′

k) ⩾ rc(Bk−2).
By Theorem 6 we know that rc(Bk−2) ⩾ 1

2 n′ log 1
2 n′ where n′ = 2k−2 is the number of states

of Bk−2. It holds that n′ = 2k−2

2k n = 1
4 n. So rc(B′

k) ⩾ 1
8 n log 1

8 n from which we conclude that
deciding bisimilarity for Bk with the help of an oracle for the end structures is Ω(n log n). ◀

6 Ck is Ω((m + n) log n) for partition refinement

We modify the bisplitter Bk, that has an action alphabet of k − 1 actions, to obtain a dLTS
with two actions only. The resulting dLTS Ck has the action alphabet {a, b}, for each k > 1,
and is referred to as the k-th layered bisplitter. We use Ck to obtain a Ω((n + m) log n)
lowerbound for deciding bisimilarity for LTSs with only two actions, where n is the number
of states and m is de number of transitions.

To this end we adapt the construction of Bk at two places. Given an action alphabet A

of Bk of k − 1 actions, we introduce for each σ ∈ Bk, a stake of 2k states. Moreover, for
each stake we add a tree gadget. These gadgets have height ⌈log( k−1

2 )⌉ to accommodate
⌈(k − 1)/2⌉ leaves.

▶ Definition 12. Let k > 1, Bk be the k-th bisplitter, and A = {a, b}. The dLTS Ck =
(SC

k ,A, →C, πC
0 ), over the action set A,

(a) has the set of states SC
k defined as

SC
k = { [σ, ℓ] ∈ Bk × N | 1 ⩽ ℓ ⩽ 2k } ∪

{ ⟨σ, w⟩ ∈ Bk × A∗ | 0 ⩽ |w| ⩽ ⌈log( k−1
2 )⌉ },

(b) has the transition relation →C given by
[σ, ℓ] α−→C [σ, ℓ + 1] for σ ∈ Bk, 1 ⩽ ℓ ⩽ 2k, α ∈ A

[σ, 2k ] α−→C ⟨σ, ε⟩ for σ ∈ Bk, α ∈ A
⟨σ, w⟩ α−→C ⟨σ, wα⟩ for σ ∈ Bk, |w| < ⌈log( k−1

2 )⌉, α ∈ A
⟨σ, w⟩ α−→C [σ′, 1] for σ ∈ Bk, |w| = ⌈log( k−1

2 )⌉, bin(wα) = j, Bk(σ, aj) = σ′,

(c) and has the initial partition πC
0 defined as

πC
0 =

{
{ [σ, ℓ] | σ ∈ B0 }, { [σ, ℓ] | σ ∈ B1 }

∣∣ 1 ⩽ ℓ ⩽ 2k
}

∪
{ ⟨σ, w⟩ ∈ SC

k | σ ∈ Bk, w ∈ A∗ }.

The auxilliary function bin : A⩽⌈log(k−1)⌉ → N, used in item b is inductively defined by
bin(ε) = 0, bin(wa) = min{2 ∗ bin(w), k−1}, and bin(wb) = min{2 ∗ bin(w)+1, k−1}.

We see that with each string σ ∈ Bk we associate in Ck as many as 2k stake states
[σ, 1], . . . , [σ, 2k ], one for each level ℓ, 1 ⩽ ℓ ⩽ 2k. The stake states are traversed from
the top [σ, 1] to bottom [σ, 2k ] on any string σ of length 2k over A. The tree gadget consists
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000 001 010 011 100 101 110 111

l = 1

l = 2

l = 3

l = 4

l = 5
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tree gadgets

[000, 1] [000, 1] [001, 1] . . . . . . [000, 1] [100, 1]

Figure 3 The partial layered bisplitter C3 with tree gadgets, the colors represent the initial
partition.

of a complete binary tree of height ⌈log( k−1
2 )⌉ that hence has at least ⌈(k − 1)/2⌉ leaves.

Traversal down the tree takes a left child on action a, a right child on action b. Together
with the two actions of A, k − 1 source-label pairs can be encoded. To simulate a transition
σ

aj−→ σ′ of Bk in Ck from a leaf of a tree gadget of σ to the top of the stake of σ′, we need
to be at a leaf ⟨σ, w⟩ of the tree gadget of σ such that the combined string wα for α ∈ A
is the binary encoding according of bin of the index j. An α-transition thus leads from
the source ⟨σ, w⟩ to the target [σ′, 1] if σ

aj−→ σ′ in Bk and wα corresponds to j. The
partition πC

0 = { Cℓ
0 , Cℓ

1 | 1 ⩽ ℓ ⩽ 2k } ∪ {Cε} distinguishes, for each level ℓ, the states at
level ℓ of the stakes of strings starting with 0 in Cℓ

0, the states of the stakes at level ℓ of
strings starting with 1 in Cℓ

1 , and the states of the tree gadgets collected in Cε.
Figure 3 depicts the two-label layered 3-splitter C3. Because also Bk has an action set of

size 2 the tree gadgets only consist of the root node of the form ⟨σ, ε⟩. In Figure 2 of B3 we
see that 101 a1−→ 101 and 101 a2−→ 110. In Figure 3 we have transitions ⟨101, ε⟩ a−→ [101, 1]
and ⟨101, ε⟩ b−→ [110, 1] (dotted and dashed, respectively). Coloring of nodes is used to
represent the initial partition πC

3 that separates 8 times, once for each level ℓ, the four states
of the stakes in Cℓ

0 on the left from the four stake states in Cℓ
1 on the right, and the 8 tree

states in Cε at the bottom of the picture.
The 6-th bisplitter B6 has five actions, a1 to a5. A tree gadget for the layered bisplitter C6

with corresponding outgoing transitions is drawn in Figure 4. The tree has height ⌈log((6 −
1)/2)⌉ = ⌈log 5

2 ⌉ = 2, hence it has 22 = 4 leaves. Since each leaf has two outgoing transitions,
one labeled a and one labeled b, the two leftmost leaves ⟨σ, aa⟩ and ⟨σ, ab⟩ are used with the
two labels a and b to simulate transitions for a1 up to a4, the two rightmost leaves ⟨σ, ba⟩
and ⟨σ, bb⟩ have together four transitions all simulating the a5-transition of σ.
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⟨011010, ε⟩

⟨011010, a⟩

⟨011010, aa⟩

[100000, 1] [000000, 1]

⟨011010, ab⟩

[011010, 1] [011100, 1]

⟨011010, b⟩

[011010, ba]

[011010, 1] [011010, 1]

⟨011010, bb⟩

[011010, 1] [011010, 1]

a

a

a b

b

a b

b

a

a b

b

a b

Figure 4 Example of the outgoing tree for C6 from the root [011010, ε] ∈ SC
6 .

The next lemma introduces three facts for the layered bisplitter Ck that we need in the sequel.
The first states that if two states in different stakes, but at the same level, are separated
during partition refinement, then all corresponding states at lower levels are separated as
well. The second fact helps to transfer witnessing transitions in Bk to the setting of Ck. A
transition σ

aj−→ σ′ of Bk is reflected by a path from [σ, 2k ] through the tree gadget of σ from
root to leaf and then to the top state [σ′, 1] of the stake of σ′. The word wα encountered
going down and out the tree gadget corresponds to the action aj according to the bin-function.
Lastly, it is shown that no two pairs of different states within the stakes are bisimilar.

▶ Lemma 13. Let Π be a valid refinement sequence for Ck and π a partition in Π.
(a) If two states [σ, ℓ], [σ′, ℓ] ∈ SC

k , for 1 ⩽ ℓ ⩽ 2k, are in a different block of π, then all
pairs [σ, m], [σ′, m] ∈ S, for all levels m, ℓ ⩽ m ⩽ 2k, are in different blocks of π.

(b) If [σ1, 2k ] and [σ2, 2k ] are split in π, then exist w ∈ A∗, α ∈ A, and σ′
1, σ′

2 ∈ Bk such
that

[σ1, 2k ] w−→∗
C ⟨σ1, w⟩ α−→C [σ′

1, 1] and [σ2, 2k ] w−→∗
C ⟨σ2, w⟩ α−→C [σ′

2, 1]

with [σ′
1, 1] and [σ′

2, 1] in different blocks of π.
(c) If π is the last refinement in Π, it contains the singletons of [σ, ℓ] for σ ∈ Bk and 1 ⩽

ℓ ⩽ 2k.

Proof. (a) For a proof by contradiction, suppose the partition π is the first partition of Π
that falsifies the statement of the lemma. So π ̸= πC

0 , since for the initial refinement πC
0

the statement holds. Thus, π is a refinement of a partition π′ in Π. So, there are two
states [σ, ℓ], [σ′, ℓ] ∈ SC

k in different blocks of π while the states [σ, ℓ+1], [σ′, ℓ+1] are in the
same block of π and hence of π′. Since [σ, ℓ] and [σ′, ℓ] only have transitions to [σ, ℓ+1]
and [σ′, ℓ+1], respectively, that are in the same block π′, the refinement wouldn’t have been
valid. We conclude that no falsifying partition π in Π exists and that the lemma holds.

(b) We first prove, by induction on |w|, that if ⟨σ1, w⟩ and ⟨σ2, w⟩ are split in π, then exist
w ∈ A∗ and α ∈ A such that ⟨σ1, w⟩ v−→∗ ⟨σ1, wv⟩ α−→ [σ′

1, 1] and ⟨σ2, w⟩ v−→∗ ⟨σ2, wv⟩ α−→ [σ′
2, 1]

with [σ′
1, 1] and [σ′

2, 1] in different blocks of π. If w has maximal length, |w| = ⌈log( k−1
2 )⌉ this

is clear. If ⟨σ1, w⟩ and ⟨σ, w⟩ are split, for |w| < ⌈log(k−1)⌉ − 1, then either a-transitions or
b-transitions lead to split states. By the induction hypothesis, suitable paths exists from the
targets of such transitions. Adding the respective transition proves the induction hypothesis.
Since [σ1, 2k ] and [σ2, 2k ] can only reach ⟨σ1, ε⟩ and ⟨σ2, ε⟩ the statement follows.

(c) Choose ℓ, 1 ⩽ ℓ ⩽ 2k and define the relation R ⊆ SB
k × SB

k such that (σ1, σ2) ∈ R iff
the stake states [σ1, ℓ], [σ2, ℓ] ∈ SC

k are bisimilar for Ck. We verify that R is a bisimulation
relation for Bk. Note, that R respects πB

k , the initial partifion of Bk. Now, suppose
(σ1, σ2) ∈ R and σ1

aj−→ σ′
1 for some aj ∈ Ak and σ′

1 ∈ SB
k . By construction of Ck we have

[σ1, ℓ] a2k−ℓ

−−−−→∗ [σ1, 2k ] a−→ ⟨σ1, ε⟩ w−→∗ ⟨σ1, w⟩ α−→ [σ′
1, 1] aℓ−1

−−−→∗ [σ′
1, ℓ] where bin(wα) = j.
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Since [σ1, ℓ] and [σ2, ℓ] are bisimilar in Ck, it follows that a corresponding path [σ2, ℓ] −→∗

[σ′
2, ℓ] exists in Ck with [σ′

1, ℓ] and [σ′
2, ℓ] bisimilar in Ck. From this we derive that σ2

aj−→ σ′
2

in Bk and (σ′
1, σ′

2) ∈ R. Hence, R is a bisimulation relation for Bk indeed. Now, bisimilarity
of Bk is discrete. Thus, if two stake states [σ1, ℓ] and [σ2, ℓ] are bisimilar for Ck, then σ1
and σ2 are bisimilar for Bk thus σ1 = σ2, and therefore [σ1, ℓ] = [σ2, ℓ]. ◀

The next lemma states that all the splitting of states [σ, ℓ] ∈ SC at some level ℓ has refinement
costs that are at least that of Bk.

▶ Lemma 14. It holds that rc(Ck) ⩾ 2krc(Bk) for all k > 1.

Proof. Let Π = (πC
0 , π1, . . . , πn) be a valid refinement sequence for Ck. We show that for

each level ℓ, the sequence Π induces a valid refinement sequence Πℓ for Bk.
The mapping pℓ assigns to a partition π of Ck a partition pℓ(π) by putting

pℓ(π) = { { σ ∈ Bk | [σ, ℓ] ∈ B } | B ∈ π } \ {∅}.

The sequence Πℓ = (πℓ
0, . . . , πℓ

m) is obtained from the sequence (pℓ(πC
0 ), pℓ(π1), . . . , pℓ(πn))

by removing possible duplicates. We verify that Πℓ is a valid refinement sequence for Bk.
First, we check that πℓ

i is a refinement of πℓ
i−1, for 1 ⩽ i ⩽ m. Choose such an index i

arbitrary. Let the index h with 1 ⩽ h ⩽ n by such that pℓ(πh−1) = πℓ
i−1 and pℓ(πi) = πℓ

h.
For each block B′ ∈ πℓ

i exists a block B ∈ πh such that B′ = pℓ(B). Since πh is a refinement
of πh−1, thus B =

⋃
r Br for suitable Br ∈ πh. Note, pℓ(Br) ∈ pℓ(πh−1) for each index r.

We have B′ =
⋃

r pℓ(Br) with pℓ(Br) ∈ πℓ
i−1, and πℓ

i is a refinement of πℓ
i−1.

Next, we verify that Πℓ is a valid refinement sequence for Bk. Suppose the state σ1, σ ∈ SB
k

are split for the refinement of πℓ
i−1 into πℓ

i . Then the states [σ1, ℓ], [σ2, ℓ] ∈ SC
k are split for

the refinement of a partition πh−1 into the partition πh for a some index h, 1 ⩽ h ⩽ n. Then
either (i) ℓ = 2k and [σ1, ℓ] and [σ2, ℓ] have α-transitions to different blocks, for some α ∈ A,
or (ii) ℓ < 2k and [σ1, ℓ+1] and [σ2, ℓ+1] are in different blocks of πh−1. In the case of (ii),
it follows by Lemma 13 that also [σ1, 2k ] and [σ2, 2k ] are in different blocks of πh−1. Thus,
for the refinement of some πg−1 into πg, 1 ⩽ g ⩽ h ⩽ n, splitted the two states [σ1, 2k ]
and [σ2, 2k ]. By Lemma 13 exist w ∈ A∗, α ∈ A, and σ′

1, σ′
2 ∈ Bk such that

[σ1, 2k ] w−→∗
C ⟨σ1, w⟩ α−→C [σ′

1, 1] and [σ2, 2k ] w−→∗
C ⟨σ2, w⟩ α−→C [σ′

2, 1]

with [σ′
1, 1] and [σ′

2, 1] in different blocks of πg−1. Hence, σ′
1 and σ′

2 are in different blocks
of πℓ

i−1 while σ1
aj−→B σ′

1 and σ2
aj−→B σ′

2 for j = bin(wα), which justifies splitting σ1 and σ2
for πℓ

i . We conclude that Πℓ is a valid refinement sequence for Bk.
We have established that if Π is a valid refinement sequence for Ck, then Πℓ is a valid

refinement sequence for Bk. The sequence Πℓ is obtained from Π by sifting out the blocks
of Π’s partitions and removing repeated partitions. Therefore it holds that rc(Π) ⩾ rc(Πℓ).
Since the mapping pℓ and pℓ′ include pairswise distinct sets of stake states for ℓ ̸= ℓ′,
1 ⩽ ℓ ⩽ 2k, it follows that rc(Π) ⩾

∑2k

ℓ=1 rc(Πℓ) ⩾ 2krc(Bk). Taking the minimum over
all valid refinement sequences for Ck we conclude that rc(Ck) ⩾ 2krc(Bk) as was to be
shown. ◀

With the above technical lemma in place, we are able to strengthen the Ω(n log n) lowerbound
of Theorem 6 to account for the number of transitions. The improved lowerbound is
Ω((m + n) log n), where m is the number of transitions and n the number of states.

▶ Theorem 15. Deciding bisimilarity for dLTSs with a partition refinement algorithm is
Ω((m + n) log n), where n is the number of states and m is the number of transitions of the
dLTS.
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Proof. For the bisplitter Bk, we know by Theorem 6 that rc(BK) ⩾ 2k−1(k−1). Thus,
by Lemma 14, we obtain rc(CK) ⩾ 22k−1(k−1). In the case of Ck we have n = 2k(2k +
2⌈log(k−1)⌉ − 1) and m = 2n. Hence n + m ∈ Θ(22k−1) and log n ∈ Θ(k − 1), from which it
follows that rc(Ck) ∈ Ω((m + n) log n). ◀

Underlying the proof of a lowerbound for deciding bisimilarity for the family of layered
bisplitters Ck is the observation that each Ck can be seen as 2k stacked instances of the
ordinary bisplitters Bk, augmented with tree gadgets to handle transitions properly. The
other essential ingredient for the proof of Theorem 15 is the complexity of deciding bisimilarity
with a partition refinement algorithm on the Bk family. The same reasoning applies when
considering partition refinement algorithms with an oracle for end structures from Section 5.
Also with an oracle the lowerbound of Ω((m+n) log n) remains.

▶ Theorem 16. Any partition refinement algorithm with an oracle for end structures that
decides bisimilarity for dLTSs is Ω((m + n) log n).

Proof sketch. The proof is similar to that of Lemma 10 and Theorem 15. Consider, for
some k > 2, the layered bisplitter Ck having initial partition π0. The dLTS Ck has two end
structures, viz. the set S0 ⊂ SC

k containing the states of the stake and accompanying tree
gadget S0 = { [0k, ℓ] | 1 ⩽ ℓ ⩽ 2k } ∪ { ⟨0k, w⟩ | w ∈ A∗, |w| ⩽ ⌈log( k−1

2 )⌉} for 0k and a
similar S1 ⊆ SC

k for 10k−1. The sets S0 and S1 are minimally closed under the transitions
of Ck. Other states, on the stake or tree gadget for a string σ, have a path to these sets
inherited from a path from σ to 0k or 10k in Bk. The bisimulation classes S′

0 and S′
1, say,

with respect to SC
k rather than π0, consist of S0 and S1 themselves plus a part of the tree

gadgets for transitions in Ck leading to S0 and S1, respectively.
The update of the initial partition π0 with oracle information, which concerns, ignoring the

tree gadgets, the common refinement of the layers on { [σ, ℓ] | σ ∈ B0 } and { [σ, ℓ] | σ ∈ B1 }
on the one hand, and (a trivial refinement of) the bisimulation classes S′

0 and S′
1 on the

other hand, is therefore equal to π on the stakes (and generally finer on the tree gadgets).
Then every valid refinement sequence Π = (π′

0, π2, . . . , πn) for the updated dLTS C′
k =

(S,A, →, π′
0) satisfies rc(Π) ⩾ rc(Ck−2). Following the lines of the proof of Lemma 10, we

can show that a valid refinement sequence Π for Ck with updated initial partition π′
0 induces

a valid refinement sequence Π′ for Ck−2.
The number of states in Ck−2 is Θ(n) with n the number of states of Ck, and number

of transitions in Ck−2 is Θ(m) with m the number of transitions of Ck. Therefore, rc(Π) ⩾
rc(Π′) ⩾ rc(Ck−2), from which we derive that any partition refinement algorithm with oracle
for end structures involves Θ((m+n) log n) times moving a state for Ck and that hence the
algorithm is Ω((m+n) log n). ◀

7 Conclusion

We have shown that, even when restricted to deterministic LTSs, it is not possible to construct
an algorithm based on partition refinement that is more efficient than Ω((m + n) log n). This
strengthens the result of [2]. The bound obtained is preserved even when the algorithm is
extended with an oracle that can determine for specific states whether they are bisimilar or
not in constant time. The oracle proof technique enabled us to show that the algorithmic
ideas underlying Roberts’ algorithm [15] for the one-letter alphabet case cannot be used to
come up with a fundamentally faster enhanced partition refinement algorithm for bisimulation.
Of course, this is not addressing a generic lower bound to decide bisimilarity on LTSs, nor
proving the conjecture that the Paige-Tarjan algorithm is optimal for deciding bisimilarity.
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It is conceivable that a more efficient algorithm exists that is not based on partitioning
for bisimulation. However, as it stands, no techniques are known to prove such a generic
algorithmic lowerbound, and all that that do exist make assumptions on allowed operations,
such as the well-known lowerbound on sorting. Further investigations to obtain a more
general lowerbound may strenghten the oracle used even further, such that a wider range of
algorithms is covered.

For the parallel setting, where deciding bisimilarity can be done faster indeed, a similar
dichotomy between the case of a single letter alphabet and of a multiple letter alphabet
occurs. For LTSs with multiple action labels a linear algorithm is proposed in [12], whereas
for dLTSs with one action label it is possible to calculate bisimulation in logarithmic time,
cf. [9]. The question is raised in [17], if a sub-linear parallel solution exists at all. Since
this problem in a general setting is known to be P-complete as shown in [1], it is generally
believed that no logarithmic algorithm is possible. It is worthwhile to transfer the results
of this paper to a parallel setting, in order to better understand whether it is possible to
design parallel partition based algorithms for bisimulation on LTSs that have a sub-linear
complexity.
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Abstract
We provide a generic algorithm for constructing formulae that distinguish behaviourally inequivalent
states in systems of various transition types such as nondeterministic, probabilistic or weighted;
genericity over the transition type is achieved by working with coalgebras for a set functor in the
paradigm of universal coalgebra. For every behavioural equivalence class in a given system, we
construct a formula which holds precisely at the states in that class. The algorithm instantiates
to deterministic finite automata, transition systems, labelled Markov chains, and systems of many
other types. The ambient logic is a modal logic featuring modalities that are generically extracted
from the functor; these modalities can be systematically translated into custom sets of modalities in
a postprocessing step. The new algorithm builds on an existing coalgebraic partition refinement
algorithm. It runs in time O((m + n) log n) on systems with n states and m transitions, and the
same asymptotic bound applies to the dag size of the formulae it constructs. This improves the
bounds on run time and formula size compared to previous algorithms even for previously known
specific instances, viz. transition systems and Markov chains; in particular, the best previous bound
for transition systems was O(mn).
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1 Introduction

For finite transition systems, the Hennessy-Milner theorem guarantees that two states are
bisimilar if and only if they satisfy the same modal formulae. This implies that whenever two
states are not bisimilar, then one can find a modal formula that holds at one of the states
but not at the other. Such a formula explains the difference of the two states’ behaviour and
is thus usually called a distinguishing formula [13]. For example, in the transition system in
Figure 1, the formula □♢⊤ distinguishes the states x and y because x satisfies □♢⊤ whereas y
does not. Given two states in a finite transition system with n states and m transitions,
the algorithm by Cleaveland [13] computes a distinguishing formula in time O(mn). The
algorithm builds on the Kanellakis-Smolka partition refinement algorithm [28, 29], which
computes the bisimilarity relation on a transition system within the same time bound.
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•x • • y•

Figure 1 Example of a transition system.

• y•x •• 10.5 1
0.5

Figure 2 Example of a Markov chain.

Similar logical characterizations of bisimulation exist for other system types. For instance,
Desharnais et al. [16, 17] characterize probabilistic bisimulation on (labelled) Markov chains,
in the sense of Larsen and Skou [33] (for each label, every state has either no successors or a
probability distribution on successors). In their logic, a formula ♢≥pϕ holds at states that
have a transition probability of at least p to states satisfying ϕ. For example, the state x in
Figure 2 satisfies ♢≥0.5♢≥1⊤ but y does not. Desharnais et al. provide an algorithm that
computes distinguishing formulae for labelled Markov chains in run time (roughly) O(n4).

In the present work, we construct such counterexamples generically for a variety of
system types. We achieve genericity over the system type by modelling state-based systems
as coalgebras for a set functor in the framework of universal coalgebra [40]. Examples of
coalgebras for a set functor include transition systems, deterministic automata, or weighted
systems (e.g. Markov chains). Universal coalgebra provides a generic notion of behavioural
equivalence that instantiates to standard notions for concrete system types, e.g. bisimilarity
(transtion systems), language equivalence (deterministic automata), or probabilistic bisimil-
arity (Markov chains). Moreover, coalgebras come equipped with a generic notion of modal
logic that is parametric in a choice of modalities whose semantics is constructed so as to
guarantee invariance w.r.t. behavioural equivalence; under easily checked conditions, such
a coalgebraic modal logic in fact characterizes behavioural equivalence in the same sense as
Hennessy-Milner logic characterizes bisimilarity [39,42]. Hence, as soon as suitable modal
operators are found, coalgebraic modal formulae serve as distinguishing formulae.

In a nutshell, the contribution of the present paper is an algorithm that computes
distinguishing formulae for behaviourally inequivalent states in quasilinear time, and in fact
certificates that uniquely describe behavioural equivalence classes in a system, in coalgebraic
generality. We build on an existing efficient coalgebraic partition refinement algorithm [46],
thus achieving run time O(m log n) on coalgebras with n states and m transitions (in a
suitable encoding). The dag size of formulae is also O(m log n) (for tree size, exponential lower
bounds are known [22]); even for labelled transition systems, we thus improve the previous
best bound O(mn) [13] for both run time and formula size. We systematically extract the
requisite modalities from the functor at hand, requiring binary and nullary modalities in the
general case, and then give a systematic method to translate these generic modal operators
into more customary ones (such as the standard operators of Hennessy-Milner logic).

We subsequently identify a notion of cancellative functor that allows for additional
optimization. E.g. functors modelling weighted systems are cancellative if and only if the
weights come from a cancellative monoid, such as (Z,+), or (R,+) as used in probabilistic
systems. For cancellative functors, much simpler distinguishing formulae can be constructed:
the binary modalities can be replaced by unary ones, and only conjunction is needed in the
propositional base. On labelled Markov chains, this complements the result that a logic
with only conjunction and different unary modalities (mentioned above) suffices for the
construction of distinguishing formulae (but not certificates) [17] (see also [19]).

Related Work. Cleaveland’s algorithm [13] for labelled transition systems is is based on
Kanellakis and Smolka’s partition refinement algorithm [29]. The coalgebraic partition
refinement algorithm we employ [46] is instead related to the more efficient Paige-Tarjan
algorithm [36]. König et al. [32] extract formulae from winning strategies in a bisimulation
game in coalgebraic generality; their algorithm runs in O(n4) and does not support negative
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transition weights. Characteristic formulae for behavioural equivalence classes taken across all
models require the use of fixpoint logics [21]. The mentioned algorithm by Desharnais et al. for
distinguishing formulae on labelled Markov processes [17, Fig. 4] is based on Cleaveland’s.
No complexity analysis is made but the algorithm has four nested loops, so its run time
is roughly O(n4). Bernardo and Miculan [10] provide a similar algorithm for a logic with
only disjunction. There are further generalizations along other axes, e.g. to behavioural
preorders [12]. The TwoTowers tool set for the analysis of stochastic process algebras [8, 9]
computes distinguishing formulae for inequivalent processes, using variants of Cleaveland’s
algorithm. Some approaches construct alternative forms of certificates for inequivalence, such
as Cranen et al.’s notion of evidence [14] or methods employed on business process models,
based on model differences and event structures [5, 6, 18].

2 Preliminaries

We first recall some basic notation. We denote by 0 = ∅, 1 = {0}, 2 = {0, 1} and 3 = {0, 1, 2}
the sets representing the natural numbers 0, 1, 2 and 3. For every set X, there is a unique map
! : X → 1. We write Y X for the set of functions X → Y , so e.g. X2 ∼= X×X. In particular, 2X

is the set of 2-valued predicates on X, which is in bijection with the powerset PX of X, i.e. the
set of all subsets of X; in this bijection, a subset A ∈ PX corresponds to its characteristic
function χA ∈ 2X , given by χA(x) = 1 if x ∈ A, and χ(x) = 0 otherwise. We generally
indicate injective maps by ↣. Given maps f : Z → X, g : Z → Y , we write ⟨f, g⟩ for the
map Z → X ×Y given by ⟨f, g⟩(z) = (f(z), g(z)). We denote the disjoint union of sets X, Y
by X + Y , with canonical inclusion maps in1 : X ↣ X + Y and in2 : Y ↣ X + Y . More
generally, we write

∐
i∈I Xi for the disjoint union of an I-indexed family of sets (Xi)i∈I ,

and ini : Xi ↣
∐

i∈I Xi for the i-th inclusion map. For a map f : X → Y (not necessarily
surjective), we denote by ker(f) ⊆ X ×X the kernel of f , i.e. the equivalence relation

ker(f) := {(x, x′) ∈ X ×X | f(x) = f(x′)}. (1)

▶ Notation 2.1 (Partitions). Given an equivalence relation R on X, we write [x]R for the
equivalence class {x′ ∈ X | (x, x′) ∈ R} of x ∈ X. If R is the kernel of a map f , we simply
write [x]f in lieu of [x]ker(f). The intersection R ∩ S of equivalence relations is again an
equivalence relation. The partition corresponding to R is denoted by X/R = {[x]R | x ∈ X}.
Note that [−]R : X → X/R is a surjective map and that R = ker([−]R).

A signature is a set Σ, whose elements are called operation symbols, equipped with a function
a : Σ → N assigning to each operation symbol its arity. We write σ/n ∈ Σ for σ ∈ Σ with
a(σ) = n. We will apply the same terminology and notation to collections of modal operators.

2.1 Coalgebra
Universal coalgebra [40] provides a generic framework for the modelling and analysis of state-
based systems. Its key abstraction is to parametrize notions and results over the transition
type of systems, encapsulated as an endofunctor on a given base category. Instances cover,
for example, deterministic automata, labelled (weighted) transition systems, and Markov
chains.

▶ Definition 2.2. A set functor F : Set → Set assigns to every set X a set FX and to
every map f : X → Y a map Ff : FX → FY such that identity maps and composition are
preserved: F idX = idF X and F (g · f) = Fg · Ff . An F -coalgebra is a pair (C, c) consisting
of a set C (the carrier) and a map c : C → FC (the structure). When F is clear from the
context, we simply speak of a coalgebra.
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In a coalgebra c : C → FC, we understand the carrier set C as consisting of states, and the
structure c as assigning to each state x ∈ C a structured collection of successor states, with
the structure of collections determined by F . In this way, the notion of coalgebra subsumes
numerous types of state-based systems, as illustrated next.

▶ Example 2.3.
1. The powerset functor P sends a set X to its powerset PX and a map f : X → Y to the

map Pf = f [−] : PX → PY taking direct images. A P-coalgebra c : C → PC is precisely
a transition system: It assigns to every state x ∈ C a set c(x) ∈ PC of successor states,
inducing a transition relation → given by x → y iff y ∈ c(x). Similarly, coalgebras for
the finite powerset functor Pf (with PfX being the set of finite subsets of X) are finitely
branching transition systems.

2. Coalgebras for the functor FX = 2 × XA, where A is a fixed input alphabet, are
deterministic automata (without an explicit initial state). Indeed, a coalgebra structure
c = ⟨f, t⟩ : C → 2 × CA consists of a finality predicate f : C → 2 and a transition map
C ×A → C in curried form t : C → CA.

3. Every signature Σ defines a signature functor that maps a set X to the set

TΣX =
∐

σ/n∈Σ X
n,

whose elements we may understand as flat Σ-terms σ(x1, . . . , xn) with variables from X.
The action of TΣ on maps f : X → Y is then given by (TΣf)(σ(x1, . . . , xn)) = σ(f(x1), . . . ,
f(xn)). For simplicity, we write σ (instead of inσ) for the coproduct injections, and Σ
in lieu of TΣ for the signature functor. States in Σ-coalgebras describe possibly infinite
Σ-trees.

4. For a commutative monoid (M,+, 0), the monoid-valued functor M (−) [25] is given by

M (X) := {µ : X → M | µ(x) = 0 for all but finitely many x ∈ X} (2)

on sets X; for a map f : X → Y , the map M (f) : M (X) → M (Y ) is defined by

(M (f))(µ)(y) =
∑

x∈X,f(x)=y µ(x).

A coalgebra c : C → M (C) is a finitely branching weighted transition system, where
c(x)(x′) ∈ M is the transition weight from x to x′. For the Boolean monoid B = (2,∨, 0),
we recover Pf = B(−). Coalgebras for R(−), with R understood as the additive monoid of
the reals, are R-weighted transition systems. The functor

DX = {µ ∈ R(X)
≥0 |

∑
x∈X µ(x) = 1},

which assigns to a set X the set of all finite probability distributions on X (represented
as finitely supported probability mass functions), is a subfunctor of R(−).

5. Functors can be composed; for instance, given a set A of labels, the composite of P and
the functor A× (−) (whose action on sets maps a set X to the set A×X) is the functor
FX = P(A × X), whose coalgebras are A-labelled transition systems. Coalgebras for
(D(−) + 1)A have been termed probabilistic transition systems [33] or labelled Markov
chains [17], and coalgebras for (D((−) + 1) + 1)A are partial labelled Markov chains [17].
Coalgebras for SX = Pf(A × DX) are variously known as simple Segala systems or
Markov decision processes.

We have a canonical notion of behaviour on F -coalgebras:
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▶ Definition 2.4. An F -coalgebra morphism h : (C, c) → (D, d) is a map h : C → D such
that d · h = Fh · c. States x, y in an F -coalgebra (C, c) are behaviourally equivalent (x ∼ y)
if there exists a coalgebra morphism h such that h(x) = h(y).

C FC

D FD

c

h F h

d

Thus, we effectively define the behaviour of a state as those of its properties that are
preserved by coalgebra morphisms. The notion of behavioural equivalence subsumes standard
branching-time equivalences:

▶ Example 2.5.
1. For F ∈ {P ,Pf}, behavioural equivalence on F -coalgebras, i.e. on transition systems, is

bisimilarity in the usual sense.
2. For deterministic automata as coalgebras for FX = 2 ×XA, two states are behaviourally

equivalent iff they accept the same formal language.
3. For a signature functor Σ, two states of a Σ-coalgebra are behaviourally equivalent iff

they describe the same Σ-tree.
4. For labelled transition systems as coalgebras for FX = P(A×X), coalgebraic behavioural

equivalence precisely captures Milner’s strong bisimilarity [1].
5. For weighted and probabilistic systems, coalgebraic behavioural equivalence instantiates

to weighted and probabilistic bisimilarity, respectively [41, Cor. 4.7], [7, Thm. 4.2].

▶ Remark 2.6.
1. The notion of behavioural equivalence extends straightforwardly to states in different

coalgebras, as one can canonically define the disjoint union of coalgebras.
2. We may assume without loss of generality that a set functor F preserves injective maps [43]

(see also [2, 8.1.12–17]), that is, Ff is injective whenever f is.

2.2 Coalgebraic Logics
We briefly review basic concepts of coalgebraic modal logic [38,42]. Coalgebraic modal logics
are parametric in a functor F determining the type of systems underlying the semantics, and
additionally in a choice of modalities interpreted in terms of predicate liftings. For now, we
use F = P as a basic example, deferring further examples to Section 5.

Syntax. The syntax of coalgebraic modal logic is parametrized over the choice of signature
Λ of modal operators (with assigned arities). Then, formulae ϕ are generated by the grammar

ϕ1, . . . , ϕn ::= ⊤ | ¬ϕ1 | ϕ1 ∧ ϕ2 | ♡(ϕ1, . . . , ϕn) (♡/n ∈ Λ).

▶ Example 2.7. For F = P, one often takes Λ = {♢/1}; the induced syntax is that of
(single-action) Hennessy-Milner logic. As usual, we write □ϕ :≡ ¬♢¬ϕ.

Semantics. We interpret formulae as sets of states in F -coalgebras. This interpretation
arises by assigning to each modal operator ♡/n ∈ Λ an n-ary predicate lifting J♡K [38, 42],
i.e. a family of maps J♡KX : (2X)n → 2F X , one for every set X, such that the naturality
condition

Ff−1[
J♡KY (P1, . . . , Pn)

]
= J♡KX(f−1[P1], . . . , f−1[Pn]) (3)
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for all f : X → Y and all P1, . . . , Pn ∈ 2X (for categorically-minded readers, J♡K is a natural
transformation (2(−))n → 2F op); the idea being to lift given predicates on states to predicates
on structured collections of states. Given these data, the extension of a formula ϕ in
an F -coalgebra (C, c) is a predicate JϕK(C,c), or just JϕK, on C, recursively defined by

J⊤K(C,c) = C Jϕ ∧ ψK(C,c) = JϕK(C,c) ∩ JψK(C,c) J¬ϕK(C,c) = C \ JϕK(C,c)

J♡(ϕ1, . . . , ϕn)K(C,c) = c−1[
J♡KC

(
Jϕ1K(C,c), . . . , JϕnK(C,c)

)]
(♡/n ∈ Λ)

(where we apply set operations to predicates with the evident meaning). We say that a
state x ∈ C satisfies ϕ if JϕK(x) = 1. Notice how the clause for modalities says that x satisfies
♡(ϕ1, . . . , ϕn) iff c(x) satisfies the predicate obtained by lifting the predicates Jϕ1K, . . . , JϕnK
on C to a predicate on FC according to J♡K.

▶ Example 2.8. Over F = P, we interpret ♢ by the predicate lifting

J♢KX : 2X → 2PX , P 7→ {K ⊆ X | ∃x ∈ K : x ∈ P} = {K ⊆ X | K ∩ P ̸= ∅},

The arising notion of satisfaction over P-coalgebras (C, c) is precisely the standard one:
x ∈ J♢ϕK(C,c) iff y ∈ JϕK(C,c) for some transition x → y.

The naturality condition (3) of predicate liftings guarantees invariance of the logic under
coalgebra morphisms, and hence under behavioural equivalence:

▶ Proposition 2.9 (Adequacy [38, 42]). Behaviourally equivalent states satisfy the same
formulae: x ∼ y implies that for all formulae ϕ, we have x ∈ JϕK iff y ∈ JϕK.

In our running example F = P , this instantiates to the well-known fact that modal formulae
are bisimulation-invariant, that is, bisimilar states in transition systems satisfy the same
formulae of Hennessy-Milner logic.

3 Constructing Distinguishing Formulae

A proof method certifying behavioural equivalence of states x, y in a coalgebra is immediate
by definition: One simply needs to exhibit a coalgebra morphism h such that h(x) = h(y).
In fact, for many system types, it suffices to relate x and y by a coalgebraic bisimulation in a
suitable sense (e.g. [1, 24, 34, 40]), generalizing the Park-Milner bisimulation principle [35, 37].
It is less obvious how to certify behavioural inequivalence x ̸∼ y, showing that such a
morphism h does not exist. By Proposition 2.9, one option is to exhibit a (coalgebraic) modal
formula ϕ that is satisfied by x but not by y. In the case of (image-finite) transition systems,
such a formula is guaranteed to exist by the Hennessy-Milner theorem, which moreover is
known to generalize to coalgebras [39, 42]. More generally, we consider separation of sets of
states by formulae, following Cleaveland [13, Def. 2.4]:

▶ Definition 3.1. Let (C, c) be an F -coalgebra. A formula ϕ distinguishes a set X ⊆ C from
a set Y ⊆ C if X ⊆ JϕK and Y ∩ JϕK = ∅. In case X = {x} and Y = {y}, we just say that ϕ
distinguishes x from y. We say that ϕ is a certificate of X if ϕ distinguishes X from C \X,
that is if JϕK = X.

Note that ϕ distinguishes X from Y iff ¬ϕ distinguishes Y from X. Certificates have also been
referred to as descriptions [22]. If ϕ is a certificate of a behavioural equivalence class [x]∼,
then by definition ϕ distinguishes x from y whenever x ̸∼ y. To obtain distinguishing formulae
for behaviourally inequivalent states in a coalgebra, it thus suffices to construct certificates
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for all behavioural equivalence classes, and our algorithm does just that. Of course, every
certificate must be at least as large as a smallest distinguishing formula. However, already
on transition systems, distinguishing formulae and certificates have the same asymptotic
worst-case size (cf. Section 6).

A natural approach to computing certificates for behavioural equivalence classes is
to extend algorithms that compute these equivalence classes. In particular, partition re-
finement algorithms compute a sequence C/R0, C/R1, . . . of consecutively finer partitions
(i.e. Ri+1 ⊆ Ri) on the state space, where every block B ∈ C/Ri is a union of behavioural
equivalence classes, and the final partition is precisely C/∼. Indeed, Cleaveland’s algorithm
for computing certificates on labelled transition systems [13] correspondingly extends Kanel-
lakis and Smolka’s partition refinement algorithm [28,29], which runs in O(mn) on systems
with n = |C| states and m transitions. Our generic algorithm will be based on a more
efficient partition refinement algorithm.

3.1 Paige-Tarjan with Certificates
Before we turn to constructing certificates in coalgebraic generality, we informally recall and
extend the Paige-Tarjan algorithm [36], which computes the partition modulo bisimilarity of
a given transition system with n states and m transitions in time O((m+ n) log n). We fix a
given finite transition system, viewed as a P-coalgebra c : C → PC.

The algorithm computes two sequences (C/Pi)i∈N and (C/Qi)i∈N of partitions of C
(with Qi, Pi equivalence relations), where only the most recent partition is held in memory
and i indexes the iterations of the main loop. Throughout the execution, C/Pi is finer than
C/Qi (that is, Pi ⊆ Qi for all i), and the algorithm terminates when Pi = Qi. Intuitively, Pi

is “one transition ahead” of Qi: if Qi distinguishes states x and y, then Pi is based on
distinguishing transitions to x from transitions to y.

Initially, C/Q0 := {C} consists of only one block and C/P0 of two blocks: the live states
and the deadlocks (i.e. states with no outgoing transitions). If Pi ⫋ Qi, then there is a block
B ∈ C/Qi that is the union of at least two blocks in C/Pi. In such a situation, the algorithm
chooses S ⊆ B in C/Pi to have at most half the size of B and then splits the block B into S
and B \ S in the partition C/Qi:

C/Qi+1 = (C/Qi \ {B}) ∪ {S,B \ S}.

This is correct because every state in S is already known to be behaviourally inequivalent to
every state in B \ S. By the definition of bisimilarity, this implies that every block T ∈ C/Pi

with some transition to B may contain behaviourally inequivalent states as illustrated in
Figure 3; that is, T may need to be split into smaller blocks, as follows:

(C1) states in T with successors in S but not in B \ S (e.g. x1 in Figure 3),
(C2) states in T with successors in S and B \ S (e.g. x2), and
(C3) states in T with successors B \ S but not in S (e.g. x3).

The partition C/Pi+1 arises from C/Pi by splitting all such predecessor blocks T of B
accordingly. If no such T is properly split, then Pi+1 = Qi+1, and the algorithm terminates.
It is straightforward to construct certificates for the blocks arising during the execution:

The certificate for the only block C ∈ C/Q0 is ⊤, and the blocks for live states and
deadlocks in C/P0 have certificates ♢⊤ and ¬♢⊤, respectively.
In the refinement step, suppose that δ, β are certificates of S ∈ C/Pi and B ∈ C/Qi,
respectively, where S ⫋ B. For every predecessor block T of B, the three blocks obtained
by splitting T are distinguished (see Definition 3.1) as follows:

(C1) ¬♢(β ∧ ¬δ), (C2) ♢(δ) ∧ ♢(β ∧ ¬δ), (C3) ¬♢δ. (4)
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x1 x2 x3

y1 y2 y3 y4 . . .. . .

T

B

S B \ S

. . .. . .

. . .. . .

C/P :

C/Q :

C

PC

c

✂ ✂

✂

Figure 3 The refinement step as illustrated in [46, Figure 6].

Of course these formulae only distinguish the states in T from each other (e.g. there may
be states in other blocks with transitions to both S and B). Hence, given a certificate ϕ
of T , one obtains certificates of the three resulting blocks in C/Pi+1 via conjunction:
ϕ ∧ ¬♢(β ∧ ¬δ), etc.

Upon termination, every bisimilarity class [x]∼ in the transition system is annotated with
a certificate. A key step in the generic development will be to come up with a coalgebraic
generalization of the formulae for (C1)–(C3).

3.2 Generic Partition Refinement

The Paige-Tarjan algorithm has been adapted to other system types, e.g. weighted systems [44],
and it has recently been generalized to coalgebras [20,46]. A crucial step in this generalization
is to rephrase the case distinction (C1)–(C3) in terms of the functor P : Given a predecessor
block T in C/Pi for S ⫋ B ∈ C/Qi, the three cases distinguish between the equivalence
classes [x]PχB

S
·c for x ∈ T , where the map χB

S : C → 3 in the composite PχB
S · c : C → P3 is

defined by

χB
S : C → 3 χB

S (x) =


2 if x ∈ S,

1 if x ∈ B \ S,
0 if x ∈ C \B,

for sets S ⊆ B ⊆ C. (5)

Every case is a possible value of t := PχB
S (c(x)) ∈ P3: (C1) 2 ∈ t ̸∋ 1, (C2) 2 ∈ t ∋ 1, and

(C3) 2 /∈ t ∋ 1. Since T is a predecessor block of B, the “fourth case” 2 ̸∈ t ̸∋ 1 is not possible.
There is a transition from x to some state outside of B iff 0 ∈ t. However, because of the
previous refinement steps performed by the algorithm, either all or no states states of T have
an edge to C \B (a property called stability [36]), hence no distinction on 0 ∈ t is necessary.

It is now easy to generalize from transition systems to coalgebras by simply replacing the
functor P with F in the refinement step. We recall the algorithm:

▶ Algorithm 3.2 [46, Alg. 4.9, (5.1)]. Given a coalgebra c : C → FC, put

C/Q0 := {C} and P0 := ker(C c−→ FC
F !−→ F1).

Starting at iteration i = 0, repeat the following while Pi ̸= Qi:
(A1) Pick S ∈ C/Pi and B ∈ C/Qi such that S ⫋ B and 2 · |S| ≤ |B|
(A2) C/Qi+1 := (C/Qi \ {B}) ∪ {S,B \ S}
(A3) Pi+1 := Pi ∩ ker( C FC F3c F χB

S )
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This algorithm formalizes the intuitive steps from Section 3.1. Again, two sequences of
partitions P1, Qi are constructed, and Pi = Qi upon termination. Initially, Q0 identifies all
states and P0 distinguishes states by only their output behaviour; e.g. for F = P and x ∈ C,
the value P !(c(x)) ∈ P1 is ∅ if x is a deadlock, and {1} if x is a live state, and for FX = 2×XA,
the value F1(c(x)) ∈ F1 = 2 × 1A ∼= 2 indicates whether x is a final or non-final state.

In the main loop, blocks S ∈ C/Pi and B ∈ C/Qi witnessing Pi ⫋ Qi are picked, and B

is split into S and B \S, like in the Paige-Tarjan algorithm. Note that step (A2) is equivalent
to directly defining the equivalence relation Qi+1 as

Qi+1 := Qi ∩ kerχB
S .

A similar intersection of equivalence relations is performed in step (A3). The intersection
splits every block T ∈ C/Pi into smaller blocks such that x, x′ ∈ T end up in the same
block iff FχB

S (c(x)) = FχB
S (c(x′)), i.e. T is replaced by {[x]F χB

S
(c(x)) | x ∈ T}. Again, this

corresponds to the distinction of the three cases (C1)–(C3). For example, for FX = 2 ×XA,
there are |F3| = 2 · 3|A| cases to be distinguished, and so every T ∈ C/Pi is split into at
most that many blocks.

The following property of F is needed for correctness [46, Ex. 5.11].

▶ Definition 3.3 [46]. A functor F is zippable if map

⟨F (A+!), F (! +B)⟩ : F (A+B) −→ F (A+ 1) × F (1 +B)

is injective for all sets A,B.

Intuitively, t ∈ F (A + B) is a term in variables from A and B. If F is zippable, then t is
uniquely determined by the two elements in F (A + 1) and F (1 + B) obtained by identi-
fying all B- and all A-variables with 0 ∈ 1, respectively. E.g. FX = X2 is zippable:
t = (in1(a), in2(b)) ∈ (A + B)2 is uniquely determined by (in1(a), in2(0)) ∈ (A + 1)2 and
(in1(0), in2(b)) ∈ (1 +B)2, and similarly for the three other cases of t. In fact, all signature
functors as well as P and all monoid-valued functors are zippable. Moreover, the class
of zippable functors is closed under products, coproducts, and subfunctors but not under
composition, e.g. PP is not zippable [46].

▶ Remark 3.4. To apply the algorithm to coalgebras for composites FG of zippable functors,
e.g. P(A× (−)), there is a reduction [46, Section 8] that embeds every FG-coalgebra into a
coalgebra for the zippable functor (F +G)(X) := FX +GX. This reduction preserves and
reflects behavioural equivalence, but introduces an intermediate state for every transition.

▶ Theorem 3.5 [46, Thm 4.20, 5.20]. On a finite coalgebra (C, c) for a zippable functor,
Algorithm 3.2 terminates after i ≤ |C| loop iterations, and the resulting partition identifies
precisely the behaviourally equivalent states (Pi = ∼).

3.3 Generic Modal Operators
The extended Paige-Tarjan algorithm (Section 3.1) constructs a distinguishing formula
according to the three cases (C1)–(C3). In the coalgebraic Algorithm 3.2, these cases
correspond to elements of F3, which determine in which block an element of a predecessor
block T ends up. Indeed, the elements of F3 will also serve as generic modalities in
characteristic formulae for blocks of states, essentially by the known equivalence between n-ary
predicate liftings and (in this case, singleton) subsets of F (2n) [42] (termed tests by Klin [30]):
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▶ Definition 3.6. The signature of F3-modalities for a functor F is

Λ = {⌜t⌝/2 | t ∈ F3};

that is, we write ⌜t⌝ for the syntactic representation of a binary modality for every t ∈ F3.
The interpretation of ⌜t⌝ for F3 is given by the predicate lifting

J⌜t⌝K : (2X)2 → 2F X , J⌜t⌝K(S,B) = {t′ ∈ FX | FχB
S∩B(t′) = t}.

The intended use of ⌜t⌝ is as follows: Suppose a block B is split into subblocks S ⊆ B

and B \ S with certificates δ and β, respectively: JδK = S and JβK = B. As in Figure 3,
we then split every predecessor block T of B into smaller parts, each of which is uniquely
characterized by the formula ⌜t⌝(δ, β) for some t ∈ F3.

▶ Example 3.7. For F = P, ⌜{0, 2}⌝(δ, β) is equivalent to
“0”︷︸︸︷
♢¬β ∧ ¬

“1”︷ ︸︸ ︷
♢(β ∧ ¬δ) ∧

“2”︷ ︸︸ ︷
♢(δ ∧ β).

▶ Lemma 3.8. Given an F -coalgebra (C, c), x ∈ C, and formulae δ and β such that
JδK ⊆ JβK ⊆ C, we have x ∈ J⌜t⌝(δ, β)K if and only if FχJβK

JδK (c(x)) = t.

In the initial partition C/P0 on a transition system (C, c), we used the formulae ♢⊤ and ¬♢⊤
to distinguish live states and deadlocks. In general, we can similarly describe the initial
partition using modalities induced by elements of F1:

▶ Notation 3.9. Define the injective map j1 : 1 ↣ 3 by j1(0) = 2. Then the injection
Fj1 : F1 ↣ F3 provides a way to interpret elements t ∈ F1 as nullary modalities ⌜t⌝:

⌜t⌝ := ⌜Fj1(t)⌝(⊤,⊤) for t ∈ F1.

(Alternatively, we could introduce ⌜t⌝ directly as a nullary modality.)

▶ Lemma 3.10. For x ∈ C, c : C → FC, and t ∈ F1, we have x ∈ J⌜t⌝K if and only if
F !(c(x)) = t.

3.4 Algorithmic Construction of Certificates
The F3-modalities introduced above (Definition 3.6) induce an instance of coalgebraic modal
logic (Section 2.2). We refer to coalgebraic modal formulae employing the F3-modalities
as F3-modal formulae, and write M for the set of F3-modal formulae. As in the extended
Paige-Tarjan algorithm (Section 3.1), we annotate every block arising during the execution
of Algorithm 3.2 with a certificate in the shape of an F3-modal formula. Annotating blocks
with formulae means that we construct maps

βi : C/Qi → M and δi : C/Pi → M for i ∈ N.

As in Algorithm 3.2, i indexes the loop iterations. For blocks B,S in the respective parti-
tion, βi(B), δi(S) denote corresponding certificates: we will have

∀B ∈ X/Qi : Jβi(B)K = B and ∀S ∈ X/Pi : Jδi(S)K = S. (6)

We construct βi(B) and δi(S) iteratively, using certificates for the blocks S ⫋ B at every
iteration:

▶ Algorithm 3.11. We extend Algorithm 3.2 by the following. Initially, put

β0({C}) := ⊤ and δ0([x]P0) := ⌜F !(c(x))⌝ for every x ∈ C.

In the i-th iteration, extend steps (A2) and (A3) by the following assignments:
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(A’2) βi+1(D) =


δi(S) if D = S

βi(B) ∧ ¬δi(S) if D = B \ S
βi(D) if D ∈ C/Qi

(A’3) δi+1([x]Pi+1) =
{
δi([x]Pi) if [x]Pi+1 = [x]Pi

δi([x]Pi
) ∧ ⌜FχB

S (c(x))⌝(δi(S), βi(B)) otherwise.

Upon termination, return δi.

Like in Section 3.1, the only block of C/Q0 has β0({C}) = ⊤ as a certificate. Since the
partition C/P0 distinguishes by the “output” (e.g. final vs. non-final states), the certificate
of [x]P0 specifies what F !(c(x)) ∈ F1 is (Lemma 3.10).

In the i-th iteration of the main loop, we have certificates δi(S) and βi(B) for S ⫋ B

in step (A1) satisfying (6) available from the previous iterations. In (A’2), the Boolean
connectives describe how B is split into S and B \S. In (A’3), new certificates are constructed
for every predecessor block T ∈ C/Pi that is refined. If T does not change, then neither does
its certificate. Otherwise, the block T = [x]Pi

is split into the blocks [x]F χB
S

(c(x)) for x ∈ T

in step (A3), which is reflected by the F3 modality ⌜FχB
S (c(x))⌝ as per Lemma 3.8.

▶ Remark 3.12. In step (A’2), βi+1(D) can be simplified to be no larger than δi(S). To see
this, note that for S ⊆ B ⊆ C, S ∈ X/Pi, and B ∈ X/Qi, every conjunct of βi(B) is also a
conjunct of δi(S). In βi(B) ∧ ¬δi(S), one can hence remove all conjuncts of βi(B) from δi(S),
obtaining a formula δ′, and then equivalently use βi(B) ∧ ¬δ′ in the definition of βi+1(D).

▶ Theorem 3.13. For zippable F , Algorithm 3.11 is correct, i.e. (6) holds for all i. Thus,
upon termination δi assigns certificates to each block of C/∼ = C/Pi.

▶ Corollary 3.14 (Hennessy-Milner). For zippable F , states x, y in a finite F -coalgebra are
behaviourally equivalent iff they agree on all F3-modal formulae.

▶ Remark 3.15. A smaller formula distinguishing a state x from a state y can be extracted
from the certificates in time O(|C|). It is the leftmost conjunct that is different in the
respective certificates of x and y. This is the subformula starting at the modal operator
introduced in δi for the least i with (x, y) /∈ Pi; hence, x satisfies ⌜t⌝(δ, β) but y satisfies
⌜t′⌝(δ, β) for some t′ ̸= t in F3.

3.5 Complexity Analysis
The operations introduced by Algorithm 3.11 can be implemented with only constant run
time overhead. To this end, one implements β and δ as arrays of formulae of length |C|
(note that at any point, there are at most |C|-many blocks). In the refinable-partition data
structure [45], every block has an index (a natural number) and there is an array of length |C|
mapping every state x ∈ C to the block it is contained in. Hence, for both partitions C/P
and C/Q, one can look up a state’s block and a block’s certificate in constant time.

It is very likely that the certificates contain a particular subformula multiple times
and that certificates of different blocks share common subformulae. For example, every
certificate of a block refined in the i-th iteration using S ⫋ B contains the subformulas
δi(S) and βi(B). Therefore, it is advantageous to represent all certificates constructed as
one directed acyclic graph (dag) with nodes labelled by modal operators and conjunction
and having precisely two outgoing edges. Moreover, edges have a binary flag indicating
whether they represent negation ¬. Initially, there is only one node representing ⊤, and the
operations of Algorithm 3.11 allocate new nodes and update the arrays for β and δ to point
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to the right nodes. For example, if the predecessor block T ∈ C/Pi is refined in step (A’3),
yielding a new block [x]Pi+1 , then a new node labelled ∧ is allocated with edges to the nodes
δi(T ) and to another new node labelled FχB

S (c(x)) with edges to the nodes δi(S) and δi(B).
For purposes of estimating the size of formulae generated by the algorithm, we use a

notion of transition in coalgebras, inspired by the notion of canonical graph [26].

▶ Definition 3.16. For states x, y in an F -coalgebra (C, c), we say that there is a transition
x → y if c(x) ∈ FC is not in the image Fi[F (C \ {y})] (⊆ FC), where i : C \ {y} ↣ C is
the inclusion map.

▶ Theorem 3.17. For a coalgebra with n states and m transitions, the formula dag constructed
by Algorithm 3.11 has size O(m · log n+ n) and height at most n+ 1.

▶ Theorem 3.18. Algorithm 3.11 adds only constant run time overhead, thus it has the
same run time as Algorithm 3.2 (regardless of the optimization from Remark 3.12).

For a tighter run time analysis of the underlying partition refinement algorithm, one ad-
ditionally requires that F is equipped with a refinement interface [46, Def. 6.4], which is
based on a given encoding of F -coalgebras in terms of edges between states (encodings serve
only as data structures and have no direct semantic meaning, in particular do not entail a
semantic reduction to relational structures). This notion of edge yields the same numbers (in
O-notation) as Definition 3.16 for all functors considered. All zippable functors we consider
here have refinement interfaces [15,46]. In presence of a refinement interface, step (A3) can
be implemented efficiently, with resulting overall run time O((m + n) · log n · p(c)) where
n = |C|, m is the number of edges in the encoding of the input coalgebra (C, c), and the
run-time factor p(c) is associated with the refinement interface. In most instances, e.g. for P ,
R(−), one has p(c) = 1; in particular, the generic algorithm recovers the run time of the
Paige-Tarjan algorithm.

▶ Remark 3.19. The claimed run time relies on close attention to a number of implementation
details. This includes use of an efficient data structure for the partition C/Pi [31,45]; the
other partition C/Qi is only represented implicitly in terms of a queue of blocks S ⫋ B

witnessing Pi ⫋ Qi, requiring additional care when splitting blocks in the queue [44, Fig. 3].
Moreover, grouping the elements of a block by F3 involves the consideration of a possible
majority candidate [44].

▶ Theorem 3.20. On a coalgebra with n states and m transitions for a zippable set functor
with a refinement interface with factor p(c), Algorithm 3.11 runs in time O((m+n)·log n·p(c)).

4 Cancellative Functors

Our use of binary modalities relates to the fact that, as observed already by Paige and Tarjan,
when splitting a block according to an existing partition of a block B into S ⊆ B and B \ S,
it is not in general sufficient to look only at the successors in S. However, this does suffice
for some transition types; e.g. Hopcroft’s algorithm for deterministic automata [27] and
Valmari and Franceschinis’ algorithm for weighted systems (e.g. Markov chains) [44] both
split only with respect to S. In the following, we exhibit a criterion on the level of functors
that captures that splitting w.r.t. only S is sufficient:

▶ Definition 4.1. A functor F is cancellative if the map

⟨Fχ{1,2}, Fχ{2}⟩ : F3 → F2 × F2

is injective.
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To understand the role of the above map, recall the function χB
S : C → 3 from (5) and note

that χ{1,2} · χB
S = χB and χ{2} · χB

S = χS , so the composite ⟨Fχ{1,2}, Fχ{2}⟩ · FχB
S yields

information about the accumulated transition weights into B and S but not about the one
into B \ S; the injectivity condition means that for cancellative functors, this information
suffices in the splitting step for S ⊆ B ⊆ C. The term cancellative stems from the respective
property on monoids; recall that a monoid M is cancellative if s+ b1 = s+ b2 implies b1 = b2
for all s, b1, b2 ∈ M .

▶ Proposition 4.2. The monoid-valued functor M (−) for a commutative monoid M is
cancellative if and only if M is a cancellative monoid.

Hence, R(−) is cancellative, but Pf is not. Moreover, all signature functors are cancellative:

▶ Proposition 4.3. The class of cancellative functors contains the all constant functors as
well as the identity functor, and it is closed under subfunctors, products, and coproducts.

For example, D is cancellative, but P is not because of its subfunctor Pf.

▶ Remark 4.4. Cancellative functors are neither closed under quotients nor under composition.
Zippability and cancellativity are independent properties. Zippability in conjunction with
cancellativity implies m-zippability for all m ∈ N, the m-ary variant [32] of zippability.

▶ Theorem 4.5. If F is a cancellative functor, ⌜FχB
S (c(x))⌝(δi(S), βi(B)) in Algorithm 3.11

can be replaced with ⌜FχC
S (c(x))⌝(δi(S),⊤). Then, the algorithm still correctly computes

certificates in the given F -coalgebra (C, c).

Note that in this optimized algorithm, the computation of β can be omitted because it is
not used anymore. Hence, the resulting formulae only involve ∧, ⊤, and modalities from
the set F3 (with the second parameter fixed to ⊤). These modalities are equivalently unary
modalities induced by elements of F2, which we term F2-modalities; hence, the corresponding
Hennessy-Milner Theorem (Corollary 3.14) adapts to F2 for cancellative functors, as follows:

▶ Corollary 4.6. For zippable and cancellative F , states in an F -coalgebra are behaviourally
equivalent iff they agree on modal formulae built using ⊤, ∧, and unary F2-modalities.

5 Domain-Specific Certificates

On a given specific system type, one is typically interested in certificates and distinguishing
formulae expressed via modalities whose use is established in the respective domain, e.g. □
and ♢ for transition systems. We next describe how the generic F3 modalities can be
rewritten to domain-specific ones in a postprocessing step. The domain-specific modalities
will not in general be equivalent to F3-modalities, but still yield certificates.

▶ Definition 5.1. The Boolean closure Λ̄ of a modal signature Λ has as n-ary modalities
propositional combinations of atoms of the form ♡(i1, . . . , ik), for ♡/k ∈ Λ, where i1, . . . , ik
are propositional combinations of elements of {1, . . . , n}. Such a modality λ/n is interpreted
by predicate liftings JλKX : (2X)n → FX defined inductively in the obvious way.

For example, the boolean closure of Λ = {♢/1} contains the unary modality □ = ¬♢¬.

▶ Definition 5.2. Given a modal signature Λ for a functor F , a domain-specific interpretation
consists of functions τ : F1 → Λ̄ and λ : F3 → Λ̄ assigning to each o ∈ F1 a nullary modality τo

and to each t ∈ F3 a binary modality λt such that the predicate liftings JτoKX ∈ 2F X and
JλtKX : (2X)2 → 2F X satisfy

JτoK1 = {o} (in 2F 1) and [t]F χ{1,2} ∩ JλtK3({2}, {1}) = {t} (in 2F 3).
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(Recall that χ{1,2} : 3 → 2 is the characteristic function of {1, 2} ⊆ 3, and [t]F χ{1,2} ⊆ F3
denotes the equivalence class of t w.r.t. Fχ{1,2} : F3 → F2.)

Thus, τo holds precisely at states with output behaviour o ∈ F1. Intuitively, λt(δ, ρ) describes
the refinement step of a predecessor block T when splitting B := JδK ∪ JρK into S := JδK
and B \ S := JρK (Figure 3), which translates into the arguments {2} and {1} of JλtK3.
In the refinement step, we know from previous iterations that all elements have the same
behaviour w.r.t. B. This is reflected in the intersection with [t]F χ{1,2} . The axiom guarantees
that λt characterizes t ∈ F3 uniquely, but only within the equivalence class representing a
predecessor block. Thus, λt can be much smaller than equivalents of ⌜t⌝ (cf. Example 3.7):

▶ Example 5.3.
1. For F = P , we have a domain-specific interpretation over the modal signature Λ = {♢/1}.

For ∅, {0} ∈ P1, take τ{0} = ♢⊤ and τ∅ = ¬♢⊤. For t ∈ P3, we put

λt(δ, ρ) = ¬♢ρ if 2 ∈ t ̸∋ 1 λt(δ, ρ) = ♢δ ∧ ♢ρ if 2 ∈ t ∋ 1
λt(δ, ρ) = ¬♢δ if 2 /∈ t ∋ 1 λt(δ, ρ) = ⊤ if 2 ̸∈ t ̸∋ 1.

The certificates obtained via this translation are precisely the ones generated in the
example using the Paige-Tarjan algorithm, cf. (4), with ρ in lieu of β ∧ ¬δ.

2. For a signature (functor) Σ, take Λ = {σ/0 | σ/n ∈ Σ} ∪ {⟨=I⟩/1 | I ∈ Pf(N)}. We
interpret Λ by the predicate liftings

JσKX = {σ(x1, . . . , xn) | x1, . . . , xn ∈ X} ⊆ ΣX,
J⟨=I⟩K(S) = {σ(x1, . . . , xn) ∈ ΣX | ∀i ∈ N : i ∈ I ↔ (1 ≤ i ≤ n ∧ xi ∈ S)}.

Intuitively, ⟨=I⟩ϕ states that the ith successor satisfies ϕ iff i ∈ I. We then have a
domain-specific interpretation (τ, λ) given by τo := σ for o = σ(0, . . . , 0) ∈ Σ1 and
λt(δ, ρ) := ⟨=I⟩δ for t = σ(x1, . . . , xn) ∈ Σ3 and I = {i ∈ {1, . . . , n} | xi = 2}.

3. For a monoid-valued functor M (−), take Λ = {⟨=m⟩/1 | m ∈ M}, interpreted by the
predicate liftings J⟨=m⟩KX : 2X → 2M(X) given by

J⟨=m⟩KX(S) = {µ ∈ M (X) | m =
∑

x∈S µ(x)}.

A formula ⟨=m⟩ δ thus states that the accumulated weight of the successors satisfying δ
is exactly m. A domain-specific interpretation (τ, λ) is then given by τo = ⟨=o(0)⟩ ⊤ for
o ∈ M (1) and λt(δ, ρ) = ⟨=t(2)⟩ δ ∧ ⟨=t(1)⟩ ρ for t ∈ M (3). In case M is cancellative, we
can also simply put λt(δ, ρ) = ⟨=t(2)⟩ δ.

4. For labelled Markov chains, i.e. FX = (DX + 1)A, let Λ = {⟨a⟩p/1 | a ∈ A, p ∈ [0, 1]},
where ⟨a⟩pϕ denotes that on input a, the next state will satisfy ϕ with probability at
least p, as in cited work by Desharnais et al. [17]. This gives rise to the interpretation:

τo =
∧

a∈A
o(a)∈D1

⟨a⟩1⊤ ∧
∧

a∈A
o(a)∈1

¬⟨a⟩1⊤ λt(δ, ρ) =
∧

a∈A
t(a)∈D3

(⟨a⟩t(a)(2) δ ∧ ⟨a⟩t(a)(1) ρ)

Given a domain-specific interpretation (τ, λ) for a modal signature Λ for the functor F , we
can postprocess certificates ϕ produced by Algorithm 3.11 by replacing the modalities ⌜t⌝
for t ∈ F3 according to the translation T recursively defined by the following clauses for
modalities and by commutation with propositional operators:

T
(
⌜t⌝(⊤,⊤)

)
= τF !(t) T

(
⌜t⌝(δ, β)) = λt

(
T (δ), T (β) ∧ ¬T (δ)

)
.

Note that one can replace T (β) ∧ ¬T (δ) with T (β) ∧ ¬T (δ′) for the optimized δ′ from
Remark 3.12; the latter conjunction has essentially the same size as T (δ).
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▶ Proposition 5.4. For every certificate ϕ of a behavioural equivalence class of a given
coalgebra produced by either Algorithm 3.11 or its optimization (Theorem 4.5), T (ϕ) is also
a certificate for that class.

Thus, the domain-specific modal signatures also inherit a Hennessy-Milner Theorem.

▶ Example 5.5. For labelled Markov chains (FX = (DX + 1)A) and the interpretation via
the modalities ⟨a⟩p (Example 5.3.4), this yields certificates (thus in particular distinguishing
formulae) in run time O(|A| ·m · log n), with the same bound on formula size. Desharnais
et al. describe an algorithm [17, Fig. 4] that computes distinguishing formulae in the negation-
free fragment of the same logic (they note also that this fragment does not suffice for
certificates). They do not provide a run-time analysis, but the nested loop structure indicates
that the asymptotic complexity is roughly |A| · n4.

6 Worst Case Tree Size of Certificates

In the complexity analysis (Section 3.5), we have seen that certificates – and thus also
distinguishing formulae – have dag size O(m · log n+ n) on input coalgebras with n states
and m transitions. However, when formulae are written in the usual linear way, multiple
occurrences of the same subformula lead to an exponential blow up of the formula size in
this sense, which for emphasis we refer to as the tree size.

Figueira and Gorín [22] show that exponential tree size is inevitable even for distinguishing
formulae. The proof is based on winning strategies in bisimulation games, a technique that
is also applied in other results on lower bounds on formula size [3, 4, 23].

▶ Open Problem 6.1. Do states in R(−)-coalgebras generally have certificates of subexponen-
tial tree size in the number of states? If yes, can small certificates be computed efficiently?

We note that for another cancellative functor, the answer is well-known: On deterministic
automata, i.e. coalgebras for FX = 2 ×XA, the standard minimization algorithm constructs
distinguishing words of linear length.

▶ Remark 6.2. Cleaveland [13, p. 368] also mentions that minimal distinguishing formulae
may be exponential in size, however for a slightly different notion of minimality: a formula ϕ
distinguishing x from y is minimal if no ϕ obtained by replacing a non-trivial subformula
of ϕ with the formula ⊤ distinguishes x from y. This is weaker than demanding that the
formula size of ϕ is as small as possible. For example, in the transition system

•
x

• •
y

• •· · ·
n

for n ∈ N,

the formula ϕ = ♢n+2⊤ distinguishes x from y and is minimal in the above sense. However, x
can in fact be distinguished from y in size O(1), by the formula ♢¬♢⊤.

7 Conclusions and Further Work

We have presented a generic algorithm that computes distinguishing formulae for behaviourally
inequivalent states in state-based systems of various types, cast as coalgebras for a functor
capturing the system type. Our algorithm is based on coalgebraic partition refinement [46],
and like that algorithm runs in time O((m+n) · log n ·p(c)), with a functor-specific factor p(c)
that is 1 in many cases of interest. Independently of this factor, the distinguishing formulae
constructed by the algorithm have dag size O(m · log n+n); they live in a dedicated instance
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of coalgebraic modal logic [39, 42], with binary modalities extracted from the type functor in
a systematic way. We have shown that for cancellative functors, the construction of formulae
and, more importantly, the logic can be simplified, requiring only unary modalities and
conjunction. We have also discussed how distinguishing formulae can be translated into a
more familiar domain-specific syntax (e.g. Hennessy-Milner logic for transition systems).

There is an open source implementation of the underlying partition refinement al-
gorithm [15], which may serve as a basis for a future implementation.

In partition refinement, blocks are successively refined in a top-down manner, and this
is reflected by the use of conjunction in distinguishing formulae. Alternatively, bisimilarity
may be computed bottom-up, as in a recent partition aggregation algorithm [11]. It is an
interesting point for future investigation whether this algorithm can be extended to compute
distinguishing formulae, which would likely be of a rather different shape than those computed
via partition refinement.
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Abstract
Most fairness assumptions used for verifying liveness properties are criticised for being too strong or
unrealistic. On the other hand, justness, arguably the minimal fairness assumption required for the
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1 Introduction

Formal verification of concurrent systems becomes more and more standard practice, in par-
ticular in safety-critical environments. Progress and fairness assumptions have to be used when
verifying liveness properties, which guarantee that “something good will eventually happen”.
Without assumptions of this kind, no meaningful liveness property can formally be proven.

▶ Example 1. Consider the program while(true) do x:=x+1 od with x initialised to 0. Intu-
itively, any liveness property of the form “eventually x=n” should be satisfied by the program.
However, these properties are valid only when assuming progress, stating that a system will
make progress when it can; otherwise the program could just stop after some computation. ⌟

Progress itself is not a strong enough assumption when concurrent systems are verified,
for a system of multiple completely independent components makes progress as long as one
of its components makes progress, even when others do not. For decades, researchers have
developed notions of fairness and used them in both system specification and verification;
the most common ones are surveyed in [13]. Two of the most popular fairness assumptions
are weak and strong fairness of instructions [5].1 They apply to systems whose behaviour is
specified by some kind of code, composed out of instructions. A task is any activity of the
system that stems from a particular instruction; it is enabled when the system is ready to do

1 Often these notions are referred to as weak and strong fairness without mentioning instructions; here,
we follow the terminology of [13], which is more precise.
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some part of that task, and executed when the system performs some part of it. Now weak
and strong fairness of instructions state that whenever a task is enabled persistently (for
weak fairness) or infinitely often (for strong fairness), then it will be executed by the system.
These fairness assumptions, as well as all others surveyed in [13],2 imply progress.

Despite being commonly used, it has been argued that most fairness assumptions, including
weak and strong fairness of instructions, are often too strong or unrealistic, “in the sense
that run-of-the-mill implementations tend not to be fair” [13].

(Reactive) systems are often described by labelled transition systems, which model all
activities as transitions going from state to state, labelled with actions. Some actions require
synchronisation of the modelled system with its environment; they can occur only when both
the system and the environment are ready to engage in this action. Such actions, and the
transitions labelled with them, are called blocking.

▶ Example 2. Assume that every morning Alice has a choice between a slice of bread with
jam or a bacon and egg roll. A corresponding transition system consists of one state with
two transitions, each standing for one kind of breakfast. Both weak and strong fairness
(of instructions) will force Alice to eventually have both types of breakfast, ruling out the
possibility that Alice picks up jam every day as she is a vegetarian. ⌟

To address this issue, a weaker assumption, called justness, has been proposed. It has been
formulated for reactive systems, modelled as labelled transition systems. Justness is the
assumption that

Once a non-blocking transition is enabled that stems from a set of parallel components,
one (or more) of these components will eventually partake in a transition. [13]

Example 2 features only one component, Alice. Assuming justness, as expected, she now has
the option to eat jam for the rest of her life. Let us now look at a more technical example.

▶ Example 3. We consider the following two programs, and assume that all variables are
initialised by 0.

while (true) do
choose

if true then y := y+1;
if x = 0 then x := 1;

end
od

while (true) do
y := y+1;

od ∥ x := 1;

The example on the left presents an infinite loop containing an internal nondeterministic
choice. The conditional write if x = 0 then x := 1 describes an atomic read-modify-write
(RMW) operation3. Such operators, supported by modern hardware, read a memory location
and simultaneously write a new value into it. This example is similar to Example 2 in the
sense that the liveness property “eventually x=1” should not be satisfied as the program has
a choice every time the loop body is executed.

The example on the right-hand side is similar, but the handling of variables x and y are
managed by different components. As the two programs are independent from each other –
they could be executed on different machines – the property “eventually x=1” should hold.

Justness differentiates these behaviour, whereas weak and strong fairness fail to do so. ⌟

2 Many other notions of fairness are obtained by varying the definition of task. In fairness of components
a task refers to all activity stemming from a component of a system that is a parallel composition.

3 https://en.wikipedia.org/wiki/Read-modify-write

https://en.wikipedia.org/wiki/Read-modify-write
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The above example illustrates that standard notions of fairness are regularly too strong,
and the notion of justness may be a good replacement. When it comes to verification tasks,
semantic equivalences, such as strong bisimilarity [18], are a standard tool to reduce the state
space of the systems under consideration. Unfortunately, these semantic equivalences do not
accord well with justness. The problem is that they are based on labelled transition systems,
which do not capture the concept of components. The different behaviour of the two programs
in Example 3 stems from the components involved. In fact, both programs give rise to the
same transition system, depicted below. Systems featuring the same transition system cannot
be distinguished by any semantic equivalence found in the literature. Consequently, the
verification of the stated liveness property will fail for one of the two programs of Example 3.

To overcome this deficiency, we introduce enabling preserving bisimilarity, a finer alternat-
ive to strong bisimilarity, which respects justness. It is based on extended labelled transition
systems that take components involved in particular transitions into account.

y := y + 1

x := 1

y := y + 1

2 Labelled Transition Systems with Successors

As discussed in the introduction, one reason why strong bisimilarity does not preserve liveness
properties under justness is that necessary information is missing, namely components.

The definition of (parallel) components was based on the parallel composition operator in
process algebras when justness was first introduced in [4, 12], and has been generalised in
later work to allow the use of justness in different contexts.

Here we define a justness-preserving semantic equivalence on an extension of labelled
transition systems. Using labelled transition systems rather than process algebra as underlying
concept makes our approach more general, for other models of concurrency, such as Petri
nets or higher-dimensional automata, induce a semantics based on transition systems as well.

The essence of justness is that when a non-blocking transition t is enabled in a state s,
eventually the system must perform an action u that interferes with it [13], notation t ⌣̸• u,
in the sense that a component affected by u is necessary for the execution of t – or, to be
more precise, for the variant t′ of t that is enabled after the system has executed some actions
that do not interfere with t. The present paper abstracts from the notion of component, but
formalises justness, as well as our enabling preserving bisimilarity, in terms of a successor
relation t ❀π t′, marking t′ as a successor of t, parametrised with the noninterfering actions
π happening in between. This relation also encodes the above relation ⌣̸•. The advantage of
this approach over one that uses components explicitly, is that it also applies to models like
higher-dimensional automata [21, 6, 16, 8] in which the notion of a component is more fluid,
and changes during execution.

A labelled transition system (LTS) is a tuple (S, Tr, source, target, ℓ) with S and Tr sets
(of states and transitions), source, target : Tr → S and ℓ : Tr → L , for some set L of
transition labels. A transition t ∈ Tr of an LTS is enabled in a state p ∈ S if source(t) = p.
Let en(p) be the set of transitions that are enabled in p.

A path in an LTS is an alternating sequence p0 u0 p1 u1 p2 . . . of states and transitions,
starting with a state and either being infinite or ending with a state, such that source(ui) = pi

and target(ui) = pi+1 for all relevant i. The length l(π) ∈ N∪ {∞} of a path π is the number
of transitions in it. If π is a path, then π̂ is the sequence of transitions occurring in π.
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▶ Definition 4 (LTSS). A labelled transition system with successors (LTSS) is a tuple
(S, Tr, source, target, ℓ,❀) with (S, Tr, source, target, ℓ) an LTS, and ❀ ⊆ Tr × Tr × Tr, the
successor relation, such that if (t, u, v) ∈ ❀ then source(t) = source(u) and source(v) =
target(u). We write t ❀u v for (t, u, v) ∈ ❀.

We use this successor relation to define the concept of (un)affected transitions. Let two
transitions t and u be enabled in a state p, i.e., t, u ∈ en(p) for some p ∈ S; the concurrency
relation ⌣• is defined as t ⌣• u :⇔ ∃ v. t ❀u v. Its negation t ⌣̸• u says that the possible
occurrence of t is affected by the occurrence of u. In case t is unaffected by u (i.e., t ⌣• u),
each v with t ❀u v denotes a variant of t that can occur after u. Note that the concurrency
relation can be asymmetric. Examples are traffic lights – a car passing traffic lights should
be affected by them, but the lights do not care whether the car is there; and read-write
operations – reading shared memory can be affected by a write action, but, depending on
how the memory is implemented, the opposite might not hold. In case t and u are mutually
unaffected we write t ⌣ u, i.e., t ⌣ u :⇔ t ⌣• u ∧ u ⌣• t.

It is possible to have t ⌣• t, namely when executing transition t does not disable (a future
variant of) t to occur again. This can happen when t is a signal emission, say of a traffic
light shining red, for even after shining for some time it keeps on shining; or when t is a
broadcast receive action, for receiving a broadcast does not invalidate a system’s perpetual
readiness to again accept a broadcast, either by receiving or ignoring it.

▶ Example 5. Consider the labelled transition system of Example 3, let t1 and t2 be the
two transitions corresponding to y:=y+1 in the first and second state, respectively, and let u

be the transition for assignment x:=1. The assignments of x and y in the right-hand program
are independent, hence t1 ❀u t2, u ❀t1 u and t1 ⌣ u.

For the program on the left-hand side, the situation is different. As the instructions stem
from the same component (program), all transitions affect each other, i.e., ❀ = ⌣• = ∅. ⌟

The successor relation relates transitions one step apart. We lift it to sequences of transitions.

▶ Definition 6 (Successor along Path). The relation ❀ is extended to ❀ ⊆ Tr × Tr∗ × Tr by
(i) t ❀ε w iff w = t, and (ii) t ❀πu w iff there is a v with t ❀π v and v ❀u w.

Here, ε denotes the empty sequence, and πu the sequence π followed by transition u.
We define a concurrency relation ⌣• ⊆ Tr × Tr∗ considering sequences of transitions by
t ⌣• π :⇔ ∃ v. t ❀π v. Intuitively, t ⌣• π means that there exists a successor of t after π has
been executed. Thus, t is unaffected by all transitions of π.

We are ready to define justness, which is parametrised by a set B of blocking actions.

▶ Definition 7 (Justness). Given an LTSS = (S, Tr, source, target, ℓ,❀) labelled over L , and
B ⊆ L , a path π in is B-just if for each suffix π0 of π and for each transition t ∈ Tr• with
ℓ(t) /∈ B and source(t) the first state of π0, the path π0 has a finite prefix ρ such that t ⌣̸• ρ̂.
Here Tr• := {t ∈ Tr | t ⌣̸• t}.

3 Enabling Preserving Bisimulation Equivalence

In this section we introduce enabling preserving bisimulation equivalence, and show how it
preserves justness. In contrast to classical bisimulations, which are relations of type S × S,
the new equivalence is based on triples. The essence of justness is that a transition t enabled
in a state s must eventually be affected by the sequence π of transitions the system performs.
As long as π does not interfere with t, we obtain a transition t′ with t ❀π t′. This transition
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t′ represents the interests of t, and must eventually be affected by an extension of π. Here,
executing t or t′ as part of this extension is a valid way of interfering. To create a bisimulation
that respects such considerations, for each related pair of states p and q we also match each
enabled transition of p with one of q, and vice versa. These relations are maintained during
the evolution of the two related systems, so that when one system finally interferes with a
descendant of t, the related system interferes with the related descendant.

▶ Definition 8 (Ep-bisimilarity). Given an LTSS (S, Tr, source, target, ℓ,❀), an enabling
preserving bisimulation (ep-bisimulation) is a relation R ⊆ S × S × P(Tr × Tr) satisfying
1. if (p, q, R) ∈ R then R ⊆ en(p) × en(q) such that

a. ∀t ∈ en(p). ∃ u ∈ en(q). t R u,
b. ∀u ∈ en(q). ∃ t ∈ en(p). t R u,
c. if t R u then ℓ(t) = ℓ(u), and

2. if (p, q, R) ∈ R and v R w, then (target(v), target(w), R′) ∈ R for some R′ such that
a. if t R u and t ❀v t′, then ∃ u′. u ❀w u′ ∧ t′ R′ u′, and
b. if t R u and u ❀w u′, then ∃ t′. t ❀v t′ ∧ t′ R′ u′.

Two states p and q in an LTSS are enabling preserving bisimilar (ep-bisimilar), p ↔ep q, if
there exists an enabling preserving bisimulation R such that (p, q, R) ∈ R for some R.

Definition 8 without Items 2a and 2b is nothing else than a reformulation of the classical
definition of strong bisimilarity. An ep-bisimulation additionally maintains for each pair of
related states p and q a relation R between the transitions enabled in p and q. Items 2a
and 2b strengthen the condition on related target states by requiring that the successors of
related transitions are again related relative to these target states. It is this requirement
(and in particular its implication stated in the following observation) which distinguishes the
transition systems for Example 3.

▶ Observation 9. Ep-bisimilarity respects the concurrency relation.
For a given ep-bisimulation R, if (p, q, R) ∈ R, t R u and v R w then t ⌣• v iff u ⌣• w.

▶ Proposition 10. ↔ep is an equivalence relation.

Proof. Reflexivity: Let (S, Tr, source, target, ℓ,❀) be an LTSS. The relation

RId := {(s, s, Ids) | s ∈ S}

is an ep-bisimulation. Here Ids := {(t, t) | t ∈ en(s)}.
Symmetry: For a given ep-bisimulation R, the relation

R−1 := {(q, p, R−1) | (p, q, R) ∈ R}

is also an ep-bisimulation. Here R−1 := {(u, t) | (t, u) ∈ R}.
Transitivity: For given ep-bisimulations R1 and R2, the relation

R1; R2 := {(p, r, R1; R2) | ∃ q. (p, q, R1) ∈ R1 ∧ (q, r, R2) ∈ R2}

is also an ep-bisimulation. Here R1; R2 := {(t, v) | ∃ u. (t, u) ∈ R1 ∧ (u, v) ∈ R2}. ◀

▶ Observation 11. The union of any collection of ep-bisimulations is itself an ep-bisimulation.

Consequently there exists a largest ep-bisimulation.
Before proving that ep-bisimilarity preserves justness, we lift this relation to paths.
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▶ Definition 12 (Ep-bisimilarity of Paths). Given an ep-bisimulation R and two paths
π = p0 u0 p1 u1 p2 . . . and π′ = p′

0 u′
0 p′

1 u′
1 p′

2 . . . , we write π R π′ iff l(π) = l(π′), and there
exists Ri ⊆ Tr × Tr for all i ∈ N with i ≤ l(π), such that
1. (pi, p′

i, Ri) ∈ R for each i ∈ N with i ≤ l(π),
2. ui Ri u′

i for each i < l(π),
3. if t Ri t′ and t ❀ui

v with i < l(π), then ∃ v′. t′ ❀u′
i

v′ ∧ v Ri+1 v′, and
4. if t Ri t′ and t′ ❀u′

i
v′ with i < l(π), then ∃ v. t ❀ui

v ∧ v Ri+1 v′.
Paths π and π′ are enabling preserving bisimilar, notation π ↔ep π′, if there exists an
ep-bisimulation R with π R π′. If π ↔ep π′, we also write π R⃗ π′ if R⃗ := (R0, R1, . . . ) are
the Ri required above.

Note that if p ↔ep q and π is any path starting from p, then, by Definition 8, there is a path
π′ starting from q with π ↔ep π′. The following lemma lifts Observation 9.

▶ Lemma 13. If π R⃗ ρ with π finite and t R0 t′ then t ⌣• π̂ iff t′ ⌣• ρ̂.

Proof. We have to show that ∃v. t ❀π̂ v iff ∃v′. t′ ❀ρ̂ v′. Using symmetry, we may restrict
attention to the “only if” direction. We prove a slightly stronger statement, namely that for
every transition v with t ❀π̂ v there exists a v′ such that t′ ❀ρ̂ v′ and v Rl(π) v′.

We proceed by induction on the length of π.
The base case, where l(π) = 0, π̂ = ε and thus v = t, holds trivially, taking v′ := t′.
So assume πup R⃗ ρu′p′ and t ❀π̂u w. Then there is a v with t ❀π̂ v and v ❀u w. By

induction there is a transition v′ such that t′ ❀ρ̂ v′ and v Rl(π) v′. By Definition 12(3), there
is a w′ with v′ ❀u′ w′ and w Rl(π)+1 w′. Thus t′ ❀ρ̂u′ w′ by Definition 6. ◀

▶ Theorem 14. Ep-bisimilarity preserves justness: Given two paths π and π′ in an LTSS
with π ↔ep π′, and a set B of blocking actions, then π is B-just iff π′ is B-just.

Proof. Let π = p0 u0 p1 u1 p2 . . . and π′ = p′
0 u′

0 p′
1 u′

1 p′
2 . . . . Suppose π is B-unjust, so there

exist an i ∈ N with i ≤ l(π) and a transition t ∈ Tr• with ℓ(t) /∈ B and source(t) = pi such
that t ⌣• ρ̂ for each finite prefix ρ of the suffix pi ui pi+1 ui+1 pi+2 . . . of π. It suffices to show
that also π′ is B-unjust.

Take an ep-bisimulation R such that π R π′. Choose Ri ⊆ Tr × Tr for all i ∈ N with
i ≤ l(π), satisfying the four conditions of Definition 12. Pick any t′ ∈ Tr with t Ri t′ –
such a t′ must exist by Definition 8. Now source(t′) = p′

i. By Definition 8, t′ ∈ Tr• and
ℓ(t′) = ℓ(t) /∈ B. It remains to show that t′ ⌣• ρ̂′ for each finite prefix ρ′ of the suffix
p′

i u′
i p′

i+1 u′
i+1 p′

i+2 . . . of π′. This follows by Lemma 13. ◀

4 Stating and Verifying Liveness Properties

The main purpose of ep-bisimilarity is as a vehicle for proving liveness properties. A liveness
property is any property saying that eventually something good will happen [17]. Liveness
properties are linear-time properties, in the sense that they are interpreted primarily on
the (complete) runs of a system. When a distributed system is formalised as a state in
an (extended) LTS, a run of the distributed system is modelled as a path in the transition
system, starting from that state. However, not every such path models a realistic system
run. A completeness criterion [9] selects some of the paths of a system as complete paths,
namely those that model runs of the represented system.

A state s in an (extended) LTS is said to satisfy a linear time property φ when employing
the completeness criterion CC , notation s |=CC φ, if each complete run of s satisfies φ [10].
Writing π |= φ when property φ holds for path π, we thus have s |=CC φ iff π |= φ for all
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complete paths π starting from s. When simplifying a system s into an equivalent system s′,
so that s ∼ s′ for some equivalence relation ∼, it is important that judgements |=CC φ are
preserved:

s ∼ s′ ⇒ (s |=CC φ ⇔ s′ |=CC φ).

This is guaranteed when for each path π of s there exists a path π′ of s′, such that (a) π |= φ

iff π′ |= φ, and (b) π′ is complete iff π is complete. Here (a) is already guaranteed when π

and π′ are related by strong bisimilarity. Taking CC to be B-justness for any classification
of a set of actions B as blocking, and ∼ to be ↔ep, Theorem 14 now ensures (b) as well.

5 Interpreting Justness in Process Algebras

Rather than using LTSs directly to model distributed systems, one usually employs other
formalisms such as process algebras or Petri nets, for they are often easier to use for
system modelling. Their formal semantics maps their syntax into states of LTSs. In this
section we introduce the Algebra of Broadcast Communication with discards and Emissions
(ABCdE), an extension of Milner’s Calculus of Communication Systems (CCS) [18] with
broadcast communication and signal emissions. In particular, we give a structural operational
semantics [19] that interprets process expressions as states in an LTS. Subsequently, we
define the successor relation ❀ for ABCdE, thereby enriching the LTS into an LTSS.

We use ABCdE here, as for many realistic applications CCS is not expressive enough
[7, 11]. The presented approach can be applied to a wide range of process algebras. ABCdE
is largely designed to be a starting point for transferring the presented theory to algebras
used for “real” applications. For example, broadcast communication is needed for verifying
routing protocols (e.g. [14]); signals are employed to correctly render and verify protocols for
mutual exclusion [11, 3]. Another reason is that broadcasts as well as signals, in different
ways, give rise to asymmetric concurrency relations, and we want to show that our approach
is flexible enough to handle this.

5.1 Algebra of Broadcast Communication with Discards and Emissions

ABCdE is parametrised with sets A of agent identifiers, C of handshake communication
names, B of broadcast communication names, and S of signals; each A ∈ A comes with
a defining equation A

def= P with P being a guarded ABCdE expression as defined below.
C̄ := {c̄ | c ∈ C } is the set of handshake communication co-names, and S̄ := {s̄ | s ∈ S } is
the set of signal emissions. The collections B!, B?, and B: of broadcast, receive, and discard
actions are given by B♯ := {b♯ | b ∈ B} for ♯ ∈ {!, ?, :}. Act := C ·∪ C̄ ·∪ {τ} ·∪ B! ·∪ B? ·∪ S

is the set of actions, where τ is a special internal action. L := Act ·∪ B: ·∪ S̄ is the set of
transition labels. Complementation extends to C ·∪ C̄ ·∪ S ·∪ S̄ by ¯̄c := c.

Below, c ranges over C ·∪C̄ ·∪S ·∪S̄ , η over C ·∪C̄ ·∪{τ} ·∪S ·∪S̄ , α over Act, ℓ over L , b over
B, ♯, ♯1, ♯2 over {!, ?, :} and s, r over S . A relabelling is a function f : (C → C ) ·∪ (B → B)
·∪ (S → S ); it extends to L by f(c̄) = f(c), f(τ) := τ , and f(b♯) = f(b)♯.

The set P of ABCdE expressions or processes is the smallest set including:

0 inaction α.P for α ∈ Act and P ∈P action prefixing
P + Q for P, Q ∈P choice P |Q for P, Q ∈P parallel composition
P \L for L ⊆ C ·∪ S , P ∈P restriction P [f ] for f a relabelling, P ∈P relabelling
A for A ∈ A agent identifier P ŝ for s ∈ S signalling
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Table 1 Structural operational semantics of ABCdE – Basic.

α.P
α−→ P (Act)

P
α−→ P ′

P + Q
α−→ P ′

(Sum-l)
Q

α−→ Q′

P + Q
α−→ Q′

(Sum-r)

P
η−→ P ′

P |Q η−→ P ′|Q
(Par-l)

P
c−→ P ′, Q

c̄−→ Q′

P |Q τ−→ P ′|Q′
(Comm)

Q
η−→ Q′

P |Q η−→ P |Q′
(Par-r)

P
ℓ−→ P ′

P \L
ℓ−→ P ′\L

(ℓ /∈ L ·∪ L) (Res)
P

ℓ−→ P ′

P [f ] f(ℓ)−→ P ′[f ]
(Rel)

P
α−→ P ′

A
α−→ P ′

(A def= P ) (Rec)

We abbreviate α.0 by α, and P\{c} by P\c. An expression is guarded if each agent identifier
occurs within the scope of a prefixing operator.

The semantics of ABCdE is given by the labelled transition relation → ⊆ P× L ×P,
where transitions P

ℓ−→ Q are derived from the rules of Tables 1–3. Here L := {c̄ | c ∈ L}.
Table 1 shows the basic operational semantics rules, identical to the ones of CCS [18].

The process α.P performs the action α first and subsequently acts as P . The choice operator
P + Q may act as either P or Q, depending on which of the processes is able to act at all.
The parallel composition P |Q executes an action η from P , an action η from Q, or in the
case where P and Q can perform complementary actions c and c̄, the process can perform
a synchronisation, resulting in an internal action τ . The restriction operator P\L inhibits
execution of the actions from L and their complements. The relabelling P [f ] acts like process
P with all labels ℓ replaced by f(ℓ). Finally, an agent A can do the same actions as the body
P of its defining equation. When we take B = S := ∅, only the rules of Table 1 matter, and
ABCdE simplifies to CCS.

Table 2 augments CCS with a mechanism for broadcast communication. The rules are
similar to the ones for the Calculus of Broadcasting Systems (CBS) [20]; they also appear in
the process algebra ABC [12], a strict subalgebra of ABCdE. The Rule (Bro) presents the core
of broadcast communication, where any broadcast-action b! performed by a component in a
parallel composition is guaranteed to be received by any other component that is ready to do
so, i.e., in a state that admits a b?-transition. Since it is vital that the sender of a broadcast
can always proceed with it, regardless of the state of other processes running in parallel, the
process algebra features discard actions b:, in such a way that each process in any state can
either receive a particular broadcast b, by performing the action b?, or discard it, by means of
a b:, but not both. A broadcast transmission b! can synchronise with either b? or b:, and thus
is never blocked by lack of a listening party. In order to ensure associativity of the parallel
composition, one requires rule (Bro) to consider receipt at the same time (♯1 = ♯2 = ?). The
remaining four rules of Table 2 generate the discard-actions. The Rule (Dis-nil) allows the
nil process (inaction) to discard any incoming message; in the same spirit (Dis-act) allows a

Table 2 Structural operational semantics of ABCdE – Broadcast.

0 b:−→ 0 (Dis-nil) α.P
b:−→ α.P (α ̸= b?) (Dis-act)

P
b:−→ P ′, Q

b:−→ Q′

P + Q
b:−→ P ′ + Q′

(Dis-sum)

P
b♯1−→ P ′, Q

b♯2−→ Q′

P |Q b♯−→ P ′|Q′
(♯1◦♯2=♯̸=_) with

◦ ! ? :
! _ ! !
? ! ? ?
: ! ? :

(Bro)
P

b:−→ P ′

A
b:−→ A

(A def= P ) (Dis-rec)
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Table 3 Structural operational semantics of ABCdE – Signals.

P ŝ
s̄−→ P ŝ (Sig)

P
s̄−→ P ′

P + Q
s̄−→ P ′ + Q

(Sig-sum-l)
Q

s̄−→ Q′

P + Q
s̄−→ P + Q′

(Sig-sum-r)

P
s̄−→ P ′

P r̂
s̄−→ P ′ r̂

(Sig-sig)
P

s̄−→ P ′

A
s̄−→ A

(A def= P ) (Sig-rec)
P

α−→ P ′

P r̂
α−→ P ′

(Act-sig)
P

b:−→ P ′

P r̂
b:−→ P ′ r̂

(Dis-sig)

message to be discarded by a process that cannot receive it. A process offering a choice can
only perform a discard-action if neither choice-option can handle it (Rule (Dis-sum)). Finally,
an agent A can discard a broadcast iff the body P of its defining equation can discard it.
Note that in all these cases a process does not change state by discarding a broadcast.

There exists a variant of CBS, ABC and ABCdE without discard actions, see [12, 9]. This
approach, however, features negative premises in the operational rules. As a consequence,
the semantics are not in De Simone format [23]. Making use of discard actions and staying
within the De Simone format allows us to use meta-theory about this particular format. For
example we know, without producing our own proof, that the operators + and | of ABC
and ABCdE are associative and commutative, up to strong bisimilarity [2]. Moreover, strong
bisimilarity [18] is a congruence for all operators of ABCdE.

Next to the standard operators of CCS and a broadcast mechanism, ABCdE features
also signal emission. Informally, the signalling operator P ŝ emits the signal s to be read by
another process. Signal emissions cannot block other actions of P . Classical examples are
the modelling of read-write processes or traffic lights (see Section 2).

Formally, our process algebra features a set S of signals. The semantics of signals is
presented in Table 3. The first rule (Sig) models the emission s̄ of signal s to the environment.
The environment (processes running in parallel) can read the signal by performing a read
action s. This action synchronises with the emission s̄, via the rules of Table 1. Reading does
not change the state of the emitter. The next four rules describe the interaction between
signal emission and other operators, namely choice, signal emission and recursion. In short,
these operators do not prevent the emission of a signal, and emitting signals never changes
the state of the emitting process. Other operators, such as relabelling and restriction do not
need special attention as they are already handled by the corresponding rules in Table 1.
This is achieved by carefully selecting the types of the labels: while (Sum-l) features a label
α of type Act, the rules for restriction and relabelling use a label ℓ ∈ L . In case a process
performs a “proper” action, the signal emission ceases (Rule (Act-sig)), but if the process
performs a broadcast discard transition, it does not (Rule (Dis-sig)).

The presented semantics stays within the realm of the De Simone format [23], which
brings many advantages. However, there exists an alternative, equivalent semantics, which
is based on predicates. Rather than explicitly modelling P emitting s by the transition
P

s̄−→ P , one can introduce the predicate P↷s. The full semantics can be found in [3]. Some
readers might find this notation more intuitive as signal emitting processes do not perform
an actual action when a component reads the emitted signal.

5.2 Naming Transitions
The operational semantics of ABCdE presented in Section 5.1 interprets the language as an
LTS. In Section 5.3, we aim to extend this LTS into an LTSS by defining a successor relation
❀ on the transitions, and thereby also a concurrency relation ⌣•. However, the standard
interpretation of CCS-like languages, which takes as transitions the triples P

α−→ Q that are
derivable from the operational rules, does not work for our purpose.
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▶ Example 15. Let P = A|B with A
def= τ.A + a.A and B

def= ā.B. Now the transition
P

τ−→ P arises in two ways; either as a transition solely of the left component, or as a
synchronisation between both components. The first form of that transition is concurrent
with the transition P

ā−→ P , but the second is not. In fact, an infinite path that would
only perform the τ -transition stemming from the left component would not be just, whereas
a path that schedules both τ -transitions infinitely often is. This shows that we want to
distinguish these two τ -transitions, and hence not see a transition as a triple P

α−→ Q. ⌟

Instead, we take as the set Tr of transitions in our LTSS the derivations of the transition
triples P

α−→ Q from our operational rules. This is our reason to start with a definition of
an LTS that features transitions as a primitive rather than a derived concept.

▶ Definition 16 (Derivation). A derivation of a transition triple φ is a well-founded (without
infinite paths that keep going up), ordered, upwardly branching tree with the nodes labelled
by transition triples, such that
1. the root is labelled by φ, and
2. if µ is the label of a node and K is the sequence of labels of this node’s children then K

µ

is a substitution instance of a rule from Tables 1–3.
Given a derivation, we refer to the subtrees obtained by deleting the root node as its direct
subderivations. Furthermore, by definition, Kφ

φ is a substitution instance of a rule, where φ

is the label of the derivation’s root and Kφ is the sequence of labels of the root’s children;
the derivation is said to be obtained by this rule.

We interpret ABCdE as an LTS (S, Tr, source, target, ℓ) by taking as states S the ABCdE
expressions P and as transitions Tr the derivations of transition triples P

α−→ Q. Given a
derivation t of a triple P

α−→ Q, we define its label ℓ(t) := α, its source source(t) := P , and
its target target(t) := Q.

▶ Definition 17 (Name of Derivation). The derivation obtained by application of (Act) is
called α→P . The derivation obtained by application of (Comm) or (Bro) is called t|u, where
t, u are the names of its direct subderivations.4 The derivation obtained by application of
(Par-l) is called t|Q where t is the direct subderivation’s name and Q is the process on the
right hand side of | in the derivation’s source. In the same way, the derivation obtained
by application of (Par-r) is called P |t, while (Sum-l), (Sum-r), (Res), (Rel), and (Rec) yield t+Q,
P+t, t\L, t[f ] and A:t, where t is the direct subderivation’s name. The remaining four rules
of Table 2 yield b:0, b:α.P , t+u and A:t, where t, u are direct subderivations’ names. The
derivation of P ŝ

s̄−→ P ŝ obtained by (Sig) is called P →s. Rules (Act-sig), (Dis-sig) and (Sig-sig)

yield t r̂, and rules (Sig-sum-l), (Sig-sum-r) and (Sig-rec) yield t+Q, P+t and A:t, where t is the
direct subderivation’s name.

A derivation’s name reflects the syntactic structure of that derivation. The derivations’
names not only provide a convenient way to identify derivations but also highlight the
compositionality of derivations. For example, given a derivation t of P

c−→ P ′ and a
derivation u of Q

c̄−→ Q′ with c ∈ C ·∪ C̄ ·∪ S ·∪ S̄ , t|u will be a derivation of P |Q τ−→ P ′|Q′.
Hereafter, we refer to a derivation of a transition triple as a “transition”.

4 The order of a rule’s premises should be maintained in the names of derivations obtained by it.
Here t should be the derivation corresponding to the first premise and u to the second. As a result,
t ̸= u =⇒ t|u ̸= u|t.
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5.3 Successors
In this section we extend the LTS of ABCdE into an LTSS, by defining the successor relation
❀. For didactic reasons, we do so first for CCS, and then extend our work to ABCdE.

Note that χ ❀ζ χ′ can hold only when source(χ) = source(ζ), i.e., transitions χ and
ζ are both enabled in the state O := source(χ) = source(ζ). It can thus be defined by
structural induction on O. The meaning of χ ❀ζ χ′ is (a) that χ is unaffected by ζ – denoted
χ ⌣• ζ – and (b) that when doing ζ instead of χ, afterwards a variant χ′ of χ is still enabled.
Restricted to CCS, the relation ⌣• is moreover symmetric, and we can write χ ⌣ ζ.

In the special case that O = 0 or O = α.Q, there are no two concurrent transitions
enabled in O, so this yields no triples χ ❀ζ χ′. When O = P + Q, any two concurrent
transitions χ ⌣ ζ enabled in O must either stem both from P or both from Q. In the former
case, these transitions have the form χ = t + Q and ζ = v + Q, and we must have t ⌣ v,
in the sense that t and v stem from different parallel components within P . So t ❀v t′ for
some transition t′. As the execution of ζ discards the summand Q, we also obtain χ ❀ζ t′.
This motivates Item 1 in Definition 18 below. Item 2 follows by symmetry.

Let O = P |Q. One possibility for χ ❀ζ χ′ is that χ comes from the left component and ζ

from the right. So χ has the form t|Q and ζ = P |w. In that case χ and ζ must be concurrent:
we always have χ ⌣ ζ. When doing w on the right, the left component does not change, and
afterwards t is still possible. Hence χ ❀ζ t|target(w). This explains Item 3 in Definition 18.

Another possibility is that χ and ζ both stem from the left component. In that case
χ = t|Q and ζ = v|Q, and it must be that t ⌣ u within the left component. Thus t ❀v t′

for some transition t′, and we obtain χ ❀ζ t′|Q. This motivates the first part of Item 4.
It can also happen that χ stems form the left component, whereas ζ is a synchronisation,

involving both components. Thus χ = t|Q and ζ = v|w. For χ ⌣ ζ to hold, it must be that
t ⌣ v, whereas the w-part of ζ cannot interfere with t. This yields the second part of Item 4.

The last part of Item 4 is explained in a similar vain from the possibility that ζ stems
from the left while χ is a synchronisation of both components. Item 5 follows by symmetry.

In case both χ and ζ are synchronisations involving both components, i.e., χ = t|u and
ζ = v|w, it must be that t ⌣ v and u ⌣ w. Now the resulting variant χ′ of χ after ζ is
simply t′|v′, where t ❀v t′ and u ❀v u′. This underpins Item 6.

If O has the form P [f ], χ and ζ must have the form t[f ] and v[f ], respectively. Whether t

and v are concurrent is not influenced by the renaming operator. So t ⌣ v. The variant of t

that remains after doing v is also not affected by the renaming, so if t ❀v t′ then χ ❀ζ t′[f ].
The case that O has the form P\L is equally trivial. This yields the first two parts of Item 7.

In case O = A with A
def= P , then χ and ζ must have the forms A:t and A:v, respectively,

where t and v are enabled in P . Now χ ⌣ ζ only if t ⌣ v, so t ❀v t′ for some transition t′.
As the recursion around P disappears upon executing ζ, we obtain χ ❀ζ t′. This yields the
last part of Item 7. Together, this motivates the following definition.

▶ Definition 18 (Successor Relation for CCS). The relation ❀ ⊆ Tr × Tr × Tr is the smallest
relation satisfying
1. t ❀v t′ implies t + Q ❀v+Q t′,
2. u ❀w u′ implies P + u ❀P +w u′,
3. t|Q ❀P |w (t|target(w)) and P |u ❀v|Q (target(v)|u),
4. t ❀v t′ implies t|Q ❀v|Q t′|Q, t|Q ❀v|w (t′|target(w)), and t|u ❀v|Q t′|u,
5. u ❀w u′ implies P |u ❀P |w P |u′, P |u ❀v|w (target(v)|u′), and t|u ❀P |w t|u′,
6. t ❀v t′ ∧ u ❀w u′ implies t|u ❀v|w t′|u′,
7. t ❀v t′ implies t\L ❀v\L t′\L, t[f ] ❀v[f ] t′[f ] and A:t ❀A:v t′.
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for all t, t′, u, u′, v, w ∈ Tr, P, Q ∈P and L, f, A with source(t) = source(v) = P , source(u) =
source(w) = Q, source(t′) = target(v), source(u′) = target(w), L ⊆ C , f a relabelling and
A ∈ A – provided that the composed transitions exist.

By projecting the ternary relation ❀ on its first two components, we obtain a characterisation
of the concurrency relation ⌣ between CCS transitions:

▶ Observation 19 (Concurrency Relation for CCS). The relation ⌣ ⊆ Tr × Tr is the smallest
relation satisfying
1. t ⌣ v implies t + Q ⌣ v + Q,
2. u ⌣ w implies P + u ⌣ P + w,
3. t|Q ⌣ P |w and P |u ⌣ v|Q,
4. t ⌣ v implies t|Q ⌣ v|Q, t|Q ⌣ v|w, and t|u ⌣ v|Q,
5. u ⌣ w implies P |u ⌣ P |w, P |u ⌣ v|w, and t|u ⌣ P |w,
6. t ⌣ v ∧ u ⌣ w implies t|u ⌣ v|w,
7. t ⌣ v implies t\L ⌣ v\L, t[f ] ⌣ v[f ] and A:t ⌣ A:v,
for all t, u, v, w ∈ Tr, P, Q ∈ P and L, f, A with source(t) = source(v) = P , source(u) =
source(w) = Q, L ⊆ C , f a relabelling and A ∈ A – provided that the composed transitions
exist.

The same concurrency relation appeared earlier in [12]. Definition 18 and Observation 19
implicitly provide SOS rules for ❀ and ⌣, such as t⌣v′

t+Q⌣v+Q . It is part of future work to
investigate a rule format for ep-bisimilarity.

Definition 20 below generalises Definition 18 to all of ABCdE. In the special case that ζ is
a broadcast discard or signal emission, i.e., ℓ(ζ) ∈ B: ·∪ S̄ , the transition ζ does not change
state – we have source(ζ) = target(ζ) = O – and is supposed not to interfere with any other
transition χ enabled in O. Hence χ ⌣• ζ and χ ❀ζ χ. This is Item 1 from Definition 20.

Consequently, in Item 11, which corresponds to Item 7 from Definition 18, we can now
safely restrict attention to the case ℓ(ζ) ∈ Act. The last part of that item says that if within
the scope of a signalling operator an action v occurs, one escapes from this signalling context,
similarly to the cases of choice and recursion. That would not apply if v is a broadcast
discard or signal emission, however.

An interesting case is when χ is a broadcast receive or discard transition, i.e., ℓ(χ) = b?
or b: . We postulate that one can never interfere with such an activity, as each process is
always able to synchronise with a broadcast action, either by receiving or by discarding it.
So we have χ ⌣• ζ for all ζ with O = source(ζ) = source(χ). It could be, however, that in
χ ❀ζ χ′, one has ℓ(χ) = b? and ℓ(χ′) = b:, or vice versa. Item 2 says that if O = α.P , with
ζ the α-transition to P , then χ′ can be any transition labelled b? or b: that is enabled in P .
The second parts of Items 3 and 4 generalise this idea to discard actions enabled in a state
of the form P + Q. Finally, Items 5 and 6 state that when χ is a broadcast receive stemming
from the left side of O = P + Q and ζ an action from the right, or vice versa, then χ′ may be
any transition labelled b? or b: that is enabled in target(ζ). In all other cases, successors of χ

are inherited from successors of their building block, similar to the cases of other transitions.

▶ Definition 20 (Successor Relation for ABCdE). The relation ❀ ⊆ Tr × Tr × Tr is the
smallest relation satisfying
1. ℓ(ζ) ∈ B: ·∪ S̄ and source(ζ) = source(χ) implies χ ❀ζ χ,
2. ℓ(t) ∈ {b?, b:} implies b?→P ❀b?→P

t and b:α.P ❀ α→P
t,

3. ℓ(v) /∈ S̄ ∧ t ❀v t′ implies t + Q ❀v+Q t′ and t + u ❀v+Q t′,
4. ℓ(w) /∈ S̄ ∧ u ❀w u′ implies P + u ❀P +w u′ and t + u ❀P +w u′,
5. ℓ(w) /∈ S̄ ∧ ℓ(t) = b? ∧ ℓ(u′) ∈ {b?, b:} implies t + Q ❀P +w u′,
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6. ℓ(v) /∈ S̄ ∧ ℓ(u) = b? ∧ ℓ(t′) ∈ {b?, b:} implies P + u ❀v+Q t′,
7. t|Q ❀P |w (t|target(w)) and P |u ❀v|Q (target(v)|u),
8. t ❀v t′ implies t|Q ❀v|Q t′|Q, t|Q ❀v|w (t′|target(w)), and t|u ❀v|Q t′|u,
9. u ❀w u′ implies P |u ❀P |w P |u′, P |u ❀v|w (target(v)|u′), and t|u ❀P |w t|u′,

10. t ❀v t′ ∧ u ❀w u′ implies t|u ❀v|w t′|u′,
11. ℓ(v) ∈ Act ∧ t ❀v t′ implies t\L ❀v\L t′\L, t[f ] ❀v[f ] t′[f ], A:t ❀A:v t′ and t r̂ ❀v̂ r t′,
for all t, t′, u, u′, v, w ∈ Tr, P, Q ∈ P and α, L, f, A, b, r with source(t) = source(v) = P ,
source(u)=source(w)=Q, source(t′)=target(v) and source(u′)=target(w), α ∈ Act, L ⊆ C ·∪S ,
f a relabelling, A ∈ A , b ∈ B and r ∈ S – provided that the composed transitions exist.

Although we have chosen to inductively define the ❀ relations, in [15, Appendix B] we follow
a different approach in which Definition 20 appears as a theorem rather than a definition.
Following [9], we understand each transition as the synchronisation of a number of elementary
particles called synchrons. Then relations on synchrons are proposed in terms of which the
❀ relation is defined. That this leads to the same result indicates that the above definition
is more principled than arbitrary.

5.4 Congruence and Other Basic Properties of Ep-bisimilarity
As mentioned before, the operators + and | are associative and commutative up to strong
bisimilarity. We can strengthen this result.

▶ Theorem 21. The operators + and | are associative and commutative up to ↔ep.

Proof. Remember that P denotes the set of ABCdE expressions or processes. Commutativity
of +, i.e., P + Q ↔ep Q + P : The relation

{(I, I, IdI) | I ∈ P} ·∪ {(P + Q, Q + P, RP,Q) | P, Q ∈ P}

is an ep-bisimulation. Here IdI := {(t, t) | t ∈ en(I)} and

RP,Q :={(t + Q, Q + t) | t ∈ en(P ) ∧ ℓ(t) /∈ B:} ·∪
{(P + u, u + P ) | u ∈ en(Q) ∧ ℓ(u) /∈ B:} ·∪
{(t + u, u + t) | t ∈ en(P ) ∧ u ∈ en(Q) ∧ ℓ(t) = ℓ(u) ∈ B:} .

RP,Q relates transitions, i.e., derivations of transition triples, that are composed of the same
sets of direct subderivations, even though their order is reversed.
Associativity of +, i.e., (O + P ) + Q ↔ep O + (P + Q): The relation

{(I, I, IdI) | I ∈ P} ·∪ {((O + P ) + Q, O + (P + Q), RO,P,Q) | O, P, Q ∈ P}

is an ep-bisimulation. Here IdI and RO,P,Q are defined similarly to the previous case.
Commutativity of |, i.e., P |Q ↔ep Q|P : The relation {(P |Q, Q|P, RP,Q) | P, Q ∈ P} is an
ep-bisimulation. Here

RP,Q ={(t|Q, Q|t) | t ∈ en(P ) ∧ ℓ(t) /∈ B! ·∪ B? ·∪ B:} ·∪
{(P |u, u|P ) | u ∈ en(Q) ∧ ℓ(u) /∈ B! ·∪ B? ·∪ B:} ·∪
{(t|u, u|t) | t ∈ en(P ) ∧ u ∈ en(Q) ∧ ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ } ·∪
{(t|u, u|t) | t ∈ en(P ) ∧ u ∈ en(Q) ∧

∃ b ∈ B. {ℓ(t), ℓ(u)} ∈ {{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}}} .

Associativity of |, i.e., (O|P )|Q ↔ep O|(P |Q): The relation

{(O|P )|Q, O|(P |Q), RO,P,Q) | O, P, Q ∈ P}

is an ep-bisimulation, where RO,P,Q is defined similarly to the previous case. ◀
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Additionally, not only strong bisimilarity should be a congruence for all operators of
ABCdE – which follows immediately from the De Simone format – but also our new ep-
bisimilarity. This means that if two process terms are ep-bisimilar, then they are also
ep-bisimilar in any context.

▶ Theorem 22. Ep-bisimilarity is a congruence for all operators of ABCdE.

We cannot get it directly from the existing meta-theory on structural operational semantics,
as nobody has studied ep-bisimilarity before. As is standard, the proof is a case distinction
on the type of the operator. For example, the case for action prefixing requires

P ↔ep Q ⇒ α.P ↔ep α.Q for α ∈ Act .

Such properties can be checked by inspecting the syntactic form of the transition rules,
using structural induction. While proofs for some statements, such as the one for action
prefixing, are merely a simple exercise, others require more care, including long and tedious
case distinctions. A detailed proof of Theorem 22 can be found in Appendix A.

6 Failed Alternatives for Ep-Bisimulation

On an LTSS (S, Tr, source, target, ℓ,❀) an ep-bisimulation has the type S × S × P(Tr × Tr).
This is different from that of other classical bisimulations, which have the type S × S. While
developing ep-bisimulation we have also explored dozens of other candidates, many of them
being of type (S × S) ·∪ (Tr × Tr). The inclusion of a relation between transitions is necessary
to reflect the concept of components or concurrency in one way or the other. One such
candidate definition declares a relation R ⊆ (S × S) ·∪ (Tr × Tr) a valid bisimulation iff the
set of triples

{(p, q, R) | (p, q) ∈ R ∩ (S × S) ∧ R = R ∩ (en(p) × en(q))}

is an ep-bisimulation. However, neither this candidate nor any of the others leads to a
transitive notion of bisimilarity. The problem stems from systems, not hard to model in
ABCdE, with multiple paths πi from states p to p′, such that a triple (p, q, R) in an ep-
bisimulation R forces triples (p′, q′, R′

i) to be in R for multiple relations Ri ⊆ en(p′) × en(q′),
depending on the chosen path πi.

7 Related Work

Our LTSSs generalise the concurrent transition systems of [24]. There t ❀v u is written
as t↑v = u, and ↑ is a partial function rather than a relation, in the sense that for given t

and v there can be at most one u with t↑v = u. This condition is not satisfied by broadcast
communication, which is one of the reasons we switched to the notation t ❀v u. As an
example, consider b!|a.(b? + b?). The b!-transition after the a-transition has two variants,
namely b!→0|( b?→0+b?) and b!→0|(b?+ b?→0). Another property of concurrent transition systems
that is not maintained in our framework is the symmetry of the induced concurrency relation.
Finally, [24] requires that (v↑t)↑(u↑t) = (v↑u)↑(t↑u), the cube axiom, whereas we have so far
not found reasons to restrict attention to processes satisfying this axiom. We are, however,
open to the possibility that for future applications of LTSSs, some closure properties may be
imposed on them.

In [1] a location-based bisimulation is proposed. It also keeps track of the components
participating in transitions. The underlying model is quite different from ours, which makes
it harder to formally argue that this notion of bisimilarity is incomparable to ours. We do
not know yet whether it could be used to reason about justness.
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8 Conclusion and Future Work

In related work, it has been argued that fairness assumptions used for verifying liveness
properties of distributed systems are too strong or unrealistic [13, 4, 12]. As a consequence,
justness, a minimal fairness assumption required for the verification of liveness properties, has
been proposed. Unfortunately, all classical semantic equivalences, such as strong bisimilarity,
fail to preserve justness.

In this paper, we have introduced labelled transition systems augmented by a successor
relation, and, based on that, the concept of enabling preserving bisimilarity, a finer variant
of strong bisimilarity. We have proven that this semantic equivalence is a congruence for
all classical operators. As it also preserves justness, it is our belief that enabling preserving
bisimilarity in combination with justness can and should be used for verifying liveness
properties of large-scale distributed systems.

Casually speaking, ep-bisimilarity is strong bisimilarity augmented with the requirement
that the relation between enabled transitions is inherited by successor transitions. A
straightforward question is whether this feature can be combined with other semantic
equivalences, such as weak bisimilarity or trace equivalence.

We have further shown how process algebras can be mapped into LTSSs. Of course,
process algebra is only one of many formal frameworks for modelling concurrent systems.
For accurately capturing causalities between event occurrences, models like Petri nets [22],
event structures [25] or higher dimensional automata [21, 8] are frequently preferable. Part
of future work is therefore to develop a formal semantics with respect to LTSSs for these
frameworks.

In order to understand the scope of justness in real-world applications, we plan to study
systems that depend heavily on liveness. As a starting point we plan to verify locks, such as
ticket lock.
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A Congruence Proofs

Ep-bisimilarity is a congruence for all operators of ABCdE iff Propositions 23–28 below hold.
We prove them one by one.

▶ Proposition 23. If P ↔ep Q and α ∈ Act then α.P ↔ep α.Q.

Proof. A transition enabled in α.P is either α→P or b:α.P for some b ∈ B with α ̸= b? .

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,
2. if (P, Q, R) ∈ R and α ∈ Act then (α.P, α.Q, α.R) ∈ R, where

α.R := {( α→P,
α→Q)} ·∪ {(b:α.P, b:α.Q) | b ∈ B ∧ α ̸= b?} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.
Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.
Induction step: Suppose (P, Q, R) ∈ R satisfies all requirements of Definition 8, we prove
that (P ′, Q′, R′), where P ′ = α.P , Q′ = α.Q, and R′ = α.R, also satisfies those requirements.
This follows directly with Definitions 8 and 20. ◀

▶ Proposition 24. If PL ↔ep QL and PR ↔ep QR then PL + PR ↔ep QL + QR.

Proof. A transition enabled in P + Q is either
t + Q for some t ∈ en(P ) with ℓ(t) /∈ B:,
P + u for some u ∈ en(Q) with ℓ(u) /∈ B:, or
t + u for some t ∈ en(P ) and u ∈ en(Q) with ℓ(t) = ℓ(u) ∈ B: .

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,
2. if (PL, QL, RL), (PR, QR, RR) ∈ R then (PL + PR, QL + QR, RL + RR) ∈ R, where

RL + RR :={(t + PR, v + QR) | t RL v ∧ ℓ(t) /∈ B:} ·∪
{(PL + u, QL + w) | u RR w ∧ ℓ(u) /∈ B:} ·∪
{(t + u, v + w) | t RL v ∧ u RR w ∧ ℓ(t) = ℓ(u) ∈ B:} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.
Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.
Induction step: Suppose (PL, QL, RL), (PR, QR, RR) ∈ R satisfy all requirements of Defini-
tion 8, we prove that (P, Q, R), where P = PL + PR, Q = QL + QR and R = RL + RR, also
satisfies those requirements.
R ⊆ en(P ) × en(Q) follows from RL ⊆ en(PL) × en(QL) and RR ⊆ en(PR) × en(QR).
Requirement 1.a: It suffices to find, for each χ ∈ en(P ), a ζ ∈ en(Q) with χ R ζ.
1. Suppose χ = t + PR for some t ∈ en(PL) with ℓ(t) /∈ B: .

We obtain v ∈ en(QL) with t RL v, and pick ζ = v + QR.
2. Suppose χ = PL + u for some u ∈ en(PR) with ℓ(u) /∈ B: .

We obtain w ∈ en(QR) with u RR w, and pick ζ = QL + w.
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3. Suppose χ = t + u for some t ∈ en(PL) and u ∈ en(PR) with ℓ(t) = ℓ(u) ∈ B: .
We obtain v ∈ en(QL) and w ∈ en(QR) with t RL v and u RR w, and pick ζ = v + w.

In all cases, ζ ∈ en(Q) and χ R ζ hold trivially.

Requirement 1.b: The proof is similar to that of Requirement 1.(a) and is omitted.

Requirement 1.c: This follows directly from the observations that
ℓ(t) = ℓ(v) =⇒ ℓ(t + PR) = ℓ(v + QR),
ℓ(u) = ℓ(w) =⇒ ℓ(PL + u) = ℓ(QL + w), and
ℓ(t) = ℓ(v) ∧ ℓ(u) = ℓ(w) =⇒ ℓ(t + u) = ℓ(v + w);

provided that the composed transitions exist.

Requirement 2 : It suffices to find, for arbitrary Υ, Υ′ with Υ R Υ′, an R′ with
(target(Υ), target(Υ′), R′) ∈ R, such that
(a) for arbitrary χ, χ′ with χ R χ′ and χ ❀Υ ζ, we can find a ζ ′ with χ′ ❀Υ′ ζ ′ and ζ R′ ζ ′,
(b) for arbitrary χ, χ′ with χ R χ′ and χ′ ❀Υ′ ζ ′, we can find a ζ with χ ❀Υ ζ and ζ R′ ζ ′.
Below we focus merely on (a), as (b) will follow by symmetry.

Suppose ℓ(Υ) ∈ B: ·∪ S̄ . Pick R′ = R. Then (target(Υ), target(Υ′), R′) = (P, Q, R) ∈ R.
From χ ❀Υ ζ we have ζ = χ. Pick ζ ′ = χ′. Then χ′ ❀Υ′ ζ ′. ζ R′ ζ ′ is given by χ R χ′.

We further split the cases when ℓ(Υ) ∈ Act.
1. Suppose Υ = v + PR and Υ′ = v′ + QR with v RL v′. We obtain R′

L that satisfies
Requirement 2 with respect to v and v′. Pick R′ = R′

L. Then (target(Υ), target(Υ′), R′) =
(target(v), target(v′), R′

L) ∈ R.
a. Suppose χ = t + PR and χ′ = t′ + QR with t RL t′. From χ ❀Υ ζ we have t ❀v ζ.

Then we obtain x′ with t′ ❀v′ x′ and ζ R′
L x′. Pick ζ ′ = x′. Then χ′ ❀Υ′ ζ ′ follows

from t′ ❀v′ x′.
b. Suppose χ = PL + u and χ′ = QL + u′ with u RR u′. We obtain x′ with ζ R′

L x′ and
pick ζ ′ = x′. From χ ❀Υ ζ we have ℓ(χ) = b? and ℓ(ζ) ∈ {b?, b:} for some b ∈ B.
Then χ′ ❀Υ′ ζ ′ follows from ℓ(χ′) = b? and ℓ(x′) ∈ {b?, b:}.

c. Suppose χ = t + u and χ′ = t′ + u′ with t RL t′ and u RR u′. From χ ❀Υ ζ we have
t ❀v ζ. Then we obtain x′ with t′ ❀v′ x′ and ζ R′

L x′. Pick ζ ′ = x′. Then χ′ ❀Υ′ ζ ′

follows from t′ ❀v′ x′.
In all cases, ζ R′ ζ ′ is given by ζ R′

L x′.
2. Suppose Υ = PL + w and Υ′ = QL + w′ with w RR w′. The proof is similar to that of the

previous case. ◀

▶ Proposition 25. If PL ↔ep QL and PR ↔ep QR then PL|PR ↔ep QL|QR.

Proof. A transition enabled in P |Q is either
t|Q for some t ∈ en(P ) with ℓ(t) /∈ B! ·∪ B? ·∪ B:,
P |u for some u ∈ en(Q) with ℓ(u) /∈ B! ·∪ B? ·∪ B:,
t|u for some t ∈ en(P ) and u ∈ en(Q) with ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ , or
t|u for some t∈en(P ) and u∈en(Q) with {ℓ(t), ℓ(u)}∈{{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}}
for some b ∈ B.

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,



R. van Glabbeek, P. Höfner, and W. Wang 33:19

2. if (PL, QL, RL), (PR, QR, RR) ∈ R then (PL|PR, QL|QR, RL|RR) ∈ R, where

RL|RR :={(t|PR, v|QR) | t RL v ∧ ℓ(t) /∈ B! ·∪ B? ·∪ B:} ·∪
{(PL|u, QL|w) | u RR w ∧ ℓ(u) /∈ B! ·∪ B? ·∪ B:} ·∪
{(t|u, v|w) | t RL v ∧ u RR w ∧ ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ } ·∪
{(t|u, v|w) | t RL v ∧ u RR w ∧

∃ b ∈ B. {ℓ(t), ℓ(u)} ∈ {{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}}} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.
Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.
Induction step: Suppose (PL, QL, RL), (PR, QR, RR) ∈ R satisfy all requirements of Defini-
tion 8, we prove that (P, Q, R), where P = PL|PR, Q = QL|QR and R = RL|RR, also satisfies
those requirements.
R ⊆ en(P ) × en(Q) follows from RL ⊆ en(PL) × en(QL) and RR ⊆ en(PR) × en(QR).
Requirement 1.a: It suffices to find, for each χ ∈ en(P ), a ζ ∈ en(Q) with χ R ζ.
1. Suppose χ = t|PR for some t ∈ en(PL) with ℓ(t) /∈ B! ·∪ B? ·∪ B: .

We obtain v ∈ en(QL) with t RL v and pick ζ = v|QR.
2. Suppose χ = PL|u for some u ∈ en(PR) with ℓ(u) /∈ B! ·∪ B? ·∪ B: .

We obtain w ∈ en(QR) with u RR w and pick ζ = QL|w.
3. Suppose χ = t|u for some t ∈ en(PL), u ∈ en(PR) with ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ .

We obtain v ∈ en(QL) and w ∈ en(QR) with t RL v and u RR w, and pick ζ = v|w.
4. Suppose χ = t|u for some t ∈ en(PL) and u ∈ en(PR) with

{ℓ(t), ℓ(u)} ∈ {{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}} for some b ∈ B.
We obtain v ∈ en(QL) and w ∈ en(QR) with t RL v and u RR w, and pick ζ = v|w.

In all cases, ζ ∈ en(Q) and χ R ζ hold trivially.
Requirement 1.b: The proof is similar to that of Requirement 1.(a) and is omitted.
Requirement 1.c: This follows directly from the observation that

ℓ(t) = ℓ(v) =⇒ ℓ(t|PR) = ℓ(v|QR),
ℓ(u) = ℓ(w) =⇒ ℓ(PL|u) = ℓ(QL|w), and
ℓ(t) = ℓ(v) ∧ ℓ(u) = ℓ(w) =⇒ ℓ(t|u) = ℓ(v|w);

provided that the composed transitions exist.
Requirement 2 : It suffices to find, for arbitrary Υ, Υ′ with Υ R Υ′, an R′ with
(target(Υ), target(Υ′), R′) ∈ R, such that
(a) for arbitrary χ, χ′ with χ R χ′ and χ ❀Υ ζ, we can find a ζ ′ with χ′ ❀Υ′ ζ ′ and ζ R′ ζ ′,
(b) for arbitrary χ, χ′ with χ R χ′ and χ′ ❀Υ′ ζ ′, we can find a ζ with χ ❀Υ ζ and ζ R′ ζ ′.
Below we focus merely on (a), as (b) will follow by symmetry.
1. Suppose Υ = v|PR and Υ′ = v′|QR with v RL v′. We obtain R′

L that satisfies Require-
ment 2 with respect to v and v′. Pick R′ = R′

L|RR. Then (target(Υ), target(Υ′), R′) =
(target(v)|PR, target(v′)|QR, R′

L|RR) ∈ R.
a. Suppose χ = t|PR and χ′ = t′|QR with t RL t′. From χ ❀Υ ζ we have ζ = x|PR for

some x with t ❀v x. Then we obtain x′ with t′ ❀v′ x′ and x R′
L x′. Pick ζ ′ = x′|QR.

Then χ′ ❀Υ′ ζ ′ follows from t′ ❀v′ x′; ζ R′ ζ ′ is given by x R′
L x′.

b. Suppose χ = PL|u and χ′ = QL|u′ with u RR u′. From χ ❀Υ ζ we have ζ = target(v)|u.
Pick ζ ′ = target(v′)|u′. Then χ′ ❀Υ′ ζ ′ follows directly; ζ R′ ζ ′ is given by u RR u′.
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c. Suppose χ = t|u and χ′ = t′|u′ with t RL t′ and u RR u′. From χ ❀Υ ζ we have
ζ = x|u for some x with t ❀v x. Then we obtain x′ with t′ ❀v′ x′ and x R′

L x′. Pick
ζ ′ = x′|u′. Then χ′ ❀Υ′ ζ ′ follows from t′ ❀v′ x′; ζ R′ ζ ′ is given by x R′

L x′ and
u RR u′.

2. Suppose Υ = PL|w and Υ′ = QL|w′ with w RR w′. The proof is similar to that of the
previous case.

3. Suppose Υ = v|w and Υ′ = v′|w′ with v RL v′ and w RR w′. We obtain R′
L that sat-

isfies Requirement 2 with respect to v and v′, and R′
R that satisfies Requirement 2

with respect to w and w′. Pick R′ = R′
L|R′

R. Then (target(Υ), target(Υ′), R′) =
(target(v)|target(w), target(v′)|target(w′), R′

L|R′
R) ∈ R.

a. Suppose χ = t|PR and χ′ = t′|QR with t RL t′. From χ ❀Υ ζ we have ζ = x|target(w)
for some x with t ❀v x. Then we obtain x′ with t′ ❀v′ x′ and x R′

L x′. Pick
ζ ′ = x′|target(w′). Then χ′ ❀Υ′ ζ ′ follows from t′ ❀v′ x′; ζ R′ ζ ′ is given by x R′

L x′.
b. Suppose χ = PL|u and χ′ = QL|u′ with u RR u′. From χ ❀Υ ζ we have ζ = target(v)|y

for some y with u ❀w y. Then we obtain y′ with u′ ❀w′ y′ and y R′
R y′. Pick

ζ ′ = target(v′)|y′. Then χ′ ❀Υ′ ζ ′ follows from u′ ❀w′ y′; ζ R′ ζ ′ is given by y R′
R y′.

c. Suppose χ = t|u and χ′ = t′|u′ with t RL t′ and u RR u′. From χ ❀Υ ζ we have ζ =x|y
for some x, y with t ❀v x and u ❀w y. Then we obtain x′, y′ with t′ ❀v′ x′, u′ ❀w′ y′,
x R′

L x′, and y R′
R y′. Pick ζ ′ = x′|y′. Then χ′ ❀Υ′ ζ ′ follows from t′ ❀v′ x′ and

u′ ❀w′ y′; ζ R′ ζ ′ is given by x R′
L x′ and y R′

R y′. ◀

▶ Proposition 26. If P ↔ep Q and L ⊆ C ·∪ S then P\L ↔ep Q\L.

Proof. A transition enabled in P\L is t\L for some t ∈ en(P ) with ℓ(t) /∈ L ·∪ L.

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,
2. if (P, Q, R) ∈ R and L ⊆ C ·∪ S then (P\L, Q\L, R\L) ∈ R, where

R\L := {(t\L, v\L) | t R v ∧ ℓ(t) /∈ L ·∪ L} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.
Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.
Induction step: Suppose (P, Q, R) ∈ R satisfies all requirements of Definition 8, we prove that
(P ′, Q′, R′), where P ′ = P\L, Q′ = Q\L, and R′ = R\L, also satisfies those requirements.
This follows directly with Definitions 8 and 20. ◀

▶ Proposition 27. If P ↔ep Q and f is a relabelling then P [f ] ↔ep Q[f ].

Proof. An easy structural induction on the structure of P ; similar to the proof for restriction
(Proposition 26). ◀

▶ Proposition 28. If P ↔ep Q and s ∈ S P ŝ ↔ep Q ŝ.

Proof. An easy structural induction on the structure of P ; similar to the proof for restriction
(Proposition 26). ◀
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1 Introduction

Static analysis of complexity is a classic topic of program analysis, and various approaches
to the complexity analysis, including type-based ones [3, 6, 17–19,21], have been studied so
far. The complexity analysis of concurrent programs has been, however, much less studied.

In this paper, we are interested in analysing the parallel complexity (also called span)
of the π-calculus, i.e., the maximal parallelized execution time under the assumption that
an unlimited number of processors are available [4]. The parallel complexity should be
parametrized by the size of inputs. Following the success of previous studies on the complexity
analysis of sequential programs [3, 6, 17–19,21] and those on the analysis of other properties
on concurrent programs (e.g. [11,13]), deadlock-freedom and livelock-freedom (e.g. [22,27,30];
see [24] for a survey), we take a type-based approach.

The first two authors [4] have actually proposed a type-based analysis of the parallel
complexity already. However, as stressed by the authors, even though their type system
for span is useful for analysing the complexity of some parallel programs, it fails to type-
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check some examples of common concurrent programs, like semaphores. It is based on a
combination of sized types and input/output types, in order to account suitably for the
behaviour of channels w.r.t. reception and emission.

In the present paper we design a type system for span which can deal with a much
wider range of concurrent computation patterns including the semaphores. For that, we take
inspiration from the notion of type usage, which has been introduced and explored in [27,30],
initially to guarantee absence of deadlock during execution. Type usages are a generalization
of input/output types, and describe how each channel is used for input and output. Unlike
the original notion of usages [27, 30], our usages are annotated with time intervals, which
are used for a kind of rely-guarantee reasoning, like “assuming that a message from the
environment arrives during the time interval [I1, J1], the process sends back a message during
the interval [I2, J2]”; such reasoning is crucial for analyzing the parallel complexity precisely
and in a compositional manner. We formalize the type system with usages and prove that it
soundly estimates the parallel complexity.

Contributions. The contributions of this paper are as follows. (i) The formalization of the
new type system for parallel complexity built on the new notion of usages: our usages are
quite different from the original ones, and properly defining them (including operations on
time intervals, usage reductions, and the notion of reliable usages) is non-trivial. (ii) The
proofs of type preservation and complexity soundness: thanks to the careful definition of new
usages, the proofs are actually quite natural, despite the expressiveness of the type system.
(iii) Examples to demonstrate the precision and expressive power of our new type system.

Paper outline. We introduce in Sect. 2 the π-calculus and the notion of parallel complexity
we consider. Sect. 3 is devoted to the definition of types with usages. Then in Sect. 4 we
prove the main result of this paper, the complexity soundness, and provide some examples.
Finally, related work is discussed in Sect. 5.

2 The Pi-calculus with Semantics for Span

In this section, we review the definitions of the π-calculus and its parallel complexity [4].

2.1 Syntax and Standard Semantics for Pi-Calculus
We consider a synchronous π-calculus, with a constructor tick that generates the time
complexity. The sets of variables, expressions and processes are defined by:

v (variables) := x, y, z | a, b, c e (expressions) := v | 0 | s(e)

P (processes) := 0 | (P | Q) | a(ṽ).P | !a(ṽ).P | a⟨ẽ⟩.P | (νa)P

| match e {case 0 7→ P ; case s(x) 7→ Q} | tick.P

We use x, y, z as meta-variables for integer variables, and a, b, c as those for channel names.
The notation ṽ stands for a sequence of variables v1, v2, . . . , vk. Similarly, ẽ denotes a sequence
of expressions. We work up to α-renaming, and write P [̃v := ẽ] to denote the substitution of
ẽ for the free variables ṽ in P . For simplicity, we only consider integers as base types below,
but the results can be generalized to other algebraic data-types such as lists or booleans.

Intuitively, P | Q stands for the parallel composition of P and Q. The process a(ṽ).P
represents an input: it stands for the reception on the channel a of a tuple of values identified
by the variables ṽ in the continuation P. The process !a(ṽ).P is a replicated version of a(ṽ).P :
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(n : a(ṽ).P ) | (m : a⟨ẽ⟩.Q) ⇒ max(m, n) : (P [̃v := ẽ] | Q) tick.P ⇒ 1 : P

(n :!a(ṽ).P ) | (m : a⟨ẽ⟩.Q) ⇒ (n :!a(ṽ).P ) | (max(m, n) : (P [̃v := ẽ] | Q))

match 0 {case 0 7→ P ; case s(x) 7→ Q} ⇒ P

match s(e) {case 0 7→ P ; case s(x) 7→ Q} ⇒ Q[x := e]
P ⇒ Q

P | R ⇒ Q | R

P ⇒ Q

(νa)P ⇒ (νa)Q
P ⇒ Q

(n : P ) ⇒ (n : Q)
P ≡ P ′ P ′ ⇒ Q′ Q′ ≡ Q

P ⇒ Q

Figure 1 Reduction Rules for Annotated Processes.

it behaves like an infinite number of a(ṽ).P in parallel. The process a⟨ẽ⟩.P represents an
output: it sends a sequence of expressions ẽ on the channel a, and continues as P . We often
omit 0 and just write a⟨⟩ for a⟨⟩.0. A process (νa)P dynamically creates a new channel
name a and then proceeds as P . We also have standard pattern matching on data types, and
finally, the tick constructor incurs a cost of one in complexity but has no semantic relevance.
This constructor is the only source of time complexity in a program. As the similar tick
constructor in [9], it can represent different cost models and is more general than counting
the number of reduction steps. For example, by adding tick after each input, we can count
the number of communications in a process. By adding it after each replicated input on a
channel a, we can count the number of calls to a. We can also count the number of reduction
steps, by adding tick after each input and pattern matching.

As usual, the structural congruence ≡ is defined as the least congruence containing:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νa)(νb)P ≡ (νb)(νa)P (νa)(P | Q) ≡ (νa)P | Q (when a is not free in Q)

Note that the last rule can always be applied from right to left by α-renaming. By associativity,
we will often write parallel composition for any number of processes and not only two.

2.2 Parallel Complexity: The Span
We now review the definition of span [4]. We add a process construct m : P , where m is an
integer. A process using this constructor will be called an annotated process. Intuitively, this
annotated process has the meaning P with m ticks before. The congruence relation ≡ is then
enriched with the following relations:

0 : P ≡ P m : (P | Q) ≡ (m : P ) | (m : Q)

m : (νa)P ≡ (νa)(m : P ) m : (n : P ) ≡ (m + n) : P

So, zero tick is equivalent to nothing and ticks can be distributed over parallel composition
as expressed by the second relation. Name creation can be done before or after ticks without
changing the semantics and finally ticks can be grouped together.

The rules for the reduction relation ⇒ are given in Figure 1. This semantics works as
the usual semantics for π-calculus, but when doing a synchronization, only the maximal
annotation is kept, and ticks are memorized in the annotations. Span is then defined by:

CONCUR 2021



34:4 Sized Types with Usages for Parallel Complexity of Pi-Calculus Processes

▶ Definition 1 (Parallel Complexity). The local complexity Cℓ(P ) of an annotated process P

is defined by:

Cℓ(n : P ) = n + Cℓ(P ) Cℓ(P | Q) = max(Cℓ(P ), Cℓ(Q))

Cℓ((νa)P ) = Cℓ(P ) Cℓ(P ) = 0 otherwise

The global parallel complexity (or span) of P is given by max{n | P ⇒∗ Q ∧ Cℓ(Q) = n}
where ⇒∗ is the reflexive and transitive closure of ⇒.

▶ Example 2. Let P := tick.a().tick.a⟨⟩ | tick.a().tick.a⟨⟩ | a⟨⟩. Then, we have:

P ⇒2 1 : (a().tick.a⟨⟩) | 1 : (a().tick.a⟨⟩) | 0 : a⟨⟩ ⇒ 1 : (a().tick.a⟨⟩) | 1 : (tick.a⟨⟩)
⇒ 1 : (a().tick.a⟨⟩) | 2 : a⟨⟩ ⇒ 2 : (tick.a⟨⟩) ⇒ 3 : a⟨⟩

Thus, the process has at least complexity 3. As all the other possible choices we could have
made in the reduction steps are similar, the process has exactly complexity 3.

The following example motivates our introduction of usages in the next section.

▶ Example 3 (Motivating Example). Let P := a().tick.a⟨⟩. Then, the complexity of
P | P | P | · · · | P | a⟨⟩ is equal to the number of P in parallel.

3 Types with Usages

The goal of our work is to design a type system for processes such that if Γ ⊢ Q ◁ K then K

is a bound on the complexity of Q, as in [4]. The analysis of [4] was not precise enough: in
fact, the process P in Example 3 was not typable. The main idea to tackle this problem is to
use the notion of usages to represent the channel-wise behaviour of processes. Usages have
been used for deadlock-freedom analysis [23, 27, 30], but our notion of usages significantly
differs from the original one, as discussed below.

3.1 Indices
First, we define integer indices, which are used to keep track of the size of values in a process.

▶ Definition 4. Let V be a countable set of index variables, usually denoted by i,j or k. The
set of indices, representing integers in N∞ = N ∪ {∞}, is given by:

I, J := IN | ∞ IN := i | f(IN, . . . , IN)

Here, i ∈ V. The symbol f is an element of a given set of function symbols containing,
for example, integers constants as nullary operators, addition and multiplication. We also
assume the subtraction as a function symbol, with n−m = 0 when m ≥ n. Each function
symbol f of arity ar(f) comes with an interpretation JfK : Nar(f) → N.

Given an index valuation ρ : V → N, we extend the interpretation of function symbols to
indices, noted JIKρ, as expected; JIKρ ranges over N∞. For an index I, we write I{JN/i} for
the index obtained by replacing the occurrences of i in I with JN. Note that ∞{JN/i} = ∞.

▶ Definition 5 (Constraints on Indices). Let φ ⊂ V be a finite set of index variables. A
constraint C on φ is an expression with the shape I ▷◁ J where I and J are indices with free
variables in φ and ▷◁ denotes a binary relation on N∞. Usually, we take ▷◁ ∈ {≤, <, =, ̸=}.
A finite set of constraints is denoted Φ.
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For a finite set φ ⊂ V, we say that a valuation ρ : φ → N satisfies a constraint I ▷◁ J

on φ, noted ρ ⊨ I ▷◁ J when JIKρ ▷◁ JJKρ holds. Similarly, ρ ⊨ Φ holds when ρ ⊨ C for all
C ∈ Φ. Likewise, we note φ; Φ ⊨ C when for all valuations ρ on φ such that ρ ⊨ Φ we have
ρ ⊨ C. We will also use some extended operations on indices I, J ; for example, we may use
∞ + J = ∞ or other such equations.

3.2 Usages

We use usages to express the channel-wise behaviour of a process. Usages are a kind of CCS
processes [29] on a single channel, where each action is annotated with two time intervals.
The set of usages, ranged over by U and V , is given by:

U, V ::= 0 | (U |V ) | αAo

Jc
.U | !U | U + V α := In | Out

Ao, Bo ::= [I, J ] Jc, Ic ::= J | [I, J ]

Given a set of index variables φ and a set of constraints Φ, for an interval [I, J ], we always
require that φ; Φ ⊨ I ≤ J . For an interval Ao = [I, J ], we denote Left(Ao) = I and
Right(Ao) = J . In the original notion of usages [23, 27, 30], Ao and Jc were just numbers.
The extension to intervals plays an important role in our analysis. Note that Jc may be a
single index J , but this single index J should be understood as the interval [−∞, J ].

Intuitively, a channel with usage 0 is not used at all. A channel of usage U | V can be
used according to U and V possibly in parallel. The usage InAo

Jc
.U describes a channel that

may be used for input, and then used according to U . The two intervals Ao and Jc, called
obligation and capacity respectively, are used to achieve a kind of assume-guarantee reasoning.
The obligation Ao indicates a guarantee that if the channel is indeed used for input, then the
input should become ready during the interval Ao. The capacity Jc indicates the assumption
that if the environment performs a corresponding output, that output will be provided during
the time interval Jc after the input becomes ready. For example, if a channel a has usage
In[1,1]

Jc
.0, then the process tick.a().0 conforms to the usage, but a().0 and tick.tick.a().0

do not. Similarly, OutAo

Jc
.U has the same meaning but for output. The usage !U denotes

the usage U that can be replicated infinitely, and U + V denotes a non-deterministic choice
between the usages U and V . This is useful for example in a case of pattern matching where
a channel can be used very differently in the two branches.

Recall that the obligation and capacity intervals in usages express a sort of assume-
guarantee reasoning. We thus require that the assume-guarantee reasoning in a usage is
“consistent” (or reliable, in the terminology of usages). For example, the usage In[0,0]

[1,1] | Out[1,1]
0

is reliable because (i) the part In[0,0]
[1,1] assumes that a corresponding output will become ready

at time 1, and the other part Out[1,1]
0 indeed guarantees that and moreover, (ii) Out[1,1]

0
assumes that a corresponding input will be ready by the time the output becomes ready, and
the part In[0,0]

[1,1] guarantees that. In contrast, the usage In[0,0]
[1,1] | Out[2,2]

0 is problematic because,
although the part In[0,0]

[1,1] assumes that an output will be ready at time 1, Out[2,2]
0 provides

the output only at time 2. The consistency on assume-guarantee reasoning must hold during
the whole computation; for example, in the usage In[0,0]

[0,0].In[0,0]
[1,1] | Out[0,0]

[0,0].Out[2,2]
0 , the first

input/output pair is fine, but the usage expressing the next communication: In[0,0]
[1,1] | Out[2,2]

0
is problematic. To properly define the reliability of usages during the whole computation, we
first prepare a reduction semantics for usages, by viewing usages as CCS processes.
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▶ Definition 6 (Congruence for Usages). The relation ≡ is defined as the least congruence
relation closed under:

U | 0 ≡ U U | V ≡ V | U U | (V | W ) ≡ (U | V ) | W

!0 ≡ 0 !U ≡ !U | U !(U | V ) ≡ !U | !V !!U ≡ !U

Before giving the reduction semantics, we introduce some notations.

▶ Definition 7 (Operations on Usages). We define the operations ⊕, ⊔, and + by:

Ao ⊕ J = [0, Left(Ao) + J ] Ao ⊕ [I, J ] = [Right(Ao) + I, Left(Ao) + J ]
[I, J ] ⊔ [I ′, J ′] = [max(I, I ′), max(J, J ′)] [I, J ] + [I ′, J ′] = [I + I ′, J + J ′]

Note that ⊕ is an operation that takes an obligation interval and a capacity and returns an
interval. The operations ⊔ (max) and + are just pointwise extensions of the operations for
indices. The intuition on ⊕ is explained later when we define the reduction relation.

The delaying operation ↑AoU on usages is defined by:

↑Ao0 = 0 ↑Ao(U | V ) = ↑AoU | ↑AoV ↑Ao(U + V ) = ↑AoU + ↑AoV

↑AoαBo

Jc
.U = αAo+Bo

Jc
.U ↑Ao(!U) =!(↑AoU)

We also define [I, J ]+Jc and thus ↑JcU by extending the operation with: [I, J ]+J ′ = [I, J +J ′].

Intuitively, a usage ↑AoU corresponds to the usage U delayed by a time approximated by
the interval Ao.

The reduction relation is given by the rules of Figure 2. The first rule means that to
reduce a usage, we choose one input and one output, and then we trigger the communication
between them. This communication occurs and does not lead to an error when the capacity
of an action indeed corresponds to a bound on the time the dual action is defined. This is
given by the relation Ao ⊆ Bo ⊕ Jc. As an example, let us suppose that Bo = [1, 3], and
the time for which the output becomes ready is in fact 2, then the capacity Jc says that
after two units of time, the synchronization should happen in the interval Jc. So, if we take
Jc = [5, 7] for example, then if t is the time for which the dual input becomes ready, we
must have t ∈ [2 + 5, 2 + 7]. This should be true for any time value in Bo, so we want that
∀t′ ∈ [1, 3], ∀t ∈ Ao, t ∈ [t′ + 5, t′ + 7], and this is equivalent to Ao ⊆ Bo ⊕ [5, 7] = [8, 8].
Indeed, 8 is the only time that is in the three intervals [6, 8], [7, 9] and [8, 10]. The case where
Jc = J is a single index occurs when t can be smaller than t′, and in this case we only ask
that the upper bound is correct: ∀t′ ∈ Bo, ∀t ∈ Ao, t ≤ t′ + J .

If the bound is incorrect, we trigger an error: see the second rule. In the case everything
went well, the continuation is delayed by an approximation of the time when this communic-
ation occurs (see ↑Ao⊔Bo in the first rule). In the rules for U + V , a reduction step in usages
can also make a non-deterministic choice.

An error in a usage reduction means that the assume-guarantee reasoning was inconsistent.
Based on this intuition, we define the notion of reliablity.

▶ Definition 8 (Reliability). A usage U is reliable under φ; Φ if U ̸−→∗ err.

▶ Example 9. Consider the usage U := In[1,1]
1 .Out[1,1]

0 | In[1,1]
1 .Out[1,1]

0 | Out[0,0]
[1,1]. The only

possible reduction sequence (with symmetry) is:

U −→ Out[2,2]
0 | In[1,1]

1 .Out[1,1]
0 −→ Out[3,3]

0 .
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φ; Φ ⊨ Bo ⊆ Ao ⊕ Ic φ; Φ ⊨ Ao ⊆ Bo ⊕ Jc

φ; Φ ⊢ InAo
Ic

.U | OutBo
Jc

.V −→ ↑Ao⊔Bo (U | V )
φ; Φ ⊭ (Bo ⊆ Ao ⊕ Ic ∧ Ao ⊆ Bo ⊕ Jc)

φ; Φ ⊢ InAo
Ic

.U | OutBo
Jc

.V −→ err

φ; Φ ⊢ U + V −→ U φ; Φ ⊢ U + V −→ V
φ; Φ ⊢ U −→ U ′ U ′ ̸= err

φ; Φ ⊢ U | V −→ U ′ | V

φ; Φ ⊢ U −→ err
φ; Φ ⊢ U | V −→ err

U ≡ U ′ φ; Φ ⊢ U ′ −→ V ′ V ′ ≡ V

φ; Φ ⊢ U −→ V

Figure 2 Reduction Rules for Usages.

For the first step, we have indeed [1, 1] ⊆ [0, 0] ⊕ [1, 1] = [1, 1] and [0, 0] ⊆ [1, 1] ⊕ 1 =
[0, 2]. Note that the capacity [0, 1] instead of 1 for the input would not have worked since
[1, 1]⊕[0, 1] = [1, 2]. Thus, the usage U is reliable. It corresponds, for example, to the usage of
the channel a in the process P given in Example 2: tick.a().tick.a⟨⟩ | tick.a().tick.a⟨⟩ | a⟨⟩.
The obligation [1, 1] corresponds to waiting for exactly one tick. Then, the capacities say that
once they are ready, the two inputs will indeed communicate before one time unit for any
reduction. And at the end, we obtain an output available at time 3, and this output has no
communication. One can see that those capacities and obligations indeed give the complexity
of this process. Thus, we will ask in the type system that all usages are reliable, and so the
time indications will give some complexity bounds on the behaviour of a channel. ⌟

▶ Example 10. We give an example of a non-reliable usage. To the previous example, let us
add another input in parallel

U := In[1,1]
1 .Out[1,1]

0 | In[1,1]
1 .Out[1,1]

0 | In[1,1]
1 .Out[1,1]

0 | Out[0,0]
[1,1]

We have: U −→∗ Out[3,3]
0 | In[1,1]

1 .Out[1,1]
0 −→ err, because [1, 1] ⊕ 1 = [0, 2], so the capacity

here is not a good assumption. However, the following variant of the usage:

U := In[1,1]
2 .Out[1,1]

0 | In[1,1]
2 .Out[1,1]

0 | In[1,1]
2 .Out[1,1]

0 | Out[0,0]
[1,1]

is reliable. This example shows how reliability adapts to parallel composition. ⌟

We introduce another relation U ⊑ V called the subusage relation, which will be used
later to define the subtyping relation. It is defined by the rules of Figure 3. The relation
U ⊑ V intuitively means that any channel of usage U may also be used according to V .
For example, U ⊑ 0 says that we may not use a channel (usage equal to 0). Recall that
an obligation and a capacity express a guarantee and an assumption respectively. The last
but one rule says that it is safe to strengthen the guarantee and weaken the assumption.
We use the relation Ic ≤ Jc to denote the relation ⊆ on intervals, where a single index J is
considered as the interval [−∞, J ]. The last rule can be understood as follows. The part
↑Ao+JcV says that a channel may be used according to V only after the interval Ao + Jc.
Since the action αAo

Jc
is indeed finished during the interval Ao + Jc, we can move V to under

the guard of αAo

Jc
. This last rule is especially useful for substitution, as explained in the

example below.

▶ Example 11. Consider the process:

P := a(r).r().b() | a⟨b⟩

Let us give usages to b and r; here we omit time annotations for the sake of simplicity. We
have Ur = In and Ub = In | Ur Indeed, r is used only once as an input, and b is used as an
input on the left, and it is sent to be used as r on the right. Thus, after a reduction step we
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φ; Φ ⊢ U ⊑ 0
i ∈ {1; 2}

φ; Φ ⊢ U1 + U2 ⊑ Ui

φ; Φ ⊢ U ⊑ U ′

φ; Φ ⊢ U + V ⊑ U ′ + V

φ; Φ ⊢ V ⊑ V ′

φ; Φ ⊢ U + V ⊑ U + V ′
φ; Φ ⊢ U ⊑ U ′

φ; Φ ⊢ U | V ⊑ U ′ | V

φ; Φ ⊢ U ⊑ U ′

φ; Φ ⊢!U ⊑!U ′

U ≡ U ′ φ; Φ ⊢ U ′ ⊑ V ′ V ≡ V ′

φ; Φ ⊢ U ⊑ V

φ; Φ ⊢ U ⊑ U ′ φ; Φ ⊢ U ′ ⊑ U ′′

φ; Φ ⊢ U ⊑ U ′′

φ; Φ ⊢ U ⊑ U ′

φ; Φ ⊢ αAo

Jc
.U ⊑ αAo

Jc
.U ′

φ; Φ ⊨ Bo ⊆ Ao φ; Φ ⊨ Ic ≤ Jc

φ; Φ ⊢ αAo

Ic
.U ⊑ αBo

Jc
.U

φ; Φ ⊢ (αAo

Jc
.U) | (↑Ao+JcV ) ⊑ αAo

Jc
.(U | V )

Figure 3 Subusage.

φ; Φ ⊨ I ′ ≤ I φ; Φ ⊨ J ≤ J ′

φ; Φ ⊢ Nat[I, J ] ⊑ Nat[I ′, J ′]
φ; Φ ⊢ T̃ ⊑ T̃ ′ φ; Φ ⊢ T̃ ′ ⊑ T̃ φ; Φ ⊢ U ⊑ V

φ; Φ ⊢ ch(T̃ )/U ⊑ ch(T̃ ′)/V

φ, ĩ; Φ ⊢ T̃ ⊑ T̃ ′ φ, ĩ; Φ ⊢ T̃ ′ ⊑ T̃ φ, ĩ; Φ ⊨ K = K′ φ; Φ ⊢ U ⊑ V

φ; Φ ⊢ ∀̃i.srvK(T̃ )/U ⊑ ∀̃i.srvK′
(T̃ ′)/V

Figure 4 Subtyping Rules for Usage Types.

obtain P → b().b() where b has usage U ′
b = In.In. So, the channel b had usage Ub in P , but

it ended up being used according to U ′
b; that is valid since we have the subusage relation

Ub ⊑ U ′
b.

3.3 Type System
We extend ordinary types for the π-calculus with usages.

▶ Definition 12 (Usage Types). We define types by the following grammar:

T, S ::= Nat[I, J ] | ch(T̃ )/U | ∀̃i.srvK(T̃ )/U.

The type Nat[I, J ] describes an integer n such that I ≤ n ≤ J . Channels are classified into
server channels (or just servers) and simple channels. All the inputs on a server channel
must be replicated (as in !a(ṽ).P ), while no input on a simple channel can be replicated.
The type ch(T̃ )/U describes a simple channel that is used for transmitting values of type T̃

according to usage U . For example, ch(Nat[I, J ])/U is the type of channels used according to
U for transmitting integers in the interval [I, J ]. The type ∀̃i.srvK(T̃ )/U describes a server
channel that is used for transmitting values of type T̃ according to usage U ; the superscript
K, which we call the complexity of a server, is an interval. It denotes the cost incurred when
a server is invoked. Note that the server type allows polymorphism on index variables ĩ.

The subtyping relation T ⊑ T ′, which means that a value of type T can also be used as a
value of type T ′, is defined by the rules of Figure 4.

We extend operations on usages to partial operations on types and typing contexts with
Γ = v1 : T1, . . . , vn : Tn. The delaying of a type ↑AoT is defined as the delaying of the usage
for a channel or a server type, and it does nothing on integers. We also say that a type is
reliable when it is an integer type, or when it is a server or channel type with a reliable usage.
We define following operations:
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v : T ∈ Γ
φ; Φ; Γ ⊢ v : T φ; Φ; Γ ⊢ 0 : Nat[0, 0]

φ; Φ; Γ ⊢ e : Nat[I, J ]
φ; Φ; Γ ⊢ s(e) : Nat[I + 1, J + 1]

φ; Φ; ∆ ⊢ e : T ′ φ; Φ ⊢ Γ ⊑ ∆ φ; Φ ⊢ T ′ ⊑ T

φ; Φ; Γ ⊢ e : T

Figure 5 Typing Rules for Expressions.

▶ Definition 13. The parallel composition T | T ′ is defined by:

Nat[I, J ] | Nat[I, J ] = Nat[I, J ] ch(T̃ )/U | ch(T̃ )/V = ch(T̃ )/(U | V )

∀̃i.srvK(T̃ )/U | ∀̃i.srvK(T̃ )/V = ∀̃i.srvK(T̃ )/(U | V )

▶ Definition 14 (Replication of Type). The replication of a type !T is defined by:

!Nat[I, J ] = Nat[I, J ] !ch(T̃ )/U = ch(T̃ )/(!U) !∀̃i.srvK(T̃ )/U = ∀̃i.srvK(T̃ )/(!U)

The (partial) operations on types defined above are extended pointwise to contexts. For
example, for Γ = v1 : T1, . . . , vn : Tn and ∆ = v1 : T ′

1, . . . , vn : T ′
n, we define Γ | ∆ = v1 :

T1 | T ′
1, . . . , vn : Tn | T ′

n. Note that this is defined just if Γ and ∆ agree on the typing of
integers and associate the same types (excluding usage) to names.

▶ Definition 15. Given a capacity Jc and an interval K = [K1, K2], we define Jc; K by;

J ; [K1, K2] = [0, J + K2] [∞, ∞]; [K1, K2] = [0, 0] [IN, J ]; [K1, K2] = [0, J + K2]

Intuitively, Jc; K represents the complexity of an input/output process when the input/output
has capacity Jc and the complexity of the continuation is K. Jc = [∞, ∞] means the
input/output will never succeed (because there is no corresponding output/input); hence
the complexity is 0. A case where this is useful is given later in Example 22. Otherwise, an
upper-bound is given by J + K2 (the time spent for the input/output to succeed, plus K2).
The lower-bound is 0, since the input/output may be blocked forever.

The type system is given in Figures 5 and 6. The typing rules for expressions are standard
ones for sized types.

A type judgment for processes is of the form φ; Φ; Γ ⊢ P ◁ [I, J ] where φ denotes the set of
index variables, Φ is a set of constraints on index variables, and J is a bound on the parallel
complexity of P under those constraints. This complexity bound J can also be seen as a bound
on the open complexity of a process, that is to say the complexity of P in an environment
corresponding to the types in Γ. For example, a channel with usage In[1,1]

5 alone cannot be
reduced, as it is only used as an input. So, the typing ·; ·; a : ch()/In[1,1]

5 ⊢ tick.a() ◁ [1, 6]
says that in an environment that may provide an output on the channel a within the time
interval [1, 1] ⊕ 5 = [0, 6], this process has a complexity bounded by 6. Similarly, the lower
bound I is a lower bound on the parallel complexity of P . But in practice, this lower bound
is often too imprecise.1

The (par) rule separates a context into two parts, and the complexity is the maximum
over the two complexities, both for lower bound and upper bound. The (tick) rule shows
the addition of a tick implies a delay of [1, 1] in the context and the complexity. The (nu)

1 This is because in the definition of JC ; K in Definition 15, we pessimistically take into account the
possibility that each input/output may be blocked forever. We can avoid the pessimistic estimation of
the lower-bound by incorporating information about lock-freedom [23,25].
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(zero)
φ; Φ; Γ ⊢ 0 ◁ [0, 0]

φ; Φ; Γ ⊢ P ◁ K1 φ; Φ; ∆ ⊢ Q ◁ K2(par)
φ; Φ; Γ | ∆ ⊢ P | Q ◁ K1 ⊔ K2

φ; Φ; Γ ⊢ P ◁ K
(tick)

φ; Φ; ↑[1,1]Γ ⊢ tick.P ◁ K + [1, 1]
φ; Φ; Γ, a : ch(T̃ )/U, ṽ : T̃ ⊢ P ◁ K

(ich)
φ; Φ; ↑Jc Γ, a : ch(T̃ )/In[0,0]

Jc
.U ⊢ a(̃v).P ◁ Jc; K

(φ, ĩ); Φ; Γ, a : ∀̃i.srvK(T̃ )/U, ṽ : T̃ ⊢ P ◁ K
(iserv)

φ; Φ; ↑Jc !Γ, a : ∀̃i.srvK(T̃ )/!In[0,0]
Jc

.U ⊢!a(̃v).P ◁ [0, 0]

φ; Φ; Γ′, a : ch(T̃ )/V ⊢ ẽ : T̃ φ; Φ; Γ, a : ch(T̃ )/U ⊢ P ◁ K
(och)

φ; Φ; ↑Jc (Γ | Γ′), a : ch(T̃ )/Out[0,0]
Jc

.(V | U) ⊢ a⟨ẽ⟩.P ◁ Jc; K

φ; Φ; Γ′, a : ∀̃i.srvK(T̃ )/V ⊢ ẽ : T̃ {ĨN/̃i} φ; Φ; Γ, a : ∀̃i.srvK(T̃ )/U ⊢ P ◁ K′
(oserv)

φ; Φ; ↑Jc (Γ | Γ′), a : ∀̃i.srvK(T̃ )/Out[0,0]
Jc

.(V | U) ⊢ a⟨ẽ⟩.P ◁ Jc; (K′ ⊔ K{ĨN/̃i})
φ; Φ; Γ ⊢ e : Nat[I, J ] φ; Φ, I ≤ 0; Γ ⊢ P ◁ K φ; Φ, J ≥ 1; Γ, x : Nat[I−1, J−1] ⊢ Q ◁ K

(if)
φ; Φ; Γ ⊢ match e {case 0 7→ P ; case s(x) 7→ Q} ◁ K

φ; Φ; Γ, a : T ⊢ P ◁ K T reliable
(nu)

φ; Φ; Γ ⊢ (νa)P ◁ K

φ; Φ; ∆ ⊢ P ◁ K φ; Φ ⊢ Γ ⊑ ∆ φ; Φ ⊨ K ⊆ K′
(subtype)

φ; Φ; Γ ⊢ P ◁ K′

Figure 6 Typing Rules for Processes.

rule imposes that all names must have a reliable usage when they are created. In order to
type a channel with the (ich) rule, the channel must have an input usage, with obligation
[0, 0]. Note that with the subusage relation, we have InAo

Jc
⊑ In[0,0]

Jc
if and only if Ao = [0, I]

for some I. So, this typing rule imposes that the lower-bound guarantee is correct, but
the rule is not restrictive for upper-bound. This rule induces a delay of Jc in both context
and complexity. Indeed, in practice this input does not happen immediately as we need to
wait for output. This is where the assumption on when this output is ready, given by the
capacity, is useful. The rule for output (och) is similar. For a server, the rule for input (iserv)
is similar to (ich) in principle but differs in the way complexity is managed. Indeed, as a
replicated input is never modified nor erased through a computation, giving it a non-zero
complexity would harm the precision of the type system. Moreover, if this server represents
for example a function on an integer with linear complexity, then the complexity of this
server depends on the size of the integer it receives; that is why the complexity is transferred
to the output rule on server, as one can see in the rule (oserv). Indeed, this rule (oserv) is
again similar to (och) but the complexity of a call to the server is added in the rule. As we
have polymorphism on servers, in order to type an output we need to find an instantiation
on the indices ĩ, which is denoted by ĨN in this rule. Finally, the (if) rule is the only rule that
modifies the set of constraints, and it gives information on the values the sizes can take. As
explained in Example 21, those constraints are crucial in our sized type system. Note that
contexts are not separated in this rule. So, for both branches, it means that the usage of
channels must be the same. However, because we have the choice usage (U + V ), in practice
we can use different usages in those two branches.

▶ Example 16. The typing derivation of the process in Example 2 is given in Figure 7.
Note that the process (tick.a().tick.a⟨⟩ | tick.a().tick.a⟨⟩ | tick.a().tick.a⟨⟩ | a⟨⟩ is also
typable, in the same way, using the following usage (recall Example 10).

U := In[1,1]
2 .Out[1,1]

0 | In[1,1]
2 .Out[1,1]

0 | In[1,1]
2 .Out[1,1]

0 | Out[0,0]
[1,1]
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·; ·; a : ch()/Out[0,0]
0 ⊢ a⟨⟩ ◁ [0, 0]

·; ·; a : ch()/Out[1,1]
0 ⊢ tick.a⟨⟩ ◁ [1, 1]

·; ·; a : ch()/(In[0,0]
1 .Out[1,1]

0 ) ⊢ a().tick.a⟨⟩ ◁ [0, 2]

·; ·; a : ch()/(In[1,1]
1 .Out[1,1]

0 ) ⊢ tick.a().tick.a⟨⟩ ◁ [1, 3] ·; ·; a : ch()/(Out[0,0]
[1,1]) ⊢ a⟨⟩ ◁ [0, 1]

·; ·; a : ch()/(In[1,1]
1 .Out[1,1]

0 | In[1,1]
1 .Out[1,1]

0 | Out[0,0]
[1,1]) ⊢ tick.a().tick.a⟨⟩ | · · · | a⟨⟩ ◁ [1, 3]

Figure 7 Typing of Example 2.

We thus obtain the complexity bound [1, 4].

An example for the use of servers and sizes is given later, in Example 21, as well as a
justification for the use of intervals for obligations and capacities, in Example 20.

4 Soundness and Examples

The proof of soundness relies on subject reduction. In order to work on the parallel reduction
relation ⇒, we need to consider annotated processes. We introduce the following typing rule,
for the annotation, as a generalization of the rule for tick.

φ; Φ; Γ ⊢ P ◁ K

φ; Φ; ↑[m,m]Γ ⊢ m : P ◁ K + [m, m]

4.1 Subject Reduction and Soundness
In the Appendix B.2, we describe some intermediate lemmas needed for the soundness proof,
namely weakening, strengthening and then substitution lemmas for index and expressions.

Let us first introduce a notation for subject reduction:

▶ Definition 17 (Reduction for Contexts). We say that a context Γ reduces to a context Γ′

under φ; Φ, denoted φ; Φ ⊢ Γ −→∗ Γ′ when one of the following holds:
Γ = ∆, a : ch(T̃ )/U φ; Φ ⊢ U −→∗ U ′ Γ′ = ∆, a : ch(T̃ )/U ′

Γ = ∆, a : ∀̃i.srvK(T̃ )/U φ; Φ ⊢ U −→∗ U ′ Γ′ = ∆, a : ∀̃i.srvK(T̃ )/U ′

So, Γ′ is Γ after some reduction steps but only in a unique usage. We obtain immediately
that if all types in Γ are reliable then all types in Γ′ are also reliable by definition of reliability.

The subject reduction property is stated as follows; see Appendix B.5 for a proof.

▶ Theorem 18 (Subject Reduction). If φ; Φ; Γ ⊢ P ◁K with all types in Γ reliable and P ⇒ Q

then there exists Γ′ with φ; Φ ⊢ Γ −→∗ Γ′ and φ; Φ; Γ′ ⊢ Q ◁ K.

The following is the main soundness theorem.

▶ Theorem 19. Let P be an annotated process and n be its global parallel complexity. Then,
if φ; Φ; Γ ⊢ P ◁ [I, J ] with all types in Γ reliable, then we have φ; Φ ⊨ J ≥ n. Moreover, if Γ
does not contain any integers variables, we have φ; Φ ⊨ I ≤ n.

Proof. By Theorem 18, all reductions from P using ⇒ conserve the typing. The context
may be reduced too, but as a reduction step does not harm reliability, we can still apply
the subject reduction through all the reduction steps of ⇒. Moreover, for a process Q, if we
have a typing φ; Φ; Γ ⊢ Q ◁ [I, J ], then J ≥ Cℓ(Q). Thus, J is indeed a bound on the parallel
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complexity by definition. As for the lower bound, one can see that we do not always have
I ≤ Cℓ(Q) because of the processes tick.Q′ and match e {case 0 7→ Q1; case s(x) 7→ Q2}.
However, those two processes are not in normal form for ⇒, because tick.Q′ ⇒ 1 : Q′ and
as there are no integer variables in Γ, the pattern matching can also be reduced. Thus, from
a process Q we can find Q′ such that Q ⇒ Q′ and Q′ has no such processes of this shape on
the top. And then, we obtain I ≤ Cℓ(Q′) which is smaller than the parallel complexity of Q

by definition. ◀

4.2 Examples
Below we give several examples to demonstrate the expressive power of our type system.

▶ Example 20 (Intervals). To see the need for an interval capacity, consider the following
process:

a().b⟨⟩ | match e {case 0 7→ a⟨⟩; case s(x) 7→ tick.a⟨⟩}

Depending on the value of e (which may be statically unknown), an output on a may be
available at time 0 or 1. Thus, the input usage on a should have a capacity interval [0, 1]. As
a result, the obligation of the output usage on b should also be an interval [0, 1].

Now, one may think that we can assume that lower-bounds are always 0 and omit
lower-bounds, since we are mainly interested in an upper-bound of the parallel complexity.
Information about lower-bounds is, however, actually required for precise reasoning on
upper-bounds. For example, consider the process

a().b⟨⟩ | tick.a⟨⟩.b()

With intervals, a have the usage In[0,0]
[1,1] | Out[1,1]

0 and so b has the usage Out[1,1]
[0,0] | In[1,1]

[0,0], and
the parallel complexity of the process can be precisely inferred to be 1.

If we set lower-bounds to 0 and assign to a the usage In[0,0]
[0,1] | Out[0,1]

0 , then the usage of
b can only be: Out[0,1]

1 | In[0,1]
1 . Note that according to the imprecise usage of a, the output

on b may become ready at time 0 and then have to wait for one time unit until the input on
b becomes ready; thus, the capacity of the output on b is 1, instead of [0, 0]. An upper-bound
of the parallel complexity would therefore be inferred to be 1 + 1 = 2 (because the usages
tell us that the lefthand side process may wait for one time unit at a, and then for another
time unit at b), which is too imprecise.

We remark that this problem does not come for an inappropriate definitions of usages
with only upper-bound in our work. Indeed, by adapting the usage type system given in [23],
we would have the same imprecision. In the same way, trying to give a notion of reliability
that makes the usage Out[0,1]

0 | In[0,1]
0 reliable would lead to an unsound type system, as it

would make the subusage relation less flexible, which is essential for soundness. ⌟

Let us also present how sizes and polymorphism over indices in servers can type processes
defined by replication such as the factorial. Please note that by taking inspiration from
the typing in [4], using the type representation given in the Appendix A, more complicated
examples of parallel programs such as the bitonic sort could be typed in our setting with a
good complexity bound.

▶ Example 21 (Factorial). Assume a function on expressions mult : Nat[I, J ] × Nat[I ′, J ′] →
Nat[I ∗ I ′, J ∗ J ′]. In practice, this should be encoded as a server in π-calculus, but for
simplicity, we consider it as a function. We will describe the factorial and count the number
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P :=!f(n, r).match n {case 0 7→ r⟨1⟩; case s(m) 7→ (νr′)(f⟨m, r′⟩ | r′(x).tick.r⟨mult(n, x)⟩)}

i; ·; n : Nat[i] ⊢ n : Nat[i]

i; (i ≤ 0) ⊨ i! = 1

i; i ≤ 0; f : T ′, n : Nat[i], r : ch(Nat[i!])/Out[i,i]
0 ⊢ r⟨1⟩ ◁ [0, i] π1

i; ·; f : T ′, n : Nat[i], r : ch(Nat[i!])/Out[i,i]
0 ⊢ match n {case 0 7→ r⟨1⟩; case s(m) 7→ · · ·} ◁ [0, i]

·; ·; f : T ⊢!f(n, r).match n {case 0 7→ r⟨1⟩; case s(m) 7→ · · ·} ◁ [0, 0]

with the main branch of π1 being:

· · ·

(i; i ≥ 1) ⊨ i ∗ (i−1)! = i!

i; i ≥ 1; n : Nat[i], x : Nat[(i−1)!] ⊢ mult(n, x) : Nat[i!]

i; i ≥ 1; n : Nat[i], x : Nat[(i−1)!], r : ch(Nat[i!])/Out[0,0]
0 ⊢ r⟨mult(n, x)⟩ ◁ [0, 0]

i; i ≥ 1; n : Nat[i], x : Nat[(i−1)!], r : ch(Nat[i!])/Out[1,1]
0 ⊢ tick.r⟨mult(n, x)⟩ ◁ [1, 1]

i; i ≥ 1; n : Nat[i], r′ : S2, r : ch(Nat[i!])/Out[i,i]
0 ⊢ r′(x). · · · ◁ [0, i]

i; i ≥ 1; n : Nat[i], m : Nat[i−1], r : ch(Nat[i!])/Out[i,i]
0 , f : T ′, r′ : S ⊢ f⟨m, r′⟩ | r′(x). · · · ◁ [0, i]

i; i ≥ 1; n : Nat[i], m : Nat[i−1], r : ch(Nat[i!])/Out[i,i]
0 , f : T ′ ⊢ (νr′) · · · ◁ [0, i]

Figure 8 Representation and Typing of Factorial.

of multiplications with tick. We write Nat[I] to denote Nat[I, I]. We use the usual notation
I! to represent the factorial function in indices. The process representing factorial and its
typing derivation are given in Figure 8. The following type T denotes:

∀i.srv[0,i](Nat[i], ch(Nat[i!])/Out[i,i]
0 )/(!In[0,0]

∞ .Out[0,∞]
0 )

Denoting a server taking an integer as input, and a return channel on which the factorial of
this integer is sent, in i units of time. The usage of this server describes that it can be called
anytime. This type is reliable and it would be reliable even if composed with any kind of
output OutAo

0 if we want to call this server. Let:

T ′ = ∀i.srv[0,i](Nat[i], ch(Nat[i!])/Out[i,i]
0 )/Out[0,∞]

0 )

S = ch(Nat[(i−1)!])/(Out[i−1,i−1]
0 | In[0,0]

[i−1,i−1]) = S1 | S2

where S1 and S2 are obtained by the expected separation of the usage. This type S is reliable
under (i); (i ≥ 1). Thus, we give the typing described in Figure 8. From the type of f , we
see on its complexity [0, i] that it does at most a linear number of multiplications. Note that
the constraints that appear in a match are useful since without them, we could not prove
i; (i ≤ 0) ⊨ i! = 1 and i; (i ≥ 1) ⊨ i ∗ (i−1)! = i!. Moreover, polymorphism over indices is
necessary in order to find that the recursive call is made on a strictly smaller size i−1. ⌟

Let us now justify the use of this operator Jc; K in order to treat complexity.

▶ Example 22 (Deadlock). Let us consider the process P := (νa)(νb)(a().tick.b⟨⟩ |
b().tick.a⟨⟩). P is typed as shown in Figure 9. As a and b have exactly the same be-
haviour, let us focus on the typing of a().tick.b⟨⟩. The derivation for the subprocess tick.b⟨⟩
should be clear. By assigning the usage to In[0,0]

[∞,∞], the cost for a().tick.b⟨⟩ is calculated
by: [∞, ∞]; K = [0, 0]. Thus, we can correctly infer that the complexity of the deadlocked
process is 0. ⌟
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·; ·; a : ch()/0, b : ch()/Out[0,0]
0 ⊢ b⟨⟩ ◁ [0, 0]

·; ·; a : ch()/0, b : ch()/Out[1,1]
0 ⊢ tick.b⟨⟩ ◁ [1, 1]

·; ·; a : ch()/In[0,0]
[∞,∞], b : ch()/Out[∞,∞]

0 ⊢ a().tick.b⟨⟩ ◁ [0, 0] symmetry for the other branch

·; ·; a : ch()/(In[0,0]
[∞,∞] | Out[∞,∞]

0 ), b : ch()/(Out[∞,∞]
0 | In[0,0]

[0,0]) ⊢ a().tick.b⟨⟩ | b().tick.a⟨⟩ ◁ [0, 0]

·; ·; · ⊢ (νa)(νb)(a().tick.b⟨⟩ | b().tick.a⟨⟩) ◁ [0, 0]

Figure 9 Typing of Example 22.

▶ Example 23. We describe informally an example for which our system can give a complexity,
but fails to catch a precise bound. Let us consider the process:

P := tick.!a(n).match n {case 0 7→ 0; case s(m) 7→ a⟨m⟩} | a⟨10⟩ | tick.tick.!a(n).0

This process has complexity 2. However, if we want to give a usage to the server a, we must
have a usage:

!In[1,1]
0 .Out[0,0]

1 | Out[0,0]
[1,2] | !In[2,2]

0

We took as obligations the number of ticks before the action, and as capacity the minimal
number for which we have reliability. So in particular, because of the capacity 1 in the
usage Out[0,0]

1 , typing the recursive call a⟨m⟩ increases the complexity by one, and so typing
n recursive calls generates a complexity of n in the type system. So, in our setting, the
complexity of this process can only be bounded by 10. Overall, this type system may not
behave well when there are more than one replicated input process on each server channel,
since an imprecision on a capacity for a recursive call leads to an overall imprecision depending
on the number of recursive calls. This issue is the only source of imprecision we found with
respect to the type system of [4]: see the conjecture in Section 5. ⌟

5 Related Work

Some contributions to the complexity analysis of parallel functional programs by types appear
in [16, 20] but the languages studied do not express concurrency. Alternatively [1, 2, 15]
address the problem of analysing the time complexity of distributed or concurrent systems.
They provide interesting analyses on some instances of systems but do not handle dynamic
creation of processes and channel name passing as in the π-calculus. Moreover, the flow
graph or rely-guarantee reasoning techniques employed in [1,2] do not seem to offer the same
compositionality as type systems.

There have recently been several studies on type-based cost analysis for binary or
multiparty session calculi [5, 9, 10]. It is not clear whether and how those methods can be
extended to deal with more general concurrent processes that can be written in the π-calculus,
where there may be more than one sender/receiver process for each channel. Among those
studies, Das et al.’s work [9] seems technically closest to ours. Both their cost models and
ours are parametric, as they rely on a similar tick operation. Moreover, their temporal
operators seem to have a strong correspondence with usages and operations on them. More
specifically, the next operator ⃝ [9] is similar to the usage operator ↑[1,1] in our type system,
and □ and ♢ roughly correspond to input and output usages with capacity and obligations
[0, ∞]. For more precise comparison, we need to extend our type system with variant and
recursive types, to encode their session calculus into the π-calculus, following [8,24]. It is left
for future work.



P. Baillot, A. Ghyselen, and N. Kobayashi 34:15

Kobayashi et al. [24–26] also used the notion of usages to reason about deadlocks, livelocks,
and information flow, but he used a single number for each obligation and capacity (the
latter is called a “capability” in his work). In particular, a usage type system for time
boundedness, related with parallel complexity, was given in [23]. However, the definition
of parallel complexity and thus the definition of usages and reliability in this work is quite
different from ours, as its reduction does not take into account some non-deterministic paths.
Moreover, as explained in Example 20, the use of a single number and not intervals induces
a loss of precision even on simple examples; we have generalized the number to an interval
to improve the precision of our analysis. More recently, the first two authors proposed in [4]
a type system with the same goal of analysing parallel complexity in π-calculus. This type
system builds on sized types and input/output types instead of usages. Because of that, they
cannot manage successive uses of the same channel as in Example 2, as their names can
essentially be used at only one specific time. In most cases, the time annotation used for
channels in their setting corresponds to the sum of the lower bound for obligation and the
upper bound for capacity in our setting. We conjecture the following result:

▶ Conjecture 24 (Comparison with [4]). Suppose given a typing φ; Φ; Γi/o ⊢i/o P ◁ J in the
input/output sized type system of [4], such that this process P has a linear use of channels.
Then, there exists a reliable context Γ such that φ; Φ; Γ ⊢ P ◁ [0, J ].

More details and some intuitions are given in the Appendix A. So, on a simple use of names
our system is strictly more precise if this conjecture is true. However, on other cases, like in
Example 23, their system is more precise as the loss of precision because of usage does not
happen in their setting. On the contrary, our setting has fairly more precision for processes
with a non-trivial use of channels, as in Example 2.

There have also been studies on implicit computational complexity for process calculi,
albeit for less expressive calculi than the pi-calculus [7,14,28]. Unlike our work, they consider
the work rather than the span, and characterize complexity classes, rather than estimating the
precise execution time of a given process. The paper [12] by contrast considers the π-calculus
and causal (parallel) complexity, but the goal here is also to delineate a characterization of
polynomial complexity.

6 Conclusion

We presented a type system built on sized types and usages such that a type derivation
for a process gives an upper bound on the parallel complexity of this process. The type
system relies on intervals in order to give an approximation of the sizes of integers in the
process, and an approximation of the time an input or an output needs to synchronize. In
comparison to [4], we showed with examples that our type system can type some concurrent
behaviour that was not captured in their type system, and on a certain subset of processes,
we conjecture that our new type system is strictly more precise.

Building on previous work by the third author on type inference for usages [25,27], we
plan to investigate type inference, with the use of constraint solving procedures for indices.
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A Comparison with [4]

In this section, we give intuitively a description of how to simulate types on [4] in a linear
setting with usage. We say that a process has a linear use of channels if it use channel names
at most one time for input and at most one time for output. For servers, we suppose that the
replicated input is once and for all defined at the beginning of a process, and as free variables
it can only use others servers. In their type system, a channel is given a type ChI(T̃ ) where
I is an upper bound on the time this channel communicates. It can also be a variant of
this type with only input or only output capability. Such a channel would be represented in
out type system by a type ch(T̃ )/(In[I1,I1]

J1
c

| OutI2,I2
J2

c
) where either J1

c is 0 and then I1 ≤ I,
either J1

c = [J1, J1] and then I1 + J1 ≤ I. We have the same thing for J2
c and I2. To be

more precise, the typing in our setting should be a non-deterministic choice (using +) over
such usages, and the capacity should adapt to the obligation of the dual action in order to
be reliable. So, for example if I1 ≤ I2, then we would take: ch(T̃ )/(In[I1,I1]

[I2−I1,I2−I1] | OutI2,I2
0 ).

Note that this shape of type adapts well to the way time is delayed in their setting. For
example, the tick constructor in their setting make the time advance by 1, and in our
setting, then we would obtain the usage (In[I1+1,I1+1]

[I2−I1,I2−I1] | OutI2+1,I2+1
0 ) and we still have

I2−I1 = (I2 + 1)−(I1 + 1).
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In the same way, in their setting when doing an output (or input), the time is delayed by
I. Here, with usages, it would be delayed by Jc which is, by definition, a delay of the shape
↑[J,J] with J ≤ I. So, we would keep the invariant that our time annotation have the shape
of singleton interval with a smaller value than the time annotation in their setting.

For servers, in the linear setting, their types have the shape: I ∀̃i.srvJ (T̃ ) where I = 0 is
again a time annotation giving an upper bound on the time the input action of this server is
defined, and J is a complexity as in our setting. So, in our setting it would be:

∀̃i.srv[0,J](T̃ )/!In[0,0]
∞ .!Out[0,∞]

0 | !Out[0,∞]
0

Note that this usage is reliable. The main point here is this infinite capacity for input. Please
note that because of our input rule for servers, it does not generates an infinite complexity.
However, it imposes a delaying ↑[0,∞]!Γ in the context. Because of the shape we gave to types,
it means that the context can only have outputs for other servers as free variables, but this
was the condition imposed by linearity. Note that in [4], they have a restriction on the free
variables of servers that is in fact the same restriction so it does not harm the comparison to
take this restriction on free variables. As an example, the bitonic sort described in [4] could
be typed similarly in our setting with this kind of type.

Finally, choice in usages U1 + U2 is used to put together the different usages we obtain in
the two branches of a pattern matching.

B Proofs

In this section, we prove Theorem 18, after giving various lemmas.

B.1 Properties of Subusage

The subusage relation satisfies some properties that are essential for the soundness theorem.
First, we have the usual properties of subusage:

▶ Lemma 25. If φ; Φ ⊨ Bo ⊆ Ao then φ; Φ ⊢ (↑AoU) ⊑ (↑BoU)

▶ Lemma 26 (Properties of Subusage). For a set of index variables φ and a set of constraints
Φ on φ we have:

1. If φ; Φ ⊢ U ⊑ V then for any interval Ao, we have φ; Φ ⊢ ↑AoU ⊑ ↑AoV .

2. If φ; Φ ⊢ U ⊑ V and φ; Φ ⊢ V −→ V ′, then there exists U ′ such that φ; Φ ⊢ U −→∗ U ′

and φ; Φ ⊢ U ′ ⊑ V ′ (with err ⊑ U for any usage U)

3. If φ; Φ ⊢ U ⊑ V and U is reliable under φ; Φ then V is reliable under φ; Φ.

The proof of the first lemma is rather easy, but for the second lemma it is a bit cumbersome.
Intuitively all the base rules for subusage satisfy this and the main difficulty is to show that
the congruence rule and context rule conserve those properties.

More specific to this type system, we also have the following lemma, stating that delaying
does not modify the behaviour of a type.
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▶ Lemma 27 (Invariance by Delaying). For any interval Ao:
1. If φ; Φ ⊢ ↑AoU −→ V ′ then, there exists V such that ↑AoV = V ′ and φ; Φ ⊢ U −→ V .

(with err = ↑Aoerr)
2. If φ; Φ ⊢ U −→ V then φ; Φ ⊢ ↑AoU −→ ↑AoV .
3. U is reliable under φ; Φ if and only if ↑AoU is reliable under φ; Φ.

In our setting, this lemma shows among other things that the tick constructor, or more
generally the annotation n : P , does not break reliability. Those properties can easily be
proved with simple inductions.

B.2 Intermediate Lemmas
We give some intermediate lemmas for the soundness theorem

▶ Lemma 28 (Weakening). Let φ, φ′ be disjoint set of index variables, Φ be a set of constraints
on φ, Φ′ be a set of constraints on (φ, φ′), Γ and Γ′ be contexts on disjoint set of variables.
1. If φ; Φ; Γ ⊢ e : T then (φ, φ′); (Φ, Φ′); Γ, Γ′ ⊢ e : T .
2. If φ; Φ; Γ ⊢ P ◁ K then (φ, φ′); (Φ, Φ′); Γ, Γ′ ⊢ P ◁ K.

We also show that we can remove some useless hypothesis.

▶ Lemma 29 (Strengthening). Let φ be a set of index variables, Φ be a set of constraints on
φ, and C a constraint on φ such that φ; Φ ⊨ C.
1. If φ; (Φ, C); Γ, Γ′ ⊢ e : T and the variables in Γ′ are not free in e, then φ; Φ; Γ ⊢ e : T .
2. If φ; (Φ, C); Γ, Γ′ ⊢ P ◁ K and the variables in Γ′ are not free in P , then φ; Φ; Γ ⊢ P ◁ K.

Those two lemmas are proved easily by successive induction on the definitions in this
paper. Then, we also have a lemma expressing that index variables can indeed be replaced
by any index.

▶ Lemma 30 (Index Substitution). Let φ be a set of index variables and i /∈ φ. Let JN be an
index with free variables in φ. Then,
1. If (φ, i); Φ; Γ ⊢ e : T then φ; Φ{JN/i}; Γ{JN/i} ⊢ e : T{JN/i}.
2. If (φ, i); Φ; Γ ⊢ P ◁ K then φ; Φ{JN/i}; Γ{JN/i} ⊢ P ◁ K{JN/i}.

B.3 Substitution Lemma
We now present the variable substitution lemmas. In the setting of usages, this lemma
is a bit more complex than usual. Indeed, we have a separation of contexts with the
parallel composition, and we have to rely on subusage, especially the rule φ; Φ ⊢ (αAo

J .U) |
(↑Ao+JcV ) ⊑ αAo

Jc
.(U | V ) as expressed in the Example 11 above. We put some emphasis on

the following notation: when we write Γ, v : T as a context in typing, it means that v does
not appear in Γ.

▶ Lemma 31 (Substitution). Let Γ and ∆ be contexts such that Γ | ∆ is defined. Then we
have:
1. If φ; Φ; Γ, v : T ⊢ e′ : T ′ and ∆ ⊢ e : T then φ; Φ; Γ | ∆ ⊢ e′[v := e] : T ′

2. If φ; Φ; Γ, v : T ⊢ P ◁ K and ∆ ⊢ e : T then φ; Φ; Γ | ∆ ⊢ P [v := e] ◁ K

The first point is straightforward. It uses the fact that we have the relation φ; Φ ⊢ U ⊑ 0
for any usage U , and so we can use φ; Φ ⊢ Γ | ∆ ⊑ Γ in order to weaken ∆ (similarly for
Γ) if needed. The second point is more interesting. The easy case is when T is Nat[I, J ]
for some [I, J ]. Then, we take a ∆ that only uses the zero usage, and so Γ | ∆ = Γ and
everything becomes simpler. The more interesting cases are:
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▶ Lemma 32 (Difficult Cases of Substitution). We have:
If φ; Φ; Γ, b:ch(S̃)/W0, c:ch(S̃)/W1 ⊢ P ◁K then φ; Φ; Γ, b:ch(S̃)/(W0 | W1) ⊢ P [c := b]◁K

If φ; Φ; Γ, b : ∀̃i.srvK(S̃)/W0, c : ∀̃i.srvK(S̃)/W1 ⊢ P ◁ K then
φ; Φ; Γ, b : ∀̃i.srvK(S̃)/(W0 | W1) ⊢ P [c := b] ◁ K

With a careful induction, we can indeed prove this lemma, relying on the subusage
relation.

B.4 Congruence Equivalence
In order to prove the soundness theorem, we need first a lemma saying that the congruence
relation behaves well with typing.

▶ Lemma 33 (Congruence and Typing). Let P and Q be annotated processes such that P ≡ Q.
Then, φ; Φ; Γ ⊢ P ◁ K if and only if φ; Φ; Γ ⊢ Q ◁ K.

The proof is an induction on P ≡ Q, relying on all the previous lemma, and especially
the lemmas on delaying for congruence rules specific to annotated processes.

B.5 Proof of Theorem 18 (Subject Reduction)
We now detail some cases for the proof of Theorem 18.

Note that for a process P , the typing system is not syntax-directed because of the
subtyping rule. However, by reflexivity and transitivity of subtyping, we can always assume
that a proof has exactly one subtyping rule before any syntax-directed rule. Moreover, notice
that in those kinds of proof, the top-level rule of subtyping can be ignored. Indeed, we
can always simulate exactly the same subtyping rule for both P and Q We now proceed by
doing the case analysis on the rules of Figure 1. In order to simplify the proof, we will also
consider that types and indexes invariant by subtyping (like the complexity in a server) are
not renamed with subtyping. Note that this only add cumbersome notations but it does not
change the core of the proof. We detail only the case for synchronization:

Case (n : a(ṽ).P ) | (m : a⟨ẽ⟩.Q) ⇒ (max(m, n) : (P [ṽ := ẽ] | Q)). Consider the typing
φ; Φ; Γ0 | ∆0, a : ch(T̃ )/(U0 | V0) ⊢ (n : a(ṽ).P ) | (m : a⟨ẽ⟩.Q) ◁ K0 ⊔ K ′

0. The first rule is
the rule for parallel composition, then the proof is split into the two following subtree:

πP

φ; Φ; Γ2, a : ch(T̃ )/U2, ṽ : T̃ ⊢ P ◁ K2

φ; Φ; ↑Jc Γ2, a : ch(T̃ )/In[0,0]
Jc

.U2 ⊢ a(̃v).P ◁ Jc; K2 (3)

φ; Φ; Γ1, a : ch(T̃ )/U1 ⊢ a(̃v).P ◁ K1

φ; Φ; ↑[n,n]Γ1, a : ch(T̃ )/↑[n,n]U1 ⊢ n : a(̃v).P ◁ K1 + [n, n] (4)

φ; Φ; Γ0, a : ch(T̃ )/U0 ⊢ n : a(̃v).P ◁ K0

πe

φ; Φ; ∆2, a : ch(T̃ )/V2 ⊢ ẽ : T̃

πQ

φ; Φ; ∆′
2, a : ch(T̃ )/V ′

2 ⊢ Q ◁ K′
2

φ; Φ; ↑J′
c (∆2 | ∆′

2), a : ch(T̃ )/Out[0,0]
J′

c
.(V2 | V ′

2 ) ⊢ a⟨ẽ⟩.Q ◁ J ′
c; K′

2 (1)

φ; Φ; ∆1, a : ch(T̃ )/V1 ⊢ a⟨ẽ⟩.Q ◁ K ′
1

φ; Φ; ↑[m,m]∆1, a : ch(T̃ )/↑[m,m]V1 ⊢ m : a⟨ẽ⟩.Q ◁ K ′
1 + [m, m] (2)

φ; Φ; ∆0, a : ch(T̃ )/V0 ⊢ m : a⟨ẽ⟩.Q ◁ K ′
0
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where (1) is:

φ; Φ ⊢ ∆1 ⊑ ↑J′
c(∆2 | ∆′

2) φ; Φ ⊢ V1 ⊑ Out[0,0]
J′

c
.(V2 | V ′

2) φ; Φ ⊨ J ′
c; K ′

2 ⊆ K ′
1

(2) is:

φ; Φ ⊢ ∆0 ⊑ ↑[n,n]∆1; V0 ⊑ ↑[m,m]V1; K ′
1 + [m, m] ⊆ K ′

0

(3) is:

φ; Φ ⊢ Γ1 ⊑ ↑JcΓ2; U1 ⊑ In[0,0]
Jc

.U2; Jc; K2 ⊆ K1

(4) is:

φ; Φ ⊢ Γ0 ⊑ ↑[n,n]Γ1; U0 ⊑ ↑[n,n]U1; K1 + [n, n] ⊆ K0

First, we know that Γ0 | ∆0 is defined. Moreover, we have

φ; Φ ⊢ Γ0 ⊑ ↑[n,n]Γ1 φ; Φ ⊢ Γ1 ⊑ ↑Jc Γ2 φ; Φ ⊢ ∆0 ⊑ ↑[m,m]∆1 ∆1 ⊑ ↑J′
c (∆2 | ∆′

2)

So, for the channel and server types, in those seven contexts, the shape of the type does not
change (only the usage can change). We also have:

ΓNat
0 = ∆Nat

0 φ; Φ ⊢ ΓNat
0 ⊑ ΓNat

1 ⊑ ΓNat
2 φ; Φ ⊢ ∆Nat

0 ⊑ ∆Nat
1 ⊑ ∆Nat

2 ∆Nat
2 = ∆′Nat

2

So, from πe and πP we obtain by subtyping:

φ; Φ; ΓNat
0 , Γν

2 , a : ch(T̃ )/U2, ṽ : T̃ ⊢ P ◁ K2 φ; Φ; ΓNat
0 , ∆ν

2 , a : ch(T̃ )/V2 ⊢ ẽ : T̃

So, we use the substitution lemma (Lemma 31) and we obtain:

φ; Φ; ΓNat
0 , (Γν

2 | ∆ν
2), a : ch(T̃ )/(U2 | V2) ⊢ P [ṽ := ẽ] ◁ K2

As previously, by subtyping from πQ, we have:

φ; Φ; ΓNat
0 , ∆′ν

2 , a : ch(T̃ )/V ′
2 ⊢ Q ◁ K ′

2

Thus, with the parallel composition rule (as parallel composition of context is defined) and
subtyping we have:

φ; Φ; ΓNat
0 , (Γν

2 | ∆ν
2 | ∆′ν

2 ), a : ch(T̃ )/(U2 | V2 | V ′
2) ⊢ (P [ṽ := ẽ] | Q) ◁ K2 ⊔ K ′

2

Let us denote M = max(m, n). Thus, we derive the proof:

φ; Φ; ΓNat
0 , (Γν

2 | ∆ν
2 | ∆′ν

2 ), a : ch(T̃ )/(U2|V2V ′
2 ) ⊢ (P [̃v := ẽ] | Q) ◁ K2 ⊔ K′

2

φ; Φ; ΓNat
0 , ↑[M,M](Γν

2 |∆ν
2 |∆′ν

2 ), a : ch(T̃ )/↑[M,M](U2|V2|V ′
2 ) ⊢ M : (P [̃v := ẽ] | Q) ◁ (K2 ⊔ K′

2) + [M, M ]

Now, recall that by hypothesis, U0 | V0 is reliable. We have:
φ; Φ ⊢ U0 ⊑ ↑[n,n]

U1 φ; Φ ⊢ U1 ⊑ In[0,0]
Jc

.U2 φ; Φ ⊢ V0 ⊑ ↑[m,m]
V1 φ; Φ ⊢ V1 ⊑ Out[0,0]

J′
c

(V2 | V
′

2 )

So, by Point 1 of Lemma 26, with transitivity and parallel composition of subusage, we
have:

φ; Φ ⊢ U0 | V0 ⊑ (↑[n,n]U1) | (↑[m,m]V1) ⊑ In[n,n]
Jc

.U2 | Out[m,m]
J′

c
(V2 | V ′

2)
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By Point 3 of Lemma 26, we have In[n,n]
Jc

.U2 | Out[m,m]
J′

c
(V2 | V ′

2) reliable. So, in particular,
we have:

φ; Φ ⊢ In[n,n]
Jc

.U2 | Out[m,m]
J′

c
(V2 | V ′

2) −→ ↑[M,M ](U2 | V2 | V ′
2)

φ; Φ ⊨ [n, n] ⊆ [m, m] ⊕ J ′
c φ; Φ ⊨ [m, m] ⊆ [n, n] ⊕ Jc

Thus, we deduce that

φ; Φ ⊨ [M, M ] ⊆ [n, n] + Jc φ; Φ ⊨ [M, M ] ⊆ [m, m] + J ′
c

So, we have in particular, with Lemma 25 and Point 1 of Lemma 26 and parallel composition:
φ; Φ ⊢ Γ0 | ∆0 ⊑ (↑[n,n]Γ1) | ↑[m,m]∆1 ⊑ (↑[n,n]+Jc Γ2) | (↑[m,m]+J ′

c (∆2 | ∆′
2)) ⊑ ↑[M,M ](Γ2 | ∆2 | ∆′

2)

We also have

φ; Φ ⊨ K2 +[M, M ] ⊆ Jc; K2 +[n, n] ⊆ K0 φ; Φ ⊨ K ′
2 +[M, M ] ⊆ J ′

c; K ′
2 +[m, m] ⊆ K ′

0

So, we obtain directly φ; Φ ⊨ (K2 ⊔ K ′
2) + [M, M ] ⊆ K0 ⊔ K ′

0
Thus, we can simplify a bit the derivation given above, and we have:

φ; Φ; ΓNat
0 , (Γν

2 | ∆ν
2 | ∆′ν

2 ), a : ch(T̃ )/(U2 | V2 | V ′
2 ) ⊢ (P [̃v := ẽ] | Q) ◁ K2 ⊔ K′

2

φ; Φ; ΓNat
0 , ↑[M,M](Γν

2 |∆ν
2 |∆′ν

2 ), a : ch(T̃ )/↑[M,M](U2|V2|V ′
2 ) ⊢ M : (P [̃v := ẽ] | Q) ◁ (K2 ⊔ K′

2) + [M, M ]

φ; Φ; (Γ0 | ∆0), a : ch(T̃ )/↑[M,M](U2 | V2 | V ′
2 ) ⊢ M : (P [̃v := ẽ] | Q) ◁ K0 ⊔ K′

0

By Point 2 of Lemma 26, there exists W such that:

φ; Φ ⊢ U0 | V0 −→∗ W φ; Φ ⊢ W ⊑ ↑[M,M ](U2 | V2 | V ′
2)

So, by subtyping we have a proof:

φ; Φ; Γ0 | ∆0, a : ch(T̃ )/W ⊢ M : (P [ṽ := ẽ] | Q) ◁ K0 ⊔ K ′
0

This concludes this case.
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Abstract
Multiparty session types (MSTs) provide an efficient methodology for specifying and verifying
message passing software systems. In the theory of MSTs, a global type specifies the interaction
among the roles at the global level. A local specification for each role is generated by projecting
from the global type on to the message exchanges it participates in. Whenever a global type can be
projected on to each role, the composition of the projections is deadlock free and has exactly the
behaviours specified by the global type. The key to the usability of MSTs is the projection operation:
a more expressive projection allows more systems to be type-checked but requires a more difficult
soundness argument.

In this paper, we generalise the standard projection operation in MSTs. This allows us to model
and type-check many design patterns in distributed systems, such as load balancing, that are rejected
by the standard projection. The key to the new projection is an analysis that tracks causality
between messages. Our soundness proof uses novel graph-theoretic techniques from the theory of
message-sequence charts. We demonstrate the efficacy of the new projection operation by showing
many global types for common patterns that can be projected under our projection but not under
the standard projection operation.
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1 Introduction

Distributed message-passing systems are both widespread and challenging to design and
implement. A process tries to implement its role in a protocol with only the partial information
received through messages. The unpredictable communication delays mean that messages
from different sources can be arbitrarily reordered. Combining concurrency, asynchrony,
and message buffering makes the verification problem algorithmically undecidable [10] and
principled design and verification of such systems is an important challenge.
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Multiparty Session Types (MSTs) [37, 52] provide an appealing type-based approach
for formalising and compositionally verifying structured concurrent distributed systems.
They have been successfully applied to web services [58], distributed algorithms [41], smart
contracts [23], operating systems [26], high performance computing [34], timed systems [8],
cyber-physical systems [47], etc. By decomposing the problem of asynchronous verification on
to local roles, MSTs provide a clean and modular approach to the verification of distributed
systems (see the surveys [4, 39]).

The key step in MSTs is the projection from a global type, specifying all possible global
message exchanges, to local types for each role. The soundness theorem of MSTs states that
every projectable global type is implementable: there is a distributed implementation that is
free from communication safety errors such as deadlocks and unexpected messages.

The projection keeps only the operations observable by a given role and yet maintains
the invariant that every choice can be distinguished in an unambiguous way. Most current
projection operations ensure this invariant by syntactically merging different paths locally for
each role. While these projections are syntactic and efficient, they are also very conservative
and disallow many common design patterns in distributed systems.

In this paper, we describe a more general projection for MSTs to address the conservatism
of existing projections. To motivate our extension, consider a simple load balancing protocol:
a client sends a request to a server and the server forwards the request to one of two workers.
The workers serve the request and directly reply to the client. (We provide the formal syntax
later.) This common protocol is disallowed by existing MST systems, either because they
syntactically disallow such messages (the directed choice restriction that states the sender
and recipient must be the same along every branch of a choice), or because the projection
operates only on the global type and disallows inferred choice.

The key difficulty in projection is to manage the interaction between choice and concur-
rency in a distributed setting. Without choice, all roles would just follow one predetermined
sequence of send and receive operations. Introducing choice means a role either decides whom
to send which message next, or reacts to the choices of other roles – even if such choices
are not locally visible. This is only possible when the outcome of every choice propagates
unambiguously. At each point, every role either is agnostic to a prior choice or knows exactly
the outcome of the choice, even though it may only receive information about the choice
indirectly through subsequent communication with other roles. Unfortunately, computing
how choice propagates in a system is undecidable in general [3]; this is the reason why
conservative restrictions are used in practice.

The key insight in our projection operation is to manage the interaction of choice and
concurrency via a message causality analysis, inspired by the theory of communicating state
machines (CSMs) and message sequence charts (MSCs), that provides a more global view.
We resolve choice based on available messages along different branches. The causality analysis
provides more information when merging two paths based on expected messages.

We show that our generalised projection subsumes previous approaches that lift the
directed choice restriction [16, 38, 17, 40]. Empirically, it allows us to model and verify
common distributed programming patterns such as load balancing, replicated data, and
caching – where a server needs to choose between different workers – that are not in scope of
current MSTs, while preserving the efficiency of projection.

We show type soundness for generalised projection. This generalisation is non-trivial,
since soundness depends on subtle arguments about asynchronous messages in the system.
We prove the result using an automata-theoretic approach, also inspired by the theory of
MSCs, that argues about traces in communicating state machines. Our language-theoretic
proof is different from the usual proof-theoretic approaches in soundness proofs of MST
systems, and builds upon technical machinery from the theory of MSCs.
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We show empirically that generalised choice is key to modelling several interesting instances
in distributed systems while maintaining the efficiency of more conservative systems. Our
global type specifications go beyond existing examples in the literature of MSTs.

2 Multiparty Session Types with Generalised Choice

In this section, we define global and local types. We explain how multiparty session
types (MSTs) work and present a shortcoming of current MSTs. Our MSTs overcome this
shortcoming by allowing a role to wait for messages coming from different senders. We
define a new projection operation from global to local types: the projection represents global
message exchanges from the perspective of a single role. The key to the new projection is a
generalised merge operator that prevents confusion between messages from different senders.

2.1 Global and Local Types
We describe the syntax of global types following work by Honda et al. [36], Hu and Yoshida [38],
and Scalas and Yoshida [52]. We focus on the core message-passing aspects of asynchronous
MSTs and do not include features such as delegation.

▶ Definition 1 (Syntax). Global types for MSTs are defined by the grammar:

G ::= 0 |
∑
i∈I

p→qi :mi.Gi | µt. G | t

where p, qi range over a set of roles P, mi over a set of messages V, and t over type variables.

Note that our definition of global types extends the standard syntax (see, e.g., [36]),
which has a directed choice restriction, requiring that a sender must send messages to the
same role along different branches of a choice. Our syntax

∑
i∈I p→qi :mi.Gi allows a sender

to send messages to different roles along different branches (as in, e.g., [38]). For readability,
we sometimes use the infix operator + for choice, instead of

∑
. When |I| = 1, we omit

∑
.

In a global type, the send and the receive operations of a message exchange are specified
atomically. An expression p → q : m represents two events: a send p ▷ q!m and a receive
q ◁ p?m. We require the sender and receiver processes to be different: p ̸= q. A choice (

∑
)

occurs at the sender role. Each branch of a choice needs to be uniquely distinguishable:
∀i, j ∈ I. i ̸= j ⇒ (qi, mi) ̸= (qj , mj). The least fixed point operator encodes loops and we
require recursion to be guarded, i.e., in µt. G, there is at least one message between µt and
each t in G. Without loss of generality, we assume that all occurrences of t are bound and
each bound variable t is distinct. As the recursion is limited to tail recursion, it is memoryless
and generates regular sequences, so a global type can be interpreted as a regular language of
message exchanges.

▶ Example 2 (Load balancing). A simple load balancing scenario can be modelled with the

global type: µt. Client→Server :req. +

{
Server→Worker1 :req. Worker1 →Client :reply. t

Server→Worker2 :req. Worker2 →Client :reply. t

The least fixed point operator µ encodes a loop in which a client sends a request to a
server. The server then non-deterministically forwards the request to one of two workers.
The chosen worker handles the request and replies to the client. In this protocol, the server
communicates with a different worker in each branch. Figure 1a shows this example as a
high-level message sequence chart (HMSC). The timeline of roles is shown with vertical lines
and the messages with horizontal arrows. Different message contents are represented by
different styles of arrows. ⌟

CONCUR 2021
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C S W1 W2

(a) Load balancing.

C S W1 W2

(b) Variant of load balancing.

C S W1 W2

(c) Execution.

Figure 1 Load balancing and some variant with potential for confusion exemplified by an
execution.

Next, we define local types, which specify a role’s view of a protocol.

▶ Definition 3 (Local types). The local types for a role p are defined as:

L ::= 0 | ⊕
i∈I

qi!mi.Li | &
i∈I

qi?mi.Li | µt.L | t

where the internal choice (⊕) and external choice (&) both respect ∀i, j ∈ I. i ̸= j ⇒
(qi, mi) ̸= (qj , mj). As for global types, we assume every recursion variable is bound, each
recursion operator (µ) uses a different identifier t, and we may omit ⊕ and & if |I| = 1.

Note that a role can send to, resp. receive from, multiple roles in a choice: we generalise
⊕i∈I q!mi.Li of standard MSTs to ⊕i∈I qi!mi.Li and &i∈I q?mi.Li to &i∈I qi?mi.Li.

▶ Example 4. We can give the following local types for Figure 1a:

Server : µt. Client?req. (Worker1!req. t ⊕ Worker2!req. t)
Client : µt. Server!req. (Worker1?reply. t & Worker2?reply. t)

Workeri : µt. Server?req. Client!reply. t for i ∈ {1, 2}

Note that their structure, i.e., having a loop with at most two options, resembles the one of
the global type in Example 2. ⌟

Our goal is to define a partial projection operation from a given global type to a local
type for each role. If the projection is defined, we expect that the type is implementable. We
shall show that the global type of Example 2 projects to the local types in Example 4. As a
consequence, the global type is implementable. Intuitively, when each role in the example
executes based on its local type, they agree on a unique global path in an unrolling of the
global type. We formalise projection and soundness in Section 3. We note that existing
projection operations, including the ones by Hu and Yoshida [38] as well as Scalas and
Yoshida [52], reject the above global type as not implementable.

Notations and Assumptions. We write G for the global type we try to project. When
traversing the global type G, we use G for the current term (which is a subterm of G). To
simplify the notation, we assume that the index i of a choice uniquely determines the sender
and the message qi?mi. Using this notation, we write I ∩ J to select the set of choices with
identical sender and message value and I \ J to select the alternatives present in I but not
in J . When looking at send and receive events in a global setting we write p ▷ q!m for p
sending to q and q ◁ p?m for q receiving from p.

In later definitions, we unfold the recursion in types. We could get the unfolding through
a congruence relation. However, this requires dealing with infinite structures, which makes
some definitions not effective. Instead, we precompute the map from each recursion variable t

to its unfolding. For a given global type, let getµ be a function that returns a map from t

to G for each subterm µt. G. Recall, each t in a type is different. getµ is defined as follows:
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getµ(0) := [ ] getµ(t) := [ ] getµ(µt.G) := [t 7→ G] ∪ getµ(G)

getµ(
∑
i∈I

p→qi :mi.Gi) :=
⋃
i∈I

getµ(Gi)

We write getµG as shorthand for the map returned by getµ(G).

2.2 Generalised Projection and Merge
We now define a partial projection operation that projects a global type on to each role. The
projection on to a role r is a local type and keeps only r’s actions. Intuitively, it gives the
“local view” of message exchanges performed by r. While projecting, non-determinism may
arise due to choices that r does not observe directly. In this case, the different branches are
merged using a partial merge operator (⊓). The merge operator checks that a role, which has
not yet learned the outcome of a choice, only performs actions that are allowed in all possible
branches. The role can perform branch-specific actions after it has received a message that
resolves the choice. For a role that is agnostic to the choice, i.e., behaves the same on all the
branches, the merge allows the role to proceed as if the choice does not exist.

So far, the idea follows standard asynchronous MSTs. What distinguishes our new
projection operator from prior ones (e.g., [38, 52]), is that we allow a role to learn which
branch has been taken through messages received from different senders. This generalisation
is non-trivial. When limiting the reception to messages from a single role, one can rely on
the FIFO order provided by the corresponding channel. However, messages coming from
different sources are only partially ordered. Thus, unlike previous approaches, our merge
operator looks at the result of a causality analysis on the global type to make sure that this
partial ordering cannot introduce any confusion.

▶ Example 5 (Intricacies of generalising projection). We demonstrate that a straightforward
generalisation of existing projection operators can lead to unsoundness. Consider a naive
projection that merges branches with internal choice if they are equal, and for receives,
simply always merges external choices – also from different senders. In addition, it removes
empty loops. For Figure 1a, this naive projection yields the expected local types presented
in Example 4. We show that naive projection can be unsound. Figure 1b shows a variant of
load balancing, for which naive projection yields the following local types:

Server : µt. Client?req. (Worker1!req. t ⊕ Worker2!req. t)
Client : µt. Server!req. (Worker1?reply. Worker2?reply. t & Worker2?reply. t)

Worker1 : µt. Server?req. Worker2!req. t

Worker2 : µt. (Worker1?req. Client▷!reply. t & Server?req. Client▷!reply. t)

Unfortunately, the global type is not implementable. The problem is that, for the Client,
the two messages on its left branch are not causally related. Consider the execution prefix
in Figure 1c which is not specified in the global type. The Server decided to first take the
left (L) and then the right (R) branch. For Server, the order LR is obvious from its events
and the same applies for Worker2. For Worker1, every possible order R∗LR∗ is plausible as it
does not have events in the right branch. Since LR belongs to the set of plausible orders,
there is no confusion. Now, the messages from the two workers to the client are independent
and, therefore, can be received in any order. If the client receives Worker2 ?reply first, then
its local view is consistent with the choice RL as the order of branches. This can lead to
confusion and, thus, execution prefixes which are not specified in the global type. ⌟

CONCUR 2021
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We shall now define our generalised projection operation. To identify confusion as above,
we keep track of causality between messages. We determine what messages a role could
receive at a given point in the global type through an available messages analysis. Tracking
causality needs to be done at the level of the global type. We look for chains of dependent
messages and we also need to unfold loops. Fortunately, since we only check for the presence
or absence of some messages, it is sufficient to unfold each recursion at most once.

Projection and Interferences from Independent Messages. The challenge of projecting a
global type lies in resolving the non-determinism introduced by having only the endpoint view.
Example 5 shows that in order to decide if a choice is safe, we need to know which messages
can arrive at the same time. To enable this, we annotate local types with the messages that
could be received at that point in the protocol. We call these availability annotated local
types and write them as AL = ⟨L, Msg⟩ where L is a local type and Msg is a set of messages.
This signifies that when a role has reached AL, the messages in Msg can be present in the
communication channels. We annotate types using the grammar for local types (Definition 3),
where each subterm is annotated. To recover a local type, we erase the annotation, i.e.,
recursively replace each AL = ⟨L, Msg⟩ by L. The projection internally uses annotated types.

The projection of G on to r, written G↾r, traverses G to erase the operations that do
not involve r. During this phase, we also compute the messages that r may receive. The
function avail(B, T, G) computes the set of messages that other roles can send while r has
not yet learned the outcome of the choice. This set depends on B, the set of blocked roles,
i.e., the roles which are waiting to receive a message and hence cannot move; T , the set of
recursion variables we have already visited; and G, the subterm in G at which we compute
the available messages. We defer the definition of avail(B, T, G) to later in this section.

Empty Paths Elimination. When projecting, there may be paths and loops where a role
neither sends nor receives a message, e.g., the right loop in Example 2 for Worker1. Such
paths can be removed during projection. Even if conceptually simple, the notational overhead
impedes understandability of how our message availability analysis is used. Therefore, we
first focus on the message availability analysis and define a projection operation that does
not account for empty paths elimination. After defining the merge operator ⊓, we give the
full definition of our generalised projection operation.

▶ Definition 6 (Projection without empty paths elimination). The projection without empty
paths elimination G↾r of a global type G on to a role r ∈ P is an availability annotated local
type inductively defined as:

t↾r := ⟨t, avail({r}, {t}, getµG(t))⟩ 0↾r := ⟨0, ∅⟩

(µt.G)↾r :=

{
⟨µt.(G↾r), avail({r}, {t}, G)⟩ if G↾r ̸= ⟨t, _⟩
⟨0, ∅⟩ otherwise

(∑
i∈I

p→qi :mi.Gi

)
↾r :=


⟨⊕i∈I qi!mi.(Gi↾r),

⋃
i∈I

avail({qi, r}, ∅, Gi)⟩ if r = p

⊓

(
⟨&i∈I[=r] p?mi.(Gi↾r),

⋃
i∈I[=r]

avail({r}, ∅, Gi)⟩

⊓i∈I[ ̸=r] Gi↾r

)
otherwise

where I[=r] := {i ∈ I | qi = r} and I[ ̸=r] := {i ∈ I | qi ̸= r}

A global type G is said to be projectable if G↾r is defined for every r ∈ P.

Projection erases events not relevant to r by a recursive traversal of the global type;
however, at a choice not involving r, it has to ensure that either r is indifferent to the
outcome of the choice or it indirectly receives enough information to distinguish the outcome.
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This is managed by the merge operator ⊓ and the use of available messages. The merge
operator takes as arguments a sequence of availability annotated local types. Our merge
operator generalises the full merge by Scalas and Yoshida [52]. When faced with choice, it
only merges receptions that cannot interfere with each other. For the sake of clarity, we
define only the binary merge. As the operator is commutative and associative, it generalises
to a set of branches I. When I is a singleton, the merge just returns that one branch.

▶ Definition 7 (Merge operator ⊓). Let ⟨L1, Msg1⟩ and ⟨L2, Msg2⟩ be availability annotated
local types for a role r. ⟨L1, Msg1⟩ ⊓ ⟨L2, Msg2⟩ is defined by cases, as follows:

⟨L1, Msg1 ∪ Msg2⟩ if L1 = L2

⟨µt1.(AL1 ⊓ AL2[t2/t1]), Msg1 ∪ Msg2⟩ if L1 = µt1.AL1, L2 = µt2.AL2

⟨⊕i∈I qi!mi.(AL1,i ⊓ AL2,i), Msg1 ∪ Msg2⟩ if

{
L1 = ⊕i∈I qi!mi.AL1,i,
L2 = ⊕i∈I qi!mi.AL2,i

⟨ &i∈I\J qi?mi.AL1,i &
&i∈I∩J qi?mi.(AL1,i ⊓ AL2,i) &
&i∈J\I qi?mi.AL2,i ,

Msg1 ∪ Msg2 ⟩

if


L1 = &i∈I qi?mi.AL1,i,
L2 = &i∈J qi?mi.AL2,i,
∀i ∈ I \ J. r ◁ qi?mi /∈ Msg2,
∀i ∈ J \ I. r ◁ qi?mi /∈ Msg1

When no condition applies, the merge and, thus, the projection are undefined.1
The important case of the merge is the external choice. Here, when a role can potentially

receive a message that is unique to a branch, it checks that the message cannot be available
in another branch so actually being able to receive this message uniquely determines which
branch was taken by the role to choose. For the other cases, a role can postpone learning the
branch as long as the actions on both branches are the same.

Adding Empty Paths Elimination. The preliminary version of projection requires every role
to have at least one event in each branch of a loop and, thus, rejects examples where a role
has no event in some loop branch. Such paths can be eliminated. However, determining such
empty paths cannot be done on the level of the merge operator but only when projecting. To
this end, we introduce an additional parameter E for the generalised projection: E contains
those variables t for which r has not observed any message send or receive event since µt.

▶ Definition 8 (Generalised projection – with empty paths elimination). The projection G↾E
r of

a global type G on to a role r ∈ P is an availability annotated local type which is inductively
defined as follows:

t↾E
r := ⟨t, avail({R}, {t}, getµG(t))⟩ 0↾E

r := ⟨0, ∅⟩

(µt.G)↾E
r :=

{
⟨µt.(G↾E∪{t}

r ), avail({R}, {t}, G)⟩ if G↾E∪{t}
r ̸= ⟨t, _⟩

⟨0, ∅⟩ otherwise

(∑
i∈I

p→qi :mi.Gi

)
↾E

r :=


⟨⊕i∈I qi!mi.(Gi↾∅

r ),
⋃

i∈I
avail({qi, r}, ∅, Gi)⟩ if r = p

⊓
(

⟨&i∈I[=r] p?mi.(Gi↾∅
r ),
⋃

i∈I[=r]
avail({r}, ∅, Gi)⟩

⊓ i∈I[ ̸=r] ∧ ∀t∈E. Gi↾E
r ̸=⟨t,_⟩ Gi↾E

r

)
otherwise

where I[=r] := {i ∈ I | qi = r} and I[ ̸=r] := {i ∈ I | qi ̸= r}
Since the merge operator ⊓ is partial, the projection may be undefined. We use G↾r as

shorthand for G↾∅
r and only consider the generalised projection with empty paths elimination

from now on. A global type G is called projectable if G↾r is defined for every role r ∈ P.

1 When we use the n-ary notation ⊓i∈I and |I| = 0, we implicitly omit this part. Note that this can only
happen if r is the receiver among all branches for some choice so there is either another local type to
merge with, or the projection is undefined anyway.

CONCUR 2021
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C S W1 W2

⨅ ⟨W1?reply, ∅⟩
⟨W2?reply, ∅⟩

(a) Merging for Figure 1a.

C S W1 W2

⨅ ⟨W1?reply, {W2?reply}⟩
⟨W2?reply, ∅⟩

⨅ ⟨S?reply, ∅⟩
⟨W1?reply, ∅⟩

(b) Merging for Figure 1b.

Figure 2 Availability annotated types for merging on the two examples. The red lines connect the
receptions that get merged during projection. The annotations only show the receiver’s messages.

We highlight the differences for the empty paths elimination. Recall that E contains all
recursion variables from which the role r has not encountered any events. To guarantee this,
for the case of recursion µt. G, the (unique) variable t is added to the current set E, while
the parameter turns to the empty set ∅ as soon as r encounters an event. The previous steps
basically constitute the necessary bookkeeping. The actual elimination is achieved with the
condition ∀t ∈ E. Gi↾

E
r ̸= ⟨t, _⟩ which filters all branches without events of role r.

Other works [38, 17] achieve this with connecting actions, marking non-empty paths. Like
classical MSTs, we do not include such explicit actions. Still, we can automatically eliminate
such paths in contrast to previous work.

Computing Available Messages. Finally, the function avail is computed recursively:
avail(B, T, 0) := ∅
avail(B, T, µt.G) := avail(B, T ∪ {t}, G)

avail(B, T, t) :=
{

∅ if t ∈ T

avail(B, T ∪ {t}, getµG(t)) if t ̸∈ T

avail(B, T,
∑

i∈I
p→qi :mi.Gi) :=

{⋃
i∈I,m∈V(avail(B, T, Gi) \ {qi ◁ p?m}) ∪ {qi ◁ p?mi} if p ̸∈ B⋃
i∈I

avail(B ∪ {qi}, T, Gi) if p ∈ B

Since all channels are FIFO, we only keep the first possible message in each channel. The
fourth case discards messages not at the head of the channel.

Our projection is different from the one of Scalas and Yoshida [52], not just because
our syntax is more general. It also represents a shift in paradigm. In their work, the full
merge works only on local types. No additional knowledge is required. This is possible
because their type system limits the flexibility of communication. Since we allow more
flexible communication, we need to keep some information, in form of available messages,
about the possible global executions for the merge operator.

▶ Example 9. Let us explain how our projection operator catches the problem in G↾Client
of Figure 1b. Figure 2 shows the function of available messages during the projection for
Figure 1a and Figure 1b. In Figure 2a, the messages form chains, i.e., except for the role
making the choice, a role only sends in reaction to another message. Therefore, only a single
message is available at each reception and the protocol is projectable. On the other hand, in
Figure 2b both replies are available and, therefore, the protocol is not projectable.

Here are the details of the projection for Figure 2b. If not needed, we omit the availability
annotations for readability. Recall that Client receives reply from Worker2 in the left branch,
which is also present in the right branch. Let us denote the two branches as follows:

G1 := Server→Worker1 :req. Worker1 →Worker2 :req. Worker2 →Client :reply. t, and
G2 := Server→Worker2 :req. Worker2 →Client :reply. t
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Since the first message in G1 does not involve Client, the projection descends and we compute:

G↾Client = ⟨µt.(⟨Worker1?reply. (G′
1↾Client), avail({Client}, ∅, G′

1)⟩
⊓⟨Worker2?reply. (G′

2↾Client), avail({Client}, ∅, G′
2)⟩), _⟩

where G′
1 = Worker1 →Worker2 :req. Worker2 →Client :reply. t and G′

2 = t.

For this, we compute avail({Client}, ∅, G′
1) = ∅ and avail({Client}, ∅, G′

2) = {Worker2 ◁

Worker1?req, Client ◁ Worker2?reply} and see that the conditions are not satisfied. Indeed,
Client ◁ Worker2?reply ∈ avail({Client}, ∅, G′

2). Thus, the projection is undefined. ⌟

3 Type Soundness

We now show a soundness theorem for generalised projection; roughly, a projectable global
type can be implemented by communicating state machines in a distributed way. Our proof
uses automata-theoretic techniques from the theory of MSCs. We assume familiarity with
the basics of formal languages.

As our running example shows, a protocol implementation often cannot enforce the event
ordering specified in the type but only a weaker order. In this section, we capture both
notions through a type language and an execution language.

3.1 Type Languages
A state machine A = (Q, Σ, δ, q0, F ) consists of a finite set Q of states, an alphabet Σ, a
transition relation δ ⊆ Q × (Σ ∪ {ε}) × Q, an initial state q0 ∈ Q, and a set F ⊆ Q of final
states. We write q

x−→ q′ for (q, x, q′) ∈ δ. We define the runs and traces in the standard way.
A run is maximal if it is infinite or if it ends at a final state. The language L(A) is the set of
(finite or infinite) maximal traces. The projection A⇓∆ of a state machine is its projection to
a sub-alphabet ∆ ⊆ Σ obtained by replacing all letters in Σ \ ∆ with ε-transitions. It accepts
the language L(A)⇓∆ = {w⇓∆ | w ∈ L(A)}.

▶ Definition 10 (Type language for global types). The semantics of a global type G is given as
a regular language. We construct a state machine GAut(G) using an auxiliary state machine
M(G). First, we define M(G) = (QM(G), Σsync, δM(G), q0M(G), FM(G)) where

QM(G) is the set of all syntactic subterms in G together with the term 0,
Σsync = {p→q :m | p, q ∈ P and m ∈ V},
δM(G) is the smallest set containing (

∑
i∈I p→qi :mi.Gi, p→qi :mi, Gi) for each i ∈ I,

as well as (µt.G′, ε, G′) and (t, ε, µt.G′) for each subterm µt.G′ of G,
q0M(G) = G and FM(G) = {0}.

Next, we expand each message p→q :m into two events, p ▷ q!m followed by q ◁ p?m. We
define GAut(G) = (QGAut(G), ΣGAut(G), δGAut(G), q0GAut(G), FGAut(G)) as follows:

QGAut(G) = QM(G) ∪ (QM(G) × Σsync × QM(G)),
ΣGAut(G) = {p ▷ q!m | p, q ∈ P , m ∈ V} ∪ {q ◁ p?m | p, q ∈ P , m ∈ V},
δGAut(G) is the smallest set containing the transitions (s, p ▷ q!m, (s, p → q : m, s′)) and
((s, p→q :m, s′), q ◁ p?m, s′)) for each transition (s, p→q :m, s′) ∈ δM(G),
q0GAut(G) = q0M(G) and FGAut(G) = FM(G).

The type language L(G) of a global type G is given by L(GAut(G)).
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▶ Definition 11 (Type language for local types). Given a local type L for p, we construct a
state machine LAut(L) = (Q, Σp, δ, q0, F ) where

Q is the set of all syntactic subterms in L,
Σp = {p ▷ q!m | q ∈ P , m ∈ V} ∪ {p ◁ q?m | p, q ∈ P , m ∈ V},
δ is the smallest set containing
(⊕i∈I qi!mi.Li, p ▷ qi!mi, Li) and (&i∈I qi?mi.Li, p ◁ qi?mi, Li) for each i ∈ I,
as well as (µt.L′, ε, L′) and (t, ε, µt.L′) for each µt.L′ in L,
q0 = L and F = {0} if 0 is a subterm of L, and empty otherwise.

We define the type language of L as language of this automaton: L(L) = L(LAut(L)).

3.2 Implementability
An implementation consists of a set of state machines, one per role, communicating with each
other through asynchronous messages and pairwise FIFO channels. We use communicating
state machines (CSMs) [10] as our formal model. A CSM {{Ap}}p∈P consists of a set of
state machines Ap, one for each p ∈ P over the alphabet of message sends and receives.
Communication between machines happens asynchronously through FIFO channels. The
semantics of a CSM is a language L({{Ap}}p∈P) of maximal traces over the alphabet of
message sends and receives satisfying the FIFO condition on channels. A CSM is deadlock
free if every trace can be extended to a maximal trace. We omit the (standard) formal
definition of CSMs (see Appendix A for details).

Indistinguishability Relation. In the type language of a global type, every send event is
always immediately succeeded by its receive event. However, in a CSM, other independent
events may occur between the send and the receipt and there is no way to force the order
specified by the type language. To capture this phenomenon formally, we define a family of
indistinguishability relations ∼i ⊆ Σ∗ × Σ∗, for i ≥ 0 and Σ = ΣGAut(G), as follows. For all
w ∈ Σ∗, we have w ∼0 w. For i = 1, we define:
(1) If p ̸= r, then w.p ▷ q!m.r ▷ s!m′.u ∼1 w.r ▷ s!m′.p ▷ q!m.u.
(2) If q ̸= s, then w.q ◁ p?m.s ◁ r?m′.u ∼1 w.s ◁ r?m′.q ◁ p?m.u.
(3) If p ̸= s ∧ (p ̸= r ∨ q ̸= s), then w.p ▷ q!m.s ◁ r?m′.u ∼1 w.s ◁ r?m′.p ▷ q!m.u.
(4) If |w⇓p▷q!_| > |w⇓q◁p?_|, then w.p ▷ q!m.q ◁ p?m′.u ∼1 w.q ◁ p?m′.p ▷ q!m.u.
We refer to the proof of Lemma 21 in Appendix B for further details on the conditions for
swapping events. Let w, w′, w′′ be sequences of events s.t. w ∼1 w′ and w′ ∼i w′′ for some i.
Then, w ∼i+1 w′′. We define w ∼ u if w ∼n u for some n. It is straightforward that ∼ is
an equivalence relation. Define u ⪯∼ v if there is w ∈ Σ∗ such that u.w ∼ v. Observe that
u ∼ v iff u ⪯∼ v and v ⪯∼ u. To extend ∼ to infinite words, we follow the approach of
Gastin [27]. For infinite words u, v ∈ Σω, we define u ⪯ω

∼ v if for each finite prefix u′ of u,
there is a finite prefix v′ of v such that u′ ⪯∼ v′. Define u ∼ v iff u ⪯ω

∼ v and v ⪯ω
∼ u.

We lift the equivalence relation ∼ on words to languages:

For a language Λ, we define C∼(Λ) =
{

w′ |
∨ w′ ∈ Σ∗ ∧ ∃w ∈ Σ∗. w ∈ Λ and w′ ∼ w

w′ ∈ Σω ∧ ∃w ∈ Σω. w ∈ Λ and w′ ⪯ω
∼ w

}
.

For the infinite case, we take the downward closure w.r.t. ⪯ω
∼. Unlike [27, Definition 2.1],

our closure operator is asymmetric. Consider the protocol (p ▷ q!m. q ◁ p?m)ω. Since we
do not make any fairness assumption on scheduling, we need to include in the closure the
execution where only the sender is scheduled, i.e., (p ▷ q!m)ω ⪯ω

∼ (p ▷ q!m. q ◁ p?m)ω.
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▶ Example 12 (Indistinguishability relation ∼ by examples). The four rules for ∼1 present
conditions under which two adjacent events in an execution (prefix) can be swapped. These
conditions are designed such that they characterise possible changes in an execution (prefix)
which cannot be recognised by any CSM. To be precise, if w is recognised by some CSM
{{Ap}}p∈P and w′ ∼1 w holds, then w′ is also recognised by {{Ap}}p∈P . In this example, we
illustrate the intuition behind these rules.

For the remainder of this example, the active role of an event is the receiver of a receive
event and the sender of a send event. Visually, the active role is always the first role in an
event. In addition, we assume that variables do not alias, i.e., two roles or messages with
different names are different.

Two send events (or two receive events) can be swapped if the active roles are distinct
because there cannot be any dependency between two such events which do occur next to
each other in an execution. For send events, the 1st rule, thus, admits p ▷ r!m. q ▷ r!m ∼1
q ▷ r!m. p ▷ r!m even though the receiver is the same. In contrast, the corresponding receive
events cannot be swapped: r ◁ p?m. r ◁ q?m ̸∼1 r ◁ q?m. r ◁ p?m. Note that the 1st rule is
the only one with which two send events can be swapped while the 2nd rule is the only one
for receive events so indeed no rule applies for the last case.

The 3rd rule allows one send and one receive event to be swapped if either both senders
or both receivers are different – in addition to the requirement that both active roles are
different. For instance, it admits p ▷ r!m. q ◁ r?m ∼1 q ◁ r?m. p ▷ r!m. However, it does not
admit two swap p ▷ q!m. q ◁ p?m ̸∼1 q ◁ p?m. p ▷ q!m. This is reasonable since the send event
could be the one which emits m in the corresponding channel. In this execution prefix, this is
in fact the case since there have been no events before, but in general one needs to incorporate
the context to understand whether this is the case. The 4th rule does this and therefore
admits swapping the same events when appended to some prefix: p ▷ q!m.p ▷ q!m. q ◁ p?m ̸∼1
p ▷ q!m.q ◁ p?m. p ▷ q!m. Then, the FIFO order of channels ensures that the first message will
be received first and the 2nd send event can happen after the reception of the 1st message. ⌟

▶ Example 13 (Load balancing revisited). Let us consider the execution with confusion in
Figure 1c. Compared to a synchronous execution, we need to delay the reception C ◁W1?reply
to come after the first C◁W2?reply. Using the 2nd and 3rd cases of ∼ we can move C◁W1?reply
across the communications between the two workers. Finally, we use the 3rd case again to
swap C ◁ W1?reply and W2 ▷ C!reply to get the desired sequence. ⌟

This example shows that ∼ does not change the order of send and receive events of a
single role. Thus, if w, w′ ∈ Σ∞

p , then w ∼ w′ iff w = w′. Hence, any language over the
message alphabet of a single role is (trivially) closed under ∼. Further, two runs of a CSM
on w and w′ with w ∼ w′ end in the same configuration.

Execution Languages. For a global type G, the above discussion implies that any imple-
mentation {{Ap}}p∈P can at most achieve that L({{Ap}}p∈P) = C∼(L(G)). This is why we
call C∼(L(G)) the execution language of G. One might also call C∼(L(L)) of a local type
L an execution language, however, since ∼ does not swap any events on the same role, the
type language and execution language are equivalent.

▶ Definition 14 (Implementability). A global type G is said to be implementable if there exists
a CSM {{Ap}}p∈P s.t. (i) [protocol fidelity] L({{Ap}}p∈P) = C∼(L(G)), and (ii) [deadlock
freedom] {{Ap}}p∈P is deadlock free. We say that {{Ap}}p∈P implements G.
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3.3 Type Soundness: Projectability implies Implementability
The projection operator preserves the local order of events for every role and does not remove
any possible event. Therefore, we can conclude that, for each role, the projected language of
the global type is subsumed by the language of the projection.

▶ Proposition 15. For every projectable G, role r ∈ P, run with trace w in GAut(G)⇓Σr
,

there is a run with trace w in LAut(G↾r). Therefore, it holds that L(G)⇓Σr
⊆ L(G↾r).

The previous result shows that the projection does not remove behaviours. Now, we also
need to show that it does not add unwanted behaviours. The main result is the following.

▶ Theorem 16. If a global type G is projectable, then G is implementable.

The complete proof can be found in the extended version [46]. Here, we give a brief
summary of the main ideas. To show that a projectable global type is implemented by
its projections, we need to show that the projection preserves behaviours, does not add
behaviours, and is deadlock free. With Proposition 15, showing that the projections combine
to admit at least the behaviour specified by the global protocol is straightforward. For the
converse direction, we establish a property of the executions of the local types with respect
to the global type: all the projections agree on the run taken by the overall system in the
global type. We call this property control flow agreement. Executions that satisfy control
flow agreement also satisfy protocol fidelity and are deadlock free. The formalisation and
proof of this property is complicated by the fact that not all roles learn about a choice at
the same time. Some roles can perform actions after the choice has been made and before
they learn which branch has been taken. In the extreme case, a role may not learn at all
that a choice happened. The key to control flow agreement is in the definition of the merge
operator. We can simplify the reasoning to the following two points.

Roles learn choices before performing distinguishing actions. When faced with two
branches with different actions, a role that is not making the choice needs to learn the branch
by receiving a message. This follows from the definition of the merge operator. Let us call
this message the choice message. Merging branches is only allowed as long as the actions are
similar for this role. When there is a difference between two (or more) branches, an external
choice is the only case that allows a role to continue on distinct branches.

Checking available messages ensures no confusion. From the possible receptions (qi?mi)
in an external choice, any pair of sender and message is unique among this list for the choice.
This follows from two facts. First, the projection computes the available messages along the
different branches of the choice. Second, merging uses that information to make sure that
the choice message of one branch does not occur in another branch as a message independent
of that branch’s choice messages.

▶ Example 17. Let us use an example to illustrate why this is non-trivial. Consider:
G :=

(
p→q : l. µt. r→p :m. t

)
+
(
p→q :r. µs. r→p :m. s

)
with its projections:

G↾p =
(
q!l. µt. r?m. t

)
⊕
(
q!r. µs. r?m. s

)
G↾q = p?l. 0 & p?r. 0 G↾r = µt. p!m. t

and an execution prefix w of {{LAut(G↾p)}}p∈P : r ▷ p!m. r ▷ p!m. p ▷ q!l. p ◁ r?m. r ▷ p!m.

For this execution prefix, we check which runs in GAut(G) each role could have pursued. In
this case, r is not directly affected by the choice so it can proceed before the p has even
made the choice. As the part of the protocol after the choice is a loop, we cannot bound how
far some roles can proceed before the choice gets resolved. ⌟
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Table 1 Projecting MSTs. For each example, we report the size as the number of nodes in the
AST, the number of roles, whether it uses our extension, the time to compute the projections.

Source Name Size |P| Gen. Proj. needed Time

[52]

Instrument Contr. Prot. A 16 3 ✗ 0.50 ms
Instrument Contr. Prot. B 13 3 ✗ 0.41 ms
Multi Party Game 16 3 ✗ 0.48 ms
OAuth2 7 3 ✗ 0.29 ms
Streaming 7 4 ✗ 0.33 ms

[16] Non-Compatible Merge 5 3 ✓ 0.22 ms

[53] Spring-Hibernate 44 6 ✓ 1.97 ms

New

Group Present 43 4 ✓ 1.62 ms
Late Learning 12 4 ✓ 0.56 ms
Load Balancer (n = 10) 32 12 ✓ 8.18 ms
Logging (n = 10) 56 13 ✓ 20.96 ms

▶ Remark 18. Our projection balances expressiveness with tractability: it does not unfold
recursion, i.e., the merge operator never expands a term µt.G to obtain the local type
(and we only unfold once to obtain the set of available messages). Recursion variables are
only handled by equality. While this restriction may seem arbitrary, unfolding can lead to
comparing unbounded sequences of messages and, hence, undecidability [3] or non-effective
constructions [16]. Our projection guarantees that a role is either agnostic to a choice or
receives a choice message in an horizon bounded by the size of the type.

4 Evaluation

We implemented our generalised projection in a prototype tool which is publicly available [1].
The core functionality is implemented in about 800 lines of Python3 code. Our tool takes as
input a global type and outputs its projections (if defined). We run our experiments on a
machine with an Intel Xeon E5-2667 v2 CPU. Table 1 presents the results of our evaluation.

Our prototype successfully projects global types from the literature [52], in particular
Multi-Party Game, OAuth2, Streaming, and two corrected versions of the Instrument Control
Protocol. These existing examples can be projected, but do not require generalised projection.

The Need for Generalised Projection. The remaining examples exemplify when our
generalised projection is needed. In fact, if some role can receive from different senders
along two paths (immediately or after a sequence of same actions), its projection is only
defined for the generalised projection operator. To start with, our generalised projection can
project a global type presented by Castagna et al. [16, p. 19] which is not projectable with
their effective projection operator (see Section 5 for more details). The Spring-Hibernate
example was obtained by translating a UML sequence diagram [53] to a global type. There,
Hibernate Session can receive from two different senders along two paths. The Group
Present example is a variation of the traditional book auction example [37] and describes
a protocol where friends organise a birthday present for someone; in the course of the
protocol, some people can be contacted by different people. The Late Learning example
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models a protocol where a role submits a request and the server replies either with reject
or wait, however, the last case applies to two branches where the result is served by different
roles. The Load Balancer (Example 2) and Logging examples are simple versions of typical
communication patterns in distributed computing. The examples are parameterised by the
number of workers, respectively, back-ends that call the logging service, to evaluate the
efficiency of projection. For both, we present one instance (n = 10) in the table. All new
examples are rejected by previous approaches but shown projectable by our new projection.

Overhead. The generalised projection does not incur any overhead for global types that do
not need it. Our implementation computes the sets of available messages lazily, i.e., it is
only computed if our message causality analysis is needed. These sets are only needed when
merging receptions from different senders. We modelled four more parameterised protocols:
Mem Cache, Map Reduce, Tree Broadcast, and P2P Broadcast. We tested these examples,
which do not need the generalised projection, up to size 1000 and found that our generalised
projection does not add any overhead. Thus, while the message causality analysis is crucial
for our generalised projection operator and hence applicability of MST verification, it does
not affect its efficiency.

5 Related Work

Session Types. MSTs stem from process algebra and they have been proposed for typing
communication channels. The seminal work on binary session types by Honda [33] identified
channel duality as a condition for safe two party communication. This work was inspired by
linear logic [30] and lead to further studies on the connections between session types and linear
logic [57, 13]. Moving from binary to multiparty session types, Honda et al. [36] identified
consistency as the generalisation of duality for the multiparty setting. The connection between
MSTs and linear logic is still ongoing [12, 14, 15]. While we focus solely on communication
primitives, the theory is extended with other features such as delegation [35, 36, 18] and
dependent types [54, 25, 55]. These extensions have their own intricacies and we leave
incorporating such features into our generalised projection for future work.

In this paper, we use local types directly as implementations for roles for simplicity.
Subtyping investigates ways to give implementation freedom while preserving the correctness
properties. For further details on subtyping, we refer to work by Lange and Yoshida [43],
Bravetti et al. [11], and Chen et al. [21, 20].

Generalisations of Choice in MSTs. Castagna et al. [16] consider a generalised choice
similar to this work. They present a non-effective general approach for projection, relying on
global information, and an algorithmic projection which is limited to local information. Our
projection keeps some global information in the form of message availability and, therefore,
handles a broader class of protocols. For instance, our generalised projection operator can
project the following example [16, p. 19] but their algorithmic version cannot:(

p→r :a. r→p :a. p→q :a. q→r :b. 0
)

+
(
p→q :a. q→r :b. 0

)
Hu and Yoshida [38] syntactically allow a sender to send to different recipients in global

and local types as well as a receiver to receive from different senders in local types. However,
their projection is only defined if a receiver receives messages from a single role. From
our evaluation, all the examples that needs the generalised projection are rejected by their
projection. Recently, Castellani et al. [17] investigated ways to allow local types to specify
receptions from multiple senders for reversible computations but only in the synchronous
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(b) Reconstructible HMSC that
is not implementable.

Figure 3 These examples show that previous results for the asynchronous setting are flawed.

setting. Similarly, for synchronous communication only, Jongmans and Yoshida [40] discuss
generalising choice in MSTs. Because their calculus has an explicit parallel composition,
they can emulate some asynchronous communication but their channels have bag semantics
instead of FIFO queues. The correctness of the projection also computes causality among
messages as in our case and shares the idea of annotating local types.

Choreography Automata. Choreography automata [6] and graphical choreographies [42]
model protocols as automata with transitions labelled by message exchanges, e.g., p →
q : m. Barbanera el al. [6] develop conditions for safely mergeable branches that ensure
implementability on synchronous choreography automata. However, when lifting them to
the asynchronous setting, they miss the subtle introduction of partial order for messages
from different senders. Consider the choreography automaton in Figure 3a. It can also be

represented as a global type: +

{
p→s :m1. p→t :m. p→s :m. s→t :m. t→p :m1. 0
p→s :m2. s→t :m. p→s :m. p→t :m. t→p :m2. 0

It is well-formed according to their conditions. However, t cannot determine which branch
was chosen since the messages m from p and s are not ordered when sent asynchronously.
As a result, it can send m2 in the top (resp. left) branch which is not specified as well as m1
in the bottom (resp. right) branch.

Lange et al. [42] have shown how to obtain graphical choreographies from CSM executions.
Unfortunately, they cannot fully handle unbounded FIFO channels as their method internally
uses Petri nets. Still, their branching property [42, Def. 3.5] consists of similar – even though
more restrictive – conditions as our MST framework: a single role chooses at each branch
but roles have to learn with the first received message or do not commit any action until the
branches merge back. We allow a role to learn later by recursive application of ⊓.

Implementability in Message Sequence Charts. Projection is studied in hierarchical
message sequence charts (HMSCs) as realisability. There, variations of the problem like
changing the payload of existing messages or even adding new messages in the protocol are also
considered [49, 29]. Here, we focus on implementability without altering the protocol. HMSCs
are a more general model than MSTs and, unsurprisingly, realisability is undecidable [28, 3].
Thus, restricted models have been studied. Boundedness [3] is one such example: checking
safe realisability for bounded HMSCs is EXPSPACE-complete [45]. Boundedness is a very
strong restriction. Weaker restrictions, as in MSTs, center on choice. As we explain below,
these restrictions are either flawed, overly restrictive, or not effectively checkable.

The first definition of (non-)local choice for HMSCs by Ben-Abdallah and Leue [7]
suffers from severely restrictive assumptions and only yields finite-state systems. Given an
HMSC specification, research on implied scenarios, e.g. by Muccini et al. [50], investigates
whether there are behaviours which, due to the asynchronous nature of communication, every
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implementation must allow in addition to the specified ones. In our setting, an implementable
protocol specification must not have any implied scenarios. Mooij et al. [48] point out several
contradictions of the observations on implied scenarios and non-local choice. Hence, they
propose more variants of non-local choices but allow implied scenarios. In our setting, this
corresponds to allowing roles to follow different branches.

Similar to allowing implied scenarios of specifications, Hélouët [31] pointed out that non-
local choice has been frequently misunderstood as it actually does not ensure implementability
but less ambiguity. Hélouët and Jard proposed the notion of reconstructibility [32] for a
quite restrictive setting: first, messages need to be unique in the protocol specification and,
second, each node in an HMSC is implicitly terminal. Unfortunately, we show their results
are flawed. Consider the HMSC in Figure 3b. (For simplicity, we use the same message
identifier in each branch but one can easily index them for uniqueness.) The same protocol
can be represented by the following global type:

µt. +
{

q→t : l. q→p : l. t→s : l. s→r : l. r→p : l. t

q→t :r. q→p :r. t→r :r. r→p :r. t

Because their notion of reconstructibility [32, Def. 12] only considers loop-free paths,
they report that the HMSC is reconstructible. However, the HMSC is not implementable.
Suppose that q first chooses to take the top (resp. left) and then the bottom (resp. right)
branch. The message l from s to r can be delayed until after r received r from t. Therefore,
r will first send r to p and then l which contradicts with the order of branches taken. This
counterexample contradicts their result [32, Thm. 15] and shows that reconstructibility is
not sufficient for implementability.

Dan et al. [22], improving Baker et al. [5], provide a definition that ensures implementab-
ility. They provide a definition which is based on projected words of the HMSC in contrast
to the choices. It is unknown how to check their condition for HMSCs.

CSMs and MSTs. The connection between MSTs, CSMs, and automata [16, 24] came
shortly after the introduction of MSTs. Denielou and Yoshida [24] use CSMs but they preserve
the restrictions on choice from MSTs. It is well-known that CSMs are Turing-powerful [10].
Decidable instances of CSM verification can be obtained by restricting the communication
topology [51, 56] or by altering the semantics of communication, e.g. by making channels
lossy [2], half-duplex [19], or input-bounded [9]. Lange and Yoshida [44] proposed additional
notions that resemble ideas from MSTs.

6 Conclusion

We have presented a generalised projection operator for asynchronous MSTs. The key
challenge lies in the generalisation of the external choice to allow roles to receive from more
than one sender. We provide a new projectability check and a soundness theorem that shows
projectability implies implementability. The key to our results is a message causality analysis
and an automata-theoretic soundness proof. With a prototype implementation, we have
demonstrated that our MST framework can project examples from the literature as well as
new examples, including typical communication patterns in distributed computing, which
were not projectable by previous projection operators.
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A Communicating State Machines

A communicating state machine (CSM) A = {{Ap}}p∈P over P and V consists of a state ma-
chine Ap over Σp for each p ∈ P . A state machine for p will be denoted by (Qp, Σp, δp, q0,p, Fp).
If a state q has multiple outgoing transitions, all labelled with send actions, then q is called
an internal choice state. If all the outgoing transitions are labelled with receive actions, q is
called an external choice state. Otherwise, q is a mixed choice state. In this paper, we only
consider state machines without mixed choice states.

Intuitively, a CSM represents a set of state machines, one for each role in P , interacting
via message sends and receipts. We assume that each pair of roles p, q ∈ P, p ̸= q, is
connected by a message channel. A transition qp

p▷q!m−−−−→ q′
p in the state machine of p specifies

that, when p is in the state qp, it sends a message m to q, and updates its local state to q′
p.

The message m is appended to the channel ⟨p, q⟩. Similarly, a transition qq
q◁p?m−−−−→ q′

q in the
state machine of q specifies that q in state qq can retrieve the message m from the head of
the channel ⟨p, q⟩ and update its local state to q′

q.
Let Chan = {⟨p, q⟩ | p, q ∈ P, p ≠ q} denote the set of channels. The set of global states

of the CSM is given by
∏

p∈P Qp. For a global state q, we write qp for the state of p in q.
A configuration of A is a pair (q, ξ), where q is a global state and ξ : Chan → V∗ maps
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each channel to the queue of messages currently in the channel. The initial configuration is
(q0, ξε), where q0,p is the initial state of Ap for each p ∈ P and ξε maps each channel to ε.
A configuration (q, ξ) is final iff qp is final for every p and ξ = ξε.

In a global move of a CSM, a single role executes a local transition to change its state,
while all other roles remain stationary. For a send or a receive action, the corresponding
channel is updated, while all other channels remain unchanged. Formally, the global transition
relation → on configurations is defined as follows:

(q, ξ) p▷q!m−−−−→ (q′, ξ′) if (qp, p▷q!m, q′
p) ∈ δp, qr = q′

r for every r ̸= p, ξ′(⟨p, q⟩) = ξ(⟨p, q⟩) ·m
and ξ′(c) = ξ(c) for every other channel c ∈ Chan.
(q, ξ) q◁p?m−−−−→ (q′, ξ′) if (qq, q◁p?m, q′

q) ∈ δq, qr = q′
r for every r ̸= q, ξ(⟨p, q⟩) = m·ξ′(⟨p, q⟩)

and ξ′(c) = ξ(c) for every other channel c ∈ Chan.
(q, ξ) τ−→ (q′, ξ) if (qp, ε, q′

p) ∈ δp for some role p, and qq = q′
q for every role q ̸= p.

A run of the CSM is a finite or infinite sequence: (q0, ξ0) x0−→ (q1, ξ1) x1−→ . . . , such that
(q0, ξ0) is the initial configuration and for each i ≥ 0, we have (qi, ξi)

xi−→ (qi+1, ξi+1). The
trace of the run is the word x0x1 . . . ∈ Σ∞. We also call x0x1 . . . an execution prefix. A run is
maximal if it is infinite or if it is finite and ends in a final configuration. A trace is maximal
if it is the trace of a maximal run. The language L(A) of the CSM A is the set of maximal
traces. A CSM is deadlock free if every finite run can be extended to a maximal run.

The following lemma summarises some properties of execution prefixes of CSMs. The
proofs are by induction on the length of the run.

▶ Lemma 19. Let {{Ap}}p∈P be a CSM. For any run (q0, ξ0) x0−→ · · · xn−−→ (q, ξ) with trace
w = x0 . . . xn, it holds that (1) ξ(⟨p, q⟩) = u where V(w⇓p▷q!_) = V(w⇓q◁p?_).u for every
pair of roles p, q ∈ P and (2) w is channel-compliant. Maximal traces of {{Ap}}p∈P are
channel-compliant and complete.

Proof. We prove the claims by induction on an execution prefix w. The base case where
w = ε is trivial. For the induction step, we consider wx with the following run in {{Ap}}p∈P :
(q0, ξ0) w−→ (q, ξ) x−→ (q′, ξ′). The induction hypothesis holds for w and (q, ξ) and we prove the
claims for (q′, ξ′) and wx. We do a case analysis on x. If x = τ , the claim trivially follows.

Let x = q ◁ p?m. From the induction hypothesis, we know that ξ(⟨p, q⟩) = u where
V(w⇓p▷q!_) = V(w⇓q◁p?_).u. Since x is a possible transition, we know that u = m.u′ for
some u′ and ξ′(⟨p, q⟩) = u′. By definition, it holds that V(w⇓q◁p?_).m.u′ = V((wx)⇓q◁p?_).u′.
For all other pairs of roles, the induction hypothesis applies since the above projections do
not change. Hence, wx is channel-compliant.

Let x = p ▷ q!m. From the induction hypothesis, we know that ξ(⟨p, q⟩) = u where
V(w⇓p▷q!_) = V(w⇓q◁p?_).u. Since x is a possible transition, we know that ξ′(⟨p, q⟩) =
u.m. By definition and induction hypothesis, we have: V((wx)⇓p▷q!_) = V(w⇓p▷q!_).m =
V(w⇓q◁p?_).u.m. For all other combinations of roles, the induction hypothesis applies since
the above projections do not change. Hence, wx is channel-compliant.

From (1) and (2), it follows directly that maximal traces of {{Ap}}p∈P are channel-compliant
and complete. ◀

B Properties of C∼

▶ Lemma 20. Let L ⊆ Σ∞
p . Then, L = C∼(L).

Proof. For any w ∈ Σ∞
p , none of the rules of ∼1 applies to w, and we have that w ∼ w′ iff

w = w′. Thus, L = C∼(L) for any language L ⊆ Σ∞
p . ◀
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▶ Lemma 21. Let {{Ap}}p∈P be a CSM. Then, for every finite w with a run in {{Ap}}p∈P and
every w′ ∼ w, w′ has a run that ends with the same configuration. The language L({{Ap}}p∈P)
is closed under ∼: L({{Ap}}p∈P) = C∼(L({{Ap}}p∈P)).

Proof. Let w be a finite word with a run in {{Ap}}p∈P and w′ ∼ w. By definition, w′ ∼n w

for some n. We prove that w′ has a run that ends in the same configuration by induction
on n. The base case for n = 0 is trivial. For the induction step, we assume that the claim
holds for n and prove it for n + 1. Suppose that w ∼n+1 w′. Then, there is w′′ such that
w′ ∼1 w′′ and w′′ ∼n w. By assumption, we know that w′ = u′u1u2u′′ and w′′ = u′u2u1u′′

for some u′, u′′ ∈ Σ∗, u1, u2 ∈ Σ. By induction hypothesis, we know that w′′ ∈ L({{Ap}}p∈P)
so there is run for w′′ in {{Ap}}p∈P . Let us investigate the run at u1 and u2: · · · (q1, ξ1) u1−→
(q2, ξ2) u2−→ (q3, ξ3) · · · . It suffices to show that · · · (q1, ξ1) u2−→ (q′

2, ξ′
2) u1−→ (q3, ξ3) · · · is

possible in {{Ap}}p∈P for some configuration (q′
2, ξ′

2). We do a case analysis on the rule that
was applied for w′ ∼1 w′′.

u1 = p ▷ q!m, u2 = r ▷ s!m′, and p ̸= r:
We define q′

2 such that q′
2,p = q1,p, q′

2,r = q3,r, and q′
2,t = q3,t for all t ∈ P with t ̸= p and

t ̸= r. Both transitions are feasible in {{Ap}}p∈P because both p and r are different and
send a message to different channels. They can do this independently from each other.
u1 = q ◁ p?m, u2 = s ◁ r?m′, and q ̸= s:
We define q′

2 such that q′
2,q = q1,q, q′

2,s = q3,s, and q′
2,t = q3,t for all t ∈ P with t ̸= p

and t ̸= r. Both transitions are feasible in {{Ap}}p∈P because both q and s are different
and receive a message from a different channel. They can do this independently from
each other.
u1 = p ▷ q!m, u2 = s ◁ r?m′, and and p ̸= s ∧ (p ̸= r ∨ q ̸= s).
We define q′

2 such that q′
2,p = q1,p, q′

2,s = q3,s, and q′
2,t = q3,t for all t ∈ P with t ̸= p and

t ̸= r. Let us do a case split according to the side conditions. First, let p ̸= s and p ̸= r.
The channels of u1 and u2 are different and p and s are different, so both transitions are
feasible in {{Ap}}p∈P .
Second, let p ̸= s and q ̸= s. The channels of u1 and u2 are different and q and s are
different, so both transitions are feasible in {{Ap}}p∈P .
u1 = p ▷ q!m, u2 = q ◁ p?m′, and |u′⇓p▷q!_| > |u′⇓q◁p?_|:
We define q′

2 such that q′
2,p = q1,p, q′

2,q = q3,q, and q′
2,t = q3,t for all t ̸= p and t ̸= q.

In this case, the channel of u1 and u2 is the same but the side condition ensures that
u2 actually has a different message read since the channel ξ1(⟨p, q⟩) is not empty by
Lemma 19 and, hence, both transitions can act independently and lead to the same
configuration.

This proves that w′ has a run in {{Ap}}p∈P that ends in the same configuration which
concludes the proof of the first claim.

For the second claim, we know that L({{Ap}}p∈P) ⊆ C∼(L({{Ap}}p∈P)) by definition.
Hence, it suffices to show that C∼(L({{Ap}}p∈P)) ⊆ L({{Ap}}p∈P).

We show the claim for finite traces first:

C∼(L({{Ap}}p∈P)) ∩ Σ∗ ⊆ L({{Ap}}p∈P) ∩ Σ∗.

Let w′ ∈ C∼(L({{Ap}}p∈P)) ∩ Σ∗. There is w ∈ L({{Ap}}p∈P) ∩ Σ∗ such that w ∼ w′. By
definition, w has a run in {{Ap}}p∈P which ends in a final configuration. From the first claim,
we know that w′ also has a run that ends in the same configuration which is final. Therefore,
w ∈ L({{Ap}}p∈P) ∩ Σ∗. Hence, the claim holds for finite traces.
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It remains to show the claim for infinite traces. To this end, we show that for every
execution prefix w of {{Ap}}p∈P such that w ∼ u for u ∈ pref(L({{Ap}}p∈P)) and any
continuation x of w, i.e., wx is an execution prefix of {{Ap}}p∈P , it holds that wx ∼ ux and
ux ∈ pref(L({{Ap}}p∈P)) (□). We know that w ∼n u for some n by definition, so wx ∼n ux

since we can mimic the same n swaps when extending both w and u by x. From the first
claim, we know that {{Ap}}p∈P is in the same configuration (q, ξ) after processing w and u.
Therefore, ux is an execution prefix of {{Ap}}p∈P because wx is which yields (□).

We show that

C∼(L({{Ap}}p∈P) ∩ Σω ⊆ L({{Ap}}p∈P) ∩ Σω.

Let w ∈ C∼(L({{Ap}}p∈P) ∩ Σω. We show that w has an infinite run in {{Ap}}p∈P .
Consider a tree T where each node corresponds to a run ρ on some finite prefix w′ ≤ w

in {{Ap}}p∈P . The root is labelled by the empty run. The children of a node ρ are runs
that extend ρ by a single transition – these exist by (□). Since our CSM, derived from a
global type, is built from a finite number of finite state machines, T is finitely branching. By
König’s Lemma, there is an infinite path in T that corresponds to an infinite run for w in
{{Ap}}p∈P , so w ∈ L({{Ap}}p∈P) ∩ Σω. ◀

▶ Lemma 22. Let w ∈ Σ∞ be channel-compliant. Then, w ∼ w′ iff w′ is channel-compliant
and w⇓Σp

= w′⇓Σp
for all roles p ∈ P.

Proof. We use the characterisation of ∼ using dependence graphs [27]. For a word w and
a letter a ∈ Σ that appears in w, let (a, i) denote the ith occurrence of a in w. Define
the dependence graph (V, E, λ), where V = {(a, i) | a ∈ Σ, i ≥ 1}, E = {((a, i), (b, j)) |
a and b cannot be swapped and (a, i) occurs before (b, j) in w}, and λ(a, i) = a for all a ∈
Σ, i ≥ 1. A fundamental result of trace theory states that w ∼ w′ iff they have isomorphic
dependence graphs. We observe that for two channel compliant words, the ordering of the
letters on each Σp for p ∈ P ensures isomorphic dependence graphs, since the ordering of
receives is thus fixed. ◀
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1 Introduction

Session types [18, 45, 19] are types used to verify communication protocols in concurrent
and distributed systems: just as data types rule out dividing an integer by a string, session
types rule out sending along an input channel. Session types originated in process calculi,
but there is a gap between process calculi, which model the evolving state of concurrent
systems, and the descriptions of these systems in typical programming languages. This paper
addresses two foundations for session types: (1) a session-typed concurrent lambda calculus
called GV [30], intended to be a modular and extensible basis for functional programming
languages with session types; and, (2) a session-typed process calculus called CP [51], with a
propositions-as-types correspondence to classical linear logic (CLL) [17].

Processes in CP correspond exactly to proofs in CLL and deadlock freedom follows from
cut-elimination for CLL. However, while CP is strongly tied to CLL, at the same time it
departs from π-calculus. Independent π-calculus features can only appear in combination in
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CP: CP combines name restriction with parallel composition ((νx)(P ∥ Q)), corresponding
to CLL’s cut rule, and combines sending (of bound names only) with parallel composition
(x[y].(P ∥ Q)), corresponding to CLL’s tensor rule. This results in a proliferation of process
constructors and prevents the use of standard techniques from concurrency theory, such
as labelled-transition semantics and bisimulation, since the expected transitions give rise
to ill-typed terms: for example, we cannot write the expected transition rule for output,
x[y].(P ∥ Q) x[y]−−→ P ∥ Q, since P ∥ Q is not a valid CP process. A similar issue arises
when attempting to design a synchronisation transition rule for bound output; see [27]
for a detailed discussion. Inspired by Carbone et al. [10] who used hypersequents [4] to
give a logical grounding to choreographic programming languages [33], Hypersequent CP
(HCP) [26, 27, 34] restores the independence of these features by factoring out parallel
composition into a standalone construct while retaining the close correspondence with
CLL proofs. HCP typing reasons about collections of processes using collections of type
environments (or hyper-environments).

GV extends linear λ-calculus with constants for session-typed communication. Following
Gay and Vasconcelos [16], Lindley and Morris [30] describe GV’s semantics by combining
a reduction relation on single terms, following standard λ-calculus rules, and a reduction
relation on concurrent configurations of terms, following standard π-calculus rules. They then
give a semantic characterisation of deadlocked processes, an extrinsic [42] type system for
configurations, and show that well-typed configurations are deadlock-free. There is, however,
a large fly in this otherwise smooth ointment: process equivalence does not preserve typing.
As a result, it is not enough for Lindley and Morris to show progress and preservation for well-
typed configurations; instead, they must show progress and preservation for all configurations
equivalent to well-typed configurations. This not only complicates the metatheory of GV,
but the burden is inherited by any effort to build on GV’s account of concurrency [14].

In this paper, we show that using hyper-environments in the typing of configurations
enables a metatheory for GV that, compared to that of Lindley and Morris, is simpler, is
more general, and as a result is easier to use and easier to extend. Hypersequent GV (HGV)
repairs the treatment of process equivalence – equivalent configurations are equivalently
typeable – and avoids the need for formal gimmickry connecting name restriction and parallel
composition. HGV admits standard semantic techniques for concurrent programs: we use
bisimulation to show that our translations both preserve and reflect reduction, whereas
Lindley and Morris show only that their translations between GV and CP preserve reduction
as well as resorting to weak explicit substitutions [28]. HGV is also more easily extensible:
we outline three examples, including showing that HGV naturally extends to disconnected
sets of communication processes, without any change to the proof of deadlock freedom, and
that it serves as a simpler foundation for existing work on exceptions in GV [14].

Contributions. The paper contributes the following:
Section 3 introduces Hypersequent GV (HGV), a modular and extensible core calculus
for functional programming with session types which uses hyper-environments to ensure
that structural congruence is type preserving.
Section 4 shows that every well-typed GV configuration is also a well-typed HGV
configuration, and every tree-structured HGV configuration is equivalent to a well-typed
GV configuration.
Section 5 gives a tight operational correspondences between HGV and HCP via translations
in both directions that preserve and reflect reduction.
Section 6 demonstrates the extensibility of HGV through: (1) unconnected processes, (2)
a simplified treatment of forwarding, and (3) an improved foundation for exceptions.
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Section 2 reviews GV and its metatheory, Section 7 discusses related work, and Section 8
concludes and discusses future work.

2 The Equivalence Embroglio

GV programs are deadlock free, which GV ensures by restricting process structures to trees. A
process structure is an undirected graph where nodes represent processes and edges represent
channels shared between the connected nodes. Session-typed programs with an acyclic
process structure are deadlock-free by construction. We illustrate this with a session-typed
vending machine example written in GV.

▶ Example 2.1. Consider the session type of a vending machine below, which sells candy
bars and lollipops. If the vending machine is free, the customer can press 1⃝ to receive a
candy bar or 2⃝ to receive a lollipop. If the vending machine is busy, the session ends.

VendingMachine ≜ ⊕
{

Free : & { 1⃝ : !CandyBar.end!, 2⃝ : !Lollipop.end!}
Busy : end!

}

The customer’s session type is dual: where the vending machine sends a CandyBar, the
customer receives a CandyBar, and so forth. Figure 1 shows the vending machine and
customer as a GV program with its process structure.

let vendingMachine = λs.

let s = select Free s in

let s = offer s

{
1⃝ 7→ send candyBar
2⃝ 7→ send lollipop

}
close s

in let customer = λs.

offer s


Free 7→ let s = select 1⃝ s in

let (cb, s) = recv s in
wait s; eat cb

Busy 7→ wait s; hungry


in let s = fork (λs.vendingMachine s)
in customer s

(a) Vending machine and customer as a GV program.

vendingMachine

customer

s

s

(b) Process structure of Figure 1a.

Figure 1 Example program with process structure.

GV establishes the restriction to tree-structured processes by restricting the primitive
for spawning processes. In GV, fork has type (S ⊸ end!) ⊸ S. It takes a closure of type
S ⊸ end! as an argument, creates a channel with endpoints of dual types S and S, spawns
the closure as a new process by supplying one of the endpoints as an argument, and then
returns the other endpoint. In essence, fork is a branching operation on the process structure:
it creates a new node connected to the current node by a single edge. Linearity guarantees
that the tree structure is preserved, even in the presence of higher-order channels.

Lindley and Morris [30] introduce a semantics for GV, which evaluates programs embedded
in process configurations, consisting of embedded programs, flagged as main (•) or child (◦)
threads, ν-binders to create new channels, and parallel compositions:

C, D ::= • M | ◦ M | (νx)C | (C ∥ D)
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They introduce these process configurations together with a standard structural congru-
ence, which allows, amongst other things, the reordering of processes using commut-
ativity (C ∥ C′ ≡ C′ ∥ C), associativity (C ∥ (C′ ∥ C′′) ≡ (C ∥ C′) ∥ C′′), and scope extrusion
(C ∥ (νx)C′ ≡ (νx)(C ∥ C′) if x /∈ fv(C)). They guarantee acyclicity by defining an extrinsic
type system for configurations. In particular, the type system requires that in every parallel
composition C ∥ D, C and D must have exactly one channel in common, and that in a name
restriction (νx)C, channel x cannot be used until it is shared across a parallel composition.

These restrictions are sufficient to guarantee deadlock freedom. Unfortunately, they are
not preserved by process equivalence. As Lindley and Morris write, (noting that their name
restrictions bind channels rather than endpoint pairs, and their (νxy) abbreviates (νx)(νy)):

Alas, our notion of typing is not preserved by configuration equivalence. For example,
assume that Γ ⊢ (νxy)(C1 ∥ (C2 ∥ C3)), where x ∈ fv(C1), y ∈ fv(C2), and x, y ∈ fv(C3).
We have that C1 ∥ (C2 ∥ C3) ≡ (C1 ∥ C2) ∥ C3, but Γ ⊬ (νxy)((C1 ∥ C2) ∥ C3), as both x

and y must be shared between the processes C1 ∥ C2 and C3.

As a result, standard notions of progress and preservation are not enough to guarantee
deadlock freedom, as reduction sequences could include equivalence steps from well-typed to
non-well-typed terms! Instead, they must prove a stronger result:

▶ Theorem 3 (Lindley and Morris [30]). If Γ ⊢ C, C ≡ C′, and C′ −→ D′, then there exists D
such that D ≡ D′ and Γ ⊢ D.

This is not a one-time cost: languages based on GV must either also give up on type
preservation for structural congruence [14] or admit deadlocks [20, 46].

3 Hypersequent GV

We present Hypersequent GV (HGV), a linear λ-calculus extended with session types and
primitives for session-typed communication. HGV shares its syntax and static typing with
GV, but uses hyper-environments for runtime typing to simplify and generalise its semantics.

Types, terms, and static typing. Types (T , U) comprise a unit type (1), an empty type
(0), product types (T × U), sum types (T + S), linear function types (T ⊸ U), and session
types (S).

T , U ::= 1 | 0 | T × U | T + U | T ⊸ U | S S ::= !T.S | ?T.S | end! | end?

Session types (S) comprise output (!T.S: send a value of type T , then behave like S), input
(?T.S: receive a value of type T , then behave like S), and dual end types (end! and end?).
The dual endpoints restrict process structure to trees [51]; conflating them loosens this
restriction to forests [3]. We let Γ, ∆ range over type environments.

The terms and typing rules are given in Figure 2. The linear λ-calculus rules are standard.
Each communication primitive has a type schema: link takes a pair of compatible endpoints
and forwards all messages between them; fork takes a function, which is passed one endpoint
(of type S) of a fresh channel yielding a new child thread, and returns the other endpoint (of
type S); send takes a pair of a value and an endpoint, sends the value over the endpoint,
and returns an updated endpoint; recv takes an endpoint, receives a value over the endpoint,
and returns the pair of the received value and an updated endpoint; and wait synchronises
on a terminated endpoint of type end?. Output is dual to input, and end! is dual to end?.
Duality is involutive, i. e., S = S.
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Typing rules for terms Γ ⊢ M : T

TM-Var

x : T ⊢ x : T

TM-Const

· ⊢ K : T

TM-Lam
Γ, x : T ⊢ M : U

Γ ⊢ λx.M : T ⊸ U

TM-App
Γ ⊢ M : T ⊸ U ∆ ⊢ N : T

Γ, ∆ ⊢ M N : U

TM-Unit

· ⊢ () : 1

TM-LetUnit
Γ ⊢ M : 1 ∆ ⊢ N : T

Γ, ∆ ⊢ let () = M in N : T

TM-Pair
Γ ⊢ M : T ∆ ⊢ N : U

Γ, ∆ ⊢ (M, N) : T × U

TM-LetPair
Γ ⊢ M : T × T ′ ∆, x : T , y : T ′ ⊢ N : U

Γ, ∆ ⊢ let (x, y) = M in N : U

TM-Absurd
Γ ⊢ M : 0

Γ ⊢ absurd M : T

TM-Inl
Γ ⊢ M : T

Γ ⊢ inl M : T + U

TM-Inr
Γ ⊢ M : U

Γ ⊢ inr M : T + U

TM-CaseSum
Γ ⊢ L : T + T ′ ∆, x : T ⊢ M : U ∆, y : T ′ ⊢ N : U

Γ, ∆ ⊢ case L {inl x 7→ M ; inr y 7→ N} : U

Type schemas for communication primitives K : T

link : S × S ⊸ end!

fork : (S ⊸ end!) ⊸ S

send : T × !T.S ⊸ S

recv : ?T.S ⊸ T × S

wait : end? ⊸ 1

Duality S

!T.S = ?T.S ?T.S = !T.S end! = end? end? = end!

Figure 2 HGV, duality and typing rules for terms.

We write M ; N for let () = M in N , let x = M in N for (λx.N) M , λ().M for λz.z; M ,
and λ(x, y).M for λz.let (x, y) = z in M . We write K : T for · ⊢ K : T in typing derivations.
▶ Remark 3.1. We include link because it is convenient for the correspondence with CP,
which interprets CLL’s axiom as forwarding. We can encode link in GV via a type directed
translation akin to CLL’s identity expansion.

Configurations and runtime typing. Process configurations (C, D, E) comprise child threads
(◦ M), the main thread (• M), link threads (x z↔y), name restrictions ((νxy)C), and parallel
compositions (C ∥ D). We refer to a configuration of the form ◦M or x

z↔y as an auxiliary
thread, and a configuration of the form •M as a main thread. We let A range over auxiliary
threads and T range over all threads (auxiliary or main).

ϕ ::= • | ◦ C, D, E ::= ϕ M | x
z↔y | C ∥ D | (νxy)C

The configuration language is reminiscent of π-calculus processes, but has some non-standard
features. Name restriction uses double binders [49] in which one name is bound to each
endpoint of the channel. Link threads [31] handle forwarding. A link thread x

z↔y waits for
the thread connected to z to terminate before forwarding all messages between x and y.

Configuration typing departs from GV [30], exploiting hypersequents [4] to recover
modularity and extensibility. Inspired by HCP [34, 27, 26], configurations are typed under
a hyper-environment, a collection of disjoint type environments. We let G, H range over
hyper-environments, writing ∅ for the empty hyper-environment, G ∥ Γ for disjoint extension
of G with type environment Γ, and G ∥ H for disjoint concatenation of G and H.
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Typing rules for configurations G ⊢ C : R

TC-New
G ∥ Γ, x : S ∥ ∆, y : S ⊢ C : R

G ∥ Γ, ∆ ⊢ (νxy)C : R

TC-Par
G ⊢ C : R H ⊢ D : R′

G ∥ H ⊢ C ∥ D : R ⊓ R′

TC-Main
Γ ⊢ M : T

Γ ⊢ • M : • T

TC-Child
Γ ⊢ M : end!

Γ ⊢ ◦ M : ◦

TC-Link

x : S, y : S, z : end? ⊢ x
z↔y : ◦

Configuration types

R ::= ◦ | • T

Configuration type combination R ⊓ R′

• T ⊓ ◦ = • T ◦ ⊓ • T = • T ◦ ⊓ ◦ = ◦

Figure 3 HGV, typing rules for configurations.

Structural congruence C ≡ D

SC-ParAssoc C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E
SC-NewComm (νxy)(νzw)C ≡ (νzw)(νxy)C
SC-ScopeExt (νxy)(C ∥ D) ≡ C ∥ (νxy)D, if x, y /∈ fv(C)

SC-ParComm C ∥ D ≡ D ∥ C
SC-NewSwap (νxy)C ≡ (νyx)C
SC-LinkComm x

z↔y ≡ y
z↔x

Configuration reduction C −→ D

E-Reify-Fork F [fork V ] −→ (νxx′)(F [x] ∥ ◦ (V x′)), where x, x′ fresh
E-Reify-Link F [link (x, y)] −→ (νzz′)(x z↔y ∥ F [z′]), where z, z′ fresh

E-Comm-Link (νzz′)(νxx′)(x z↔y ∥ ◦ z′ ∥ ϕ M) −→ ϕ (M{y/x′})
E-Comm-Send (νxy)(F [send (V, x)] ∥ F ′[recv y]) −→ (νxy)(F [x] ∥ F ′[(V, y)])
E-Comm-Close (νxy)(◦ y ∥ F [wait x]) −→ F [()]

E-Res
C −→ C′

(νxy)C −→ (νxy)C′

E-Par
C −→ C′

C ∥ D −→ C′ ∥ D

E-Equiv
C ≡ C′ C′ −→ D′ D′ ≡ D

C −→ D

E-Lift-M
M −→M M ′

F [M ] −→ F [M ′]

Figure 4 HGV, configuration reduction.

The typing rules for configurations are given in Figure 3. Rules TC-New and TC-Par are
key to deadlock freedom: TC-New joins two disjoint configurations with a new channel, and
merges their type environments; TC-Par combines two disjoint configurations, and registers
their disjointness by separating their type environments in the hyper-environment. Rules
TC-Main, TC-Child, and TC-Link type main, child, and link threads, respectively; all three
require a singleton hyper-environment. A configuration has type ◦ if it has no main thread,
and • T if it has a main thread of type T . The configuration type combination operator
ensures that a well-typed configuration has at most one main thread.

Operational semantics. HGV values (U , V , W ), evaluation contexts (E), and term reduc-
tion rules (−→M) define a standard call-by-value, left-to-right evaluation strategy. A closed
term either reduces to a value or is blocked on a communication action.

Figure 4 gives the configuration reduction rules. Thread contexts (F ) extend evaluation
contexts to threads, i. e., F ::= ϕ E. The structural congruence rules are standard apart from
SC-LinkComm, which ensures links are undirected, and SC-NewSwap, which swaps names in
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double binders. The concurrent behaviour of HGV is given by a nondeterministic reduction
relation (−→) on configurations. The first two rules, E-Reify-Fork and E-Reify-Link, create
child and link threads, respectively. The next three rules, E-Comm-Link, E-Comm-Send, and
E-Comm-Close perform communication actions. The final four rules enable reduction under
name restriction and parallel composition, rewriting by structural congruence, and term
reduction in threads. Two rules handle links: E-Reify-Link creates a new link thread x

z↔y

which blocks on z of type end?, one endpoint of a fresh channel. The other endpoint, z′ of
type end!, is placed in the evaluation context of the parent thread. When z′ terminates a
child thread, E-Comm-Link performs forwarding by substitution.

Choice. Internal and external choice are encoded with sum types and session delegation [22,
13]. Prior encodings of choice in GV [30] are asynchronous. To encode synchronous choice
we add a dummy synchronisation before exchanging the value of sum type, as follows:

S ⊕ S′ ≜ !1.!(S1 + S2).end!

S & S′ ≜ ?1.?(S1 + S2).end?

⊕{} ≜ !1.!0.end!

&{} ≜ ?1.?0.end?

select ℓ ≜ λx.

(
let x = send ((), x) in
fork (λy.send (ℓ y, x))

)
offer L {inl x 7→ M ; inr y 7→ N}

≜
let ((), z) = recv L in let (w, z) = recv z

in wait z; case w {inl x 7→ M ; inr y 7→ N}

offer L {} ≜
let ((), c) = recv L in let (z, c) = recv c

in wait c; absurd z

HGV enjoys type preservation, deadlock freedom, confluence, and strong normalisation
(details in the extended version). Here we outline where the metatheory diverges from GV.

Preservation. Hyper-environments enable type preservation under structural congruence,
which significantly simplifies the metatheory compared to GV.

▶ Theorem 3.2 (Preservation).
1. If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
2. If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Abstract process structures. Unlike in GV, in HGV we cannot rely on the fact that exactly
one channel is split over each parallel composition. Instead, we introduce the notion of an
abstract process structure (APS). An APS is a graph defined over a hyper-environment G
and a set of undirected pairs of co-names (a co-name set) N drawn from the names in G.
The nodes of an APS are the type environments in G. Each edge is labelled by a distinct
co-name pair {x1, x2} ∈ N , such that x1 : S ∈ Γ1 and x2 : S ∈ Γ2.

▶ Example 3.3. Let G = Γ1 ∥ Γ2 ∥ Γ3, where Γ1 = x : S1, y : S2, Γ2 = x′ : S1, z : T , and
Γ3 = y′ : S2, and suppose N = {{x, x′}, {y, y′}}. The APS for G and N is illustrated below.

Γ1

Γ2 Γ3

{x, x′} {y, y′}

{{x, x′}, {y, y′}}

A key feature of HGV is a subformula principle, which states that all hyper-environments
arising in the derivation of an HGV program are tree-structured. We write Tree(G, N ) to
denote that the APS for G with respect to N is tree-structured. An HGV program • M has
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a single type environment, so is tree-structured; the same goes for child and link threads.
Read bottom-up TC-New and TC-Par preserve tree structure (see the extended version for
formal statements), which is illustrated by the following two pictures.

G
N

Γ ∆

N ⊎ {{z, z′}, {x, y}}

{z, z′}

{x, y}

G
N

Γ, ∆

{z, z′}

N ⊎ {{z, z′}}

G

H

N1

N2

G

H

N1

N2

N1 ⊎ N2 ⊎ {{x, x′}}

{x, x′}

Tree canonical form. We now define a canonical form for configurations that captures
the tree structure of an APS. Tree canonical form enables a succinct statement of open
progress (Lemma 3.8) and a means for embedding HGV in GV (Lemma 4.5).

▶ Definition 3.4 (Tree canonical form). A configuration C is in tree canonical form if it can
be written: (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · · ) where xi ∈ fv(Ai) for 1 ≤ i ≤ n.

▶ Theorem 3.5 (Tree canonical form). If Γ ⊢ C : R, then there exists some D such that
C ≡ D and D is in tree canonical form.

▶ Lemma 3.6. If Γ1 ∥ · · · ∥ Γn ⊢ C : R, then there exist R1, . . . , Rn and D1, . . . , Dn such
that R = R1 ⊓ · · · ⊓ Rn and C ≡ D1 ∥ · · · ∥ Dn and Γi ⊢ Di : Ri for each i.

It follows from Theorem 3.5 and Lemma 3.6 that any well-typed HGV configuration can
be written as a forest of independent configurations in tree canonical form.

Progress and Deadlock Freedom.

▶ Definition 3.7 (Blocked thread). We say that thread T is blocked on variable z, written
blocked(T , z), if either: T = ◦ z; T = x

z↔y, for some x, y; or T = F [N ] for some F , where
N is send (V, z), recv z, or wait z.

We let Ψ range over type environments containing only session-typed variables, i. e., Ψ ::= · |
Ψ, x : S, which lets us reason about configurations that are closed except for runtime names.
Using Lemma 3.6 we obtain open progress for configurations with free runtime names.

▶ Lemma 3.8 (Open Progress). Suppose Ψ ⊢ C : T where C = (νx1y1)(A1 ∥ · · · ∥
(νxnyn)(An ∥ ϕN) · · · ) is in tree canonical form. Either C −→ D for some D, or:

1. For each Ai (1 ≤ i ≤ n), blocked(Ai, z) for some z ∈ {xi} ∪ {yj | 1 ≤ j < i} ∪ fv(Ψ)
2. Either N is a value or blocked(ϕN, z) for some z ∈ {yi | 1 ≤ i ≤ n} ∪ fv(Ψ)
For closed configurations, we obtain a tighter result. If a closed configuration cannot reduce,
then each auxiliary thread must either be a value, or be blocked on its neighbouring endpoint.

Finally, for ground configurations, where the main thread does not return a runtime name
or capture a runtime name in a closure, we obtain a yet tighter result, global progress, which
implies deadlock freedom [8].

▶ Definition 3.9 (Ground configuration). A configuration C is a ground configuration if
· ⊢ C : T , C is in canonical form, and T does not contain session types or function types.

▶ Theorem 3.10 (Global progress). Suppose C is a ground configuration. Either there exists
some D such that C −→ D, or C = •V for some value V .
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Typing rules for configurations Γ ⊢GV C : T

TG-New
Γ, ⟨x, y⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νxy)C : R

TG-Connect1
Γ1, x : S ⊢GV C : R

Γ2, y : S ⊢GV D : R′

Γ1, Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓ R′

TG-Connect2
Γ1, y : S ⊢GV C : R

Γ2, x : S ⊢GV D : R′

Γ1, Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓ R′

TG-Child
Γ ⊢GV M : end!

Γ ⊢GV ◦M : ◦

TG-Main
Γ ⊢GV M : T

Γ ⊢GV •M : • T

TG-Link

x : S, y : S, z : end? ⊢GV x
z↔y : ◦

Figure 5 GV, typing rules for configurations.

4 Relation between HGV and GV

In this section, we show that well-typed GV configurations are well-typed HGV configurations,
and well-typed HGV configurations with tree structure are well-typed GV configuration.

GV. HGV and GV share a common term language and reduction semantics, so only differ
in their runtime typing rules. Figure 5 gives the runtime typing rules for GV. We adapt the
rules to use a double-binder formulation to concentrate on the essence of the relationship
with HGV, but it is trivial to translate GV with single binders into GV with double binders.

We require a pseudo-type S♯, which types un-split channels. Un-split channels cannot
appear in terms. Rule TG-New types a name restriction (νxy)C, adding ⟨x, y⟩ : S♯ to the
type environment, which along with TG-Connect1 and TG-Connect2 ensures that a session
channel of type S will be split into endpoints x and y over a parallel composition, in turn
enforcing a tree process structure. The remaining typing rules are as in HGV.

Embedding GV into HGV. Every well-typed open GV configuration is also a well-typed
HGV configuration.

▶ Definition 4.1 (Flattening). Flattening, written ↓ , converts GV type environments and
HGV hyper-environments into HGV environments.

↓ · = ·
↓ (Γ, ⟨x, x′⟩ : S♯) = ↓ Γ, x : S, x′ : S

↓ (Γ, x : T ) = ↓ Γ, x : T

↓∅ = ∅
↓ (G ∥ Γ) = ↓ G, Γ

▶ Definition 4.2 (Splitting). Splitting converts GV typing environments into hyper-environ-
ments. Given channels {⟨xi, x′

i⟩ : S♯
i }i∈1..n in Γ, a hyper-environment G is a splitting of

Γ if ↓ G = ↓ Γ and ∃Γ1, . . . , Γn+1 such that G = Γ1 ∥ · · · ∥ Γn+1, and Tree(G, {{x1, x′
1}, . . . ,

{xn, x′
n}}).

A well-typed GV configuration is typeable in HGV under a splitting of its type environment.

▶ Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists
some G such that G is a splitting of Γ and G ⊢ C : R.

▶ Example 4.4. Consider a configuration where a child thread pings the main thread:

(νxy)(◦ (send (ping, x)) ∥ • (let ((), y) = recv y in wait y))
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We can write a GV typing derivation as follows:
x : !1.end!, ping : 1 ⊢GV ◦ (send (ping, x)) : ◦ y : ?1.end? ⊢GV • (let ((), y) = recv y in wait y) : • 1

⟨x, y⟩ : !1.end!
♯, ping : 1 ⊢GV (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : 1

ping : 1 ⊢GV (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : 1
The corresponding HGV derivation is:

x : !1.end!, ping : 1 ⊢ ◦ (send (ping, x)) : ◦ y : ?1.end? ⊢ • (let ((), y) = recv y in wait y) : • 1
x : !1.end!, ping : 1 ∥ y : ?1.end? ⊢ (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

ping : 1 ⊢ (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

Note that x : !1.end!, ping : 1 ∥ y : ?1.end? is a splitting of ⟨x, y⟩ : (!1.end!)♯, ping : 1.

Translating HGV to GV. As we saw in §2, unlike in HGV, equivalence in GV is
not type-preserving. It follows that HGV types strictly more processes than GV.
Let us revisit Lindley and Morris’ example from §1 (adapted to use double-binders),
where Γ1, Γ2, Γ3 ⊢GV (νxx′)(νyy′)(C ∥ (D ∥ E)) : R1 ⊓ R2 ⊓ R3 with Γ1, x : S ⊢GV C : R1,
Γ2, y : S′ ⊢GV D : R2, and Γ3, x′ : S, y′ : S′ ⊢GV E : R3.

The structurally-equivalent term (νxx′)(νyy′)((C ∥ D) ∥ E) is not typeable in GV, since
we cannot split both channels over a single parallel composition:

Γ1, Γ2, x : S ̸⊢GV C ∥ D : R1 ⊓ R2 Γ3, x′ : S, ⟨y, y′⟩ : S′♯ ̸⊢GV E : R3

Γ1, Γ2, Γ3, ⟨x, x′⟩ : S♯, ⟨y, y′⟩ : S′♯ ̸⊢GV (C ∥ D) ∥ E : R1 ⊓ R2 ⊓ R3

Γ1, Γ2, Γ3, ⟨x, x′⟩ : S♯ ̸⊢GV (νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

Γ1, Γ2, Γ3 ̸⊢GV (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

However, we can type this process in HGV:

Γ1, x : S ⊢ C : R1 Γ2, y : S′ ⊢ D : R2

Γ1, x : S ∥ Γ2, y : S′ ⊢ C ∥ D : R1 ⊓ R2 Γ3, x′ : S, y′ : S′ ⊢ E : R3

Γ1, x : S ∥ Γ2, y : S′ ∥ Γ3, x′ : S, y′ : S′ ⊢ (C ∥ D) ∥ E : R1 ⊓ R2 ⊓ R3

Γ1, x : S ∥ Γ2, Γ3, x′ : S ⊢ (νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

Γ1, Γ2, Γ3 ⊢ (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓ R2 ⊓ R3

Although HGV types more processes, every well-typed HGV configuration typeable under
a singleton hyper-environment Γ is equivalent to a well-typed GV configuration, which we
show using tree canonical forms.

▶ Lemma 4.5. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

▶ Remark 4.6. It is not the case that every HGV configuration typeable under an arbitrary
hyper-environment H is equivalent to a well-typed GV configuration. This is because
open HGV configurations can form forest process structures, whereas (even open) GV
configurations must form a tree process structure.
Since we can write all well-typed HGV configurations in canonical form, and HGV tree
canonical forms are typeable in GV, it follows that every well-typed HGV configuration
typeable under a single type environment is equivalent to a well-typed GV configuration.

▶ Corollary 4.7. If Γ ⊢ C : R, then there exists some D such that C ≡ D and Γ ⊢GV D : R.

5 Relation between HGV and HCP

In this section, we explore two translations, from HGV to HCP and from HCP to HGV,
together with their operational correspondences.
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Typing rules for processes P ⊢ G

TP-Link

x↔Ay ⊢ x : A, y : A⊥

TP-New
P ⊢ G ∥ Γ, x : A ∥ ∆, y : A⊥

(νxy)P ⊢ G ∥ Γ, ∆

TP-Par
P ⊢ G Q ⊢ H
P ∥ Q ⊢ G ∥ H

TP-Halt

0 ⊢ ∅

TP-Close
P ⊢ ∅

x[].P ⊢ x : 1

TP-Wait
P ⊢ Γ

x().P ⊢ Γ, x : ⊥

TP-Send
P ⊢ Γ, y : A ∥ ∆, x : B

x[y].P ⊢ Γ, ∆, x : A ⊗ B

TP-Recv
P ⊢ Γ, y : A, x : B

x(y).P ⊢ Γ, x : A ` B

TP-Offer-Absurd

x ▷ {} ⊢ Γ, x : ⊤

TP-Select-Inl
P ⊢ Γ, x : A

x ◁ inl.P ⊢ Γ, x : A ⊕ B

TP-Select-Inr
P ⊢ Γ, x : B

x ◁ inr.P ⊢ Γ, x : A ⊕ B

TP-Offer
P ⊢ Γ, x : A Q ⊢ Γ, x : B

x ▷ {inl : P ; inr : Q} ⊢ Γ, x : A & B

Duality A⊥

(A ⊗ B)⊥ = A⊥ ` B⊥

(A ` B)⊥ = A⊥ ⊗ B⊥
(1)⊥ = ⊥
(⊥)⊥ = 1

(A ⊕ B)⊥ = A⊥ & B⊥

(A & B)⊥ = A⊥ ⊕ B⊥
(0)⊥ = ⊤
(⊤)⊥ = 0

Figure 6 HCP, duality and typing rules for processes.

Hypersequent CP. HCP [34, 27] is a session-typed process calculus with a correspondence
to CLL, which exploits hypersequents to fix extensibility and modularity issues with CP.

Types (A, B) consist of the connectives of linear logic: the multiplicative operators (⊗,
`) and units (1, ⊥) and the additive operators (⊕, &) and units (0, ⊤).

A, B ::= 1 | ⊥ | 0 | ⊤ | A ⊗ B | A ` B | A ⊕ B | A & B

Type environments (Γ, ∆) associate names with types. Hyper-environments (G, H) are
collections of type environments. The empty type environment and hyper-environment are
written · and ∅, respectively. Names in type and hyper-environments must be unique and
environments may be combined, written Γ, ∆ and G ∥ H, only if they are disjoint.

Processes (P , Q) are a variant of the π-calculus with forwarding [44, 6], bound output [44],
and double binders [49]. The syntax of processes is given by the typing rules (Figure 6),
which are standard for HCP [34, 27]: x↔y forwards messages between x and y; (νxy)P
creates a channel with endpoints x and y, and continues as P ; P ∥ Q composes P and Q in
parallel; 0 is the terminated process; x[y].P creates a new channel, outputs one endpoint
over x, binds the other to y, and continues as P ; x(y).P receives a channel endpoint, binds it
to y, and continues as P ; x[].P and x().P close x and continue as P ; x ◁ inl.P and x ◁ inr.P
make a binary choice; x ▷ {inl : P ; inr : Q} offers a binary choice; and x ▷ {} offers a nullary
choice. As HCP is synchronous, the only difference between x[y].P and x(y).P is their
typing (and similarly for x[].P and x().P ). We write unbound send as x⟨y⟩.P (short for
x[z].(y↔z ∥ P )), and synchronisation as x̄.P (short for x[z].(z[].0 ∥ P )) and x.P (short for
x(z).z().P ). Duality is standard and is involutive, i. e., (A⊥)⊥ = A.

We define a standard structural congruence (≡) similar to that of HGV, i. e., parallel
composition is commutative and associative, we can commute name restrictions, swap the
order of endpoints, swap links, and have scope extrusion (similar to Figure 4).
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Action rules

Act-Pref
π.P

π−→ P

Act-Link1

x↔y
x↔y−→ 0

Act-Link2

x↔y
y↔x−→ 0

Act-Off-Inl
x ▷ {inl : P ; inr : Q} x▷inl−→ P

Act-Off-Inr
x ▷ {inl : P ; inr : Q} x▷inr−→ Q

Communication Rules

Tau-Alp
P

α−→ P ′

P
τ−→ P ′

Tau-Bet
P

β−→ P ′

P
τ−→ P ′

Alp-Link
P

x↔z−→ P ′

(νxy)P α−→ P ′{z/y}

Bet-Send
P

x[x′]∥y(y′)−→ P ′

(νxy)P β−→ (νxy)(νx′y′)P ′

Bet-Close
P

x[]∥y()−→ P ′

(νxy)P β−→ P ′

Bet-Inl
P

x◁inl∥y▷inl−→ P ′

(νxy)P β−→ (νxy)P ′

Bet-Inr
P

x◁inr∥y▷inr−→ P ′

(νxy)P β−→ (νxy)P ′

Structural Rules

Str-Res
P

ℓ−→ P ′ x, y ̸∈ fn(ℓ)

(νxy)P ℓ−→ (νxy)P ′

Str-Par1

P
ℓ−→ P ′ bn(ℓ) ∩ fn(Q) = ∅

P ∥ Q
ℓ−→ P ′ ∥ Q

Str-Par2

Q
ℓ−→ Q′ bn(ℓ) ∩ fn(P ) = ∅

P ∥ Q
ℓ−→ P ∥ Q′

Str-Syn
P

ℓ−→ P ′ Q
ℓ′

−→ Q′ bn(ℓ) ∩ bn(ℓ′) = ∅

P ∥ Q
ℓ∥ℓ′
−→ P ′ ∥ Q′

Figure 7 HCP, label transition semantics.

We define the labelled transition system for HCP as a subsystem of that of Kokke et
al. [26], omitting delayed actions. Labels ℓ represent the actions a process can take. Prefixes
π are a convenient subset which can be written as prefixes to processes, i. e., π.P . The label
τ represents internal actions. We distinguish two subtypes of internal actions: α represents
only the evaluation of links as renaming, and β represents only communication.

π ::= x[y] | x[] | x(y) | x() | x ◁ inl | x ◁ inr
ℓ := π | x↔y | x ▷ inl | x ▷ inr | τ | α | β

We let ℓx range over labels on x: x↔y, x[y], x[], etc. Labelled transition ℓ−→ is defined
in Figure 7. We write ℓ−→ ℓ′

−→ for the composition of ℓ−→ and ℓ′

−→, ℓ−→+ for the transitive
closure of ℓ−→, and ℓ−→⋆ for the reflexive-transitive closure. We write bn(ℓ) and fn(ℓ) for the
bound and free names contained in ℓ, respectively.

The behavioural theory for HCP follows Kokke et al. [26], except that we distinguish two
subrelations to bisimilarity, following the subtypes of internal actions.

▶ Definition 5.1 (Strong bisimilarity). A relation R on processes is a strong bisimulation
if P R Q implies that if P

ℓ−→ P ′, then Q
ℓ−→ Q′ for some Q′ such that P ′ R Q′. Strong

bisimilarity is the largest relation ∼ that is a strong bisimulation.

▶ Definition 5.2 (Saturated transition). The ℓ-saturated transition relation, for ℓ ∈ {α, β, τ},
is the smallest relation =⇒ℓ such that: P

ℓ=⇒ℓ P for all P ; and if P
ℓ=⇒ℓ P ′, P ′ ℓ′

−→ Q′, and
Q′ ℓ=⇒ℓ Q, then P

ℓ′

=⇒ℓ Q. Saturated transition, with no qualifier, refers to the τ -saturated
transition relation, and is written =⇒.
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▶ Definition 5.3 (Bisimilarity). A relation R on processes is an ℓ-bisimulation, for ℓ ∈
{α, β, τ}, if P R Q implies that if P

ℓ′

=⇒ℓ P ′, then Q
ℓ′

=⇒ℓ Q′ for some Q′ such that P ′ R Q′.
The ℓ-bisimilarity relation is the largest relation ≈ℓ that is an ℓ-bisimulation. Bisimilarity,
with no qualifier, refers to τ -bisimilarity, and is written ≈.

▶ Lemma 5.4. Structural congruence, strong bisimilarity and the various forms of (weak)
bisimilarity are in the expected relation, i. e., ≡ ⊊ ∼, ∼ ⊊ ≈, ≈α, ≈β. Furthermore, bisimil-
arity is the union of α-bisimilarity and β-bisimilarity, i. e., ≈ = ≈α ∪ ≈β.

Translating HGV to HCP. We factor the translation from HGV to HCP into two translations:
(1) a translation into HGV∗, a fine-grain call-by-value [29] variant of HGV, which makes
control flow explicit; and (2) a translation from HGV∗ to HCP.

HGV∗. We define HGV∗ as a refinement of HGV in which any non-trivial term must be
named by a let binding before being used. While let is syntactic sugar in HGV, it is part
of the core language in HGV∗. Correspondingly, the reduction rule for let follows from the
encoding in HGV, i. e.let x = V in M −→M M{V/x}.

Terms L, M, N ::= V | let x = M in N | V W

| let () = V in M | let (x, y) = V in M

| absurd V | case V {inl x 7→ M ; inr y 7→ N}
Values V , W ::= x | K | λx.M | () | (V, W ) | inl V | inr V

Evaluation contexts E ::= □ | let x = E in M

We can naively translate HGV to HGV∗ (L·M) by let-binding each subterm in a value
position, e.g., Linl MM = let z = LMM in inl z. Such a translation is given in the extended
version; standard techniques can be used to avoid administrative redexes [40, 11].

HGV∗ to HCP. The translation from HGV∗ to HCP is given in Figure 8. All control flow
is encapsulated in values and let-bindings. We define a pair of translations on types, T·U and
V·W, such that TTU = VTW⊥. We extend these translations pointwise to type environments
and hyper-environments. We define translations on configurations (J·Kc

r), terms (J·Km
r ) and

values (J·Kv
r), where r is a fresh name denoting a special output channel over which the

process sends a ping once it has reduced to a value, and then sends the value.
We translate an HGV sequent G ∥ Γ ⊢ C : T as JCKc

r ⊢ TGU ∥ TΓU, r : 1 ⊗ TTU⊥, where Γ
is the type environment corresponding to the main thread. The translation of a value JV Kv

r

immediately pings the output channel r to announce that it is a value. The translation of a
let-binding Jlet w = M in NKm

r first evaluates M to a value, which then pings the internal
channel x/x′ and unblocks the continuation x.JNKm

r .

▶ Lemma 5.5 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a well-typed
value, then (νww′)(JMKm

r ∥ JV Kv
w′) ≈α JM{V/w}Km

r .

▶ Theorem 5.6 (Operational Correspondence). If C is a well-typed configuration:

1. if C −→ C′, then JCKc
r

β=⇒ JC′Kc
r; and

2. if JCKc
r

β−→ P , then there exists a C′ such that C −→ C′ and P ≈ JC′Kc
r.
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Translation on types TTU and VTW

T!T.SU = TTU⊥ ⊗ TSU
T?T.SU = TTU⊥ ` TSU

Tend!U = 1
Tend?U = ⊥

TTU = VTW⊥,

if T is not a session type

VT × UW = VTW ⊗ VUW
VT + UW = VTW ⊕ VUW

V1W = 1
V0W = 0

VT ⊸ UW = VTW⊥ ` (1 ⊗ VUW)
VSW = TSU⊥

Translation on configurations and terms JCKc
r, JV Kv

r, and JMKm
r

J◦ MKc
r = (νyy′)(JMKm

y ∥ y′.y′[].0)
J• MKc

r = JMKm
r

J(νxx′)CKc
r = (νxx′)JCKc

r

J C ∥ DKc
r = JCKc

r ∥ JDKc
r

Jx z↔yKc
r = z̄.z().x↔y

JxKv
r = r↔x

Jλx.MKv
r = r(x).JMKm

r

J()Kv
r = r[].0

J(V, W )Kv
r = r[x].(JV Kv

x ∥ JW Kv
r)

Jinl V Kv
r = r ◁ inl.JV Kv

r

Jinr V Kv
r = r ◁ inr.JV Kv

r

JV W Km
r = (νxx′)(νyy′)(y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′ )

Jlet () = V in MKm
r = (νxx′)(x().JMKm

r ∥ JV Kv
x′ )

Jlet (x, y) = V in MKm
r = (νyy′)(y(x).JMKm

r ∥ JV Kv
y′ )

Jcase V {inl x 7→ M ; inr y 7→ N}Km
r = (νxx′)(x ▷ {inl : JMKm

r ; inr : JN{x/y}Km
r } ∥ JV Kv

x′ )
Jabsurd V Km

r = (νxx′)(x ▷ {} ∥ JV Kv
x′ )

Jlet x = M in NKm
r = (νxx′)(x.JNKm

r ∥ JMKm
x′ )

JV Km
r = r̄.JV Kv

r

JlinkKv
r = r(y).y(x).r̄.r().x↔y

JforkKv
r = r(x).r̄.x⟨r⟩.x.x[].0

JsendKv
r = r(y).y(x).y⟨x⟩.r̄.r↔y

JrecvKv
r = r(x).x(y).r̄.r⟨y⟩.r↔x

JwaitKv
r = r(x).x().r̄.r[].0

Figure 8 Translation from HGV∗ to HCP.

Translating HCP to HGV. We cannot translate HCP processes to HGV terms directly:
HGV’s term language only supports fork (see the extended version for further discussion), so
there is no way to translate an individual name restriction or parallel composition. However,
we can still translate HCP into HGV via the composition of known translations.

HCP into CP We must first reunite each parallel composition with its corresponding name
restriction, i. e., translate to CP using the disentanglement translation shown by Kokke et
al. [27, Lemma 4.7]. The result is a collection of independent CP processes.

CP into GV Next, we can translate each CP process into a GV configuration using (a variant
of) Lindley and Morris’ translation [30, Figure 8].

GV into HGV Finally, we can use our embedding of GV into HGV (Theorem 4.3) to obtain
a collection of well-typed HGV configurations, which can be composed using TC-Par to
result in a single well-typed HGV configuration.

The translation from HCP into CP and the embedding of GV into HGV preserve and
reflect reduction. However, Lindley and Morris’s original translation from CP to GV preserves
but does not reflect reduction due to an asynchronous encoding of choice. By adapting their
translation to use a synchronous encoding of choice (Section 3), we obtain a translation from
CP to GV that both preserves and reflects reduction. Thus, composing all three translations
together we obtain a translation from HCP to HGV that preserves and reflects reduction.
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6 Extensions

In this section, we outline three extensions to HGV that exploit generalising the tree structure
of processes to a forest structure. Full details are given in the extended version. These
extensions are of particular interest since HGV already supports a core aspect of forest
structure, enabling its full utilisation merely through the addition of a structural rule. In
contrast, to extend GV with forest structure one must distinguish two distinct introduction
rules for parallel composition [30]. Other extensions to GV such as shared channels [30],
polymorphism [32], and recursive session types [31] adapt to HGV almost unchanged.

From trees to forests. The TC-Mix structural rule allows two type environments Γ1, Γ2
to be split by a hyper-environment separator without a channel connecting them. Mix [17]
may be interpreted as concurrency without communication [30, 3].

TC-Mix
G ∥ Γ1 ∥ Γ2 ⊢ C : T

G ∥ Γ1, Γ2 ⊢ C : T

A simpler link. Consider threads L = F [link (x, y)], M , N , where L connects to M by x

and to N by y.

L

M N

{x, x′} {y, y′}

−→

L

M N
{y, y′}

The result of link reduction has forest structure. Well-typed closed programs in both GV
and HGV must always maintain tree structure. Different versions of GV do so in various
unsatisfactory ways: one is pre-emptive blocking [30], which breaks confluence; another is
two stage linking (Figure 4), which defers forwarding via a special link thread [31]. With
TC-Mix, we can adjust the type schema for link to (S × S) ⊸ 1 and use the following rule.

E-Link-Mix (νxx′)(F [link (x, y)] ∥ ϕN) −→ F [()] ∥ ϕN{y/x′}

This formulation enables immediate substitution, maximimising concurrency.

Exceptions. In order to support exceptions in the presence of linear endpoints [14, 35]
we must have a way of cancelling an endpoint (cancel : S ⊸ 1). Cancellation generates
a special zapper thread ( x) which severs a tree topology into a forest as in the following
example.

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ •(cancel x; wait y))

• (cancel x; wait y)

◦ x′ ◦ y′

−→

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥  x ∥ •((); wait y)

 x

◦ x′

• ((); wait y)

◦ y′

7 Related work

Session Types and Functional Languages. HGV traces its origins to a line of work initiated
by Gay and collaborators [15, 48, 50, 16]. This family of calculi builds session types directly
into a lambda calculus. Toninho et al. [47] take an alternative approach, stratifying their
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system into a session-typed process calculus and a separate functional calculus. There are
many pragmatic embeddings of session type systems in existing functional programming
languages [36, 41, 43, 21, 38, 24]. A detailed survey is given by Orchard & Yoshida [37].

Propositions as Sessions. When Girard introduced linear logic [17] he suggested a con-
nection with concurrency. Abramsky [1] and Bellin and Scott [5] give embeddings of linear
logic proofs in π-calculus, where cut reduction is simulated by π-calculus reduction. Both
embeddings interpret tensor as parallel composition. The correspondence with π-calculus
is not tight in that these systems allow independent prefixes to be reordered. Caires and
Pfenning [7] give a propositions as types correspondence between dual intuitionistic linear
logic and a session-typed π-calculus called πDILL. They interpret tensor as output. The
correspondence with π-calculus is tight in that independent prefixes may not be reordered.
With CP [51], Wadler adapts πDILL to classical linear logic. Aschieri and Genco [2] give an
interpretation of classical multiplicative linear logic as concurrent functional programs. They
interpret ` as parallel composition, and the connection to session types is less direct.

Priority-based Calculi. Systems such as πDILL, CP, and GV (and indeed HCP and HGV)
ensure deadlock freedom by exploiting the type system to statically impose a tree structure
on the communication topology – there can be at most one communication channel between
any two processes. Another line of work explores a more liberal approach to deadlock freedom
enabling some cyclic communication topologies, where deadlock freedom is guaranteed via
priorities, which impose an order on actions. Priorites were introduced by Kobayashi and
Padovani [23, 39] and adopted by Dardha and Gay [12] in Priority CP (PCP) and Kokke
and Dardha in Priority GV (PGV) [25].

8 Conclusion and future work

HGV exploits hypersequents to resolve fundamental modularity issues with GV. As a
consequence, we have obtained a tight operational correspondence between HGV and HCP.
HGV is a modular and extensible core calculus for functional programming with binary
session types. In future we intend to further exploit hypersequents in order to develop a
modular and extensible core calculus for functional programming with multiparty session
types. We would then hope to exhibit a similarly tight operational correspondence between
this functional calculus and a multiparty variant of CP [9].
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