A Temporal Logic for Strategic Hyperproperties

Raven Beutner
CISPA Helmholtz Center for Information Security, Saarbriicken, Germany

Bernd Finkbeiner
CISPA Helmholtz Center for Information Security, Saarbriicken, Germany

—— Abstract

Hyperproperties are commonly used in computer security to define information-flow policies and
other requirements that reason about the relationship between multiple computations. In this paper,
we study a novel class of hyperproperties where the individual computation paths are chosen by
the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an
extension of computation tree logic with path variables and strategy quantifiers. HyperATL* can
express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to
avoid information leakage. HyperATL" is particularly useful to specify asynchronous hyperproperties,
i.e., hyperproperties where the speed of the execution on the different computation paths depends
on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous
hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present
a model checking algorithm for HyperATL* based on alternating word automata, and show that our
algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a
prototype model checker for a fragment of HyperATL", able to check various security properties on
small programs.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics; Theory of
computation — Verification by model checking

Keywords and phrases hyperproperties, temporal logic, alternating-time temporal logic, model
checking, multi-agent systems, information flow, asynchronous hyperproperties

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2021.24
Related Version Full Version: https://arxiv.org/abs/2107.02509 [6]

Funding This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems” (TRR 248,
389792660), by the European Research Council (ERC) Grant OSARES (No. 683300) and by the

Saarbriicken Graduate School of Computer Science.

1 Introduction

Hyperproperties [10] are system properties that specify a relation between the traces of the
system. Such properties are of increasing importance as they can, for example, characterize
the information-flow in a system [38]. Consequently, several logics for the specification of
hyperproperties have been developed, including hyper variants of CTL*(and LTL) [9, 38],
PDL-A [24] and QPTL [18]. A prominent example is the temporal hyperlogic HyperLTL [9],
which extends linear-time temporal logic (LTL) [35] with explicit trace quantification. In
HyperLTL we can, for instance, express non-interference (NI), i.e., the requirement that the
observable output of a system does not depend on high-security inputs [23]. A prominent
formulation of NT for non-deterministic systems is generalized non-interference (GNI) [31, 12],
which can be expressed as the HyperLTL formula

V1. Ve, 3ms. O(/\ Qr, <> ary) A /\ Gy > Qry),
acH acO
© Raven Beutner and Bernd Finkbeiner;
37 licensed under Creative Commons License CC-BY 4.0
32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 24; pp. 24:1-24:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6234-5651
https://orcid.org/0000-0002-4280-8441
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://arxiv.org/abs/2107.02509
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2

A Temporal Logic for Strategic Hyperproperties

where H and O are two sets of propositions, with H representing the high-security input and
O the output. The formula states that for any pair of traces 71, o there exists a third trace
that agrees on the high-security inputs with 7 and on the outputs with o (for simplicity
we assume that no low-security inputs are present). The existence of such a trace guarantees
that any observation made on the outputs is compatible with every possible sequence of
high-security inputs. The non-determinism is thus the sole explanation for the system output.

In this paper, we introduce a novel class of hyperproperties that reason about strategic
behavior in a multi-agent system. As a motivation for why strategic hyperproperties are
desirable, consider GNI from above. As HyperLTL only quantifies existentially or universally
over the paths in the system, the entire system is treated either as fully controllable or
fully adversarial. Moreover, the witness trace w3 can be constructed with full knowledge
of both 7 and mg; this means that the entire output and input history can be used to
resolve the non-determinism of the system appropriately. Now consider a system where the
non-determinism arises from a scheduling decision between two possible subprograms Py, Ps.
Each subprogram reads the next input h of the system. Suppose that P; assumes that h is
even and otherwise leaks information, while P, assumes that h is odd and otherwise leaks
information. In the trace-based view of GNI, the witness trace 73 is fixed knowing the entire
future input sequence, allowing the construction of a leakage-avoiding path 73; The system
satisfies GNI. An actual scheduler, who chooses which of P;, P, handles the next input,
can only avoid a leakage if it knows what the next input will be, which is impossible in a
real-world system. The HyperLTL formulation of GNI is, in this case, unable to express the
desired property. In our scenario, we need to reason about the strategic behaviour of the
system, i.e., we want to check if there exist a strategy for the scheduler that avoids leakage.

Strategic Hyperproperties. Reasoning about strategic behavior in multi-agent systems has
been studied before. The seminal work on alternating-time temporal logic [1] introduced
an extension of CTL (and CTL*[14]) that is centred around the idea of viewing paths as the
outcome of a game, where some agents are controlled via a strategy. The ATL* quantifier
{A)¢ requires the agents in A to have a strategy that enforces the path formula ¢ to become
true. This makes ATL* an ideal logic for reasoning about open systems, where one is less
interested in the pure existence of a path, but rather in the actual realizability of an outcome
in a multi-agent system. ATL has numerous variations and extensions, which, for example,
introduce knowledge modalities [42] or imperfect observation [5]. While strategy quantifiers
in ATL* can be nested (like in CTL*), the logic is still unable to express hyperproperties, as
the scope of each quantifier ends with the beginning of the next (see [16]).

It is very useful to reason about the strategic behaviour of the agents in a multi-agent
system with respect to a hyperproperty. In the example above, one would like to ask if the
scheduler has a strategy (based on the finite history of inputs only) such that unintended
information-flow (which is a hyperproperty) is prevented (in the above example such an
answer should be negative). There exist multiple angles to approach this: One could, for
instance, interpret strategic hyperproperties such that a coalition of agents tries to achieve
a set of outcomes satisfying some hyperproperty (expressed, for example, in HyperLTL).
Model checking the resulting logic would then subsume realizability of HyperLTL, which is
undecidable even for simple alternation-free formulas [19].

In this paper, we introduce a new temporal logic, called HyperATL*, that combines
the strategic behaviour in multi-agent systems with the ability to express hyperproperties.
Crucially, we focus on the strategic behaviour of a coalition of agents along a single path,
i.e., we view path quantification as the outcome of a game. Syntactically, we follow a similar

R. Beutner and B. Finkbeiner

. while(true)
HyperATL h < ready ()
7 N if (h d2=20) th

HyperCTL* ATL* i mo = then

Ve N / \ o<+ lo

HyperLTL CTL* ATL else
N SN S temp < 0o =071:0
LTL CTL o ¢ temp
(a) (b)

Figure 1 (a): Expressiveness of temporal logics. An arrow A — B indicates that A is a syntactic
fragment of B. (b): Example program that violates (synchronous) observational-determinism.

approach as alternating-time temporal logic [1]. We use the strategy quantifier {A)m.¢ to
specify that the agents in A have a strategy such that each possible outcome, when bound
to the path variable 7, satisfies . A formula of the form (A;)m;.{A2)m2.0 now requires
the existence of strategy for the agents in A; such that for all possible outcomes of the game
w1, the agents in Ay have a strategy such that for all possible outcomes s, the combination
of 71, o satisfies ¢ (which is a formula that can refer to propositions on paths 71, m2). The
strategic behaviour chosen by each quantifier is thus limited to the current path and can
be based on the already fized outcomes of outer quantifiers (i.e., the entire strategy for
the agents in Ay can depend on the full outcome of 71). Sometimes, however, it is useful
not to reason incrementally about the strategy for a single path at a time, but rather to
reason about a joint strategy for multiple paths. To express this, we endow our logic with an
explicit construct to resolve the games in parallel (syntactically, we surround quantifiers by
[-] brackets). The formula [{A;)m.{A2)ma.] ¢ requires winning strategies for the agents in
A; (for the first copy) and for Ay (for the second copy) where the strategies can observe the
current state of both copies. This enables collaboration between the agents in A; and As.

Similar to ATL*, the empty (resp. full) agent set corresponds to universal (resp. existential)
quantification. HyperATL* therefore subsumes HyperCTL* (and thus HyperLTL) as well as
ATL*. The logic is thus a natural extension of both the temporal logics for hyperproperties
and the alternating-time logics from the non-hyper realm (see Fig. 1a).

Strategic Non-Interference. Consider again the example of GNI expressed in HyperLTL.
In HyperATL*, we can express a more refined, strategic notion of non-interference, that
postulates the existence of a strategy for the non-determinism. As a first step, we consider a
program no longer as a Kripke structure (a standard model for temporal hyperlogics), but
as a game structure played between two players. Player £y is responsible for resolving the
non-determinism of the system, and player £y is responsible for choosing the high-security
inputs to the system. We can now express that £y has a strategy to produce matching
outputs (without knowing the future inputs by £z). Consider the following formula stratNI:

v ({enme. OC N an < ax,)

a€O

This formula requires that for every possible reference path 71, the non-determinism always
has a strategy to produce identical outputs. One can show that stratNI implies GNI: The
existence of a leakage “disproving” strategy implies the existence of a leakage “disproving”
trace. A particular strength of this formulation is that we can encode additional requirements
on the strategy. For example: if the internal non-determinism arises from the scheduling
decisions between multiple components, we can require fairness of the scheduling strategy.

24:3

CONCUR 2021

24:4

A Temporal Logic for Strategic Hyperproperties

Asynchronous Hyperproperties. Strategic hyperproperties are also very natural to express
asynchronous hyperproperties. While existing hyperlogics traverse the traces of a system
synchronously, one often requires an asynchronous traversal to account, for example, for
the unknown speed of execution of software that runs on some unknown platform. In a
multi-agent system, the scheduling decision (i.e., whether a system progresses or remains
in its current state) can then be seen as the decision made by scheduling agent (called
sched in the following). If not already present, we can artificially add such a scheduling
agent via a system transformation. By either including or excluding this agent in a strategy
quantifier, we can then naturally reason about asynchronous executions of programs. Instead
of reasoning about the asynchronous scheduling of a system directly, we thus reason about
the existence of a strategy for the scheduling agent.

As an example consider the program in Fig. 1b, which continuously reads an input and
flips the output o either directly, or via a temporary variable. Based on the input, the exact
time point of the change in o differs. A synchronous formulation of observational-determinism
(OD) [26], which requires the output to be identical on all traces, does not hold. In HyperATL*,
we can naturally express a variant of OD where we search for a strategy for the scheduling
agent sched, who aligns the outputs on both traces by stuttering them appropriately:

[({sched})m. {{sched})ma] O(N an, © ax,)

a€0

The program in Fig. 1b (with an added asynchronous scheduler) satisfies this variant, because
sched can stutter the change in o in order to align with the second trace.

To demonstrate the expressiveness of this strategic view on asynchronous hyperproperties,
we compare our approach to AHLTL, a recent temporal logic for asynchronous hyperproper-
ties [4]. While AHLTL model checking is undecidable in general, recent work [4] has identified
a large fragment for which model checking is possible. We show that this fragment can be
encoded within HyperATL*. Every property in this (largest known) decidable fragment can
thus be expressed in HyperATL*, for which model checking is decidable for the full logic.

Model Checking. We show that model checking of HyperATL* on concurrent game structures
is decidable and present an automata-theoretic algorithm. Our algorithm incrementally
reduces model checking to the emptiness of an automaton. We show that alternating
automata are well suited to keep track of all possible path assignments satisfying a formula
by encoding the game structure in the transition function of the automaton. We characterize
the model checking complexity in terms of the number of complex quantifiers (where the
agent team is non-trivial) and simple quantifiers (i.e., 3 or V). We provide a lower bound,
based on a novel construction that encodes a doubly exponential counter within a single
strategy quantifier, that (in almost all cases) matches the upper bound from our algorithm.

Prototype Model Checker. On the practical side, we present a prototype model checker
for an efficient fragment of HyperATL* by reducing the model checking to solving of a parity
game. The fragment supported by our tool does, in particular, include all alternation free
HyperLTL formulas [20], the V*3*-model checking approach from [12] as well as all formulas
in the decidable fragment of AHLTL [4].

Contributions. In summary, our contributions include the following:
We introduce a novel logic to express strategic hyperproperties and demonstrate that it
is well suited to express, e.g., information-flow control and, in particular, asynchronous
hyperproperties.

R. Beutner and B. Finkbeiner

We give an automata-based model checking algorithm for our logic and provide a lower
bound on the model checking problem.

We show that our logic can express all formulas in the largest known decidable fragment
of the existing hyperlogic AHLTL [4].

We provide a prototype-model checker for an efficiently checkable fragment of HyperATL*
and use it to verify information-flow polices and asynchronous hyperproperties.

2 Preliminaries

In this section, we introduce some basic preliminaries needed in the following.

Concurrent Game Structure. As our model of multi-agent systems, we consider concurrent
game structures (CGS) [1]. The transition relation in a CGS is based on the decision by
individual agents (or players). Formally, a CGS is a tuple G = (S, sg,Z, M, §, AP, L) where
S is a finite set of states, sg € S the initial state, = a finite set of agents and M a finite
set of moves. We call a function o : & — M a global move vector and for a set of agent
A C = a function ¢ : A — M a partial move vector. 0 : S X (E = M) — S is a transition
function that maps states and move vectors to successor states. Finally, AP is a finite set
of propositions and L : § — 24P a labelling function. Note that every Kripke structure
(a standard model for temporal logics [3]) can be seen as a 1-player CGS. For disjoint sets
of agents A, As and partial move vectors o; : A; — M for ¢ € {1,2} we define o1 + o2 as
the move vector obtained as the combination of the individual choices. For o : A — M and
A’ C A, we define 0|4/ as the move vector obtained by restring the domain of o to A’.

In a concurrent game structure (as the name suggests) all agents choose their next move
concurrently, i.e., without knowing what moves the other player have chosen. We introduce
the concept of multi-stage CGS (MSCGS), in which the move selection proceeds in stages
and agents can base their decision on the already selected moves of (some of the) other
agents. This is particularly useful when we, e.g., want to base a scheduling decision on the
moves selected by the other agents. Formally, a MSCGS is a CGS equipped with a function
d: 2 — N, that orders the agents according to informedness. Whenever d(&;) < d(&2), &
can base its next move on the move selected by &. A CGS thus naturally corresponds to a
MSCGS with d = 0, where 0 is the constant 0 function.

Alternating Automata. An alternating parity (word) automaton (APA) is a tuple A =
(Q,q0,%, p,c) where Q is a finite set of states, ¢y € @ an initial state, ¥ a finite alphabet,
p:Q x Y — BT (Q) a transition function (BT (Q) is the set of positive boolean combinations
of states) and ¢ : Q — N a colouring of nodes with natural numbers. For ¥ € BT (Q), B C Q
we write B |= U if the assignment obtained from B satisfies U. A tree is a set T C N* that
is prefixed closed, i.e., 7-n € T implies 7 € T. We refer to elements in 7 € T as nodes and
denote with || the length of 7 (or equivalently the depth of the node). For a node 7 € T' we

denote with children(r) the immediate children of 7, i.e., children(t) ={r7-n €T |n € N}.

A X-labelled tree is a pair (T, r) where T is a tree and r : T'— X a labelling with X. A run
of an APA A =(Q,qo,%,p,c) on a word u € X¢ is a -labelled tree (T, r) that satisfies the
following: (1) r(e) = qo, (2) For all 7 € T, {r(7') | 7' € children(7)} = p(r(7),u(]7])). A run
(T, r) is accepting if for every infinite path 7 in T the minimal colour (given by ¢) that occurs
infinitely many times is even. We denote with £(A) the set of words for which A has an
accepting run. We call an alternating automaton A non-deterministic (resp. universal) if the
transition function ¢ is a disjunction (resp. conjunction) of states. If ¢ is just a single state,

24:5

CONCUR 2021

24:6

A Temporal Logic for Strategic Hyperproperties

we call A deterministic. Crucially alternating, non-deterministic, universal and deterministic
parity automaton are all equivalent in the sense that they accept the same class of languages
(namely w-regular ones) although they can be (double) exponentially more succinct:

» Theorem 1 ([33, 13]). For every alternating parity automaton A with n states, there exists
a non-deterministic parity automaton A’ with 2°(") -states that accepts the same language.
For every non-deterministic or universal parity automaton A with n states, there exists a
deterministic parity automaton A’ with 2™ -states that accepts the same language.

» Theorem 2 ([29]). For every alternating parity automaton A with n states, there exists an
alternating parity automaton A with O(n?)-states that accepts the complemented language.

3 HyperATL*

In this section, we introduce HyperATL*. Our logic extends the standard temporal logic
CTL* [14] by introducing path variables and strategic quantification [1]. Assume a countably
infinite set of path variables Var, a set of agents = and a set of atomic propositions AP.
HyperATL* formulas are generated by the following grammar

p=(A)molarloANp|-ploU p|Op

where m € Var is a path variable, a € AP an atomic proposition and A C = a set of agents.
As in HyperCTL*, a, means that proposition a holds in the current step on path w. Via
{A)m.o we can quantify over paths in a system (which we consider as the outcome of a
game). (A)7.o requires the agents in A to have a strategy (defined below) such that each
outcome under that strategy, when bound to trace variable m, satisfies . We abbreviate
as usual ;1 V g2 := (-1 A 7p2), and the temporal operators globally (O), eventually ()
and release (R). Trivial agent sets, i.e., A =0 or A == correspond to classical existential or
universal quantification. We therefore write Vr instead of (@)7 and 3r instead of (=)m. We
call a quantifier simple if the agent-set is trivial and otherwise complex. We call a formula
linear if it consists of an initial quantifier prefix followed by a quantifier-free (LTL) formula.

Semantics. Let us fix a MSCGS G = (5, s09,2,M,,d, AP, L) as a model. We first need
to formalize the notion of a strategy in the game structure. A strategy for any agent is a
function that maps finite histories of plays in the game to a move in M. As the plays in an
MSCGS progress in stages, the decision can be based not only on the past sequence of states,
but also on the fixed moves of all agents in previous stages. Formally, a strategy for an agent
¢ is a function fe : ST x ({¢']| d(¢') < d(&)} = M) — M. Given a set of agents A, a set of
strategies Fa = {fe | € € A} and a state s € S, we define out(G, s, F4) as the set of all runs
u € 8% such that (1) u(0) = s and (2) for every i € N there exists a global move vector o
with 6(u(i), o) = u(i + 1) and for all £ € A we have o(§) = fe(u[0,14], 0|1¢/ja¢r)<d(e)})- The
agents in A choose their move in each step based on the finite history of the play and the
decision of all other agents in an earlier stage. Note that in case where d = 0, a strategy is
just a function St — M, ignoring the moves selected by other agents.

The semantics of a formula is now defined in terms of a path assignment II : Var — S“,
mapping path variables to infinite sequences of states in G. For a path ¢t € S“ we write
t[i, 0] to refer to the infinite suffix of ¢ starting at position i. We write II[i, oo] to denote
the path assignment defined by II[i, oo](7) = II(7)[¢, 00]. We can then inductively define the
satisfaction relation for HyperATL*:

R. Beutner and B. Finkbeiner

Il Eg ar iff a € L(II(7)(0))

Il =g ~¢ i I feg o

II =g v1 Ao iff T =g @1 and I1 =g o

IIEg o1 U ¢ iff 3¢ > 0.I1[¢, 00] =g w2 and V0 < j < i.II[j, 0] =g 1
IIEg O iff TI[1, o0] f=g ¢

I =g (A)m. ¢ ifft 3F4 : Vt € out(G,11(e)(0), Fa) : [— t] =g ¢

Here TlI(e) refers to the path that was last added to the assignment (similar to the HyperLTL-
semantics [9]). If IT is the empty assignment, we define II(e)(0) as the initial state sy of G.
Note that the games are local to each path but based on all outer paths.: In a formula of
the form Vmy.{A)ma.p the agents in A know the already fixed, full trace 1 but behave as a
strategy w.r.t. mo. We write G = ¢ whenever () =g ¢ where () is the empty path assignment.

» Proposition 3. HyperATL* subsumes HyperCTL*(and thus HyperLTL) and ATL*(see
Fig. 1a).

We sometimes consider HyperATL* formulas with extend path quantification: We write
(A)g . to indicate that the path 7 is the result of the game played in G. We can thus refer
to different structures in the same formula. For example, V¢, m1. (A)g, 2. O(0x, <> Ox,)
states that for each path m; in G; the agents in A have a strategy in Gy that produces the
same outputs as on 7. As for HyperLTL, extended quantification reduces to the standard
semantics [38, §5.4].

Parallel-Composition. We extend HyperATL* with a syntactic construct that allows multiple
traces to be resolved in a single bigger game, where individual copies of the system progress
in parallel. Consider the following modification to the HyperATL* syntax, where k > 1:

o= [(A)m. - (A)m] @ lax [e leAploU p|Op

When surrounding strategy quantifiers by [-] the resulting traces are the outcome of a game
played on a bigger, parallel game of the structure. This way, the agents in each copy
can base their decisions not only on the current state of their copy but on the combined
state of all k copies (which allows for a coordinated behaviour among the copies). For
a player &, and a CGS G = (S5,50,2,M,6, AP, L), a k-strategy for £ is a function fe¢ :
(S¥)* — M. The strategy can thus base its decision on a finite history for each of the k

copies. For a system G, sets of k-strategies strategies Fla,,---,Fa, and states sy,--- , sk,
we define out(G, (s1,--+ ,sk), Fa,,- -, Fa,) as all plays u € (S%)* such that (1) u(0) =
(s1,--,sk) and (2) for every ¢ € N there exist move vectors o1, - - , o) such that u(i+1) =

(0(t1,01),- -+ ,0(tg, 0x)) where u(i) = (t1,--- ,tx) and for every j € {1,--- ,k}, agent £ € A;
and strategy fe € Fa, , 0;(§) = fe(u[0,4]). Agents can thus control the individual progress
of their system and base their decision on the history of the other quantifiers. Note that in
the case where k = 1 this is identical to the construction seen above. For simplicity, we gave
the semantics for a CGS (i.e., a MSCGS without stages), it can be generalized easily. We
can now extend our semantics by

=g [(Ar)mr. - (Ax)m] @ iff
3Fa,, -+ Fay V(b 1) € out(G, (TI(€)(0), -+, TI(€)(0)), Fa, -+ Fa,) : Tmi = iy g
Note that [{A)7.] ¢ is equivalent to {A)m.. This does, of course, not hold once we consider
multiple strategy quantifiers grouped together by [].

24:7

CONCUR 2021

24:8

A Temporal Logic for Strategic Hyperproperties

Comparison with Y3-HyperLTL model checking [12]. To give some more intuition for the
parallel composition, we can compare our [-]-construct with the model checking algorithm
introduced in [12]. The idea of the method from [12] is to check a V3-formula by viewing the
existential quantifier as a player who has to decide on a next state (in her copy) by reacting
to the moves of the universal quantifier. If such a winning strategy exists, the V3-formula
also holds, whereas the absence of a winning strategy does, in general, not imply that the
formula is invalid (as the strategy bases its decision on finite plays whereas the existential
path is chosen with the universally quantified path already fixed). This game based view of
the existential player can be natively expressed in HyperATL*: While the HyperATL*-formula
V13m0 is equivalent to the same HyperLTL-formula (i.e., the existential trace m is chosen
knowing the entire trace 1), model checking of the formula [Vm.3ms].¢ corresponds to
the strategy search for the existential player that is only based on finite prefixes of m
(which directly corresponds to [12]). We can actually show that if any MSCGS G satisfies
[Vrry.{A)7a.] then it also satisfies Vary. {AYma. (see [6]). This gives a more general proof of
the soundness of [12]. As our prototype implementation supports [{ A1)y .{As2)ms.]-formulas,
our tool subsumes the algorithm in [12] (see Sec. 8).

4 Examples of Strategic Hyperproperties

After having introduced the formal semantics of HyperATL*, we now demonstrate how the
strategic quantification can be useful for expressing hyperproperties. We organize our example
in two categories. We begin with examples from information-flow control and highlight the
correspondence with existing properties and security paradigms. Afterwards, we show how the
strategic hyperproperties are naturally well suited to express asynchronous hyperproperties.

4.1 Strategic Information-Flow Control

We focus our examples on game structures that result from a reactive system. Let H (resp. L)
be the set of atomic propositions forming the high-security (resp. low-security) inputs of a
system (we assume H N L =). The game structure then comprises 3-players &y, Epr, €L,
responsible for resolving non-determinism and selecting high-security and low-security inputs.
In particular, the move from £y (resp. £1,) determines the values of the propositions in H
(resp. L) in the next step. We call a system input-total, if in each state, g and &7, can choose
all possible valuations for the input propositions.

Strategic Non-Interference. In the introduction, we already saw that GNI [31] is (in some
cases) a too relaxed notion of security, as it can base the existence of a witness trace on
knowledge of the entire input-sequence. Note that GNI can be extended to also allow for
input from a low-security source that may affect the output. The HyperATL* formula stratNI
(given in the introduction) instead postulates a strategy for £ that incrementally constructs
a path that “disproves“ information leakage. We can show that stratNI implies GNI. Loosely
speaking, whenever there is a strategy for the non-determinism based on the finite history of
inputs, there also exists a path when given the full history of inputs (as in GNI).

» Lemma 4. For any system G that is input-total, we have that if G |= stratNI then
G = GNI.

Simulation-based Non-Interference. Other attempts to non-interference are based on
the existence of a bisimulation (or simulation) [40, 39, 30]. While trace-based notions of
non-interference (such as GNT) only require the existence of a path that witnesses the absence

R. Beutner and B. Finkbeiner

of a leak, simulation based properties require a lock-step relation in which this holds. Given
a system G with initial states so. For states s, s’ and evaluations iy € 2F and iy € 27, we
write s :zg s if L(s)NL =iy and L(s') N H = iy and s’ is a possible successor of s. A
security simulation is a relation R on the states of S such that whenever sRt, we have (1) s
and ¢ agree on the output propositions, and (2) for any ir, € 2F and iy, i’y € 2% if s :>22 s’
then there exists a t’ with ¢ :>Z,Z t" and s'Rt'. Note that this is not equivalent to the fact
that = is a simulation in the standard sense [32]. While a standard simulation relation is
always reflexive, reflexivity of security simulations guarantees the security of the system
[39, 40]. A system is thus called simulation secure if there exists a security simulation R
with sqgRsg. It is easy to see that every input-total system that is simulation secure already
satisfies GNI. The converse does, in general, not hold. We can show that HyperATL* can
express simulation security by using the parallel-composition of quantifiers.

Vo m. ({Ent)g,, ™) O(/\ ax < Oax,) = O\ ar, © Oax,)
acL ac0

Here we consider HyperATL* with extended quantifier, where we annotate each quantifier
with the game structure it is resolved on. Ggpsp is the structure G where we added a dummy
initial state, that shifts the behaviour of the system by one position, which is again corrected
via the next operator in the LTL formula. This allows the strategy for £y in the second copy
to base its decision on an already fixed step in the first copy, i.e., it corresponds to a strategy
with a fixed lookahead of 1 step. We can show:

» Lemma 5. An input-total system G is simulation secure if and only if it satisfies simNI.

Non-Deducibility of Strategies. Lastly, we consider the notion of non-deducibility of
strategies (NDS) [45]. NDS requires not only that each output is compatible with each
sequence of inputs, but also with each input-strategy. This becomes important as a high-
security input player who can observe the internal state of a system might be able to leak
information deliberately. As a motivating example, consider the following (first introduced
in [45]): Suppose we have a system that reads a binary input h from a high-security source
and outputs o. The system maintains a bit b of information in its state, initially chosen
non-deterministically. In each step, the system reads the input h, outputs h ® b (where @ is
the xor-operation), non-deterministically chooses a new value for b and then repeats. As @
essentially encodes a one-time pad it is not hard to see, that this system is secure from a purely
trace-based point of view (as expressed in e.g. GNI): Any possible combination of input and
output can be achieved when resolving the non-deterministic choice of b appropriately. If the
high-input player is, however, able to observe the system (in the context of [45] the system
shares the internal bit on a private channel), she can communicate arbitrary sequence of bits
to the low-security environment. Whenever she wants to send bit ¢, she inputs ¢ & b where
b is the internal bit she has access to (note that (¢ ® b) @ b = ¢). For such system system
we therefore do no want to specify that every possible output sequence is compatible with
all possible inputs, but instead compatible with all possible input-strategies (based on the
state of the system). Phrased differently, there should not be a output sequence such that a
strategy can reliably awvoid this output. We can express NDS in HyperATL* as follows:

- (37“' <<£H>>7T2 D(/\ Amy < a7\'2) — <>(\/ Ay §’L> a7r2)>

acL ac0

This formula states that there does not exist a trace m; such that £y has a strategy to
avoid the output of w1 (provided with the same low-security inputs). NDS is a stronger
requirement than GNI, as shown by the following Lemma:

» Lemma 6. For any system G, if G |= NDS then G = GNI.

24:9

CONCUR 2021

24:10

A Temporal Logic for Strategic Hyperproperties

4.2 Asynchronous Hyperproperties

Reasoning about the strategic behaviour of agents is particularly useful when reasoning about
asynchronous hyperproperties, as each asynchronous execution can be considered the result
of the decision of an asynchronous scheduler. We call a player an asynchronous scheduler
if it can decide whether the system progresses (as decided by the other agents) or stutters.
Note that this differs from the asynchronous turn-based games defined in [1]. In our setting,
the scheduler does not control which of the player controls the next move, but rather decides
if the system as a whole progresses or stutters. In cases where the system does not already
include such an asynchronous scheduler (if we e.g. use a Kripke structure interpreted as a
1-player CGS), we can include a scheduler via a simple system transformation:

» Definition 7. Given a MSCGS G = (Q, qo,Z,M,6,d, AP, L) and a fresh agent sched not
already included in the set of agents of =. We define the stutter version of G, denoted Ggpys,
by Gstut := (Q x {0,1},(go,0),Z W {sched}, M x {0,1},0",d', AP W {stut}, L") where

(5(s, projy 0012),0) if (projy o o) (sched) = 0

5'((s,b),0) =
((5,0).9) {(s, 1) if (projy 0 o)(sched) =1

L'((s,0)) = L(s) and L' (s,1) = L(s)U{stut}. Finally d'(§) = d(&) for & € = and d'(sched) =
m + 1 where m is the mazimal element in the codomain of d.

Here proj, is the projection of the 7th element in a tuple and o denotes function composition,
ie., (fog)(x):= f(g(x)). Gstur thus progresses as G with the exception of the additional
scheduling player. In each step, the {0, 1}-decision of sched, which can be based on the
decision by the other agents (as sched is in the last stage of the game), decides if the system
progresses or remains in its current state. The extended state-space @ x {0,1} is used to
keep track of the stuttering which becomes visible via the new atomic proposition stut. Our
construction will be particularly useful when comparing our logic to AHLTL [4].

Observational Determinism. As an example we consider observational-determinism
which states that the output along all traces is identical (in HyperLTL OD :=
VmVre. O(Ageo @ ¢ @r,)). The example in Fig. 1b does not satisfy this property,
as the output is changed at different timepoints. If we consider any system as a multi-
agent system including the scheduler sched, we can use HyperATL* to naturally express an
asynchronous version of OD via:

OD asynch = [({sched}). ({sched})m2.] fair A fair,. AC(/\ Upy € Qry)
acO

where fair, . :=O0-stuly,, asserts that the system may not be stuttered forever. Note that
we encapsulated the quantifiers by [-] thus resolving the games in parallel. The schedulers for
both copies of the system can thus observe the current state of the other copy. The example
from Fig. 1b, after a transformation via Definition 7, satisfies this formula, as the output can
be aligned by the scheduling player.

One-Sided Stuttering. By resolving the stuttered traces incrementally (i.e., omitting the
[-]-brackets) we can also express one-sided stuttering, i.e., allow only the second copy to be
stuttered. As an example assume P? is a program written in the high-level programming
language and P® the complied program into binary code. Let S° and S® be the state
systems of both programs. Using HyperATL* we can now verify that the compiler did not

R. Beutner and B. Finkbeiner

Ay = ({qinit}, qinit, o, p, 0)

Am; T :)
i P(Qinit, [S1,- -+, Sn]) = i ekl
T if a & L(s)

Ay = (Q1U Q2 U{qinit}, Ginit, X, pyc1 W 2 & [qinit — 0])

\Y .
801/\902 p(q [81 cee .8]) — pl(q(),l?[slv"' 75n})\/<02(q0,27[517"' 78"}) lfQZQinit
’ ’ ’ pi(qv[sl"" 73"]) lfqu"

Ay = (Qr U {qnit}, Ginit, X, p, €1 W [Ginie —> 0])
O qo0,1 if ¢ = qinit

p(q7[$17"',5n]):{ p1(q, [51, - 5n]) ifge @

A, = (Q1 U Q2 U {qinit}, Ginit, B, py €1 W ca W [qinit — (1)])

u
(le@Q . _ p2(q0,2’ [517) S"])X(pl (q0,17 [317 t 75n])0qinit> if q = Qinit
p(q7[517"' ’STLD_ .
pl(Q7 [817'” 75"]) 1fq€Q7

Figure 2 APA construction for LTL temporal operators. A,, = (Qi,qo,i, Z;, Pi, i) is the
inductively constructed automaton for ;.

leak information, i.e., the assembly code does provide the same outputs as the original code.

As the compiler breaks each program statement into multiple assembly instructions, we can
not require the steps to match in a synchronous manner. Instead, the system S° should be
allowed to stutter for the assembly program to catch up. We can express this as follows:

Vgamy. <<{sched}>>sot T2 Jair ., ANO(/\ Ur, > Qry)
’ acO

ILe., for every execution of the assembly code we can stutter the program such that the
observations align. Here, S¢,,, denotes the modified version obtained by introducing an
explicit scheduler (Definition 7). Note that we use extend path quantification by annotating
a quantifier with the game structure, thereby effectively comparing both systems with respect
to a hyperproperty.

5 Automata-Theoretic Model Checking

In this section we present an automata-based algorithm for HyperATL* model checking. The
crucial insight in our algorithm is how to deal with the strategic quantification. Let us briefly
recall ATL* model checking [1]: In ATL*, checking if {A)¢ holds in some state s, can be
reduced to the non-emptiness check of the intersection of two tree automata. One accepting
all possible trees that can be achieved via a strategy for players in A, and one accepting

all trees whose paths satisfy the path formula ¢ [1]. In our hyperlogic this is not possible.

When checking {A)7.¢ we can not construct an automaton accepting all trees that satisfy
©, as the satisfaction of ¢ depends on the paths assigned to the outer path-quantifiers (that
are not yet fixed). Instead, we construct an automaton that accepts all path assignments for
the outer quantifiers such that there exists a winning strategy for the agents in A. We show
that alternating automata are well suited to keep track of all path assignments for which a
strategy exists, as they allow us to encode the strategic behaviour of G within the transition
function of the automaton.

24:11

CONCUR 2021

24:12

A Temporal Logic for Strategic Hyperproperties

We assume that the formula ¢ to be checked is given in negation normal form, i.e.,
negations only occur directly in front of atomic propositions or in front of a path quantifier.
By including conjunction (A) and release (R) every formula can be translated into a negation
normal form of linear size. We, furthermore, assume that if {A)m.¢ occurs in the formula,
we have A # (. Note that in this case where A = () we can use that Vr.o = —37.—¢. For
infinite words t1,--- ,t, € X% we define zip(t1,--- ,t,) € (X™)* as the word obtained by
combining the traces pointwise, i.e., zip(t1, - ,t,)(i) := (t1(2), -+ ,tn(7)). Our algorithm
now progresses in a bottom-up manner. Assume that some subformula ¢ occurs under
quantifiers binding path variables =y, - ,m,. We say that an automaton A over S™ is
G-equivalent to ¢, if for any paths t1,--- ,t, it holds that [m; — t;]7, =g ¢ if any only if
zip(ty, -+ ,tn) € L(A). G-equivalence thus means that an automaton accepts a zipping of
traces exactly if the trace assignment constructed from those traces satisfies the formula. By
induction on the structure of the formula, we construct an automaton that is G-equivalent to
each sub formula.

For the standard boolean combinators and LTL temporal operators our construction
follows the typical translation from LTL to alternating automata [34, 43] given in Fig. 2.
The interesting case is now the elimination of a strategy quantifier of the form ¢ = (A)m.¢).
Given an inductively constructed APA A, over £, = S""!. We aim for an automaton A,
over X, = S™. The automata should accept all traces ¢ over S™ such that there exist a
strategy for agents in A such that all traces compatible with this strategy ¢’ when added to ¢
(the trace t x ' € (S™*1)%) is accepted by Ay. Let G = (9, so, 2, M, §,d, AP, L) be the given
MSCGS. We distinguish between the cases where A = = (i.e., existential quantification) and
A#£E.

Existential Quantification. We first consider the case where A = =, ie., ¢ = Ir.9).
Model checking can be done similar to [20]. Let Ay = (Q, g0, Zy, A : Q x Xy — 29, ¢) be
the inductively constructed automaton, translated into a non-deterministic automaton of
exponential size via Theorem 1. We then construct Ay := (S X Q U {@init}; Ginits 2y P, ¢)
where (s, q) = ¢(q) (¢/(¢init) can be chosen arbitrarily) and p is defined via

]) {(Slvql) | q/ €)‘((L [517 e asﬂvsz]) ANdo:E2— M.(;(S;)L,O') - 8/}
N=A{6d)d €Xq,[s1, " ,8n,8]) ANJo : Z = M.§(s,0) = s}

P(Qim't, [31, T

Sn
p((qu)7 [81, Tty 8n
where we define s; = s, if n > 1 and s;, = 5o (the initial state) otherwise. Note that A,
is again a non-deterministic automaton. Every accepting run of A, on zip(ty,--- ,t,) now
corresponds to a path ¢ in G such that A, accepts zip(tq,--- ,tn,t).

(Complex) Strategic Quantification. We now consider the case where A # E. Our
automaton must encode the strategic behaviour of the agents. We achieve this, by encoding
the strategic play in the game structure within the transition function of an automaton.

Let A% = (Q, g0, 2y, A : Q X Xy — @, ¢) be a deterministic automaton obtained from the

(]
inductively constructed Ay, via Theorem 1. Note that A;jet is, in the worst case, of double

exponential size (in the size of Ay). To encode the strategic behaviour in G we use the
alternation available in an automaton by disjunctively choosing moves for controlled players
in A, followed by a conjunctive treatment of all adversarial player. The stages of a game,
naturally correspond to the order of the move selection. Define the set A; := ANd~*(i) and
A; = (E\ A)Nd (i) and let m be the maximal element in the codomain of d. The choice

R. Beutner and B. Finkbeiner

of each agent in A followed by those not in A can be encoded into a boolean formula. We
define A, := (S X Q U {Ginit}, Ginits 2, p, ¢') where p is defined by

p(qirLit7[517 e 7571])

m

= VAR AW CE) SR A PICH USSR)

:Zl —M Om:iAm—M o'fm:zm—ﬂv[i=1

_ \/ /\ ZO’Z+O’Z q,[81,‘“,8n73]))

A =M omiAm—=Mg! A,

and (s, q) = ¢(q) (we can again define ¢/(¢in;¢) arbitrarily). In case n = 0, we again define
s, as the initial state sg, otherwise s; = s,. Note that in the case where the MSCGS is
a CGS, i.e., d = 0 the transition function has the form VA, where the choices in A are
considered disjunctively and the choices by all other agents conjunctively. Our construction

can be extended to handle the self composition [{Ai)my. -+ (Ar)7r] (see [6] for details).

Negated Quantification. We extend our construction to handle negation outside of quanti-
fiers, i.e., a formula ¢ = =(A)7.¢ via A, := A<< A by using Theorem 2.

» Proposition 8. A, is G-equivalent to .

By following our inductive construction, we obtain an automaton over the singleton
alphabet (empty state sequences) that is non-empty iff the model satisfies the formula.
Emptiness of an alternating parity automaton can then be checked in polynomial size
(assuming a fixed number of colours) [28].

We can observe a gap in complexity of algorithm between simple and complex quan-
tification. The former case requires a translation of an alternating automaton to a non-
deterministic one whereas the latter requires a full determinisation. To capture the complexity
of our algorithm we define 7.(k,n) as a tower of k exponents in n, i.e., 7.(0,n) = n° and
Te(k +1,n) = 7<*m) For k > 0 we define k-EXPSPACE as the class of languages recognised
by a deterministic Turing machine ([41]) with space T.(k, O(n)) for some ¢ (and similarly for
time). We define (—1)—EXPSPACE as NLOGSPACE. Note that 0-EXPSPACE = PSPACE.

» Theorem 9. Model checking of a HyperATL* formula with k complex and | simple quantifiers
is in (2k+1)-EXPTIME. Ifl > 1 and the formula is linear, it is also in (2k+1—1)-EXPSPACE (both
in size of the formula).

The fact that we can derive a better upper bound when [> 0 follows from the fact that
we can determine the emptiness of a non-deterministic automaton in NLOGSPACE [44] and for
an alternating automaton only in polynomial time (for a fixed number of colours) [28]. Note
that for the syntactic fragment of HyperCTL* our algorithm matches the algorithm in [20].

6 Lower Bounds for Model Checking

Theorem 9 gives us an upper bound on the model checking problem for HyperATL*. We can
show the following lower bound

» Theorem 10. Model checking of a linear HyperATL* formula with k complex and | simple
quantifiers is (2k + 1 — 1)-EXPSPACE-hard in the size of the formula, provided I > 1.

24:13

CONCUR 2021

24:14

A Temporal Logic for Strategic Hyperproperties

The proof of Theorem 10 proceeds by encoding space-bounded Turing machines into
HyperATL*. We show that (complex) strategic quantification can be used to encode an
incremental counter that grows by two exponents with each quantifier, opposed to the
increment by a single exponent for simple quantification [38]. This is possible, as we can
design a formula that requires the first player to enumerate a counter, while the second
play can challenge its correctness. The only winning strategy for the former player is then
to output a correct counter that holds up against all scrutiny by the latter player. As the
construction of the counter is rather complex, we refer the interested reader to a detailed
proof in the full version [6].

Note that Theorem 10 is conditioned on [> 1. This gives an interesting complexity
landscape: In cases where [> 1, model checking is (2k+[—1)-EXPSPACE-complete (irrespective
of k). If I = 0 we get an upper bound of 2k-EXPTIME (Theorem 9). In the special case where
I =0and k=1 we get a matching lower bound from the ATL* model-checking problem [1]
(subsuming LTL realizability [36, 37]) and thus 2-EXPTIME-completeness. If k£ > 1 the best
lower bound is (2k — 2)-EXPSPACE. The exact complexity for the case where k > 1 and [=0
is thus still open.

7 HyperATL* vs. asynchronous HyperLTL

We have seen that our strategic logic can naturally express asynchronous hyperproperties. In
this section, we compare our logic to AHLTL [4], a recent extension of HyperLTL specifically
designed to express such asynchronous properties. AHLTL is centred around the idea of a
trajectory, which, informally speaking, is the stuttering of traces in a system. In AHLTL an
initial trace quantifier prefix is followed by a quantification over such a trajectory. For
example, a formula of the form V.- --Vm, . E.0 means that for all paths 7y, -+, 7, in the
system there exists some stuttering of the paths, such that ¢ is satisfied. AHLTL follows a
purely trace-based approach where the stuttering is fixed, knowing the full paths 71, -« ,m,.
In comparison, in our logic a strategy must decide if to stutter based on finite a prefix in the
system. Model checking AHLTL is, in general, undecidable [4]. The largest known fragment
for which an algorithm is known are formulas of the form V.- Vr,.E. where ¢ is an
admissible formula [4] which is a conjunction of formulas of the form (A ,c p @, <+ ax,; (Where
P is a set of atomic propositions) and stutter-invariant formulas over a single path variable.
We can show the following (where G,y is the stutter transformation from Definition 7):

» Theorem 11. For any Kripke structure G and AHLTL formula of the form ¥my.-- -V, E.@

it holds that if e = [({sched})mi. - - ({sched})mn] @A N;cy ... ny faira, (1) then G Fapm
Vry. -V Eap (2). If ¢ is an admissible formula, (1) and (2) are equivalent.

Theorem 11 gives us a sound approximation of the (undecidable) AHLTL model checking.
Furthermore, for admissible formulas, AHLTL can be truthfully expressed in our logic. As
shown in [4], many interesting properties can be expressed using an admissible formula and
can thus be (truthfully) checked in our logic. Our framework can therefore express many
interesting properties, is fully decidable, and also subsumes the largest known decidable
fragment of AHLTL.

8 Experimental Evaluation

While MC for the full logic is very expensive (Theorem 10) and likely not viable in practice,
formulas of the form [{Ai)m1. - {An)7n.] where ¢ is quantifier free, can be checked
efficiently via a reduction to a parity game (see the full version [6] for details). Note that

R. Beutner and B. Finkbeiner

Table 1 Validity of various HyperATL* formulas on small benchmark programs. A v(resp. X)
means that the formula is satisfied (resp. not satisfied). The time consumption is given in milliseconds.

(OD) [(NI) | (simSec) | (sGNT) (OD) | (ODasyner) | (NLuaynen)
P1 | v(15) | v(16) | v(16) v (46) QL | X(112) v/ (788) v/ (812)
P2 | X(112) | v(80) | v(83) v/ (432) QL | X(281) v/(3372) v/(3516)
P3 | X(70) | x(44) | v(54) v (112) Qlii | X(1680) | v/(20756) v/ (24078)
Pa | X(73) | X(64) X(70) v (191) Q2 | X(985) | x(18141) v/ (6333)

(a) Examples for Information-Flow Policies.

(b) Examples for Asynchronous Hyperproperties.

all alternation-free HyperLTL formulas, the reduction from the MC approach from [12] and
the reduction in Theorem 11 fall in this fragment. We implemented a prototype model
checker for this fragment to demonstrate different security notions (both synchronous and
asynchronous) on small example programs. Our tool uses rabinizer 4 [27] to convert a
LTL formula into a deterministic automaton and pgsolver [22] to solve parity games. Our
tool is publicly available (see the full version [6]).

Information-Flow Policies. We have created a small benchmark of simple programs that
distinguish different information-flow policies. We checked the following properties: (OD)
is the standard (alternation-free) formula of observational determinism, (INI) is a simple
formulation of non-interference due to [23], (simSec) is simulation security [39] as expressed
in Sec. 4.1. Finally, (sGNI) is the simple game based definition of GNI resolved on the
parallel-composition (as used in [12]). We designed small example programs that demonstrate
the difference between security guarantees and present the results in Table 1a. Note that
the model checking algorithm for V*3* formulas from [12] is subsumed by our approach. As
we reduce the search for a strategy for the existential player to a parity game opposed to a
SMT constraint, we can handle much bigger systems.

Asynchronous Hyperproperties. To showcase the expressiveness of our framework to handle
asynchronous properties, we implemented the stuttering transformation from Definition 7.
We evaluated our tool by checking example programs both on synchronous observational-
determinism (OD) and asynchronous versions of OD (ODgsyncr) and non-interference
(NI)gsynch- Note that while (ODgsyncn) can also express in the decidable fragment of
AHLTL, (NIgsyncn) is not an admissible formula (and can not be handled in [4]). As non-
interference only requires the outputs to align provided the inputs do, one needs to take care
that the asynchronous scheduler does not “cheat“ by deliberately missaligning inputs and
thereby invalidating the premise of this implication. Our results are given in Table 1b. To
demonstrate the state-explosion problem we tested the same program (Q1) with different
bit-widths (programs Q1;, Q1;;, Q1;:;), causing an artificial blow-up in the number of states.

9 Related Work
There has been a lot of recent interest in logics for hyperproperties. Most logics are
obtained by extending standard temporal or first-order/second-order logics with either path
quantification or by a special equal-level predicate [21]. See [11] for an overview. To the best
of our knowledge, none of these logics can express strategic hyperproperties.

24:15

CONCUR 2021

24:16

A Temporal Logic for Strategic Hyperproperties

Alternating-time Temporal Epistemic Logic. The relationship between epistemic logics and
hyperlogic is interesting, as both reason about the flow of information in a system. As shown
in [7], HyperLTL and LTLx (LTL extended with a knowledge operator [15]) have incomparable
expressiveness. In HyperQPTL, which extends HyperLTL with propositional quantification [18],
the knowledge operator can be encoded by explicitly marking the knowledge positions via
propositional quantification [38, §7]. Alternating-time temporal logic has also been extended
with knowledge operators [42]. The resulting logic, ATEL, can express properties of the form
“if £ knows ¢, then she can enforce v via a strategy.” The natural extension of the logic in
[42], which allows for arbitrary nesting of quantification and operators (i.e., an extension of
ATL* instead of ATL) is incomparable to HyperATL*.

Model Checking. Decidable model checking is a crucial prerequisite for the effective use
of a logic. Many of the existing (synchronous) hyperlogics admit decidable model checking,
although mostly with non-elementary complexity (see [17] for an overview). For alternating-
time temporal logic (in the non-hyper realm), model checking is efficient (especially when
one prohibits arbitrary nesting of temporal operators and quantifiers as in ATL) [1, 2]. If one
allows operators and quantifiers to be nested arbitrarily (ATL*), model checking subsumes
LTL satisfiability and realizability. This causes a jump in the model checking complexity to
2-EXPTIME-completeness. As our lower bound demonstrates, the combination of strategic
quantification and hyperproperties results in a logic that is algorithmically harder (for model
checking) than non-strategic hyperproperties (as HyperLTL) or non-hyper strategic logics (as
ATL*). The fragment of HyperATL* implemented in our prototype model checker subsumes
alteration-free HyperLTL (see MCHyper [20]), model checking via explicit strategies [12] and
the (known) decidable fragment of AHLTL [4].

Asynchronous Hyperproperties. Extending hyperlogics to express asynchronous properties
has only recently started to gain momentum [25, 4, 8]. In [4] they extend HyperLTL with
explicit trajectory quantification. [25] introduced a variant of the polyadic p-calculus, H,,,
able to express hyperproperties. In [8] they extended HyperLTL with new modalities that
remove redundant (for example stuttering) parts of a trace. Model checking is undecidable
for all three logics. The (known) decidable fragment of [4] can be encoded into HyperATL*.
The only known decidable classes for H, [25] and HyperLTLg [8] are obtained by bounding
the asynchronous offset by a constant k, i.e., asynchronous execution may not run apart
(“diverge”) for more than k steps. For actual software, this is a major restriction.

10 Conclusion

We have introduced HyperATL*, a temporal logic for strategic hyperproperties. Besides the
obvious benefits of simultaneously reasoning about strategic choice and information flow,
HyperATL*provides a natural formalism to express asynchronous hyperproperties, which
has been a major challenge for previous hyperlogics. Despite the added expressiveness,
HyperATL* model checking remains decidable, with comparable cost to logics for synchronous
hyperproperties (cf. Theorem 9). HyperATL* is the first logic for asynchronous hyperproperties
where model checking is decidable for the entire logic. Its expressiveness and decidability,
as well as the availability of practical model checking algorithms, make it a very promising
choice for model checking tools for hyperproperties.

R. Beutner and B. Finkbeiner

—— References

1

10

11

12

13

14

15

16

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672-713, 2002. doi:10.1145/585265.585270.

Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani,
and Serdar Tasiran. MOCHA: modularity in model checking. In Computer Aided Verification,
10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998,
Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 521-525. Springer,
1998. doi:10.1007/BFb0028774.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sanchez.
A temporal logic for asynchronous hyperproperties. In Computer Aided Verification - 33nd
International Conference, CAV 2021, Los Angeles, CA, USA, July 18-24, 2021, Lecture Notes
in Computer Science. Springer, 2021.

Raphaél Berthon, Bastien Maubert, and Aniello Murano. Decidability results for atl* with
imperfect information and perfect recall. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2017, Sio Paulo, Brazil, May 8-12, 2017, pages
1250-1258. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3091299.

Raven Beutner and Bernd Finkbeiner. A temporal logic for strategic hyperproperties. CoRR,
abs/2107.02509, 2021. arXiv:2107.02509.

Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic
temporal logics. In Foundations of Software Science and Computation Structures - 18th
International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9034 of Lecture Notes in Computer Science, pages 167—182. Springer, 2015. doi:
10.1007/978-3-662-46678-0_11.

Laura Bozzelli, Adriano Peron, and César Sanchez. Asynchronous extensions of hyperltl. In
36nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,
June 29 - July 2, 2021. ACM, 2021.

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sdnchez. Temporal logics for hyperproperties. In Principles of Security
and Trust - Third International Conference, POST 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings, volume 8414 of Lecture Notes in Computer Science, pages 265—284. Springer,
2014. doi:10.1007/978-3-642-54792-8_15.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157—
1210, 2010. doi:10.3233/JCS-2009-0393.

Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy
of hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1-13. IEEE, 2019. doi:
10.1109/LICS.2019.8785713.

Norine Coenen, Bernd Finkbeiner, César Sanchez, and Leander Tentrup. Verifying hyper-
liveness. In Computer Aided Verification - 81st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in
Computer Science, pages 121-139. Springer, 2019. doi:10.1007/978-3-030-25540-4_7.
Doron Drusinsky and David Harel. On the power of bounded concurrency I: finite automata.
J. ACM, 41(3):517—539, 1994. doi:10.1145/176584.176587.

E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM, 33(1):151-178, 1986. doi:10.1145/4904.4999.
Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995. doi:10.7551/mitpress/5803.001.0001.

Bernd Finkbeiner. Temporal hyperproperties. Bull. EATCS, 123, 2017. URL: http://eatcs.
org/beatcs/index.php/beatcs/article/view/514.

24:17

CONCUR 2021

https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/BFb0028774
http://dl.acm.org/citation.cfm?id=3091299
http://arxiv.org/abs/2107.02509
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1145/176584.176587
https://doi.org/10.1145/4904.4999
https://doi.org/10.7551/mitpress/5803.001.0001
http://eatcs.org/beatcs/index.php/beatcs/article/view/514
http://eatcs.org/beatcs/index.php/beatcs/article/view/514

24:18

A Temporal Logic for Strategic Hyperproperties

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Bernd Finkbeiner. Model checking algorithms for hyperproperties (invited paper). In Verifica-
tion, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI
2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume 12597 of Lecture
Notes in Computer Science, pages 3—16. Springer, 2021. doi:10.1007/978-3-030-67067-2_1.
Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Leander Tentrup. Realizing omega-
regular hyperproperties. In Computer Aided Verification - 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture
Notes in Computer Science, pages 40-63. Springer, 2020. doi:10.1007/978-3-030-53291-8_4.
Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander Tentrup.
Synthesizing reactive systems from hyperproperties. In Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Ozford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in
Computer Science, pages 289-306. Springer, 2018. doi:10.1007/978-3-319-96145-3_16.
Bernd Finkbeiner, Markus N. Rabe, and César Sanchez. Algorithms for model checking hyperltl
and hyperctl*. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes
in Computer Science, pages 30-48. Springer, 2015. doi:10.1007/978-3-319-21690-4_3.
Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In 3/th
Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany, volume 66 of LIPIcs, pages 30:1-30:14. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.30.

Oliver Friedmann and Martin Lange. Solving parity games in practice. In Automated
Technology for Verification and Analysis, 7th International Symposium, ATVA 2009, Macao,
China, October 14-16, 2009. Proceedings, volume 5799 of Lecture Notes in Computer Science,
pages 182—196. Springer, 2009. doi:10.1007/978-3-642-04761-9_15.

Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11-20.
IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.

Jens Oliver Gutsfeld, Markus Miiller-Olm, and Christoph Ohrem. Propositional dynamic logic
for hyperproperties. In 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages
50:1-50:22. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.
CONCUR. 2020.50.

Jens Oliver Gutsfeld, Markus Miiller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL):1-29, 2021. doi:
10.1145/34343109.

Marieke Huisman, Pratik Worah, and Kim Sunesen. A temporal logic characterisation
of observational determinism. In 19th IEEE Computer Security Foundations Workshop,
(CSFW-19 2006), 5-7 July 2006, Venice, Italy, page 3. IEEE Computer Society, 2006. doi:
10.1109/CSFW.2006.6.

Jan Kretinsky, Tobias Meggendorfer, Salomon Sickert, and Christopher Ziegler. Rabinizer 4:
From LTL to your favourite deterministic automaton. In Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Ozford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in
Computer Science, pages 567-577. Springer, 2018. doi:10.1007/978-3-319-96145-3_30.
Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree automata emptiness.
In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 224-233. ACM, 1998. doi:10.1145/276698.276748.
Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Log., 2(3):408-429, 2001. doi:10.1145/377978.377993.

Heiko Mantel and Henning Sudbrock. Flexible scheduler-independent security. In Computer
Security - ESORICS 2010, 15th European Symposium on Research in Computer Security,

https://doi.org/10.1007/978-3-030-67067-2_1
https://doi.org/10.1007/978-3-030-53291-8_4
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1109/CSFW.2006.6
https://doi.org/10.1109/CSFW.2006.6
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1145/276698.276748
https://doi.org/10.1145/377978.377993

R. Beutner and B. Finkbeiner

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Athens, Greece, September 20-22, 2010. Proceedings, volume 6345 of Lecture Notes in Computer
Science, pages 116—133. Springer, 2010. doi:10.1007/978-3-642-15497-3_8.

Daryl McCullough. Noninterference and the composability of security properties. In Proceedings
of the 1988 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 18-21,
1988, pages 177-186. IEEE Computer Society, 1988. doi:10.1109/SECPRI.1988.8110.
Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.
Comput. Sci., 32:321-330, 1984. doi:10.1016/0304-3975(84)90049-5.

David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable in exponential
time. In Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS
’88), Edinburgh, Scotland, UK, July 5-8, 1988, pages 422-427. IEEE Computer Society, 1988.
doi:10.1109/LICS.1988.5139.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46-57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Conference Record of
the Sizteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Tezxas,
USA, January 11-18, 1989, pages 179-190. ACM Press, 1989. doi:10.1145/75277.75293.
Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In
Automata, Languages and Programming, 16th International Colloquium, ICALP89, Stresa,
Ttaly, July 11-15, 1989, Proceedings, volume 372 of Lecture Notes in Computer Science, pages
652-671. Springer, 1989. doi:10.1007/BFb0035790.

Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland
University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.
Andrei Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In Perspectives
of Systems Informatics, 5th International Andrei Ershov Memorial Conference, PSI 2003,
Akademgorodok, Novosibirsk, Russia, July 9-12, 2003, Revised Papers, volume 2890 of Lecture
Notes in Computer Science, pages 260-274. Springer, 2003. doi:10.1007/978-3-540-39866-0_
27.

Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs.
In Proceedings of the 18th IEEE Computer Security Foundations Workshop, CSFW 00,
Cambridge, England, UK, July 3-5, 2000, pages 200-214. IEEE Computer Society, 2000.
doi:10.1109/CSFW.2000.856937.

Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177-192, 1970. doi:10.1016/S0022-0000(70)80006-X.

Wiebe van der Hoek and Michael J. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Stud Logica, 75(1):125-157,
2003. doi:10.1023/A:1026185103185.

Moshe Y. Vardi. Alternating automata and program verification. In Computer Science Today:
Recent Trends and Developments, volume 1000 of Lecture Notes in Computer Science, pages
471-485. Springer, 1995. doi:10.1007/BFb0015261.

Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1-37, 1994. doi:10.1006/inco.1994.1092.

J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic systems. In
Proceedings of the 1990 IEEE Symposium on Security and Privacy, Oakland, California, USA,
May 7-9, 1990, pages 144-161. IEEE Computer Society, 1990. doi:10.1109/RISP.1990.63846.

24:19

CONCUR 2021

https://doi.org/10.1007/978-3-642-15497-3_8
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1109/LICS.1988.5139
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BFb0035790
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1007/978-3-540-39866-0_27
https://doi.org/10.1007/978-3-540-39866-0_27
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1023/A:1026185103185
https://doi.org/10.1007/BFb0015261
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1109/RISP.1990.63846

	1 Introduction
	2 Preliminaries
	3 HyperATL*
	4 Examples of Strategic Hyperproperties
	4.1 Strategic Information-Flow Control
	4.2 Asynchronous Hyperproperties

	5 Automata-Theoretic Model Checking
	6 Lower Bounds for Model Checking
	7 HyperATL* vs. asynchronous HyperLTL
	8 Experimental Evaluation
	9 Related Work
	10 Conclusion

