
Generalising Projection in
Asynchronous Multiparty Session Types
Rupak Majumdar #

Max Planck Institute for Software Systems, Kaiserslautern, Germany

Madhavan Mukund #

Chennai Mathematical Institute, India
CNRS IRL 2000, ReLaX, Chennai, India

Felix Stutz #

Max Planck Institute for Software Systems, Kaiserslautern, Germany

Damien Zufferey #

Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract
Multiparty session types (MSTs) provide an efficient methodology for specifying and verifying
message passing software systems. In the theory of MSTs, a global type specifies the interaction
among the roles at the global level. A local specification for each role is generated by projecting
from the global type on to the message exchanges it participates in. Whenever a global type can be
projected on to each role, the composition of the projections is deadlock free and has exactly the
behaviours specified by the global type. The key to the usability of MSTs is the projection operation:
a more expressive projection allows more systems to be type-checked but requires a more difficult
soundness argument.

In this paper, we generalise the standard projection operation in MSTs. This allows us to model
and type-check many design patterns in distributed systems, such as load balancing, that are rejected
by the standard projection. The key to the new projection is an analysis that tracks causality
between messages. Our soundness proof uses novel graph-theoretic techniques from the theory of
message-sequence charts. We demonstrate the efficacy of the new projection operation by showing
many global types for common patterns that can be projected under our projection but not under
the standard projection operation.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Multiparty session types, Verification, Communicating state machines

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.35

Related Version Extended Version with Proofs: https://arxiv.org/abs/2107.03984

Supplementary Material Tool available at:
Software (Source Code): https://doi.org/10.5281/zenodo.5144684

Funding This research was funded in part by the Deutsche Forschungsgemeinschaft project 389792660-
TRR 248 and by the European Research Council under ERC Synergy Grant ImPACT (610150).

Acknowledgements The authors would like to thank Nobuko Yoshida, Thomas Wies, Elaine Li, and
the anonymous reviewers for their feedback and suggestions.

1 Introduction

Distributed message-passing systems are both widespread and challenging to design and
implement. A process tries to implement its role in a protocol with only the partial information
received through messages. The unpredictable communication delays mean that messages
from different sources can be arbitrarily reordered. Combining concurrency, asynchrony,
and message buffering makes the verification problem algorithmically undecidable [10] and
principled design and verification of such systems is an important challenge.

© Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 35; pp. 35:1–35:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rupak@mpi-sws.org
mailto:madhavan@cmi.ac.in
mailto:fstutz@mpi-sws.org
https://orcid.org/0000-0003-3638-4096
mailto:zufferey@mpi-sws.org
https://orcid.org/0000-0002-3197-8736
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://arxiv.org/abs/2107.03984
https://doi.org/10.5281/zenodo.5144684
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Generalising Projection in Asynchronous Multiparty Session Types

Multiparty Session Types (MSTs) [37, 52] provide an appealing type-based approach
for formalising and compositionally verifying structured concurrent distributed systems.
They have been successfully applied to web services [58], distributed algorithms [41], smart
contracts [23], operating systems [26], high performance computing [34], timed systems [8],
cyber-physical systems [47], etc. By decomposing the problem of asynchronous verification on
to local roles, MSTs provide a clean and modular approach to the verification of distributed
systems (see the surveys [4, 39]).

The key step in MSTs is the projection from a global type, specifying all possible global
message exchanges, to local types for each role. The soundness theorem of MSTs states that
every projectable global type is implementable: there is a distributed implementation that is
free from communication safety errors such as deadlocks and unexpected messages.

The projection keeps only the operations observable by a given role and yet maintains
the invariant that every choice can be distinguished in an unambiguous way. Most current
projection operations ensure this invariant by syntactically merging different paths locally for
each role. While these projections are syntactic and efficient, they are also very conservative
and disallow many common design patterns in distributed systems.

In this paper, we describe a more general projection for MSTs to address the conservatism
of existing projections. To motivate our extension, consider a simple load balancing protocol:
a client sends a request to a server and the server forwards the request to one of two workers.
The workers serve the request and directly reply to the client. (We provide the formal syntax
later.) This common protocol is disallowed by existing MST systems, either because they
syntactically disallow such messages (the directed choice restriction that states the sender
and recipient must be the same along every branch of a choice), or because the projection
operates only on the global type and disallows inferred choice.

The key difficulty in projection is to manage the interaction between choice and concur-
rency in a distributed setting. Without choice, all roles would just follow one predetermined
sequence of send and receive operations. Introducing choice means a role either decides whom
to send which message next, or reacts to the choices of other roles – even if such choices
are not locally visible. This is only possible when the outcome of every choice propagates
unambiguously. At each point, every role either is agnostic to a prior choice or knows exactly
the outcome of the choice, even though it may only receive information about the choice
indirectly through subsequent communication with other roles. Unfortunately, computing
how choice propagates in a system is undecidable in general [3]; this is the reason why
conservative restrictions are used in practice.

The key insight in our projection operation is to manage the interaction of choice and
concurrency via a message causality analysis, inspired by the theory of communicating state
machines (CSMs) and message sequence charts (MSCs), that provides a more global view.
We resolve choice based on available messages along different branches. The causality analysis
provides more information when merging two paths based on expected messages.

We show that our generalised projection subsumes previous approaches that lift the
directed choice restriction [16, 38, 17, 40]. Empirically, it allows us to model and verify
common distributed programming patterns such as load balancing, replicated data, and
caching – where a server needs to choose between different workers – that are not in scope of
current MSTs, while preserving the efficiency of projection.

We show type soundness for generalised projection. This generalisation is non-trivial,
since soundness depends on subtle arguments about asynchronous messages in the system.
We prove the result using an automata-theoretic approach, also inspired by the theory of
MSCs, that argues about traces in communicating state machines. Our language-theoretic
proof is different from the usual proof-theoretic approaches in soundness proofs of MST
systems, and builds upon technical machinery from the theory of MSCs.

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:3

We show empirically that generalised choice is key to modelling several interesting instances
in distributed systems while maintaining the efficiency of more conservative systems. Our
global type specifications go beyond existing examples in the literature of MSTs.

2 Multiparty Session Types with Generalised Choice

In this section, we define global and local types. We explain how multiparty session
types (MSTs) work and present a shortcoming of current MSTs. Our MSTs overcome this
shortcoming by allowing a role to wait for messages coming from different senders. We
define a new projection operation from global to local types: the projection represents global
message exchanges from the perspective of a single role. The key to the new projection is a
generalised merge operator that prevents confusion between messages from different senders.

2.1 Global and Local Types
We describe the syntax of global types following work by Honda et al. [36], Hu and Yoshida [38],
and Scalas and Yoshida [52]. We focus on the core message-passing aspects of asynchronous
MSTs and do not include features such as delegation.

▶ Definition 1 (Syntax). Global types for MSTs are defined by the grammar:

G ::= 0 |
∑
i∈I

p→qi :mi.Gi | µt. G | t

where p, qi range over a set of roles P, mi over a set of messages V, and t over type variables.

Note that our definition of global types extends the standard syntax (see, e.g., [36]),
which has a directed choice restriction, requiring that a sender must send messages to the
same role along different branches of a choice. Our syntax

∑
i∈I p→qi :mi.Gi allows a sender

to send messages to different roles along different branches (as in, e.g., [38]). For readability,
we sometimes use the infix operator + for choice, instead of

∑
. When |I| = 1, we omit

∑
.

In a global type, the send and the receive operations of a message exchange are specified
atomically. An expression p → q : m represents two events: a send p ▷ q!m and a receive
q ◁ p?m. We require the sender and receiver processes to be different: p ̸= q. A choice (

∑
)

occurs at the sender role. Each branch of a choice needs to be uniquely distinguishable:
∀i, j ∈ I. i ̸= j ⇒ (qi, mi) ̸= (qj , mj). The least fixed point operator encodes loops and we
require recursion to be guarded, i.e., in µt. G, there is at least one message between µt and
each t in G. Without loss of generality, we assume that all occurrences of t are bound and
each bound variable t is distinct. As the recursion is limited to tail recursion, it is memoryless
and generates regular sequences, so a global type can be interpreted as a regular language of
message exchanges.

▶ Example 2 (Load balancing). A simple load balancing scenario can be modelled with the

global type: µt. Client→Server :req. +

{
Server→Worker1 :req. Worker1 →Client :reply. t

Server→Worker2 :req. Worker2 →Client :reply. t

The least fixed point operator µ encodes a loop in which a client sends a request to a
server. The server then non-deterministically forwards the request to one of two workers.
The chosen worker handles the request and replies to the client. In this protocol, the server
communicates with a different worker in each branch. Figure 1a shows this example as a
high-level message sequence chart (HMSC). The timeline of roles is shown with vertical lines
and the messages with horizontal arrows. Different message contents are represented by
different styles of arrows. ⌟

CONCUR 2021

35:4 Generalising Projection in Asynchronous Multiparty Session Types

C S W1 W2

(a) Load balancing.

C S W1 W2

(b) Variant of load balancing.

C S W1 W2

(c) Execution.

Figure 1 Load balancing and some variant with potential for confusion exemplified by an
execution.

Next, we define local types, which specify a role’s view of a protocol.

▶ Definition 3 (Local types). The local types for a role p are defined as:

L ::= 0 | ⊕
i∈I

qi!mi.Li | &
i∈I

qi?mi.Li | µt.L | t

where the internal choice (⊕) and external choice (&) both respect ∀i, j ∈ I. i ̸= j ⇒
(qi, mi) ̸= (qj , mj). As for global types, we assume every recursion variable is bound, each
recursion operator (µ) uses a different identifier t, and we may omit ⊕ and & if |I| = 1.

Note that a role can send to, resp. receive from, multiple roles in a choice: we generalise
⊕i∈I q!mi.Li of standard MSTs to ⊕i∈I qi!mi.Li and &i∈I q?mi.Li to &i∈I qi?mi.Li.

▶ Example 4. We can give the following local types for Figure 1a:

Server : µt. Client?req. (Worker1!req. t ⊕ Worker2!req. t)
Client : µt. Server!req. (Worker1?reply. t & Worker2?reply. t)

Workeri : µt. Server?req. Client!reply. t for i ∈ {1, 2}

Note that their structure, i.e., having a loop with at most two options, resembles the one of
the global type in Example 2. ⌟

Our goal is to define a partial projection operation from a given global type to a local
type for each role. If the projection is defined, we expect that the type is implementable. We
shall show that the global type of Example 2 projects to the local types in Example 4. As a
consequence, the global type is implementable. Intuitively, when each role in the example
executes based on its local type, they agree on a unique global path in an unrolling of the
global type. We formalise projection and soundness in Section 3. We note that existing
projection operations, including the ones by Hu and Yoshida [38] as well as Scalas and
Yoshida [52], reject the above global type as not implementable.

Notations and Assumptions. We write G for the global type we try to project. When
traversing the global type G, we use G for the current term (which is a subterm of G). To
simplify the notation, we assume that the index i of a choice uniquely determines the sender
and the message qi?mi. Using this notation, we write I ∩ J to select the set of choices with
identical sender and message value and I \ J to select the alternatives present in I but not
in J . When looking at send and receive events in a global setting we write p ▷ q!m for p
sending to q and q ◁ p?m for q receiving from p.

In later definitions, we unfold the recursion in types. We could get the unfolding through
a congruence relation. However, this requires dealing with infinite structures, which makes
some definitions not effective. Instead, we precompute the map from each recursion variable t

to its unfolding. For a given global type, let getµ be a function that returns a map from t

to G for each subterm µt. G. Recall, each t in a type is different. getµ is defined as follows:

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:5

getµ(0) := [] getµ(t) := [] getµ(µt.G) := [t 7→ G] ∪ getµ(G)

getµ(
∑
i∈I

p→qi :mi.Gi) :=
⋃
i∈I

getµ(Gi)

We write getµG as shorthand for the map returned by getµ(G).

2.2 Generalised Projection and Merge
We now define a partial projection operation that projects a global type on to each role. The
projection on to a role r is a local type and keeps only r’s actions. Intuitively, it gives the
“local view” of message exchanges performed by r. While projecting, non-determinism may
arise due to choices that r does not observe directly. In this case, the different branches are
merged using a partial merge operator (⊓). The merge operator checks that a role, which has
not yet learned the outcome of a choice, only performs actions that are allowed in all possible
branches. The role can perform branch-specific actions after it has received a message that
resolves the choice. For a role that is agnostic to the choice, i.e., behaves the same on all the
branches, the merge allows the role to proceed as if the choice does not exist.

So far, the idea follows standard asynchronous MSTs. What distinguishes our new
projection operator from prior ones (e.g., [38, 52]), is that we allow a role to learn which
branch has been taken through messages received from different senders. This generalisation
is non-trivial. When limiting the reception to messages from a single role, one can rely on
the FIFO order provided by the corresponding channel. However, messages coming from
different sources are only partially ordered. Thus, unlike previous approaches, our merge
operator looks at the result of a causality analysis on the global type to make sure that this
partial ordering cannot introduce any confusion.

▶ Example 5 (Intricacies of generalising projection). We demonstrate that a straightforward
generalisation of existing projection operators can lead to unsoundness. Consider a naive
projection that merges branches with internal choice if they are equal, and for receives,
simply always merges external choices – also from different senders. In addition, it removes
empty loops. For Figure 1a, this naive projection yields the expected local types presented
in Example 4. We show that naive projection can be unsound. Figure 1b shows a variant of
load balancing, for which naive projection yields the following local types:

Server : µt. Client?req. (Worker1!req. t ⊕ Worker2!req. t)
Client : µt. Server!req. (Worker1?reply. Worker2?reply. t & Worker2?reply. t)

Worker1 : µt. Server?req. Worker2!req. t

Worker2 : µt. (Worker1?req. Client▷!reply. t & Server?req. Client▷!reply. t)

Unfortunately, the global type is not implementable. The problem is that, for the Client,
the two messages on its left branch are not causally related. Consider the execution prefix
in Figure 1c which is not specified in the global type. The Server decided to first take the
left (L) and then the right (R) branch. For Server, the order LR is obvious from its events
and the same applies for Worker2. For Worker1, every possible order R∗LR∗ is plausible as it
does not have events in the right branch. Since LR belongs to the set of plausible orders,
there is no confusion. Now, the messages from the two workers to the client are independent
and, therefore, can be received in any order. If the client receives Worker2 ?reply first, then
its local view is consistent with the choice RL as the order of branches. This can lead to
confusion and, thus, execution prefixes which are not specified in the global type. ⌟

CONCUR 2021

35:6 Generalising Projection in Asynchronous Multiparty Session Types

We shall now define our generalised projection operation. To identify confusion as above,
we keep track of causality between messages. We determine what messages a role could
receive at a given point in the global type through an available messages analysis. Tracking
causality needs to be done at the level of the global type. We look for chains of dependent
messages and we also need to unfold loops. Fortunately, since we only check for the presence
or absence of some messages, it is sufficient to unfold each recursion at most once.

Projection and Interferences from Independent Messages. The challenge of projecting a
global type lies in resolving the non-determinism introduced by having only the endpoint view.
Example 5 shows that in order to decide if a choice is safe, we need to know which messages
can arrive at the same time. To enable this, we annotate local types with the messages that
could be received at that point in the protocol. We call these availability annotated local
types and write them as AL = ⟨L, Msg⟩ where L is a local type and Msg is a set of messages.
This signifies that when a role has reached AL, the messages in Msg can be present in the
communication channels. We annotate types using the grammar for local types (Definition 3),
where each subterm is annotated. To recover a local type, we erase the annotation, i.e.,
recursively replace each AL = ⟨L, Msg⟩ by L. The projection internally uses annotated types.

The projection of G on to r, written G↾r, traverses G to erase the operations that do
not involve r. During this phase, we also compute the messages that r may receive. The
function avail(B, T, G) computes the set of messages that other roles can send while r has
not yet learned the outcome of the choice. This set depends on B, the set of blocked roles,
i.e., the roles which are waiting to receive a message and hence cannot move; T , the set of
recursion variables we have already visited; and G, the subterm in G at which we compute
the available messages. We defer the definition of avail(B, T, G) to later in this section.

Empty Paths Elimination. When projecting, there may be paths and loops where a role
neither sends nor receives a message, e.g., the right loop in Example 2 for Worker1. Such
paths can be removed during projection. Even if conceptually simple, the notational overhead
impedes understandability of how our message availability analysis is used. Therefore, we
first focus on the message availability analysis and define a projection operation that does
not account for empty paths elimination. After defining the merge operator ⊓, we give the
full definition of our generalised projection operation.

▶ Definition 6 (Projection without empty paths elimination). The projection without empty
paths elimination G↾r of a global type G on to a role r ∈ P is an availability annotated local
type inductively defined as:

t↾r := ⟨t, avail({r}, {t}, getµG(t))⟩ 0↾r := ⟨0, ∅⟩

(µt.G)↾r :=

{
⟨µt.(G↾r), avail({r}, {t}, G)⟩ if G↾r ̸= ⟨t, _⟩
⟨0, ∅⟩ otherwise

(∑
i∈I

p→qi :mi.Gi

)
↾r :=

⟨⊕i∈I qi!mi.(Gi↾r),

⋃
i∈I

avail({qi, r}, ∅, Gi)⟩ if r = p

⊓

(
⟨&i∈I[=r] p?mi.(Gi↾r),

⋃
i∈I[=r]

avail({r}, ∅, Gi)⟩

⊓i∈I[̸=r] Gi↾r

)
otherwise

where I[=r] := {i ∈ I | qi = r} and I[̸=r] := {i ∈ I | qi ̸= r}

A global type G is said to be projectable if G↾r is defined for every r ∈ P.

Projection erases events not relevant to r by a recursive traversal of the global type;
however, at a choice not involving r, it has to ensure that either r is indifferent to the
outcome of the choice or it indirectly receives enough information to distinguish the outcome.

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:7

This is managed by the merge operator ⊓ and the use of available messages. The merge
operator takes as arguments a sequence of availability annotated local types. Our merge
operator generalises the full merge by Scalas and Yoshida [52]. When faced with choice, it
only merges receptions that cannot interfere with each other. For the sake of clarity, we
define only the binary merge. As the operator is commutative and associative, it generalises
to a set of branches I. When I is a singleton, the merge just returns that one branch.

▶ Definition 7 (Merge operator ⊓). Let ⟨L1, Msg1⟩ and ⟨L2, Msg2⟩ be availability annotated
local types for a role r. ⟨L1, Msg1⟩ ⊓ ⟨L2, Msg2⟩ is defined by cases, as follows:

⟨L1, Msg1 ∪ Msg2⟩ if L1 = L2

⟨µt1.(AL1 ⊓ AL2[t2/t1]), Msg1 ∪ Msg2⟩ if L1 = µt1.AL1, L2 = µt2.AL2

⟨⊕i∈I qi!mi.(AL1,i ⊓ AL2,i), Msg1 ∪ Msg2⟩ if

{
L1 = ⊕i∈I qi!mi.AL1,i,
L2 = ⊕i∈I qi!mi.AL2,i

⟨ &i∈I\J qi?mi.AL1,i &
&i∈I∩J qi?mi.(AL1,i ⊓ AL2,i) &
&i∈J\I qi?mi.AL2,i ,

Msg1 ∪ Msg2 ⟩

if

L1 = &i∈I qi?mi.AL1,i,
L2 = &i∈J qi?mi.AL2,i,
∀i ∈ I \ J. r ◁ qi?mi /∈ Msg2,
∀i ∈ J \ I. r ◁ qi?mi /∈ Msg1

When no condition applies, the merge and, thus, the projection are undefined.1
The important case of the merge is the external choice. Here, when a role can potentially

receive a message that is unique to a branch, it checks that the message cannot be available
in another branch so actually being able to receive this message uniquely determines which
branch was taken by the role to choose. For the other cases, a role can postpone learning the
branch as long as the actions on both branches are the same.

Adding Empty Paths Elimination. The preliminary version of projection requires every role
to have at least one event in each branch of a loop and, thus, rejects examples where a role
has no event in some loop branch. Such paths can be eliminated. However, determining such
empty paths cannot be done on the level of the merge operator but only when projecting. To
this end, we introduce an additional parameter E for the generalised projection: E contains
those variables t for which r has not observed any message send or receive event since µt.

▶ Definition 8 (Generalised projection – with empty paths elimination). The projection G↾E
r of

a global type G on to a role r ∈ P is an availability annotated local type which is inductively
defined as follows:

t↾E
r := ⟨t, avail({R}, {t}, getµG(t))⟩ 0↾E

r := ⟨0, ∅⟩

(µt.G)↾E
r :=

{
⟨µt.(G↾E∪{t}

r), avail({R}, {t}, G)⟩ if G↾E∪{t}
r ̸= ⟨t, _⟩

⟨0, ∅⟩ otherwise

(∑
i∈I

p→qi :mi.Gi

)
↾E

r :=

⟨⊕i∈I qi!mi.(Gi↾∅

r),
⋃

i∈I
avail({qi, r}, ∅, Gi)⟩ if r = p

⊓
(

⟨&i∈I[=r] p?mi.(Gi↾∅
r),
⋃

i∈I[=r]
avail({r}, ∅, Gi)⟩

⊓ i∈I[̸=r] ∧ ∀t∈E. Gi↾E
r ̸=⟨t,_⟩ Gi↾E

r

)
otherwise

where I[=r] := {i ∈ I | qi = r} and I[̸=r] := {i ∈ I | qi ̸= r}
Since the merge operator ⊓ is partial, the projection may be undefined. We use G↾r as

shorthand for G↾∅
r and only consider the generalised projection with empty paths elimination

from now on. A global type G is called projectable if G↾r is defined for every role r ∈ P.

1 When we use the n-ary notation ⊓i∈I and |I| = 0, we implicitly omit this part. Note that this can only
happen if r is the receiver among all branches for some choice so there is either another local type to
merge with, or the projection is undefined anyway.

CONCUR 2021

35:8 Generalising Projection in Asynchronous Multiparty Session Types

C S W1 W2

⨅ ⟨W1?reply, ∅⟩
⟨W2?reply, ∅⟩

(a) Merging for Figure 1a.

C S W1 W2

⨅ ⟨W1?reply, {W2?reply}⟩
⟨W2?reply, ∅⟩

⨅ ⟨S?reply, ∅⟩
⟨W1?reply, ∅⟩

(b) Merging for Figure 1b.

Figure 2 Availability annotated types for merging on the two examples. The red lines connect the
receptions that get merged during projection. The annotations only show the receiver’s messages.

We highlight the differences for the empty paths elimination. Recall that E contains all
recursion variables from which the role r has not encountered any events. To guarantee this,
for the case of recursion µt. G, the (unique) variable t is added to the current set E, while
the parameter turns to the empty set ∅ as soon as r encounters an event. The previous steps
basically constitute the necessary bookkeeping. The actual elimination is achieved with the
condition ∀t ∈ E. Gi↾

E
r ̸= ⟨t, _⟩ which filters all branches without events of role r.

Other works [38, 17] achieve this with connecting actions, marking non-empty paths. Like
classical MSTs, we do not include such explicit actions. Still, we can automatically eliminate
such paths in contrast to previous work.

Computing Available Messages. Finally, the function avail is computed recursively:
avail(B, T, 0) := ∅
avail(B, T, µt.G) := avail(B, T ∪ {t}, G)

avail(B, T, t) :=
{

∅ if t ∈ T

avail(B, T ∪ {t}, getµG(t)) if t ̸∈ T

avail(B, T,
∑

i∈I
p→qi :mi.Gi) :=

{⋃
i∈I,m∈V(avail(B, T, Gi) \ {qi ◁ p?m}) ∪ {qi ◁ p?mi} if p ̸∈ B⋃
i∈I

avail(B ∪ {qi}, T, Gi) if p ∈ B

Since all channels are FIFO, we only keep the first possible message in each channel. The
fourth case discards messages not at the head of the channel.

Our projection is different from the one of Scalas and Yoshida [52], not just because
our syntax is more general. It also represents a shift in paradigm. In their work, the full
merge works only on local types. No additional knowledge is required. This is possible
because their type system limits the flexibility of communication. Since we allow more
flexible communication, we need to keep some information, in form of available messages,
about the possible global executions for the merge operator.

▶ Example 9. Let us explain how our projection operator catches the problem in G↾Client
of Figure 1b. Figure 2 shows the function of available messages during the projection for
Figure 1a and Figure 1b. In Figure 2a, the messages form chains, i.e., except for the role
making the choice, a role only sends in reaction to another message. Therefore, only a single
message is available at each reception and the protocol is projectable. On the other hand, in
Figure 2b both replies are available and, therefore, the protocol is not projectable.

Here are the details of the projection for Figure 2b. If not needed, we omit the availability
annotations for readability. Recall that Client receives reply from Worker2 in the left branch,
which is also present in the right branch. Let us denote the two branches as follows:

G1 := Server→Worker1 :req. Worker1 →Worker2 :req. Worker2 →Client :reply. t, and
G2 := Server→Worker2 :req. Worker2 →Client :reply. t

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:9

Since the first message in G1 does not involve Client, the projection descends and we compute:

G↾Client = ⟨µt.(⟨Worker1?reply. (G′
1↾Client), avail({Client}, ∅, G′

1)⟩
⊓⟨Worker2?reply. (G′

2↾Client), avail({Client}, ∅, G′
2)⟩), _⟩

where G′
1 = Worker1 →Worker2 :req. Worker2 →Client :reply. t and G′

2 = t.

For this, we compute avail({Client}, ∅, G′
1) = ∅ and avail({Client}, ∅, G′

2) = {Worker2 ◁

Worker1?req, Client ◁ Worker2?reply} and see that the conditions are not satisfied. Indeed,
Client ◁ Worker2?reply ∈ avail({Client}, ∅, G′

2). Thus, the projection is undefined. ⌟

3 Type Soundness

We now show a soundness theorem for generalised projection; roughly, a projectable global
type can be implemented by communicating state machines in a distributed way. Our proof
uses automata-theoretic techniques from the theory of MSCs. We assume familiarity with
the basics of formal languages.

As our running example shows, a protocol implementation often cannot enforce the event
ordering specified in the type but only a weaker order. In this section, we capture both
notions through a type language and an execution language.

3.1 Type Languages
A state machine A = (Q, Σ, δ, q0, F) consists of a finite set Q of states, an alphabet Σ, a
transition relation δ ⊆ Q × (Σ ∪ {ε}) × Q, an initial state q0 ∈ Q, and a set F ⊆ Q of final
states. We write q

x−→ q′ for (q, x, q′) ∈ δ. We define the runs and traces in the standard way.
A run is maximal if it is infinite or if it ends at a final state. The language L(A) is the set of
(finite or infinite) maximal traces. The projection A⇓∆ of a state machine is its projection to
a sub-alphabet ∆ ⊆ Σ obtained by replacing all letters in Σ \ ∆ with ε-transitions. It accepts
the language L(A)⇓∆ = {w⇓∆ | w ∈ L(A)}.

▶ Definition 10 (Type language for global types). The semantics of a global type G is given as
a regular language. We construct a state machine GAut(G) using an auxiliary state machine
M(G). First, we define M(G) = (QM(G), Σsync, δM(G), q0M(G), FM(G)) where

QM(G) is the set of all syntactic subterms in G together with the term 0,
Σsync = {p→q :m | p, q ∈ P and m ∈ V},
δM(G) is the smallest set containing (

∑
i∈I p→qi :mi.Gi, p→qi :mi, Gi) for each i ∈ I,

as well as (µt.G′, ε, G′) and (t, ε, µt.G′) for each subterm µt.G′ of G,
q0M(G) = G and FM(G) = {0}.

Next, we expand each message p→q :m into two events, p ▷ q!m followed by q ◁ p?m. We
define GAut(G) = (QGAut(G), ΣGAut(G), δGAut(G), q0GAut(G), FGAut(G)) as follows:

QGAut(G) = QM(G) ∪ (QM(G) × Σsync × QM(G)),
ΣGAut(G) = {p ▷ q!m | p, q ∈ P, m ∈ V} ∪ {q ◁ p?m | p, q ∈ P, m ∈ V},
δGAut(G) is the smallest set containing the transitions (s, p ▷ q!m, (s, p → q : m, s′)) and
((s, p→q :m, s′), q ◁ p?m, s′)) for each transition (s, p→q :m, s′) ∈ δM(G),
q0GAut(G) = q0M(G) and FGAut(G) = FM(G).

The type language L(G) of a global type G is given by L(GAut(G)).

CONCUR 2021

35:10 Generalising Projection in Asynchronous Multiparty Session Types

▶ Definition 11 (Type language for local types). Given a local type L for p, we construct a
state machine LAut(L) = (Q, Σp, δ, q0, F) where

Q is the set of all syntactic subterms in L,
Σp = {p ▷ q!m | q ∈ P, m ∈ V} ∪ {p ◁ q?m | p, q ∈ P, m ∈ V},
δ is the smallest set containing
(⊕i∈I qi!mi.Li, p ▷ qi!mi, Li) and (&i∈I qi?mi.Li, p ◁ qi?mi, Li) for each i ∈ I,
as well as (µt.L′, ε, L′) and (t, ε, µt.L′) for each µt.L′ in L,
q0 = L and F = {0} if 0 is a subterm of L, and empty otherwise.

We define the type language of L as language of this automaton: L(L) = L(LAut(L)).

3.2 Implementability
An implementation consists of a set of state machines, one per role, communicating with each
other through asynchronous messages and pairwise FIFO channels. We use communicating
state machines (CSMs) [10] as our formal model. A CSM {{Ap}}p∈P consists of a set of
state machines Ap, one for each p ∈ P over the alphabet of message sends and receives.
Communication between machines happens asynchronously through FIFO channels. The
semantics of a CSM is a language L({{Ap}}p∈P) of maximal traces over the alphabet of
message sends and receives satisfying the FIFO condition on channels. A CSM is deadlock
free if every trace can be extended to a maximal trace. We omit the (standard) formal
definition of CSMs (see Appendix A for details).

Indistinguishability Relation. In the type language of a global type, every send event is
always immediately succeeded by its receive event. However, in a CSM, other independent
events may occur between the send and the receipt and there is no way to force the order
specified by the type language. To capture this phenomenon formally, we define a family of
indistinguishability relations ∼i ⊆ Σ∗ × Σ∗, for i ≥ 0 and Σ = ΣGAut(G), as follows. For all
w ∈ Σ∗, we have w ∼0 w. For i = 1, we define:
(1) If p ̸= r, then w.p ▷ q!m.r ▷ s!m′.u ∼1 w.r ▷ s!m′.p ▷ q!m.u.
(2) If q ̸= s, then w.q ◁ p?m.s ◁ r?m′.u ∼1 w.s ◁ r?m′.q ◁ p?m.u.
(3) If p ̸= s ∧ (p ̸= r ∨ q ̸= s), then w.p ▷ q!m.s ◁ r?m′.u ∼1 w.s ◁ r?m′.p ▷ q!m.u.
(4) If |w⇓p▷q!_| > |w⇓q◁p?_|, then w.p ▷ q!m.q ◁ p?m′.u ∼1 w.q ◁ p?m′.p ▷ q!m.u.
We refer to the proof of Lemma 21 in Appendix B for further details on the conditions for
swapping events. Let w, w′, w′′ be sequences of events s.t. w ∼1 w′ and w′ ∼i w′′ for some i.
Then, w ∼i+1 w′′. We define w ∼ u if w ∼n u for some n. It is straightforward that ∼ is
an equivalence relation. Define u ⪯∼ v if there is w ∈ Σ∗ such that u.w ∼ v. Observe that
u ∼ v iff u ⪯∼ v and v ⪯∼ u. To extend ∼ to infinite words, we follow the approach of
Gastin [27]. For infinite words u, v ∈ Σω, we define u ⪯ω

∼ v if for each finite prefix u′ of u,
there is a finite prefix v′ of v such that u′ ⪯∼ v′. Define u ∼ v iff u ⪯ω

∼ v and v ⪯ω
∼ u.

We lift the equivalence relation ∼ on words to languages:

For a language Λ, we define C∼(Λ) =
{

w′ |
∨ w′ ∈ Σ∗ ∧ ∃w ∈ Σ∗. w ∈ Λ and w′ ∼ w

w′ ∈ Σω ∧ ∃w ∈ Σω. w ∈ Λ and w′ ⪯ω
∼ w

}
.

For the infinite case, we take the downward closure w.r.t. ⪯ω
∼. Unlike [27, Definition 2.1],

our closure operator is asymmetric. Consider the protocol (p ▷ q!m. q ◁ p?m)ω. Since we
do not make any fairness assumption on scheduling, we need to include in the closure the
execution where only the sender is scheduled, i.e., (p ▷ q!m)ω ⪯ω

∼ (p ▷ q!m. q ◁ p?m)ω.

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:11

▶ Example 12 (Indistinguishability relation ∼ by examples). The four rules for ∼1 present
conditions under which two adjacent events in an execution (prefix) can be swapped. These
conditions are designed such that they characterise possible changes in an execution (prefix)
which cannot be recognised by any CSM. To be precise, if w is recognised by some CSM
{{Ap}}p∈P and w′ ∼1 w holds, then w′ is also recognised by {{Ap}}p∈P . In this example, we
illustrate the intuition behind these rules.

For the remainder of this example, the active role of an event is the receiver of a receive
event and the sender of a send event. Visually, the active role is always the first role in an
event. In addition, we assume that variables do not alias, i.e., two roles or messages with
different names are different.

Two send events (or two receive events) can be swapped if the active roles are distinct
because there cannot be any dependency between two such events which do occur next to
each other in an execution. For send events, the 1st rule, thus, admits p ▷ r!m. q ▷ r!m ∼1
q ▷ r!m. p ▷ r!m even though the receiver is the same. In contrast, the corresponding receive
events cannot be swapped: r ◁ p?m. r ◁ q?m ̸∼1 r ◁ q?m. r ◁ p?m. Note that the 1st rule is
the only one with which two send events can be swapped while the 2nd rule is the only one
for receive events so indeed no rule applies for the last case.

The 3rd rule allows one send and one receive event to be swapped if either both senders
or both receivers are different – in addition to the requirement that both active roles are
different. For instance, it admits p ▷ r!m. q ◁ r?m ∼1 q ◁ r?m. p ▷ r!m. However, it does not
admit two swap p ▷ q!m. q ◁ p?m ̸∼1 q ◁ p?m. p ▷ q!m. This is reasonable since the send event
could be the one which emits m in the corresponding channel. In this execution prefix, this is
in fact the case since there have been no events before, but in general one needs to incorporate
the context to understand whether this is the case. The 4th rule does this and therefore
admits swapping the same events when appended to some prefix: p ▷ q!m.p ▷ q!m. q ◁ p?m ̸∼1
p ▷ q!m.q ◁ p?m. p ▷ q!m. Then, the FIFO order of channels ensures that the first message will
be received first and the 2nd send event can happen after the reception of the 1st message. ⌟

▶ Example 13 (Load balancing revisited). Let us consider the execution with confusion in
Figure 1c. Compared to a synchronous execution, we need to delay the reception C ◁W1?reply
to come after the first C◁W2?reply. Using the 2nd and 3rd cases of ∼ we can move C◁W1?reply
across the communications between the two workers. Finally, we use the 3rd case again to
swap C ◁ W1?reply and W2 ▷ C!reply to get the desired sequence. ⌟

This example shows that ∼ does not change the order of send and receive events of a
single role. Thus, if w, w′ ∈ Σ∞

p , then w ∼ w′ iff w = w′. Hence, any language over the
message alphabet of a single role is (trivially) closed under ∼. Further, two runs of a CSM
on w and w′ with w ∼ w′ end in the same configuration.

Execution Languages. For a global type G, the above discussion implies that any imple-
mentation {{Ap}}p∈P can at most achieve that L({{Ap}}p∈P) = C∼(L(G)). This is why we
call C∼(L(G)) the execution language of G. One might also call C∼(L(L)) of a local type
L an execution language, however, since ∼ does not swap any events on the same role, the
type language and execution language are equivalent.

▶ Definition 14 (Implementability). A global type G is said to be implementable if there exists
a CSM {{Ap}}p∈P s.t. (i) [protocol fidelity] L({{Ap}}p∈P) = C∼(L(G)), and (ii) [deadlock
freedom] {{Ap}}p∈P is deadlock free. We say that {{Ap}}p∈P implements G.

CONCUR 2021

35:12 Generalising Projection in Asynchronous Multiparty Session Types

3.3 Type Soundness: Projectability implies Implementability
The projection operator preserves the local order of events for every role and does not remove
any possible event. Therefore, we can conclude that, for each role, the projected language of
the global type is subsumed by the language of the projection.

▶ Proposition 15. For every projectable G, role r ∈ P, run with trace w in GAut(G)⇓Σr
,

there is a run with trace w in LAut(G↾r). Therefore, it holds that L(G)⇓Σr
⊆ L(G↾r).

The previous result shows that the projection does not remove behaviours. Now, we also
need to show that it does not add unwanted behaviours. The main result is the following.

▶ Theorem 16. If a global type G is projectable, then G is implementable.

The complete proof can be found in the extended version [46]. Here, we give a brief
summary of the main ideas. To show that a projectable global type is implemented by
its projections, we need to show that the projection preserves behaviours, does not add
behaviours, and is deadlock free. With Proposition 15, showing that the projections combine
to admit at least the behaviour specified by the global protocol is straightforward. For the
converse direction, we establish a property of the executions of the local types with respect
to the global type: all the projections agree on the run taken by the overall system in the
global type. We call this property control flow agreement. Executions that satisfy control
flow agreement also satisfy protocol fidelity and are deadlock free. The formalisation and
proof of this property is complicated by the fact that not all roles learn about a choice at
the same time. Some roles can perform actions after the choice has been made and before
they learn which branch has been taken. In the extreme case, a role may not learn at all
that a choice happened. The key to control flow agreement is in the definition of the merge
operator. We can simplify the reasoning to the following two points.

Roles learn choices before performing distinguishing actions. When faced with two
branches with different actions, a role that is not making the choice needs to learn the branch
by receiving a message. This follows from the definition of the merge operator. Let us call
this message the choice message. Merging branches is only allowed as long as the actions are
similar for this role. When there is a difference between two (or more) branches, an external
choice is the only case that allows a role to continue on distinct branches.

Checking available messages ensures no confusion. From the possible receptions (qi?mi)
in an external choice, any pair of sender and message is unique among this list for the choice.
This follows from two facts. First, the projection computes the available messages along the
different branches of the choice. Second, merging uses that information to make sure that
the choice message of one branch does not occur in another branch as a message independent
of that branch’s choice messages.

▶ Example 17. Let us use an example to illustrate why this is non-trivial. Consider:
G :=

(
p→q : l. µt. r→p :m. t

)
+
(
p→q :r. µs. r→p :m. s

)
with its projections:

G↾p =
(
q!l. µt. r?m. t

)
⊕
(
q!r. µs. r?m. s

)
G↾q = p?l. 0 & p?r. 0 G↾r = µt. p!m. t

and an execution prefix w of {{LAut(G↾p)}}p∈P : r ▷ p!m. r ▷ p!m. p ▷ q!l. p ◁ r?m. r ▷ p!m.

For this execution prefix, we check which runs in GAut(G) each role could have pursued. In
this case, r is not directly affected by the choice so it can proceed before the p has even
made the choice. As the part of the protocol after the choice is a loop, we cannot bound how
far some roles can proceed before the choice gets resolved. ⌟

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:13

Table 1 Projecting MSTs. For each example, we report the size as the number of nodes in the
AST, the number of roles, whether it uses our extension, the time to compute the projections.

Source Name Size |P| Gen. Proj. needed Time

[52]

Instrument Contr. Prot. A 16 3 ✗ 0.50 ms
Instrument Contr. Prot. B 13 3 ✗ 0.41 ms
Multi Party Game 16 3 ✗ 0.48 ms
OAuth2 7 3 ✗ 0.29 ms
Streaming 7 4 ✗ 0.33 ms

[16] Non-Compatible Merge 5 3 ✓ 0.22 ms

[53] Spring-Hibernate 44 6 ✓ 1.97 ms

New

Group Present 43 4 ✓ 1.62 ms
Late Learning 12 4 ✓ 0.56 ms
Load Balancer (n = 10) 32 12 ✓ 8.18 ms
Logging (n = 10) 56 13 ✓ 20.96 ms

▶ Remark 18. Our projection balances expressiveness with tractability: it does not unfold
recursion, i.e., the merge operator never expands a term µt.G to obtain the local type
(and we only unfold once to obtain the set of available messages). Recursion variables are
only handled by equality. While this restriction may seem arbitrary, unfolding can lead to
comparing unbounded sequences of messages and, hence, undecidability [3] or non-effective
constructions [16]. Our projection guarantees that a role is either agnostic to a choice or
receives a choice message in an horizon bounded by the size of the type.

4 Evaluation

We implemented our generalised projection in a prototype tool which is publicly available [1].
The core functionality is implemented in about 800 lines of Python3 code. Our tool takes as
input a global type and outputs its projections (if defined). We run our experiments on a
machine with an Intel Xeon E5-2667 v2 CPU. Table 1 presents the results of our evaluation.

Our prototype successfully projects global types from the literature [52], in particular
Multi-Party Game, OAuth2, Streaming, and two corrected versions of the Instrument Control
Protocol. These existing examples can be projected, but do not require generalised projection.

The Need for Generalised Projection. The remaining examples exemplify when our
generalised projection is needed. In fact, if some role can receive from different senders
along two paths (immediately or after a sequence of same actions), its projection is only
defined for the generalised projection operator. To start with, our generalised projection can
project a global type presented by Castagna et al. [16, p. 19] which is not projectable with
their effective projection operator (see Section 5 for more details). The Spring-Hibernate
example was obtained by translating a UML sequence diagram [53] to a global type. There,
Hibernate Session can receive from two different senders along two paths. The Group
Present example is a variation of the traditional book auction example [37] and describes
a protocol where friends organise a birthday present for someone; in the course of the
protocol, some people can be contacted by different people. The Late Learning example

CONCUR 2021

35:14 Generalising Projection in Asynchronous Multiparty Session Types

models a protocol where a role submits a request and the server replies either with reject
or wait, however, the last case applies to two branches where the result is served by different
roles. The Load Balancer (Example 2) and Logging examples are simple versions of typical
communication patterns in distributed computing. The examples are parameterised by the
number of workers, respectively, back-ends that call the logging service, to evaluate the
efficiency of projection. For both, we present one instance (n = 10) in the table. All new
examples are rejected by previous approaches but shown projectable by our new projection.

Overhead. The generalised projection does not incur any overhead for global types that do
not need it. Our implementation computes the sets of available messages lazily, i.e., it is
only computed if our message causality analysis is needed. These sets are only needed when
merging receptions from different senders. We modelled four more parameterised protocols:
Mem Cache, Map Reduce, Tree Broadcast, and P2P Broadcast. We tested these examples,
which do not need the generalised projection, up to size 1000 and found that our generalised
projection does not add any overhead. Thus, while the message causality analysis is crucial
for our generalised projection operator and hence applicability of MST verification, it does
not affect its efficiency.

5 Related Work

Session Types. MSTs stem from process algebra and they have been proposed for typing
communication channels. The seminal work on binary session types by Honda [33] identified
channel duality as a condition for safe two party communication. This work was inspired by
linear logic [30] and lead to further studies on the connections between session types and linear
logic [57, 13]. Moving from binary to multiparty session types, Honda et al. [36] identified
consistency as the generalisation of duality for the multiparty setting. The connection between
MSTs and linear logic is still ongoing [12, 14, 15]. While we focus solely on communication
primitives, the theory is extended with other features such as delegation [35, 36, 18] and
dependent types [54, 25, 55]. These extensions have their own intricacies and we leave
incorporating such features into our generalised projection for future work.

In this paper, we use local types directly as implementations for roles for simplicity.
Subtyping investigates ways to give implementation freedom while preserving the correctness
properties. For further details on subtyping, we refer to work by Lange and Yoshida [43],
Bravetti et al. [11], and Chen et al. [21, 20].

Generalisations of Choice in MSTs. Castagna et al. [16] consider a generalised choice
similar to this work. They present a non-effective general approach for projection, relying on
global information, and an algorithmic projection which is limited to local information. Our
projection keeps some global information in the form of message availability and, therefore,
handles a broader class of protocols. For instance, our generalised projection operator can
project the following example [16, p. 19] but their algorithmic version cannot:(

p→r :a. r→p :a. p→q :a. q→r :b. 0
)

+
(
p→q :a. q→r :b. 0

)
Hu and Yoshida [38] syntactically allow a sender to send to different recipients in global

and local types as well as a receiver to receive from different senders in local types. However,
their projection is only defined if a receiver receives messages from a single role. From
our evaluation, all the examples that needs the generalised projection are rejected by their
projection. Recently, Castellani et al. [17] investigated ways to allow local types to specify
receptions from multiple senders for reversible computations but only in the synchronous

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:15

qastart

qb qb qb qb qb

qb qb qb qb qb

p ▷ s!m1

p ▷ s!m2

p ▷ t!m p ▷ s!m s ▷ t!m t ▷ p!m1

s ▷ t!m p ▷ s!m p ▷ t!m t ▷ p!m2

(a) Conditions for choreography automata are unsound in the
asynchronous setting.

p q r s t

l r

l

l

l
l

r
r

r

(b) Reconstructible HMSC that
is not implementable.

Figure 3 These examples show that previous results for the asynchronous setting are flawed.

setting. Similarly, for synchronous communication only, Jongmans and Yoshida [40] discuss
generalising choice in MSTs. Because their calculus has an explicit parallel composition,
they can emulate some asynchronous communication but their channels have bag semantics
instead of FIFO queues. The correctness of the projection also computes causality among
messages as in our case and shares the idea of annotating local types.

Choreography Automata. Choreography automata [6] and graphical choreographies [42]
model protocols as automata with transitions labelled by message exchanges, e.g., p →
q : m. Barbanera el al. [6] develop conditions for safely mergeable branches that ensure
implementability on synchronous choreography automata. However, when lifting them to
the asynchronous setting, they miss the subtle introduction of partial order for messages
from different senders. Consider the choreography automaton in Figure 3a. It can also be

represented as a global type: +

{
p→s :m1. p→t :m. p→s :m. s→t :m. t→p :m1. 0
p→s :m2. s→t :m. p→s :m. p→t :m. t→p :m2. 0

It is well-formed according to their conditions. However, t cannot determine which branch
was chosen since the messages m from p and s are not ordered when sent asynchronously.
As a result, it can send m2 in the top (resp. left) branch which is not specified as well as m1
in the bottom (resp. right) branch.

Lange et al. [42] have shown how to obtain graphical choreographies from CSM executions.
Unfortunately, they cannot fully handle unbounded FIFO channels as their method internally
uses Petri nets. Still, their branching property [42, Def. 3.5] consists of similar – even though
more restrictive – conditions as our MST framework: a single role chooses at each branch
but roles have to learn with the first received message or do not commit any action until the
branches merge back. We allow a role to learn later by recursive application of ⊓.

Implementability in Message Sequence Charts. Projection is studied in hierarchical
message sequence charts (HMSCs) as realisability. There, variations of the problem like
changing the payload of existing messages or even adding new messages in the protocol are also
considered [49, 29]. Here, we focus on implementability without altering the protocol. HMSCs
are a more general model than MSTs and, unsurprisingly, realisability is undecidable [28, 3].
Thus, restricted models have been studied. Boundedness [3] is one such example: checking
safe realisability for bounded HMSCs is EXPSPACE-complete [45]. Boundedness is a very
strong restriction. Weaker restrictions, as in MSTs, center on choice. As we explain below,
these restrictions are either flawed, overly restrictive, or not effectively checkable.

The first definition of (non-)local choice for HMSCs by Ben-Abdallah and Leue [7]
suffers from severely restrictive assumptions and only yields finite-state systems. Given an
HMSC specification, research on implied scenarios, e.g. by Muccini et al. [50], investigates
whether there are behaviours which, due to the asynchronous nature of communication, every

CONCUR 2021

35:16 Generalising Projection in Asynchronous Multiparty Session Types

implementation must allow in addition to the specified ones. In our setting, an implementable
protocol specification must not have any implied scenarios. Mooij et al. [48] point out several
contradictions of the observations on implied scenarios and non-local choice. Hence, they
propose more variants of non-local choices but allow implied scenarios. In our setting, this
corresponds to allowing roles to follow different branches.

Similar to allowing implied scenarios of specifications, Hélouët [31] pointed out that non-
local choice has been frequently misunderstood as it actually does not ensure implementability
but less ambiguity. Hélouët and Jard proposed the notion of reconstructibility [32] for a
quite restrictive setting: first, messages need to be unique in the protocol specification and,
second, each node in an HMSC is implicitly terminal. Unfortunately, we show their results
are flawed. Consider the HMSC in Figure 3b. (For simplicity, we use the same message
identifier in each branch but one can easily index them for uniqueness.) The same protocol
can be represented by the following global type:

µt. +
{

q→t : l. q→p : l. t→s : l. s→r : l. r→p : l. t

q→t :r. q→p :r. t→r :r. r→p :r. t

Because their notion of reconstructibility [32, Def. 12] only considers loop-free paths,
they report that the HMSC is reconstructible. However, the HMSC is not implementable.
Suppose that q first chooses to take the top (resp. left) and then the bottom (resp. right)
branch. The message l from s to r can be delayed until after r received r from t. Therefore,
r will first send r to p and then l which contradicts with the order of branches taken. This
counterexample contradicts their result [32, Thm. 15] and shows that reconstructibility is
not sufficient for implementability.

Dan et al. [22], improving Baker et al. [5], provide a definition that ensures implementab-
ility. They provide a definition which is based on projected words of the HMSC in contrast
to the choices. It is unknown how to check their condition for HMSCs.

CSMs and MSTs. The connection between MSTs, CSMs, and automata [16, 24] came
shortly after the introduction of MSTs. Denielou and Yoshida [24] use CSMs but they preserve
the restrictions on choice from MSTs. It is well-known that CSMs are Turing-powerful [10].
Decidable instances of CSM verification can be obtained by restricting the communication
topology [51, 56] or by altering the semantics of communication, e.g. by making channels
lossy [2], half-duplex [19], or input-bounded [9]. Lange and Yoshida [44] proposed additional
notions that resemble ideas from MSTs.

6 Conclusion

We have presented a generalised projection operator for asynchronous MSTs. The key
challenge lies in the generalisation of the external choice to allow roles to receive from more
than one sender. We provide a new projectability check and a soundness theorem that shows
projectability implies implementability. The key to our results is a message causality analysis
and an automata-theoretic soundness proof. With a prototype implementation, we have
demonstrated that our MST framework can project examples from the literature as well as
new examples, including typical communication patterns in distributed computing, which
were not projectable by previous projection operators.

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:17

References
1 Prototype Implementation of Generalised Projection for Multiparty Session Types. URL:

https://gitlab.mpi-sws.org/fstutz/async-mpst-gen-choice/.
2 Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems

with unbounded, lossy FIFO channels. In Alan J. Hu and Moshe Y. Vardi, editors, Computer
Aided Verification, 10th International Conference, CAV’98, Vancouver, BC, Canada, June 28
– July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 305–318.
Springer, 1998. doi:10.1007/BFb0028754.

3 Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability and verification of MSC
graphs. Theor. Comput. Sci., 331(1):97–114, 2005. doi:10.1016/j.tcs.2004.09.034.

4 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types
in programming languages. Found. Trends Program. Lang., 3(2-3):95–230, 2016. doi:
10.1561/2500000031.

5 Paul Baker, Paul Bristow, Clive Jervis, David J. King, Robert Thomson, Bill Mitchell, and
Simon Burton. Detecting and resolving semantic pathologies in UML sequence diagrams. In
Michel Wermelinger and Harald C. Gall, editors, Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, pages
50–59. ACM, 2005. doi:10.1145/1081706.1081716.

6 Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Choreography automata. In Simon
Bliudze and Laura Bocchi, editors, Coordination Models and Languages – 22nd IFIP WG 6.1
International Conference, COORDINATION 2020, Held as Part of the 15th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes in Computer Science, pages
86–106. Springer, 2020. doi:10.1007/978-3-030-50029-0_6.

7 Hanêne Ben-Abdallah and Stefan Leue. Syntactic detection of process divergence and non-
local choice inmessage sequence charts. In Ed Brinksma, editor, Tools and Algorithms for
Construction and Analysis of Systems, Third International Workshop, TACAS ’97, Enschede,
The Netherlands, April 2-4, 1997, Proceedings, volume 1217 of Lecture Notes in Computer
Science, pages 259–274. Springer, 1997. doi:10.1007/BFb0035393.

8 Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.
Asynchronous timed session types – from duality to time-sensitive processes. In Luís
Caires, editor, Programming Languages and Systems – 28th European Symposium on Pro-
gramming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceed-
ings, volume 11423 of Lecture Notes in Computer Science, pages 583–610. Springer, 2019.
doi:10.1007/978-3-030-17184-1_21.

9 Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded reachability problems are decidable
in FIFO machines. In Igor Konnov and Laura Kovács, editors, 31st International Conference
on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual
Conference), volume 171 of LIPIcs, pages 49:1–49:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.49.

10 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983. doi:10.1145/322374.322380.

11 Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. On the boundary between decidab-
ility and undecidability of asynchronous session subtyping. Theor. Comput. Sci., 722:19–51,
2018. doi:10.1016/j.tcs.2018.02.010.

CONCUR 2021

https://gitlab.mpi-sws.org/fstutz/async-mpst-gen-choice/
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/1081706.1081716
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/j.tcs.2018.02.010

35:18 Generalising Projection in Asynchronous Multiparty Session Types

12 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory, and
beyond. In Elvira Albert and Ivan Lanese, editors, Formal Techniques for Distributed Objects,
Components, and Systems – 36th IFIP WG 6.1 International Conference, FORTE 2016, Held
as Part of the 11th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture
Notes in Computer Science, pages 74–95. Springer, 2016. doi:10.1007/978-3-319-39570-8_6.

13 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Math. Struct. Comput. Sci., 26(3):367–423, 2016. doi:10.1017/S0960129514000218.

14 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In Josée
Desharnais and Radha Jagadeesan, editors, 27th International Conference on Concurrency
Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs,
pages 33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/
LIPIcs.CONCUR.2016.33.

15 Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty
session types as coherence proofs. Acta Informatica, 54(3):243–269, 2017. doi:10.1007/
s00236-016-0285-y.

16 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Log. Methods Comput. Sci., 8(1), 2012. doi:10.2168/LMCS-8(1:24)2012.

17 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Reversible sessions with
flexible choices. Acta Informatica, 56(7-8):553–583, 2019. doi:10.1007/s00236-019-00332-y.

18 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global
types with internal delegation. Theor. Comput. Sci., 807:128–153, 2020. doi:10.1016/j.tcs.
2019.09.027.

19 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication. Inf.
Comput., 202(2):166–190, 2005. doi:10.1016/j.ic.2005.05.006.

20 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On
the preciseness of subtyping in session types. Log. Methods Comput. Sci., 13(2), 2017.
doi:10.23638/LMCS-13(2:12)2017.

21 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness of
subtyping in session types. In Olaf Chitil, Andy King, and Olivier Danvy, editors, Proceedings
of the 16th International Symposium on Principles and Practice of Declarative Programming,
Kent, Canterbury, United Kingdom, September 8-10, 2014, pages 135–146. ACM, 2014. doi:
10.1145/2643135.2643138.

22 Haitao Dan, Robert M. Hierons, and Steve Counsell. Non-local choice and implied scenarios.
In José Luiz Fiadeiro, Stefania Gnesi, and Andrea Maggiolo-Schettini, editors, 8th IEEE
International Conference on Software Engineering and Formal Methods, SEFM 2010, Pisa,
Italy, 13-18 September 2010, pages 53–62. IEEE Computer Society, 2010. doi:10.1109/SEFM.
2010.14.

23 Ankush Das, Stephanie Balzer, Jan Hoffmann, and Frank Pfenning. Resource-aware session
types for digital contracts. CoRR, abs/1902.06056, 2019. arXiv:1902.06056.

24 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In Helmut Seidl, editor, Programming Languages and Systems – 21st European
Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 – April 1, 2012.
Proceedings, volume 7211 of Lecture Notes in Computer Science, pages 194–213. Springer,
2012. doi:10.1007/978-3-642-28869-2_10.

25 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Log. Methods Comput. Sci., 8(4), 2012. doi:10.2168/LMCS-8(4:
6)2012.

https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1007/s00236-019-00332-y
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1109/SEFM.2010.14
http://arxiv.org/abs/1902.06056
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:19

26 Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R.
Larus, and Steven Levi. Language support for fast and reliable message-based communication
in singularity OS. In Yolande Berbers and Willy Zwaenepoel, editors, Proceedings of the
2006 EuroSys Conference, Leuven, Belgium, April 18-21, 2006, pages 177–190. ACM, 2006.
doi:10.1145/1217935.1217953.

27 Paul Gastin. Infinite traces. In Irène Guessarian, editor, Semantics of Systems of Concurrent
Processes, LITP Spring School on Theoretical Computer Science, La Roche Posay, France,
April 23-27, 1990, Proceedings, volume 469 of Lecture Notes in Computer Science, pages
277–308. Springer, 1990. doi:10.1007/3-540-53479-2_12.

28 Blaise Genest, Anca Muscholl, and Doron A. Peled. Message sequence charts. In Jörg Desel,
Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri Nets,
Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on Petri
Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures given
at ACPN 2003, additional chapters have been commissioned], volume 3098 of Lecture Notes in
Computer Science, pages 537–558. Springer, 2003. doi:10.1007/978-3-540-27755-2_15.

29 Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-state high-level
mscs: Model-checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006. doi:
10.1016/j.jcss.2005.09.007.

30 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

31 Loïc Hélouët. Some pathological message sequence charts, and how to detect them. In
Rick Reed and Jeanne Reed, editors, SDL 2001: Meeting UML, 10th International SDL
Forum Copenhagen, Denmark, June 27-29, 2001, Proceedings, volume 2078 of Lecture Notes
in Computer Science, pages 348–364. Springer, 2001. doi:10.1007/3-540-48213-X_22.

32 Loïc Hélouët and Claude Jard. Conditions for synthesis of communicating automata from
HMSCs. In In 5th International Workshop on Formal Methods for Industrial Critical Systems
(FMICS), 2000.

33 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

34 Kohei Honda, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, Vasco Thudichum
Vasconcelos, and Nobuko Yoshida. Verification of MPI programs using session types. In
Jesper Larsson Träff, Siegfried Benkner, and Jack J. Dongarra, editors, Recent Advances
in the Message Passing Interface – 19th European MPI Users’ Group Meeting, EuroMPI
2012, Vienna, Austria, September 23-26, 2012. Proceedings, volume 7490 of Lecture Notes in
Computer Science, pages 291–293. Springer, 2012. doi:10.1007/978-3-642-33518-1_37.

35 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems – ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 – April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

36 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

37 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

38 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types. In
Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software Engineering
– 20th International Conference, FASE 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer,
2017. doi:10.1007/978-3-662-54494-5_7.

CONCUR 2021

https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1007/3-540-53479-2_12
https://doi.org/10.1007/978-3-540-27755-2_15
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/3-540-48213-X_22
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-33518-1_37
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54494-5_7

35:20 Generalising Projection in Asynchronous Multiparty Session Types

39 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

40 Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards more
expressive multiparty session types. In Peter Müller, editor, Programming Languages and
Systems – 29th European Symposium on Programming, ESOP 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,
Ireland, April 25-30, 2020, Proceedings, volume 12075 of Lecture Notes in Computer Science,
pages 251–279. Springer, 2020. doi:10.1007/978-3-030-44914-8_10.

41 Dimitrios Kouzapas, Ramunas Gutkovas, A. Laura Voinea, and Simon J. Gay. A session type
system for asynchronous unreliable broadcast communication. CoRR, abs/1902.01353, 2019.
arXiv:1902.01353.

42 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 221–232. ACM, 2015. doi:10.1145/2676726.
2676964.

43 Julien Lange and Nobuko Yoshida. On the undecidability of asynchronous session subtyping.
In Javier Esparza and Andrzej S. Murawski, editors, Foundations of Software Science and
Computation Structures – 20th International Conference, FOSSACS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in Computer Science,
pages 441–457, 2017. doi:10.1007/978-3-662-54458-7_26.

44 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating
session automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification – 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I, volume 11561 of Lecture Notes in Computer Science, pages 97–117. Springer, 2019.
doi:10.1007/978-3-030-25540-4_6.

45 Markus Lohrey. Realizability of high-level message sequence charts: closing the gaps. Theor.
Comput. Sci., 309(1-3):529–554, 2003. doi:10.1016/j.tcs.2003.08.002.

46 Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising
projection in asynchronous multiparty session types. CoRR, abs/2107.03984, 2021. arXiv:
2107.03984.

47 Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. Motion session types
for robotic interactions (brave new idea paper). In Alastair F. Donaldson, editor, 33rd European
Conference on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London, United
Kingdom, volume 134 of LIPIcs, pages 28:1–28:27. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ECOOP.2019.28.

48 Arjan J. Mooij, Nicolae Goga, and Judi Romijn. Non-local choice and beyond: Intricacies of
MSC choice nodes. In Maura Cerioli, editor, Fundamental Approaches to Software Engineering,
8th International Conference, FASE 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings,
volume 3442 of Lecture Notes in Computer Science, pages 273–288. Springer, 2005. doi:
10.1007/978-3-540-31984-9_21.

49 Rémi Morin. Recognizable sets of message sequence charts. In Helmut Alt and Afonso Ferreira,
editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects of Computer Science,
Antibes – Juan les Pins, France, March 14-16, 2002, Proceedings, volume 2285 of Lecture
Notes in Computer Science, pages 523–534. Springer, 2002. doi:10.1007/3-540-45841-7_43.

50 Henry Muccini. Detecting implied scenarios analyzing non-local branching choices. In Mauro
Pezzè, editor, Fundamental Approaches to Software Engineering, 6th International Conference,
FASE 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2621 of Lecture Notes
in Computer Science, pages 372–386. Springer, 2003. doi:10.1007/3-540-36578-8_26.

https://doi.org/10.1145/2873052
https://doi.org/10.1007/978-3-030-44914-8_10
http://arxiv.org/abs/1902.01353
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1016/j.tcs.2003.08.002
http://arxiv.org/abs/2107.03984
http://arxiv.org/abs/2107.03984
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://doi.org/10.1007/978-3-540-31984-9_21
https://doi.org/10.1007/978-3-540-31984-9_21
https://doi.org/10.1007/3-540-45841-7_43
https://doi.org/10.1007/3-540-36578-8_26

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:21

51 Wuxu Peng and S. Purushothaman. Analysis of a class of communicating finite state machines.
Acta Informatica, 29(6/7):499–522, 1992. doi:10.1007/BF01185558.

52 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.

53 Spring and Hibernate Transaction in Java. URL: https://www.uml-diagrams.org/examples/
spring-hibernate-transaction-sequence-diagram-example.html.

54 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Peter Schneider-Kamp and Michael Hanus, editors, Proceedings of
the 13th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 20-22, 2011, Odense, Denmark, pages 161–172. ACM, 2011. doi:10.1145/
2003476.2003499.

55 Bernardo Toninho and Nobuko Yoshida. Depending on session-typed processes. In Christel
Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation Structures –
21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10803 of Lecture Notes in Computer Science, pages 128–145. Springer,
2018. doi:10.1007/978-3-319-89366-2_7.

56 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-bounded analysis of
concurrent queue systems. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume
4963 of Lecture Notes in Computer Science, pages 299–314. Springer, 2008. doi:10.1007/
978-3-540-78800-3_21.

57 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi:
10.1017/S095679681400001X.

58 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
– 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

A Communicating State Machines

A communicating state machine (CSM) A = {{Ap}}p∈P over P and V consists of a state ma-
chine Ap over Σp for each p ∈ P . A state machine for p will be denoted by (Qp, Σp, δp, q0,p, Fp).
If a state q has multiple outgoing transitions, all labelled with send actions, then q is called
an internal choice state. If all the outgoing transitions are labelled with receive actions, q is
called an external choice state. Otherwise, q is a mixed choice state. In this paper, we only
consider state machines without mixed choice states.

Intuitively, a CSM represents a set of state machines, one for each role in P, interacting
via message sends and receipts. We assume that each pair of roles p, q ∈ P, p ̸= q, is
connected by a message channel. A transition qp

p▷q!m−−−−→ q′
p in the state machine of p specifies

that, when p is in the state qp, it sends a message m to q, and updates its local state to q′
p.

The message m is appended to the channel ⟨p, q⟩. Similarly, a transition qq
q◁p?m−−−−→ q′

q in the
state machine of q specifies that q in state qq can retrieve the message m from the head of
the channel ⟨p, q⟩ and update its local state to q′

q.
Let Chan = {⟨p, q⟩ | p, q ∈ P, p ̸= q} denote the set of channels. The set of global states

of the CSM is given by
∏

p∈P Qp. For a global state q, we write qp for the state of p in q.
A configuration of A is a pair (q, ξ), where q is a global state and ξ : Chan → V∗ maps

CONCUR 2021

https://doi.org/10.1007/BF01185558
https://doi.org/10.1145/3290343
https://www.uml-diagrams.org/examples/spring-hibernate-transaction-sequence-diagram-example.html
https://www.uml-diagrams.org/examples/spring-hibernate-transaction-sequence-diagram-example.html
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1007/978-3-319-05119-2_3

35:22 Generalising Projection in Asynchronous Multiparty Session Types

each channel to the queue of messages currently in the channel. The initial configuration is
(q0, ξε), where q0,p is the initial state of Ap for each p ∈ P and ξε maps each channel to ε.
A configuration (q, ξ) is final iff qp is final for every p and ξ = ξε.

In a global move of a CSM, a single role executes a local transition to change its state,
while all other roles remain stationary. For a send or a receive action, the corresponding
channel is updated, while all other channels remain unchanged. Formally, the global transition
relation → on configurations is defined as follows:

(q, ξ) p▷q!m−−−−→ (q′, ξ′) if (qp, p▷q!m, q′
p) ∈ δp, qr = q′

r for every r ̸= p, ξ′(⟨p, q⟩) = ξ(⟨p, q⟩)·m
and ξ′(c) = ξ(c) for every other channel c ∈ Chan.
(q, ξ) q◁p?m−−−−→ (q′, ξ′) if (qq, q◁p?m, q′

q) ∈ δq, qr = q′
r for every r ̸= q, ξ(⟨p, q⟩) = m·ξ′(⟨p, q⟩)

and ξ′(c) = ξ(c) for every other channel c ∈ Chan.
(q, ξ) τ−→ (q′, ξ) if (qp, ε, q′

p) ∈ δp for some role p, and qq = q′
q for every role q ̸= p.

A run of the CSM is a finite or infinite sequence: (q0, ξ0) x0−→ (q1, ξ1) x1−→ . . . , such that
(q0, ξ0) is the initial configuration and for each i ≥ 0, we have (qi, ξi)

xi−→ (qi+1, ξi+1). The
trace of the run is the word x0x1 . . . ∈ Σ∞. We also call x0x1 . . . an execution prefix. A run is
maximal if it is infinite or if it is finite and ends in a final configuration. A trace is maximal
if it is the trace of a maximal run. The language L(A) of the CSM A is the set of maximal
traces. A CSM is deadlock free if every finite run can be extended to a maximal run.

The following lemma summarises some properties of execution prefixes of CSMs. The
proofs are by induction on the length of the run.

▶ Lemma 19. Let {{Ap}}p∈P be a CSM. For any run (q0, ξ0) x0−→ · · · xn−−→ (q, ξ) with trace
w = x0 . . . xn, it holds that (1) ξ(⟨p, q⟩) = u where V(w⇓p▷q!_) = V(w⇓q◁p?_).u for every
pair of roles p, q ∈ P and (2) w is channel-compliant. Maximal traces of {{Ap}}p∈P are
channel-compliant and complete.

Proof. We prove the claims by induction on an execution prefix w. The base case where
w = ε is trivial. For the induction step, we consider wx with the following run in {{Ap}}p∈P :
(q0, ξ0) w−→ (q, ξ) x−→ (q′, ξ′). The induction hypothesis holds for w and (q, ξ) and we prove the
claims for (q′, ξ′) and wx. We do a case analysis on x. If x = τ , the claim trivially follows.

Let x = q ◁ p?m. From the induction hypothesis, we know that ξ(⟨p, q⟩) = u where
V(w⇓p▷q!_) = V(w⇓q◁p?_).u. Since x is a possible transition, we know that u = m.u′ for
some u′ and ξ′(⟨p, q⟩) = u′. By definition, it holds that V(w⇓q◁p?_).m.u′ = V((wx)⇓q◁p?_).u′.
For all other pairs of roles, the induction hypothesis applies since the above projections do
not change. Hence, wx is channel-compliant.

Let x = p ▷ q!m. From the induction hypothesis, we know that ξ(⟨p, q⟩) = u where
V(w⇓p▷q!_) = V(w⇓q◁p?_).u. Since x is a possible transition, we know that ξ′(⟨p, q⟩) =
u.m. By definition and induction hypothesis, we have: V((wx)⇓p▷q!_) = V(w⇓p▷q!_).m =
V(w⇓q◁p?_).u.m. For all other combinations of roles, the induction hypothesis applies since
the above projections do not change. Hence, wx is channel-compliant.

From (1) and (2), it follows directly that maximal traces of {{Ap}}p∈P are channel-compliant
and complete. ◀

B Properties of C∼

▶ Lemma 20. Let L ⊆ Σ∞
p . Then, L = C∼(L).

Proof. For any w ∈ Σ∞
p , none of the rules of ∼1 applies to w, and we have that w ∼ w′ iff

w = w′. Thus, L = C∼(L) for any language L ⊆ Σ∞
p . ◀

R. Majumdar, M. Mukund, F. Stutz, and D. Zufferey 35:23

▶ Lemma 21. Let {{Ap}}p∈P be a CSM. Then, for every finite w with a run in {{Ap}}p∈P and
every w′ ∼ w, w′ has a run that ends with the same configuration. The language L({{Ap}}p∈P)
is closed under ∼: L({{Ap}}p∈P) = C∼(L({{Ap}}p∈P)).

Proof. Let w be a finite word with a run in {{Ap}}p∈P and w′ ∼ w. By definition, w′ ∼n w

for some n. We prove that w′ has a run that ends in the same configuration by induction
on n. The base case for n = 0 is trivial. For the induction step, we assume that the claim
holds for n and prove it for n + 1. Suppose that w ∼n+1 w′. Then, there is w′′ such that
w′ ∼1 w′′ and w′′ ∼n w. By assumption, we know that w′ = u′u1u2u′′ and w′′ = u′u2u1u′′

for some u′, u′′ ∈ Σ∗, u1, u2 ∈ Σ. By induction hypothesis, we know that w′′ ∈ L({{Ap}}p∈P)
so there is run for w′′ in {{Ap}}p∈P . Let us investigate the run at u1 and u2: · · · (q1, ξ1) u1−→
(q2, ξ2) u2−→ (q3, ξ3) · · · . It suffices to show that · · · (q1, ξ1) u2−→ (q′

2, ξ′
2) u1−→ (q3, ξ3) · · · is

possible in {{Ap}}p∈P for some configuration (q′
2, ξ′

2). We do a case analysis on the rule that
was applied for w′ ∼1 w′′.

u1 = p ▷ q!m, u2 = r ▷ s!m′, and p ̸= r:
We define q′

2 such that q′
2,p = q1,p, q′

2,r = q3,r, and q′
2,t = q3,t for all t ∈ P with t ̸= p and

t ̸= r. Both transitions are feasible in {{Ap}}p∈P because both p and r are different and
send a message to different channels. They can do this independently from each other.
u1 = q ◁ p?m, u2 = s ◁ r?m′, and q ̸= s:
We define q′

2 such that q′
2,q = q1,q, q′

2,s = q3,s, and q′
2,t = q3,t for all t ∈ P with t ̸= p

and t ̸= r. Both transitions are feasible in {{Ap}}p∈P because both q and s are different
and receive a message from a different channel. They can do this independently from
each other.
u1 = p ▷ q!m, u2 = s ◁ r?m′, and and p ̸= s ∧ (p ̸= r ∨ q ̸= s).
We define q′

2 such that q′
2,p = q1,p, q′

2,s = q3,s, and q′
2,t = q3,t for all t ∈ P with t ̸= p and

t ̸= r. Let us do a case split according to the side conditions. First, let p ̸= s and p ̸= r.
The channels of u1 and u2 are different and p and s are different, so both transitions are
feasible in {{Ap}}p∈P .
Second, let p ̸= s and q ̸= s. The channels of u1 and u2 are different and q and s are
different, so both transitions are feasible in {{Ap}}p∈P .
u1 = p ▷ q!m, u2 = q ◁ p?m′, and |u′⇓p▷q!_| > |u′⇓q◁p?_|:
We define q′

2 such that q′
2,p = q1,p, q′

2,q = q3,q, and q′
2,t = q3,t for all t ̸= p and t ̸= q.

In this case, the channel of u1 and u2 is the same but the side condition ensures that
u2 actually has a different message read since the channel ξ1(⟨p, q⟩) is not empty by
Lemma 19 and, hence, both transitions can act independently and lead to the same
configuration.

This proves that w′ has a run in {{Ap}}p∈P that ends in the same configuration which
concludes the proof of the first claim.

For the second claim, we know that L({{Ap}}p∈P) ⊆ C∼(L({{Ap}}p∈P)) by definition.
Hence, it suffices to show that C∼(L({{Ap}}p∈P)) ⊆ L({{Ap}}p∈P).

We show the claim for finite traces first:

C∼(L({{Ap}}p∈P)) ∩ Σ∗ ⊆ L({{Ap}}p∈P) ∩ Σ∗.

Let w′ ∈ C∼(L({{Ap}}p∈P)) ∩ Σ∗. There is w ∈ L({{Ap}}p∈P) ∩ Σ∗ such that w ∼ w′. By
definition, w has a run in {{Ap}}p∈P which ends in a final configuration. From the first claim,
we know that w′ also has a run that ends in the same configuration which is final. Therefore,
w ∈ L({{Ap}}p∈P) ∩ Σ∗. Hence, the claim holds for finite traces.

CONCUR 2021

35:24 Generalising Projection in Asynchronous Multiparty Session Types

It remains to show the claim for infinite traces. To this end, we show that for every
execution prefix w of {{Ap}}p∈P such that w ∼ u for u ∈ pref(L({{Ap}}p∈P)) and any
continuation x of w, i.e., wx is an execution prefix of {{Ap}}p∈P , it holds that wx ∼ ux and
ux ∈ pref(L({{Ap}}p∈P)) (□). We know that w ∼n u for some n by definition, so wx ∼n ux

since we can mimic the same n swaps when extending both w and u by x. From the first
claim, we know that {{Ap}}p∈P is in the same configuration (q, ξ) after processing w and u.
Therefore, ux is an execution prefix of {{Ap}}p∈P because wx is which yields (□).

We show that

C∼(L({{Ap}}p∈P) ∩ Σω ⊆ L({{Ap}}p∈P) ∩ Σω.

Let w ∈ C∼(L({{Ap}}p∈P) ∩ Σω. We show that w has an infinite run in {{Ap}}p∈P .
Consider a tree T where each node corresponds to a run ρ on some finite prefix w′ ≤ w

in {{Ap}}p∈P . The root is labelled by the empty run. The children of a node ρ are runs
that extend ρ by a single transition – these exist by (□). Since our CSM, derived from a
global type, is built from a finite number of finite state machines, T is finitely branching. By
König’s Lemma, there is an infinite path in T that corresponds to an infinite run for w in
{{Ap}}p∈P , so w ∈ L({{Ap}}p∈P) ∩ Σω. ◀

▶ Lemma 22. Let w ∈ Σ∞ be channel-compliant. Then, w ∼ w′ iff w′ is channel-compliant
and w⇓Σp

= w′⇓Σp
for all roles p ∈ P.

Proof. We use the characterisation of ∼ using dependence graphs [27]. For a word w and
a letter a ∈ Σ that appears in w, let (a, i) denote the ith occurrence of a in w. Define
the dependence graph (V, E, λ), where V = {(a, i) | a ∈ Σ, i ≥ 1}, E = {((a, i), (b, j)) |
a and b cannot be swapped and (a, i) occurs before (b, j) in w}, and λ(a, i) = a for all a ∈
Σ, i ≥ 1. A fundamental result of trace theory states that w ∼ w′ iff they have isomorphic
dependence graphs. We observe that for two channel compliant words, the ordering of the
letters on each Σp for p ∈ P ensures isomorphic dependence graphs, since the ordering of
receives is thus fixed. ◀

	1 Introduction
	2 Multiparty Session Types with Generalised Choice
	2.1 Global and Local Types
	2.2 Generalised Projection and Merge

	3 Type Soundness
	3.1 Type Languages
	3.2 Implementability
	3.3 Type Soundness: Projectability implies Implementability

	4 Evaluation
	5 Related Work
	6 Conclusion
	A Communicating State Machines
	B Properties of C^{{~}}

