
Derzis: A Path Aware Linked Data Crawler
André Fernandes dos Santos #

CRACS & INESC Tec LA, Faculty of Sciences, University of Porto, Portugal

José Paulo Leal #

CRACS & INESC Tec LA, Faculty of Sciences, University of Porto, Portugal

Abstract
Consuming Semantic Web data presents several challenges, from the number of datasets it is
composed of, to the (very) large size of some of those datasets and the uncertain availability of
querying endpoints. According to its core principles, accessing linked data can be done simply by
dereferencing the IRIs of RDF resources. This is a light alternative both for clients and servers when
compared to dataset dumps or SPARQL endpoints. The linked data interface does not support
complex querying, but using it recursively may suffice to gather information about RDF resources,
or to extract the relevant sub-graph which can then be processed and queried using other methods.
We present Derzis1, an open source semantic web crawler capable of traversing the linked data cloud
starting from a set of seed resources. Derzis maintains information about the paths followed while
crawling, which allows to define property path-based restrictions to the crawling frontier.

2012 ACM Subject Classification Information systems → Web crawling; Information systems →
Structure and multilingual text search

Keywords and phrases Semantic web, linked open data, RDF, crawler

Digital Object Identifier 10.4230/OASIcs.SLATE.2021.2

Supplementary Material Software (Source Code): https://github.com/andrefs/derzis
archived at swh:1:dir:d35f9b43c9b88955c9d6068fcc15e59c4aba816f

Funding This work is financed by National Funds through the Portuguese funding agency, FCT –
Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.
André Fernandes dos Santos: Ph. D. Grant SFRH/BD/129225/2017 from Fundação para a Ciência
e Tecnologia (FCT), Portugal.

1 Introduction

Two features of the Semantic Web (SW) which make it interesting – being distributed and not
needing a globally defined schema – also make accessing it not trivial. Two main questions
arise from these features: how to access the SW and what to access.

The SW is built on top of general purpose technologies and standards such as HTTP and
Internationalized Resource Identifiers (IRIs), and a small core of additional specifications,
such as RDF(S), OWL and SPARQL. This means that the basic protocols and syntaxes
are universal. However, there are several possible approaches when making semantic data
available (and, consequently, when consuming semantic data). These usually fall into one
of the following categories: (i) downloadable triplesets, (ii) queriable SPARQL endpoints
or other SW interfaces, (iii) custom APIs which return RDF data, and (iv) dereferenceable
resource IRIs.

The same data is frequently available using multiple methods. The requirements for a
Semantic Web application (SWA) will heavily influence which method should be used. Con-
versely, the methods under which data is available strongly dictate the types of applications
which can consume it. A detailed explanation will be provided in the next section.

1 Available at https://github.com/andrefs/derzis.

© André Fernandes dos Santos and José Paulo Leal;
licensed under Creative Commons License CC-BY 4.0

10th Symposium on Languages, Applications and Technologies (SLATE 2021).
Editors: Ricardo Queirós, Mário Pinto, Alberto Simões, Filipe Portela, and Maria João Pereira; Article No. 2;
pp. 2:1–2:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afs@inesctec.pt
https://orcid.org/0000-0001-6410-9740
mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-8409-0300
https://doi.org/10.4230/OASIcs.SLATE.2021.2
https://github.com/andrefs/derzis
https://archive.softwareheritage.org/swh:1:dir:d35f9b43c9b88955c9d6068fcc15e59c4aba816f;origin=https://github.com/andrefs/derzis;visit=swh:1:snp:9a23986b09f8d4d3e122718d299cebd323934f55;anchor=swh:1:rev:b735226ae5281132295cffd958274039b8111d9d
https://github.com/andrefs/derzis
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


2:2 Derzis: A Path Aware Linked Data Crawler

Dereferencing IRIs, also known as the linked data interface, or the follow-your-nose
approach, can be used in applications which do not require complex querying support, but
simply need to fetch information about a given set of resources. It allows fetching data
which is up to date and does not require the resources needed to download and process large
tripleset dumps. The level of detail can be increased or decreased by adjusting the depth of
recursion, or by fine tuning which semantic links should be followed and which IRIs should
be dereferenced. It can also be used as as preliminary step on a more complex pipeline,
reducing a possibly very large semantic graph (composed of triples originating for many
connected triplesets) to a sub-graph containing only the relevant data. This data can then
be more easily manipulated and queried.

In this paper we present Derzis, an open source semantic web crawler which, given a
set of seed resources, traverses the linked data cloud, following the semantic links extracted
from the triples resulting from dereferencing IRIs. Parameters such as maximum depth and
property path restrictions can be defined to limit the graph traversal.

This paper is structured as follows. In Section 2 we cover concepts relevant to this work.
Section 3 describes and compares other semantic web crawlers and tools following a similar
methodology. Our approach is detailed in Section 4, where we provide an example of the
crawling algorithm and its formal definition. Section 5 describes the system architecture.
Section 6 describes preliminary results obtained using Derzis. Sections 7 and 8 describe,
respectively, future developments planned for Derzis and conclusions for this work.

2 Background

The origins of the Semantic Web as a research field can be traced back to the early 2000s,
with specifications such as RDF [4] and RDFS [17] being published a little earlier. In a 2001
article in Scientific American [3], Tim Berners-Lee et al. envisioned a web of semantically
annotated data, intelligible to machines, in which automated agents could roam autonomously
to perform tasks. Despite undeniable contributions to the fields of data sharing, discovery,
integration and reuse, the semantic web as a research field has been the subject of much
criticism, as compiled by Hogan [13]. The original vision is still far from fulfilled.

The history of this field can be split into three phases [12]: the ontology phase, the linked
data phase and the knowledge graphs phase. In the beginning the focus was on developing
formal ontologies with the goal of sharing and integrating data. Then the interest shifted to
the publication of datasets linked through the reuse of IRIs. More recently, we have seen the
industry become interested in semantic technologies, which led to the development of their
own knowledge graphs, e.g. Google [22], Microsoft [9], Amazon [16]. In time, more open
versions became available, e.g. Wikidata [24] and DBpedia [18]. Nowadays, the semantic web
is composed of artifacts inherited from these three phases: domain-specific and general scope
ontologies, more shallow vocabularies, linked datasets and knowledge graphs.

Semantic Web Applications can access the semantic web in a number of ways. Choosing
one method over another may severely limit what your application can do or how it operates.
The same is to say that different applications will have different needs in what regards to
consuming semantic data.

One way is to download the knowledge graphs in RDF format in advance. This requires
the computational resources to deal with very large files, and the possibility of data becoming
eventually outdated. Applications relying on queriable endpoints (usually SPARQL or Triple
Pattern Fragments [23]) avoid these shortcomings. However, they become dependent on
servers which must be available and capable of responding to potentially complex queries.



A. F. d. Santos and J. P. Leal 2:3

Integrating information from different sources may be difficult. Custom APIs are similar,
but present one additional disadvantage: they require applications to be even more tightly
coupled with them, as the SWA must have built-in the knowledge of how to interact with
that non-standard endpoint.

The methods previously described are all better suited for applications where the triplesets
to be consumed are known beforehand, either because the triplesets need to be downloaded,
their queriable endpoints must be known and integrated with each other, or because the
applications need to understand the syntax of custom APIs.

The linked data interface (also known as the follow-your-nose approach [25]) allows
gathering data about a resource simply by dereferencing (i.e. performing an HTTP request
to) its IRI, and parsing the resulting RDF content. This behavior is explicitly stated in
the Linked Data principles [2]. This method is light for the servers, as there is no need of
software to parse and perform complex queries, and can even be statically served. It is also
light for the users as it prevents the need to deal with large files or outdated data, and can
reasonably be expected to work more or less uniformly across domains.

A web crawler is a program capable of accessing HTML pages through their URIs, parsing
them, extracting hyperlinks and recursively repeating the process [19]. These are typically
used by search engines to index web page contents and calculate their relevance. To avoid
having crawlers accessing unwanted parts of their sites, domains can indicate which URLs
are off-limits by adding directives to their robots.txt file according to the Robots Exclusion
Protocol [14]. The Crawl-Delay directive is commonly used to rate-limit crawlers performing
multiple requests. Common crawling policies further specify which pages should be visited,
when they should be re-visited, the frequency of the requests and the degree of parallelization
of the crawler [5].

An RDF resource is identified by an IRI. An RDF triple specifies a semantic link between
two RDF resources (the subject and object of the triple) using another RDF resource (the
predicate). Multiple RDF triples make an RDF graph, where the nodes are the subjects
and objects of the triples, and the edges are the predicates2. According to the Linked Data
principles, accessing the IRI of an RDF resource should return an RDF representation of
that resource – i.e. triples relevant to that resource’s understanding. This usually means
triples where the resource appears either as the subject or the object.

A semantic web crawler (SWC) is the application to the semantic web of the web crawler
concept. It starts with the IRIs of RDF resources, and dereferences them – i.e. fetches the
IRIs contents by performing HTTP requests. Instead of a simple HTML page, for each
resource it expects in return an RDF document (which can also be an HTML page with
RDFa metadata). This document contains triples representing semantic links between the
resource and other nodes in the RDF graph. The SWC parses the RDF document and
repeats the process for the new resources found. The crawling process can be limited in a
number of ways, most commonly by defining which resources should be dereferenced and/or
the maximum crawl depth.

2 Actually, a resource appearing in the predicate position of a triple can be (and frequently is) used as
the subject or object of another. This means that the edges of an RDF graph can simultaneously also
be nodes.

SLATE 2021



2:4 Derzis: A Path Aware Linked Data Crawler

3 Related Work

There are several semantic web crawlers described in the literature, some of which are publicly
available. Their core functionality is similar: following links in the semantic web. However,
they differ in more specific features, such as sorting what should be crawled first (e.g. depth-
first or breadth-first), white or black-listing resources to be dereferenced, understanding basic
RDFS and OWL properties (also referred to as RDFS-Plus [7]) or using domain knowledge to
inform the crawl process. Next we present a brief description of notable examples of SWCs.
A comparison of their features can be found in Table 1.

Crawler-LD is a semantic web crawler designed to help linked data publishers finding
vocabulary terms which can be interlinked with their own data [20]. Given an initial set T

of terms, for each Crawler-LD searches the DataHub catalogue of Linked Data triplesets
searching terms which are directly or transitively related to it either by sub-classing or using
properties such as owl:sameAs or owl:equivalentClass. Freire and Silva (2020) describe
a crawler which is initialized with knowledge of the domain in which it is used [10]. This
knowledge is then used to decide which resources and triples to follow and which ones to
ignore. Similarly, Bedi et al. (2012) describe a semantic focused crawler which is also enriched
with domain knowledge [1]. In this case, semantic distance metrics between the crawled
resources and the ones in the domain knowledge are used to prioritize the crawl list. LDSpider
is a generic crawler for linked data [15] which is able to handle a large number of formats,
perform breadth-first or depth-first crawls, include schema information and limit the set of
properties which are followed, or the prefix of resources crawled, or their maximum depth.
In KRaider [6], the maximum resource depth cut-off ignores the properties owl:sameAs,
owl:equivalentClass and owl:equivalentProperty. Squirrel [21] is a distributed crawler
capable of handling RDF formats, compressed files, HTML with RDFa or Microformats,
SPARQL endpoints and CKAN addresses. Crawl priority can be defined based on the IP or
domain of the resources.

Hartig and Pirrò have proposed a formal foundation to extend to SPARQL that leverages
property paths and allows coupling navigation at the data level with navigation on the Web
graph [11]. S-Paths [8] is a linked data browser which supports different representations for
data. It relies on path characteristics to aggregate data and determine the best view for the
results.

Our solution, Derzis, is capable of reducing the size of the graph being crawled without
requiring previous domain knowledge. This is achieved by limiting the number of distinct
properties in each crawl path. As a result, Derzis focuses on the triples and path expected to
contain more relevant information regarding the seed resources.

4 Approach

The goal of this work was the development of a semantic web crawler capable of recursively
extracting information from a set of semantic resources. This SWC should allow reducing
a large graph to a smaller sub-graph containing the most relevant data regarding the seed
resources. The main use case for this is the implementation of graph-based semantic measures.
Due to their algorithmic complexity, such measures are impractical to implement in large
knowledge graphs, and as such would benefit from the ability of reducing said graphs to
more manageable sizes. The base algorithm of this crawler should prove useful in other
applications in which there is the need to focus on the relevant parts of a larger graph, e.g. a
semantic browser capable of inferring which information should be displayed.



A. F. d. Santos and J. P. Leal 2:5

Table 1 Comparison of semantic web crawlers features.

Crawler Publicly
available

Distributed
/ parallel

Crawl
priority

robots.txt
compliant RDFS-Plus Domain

knowledge
Crawl
limits

Crawler-LD ✘ ✔

Freire and Silva ✘ ✔

Bedi et al. ✘ c ✔

LDSpider ✔ ✔ e ✔ ✘ ✔ 134
KRaider ✘ ✔ d ✔ ✔ 1
Squirrel ✔ ✔ ab ✔ ✘ ✘ 12

Crawl priority:
(a) IP

(b) Pay-level domain

(c) Domain knowledge

(d) FIFO

(e) Breadth or depth-first

Crawl limits:
(1) Maximum depth

(2) Black and white lists

(3) Properties followed

(4) Resources prefix

This crawler was developed with the following design goals:
1. recursively dereference RDF graph nodes (subjects and objects),
2. crawl limits based on property path restrictions,
3. parallel and distributed crawling,
4. compliance with robots.txt rules.

Next we describe the strategies used to reduce the crawled graph size. Then we present
an example of the crawling process with a detailed step-by-step description of the sequence of
events that take place. After that we provide a formal definition of the crawling algorithm.

4.1 Reducing the crawled graph
To ensure that priority is given to the relevant parts of the original graph, several strategies
are used, which are described next.

Triples where a resource appears as predicate are discarded. Imagine an RDF property
ex:hasColor which allows specifying the color of a resource, e.g. ex:Sky ex:hasColor
ex:Blue. If ex:hasColor was passed to Derzis as a seed resource, it should find relevant
triples which characterize it such as ex:hasColor rdf:type rdf:Property, ex:hasColor
rdf:subPropertyOf ex:hasPhysicalProperty and ex:colorOf owl:inverseOf
ex:hasColor. These triples are describing the property. However, triples such as
ex:Snow ex:hasColor ex:White or ex:Grass ex:hasColor ex:Green are not describing
ex:hasColor, they are using it to describe the other resources. For this reason, when
dereferencing a resource, triples where it is used as the predicate are discarded.

Crawling follows only subject and object resources. Imagine an RDF resource
ex:Einstein. Suppose that, when dereferencing it, we obtain the triples ex:Einsten
ex:wonAward ex:NobelPrize and ex:Einstein ex:bornIn ex:Ulm. Recursively
dereferencing the properties ex:wonAward and ex:bornIn would gather data about these
properties. This is arguably less relevant for describing the resource ex:Einstein than
dereferencing the resources it is related to, in this case, ex:NobelPrize and ex:Ulm.

Crawling can be limited to paths containing a maximum number of distinct properties.
Homogeneous paths between resources are more likely to represent implicit hierarchy
or a meaningful chain of connections than heterogeneous ones.

Maximum crawling depth can be defined. Resources too far away from the seed resources
are less relevant than those which are closest.

SLATE 2021



2:6 Derzis: A Path Aware Linked Data Crawler

4.2 Crawling example
The IRI http://dbpedia.org/resource/Mozzarella is the identifier for Mozzarella cheese
on DBpedia. Next we describe step by step an example of the crawling process of Derzis,
using this IRI as the only seed. We will limit the crawling to paths with a maximum depth
(maxPathDepth) of 4 and no more than 2 distinct properties (maxPathProps). Figure 1
displays the graph being built by the crawling process. Table 2 presents the triplesets found
when dereferencing each resource IRI. For clarity purposes, the triplesets have been truncated
and displayed in Turtle format. Additionally, we omit several operations related with job
distribution, database housekeeping and request rate-limiting. We also implicitly assume the
following prefix definitions:

@prefix dbr: <http://dbpedia.org/resource/>
@prefix dbp: <http://dbpedia.org/property/>
@prefix dbo: <http://dbpedia.org/ontology/>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix owl: <http://www.w3.org/2002/07/owl#>

1. The seed IRI http://dbpedia.org/resource/Mozzarella is added to Derzis as a
seed Resource. This triggers the creation of a Path, containing one single node
(dbr:Mozzarell), and no predicates.

2. The seed resource is then dereferenced. All the triples in which dbr:Mozzarella is either
the subject or object are added to Derzis. The triple
dbr:Calzone dbo:ingredient dbr:Mozzarella will lead to the extension of the path.
This new path will have dbr:Mozzarella as its seed, dbr:Calzone as its head, no other
nodes and dbo:ingredient as the only predicate.

3. The process continues with the dereferentiation of dbr:Calzone. The resulting triples
will give origin to two new paths. One starts in dbr:Mozzarella and reaches dbr:Salami,
with a total length of 3 nodes and a single predicate (dbo:ingredient). Another starts
also in dbr:Mozzarella but leads to dbr:Pizza, also with a length of 3 but containing
2 predicates already: dbo:ingredient and dbo:hasVariant.

4. Dereferencing dbr:Salami will extend the previous path leading here, adding one more
predicate (rdf:type) and one more node (owl:Thing). This new path has reached
the maximum number of nodes and distinct predicates. It is marked as finished and,
consequently, owl:Thing is not dereferenced.

5. The path leading to dbr:Pizza is already maxed out on the number of predicates.
This means that it can only be extended with triples in which the predicate is either
dbo:ingredient or dbo:hasVariant. From the triples obtained from dereferencing
dbr:Pizza, dbr:Pizza dbp:country dbr:Italy and dbr:Neapolitan_pizza dbp:type
dbr:Pizza are ignored. It is extended to dbr:Tomato_sauce and dbr:Panzerotti. Both
paths have now also reached the maximum length. They are marked as finished, and
these resources are not dereferenced.

6. At this point, there are no more active paths. The crawling process finishes and the
crawled graph can be exported.

4.3 Crawling algorithm
Given a set R of seed RDF resources, their linked data graph GR is the graph obtained
by collecting all the triples obtained by dereferencing each resource in R, and recursively
applying the same to each resource included in those triples. This potentially results on a

http://dbpedia.org/resource/Mozzarella
http://dbpedia.org/resource/Mozzarella


A. F. d. Santos and J. P. Leal 2:7

Figure 1 Example of the graph built while crawling.

Table 2 Contents of resources IRIs.

i) http://dbpedia.org/resource/Mozzarella ii) http://dbpedia.org/resource/Calzone

dbr:Calzone dbo:ingredient dbr:Mozzarella .
[...]

dbr:Pizza dbo:hasVariant dbr:Calzone .
dbr:Calzone dbo:ingredient dbr:Salami .
[...]

iii) http://dbpedia.org/resource/Salami iv) http://dbpedia.org/resource/Pizza

dbr:Salami rdf:type owl:Thing .
[...]

dbr:Pizza dbo:ingredient dbr:Tomato_sauce .
dbr:Pizza dbo:hasVariant dbr:Panzerotti .
dbr:Pizza dbp:country dbr:Italy .
dbr:Neapolitan_pizza dbp:type dbr:Pizza .
[...]

very large graph (maybe even the whole Linked Data cloud, given its connected nature).
We can ignore the properties characterization and classification by dereferencing only the
nodes of the graph (subjects and objects of triples). The size of the resulting graph can be
further reduced by considering a set of path restrictions PR which determine, for each new
node discovered, whether it should be followed (dereferenced) or not. Then RGR,PR is the
sub-graph of GR obtained by traversing it while applying the path restrictions PR. Figure 2
presents a simplified view of the semantic web, with a pair of seed resources (A and B),
the linked data graph for A and B (i), the graph reduced by path restrictions (ii), and a
disconnected part of the semantic web, unreachable by recursively following links starting
from A and B (iii).

Path restrictions require Derzis to maintain information regarding each path being
followed during the crawling process: its origin (seed resource), current head (latest resource
appended), the total length and total number of distinct properties.

RGR,P R is built iteratively. It is initialized with a set of paths P containing a path
for each seed resource. Algorithm 1 presents a simplified pseudocode version of Derzis
main behavior (the actual code has small differences mostly regarding optimization of the
distributed work). Initially, a path is created for each seed resource. Then, in each iteration,
each resource phead which is the head of an active path is dereferenced and marked as visited.
For each resulting RDF triple, the property and node (either the subject or object, depending
on the inverse position occupied by phead) are added to p to create a new path p′. If the path
restrictions (maxPathLength and maxPathProps) are not met, p′ is dropped. Is there is

SLATE 2021

http://dbpedia.org/resource/Mozzarella
http://dbpedia.org/resource/Calzone
http://dbpedia.org/resource/Salami
http://dbpedia.org/resource/Pizza


2:8 Derzis: A Path Aware Linked Data Crawler

Figure 2 The semantic web and restricted linked data graph of resources A and B.

already a similar path (built with the same properties (or a subset), and with the same or
shorter length), p′ is dropped. If the resource at the head of the new path p′ has already
been visited by Derzis, the path is extended using cached information until an unvisited
head is reached. The process ends when no more active paths exist. At this point, Derzis
can export the restricted graph in RDF format.

Algorithm 1 BuildRG(P ).

global maxPathLength, maxPathProps

global Rvisited

P ′ ← ∅
R← {phead : p ∈ P ∧ p is active}
if R = ∅

then return

for each phead ∈ R

do



triples ← dereference(phead)
Rvisited ← Rvisited ∪ phead

for each node, prop : {node, prop, phead} ∈ triples ∨ {phead, prop, node} ∈ triples

do



if plength ≥ maxPathLength ∨ prop /∈ p ∧ |pprops| ≥ maxPathProps)
then break

p′ ← p ∪ {prop, node}
if ∃q : qseed = p′

seed ∧ q : qhead = p′
head ∧ qprops ⊆ p′

props

then break

if p′
head ∈ Rvisited

then AddExistingHead(p′)

P ′ ← P ′ ∪ p′

p← finished

BuildRG(P ′)



A. F. d. Santos and J. P. Leal 2:9

5 System architecture

The Derzis tool is built around two main components: the Manager and a pool of Workers.
Figure 3 provides a visual representation of Derzis architecture. The Manager is responsible
for accessing the database (Figure 3.5), decides what should be crawled next and distributes
jobs to the workers (Figure 3.2). Workers handle the tasks of retrieving domain robots.txt
files and resource IRI contents (Figure 3.3). Both components were written in Node.js; they
coordinate with each other exchanging messages over Redis, and the data is persisted on a
MongoDB instance. The manager, each of the workers, the database and Redis can all be
distributed across different machines.

Figure 3 UML Communication diagram of the system architecture.

5.1 Worker

A Worker is an autonomous process which communicates with the Manager over Redis. When
it starts, it sends to a configurable channel a message stating the type and number of jobs it
is capable of handling (Figure 3.1). This is repeated periodically. Currently these jobs can be
either trying to retrieve the robots.txt of a domain or dereferencing unvisited resources of
a domain. By default, a Worker accepts a maximum of 10 simultaneous robots.txt checks
and 10 domains with batches of 10 resources each to be dereferenced.

The Worker handles these jobs asynchronously. For each domain, it dereferences each
resource sequentially (Figure 3.3), first checking whether the robots.txt allows it and what
the rate limit is. In the HTTP request that fetches the resource, the Accept header is set to
allow several RDF mime types; frequently, however, servers do not comply. In these cases,
the Worker checks the Link response header in search of alternative URLs (or, if the returned
content is HTML, the <link> tags). If the Content-Type is still unrecognised an error is
raised. The results of each robots.txt check and resource dereference are sent back to the
Manager also via Redis (Figure 3.4).

5.2 Manager

The Manager starts by posting a message in Redis asking for any Workers listening to report
their availability to perform jobs. Anytime it receives an availability message, it retrieves from
the database the appropriate number of domains needing their robots.txt to be retrieved
or resources to be dereferenced. When these jobs are sent to the worker, the Manager marks
them with the Worker identifier, making sure that a domain is only worked on by one Worker
at a time (preventing multiple concurrent requests to the same domain), and starts a timer
for that job. If the Worker does not reply before the timer expires, the domain is reset and
made available for other workers.

SLATE 2021



2:10 Derzis: A Path Aware Linked Data Crawler

6 Preliminary results

Derzis is still in early stages of development. For the time being, we do not yet have
comparisons of its performance against similar tools or using public benchmarks. Nevertheless,
we have already results gathered by running it using a small set of seed resources (5 types
of cheese gathered from DBPedia) and combinations of crawling parameters. These were
obtained on a laptop with an Intel i7-6500U CPU 2.50GHz and 8GB of memory. The system
was configured to spawn 3 workers, each capable of handling 10 robots.txt checks and 10
domains with 10 resources each to be dereferenced. Tables 3, 4 and 5 present these results.

Table 3 Total elapsed times for different combinations of maxPathLength and maxPathProps.

Total elapsed
time

Maximum
path length
2 3

Maximum distinct
properties

1 44s 2h32m
2 – 3h12m

Table 4 Total dereferenced resources for different combinations of maxPathLength and maxPath-
Props.

Total dereferenced
resources

Maximum
path length
2 3

Maximum distinct
properties

1 5 860
2 – 1135

Table 5 Total triples obtained for different combinations of maxPathLength and maxPathProps.

Total triples
Maximum

path length
2 3

Maximum distinct
properties

1 1.7k 510k
2 – 744k

The time required to run the crawler in each of these setups has been mostly dic-
tated by DBPedia’s Crawl-Delay directive, which imposes a 10 second delay between
HTTP requests. Around 70% of triples in DBpedia connect resources using the property
dbo:wikiPageWikiLink, which states that the Wikipedia page of the subject resource links
to the Wikipedia page of the object resource. The property dbo:wikiPageUsesTemplate,
which indicates that a Wikipedia pages has a infobox using a specific template, ap-
pears in 13% of the triples. More meaningful properties follow: dbo:birthPlace (4%),
dbo:deathPlace (4%), rdfs:type (3%) and owl:sameAs (3%). By comparison, in
Wikidata, the most frequent property is http://schema.org/about (40%) followed by
https://www.wikidata.org/wiki/Property:P31 (a Wikidata custom property similar to
rdf:type, 3%).

http://schema.org/about
https://www.wikidata.org/wiki/Property:P31


A. F. d. Santos and J. P. Leal 2:11

7 Future work

We have planned several additional features for Derzis. Better error handling and other types
of crawl limits are some examples. The indexes and queries performed to the MongoDB
instance can also be improve. Given the small number of publicly available semantic web
crawlers, and the distinct features presented by Derzis, we intend to make it easier to use by
other people. Derzis is already open-source. However, usability and documentation needs
to be improved. Real-time visualization tools to have an overview of the crawling process
would also improve the overall experience.

Another focus of improvement is testing and evaluation. Derzis is currently lacking unit
and integration tests. Additionally, real world experiments we have made with it so far are
still only a proof of concept. We plan on evaluating Derzis using available benchmarks for
SWCs and to perform our own comparisons against other SWCs.

Finally, Derzis was developed with the main motivation of being used in the broader
context of implementing graph-based semantic measures. It addresses a need we have of
being able to reduce semantic graph sizes keeping only the data relevant to a set of resources.
We will continue to develop the larger system and evaluate Derzis in the context of this
specific task.

8 Conclusions

The semantic web is a field of research with 20 years of existence. The early promise of a web
understood by machines has not yet materialized. The large size of current knowledge graphs,
the unreliable availability of queriable endpoints and the lack of universal vocabularies all
contribute to this problem.

A semantic web crawler is capable of gathering semantic data using the linked data
interface, a method of accessing the semantic web which is lighter for the clients and the
servers. There have been several SWCs developed, but only a few are both publicly available
and actively maintained. These tend to have in common a core set of features, such as
limiting the depth of crawling, distributed architectures and complying with the Robots
Exclusion Protocol. Other features such as requiring previous domain-knowledge, other
types of crawl limits, customizable crawl priority or understanding RDFS and OWL basic
constructs are present in specific crawlers.

Derzis is open source and available at https://github.com/andrefs/derzis. It presents
as a distinctive feature the ability to reduce the crawled graph size. By keeping paths
information during the crawling process, Derzis is able to limit the crawling to paths with a
maximum number of distinct properties. This means that it can focus on more homogeneous
paths, which provide more relevant information than heterogeneous ones. Additionally, Derzis
does not dereference predicate resources, which usually provide information more relevant to
the predicate than to the other elements of the triples.

References
1 Punam Bedi, Anjali Thukral, Hema Banati, Abhishek Behl, and Varun Mendiratta. A

multi-threaded semantic focused crawler. Journal of Computer Science and Technology,
27(6):1233–1242, 2012.

2 Tim Berners-Lee. Linked Data – Design Issues, 2006. URL: http://www.w3.org/
DesignIssues/LinkedData.html.

3 Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific american,
284(5):34–43, 2001.

4 Dan Brickley, Ramanathan V Guha, and Andrew Layman. Resource Description Framework
(RDF) Schemas, 1998. URL: https://www.w3.org/TR/1998/WD-rdf-schema-19980409/.

SLATE 2021

https://github.com/andrefs/derzis
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/1998/WD-rdf-schema-19980409/


2:12 Derzis: A Path Aware Linked Data Crawler

5 Carlos Castillo. Effective web crawling. SIGIR Forum, 39(1):55–56, 2005.
6 Giuseppe Cota, Fabrizio Riguzzi, Riccardo Zese, Evelina Lamma, et al. KRaider: a Crawler

for Linked Data. In 34th Italian Conference on Computational Logic, volume 2396, pages
202–216. CEUR-WS. org, 2019.

7 Fabien Gandon Dean Allemang, Jim Hendler. RDFS-Plus. In Semantic Web for the Working
Ontologist: Effective Modeling for Linked Data, RDFS, and OWL. Chapter 7, 2020. doi:
10.1145/3382097.3382107.

8 Marie Destandau, Caroline Appert, and Emmanuel Pietriga. S-Paths: Set-based visual
exploration of linked data driven by semantic paths. Semantic Web, 12(1):99–116, 2020.
doi:10.3233/SW-200383.

9 Michael Färber. The Microsoft Academic Knowledge Graph: A Linked Data Source with
8 Billion Triples of Scholarly Data. In Proceedings of the 18th International Semantic Web
Conference, ISWC’19, pages 113–129, 2019. doi:10.1007/978-3-030-30796-7_8.

10 Nuno Freire and Mário J Silva. Domain-Focused Linked Data Crawling Driven by a Semantically
Defined Frontier. In International Conference on Asian Digital Libraries, pages 340–348.
Springer, 2020.

11 Olaf Hartig and Giuseppe Pirrò. A context-based semantics for SPARQL property paths over
the web. In European semantic web conference, pages 71–87. Springer, 2015.

12 Pascal Hitzler. A review of the semantic web field. Communications of the ACM, 64(2):76–83,
2021.

13 Aidan Hogan. The Semantic Web: Two decades on. Semantic Web, 11(1):169–185, 2020.
doi:10.3233/SW-190387.

14 Gary Illyes, Henner Zeller, Lizzi Harvey, and Martijn Koster. Robots Exclusion Protocol.
URL: https://tools.ietf.org/html/draft-koster-rep-04#section-2.5.

15 Robert Isele, Jürgen Umbrich, Christian Bizer, and Andreas Harth. LDspider: An open-source
crawling framework for the Web of Linked Data. In Proceedings of the 2010 International
Conference on Posters & Demonstrations Track, volume 658, pages 29–32. Citeseer, 2010.

16 Arun Krishnan. Making search easier, 2018. URL: https://www.aboutamazon.com/news/
innovation-at-amazon/making-search-easier.

17 Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax
specification, 1998.

18 Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia–a
large-scale, multilingual knowledge base extracted from wikipedia. Semantic web, 6(2):167–195,
2015.

19 Marc Najork. Web crawler architecture, 2009.
20 A Gomes Raphael do Vale, Marco A Casanova, Giseli Rabello Lopes, and Luiz André P Paes

Leme. CRAWLER-LD: a multilevel metadata focused crawler framework for linked data. In
International Conference on Enterprise Information Systems, pages 302–319. Springer, 2014.

21 Michael Röder, Geraldo de Souza Jr, and Axel-Cyrille Ngonga Ngomo. Squirrel–Crawling
RDF Knowledge Graphs on the Web. In International Semantic Web Conference, pages 34–47.
Springer, 2020.

22 Amit Singhal. Introducing the knowledge graph: things, not strings. Official google blog, 5:16,
2012.

23 Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Laurens De Vocht,
Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. Triple Pattern Fragments: a
low-cost knowledge graph interface for the Web. Journal of Web Semantics, 37:184–206, 2016.

24 Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

25 Liyang Yu. Follow your nose: a basic semantic web agent. In A Developer’s Guide to the
Semantic Web, pages 533–557. Springer, 2011.

https://doi.org/10.1145/3382097.3382107
https://doi.org/10.1145/3382097.3382107
https://doi.org/10.3233/SW-200383
https://doi.org/10.1007/978-3-030-30796-7_8
https://doi.org/10.3233/SW-190387
https://tools.ietf.org/html/draft-koster-rep-04#section-2.5
https://www.aboutamazon.com/news/innovation-at-amazon/making-search-easier
https://www.aboutamazon.com/news/innovation-at-amazon/making-search-easier

	1 Introduction
	2 Background
	3 Related Work
	4 Approach
	4.1 Reducing the crawled graph
	4.2 Crawling example
	4.3 Crawling algorithm

	5 System architecture
	5.1 Worker
	5.2 Manager

	6 Preliminary results
	7 Future work
	8 Conclusions

