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—— Abstract

Dialog engines based on multi-agent architectures usually select a single agent, deemed to be the most
suitable for a given scenario or for responding to a specific request, and disregard the answers from
all of the other available agents. In this work, we present a multi-agent plug-and-play architecture
that: (i) enables the integration of different agents; (ii) includes a decision maker module, responsible
for selecting a suitable answer out of the responses of different agents. As usual, a single agent can
be chosen to provide the final answer, but the latter can also be obtained from the responses of
several agents, according to a voting scheme. We also describe three case studies in which we test
several agents and decision making strategies; and show how new agents and a new decision strategy
can be easily plugged in and take advantage of this platform in different ways. Experimentation also
confirms that considering several agents contributes to better responses.

2012 ACM Subject Classification Computing methodologies — Natural language processing; Com-
puting methodologies — Multi-agent systems; Computing methodologies — Artificial intelligence;
Information systems — Information retrieval

Keywords and phrases Dialog systems, question answering, information retrieval, multi-agent
Digital Object Identifier 10.4230/0OASIcs.SLATE.2021.7

Supplementary Material Software (Source Code): https://github.com/leonorllansol/muahah
Software (Source Code): https://github.com/NLP-CISUC/muahah

Funding This work was partially supported by: the project Flowance (POCI-01-0247-FEDER-
047022), co-financed by the European Regional Development Fund (FEDER), through Portugal 2020
(PT2020), and by the Competitiveness and Internationalization Operational Programme (COMPETE
2020); the demonstration project ATA, “Apoio Inteligente a empreendedores (chatbots)”, funded
by the Fundacdo para a Ciéncia e Tecnologia (FCT), through the INCoDe 2030 initiative; and by
national funds through FCT, within the scope of the project CISUC (UID/CEC/00326/2020) and
by European Social Fund, through the Regional Operational Program Centro 2020.

© Leonor Llansol, Jodo Santos, Lufs Duarte, José Santos, Mariana Gaspar, Ana Alves, Hugo Gongalo
5v Oliveira, and Luisa Coheur;
licensed under Creative Commons License CC-BY 4.0
10th Symposium on Languages, Applications and Technologies (SLATE 2021).
Editors: Ricardo Queirés, Méario Pinto, Alberto Simdes, Filipe Portela, and Maria Joao Pereira; Article No. 7;
pp. 7:1-7:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:leonor.llansol@tecnico.ulisboa.pt
https://orcid.org/0000-0002-0666-1841
mailto:joao.l.santos@tecnico.ulisboa.pt
https://orcid.org/0000-0002-7079-4286
mailto:lduarte@student.dei.uc.pt
https://orcid.org/0000-0003-2008-8647
mailto:santos@student.dei.uc.pt
https://orcid.org/0000-0001-9207-9761
mailto:mariarpx@gmail.com
https://orcid.org/0000-0003-4016-6876
mailto:ana@dei.uc.pt
https://orcid.org/0000-0002-3692-338X
mailto:hroliv@dei.uc.pt
https://orcid.org/0000-0002-5779-8645
mailto:lcoheur@edu.ulisboa.pt
https://orcid.org/0000-0002-2456-5028
https://doi.org/10.4230/OASIcs.SLATE.2021.7
https://github.com/leonorllansol/muahah
https://github.com/NLP-CISUC/muahah
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2

MUAHAH: Taking the Most out of Simple Conversational Agents

1 Introduction

Recent technology advances have brought many frameworks for building conversational
agents. Examples are Rasa' or Dialogflow? and they “are often designed with the tacit
assumption that at any time, there is only one agent and one human” [11]. Behind such
systems, there is usually a set of modules, specialized in different topics or types of dialog.
Thus, each system is developed with a distinct task in mind, and, after understanding the
user intentions, the most appropriate module is triggered, while the remaining are set aside.
Yet, we can be faced with a scenario where (i) a new agent has to cover different domains
or types of dialog, for which there is no training data nor resources for manually defining
relevant entities and user intents; (ii) a set of independent agents is available, but they are
only expert on more specific domains, possibly overlapping, or follow different techniques,
and, again, there is no data to train a model for deciding which agent provides the answer to
each user request.

In this paper, we tackle the aforementioned issue, and assume that all agents can
potentially answer all questions. With this in mind, we implemented a new platform,
in Python: the Multi-Agents Hand-in-Hand platform (dubbed MUAHAH), enables the
integration of distinct agents, expert on different domains and/or with different levels of
complexity, as well as decision strategies, possibly taking all the agents’ answers into account.
We present MUAHAH and evaluate it in three case studies. In the first two, we consider:
(i) a panoply of retrieval-based agents, specifically, agents that get their answers from a
given knowledge base with trigger/answer pairs, in which trigger is a user request (e.g., a
question) and answer is the response to that request; (ii) two decision strategies, namely
Simple Majority, which implements a majority vote between all the agents and picks the
most voted answer, and Priority System, which prioritizes the answer of an agent over the
others. Here, combining different agents indeed leads to more plausible answers for complex
and out-of-domain requests. In the third case study, we integrated new agents in MUAHAH,
based on retrieval and embedding methods, as well as a new decision strategy, Borda Count,
to confirm that one can easily rely on MUAHAH for developing new dialog systems, and that
combining ranks of answers by different agents leads to more accurate systems. Still, it should
be clear that, although we have implemented several agents, we are not proposing a new way
of creating them, but a plug-and-play framework to integrate previously created agents. In
addition, we are not claiming a particular way of taking advantage of these agents, but, again,
a framework that enables to customise how the responses of several agents are combined.

The paper is organized as follows: Section 2 briefly covers related work on chatbot devel-
opment and architecture; Section 3 describes MUAHAH, the proposed platform; Sections 4,
5 and 6 describe the three case studies; finally, Section 7 discusses the main conclusions and
directions for future work.

2 Related Work

Since the early rule-based systems such as the famous ELIZA [24] to the recent end-to-end
dialog systems [25, 26, 22|, conversational agents can be found in many different flavours.
Also, some agents are task-oriented (e.g., Max [18] was a guide in the Heinz Nixdorf Museums
Forum), while others target to engage in general conversations (e.g., SSS [1] is a retrieval-
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based agent with a knowledge base of subtitles). As previously stated, we do not intend
to contribute with an architecture for building agents, but with a platform that allows
their integration.

We define agent as any piece of software that, upon receiving a user request, delivers
one or more responses. In many systems, these agents are the modules that retrieve an
answer about a specific topic. For instance, Gunrock [3], the winner of the 2018 Amazon
Alexa Prize, maps user’s input into one of 11 possible topic dialog modules (e.g., movies,
books and animals). Here, we do not assume that an agent is specialized in a certain topic,
but that we want a simple way to put all these systems together. A similar framework is
MACA [23] that touches a number of common points with our work. However, MACA
proposes several integrating processes, as, for instance, the re-usability of slots across different
tasks. Here, even though the same knowledge sources can be shared between agents, each
agent is independent of each other. Also, our agents are slaves of a coordinator, as there is
no interaction between them.

An important module common to many chatbot architectures is the Dialog Manager,
responsible for keeping track of the dialog state and using it to select a response [14]. Gunrock
has a Dialog Manager that classifies the user’s intent, and, based on this intent, selects the
most appropriate module to forward the user request. Sounding Board [8], the winner of
the 2017 Amazon Alexa Prize, uses a Dialog Manager that contains a set of “miniskills” for
handling different topics, where only one miniskill is selected per turn, based in the topic of
the user request. Both the aforementioned systems classify the intent and topic of the user
request for selecting a single proper module that will handle it. NPCEditor’s [14] Dialog
Manager takes a list of responses and uses the dialog state to choose one of them. Here, we
do not have a Dialog Manager, but: an Agent Manager, responsible for forwarding the user
request to all the active agents and to send their answers to a coordinator; and a Decision
Maker, that sends the agents’ answers to a set of available decision methods and returns their

answers to the coordinator. Unlike most Dialog Managers, these two modules are not trained.
Still on multi-agent scenarios, many other research questions are currently under study.

For instance, Divekar et al. [5] target to determine which agent is being addressed, and
Eisman et al. [6] train a multi-agent dialog model via reinforcement learning. In the latter
scenario, agents learn with each other by interacting in natural language. Here, we assume
that the agents are already trained or rely on unsupervised techniques.

3 Proposed Architecture

In this section, we describe the architecture of MUAHAH, depicted in Figure 1. The
Coordinator is a central module that acts as an interface between the user, the Agent
Manager and the Decision Maker.

The Agent Manager aims at providing an interaction point between MUAHAH and the
provided agents. It is responsible for launching the agents, and for guaranteeing that the
communication between them and the Coordinator is done correctly. When MUAHAH is
booted up, the Agent Manager locates all the available agents through their configuration
files and integrates an instance of each into the system. Upon receiving a request from
the Coordinator, the Agent Manager sends it to the integrated agents, which provide their
answers. Such answers are then sent back to the Coordinator, which finally sends them to
the Decision Maker. Note that each agent is only responsible for outputting (at least) a
response for the given request.

7:3
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Figure 1 MUAHAH architecture.

The Decision Maker makes its decision based in one of the implemented decision strategies.
These can consider different items, such as the answers of the agents, the agent who gave
each answer, and the user query. But new decision strategies can be added to MUAHAH?3.
Each decision strategy has a weight, defined in the system’s configuration file. The Decision
Maker returns a set of answers, one given by each Decision Method to the Coordinator, which
uses those weights for selecting the best answer and finally return it to the user. Originally,
the Decision Maker includes two strategies: Simple Majority and Priority System. Yet, new
methods can be integrated, as in our third case study (Section 6).

With Simple Majority, the Decision Maker will deliver the most frequent answer between
the set of answers by the agents. In a scenario where a certain agent’s answer would be
accurate, even if it did not always deliver an answer to the given query, it would make
sense for that agent to be prioritized. For that purpose, we developed the Priority System,
a decision strategy that allows the developer to explicitly set priorities for the available
agents. Therefore, when evaluating the answer each agent delivers to a given user request,
MUAHAH verifies whether the prioritized agent was able to deliver a response to the user
request: if so, that answer is deemed to be a plausible one and is returned to the user; if the
prioritized agent is not able to answer the user request, the system considers the answers
by each of the remaining agents and selects the final answer through Simple Majority, as
described earlier.

3 To do so, an abstract class, Decision Method, has an abstract method, getAnswer, that takes a set of
answers and delivers the best, based on its heuristic. Hence, to add a new decision strategy, only a
source file is needed, with the class that extends Decision Method and implements getAnswer. It is
also necessary to add the new strategy’s name and its weight to the system’s configuration file.
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Finally, in order to build a new agent for MUAHAH, the developer needs to customize a
configuration file, which allows the agent to be called by the Agent Manager; it also allows
the developer to set configurable parameters without directly interacting with the source
files. In addition, the agent’s source files must contain a class that extends the abstract
class (Agent) and implements its own requestAnswer method, which takes a user request
and returns a list of answers. Finally, since an agent can be active or inactive, it is also
necessary to edit the system’s configuration file, adding the name of the agent and whether
it is active or not.

For a better understanding, we refer to the working examples in Sections 4 and 5.

4 Case study A: using the Simple Majority

We first evaluate the Simple Majority strategy in MUAHAH. Here, the Subtle corpus [2]
was used as the knowledge base of nine agents. Subtle* contains about 3 million interactions

from movie subtitles, i.e., trigger/answer pairs like “Trigger: I like the sea., Answer: me too”.

Due to the large number of included interactions, Subtle was indexed in a search engine,
thus enabling that only a small set of interactions is retrieved as response candidates. In
this case, 20 interactions are retrieved from Lucene®. Then, our agents compare the user
request both with the trigger and with the answer, as both might be useful for finding
an adequate answer. The difference between the agents is the algorithm for computing
sentence similarity, always in the 0 to 1 range, which is either Cosine [20], Jaccard [13] or
Edit Distance [15], and the weight given to the similarity between requests, triggers and their
response. For such, three different agents, that extend the abstract class Agent, are added to
our system: Cosine-Agent, Jaccard-Agent and EditDistance-Agent, each implementing
the requestAnswer method according to their algorithm. Moreover, three agents were created
of each type, with different similarity weights. Table 1 summarises the nine agents. For
instance, agent C2 uses the cosine similarity and gives more weight to the similarity between
the user request and the trigger than between the user request and the answer, in a relation
of 75 to 25.

Table 1 Agent distribution according to the similarity computation and weights.

RequestSim/ResponseSim ‘ 50/50 75/25 100/0

Cosine C1 C2 C3
Edit Distance E1l E2 E3
Jaccard J1 J2 J3

For each agent, sentences were lower-cased. Then, for computing the Cosine Similarity,
punctuation was removed, stopwords were kept, and words were not stemmed. For the Edit
Distance, both punctuation and stopwords were kept. Finally, for the Jaccard Similarity,
both punctuation and stopwords were removed.

To test this configuration, we created a set of 100 simple questions (e.g., “What’s your
name?”, “How are you?”) and a set of 100 more complex questions (e.g., “What’s your opinion

on Linux-based platforms?”, “If the world ended tomorrow, what would you do today?”).

Then, we run both the resulting system and compared it to Say Something Smart (SSS) [16],

4 A smaller version was used to reduce index creation time and is available from https://github.com/
leonorllansol/muahah/blob/master/corpora/imillion.txt
5 https://lucene.apache.org
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which has a single retrieval agent. For this, four annotators were given a sample of 25 simple

and 25 complex questions with the answers by both systems, randomly selected, and asked

to score each of the responses between 1 and 4, based on whether the answer:

4: Was plausible without additional context;

3: Was plausible in a specific context, or did not actively answer the query but maintained
its context;

2: Actively changed the context (e.g., an answer that delivers a question to the user which
does not match the initial query’s topic), or contained Structural issues (even if its content
fits in the context of the question);

1: Had no plausibility value.

For illustrative purposes, one response of each kind for the question “What is the price of

olive oil in 7-Eleven?” would be:

4: “In 7-Eleven, the olive oil costs 3.00€.”

3: “He knows what is the price.”

2: “Olive oil”

1: “Eleven.”

The mean and mode of all answer scores were computed for each system. Also, following
the evaluation of other engines, such as AliMe [19], we considered that, to be discerned as
acceptable, a given answer would need an average score of at least 2.75 between the four
annotations (corresponding, e.g., to the case where three annotators score it 3 and the last
one 2). Table 2 summarizes the obtained results.

Table 2 SSS system against our system when answering basic questions.

Simple questions Complex questions
Mean Answers Mean Answers
Approval Approval
Score > 2.75 Score > 2.75
SSS 2.68 23 / 50 46% 2.26 11 / 50 22%
MUAHAH 2.6 24 / 50 48% 2.6 22 / 50 44%

This instance of MUAHAH keeps up with SSS for basic questions and outperforms it with
complex questions. We should add that, in what concerns simple questions, scores assigned
to SSS were more polarized, with a special focus on scores of 2 and 4 to its answers, while
scores of MUAHAH answers were more evenly distributed. With complex questions, 2 was
the most common score for both systems, with a stronger preponderance for SSS to deliver
implausible answers. This can be explained by the fact that SSS relies on a single agent to
decide on all its answers, while the multi-agent system considers what possible answers are
more common, from multiple points of view.

To better understand the use of the Simple Majority strategy, we present a run-
ning example, using the aforementioned agents, Cosine-Agent, Jaccard-Agent and
EditDistance-Agent, and the Subtle corpus.

1. The user poses the query ¢ to the system: “Quando comega o Verdo?” (When does
summer start?)

2. The Coordinator forwards ¢ to the Agent Manager.

3. The Agent Manager instantiates the active agents: Cosine-Agent, Jaccard-Agent and

EditDistance-Agent, and forwards ¢ to them.

4. Each agent selects a response, based on the sentence similarity between the request and
the retrieved candidates. Their selected responses are returned to the Agent Manager:
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Acos: “Assim que o senhor e a chuva desaparecerem.” (As soon as you and the
rain disappear.)
Ajae: “Assim que o senhor e a chuva desaparecerem.” (As soon as you and the
rain disappear.)
Agp: “Nao te ouvimos.” (We can’t hear you.)
5. The Agent Manager sends the agents’ answers to the Coordinator.
6. The Coordinator forwards the agents’ answers, [Acos, Ajacs AED]|, to the Decision Maker.
7. The Decision Maker sends the agents’ answers to the active Decision Method: Simple
Majority, with a weight of 1.
8. Simple Majority returns the more common answer, Agos and A j,., to the Decision Maker.
9. The Decision Maker returns the method’s answer to the Coordinator.
10. The Coordinator returns the answer to the user: “Assim que o senhor e a chuva desa-
parecerem.” (As soon as you and the rain disappear.)

5 Case study B: Priority System

The Priority System is a decision strategy that gives priority to a certain agent if that
agent can deliver a response. To test this strategy, we use Edgar Smith [9], another
retrieval-based conversational agent, this time on a specific domain. Edgar answers questions
about the Monserrate palace, in Sintra, based on a corpus® of 1,179 interactions. Besides
question/answer pairs about the palace, Edgar answers some out-of-domain (chit-chat)
questions such as “What’s your name?” or “How old are you?”. However, Edgar will not be
able to answer most out-of-domain questions. This is a significant issue, as users tend to get
more engaged with conversational platforms when answers to chit-chat queries are delivered.

To address the aforementioned issue, we set up MUAHAH to use Edgar as a Priority
Agent, with the nine agents described in case study A (Section 4) used as Edgar’s back-up,
in case Edgar is not able to provide an answer. If not backed-up, when Edgar’s top-scored
answer has a similarity score below a given threshold, defined in its configuration file, it
says “I do not understand your question”. We use again the Jaccard Similarity to compare
the user request with the questions in Edgar’s knowledge base, a threshold of 0.35, and the
previous Simple Majority decision strategy for choosing an answer when Edgar is not able to
provide one.

We created two sets of 100 questions each. The first with questions about the palace and
the second with other kind of requests, such as personal and trivia questions (e.g., “What
is your name?”, “Do you like to sing?”). Similarly to case study A, four annotators were
given a sample of 50 questions and answers from each set, and were, once again, asked to
score each response between 1 and 4, according to the earlier described criteria. Table 3
summarizes the results.

As expected, in what concerns questions about the palace, Edgar achieved the best
performance, but this MUAHAH configuration managed to keep up with minor accuracy
costs, and both systems had most of their answers scored 4. On the other hand, regarding
out-of-domain questions, MUAHAH beat Edgar by a comfortable margin.

To better understand the use of the Priority System strategy, we present a running
example, using as prioritized agent the aforementioned Edgar, and also the remaining agents
Cosine-Agent, Jaccard-Agent and EditDistance-Agent as backup. Note that Edgar has
its own corpus, while the other agents use the Subtle corpus.

6 Available from https://github.com/leonorllansol/muahah/blob/master/corpora/edgar/edgar.
txt
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Table 3 Edgar evaluated against our system.

Questions about the palace Out-of-domain Questions
Mean Answers Mean Answers
Approval Approval
Score > 2.75 Score > 2.75
Edgar 3.015 31 / 50 62% 2.37 18 / 50 36%
MUAHAH 2.87 29 / 50 58% 2.625 22 / 50 44%

1. The user poses query ¢ to the system: “Quando foi construido o Palacio de Monserrate?”
(When was the Palace of Monserrate built?)
2. The Coordinator forwards ¢q to the Agent Manager.
3. The Agent Manager instantiates the active agents: Edgar, Cosine-Agent, Jaccard-Agent
and EditDistance-Agent, and forwards ¢ to them.
4. Each agent selects a response, based on the sentence similarity between the request and
the retrieved candidates. Their selected responses are returned to the Agent Manager:
Acos: “Quando lhe telefonei a meio da noite.” (When I called you in the middle of the
night.)
Agdgar: O palécio foi construido entre 1858 e 1864, sobre a estrutura de um outro
paldcio.” (The palace was built between 1858 and 1864, on the structure of another
palace.)
Ajae: “Meu Deus!” (My God!)
Agp: “Quando lhe telefonei a meio da noite.” (When I called you in the middle of
the night.)
5. The Agent Manager sends the agents’ answers to the Coordinator.
6. The Coordinator forwards the agents’ answers, [Acos, AEdgars AJac, AED], to the
Decision Maker.
7. The Decision Maker sends the agents’ answers to the active Decision Method: Priority
System, with a weight of 1.
8. Priority System returns the answer given by the prioritized agent Edgar, Agdgar, to the
Decision Maker.
9. The Decision Maker returns the method’s answer to the Coordinator.

10. The Coordinator returns the answer to the user: “O paldcio foi construido entre 1858 e
1864, sobre a estrutura de um outro paldcio.” (The palace was built between 1858 and
1864, on the structure of another palace.)

For queries out of Edgar’s domain of expertise (e.g., “Quando comeca o Verao?”), Edgar
is expected to given a low similarity score to the top-ranked answer. If this score is below
the set threshold, Edgar will return the default “no answer” message, which results in the
application of Sitmple Majority to the remaining agents.

6 Case study C: Integrating new Agents and new Decision Strategy

The final case study was significantly different and tackled the integration of new agents and of
a new decision strategy in MUAHAH. Briefly, we integrated three retrieval-based agents that,
given a request, in natural language, retrieve the responses for similar requests in a knowledge
base (KB). Each agent follows a different matching technique: (i) Agent-BM25 is based on
the search engine Whoosh”, used for indexing the KB and retrieving suitable candidates

" https://whoosh.readthedocs.io/
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with the BM25 ranking function; (ii) Agent-W2V relies on a pre-trained word2vec [17] model
for encoding the requests in a numeric vector, i.e., requests are represented by the average
embedding vector of their words, and candidate requests in the KB are ranked according
to their cosine similarity with the user request; (iii) Agent-BERT relies on a pre-trained
BERT [4] model for encoding the requests in a numeric vector (i.e., the [CLS] embedding
of the second to last layer), and ranks the candidate requests in the KB according to their
cosine with the user request.

For integrating each agent, a sub-directory with the name of the agent was created under
the directory managed by the Agent Manager. In this directory, a script with the directory
name was added, implementing the requestAnswer method, where the retrieval logic resides.
In this case, it has a string parameter with the request and returns a list of answers ranked
according to their matching logic. In the same directory, a config.xml file was created with
the name of the main class. Finally, in the main MUAHAH directory, the name of the agent
was added to the main config.xml and set to active. We also inactivated all agents except
the new three.

The integrated decision strategy was the Borda Count voting [7], which scores each
candidate response according to their rank by different agents. This is different from the
previous decision strategies, which rely exclusively on the first answer given by each agent.
For this reason, Borda Count expects that the requestAnswer method of the agents returns
a list of results. The higher the rank, the higher the score. More precisely, for each agent, the
score of each candidate on a rank will be equal to the number of considered positions minus
its position in the rank, with the latter starting in 0. For instance, if we consider the top-5
candidates, the first candidate gets 5 points and the fifth gets 1. The selected response will
then be the one with the highest final score, obtained by summing all of its partial scores, in
all the considered lists, in this case, retrieved by each search strategy.

For integrating Borda Count, a script was created with its name and added to the
directory managed by the Decision Maker module. This script is based on a class that
extends the DecisionMethod class and implements the method getAnswer with the logic
underlying Borda Count.

To test the integration, we used the three agents for answering questions about entre-
preneurship and economic activity in Portugal, for which there is a corpus of 855 Frequently
Asked Questions (FAQs), in Portuguese, and their variations [10]%, i.e., paraphrases or related
questions using other words, possibly omitting information, that simulate user requests. Some
of the questions are quite complex, so our agents are not expected to answer every request
successfully, especially considering that they rely on simple matching techniques and were
not trained for the target domain. Examples of questions include “E obrigatdrio declarar
o exercicio de uma atividade econdmica junto da Autoridade Tributdria e Aduaneira?” (Is
it mandatory to declare the exercise of an economic activity with the Tax and Customs
Authority?) or “Qual o nimero mdzimo de criangas permitido por Ama?” (What is the
maximum number of children allowed by a nanny?), with variations like “Como devo in-
formar a autoridade tributdria sobre a minha atividade” and “Quantas criancas uma ama
pode acolher?”.

We note the natural language of the requests is irrelevant to MUAHAH. When necessary,
specific natural language processing, namely language-specific resources and tools, have to
be included in the agents. For instance, in this case study, where the corpus is in Portuguese,

8 Available from https://github.com/NLP-CISUC/ATA-BDE/
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Agent-W2V used a word2vec-CBOW model pre-trained for Portuguese, with 300-sized vectors
available from the NILC embeddings [12] and Agent-BERT used BERTimbau [21] large,
a pre-trained BERT model for Portuguese that encodes sentences in 1,024-sized vectors.
Whoosh was used with no language-specific analyser.

The goal of this case study was twofold: (i) to test whether the agents, now in MUAHAH,
could effectively respond to user requests, here simulated when matching variations with
questions in the KB; (ii) to compare the performance of using all three agents, alone and in
parallel, i.e., combined with SimpleMajority or Borda Count for selecting the most suitable
question. The corpus contains variations produced by different methods, but we focused
on two handcrafted types, namely: (i) VUC, 816, written by the creators of the corpus;
(ii) VMT, 168, by contributors of the Mechanical Turk crowdsourcing platform. For each
variation, agents ranked each of the 855 FAQs according to their suitability. Despite the
availability of the agents described in Sections 4 and 5, we note that these three agents were
the only effectively used for this purpose.

Since, for this case study, there were previously-created variations, simulating user
requests, each one with a known answer, evaluation could be automatized. Table 4 has the
accuracy of each agent and decision strategy, corresponding to the proportion of variations for
which the correct question was ranked first, meaning that the correct answer would be given.
Performances are modest, but they improve when the three agents are combined, either with
Borda Count or SimpleMajority. This shows that, besides enabling the combination of different
types of dialog or domains in the same platform (Sections 4 and 5), combining different
agents for the same domain also leads to a more accurate system. The more complementary
the answers of the agents are, the better, which is why we opted for significantly different
retrieval techniques.

Table 4 Accuracy of integrated agents, alone and combined, when matching question variations
with the correct questions.

‘ Agent-BM25 Agent-W2V  Agent-BERT ‘ SimpleMajority Borda
VMT 57.1% 65.5% 67.9% 74.4% 72.6%
vucC 55.9% 54.0% 56.7% 61.2% 63.0%

7 Conclusions and Future Work

We presented MUAHAH, a multi-agent platform for dialog systems that allows to easily
integrate different agents and, in order to get suitable responses, different decision-making
strategies that might consider the answers of all active agents. Such strategies are extremely
useful when no data is available for training a model that decides on the best agent for each
request. Instead, when targeting a specific domain or different types of dialog, they can often
take the most out of an ensemble of simple agents, without requiring additional training or
manual intent definition.

Some retrieval-based agents, such as those used in the case studies A and B, are already
included in MUAHAH, for different purposes. The same for simple decision strategies. These
include those of the first two presented case studies where, according to human users, different
combinations of agents resulted in better responses. We further showed that MUAHAH is
flexible enough for integrating additional agents and decision strategies, and thus adaptable to
different domains. For this reason, we believe that it is a suitable alternative when developing
new dialog systems. We thus make MUAHAH and its source code available to all of those
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interested: MUAHAH is available from https://github.com/leonorllansol/muahah, and
its fork including the new agents and new decision strategy, resulting from case study C, is
at https://github.com/NLP-CISUC/muahah.

A critical aspect of MUAHAH are the decision strategies, where there is plenty of work
to be done. For instance, the aforementioned Gunrock [3] takes into account a fact/opinion
interleaving strategy, which is certainly interesting to explore. In particular, we believe that
the system’s results would greatly improve if it took user feedback into account, which would
enable to learn specific weights for each agent, instead of a flat priority to a single (or to
multiple) agents. Towards a more natural dialog, a module for dealing with context would
also improve conversations. Such a model could keep track of concepts and entities referred
and remember them in future interactions. This would enable the chatbots do deal with
anaphora, and could also be exploited by pro-active chatbots.
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