
Semantic Search of Mobile Applications Using
Word Embeddings
João Coelho # Ñ

Caixa Mágica Software, Lisbon, Portugal
Instituto Superior Técnico, Lisbon, Portugal

António Neto #Ñ

Caixa Mágica Software, Lisbon, Portugal
University Institute of Lisbon, Portugal

Miguel Tavares #Ñ

Caixa Mágica Software, Lisbon, Portugal
Lusophone University of Humanities and Technologies, Lisbon, Portugal

Carlos Coutinho # Ñ

Caixa Mágica Software, Lisbon, Portugal
ISTAR-IUL, University Institute of Lisbon, Portugal

Ricardo Ribeiro # Ñ

University Institute of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Fernando Batista # Ñ

University Institute of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Abstract
This paper proposes a set of approaches for the semantic search of mobile applications, based on
their name and on the unstructured textual information contained in their description. The proposed
approaches make use of word-level, character-level, and contextual word-embeddings that have been
trained or fine-tuned using a dataset of about 500 thousand mobile apps, collected in the scope
of this work. The proposed approaches have been evaluated using a public dataset that includes
information about 43 thousand applications, and 56 manually annotated non-exact queries. Our
results show that both character-level embeddings trained on our data, and fine-tuned RoBERTa
models surpass the performance of the other existing retrieval strategies reported in the literature.

2012 ACM Subject Classification Information systems → Retrieval models and ranking; Information
systems → Document representation; Information systems → Language models; Information systems
→ Search engine indexing; Information systems → Similarity measures; Computing methodologies
→ Machine learning

Keywords and phrases Semantic Search, Word Embeddings, Elasticsearch, Mobile Applications

Digital Object Identifier 10.4230/OASIcs.SLATE.2021.12

Funding This work was supported by PT2020 project number 39703 (AppRecommender) and by na-
tional funds through FCT – Fundação para a Ciência e a Tecnologia with reference UIDB/50021/2020.

1 Introduction

The penetration of mobile devices in society has led most companies to see them as indis-
pensable means for being in close contact with their customers. According to [8], Google
Play Store has 2.6 million mobile apps available, Apple’s iOS App Store has 1.85 million, and

© João Coelho, António Neto, Miguel Tavares, Carlos Coutinho, Ricardo Ribeiro, and Fernando
Batista;
licensed under Creative Commons License CC-BY 4.0

10th Symposium on Languages, Applications and Technologies (SLATE 2021).
Editors: Ricardo Queirós, Mário Pinto, Alberto Simões, Filipe Portela, and Maria João Pereira; Article No. 12;
pp. 12:1–12:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joao.coelho@caixamagica.pt
http://www.caixamagica.pt
mailto:antonio.neto@caixamagica.pt
http://www.caixamagica.pt
mailto:miguel.tavares@caixamagica.pt
http://www.caixamagica.pt
https://orcid.org/0000-0001-6346-0248
mailto:carlos.coutinho@caixamagica.pt
http://www.caixamagica.pt
https://orcid.org/0000-0001-8065-1898
mailto:ricardo.ribeiro@iscte-iul.pt
https://ciencia.iscte-iul.pt/authors/ricardo-daniel-santos-faro-marques-ribeiro
https://orcid.org/0000-0002-2058-693X
mailto:fernando.batista@iscte-iul.pt
https://ciencia.iscte-iul.pt/authors/fernando-batista
https://orcid.org/0000-0002-1075-0177
https://doi.org/10.4230/OASIcs.SLATE.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 Semantic Search of Mobile Applications Using Word Embeddings

Aptoide has about 1 million1, which creates an extremely tough competition between apps.
In terms of app downloads, in 2019 there were 204 billion app downloads, a number that
has been increasing over the years. However, many of these downloads consist of multiple
attempts to find the right app. Many downloaded apps are never used, and in 77% of cases,
apps are not used again within 72 hours of installation. This shows a big misalignment
between the supply of apps by the app stores (distribution services) and the demand for
them by the consumers (discovery). Furthermore, around 2019, 52% of apps were discovered
by word-of-mouth between acquaintances, friends or family, and only 40% were discovered by
searching app stores. These inefficiencies make app discovery and distribution a considerable
and extremely relevant challenge, since they take place in a market of massive penetration in
societies and seriously affect the relationship between companies and consumers.

Based on this problem, the strategic objective of the AppRecommender project is to
investigate and develop technologies capable of offering the right app, to the right customer,
at the right time, by proposing a semantic search engine. The goal is to optimize current app
distribution and discovery services and, inherently, to promote closer ties between companies
and their target customers. The impact will be to increase user simplicity, efficiency and
satisfaction in the discovery of apps, by optimizing the alignment between their needs,
characteristics and context with the apps offered by the app store. As for developers or
companies promoting mobile apps, the impact is on the level of increased proximity to target
consumers, and optimizing their commercial success. The work here described was developed
in the scope of the AppRecommender project.

This paper describes a dataset containing information about 500 thousand mobile apps,
collected in the scope of this work, and proposes a set of approaches for semantic search, using
the unstructured textual information contained in their name and description. The proposed
approaches make use of word-level, character-level, and contextual word-embeddings that
we have trained or fine-tuned with our available data. In order to evaluate the proposed
approaches, we have used the public dataset described in [14], which includes information
about 43,041 mobile applications and 56 non-exact queries previously annotated. Our results
show that both character-level embeddings trained on our data, and fine-tuned RoBERTa
models surpass the performance of the other existing retrieval strategies reported in the
literature for this database.

This paper is organized as follows: Section 2 presents an overview of the related literature,
focusing on existing work on semantic retrieval. Section 3 presents the data used in our
experiments, which consists of the data that we have collected to train or fine-tune our
models, and also the dataset that we have used for evaluation. Section 4 describes our set of
approaches. Section 5 describes the conducted experiments and the achieved results. Finally,
Section 6 summarizes the most relevant contributions, and presents the future work.

2 Related Work

As previously mentioned, there is a big misalignment between the supply of apps by the app
stores and the demand for them by the consumers. In fact, this happens even considering
that mobile app stores have search engines that allow users to find apps according to a
provided query.

In general, although difficult to assess as they are proprietary, commercial app stores
use keyword-matching approaches and are based in search engines, such as Lucene [4], or in
open-source solutions, such as Solr [20] and Elasticsearch [1], built on top of Lucene.

1 https://pt.aptoide.com/company/about-us

https://pt.aptoide.com/company/about-us

J. Coelho, A. Neto, M. Tavares, C. Coutinho, R. Ribeiro, and F. Batista 12:3

In order to improve search results, several strategies have been explored. For example,
Mobiwalla [5, 6], a search engine based on Lucene, uses natural language processing techniques
such as stemming and lemmatization to create multiple versions of the original query and
synonyms or hyponyms for generalization. Another strategy is to use topic information.
Topic modeling captures the main themes of a collection of documents, thus improving search
on that collection [2]. Zhuo et al. [24] enrich queries and apps representations with topics
(based on the titles and descriptions of the applications) and tags (a filtered combination
of human labels and tags obtained by crawling the web and usage data regarding each
application) to improve semantic matching. Park et al. [14] also explore topic information by
jointly modeling apps descriptions and reviews and generating apps representations based
on their descriptions, using this topic model. In a subsequent work, Park et al. [13] explore
social media data to model the implicit intention of a user query. They create a parallel
corpus containing aligned text spans that associate explicit intentions to the corresponding
implicit intentions ([I want pizza]explicit because [I’m hungry]implicit). They use this data
to infer the intention associated with a query and then use a relevance model to find the
apps that match this intention. Ribeiro et al. [18] also use topic models to improve the
semantic matching between the query and the apps. However, the focus is on how topic
models (applied to the description of the apps) can be used to infer keywords to expand the
queries sent to standard search engines.

Closer to our work, and given the successful use of word embeddings in several speech
and language processing problems [7], recent work on retrieval tasks also focused in exploring
these representations. For example, Yao et al. [22] train user specific word embeddings
(using her/his personal data) and use them to compute representations of user queries
and documents. The matching between queries and documents is done using a neural
matching model. This was experimented in search logs. Samarawickrama et al. [19] also
explore embeddings for searching in Twitter. They also train user specific word embeddings
and use them for query expansion. Yates et al. [23] survey methods for text ranking (i.e.,
score a collection of textual documents with respect to a query) leveraging neural language
models. They distinguish between dual-encoders and cross-encoders. The former encode
queries and documents independently, performing better temporally, while the latter encode
concatenations of queries and documents, generally obtaining better results, but not suitable
to search over large collections, given its computational cost.

3 Data

The dataset used in the scope of this work was built from scratch, by scrapping Aptoide’s
API, and is publicly available2 for reproducible purposes. A first endpoint was used to
extract general data about applications, including the title, Aptoide identifier, added date,
update date, and a set of statistics. The Aptoide identifier was then used to query two other
endpoints for application-specific information. The second endpoint contains information
regarding the developer, required permissions and the description. The third endpoint
contains information about the categories associated with the application.

The first endpoint returned information about 499 thousand applications. For those, the
second and third endpoints were queried, returning information for 436,969 of them. The
observed discrepancy in values occurred, not only due to missing information on the API,
but also due to privatization and/or discontinuation of applications.

2 https://apprecommender.caixamagica.pt/wordpress/resources/

SLATE 2021

https://apprecommender.caixamagica.pt/wordpress/resources/

12:4 Semantic Search of Mobile Applications Using Word Embeddings

The relevancy statistics in our dataset include the number of downloads, the average
rating, and the total number of ratings of each of application. An initial analysis revealed
that the vast majority of the applications were not of much value. This is supported by the
high number of applications with very few downloads (Figure 1), and by the high number of
applications that have never been rated (414,053). For the applications that were rated at
least once, the average rating distribution is depicted in Figure 2. Nonetheless, we considered
the average rating not to be a very descriptive measure, due to an average number of total
ratings of approximately 4.

0 50000 100000 150000 200000 250000 300000
Number Of Apps

(0, 100)

(101, 1000)

(1001, 10000)

(10001, 100000)

(100001, 500000)

(500001, 1000000)

(1000001, inf)

Do
wn

lo
ad

 In
te

rv
al

s

304013

114370

57841

17633

3473

671

999

Figure 1 Number of applications within a interval of download values.

1 2 3 4 5
Rounded Rating

0

10000

20000

30000

40000

Nu
m

be
r O

f A
pp

s

3972 2403 11182 22567 44823

Figure 2 Rounded average rating distribution.

This way, we hypothesised that searching the whole dataset may not be ideal due to
the irrelevant nature of the majority of the applications. As such, we derived a subset of
relevant-only applications to search upon, based on four heuristics:
1. The top-5000 downloaded applications which were updated in the last 2 years;
2. The top-5000 downloaded applications which were updated in the last 6 months;
3. The top-1000 rated applications, with at least 200 rates and 1000 downloads;
4. The top-750 with more rates, added in the last 3 months, with at least 1000 downloads.

J. Coelho, A. Neto, M. Tavares, C. Coutinho, R. Ribeiro, and F. Batista 12:5

The objective was to consider applications that are widely used, not leaving out recent
ones that are being updated constantly. The applications were also filtered to consider only
those with descriptions in English. Since the information about the language is not included
in our dataset, we used PyCLD3 (Python bindings for Google’s CLD3 language detection
model) to automatically detect it.

Overall, after removing duplicates, we ended up with 5,819 relevant applications. For
each one of those applications, their name, description, downloads, average rating, total
rating, added date and last update date were indexed in Elasticsearch.

The remaining non-relevant applications were stored in raw text files, since their textual
data (name and description) constitute relevant resources for training our language models.

Name

0

2

4

6

8

Description

0

100

200

300

400

500

600

Figure 3 Distribution of the number of tokens for application’s names (left) and application’s
descriptions (right). Green triangle represents the mean value, whereas the yellow line represents
the median.

Figure 3 shows some basic statistics about the number of words that constitute both
the application name and description, after removing some of the most salient outliers for
visualization purposes. The figure reveals that the name of an application usually contains
more than 2 tokens, and that it’s description ranges from less than 100 tokens to more than
300 tokens. The following text is an example of an application description containing 111
words and multiple sentences.

Don’t Starve: Pocket Edition, brings the hit PC game enjoyed by over 6 million
players to Android.
Now you can experience the uncompromising wilderness survival game full of
science and magic on the go! Play as Wilson, an intrepid Gentleman Scientist
who has been trapped and transported to a mysterious wilderness world. Wilson
must learn to exploit his environment and its inhabitants if he ever hopes to
escape and find his way back home.
Enter a strange and unexplored world full of strange creatures, dangers, and
surprises. Gather resources to craft items and structures that match your survival
style. Play your way as you unravel the mysteries of this strange land.

SLATE 2021

12:6 Semantic Search of Mobile Applications Using Word Embeddings

4 Approach

The main objective of our proposal was to compare semantic with lexical search in the
context of mobile applications. Sections 4.2 to 4.3 introduce the models used to do so. For
this, we consider both word-level and character-level word embeddings, to access which works
better in this domain. Then, we compare both to contextual embeddings, generated through
Transformer-based neural language models. Section 4.4 describes the indexing and searching
mechanisms.

4.1 GloVe Word Embeddings
GloVe [15] is a model for unsupervised generation of static word embeddings. Alike
Word2Vec [12], it uses local context window methods, but combines it with word-word
correlation matrix factorization. We used a pre-trained model on textual data from Wikipe-
dia and Gigatext, with 100-dimensional vectors.

To generate the embeddings for application’s names, the strings are lower-cased and
out-of-vocabulary words are removed. For descriptions, besides lower-casing and out-of-
vocabulary word removal, stop-words words are removed. The models are used to generate
word-level embeddings, and the average of the vectors is used as a final sentence embedding.

4.2 FastText Word Embeddings
FastText [3] follows an approach similar to Word2Vec [12], but each word is represented as a
bag of character n-grams. This way, character-level embeddings are considered, instead of
word-level representations.

In preliminary tests, we compared a CBOW [12] fastText model (FT1), pre-trained on
English Common Crawl considering word 5-grams, to the aforementioned pretrained GloVe
model. As the results favored the character-level embeddings, we trained a CBOW fastText
model (FT2) from scratch using out textual data (see Section 3).

Since these models are quite big, we reduced the dimension of the vectors from 300 to
100, using the dimension reduction tool provided by fastText python library.

For both FT1 and FT2, the process to generate embeddings is the same, which is
the default behaviour of fastText’s embedding generation tool, with minor changes. For
application’s names, the strings are lower-cased. For descriptions, besides lower-casing,
stop-words are also removed. The nature of these embeddings (character-level) allow for out-
of-vocabulary words to be included. The models are used to generate word-level embeddings,
which are then normalized by their L2 norm. The average of the vectors with positive L2
norm is taken as a final sentence embedding.

4.3 RoBERTa Contextual Embeddings
The main limitation of the previous models is that a word always has the same vector,
despite the context of its usage. As such, we consider the usage of Contextual Embeddings,
which are context-dependent representations that capture the use of words across multiple
scenarios [10]. We explore the usage of a fine-tuned neural language model as a dual-encoder
in the context of a mobile application search engine, since good results have been reported
in other retrieval contexts [9, 16, 17], and dual-encoders make it possible to pre-compute
and index representations for the application’s textual data.

We start by fine-tuning RoBERTabase [11] on a masked language modelling task, using
the Huggingface Transformers library [21]. We split our textual data (see Section 3) into
train and test sets (90% and 10%, respectively). The text in the train set is processed into

J. Coelho, A. Neto, M. Tavares, C. Coutinho, R. Ribeiro, and F. Batista 12:7

sets of 512 tokens by RoBERTa’s original tokenizer, with a masking probability of 15%. The
model was trained during 1 epoch with a batch size of 4, using a cross-entropy loss function.
The test set was used to evaluate the fine-tuned model, which achieved a perplexity of 4.54
on a mask prediction task.

We further trained the model on a semantic similarity task, using the Sentence Trans-
formers library [17]. For this, we synthetically build queries by concatenating an application’s
name with its categories. Then, each query is associated with the description of the applica-
tion. This way, we build a collection of (query, relevant description) pairs. Within a training
batch of size 8, triplets are built from the pairs, in the form (query, relevant description, fake
description). The relevant description of a given query is used as the fake descriptions for
the others, which allows for 8 × 7 = 56 training examples per batch. The model is used to
generate representations for the query and the descriptions, and scores are obtained from the
cosine similarity between the representations of the query and the descriptions. The objective
is to minimize the negative log-likelihood of softmaxed scores. The whole textual dataset is
used to train, except for 500 random applications which were used to evaluate. For those
applications, queries were built as previously described, and a description corpus was built
from their descriptions. The model was used as a dual-encoder to rank the 500 descriptions
for each query. Given that each query only has one relevant description, we computed the
Precision@1, the Recall@10, and the MRR@10. The results were 0.8795, 0.9732, and 0.9167,
respectively.

Given a sentence as input, the final model (henceforth RoBERTapp) is used to generate
representations through mean pooling of the word token embeddings of the last hidden-layer.

4.4 Indexing and Searching
The previous models were used to generate representations for the name and description
of applications to be indexed (see Section 3). The representations were pre-computed, and
stored along with the name and description of each application in an ElasticSearch index.
The name and description are used to perform the classic lexical search. We built an interface
to allow us to query this index, where we can choose which model to use, and which fields to
consider (i.e., name, description, or both).

Searching with the lexical model uses the standard ElasticSearch analyser to process the
query, which was also used to process the indexed textual data. Given a query q, the Lucene
Scoring Function is used to compute the scores over the chosen fields, combining them if
more than one:

score(q, a) =
∑
f∈a

LSF(q, f) , (1)

LSF(q, f) = 1√∑
t∈q idf(t)2

× |q ∩ f |
|q|

×
∑
t∈q

(
tf(t, f) · idf(t)2 · wf√

|f |

)
, (2)

where f are application a’s textual fields (in our case, name and/or description), t are the
query’s tokens, tf is the term-frequency, and idf is the inverse document frequency.

Searching with the vector-based models leverages ElasticSearch’s built-in cosine similarity
function. Representations for queries are generated at run-time, using the chosen model.
Given a query q and an application a, the score is computed as follows:

SLATE 2021

12:8 Semantic Search of Mobile Applications Using Word Embeddings

score(q, a) = α sim(M(q), M(an)) + β sim(M(q), M(ad)) , (3)

where M is the model encoding function, an is an application’s name, ad is an application’s
description, sim is the cosine similarity function, and α, β are combination weights. Note
that M(an) and M(ad) are already indexed, only M(q) is generated at run-time.

Ultimately, given a query and a model, the scores are computed and the top-N scoring
applications are retrieved.

5 Experiments and Results

Since our dataset does not include any queries and relevance judgments, we evaluate our
models on the data provided by Park et al. [14], before manually analysing the results of the
models on our indexed data.

This dataset contains information about 43,041 mobile applications including name and
description. The dataset also features 56 non-exact queries (i.e., queries with a meaningful
semantic context, instead of an application’s name). For each one of the queries, 81 applic-
ations are labelled with a relevancy score of 0 (not relevant), 1 (somewhat relevant), or 2
(very relevant). These scores were manually annotated.

The authors used the Normalized Discounted Cumulative Gain as the evaluation metric,
which takes the full order of the item list and graded relevances into account:

DCG@k = R(1) +
k∑

i=2

R(i)
log2(i) , (4)

NDCG@k = DCG@k

IDCG@k
, (5)

where R(i) is a function that returns the relevance value of the passage at rank i. The
index of the passage up to which the ranking is considered is represented by k. The DCG is
normalized with the ideal DCG (IDCG), i.e., the DCG of a perfectly sorted result.

Table 1 shows the results for the evaluation of our models, which was conducted under
the same conditions as reported by Park et al. [14], i.e., ranking the 81 labeled applications
for each one of the 56 queries.

For comparison, Table 2 shows results achieved by Google Play and LBDM reported by
Park et al. [14], and results achieved by lexical models leveraging topic modelling techniques,
reported by Ribeiro et al. [18], for the same scenario.

The results show that the pre-trained models (GloVe and FT1) performed worse than
previous approaches. On the other hand, FT2 and the RoBERTapp models surpass previous
approaches. We can also conclude that searching considering the name and description is,
overall, the most advantageous combination. In this scenario, RoBERTapp achieved the best
results for NDCG@{3,25}, and the best scores for NDCG@{5,10} were achieved by FT2.

RoBERTapp is the best model when dealing with descriptions only, perhaps due to the
second fine-tuning task, which consisted in scoring descriptions based on a synthetic query.
Conversely, FT2 is superior to RoBERTapp when searching with name only.

Since models FT2 and RoBERTapp performed well, we manually evaluated them on
our relevant application index, considering names and descriptions. We query the index
as described in Section 4.4. As expected, when the query corresponds or is close to an

J. Coelho, A. Neto, M. Tavares, C. Coutinho, R. Ribeiro, and F. Batista 12:9

Table 1 NDCG@{3,5,10,25} for the multiple models, considering application’s name and descrip-
tion (N+D), only name (N), and only description (D).

NDCG@3 NDCG@5 NDCG@10 NDCG@25
GloVe (N + D) 0.527 0.523 0.522 0.538
GloVe (N) 0.523 0.514 0.512 0.529
GloVe (D) 0.504 0.491 0.489 0.508
FT1 (N + D) 0.540 0.521 0.532 0.543
FT1 (N) 0.512 0.507 0.513 0.529
FT1 (D) 0.462 0.466 0.461 0.476
FT2 (N + D) 0.587 0.589 0.582 0.600
FT2 (N) 0.595 0.582 0.571 0.582
FT2 (D) 0.519 0.529 0.519 0.545
RoBERTapp (N + D) 0.616 0.587 0.581 0.605
RoBERTapp (N) 0.582 0.570 0.568 0.590
RoBERTapp (D) 0.585 0.581 0.577 0.585

Table 2 NDCG@{3,5,10,25} achieved by Google Play and LBDM [14], and achieved by lexical
models considering applications’ description and topics [18].

NDCG@3 NDCG@5 NDCG@10 NDCG@25
LBDM 0.584 0.563 0.543 0.565
Google Play 0.589 0.575 0.568 0.566
BM25F 0.574 0.542 0.527 0.544
ElasticSearch 0.552 0.532 0.504 0.519

application name, none of the models had problems retrieving the correct applications. Since
our objective is to enrich a search engine with semantic capabilities, we further tested with
non-exact queries. Table 3 shows the results for three example queries. Note that this
search was conducted in the setup described in Section 4.4, considering only the embeddings
generated by the models. This is, no other information regarding relevance (e.g., downloads,
ratings, etc...) was considered, so as to better access the usefulness of semantic models.

The semantic models were able to retrieve relevant applications which fit the scope
of the non-exact queries. For example, searching for “social network” with RoBERTapp
returned the most widely-used social networks. One can argue that FT2 worked better than
RoBERTapp for the query “airline tickets”, since the latter returned a game as the top-result.
Still, overall, both models provide more appropriate results than the lexical model.

6 Conclusions and Future Work

This paper proposes a set of approaches for semantic search of mobile applications, which use
clues contained in the name and textual descriptions of these applications for selecting the most
relevant ones for a given query. Our approaches are based on word-level (GloVe), character-
level (fastText), and on contextual (RoBERTa) word-embeddings. We have described the
process of collecting a dataset, containing information about mobile apps, that was further
described and used for training and fine-tuning our models. The proposed approaches have
been evaluated using a publicly available dataset of mobile applications, and the results
achieved show that both character-level embeddings, trained on our data, and fine-tuned
RoBERTa models, fine-tuned also using our data, when applied in an unsupervised way,

SLATE 2021

12:10 Semantic Search of Mobile Applications Using Word Embeddings

Table 3 Comparison between the lexical model and the semantic models (FT2, RoBERTapp) for
non-exact queries, considering name and description. The ordered top-5 results are shown.

Query: “social network”
Lexical RoBERTapp FT2

Hornet - Social Network Facebook Peeks Social
BandLab – Music Studio & So-
cial Network

Instagram Network Browser

Pi Network Twitter Hornet - Social Network
Network Browser Internet Cartoon Network App
Peeks Social Facebook Viewer Air-Share

Query: “food at home”
Lexical RoBERTapp FT2

Domino’s Pizza - Online Food
Delivery App

EatSure - Food Delivery | Order
Food Now!

foodpanda - Local Food & Gro-
cery Delivery

Mixer – Interactive Streaming foodpanda: Fastest food deliv-
ery, amazing offers

EatSure - Food Delivery | Order
Food Now!

Trendyol - Online Shopping foodpanda - Local Food & Gro-
cery Delivery

Swiggy Food Order & Delivery

DoorDash - Food Delivery DoorDash - Food Delivery Zomato - Online Food Delivery
& Restaurant Reviews

foodpanda - Local Food & Gro-
cery Delivery

Toca Kitchen Sushi Restaurant Glovo: Order Anything. Food
Delivery and Much More

Query: “airline tickets”
Lexical RoBERTapp FT2

Privat24 Airline Commander - A real
flight experience

MakeMyTrip-Flights Hotels
Cabs

Trip.com: Flights, Hotels, Train Southwest Airlines Cleartrip - Flights, Hotels, Train
Booking

OpenSooq American Airlines ebookers - Hotel, Flight, Car
Hires

Flüge.de Flightradar24 Flight Tracker Goibibo - Hotel Car Flight
KAYAK flights, hotels & car hire MakeMyTrip-Flights Hotels

Cabs
Trip.com: Flights, Hotels, Train

surpass the performance of the other existing retrieval strategies reported in the literature.
We further confirmed that the proposed semantic-related models capture the scope of non-
exact queries, which lexical models struggle to do, by manually searching over our relevant
applications index.

In the near future, we are planning to improve our RoBERTa model by considering
additional unsupervised/semi-supervised training tasks. The reported experiments use only
the similarity between the query and each one of the candidate applications. We are also
planning to create a multi-criteria retrieval system that takes into account other relevant
information, such as the number of downloads, rating and the fact that a given application
was updated recently.

J. Coelho, A. Neto, M. Tavares, C. Coutinho, R. Ribeiro, and F. Batista 12:11

References
1 S. Banon. Elasticsearch, 2010. URL: https://www.elastic.co/.
2 David M. Blei. Probabilistic Topic Models. Commun. ACM, 55(4):77–84, 2012. doi:10.1145/

2133806.2133826.
3 Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching Word

Vectors with Subword Information. Trans. Assoc. Comput. Linguistics, 5:135–146, 2017. URL:
https://transacl.org/ojs/index.php/tacl/article/view/999.

4 D. Cutting. Apache Lucene, 1999. URL: https://lucene.apache.org/.
5 Anindya Datta, Kaushik Dutta, Sangar Kajanan, and Nargin Pervin. Mobilewalla: A Mobile

Application Search Engine. In Joy Ying Zhang, Jarek Wilkiewicz, and Ani Nahapetian,
editors, Mobile Computing, Applications, and Services, pages 172–187, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

6 Anindya Datta, Sangaralingam Kajanan, and Nargis Pervin. A Mobile App Search Engine.
Mobile Networks and Applications, 18, 2013.

7 Sahar Ghannay, Benoit Favre, Yannick Estève, and Nathalie Camelin. Word Embedding Eval-
uation and Combination. In Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 300–305, Portorož, Slovenia, 2016. European Lan-
guage Resources Association (ELRA). URL: https://www.aclweb.org/anthology/L16-1046.

8 Mansoor Iqbal. App download and usage statistics (2020). web page, October 2020. URL:
https://www.businessofapps.com/data/app-statistics/.

9 Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via
contextualized late interaction over BERT. In Jimmy Huang, Yi Chang, Xueqi Cheng,
Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, editors, Proceedings of the
43rd International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages 39–48. ACM, 2020.
doi:10.1145/3397271.3401075.

10 Qi Liu, Matt J. Kusner, and P. Blunsom. A Survey on Contextual Embeddings. ArXiv,
abs/2003.07278, 2020. arXiv:2003.07278.

11 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019. arXiv:1907.11692.

12 Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey Dean. Efficient Estimation of Word
Representations in Vector Space. In Proceedings of the International Conference on Learning
Representations, 2013.

13 Dae Hoon Park, Yi Fang, Mengwen Liu, and ChengXiang Zhai. Mobile App Retrieval for
Social Media Users via Inference of Implicit Intent in Social Media Text. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Management,
CIKM ’16, page 959–968, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2983323.2983843.

14 Dae Hoon Park, Mengwen Liu, ChengXiang Zhai, and Haohong Wang. Leveraging User Reviews
to Improve Accuracy for Mobile App Retrieval. In Ricardo Baeza-Yates, Mounia Lalmas,
Alistair Moffat, and Berthier A. Ribeiro-Neto, editors, Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago,
Chile, August 9-13, 2015, pages 533–542. ACM, 2015. doi:10.1145/2766462.2767759.

15 Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global Vectors
for Word Representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors,
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 1532–1543. ACL, 2014. doi:10.3115/v1/d14-1162.

16 Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Xin Zhao, Daxiang Dong, Hua Wu,
and Haifeng Wang. RocketQA: An Optimized Training Approach to Dense Passage Retrieval
for Open-Domain Question Answering. CoRR, abs/2010.08191, 2020. arXiv:2010.08191.

SLATE 2021

https://www.elastic.co/
https://doi.org/10.1145/2133806.2133826
https://doi.org/10.1145/2133806.2133826
https://transacl.org/ojs/index.php/tacl/article/view/999
https://lucene.apache.org/
https://www.aclweb.org/anthology/L16-1046
https://www.businessofapps.com/data/app-statistics/
https://doi.org/10.1145/3397271.3401075
http://arxiv.org/abs/2003.07278
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/2983323.2983843
https://doi.org/10.1145/2766462.2767759
https://doi.org/10.3115/v1/d14-1162
http://arxiv.org/abs/2010.08191

12:12 Semantic Search of Mobile Applications Using Word Embeddings

17 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, November 2019. arXiv:1908.10084.

18 Eugénio Ribeiro, Ricardo Ribeiro, Fernando Batista, and João Oliveira. Using Topic Informa-
tion to Improve Non-exact Keyword-Based Search for Mobile Applications. In Marie-Jeanne
Lesot, Susana Vieira, Marek Z. Reformat, João Paulo Carvalho, Anna Wilbik, Bernadette
Bouchon-Meunier, and Ronald R. Yager, editors, Information Processing and Management of
Uncertainty in Knowledge-Based Systems, pages 373–386, Cham, 2020. Springer International
Publishing.

19 Sameendra Samarawickrama, Shanika Karunasekera, Aaron Harwood, and Ramamohanarao
Kotagiri. Search Result Personalization in Twitter Using Neural Word Embeddings. In Ladjel
Bellatreche and Sharma Chakravarthy, editors, Big Data Analytics and Knowledge Discovery,
pages 244–258, Cham, 2017. Springer International Publishing.

20 Y. Seeley. Apache Solr, 2004. URL: https://lucene.apache.org/solr/.
21 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-
the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, 2020.
Association for Computational Linguistics. URL: https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

22 Jing Yao, Zhicheng Dou, and Ji-Rong Wen. Employing Personal Word Embeddings for
Personalized Search. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’20, page 1359–1368, New York,
NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3397271.3401153.

23 Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. Pretrained transformers for text ranking:
BERT and beyond. In Liane Lewin-Eytan, David Carmel, Elad Yom-Tov, Eugene Agichtein,
and Evgeniy Gabrilovich, editors, WSDM ’21, The Fourteenth ACM International Conference
on Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021, pages 1154–1156.
ACM, 2021. doi:10.1145/3437963.3441667.

24 Juchao Zhuo, Zeqian Huang, Yunfeng Liu, Zhanhui Kang, Xun Cao, Mingzhi Li, and Long
Jin. Semantic Matching in APP Search. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM ’15, page 209–210, New York, NY, USA,
2015. Association for Computing Machinery. doi:10.1145/2684822.2697046.

http://arxiv.org/abs/1908.10084
https://lucene.apache.org/solr/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1145/3397271.3401153
https://doi.org/10.1145/3437963.3441667
https://doi.org/10.1145/2684822.2697046

	1 Introduction
	2 Related Work
	3 Data
	4 Approach
	4.1 GloVe Word Embeddings
	4.2 FastText Word Embeddings
	4.3 RoBERTa Contextual Embeddings
	4.4 Indexing and Searching

	5 Experiments and Results
	6 Conclusions and Future Work

