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Preface

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a well-established venue for presenting research results in theoretical
computer science. The broad scope of the conference encourages interactions between
researchers who might not meet at more specialized venues. The first MFCS conference
was organized in 1972 in Jabłonna (near Warsaw, Poland). Since then, the conference
traditionally moved between the Czech Republic, Slovakia, and Poland. More recently, the
conference started traveling to other European countries, including Denmark, the United
Kingdom, Germany. The venue for this – the 46th – edition of MFCS, is Tallinn, Estonia.

The program committee of MFCS 2021 accepted 85 papers out of 199 submissions, with
the authors of the submitted papers representing over 35 countries. We would like to express
our deep gratitude to all the committee members and reviewers for their extensive reports
and discussions on the merits of the submissions. Due to the Covid-19 pandemic MFCS 2021
was held as a hybrid event. It featured invited talks by Amina Doumane (ENS Lyon),
Martin Grohe (RWTH Aachen University), Joël Ouaknine (Max Planck Institute for Software
Systems), Eva Rotenberg (Technical University of Denmark), and Barna Saha (UC Berkeley)
on topics that reflected the broad scope of the conference.

MFCS proceedings have been published in the Dagstuhl/LIPIcs series since 2016. We
would like to thank Michael Wagner and the LIPIcs team for all their kind help and support.
We also warmly thank the organising committee of MFCS, chaired by Pawel Sobocinski, for
their hard work in setting up and running the event.
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Non-Axiomatizability of the Equational Theories of
Positive Relation Algebras
Amina Doumane #

CNRS, ENS Lyon, France

Abstract
In the literature, there are two ways to show that the equational theory of relations over a given
signature is not finitely axiomatizable. The first-one is based on games and a construction called
Rainbow construction. This method is very technical but it shows a strong result: the equational
theory cannot be axiomatized by any finite set of first-order formulas. There is another method,
based on a graph characterization of the equational theory of relations, which is easier to get and to
understand, but proves a weaker result: the equational theory cannot be axiomatized by any finite
set of equations.

In this presentation, I will show how to complete the second technique to get the stronger result
of non-axiomatizability by first-order formulas.
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Keywords and phrases Relation algebra, Graph homomorphism, Equational theories, First-order
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A Deep Dive into the Weisfeiler-Leman Algorithm
Martin Grohe #

RWTH Aachen University, Germany

Abstract
The Weisfeiler-Leman algorithm is a well-known combinatorial graph isomorphism test going back to
work of Weisfeiler and Leman in the late 1960s. The algorithm has a surprising number of seemingly
unrelated characterisations in terms of logic, algebra, linear and semi-definite programming, and
graph homomorphisms. Due to its simplicity and efficiency, it is an important subroutine of all
modern graph isomorphism tools. In recent years, further applications in linear optimisation,
probabilistic inference, and machine learning have surfaced.

In my talk, I will introduce the Weisfeiler-Leman algorithm and some extensions. I will discuss
its expressiveness and the various characterisations, and I will speak about its applications.
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Holonomic Techniques, Periods, and Decision
Problems
Joël Ouaknine #

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
Holonomic techniques have deep roots going back to Wallis, Euler, and Gauss, and have evolved in
modern times as an important subfield of computer algebra, thanks in large part to the work of
Zeilberger and others over the past three decades (see, e.g., [3, 2]). In this talk, I give an overview
of the area, and in particular present a select survey of known and original results on decision
problems for holonomic sequences and functions. I also discuss some surprising connections to
the theory of periods and exponential periods, which are classical objects of study in algebraic
geometry and number theory; in particular, I relate the decidability of certain decision problems for
holonomic sequences to deep conjectures about periods and exponential periods, notably those due
to Kontsevich and Zagier.

Parts of this exposition draws upon [1].
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On Dynamic Graphs
Eva Rotenberg #

Technical University of Denmark, Lyngby, Denmark

Abstract
In graph algorithms, many questions about a graph can be answered in time proportional to the size
of the input, and such linear time algorithms are considered the epitome of efficiency. However, when
the graph changes slightly, e.g. by the insertion or deletion of an edge or a vertex, it is undesirable
to consider the entire input again. Rather, one would wish to keep some of the partial answers to
questions about the old graph, and re-use them when computing answers to questions about the
resulting graph. The art of handling such changes is studied in dynamic graph algorithms.

In this talk, we will see some examples of ideas and techniques for efficiently maintaining
knowledge about a dynamically changing graph. We will consider classical and natural graph
properties such as connectivity and planarity, and we will focus on deterministic algorithms.
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Sublinear Algorithms for Edit Distance
Barna Saha #

University of California at Berkeley, CA, USA

Abstract
The edit distance is a way of quantifying how similar two strings are to one another by counting
the minimum number of character insertions, deletions, and substitutions required to transform
one string into the other. A simple dynamic programming computes the edit distance between
two strings of length n in O(n2) time, and a more sophisticated algorithm runs in time O(n + t2)
where t is the distance (Landau, Myers and Schmidt, SICOMP 1998). In pursuit of obtaining
faster running time, the last couple of decades have seen a flurry of research on approximating edit
distance, including polylogarithmic approximation in near-linear time (Andoni, Krauthgamer and
Onak, FOCS 2010), and a constant-factor approximation in subquadratic time (Chakrabarty, Das,
Goldenberg, Koucký and Saks, FOCS 2018). In this talk, we will discuss recent progress that goes
beyond linear time, and studies sublinear time algorithms for edit distance. We will also discuss the
role preprocessing might play in designing fast algorithms.

This is a joint work with Elazar Goldenberg, Tomasz Kociumaka, Robert Krauthgamer, and
Aviad Rubinstein.
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An Approximation Algorithm for the Matrix Tree
Multiplication Problem
Mahmoud Abo-Khamis #
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Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

Hung Ngo #
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Alireza Samadian #

Department of Computer Science, University of Pittsburgh, PA, USA

Abstract
We consider the Matrix Tree Multiplication problem. This problem is a generalization of the
classic Matrix Chain Multiplication problem covered in the dynamic programming chapter of many
introductory algorithms textbooks. An instance of the Matrix Tree Multiplication problem consists
of a rooted tree with a matrix associated with each edge. The output is, for each leaf in the tree, the
product of the matrices on the chain/path from the root to that leaf. Matrix multiplications that
are shared between various chains need only be computed once, potentially being shared between
different root to leaf chains. Algorithms are evaluated by the number of scalar multiplications
performed. Our main result is a linear time algorithm for which the number of scalar multiplications
performed is at most 15 times the optimal number of scalar multiplications.
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1 Introduction

An instance of the Matrix Tree Multiplication problem consists of an arborescence T = (V, E).
There is a positive integer dimension dv associated with each vertex v, and a du by dv matrix
Mu,v associated with each directed edge (u, v). Let r be the root of T and L be the collection
of leaves of T . The output is, for each leaf ℓ ∈ L, the product of the matrices on the directed
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6:2 Matrix Tree Multiplication

path from the root r to that leaf ℓ (in that order). We restrict our attention to algorithms
that use the standard matrix multiplication algorithm to multiply two matrices, which uses
ijk scalar multiplications to multiply an i by j matrix by a j by k matrix. We evaluate
algorithms based on the aggregate number of scalar multiplications that they use. If the
tree T has a single leaf, then this is the classic Matrix Chain Multiplication problem that is
commonly covered in the dynamic programming chapter of introductory algorithms textbooks
(e.g. [4]). However, it is important to note that a Matrix Tree Multiplication instance is
not equivalent to a disjoint collection of Matrix Chain Multiplication instances, one for each
leaf. This is because multiplications that are shared between various chains need only be
computed once, not once for each chain.

To help the reader appreciate this difference, let us consider two instances of Matrix Tree
Multiplication where T is a balanced binary tree of depth lg n with n leaves. In the first
instance, depicted in Figure 1a, all dimensions are 1. Then every feasible solution for every
root-to-leaf path/chain uses lg n − 1 scalar multiplications. However, the aggregate number
of scalar multiplications can be quite different for different feasible solutions. To see this, if
u is an ancestor of v in T , let Mu,v denote the product of the matrices between u and v in T .
We now consider two feasible solutions:

Top-Down: For each root-to-leaf path r = v1, v2, . . . vk in T , the ith matrix multiplica-
tion is Mv1,vi+2 = Mv1,vi+1Mvi+1,vi+2 for i ∈ [1, k − 2].
Bottom-Up: For each root-to-leaf path r = v1, v2, . . . vk in T , the ith matrix multiplic-
ation is Mvk−i−1,vk

= Mvk−i−1,vk−i
Mvk−i,vk

for i ∈ [1, k − 2].

For Top-Down the computation of a matrix Mv1,vh
can be shared by all root-to-leaf paths

with leaves in the subtree Tvh
of T rooted at vh. If we charge the computation of Mv1,vh

to the
vertex vh, then each vertex that is neither the root nor a child of the root is charged exactly
once and this charge is one. Thus, the objective value for Top-Down is n − 3. In contrast,
for Bottom-Up none of its matrix multiplications can be shared between different paths.
Thus, the objective value for the Bottom-Up algorithm is Θ(n lg n). Thus, conceptually
the advantage of Top-Down is that it minimizes the number of matrix multiplications,
and maximizes the number of root-to-leaf paths that can utilize each particular matrix
multiplication.

We remark that when the dimensions higher in the tree are significantly larger than the
dimensions lower in the tree Bottom-Up can be significantly cheaper than Top-Down. This
is because the individual matrix multiplications can be significantly cheaper. As an example
consider the instance, depicted in Figure 1b. Here the dimension of a vertex at height h

is 22h. Therefore, leaves have dimension 1, and the dimensions increase geometrically by a
factor of 4 as one goes up the tree, with the root ultimately having dimension n2. The cost
of Top-Down is clearly Ω(n6) as there are individual matrix multiplications high in the tree
that have this cost. On the other hand, the cost Bottom-Up is O(n5) as its cost increases
geometrically up the tree, and the last matrix multiplications cost O(n5).

One motivation for our consideration of the Matrix Tree Multiplication problem comes
from Markovian models of phylogenetic trees (see for example [9, Chapter 7]). In this setting
the leaves are the taxa (for example, the DNA strands for known strains of some virus such
as COVID), and the internal nodes represent conjectured historic ancestors of the leaf taxa.
The phylogenetic tree T is thus a conjectured explanation of the evolutionary history of the
leaf taxa. The matrices represent transition probabilities for mutation of a taxon in particular
state to a taxon in some other state over some period of time. Multiplying the matrices on a
root-to-leaf path results in an aggregate transition probability from an initial taxon state to
a final leaf taxon state. This can then be used in a variety of ways, for example to find the
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Figure 1 Two example trees.

initial taxon state that most likely resulted in the leaf taxa states, or for determining the
likelihood that T would result in the known leaf taxa given an initial distribution of states.
Such applications motivate the consideration of the Matrix Tree Multiplication problem.
Additionally, we are primarily interested because we believe that the problem is an interesting
and natural generalization of a known classical algorithmic problem.

Another motivation for the Matrix Tree Multiplication problem comes from automatic
differentiation (AD) [5, 1], which is widely used today in machine learning [1]. In AD, we
are given a differentiable multivariate function f : Rp → Rq for some p and q and our target
is to compute the derivative of each of the q outputs with respect to each of the p inputs.
Those derivatives can be arranged together in a (q × p) Jacobian matrix of f . The function
f is typically represented as a computer program or a computation graph G which is a
DAG where vertices and directed edges represent variables and elementary functions being
applied to those variables. Now consider the special case where G has a tree structure
T = (V, E) where each vertex v corresponds to a set of dv variables for some number dv and
each directed edge (u, v) corresponds to a multivariate function fu,v : Rdu → Rdv . Let Mu,v

be the transpose of the Jacobian matrix of fu,v. Let r be the root of the tree and L the set of
leaves. Thanks to the (multivariate) chain rule [5], the problem of computing the derivatives
of the root’s variables with respect to the variables of each leaf reduces to computing the
multiplication of the matrices Mu,v along each leaf-to-root path, hence to an instance of
Matrix Tree Multiplication.

The standard textbook dynamic programming algorithm for the Matrix Chain Mul-
tiplication problem computes a parenthesization that results in the minimum number of
scalar multiplications in time O(n3). This optimal parenthesization can be computed by a
significantly more complicated algorithm that runs in time O(n log n) [7, 8]. It seems quite
challenging to extend these approaches to the Matrix Tree Multiplication problem, even on
very simple instances. For example, we do not know how to compute the optimal number of
scalar multiplications in polynomial time even in the case that T has only 2 leaves. This is
because it’s not clear if there are subproblems the optimum solutions to which lead to that
to the original problem.

Thus, we consider approximation algorithms. First, let us review what is known in
terms of approximation algorithms for Matrix Chain Multiplication. [3] and [7] cite [2] as
giving a 2-approximation algorithm for the Matrix Chain Multiplication problem. 1 A 1.25
approximation algorithm was later given in [3], and finally a 1.15 approximation algorithm
was given in [6]. In each case an optimal parenthesization can be computed in linear or
nearly linear time.

1 [2] is an IBM technical report that does not seem to be available on the web, and the IBM library is
closed during the COVID outbreak.
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6:4 Matrix Tree Multiplication

Our main result is a linear-time 15-approximation algorithm, that we call the Cut
Contraction algorithm, for the Matrix Tree Multiplication problem.

The rest of the paper is organized as follows. Section 2 gives a technical overview of the
algorithm design and analysis. Section 3 introduces some additional notation and terminology
that we will use. Section 4 describes the multiplications performed Cut Contraction algorithm
(ignoring implementation details). Section 5 analyzes the approximation ratio for the Cut
Contraction algorithm. Section 4.3 briefly discusses how to implement the Cut Contraction
algorithm to get a linear-time algorithm that can output a parenthesization for each root to
leaf path that has approximation ratio at most 15.

2 Technical Overview

To build some intuition, let us begin by giving a greedy 2-approximation algorithm for
Matrix Chain Multiplication (which is presumably the algorithm given in [2]). Assume the
vertices are 1, 2 . . . , n. Let m = arg mini di be the index of the minimum dimension. If you
think of the chain as a path graph, then dm is the min vertex cut. Intuitively the algorithm
multiplies the min-cut out to the end. So the algorithm first computes the matrix products
Mm−i,m = Mm−i,m−i+1Mm−i+1,m for i = [2, m − 1], Mm,m+i = Mm,m+i−1Mm+i−1,m+i for
i = [2, n−m], and then finally computes M1,n by multiplying M1,m by Mm,n. This algorithm
uses

d1dndm +
m−2∑
i=1

didi+1dm +
n−1∑

i=m+1
didi+1dm

scalar multiplications. Observe that in any feasible solution it must be the case that for each
i /∈ [m − 1, m], the cost of the matrix multiplication that involves Mi,i+1 is at least didi+1dm.
Thus, a lower bound of the cost of optimal, that we call the edge cut lower bound, is:

d1dndm +
∑m−2

i=1 didi+1dm +
∑n−1

i=m+1 didi+1dm

2
The factor of two comes from the fact that each matrix multiplication involves two matrices.
Note that the upper bound on the cost of the algorithm is then twice this edge cut lower
bound. Therefore, intuitively the edge cut lower bound assumes every edge/matrix gets
multiplied by its preferred dimension, and this algorithm gives every edge its preference.

As a first step toward generalizing the algorithmic design to trees, we develop three cut
based lower bounds for trees. The first lower bound is what we call the edge cut lower bound.
Roughly speaking, the edge cut lower bound is∑

(u,v)∈E

dudvα(u, v)/2

where α(u, v) is the minimum aggregate dimension of a cut that separates the edge (u, v)
from either the root or the leaves. This edge cut lower bound assumes every edge/matrix
gets multiplied by its preferred dimensions. The second lower bound is what we call the
root-leaf lower bound. Roughly speaking, the root-leaf lower bound is∑

ℓ∈L

drdℓβ(ℓ)

where L is the set of leaves and β(ℓ) is the minimum dimension on the path from r to ℓ,
excluding the endpoints. The final lower bound is what we call the vertex cut lower bound.
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Roughly speaking, the vertex cut lower bound is∑
v∈V

dvγ(v)

where γ(v) is the product of the min-cut separating v from the root and the aggregate
dimensions of the min-cut separating v from the leaves.

With those cut lower bounds in hand, the natural path forward would be to design an
algorithm in such a way that one could analyze its approximation ratio by comparing to
these cut lower bounds. However, there are instances such that no matrix multiplication can
be charged to the cut lower bounds (at least in a natural way). Further, there are instances
where these cut lower bounds are too loose in aggregate and are more than a constant factor
less than optimal. One such example is when T is a a complete balanced binary tree where
the dimension of the root is n, the dimension for vertices of height h ∈ [0, lg n

2 ] is 2h, and the
dimension of the rest of the vertices are

√
n. For this instance, all the cut lower bounds are

O(n2), but the optimal solution has cost Θ(n5/2).
Our algorithm for Matrix Tree Multiplication first “reduces” the tree by performing all

the matrix multiplications that can naturally be charged to the cut lower bounds. Roughly
speaking the multiplications that can not be charged to these cut lower bounds are those
in which the middle dimension dv corresponds to a vertex v that is itself the min-cut of
Tv, the subtree of T rooted at v. Thus, in the resulting reduced tree R, every node is the
min-cut of its own subtree. Further it is relatively straight-forward to also ensure that the
dimensions of the vertices on any root-to-leaf path in the reduced tree R form a geometrically
decreasing sequence. Our algorithm then performs the multiplications on the reduced tree R

in top-down order. We show that the above-mentioned properties of the reduced tree R are
sufficient to allow us to use a charging argument to directly bound the cost of these top-down
multiplications by a constant factor times the cost of any arbitrary feasible solution for T .
Here we directly charge to the optimal and not the lower bounds.

3 Notation and Terminology

We use r to denote the root, and Tv to denote the subtree rooted at vertex v. For any vertex
v and any sets of vertices A, let Πv(A) denote the set of vertices in A that are descendant of
v. Given a set A, we denote the collective dimensions of the vertices in A by W (A), that is
W (A) =

∑
x∈A dx.

We use v ≺ u to denote that v is a strict ancestor of u in T . We write ≼ to denote that
v is an ancestor of u and also u could equal v. Given a vertex v of T , we call a collection
C of vertices is a cut in Tv if the removal of the vertices in C leaves no remaining v to leaf
path in Tv, and there are no two vertices u and v in C such that v ≺ u. Given a vertex v

of T , we call a cut C in Tv the min-cut of Tv if its vertices have the minimum cumulative
dimensions among all cuts; that is C = arg minC′∈C

∑
v∈C′ dv.

4 The Cut Contraction Algorithm Description

Our Cut Contraction algorithm first partitions the tree T into various components. This is
described in Subsection 4.1. An algorithm, which we call Reduce, then performs matrix mul-
tiplications that can be charged to the cut lower bounds. This is described in Subsection 4.2.
Finally the Top-Down algorithm, described in the introduction, is applied to the resulting
reduced tree R.
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6:6 Matrix Tree Multiplication

4.1 Classifying Vertices in the Tree

We explain how the vertices of T are classified by the algorithm before any matrix multiplic-
ations are performed. The first cut C1 = C(r) is the min cut of T . To compute Ci+1, the
algorithm iteratively considers the non-leaf vertices u ∈ Ci, and then considers all paths P

from u to every leaf ℓ in Tu. Let v be the vertex with the least depth (closest to u) on P

such that dv < du/2. We call the vertex v a checkpoint vertex. If v does not exists then the
leaf l is included in Ci+1. If v exists then min-cut of the subtree Tv is added to Ci+1. Note
that the min cut of Tv can be v itself.

Let Dv
i be the vertices between a non-leaf vertex v ∈ Ci and the descendants of v in Ci+1

including v and the descendants. That is, Dv
i = {u : v ≼ u and ∃x ∈ Ci+1 u ≼ x}. Uv

i are
the vertices in Dv

i that prefer v over the cut Ci+1 and Sv
i are the vertices that prefer Ci+1.

Formally, Uv
i = {u : u ∈ Dv

i and dv ≤
∑

w∈Πu(Ci+1) dw} and Sv
i = Dv

i \ Uv
i . Finally

Di = ∪v∈Ci
Dv

i are the level i intermediate vertices, Ui = ∪v∈Ci
Uv

i are the level i upper
vertices and Si = ∪v∈Ci

Sv
i are the level i lower vertices.

▶ Observation 1. For all vertices v ∈ Ci, the vertices in Uv
i is a connected component of T

that includes v.

4.2 The Reduce Algorithm Description

Initially for every path r = u1, u2, . . . , uk from r to every vertex uk ∈ C1 of length at
least two hops the algorithm computes the matrix products Muj ,uk

= Muj ,uj+1Muj+1,uk
, for

j ∈ [1, k − 2].
Next the algorithm iteratively performs matrix multiplication on matrices between Ci

and Ci+1 for i = 1, 2, .... To multiply matrices between Ci and Ci+1 the algorithm iteratively
considers vertices v ∈ Ci. The algorithm next iteratively considers vertices u ∈ Πv(Ci+1).
Let v = u1, u2, . . . , u = uk be the path from v to u. If k ≥ 3 the algorithm then multiplies
the matrices on this path in manner that we now describe (otherwise the algorithm does
nothing on this path). Let m be minimum such um+1 is not in Uv

i . Note that it could be
that all of u2, . . . , uk are in Sv

i and thus m = 1, or all of u1, . . . , uk are Uv
i and thus m = k.

If m ≥ 2 the algorithm multiplies the matrices in Uv
i in top-down order. That is, it computes

the matrix products Mv,uj
= Mv,uj−1Muj−1,uj

for j ∈ [2, m]. If k − m ≥ 2 the algorithm
multiplies the matrices in Sv

i in bottom-up order. That is, the algorithm computes the matrix
products Muk−j ,uk

= Muk−j ,uk−j+1Muk−j+1,uk
for j ∈ [2, k − m]. Finally, if 2 ≤ m ≤ k − 1

the algorithm computes the matrix product Mv,uk
= Mv,um

Mum,uk
. Let the resulting tree

be R.

4.3 Linear Time Implementation

Here we sketch the key steps to make the algorithm run in linear time. To find the min-cuts
of every subtree, the algorithm can start from the leaves and make them the min-cut of their
subtree. Recursively in a bottom up fashion the algorithm can find the minimum cut of all
the subtrees. For each vertex, the algorithm compares its dimension with the summation of
the min-cuts of its children.

Once this is known, C1 can be found in linear time. In order to find the checkpoints and
the next cuts, we only need to perform a depth first search over the tree. Similarly, finding
the sets Uv

i and Sv
i can be done by a depth first search over the vertices of the tree. After

this step, the multiplications are well defined.
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5 Cut Contraction Approximation Analysis

In subsection 5.1 we state and prove three cut based lower bounds on optimal. In subsection
5.2 we prove some structural properties of the classification of vertices. In subsection 5.3 we
analyze the Reduce algorithm. Finally in subsection 5.4 we analyze the Top-Down algorithm
on the reduced tree R.

5.1 The Cut Lower Bounds
Let C(v) be a min-cut of the subtree Tv, and let C−(v) be the minimum cut of Tv subject to
the constraint that the cut does not contain v. Let h(v) be the vertex x with the minimum
dimension subject to the constraint that r ≼ x ≺ v. For an edge (u, v) ∈ E define α(u, v) as
follows:

α(u, v) =


dh(u) if u ̸= r and v ∈ L

W (C−(v)) if u = r and v /∈ L

min
(
dh(u), W (C−(v)

)
otherwise

For a leaf ℓ ∈ L define β(ℓ) as follows:

β(ℓ) = min
u s.t.r≺u≺ℓ

du

For a vertex v ∈ V that is neither the root nor a leaf, define γ(v) as follows

γ(v) = dh(v) · W (C−(v))

▶ Lemma 2 (Edge Cut Lower Bound).∑
(u,v)∈E

dudvα(u, v) ≤ 2 · Opt

Proof. Let Pu,v be the set of all root-to-leaf paths passing an edge (u, v). Let A(u,v) be the
set of vertices q for which, the optimum algorithm has made a multiplication of cost dudvdq.
That is, the algorithm has performed either the multiplication Mu,vMv,q or Mq,uMu,v and
let Ou,v be the total cost of these multiplications. That is, Ou,v =

∑
q∈A(u,v)

dudvdq.
In any feasible solution, for every path p in Pu,v, there should be one vertex in p that

is in Au,v. That is because, in order for the algorithm to find the final product of the
matrices in p, at some point, it must multiply Mu,v to some other matrix in p. Therefore,
if no ancestor of u is in Au,v, we know Au,v must be a cut (or its superset) in Tv that
is not equal to {v}. If there exists a vertex x ∈ Au,v such that x ≺ u, then we know
Ou,v ≥ dxdudv ≥ dh(u)dudv. Otherwise, as Au,v is a cut in Tv, we have W (Au,v) ≥ W (C−(v));
thus, Ou,v ≥ W (Au,v)dudv ≥ W (C−(v))dudv. Therefore, in either case, Ou,v ≥ dudvα(u, v).
Summing over all edges (u, v), we get the following value for the total cost of the multiplications
involving the matrix of an edge in T :

2Opt ≥
∑

(u,v)∈E

Ou,v ≥
∑

(u,v)∈E

dudvα(u, v)

We get the factor of 2 because each matrix multiplication only involves two matrices and
therefore is counted at most twice. ◀

MFCS 2021



6:8 Matrix Tree Multiplication

▶ Lemma 3 (Root-Leaf Cut Lower Bound).∑
ℓ∈L

drdℓβ(ℓ) ≤ Opt

Proof. Since the optimal solution is feasible, it must perform a multiplication of the form
Mr,uMu,ℓ for each leaf ℓ in order to computed Mr,ℓ, which must cost at least drdℓβ(ℓ), and
cannot be shared among different leaves. ◀

▶ Lemma 4 (Vertex Cut Lower Bound). Let V ′ be the set of vertices in T that are neither a
root nor a leaf. Then,∑

v∈V ′

dvγ(v) ≤ Opt

Proof. Fix an edge (u, v) and consider all the root to leaf paths that pass through (u, v).
Any feasible solution needs to compute the final product of the matrices lying on all of these
paths. We first prove the following claim: for any root-to-leaf path P that contains the edge
(u, v) there exists a multiplication of the form Ma,uMu,b that the feasible solution computes
where a and b are two vertices in P and a ≺ u ≺ b.

We can find this multiplication by the following procedure. We first consider the last
multiplication that is performed on the path between r and a leaf node ℓ. Let Mr,wMw,ℓ,
be that multiplication. If w = u, then we have found the multiplication. If w ≺ u, then we
recurse on the last multiplication that the algorithm has performed to calculate Mu,ℓ until
we find a multiplication of the form Ma,uMu,b. Lastly, if u ≺ w, then we recurse on the last
multiplication that the algorithm has performed to compute Mr,u.

Now, for an edge (u, v), let A(u,v) be the set of all pairs of vertices (a, b) such that the
algorithm has computed Ma,uMu,b. From the above claim we can conclude that the set
B(u,v) = {b : (a, b) ∈ A(u,v)} is a cut in the subtree Tv, because for every root-to-leaf path
that has the edge (u, v), there exists a pair of (a, b) in A(u,v) that is on that path and v ≺ b.
Then, since these sets of multiplications are disjoint with respect to different edges (u, v), we
can get the following lower bound:

Opt ≥
∑

(u,v)∈E

∑
(a,b)∈A(u,v)

dadbdu ≥
∑

(u,v)∈E

dh(u)du

∑
b∈B(u,v)

db ≥
∑

(u,v)∈E

dh(u)duW (C(v)).

Rewriting the last summation, by summing over all vertices u and then all the edges
(u, v) connected to u, and the lemma follows:

Opt ≥
∑

(u,v)∈E

dh(u)duW (C(v)) ≥
∑
u∈V

duγ(u). ◀

5.2 Structural Properties
Lemma 5 states that vertices between v and the cut C(v) inherit their min-cut from C(v).
Lemma 6 lower bounds the size of min-cuts C(u) for vertices u ∈ Di. Lemma 7 observes
that the dimension of every vertex in a set Ci must be smaller than the dimension of any
ancestor. Lemma 8 lower bounds the cut size for an edge (u, w) ∈ Di. Lemma 9 observes
that nodes in R are min-cuts of their subtree. Lemma 10 observes that the dimensions are
geometrically decreasing on root to leaf paths in the reduced tree R.

▶ Lemma 5. Let u be a descendant of v in T such that u also has a descendant in C(v).
Then Πu(C(v)) is a min-cut in Tu.
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Proof. We prove the claim by contradiction. Let us assume Πu(C(v)) is not a min-cut of
Tu. Note that there is no vertex x ∈ C(v) such that x ≼ u; because, if that was the case, we
could remove any vertex in C(v) that is descendant of u and obtain a smaller cut. Therefore,
since every v to leaf path including the ones passing through u have a vertex in C(v), we can
conclude that Πu(C(v)) is a cut in Tu, and since we have assumed that it is not a min-cut,
we can conclude W (C(u)) < W (Πu(C(v))).

Now we create a new cut in Tv by removing the vertices in Πu(C(v)) from C(v) and adding
C(u). The weight of the new cut is W (C(v)) − W (Πu(C(v))) + W (C(u)) which is smaller than
W (C(v)) and that is a contradiction with the fact that W (C(v)) was the min-cut of Tv. ◀

▶ Lemma 6. For all nonleaf vertices v ∈ Ci, and for all vertices u ∈ Dv
i it must be the case

that W (C(u)) ≥ min(dv/2, W (Πu(Ci+1))).

Proof. If there is a vertex x in C(u) such that dx ≥ dv/2 then the proof is trivial. Now we
assume that for all vertices x ∈ C(u), we have dx < dv/2.

We divide the proof into two cases. In the first case assume that there is a checkpoint
vertex t such that v ≺ t ≼ u. Then by definition, Πt(Ci+1) is a min-cut of Tt. Furthermore,
since t is an ancestor of u, we have Πu(Πt(Ci+1) = Πu(Ci+1). Then using Lemma 5, we can
conclude Πu(Ci+1) is a min-cut of Tu; therefore, W (C(u)) = W (Πu(Ci+1)).

In the second case, assume that there is no checkpoint between v and u. Then for all
the vertices x ∈ C(u), there exists a checkpoint vertex t such that u ≺ t ≼ x; that is because
dx ≤ dv/2 and there is no checkpoint above v. Let T denote all such checkpoints, then T is a
cut in Tu and a cut between u and C(u). Therefore,

⋃
t∈T Πt(C(u)) = C(u), and based on the

definition of Ci+1 and the fact that T is a cut in Tu, we have Πu(Ci+1) =
⋃

t∈T Πt(Ci+1) =⋃
t∈T C(t).

For any checkpoint in t, using Lemma 5, we know Πt(C(u)) is a min-cut of Tt, and as
a result W (Πt(C(u))) = W (C(t)) = W (Πt(Ci+1)). Summing over all vertices in T we get
W (C(u)) = W (Πu(Ci+1)). ◀

▶ Lemma 7. For any nonleaf vertex v ∈ Ci and for all ancestors u of v, it must be the case
that dv ≤ du.

Proof. We use induction on i. For the base case of i = 1, we know C1 is the min-cut of T ,
and if there was a vertex u such that u ≺ v and du < dv, we could create a smaller cut by
replacing v with u in C1.

For i > 1, let q be the ancestor of v in Ci−1. We show that dv is smaller than du for all
vertices u where q ≼ u ≺ v. Then by induction, it will be smaller than all of its ancestors
because q is a non leaf vertex in Ci−1. Since v is not a leaf, there exists a checkpoint vertex
t between v and q. Then as v is in C(t), for all u where t ≼ u ≼ v, we have dv ≤ du.
Furthermore, based on the definition of a checkpoint, dt ≤ dq/2 and for all vertices w where
q ≼ w ≺ t, we have dw > dq/2; therefore, dv ≤ dt ≤ dw. ◀

▶ Lemma 8. For all nonleaf vertices v ∈ Ci, and for all vertices edges (u, w) in T , with both
endpoints in Dv

i we have α(u, w) ≥ min(dv/2, W (Πw(Ci+1))).

Proof. First, for every edge (u, w) with both ends in Dv
i , we prove

dh(u) ≥ min(dv/2, W (Πw(Ci+1))). (1)
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6:10 Matrix Tree Multiplication

If there exists a checkpoint t such that v ≺ t ≼ u, then for every vertex q such that t ≼ q ≼ w,
we have dq ≥ W (C(w)). This is because thanks to the definition of Ci+1 and the fact that
q ≼ w we have Πt(Ci+1) = C(t) and Πw(Ci+1) ⊆ Πq(Ci+1), and furthermore using Lemma 5,
we know Πq(Ci+1) is a min-cut of Tq and Πw(Ci+1) is a min-cut of Tw. Therefore,

dq ≥ W (C(q)) = W (Πq(Ci+1)) ≥ W (Πw(Ci+1)) = W (C(w)).

Moreover, for every vertex x where v ≼ x ≺ t, we know dx ≥ dt; therefore, we have
dx ≥ W (C(w)). Then, using Lemma 7, we can conclude dh(u) ≥ W (C(w)) = W (Πw(Ci+1)).

If there exists no checkpoint t between v and u, then based on the definition of a checkpoint
and Lemma 7, we have dh(u) ≥ dv/2. Thus, we have shown Eqn. (1).

Now, for every edge (u, w) with both ends in Dv
i , we prove

W (C−(w)) ≥ min(dv/2, W (Πu(Ci+1))). (2)

First, note that W (C−(w)) ≥ W (C(w)) because C(w) is the minimum over all cuts including
the cut {w} whereas C−(w) ̸= {w}. Furthermore, note that it is either the case that there is
a checkpoint between v and every vertex in C(w) which implies C(w) = Πw(Ci+1), or C(w)
has a vertex with dimension larger than dv/2. Therefore, we have

W (C−(w)) ≥ W (C(w)) ≥ min(dv/2, W (Πw(Ci+1))).

Since α(u, w) = min(dh(u), W (C−(w))), Eqn. (1) and (2) give the lemma. ◀

▶ Lemma 9. Every vertex v in R that is not r, is the min-cut of both Tv and Rv.

Proof. The fact that v is a min-cut of Tv follows from the definition of the cuts Ci and the
definition of the Reduce algorithm. The fact that v is a min-cut of Rv follows from the fact
that min-cuts of Rv are feasible cuts for Tv. ◀

▶ Lemma 10. For every edge (u, v) ∈ R such that u ≠ r and v is not a leaf, it must be the
case that du ≥ 2dv.

Proof. This is a direct consequence of the definition of the Ci’s. ◀

5.3 Reduce Analysis
▶ Lemma 11. The cost incurred by the Reduce algorithm is at most 8 · Opt.

Proof. We divide the multiplications into 4 categories and analyse their costs separately.
We will refer to these costs as categories.
1. The multiplications that involve the matrices between the root and the vertices in C1.
2. The multiplications of the matrices with both ends in Uv

i for some v ∈ Ci.
3. The multiplications involving a matrix Mu,w where (u, w) is an edge with w being in

Sv
i ∪ Πv(Ci+1) for some v ∈ Ci.

4. The multiplications of the form Mv,mMm,u where m ∈ Uv
i and u ∈ Πv(Ci+1).

Note that the above categories cover all the multiplications done by the Reduce algorithm.
We use the lower bound in Lemma 2, and show that the cost of each multiplication in the
first three categories is a constant factor of dudvα(u, v) for some edge (u, v) and no edge is
charged more than once. Then we use the lower bound in Lemma 4 to bound the cost of the
multiplications in the fourth category.
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Category 1: Every matrix multiplication in this category has the form Mp(u)u · Mu,v where
v is a vertex in C1 and Mu,v is the result of the product of the matrices in path between u

and v for some vertex v ∈ C1. Therefore, the cost of all multiplications in this category is∑
(u,v)∈E1

∑
x∈Πv(C1)

dudvdx,

where E1 is the set of edges between the root and C1. This is because any matrix Mu,v

will be in one multiplication per each vertex of Πv(C1). Note that since C1 is a min-cut,
for any subset B of C1, the value

∑
x∈B dx is smaller than the dimension of any of their

common ancestors (otherwise, we could have got a smaller min-cut by replacing them with
that ancestor). Therefore,∑

(u,v)∈E1

∑
x∈Πv(C1)

dudvdx =
∑

(u,v)∈E1

dudvα(u, v)

Category 2: Fix an integer i and a vertex v ∈ Ci. For every edge (u, w) with both ends
in Uv

i \ {v}, the algorithm performs one multiplication of form Mv,uMu,w in top-down
multiplication of Uv

i , and the cost for this multiplication is dvdudw. Using Lemma 8 and the
definition of Uv

i , we know α(u, w) ≥ min(dv/2, W (Πw(Ci+1))) = dv/2. As a result the total
cost of the multiplications in this category is bounded by∑

i

∑
v∈Ci

∑
(u,w)∈E(Uv

i
)

dvdudw ≤
∑

i

∑
v∈Ci

∑
(u,w)∈E2(v)

dudwα(u, w),

where E2(v) is the set of edges with both ends in Uv
i .

Category 3: Let u be a vertex in Ci+1 and v be its ancestor in Ci. Then the path between
u and v can be divided into two sections such that the vertices of the upper section are all in
Uv

i ∪ {v} and the vertices of the lower section are in Sv
i ∪ {u}. Then on the path between u

and v, for every edge (w, t) on this path for which t is in Sv
i \ {u}, the algorithm performs

the multiplication of form Mw,tMt,u. Then if we sum over different vertices u ∈ Πt(Ci+1),
the total cost of the multiplications in this category that involve Mw,t is dwdtW (Πt(Ci+1)).
Using the Lemma 8 and the definition of Sv

i , we have

2α(w, t) ≥ min(dv, 2W (Πt(Ci+1))) ≥ W (Πt(Ci+1)).

Therefore, the total cost of the multiplications in this category can be bounded by∑
i

∑
v∈Ci

∑
(w,t)∈E3(v)

dwdtW (Πt(Ci+1)) ≤
∑

i

∑
v∈Ci

∑
(w,t)∈E3(v)

2dwdtα(w, t),

where E3(v) is the set of edges (w, t) where t is in Sv
i .

Since the edges that are above C1, the edges that have both ends in
⋃

i

⋃
v∈Ci

Uv
i , and

the edges (u, w) with w being in
⋃

i

⋃
v∈Ci

Sv
i are disjoint, we have not double charged any

edge. Therefore, using Lemma 2 we can conclude that the total cost of the multiplications in
categories 1, 2, and 3 is at most 4Opt.

Category 4: Let u be a vertex in Ci+1 and v be its ancestor in Ci. Let (q, w) be an edge
on the path between v and u such that q ∈ Uv

i and w ∈ Sv
i . The algorithm may make one

multiplication of the form Mv,qMq,u for this path. Therefore, summing over all vertices
u ∈ Πv(Ci+1), we can derive the following total cost of all multiplications of this form:
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∑
i

∑
v∈Ci

∑
(q,w)∈E4(v)

dvdqW (Πw(Ci+1))

in which E4(v) is the set of edges with one end in Uv
i and one end in Sv

i .
For any edge (q, w) ∈ E4(v), using Lemma 6 and the fact that w ∈ Sv

i , we have

2W (C(w)) ≥ min(dv, 2W (Πw(Ci+1))) ≥ W (Πw(Ci+1)).

Furthermore, we know no checkpoint can be in U i
v, because for any checkpoint t we have

W (Πt(Ci+1)) = W (C(t)) ≤ dt ≤ dv/2.

Therefore, using Lemma 7 and the fact that no checkpoint is in U i
v, for any edge (q, w) ∈ E4(v)

we have h(q) ≥ dv/2, and we get the following upperbound on the cost of the multiplications
in this category:∑

i

∑
v∈Ci

∑
(q,w)∈E4(v)

dvdqW (Πw(Ci+1)) ≤
∑

i

∑
v∈Ci

∑
(q,w)∈E4(v)

4dqdh(q)W (C(w)).

Then using Lemma 4, and taking the summation over all the edges that are not connected
to the root we will get:∑

i

∑
v∈Ci

∑
(q,w)∈E4(v)

4dqdh(q)W (C(w)) ≤ 4
∑
u∈V

duγ(u) ≤ 4Opt. ◀

5.4 Top-Down Analysis
Our analysis of the Top-Down algorithm on the reduced tree R is based on a charging
argument. A few of the Top-Down multiplications will be charged to the root-leaf cut lower
bound. However, most of the Top-Down matrix multiplications will be directly charged
to various matrix multiplications in Opt. There are three different possible ways that the
Top-Down matrix multiplications can be charged: leaf-charge, low-charge, and high-charge.

The charging is done independently for each root-to-leaf path P . Iteratively consider
a fixed root-to-leaf path P in T ending in a leaf ℓ ∈ L. Let Mr,uMu,v be a Top-Down
matrix multiplication on P that has not yet leaf-charged or low-charged any multiplication
in optimal. If there is no checkpoint between u and v in T , note that we must have v = ℓ

and the root-leaf cut lower bound is charged. We call this a leaf-charge. Otherwise, assume
u ∈ Ci, v ∈ Ci+1 and note that there must exist a checkpoint t strictly between u and v on
P (and thus t can not be either the root r nor a child of the root r in T ). Let Mr,aMa,b be
an arbitrary matrix multiplication in the optimal solution such that r ≺ a ≺ t ≼ b ≼ ℓ. We
will show such a matrix multiplication must exist in the optimal solution in Lemma 12. If
b ≼ v then the optimal multiplication Mr,aMa,b is charged drdudv, the cost of this Top-Down
multiplication. Call this a low-charge. If v ≺ b then the optimal multiplication Mr,aMa,b is
charged drdudb, which is a fraction of the cost of this Top-Down multiplication. Call this a
high-charge.

▶ Lemma 12. For each root-to-leaf path P in T and for each vertex t on P that is neither
the root nor a child of the root, at least one multiplication Mr,aMa,b is in the optimal solution
for T such that r ≺ a ≺ t ≼ b ≼ ℓ where ℓ is the leaf in P .
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Proof. Let x1 ≺ . . . ≺ xk = ℓ be all the vertices in P such that the optimal solution contains
a multiplication of the form Mr,xi

Mxi,xi+1 . Note that it must be the case k ≥ 2 since
the optimal solution is feasible and it needs to compute Mr,xk

. The claim is there exists
j ∈ [1, k − 1] such that xj ≼ t ≼ xj+1, and one can take a = xj and b = xj+1.

To prove this claim, note that x1 must be a child of root. This is because, otherwise, the
optimal solution needs to perform another multiplication to compute Mr,x1 since it uses it
in Mr,x1Mx1,x2 . Let Mr,x0Mx0,x1 be that multiplication, then x0 is on P which contradicts
with the definition of x1, . . . , xk. Therefore, since t is not the root or its children, we have
x1 ≺ t. Also we know xk is the leaf and t ≼ xk. Therefore, there exists a j ∈ [1, k − 1] such
that xj ≼ t ≼ xj+1. ◀

▶ Lemma 13. The aggregate amount of root-leaf cut charges is at most twice the root-leaf
cut lower bound, and therefore at most 2 · Opt.

Proof. For each leaf ℓ there can be at most one matrix multiplication, say Mr,uMu,ℓ charged
to it. From Lemma 7 and the fact that there is no check point be between u and ℓ one can
conclude that β(ℓ) ≤ 2du. ◀

▶ Lemma 14. Every Top-Down matrix multiplication M = Mr,uMu,v charges at least drdudv

to the multiplications in the optimal solution.

Proof. If M was charged via a high charge, this is obvious. Otherwise assume M was only
charged via low charges. Let (a1, b1), . . . (ak, bk) be the collection of multiplications in optimal
that M was charged to via low charges. By the feasibility of the optimal solution {b1, . . . , bk}
must be a cut of Tv. Thus by Lemma 9 it must be the case that

∑k
i=1 dbi

≥ dv. Thus the
aggregate amount of low charges is at least drdudv. ◀

▶ Lemma 15. Every matrix multiplication Mr,aMa,b in optimal is charged at most 2drdadb

by low charges.

Proof. Let Mr,uMu,v with u ∈ Ci and v ∈ Ci+1 be one of the multiplications of top-down
that low-charges Mr,aMa,b. Then we know there exists a checkpoint t in T such that u ≺ t ≼ v

and a ≺ t ≼ b ≼ v. Then the claim is that the only multiplications of top-down that may
low-charge the multiplication Mr,aMa,b in optimal are the ones of the form Mr,uMu,w where
w ∈ Πb(Ci+1).

To see the reason for the above claim, consider any multiplication Mr,pMp,q that can
low-charge Mr,aMa,b. Based on the definition of low-charge, we have p ∈ Cj is an ancestor of
b, and w ∈ Cj+1 such that b ≼ w. If j + 1 ≤ i, then no vertex in Cj+1 can be an descendent
of u, and therefore, we cannot have b ≼ w because that would imply u ≺ b ≼ w. Furthermore,
we cannot have j ≥ i + 1 because we already know that v is in Ci+1 and b ≼ v; therefore, no
vertex in Cj can be an ancestor of b, meaning we cannot have p ≺ b; because that would
mean p ≺ u. Thus, the only possibility is j = i, which means p = u. Then the only vertices
in Ci+1 that are descendent of b are by definition Πb(Ci+1).

Using this claim, we can conclude the maximum amount low-charged to a multiplication
Mr,aMa,b is drduW (Πb(Ci+1)). Note that a ≺ t, therefore, da > du/2; that is because, all
the vertices between t and u have dimensions larger than du/2, and using Lemma 7, we know
the dimension of all the ancestors of u is at least du. Furthermore, note that Πt(Ci+1) is
the min-cut of Tt; therefore, using lemma 5 and the fact that t ≼ b ≼ v, we can conclude
W (Πb(Ci+1)) < db. Therefore, we can get the following upperbound for the total cost
lower-charged to a multiplication Mr,aMa,b of optimal: drduW (Πb(Ci+1)) ≤ 2drdadb. ◀

▶ Lemma 16. Every matrix multiplication Mr,aMa,b in optimal is charged at most 4drdadb

by high-charges.
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Proof. Consider a multiplication Mr,uMu,v in top-down that high-charges the multiplication
Mr,aMa,b in optimal. We have a ≺ t ≼ v ≼ b where t is the checkpoint between u and
v, and Mr,uMu,v high-charges the cost drdudb. Note that both t and v are on the path
between a and b in T . Let (u1, u2), (u2, u3), . . . , (uk−1, uk) be the edges in R, for which
u2, . . . , uk are all on the path between a and b in T , and the checkpoint between ui, ui+1 for
all i is also on this path. Using the definition of high-charge, the only multiplications in
Top-Down that can high charge Mr,aMa,b are the multiplications of the form Mr,ui

Mui,ui+1

for i ∈ [1, k−1]. Therefore, the total cost high-charged to Mr,aMa,b is at most: drdb

∑k
i=1 dui

Using Lemma 10, we know dui+1 ≤ dui
/2. Furthermore, using the definition of the checkpoint

and Lemma 7, we have du1 ≤ 2da because a is the ancestor of the checkpoint between u1
and u2 in T . Therefore, the total cost can be upper bounded as follows: drdb

∑k
i=1 dui

≤
drdbdu1

∑∞
i=0 1/2i ≤ 4drdbda ◀

We now can prove the main theroem.

▶ Theorem 17. The Cut Contraction Algorithm for the Tree Matrix Multiplication problem
is 15 approximate.

Proof. Using Lemma 11, we can conclude the cost of Reduce multiplications is 8Opt, and
using Lemmas 13, 14, 15, and 16, we can conclude the cost of the multiplications performed
in TopDown phase is 7Opt which gives us total cost of 15Opt. ◀

6 Conclusions

In this paper we studied a natural extension of the matrix chain problem where multiples
chains are overlaid forming a tree. Currently, we do not know if the problem is NP-hard
although we believe so. The obvious open question is to show that the problem is indeed NP-
hard. Further, we do not know how to obtain a better approximation using any polynomial
time algorithms. Improving the approximation ratio would be another interesting direction.
Finally, it would be very interesting to study the more general setting where the chains form
an arbitrary DAG. The main challenge in such an extension seems to lie in discovering lower
bounds different from what we used in this paper.
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We present an algorithm for constructing a depth-first search tree in planar digraphs; the algorithm
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1 Introduction

Depth-first search trees (DFS trees) constitute one of the most useful items in the algorithm
designer’s toolkit, and for this reason they are a standard part of the undergraduate al-
gorithmic curriculum around the world. When attention shifted to parallel algorithms in
the 1980’s, the question arose of whether NC algorithms for DFS trees exist. An early
negative result was that the problem of constructing the lexicographically least DFS tree
in a given digraph is complete for P [20]. But soon thereafter significant advances were
made in developing parallel algorithms for DFS trees, culminating in the RNC7 algorithm of
Aggarwal, Anderson, and Kao [1]. This remains the fastest parallel algorithm for the problem
of constructing DFS trees in general graphs, in the probabilistic setting, or in the setting of
nonuniform circuit complexity. It remains unknown if this problem lies in (deterministic) NC
(and we do not solve that problem here).

More is known for various restricted classes of graphs. For directed acyclic graphs (DAGs),
the lexicographically-least DFS tree from a given vertex can be computed in AC1 [10]. (See
also [11, 7, 13, 19, 16, 15].) For undirected planar graphs, an AC1 algorithm for DFS trees
was presented by Hagerup [14]. For more general planar directed graphs Kao and Klein
presented an AC10 algorithm. Kao subsequently presented an AC5 algorithm for DFS in
strongly connected planar digraphs. In stating the complexity results for this prior work
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in terms of complexity classes (such as AC1, AC10, etc.), we are ignoring an aspect that
was of particular interest to the authors of this earlier work: minimizing the number of
processors. This is because our focus is on classifying the complexity of constructing DFS
trees in terms of complexity classes. Thus, if we reduce the complexity of a problem from
AC10 to AC2, then we view this as a significant advance, even if the AC2 algorithm uses many
more processors (so long as the number of processors remains bounded by a polynomial).
Indeed, our algorithms rely on the logspace algorithm for undirected reachability [21], which
does not directly translate into a processor-efficient algorithm. We suspect that our approach
can be modified to yield a more processor-efficient AC3 algorithm, but we leave that for
others to investigate.

1.1 Our Contributions
First, we observe that, given a DAG G, computation of a DFS tree in G logspace reduces to
the problem of reachability in G. Thus, for general DAGs, computation of a DFS tree lies in
NL, and for planar DAGs, the problem lies in UL ∩ co-UL [8, 23]. For classes of graphs where
the reachability problem lies in L, so does the computation of DFS trees. One such class
of graphs is planar DAGs with a single source (see [2], where this class of graphs is called
SMPDs, for Single-source, Multiple-sink, Planar DAGs).

For undirected planar graphs, it was shown in [4] that the approach of Hagerup’s AC1

DFS algorithm [14] can be adapted in order to show that construction of a DFS tree in a
planar undirected graph logspace-reduces to computing the distance between two nodes in
a planar digraph. Since this latter problem lies in UL ∩ co-UL [24], so does the problem of
DFS for planar undirected graphs.

Our main contribution in the current paper is to show that a more sophisticated application
of the ideas in [14] leads to an AC1(UL ∩ co-UL) algorithm for construction of DFS trees in
planar directed graphs. (That is, we show DFS trees can be constructed by unbounded fan-in
log-depth circuits that have oracle gates for a set in UL ∩ co-UL.1) Since UL ⊆ NL ⊆ SAC1 ⊆
AC1, the AC1(UL ∩ co-UL) algorithm can be implemented in AC2. Thus this is a significant
improvement over the best previous parallel algorithm for this problem: the AC10 algorithm
of [18], which has stood for 28 years.

2 Preliminaries

We assume that the reader is familiar with depth-first search trees (DFS trees).
We further assume that the reader is familiar with the standard complexity classes L, NL

and P (see e.g. the text [6]). We will also make frequent reference to the logspace-uniform
circuit complexity classes NCk and ACk. NCk is the class of problems for which there is a
logspace-uniform family of circuits {Cn} consisting of AND, OR, and NOT gates, where
the AND and OR gates have fan-in two and each circuit Cn has depth O(logk n). (The
logspace-uniformity condition implies that each Cn has only nO(1) gates.) ACk is defined
similarly, although the AND and OR gates are allowed unbounded fan-in. An equivalent
characterization of ACk is in terms of concurrent-read concurrent-write PRAMs with running
time O(logk n), using nO(1) processors. For more background on these circuit complexity
classes, see, e.g., the text [26].

1 An earlier version of this work claimed a stronger upper bound, but there was an error in one of the
lemmas in that version [3].
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A nondeterministic Turing machine is said to be unambiguous if, on every input x, there is
at most one accepting computation path. If we consider logspace-bounded nondeterministic
Turing machines, then unambiguous machines yield the class UL. A set A is in co-UL if and
only if its complement lies in UL.

The construction of DFS trees is most naturally viewed as a function that takes a graph
G and a vertex v as input, and produces as output an encoding of a DFS tree in G rooted at
v. But the complexity classes mentioned above are all defined as sets of languages, instead of
as sets of functions. Since our goal is to place DFS tree construction into the appropriate
complexity classes, it is necessary to discuss how the complexity of functions fits into the
framework of complexity classes.

When C is one of {L, P}, it is fairly obvious what is meant by “f is computable in C”; the
classes of logspace-computable functions and polynomial-time-computable functions should
be familiar to the reader. However, the reader might be less clear as to what is meant by
“f is computable in NL”. As it turns out, essentially all of the reasonable possibilities are
equivalent. Let us denote by FNL the class of functions that are computable in NL; it is
shown in [17] each of the three following conditions is equivalent to “f ∈ FNL”.
1. f is computed by a logspace machine with an oracle from NL.
2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language

in NL.
3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)

is b} is in NL.
Rather than use the unfamiliar notation “FNL”, we will abuse notation slightly and refer to
certain functions as being “computable in NL”.

The proof of the equivalence above relies on the fact that NL is closed under complement.
Thus it is far less clear what it should mean to say that a function is “computable in UL”
since it remains an open question if UL is closed under complement (although it is widely
conjectured that UL = NL) [22, 5]). However the proof from [17] carries over immediately to
the class UL ∩ co-UL. That is, the following conditions are equivalent:
1. f is computed by a logspace machine with an oracle from UL ∩ co-UL.
2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language

in UL ∩ co-UL.
3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)

is b} is in UL ∩ co-UL.
Thus, if any of those conditions hold, we will say that “f is computable in UL ∩ co-UL”.

The important fact that the composition of two logspace-computable functions is also
logspace-computable (see, e.g., [6]) carries over with an identical proof to the functions
computable in LC for any oracle C. Thus the class of functions computable in UL ∩ co-UL is
also closed under composition. We make implicit use of this fact frequently when presenting
our algorithms. For example, we may say that a colored labeling of a graph G is computable
in UL ∩ co-UL, and that, given such a colored labeling, a decomposition of the graph into
layers is also computable in logspace, and furthermore, that – given such a decomposition of
G into layers – an additional coloring of the smaller graphs is computable in UL ∩ co-UL, etc.
The reader need not worry that a logspace-bounded machine does not have adequate space
to store these intermediate representations; the fact that the final result is also computable in
UL ∩ co-UL follows from closure under composition. In effect, the bits of these intermediate
representations are re-computed each time we need to refer to them.

Finally, we will consider ACk circuits augmented with oracle gates for an oracle in
UL ∩ co-UL, which we denote by ACk(UL ∩ co-UL).
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3 DFS in DAGs logspace reduces to Reachability

In this section, we observe that constructing the lexicographically-least DFS tree in a DAG
G can be done in logspace given an oracle for reachability in G. But first, let us define what
we mean by the lexicographically-first DFS tree in G:

▶ Definition 1. Let G be a DAG, with the neighbours of the vertices given in some order
in the input. (For example, with adjacency lists, we can consider the ordering in which the
neighbors are presented in the list). Then the lexicographic first DFS traversal of G is the
traversal with the (very natural) condition that the children of every vertex are explored in
the order given in the input. For details, see the full version [3].

The lemma we need is the following:

▶ Lemma 2. Construction of lexicographic least DFSs tree in DAGs logspace reduces to
reachability. In particular, DFS in general DAGs, planar DAGs, and planar DAGs with
single source(SMPDs) lie in classes NL, UL ∩ co-UL, and L respectively.

The correctness of this lemma is shown by the proof of Theorem 11 of [10] for general
DAGs. The extension for the other two classes is a consequence of planar reachability in
UL ∩ co-UL [24] and of SMPD reachability in L [2]. We defer the details to the full version [3].

4 Overview of the Algorithm

The main algorithmic insight that led us to the current algorithm was a generalization of
the layering algorithm that Hagerup developed for undirected graphs [14]. We show that
this approach can be modified to yield a useful decomposition of directed graphs, where the
layers of the graph have a restricted structure that can be exploited. More specifically, the
strongly-connected components of each layer are what we call meshes, which enable us easily
to construct paths (which will end up being paths in the DFS trees we construct) whose
removal partitions the graph into significantly smaller strongly connected components.

The high-level structure of the algorithm is thus:
1. Construct a planar embedding of G.
2. Partition the planar graph G into layers (each of which is surrounded by a directed cycle).
3. Identify one such cycle C that has properties that will allow us to partition the graph

into smaller weakly connected components.
4. Depending on which properties C satisfies, create a path p from the exterior face either

to a vertex on C or to one of the meshes that reside in the layer just inside C. Removal
of p partitions G into weakly connected components, where each strongly-connected
component therein is smaller than G by a constant factor.

5. Let the vertices on this path p be v1, v2, . . . , vk. The DFS tree will start with the path p,
and append DFS trees for subgraphs G1, G2, . . . , Gk to this path, where Gi consists of
all of the vertices that are reachable from vi that are not reachable from vj for any j > i.
(This is obviously a tree, and it will follow that it is a DFS tree.) Further, decompose each
Gi into a DAG of strongly-connected components. Build a DFS of that DAG, and then
work on building DFS trees of the remaining (smaller) strongly-connected components.

6. Each of the steps above can be accomplished in UL ∩ co-UL, which means that there is
an AC0 circuit with oracle gates from UL ∩ co-UL that takes G as input and produces
the list of much smaller graphs G1, . . . , Gk, as well as the path p that forms the spine
of the DFS tree. We now recursively apply this procedure (in parallel) to each of these
smaller graphs. The construction is complete after O(log n) phases, yielding the desired
AC1(UL ∩ co-UL) circuit family.
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In the exposition below, we first layer the graph in terms of clockwise cycles (which we
will henceforth call red cycles), and obtain a decomposition of the original graph into smaller
pieces. We then apply a nested layering in terms of counterclockwise cycles (which we will
henceforth call blue cycles); ultimately we decompose the graph into units that are structured
as a DAG, which we can then process using the tools from the earlier sections of the paper.
The more detailed presentation follows.

4.1 Degree Reduction and Expansion
▶ Definition 3 (of Exp⟳(G) and Exp⟲(G)). Let G be a planar digraph. The “expanded”
digraph Exp⟳(G) (respectively, Exp⟲(G)) is formed by replacing each vertex v of total degree
d(v) > 3 by a clockwise (respectively, counterclockwise) cycle Cv on d(v) vertices such that
the endpoint of the i-th edge incident on v is now incident on the the i-th vertex of the cycle.

Exp⟳(G) and Exp⟲(G) each have maximum degree bounded by 3; i.e., they are subcubic.
Next we define the clockwise (and counterclockwise) dual for such a graph and also a notion
of distance.

Recall that for an undirected plane graph H, the dual (multigraph) H∗ is formed by
placing, for every edge e ∈ E(H), a dual edge e∗ between the face(s) on either side of e (see
Section 4.6 from [12] for more details). Faces f of H and the vertices f∗ of H∗ correspond
to each other as do vertices v of H and faces v∗ of H∗.

▶ Definition 4 (of Duals G⟳ and G⟲). Let G be a plane digraph, then the clockwise dual G⟳

(respectively, counterclockwise dual G⟲) is a weighted bidirected version of the undirected dual
of the underlying undirected graph of G in a way so that the orientation formed by rotating
the corresponding directed edge of G in a clockwise (respectively, counterclockwise) way gets a
weight of 1 and the other orientation gets weight 0. We inherit the definition of dual vertices
and faces from the underlying undirected dual.

▶ Definition 5. For a plane subcubic digraph G, let f0 be the external face. Define the type
type⟳(f) (respectively, type⟲(f)) of a face to be the singleton set consisting of the distance
at which f lies from f0 in G⟳: {d⟳(f0, f)} (respectively, {d⟲(f0, f)}). Generalise this to
edges e by defining type⟳(e) (respectively type⟲(e)) as the set consisting of the union of the
type⟳ (respectively, type⟲) of the two faces adjacent to e, and to vertices v by defining as
the type⟳(v) (respectively type⟲(v)) union of the type⟳ (respectively, type⟲) of the faces
incident on the vertex v.

The following is a direct consequence of subcubicity and the triangle inequality:

▶ Lemma 6. In every subcubic graph G, the cardinality |type⟳(x)|, |type⟲(x)| where x

is a face, edge or a vertex is at least one and at most 2 and in the latter case consists of
consecutive non-negative integers.

Further, if v ∈ V (G) is such that |type⟳(v)| = 2, then there exist unique u, w ∈ V (G),
such that (u, v), (v, w) ∈ E(G) and |type⟳(u, v)| = |type⟳(v, w)| = 2.

For proof, see Appendix A.1.

▶ Definition 7. For a plane subcubic graph G as above, we refer to vertices and edges with
a type of cardinality two in G⟳ (respectively, in G⟲) as red (respectively, blue) while the
ones with a cardinality of one as white. The resulting colored graphs are called red(G) and
blue(G) respectively.
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We will see later how to apply both the duals in G to get red and blue layerings of a
given input graph.

Also note that a red (respectively blue) edge must have red (respectively blue) end points,
as they are adjacent to the same faces as the edge between is.

We enumerate some properties of red(G), blue(G) (G is subcubic):

▶ Lemma 8.
1. Red vertices and edges in red(G) form disjoint clockwise cycles.
2. No clockwise cycle in red(G) consists of only white edges (and hence white vertices).
Similar properties hold for blue(G).

Proof.
1. Firstly, note that a red edge must have red end point vertices, as they are adjacent to

the same faces that the edge between them is adjacent to. It is immediate from Lemma 6
that if v is a red vertex, it has exactly one red incoming edge and one red outgoing edge,
proving that they form disjoint cycles. Now consider a red cycle C. The type of each edge
of C must be the same, since if there are two consecutive edges in C of different types,
it would make the common vertex adjacent to at least three vertices of different types
contradicting lemma 6. This means that the distance in G⟳ of each face bordering the
“outside” of C from the external face is one less than the distance of each face bordering
the “inside” of C. But in any counterclockwise cycle, the distance in G⟳ from the external
face to both sides of C are the same (by the way distances are defined in G⟳). Thus C is
clockwise.

2. Suppose C is a clockwise cycle. Consider the shortest path in G⟳ from the external face
to a face enclosed by C. From the Jordan curve theorem (Theorem 4.1.1 [12]), it must
cross the cycle C. The edge dual to the crossing must be red. ◀

The definitions above, which apply only to subcubic plane graphs, can now be extended
to a general plane graph G, by considering the subcubic graphs Exp⟳(G) (and Exp⟲(G)).
But first, we must make a simple observation about red(Exp⟳(G)) (respectively about
blue(Exp⟲(G))).

▶ Lemma 9. Let v ∈ V (G) be a vertex of degree more than 3. Let Cv be the corresponding
expanded cycle in Exp⟳(G). Suppose at least one edge of Cv is white in red(Exp⟳(G)) then
there is a unique red cycle C that shares edges with Cv.

Proof. First we note that Cv does not contain anything inside it since it is an expanded
cycle. By lemma 8 we know that Cv has at least one red edge. Suppose it shares one or
more edges with a red cycle R1. Since both cycles are clockwise and Cv has nothing inside,
the cycle R1 must enclose Cv. Now suppose there is another red cycle R2 that shares one or
more edges with Cv. Then R2 must also enclose Cv. But two cycles cannot enclose a cycle
whilst sharing edges with it without touching each other, which contradicts the above lemma
that all red cycles in a subcubic graph are vertex disjoint. ◀

The last two lemmas allow us to consistently contract the red cycles in red(Exp⟳(G)):

▶ Definition 10. The colored graph Col⟳(G) (respectively, Col⟲(G)) is obtained by labeling
a degree more than 3 vertex v ∈ V (G) as red iff the cycle Cv in red(Exp⟳(G)) has at least
one red edge and at least one white edge. Else the color of v is white. All the low degree
vertices and edges of G inherit their colors from red(Exp⟳(G)). The coloring of Col⟲(G)
is similar.
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Figure 1 An example of contracting expanded cycles. The figure on right shows the graph after
contracting the expanded cycles C1, C2, C3 according to definition 10.

We can now characterize the colorings in the graph Col⟳(G):

▶ Lemma 11. The following hold:
1. A red cycle in Col⟳(G) is vertex disjoint from every red cycle contained in its interior.
2. Every 2-connected component of the red subgraph of Col⟳(G) is a simple clockwise cycle.
We defer the proof to Section A.1.

Although the above lemmas have been proved for the clockwise dual, they also hold for
counterclockwise dual with red replaced by blue.

4.2 Layering the colored graphs
▶ Definition 12. Let x ∈ V (Col⟳(G)) ∪ E(Col⟳(G)). Let ℓ⟳(x) be one more than the
minimum integer that occurs in type⟳(x′), for each x′ ∈ V (Exp⟳(G))∪E(Exp⟳(G)) that is
contracted to x. Further let Lk(Col⟳(G)) = {x ∈ V (Col⟳(G)) ∪ E(Col⟳(G)) : ℓ⟳(x) = k}.
Similarly define, ℓ⟲(x), Lk(Col⟲(G)). We call Lk(Col⟳(G)) the kth layer of the graph.

See Fig 11 for an example. It is easy to see the following from Lemma 11:

▶ Proposition 13. For every x ∈ V (Col⟳(G))∪E(Col⟳(G)) the quantity ℓ⟳(x) is one more
than the number of red cycles that strictly enclose x in Col⟳(G). All the vertices and edges
of a red cycle of Col⟳(G) lie in the same layer Lk+1(Col⟳(G)) for the enclosure depth k of
the cycle.

We had already noted above that the red subgraph of G had simple clockwise cycles as
its biconnected components. We note a few more lemmas about the structure of a layer of G:

▶ Lemma 14. We have:
1. A red cycle in a layer Lk+1(Col⟳(G)) does not contain any vertex/edge of the same layer

inside it.
2. Any clockwise cycle in a layer consists of only red vertices and edges.
Dually, a blue cycle in a layer does not contain any vertex or edge of the same layer inside it.
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▶ Remark 15. Notice that the conclusion in the second part of the lemma fails to hold if we
allow cycles spanning more than one layer.

Proof. The first part is a direct consequence of proposition 13. For the second part we mimic
the proof of the second part of Lemma 8. Consider a clockwise cycle C ⊆ Lk+1(Col⟳(G))
that contains a white edge e. Every face adjacent to C from the outside must have type⟳ = k

because C is contained in layer k + 1. Then the type⟳ of the faces on either side of e is the
same and therefore must be k. Let f be a face enclosed by C that has type⟳(f) = k. Thus
it must be adjacent to a face of type⟳ = k − 1. But this contradicts that every face inside
and adjacent to C must have type⟳ at least k. ◀

The lemmas above show that the strongly connected components of the red subgraph of a
layer consist of red cycles touching each other without nesting, in a tree like structure. This
prompts the following definition:

▶ Definition 16. For a red cycle R ⊆ Lk(Col⟳(G)) we denote by GR, the graph induced by
vertices of Lk+1(Col⟳(G)) enclosed by R.

Now we combine Definitions 10 and 12:

▶ Definition 17. Each vertex or edge x ∈ V (G) ∪ E(G) gets a red layer number k + 1 if it
belongs to Lk+1(Col⟳(G)) and a blue layer number l + 1, if it belongs to Ll+1(Col⟲(GR))
where R ⊆ Lk(Col⟳(G)) is the red cycle immediately enclosing x.

Moreover this defines the colored graph Col(G) by giving x the color red if it is red in
Col⟳(G) and/or blue in Col⟲(GR) (notice it could be both red and blue) and lastly white if it
is white in both the graphs. In this case, we say that x belongs to sublayer Lk+1,l+1(Col(G)).

By Proposition 13, we can also say that a sublayer Lk+1,l+1(Col(G)) thus consists of
edges/vertices that are strictly enclosed inside k red cycles and inside l blue cycles that are
contained inside the first enclosing red cycle.

We’ll see some observations and lemmas regarding the structure of a sublayer now.
Since every edge/vertex in Lk+1,l+1(Col(G)) has the same red AND blue layer number,

it is clear that there can be no nesting of colored cycles. Also we have:

▶ Lemma 18. Every clockwise cycle in a sublayer Lk+1,l+1(Col(G)) consists of all red edges
and vertices and any every counterclockwise cycle in the sublayer consists of all blue vertices
and edges. (Some edges/vertices of the cycle can be both red as well as blue)

Proof. This is a direct consequence of Lemma 14 applied to the sublayer Lk+1,l+1(Col(G)),
which is a (counterclockwise) layer in graph GR for some red cycle R. ◀

Thus we can refer to clockwise cycles and counterclockwise cycles as red and blue cycles
respectively.

▶ Definition 19. For a red or blue colored cycle C of layer Lk,l(Col(G)), we denote by GC

the graph induced by vertices of Lk′,l′(Col(G)) enclosed by C, where {k′, l′} is {k + 1, 1} or
{k, l + 1} according to whether C is a red or a blue cycle respectively.

Note that:

▶ Proposition 20. Two cycles of the same color in Lk+1,l+1(G) cannot share an edge.

This is since neither is enclosed by the other as they belong to the same layer, and as they
also have the same orientation. Cycles of different colors can share edges but we note:
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▶ Lemma 21. Two cycles of a sublayer Lk+1,l+1(Col(G)) can only share one contiguous
segment of edges.

Proof. Let a red cycle R and a blue cycle B in a sublayer share two vertices u, v but let the
paths R(u, v), B(u, v) in the two cycles be disjoint. Notice that the graph (R\R(u, v))∪B(u, v)
is also a clockwise cycle that encloses the edges of R(u, v) contradicting the first part of
Lemma 14. ◀

We consider the strongly connected components of a sublayer and note the following lemmas
regarding them:

▶ Lemma 22. The trivial strongly connected components of a sublayer (those that consist
of a single vertex) are white vertices. The non-trivial strongly connected components of a
sublayer have the following properties:
1. Every vertex/edge in them is blue or red (possibly both).
2. Every face, except possibly the outer face, is a directed cycle.
3. Every face other than the outer face has at least one edge adjacent to the outer face.
We defer the proof to Section A.1. The strongly connected components of a sublayer hence
consist of intersecting red and blue facial cycles, with every face having at least one boundary
edge adjacent to the outer face of the component.

▶ Definition 23. We call the strongly connected components of a sublayer L(k, l) meshes.

5 Mesh Properties

▶ Definition 24. Given a subgraph H of G embedded in the plane, we define the closure of
H, denoted by H̃, to be the induced graph on the vertices of H together with the vertices of
G that lie in the interior of faces of H (except for the outer face of H).

For convenience, we call a face of a graph that is not the outer face an internal face.
From Lemmas 18 and 22, we have a bijection: every face of a mesh, except possibly its

outer face, is a directed cycle, and every directed cycle in a mesh is the boundary of a face of
the mesh.

▶ Definition 25. Let 0 < α < 1. An α separator of a digraph H that is a subgraph of a
digraph G is a set of vertices of H whose removal from H separates H̃ into subgraphs, where
no strongly connected component has size greater than α|G|. A path separator is a sequence
of vertices ⟨v1, . . . , vn⟩ that is a separator and also is a directed path.

▶ Definition 26. Let G be a graph and let M be a mesh in a sublayer G. For an internal
face f of M , we define wt(f) to be |V (f̃)|. Let wt(H) where H is a subgraph of M be defined
as |V (H̃)|.

▶ Definition 27. For a mesh M , we call a vertex that is adjacent to the outer face of M an
external vertex, and a vertex that is not adjacent to the outer face an internal vertex. Also,
we call vertices of degree more than two junction vertices.

If p = ⟨v1, v2, . . . , vk⟩ is a directed path such that v2, . . . , vk−1 are all vertices of degree
two, but v1, vk have degree more than two, then we call p a segment. We call vk the out
junction neighbour of v1 and v1 the in junction neighbour of vk.

We call a segment with all edges adjacent to the outer face an external segment, and
a segment with no edge adjacent to the outer face an internal segment. If the end points
of an internal segment are both internal vertices also, we call the segment an i-i-segment.
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v

Figure 2 An example of a mesh.

v

Vleft

Vright

Vrem

Vf

Figure 3 An example of a path separator.
The vertex v is a central node, and the
green path is a separator.

The rest of this section is devoted to a proof of the following, which asserts that we can
construct a path separator in a mesh, assuming that no internal face of the mesh is too large.

▶ Lemma 28. Suppose wt(f) < wt(G)/12 holds for every internal face f of a mesh M that
is a subgraph of G. Then from any external vertex r of M , we can find (in UL ∩ co-UL) an
11
12 path separator of M , starting at r.

The high level idea is that using a clique sum decomposition of 2, 3-cliques (see figure 9) we
find a “central” vertex v in the mesh M , such that we can find a path from the external
vertex r to v, and then extend the path around one of the faces adjacent to v to get the path
separator (all faces are directed cycles by lemma 22). Because every face touches the outer
face and weight of every face is small by the hypothesis of the lemma, we can always find a
face adjacent to v to encircle such that removing the path leaves no large (weakly) connected
component. The vertices of M with degree two (in-degree 1 and out-degree 1 because M is
strongly connected) are not important since they can be seen as just “subdivision” vertices.
Now we will look at the structure of a mesh around an internal junction vertex, and the way
the rest of the mesh is attached to that structure. Also, we state here that we will abuse the
notion of 3-connected components by ignoring the non-junction vertices for convenience.

▶ Lemma 29. If v is an internal junction vertex of a mesh and e1, . . . , ek are the edges
adjacent to v in the cyclic order of embedding, then the edges alternate in directions i.e. if e1
is outgoing from v, then e2 is incoming to v and e3 is outgoing and so on. Consequently, v

has even degree (at least 4).

▶ Definition 30. Let v be an internal junction vertex of degree 2d in a mesh M , and let
its junction neighbours be (u1, w1, u2, w2, . . . , ud, wd) in clockwise order starting from edge
⟨u1, v⟩(the wi’s are out neighbours, and ui’s the in neighbours, since junction neighbours
alternate).

Every adjacent pair of edges incident to v borders a face that is not the outer face. Let
fu,v,w denote the face bordered by v and the junction neighbours u and w of v which are
adjacent in cyclic order around v. The boundary of fu,v,w can be written as three disjoint
parts (except for endpoints), segment (u, v) + segment (v, w) + petalw,u, where the third
part denotes a simple path from w to u along the face boundary. We will use the notation
petalw,u to denote the corresponding boundary for any face fu,v,w adjacent to v. We define
flower(v) as

⋃
{vertices on boundary of faces adjacent to v}(See figure 4).
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We note the following property of petals whose proof is deferred to AppendixA.2.

▶ Proposition 31. For all adjacent junction neighbour pairs wi, uj of internal vertex v,
petalwi,uj

are disjoint, except possibly the end points.

For an internal junction vertex v, the union of the petals around flower(v) thus form an
undirected cycle around v, with at least four alternations in directions. Now we define bridges
of the cycle, which roughly, are components of M we get after removing flower(v), leaving
the points of attachment intact. We use the formal definition of bridges from [25]:

▶ Definition 32. For a subgraph H of M , a vertex of attachment of H is a vertex of H that
is incident with some edge of M not belonging to H. Let J be an undirected cycle of M . We
define a bridge of J in M as a subgraph B of M with the following properties:
1. each vertex of attachment of B is a vertex of J .
2. B is not a subgraph of J .
3. no proper subgraph of B has both the above properties.

We denote by 2-bridge, bridges with exactly two vertices of attachment to the specified cycle,
and by 3-bridge, bridges with three or more vertices of attachment.

Note that for the cycle formed by petals of flower(v), the vertex v along with paths leading
to/ coming from flower(v) also form a bridge, but we call that a trivial bridge and do not
take it into consideration.

▶ Lemma 33.
1. The vertices of attachment of a 2-bridge of flower(v) must both lie on one petal of

flower(v).
2. The vertices of attachment of a 3-bridge of flower(P ) can lie on one or, at most two

adjacent petals. Moreover, in the latter case the junction neighbour of v common to both
petals must be a vertex of attachment of the 3-bridge.

3. For an internal vertex v, and an external vertex r of M , let p = ⟨r, . . . , u1, v⟩ be a
simple path from r to v, where u1 is an in junction neighbour of v. Let the other
junction neighbours of v be named as in Definition 30 in cyclic order from u1. For j ∈
{i, i+1}, consider an extended path of p, pwi,uj = ⟨r, . . . , u1, v, wi⟩+petalwi,uj +⟨uj , . . . , v⟩,
excluding the last edge incident to v in the sequence. That is, pwi,uj

goes from r to v,
then to an out junction neighbour wi, and then wraps around fuj ,v,wi

by taking petalwi,uj

and then the segment back towards v from uj. If there is a bridge of flower(v) of which
u1 is a point of attachment and also includes the edge of p incoming to u1, we denote it
by Bin. The set V (M̃) \ V (pwi,uj ) can be partitioned into four disconnected parts, say
Vleft and Vright, Vf , Vrem such that:

Vleft =({f̃u1,v,w1 ∪ f̃u2,v,w1 ∪ f̃u2,v,w2 . . . ∪ f̃ui,v,wi−1 } ∪ {f̃ui,v,wi if j = i + 1}
∪ {vertices in closure of bridges attached to the petals of these faces, excluding Bin}
∪ {the “left” part of Bin.(See figure 8) }) \ V (pwi,uj )

Vright =({f̃ui,v,wi+1 ∪ f̃ui+2,v,wi+1 . . . ∪ f̃ud,v,wd } ∪ {f̃ui+1,v,wi if j = i}
∪ {vertices in closure of bridges attached to petals petals these faces, excluding Bin}
∪ {the “right” part of Bin.(See figure 8) } \ V (pwi,uj )

Vf = f̃uj ,v,wi \ V (pwi,uj )

Vrem = (
⋃

{vertices in closure of all bridges that have vertices

of attachment only in petalwi,uj }) \ V (pwi,uj ).
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Figure 4 A vertex v and flower(v). B is a bridge with two points of attachment x, y on two
different petals of flower(v). On the right are drawn the bridge B itself, and its closed version B◦.
The only way the boundary of fw′,w,y can have an external edge is if it touches B, making w a point
of attachment of B also.

such that there is no undirected path between any vertex of one of these four sets to
any vertex of another. The path pwi,ui

is therefore a path separator that gives these
components.

We introduce another notation for an extension of a bridge:

▶ Definition 34. For a bridge B of flower(v), we define B◦ as B along with segments
of flower(v) that lie between consecutive vertices of attachment of B. We call this the
closed bridge of B.

Now we will give definitions/lemmas regarding the “internal structure” of meshes, that will
be useful to define the “center” of a mesh.

▶ Definition 35. For a mesh M , we call its internal-skeleton, denoted by I(M), the
induced subgraph on the vertices of i-i-segments of M .(See figure 6)

▶ Lemma 36.
1. For a mesh M , the graph I(M) is a forest.
2. If H is a 3-connected induced subgraph of M(ignoring subdivision vertices), then I(H) is

a tree.
We state a well-known proposition about a vertex separator in a tree T with weighted nodes,
without the proof.

▶ Proposition 37. Suppose T is a tree with each node having a weight assigned to it. Let
wt(T ′) denote sum of weights of each node in a subgraph T ′ of T . Then there exists a node
vc or a pair of adjacent nodes vc1 , vc2 , such that after removing it (or them in case of a pair),
no connected component in the remaining forest has weight more than 1

2 wt(T ).

We will next give a procedure to define a “center” of a mesh.

▶ Definition 38. For a mesh M , let TM denote the tree obtained by the 1, 2-clique sum
decomposition of M . The nodes of TM are of two types, clique nodes (cut vertices or separating
pairs), and piece nodes, which are either 3-connected parts or cycles. Every piece node is
adjacent to a clique node and vice-versa. (See [9, Section 3.1] for background about this
decomposition.)

Consider the 1
2 separator node of TM as described in Proposition 37. If it is a separating

pair, a cut vertex, or a face cycle, we call that subgraph the center of M .
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v

Figure 5 An example of a mesh.

v

Figure 6 The internal skeleton of the mesh.
One of its components is a single node.

If it is a 3-connected node P , look at its internal skeleton I(P ). We construct a new
graph I ′(P ) which is isomorphic to I(P ) but has edges directed differently. let u, v be two
adjacent internal junction vertices of M . To give direction to a segment (u, v) in I ′(P ),
we consider the unique bridge B of flower(u) that contains v as a point of attachment; we
denote the closed bridge of B by B◦

u(v). B◦
v(u) is defined analogously. We orient (u, v) in

the direction of the heavier of B◦
u(v) and B◦

v(u) (breaking ties arbitrarily), where the weights
of B◦

u(v), B◦
v(u) are |B̃◦

u(v)| and |B̃◦
v(u)|, respectively.

The center of M is defined to be flower(v) in this case, where v is the sink node of
I ′(P ).

We show why I ′(P ) cannot have more than one sink.

▶ Lemma 39. The tree I ′(P ) defined above will have exactly one sink vertex.

▶ Lemma 40. If the center of M is flower(v), and w is an out neighbor of v, then
wt(B◦

v(w)) ≤ 1
2 (wt(M̃ − wt(Vrem(u, w))), where u is either of the two in neighbors of v that

are adjacent to w around flower(v).

Proof. Since the center is flower(v), we have that wt(B◦
v(w)) ≤ wt(B◦

w(v)). But Vrem(u, w)
has empty intersection with each of B◦

v(w) and B◦
w(v). Thus wt(B◦

v(w)) + wt(B◦
w(v)) ≤

wt(M̃) − wt(Vrem(u, w)). The lemma follows. ◀

▶ Lemma 41.
1. If the center of M is not of the form flower(v) where v is an internal node of a 3-

connected component, then removing it from M̃ disconnects M̃ into weakly connected
components, each with weight less than 1

2 wt(M̃).
2. If the center of M is flower(v) for an internal node v of a 3-connected component P ,

then on removing flower(v) from M̃ , no weakly connected component has weight more
than 1

2 wt(M̃).

Proof.
1. This follows from the vertex separator lemma for trees with weighted vertices.
2. This follows from the v being the sink node of I ′(P ). ◀

▶ Lemma 42. For every possible path pwi,uj
around v as defined in Lemma 33, Vrem consists

of a disjoint union of weakly-connected components, each of which has weight ≤ 1
2 (wt(M)).

For a path pwi,uj (where j ∈ {i, i + 1}) we sometimes use the notation Vrem(wi, uj) to specify
the petal where the bridges of Vrem are attached.
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Figure 7 The tree decomposition of the
mesh using 1,2-clique sums. The nodes
encircled red are clique separator nodes.
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VfBin

Figure 8 An example of a path separator.
The vertex v is a central node, and the
green path is a separator.

5.1 Mesh Separator Algorithm
Now we give the algorithm to find an α separator in a mesh M(G), assuming the hypothesis
of Lemma 28.
1. Find the decomposition tree, TM of M with 2-cliques and 1-cliques as the separating sets.
2. Find the center of the mesh M . It will either be a cut vertex, a separating pair, a cycle,

or flower(v) for some internal vertex v.
3. If it is a cut vertex, we just find a path from the root r to it. If it is a separating pair

(u, v), both the vertices must lie on a same face, which is a directed cycle. In both this
case, and also the case in which the center is a cycle, find a path from the root to any
vertex of the face that touches it the first time, and then extend the path by encircling
the cycle.

4. If it is flower(v) for some internal vertex v, find a path p = ⟨r, . . . , u1, v⟩ to v. Let the
junction neighbours of v in clockwise order starting from (u1, v), be w1, u2, w2, . . . , wd,
with the w’s being out junction neighbours and the u’s being in junction neighbours.
Starting clockwise from segment ⟨u, v⟩, find the first index i and j ∈ {i, i + 1} s.t.
after removing the extended path pwi,uj

, (defined in Lemma 33) the remaining strongly
connected components are smaller than 11

12 wt(G).
The algorithm above can clearly be implemented in logspace with an oracle for planar
reachability, and thus it can be implemented in UL ∩ co-UL.

It remains to show that the “first i” mentioned in the final step actually exists. For the
proof see Appendix A.3:

▶ Lemma 43. If the center of M is flower(v) for some internal vertex v, then there will
always exist an adjacent face fui,v,wi

s.t. the path pwi,ui
is a 11

12 -separator.

6 Path separator in a planar digraph

Having seen how to construct a path separator in a mesh, we now show how to use that to
construct an 11

12 separator in any planar digraph.
1. Given a graph G, first embed the graph so that the root r lies on the outer face. Through

the root, draw a virtual directed cycle C0 that encloses the entire graph, and orient it,
say clockwise. Find the layering described in Section 4 and output it on a transducer.
Cycle C0 will be colored red and will be in the sublayer (0, 0).
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2. In the laminar family of red/blue cycles, find the cycle C s.t. wt(C) is more than |G|/12,
but no colored cycle C ′ in the interior of C has the same property. Such a cycle will
clearly exist (it could be the virtual cycle C0). Let the sublayer of C be (k, l).

3. Find a path p from the root r to any vertex rC of the cycle C such that no other vertex
of C is in the path. As seen above in Lemma 22, the graph in the interior of C and
belonging to the immediately next sublayer ((k + 1, l) if C is clockwise and (k, l + 1) if C

is counter-clockwise) is a DAG of meshes. There are two cases possible:
a. The graph C̃ has no strongly connected components of weight larger than |G|/12. In

this case we simply extend the path p from rC by encircling the cycle C till the last
vertex and stop.

b. The graph C̃ has a strongly connected component of weight more than |G|/12. In
this case, we extend p from rC by encircling C till the last vertex u on C that can
reach any such component MC . Then extend the path from u to any vertex of MC

and apply the mesh separator lemma (Lemma 28) to obtain the desired separator.
(Observe that MC satisfies the hypothesis of Lemma 28.)

▶ Lemma 44. The path p obtained by the above procedure is an 11
12 separator.

Proof. We look at the two cases:
1. In this case it is clear that the interior and exterior of cycle C are disconnected by p.

The exterior of C has size ≤ 11
12 |G| (by definition of C), and in its interior every strongly-

connected component has weight at most |G|/12. Thus this satisfies the definition of an
11
12 separator.

2. We took the last edge in C from rC that can reach the mesh MC , and extended the path
to MC . Thus after removing p, one weakly-connected component consists of the exterior
of G, along with (possibly) some vertices in the interior of C that cannot reach any “large”
mesh in the interior. Since MC has weight greater than 1

12 |G|, no strongly-connected
component embedded outside of MC can have weight more than 11

12 |G|. Also, after
removing path p, Lemma 28 guarantees that no other strongly-connected component will
have weight more than 11

12 |G|. Thus this is an 11
12 separator.

Hence overall we can guarantee an 11
12 path separator in G. ◀

7 Building a DFS tree using path separators

We give a recursive divide and conquer algorithm for DFS:
1. Given a planar drawing of G and a root vertex on the outer face r, find an 11

12 path
separator p = ⟨r, v1, v2..vk⟩. Path p is included in the DFS tree.

2. Let R(v) denote the set of vertices of G reachable from v. Now for every vertex vi in
p compute in parallel: R′(vi) = R(v)\(

⋃k
j=i+1 R(vj)) Our DFS will correspond to first

traveling along p to vk, doing DFS on R(vk), and then while backtracking on p, do DFS
on R′(vi) for i from k − 1 downto 1. Given G, the encodings of p and R′(vi) can all be
computed in AC0(UL ∩ co-UL).

3. For any vi, R′(vi) can be written as a DAG of SCCs (strongly connected components),
where each SCC is smaller than 11

12 |G|. In AC0(UL ∩ co-UL) we can compute this DAG
and we can compute an encoding of the tuple (i, M, v) where M is a SCC in R′(i) and v

is a vertex in M . Recursively, in parallel, we compute a DFS tree of M for each tuple
(i, M, v), using v is the root. Now we need to show how to sew together (some of) these
trees, to form a DFS tree for G with root r.

MFCS 2021
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Figure 9 The tree decomposition of the
mesh using 1,2-clique sums. The nodes
encircled red are clique separator nodes.

x

M

yC

Figure 10 The cycle C is a cycle satisfying
the property stated in step 2 of the algorithm.
The mesh M in the next sublayer is heavy, so
we find a path from the last vertex on C that
can reach M (in this case y), and then apply the
algorithm of previous section on M .

4. Given a triple (i, M, v), let x0, x1, . . . , xr be the order in which the vertices of M appear
in a DFS traversal where the root x0 = v. Our DFS will correspond to first following the
edges from x0 that lead to other SCCs in R(vi). (No vertex reachable in this way can
reach any xj , or else that vertex would also be in M .) And then we will move on to x1
and repeat the process, etc. Thus let R′′

i,M,v(xj) = (R′(xj)\M)\(
⋃

k<j R′(xk)).
Our DFS tree is composed by computing a DFS tree T of the DAG of meshes (considering
each mesh to be a vertex) using the algorithm of Section 3. A logspace machine can do
a DFS traversal of T , starting with the node containing vi as the root, and using (as
auxiliary information) the DFS tree that was computed for (i, M, vi). If this traversal
contains an edge (M, M ′) (where M and M ′ are SCCs in R′(vi)), then there is exactly
one j such that there is an edge from xj in the DFS tree for (i, M, vi) to a vertex (call it
vM ′) in M ′ ∩ R′′

i,M,v(xj). [Namely, xj is the first vertex in this tree that has an edge to
M ′.] The edge from xj to vM ′ will be in our DFS tree, as will the DFS tree that was
computed for (i, M ′, vM ′). We then continue the traversal of T , and process each node of
the DAG in the same way. All of this can be accomplished in AC0(UL ∩ co-UL).

5. The final DFS tree for Ri consists of all of the edges that appear in the trees for tuples
(i, M, v) that were utilized in the traversal of T . The tree for G consists of p together
with the trees for each Ri.
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A Appendix: Omitted details

A.1 Proofs from Section 4
We first need a simple lemma:

▶ Lemma 45. Suppose (f1, f2) is a dual edge with weight 1 (and (f2, f1) is of weight 0) then,
d⟳(f0, f1) ≤ d⟳(f0, f2) ≤ d⟳(f0, f1) + 1.

Proof. From the triangle inequality d⟳(f0, f1) ≤ d⟳(f0, f2) + d⟳(f2, f1) = d⟳(f0, f2). Simil-
arly, d⟳(f0, f2) ≤ d⟳(f0, f1) + d⟳(f1, f2) ≤ d⟳(f0, f1) + 1. ◀

Proof of Lemma 6. Since each vertex v ∈ V (G) of a subcubic graph is incident on at
most 3 faces the only case in which |type⟳(v)| > 2 corresponds to three distinct faces
f1, f2, f3 being incident on a vertex. But here the undirected dual edges form a triangle
such that in the directed dual the edges with weight 1 are oriented either as a cycle or
acyclically. In the former case by three applications of the first half of Lemma 45 we get
that d⟳(f0, f1) ≤ d⟳(f0, f2) ≤ d⟳(f0, f3) ≤ d⟳(f0, f1), hence all 3 distances are the same.
Therefore |type⟳(v)| = 1.

In the latter case, suppose the edges of weight 1 are (f1, f2), (f2, f3), (f1, f3), then
by Lemma 45 we get: d⟳(f0, f1) ≤ d⟳(f0, f2), d⟳(f0, f3) ≤ d⟳(f0, f1) + 1. Thus, both
d⟳(f0, f2), d⟳(f0, f3) are sandwiched between two consecutive values d⟳(f0, f1), d⟳(f0, f1)+1.
Hence d⟳(f0, f1), d⟳(f0, f2), d⟳(f0, f3) must take at most two distinct values, and thus
|type⟳(v)| ≤ 2. Moreover either type⟳(f1) ̸= type⟳(f2) = type⟳(f3) or type⟳(f1) =
type⟳(f2) ̸= type⟳(f3). Let e1, e2, e3 be such that, e1

⟳ = (f2, f3), e2
⟳ = (f1, f3), e3

⟳ =
(f1, f2). Then the two cases correspond to |type⟳(e1)| = |type⟳(e2)| = 2, |type⟳(e3)| = 1
and to |type⟳(e1)| = 1, |type⟳(e2)| = |type⟳(e3)| = 2 respectively. Noticing that e1, e3 are
both incoming or both outgoing edges of v completes the proof for the clockwise case. The
proof for the counterclockwise case is formally identical. ◀

Proof of Lemma 11. For v ∈ V (G), let Cv ⊆ Exp⟳(G) be the expanded cycle. If it has
a red vertex it is immediately enclosed by a unique red cycle R in Exp⟳(G) by Lemma 9.
Assuming Cv is not all red, it consists of alternating red subpaths and white subpaths.
On contracting Cv we get a collection of clockwise red cycles outside sharing a common
cut-vertex v. Notice that the new collection of red cycles consists of edges that R did not
share with Cv. Also notice that (as a thought experiment) if we contracted the Cv’s that
share a vertex with R, one at a time we would get an edge-disjoint set of red cycles with
distinct cut vertices. Therefore, in Col⟳(G), the red subgraph consists of a collection of
connected components, each of which is a remnant of exactly one red cycle in Exp⟳(G);
these connected components consist of red cycles that touch externally at cut vertices. Hence
both parts of the lemma follow. ◀

https://doi.org/10.1007/s00224-009-9188-4
https://doi.org/10.1007/s00224-009-9188-4
https://doi.org/10.1007/978-3-662-03927-4
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Proof of Lemma 22.
1. In a non-trivial strongly connected graph every vertex and edge lies on a cycle and

therefore by Lemma 18 must be colored red or blue (or both).
2. Suppose there is a face f the boundary of which is not a directed cycle. Look at a

directed dual (say clockwise) of the strongly connected component (just the component
independently). This dual must be a DAG since the primal is strongly connected. The
vertex f∗ in the dual corresponding to face f of the strongly connected component has
in degree at least one and out degree at least one since it has boundary edges of both
orientations, hence the edges adjacent to f∗ do not form a directed cut of the dual.
Let o∗ denote the dual vertex corresponding to the outer face of the SCC. In order to
prove the claim, it is sufficient to show the existence of a directed cut C∗ that separates
f∗ and o∗, since it would imply by cut cycle duality that there is a directed cycle C in
the primal SCC that encloses the face f w.r.t the outer face and since the boundary of f

is not a directed cycle, C must strictly enclose at least one edge of the boundary of f

contradicting Lemma 14. To see the cut, consider a topological sort ordering of the dual
(it is a DAG). Let the number of a dual vertex v∗ in the ordering be denoted by n(v∗).
W.l.o.g, let n(f∗) < n(o∗). Consider the partition of the dual vertices:

A = {v∗ | n(v∗) ≤ n(f∗)}, B = {v∗ | n(v∗) > n(f∗)}

By definition of topological sort, all edges across this partition must be directed from A

to B, hence it is a directed cut, and therefore it must also contain a subset which is a
minimal directed cut. But clearly the minimal cut is not the set of edges adjacent to f∗

since it has both out and in degree at least one, hence proving the claim. Hence every
face in the SCC of a sublayer must be a directed (hence colored) cycle (by Lemma 18).

3. Let H be an SCC of the sublayer. We observed from the proof above that no vertex in
the dual of H, except possibly the vertex corresponding to the outer face of H, can have
both in degree and out degree more than one. (i.e. every dual vertex, except the outer
face is a source or a sink). Therefore if any dual vertex f∗ has a directed path to o∗ or
vice versa, then the path must be an edge and we are done. Suppose there is no directed
path from f∗ to o∗ and w.l.o.g. let f∗ be a source. Consider the trivial directed cut C1:

A = {f∗}, B = V (H)\A

This is a cut since there are no edges from B to A, and this cut clearly corresponds to
the directed cycle which is the boundary of face f in H.
Now consider the cut C2:

A′ = {v∗ | v∗is reachable from f∗}, B′ = V (H)\A′

Clearly this is a f∗-o∗ cut with no edge from a vertex in A′ to a vertex in B′ and o∗ ∈ B′.
But this f∗-o∗ cut is different from C1 since f∗ is a source vertex and hence A′ has
at least one more vertex than just f∗. Hence this corresponds to a directed cycle in
H that strictly encloses at least some edge of f , and we again get a contradiction of
Lemma 14. ◀

A.2 Details for Section 5
Proof. (of Lemma 29 Let ei, ei+1 be two edges adjacent to v, that are also adjacent in
the cyclic order of the drawing. Since they are adjacent in the drawing, they must enclose
between them, a region, and hence a face, which is not the outer face. But the boundary of
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(a)

(b)

Figure 11 Figure (a) is a graph G. Figure (b)
is the graph in (a) after labelling red edges using
clockwise dual. We omit the cycle expansion
and contraction procedure here.

(c)

(d)

Figure 12 Figure (c) shows G after applying
blue labellings to each red layer we obtained
in the previous figure. The vertices and edges
colored purple are those that are red as well as
blue. Figure (d) represents the sublayer (1, 1).
The dashed edges and empty vertices are not
part of the layer.

every non-outer face in a mesh is a directed cycle, hence v, ei, ei+1 lie on a directed cycle,
with both edges adjacent to v. Hence one of them must be an out edge from v, and the other
incident towards v. ◀

Proof of Proposition 31. Petals of two faces must be internally disjoint because the corres-
ponding faces share the vertex v and two faces cannot have a non-contiguous intersection, by
Lemma 21. ◀

Proof of Lemma 33.
1. Let x, y be the two vertices of attachment of the 2-bridge B on flower(v). Since bridges

are connected graphs without the edges of the corresponding cycle(by 3rd property of
definition 32), there must be an undirected path, p in the bridge connecting x, y, without
using any edge of flower(v). If x and y were not on the same petal, then this path along
with the other petals in flower(v), must clearly enclose a junction neighbour of v, say
w (see Figure 4). Thus w is not adjacent to the outer face. Now since w is an internal
junction vertex, and two of its adjacent faces are also adjacent to v, look at another face
f adjacent to w and not adjacent to v. (Internal junction vertices have at least four
adjacent faces.) The boundary of this face cannot touch B since that would make it
a part of B and consequently w a vertex of attachment of B to flower(v). Therefore
the boundary of f is enclosed within the paths p and the part of flower(v) that is also
enclosed by p. Therefore f has no external edge, contradicting Lemma 22.
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(e)

Figure 13 Figure (e) figure represents the
sublayer (2, 1).

(f)

Figure 14 Figure (f) represents the sublayer
(3, 1).

2. Let x1, x2, . . . , xk be the vertices of attachment of the bridge B on flower(v), in the
cyclic order of boundary of flower(v). Clearly if the vertices of attachment lie on more
than two petals of v, then at least one petal will be completely enclosed by B, which is
not possible since every petal must have at least one external edge. Lets say they lie on
two adjacent petals, and the junction neighbour common to both of them is w. By the
same argument as above, w must have an edge other than those of adjacent petals of v,
that connect it to B. Therefore w must be a vertex of attachment of B to flower(v).

3. First we note that petalwi,uj
will have an external vertex in it since the boundary of every

face has at least one external vertex (Lemma 22), and segments (uj , v) and (v, wi) are
internal. Let z be an external vertex on petalwi,uj

. The path p starts at external vertex r,
comes to u1, v, wi, and reaches external vertex z on its way back to v. It will clearly divide
M̃ into at least two parts by Jordan Curve theorem. Since pwi,uj

is just a wrap around
the face fuj ,v,wi

after z, is clear that since w1, u2, . . . , wi−1 and everything connected to
them after removing p lie in one region, which we call Vleft, and wi+1, ui+2, . . . , wd and
everything connected to them after removing p lie in another, and vertices of f̃u,v,w lie in
another disconnected region since p wraps around fu,v,w. ◀

Proof of Lemma 36.
1. Suppose there were an undirected cycle in M of all internal segments, then this cycle

must enclose a face whose boundaries are also all internal segments. This contradicts
Lemma 22 as it states that every face must have at least one external edge, and hence
segment. Hence there can be no cycle (directed or undirected) consisting of all internal
segments, and consequently, no cycle (directed or undirected) of all internal vertices.

2. Let H be a 3-connected induced subgraph of M . By definition, I(H) is obtained from M

by removing all external edges and external non-junction vertices. Suppose I(H) is not a
tree, and hence consists of two or more disconnected trees. Let T1 and T2 be any two
trees in I(H). Let x be a vertex in T1 and y be a vertex in T2. Since H is 3-connected,
there must be at least three disjoint paths(undirected) between x and y. Clearly in a
planar graph, if there are three disjoint paths between two vertices, one of the paths must
be strictly enclosed in the closed region formed by other two. Therefore there must a
path between x and y that is strictly enclosed inside the boundary of H, and hence does
not contain any edge or vertex adjacent to the outer face of H. Hence x and y cannot
become disconnected after removing external edges and external non-junction vertices
leading to a contradiction that I(H) is disconnected. Therefore I(H) must be a tree. ◀
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Proof of Lemma 39. Suppose I ′(P ) has two junction vertices x and y that are sinks. They
cannot be adjacent, so consider the unique undirected path in I ′(P ) between x and y. There
must be a source z on the path. Let neighbours of z be x′, y′, lying on the path from x to z

and from z to y respectively.
Let B◦

z(x′) and B◦
z(y′) denote the bridges of flower(z) with points of attachments x′

and y′ respectively. Then by the orientations of the edges we have: |B̃◦
z(x′)| ≥ |B̃◦

x′(z)|
which gives|B̃◦

z(x′)| > |B̃◦
z(y′)|since B◦

z(y′) is clearly a proper subgraph of B◦
x′(z) and

|B̃◦
z(y′)| ≥ |B̃◦

y′(z)| which gives|B̃◦
z(y′)| > |B̃◦

z(x′)| which is clearly a contradiction. ◀

Proof of Lemma 42. A (weakly connected) component of Vrem is a bridge, attached to
petalwi,ui

or to petalwi,ui+1 via its vertices of attachment. In the clique sum decomposition,
these vertices of attachment will always contain a 1 or 2 separating clique, since if a bridge is
attached to a petal via three or more nodes, the first and the last vertices of attachment form
a separating pair that separates the bridge from flower(v). Hence it is a branch remaining
in TM after removing the 3 − connected piece node that is central in TM . Since every branch
after removal of the central piece of TM has weight ≤ 1

2 (wt(M)), every (weakly) connected
component of Vrem has weight ≤ 1

2 (wt(M)). ◀

A.3 Mesh Separator Algorithm
Proof of Lemma 43. We have the following two cases
1. For some i and j ∈ {i, i + 1}, pwi,uj

, wt(Vrem(wi, uj)) ≥ 1
2 wt(M).

Then by Lemma 42, pwi,uj separates Vrem(wi, uj) from the rest of the graph, and also
every weakly connected component in Vrem(wi, uj) has weight ≤ 1

2 wt(M). Hence every
weakly connected component in M after removing pwi,uj has weight ≤ 1

2 wt(M).
2. For every pwi,uj

, wt(Vrem(wi, uj)) ≤ 1
2 wt(M).

We know that for any index i and j ∈ {i, i + 1}, if f = fuj ,v,wi
, then wt(Vf ) ≤ wt(G)/12

by the hypothesis of Lemma 28. Starting clockwise from pu1,w1 , at first Vleft is small,
and on shifting from pwi,ui

to pwi,ui+1 or from pwi,ui+1 to pwi+1,ui+1 , the increase in Vleft

is bounded above by wt(Vf ) + wt(Vrem(wi, uj)) + wt(B̃◦
v(wi)). Recall that

a. wt(Vf ) ≤ wt(G)/12 (by the hypothesis of Lemma 28).
b. wt(Vrem(wi, uj)) ≤ 1

2 wt(M) (by hypothesis for this case).
c. wt(B̃◦

v(wi)) ≤ 1
2 (wt(M) − wt(Vrem(wi, uj))) (by Lemma 40).

Thus the addition to Vleft in each iteration is ≤ 1
12 wt(G)+wt(Vrem(wi, uj))+ 1

2 (wt(M))−
1
2 (wt(Vrem(wi, uj)))), which is equal to 1

12 wt(G) + 1
2 wt(Vrem(wi, ui)) + 1

2 (wt(M)) ≤
1

12 wtG + 3
4 wt(M). Thus we can stop the first time wt(Vleft) is greater than wt(G)/12.

So, we have wt(Vleft) ≤ 2
12 wt(G) + 3

4 wt(M) ≤ 11
12 wt(G), and wt(Vright) ≤ 11

12 wt(M), and
wt(Vf ) ≤ 1

12 wt(M), and wt(vrem) ≤ 1
2 wt(M). Thus we have an upper bound of 11

12 wt(G)
on all the disconnected components. Hence pxi,wi

is a 11
12 path separator. ◀
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In this work, we consider the following order reconfiguration problem: Given a graph G together
with linear orders ω and ω′ of the vertices of G, can one transform ω into ω′ by a sequence of swaps
of adjacent elements in such a way that at each time step the resulting linear order has cutwidth
(pathwidth) at most k? We show that this problem always has an affirmative answer when the
input linear orders ω and ω′ have cutwidth (pathwidth) at most k/2. Using this result, we establish
a connection between two apparently unrelated problems: the reachability problem for two-letter
string rewriting systems and the graph isomorphism problem for graphs of bounded cutwidth. This
opens an avenue for the study of the famous graph isomorphism problem using techniques from
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1 Introduction

In the field of reconfiguration, one is interested in studying relationships among solutions of
a problem instance [17, 24, 27]. Here, by reconfiguration of one solution into another, we
mean a sequence of steps where each step transforms a feasible solution into another. Three
fundamental questions in this context are: (1) Is it the case that any two solutions can be
reconfigured into each other? (2) Can any two solutions be reconfigured into each other in
a polynomial number of steps? (3) Given two feasible solutions X and Y , can one find in
polynomial time a reconfiguration sequence from X to Y ?

In this work, we study the reconfiguration problem in the context of linear arrangements
of the vertices of a given graph G. The space of feasible solutions is the set of all linear
orders of cutwidth (pathwidth) at most k for some given k ∈ N. We say that a linear order
ω can be reconfigured into a linear order ω′ in width k if there is a sequence ω1, . . . , ωm of
linear orders of width at most k such that ω1 = ω, ωm = ω′ and for each i ∈ {2, . . . ,m}, ωi is
obtained from ωi−1 by swapping two adjacent vertices. Our main result (Theorem 3) states
that if ω and ω′ are linear orders of cutwidth at most k, then ω can be reconfigured into ω′

in width at most 2k. Additionally, reconfiguration in width at most 2k can be done using at
most O(n2) swaps. Finally, a reconfiguration sequence can be found in polynomial time.
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Our results on reconfiguration of linear arrangements can be used to establish an interesting
connection between two apparently unrelated computational problems: reachability for two-
letter string rewriting and graph isomorphism.

A two-letter rewriting rule over a given alphabet Σ is a rewriting rule of the form ab → cd

for letters a, b, c, d ∈ Σ. A two-letter string rewriting system is a collection R of two-letter
string rewriting rules. The reachability problem for such a rewriting system R is the problem
of determining whether a given string x ∈ Σn can be transformed into a given string y ∈ Σn

by the application of a sequence of two-letter rewriting rules. On the other hand, in the
graph isomorphism problem, we are given graphs G and G′ and the goal is to determine
whether there exists a bijection φ from the vertex set of G to the vertex set of G′ in such a
way that an edge {u, v} belongs to G if and only if the edge {φ(u), φ(v)} belongs to G′.

In order to describe more precisely the connections between two-letter term rewriting
and graph isomorphism, we briefly discuss the notion of slices and unit decompositions. A
slice is a graph S where the vertices are partitioned into a center C and special in-frontier I
and out-frontier O that can be used for composition. A slice S1 can be glued to a slice S2 if
the out-frontier of S1 can be coherently matched with the in-frontier of S2. In this case, the
gluing gives rise to a bigger slice S1 ◦ S2 which is obtained by matching the out-frontier of S1
with the in-frontier of S2. A unit slice is a slice with a unique vertex in the center. Any slice S
can be decomposed into a sequence of unit slices. More specifically, a unit decomposition
is a sequence U = S1S2 . . .Sn of unit slices with the property that for each i ∈ [n− 1], Si

can be glued to the slice Si+1. The result of gluing the unit slices in U is a slice
◦
U with

n center vertices. Conversely, any slice S with n center vertices can be written as a unit
decomposition U = S1S2 . . .Sn with the property that

◦
U is isomorphic to S.

An important remark connecting unit decompositions and the notion of cutwidth is
that if a slice S has cutwidth k, then S can be decomposed into a unit decomposition
U = S1S2 . . .Sn where for each i ∈ [n], Si has at most k vertices in each frontier. Therefore,
if we let Σ(k) denote the set of all unit slices with frontiers of size at most k, then any
graph G with n vertices of cutwidth at most k can be written as a word (unit decomposition)
of length n over the alphabet Σ(k). In this work, for each k ∈ N, we introduce a suitable
two-letter string rewriting system R(k) over the alphabet Σ(k) with the following property:
if U and U′ are two unit decompositions over Σ(k) and if U can be transformed into U′

using the rewriting rules in R(k), then the graphs
◦
U and

◦
U′ are isomorphic. Our second

main result is a partial converse for this property. More precisely, we show that given two
unit decompositions U and U′ over Σ(k), if the graphs

◦
U and

◦
U′ are isomorphic, then

each of these unit decompositions can be transformed into one another by the application of
rewriting rules from the string rewriting system R(2k) (Theorem 11).

The proof of Theorem 11 is heavily based on Theorem 3. An important feature of this
proof is that, given an isomorphism from

◦
U to

◦
U′, one can construct a sequence of rewriting

steps transforming U into U′. Conversely, given any such a sequence, we are able to construct
an isomorphism from

◦
U to

◦
U′. This result, together with the fact that unit decompositions

of minimum cutwidth can be approximated in FPT time, implies that the graph isomorphism
problem for graphs of cutwidth at most k is FPT-equivalent to the reachability problem for
R(2k) (Theorem 13).

Related Work. The reachability problem for a given string rewriting system R consists
in determining whether a given string x can be transformed into a given string y by the
application of rewriting rules from R. Reachability is a central problem in the field of string
rewriting [6] and can also be studied under the light of term rewriting theory [19, 5, 1, 6].
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The complexity of the reachability problem is highly dependent on the rewriting system R.
For general rewriting systems, the problem becomes undecidable [6]. In the case of two-letter
rewriting, reachability can be solved in PSPACE since in this case, strings never grow in
size. It is also not difficult to design two-letter rewriting systems for which the reachability
problem is PSPACE-complete. Nevertheless, our results imply that for each k ∈ N, the
R(2 · k)-reachability problem for unit decompositions of length n and width at most k is
reducible to the graph isomorphism problem. Therefore, it can be solved in time npolylog(n),
independently of k, using Babai’s quasi-polynomial time algorithm for graph isomorphism [2].
An interesting question we leave unsolved is the complexity of R(α · k)-reachability for
unit decompositions of width at most k when α is a rational number with 1 ≤ α < 2. In
particular, we do not know if there is such an α for which the reachability problem becomes
PSPACE-hard.

In the field of parameterized complexity theory [7, 6], a computational problem is said to
be fixed-parameter tractable (FPT) with respect to a parameter k if it can be solved in time
f(k) · nO(1) on inputs of size n. Here f : N → N is a computable function depending only on
the parameter k, but not on the size n of the input. The Graph Isomorphism problem (GI
for short) has been shown to be solvable in time f(k) · nO(1) (that is, FPT time) whenever
the parameter k stands for eigenvalue multiplicity [3], treewidth [21], feedback vertex-set
number [20], or size of the largest color class [9] of the involved graphs. On the other hand,
GI can be solved in time f1(k) · nf2(k) (that is, in XP time), whenever the parameter k
stands for genus [23], rankwidth [15], maximum degree [22], size of an excluded topological
subgraph [12], or size of an excluded minor [11]. We note that, in particular, Babai’s algorithm
and techniques have been recently used to improve the fastest FPT algorithm for graphs of
treewidth at most k from 2O(k5·log k) · nO(1) [21] to 2O(k·polylog(k)) · nO(1) [14], and for graphs
of maximum degree d, the fastest XP-algorithm has been improved from nO(d/ log d) [4] to
npolylog(d) [13]. In particular, it is worth noting that graphs of cutwidth k have maximum
degree at most k and treewidth O(k). Therefore, isomorphism of graphs of cutwidth k can be
solved in time 2O(k·polylog(k)) ·nO(1) [14]. This implies that R(2 ·k)-reachability can be solved
in 2O(k·polylog(k)) · nO(1) time when restricted to unit decompositions of width at most k.
Showing that isomorphism for graphs of cutwidth k can be solved in time 2O(k) · nO(1) is
still an open problem.

Another width parameter for linear orders that has been studied in the context of graph
theory is the vertex separation number of a graph [8]. This parameter may be seen as a order
theoretic interpretation of the notion of pathwidth. The techniques used to prove Theorem 3
can be generalized to prove that reconfiguration of linear orders of vertex separation number k
can always be achieved in width at most 2 · k (Theorem 16). While we do not provide a
string-rewriting interpretation of this result, we do state it formally in Section 5 since this
result may be of independent interest in the field of reconfiguration.

2 Preliminaries

Basics. We let N denote the set of natural numbers, including 0, and N+ denote the set of
positive natural numbers. For each n ∈ N+, we let [n] = {1, . . . , n}. As a degenerate case,
we let [0] = ∅. Given a finite set S, we let P(S) be the set of all subsets of S. For each k ∈ N,
we let P(S, k) and P(S,≤ k) be the sets of subsets of S of size exactly k and at most k,
respectively.

MFCS 2021



8:4 Order Reconfiguration Under Width Constraints

Graphs. In this work, graphs are simple and undirected. Given a graph G we let V (G)
denote the vertex set of G and E(G) denote the edge set of G. Given a subset S ⊆ V (G), we
let G[S] be the subgraph of G induced by S. More precisely, V (G[S]) = S and E(G[S]) =
E(G)∩P(S, 2). An isomorphism from a graph G to a graph G′ is a bijection φ : V (G) → V (G′)
such that for each v, u ∈ V (G), {v, u} ∈ E(G) if and only if {φ(v), φ(u)} ∈ E(G′). If such
an isomorphism exists, we say that G is isomorphic to G′.

Order. Let V be a set with |V | = n. A linear order on V is a bijection ω : [n] → V .
Intuitively, for each j ∈ [n] and v ∈ V , ω(j) = v indicates that v is the j-th element of ω.
If S ⊆ [n], then we let ω(S) = {ω(j) : j ∈ S} be the image of S under ω. Given linear
orders ω, ω′ : [n] → V of V and a number i ∈ [n− 1], we write ω i−→ ω′ to indicate that ω′ is
obtained from ω by swapping the order of the vertices at positions i and i+ 1. More precisely,
ω′(j) = ω(j) for every j ∈ [n] \ {i, i+ 1}, ω′(i) = ω(i+ 1), and ω′(i+ 1) = ω(i).

Let ω : [n] → V be a linear order on a set V . Let S ⊆ V . We let ωS : [|S|] → S be the
linear order induced by ω on S. More precisely, if we write the elements of S in increasing
order according to ω, then for each i ∈ [|S|], ωS(i) is the i-th element in this sequence.

Order Reconfiguration. We say that ω can be reconfigured into ω′ in one swap, and denote
this fact by ω → ω′, if there exists some i ∈ [n] such that ω i−→ ω′. We say that ω can
be reconfigured into ω′ in at most r swaps, and denote this fact by ω →r ω

′, if there are
numbers r′ ∈ [r], i1, . . . ir′ ∈ [n], and linear orders ω0, . . . , ωr′ such that

ω = ω0
i1−→ ω1

i2−→ . . .
ir′−−→ ωr′ = ω′.

We call this sequence a reconfiguration sequence from ω to ω′. The mere existence of a
(possibly empty) reconfiguration sequence from ω to ω′ is also written as ω →∗ ω′.

Composition of Linear Orders. Let i ∈ {0, . . . , n}, and ω, ω′ : [n] → V . We let ω ⊕i ω
′ :

[n] → V be the linear order that orders the vertices in the subset ω([i]) ⊆ V according to
ω followed by the vertices in the subset V \ ω([i]), ordered according to ω′. More precisely,
ω ⊕i ω

′ is defined as follows for each j ∈ [n].

ω ⊕i ω
′(j) =

{
ω(j) if j ≤ i,

ω′V \ω([i])(j − i) if j > i.
(1)

We note that in particular, ω ⊕0 ω
′ = ω′ and ω ⊕n ω

′ = ω.

String Rewriting. A two-letter string rewriting systems is a pair (Σ, R) where Σ is a finite,
non-empty set of symbols (an alphabet), and R ⊆ Σ2 × Σ2 is a set of rewriting rules of the
form ab → cd. Let x and y be strings in Σn and i ∈ [n−1]. We say that x can be transformed
into y by applying a rewriting rule ab → cd at position i if xixi+1 = ab, yiyi+1 = cd and
xj = yj for j /∈ {i, i+ 1}. We write x i−→ y to denote that x can be transformed into y by the
application of some rewriting rule at position i. We write x → y to denote that x can be
transformed into y by the application of some rewriting rule at some position i ∈ [n− 1]. We
say that y is reachable from x if there is a sequence of strings x = x0, x1, . . . , xm = y such
that xi−1 → xi for each i ∈ [m]. We write x →∗ y to denote that y is reachable from x. We
say that x and y are R-equivalent if x →∗ y and y →∗ x.
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3 Linear Order Reconfiguration

Let G be an n-vertex graph. Given sets S, S′ ⊆ V (G), we let E(G,S, S′) = {{u, v} ∈ E(G) :
u ∈ S, v ∈ S′} be the set of edges with one endpoint in S and the other endpoint in S′.
As a special case, we define E(G,S) = E(G,S, V (G) \ S). We will often make use of the
following monotonicity property without explicit mentioning: If T ⊆ S and T ′ ⊆ S′, then
|E(G,T, T ′)| ≤ |E(G,S, S′)|.

▶ Definition 1 (Cutwidth). Let G be an n-vertex undirected graph. Let ω : [n] → V (G) be a
linear order on the vertices of G. For each p ∈ [n], we let cw(G,ω, p) = |E(G,ω([p− 1]))| be
the number of edges that have one endpoint in the first p− 1 vertices of the linear order ω
and the other endpoint in the remaining vertices. The cutwidth of the linear order ω is
defined as cw(G,ω) = maxp∈[n] cw(G,ω, p). The cutwidth of the graph G is defined as
cw(G) = minω cw(G,ω) , where ω ranges over all linear orders on the vertex set V (G).

For each k ∈ N, and each n-vertex graph G, we let CW(G, k) = {ω : [n] → V (G) :
cw(G,ω) ≤ k} be the set of linear orders of V (G) of cutwidth at most k. We say that ω can
be reconfigured into ω′ in cutwidth at most k if there is a reconfiguration sequence

ω = ω0
i1−→ ω1

i2−→ · · · ir−→ ωr = ω′

such that for each j ∈ {0, . . . , r}, ωj ∈ CW(G, k).

▶ Problem 2 (Bounded Cutwidth Order Reconfiguration). Let G be an n-vertex graph, ω, ω′ :
[n] → V (G) be linear orders on the vertex set of G, and k ∈ N. Is it true that ω can be
reconfigured into ω′ in cutwidth at most k?

It should be clear that if k is smaller than the cutwidth of the graph G, then the answer
for Problem 2 is trivially no since in this case neither ω nor ω′ are in CW(G, k). On the
other hand, we will show in Theorem 3 below that the answer is always yes if k is at least
twice the cutwidth of the thickest input linear order.

▶ Theorem 3. Let G be an n-vertex graph and ω, ω′ : [n] → V (G) be linear orders of
V (G) of cutwidth at most k. Then, ω can be reconfigured into ω′ in cutwidth at most
cw(G,ω) + cw(G,ω′) ≤ 2k.

To prove this theorem, we need the following three lemmas.

▶ Lemma 4. Let G be an n-vertex graph, S ⊆ V (G) and ω : [n] → V (G) be a linear order
on V (G). Then, ωS is a linear order on V (G[S]). Additionally, cw(G[S], ωS) ≤ cw(G,ω).

Proof. As S = V (G[S]), ωS is a linear order on V (G[S]). Let p ∈ [|S|] and let p′ ∈ [n] be
the unique number such that ωS(p) = ω(p′). Then,

cw(G[S], ωS , p) = |E(G[S], ωS([p− 1]))|
= |E(G[S], ωS([p− 1]), {ωS(r) : r ≥ p})|
= |E(G,ωS([p− 1]), {ωS(r) : r ≥ p})|
≤ |E(G,ω([p′ − 1]))|
= cw(G,ω, p′)
≤ cw(G,ω) ,

as ωS([p−1]) ⊆ ω([p′ −1]) and {ωS(r) : r ≥ p} ⊆ {ω(r′) : r′ ≥ p′} = V (G)\ω([p′ −1]). ◀
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▶ Lemma 5. Let G be an n-vertex graph and ω, ω′ : [n] → V (G) be linear orders of
V (G) with cutwidth of at most k. Then, for each i ∈ [n], ω ⊕i ω

′ has cutwidth at most
cw(G,ω) + cw(G,ω′) ≤ 2k.

Proof. Let i, p ∈ [n]. There are two cases to be analyzed. By definition, we have that

cw(G,ω⊕iω
′, p) = |E(G,ω⊕iω

′([p−1]))| = |E(G,ω⊕iω
′([p−1]), V (G)\ω⊕iω

′([p−1]))| .

First, if p ≤ i, then we have

cw(G,ω ⊕i ω
′, p) = |E(G,ω([p− 1]), V (G) \ ω([p− 1]))| = cw(G,ω, p) ≤ cw(G,ω) .

Secondly, if p > i, then we have

cw(G,ω ⊕i ω
′, p) = |E(G,ω ⊕i ω

′([p− 1]), V (G) \ ω ⊕i ω
′([p− 1]))|

(a)= |E(G, (ω ⊕i ω
′([p− 1])) ∩ ω([i]), V (G) \ ω ⊕i ω

′([p− 1]))|
+ |E(G, (ω ⊕i ω

′([p− 1])) \ ω([i]), V (G) \ ω ⊕i ω
′([p− 1]))|

(b)
≤ cw(G,ω, i+ 1) + cw(G[V (G) \ ω([i])], ω′V (G)\ω([i]), p− i)
≤ cw(G,ω) + cw(G,ω′).

For Equality (a), observe that {(ω ⊕i ω
′([p − 1])) ∩ ω([i]), (ω ⊕i ω

′([p − 1])) \ ω([i])} is a
partition of ω ⊕i ω

′([p − 1]). To understand Inequality (b), we need two arguments. As
ω([i]) ⊆ ω ⊕i ω

′([p− 1]),

E(G, (ω ⊕i ω
′([p− 1])) ∩ ω([i]), V (G) \ (ω ⊕i ω

′([p− 1]))) ⊆ E(G,ω([i]), V (G) \ ω([i])) ,

which shows that the cardinality of the first set is upper-bounded by cw(G,ω, i+ 1). As the
edges in E(G, (ω ⊕i ω

′([p− 1])) \ ω([i]), V (G) \ (ω ⊕i ω
′([p− 1])) only connect vertices with

positions beyond i within ω ⊕i ω
′, after an index shift, we see that only the linear order ω′

really matters, which explains the inequality

|E(G, (ω ⊕i ω′([p−1]))\ω([i]), V (G)\ (ω ⊕i ω′([p−1]))| ≤ cw(G[V (G)\ω([i])], ω′V (G)\ω([i]), p− i) .

For the last inequality, apply Lemma 4 to derive cw(G[V (G) \ ω([i])], ω′V (G)\ω([i])) ≤
cw(G,ω′). As p is arbitrary, cw(G,ω ⊕i ω

′) ≤ cw(G,ω) + cw(G,ω′) ≤ 2k follows for each
i ∈ [n]. ◀

▶ Lemma 6. Let G be an n-vertex graph, ω, ω′ : [n] → V (G) be linear orders on V (G) of
cutwidth at most k and i ∈ {0, . . . , n− 1} be an integer. Then, ω ⊕i ω

′ can be reconfigured
into ω ⊕i+1 ω

′ in cutwidth at most cw(G,ω) + cw(G,ω′) ≤ 2k.

Proof. By Lemma 5, ω⊕iω
′ and ω⊕i+1ω

′ have cutwidth at most cw(G,ω)+cw(G,ω′) ≤ 2k.
Let j ∈ [n] such that ω⊕i ω

′(j) = ω(i+ 1), i.e., j is the position of ω(i+ 1) in ω⊕i ω
′. As for

each p ∈ [i], ω ⊕i ω
′(p) = ω ⊕i+1 ω

′(p) = ω(p), we have j > i. Let us consider the following
sequence of swaps:

ω ⊕i ω
′ = ω0

j−1−−→ ω1
j−2−−→ · · · i+1−−→ ωj−i−1 = ω ⊕i+1 ω

′.

If j = i+ 1, this sequence is empty and ω ⊕i ω
′ = ω ⊕i+1 ω

′. At each step of this sequence,
we swap ω(i+ 1) with its left neighbor. This brings ω(i+ 1) from position j to position i+ 1.
By doing this, we transform ω ⊕i ω

′ into ω ⊕i+1 ω
′.
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ωt = ω(1) ω(2) · · · ω(i) ω′′(1) · · · ω(i+ 1) · · ·

p = j − t+ 1

Figure 1 Illustration of the key part in Lemma 6. In this figure ω′′ = ω′V \ω([i+1]). The red part
of the linear order follows the linear order ω for the first i + 1 elements, and the blue part of the
linear order follows ω′ for the remaining elements. Then, the set of edges crossing the cut at position
p = j − t + 1 can be split in two, the set of edges that start from the red part and the set of edge
that start from the green part. The number of red edges is bounded by the cutwidth of ω and the
number of green edges is bounded by the cutwidth of ω′.

Inductively, we show that each element ωt in the sequence has cutwidth upper-bounded
by cw(G,ω) + cw(G,ω′) ≤ 2k. By Lemma 5, cw(G,ω0) = cw(G,ω ⊕i ω

′) ≤ cw(G,ω) +
cw(G,ω′) ≤ 2k, which proves the induction basis. Let t ∈ [j−i−1] and p ∈ [n] be two integers.
As induction hypothesis, we have cw(G,ωt−1) ≤ cw(G,ω) + cw(G,ω′) ≤ 2k. If p ≤ j − t or
p > j − t+ 1, then we have ωt−1([p− 1]) = ωt([p− 1]), so cw(G,ωt, p) = cw(G,ωt−1, p) ≤
cw(G,ω) + cw(G,ω′) ≤ 2k by induction hypothesis. Otherwise, p = j − t + 1 ∈ {i, . . . , j}
(Figure 1) and we have

cw(G,ωt, p) = |E(G,ωt([p− 1]))|
= |E(G,ωt([p− 1]), {ωt(r) : r ≥ p})|
= |E(G,ωt([i] ∪ {p− 1}), {ωt(r) : r ≥ p})|

+ |E(G, {ωt(l) : i < l < p− 1}, {ωt(r) : r ≥ p})|.

By definition of ωt and p, we have ωt(p − 1) = ωt(j − t) = ω(i + 1). Therefore, we have
|E(G,ωt([i]∪{p−1}), {ωt(r) : r ≥ p})| = |E(G,ω([i+1]), {ωt(r) : r ≥ j−t+1})|. As we are
swapping ω(i+ 1) leftwards, {ωt(r) : r ≥ j− t+ 1} ⊆ {ω(r) : r ≥ i+ 2} = V (G) \ω([i+ 1]).
Again by definition of ωt and p, the elements in {ωt(l) : i < l < p − 1} are ordered
according to ω′, which is also true for {ωt(r) : r ≥ p}. More formally, {ωt(l) : i < l <

p − 1} = {ω ⊕i ω
′(l) : i + 1 ≤ l ≤ p − 2} = {ω′V (G)\ω([i+1])(l′) : l′ ≤ p − 2 − i} and

{ωt(r) : r ≥ p} = {ω ⊕i ω
′(r) : r ≥ p} = {ω′V (G)\ω([i+1])(r′) : r′ ≥ p− i− 1}. Therefore,

cw(G,ωt, p) ≤ cw(G,ω, i+ 2) + cw(G[V (G) \ ω([i+ 1])], ω′V (G)\ω([i+1]), p− i− 1)

≤ cw(G,ω) + cw(G[V (G) \ ω([i+ 1])], ω′V (G)\ω([i+1]))
≤ cw(G,ω) + cw(G,ω′)
≤ 2k.

To achieve the penultimate inequality, we again apply Lemma 4. ◀

Proof of Theorem 3. Consider the following sequence: ω = ω′ ⊕0 ω →∗ ω′ ⊕1 ω →∗ · · · →∗

ω′ ⊕n ω = ω′. By Lemma 6, one can realize each step in cutwidth at most cw(G,ω) +
cw(G,ω′) ≤ 2k, which then also upper-bounds the whole reconfiguration sequence. ◀
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4 Slice Rewriting System

Slices. Let I = {[a] : a ∈ N} denote the set of intervals of the form [a] = {1, . . . , a} for
a ∈ N (recall that [0] = ∅). We let I0 = {{0} × [a] : [a] ∈ I}, and I1 = {{1} × [a] : [a] ∈ I}.
A slice S = (I, C,O,E) is a (multi-)graph where the vertex set V = I ∪̇ C ∪̇ O is partitioned
into an in-frontier I ∈ I0, a center C ∈ I and an out-frontier O ∈ I1, and E is a multiset of
unordered pairs from I ∪ C ∪O in such a way that vertices of I ∪O have degree exactly 1,
there is no edge between any two vertices in I, and no edge between any two edges in
O. We depict slices as in Figure 2. We define slices using multigraphs, as the gluing
operation, defined below, can take slices which are simple graphs, and create a slice which is
a multigraph (see Figure 5). Given a slice S, we define I(S) as the in-frontier of S, O(S) as
the out-frontier of S, and C(S) as the center vertices of S. The width of a slice S is defined
as w(S) = max(|I(S)|, |O(S)|).

S
1

2
3

1
2
3
1

2 4

Figure 2 Slices are drawn as tiles. This figure depicts the slice S = (I, C, O, E) where I =
{(0, 1), (0, 2)}, C = {1, 2, 3}, O = {(1, 1), (1, 2), (1, 3), (1, 4)} and E = {{(0, 1), 1}, {(0, 2), 3}, {1, 2},

{2, 3}, {1, (1, 1)}, {2, (1, 2)}, {2, (1, 3)}, {3, (1, 4)}}. We omit the first element of the pair for frontier
vertices and use the following convention. The in-frontier vertices are on the left of the tile and the
out-frontier vertices are on the right of the tile. If the frontier vertices are not explicitly mentioned
in the drawing, we assume that frontier vertices are ordered from top to bottom as in this drawing.

Gluing Slices. A slice S1 = (I1, C1, O1, E1) can be glued to S2 = (I2, C2, O2, E2) if for some
interval [a] ∈ I, O1 = {1}×[a] and I2 = {0}×[a]. In this case, the gluing gives rise to the slice
S1 ◦ S2 = (I1, C1 ∪ (|C1| ⊕C2), O2, E) where |C1| ⊕C2 = {|C1| + 1, |C1| + 2, . . . , |C1| + |C2|},

E ={{x, y} ∈ E1 : x, y ∈ I1 ∪ C1}
∪ {{x, y} ∈ E2 : x, y ∈ O2}
∪ {{x, y + |C1|} : {x, y} ∈ E2 ∧ x ∈ O2 ∧ y ∈ C2}
∪ {{x+ |C1|, y + |C1|} : {x, y} ∈ E2 ∧ x, y ∈ C2}
∪ {{x, y} : ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ O2 ∧ {(0, i), y} ∈ E2}
∪ {{x, y} : ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ |C1| ⊕ C2 ∧ {(0, i), y − |C1|} ∈ E2}.

Note that the gluing operation is associative. Therefore, we will not write parentheses for
the gluing of more than two slices. Figure 3 illustrates the gluing of two slices.

Unit Slices and Unit Decompositions. We say that a slice is a unit slice if it has a unique
vertex in its center. A unit decomposition is a sequence U = S1S2 . . .Sn, where Si are
unit slices and Si ◦ Si+1 is well defined for each i ∈ [n− 1]. The slice associated to a unit
decomposition U is defined as

◦
U= S1 ◦ S2 ◦ . . . ◦ Sn (Figure 4). Note that if the in-frontier

of S1 and the out-frontier of Sn are empty, then
◦
U is just a multigraph with vertex set [n]

(Figure 5). For each k ∈ N, we define the alphabet Σ(k) as the set of all unit slices of width
at most k. We let Σ(k)⊛ denote the set of all unit decompositions over Σ(k).
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S1

11

2

1
2
3
◦

S2

13 2
2
1 1=

S1 ◦ S2

11 1

22 2

Figure 3 Gluing of two slices S1 and S2. The gluing operation is a way to merge two slices into
one. In this example, the edge from the center vertex 1 from S1 to the out-frontier vertex (1, 2) is
stitched to the edge from the in-frontier vertex (0, 2) to the center vertex 1 from S2 to form the
edge between the center vertices 1 and 2 in S1 ◦ S2. The stitching of edges is done following the
order of the frontier vertices.

S1

1
◦

S2

1 ◦
S3

1
=

◦
U

1
2

3

Figure 4 Slice associated to the unit decomposition U = S1S2S3. The gluing operation is
associative, therefore parentheses are not needed.

The order of the unit slices in a unit decomposition U = S1S2 . . .Sn induces a linear
order ωU on the vertices of the slice

◦
U. This linear order sets ωU(i) = (0, i) for each

(0, i) ∈ I(S1), ωU(|I(S1)| + i) = i for each i ∈ {1, . . . , n} and ωU(|I(S1)| + n+ i) = (1, i) for
each (1, i) ∈ O(Sn).

Given a unit decomposition U = S1S2 . . .Sn in Σ(k)⊛, we let w(U) = maxi∈[n] w(Si).

▶ Proposition 7. Let k ∈ N, and U = S1S2 . . .Sn be a unit decomposition in Σ(k)⊛, and
ωU be the linear order induced by U on

◦
U. Then, cw(

◦
U, ωU) = w(U).

Proof. This follows by noticing that for each vertex p in {1, . . . , |I(S1)|}, cw(
◦
U, ωU, p) ≤

|I(S1)|, for each p in {|I(S1)| + n, . . . , |I(S1)| + n + |O(Sn)|}, cw(
◦
U, ωU, p) ≤ O(Sn), and

for each p ∈ {|I(S1)| + 1, . . . , |I(S1)| + n}, cw(
◦
U, ωU, p) ≤ w(Si−|I(S1)|). ◀

▶ Proposition 8. Let G be an n-vertex graph and ω be a linear order on the vertices of G of
cutwidth k. Then, we can construct in time O(kn) a unit decomposition U such that ω = ωU.

Proof. We will do this construction by first drawing the graph G in the plane. G does not
need to be planar for this construction to work. First, we will place the vertices of G on a
straight line L isomorphic to R. The ith vertex of G with respect to the linear order ω is placed
at the coordinate i on the line. Then edges are drawn as curves between their endpoints. Now,
we will draw n+ 1 lines perpendicular to L at coordinates {−0.5, 0.5, 1.5, . . . , n−0.5, n+ 0.5}.
We call these lines cut-lines. The cutwidth of ω is k, therefore each cut-line intersects at
most k edges in the drawing of G. We put a vertex at the intersection of a cut-line and an
edge. The graph between two consecutive cut-lines defines a unit slice of width at most k.
Taking all those slices in the order induced by ω on the line L gives a unit decomposition U
of width k such that ω = ωU. Figure 6 illustrates this construction. ◀

Equivalence of Slices. Let S1 = (I1, C1, O1, E1) and S2 = (I2, C2, O2, E2) be two slices.
We say that S1 is equivalent to S2, denoted by S1 ∼ S2, if and only if I1 = I2, O1 = O2,
C1 = C2, and there is an isomorphism ϕ from S1 to S2 such that the restriction of ϕ to I1
and O1 is the identity function. In other words, S1 and S2 are equivalent if they are equal
up to the renaming of the center vertices.

MFCS 2021



8:10 Order Reconfiguration Under Width Constraints

(a)

S1

1 ◦
S2

1
◦

S3

1 =

◦
U

1
2

3

Figure 5 Slice associated to the unit decomposition U = S1S2S3. The resulting slice does not
have any vertex in its frontier. It can therefore be seen as a multigraph on 3 vertices.

(b) 1 2 3 ⇒
S1

1

S2

1

S3

1

Figure 6 Slicing of the graph G on the left into a unit decomposition U on the right.

We let R(k) ⊆ Σ(k)2×Σ(k)2 be the set of all rewriting rules of the form S1S2 → S′
1S′

2 such
that S1 ◦ S2 ∼ S′

1 ◦ S′
2. Call two unit decompositions U,U′ ∈ Σ(k)⊛ locally R(k)-equivalent,

and denote this fact by U k∼ U′, if there exist W,W′ ∈ Σ(k)⊛ and S1,S′
1,S2,S′

2 ∈ Σ(k)
with S1 ◦ S2 ∼ S′

1 ◦ S′
2 such that U = WS1S2W′ and U′ = WS′

1S′
2W′ (Figure 7).

S1

1

S2

1
∼

S′
1

1

S′
2

1

Figure 7 Local Equivalence. S1S2 is (locally) R(4)-equivalent to S′
1S′

2.

We let k≡ ⊆ Σ(k)⊛ × Σ(k)⊛ be the equivalence relation defined on unit decompositions
by taking the reflexive, symmetric and transitive closure of k∼. If U k≡ U′, then we say that
U′ is R(k)-equivalent to U. We note that there may exist unit decompositions in Σ(k)⊛

that are not R(k)-equivalent but that are R(k′)-equivalent for some k′ > k.

▶ Lemma 9. Let k ∈ N and U and U′ be unit decompositions in Σ(k)⊛. If U is R(k)-
equivalent to U′, then

◦
U is isomorphic to

◦
U′.

Proof. It is enough to show that that if U can be transformed into U′ in one R(k)-rewriting
step then

◦
U is isomorphic to

◦
U′. Therefore, assume that U → U′. Then there exist unit

decompositions W,W′ ∈ Σ(k)⊛ and a rewriting rule S1S2 → S′
1S′

2 in R(k) such that
U = WS1S2W′ and U′ = WS′

1S′
2W′. Since S1 ◦ S2 ∼ S′

1 ◦ S′
2, we have an isomorphism φ

from S1 ◦ S2 to S′
1 ◦ S′

2 that acts as the identity map on frontier vertices. This implies that
◦
U=

◦
W ◦ S1 ◦ S2 ◦

◦
W′ is isomorphic to

◦
U′=

◦
W ◦ S′

1 ◦ S′
2 ◦

◦
W′. ◀

Twisting. Let U = S1S2 · · · Sn and U′ = S′
1S′

2 · · · S′
n be two unit decompositions. We say

that U is a twisting of U′ if
◦
U=

◦
U′. Note that we are not equating slices up to isomorphism.

In other words, we are really requiring that the slices
◦
U and

◦
U′ are syntactically identical.

Let S1 and S2 be unit slices in Σ(k) such that the out-frontier of S1 and the in-frontier
of S2 have k′ vertices for some k′ ≤ k. Given a permutation π : [k′] → [k′], let Sπ

1 be the
slice obtained by renaming each vertex (1, i) in the out-frontier of S1 to (1, π(i)), and let πS2
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S1

1 ◦
S2

1
◦

S3

1 =

◦
U=

◦
U′

1
2

3 =

S′
1

1 ◦
S′

2

1 ◦
S′

3

1

Figure 8 The unit decomposition U = S1S2S3 is a twisting of the unit decomposition U′ =
S′

1S′
2S′

3. Note that S2 ◦ S3 = S′
2 ◦ S′

3. Note that if we let π be the permutation that sets π(1) = 2,
π(2) = 3 and π(3) = 1, then S′

2 is obtained by permuting the out-frontier of S2 according to π and
S′

3 is obtained by permuting the in-frontier of S3 according to π.

be the slice obtained by renaming each vertex (0, i) in the in-fronter of S2 to (0, π(i)). Then
it should be clear that S1 ◦ S2 = Sπ

1 ◦ πS2. Additionally, for each two unit slices S′
1 and S′

2
such that S1 ◦ S2 = S′

1 ◦ S′
2, it should be clear that there is some permutation π such that

S′
1 = Sπ

1 and S′
2 = πS2. Note also that for each two such slices S′

1 and S′
2, the rewriting rule

S1S2 → S′
1S′

2 belongs to R(k). This implies that if a unit decomposition U = S1S2 . . .Sn is
a twisting of a unit decomposition U′ = S′

1S′
2 . . .S′

n, then U and U′ are R(k)-equivalent and
can be transformed into each other by applying a sequence of rewriting rules that “twists”
for each i ∈ [n − 1] the out-frontier of Si and the in-frontier of Si+1 according to some
permutation πi. This process is illustrated in Figure 8.

▶ Proposition 10 (Twisting). Let U = S1S2 · · · Sn and U′ = S′
1S′

2 · · · S′
n be two unit

decompositions in Σ(k)⊛ such that U is a twisting of U′. Then, U can be transformed
into U′ by the application of n− 1 rewriting rules from R(k).

An interesting question is whether, for each k ∈ N, there is some k′ ∈ N such that any two
unit decompositions U and U′ in Σ(k) are R(k′)-equivalent if and only if

◦
U is isomorphic

to
◦

U′. The answer turns out to be yes, as shown in Theorem 11 below.

▶ Theorem 11. Let U and U′ be unit decompositions in Σ(k)⊛. Then,
◦
U is isomorphic

to
◦

U′ if and only if U and U′ are R(2k)-equivalent.

Proof. Let U = S1S2 · · · Sn and U′ = S′
1S′

2 · · · S′
n. Suppose that U and U′ are R(2k)-

equivalent. Then by Lemma 9,
◦
U is isomorphic to

◦
U′.

For the converse, suppose that
◦
U is isomorphic to

◦
U′ and let φ be an isomorphism from

◦
U to

◦
U′. We show that U and U′ are R(2k)-equivalent.

Given a position i ∈ [n− 1] in the unit decomposition U, a swap between Si and Si+1 is
a rewriting rule in R(k′) for some k′ that rewrites U into the unit decomposition

Ui = S1S2 · · · Si−1S′′
i S′′

i+1Si+2 · · · Sn

such that, the function ψ : [n] → [n] that sets ψ(p) = p for all p /∈ {i, i+ 1}, ψ(i) = i+ 1 and
ψ(i+ 1) = i is an isomorphism from

◦
U to

◦
Ui.

Intuitively, we swap the center vertex of Si with the center vertex of Si+1. Note that
there may be several rewriting rules corresponding to such a swap. Now, a swap in the unit
decomposition U corresponds to a swap in ωU as defined for linear orders in Section 2. The
isomorphism φ defines a transformation of ωU into ωU′ .

By Proposition 7, cw(
◦
U, ωU) ≤ k and cw(

◦
U′, ωU′) ≤ k. Now, our result in Section 3 can

be used for the slice rewriting system R(2k). More precisely, it follows from Theorem 3 that
we can transform ωU into ωU′ by a sequence of O(n2) swaps and at each step, the cutwidth
is at most 2k. By using the rewriting rules from R(2k), we can replicate these swaps into the
unit decomposition U, obtaining in this way a unit decomposition U′′ such that ωU′′ = ωU′ .
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Since
◦

U′′=
◦

U′, we have that U′′ is a twisting of U′. Therefore, it follows from Proposition 10
that U′′ can be further transformed into U′ by applying a sequence of n− 1 rewriting rules
from R(k) ⊆ R(2k).

Hence, U can be rewritten into U′′ by applying O(n2) rewriting rules from R(2k). ◀

Theorem 11 allows us to establish connections between the graph isomorphism problem
for graphs of cutwidth at most k and the reachability problem in R(2k).

▶ Theorem 12 ([10]). Let G be an n-vertex graph of cutwidth k. We can compute a linear
order ω of the vertices of G of width k in time 2O(k2) · n.

▶ Theorem 13. Graph isomorphism for n-vertex graphs of cutwidth at most k can be reduced
in time 2O(k2) · n to R(2k)-reachability.

Proof. Given n-vertex graphs G and G′ of cutwidth at most k, we first compute in time
2O(k2) · n linear orders ω and ω′ of the vertex sets of G and G′, respectively, of cutwidth at
most k. Then, from Proposition 8, we construct unit decompositions U and U′ such that
ωU = ω, ωU′ = ω′, G is isomorphic to

◦
U and G′ is isomorphic to

◦
U′. By Proposition 8, those

decompositions belong to Σ(k)⊛. By Theorem 11, we have that
◦
U and

◦
U′ are isomorphic if

and only if U and U′ are R(2k)-equivalent. ◀

5 Order Reconfiguration Parameterized by Vertex Separation Number

In this section, we show that the techniques employed in Section 3 for total orders of bounded
cutwidth can be generalized to the context of orders of bounded vertex-separation number
(Theorem 16). We consider that this generalization may be of independent interest in the
theory of reconfiguration, since vertex separation number is a width measure for graphs that
is strictly more expressive than cutwidth.

Let G be an n-vertex graph. Given sets S, S′ ⊆ V (G), we let V (G,S, S′) = {u ∈ S :
∃v ∈ S′ : {u, v} ∈ E(G)} be the set of vertices in S that are adjacent to some vertex in S′.
As a special case, we define V (G,S) = V (G,S, V (G) \ S). We will often make use of the
following monotonicity property without explicitly mentioning: If T ⊆ S and T ′ ⊆ S′, then
|V (G,T, T ′)| ≤ |V (G,S, S′)|.

▶ Definition 14 (Vertex Separation Number). Let G be an n-vertex undirected graph with
vertex set V (G) and edge set E(G). Let ω : [n] → V (G) be a linear order on the vertices of
G. For each p ∈ [n], we let

vsn(G,ω, p) = |V (G,ω([p− 1]))| = |{l ∈ [p− 1] : ∃r ≥ p such that {ω(l), ω(r)} ∈ E(G)}|.

The vertex separation number of ω is defined as vsn(G,ω) = maxp∈[n] vsn(G,ω, p). The
vertex separation number of G is defined as vsn(G) = minω vsn(G,ω) , where ω ranges over
all linear orders on the vertex set V .

For each k ∈ N and each n-vertex graph G, let VSN(G, k) = {ω : [n] → V (G) : vsn(G,ω) ≤
k} be the set of linear orders of V (G) of vertex separation number at most k. We say that ω
can be reconfigured into ω′ in vertex separation number at most k if there is a reconfiguration
sequence ω = ω0

i1−→ ω1
i2−→ · · · ir−→ ωr = ω′ such that for each j ∈ [r], ωj ∈ VSN(G, k).

▶ Problem 15 (Bounded Vertex Separation Number Reconfiguration). Let G be an n-vertex
graph, ω, ω′ : [n] → V (G) be linear orders on the vertex set of G, and k ∈ N. Is it true that
ω can be reconfigured into ω′ in vertex separation number at most k?
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The proof of Theorem 16 below is analogous to the proof of Theorem 3. More precisely,
this proof follows by restating Lemma 4, Lemma 5 and Lemma 6 in terms of the vertex
separation number of a graph instead of cutwidth, and then by using this last restated lemma
to conclude the proof, as done in Theorem 3.

▶ Theorem 16. Let G be an n-vertex graph and ω, ω′ : [n] → V (G) be linear orders of
V (G) of vertex separation number at most k. Then, ω can be reconfigured into ω′ in vertex
separation number at most vsn(G,ω) + vsn(G,ω′) ≤ 2k.

6 Conclusion

In this work, we have studied the order reconfiguration problem under the framework of the
theory of fixed-parameter tractability. In particular, in our main technical result, we have
shown that the order reconfiguration problem for orders of cutwidth at most k can always
be achieved in cutwidth at most 2k (Theorem 3). Using this result, we have established
new connections between the graph isomorphism problem and the reachability problem for a
special two-letter string rewriting system operating on unit slices. In particular, we have
proven that unit decompositions U and U′ of width k are R(2k)-equivalent if and only if the
graphs U and U′ are isomorphic (Theorem 11).

Theorem 11 opens up the possibility of studying the graph isomorphism problem under
the perspective of term rewriting theory. The most immediate question in this direction
is the complexity of deciding R(2k)-reachability for unit decompositions of width k. By
a reduction to isomorphism of graphs of cutwidth k, this problem can be solved in time
2O(k·polylogk)nO(1) using the results from [14]. Can techniques that are intrinsic to string/term
rewriting theory be used to improve this running time? Can such techniques be used to
obtain algorithms running in time f(k) · nO(1) for some computable function f : N → N?
Note that a positive answer to this question would be conceptually relevant even if the
function f(k) is substantially worse than the current 2O(k·polylog(k)), since techniques based
on rewriting may carry over to contexts where group theoretic techniques do not. One
interesting line of attack for this question would be to study connections between R(2k) and
techniques related to Knuth-Bendix completion and their generalizations [25, 26, 18, 16].

A natural question that arises in the context of reconfiguration of linear orders is the
following: given two linear orders ω and ω′, what is the minimum cutwidth of a linear order
ω′′ occurring in a reconfiguration sequence from ω to ω′? Is this problem NP-hard, or hard
to approximate? Is it solvable in FPT-time for certain parameters? We thank one of the
reviewers for bringing these interesting questions to our attention.
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Abstract
Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification
for the fundamental forces. Usually, one starts from a non-interactive theory which governs “matter”,
and features a global symmetry. One then extends the theory so as make the global symmetry into
a local one (a.k.a gauge-invariance). We formalise a discrete counterpart of this process, known as
gauge extension, within the Computer Science framework of Cellular Automata (CA). We prove that
the CA which admit a relative gauge extension are exactly the globally symmetric ones (a.k.a the
colour-blind). We prove that any CA admits a non-relative gauge extension. Both constructions yield
universal gauge-invariant CA, but the latter allows for a first example where the gauge extension
mediates interactions within the initial CA.
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1 Introduction

Symmetries are an essential concept, whether in Computer science or in Physics. In this paper
we explore the Physics concept of gauge symmetry by taking it into the rigorous, Computer
Science framework of Cellular Automata (CA). Implementing gauge-symmetries within
CA may prove useful in the fields of numerical analysis; quantum simulation; and digital
Physics – as these are constantly looking for discrete schemes that simulate known Physics.
Quite often, these discrete schemes seek to retain the symmetries of the simulated Physics;
whether in order to justify the discrete scheme as legitimate or as numerically accurate
(e.g. by doing the Monte Carlo-counting right [12]). More specifically, the introduction of
gauge-symmetries within discrete-time lattice models has proven useful already in the field
of Quantum Computation, where gauge-invariant Quantum Walks and Quantum Cellular
Automata [1] provide us with concrete digital quantum simulation algorithms for particle
Physics. These come to complement the already existing continuous-time lattice models
of particle Physics [9, 15]. Another field where this has played a role is Quantum error
correction [13, 14], where it was noticed that gauge-invariance amounts to invariance under
certain local errors. This echoes the fascinating albeit unresolved question of noise resistance
within Cellular Automata [7, 8, 11, 18].
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In [16] the authors study G–blind cellular automata, where G is a group of permutation
acting on the state space of cells. Blind cellular automata are globally symmetric under
G, i.e. the global evolution commutes with the application of the same g ∈ G at once on
every cell. They show the surprising result that any CA can be simulated by such a globally
symmetric CA, when G is the symbol permutations. Globally symmetric CA are therefore
universal. Local symmetry, aka gauge symmetry, is way more stringent however: a different
gx can now be chosen for every cell x. Still, in this paper, we prove that any CA can be
extended into a gauge-invariant CA. Gauge-invariant CA are therefore universal.

From a Physics perspective one usually motivates the demand for a certain gauge
symmetry, from an already existing global symmetry. From a mathematical perspective,
the gauge field that then gets introduced for that purpose is often seen as a connection
between two gauge choices at neighbouring points. This raises questions however, because
there is no immediate reason why a gauge symmetry should necessarily arise from an already
existing global symmetry (one could ask for a certain ad hoc gauge symmetry from scratch).
Nor is there an immediate reason why a gauge field should necessarily be interpretable as
a connection (a gauge field could be made to hold absolute instead of relative information
about gauge choices).
In this paper, we prove an original result relating these two folklore perspectives about gauge
theories using purely combinatorial definitions. Namely, we prove that the CA that admit
relative gauge extension are exactly those that have the corresponding global symmetry in
the first place.

Although the gauge field was initially introduced in order to obtain gauge symmetry,
it allows for new dynamics. Amongst those dynamics, one could ask for the matter field
to influence the dynamics of the gauge field, as is the case in Physics. In this paper, we
provide a first a Gauge-invariant CA where this is happening. This CA is obtained through
a non-relative gauge extension. We leave it as an open question whether the same can be
achieved though a relative gauge extension.

The present work builds upon two previous papers by a subset of the authors, which laid
down the basic definitions of gauge-invariance for CA and provided a first set of examples, in
both the abelian [2] and the non-abelian [3] cases. Sec. 2 first recalls these basic definitions,
but it also formalises the notions of general and relative gauge extensions, which were still
missing. Sec. 3 shows that CA admit a relative gauge extension if and only if they are globally
symmetric. Sec. 4 shows that any CA admits a general gauge extension. Sec. 5 draws the
consequences upon universality. Sec. 6 provides a first example of a gauge-extended CA
whose gauge field is sourced by the matter field.

2 Definitions

2.1 Cellular Automata
A cellular automaton (CA) consist in an array of identical cells, each of which may take
one in a finite number of possible states. The whole array evolves in discrete time steps by
iterating a function F . Moreover this global evolution F is shift-invariant (it acts everywhere
the same) and causal (information cannot be transmitted faster than some fixed number of
cells per time step). Let us make this formal.

▶ Definition 2.1 (Configuration). A configuration c over an alphabet Σ and a space Zd is a
function that associates a state to each point:

c : Zd −→ Σ

The set of all configurations will be denoted ΣZd .
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A configuration should be seen as the state of the CA at a given time. We use the
short-hand notation cx = c(x) for x ∈ Zd and c|I for the configuration c restricted to the set
I, i.e. c : I −→ Σ, for I ⊆ Zd. The association of a position and its state is called a cell.

The way to describe a global evolution F that is causal, is via the provision of a local
rule. A local rule takes as input a configuration restricted to x + N , and outputs the next
value of the cell x, i.e. f : ΣN −→ Σ, where N is a finite subset of Zd referred to as “the
neighbourhood”. Applying f at every position x simultaneously, implements F .

▶ Definition 2.2 (Cellular automata). The CA F having neighbourhood N and local function
f : ΣN −→ Σ is the function F : ΣZd −→ ΣZd such that for all x ∈ Zd,

F (c)x = f(c|x+N ).

We sometimes denote by ct,x the value of a cell at position x and time t, where ct+1 = F (ct).

2.2 Global versus gauge symmetry
Global symmetry

We say that a CA is globally symmetric whenever its global evolution is invariant under the
application of the same alphabet permutation at every position at once. Globally symmetric
CA are also known as G-blind CA [16] with G a group of permutations over Σ.

▶ Definition 2.3 (Globally symmetric). Let F : ΣZn → ΣZn be a CA and G be a group
of permutations over Σ. For all g ∈ G, let ḡ denote its application at every position
simultaneously: ḡ(c)i = g(ci). We say that F is globally G-symmetric if and only if, for any
g in G, we have F ◦ ḡ = ḡ ◦ F .

Local/gauge symmetry

We say that a CA is locally symmetric whenever its global evolution is invariant under
the application of a local permutation at every position. The first difference with globally
symmetric CA is the permutation is now allowed to differ from one position to the next.
The second difference is that the permutation is now allowed to act on the surrounding cells.
Locally symmetric CA are referred to as gauge-invariant CA [2, 3, 4].

▶ Definition 2.4 (Local gauge-transformation group). Let g be a permutation over Σ(2s+1)d ,
with s ∈ N. We denote by gx : ΣZd −→ ΣZd the function that acts as g on the cells at
[[x−s, x+s]]d, and trivially everywhere else. A local gauge-transformation group G is a group
of bijections over Σ(2s+1)d , such that for any g, h ∈ G and any x ̸= y ∈ Zd, gx ◦ hy = hy ◦ gx.

This permutation condition makes it irrelevant to consider which local gauge-transformation
gets applied first, so that the product gxhy be defined. The condition is decidable, checking
it over the [[−2s, +2s]]d suffices.

▶ Definition 2.5 (Gauge-transformation). Consider G a group of local gauge-transformations.
A gauge-transformation is then specified by a function γ : Zd −→ G. It is interpreted as
acting over c ∈ ΣZd as follows:

γ(c) = (
∏

x∈Zd

γx)(c),

where γx is short for γ(x)x. We denote by Γ the set of gauge-transformations.

MFCS 2021
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Notice how an element γ ∈ Γ may be thought of as a configuration over the alphabet G.
Thus γx is an element of G which can be applied on a finite configuration, while γx is its
natural extension which can be applied onto a full configuration.

Gauge-invariant CA are “insensitive” to gauge-transformations: performing γ before F

amounts to performing some γ′ after F .

▶ Definition 2.6 (Gauge-invariant CA). Let F be a CA, G be a local gauge-transformation
group, and Γ be the corresponding set of gauge-transformations. F is Γ-gauge-invariant if
and only if there exists a CA Z over the alphabet G, such that for all γ ∈ Γ:

Z(γ) ◦ F = F ◦ γ.

The reason why γ′ must result from a CA Z, instead of being left fully arbitrary, is because
F is deterministic, shift-invariant and causal – from which it follows that γ′, if it exists, can
be computed deterministically, homogeneously and causally from the γ applied before. Thus,
the above is demanding a weakened commutation relation between the evolution F and
the set of gauge-transformations Γ. In practice in Physics Z is often the identity, making
gauge-invariance a commutation relation. This will be the case in our constructions.

2.3 (Relative) gauge extensions
In Physics, one usually begins with a theory that explains how matter freely propagates, i.e.
in the absence of forces. This initial theory solely concerns the “matter field”, and is not
gauge-invariant. For instance, the Dirac equation, which dictates how electrons propagate, is
not U(1)–gauge-invariant. Next, one enriches the initial theory with a second field, the so-
called gauge field, so as to make the resulting theory gauge-invariant. For instance, the case of
the electron, U(1)–gauge-invariance is obtained thanks to the addition of the electromagnetic
field. The resulting theory can still account for the free propagation of the matter field, but
the presence of the gauge field also allows for richer behaviours, e.g. electromagnetism. Quite
surprisingly three out of the four fundamental forces can be introduced mathematically, and
thereby justified by gauge symmetry requirements, through this process of “gauge extension”.

But when is it the case that a theory is a gauge extension of another, exactly? In Physics
this is left informal. One of the contributions of this paper is the provide a first rigorous
definition of the notion of gauge extension, and of its relative subcase, in the discrete context
of CA.

General gauge extension

A gauge extension must simulate the initial CA, extend the required gauge-transformations,
and achieve gauge-invariance overall:

▶ Definition 2.7 (Gauge extension). Let F be a CA over alphabet Σ. Let Γ be a gauge-
transformation group over Σ. Let Λ be a finite set which will serve as the gauge field alphabet.
A gauge extension of (F, Γ) is a tuple (F ′, Γ′) with F ′ a CA over alphabet Σ × Λ and Γ′ a
gauge-transformation group over Σ × Λ, such that:

(Simulation) there exists ϵ ∈ Λ such that F ′ simulates one step of F when the gauge field
value is set ϵ everywhere. In other words for any c ∈ ΣZd , there exists e′ ∈ ΛZd ,

F ′(c, e) = (F (c), e′)

where e is the constant gauge field configuration (x 7→ ϵ).
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(Extension) Γ′ extends Γ: there exists a bijection B : Γ′ → Γ such that for any γ′ ∈ Γ′,
there exists a CA Lγ′ over alphabet Λ, such that for any c, λ ∈ ΣZd × ΛZd ,

γ′(c, λ) = (γ(c), Lγ′(λ)) (1)

where γ = B(γ′).
(Gauge-invariance) F ′ is Γ′-gauge-invariant.

We used implicitly the canonical bijection between (Σ × Λ)Zd and ΣZd × ΛZd

Notice that when the gauge field does not evolve in time, we can rewrite the simulation
condition as F ′(c, e) = (F (c), e). Then F is a sub-automaton of F ′ [10], whenever the gauge
field is set to e.

Intuitively, the gauge field’s role is to keep track of which gauge-transformation got
applied where, so as to hold enough information to insure gauge-invariance. There are
different ways to do this; for instance one could indeed store the “gauge” at each point, i.e.
which gauge-transformation has happened at the specific point. But one could be more
parsimonious and store just the “relative gauge”, i.e. which gauge-transformation relates
that which has happened at every two neighbouring points.

Relative gauge extension

The standard choice in the Physics literature is to place the gauge field between the matter
cells only – i.e. on the links between two cells. This choice of layout is sometimes referred
to as the “quantum link model” [6, 17]. The mathematical justification for this choice, is
precisely that the gauge field may be interpreted as relative information between neighbouring
matter cells. Geometrically speaking, it may be understood as a “connection” relating two
closeby “tangent spaces” on a manifold.

Our previous definition of general gauge extensions does allow for such relative gauge
extensions as a particular case, up to a slight recoding, as shown in Fig-1, i.e. the link model
is simulated by transferring the value of a gauge field on a link, to the vertex at the tip of
the link.

N

S

EW

x

y

(a) The link model layout. . . .

W S

N

E

x

y

(b) . . . encoded in the general gauge extension layout.

Figure 1 Capturing the link model used for relative gauge extensions with the general definition.

The following specialises the previous, mathematical notion of gauge extension, to the
restricted way in which it is understood in Physics:

▶ Definition 2.8 (Relative gauge extension). Given a CA F and a local gauge-transformation
group Γ of radius s = 0, we say that a gauge extension (F ′, Γ′) is relative when:
(a) the gauge field is positioned on the links (x, x + ed), where ed takes values in

{(1 0 0 . . .), (0 1 0 . . .), . . .}.
(b) the gauge field takes values in G and the ϵ from Definition 2.7 is the identity – i.e. Λ = G

and ϵ = I
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(c) for every position x a gauge-transformations γ ∈ Γ′ act both on the matter field at x

according to γx ∈ G, and on the gauge field a of its links, as follows:{
γx(a)(x−ed,x) = γx ◦ a(x−ed,x)

γx(a)(x,x+ed) = a(x,x+ed) ◦ γ−1
x

(2)

Thus relative extension keeps track of the difference of gauge between two neighbouring cells.
The above definitions were given for the Zd grid, in order to establish the notion of gauge

extension in full generality. The next section, however, will be given just in one dimension
(d = 1) for clarity. We have established it in arbitrary dimension d in a private manuscript.

3 Globally symmetric CA admit a relative gauge extension

From a Physics perspective, the gauge symmetry one seeks to impose usually comes from
an already existing global symmetry. We show here that there is an equivalence between
being globally G-symmetric and having a gauge extension with respect to G a subgroup of
the permutations of Σ.

▶ Theorem 3.1 (Global symmetry and relative gauge extension). Let F be a CA over alphabet
Σ, G a subgroup of the permutations of Σ and Γ the set of gauge-transformations defined
using G as the group of local gauge-transformations. Then the following two properties are
equivalent:

(i) F is globally G-symmetric
(ii) (F, Γ) admits a relative gauge extension (F ′, Γ′) with the identity for the gauge field

evolution, such that F ′ commutes with any element of Γ′ (stronger than gauge-invariance
because it does not require a Z-map).

Proof.

(i ⇒ ii). Let f be the local rule of F with radius r. Let F ′ be a CA of radius r over the
extended configurations – containing a gauge field in between neighboring cells – such that
the gauge field evolution is the identity and the local rule f ′ for the evolution of the matter
field is defined as follows:

f ′(c−r,a(−r+1,−r), ..., c0, a(0,1), ..., cr) =

f

( −r∏
i=−1

a(i,i+1)(c−r), ..., a(−1,0)(c−1), c0, a−1
(0,1)(c1), ...,

r∏
i=1

a−1
(i−1,i)(cr)

)
(3)

where a is the gauge field and

−j∏
i=−1

a(i,i+1)(c−j) = a(−1,0) ◦ . . . ◦ a(−j+1,−j+2) ◦ a(−j,−j+1)(c−j)

j∏
i=1

a−1
(i−1,i)(cj) = a−1

(0,1) ◦ . . . ◦ a−1
(j−2,j−1) ◦ a−1

(j−1,j)(cj).

f ′ is defined so as to apply f on a configuration that is on the same gauge basis – i.e. where
relative gauge-transformations are cancelled and every cell is looked through the eyes of the
gauge at position 0.

We shall now prove that (F ′, Γ′) – with Γ′ defined through Eq.(2) – is a relative gauge
extension of (F, Γ).

The fact that this extension is relative is immediate from the definition. We therefore
need to prove that this extension has the 3 required properties from definition 2.7.
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(Simulation) The fact that F ′ simulates F when the gauge field is the identity is immediate
from the definition of f ′.
(Extension) Because Γ′ is defined through definition 2.8, it is also immediate that it
verifies the extension property.
(Gauge-invariance) For any γ′ ∈ Γ′ we will check that γ′ ◦ F ′ = F ′ ◦ γ′.
For j between 1 and r, we apply the gauge-transformation on the inputs (c and a) –
using Eq.(2) – and obtain by simple computation the following, where γ = B(γ′) through
definition 2.7:

∏j
i=1
[
γi ◦ a(i−1,i) ◦ γ−1

i−1
]−1

γj(cj) = γ0 ◦
[∏j

i=1 a−1
(i−1,i)(cj)

]
∏−j

i=−1
[
γi+1 ◦ a(i,i+1) ◦ γ−1

i

]
γj(cj) = γ0 ◦

[∏−j
i=−1 a(i,i+1)(cj)

]
where γi ∈ G. Therefore using this and Eq.(3) we have that

(F ′ ◦ γ′(c, a))0 =


f ◦ γ0



∏−r
i=−1 a(i,i+1)(c−r)

...

a(−1,0)(c−1)
c0

a−1
(0,1)(c1)

...∏1
i=r a−1

(i−1,i)(cr)




0

(4)

where γ0 is here applied to every element of the tuple. Since F is globally G-symmetric,
we have that f ◦ γ0 = γ0 ◦ f and therefore (F ′ ◦ γ′(c, a))0 = γ0 ◦ (F ′(c, a))0 which finishes
the proof that F ′ ◦ γ′ = γ′ ◦ F ′ through translation invariance and because the gauge
field evolution is the identity.

(ii ⇒ i). Suppose that (F ′, Γ′) is a relative gauge extension of (F, Γ), such that F ′ commutes
with any element of Γ′, we shall prove that F is globally G-symmetric (with Γ the gauge-
transformation group based on G). Let c be a configuration and e denote the empty
configuration of the gauge field. For any local gauge-transformation g, we write ḡ the global
gauge-transformation applying g everywhere – g denotes both the element of G and G′

depending on the context:

ḡ ◦ F ′(c, e) = ḡ(F (c), a) (Simulation 2.7)
= (ḡ(F (c)), a′) (Extension 2.7)

where a and a′ can be any gauge field configuration depending on F ′ and γ̄. And

F ′ ◦ ḡ(c, e) = F ′(ḡ(c), ḡ ◦ e ◦ ḡ−1) (Extension 2.8)
= F ′(ḡ(c), e)
= (F (ḡ(c)), a′) (Simulation 2.7)

where a and a′ can be any gauge field configuration depending on F ′ and g. The
G′-gauge-invariance of F ′ give us ḡ ◦ F ′(c, e) = F ′ ◦ ḡ(c, e) and thus

ḡ(F (c)) = F (ḡ(c)).

Therefore F is globally G-symmetric. ◀

This theorem proves useful when looking for relative gauge extensions: first search for
a global symmetry. The construction will be used in Sec. 5 to prove that relative gauge
extensions of CA are universal.

MFCS 2021
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4 Non-globally symmetric CA still admit an absolute gauge extension

We now prove that any CA can be intrinsically simulated by a gauge-invariant one, with
respect to any gauge-transformation group, of any radius. The construction of this section
uses non-relative gauge extensions, but it allows us to get rid of the prior requirements that
there be a global symmetry or that the gauge-transformations be of radius 0.

▶ Theorem 4.1 (Every CA admits a gauge extension). For any CA F and gauge-transformation
group Γ there exists for some gauge field alphabet a gauge extension (F ′, Γ′). Furthermore
the local rule of F ′ acts as the identity over the gauge field.

Proof. We give here a constructive proof for any CA over Zd.
Let F be a CA of radius s′ and G be a local gauge-transformation group of radius s. We

denote r the highest radius between s and s′. In the following we will consider neighbourhoods
Rk

x = [x − k · r, x + k · r]d of each point x ∈ Zd, with [a, b] = {n ∈ Z | a ≤ n ≤ b}.
First we choose G as gauge field alphabet and define the effect of a global gauge-

transformation γx as γx(a)x = γx ◦ ax, where a denotes a gauge field configuration. The
definition is so that the gauge field simply keeps track of every gauge-transformation applied
around x. For any other cell of the gauge field, γx has no impact. This condition along with
the extension property of Definition 2.7 fully defines the new gauge-transformation group Γ′.

Next we define a new local rule f ′ over the neighbourhood R5
x. The definition below just

states that the local rule applies
∏

i∈R2
x

a−1
i to undo all previous gauge-transformations, it

then computes the evolution of f , and finally reapplies all the gauge-transformations, i.e.

f ′(c|R5
x
, a|R5

x

)
=
( ∏

i∈R1
x

ai ◦ f|R2
x

( ∏
i∈R4

x

a−1
i (c|R5

x
)|R3

x

)
, ax

)
where f|R2

x
denotes the function from R3

x to R2
x which calculates the temporal evolution of

our automaton.
We can rewrite this local rule globally, using the notation a to denote either the gauge

field or a gauge-transformation which applies ax around each position x:

F ′(c, a)x =
(

a ◦ F ◦ a−1(c), a
)

x

Let us check that (F ′, Γ′) is a gauge extension:
(Simulation) When the gauge field is the identity f ′ acts the same as f over the matter
field, and as the identity over the gauge field.
(Extension) We used this property to define G′.
(Gauge-invariance) For any γ′ ∈ Γ′ – where Γ′ is built from G′ through definition 2.5 –
we must check that γ′ ◦ F ′ = F ′ ◦ γ′. We reason globally to simplify notations:

F ′ ◦ γ′(c, a) = F ′(γ(c), γ(a)) (Extension 2.7)

=
(

γ(a) ◦ F ◦ γ(a)−1(γ(c)), γ(a)
)

(Definition of F ′)

=
(

γ ◦ a ◦ F ◦ a−1 ◦ γ−1 ◦ γ
(
c
)
, γ(a)

)
(Definition 2.4)

=
(

γ ◦ a ◦ F ◦ a−1(c), γ(a)
)

(Definition 2.4)

γ′ ◦ F ′(c, a) = γ′
(

a ◦ F ◦ a−1(c), a
)

(Definition of F ′)

=
(

γ ◦ a ◦ F ◦ a−1(c), γ(a)
)

(Extension 2.7)

◀
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5 (Relative) gauge-invariant CA are universal

Results in this section are only given for dimension 1.
In [16], the authors prove that for any alphabet Σ containing 2 symbols or more, there

exists an intrinsically universal globally G-symmetric cellular automaton on ΣZ, where G

is the group of all permutations of σ. The proof involves an extension which encodes the
information in the structure of the configuration rather than the states, the idea being that
a global transformation will conserve the structure – thus the information. Combining this
result and Th. 3.1, we can easily prove the following corollary:

▶ Corollary 5.1 (Relative gauge-invariant cellular automata are universal). For any alphabet Σ
with |Σ| ≥ 2, any gauge transformation group G and any cellular automaton F on ΣZ, there
exists a G′-gauge-invariant CA F ′ which intrinsically simulates F , with G′ the extended
gauge-transformation based on G. Moreover, F ′ arises as the relative gauge extension of a
CA.

Proof. Let F ′′ be a globally G-symmetric CA on ΣZ that intrinsically simulates F using
[16, Theorem 1]. From Th. 3.1, (F ′′, G) admits a relative gauge extension (F ′, G′) with
the evolution of the gauge field being the identity. Thus F ′ intrinsically simulates F ′′, from
which it follows that F ′ is a G′-gauge-invariant CA which intrinsically simulates F . ◀

Such result is interesting on two accounts: (i) it shows that universality only requires
relative gauge information and does not need any absolute information stored in the gauge
field; (ii) it shows that relative gauge extensions, which are the ones usually appearing in
Physics, are universal. Still, the universality of gauge-invariant CA is an even more direct
corollary of Th. 4.1. With that construction we can just pick any universal CA F , any local
transformation group G of any radius, and gauge-extend F into F ′. F ′ acts trivially on the
gauge field in this construction, it thus intrinsically simulates F and is therefore universal.

6 Sourcing the gauge field with the matter field

In both the construction of Th. 3.1 and Th. 4.1, the evolution rule of the gauge field is the
identity, meaning that it does not evolve with time. It is often the case in Physics that a
further twist is then introduced, so that the the matter field now influences the gauge field.
We wish to do the same and find a gauge-extended CA whose gauge field influences the
matter field, and whose matter field backfires on the gauge field.

We use here the general definition of a gauge extension (Definition 2.7) to search a gauge
extension F ′ of a non gauge-invariant CA F . Without loss of generality, F ′ = (F ′

1, F ′
2), where

F ′
1 takes (c, a) as input and returns the matter field after one time-step, and F ′

2 does the
same for the gauge field. We impose that the gauge (resp. matter) field be sourced by the
matter (resp. gauge) field, in the strongest possible manner, i.e. we ask for F ′

2 (resp. F ′
1) to

be injective in its first (resp. second) parameter.
We begin by choosing the alphabet Σ = {0, 1, 2}2 and the space Z and we denote by cl

i

and cr
i respectively the left and the right part of the cell. In the following definitions we

consider that all the additions and all the subtractions are modulo 3.
We define the initial automaton by the local rule: F (c)i = (cl

i−1 − cr
i , cl

i + cr
i+1), cf. Fig.2.

We consider a local group of gauge-transformation containing three elements, namely:

G = {σ0, σ1, σ2}

where σi is the function of radius 0 that adds i to each part of the cell.

MFCS 2021
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b c

b + c b - c

i + 1ii − 1 i + 2

t

t + 1

Figure 2 The local rule of F.

We can check that F is not gauge-invariant for Γ (as defined from G), by considering a
configuration c which associates (1, 1) to position i and (0, 0) to all other positions. Let γ be
a gauge-transformation which applies σ2 over i, γ(c) is then the fully empty configuration e.
Since F preserves emptiness we have:

F ◦ γ(c) = γ(c) = e

But when we apply F to c we obtain non-empty cells in i + 1 and i − 1, this contradicts the
gauge-invariance definition. This idea is illustrated in sub-Figs 3a and 3b.

(a) F over c. (b) F over γ(c).

(c) F ′ over (c, e). (d) F ′ over γ(c, e).

Figure 3 Space-time representation of F and F ′ over the same initial configurations c and γ(c),
where c is the configuration at the bottom line of 3a 3c. The values 1 and 2 are respectively
represented by orange and red, while 0 is just an empty cell. Only the matter field is represented
here.
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We now provide a gauge extension for (F, Γ). We begin by choosing the gauge field
alphabet Λ = Σ and placing the gauge field between each cell.

Next we engineer the injective influence of the gauge field over the matter field in the
simplest possible way. We simply add, to each sub-cell of the matter field, the value of the
nearest sub-cell of the gauge field during each evolution. See Fig. 4b.

Finally we extend gauge-transformations to the gauge field (Fig. 4a) and choose the
evolution of the gauge field (green cells of Fig. 4b) to make sure that F ′ is a reversible gauge-
invariant dynamics. Notice that the figures where chosen so that all cases are given. The
proof of gauge-invariance for this example is given in appendix-A, and can be visually seen
from Figs. 3c and 3d where a gauge-transformation does not impact the overall dynamics.

a1 − k2
a2 − k2

−k1

a1 a2cl
1 cr

1 cl
2 cr

2

cl
1 + k1 cr

1 + k1 cl
2 + k2 cr

2 + k2

σk1 σk2

c

γ̃(c)

(a) The new gauge-transformation group Γ′.

a2
+
cl

1

a1 + a2
+
cr

2

a1 a2cl
1

. . . . . . cr
2

. . .

cl
1 + cr

2
+
a1

cl
1 − cr

2
+
a2

. . .

c

F ′(c)

(b) The new local rule f ′.

Figure 4 Description of the gauge extension (F ′, Γ′). Green circles represent the gauge field and
black rectangles the matter field.

Overall, starting from a CA F we have defined a gauge extension F ′ which features a
strong interaction between the gauge and the matter field. In the world of CA this is the
first example of the kind [5, 3]. Building this example required the choice of a very specific
extension of the gauge-transformation over the gauge field (cf Fig.4a) so as to obtain gauge-
invariance whilst preserving reversibility and injectivity. Under a relative gauge extension
this extension of the gauge-transformation is forced upon us, it seems hard to find such an
example.

Notice that since the gauge field is sourced by the matter field it typically does not
remain empty during the evolution. Thus F ′ can only simulate F for one time step. This
may seem strange from a mathematical point of view, as we may expect from an extension
that it preserves the original dynamics over several steps, too. But in Physics the initial non
gauge-invariant theory is indeed used to inspire a more complex dynamics, which enriches
and ultimately diverges from the original one. Fig.5 shows how starting from the same
configuration, one obtains very different evolutions.

7 Conclusion

In order to obtain a gauge-invariant theory, starting from a non-gauge-invariant one, the
usual route is to extend the theory by means of a gauge field. As discussed in the introduction,
the gauge field usually turns out to be a connection between gauge choices at neighbouring
points, but there is no immediate reason why this should be the case. In the first part, we
formalised, in the framework of Cellular Automata (CA), the notions of gauge extension and
relative gauge extension. The latter forces the gauge field to act as a connection.

MFCS 2021
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(a) Evolution of F . (b) Evolution of F ′.

Figure 5 Evolution of F and its gauge extension F ′ over 9000 temporal step.

Again in Physics one usually starts from a theory featuring a global symmetry, before
“making it local” through the gauge extension. Again there is no immediate reason why this
should be the case. In our framework, we were able to establish a logical relation between
global symmetry and relative gauge-invariance. Namely we proved that the CA that admit a
relative gauge extension are exactly those that have the corresponding global symmetry. To
the best of our knowledge, no continuous equivalent of that theorem exists in the literature;
perhaps the discrete offers better opportunities for formalisation.

We also proved that any CA can be extended into a gauge-invariant one. Thus, gauge-
invariant CA are universal. Two different constructions were provided. One construction
uses the gauge field to store, at each location, the value of the gauge-transformation which
the matter field has undergone at that location, thereby allowing for the action of the
transformation to be counteracted. This path uses a non-relative gauge extension. Another
construction puts together the fact that any CA can be made globally-symmetric [16], with
the fact that any globally-symmetric CA admits a relative gauge extension. Thus, relative
gauge-extended CA are universal.

Whilst the introduction of the gauge field is initially motivated by the gauge symmetry
requirement, the gauge field ends up triggering new, richer behaviours as it influences the
matter field. However, in order for it to mediate the interactions within the matter field, as is
the case in Physics, it should be the case that the matter field also influences the gauge field
– and back. In this paper, we provided a first example of a gauge-extended CA whose matter
field injectively influences gauge field, whilst preserving reversibility. This was done through
a general gauge extension, we leave it open whether this can be achieved through a relative
gauge extension. The difficulty here is that relative gauge extensions seem to store just the
minimal amount of information required for gauge-invariance, and any further influence upon
the gauge field runs the risk of jeopardising that.

This difficulty can be circumvented in the quantum setting: the Quantum Cellular
Automaton of [1] arises from a relative gauge extension, and yet features and a gauge field
which is “sourced” by the matter field. The construction directly yields a quantum simulation
algorithm for one-dimensional quantum electrodynamics. This should serve us a reminder
that whilst this work is theoretical, it is not merely of theoretical interest. Gauge extensions
is exactly what one needs to do in order to capture physical interactions within discrete
quantum models. This may lead for instance to digital quantum simulation algorithms,
with improved numerical accuracy, as fundamental symmetries are preserved throughout the
computation.
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A Proof of gauge-invariance for Sec. 6

In order to prove that the example illustrated in Fig. 4 is gauge-invariant, we will show that
γ′ ◦ F ′ = F ′ ◦ γ′ for any γ′ ∈ Γ′. It is sufficient to prove this locally, we do so using the
notations of the figure and we denote by f ′ and g′ the local application of the evolution and
a gauge-transformation:

f ′ ◦ g′(cl
1, a1, a2, cr

2) =


cl

1 + cr
2 + a1 + k1,

a2 + cl
1 − k2,

a1 + a2 + cr
2 − k1 − k2,

cl
1 − cr

2 + a2 + k2


= g′ ◦ f ′(cl

1, a1, a2, cr
2)

Therefore F ′ is Γ′-gauge-invariant.
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Abstract
Motivated by equivalence testing of k-tape automata, we study the equivalence testing of weighted
automata in the more general setting, over partially commutative monoids (in short, pc monoids),
and show efficient algorithms in some special cases, exploiting the structure of the underlying
non-commutation graph of the monoid.

Specifically, if the edge clique cover number of the non-commutation graph of the pc monoid
is a constant, we obtain a deterministic quasi-polynomial time algorithm for equivalence testing.
As a corollary, we obtain the first deterministic quasi-polynomial time algorithms for equivalence
testing of k-tape weighted automata and for equivalence testing of deterministic k-tape automata
for constant k. Prior to this, the best complexity upper bound for these k-tape automata problems
were randomized polynomial-time, shown by Worrell [24]. Finding a polynomial-time deterministic
algorithm for equivalence testing of deterministic k-tape automata for constant k has been open for
several years [13] and our results make progress.

We also consider pc monoids for which the non-commutation graphs have an edge cover consisting
of at most k cliques and star graphs for any constant k. We obtain a randomized polynomial-time
algorithm for equivalence testing of weighted automata over such monoids.

Our results are obtained by designing efficient zero-testing algorithms for weighted automata
over such pc monoids.
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1 Introduction

Testing the equivalence of two multi-tape finite automata is a fundamental problem in
automata theory. For a k-tape automaton, we denote the mutually disjoint alphabets for the
k tapes by Σ1, . . . ,Σk. The automaton accepts a subset of the product monoid Σ∗

1 × · · · × Σ∗
k.

Two multi-tape automata are equivalent if they accept the same subset.
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10:2 Equivalence Testing of Weighted Automata

Equivalence testing of multi-tape non-deterministic automata is undecidable [14]. The
problem was shown to be decidable for 2-tape deterministic automata independently by
Bird [5] and Valiant [22]. Subsequently, an exponential upper bound was shown for it [3].
Eventually, a polynomial-time algorithm was obtained by Friedman and Greibach [13] and
the authors conjectured that equivalence testing of deterministic k-tape automata for any
constant k is in polynomial time.

A closely related problem is testing the multiplicity equivalence of non-deterministic
multi-tape automata. The multiplicity equivalence testing problem is to decide whether for
each tuple in the product monoid Σ∗

1 × · · · × Σ∗
k, the number of accepting paths in the two

input automata is the same. Since a deterministic automaton has at most one accepting
path for each input word, the equivalence of deterministic k-tape automata coincides with
multiplicity equivalence. More generally, equivalence testing for weighted automata (over
the underlying field or ring of coefficients) is to decide if the coefficient of each word (i.e.
the total sum of weights of each accepting path) is the same for the two given automata.
For the weighted case, equivalence testing is in deterministic polynomial time for one-tape
automata [19, 21]. Equivalence testing of k-tape weighted automata was shown decidable
by Harju and Karhumäki [15] using the theory of free groups 1. An improved complexity-
theoretic upper bound remained elusive for k-tape multiplicity equivalence testing, until
recently Worrell [24] obtained a randomized polynomial-time algorithm for testing the
equivalence of k-tape weighted automata (and equivalence testing of deterministic k-tape
automata) for any constant k. Worrell takes a different approach via Polynomial Identity
Testing (PIT). In [24], Worrell asked if the equivalence testing problem for k-tape weighted
automata can be solved in deterministic polynomial time, for constant k.

This Paper. Building on Worrell’s results [24] and exploiting further the connections between
weighted automata equivalence and polynomial identity testing, we show that equivalence
testing of two k-tape weighted automata is in deterministic quasi-polynomial time. This
immediately yields the first deterministic quasi-polynomial time algorithm for equivalence
testing of deterministic k-tape automata.

Our approach solves a more general problem in the setting of partially commutative
monoids. To motivate this, let us consider k-tape weighted automata in this setting. The
product monoid M = Σ∗

1 ×· · ·×Σ∗
k associated with k-tape automata is a partially commutative

monoid (henceforth, pc monoid), in the sense that any two variables x ∈ Σi, y ∈ Σj , i ̸= j

commute with each other 2. Variables in the same tape alphabet Σi are mutually non-
commuting. We associate a non-commutation graph GM with M to describe the non-
commutation relations: (x, y) is an edge if and only if x and y do not commute. If there is no
edge (x, y) in GM , the words xy and yx are equivalent as the variables x and y commute. The
words over any pc monoid are defined with respect to the equivalence relation induced by the
non-commutation graph of the pc monoid. The notion of words and their equivalence over
a pc monoid is formally explained in Section 3. For the k-tape case, the non-commutation
graph GM is a union of k disjoint cliques: its vertex set is Σ1 ∪ . . .∪ Σk and GM is the union
of k disjoint cliques, induced by each Σi.

More generally, we obtain an equivalence testing algorithm for weighted automata over
any pc monoid whose non-commutation graph has a constant-size edge clique cover (not
necessarily disjoint) with a constant number of isolated vertices. Recall that the edge clique

1 This also shows the decidability of equivalence problem for deterministic multi-tape automata.
2 These are sometimes also called as free partially commutative monoids.
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cover of a graph is a collection of subgraphs where each subgraph is a clique and each edge
of the graph is contained in at least one of the subgraphs. The size of the edge clique cover
is the number of cliques in it.

The isolated vertices can be thought of as a part of the edge clique cover by adding a new
vertex (variable) for each isolated vertex and introducing a matching edge between them.
Henceforth, we will not worry about the isolated vertices separately and consider them as
part of the edge clique cover. We call such monoids as k-clique monoids where the edge
clique cover size is bounded by k.

▶ Remark 1.1. Since two weighted automata, A and B are equivalent if and only if their
difference C = A − B is a weighted automaton equivalent to zero (formally explained in
Section 2), we can describe the results in terms of zero-testing of a weighted automaton.3

In this paper, the field F from which the weights of automata are taken is an infinite field.
For computational implementation, we assume that the field arithmetic can be performed
efficiently (for example, F could be the field of rational numbers). Also, throughout the
paper the size of an automaton refers to the number of states.

▶ Theorem 1.2. Let A be an input F-weighted automaton of size s over a pc monoid M such
that its non-commutation graph GM has an edge clique cover of size k. Then, the zero-testing
of A has a deterministic (nks)O(k2 log ns) time algorithm. Here n is the size of the alphabet
of M , and the edge clique cover is given as part of the input.

It is interesting to note that the the decidability of the equivalence problem over partially
commutative monoids is already studied [23]. As an immediate corollary, the above theorem
yields a deterministic quasi-polynomial time algorithm for equivalence testing of k-tape
weighted automata (also for equivalence testing of deterministic k-tape automata). Notice
that, for the k-tape case, the edge clique cover of size k is also part of the input since for
each 1 ≤ i ≤ k, the ith tape alphabet Σi is explicitly given and it induces a clique.

▶ Corollary 1.3. The equivalence testing problem for k-tape weighted automata and determ-
inistic k-tape automata can be solved in deterministic quasi-polynomial time for constant k.

Next, we consider equivalence testing over more general pc monoids M .
Given a graph G = (X, E), a collection of k graphs {Gi = (Xi, Ei)}k

i=1 such that
X = ∪k

i=1Xi and E = ∪k
i=1Ei is called a k-covering of G. It seems natural to investigate

whether there are covers other than just edge clique cover for which one can obtain efficient
equivalence test.

We say M is a k-monoid if its non-commutation graph GM has a 2-covering {G1, G2}
such that, for some k′ ≤ k, G1 has an edge clique cover of size at most k′ and G2 has a
vertex cover of size at most k− k′ (hence the edges of G2 can be covered by k− k′ many star
graphs). We show that equivalence testing over k-monoids has a randomized polynomial-time
algorithm for constant k. This result can be seen as a generalization of Worrell’s result [24].

▶ Theorem 1.4. Let A be an input F-weighted automaton of size s over a k-monoid M .
Then the zero-testing of A can be decided in randomized (ns)O(k) time. Here n is the size of
the alphabet of M .

3 The difference C of two weighted automata A and B means the weight of each word w in C is the
difference between the weights of w in A and B.

MFCS 2021
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▶ Remark 1.5. What is the complexity of equivalence testing for weighted automata over
an arbitrary pc monoid? The non-commutation graph GM of any pc monoid M over the
alphabet X trivially has an edge clique cover of size bounded by

(|X|
2

)
. Hence, the above

results would only give an exponential-time algorithm. Note that if GM has an induced
matching 4 of size more than k then M is not a k-monoid. Call M a matching monoid if
GM is a perfect matching. It follows from Lemma 3.3, shown in Section 3, that equivalence
testing over arbitrary pc monoids is deterministic polynomial-time reducible to equivalence
testing over matching monoids. Thus, the complexity of zero-testing of F-weighted automata
over matching monoids is essentially the most general case. We also note that Worrell has
shown that the evaluation problem for multi-tape automata is #P-complete if the number of
tapes is not fixed [24, Proposition 3].

Various automata-theoretic problems have been studied in the setting of pc monoids. For
example, pc monoids have found applications in modeling the behavior of concurrent sys-
tems [16]. Droste and Gastin [10] have studied the relation between recognizability and
rationality over pc monoids.

Proofs Overview. Our proof is inspired by Worrell’s key insight [24] that the k-tape
automata equivalence problem can be reduced to a suitable instance of polynomial identity
testing problem over partially commuting variables. Worrell’s algorithm is randomized. In
contrast, since we are considering automata over general pc monoids and we aim to design
efficient deterministic algorithms, we require additional ideas. First, we suitably apply a
classical algebraic framework to transfer the zero-testing problem over general pc monoids to
pc monoids whose non-commutation graphs are a disjoint union of cliques [6, 8]. This allows
us to generalize a zero-testing criteria for weighted automata over standard noncommutative
setting [11, Cor. 8.3] to the setting of general pc monoids. The generalization states that any
nonzero weighted automata of size s over any pc monoid must have a non-zero word within
the length poly(s, n) where n is the alphabet size. This allows us to reduce zero-testing of
weighted automata to an instance of polynomial identity testing over pc monoids, where these
polynomials are computable by small algebraic branching programs (ABPs) over pc monoids.
Over noncommutative variables, ABPs are well-studied in arithmetic circuit complexity [17].
It turns out that we can solve the identity testing problem for ABPs over k-clique monoids
in deterministic quasi-polynomial time by suitably adapting a black-box polynomial identity
test for noncommutative algebraic branching programs based on a quasi-polynomial size
hitting set construction [12]. Our algorithm recursively builds on this construction, ensuring
that the resulting hitting set remains of quasi-polynomial size.

The proof of Theorem 1.4 is along similar lines. First, we obtain a randomized polynomial-
time identity testing algorithm over pc monoids whose non-commutation graph has a k-
vertex cover for constant k. This algorithm itself uses ideas from automata theory. Then a
composition lemma yields an identity testing algorithm over k-monoids.

The paper is organized as follows. In Section 2, we provide the necessary background.
We prove a zero testing criteria for automata over pc monoids in Section 3. Theorem 1.2 is
presented in Section 4, and Theorem 1.4 in Section 5. Some proof details are in the appendix.

4 An induced matching is a matching that includes every edge connecting any two vertices in the subset
as an induced subgraph.



V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:5

2 Preliminaries

We recall basic definitions and results, mainly from automata theory and arithmetic circuit
complexity, and define notations used in the paper.

Notation. Let F be an infinite field. Matt(F) denotes the ring of t× t matrices over F. For
matrices A and B of sizes m×n and p×q respectively, their tensor (Kronecker) product A⊗B
is defined as the block matrix (aijB)1≤i≤m,1≤j≤n, and the dimension of A⊗B is pm× qn.
Given bases {vi}1≤i≤dim(V ) and {wj}1≤j≤dim(W ) for the vector spaces V and W , the vector
space V ⊗W is the tensor product space with a basis {vi ⊗ wj}1≤i≤dim(V ),1≤j≤dim(W ).

For a series (resp. polynomial) S and a word (resp. monomial) w, let [w]S denote the
coefficient of w in the series S (resp. polynomial). In this paper, we consider weighted
automata over a field F and alphabet (or variables) X = {x1, . . . , xn}.

Arithmetic Circuit Complexity. An algebraic branching program (ABP) is a layered directed
acyclic graph with one in-degree-0 vertex called source, and one out-degree-0 vertex called
sink. Its vertex set is partitioned into layers 0, 1, . . . , d, with directed edges only between
adjacent layers (i to i+ 1). The source and the sink are in layers zero and d, respectively.
Each edge is labeled by a linear form over F in variables X = {x1, . . . , xn}. The polynomial
computed by the ABP is the sum over all source-to-sink directed paths of the product of
linear forms that label the edges of the path. The maximum number of nodes in any layer is
called the width of the algebraic branching program. The size of the branching program is
taken to be the total number of nodes.

Equivalently, the computation of an algebraic branching program can be defined via the
iterated matrix product λTM1M2 · · ·Mdµ, where λ, µ are vectors in Fw and each Mi is a
w × w matrix whose entries are affine linear forms over X. Here w corresponds to the ABP
width and d+ 1 corresponds to the number of layers in the ABP.

If X is a set of non-commuting variables then the ABP is a noncommutative algebraic
branching program (e.g., see [17]).

Let S ⊂ F⟨X⟩ be a subset of polynomials in the noncommutative polynomial ring F⟨X⟩.
A mapping v : X → Matt(F) from variables to t× t matrices, it defines an evaluation map
defined for any polynomial f ∈ F⟨X⟩ as v(f) = f(v(x1), . . . , v(xn)). A collection H of such
evaluation maps is a hitting set for S, if for every nonzero f in S, there is an evaluation
v ∈ H such that v(f) ̸= 0.

Let Sn,d,s denote the set of noncommutative polynomials in F⟨X⟩ (where n = |X|) that
have algebraic branching programs of size s and d layers. Forbes and Shpilka [12] have given
a quasi-polynomial size hitting set Hn,d,s computable in quasi-polynomial time for Sn,d,s

that can. Moreover, the matrix tuples in Hn,d,s are d+ 1 dimensional.

▶ Theorem 2.1 ([12, Theorem I.8]). For all s, d, n ∈ N, if |F| ≥ poly(d, n, s) then there is
a hitting set Hn,d,s for Sn,d,s. Further |Hn,d,s| ≤ (sdn)O(log d) and Hn,d,s is computable in
deterministic time (sdn)O(log d).

Automata Theory. We recall some basic algebraic automata theory from the Berstel-
Reutenauer book [4].

Let F be a field5 and X be an alphabet. A F-weighted automaton6 A over X has a finite
set of states Q. There is a weight function E : Q× X ×Q → F that assigns a weight to each
transition. The number of states, |Q| is the size of the automaton. A path is a sequence

5 In general F can be a semiring, but for our purpose it suffices to consider fields.
6 Sometime called nondeterministic weighted automata in the literature.
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10:6 Equivalence Testing of Weighted Automata

of edges: (q0, x1, q1)(q1, x2, q2) · · · (qt−1, xt, qt). The weight of the path is the product of the
weights of the edges. For each word w = x1x2 · · ·xt ∈ X∗, the coefficient of w, [w]S is the
total contribution of all the paths between a start and accepting state for the word w, which
is an element of F. This defines a formal series S =

∑
w∈X∗ [w]S · w which is an element of

the formal power series ring F⟨⟨X⟩⟩. We say that S is the formal series recognized by the
(weighted) automaton A.

Multi-tape automata. Next, we briefly explain weighted multi-tape automata defined in
terms of pc monoids. Let M be the pc monoid over variables X = X1 ∪ · · · ∪ Xk defined as
follows: the variables in each Xi are non-commuting, but for all i ≠ j and any x ∈ Xi, y ∈ Xj

we have xy = yx. As defined already, the transition function E is a mapping Q× X ×Q → F.
A path is a sequence of edges : (q0, x1, q1)(q1, x2, q2) · · · (qt−1, xt, qt) where each xi ∈ Xj for
some j. The label of the run is m = x1x2 · · ·xt in the pc monoid M , and [m]A is the total
contribution of all the runs between start and accepting states having the label equivalent
to m.

An automaton is deterministic if the set of states can be partitioned as Q = Q(1)⊔. . .⊔Q(k),
where states in Q(i) read input only from the ith tape alphabet Xi, and each state has a
single transition for every input variable. Thus, a deterministic automaton has at most one
accepting path for each input m ∈ M .

Now we explain how equivalence testing of weighted automata is polynomial-time reducible
to zero testing of weighted automata. Let A and B be F-weighted automata over the alphabet
X. The transition matrices NA and NB are defined as follows: NA[i, j] =

∑
x∈X EA(qi, x, qj)·

x. (NB is defined similarly)7. Let the series computed by A and B be λT
A ·

∑
i≥0 N

i
A ·µA and

λT
B ·

∑
i≥0 N

i
B · µB , respectively. Here λA, µA, λB , µB are column scalar vectors. Define the

weighted automaton C with transition matrix NC and the scalar vectors λC , µC as follows:

λC =
[
λA

λB

]
, NC =

[
NA 0
0 NB

]
, µC =

[
µA

−µB

]
.

We state an easy fact also used in [24].

▶ Fact 1. A and B are equivalent if and only if C is a zero automaton.

3 A Zero Testing Criteria Over Partially Commutative Monoids

A basic result in algebraic automata theory, says that an F-weighted automaton A of size s
represents a nonzero series in F⟨⟨X⟩⟩ if and only if there is a word w ∈ X∗ of length at most
s − 1, such that [w]S is nonzero. It has a simple linear algebraic proof [11, Corollary 8.3,
Page 145 ]8.

In this section, we prove a theorem similar in spirit over general pc monoids.

Pc monoids and partitioned pc monoids. Let X be a finite alphabet (equivalently, variable
set). Formally, a pc monoid M over X is a pair M = (X∗, I) where I ⊆ X × X be such
that (x1, x2) ∈ I if and only if x1x2 = x2x1. I is reflexive and symmetric. Let Ĩ be the
congruence generated from I by transitive closure. The monoid elements are defined as the
congruence classes m̃ for m ∈ X∗. In other words, M is a factor monoid of X∗ generated by
Ĩ. The non-commutation graph GM = (X, E) of M is a simple undirected graph such that
(x1, x2) ∈ E if and only if (x1, x2) /∈ I.

7 Here q1, q2, . . . be the enumeration of the states of A (and similarly for B).
8 This result is generally attributed to Schützenberger.
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A pc monoid M over alphabet (i.e. variable set) X is a k-partitioned pc monoid if
its non-commutation graph GM has a k-covering {Gi}k

i=1 such that the subgraphs Gi are
pairwise vertex disjoint. Given any pc monoid M with a k-covering, we can associate a
k-partitioned pc monoid M ′ with it, such that M is isomorphic to a submonoid of M ′, as
follows.

Suppose GM = (X,E) has a k-covering {Gi}k
i=1, where Gi = (Xi, Ei). Let X̂ = {xti | 1 ≤

t ≤ n, 1 ≤ i ≤ k} be kn new variables. Here |X| = n and X = x1, . . . , xn. Let G′
i = (X ′

i, E
′
i)

be a copy of Gi obtained by replacing the vertex xt ∈ Xi by its ith copy xti, such that
(xti, xsi) is an edge in G′

i if and only if (xt, xs) is an edge in Gi. Let G′ denote the disjoint
union graph G′ = G′

1 ⊔G′
2 ⊔ · · · ⊔ G′

k, and M ′ be the pc monoid whose non-commutation
graph is G′ = (X ′, E′). Clearly, M ′ is a k-partitioned pc monoid, defined by M and its given
k-covering.

As an F-algebra, we note that F⟨M ′⟩ is isomorphic to the tensor product of the F-algebras
F⟨M ′

1⟩ ⊗ · · · ⊗ F⟨M ′
k⟩ where M ′

i is the pc monoid defined by G′
i.

The following simple observation, which shows that the pc monoid M is isomorphic to a
submonoid of M ′, is well-known [6, 8, 9].

▶ Lemma 3.1. Let ψ : F⟨M⟩ → F⟨M ′⟩ be the map such that ψ(m) = m1 ⊗m2 ⊗ · · · ⊗mk

for any monomial m in M and extend by linearity. Here, for 1 ≤ i ≤ k, the monomial mi

is obtained from m (by dropping the letters of m not in Xi) and replacing each occurrence
xt ∈ Xi by the variable xti, 1 ≤ t ≤ n. Then, ψ is an injective homomorphism.

▶ Remark 3.2. We include a self-contained proof in the appendix for completeness, in our
notation.

By Lemma 3.1, zero testing for weighted automata over pc monoids is reducible to
zero-testing of weighted automata over partitioned pc monoids in deterministic polynomial
time. More formally, we show the following.

▶ Lemma 3.3. Let A be the given F-weighted automaton of size s over a pc monoid M for
which the non-commutation graph GM has k-covering {Gi = (Xi, Ei)}k

i=1. Then zero testing
of A is reducible to the zero testing of another F-weighted automaton B over the associated
k-partitioned pc monoid M ′ in deterministic polynomial time. Moreover, the size of the
automaton B is O(ns2k).

Proof. The automaton B is simply obtained by applying the map ψ on the variables in M .
For a variable xt, let Jt ⊆ {1, 2, . . . , k} be the set of indices such that, i ∈ Jt if and only if
xt ∈ Xi. Then ψ(xt) = ηi1 ⊗ · · · ⊗ ηi|Jt| where i1 < i2 < · · · < i|Jt| and for each j, ij ∈ Jt,
ηij

= xtij
. Now for each q0, qk ∈ Q such that (q0, xt, qk) ∈ E 9 and wt(q0, xt, qk) = α ∈ F, we

introduce new states q1, . . . , q|Jt|−1 and for each j ≤ |Jt| − 1, add the edge ej = (qj−1, ηij
, qj)

in E and wt(e1) = α and for other newly added edges the weight is 1. Since the number of
edges in A is O(ns2), it is easy to see the number of nodes in B is O(ns2k). The fact that A
computes the zero series if and only if B computes the zero series, follows from Lemma 3.1
and in particular from the fact that ψ is injective on the set of monomials. ◀

Worrell has already proved that the zero-testing of weighted automata over partitioned
monoids whose non-commutation graphs are union of disjoint cliques, can be reduced to
the identity testing of noncommutative ABPs [24]. We restate a proposition from Worrell’s
paper in our framework.

9 Here for simplicity of notation, we have used q0, qk to represent an arbitrary pair such that there is a
transition between them, and q0 is not necessarily the initial state.
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▶ Proposition 3.4 (Adaptation of Proposition 5 of [24]). Let A be a given F-weighted automaton
of size s over a partitioned pc monoid M computing a series S. Moreover the non-commutation
graph GM is the disjoint union of k cliques. Let N be the transition matrix of A. Then S is
the zero series if and only if the ABPs λTN ℓµ = 0 for each 0 ≤ ℓ ≤ s − 1, where λ, µ are
vectors in Fs.

Combining Lemma 3.3 and Proposition 3.4, we obtain the following generalization of [11,
Corollary 8.3] over arbitrary pc monoids which may be of independent interest.

▶ Theorem 3.5. Let A be a given F-weighted automaton of size s over any pc monoid M
representing a series S. Then S is a nonzero series if and only if there exists a word w ∈ X∗

such that [w]S is nonzero where the length of w is bounded by O(n3s2).

Proof. Observe that the non-commutation graph GM has a trivial edge clique cover of size
≤ n2 where n is the size of the alphabet. Then we apply Lemma 3.3 to conclude that S
is a zero series if and only if the series S′ computed by the F-weighted automaton B over
the associated partitioned pc monoid (whose non-commutation graph is a disjoint union of
cliques) is zero. The size s′ of B is bounded by O(n3s2). Now we use Proposition 3.4 to see
that S′ is identically zero if and only if the ABPs λTN ℓµ = 0 for each 0 ≤ ℓ ≤ s′ − 1 are
identically zero where N is the transition matrix of B. Now notice that under the image of ψ
map, the length of any word can only increase. In other words, for any word w : |ψ(w)| ≥ |w|.
It follows that (S′ = ψ(S))≤s′−1 is a nonzero polynomial where S′ is the part of ψ(S) of
degree at most s′ − 1. Since ψ is injective, it must be the case that S≤s′−1 is also a nonzero
polynomial, and the theorem follows. ◀

4 Deterministic Zero Testing of Weighted Automata Over k-Clique
Monoids

In this section, we show that zero testing for weighted automata over k-clique monoids
for constant k is in deterministic quasi-polynomial time. In fact, by Lemma 3.3 and
Proposition 3.4, the zero testing problem reduces to the polynomial identity testing of ABPs
over partitioned pc monoids whose non-commutation graph is a disjoint union of k cliques.
Thus, in order to prove Theorem 1.2 it suffices to design an efficient identity testing algorithm
for ABPs computing polynomials in F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩, where k is a constant and the
variable sets Xj = {xij}1≤i≤n are of size n each and pairwise disjoint.

Evaluation over algebras. For a polynomial f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ and a k-tuple
of F-algebras A = (A1, . . . , Ak), an evaluation of f in A is given by a k-tuple of maps
v = (v1, v2, . . . , vk), where vi : Xi → Ai. We can extend it to the map v : F⟨X1⟩ ⊗ · · · ⊗
F⟨Xk⟩ → A1 ⊗ · · · ⊗Ak as follows: For any monomial m = m1 ⊗ · · · ⊗mk where mi ∈ X∗

i , let
v(m) = v1(m1)⊗· · ·⊗vk(mk). In particular, for each x ∈ Xj let v(x) = 11⊗· · ·⊗vj(x)⊗· · ·⊗1k

where 1j is the multiplicative identity of Aj . We can now extend v by linearity to all
polynomials in the domain F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩.

Next, we define a partial evaluation of f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ in A. Let k′ < k and
Â = (A1, . . . , Ak′) be a k′-tuple of F-algebras. A partial evaluation of F⟨X1⟩ ⊗ · · · ⊗F⟨Xk⟩ in
Â is given by a k′-tuple of maps v̂ = (v1, . . . , vk′), where vi : Xi → Ai. Now, we can define
v̂ : F⟨X1⟩⊗· · ·⊗F⟨Xk⟩ → A1 ⊗· · ·⊗Ak′ ⊗F⟨Xk′+1⟩⊗· · ·⊗F⟨Xk⟩ as follows. For a monomial
m = (m1 ⊗ · · · ⊗mk), mi ∈ X∗

i , we let v̂(m) = v1(m1) ⊗ · · · ⊗ vk′(mk′) ⊗mk′+1 ⊗ · · · ⊗mk.
By linearity, the partial evaluation v̂ is defined for any f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ where v̂

takes values in A1 ⊗ · · · ⊗ Ak′ ⊗ F⟨Xk′+1⟩ ⊗ · · · ⊗ F⟨Xk⟩.
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Although it is implicit, we formally recall that when we consider ABPs over F⟨X1⟩ ⊗
· · · ⊗F⟨Xk⟩ the linear forms are defined over tensors of the form 1 ⊗ · · · ⊗xij ⊗ · · · ⊗ 1. These
tensors play the role of an individual variable in the tensor product structure.

Some more notation. Let Sk,n,d,s denote the set of all polynomials in F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩
computed by ABPs of size s and layers 0, 1, . . . , d, and n = |Xi| for each 1 ≤ i ≤ k. Following
the notation in Theorem 2.1, we will denote by Hk,n,d,s the hitting set that we will construct
for Sk,n,d,s. That is, Hk,n,d,s is a collection of evaluations in the ring of square matrices
v = (v1, . . . , vk), such that for any nonzero polynomial f ∈ Sk,n,d,s there is an evaluation
v = (v1, . . . , vk) ∈ Hk,n,d,s such that v(f) is a nonzero matrix. Recall from Theorem 2.1 that
a quasi-polynomial size hitting set H1,n,d,s for S1,n,d,s can be explicitly constructed. In the
next lemma we describe an efficient bootstrapped construction of the hitting set Hk,n,d,s for
the set Sk,n,d,s of polynomials, from the hitting set H1,n,d,s.

▶ Lemma 4.1. There is a set of evaluation maps Hk,n,d,s = {(v1, . . . , vk) : vi ∈ H1,n,d,sk
}

where sk = s(d+ 1)(k−1) such that, for i ∈ [k], we have vi : Xi → Md+1(F), and Hk,n,d,s is
a hitting set for the class of polynomials Sk,n,d,s. Moreover, the size of the set is at most
(nskd)O(k2 log d), and it can be constructed in deterministic (nskd)O(k2 log d) time.

The above lemma yields the identity test: we only need to evaluate the input polynomial
on each point of the hitting set and check whether it is nonzero.

Before presenting the proof, we discuss two important ingredients. A polynomial f in
F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ can be written as f =

∑
m∈X∗

k
fm ⊗ m where each m is a monomial

over variables Xk and fm ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk−1⟩. Given that f has a small ABP, we first
show that each polynomial fm also has a small ABP.

▶ Lemma 4.2. For each f ∈ Sk,n,d,s and m ∈ X∗
k, the polynomial fm ∈ F⟨X1⟩⊗· · ·⊗F⟨Xk−1⟩

has an ABP of size s(d+ 1) and d+ 1 layers.

Proof. Suppose f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ has an ABP B of size s and d layers, and the
monomial m = xi1kxi2k · · ·xiℓk where some of the indices could be repeated. We will
construct an ABP of size s(d+ 1) for the polynomial fm. First, we identify each variable
1 ⊗ · · · ⊗ xij ⊗ · · · ⊗ 1 as xij and construct the following ABP B′ from B:

For every node u in the ABP B, we have nodes (u, i), 0 ≤ i ≤ ℓ in the ABP B′. We now
describe the edges of B′ and the edge labels. In the ABP B, let (u, v) be an edge, where u is
in layer j and v is in layer j + 1, for some j ≤ d− 1. We can write the linear form labeling
(u, v) as a sum L1 + L2, where L1 is an affine linear form in variables from X \Xk, and L2
is a homogeneous linear form in variables from Xk.

For 0 ≤ r ≤ ℓ− 1: we put an edge from (u, r) to (v, r) with label L1. For 0 ≤ r ≤ ℓ− 1:
we put an edge from (u, r) to (v, r + 1) with edge label α · xir+1k if the coefficient of xir+1k

in L2 is α ̸= 0. If s and t are the source and sink nodes of the ABP B, we designate (s, 0)
and (t, ℓ) as the source and sink nodes of the ABP B′.

It is evident from the construction that the ABP B′ has at most s(d+ 1) many nodes.
Furthermore, the only nonzero monomials in the polynomial computed by B′ are of the form
m′ ⊗m, where m′ is a monomial over the letters X \Xk, and the coefficient of m′ ⊗m is the
same as its coefficient in polynomial f . It follows, that B′ computes the polynomial fm ⊗m,
and we can obtain an ABP for fm by setting to 1 all the variables occurring in m. This
completes the proof. ◀

For a polynomial f in F⟨X1⟩⊗· · ·⊗F⟨Xk⟩, consider a partial evaluation v = (v1, . . . , vk−1)
such that each vi : Xi → Mti

(F). The evaluation v(f) is a T × T matrix with entries from
F⟨Xk⟩, where T = t1t2 · · · tk−1.
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10:10 Equivalence Testing of Weighted Automata

▶ Lemma 4.3. For each p, q ∈ [T ] and f ∈ Sk,n,d,s, the (p, q)th entry of v(f) can be computed
by an ABP of size sT and d+ 1 layers.

The proof is routine and given in the appendix. Now we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. The proof is by induction on k. For the base case k = 1 the hitting set
H1,n,d,s of Theorem 2.1 suffices. We can write each nonzero f ∈ Sk,n,d,s as f =

∑
m∈X∗

k
fm ⊗

m, where m ∈ X∗
k and fm ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk−1⟩. Since f ̸≡ 0 we have fm ̸≡ 0 for some

m ∈ X∗
k . By Lemma 4.2, for each m ∈ Xk

∗ the polynomial fm ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk−1⟩ has
an ABP of size s(d+ 1). Let s′ = s(d+ 1).

By induction hypothesis, fm is nonzero on some point in the set : Hk−1,n,d,s′ =
{(v1, v2, . . . , vk−1)|vi ∈ H1,n,d,s′

k−1
} where s′

k−1 = s′(d+ 1)k−2 = s(d+ 1)k−1. Hence, there is
an evaluation v′ ∈ Hk−1,n,d,s′ such that v′(fm) is a nonzero matrix of dimension (d+ 1)k−1.
Interpreting v′ as a partial evaluation for f , we observe that v′(f) is a (d+1)k−1 × (d+1)k−1

matrix with entries from F⟨Xk⟩. Since v′(fm) ̸= 0, it follows that some (p, q)th entry of v′(f)
is a nonzero polynomial g ∈ F⟨Xk⟩. By Lemma 4.3, each entry of v′(f) has an ABP of size
s(d+ 1)k−1. In particular, g ∈ S1,n,d,s(d+1)k−1 and it follows from Theorem 2.1 that there
is a an evaluation v′′ in H1,n,d,s(d+1)k−1 such that v′′(g) is a nonzero matrix of dimension
(d+ 1) × (d+ 1).

Thus, for the combined evaluation map v = (v′, v′′), v(f) is a nonzero matrix of dimension
(d+ 1)k × (d+ 1)k. Define Hk,n,d,s = {(v1, . . . , vk) : vi ∈ H1,n,d,sk

}, where sk = s(d+ 1)k−1.
However, by induction hypothesis, we have v′ = (v1, . . . , vk−1) ∈ Hk−1,n,d,s(d+1) where each
vi ∈ H1,n,d,s(d+1)k−1 . Therefore, v = (v′, v′′) ∈ Hk,n,d,s and Hk,n,d,s is a hitting set for the
class of polynomials Sk,n,d,s.

Finally, note that |Hk,n,d,s| = |H1,n,d,sk
|k. Since |H1,n,d,sk

| ≤ (ndsk)O(log d), it follows
that |Hk,n,d,s| ≤ (nskd)O(k2 log d), and the hitting set Hk,n,d,s can be constructed in the
claimed running time10. For zero testing, we need to evaluate the input ABP on the matrices
of the hitting set, and this can be done in time polynomial in the input size and the size of
the hitting set by matrix additions and multiplications. ◀

5 Randomized Zero Testing of Weighted Automata Over k-Monoids

We now consider pc monoids more general than k-clique monoids. A k-monoid is a pc monoid
M whose non-commutation graph GM has a 2-covering {G1, G2} such that G1 has an edge
clique cover of size k′ and G2 has a vertex cover of size k − k′, for some k′. It follows that
GM has a k-covering of cliques and star graphs. We assume that this k-covering of GM is
given as part of the input. Let F⟨M⟩ denote the F-algebra generated by the monoid M .

▶ Lemma 5.1. Let {Mi}k
i=1 be pc monoids defined over disjoint variable sets {Xi}k

i=1,
respectively. For each i, suppose Ai is a randomized procedure that outputs an evaluation
vi : F⟨Mi⟩ → Mti(d)(F) such that for any polynomial gi in F⟨Mi⟩ of degree at most d, gi is
nonzero if and only if vi(gi) is a nonzero matrix with probability at least 1 − 1

2k .
Then, for the evaluation v : F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk⟩ → Mt1(d)(F) ⊗ · · · ⊗ Mtk(d)(F) such

that v = (v1, . . . , vk) and any nonzero polynomial f ∈ F⟨M1⟩ ⊗ · · · ⊗F⟨Mk⟩ of degree at most
d, the matrix v(f) is nonzero with probability at least 1/2.

10 Independent to the context of the current paper, bootstrapping hitting sets has found other interesting
applications in arithmetic circuit complexity [1].
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Proof. The proof is by induction on k. For the base case k = 1, it is trivial. Let us fix
an f ∈ F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk⟩ of degree at most d such that f ̸≡ 0. The polynomial f can
be written as f =

∑
m∈Mk

fm ⊗ m where m are the words over the pc monoid Mk and
fm ∈ F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk−1⟩. Since f ̸≡ 0 we must have fm ̸≡ 0 for some m ∈ Mk.

Now, inductively we have the evaluation v′ = (v1, . . . , vk−1) for the class of polynomials
in F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk−1⟩ of degree at most d. Since fm ̸≡ 0, with high probability v′(fm)
is a nonzero matrix of dimension

∏k−1
i=1 ti(d). By induction the failure probability is bounded

by k−1
2k .

As v′ is a partial evaluation for f , we observe that v′(f) is a matrix of dimension∏k−1
i=1 ti(d) whose entries are polynomials in F⟨Mk⟩. Since v′(fm) ̸= 0 we conclude that some

(p, q)th entry of v′(f) contains a nonzero polynomial g ∈ F⟨Mk⟩ of degree at most d. Choose
the evaluation vk ∈ Sk which is the output of the randomized procedure Ak, such that vk(g)
is a nonzero matrix of dimension tk(d). Hence, for the combined evaluation v = (v′, vk),
v(f) is a nonzero matrix of dimension

∏k
i=1 ti(d). A union bound shows that the failure

probability is at most 1/2. ◀

For the proof of Theorem 1.4, we first give a randomized polynomial-time identity testing
algorithm for polynomials over pc monoids whose non-commutation graph is a star graph.

▶ Lemma 5.2. Let M = ((X ∪ y)∗, I) be a monoid whose non-commutation graph GM is
a star graph with center y. Then for any constant k, there is a randomized procedure that
outputs an evaluation v : X ∪ {y} → Matt(d)(F) where t(d) is at most d, such that for any
polynomial f ∈ F⟨M⟩ of degree at most d, the polynomial f is nonzero if and only if v(f) is
a nonzero matrix. The success probability of the algorithm is at least 1 − 1

2k .

Proof. If f is nonzero, then there exists a monomial m in M with nonzero coefficient. The
idea is to isolate all monomials in {X ∪ y}∗ that are equivalent to m in M . Let the degree of
y in monomial m be ℓ ≤ d. Then m can be written as m = m1ym2 · · ·mℓymℓ+1 where each
mi is a word in X∗. As X is a commuting set of variables, any permutation of mi produces a
monomial equivalent to m in M . Now consider the automaton in Figure 1.

q0 q1 qd−1 qd
y/yc y/yc y/yc

xi/xi1 xi/xi2
xi/xid

xi/xi(d+1)

Figure 1 The transition diagram of the automaton.

Let m as m = m1ym2 · · ·mℓymℓ+1, where each mi is a maximal substring of m in X∗.
We refer to the mi as blocks. The above automaton keeps count of blocks as it scans the
monomial m. As it scans m, if the automaton is in the jth block, it substitutes each variable
xi ∈ X read by a corresponding commuting variable xij where the index j encodes the block
number. The y variable is renamed by a commutative variable yc. The transition matrices
Nxi

and Ny of dimension d+ 1. The transition matrices are explicitly given below.

Nxi
=


xi1 0 0 . . . 0
0 xi2 0 . . . 0
...

...
. . . . . .

...
0 0 . . . xid 0
0 0 . . . 0 xi(d+1)

 , Ny =


0 yc 0 . . . 0
0 0 yc . . . 0
...

...
. . . . . .

...
0 0 . . . 0 yc

0 0 . . . 0 0

 .
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Now we explain this matrix substitution. Let f =
∑

m αmm, where αm ∈ F. We write
f =

∑d
ℓ=1 fℓ, where fℓ =

∑
m:degy(m)=ℓ αmm. That is, fℓ is the part of f consisting of

monomials m with y-degree degy(m) = ℓ.
From the description of the automaton, we can see that for each ℓ ∈ [d], the (0, ℓ)th entry

of the output matrix is the commutative polynomial f c
ℓ ∈ F[{xi,j}1≤i≤n,1≤j≤d+1, yc]. The

construction ensures the following: For each 0 ≤ ℓ ≤ d, fℓ = 0 if and only if f c
ℓ = 0.

The randomized identity test is by substituting random scalar values for the commuting
variables xij and yc from a set S ⊆ F of size at least 2kd, such that the output matrix
becomes nonzero. The bound on the success probability follows from Polynomial Identity
Lemma [25, 20, 7]. ◀

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let M ′ be a pc monoid whose non-commutation graph GM ′ is a
clique. Let g ∈ F⟨M ′⟩ be a nonzero polynomial of degree at most d. By the Amitsur-Levitzki
Theorem [2], if we substitute variables xi ∈ M ′ by generic matrix of size d over the variables
{x(i)

u,v}1≤u,v≤d, the output matrix is nonzero 11. Moreover, the entries of the output matrix
are commutative polynomials of degree at most d in the variables {x(i)

u,v}1≤i≤n,1≤u,v≤d. It
suffices to randomly substitute for each x

(i)
u,v variable from a set S ⊆ F of size at least 2kd.

This defines the evaluation map v : F⟨M ′⟩ → Md(F). The resulting identity test succeeds
with probability at least 1 − 1

2k . For the star graphs, the evaluation map is already defined
in Lemma 5.2.

Given a F-weighted automaton A of size s over a k-monoid M = (X∗, I), by Theorem 3.5,
the zero testing of A reduces to identity testing of a collection of ABPs of the form :
f = λTNdµ over F⟨M⟩, where N is the transition matrix of A and d is bounded by O(ns2k).
Now, to test identity of f where M is a k-monoid, it suffices to test identity of ψ(f) where ψ
is the injective homomorphism from Lemma 3.1. Now ψ(f) in F⟨M ′

1⟩ ⊗ · · · ⊗ F⟨M ′
k⟩, where

for each i ∈ [k] the non-commutation graph of M ′
i is either a clique or a star.

By Lemma 5.1, we can construct the evaluation map v = v1 ⊗ v2 ⊗ · · · ⊗ vk where for
each i ∈ [k], vi is an evaluation map for either a clique or a star graph depending on M ′

i .
The range of v is matrices of dimension at most dk, which is bounded by (sn)O(k) as d is
bounded by O(ns2k). This completes the proof of Theorem 1.4. ◀

Concluding Remarks

The bootstrapped construction presented in Section 4 designs a quasi-polynomial time
algorithm for the k-clique monoid problem which uses evaluation over a suitable matrix
algebra. However, to design a polynomial-time algorithm, one may try to exploit finer
structures in the problem than evaluating it over a matrix algebra. The obvious natural idea
is to generalize the white-box polynomial-time identity testing algorithm for noncommutative
ABPs [18] in the pc monoid setting. However, it is unclear whether such a generalization is
possible.

11 In fact the Amitsur-Levitzki theorem guarantees that generic matrices of size ⌈ d
2 ⌉ + 1 suffice [2].
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A The Proof of Lemma 3.1

Proof. It is straightforward to check that ψ is a ring homomorphism. To show the injectivity,
it is enough to show that ψ(m) = ψ(m′) implies m = m′ in M for any words m,m′ ∈ M . We
prove the claim by induction on the length of words in M . Suppose that for words m ∈ M

of length at most ℓ, if m′ is not Ĩ-equivalent to m then ψ(m) ̸= ψ(m′). The base case, for
ℓ = 0 clearly holds.

Now, suppose m = x ·m1 ∈ Xℓ+1 for x ∈ X and ψ(m) = ψ(m′).

▷ Claim A.1. For some m2 ∈ M , m′ = x ·m2 in M .

Proof. Assume, to the contrary, that there is no m2 ∈ M such that m′ = x · m2. Let
J = {j ∈ [k] | x ∈ Xj}. If the variable x does not occur in m′ then m|Xj

≠ m′|Xj
for each

j ∈ J . This implies that ψ(m) ̸= ψ(m′) which is a contradiction.
On other hand, suppose x occurs in m′ and it cannot be moved to the leftmost position in

m′ applying the commutation relations in I. Then we must have m′ = ayxb for some y ∈ Xj

and j ∈ J , where a, b ∈ X∗, for the leftmost occurrence of x in m′. Hence m|Xj
̸= m′|Xj

,
because x is the first variable in m|Xj

and x comes after y in m′|Xj
. Therefore, ψ(m) ̸= ψ(m′)

which is a contradiction. ◁

Now, ψ(x ·m1) = ψ(x ·m2) implies that ψ(m1) = ψ(m2). Both m1 and m2 are of length
ℓ. By induction hypothesis it follows that m1 = m2, and hence m = m′. ◀

B The Proof of Lemma 4.3

Proof. In effect the edges of the input branching program B are now labelled by matrices of
dimension T with entries are linear forms over the variables X′

k. To show that each entry of
the final T × T matrix can be computed by an ABP of size sT , let us fix some (i, j) such
that 1 ≤ i, j ≤ T and construct an ABP B′

ij computing the polynomial in the (i, j)th entry.
The construction of B′

ij is as follows. We make T copies of each node p (except the source
and sink node) of B and label it as (p, k) for each k ∈ [T ]. Let us fix two nodes p and q

from B such that there is a T × T matrix Mpq labelling the edge (p, q) after the substitution.
Then, for each j1, j2 ∈ [T ], add an edge between (p, j1) and (q, j2) in B′

ij and label it by the
(j1, j2)th entry of Mpq. When p is the source node, for each j2 ∈ T , add an edge between the
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source node and (q, j2) in B′
ij and label it by the (i, j2)th entry of Mpq. Similarly, when q is

the sink node, for each j1 ∈ T , add an edge between (p, j1) and the sink node in B′
ij and

label it by the (j1, j)th entry of Mpq.
We just need to argue that the intermediate edge connections simulate matrix multiplica-

tions correctly. This is simple to observe, since for each path

P = {(s, p1), (p1, p2), . . . , (pℓ−1, t)}

in B (where s, t are the source and sink nodes respectively) and each (j1, . . . , jℓ−1) such
that 1 ≤ j1, . . . , jℓ−1 ≤ T , there is a path (s, (p1, j1)), ((p1, j1), (p2, j2)), . . . , ((pℓ−1, jℓ−1), t)
in B′

ij that computes M(s,p1)[i, j1]M(p1,p2)[j1, j2] · · ·Mpℓ−1,t[jℓ−1, j] where M(p,q) is the T ×T

matrix labelling the edge (p, q) in B. The size of B′
ij is sT , and the number of layers is

d+ 1. ◀
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Abstract
The Promise Constraint Satisfaction Problem (PCSP) is a generalization of the Constraint Satisfaction
Problem (CSP) that includes approximation variants of satisfiability and graph coloring problems.
Barto [LICS ’19] has shown that a specific PCSP, the problem to find a valid Not-All-Equal solution
to a 1-in-3-SAT instance, is not finitely tractable in that it can be solved by a trivial reduction to a
tractable CSP, but such a CSP is necessarily over an infinite domain (unless P=NP). We initiate a
systematic study of this phenomenon by giving a general necessary condition for finite tractability
and characterizing finite tractability within a class of templates – the “basic” tractable cases in the
dichotomy theorem for symmetric Boolean PCSPs allowing negations by Brakensiek and Guruswami
[SODA’18].
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1 Introduction

Many computational problems, including various versions of logical satisfiability, graph
coloring, and systems of equations can be phrased as Constraint Satisfaction Problems
(CSPs) over fixed templates (see [5]). One of the possible formulations of the CSP is via
homomorphisms of relational structures: a template A is a relational structure with finitely
many relations and the CSP over A, written CSP(A), is the problem to decide whether a
given finite relational structure X (similar to A) admits a homomorphism to A.

The complexity of CSPs over finite templates (i.e., those templates whose domain is a
finite set) is now completely classified by a celebrated dichotomy theorem independently
obtained by Bulatov [10] and Zhuk [19, 20]: every CSP(A) is either tractable (that is,
solvable in polynomial-time) or NP-complete. The landmark results leading to the complete
classification include Schaefer’s dichotomy theorem [18] for CSPs over Boolean structures (i.e.,
structures with a two-element domain), Hell and Nešetřil’s dichotomy theorem [15] for CSPs
over graphs, and Feder and Vardi’s thorough study [13] through Datalog and group theory.
The latter paper also inspired the development of a mathematical theory of finite-template
CSPs [16, 9, 6], the so called algebraic approach, that provided guidance and tools for the
general dichotomy theorem by Bulatov and Zhuk.

The algebraic approach has been successfully applied in many variants and generalizations
of the CSP such as the infinite-template CSP [7] or valued CSP [17]. This paper concerns a
recent vast generalization of the basic CSP framework, the Promise CSP (PCSP).
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11:2 Finitely Tractable Promise Constraint Satisfaction Problems

A template for the PCSP is a pair (A,B) of similar structures such that A has a homomor-
phism to B, and the PCSP over (A,B), written PCSP(A,B), is the problem to distinguish
between the case that a given finite structure X admits a homomorphism to A and the case
that X does not have a homomorphism to B (the promise is that one of the cases takes place).
This framework generalizes that of CSP (take A = B) and additionally includes important
problems in approximation, e.g., if A = Kk (the clique on k vertices) and B = Kl, k ≤ l, then
PCSP(A,B) is a version of the approximate graph coloring problem, namely, the problem to
distinguish graphs that are k-colorable from those that are not l-colorable, a problem whose
complexity is open after more than 40 years of research. On the other hand, the basics of
the algebraic approach to CSPs can be generalized to PCSPs [1, 8, 11, 3].

The approximate graph coloring problem shows that a full classification of the complexity
of PCSPs over graph templates is still open and so is the analogue of Schaefer’s Boolean
CSP, PCSPs over pairs of Boolean structures. However, strong partial results have already
been obtained. Brakensiek and Guruswami [8] proved a dichotomy theorem for all symmetric
Boolean templates allowing negations, i.e., templates (A,B) such that A = ({0, 1}; R0, R1, . . . ),
B = ({0, 1}; S0, S1, . . . ), each relation Ri, Si is invariant under permutations of coordinates,
and R0 = S0 is the binary disequality relation ̸=. Ficak, Kozik, Olšák, and Stankiewicz [14]
later generalized this result to all symmetric Boolean templates. These templates play a
central role in this paper.

To prove tractability or hardness results for PCSPs, a very simple but useful reduction is
often applied: If (A,B) and (A′,B′) are similar PCSP templates and there exist homomor-
phisms A′ → A and B → B′, then the trivial reduction (which does not change the instance)
reduces PCSP(A′,B′) to PCSP(A,B); we say that (A′,B′) is a homomorphic relaxation of
(A,B). In fact, all the tractable symmetric Boolean PCSPs can be reduced in this way to a
tractable CSP over a structure with a possibly infinite domain.

An interesting example of a PCSP that can be naturally reduced to a tractable CSP over
an infinite domain is the following problem. An instance is a list of triples of variables and the
problem is to distinguish instances that are satisfiable as positive 1-in-3-SAT instances from
those that are not even satisfiable as Not-All-Equal-3-SAT instances. This computational
problem is essentially the same as PCSP(A,B) where A consists of the ternary 1-in-3 relation
over {0, 1} and B consists of the ternary not-all-equal relation over {0, 1}. It is easy to see
that A → C → B where C is the relation “x+y +z = 1” over the set of all integers. Therefore
PCSP(A,B) is reducible (by means of the trivial reduction) to PCSP(C,C) = CSP(C) which
is a tractable problem. The main result of [2] is that no finite structure can be used in place
of C for this particular template – this PCSP is not finitely tractable in the sense of the
following definition.

▶ Definition 1. We say that PCSP(A,B) is finitely tractable if there exists a finite relational
structure C such that A → C → B and CSP(C) is tractable. Otherwise we call PCSP(A,B)
not finitely tractable. (We assume P ̸= NP throughout the paper.)

In this paper, we initiate a systematic study of this phenomenon. As the main technical
contribution, we determine which of the “basic tractable cases” in Brakensiek and Guruswami’s
classification [8] are finitely tractable. It turns out that finite tractability is quite rare, so the
infinite nature of the 1-in-3 versus Not-All-Equal problem is not exceptional at all.

1.1 Symmetric Boolean PCSPs allowing negations
We now discuss the classification of symmetric Boolean templates allowing negations from [8].
It will be convenient to describe these templates by listing the corresponding relation
pairs, that is, instead of (A = ({0, 1}; R1, . . . , Rn),B = ({0, 1}; S1, . . . , Sn)) we describe this
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template by the list (R1, S1), . . . , (Rn, Sn). Recall that the template is symmetric if all the
involved relations are symmetric, i.e., invariant under any permutation of coordinates, and
the template allows negations if ( ̸=, ̸=) is among the relation pairs, where ̸== {(0, 1), (1, 0)}
is the disequality relation.

It may be also helpful to think of an instance of PCSP(A,B) as a list of constraints
of the form Ri(variables) and the problem is to distinguish between instances where each
constraint is satisfiable and those which are not satisfiable even when we replace each Ri

by the corresponding “relaxed version” Si. Allowing negations then means that we can use
constraints x ̸= y – we can effectively negate variables.

The following relations are important for the classification.

odd-in-s = {x ∈ {0, 1}s :
∑s

i=1 xi is odd}, even-in-s = {x ∈ {0, 1}s :
∑s

n=1 xi is even}
r-in-s = {x ∈ {0, 1}s :

∑s
n=1 xi = r}

≤r-in-s = {x ∈ {0, 1}s :
∑s

i=1 xi ≤ r}, ≥r-in-s = {x ∈ {0, 1}s :
∑s

i=1 xi ≥ r}
not-all-equal-s = {x ∈ {0, 1}s :

∑s
i=1 xi ̸∈ {0, s}}

The next theorem lists some of the tractable cases of the classification, which are “basic”
in the sense explained below.

▶ Theorem 2 ([8]). PCSP((P, Q), ( ̸=, ̸=)) is tractable if (P, Q) is equal to
(a) (odd-in-s, odd-in-s), or (even-in-s, even-in-s), or
(b) (≤r-in-s, ≤(2r − 1)-in-s) and r ≤ s/2, or

(≥r-in-s, ≥(2r − s + 1)-in-s) and r ≥ s/2, or
(c) (r-in-s, not-all-equal-s)
for some positive integers r, s.

It follows from the results in [8] (namely Theorem 2.1 and a simple analysis of compatible
relations) that every tractable symmetric Boolean PCSP allowing negations can be obtained by

taking any number of ( ̸=, ̸=) and any number of relation pairs from a fixed item in
Theorem 2,
adding any number of “trivial” relation pairs (P, Q) such that P ⊆ Q, and Q is the full
relation or P contains only constant tuples, and
taking a homomorphic relaxation of the obtained template.

In this sense, Theorem 2 provides building blocks for all tractable templates.

1.2 Contributions
Some of the cases in Theorem 2 are finitely tractable: templates in item (a) are tractable
CSPs (they can be decided by solving systems of linear equations of the two-element field),
templates in item (c) for r odd and s even are homomorphic relaxations of (odd-in-s, odd-in-s),
and templates in item (b) for r = 1 or r = s − 1 as well as all templates with s ≤ 2 are
tractable CSPs (reducible to 2-SAT) [18, 5]. Our main theorem proves that all the remaining
cases are not finitely tractable. In fact, we prove this property even for some relaxations of
these templates:

▶ Theorem 3. The PCSP over any of the following templates is not finitely tractable.
(1) (r-in-s, ≤(2r − 1)-in-s), ( ̸=, ̸=) where 1 < r < s/2,

(r-in-s, ≥(2r − s + 1)-in-s), ( ̸=, ̸=) where s/2 < r < s − 1
(2) (≤r-in-s, ≤(2r − 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2

(≥r-in-s, ≥(2r − s + 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2

MFCS 2021



11:4 Finitely Tractable Promise Constraint Satisfaction Problems

(3) (r-in-s, ≤(2r − 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2, and r is even
(r-in-s, ≥(2r − s + 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2, and r is even

(4) (r-in-s, not-all-equal-s) where s > r, s > 2, and r is even or s is odd

Note that the templates in the last item do not contain the disequality pair; the special
case with r = 1 and s = 3 is the main result of [2]. Disequalities in the other items
are necessary, since otherwise the templates are homomorphic relaxations of CSPs over
one-element structures.

In Theorem 18 we provide a general necessary condition for finite tractability of an
arbitrary finite-template PCSP in terms of so called h1 identities. Showing that templates in
Theorem 3 do not satisfy this necessary condition forms the bulk of the paper.

The necessary condition in Theorem 18 seems very unlikely to be sufficient for finite
tractability. Nevertheless, we observe in Theorem 12 that finite tractability does depend
only on h1 identities, just like standard tractability [11], see Theorem 10 and the discussion
following the theorem.

2 Preliminaries

2.1 PCSP

We use the notation [n] = {1, 2, . . . , n} throughout the paper.
A relational structure (of finite signature) is a tuple A = (A; R1, R2, . . . , Rn) where A is a

set, called the domain, and each Ri is a relation on A of arity ar(Ri) ≥ 1, that is, Ri ⊆ Aar(Ri).
The structure A is finite if A is finite. Two relational structures A = (A; R1, R2, . . . , Rn)
and B = (B; S1, S2, . . . , Sn) are similar if they have the same number of relations and
ar(Ri) = ar(Si) for each i ∈ [n]. In this case, a homomorphism from A to B is a mapping
f : A → B such that (f(a1), f(a2), . . . , f(ak)) ∈ Si whenever i ∈ [n] and (a1, a2, . . . , ak) ∈ Ri

where k = ar(Ri). If there exists a homomorphism from A to B, we write A → B, and if
there is none, we write A ̸→ B.

▶ Definition 4. A PCSP template is a pair (A,B) of similar relational structures such that
A → B.

The PCSP over (A,B), written PCSP(A,B), is the following problem. Given a finite
relational structure X similar to A (and B), output “Yes.” if X → A and output “No.” if
X ̸→ B.

We define CSP(A) = PCSP(A,A).

▶ Definition 5. Let (A,B) and (A′,B′) be similar PCSP templates. We say that (A′,B′) is
a homomorphic relaxation of (A,B) if A′ → A and B → B′.

Recall that if (A′,B′) is a homomorphic relaxation of (A,B), then the trivial reduction,
which does not change the input structure X, reduces PCSP(A′,B′) to PCSP(A,B).

2.2 Polymorphisms

A crucial concept for the algebraic approach to (P)CSP is a polymorphism.

▶ Definition 6. Let A = (A; R1, . . . , Rm) and B = (B; S1, . . . , Sm) be two similar relational
structures. A function c : An → B is a polymorphism from A to B if for each relation Ri in
A with ki = arity(Ri)
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a11
a21
...

aki1

 ∈ Ri,


a12
a22
...

aki2

 ∈ Ri . . . ,


a1n

a2n

...
akin

 ∈ Ri ⇒


c(a11, a12, . . . , a1n)
c(a21, a22, . . . , a23)

...
c(aki1, aki2, . . . , akin)

 ∈ Si.

We denote the set of all polymorphisms from A to B by Pol(A,B) and define Pol(C) =
Pol(C,C).

The computational complexity of a PCSP depends only on the set of polymorphisms
of its template [8]. We note that tractability of the PCSPs in Theorem 2 stems from
nice polymorphisms: parities (item (a)), majorities (item (b)), and alternating thresholds
(item (c)).

The set of polymorphisms is an algebraic object named minion in [11], which we define in
Definition 8 below.

▶ Definition 7. An n-ary function fπ : An → B is called a minor of an m-ary function
f : Am → B given by a map π : [m] → [n] if

fπ(x1, . . . , xn) = f(xπ(1), . . . , xπ(m))

for all x1, . . . , xn ∈ A.

▶ Definition 8. Let O(A, B) = {f : An → B : n ≥ 1}. A minion on (A, B) is a non-empty
subset M of O(A, B) that is closed under taking minors. For fixed n ≥ 1, let M(n) denote
the set of n-ary functions from M.

As mentioned, M = Pol(A,B) is always a minion and the complexity of PCSP(A,B)
depends only on M. This result was strengthened in [11, 3] (generalizing the same result for
CSPs [6]) as follows.

▶ Definition 9. Let M and N be two minions. A mapping ξ : M → N is called a minion
homomorphism if it preserves arities and preserves taking minors, i.e., ξ(fπ) = (ξ(f))π for
every f ∈ M(m) and every π : [m] → [n].

▶ Theorem 10. Let (A,B) and (A′,B′) be PCSP templates. If there exists a minion homo-
morphism Pol(A′,B′) → Pol(A,B), then PCSP(A,B) is log-space reducible to PCSP(A′,B′).

An h1 identity (h1 stands for height one) is a meaningful expression of the form
function(variables) ≈ function(variables), e.g., if f : A3 → B and g : A4 → B, then
f(x, y, x) ≈ g(y, x, x, z) is an h1 identity. Such an h1 identity is satisfied if the corre-
sponding equation holds universally, e.g., f(x, y, x) ≈ g(y, x, x, z) is satisfied if and only if
f(x, y, x) = g(y, x, x, z) for every x, y, z ∈ A.

Every minion homomorphism ξ : M → N preserves h1 identities in the sense that if
functions f, g ∈ M satisfy an h1 identity, then so do their ξ-images ξ(f), ξ(g) ∈ N . In fact,
an arity-preserving ξ between minions is a minion homomorphism if and only if it preserves
h1 identities (see [6] for details). In this sense, Theorem 10 shows that the complexity of a
PCSP depends only on h1 identities satisfied by polymorphisms.

MFCS 2021



11:6 Finitely Tractable Promise Constraint Satisfaction Problems

2.3 Notation for tuples
Repeated entries in tuples will be indicated by ×, e.g. (2 × a, 3 × b) stands for the tuple
(a, a, b, b, b).

The i-th cyclic shift of a tuple (x1, . . . , xm) is the tuple (x(m−i mod m)+1, . . . , xm, x1, . . . ,

x(m−i−1 mod m)+1). A cyclic shift is the i-th cyclic shift for some i. We will use cyclic shifts
both for tuples of zeros and ones and tuples of variables.

We will often use special p-tuples and n = p2-tuples of zeros and ones as arguments for
Boolean functions, where p will be a fixed prime number. For 0 ≤ k ≤ p, 0 ≤ l ≤ p2, and
0 ≤ k1, . . . , kp ≤ p we write

⟨k⟩p = (k × 1, (p − k) × 0) = (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
p−k

), ⟨l⟩n = (1, 1, . . . , 1︸ ︷︷ ︸
l

, 0, 0, . . . , 0︸ ︷︷ ︸
n−l

)

and

⟨k1, . . . , kp⟩p = ⟨k1⟩p⟨k2⟩p . . . ⟨kp⟩p

for the concatenation of ⟨k1⟩p, . . . , ⟨kp⟩p. (Note here that the “i” in ki is an index, not an
exponent.) The subscripts p and n in ⟨⟩p and ⟨⟩n will be usually clear from the context and
we omit them. We will sometimes need to shift n-ary tuples ⟨k1, . . . , kp⟩ blockwise, e.g., to
⟨k2. . . . , kp, k1⟩. In such a situation we talk about a p-ary cyclic shift to avoid confusion.

It will be often convenient to think of an n-tuple k = ⟨k1, . . . , kp⟩ as a p × p zero-one
matrix with columns ⟨k1⟩, . . . , ⟨kp⟩. For example, the ones in ⟨p × 5⟩ form a 5 × p “rectangle”
and ⟨(p − 2) × 5, 2 × 4⟩ is “almost” a 5 × p rectangle – the bottom right 1 × 2 corner is
removed. A p-ary cyclic shift of k corresponds to cyclic permutation of columns.

The area of a zero-one n-tuple k is defined as the fraction of ones and is denoted λ(k).

λ(k) =
(

n∑
i=1

ki

)
/p2

The area of ⟨k1, . . . , kp⟩ is thus (k1 + · · · + kp)/p2.
If t is a p-ary function we simply write t⟨k⟩ instead of t(⟨k⟩). Similar shorthand is used

for n-ary functions and tuples ⟨k1, . . . , kp⟩p.

3 Finitely tractable PCSPs

3.1 Finite tractability depends only on h1 identities
We start by observing that finite tractability also depends only on h1 identities satisfied
by polymorphisms, just like standard tractability (recall the discussion about h1 identities
and minion homomorphisms below Theorem 10). This result, Theorem 12, is an immediate
consequence of the following lemma and Theorem 10.

▶ Lemma 11. Let (A,B) be a PCSP template. Then the following are equivalent.
PCSP(A,B) is finitely tractable.
There exists a finite relational structure C such that CSP(C) is solvable in polynomial
time and there exists a minion homomorphism Pol(C) → Pol(A,B).

Proof. This lemma is a consequence of known results and we only sketch the argument here.
In Section II.B of [2] it is argued that the first item is equivalent to the claim that a finite
tractable template (C,C) pp-constructs (A,B). The latter claim is equivalent to the second
item by Theorem 4.12 in [3]. ◀
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▶ Theorem 12. Let (A,B) and (A′,B′) be PCSP templates. If there exists a minion
homomorphism Pol(A′,B′) → Pol(A,B) and PCSP(A′,B′) is finitely tractable, then so is
PCSP(A,B).

3.2 Necessary condition for finite tractability
In this subsection, we derive the necessary condition for finite tractability that will be used
to prove Theorem 3. A cyclic polymorphism is a starting point for the condition.

▶ Definition 13. A function c : Ap → B is called cyclic if it satisfies the h1 identity

c(x1, x2, . . . , xp) ≈ c(x2, . . . , xp, x1).

Cyclic polymorphisms can be used [4] to characterize the borderline between tractable
and NP-complete CSPs proposed in [9] and confirmed in [10, 19, 20]. We only state the
direction needed in this paper.

▶ Theorem 14 ([4]). Let C be a CSP template over a finite domain C. If CSP(C) is not
NP-complete, then C has a cyclic polymorphism of arity p for every prime number p > |C|.

Polymorphism minions of CSP templates are closed under arbitrary composition (cf. [5]).
In particular, if CSP(C) is not NP-complete, then Pol(C) contains the function

t(x11, x21, . . . , xp1, x12, x22, . . . , xp2, . . . , x1p, x2p, . . . , xpp)
= c(c(x11, x21, . . . , xp1), c(x12, x22, . . . , xp2), . . . , c(x1p, x2p, . . . , xpp)), (1)

where c is a p-ary cyclic function and p > |C|. Such a function satisfies strong h1 identities
which are not satisfied by the templates in Theorem 3. We now (in two steps) describe one
such collection of strong enough identities.

▶ Definition 15. A function t : Ap2 → B is doubly cyclic if it satisfies every identity of the
form t(x1, . . . , xp) ≈ t(y1, . . . , yp), where xi is a p-tuple of variables and yi is a cyclic shift
of xi for every i ∈ [p], and every identity of the form t(x1, x2 . . . , xp) ≈ t(x2, . . . , xp, x1),
where each xi is a p-tuple of variables.

Observe that t from Equation (1) is doubly cyclic – the first type of identities come from
the cyclicity of the inner c while the second type from the outer c. It will be also useful for us
to observe in Lemma 22 that, after rearranging the arguments (we read them row-wise), t is a
cyclic function of arity p2. From the finiteness of the domain C we get one more property of
function t. In the next definition, by an x/y-tuple we mean a tuple containing only variables
x and y.

▶ Definition 16. A doubly cyclic function t : Ap2 → B is b-bounded if there exists an
equivalence relation ∼ on the set of all p-ary x/y-tuples with at most b equivalence classes
such that t satisfies every identity of the form t(u1, . . . up) ≈ t(v1, . . . , vp) where ui and vi

are x/y-tuples such that ui ∼ vi for every i ∈ [p].

▶ Lemma 17. Let c : Cp → C be a cyclic function. Then the function t defined by
Equation (1) is a b-bounded doubly cyclic function for b = |C||C|2 .

Proof. We define ∼ by declaring two p-ary x/y-tuples u and v ∼-equivalent if c(u) ≈ c(v).
As there are b = |C||C|2 binary functions C2 → C, this equivalence has at most b equivalence
classes. By definitions, t is then b-bounded and doubly cyclic. ◀

MFCS 2021



11:8 Finitely Tractable Promise Constraint Satisfaction Problems

The promised necessary condition for finite tractability is now a simple consequence:

▶ Theorem 18. Let (A,B) be a finite PCSP template that is finitely tractable. Then
there exists b such that (A,B) has a p2-ary b-bounded doubly cyclic polymorphism for every
sufficiently large prime p.

Proof. If (A,B) is finitely tractable, then, by Lemma 11, there exists a minion homomorphism
ξ : Pol(C) → Pol(A,B), where C is finite and CSP(C) is tractable. By Theorem 14, C has
a p-ary cyclic polymorphism for every sufficiently large prime. Then, by Lemma 17, the
polymorphism t of C defined by Equation (1) is a b-bounded and doubly cyclic (with the
appropriate b). As ξ preserves h1 identities, ξ(t) is a b-bounded doubly cyclic polymorphism
of (A,B). ◀

3.3 Proof of Theorem 3
Finally, we are ready to start proving Theorem 3. Without loss of generality, we consider
only templates on the first lines of Cases (1)–(3) of Theorem 3 (in particular, r ≤ s/2) and
assume that r ≤ s/2 in Case (4) (the remaining templates can be obtained by swapping zero
and one in the domains). We fix such a template (A,B).

Striving for a contradiction, suppose that PCSP(A,B) is finitely tractable. By Theorem 18
there exists b such that (A,B) has a p2-ary b-bounded doubly cyclic polymorphism t for
every sufficiently large arity p2. We fix such a b and t, where p is fixed to a sufficiently large
prime p congruent to 1 modulo s (which is possible by the Dirichlet prime number theorem).
How large must p be will be seen in due course. We denote n = p2 and observe that n ≡ 1
(mod s) as well.

Using the cyclicity in Section 4 and double cyclicity in Section 5 we will show that certain
evaluations t(z) of t are tame in that t(z) = t⟨0⟩ (recall here the notation in Subsection 2.3) iff
the area of z is below a threshold θ. The threshold is defined as θ = 1/2 for all the templates
but the (r-in-s, not-all-equal-s) template in Case (4), where we set θ = r/s (observe that
θ = r/s also in Case (2) and (3)). We restate the definition of tameness for convenience.

▶ Definition 19. A tuple z ∈ {0, 1}n is tame if

t(z) =
{

t⟨0⟩n if λ(z) < θ

1 − t⟨0⟩n if λ(z) > θ

(Note here that λ(z) is never equal to θ since n is odd and n ≡ 1 (mod s).)

The evaluations that we use are called near-threshold almost rectangles defined as follows.

▶ Definition 20. A tuple z ∈ {0, 1}n is an almost rectangle if it is a p-ary cyclic shift
of a tuple of the form ⟨z1, . . . , z1, z2, . . . , z2⟩p, where 0 ≤ z1, z2 ≤ p, the number of z1’s is
arbitrary, and |z1 − z2| < 5b. The quantity ∆z = |z1 − z2| is referred to as the step size. We
say that z is near-threshold if |λ(z) − θ| < 1/s∆z+3.

The proof can now be finished by using the tameness of near-threshold almost rectangles
(that will be established in Lemma 25) together with the b-boundedness of t as follows.

Let m = (p − 1)/2 and choose positive integers z2,1 and z2,2 so that θp − 2b < z2,1 <

z2,2 < θp and the x/y-tuples (z2,1 × x, (p − z2,1) × y) and (z2,2 × x, (p − z2,2) × y) are
∼-equivalent (see Definition 16 of boundedness). This is possible by the pigeonhole principle
since there are more than b integers in the interval and ∼ has at most b classes.

By the choice of z2,1 and z2,2, for any meaningful choice of z1, we have t(z1) = t(z2)
where zi = ⟨m × z1, (p − m) × z2,i⟩p, i = 1, 2. We choose z1 as the maximum number such
that λ(z1) < θ. (Note here that for z1 = p the area of z1 can be made arbitrarily close to
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(1 + θ)/2 > θ by choosing a sufficiently large p, so we may assume z1 < p.) From m < p/2 it
follows that increasing z2,1 by one makes the area of z1 greater than increasing z1 by one,
therefore λ(z2) > θ.

Note that z1 > pθ since otherwise the area of z2 is less than θ. On the other hand,
z1 < pθ + 3b, otherwise the area of z1 is greater (assuming p > 5):

λ(z1) = mz1 + (p − m)z2,1

p2 ≥
p−1

2 (pθ + 3b) + p+1
2 (pθ − 2b)

p2 =
p2θ + b(p−5)

2
p2 > θ.

It follows that the step size of both z1 and z2 is less than 5b, so both zi are almost rectangles.
By choosing a sufficiently large p, the difference λ(z2) − λ(z1) can be made arbitrarily small,
and since λ(z1) < θ < λ(z2) both zi are then near-threshold.

Now the tameness of near-threshold almost rectangles (Lemma 25) gives us t(z1) =
t⟨0⟩n ̸= 1 − t⟨0⟩n = t(z2). On the other hand, we also have t(z1) = t(z2), a contradiction.

4 Step size at most one

In this section we prove the following lemma.

▶ Lemma 21. Every near-threshold almost rectangle of step size at most one is tame.

We will use the cyclicity of an operation obtained from t by an appropriate rearrangnment
of its arguments, stated in the following lemma. Its proof is in Appendix A.

▶ Lemma 22. Let t : Ap2 → B be a doubly cyclic function. Then the function tσ defined by

tσ


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp

 = t


x11 x21 · · · xp1
x12 x22 · · · xp2
...

...
. . .

...
x1p x2p · · · xpp


is a cyclic function.

Observe that an almost rectangle z = ⟨z2 + 1, . . . , z2 + 1, z2, . . . , z2⟩p regarded as a p × p

matrix is, when read row-wise, equal to a sequence of consecutive ones, followed by zeros. In
other words, using the notation tσ from Lemma 22, we have t(z) = tσ⟨k⟩n for some k. Also
note that every almost rectangle of step size at most one has a p-ary cyclic shift of this form.
Finally, notice that if z is near-threshold, then k ≤ 2⌊θn⌋. In order to prove Lemma 21, it is
therefore enough to verify the following lemma.

▶ Lemma 23. Denote a = ⌊θn⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{

tσ⟨0⟩n if 0 ≤ k ≤ a

1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

The rest of this section is devoted to proving this lemma. We require an additional
definition. We say that an s-tuple of evaluations ⟨k1⟩n, . . . , ⟨ks⟩n, where 0 ≤ ki ≤ n, is
plausible if

∑s
i=1 ki = rn in Cases (1), (3), (4) and

∑s
i=1 ki ≤ rn in Case (2). The following

lemma is a consequence of the fact that tσ is a polymorphism (as t is) which is, additionally,
cyclic by Lemma 22. No other properties of t are needed in this section.

▶ Lemma 24. If an s-tuple ⟨k1⟩, . . . , ⟨ks⟩ is plausible, then (tσ⟨k1⟩, . . . , tσ⟨ks⟩) ∈ Q (recall
here that (P, Q) is introduced in the statement of Theorem 3).

Moreover, in Cases (1), (2), and (3), we have tσ⟨n − k⟩ = 1 − tσ⟨k⟩ for every 0 ≤ k ≤ n.

MFCS 2021
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Proof. For the first part, let ⟨k1⟩, . . . , ⟨ks⟩ be plausible. Form an s × rn matrix M whose
first row is ⟨k1⟩rn and the j-th row is the (

∑j−1
l=1 kl)-th cyclic shift of ⟨kj⟩rn for j ∈ {2, . . . , s}.

Note that each of the first
∑

ki columns of M contains exactly 1 one and the remaining
columns are all zero (the latter only applies in Case (2)). Split this matrix into r-many s × n

blocks M1, M2, . . . , M r. Their sum X =
∑r

j=1 M j is an s × n zero-one matrix whose each
column contains exactly r ones in Cases (1), (3), and (4), and at most r ones in Case (2).
Moreover, for all j ∈ [s], the j-th row of X is a cyclic shift of ⟨kj⟩, therefore its tσ-image
is tσ⟨kj⟩ by cyclicity of tσ. Each column belongs to the relation P , therefore, as tσ is a
polymorphism, we get that tσ applied to the rows gives a tuple in Q. This implies the first
claim.

For the second part, we take ⟨k⟩ together with the k-th cyclic shift of ⟨n − k⟩ and use the
fact that tσ preserves the disequality relation pair. ◀

We now consider Cases (1)–(4) separately. Case (2) is the simplest. If 0 ≤ k ≤ a then
⟨k⟩, ⟨k⟩, . . . , ⟨k⟩ is a plausible tuple. By Lemma 24, the tuple (tσ⟨k⟩, tσ⟨k⟩, . . . , tσ⟨k⟩) is in
Q; therefore tσ⟨k⟩ = 0. For the remaining values 2a ≥ k ≥ a + 1 we apply the second part of
this lemma and get tσ⟨k⟩ = 1.

For Case (1) we prove tσ⟨k⟩ = 0 and tσ⟨n − k⟩ = 1 for any 0 ≤ k ≤ a by induction on
i = a − k, i = 0, 1, . . . , a. For the first step, k = (n − 1)/2, we apply Lemma 24 to the
plausible s-tuple 2r × ⟨k⟩, ⟨r⟩, (s − 2r − 1) × ⟨0⟩. Since Q contains no p-tuple with more than
(2r − 1) ones, we get tσ⟨k⟩ = 0. Then also tσ⟨n − k⟩ = 1 by the second part of the lemma.
For the induction step, we use the tuple

r × ⟨k⟩, r × ⟨n − k − 1⟩, ⟨r⟩, (s − 2r − 1) × ⟨0⟩

in a similar way, additionally using that tσ⟨n − k − 1⟩ = 1 by the induction hypothesis.
We proceed to Case (4). We will prove, starting from the left, the following chain of

disequalities.

tσ⟨a⟩ ̸= tσ⟨a + 1⟩ ̸= tσ⟨a − 1⟩ ̸= tσ⟨a + 2⟩ ̸= tσ⟨a − 2⟩ ̸= . . . ̸= tσ⟨2a⟩ ̸= tσ⟨0⟩

This will imply tσ⟨a⟩ = tσ⟨a − 1⟩ = · · · = tσ⟨0⟩ ̸= tσ⟨a + 1⟩ = tσ⟨a + 2⟩ = · · · = tσ⟨2a⟩. We
start with the first disequality tσ⟨a⟩ ̸= tσ⟨a + 1⟩. The sequence of arguments

(s − r) × ⟨a⟩, r × ⟨a + 1⟩

has length s and is plausible as (s − r)a + r(a + 1) = sa + r and sa + r is equal to
rn. (Indeed, n ≡ 1 (mod s), so n = ms + 1 for some integer m; then a = mr and
sa + r = smr + r = (n − 1)r + r = rn.) By Lemma 24, tσ⟨a⟩ ̸= tσ⟨a + 1⟩ since Q does not
contain all-equal tuples in Case (4). The remaining disequalities are proved in Appendix B.

Case (3) can be done similarly as Case (4) with an additional reasoning that we now explain.
Consider, e.g., the proof that tσ⟨a⟩ ̸= tσ⟨a + 1⟩ using the sequence (s − r) × ⟨a⟩, r × ⟨a + 1⟩.
We cannot directly conclude that tσ⟨a⟩ ̸= tσ⟨a + 1⟩ since relation Q contains the all-zero
tuple – we can only conclude that tσ⟨a⟩ and tσ⟨a + 1⟩ are not both ones. However, we can
also prove in the same way that tσ⟨n − a⟩ and tσ⟨n − (a + 1)⟩ are not both ones by using
the “complementary” tuple (s − r) × ⟨n − a⟩, r × ⟨n − (a + 1)⟩. The claim tσ⟨a⟩ ̸= tσ⟨a + 1⟩
then follows from the second part of Lemma 24.

The proof of Lemma 23 is concluded.
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5 Arbitrary step size

The entire section is devoted to the proof of the following lemma.

▶ Lemma 25. Every near-threshold almost rectangle is tame.

We start by redefining plausibility.
We say that an m-tuple of evaluations k1 = ⟨k1

1, . . . , kp
1⟩, . . . , km = ⟨k1

m, . . . , kp
m⟩, where

m ∈ [s], is plausible if
∑m

j=1 ki
j = rp for all i ∈ [p] (note that we do not make exception for

Case (2) here). In other words, by arranging the integers defining k1, k2, . . . , km as rows of
an m × p matrix, we get a matrix whose every column sums up to rp. Note that the sum of
the areas of the evaluations is then equal to r.

The following lemma is a “2-dimensional analogue” of Lemma 24. The proof applies the
first type of doubly cyclic identities from Definition 15, it is given in Appendix C.

▶ Lemma 26. If a tuple k1, . . . , ks is plausible, then (t(k1), . . . , t(ks)) ∈ Q.
Moreover, in Cases (1), (2), and (3), we have t⟨p − k1, . . . , p − kp⟩ = 1 − t⟨k1, . . . , kp⟩

for any evaluation ⟨k1, . . . , kp⟩.

The next lemma will be applied to produce plausible sequence of evaluations. The proof
uses the other type of doubly cyclic identities. It is given in Appendix D, here we provide a
brief sketch. (In the statement, note that r/θ = s except for Case (1) where r/θ = 2r.)

▶ Lemma 27. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z) − θ| ≤ 1/s3 and
let p be sufficiently large. Then

there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−1, l of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−1), λ(z) = λ(k1) = · · · = λ(kr/θ−1), and l has the
same step size ∆z as z;
there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−2, l1, l2 of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−2), λ(z) = λ(k1) = · · · = λ(kr/θ−2), both l1 and l2
have step size strictly smaller than ∆z, and |λ(l1) − λ(l2)| ≤ 1/p.

Proof sketch. We can assume that z = ⟨c × z1, d × z2⟩ for some c, d, z1, z2. For the first
item, we consider the (r/θ − 1) × p matrix X whose first row is z and the i-th row is the c-th
cyclic shift of the (i − 1)-st row for each i ∈ {2, . . . , r/θ − 1}. Let Y be the r/θ × p matrix
obtained from X by adding a row (l1, . . . , lp) so that each column sums up to rp and we
define k1, . . . , km, l as the n-tuples determined by the rows of Y via ⟨⟩, e.g., l = ⟨l1, . . . , lp⟩.
The inequality |λ(z) − θ| ≤ 1/s3 (and p being sufficiently large) ensures that l is correctly
defined (i.e., all the li are between 0 and p), the construction gives that l is an almost
rectangle with step size ∆z and that z and ki have equal areas, and the double cyclicity of t

implies t(z) = t(ki). For the second item we additionally split the l row in two roughly equal
rows. This will guarantee the two properties of l1 and l2. ◀

Equipped with these lemmata we are ready to prove Lemma 25. The proof is by induction
on the step size. Step sizes zero and one are dealt with in Lemma 21, so we assume that z is
a near-threshold almost rectangle of step size 2 ≤ ∆z < 5b.

We will consider Case (4) in detail and discuss the adjustments for the other cases
afterwards. Assume first that λ(z) is not too close to θ, say, |λ(z) − θ| ≥ 1/s5b+4. We apply
the second item in Lemma 27 and get a plausible s-tuple k1, . . . , ks−2, l1, l2 such that z, k1,
. . . , ks−2 all have the same t-images and areas, and l1 and l2 are almost rectangles with step
sizes strictly smaller than ∆z, whose areas differ by at most 1/p.
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The average area of almost rectangles k1, . . . , ks−2, l1, l2 is r/s = θ, the first s − 2 of
them have the same area as z, bounded away from θ by a constant (namely 1/s5b+4), and
the last two have almost the same area (the difference is at most 1/p). By choosing a large
enough p we get sgn(λ(l1)−θ) = sgn(λ(l2)−θ) ̸= sgn(λ(z)−θ) and |λ(li)−θ| ≤ s · |λ(z)−θ|;
in particular, both li are near-threshold since s · |λ(z) − θ| ≤ 1/s∆z+3−1 ≤ 1/s∆li+3. By
the induction hypothesis, both li are tame. By Lemma 26, the values t(k1), . . . , t(ks−2),
t(l1), and t(l2) are not all equal. But t(z) = t(k1) = · · · = t(ks−2), t(l1) = t(l2), and
sgn(λ(z) − θ) ̸= sgn(λ(l1) − θ) so it follows that z is tame, as required.

It remains to deal with the case that λ(z) is too close to θ. In this case we will find an almost
rectangle l with the same step size as z such that t(l) = 1 − t(z) and λ(l) − θ = −s′(λ(z) − θ),
where s′ is such that 2 ≤ s′ ≤ s. If λ(l) is already not too close to the threshold θ, then we
observe that l is near-threshold (indeed, |λ(l) − θ| ≤ s|λ(z) − θ| ≤ s/s5b+4 ≤ 1/s∆z+3) and
apply to l the first part of the proof, thus obtaining that l is tame and, consequently, z is
tame as well. If λ(l) is still too close to θ, then we simply repeat the process until we get a
rectangle that is not too close.

To find such an almost rectangle l we apply the first item of Lemma 27 and get a plausible
s-tuple k1, . . . , ks−1, l such that t(z) = t(k1) = · · · = t(ks−1) and l is an almost rectangle of
the same step size as z. Since the area of each ki is equal to λ(z) and the average area in the
plausible s-tuple is θ, we get that λ(l) − θ = −(s − 1)(λ(z) − θ). By Lemma 26, t(l) and t(z)
are not equal. This concludes the construction of l and the proof of Lemma 25 for Case (4).

The remaining cases (1), (2), and (3) require a modification that is similar to the
modification for Case (3) in the proof of Lemma 23. Consider the situation that λ(z) is not
too close to θ. In Cases (2) and (3) Lemma 27 is applied not only to k1, . . . , k2r−2, l1, l2
but also to the tuple formed by “complementary” almost rectangles, which have different
t-images by the second part of Lemma 26. In Case (1) we additionally complete the two
2r tuples to s-tuples by adding s − 2r zeros. The other situation, that λ(z) is too close, is
adjusted in an analogous fashion.

6 Conclusion

We have characterized finite tractability among the basic tractable cases in the Brakensiek–
Guruswami classification [8] of symmetric Boolean PCSPs allowing negations. A natural
direction for future research is an extension to all the tractable cases (not just the basic
ones), or even to all symmetric Boolean PCSPs [14], not only those allowing negations. An
obstacle, where our efforts have failed so far, is already in relaxations of the basic templates
(P, Q) with disequalities. For example, which (P, Q), ( ̸=, ≠), with P a subset of ≤r-in-s and
Q a superset of ≤(2r − 1)-in-s, give rise to finitely tractable PCSPs?

Another natural direction is to better understand the “level of tractability.” For the
finitely tractable templates (A,B) considered in this paper, it is always possible to find a
tractable CSP(C) with A → C → B and such that C is two-element. Is it so for all symmetric
Boolean templates? For general Boolean templates, the answer is “No”: [12] presents an
example that requires a three-element C. However, it is unclear whether there is an upper
bound on the size of C for finitely tractable (Boolean) PCSPs, and if there is, how it could
be computed. There are also natural concepts beyond finite tractability, still stronger than
standard tractability. We refer to [2] for some questions in this direction.
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A Doubly cyclic functions are cyclic

In this appendix we prove Lemma 22, which we restate here for convenience.

▶ Lemma 22. Let t : Ap2 → B be a doubly cyclic function. Then the function tσ defined by

tσ


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp

 = t


x11 x21 · · · xp1
x12 x22 · · · xp2
...

...
. . .

...
x1p x2p · · · xpp


is a cyclic function.

Proof. By cyclically shifting the arguments we get the same result:

tσ(x21, x31, . . . , xp1, x12, x22, x32, . . . , xp2, x13, . . . , x2p, x3p, . . . , xpp, x11)

= tσ


x21 · · · x2,p−1 x2p

...
. . .

...
...

xp1 · · · xp,p−1 xpp

x12 · · · x1p x11

 = t


x21 · · · xp1 x12

...
. . .

...
...

x2,p−1 · · · xp,p−1 x1p

x2p · · · xpp x11



= t


x21 · · · xp1 x11

...
. . .

...
...

x2,p−1 · · · xp,p−1 x1,p−1
x2p · · · xpp x1p

 = t


x11 x21 · · · xp1
x12 x22 · · · xp2

...
...

. . .
...

x1p x2p · · · xpp



= tσ


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp


= tσ(x11, x21, . . . , xp1, x12, x22, . . . , xp2, . . . , x1p, x2p, . . . , xpp). ◀

B Step size one, Case (4)

In this section we finish the proof of Lemma 23 for Case (4). We state the lemma for
convenience.

▶ Lemma 23. Denote a = ⌊θn⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{

tσ⟨0⟩n if 0 ≤ k ≤ a

1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

https://doi.org/10.1145/800133.804350
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029
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Recall that we want to prove, starting from the left, the chain of disequalities

tσ⟨a⟩ ̸= tσ⟨a + 1⟩ ̸= tσ⟨a − 1⟩ ̸= tσ⟨a + 2⟩ ̸= tσ⟨a − 2⟩ ̸= . . . ̸= tσ⟨2a⟩ ̸= tσ⟨0⟩

and that we have already verified the first one.
For the second disequality tσ⟨a + 1⟩ ̸= tσ⟨a − 1⟩, as well as for the further disequalities

we need to distinguish two cases: Case (4a) r and s have the same parity and Case (4b) r is
even and s is odd. In Case (4a) we directly use the sequence

(s − r)/2 × ⟨a − 1⟩, (s + r)/2 × ⟨a + 1⟩

and derive tσ⟨a + 1⟩ ̸= tσ⟨a − 1⟩ using Lemma 24 as before. In Case (4b) we first use

(s − 1) × ⟨a⟩, ⟨a + r⟩

to deduce tσ⟨a + r⟩ ̸= tσ⟨a⟩ (so tσ⟨a + 1⟩ = tσ⟨a + r⟩) and then

(s − 1)/2 × ⟨a − 1⟩, (s − 1)/2 × ⟨a + 1⟩, ⟨a + r⟩

to deduce tσ⟨a − 1⟩ ̸= tσ⟨a + 1⟩.
To prove tσ⟨a − i + 1⟩ ̸= tσ⟨a + i⟩ for i ∈ {2, 3, . . . , a}, we observe that, by the already

established disequalities, we have tσ⟨a − i + 1⟩ = · · · = tσ⟨a⟩, and then use
(s + r)/4 × ⟨a + i⟩, (s − r)/2 × ⟨a − 1⟩, (s + r)/4 × ⟨a − i + 2⟩ in Case (4a) and (s + r)/2
is even;
(s + r + 2)/4 × ⟨a + i⟩, (s − r − 2)/2 × ⟨a − 1⟩, 2 × ⟨a − i + 1⟩, (s + r − 6)/4 × ⟨a − i + 2⟩
in Case (4a) and (s + r)/2 is odd;
r/2 × ⟨a + i⟩, (s − r) × ⟨a⟩, r/2 × ⟨a − i + 2⟩ in Case (4b).

Finally, for proving tσ⟨a + i⟩ ̸= tσ⟨a − i⟩ we use
(s − r)/2 × ⟨a − i⟩, (s − r)/2 × ⟨a + i⟩, r × ⟨a + 1⟩ in Case (4a) and
(s − 1)/2 × ⟨a − i⟩, (s − 1)/2 × ⟨a + i⟩, 1 × ⟨a + r⟩ in Case (4b).

This completes the proof for Case (4).

C Proof of Lemma 26

▶ Lemma 26. If a tuple k1, . . . , ks is plausible, then (t(k1), . . . , t(ks)) ∈ Q.
Moreover, in Cases (1), (2), and (3), we have t⟨p − k1, . . . , p − kp⟩ = 1 − t⟨k1, . . . , kp⟩

for any evaluation ⟨k1, . . . , kp⟩.

Proof. Let k1, . . . , ks be a plausible tuple. Fix, for a while, an arbitrary i ∈ [p]. Form a
s × rp matrix Mi whose first row is ⟨ki

1⟩rp and j-th row is the (
∑j−1

l=1 ki
l)-th cyclic shift of

⟨ki
j⟩rp for j ∈ {2, . . . , s}. Split this matrix into r-many s × p blocks M1

i , M2
i , . . . , M r

i . Their
sum Xi =

∑r
j=1 M j

i is an s × p matrix whose each column contains exactly r ones. Moreover,
for all j ∈ [s], the j-th row of the matrix Xi is a cyclic shift of ⟨ki

j⟩p. Put the matrices X1,
. . . , Xp aside to form an s × n matrix Y . Its rows have the same t-images as k1, . . . , ks,
respectively, because t is doubly cyclic. Each column belongs to the relation P , therefore, as
t is a polymorphism, we get that t applied to the rows gives a tuple in Q. This tuple is equal
to (t(k1), . . . , t(ks)).

The second part can be proved in a similar way as the second part of Lemma 24 using
the disequality relation pair. ◀
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D Proof of Lemma 27

▶ Lemma 27. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z) − θ| ≤ 1/s3 and
let p be sufficiently large. Then

there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−1, l of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−1), λ(z) = λ(k1) = · · · = λ(kr/θ−1), and l has the
same step size ∆z as z;
there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−2, l1, l2 of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−2), λ(z) = λ(k1) = · · · = λ(kr/θ−2), both l1 and l2
have step size strictly smaller than ∆z, and |λ(l1) − λ(l2)| ≤ 1/p.

Proof. Without loss of generality we can assume that z = ⟨c × z1, d × z2⟩ for some c, d and
z1 > z2. Let m = r/θ − 1 for the first item and m = r/θ − 2 for the second one. We define
an integer m × p matrix X so that the first row is (c × z1, d × z2) and the i-th row is the c-th
cyclic shift of the (i − 1)-st row for each i ∈ {2, . . . , m}. Let Y be the (m + 1) × p matrix
obtained from X by adding a row (l1, . . . , lp) so that each column sums up to rp. It is easily
seen by induction on i ≤ m that the sum of the first i rows is a cyclic shift of a tuple of the
form (e, . . . , e, e′, . . . , e′), where |e − e′| = ∆z and the “step down” is at position ci mod p

(when columns are indexed from 0). It follows that (l1, . . . , lp) is also a cyclic shift of a tuple
of the form (e, . . . , e, e′, . . . , e′) where e and e′ differ by ∆z.

Next we observe that each li > 0 if p is sufficiently large. Indeed, note that since |z1−z2|/p

can be made arbitrarily small (recall |z1 −z2| < 5b), we have p(λ(z)−ϵ) < z1, z2 < p(λ(z)+ϵ),
where ϵ > 0 can be made arbitrarily small. We then have li > rp − mp(λ(z) + ϵ) ≥
rp − (r/θ − 1)p(θ + 1/s3 + ϵ) = p(θ − (r/θ − 1)(1/s3 + ϵ)) > p(θ − r/θ(1/s3 + ϵ)), which is,
for a sufficiently small ϵ, greater than 0 since r/θs3 ≤ 1/s2 < θ. Similarly, each li < 2θ ≤ p

if m = r/θ − 1 and li < 3θ if m = r/θ − 2.
Now we can finish the proof of the first item. We set k1, . . . , km, l to be the n-tuples

determined by the rows of Y via ⟨⟩, e.g., l = ⟨l1, . . . , lp⟩. The inequalities 0 ≤ li ≤ p

guarantee that l is correctly defined and we see, using also the double cyclicity of t (for
t(z) = t(k1) = . . . ), that these n-tuples have all the required properties.

To finish the proof of the second item, we define the ki as above and set l1 = ⟨⌊l1/2⌋, . . . ,

⌊lp/2⌋⟩, l2 = ⟨⌈l1/2⌉, . . . , ⌈lp/2⌉⟩. Since 0 ≤ li ≤ 3θ/2 < p, these tuples are correctly defined
almost rectangles. Their areas clearly differ by at most 1/p. As ∆z ≥ 2, their step sizes are
strictly smaller than ∆z, and we are done in this case as well. ◀
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We present a generic strategy improvement algorithm (GSIA) to find an optimal strategy of simple
stochastic games (SSG). We prove the correctness of GSIA, and derive a general complexity bound,
which implies and improves on the results of several articles. First, we remove the assumption that
the SSG is stopping, which is usually obtained by a polynomial blowup of the game. Second, we
prove a tight bound on the denominator of the values associated to a strategy, and use it to prove
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1 Introduction

A simple stochastic game, or SSG, is a two-player turn-based zero-sum game with perfect
information introduced by Condon [13]. It is a simpler version of stochastic games, previously
defined by Shapley [23]. An SSG is played by two players max and min moving a pebble on
a graph. Vertices are divided into min vertices, max vertices, random vertices and a target
vertex for max. When the pebble reaches a min or max vertex, corresponding players move
the pebble to a neighbouring vertex of their choice. If it reaches a random vertex, the next
vertex is chosen at random following some probability law. Finally, when the pebble reaches
the target vertex, min pays 1 to max . The goal of min is to minimise the probability to
reach the target vertex while max must maximise this probability.

We study the algorithmic problem of solving an SSG, i.e. finding a pair of optimal
strategies in an SSG, or equivalently the optimal value vector of the optimal probabilities
for max to reach the sink from each vertex. There are always optimal strategies for both
players that are positional [13], i.e. stationary and deterministic, but the number of positional
strategies is exponential in the size of the game. Consequently, finding a pair of optimal
strategies is a problem not known to be in FP, but it is in PPAD [20], a class included
in FNP.
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Simple Stochastic Games can be used to simulate many classical games such as parity
games, mean or discounted payoff games [2, 9]. Moreover, stochastic versions of these games
are equivalent to SSGs [2], which underlines that SSGs are an important model to study.
SSGs have applications in different domains such as model checking of modal µ-calculus [24],
or modelling autonomous urban driving [11].

There are roughly three known methods to solve SSGs: strategy improvement, value
iteration and quadratic programming. A strategy improvement algorithm (SIA) starts with a
strategy for one player and improves it until it is optimal, whereas value iteration algorithms
(VIA) update a value vector by elementary operations, which converges to the optimal value
vector of the game. Implementations of those algorithms have been written and compared
in [21].

Denote by n be the number of max vertices and r be the number of random vertices in an
SSG. For SSGs with max vertices of outdegree 2, the best known deterministic algorithm is
an SIA which makes at worst O (2n/n) iterations (see [25]), and the best known randomised
algorithm is a SIA described by Ludwig in [22], which runs in 2O(√

n).
Gimbert and Horn give an SIA in [16], running in O∗ (r!) iterations, namely a superpoly-

nomial dependency in r only (O∗ omits polynomial factors in r and n). For SSGs where
random vertices have a probability distribution (1/2, 1/2) (coin toss), Ibsen-Jensen and
Miltersen present a VIA of complexity in O∗ (2r) [18]. It turns out that all SIA runs in
O∗ (2r) on SSGs with probability distribution (1/2, 1/2), as we prove in this article. The
same complexity of O∗ (2r) is obtained for general SSGs with a more involved randomised
algorithm in [5].

Most of the aforementioned algorithms rely on the game being stopping, meaning that it
structurally ends in a sink with probability 1. This condition is not restrictive since any SSG
can be transformed into a stopping SSG while keeping the same optimal strategies. However,
this transformation incurs a quadratic blow-up of the game and cannot be used in real life
application. In this paper we give bounds in O (2rPoly(n)) computational time for some kinds
of algorithm. Using the stopping transformation would have induced a O

(
2nr2

Poly(n)
)

complexity. The stopping restriction has been lifted for quadratic programming in [21] and
before that for SIA and VIA in [10, 8].

Contributions

We introduce GSIA, a new meta-algorithm to solve SSGs in Sec. 3. This algorithm proves
simultaneously the correctness of multiple algorithms ([14, 16, 15, 25, 18, 5]). In Sec. 4, we
give a general complexity bound that matches or improves on previous bounds obtained by
ad-hoc methods. We show that all these algorithms are fixed-parameter tractable in the
number of random vertices. Moreover, we do not rely on the fact that the game is stopping,
which was commonly used in the aforementioned papers. The proof of correctness relies on a
notion of concatenation for strategies and an analysis of absorbing sets in the game, while the
complexity bound is derived from a new and tight characterisation of the values of an SSG.
Finally, in Sec. 5, we show how GSIA can be used to derive new algorithms, generalising
classical ones. In particular, we exhibit a class of algorithms which generalise Gimbert and
Horn’s algorithm and use less iterations than Ibsen-Jensen and Miltersen’s algorithm.

We emphasise that our goal here is not to define a new algorithm that would have a
better –but still exponential– complexity bound than the state of the art (a sub-exponential
algorithm for SSGs, like the ones found for parity games [6, 12], would already be a significant
improvement), but rather to wrap-up a lot of previous research by showing that all known



D. Auger, X. Badin de Montjoye, and Y. Strozecki 12:3

SIA for SSGs, despite having emerged in different contexts and having ad-hoc proofs of
convergence, are in fact instances of a general pattern that can be further expanded, and
actually share the best known complexity bounds.

2 Simple Properties of Simple Stochastic Games

Some proofs are missing from this extended abstract for space reason, but they can be found
in the appendices or in a long version [3].

2.1 Simple Stochastic Games
We give a generalised definition of Simple Stochastic Game, a two-player zero-sum game with
turn-based moves and perfect information introduced by Anne Condon [14].

▶ Definition 1. A Simple Stochastic Game (SSG) is a directed graph G, together with:
1. A partition of the vertex set V in four parts Vmax, Vmin, VR and VS (all possibly empty,

except VS), satisfying the following conditions:
a. every vertex of Vmax, Vmin or VR has at least one outgoing arc;
b. every vertex of VS has exactly one outgoing arc which is a loop on itself.

2. For every x ∈ VR, a probability distribution px(·) with rational values, on the outneigh-
bourhood of x.

3. For every x ∈ VS, a value Val(x) which is a rational number in the closed interval [0, 1].

In the article, we denote |Vmax| by n and |VR| by r. Vertices from Vmax, Vmin, VR and VS

are respectively called max vertices, min vertices, random vertices and sinks. For x ∈ V , we
denote by N+(x) the set of outneighbours of x. We assume that for every x ∈ VR and y ∈ V ,
y ∈ N+(x) if and only if px(y) > 0.

The game is played as follows. The two players are named max and min. A token is
positioned on a starting vertex x. If x is in Vmax (resp. Vmin) the max player (resp. the min
player) chooses one of the outneighbours of x to move the token to. If x is in VR, the token
is randomly moved to one of the outneighbours of x according to the probability distribution
px(·), independently of everything else. This process continues until the token reaches a sink
s and then, player min has to pay Val(s) to player max and the game stops. The problem
we study is to find the best possible strategies for min and max, and the expected value that
min has to pay to max while following those strategies.

We consider a slightly restricted class of SSGs where the probability distribution on each
random vertex has a given precision and the value of the sinks are 0 and 1.

▶ Definition 2. For q a positive integer, we say that an SSG is a q-SSG if there are only two
sinks of value 0 and 1, and for all x ∈ VR, there is an integer qx ≤ q such that the probability
distribution px(·) can be written as px(x′) = ℓx,x′

qx
for all x′ where ℓx,x′ is a natural number.

As an example, let x be a random vertex of a 2-SSG, and let u ∈ N+(x), then px(u) can
be equal to 0, 1/2 or 1. The case px(u) = 0 is forbidden by definition, and if px(u) = 1,
then x is of degree one and can be removed (by redirecting arcs entering x directly to u),
without changing anything about the outcome of the game. Hence, we suppose without
loss of generality that each random vertex of a 2-SSG has degree 2 and has probability
distribution (1/2, 1/2). This definition matches the one of a binary SSG, given by Condon
and used in most articles on SSGs, except that we allow here max and min vertices to have
an outdegree larger than 2.

MFCS 2021
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2.2 Play, History and Strategies
▶ Definition 3. A play in G is an infinite sequence of vertices X = (x0, x1, x2, · · · ) such
that for all t ≥ 0, (xt, xt+1) is an arc of G.

If for a play X = (xt) there is some t ≥ 0 with xt = s ∈ VS , then all subsequent vertices
in the play are also equal to s. In this case, we say that the play reaches sink vertex s and
we define the value of the play Val(X) as Val(s). If the play reaches no sink, then we set
Val(X) = 0.

A history of G is a finite directed path h = (x0, x1, · · · , xk). If the last vertex xk is a
max vertex (resp. min vertex), we say that h is a max history (resp. min history).

▶ Definition 4. A general max strategy (resp. general min strategy) is a map σ assigning
to every max history (resp. min history) h = (x0, x1, · · · , xk) a vertex σ(h) which is an
outneighbour of xk. The set of these strategies is denoted by Σmax

gen (resp. Σmin
gen).

For σ ∈ Σmax
gen and τ ∈ Σmin

gen, given a starting vertex x0, we recursively define a random
play X = (X0, X1, · · · ) of G in the following way. At t = 0 let X0 = x0, and for t ≥ 0:

if Xt ∈ Vmax, define Xt+1 = σ(X0, X1, · · · , Xt);
if Xt ∈ Vmin, define Xt+1 = τ(X0, X1, · · · , Xt);
if Xt ∈ VR, then Xt+1 is an outneighbour of Xt chosen following the probability distribu-
tion pXt

(·), independently of everything else;
if Xt ∈ VS , define Xt+1 = Xt.

This defines a distribution on plays which we denote by Px0
σ,τ (·), or simply P (·) if strategies

and starting vertex are clear from context. The corresponding expected value and conditional
expected values are denoted by Ex0

σ,τ (·|·), or simply E (·|·).
We now define positional strategies which only depend on the last vertex in the history:

▶ Definition 5. A general max strategy σ (resp. min strategy) is said to be positional if for
any max vertex x (resp. min vertex) and any history h = (x0, . . . , x), we have σ(h) = σ((x))
where (x) is the history containing only x as a start vertex. The set of positional max
strategies (resp. min strategies) is denoted Σmax (resp. Σmin).

2.3 Values in an SSG
▶ Definition 6. Let G be an SSG and let (σ, τ) be a pair of max and min strategies, the
value vector vG

σ,τ is the real vector of dimension |V | defined by, for any x0 ∈ V ,

vG
σ,τ (x0) = Ex0

σ,τ (Val(X)) .

This value represents the expected gains for player max if both players plays according to
(σ, τ) and the game starts in vertex x0.

As before, the superscript G can be omitted when the context is clear.
To compare value vectors, we use the pointwise order: we say that v ≥ v′ if for all vertices

x ∈ V we have v(x) ≥ v′(x). Moreover, we say that v > v′ if v ≥ v′ and there is some x such
that v(x) > v′(x). Given a max strategy σ, a best response to σ is a min strategy τ such
that vσ,τ ≤ vσ,τ ′ for all min strategies τ ′.

▶ Proposition 7 ([14]). A positional strategy admits a positional best response, which can be
found in polynomial time using linear programming.
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The set of positional best responses to σ is denoted by BR(σ). Similarly, for a min
strategy τ , we define the notion of best response to τ and the corresponding set is denoted
by BR(τ). Except explicitly stated otherwise (in Sec. 3.3), all considered strategies are
positional.

We denote by τ(σ) a positional best response to σ. For a max strategy σ and τ ∈ BR(σ),
we write vσ for vσ,τ . For a min strategy τ and σ ∈ BR(τ), we write vτ for vσ,τ . The vector
vσ is called the value vector of strategy σ, and is used to compare strategies by writing
σ′ >

G
σ if and only if vG

σ′ > vG
σ .

It is well known (see [14, 25]) that there is a pair of deterministic positional strategies
(σ∗, τ∗) called optimal strategies, that satisfies for all x, v∗ = vσ∗,τ∗ = vσ∗ = vτ∗ since σ∗

and τ∗ are best responses to each other.

2.4 Optimality Conditions
The next two lemmas give characterisations of (optimal) value vectors under a pair of
strategies. They are fundamental to all algorithms finding optimal strategies. Proofs of
similar results can be found in [13]; we add here a fifth condition to make the characterisation
hold when the game is not stopping.

For any SSG, the vertices with value 0 under optimal strategies can be found in linear
time by a simple graph traversal computing its complementary, the set of max vertices which
can access a sink of positive value, regardless of the choice of the min player. Let KG be the
set of vertices with value0 under optimal strategies. For a max strategy σ of G and a min
strategy τ , we call KG

σ,τ the set of vertices with value zero under the pair of strategies σ, τ ,
and KG

σ the set of vertices with value zero under σ, τ when τ is a best response to σ.

▶ Lemma 8. Given positional strategies (σ, τ) and a real |V |-dimensional vector v, one has
equality between v and vσ,τ if and only if the following conditions are met:

(i) For s ∈ VS, v(s) = Val(s)
(ii) For r ∈ VR, v(r) =

∑
y∈N+(r)

pr(y)v(y)

(iii) For x ∈ Vmin, v(x) = v(τ(x))
(iv) For x ∈ Vmax, v(x) = v(σ(x))
(v) For any x ∈ V , v(x) = 0, if and only if x ∈ KG

σ,τ

Moreover, τ ∈ BR(σ) if and only if for any x in Vmin, v(x) = min
y∈N+(x)

v(y) = v(τ(x)) and

the last condition is modified into v(x) = 0 if and only if x ∈ KG
σ .

▶ Lemma 9 (Optimality conditions). Given positional strategies (σ, τ ) and denoting v = vσ,τ ,
(σ, τ) are optimal strategies if and only if:

(i) For s ∈ VS, v(s) = Val(s)
(ii) For r ∈ VR, v(r) =

∑
y∈N+(r)

pr(y)v(y)

(iii) For x ∈ Vmin, v(x) = min
y∈N+(x)

v(y)

(iv) For x ∈ Vmax, v(x) = max
y∈N+(x)

v(y)

(v) For any x ∈ V , v(x) = 0, if and only if x ∈ KG

The conditions of Lemma 9 imply that (σ, τ) is a certificate of optimality that can be
checked in polynomial time: compute vσ,τ by solving the linear system of Lemma 8, compute
KG in linear time, then check in linear time if conditions are met.
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x1

x2

x3

x4

x5

−→

x1

x2

x3

0.3

x4

x5

Figure 1 Transformation of the graph G in G[{(x2, x3)}, f ] where f((x2, x3)) = 0.3.

3 Generic Strategy Improvement Algorithm

3.1 Game Transformation
We present a simple transformation of an SSG, where some arcs of the game are rerouted to
new sinks with appropriate values.

▶ Definition 10. Let G be an SSG, A be a subset of the arcs of G and f be a function from
A to the set of rational numbers. Let G[A, f ] be the SSG obtained from a copy of G with
the following modifications: each arc e = (x, y) ∈ A is removed and replaced in G[A, f ] by
e′ = (x, se) where se is a new sink vertex with value f(e). These new sinks of G[A, f ] are
called A-sinks, and A is called the set of fixed arcs.

Note that in the previous definition, the end vertex y of an arc (x, y) ∈ A is not removed
from the game. Its incoming arcs which are in A are simply redirected to sinks, see Fig. 1.

The function f is usually given by the values of a a strategy: we denote by G[A, σ] the
game G[A, f ], where f is defined on every arc e = (x, y) of A by f(e) = vσ(y). Comparing
G and G[A, σ], the only differences are that arcs of A have their endpoints changed to new
sinks. Therefore, a strategy defined in G can be interpreted as a strategy of G[A, σ] and vice
versa, and we identify strategies in G and G[A, σ]. However, when we compare the values of
a strategy in both games (as in Lemma 12 below), it makes sense to compare only the values
on vertices in G and not on A-sinks (and anyway values of A-sinks are fixed).

▶ Lemma 11. For an SSG G, a subset of arcs A, and a max strategy σ, KG
σ = KG[A,σ]

σ .

Proof. Fix a min strategy τ and define RG
σ,τ (x) as the set of vertices that can be reached

from x in G, following only arcs corresponding to σ and τ after max and min vertices, and
any arc out of random vertices. We repeatedly use the easy fact that the three following
assertions are equivalent:

(i) vG
σ,τ (x) = 0;

(ii) vG
σ,τ (y) = 0 for all y ∈ RG

σ,τ (x);
(iii) ValG(s) = 0 for all s ∈ V G

S ∩RG
σ,τ (x).

The same equivalence is true in G[A, σ], where we define RG[A,σ]
σ,τ likewise. Denote by RG

A(x)
vertices of RG

σ,τ (x) that are endpoints of arcs in A, and let SA(x) be the corresponding
A-sinks in G[A, σ].

Suppose that vG
σ,τ (x) = 0 and consider a sink s in V

G[A,σ]
S ∩RG[A,σ](x): either it belongs

to V G
S hence also to RG(x) and satisfies ValG(s) = 0 by (iii), or it belongs to SA(x) and

then by definition

ValG[A,σ](s) = vG
σ (s) ≤ vG

σ,τ (s) = 0.

Thus, by (iii) once again we have vG[A,σ]
σ,τ (x) = 0.



D. Auger, X. Badin de Montjoye, and Y. Strozecki 12:7

Conversely, suppose that vG[A,σ]
σ,τ (x) = 0 and let s ∈ V G

S ∩ RG
σ,τ (x). Then, either s ∈

RG[A,σ]
σ,τ , hence by (iii)

ValG(s) = ValG[A,σ](s) = 0,

or there is a y ∈ RG
A(x) such that s ∈ RG

σ,τ (y). In this case we have vG
σ,τ (y) = 0 by (ii), hence

ValG(s) = 0 by (iii) applied to y, and we see that vG
σ,τ (x) = 0.

Since we have vG
σ,τ (x) = 0 if and only if vG[A,σ]

σ,τ (x) = 0, regardless of τ , the result
follows. ◀

▶ Lemma 12. For an SSG G, a subset of arcs A, and a max strategy σ, vG
σ = vG[A,σ]

σ .

Proof. This is a direct consequence of Lemma 8 and Lemma 11, since the vector vG
σ satisfies

the best-response conditions in G[A, σ] and vice versa. ◀

3.2 The Algorithm
An SSG is stopping if under every pair of strategies, a play eventually reaches a sink
with probability 1. Most algorithms in the literature depend on the game being stopping.
It is usually not seen as a limitation since it is possible to transform every SSG into a
stopping SSG, but the transformation makes the game polynomially larger by adding O(nr)
random vertices, which is bad from a complexity point of view, especially for algorithm with
parametrized complexity in the number of random vertices. We strengthen the classical
order on strategies, to get rid of the stopping condition in the generic strategy improvement
algorithm presented in this section.

▶ Definition 13. Let σ and σ′ be two max strategies, then σ′ ≻
G

σ if σ′ >
G

σ and for every

max vertex x, if vG
σ′(x) = vG

σ (x), then σ′(x) = σ(x).

Algorithm 1 is a classical strategy improvement algorithm with two twists: the improve-
ment is for the stricter order ≻ and it is guaranteed in the transformed game rather than
in the original game. We call Algorithm 1 the Generic Strategy Improvement Algorithm,
or GSIA.

Algorithm 1 GSIA.

Data: G a stopping SSG
Result: (σ, τ) a pair of optimal strategies

1 begin
2 select an initial max strategy σ

3 while (σ, τ(σ)) are not optimal strategies of G do
4 choose a subset A of arcs of G

5 find σ′ such that σ′ ≻
G[A,σ]

σ.

6 σ ←− σ′

7 return (σ, τ(σ))

Algorithm 1 is a generic algorithm (or meta-algorithm) because neither the selection of
an initial strategy σ at line 2, nor the way of choosing A at line 4, nor the way of finding σ′

at line 5, are specified. A choice of implementation for these three parts is an instance of
GSIA, that is a concrete strategy improvement algorithm.
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Note that if σ′ >
G[A,σ]

σ is found, it is easy to find σ′′ with σ′′ ≻
G[A,σ]

σ: define σ′′ as equal

to σ′, except for max vertices x such that vG
σ′(x) = vG

σ (x) and σ′(x) ̸= σ(x) where σ′′(x) is
defined as σ(x).

When we prove some property of GSIA in this article, it means that the property is true
for all instances of GSIA, that is regardless of the selection of the initial strategy, the set A

and the method for selecting σ′.
In order to prove the correctness of GSIA, we need to prove two points:

1. If σ is not optimal in G, then σ is not optimal in G[A, σ].
2. If σ′ ≻

G[A,σ]
σ then σ′ >

G
σ.

The first point is proved in the following lemma, while the second one is harder to obtain
and is the subject of the next two subsections.

▶ Lemma 14. For an SSG G and a subset of arcs A, a max strategy σ is optimal in G if
and only if it is optimal in G[A, σ].

Proof. Except on A-sinks, the value vectors of σ in G and G[A, σ] are equal by Lemma 12.
Furthermore, by Lemma 11, KG

σ = KG[A,σ]
σ ; hence σ satisfies the optimality conditions of

Lemma 9 in G if and only if it satisfies them in G[A, σ]. ◀

3.3 Concatenation of Strategies
As a tool for proving the correctness of Algorithm 1, we introduce the notion of concatenation
of strategies which produces non-positional strategies even if both concatenated strategies
are positional. The idea of using a sequence of concatenated strategies to interpolate between
two strategies has been introduced in [17].

▶ Definition 15. For two max strategies σ, σ′ and a subset of arcs A, we call σ′|Aσ the
non-positional strategy that plays like σ′ until an arc of A is crossed, and then plays like σ

until the end of the game. We let σ′|0Aσ = σ and for all i ≥ 0, σ′|i+1
A σ = σ′|A(σ′|iAσ).

When A is clear from the context, we omit it and write σ′|iσ. Strategy σ′|iAσ is the
strategy that plays like σ′ until i arcs from A have been crossed, and then plays like σ. Hence,
we can relate the strategy σ′|Aσ to a positional strategy in G[A, σ] as shown in the next
lemma.

▶ Lemma 16. For two max strategies σ, σ′ and a subset of arcs A, we have: vG
σ′|Aσ = v

G[A,σ]
σ′

Proof. In G, after crossing an arc from A, by definition of σ′|Aσ, max plays according to
σ. The game being memoryless, from this point, the best response for min is to play like
τ(σ) ∈ BR(σ). Thus, there is a best response to σ′|σ of the form τ ′|τ(σ) with τ ′ a min
strategy not necessarily positional. Let us consider a play following (σ′|σ, τ |τ(σ)) with τ any
min strategy. If the play does not cross an arc of A, then there is no difference between this
play and a play following (σ′, τ) in G[A, σ]. If an arc of A is used, then by Lemma 12 there
is no difference between stopping with the value of G[A, σ] or continuing in G while following
(σ, τ). Thus we have: vG

σ′|σ,τ |τ(σ) = v
G[A,σ]
σ′,τ .

Thus, if τ ′ is a best response to σ′ in G[A, σ], then τ ′|τ(σ) is a best response to σ′|σ in
G. This implies that vG

σ′|σ = v
G[A,σ]
σ′ . ◀

We now prove the fact that increasing the values of sinks can only increase the value of
the game (a similar lemma is proved in [4]).
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▶ Lemma 17. Let G and G′ be two identical SSGs except the values of theirs sinks s ∈ VS,
denoted respectively by Val(s) and Val ′(s). If for every s ∈ VS, Val ′(s) ≥ Val(s), then for
every max strategy σ we have vG′

σ ≥ vG
σ .

Proof. For s ∈ VS , let Px
σ,τ (→ s) be the probability that the play ends in sink s while

starting from vertex x, following strategies (σ, τ). For any vertex x we have:

vG′

σ,τ (x) =
∑

s∈V ′
S

Px
σ,τ (→ s)Val′(s) ≥

∑
s∈V ′

S

Px
σ,τ (→ s)Val(s) = vG

σ,τ (x)

This is true for any min strategy τ , thus vG′

σ ≥ vG
σ . ◀

The following proposition is the core idea of GSIA: a strategy which improves on σ in
the transformed game also improves on σ in the original game. The proof relies on a precise
analysis of the set of vertices which cannot reach a sink, to deal with the fact that the game
is not stopping. We prove that, if σ′ ≻

G[A,σ]
σ the limit of vG

σ′|iσ is vG
σ′ and the two previous

lemmas imply σ′|iσ ≥ σ′|i−1σ > σ, which yields the following proposition.

▶ Proposition 18. Let G be an SSG, A a subset of arcs of G and σ, σ′ two max strategies.
If σ′ ≻

G[A,σ]
σ then σ′ >

G
σ.

In order to avoid requiring the game to be stopping, it is necessary to pay particular
attention to the set of vertices where the play can loop infinitely and yield value zero, which
is a subset of the set of vertices of value 0. We now prove that a step of GSIA can only
reduce this set, which is then used to prove Proposition 18.

▶ Definition 19. For an SSG G and two strategies (σ, τ), an absorbing set Z is a subset of
V ∖ VS such that starting from any vertex of Z and playing according to (σ, τ), there is a
probability zero of reaching a vertex of V ∖ Z.

For σ and τ two strategies, Z(σ, τ) is the set of all vertices in some absorbing set under
(σ, τ). Hence, Z(σ, τ) is also an absorbing set. By definition, a play remains stuck in an
absorbing set and can never reach a sink, hence all vertices of an absorbing set have value
zero under (σ, τ). The next lemma proves the existence of the inclusion-wise maximum over
τ of Z(σ, τ) that we denote by Z(σ). An example is given Fig. 2.

▶ Lemma 20. For every max strategy σ, there is τ ∈ BR(σ) such that for every min strategy
τ ′, we have Z(σ, τ ′) ⊆ Z(σ, τ).

Proof. For τ in BR(σ) and τ ′ such that Z(σ, τ ′) ⊈ Z(σ, τ ), then we define τ̃ as τ̃(x) = τ ′(x)
for x in Z(σ, τ ′) and τ̃(x) = τ(x) otherwise. We now prove that τ̃ ∈ BR(σ) and Z(σ, τ̃) ⊇
Z(σ, τ) ∪ Z(σ, τ ′).

Since τ is a best response to σ, we have vσ,τ (x) ≤ vσ,τ ′(x). Moreover, for x ∈ Z(σ, τ ′),
vσ,τ ′(x) = 0 thus vσ,τ (x) = 0. From this, we deduce that the two systems of linear equations
given by Lemma 8, characterising respectively vectors vσ,τ and vσ,τ̃ , are exactly the same:
for the only vertices where τ̃(x) and τ(x) differ satisfy vσ,τ (τ(x)) = vσ,τ (τ̃(x)) = 0. Hence,
we have vσ,τ = vσ,τ̃ and τ̃ ∈ BR(σ).

For any play under strategies (σ, τ̃) starting in x ∈ Z(σ, τ ′), the min vertices of the play
are all in Z(σ, τ ′) because τ̃ plays as τ ′ on these vertices. Thus, we have Z(σ, τ ′) ⊆ Z(σ, τ̃).
For a play starting in x ∈ Z(σ, τ ), either the play reaches a vertex of Z(σ, τ ′) and then stays
in Z(σ, τ ′) or it plays like τ and stays in Z(σ, τ). Hence, we have Z(σ, τ) ⊆ Z(σ, τ̃). ◀
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x1
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x3

0
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1

Figure 2 Example of an SSG where the x, n and r vertices are respectively from Vmax, Vmin and
VR. The pair of strategy (σ, τ) is displayed as plain arrows. Here Z(σ, τ) = Z(σ) = {n1, x1, x2}.

From this we deduce the following result on the improvement step for GSIA (where
absorbing sets are understood in G):

▶ Proposition 21 (Proof in Appendix A). Let G be an SSG, A a set of arcs of G, σ and σ′

two max strategies such that σ′ ≻
G[A,σ]

σ, then Z(σ′) ⊆ Z(σ).

We now prove Proposition 18.

Proof. We introduce a sequence of non-positional strategies (σi)i≥0 defined by σi = σ′|iσ
for i ≥ 1. By hypothesis σ′ ≻

G[A,σ]
σ, and by Lemma 16 vG

σ′|Aσ = v
G[A,σ]
σ′ , then we have

vG
σ1

= vG
σ′|σ = v

G[A,σ]
σ′ > vG[A,σ]

σ = vG
σ .

Hence, by definition, sinks of G[A, σ1] will have at least the values of the corresponding
sinks in G[A, σ]. Applying Lemma 17, we obtain that v

G[A,σ1]
σ′ ≥ v

G[A,σ]
σ′ , which can also be

written as vG
σ2
≥ vG

σ1
. More generally, we have:

∀i ≥ 1, vG
σi+1
≥ vG

σi
≥ vG

σ1
> vG

σ .

We now prove that vG
σ′ ≥ vG

σ1
to conclude the proof.

From now on, we only consider the game G. Fix a vertex x and a min strategy τ ∈ BR(σ′)
such that Z(σ′) = Z(σ′, τ). From Proposition 21 we know that, Z(σ′) ⊆ Z(σ). It implies
that for every z ∈ Z(σ′), vG

σ (z) = vG
σ′(z) = 0 which implies that v

G[A,σ]
σ′ (z) = 0. Thus,

σ′(z) = σ(z). It implies that Z(σ′) ⊆ Z(σ, τ).
We now only consider G′ the game G where we replace every vertex in Z(σ′, τ) by a sink

of value 0. Lemma 12 directly implies that vG
σ = vG′

σ′ and vG
σ′ = vG′

σ′ . Moreover, when playing
following σi when a vertex of Z(σ′) is reached, for all possible history, the play will stay in
the absorbing set. Thus, vG

σi
= vG′

σi
.

Recall that Px
σ′,τ (→ s) is the probability to reach a sink s in G′ while starting in x and

following (σ′, τ). Let T σ′,τ be a random variable defined as the time at which a sink is
reached. Note that T σ′,τ may be equal to +∞.
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For every i ≥ 1, we use Bayes rule to express the value of vσ′,τ (x) while conditioning on
finishing the game before i steps.

vσ′,τ (x) =P(T σ′,τ < i)
∑

s∈VS

Px
σ′,τ (→ s | T σ′,τ < i)Val(s)

+ P(i ≤ T σ′,τ < +∞)
∑

s∈VS

Px
σ′,τ (→ s | +∞ > T σ′,τ ≥ i)Val(s)

If T σi,τ < i, only i arcs have been crossed, thus at most i arcs from A have been crossed
when the sink is reached. Hence σi acts like σ′ during the whole play, which yields:

vσ′,τ (x) =P(T σi,τ < i)
∑

s∈VS

Px
σi,τ (→ s | T σi,τ < i)Val(s)

+ P(i ≤ T σ′,τ < +∞)
∑

s∈VS

Px
σ′,τ (→ s | +∞ > T σ′,τ ≥ i)Val(s)

We use Bayes rule in the same way for vσi,τ (x)

vσi,τ (x) =P(T σi,τ < i)
∑

s∈VS

Px
σi,τ (→ s | T σi,τ < i)Val(s)

+ P(i ≤ T σi,τ < +∞)
∑

s∈VS

Px
σi,τ (→ s | T σi,τ ≥ i)Val(s)

Since every absorbing vertex in G associated with σ′ has been turned into a sink, in G′

P(T σ′,τ < i) = P(T σi,τ < i) converges to 1 when i grows. Hence, both P(i ≤ T σ′,τ < +∞)
and P(i ≤ T σi,τ < +∞) go to 0 and

lim
i→+∞

|vσ′,τ (x)− vσi,τ (x)| = 0.

Hence, if there was x such that vσ′(x) < vσ1(x), we denote ϵ = vσ1(x) − vσ′(x). For
some rank I for all i ≥ I we have |vσ′,τ − vσi,τ | < ϵ/2. Which implies vσi,τ (x) < vσ1(x). We
recall that vσ1(x) ≤ vσi(x). This means that vσi,τ < vσi(x), which contradicts the notion of
optimal response against σi. Therefore, we have shown that σ′ ≥

G
σ1 >

G
σ. ◀

As a consequence of all previous lemmas, we obtain the correction of GSIA.

▶ Theorem 22. GSIA terminates and returns a pair of optimal strategies.

Proof. We denote by σi the max strategy σ at the end of the i-th loop in Algorithm 1. By
induction, we prove that the sequence σi is of increasing value. Indeed, Line 5 of Algorithm 1
guarantees that σ′ ≻

G[A,σ]
σ, thus Prop. 18 implies that σ′ >

G
σ, that is σi+1 > σi.

The strategies produced by the algorithm are positional, hence there is only a finite
number of them. Since the sequence is strictly increasing, it stops at some point. The
algorithm only stops when Line 5 of Algorithm 1 fails to find σ′ ≻

G[A,σ]
σ. In other words, σ

is optimal in G[A, σ]. By Lemma 14, σ is also optimal in G. ◀
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4 Complexity of GSIA

We analyse the algorithmic complexity of GSIA, by lower bounding the values of the sequence
of strategies it produces. We obtain a bound on the number of iterations of GSIA depending
on the number of random vertices, rather than on the number of max or min vertices. Then,
we can derive the complexity of any instance of GSIA, by evaluating the cost of computing
σ′ from σ in G[A, σ].

4.1 Values of q-SSGs
To prove a complexity bound using the values of a strategy, we need to precisely characterise
the form of these values. In a 2-SSG, there is a function f(r) such that, for every pair of
positional strategies (σ, τ ), there is t ≤ f(r), such that for every vertex x, there is an integer
px, such that vσ,τ (x) = px

t
Condon proved in [13] that f(r) ≤ 4r. Then Auger, Coucheney and Strozecki improved

this to f(r) ≤ 6r/2 in [4]. We show that f(r) = qr for q-SSGs, which gives the improved
bound of f(r) ≤ 2r for 2-SSGs.

▶ Theorem 23 (Proof in Appendix B). Let q ≥ 1 and G a q-SSG with r random vertices,
then for any pair of strategies (σ, τ) there is t ≤ qr such that, for every vertex x, there is an
integer sx such that, vσ,τ = sx

t
.

Proof of Th. 23 relies on the matrix tree theorem applied to a directed multigraph
representing the game under a pair of strategies. Let us show that qr is a tight bound for
f(r). Consider a Markov chain (an SSG with no max nor min vertices) with r + 2 vertices:
two sinks 0 and 1 and r random vertices x1, . . . , xr. Vertex x1 goes to 1 with probability 1/q

and to 0 with probability (q − 1)/q. For r ≥ i ≥ 2, xi goes to 0 with probability (q − 1)/q

and to xr−1 with probability 1/q. Then, the value of xr is q−r.

4.2 Bounding the Number of Iterations of GSIA
GSIA produces a sequence of strictly increasing positional max strategies. The number
of positional max strategies is bounded by |Σmax| =

∏
x∈Vmax

deg(x), hence the number of

iterations of GSIA is bounded by this value. If we consider the case of a binary SSG (all
vertices of outdegree 2), we have the classical bound of |Σmax| = 2n iterations. The best
known bound for a deterministic algorithm is 2n/n iterations obtained for Hoffman-Karp
algorithm [25], which is not far from the trivial bound of 2n iterations.

We give a bound for q-SSG, which depends on q and r the number of random vertices.
The difference of two values written as a/b and c/d, with a and b less than q−r is more than
q−2r. Hence, if a value increases in GSIA, it increases at least by q−2r. Using the classical
notion of switch and anti-switch [25], recalled in Appendix C, we can prove that all vertices
which have their value increased by a step of GSIA, are increased by at least q−r.

▶ Theorem 24 (Proof in Appendix C). For G a q-SSG with r random vertices and n max
vertices, the number of iterations of GSIA is at most nqr.

The complexity of GSIA is the number of iterations given by Th. 24, multiplied by the
complexity of an iteration. In an iteration, there are two sources of complexity: constructing
the game G[A, σ] and finding an improving strategy σ′ in G[A, σ]. To construct the game, vσ

is computed by solving a linear program of size m up to precision p = qr. Let C1(m, p) be the
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complexity of computing vσ, then the best bound is currently in O(mω log(p)) [19], with ω the
current best bound on the matrix multiplication exponent. Let C2(n, r, q) be the complexity
of computing σ′, the complexity of an iteration is in O(nqr(C1(n + r, qr) + C2(n, r, q)).

We obtain a better complexity, when C2(n, r, q) = O(C1(n, qr)r/n), which is the case for
most instances of GSIA mentionned in this article. The number of iterations is only rqr if
we can guarantee that a random vertex increases its value at each step. When no random
vertex is improved, the cost of computing G[A, σ] can be made smaller, which yields the
following theorem.

▶ Theorem 25 (Proof in Appendix D). Let G be a q-SSG with r random vertices and n max
vertices. If C2(n, r, q) = O(C1(n, qr)r/n), then the complexity of GSIA is in O(rqrC1(n, qr)).

5 Two Instances of GSIA

As previously mentioned, all known strategy improvement algorithms can be viewed as
particular instances of GSIA. This includes e.g. switch-based algorithms, like Hoffman-Karp
algorithm [14, 25] or Ludwig’s recursive algorithm [22]. With the help of GSIA it also
becomes very easy to derive new algorithms, by transforming the game into polynomial
time solvable instances, such as almost acyclic games [4]. We detail all these old and new
algorithms in Sec. 6.

In this section, we focus instead on two particular instances (or family of instances) of
GSIA, for which we obtain new complexity bounds using the results of the previous sections.

5.1 GSIA and f -strategies
The strategy improvement algorithm proposed by Gimbert and Horn in [16] (denoted by
GHA) can be viewed as an instance of GSIA where the set A of fixed arcs is the set R of all
arcs going out of random vertices, and the improvement step in the subgame G[R, σ] consists
in taking an optimal strategy. In this case, the subgame G[R, σ] is deterministic (random
vertices are connected to sinks only and can be replaced by sinks), hence optimal values in
G[R, σ] depend only on the relative ordering of the values vσ(x) for sink and random vertices
x of G. These values can be computed in O(r log(r) + n) time [1]. In the original paper [16],
the algorithm is proposed in a context where the number of sinks is two, but we generalise
their definitions to our context.

Consider a total ordering f on VR ∪ VS , f : x1 < x2 < · · · < xr+s, where s is the
number of sinks. An f -strategy corresponding to this ordering is an optimal max strategy in
the game where the s + r vertices above are replaced by sinks with new values satisfying
Val(x1) < Val(x2) < · · · < Val(xr+s). Clearly, this strategy does not depend on the actual
values given but only on f . Note that if several f -strategies exist for a given f , they share
the same values on all vertices.

Algorithm GHA produces an improving sequence of f -strategies, and the two sinks of
value zero and one are always first and last in the order, hence its number of iterations is
bounded by r!, the total number of possible orderings of the random vertices. We extend
this result to a large class of instances of GSIA: let us call Optimal-GSIA (Opt-GSIA), the
meta algorithm obtained from Algorithm 1 with two additional constraints:

the set A of fixed arcs is the same at each step of Algorithm 1;
at line 5, the improving strategy σ′ is the optimal strategy in G[A, σ].
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All classical algorithms captured by GSIA, or new ones presented in this article are in
fact instances of Opt-GSIA. We now show that Opt-GSIA has an iteration number similar to
GHA. Since we have proved a bound of nqr iterations, by Th. 24, Opt-GSIA has essentially
the best known number of iterations, for q small and large (the latter being interesting in
the case of random vertices with large degree and arbitrary probability distributions).

▶ Theorem 26. Consider an SSG G and a set of arcs A containing k arcs out of max or
min vertices. Then Algorithm Opt-GSIA runs in at most min((r + k)qr, (r + k)!) iterations.

Proof. Let σ be one of the iterated max strategies obtained by an instance of Opt-GSIA,
and σ′ be an optimal strategy in G[A, σ]. Then σ′ is consequently an f -strategy in G[A, σ],
where f is the ordering on VR ∪ VA (where VA is the set of A-sinks) which is induced by
the value vector v

G[A,σ]
σ′ (if vertices have the same value, just arbitrarily decide their relative

ordering in f).
Since strategies produced by the algorithm strictly increase in values by Prop. 18, they

must be all distinct. Hence, the order f must be distinct at each step of the algorithm, which
proves that Opt-GSIA does at most (r + k)! iterations.

Moreover, at every step the value in G of at least one vertex in VR ∪VA must improve, by
at least q−r because of Th. 23. Since the value of these vertices is bounded by 1, the number
of iterations of Opt-GSIA is bounded by (r + k)qr. ◀

Those results can be used to generalize Gimbert and Horn’s Algorithm [16] and to compare
it with Ibsen-Jensen and Miltersen’s algorithm [18]. It is possible to create an instance of
GSIA with less iterations than Ibsen-Jensen and Miltersen’s algorithm and which terminates
exponentially faster on some input. Due to a lack of space this is detailed in a long version
of this paper [3].

5.2 Condon’s Converge From Below Algorithm
In [14], Condon first presents a faulty algorithm (the Naive Converge From Below Algorithm)
and then a correct modified version, the Converge From Below (CFB) Algorithm. This
algorithm proceeds by improving a value vector iteratively, but we show here that is in fact
a disguised strategy improvement algorithm, that can be seen as an instance of Opt-GSIA.
This gives us a proof of convergence of the CFB algorithm in the general, non-stopping
case (whereas Condon has the assumption that the game is stopping in her proof), and also
bounds on the number of iterations (none are given in the original paper) by Theorem 24
and Theorem 26.

The CFB algorithm is restated with some clarifications on listing 2 (we omit the details
of the linear program, see [14]). The algorithm uses two properties of a vector, that we now
define. First, vector v is feasible if

(i) For s ∈ VS , v(s) = Val(s)
(ii) For r ∈ VR, v(r) =

∑
x∈Nr

pr(x)v(r)

(iii) For x ∈ Vmin, v(x) ≤ min
y∈N+(x)

v(y)

(iv) For x ∈ Vmax, v(x) ≥ max
y∈N+(x)

v(y).

A feasible vector is stable at x a min vertex (resp. max vertex) if satisfies condition (iii)
(resp. condition (iv)) of feasibility for x with an equality.

We now show by induction that the CFB algorithm is equivalent to the instance of
Opt-GSIA where all min vertices are fixed, i.e. A is the set of arcs entering min vertices. Let
Amin denote this set.
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To see this, suppose that at the beginning of line 5 of CFB, Vector vr is the value vector
of a max-strategy σ in G. Then:

at Line 5, we “update v as the feasible vector where all min vertices x have value vr(x) and
all max vertices are stable”. This amounts to finding a max-strategy σ′ which satisfies
optimality conditions in G[Amin, σ], i.e. an optimal strategy for max in this subgame.
This is exactly the subgame improvement step of Opt-GSIA. At the end of this step, v is
the optimal value vector in G[Amin, σ] ;
in the next loop, at Line 4 of CFB, we “compute the value vector vr of an optimal
response to the max strategy that plays greedily according to v”, i.e. vr is updated to the
value vector vG

σ′ . This is precisely Line 6 of GSIA when we update values in the subgame.

Hence, we see that except for the initialisation where vr may not correspond to a max-
strategy, it will be the case as soon as we reach Line 5 of the first loop, and from this point
on CFB will correspond exactly to the instance of Opt-GSIA described above.

Algorithm 2 Converge From Below Algorithm.

Data: G an SSG
Result: The optimal value vector v∗ of G

1 begin
2 · let v be a feasible vector in which all min vertices have value 0 and all max

vertices are stable
3 while v is not an optimal value vector do
4 · use linear programming to compute the value vector vr of an optimal

response to the max strategy that plays greedily according to v

5 · update v as the feasible vector where all min vertices x have value vr(x) and
all max vertices are stable

6 return v

6 Algorithms Derived from GSIA

We show that all known strategy improvement algorithms can be expressed as instances of
GSIA and we also propose several new algorithms, derived from choices of A which make the
transformed game polynomial time solvable. The only algorithms which are not instances of
GSIA are based on values rather than strategies: value propagation [10, 14, 18], quadratic
programming [14, 21] and dichotomy [4].

6.1 Hoffman-Karp Algorithms
The most classical method to solve an SSG, called the Hoffman-Karp algorithm, repeatedly
applies switches to the strategy until finding the optimal one. It is also a generic algorithm,
since the choice of the set of vertices to switch at each step is not specified nor the choice of
the initial strategy. Many details on these algorithms can be found in [14] or [25].

Hoffman-Karp algorithms are instances of GSIA, where A is the set of all arcs of the
SSG. Indeed, as proved in Lemma 30, a switch σ′ of σ satisfies σ ≻

G[A,σ]
σ′. Interpreting

Hoffman-Karp algorithms as instances of GSIA proves that they work on non-stopping games,
while in most article the stopping condition is required. Moreover, it shows that their number
of iterations is O(nqr) on q-SSGs, a complexity exponential in r only, which was known only
for algorithms specially designed for this purpose [17, 15, 18, 5].

MFCS 2021



12:16 A Generic Strategy Improvement Method for Simple Stochastic Games

Ludwig’s Algorithm [22], which is the best randomised algorithm to solve SSGs, can be
seen as an Hoffman-Karp algorithm using Bland’s rule as shown in [5]: a random order on
the vertices is drawn, and at each step, the first switchable vertex in the order is switched.
Two other Hoffman-Karp algorithms are presented in [25]: switching all switchable vertices at
each step or switching a random subset. Seeing these three algorithms as instances of GSIA
yields O(nqr) as a deterministic bound on their number of iterations, which was unknown.
However, the analysis of [22, 25] is required to obtain a good complexity in n for these
algorithms.

6.2 Selection of the Initial Strategy
In [15], Dai and Ge give a randomised improvement of GHA simply by choosing a better
initial strategy. To do so, they choose randomly

√
r! log(r!) strategies and choose the one

with the highest value. This ensures, with high probability, that at most
√

r! iterations
will be done in GHA. Thus, their algorithm runs in O(

(√
r!

)
iterations. This algorithm is

also captured by GSIA by selecting the initial strategy in the same way, however it seems
hard to combine the gain made by the random selection of the strategy and the bound in
O(qr) of GSIA, since even a strategy close to the optimal one may have values far from it.
Remark that it is trivial to extend this method to any instance of Opt-GSIA to improve on
the complexity of Th. 26.

6.3 New Algorithms
We can use GSIA to design many strategy improvement algorithms. We present three of
them, all based on a choice of A which makes G[A, σ] solvable in polynomial time. The
initial strategy can be anything and σ′ is always chosen to be the optimal strategy in G[A, σ].
Most of them can be seen as generalisations of known algorithms.

1. Let A be a feedback arc set of G, then G[A, σ] is acyclic and it can be solved in linear
time. It seems intuitively appealing to think that this algorithm will be faster if the
feedback arc set is small but we have no proof to sustain such a proposition.

2. A max acyclic SSG is an SSG such that that every max vertex has at most one outgoing
arc in a cycle. max acyclic SSG can be solved in polynomial time, see [4]. If we let A be
a set of arc that contains all but one outgoing arcs of each max vertex, then G[A, σ] is
max acyclic and can be solved in polynomial time. Moreover, such a game can be solved
by strategy improvement in at most n iterations. This can be seen as a generalisation of
Hoffman-Karp algorithm, in which A contains all outgoing arcs of max vertices.

3. As an intermediate between acyclic games and max acyclic games, we may consider
almost acyclic games, where all vertices have at most one outgoing arc in a cycle. Almost
acyclic SSGs can be solved in linear time [4].
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A Proof of the decreasing absorbing set

Here we prove Prop. 21

Proof. Suppose that Z(σ′) is not a subset of Z(σ). From Lemma 20 there is τ ∈ BR(σ)
such that Z(σ, τ) = Z(σ) and τ ′ ∈ BR(σ′) such that Z(σ′, τ ′) = Z(σ′). We write Z = Z(σ′)

Let X be the set of max vertices x in Z(σ′)∖Z(σ) such that σ(x) ̸= σ′(x); it is nonempty
otherwise Z(σ′) would be an absorbing set for (σ, τ ′). If x is in X, since σ′ ≻

G[A,σ]
σ, we have

v
G[A,σ]
σ′ (x) > vG[A,σ]

σ (x) ≥ 0

Thus, a sink is reached in G[A, σ] starting from x under the strategies (σ′, τ ′). Since Z is
an absorbing set in G under the same strategies, it implies that all the accessible sinks in
G[A, σ] are A-sinks. Hence, there is at least one arc e = (y, z) ∈ A with both ends in Z and
such that vσ(z) > 0. We define the vertex s of Z as:

s = arg max
z∈Z

{vσ(z) | ∃y ∈ V, (y, z) ∈ A}

and we let v = vσ(s). The value of each vertex in Z is bounded by v. Similarly than for x,
in G under strategies (σ, τ) the value of s is bounded by the value of the vertex leaving Z.
Such vertices exist since Z is not a subset of Z(σ). We now want to show that those vertices
all have value strictly lesser than v, thus proving a contradiction.

First, since Z is an absorbing set for (σ′, τ ′), all arcs leaving a random vertex in Z(σ′)
remain in Z(σ′) in G; this is not dependent on the strategies considered.

Let EX ⊆ X the set of max vertices x of X such that σ(x) /∈ Z and let EN ⊆ Z ∩ Vmin
the set of min vertices x of Z such that τ(x) /∈ Z.

On the one hand, for a min vertex x ∈ EN :

vG
σ (τ(x)) ≤ vG

σ (τ ′(x)) Since τ = τ(σ)

vG
σ (τ ′(x)) = vG[A,σ]

σ (τ ′(x))

vG[A,σ]
σ (τ ′(x)) ≤ v

G[A,σ]
σ′ (τ ′(x)) Since σ′ ≻

G[A,σ]
σ

v
G[A,σ]
σ′ (τ ′(x)) ≤ v Since τ ′(x) ∈ Z

Thus, vG
σ (τ(x)) ≤ v. In case of equality, we have v = vG

σ (τ ′(x)) = vG
σ (τ(x)); hence we can

replace τ by τ̄(x),which is identical to τ except that τ̄(x) = τ ′(x). We have vσ,τ = vσ,τ̄ and
Z(σ, τ) = Z(σ, τ̄). Indeed, according to Lemma 8 the only situation that could occur would
be to violate the condition (v) by creating an absorbing set. However this would contradict
the definition of τ . Thus, we can suppose that for any x in EN , vσ(τ(x)) < v.

On the other hand, since σ′ ≻
G[A,σ]

σ we know that for any x in EX :

vG
σ (σ(x)) < v

G[A,σ]
σ′ (x) ≤ v

Now, for any vertex x of E = EX ∪ EN , let px be the probability of x being the first vertex
of E reached starting from s following strategies (σ, τ). By conditional expectation:

vσ(s) =
∑

x∈EX

pxvσ(σ(x)) +
∑

x∈EN

pxvσ(τ(x))

Thus, vσ(s) < v which contradicts the definition of v, and proves that Z(σ′) ⊆ Z(σ). ◀
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B Proof of the value of a q-SSG

Here, we prove Th. 23.
Let us remark that a q-SSG can be assumed to have all its probability transition of the

form p/q. The idea here is to notice that it is possible to loop with a certain probability on
the same random vertices.

▶ Lemma 27. Let G be a q-SSG, then there is G′ a q-SSG with the same vertices which
defines the same expectation Ex0

σ,τ (·|·) and such that for all x ∈ VR and all x′ ∈ N+(x) then
there is an integer px,x′ such that px(x′) = px,x′/q.

Proof. For a a random vertex in G, and qa < q such that for every other vertex x in G there
is px ∈ N and a probability px/qa to go directly from a to x, we change those probabilities
to px/q and we add a probability p/q to stay in a, where:

p = q −
∑
x∈V

px. ◀

Now, we state the classical matrix-tree theorem that we use in our proof (see e.g. [7]).
Let G be a directed multigraph with n vertices, then the Laplacian matrix of G is a n× n

matrix L(G) = (li,j)i,j≤n defined by:
(i) li,j equals −m where m is the number of arcs from i to j.
(ii) li,i is the number of arcs going to i, excluding the self-loops.

▶ Theorem 28 (Matrix tree theorem for directed multigraphs). For G = (V, E) a directed
multigraph with vertices V = {v1, . . . , vk} and L its Laplacian matrix, the number of spanning
trees rooted at vi is det(L̂i,i) where L̂i,i is the matrix obtained by deleting the i-th row and
column from L.

We can now prove Th. 23.

Proof of Th. 23. The beginning of the proof is the same as in [14] and [4]. We start by
transforming the game with fixed strategies in a Markov Chain with equivalent values.
Then, we show that the value of each vertex can be written det Bi

det q(I −A) using Cramer rule,

for Bi and A two matrix which will be carefully defined. To conclude, we will show that
det q(I −A) < qr by creating a graph obtain from our initial game and using Th. 28.

We consider a q-SSG G and two positional strategies σ and τ . Without loss of generality,
we can restrict ourselves to the computation of non-zero, non-sink values. Thus, each vertex
has a non-zero probability to reach the 1-sink. To compute the values vσ,τ , we can consider
GA an SSG with vertices VR ∪ VS : the random vertices and the sinks of V . The value of the
sinks is not changed and the probability distribution p′

x is defined as follows. For x ∈ VR

and x′ in GA, we call Mx,x′ the set of max and min vertex y in N+(x) such that there is a
path following only arcs of σ and τ from y to x′. We then have

p′
x(x′) =

∑
y∈Mx,x′

px(y)

The graph GA has r + 2 vertices that we denote by a1, . . . , ar+1, ar+2 where ar+1 is the
0-sink and ar+2 is the 1-sink. Let b be the r-dimensional column vector with bi = p′

ai
(ar+2).

We define A the r × r matrix, with Ai,j = p′
ai

(aj).
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The values of the random vertices are defined by the vector z that satisfies the following
equation:

z = Az + b

Let I be the identity matrix, (I −A) is invertible because each random vertex has access to
a sink and every eigenvalue of A is strictly less than 1. We refer to [14] for details. Hence,
the equation has a unique solution and z is also solution of:

q(I −A)z = qb

Hence, under the strategies σ, τ , the value zi of a random vertex ai given by the Cramer
rule is

zi = det Bi

det q(I −A)

where Bi is the matrix q(I −A) where the i-th column has been replaced by qb. The value
det Bi is an integer. See [4] for more details. Our goal is now to bound det q(I −A).

From the graph GA, we construct the graph G′ by inverting all arcs, and duplicating an
arc of probability p/q into p arcs of probability 1/q. We also add an arc coming from the
1-sink to the 0-sink and one from the 0-sink towards the 1-sink. Figure 3 shows an example
of the transformation from G to G′. The Laplacian L of G′ is thus the following matrix.

L =

 q(I −A)T B

0 1 1
1 1


Indeed, every random vertex has indegree q minus the number of loops. Thus the number

of spanning trees of G′ rooted in the 1-sink is equal by Th. 28 to det L̂r+2,r+2 where we have

L̂r+2,r+2 =
(

q(I −A)T B′

0 1

)
.

In other words, the number of spanning trees of G′ is equal to det q(I −A). Furthermore,
each spanning tree contains exactly one incoming arcs for every random vertices, and the
arc (ar+2, ar+1) has to be used. Thus, there is at most qr spanning trees rooted in G′ and
det q(I −A) ≤ qr. ◀

C Bounding the Number of Iterations of GSIA

We introduce the notion of switch and anti-switch, to prove that the improvement is at least
q−r rather than q−2r.

▶ Definition 29. A switch (resp. an anti-switch) of a max strategy σ with switched
set S ⊆ Vmax is a strategy σS defined by σS(x) = σ(x) for x /∈ S, and satisfying
vσ(σ(x)) < vσ(σS(x)) (resp. vσ(σ(x)) > vσ(σS(x))) for x ∈ S (hence σS(x) ̸= σ(x)).

A common tool to solve SSGs is the fact that a switch increases the value of a strategy,
while an anti-switch decreases it. Within our framework of transformed game, it is extremely
simple to prove.

▶ Lemma 30. If σS is a switch of σ, then σS > σ. If σS is an anti-switch of σ, then σS < σ.
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Figure 3 Example of a transformation of a graph G into a graph G′.

Proof. Consider G[A, σ] the game obtained from G, where A is the set of all arcs of G.
Let us consider x a vertex switched in σ′, that is with vG

σ (σ(x)) < vG
σ (σ′(x)). Then,

because all arcs are in A, we have vG[A,σ]
σ (x) = vG

σ (σ(x)) and v
G[A,σ]
σ′ (x) = vG

σ (σ′(x)). Hence,
vG[A,σ]

σ (x) < v
G[A,σ]
σ′ (x) and for vG

σ (σ(x)) ≥ vG
σ (σ′(x)), σ(x) = σ′(x), which implies σ′ ≻

G[A,σ]
σ.

Prop. 18 proves σ′ >
G

σ.
The proof is the same for an anti-switch, since σ ≻

G[A,σ]
σ′ ⇒ σ >

G
σ′ (which can be proved

similarly as Prop. 18, while keeping in mind that in the decreasing case, creating absorbing
set lowers the value). ◀

We use the previous lemma to prove Th. 24.

Proof. Let us consider σ the strategy computed at some point by GSIA and σ′ the next
strategy. By Prop. 18, σ < σ′. Hence, by Lemma 30, σ′ cannot be an anti-switch of σ. Thus,
there is a max vertex x such that vσ(σ(x)) < vσ(σ′(x)). We recall that σ′(x) denotes the
successor of x under strategy σ′.

Since σ < σ′, we have vσ(x) = vσ(σ(x)) < vσ(σ′(x)) ≤ vσ′(σ′(x)) = vσ′(x). We now
evaluate vσ(σ′(x))− vσ(σ(x)). In the game G, under the strategies σ, τ(σ), Th. 23 implies
that for some t ≤ qr, vσ(σ(x)) = p/t and vσ(σ′(x)) = p′/t. We have p/t < p′/t, thus
p′/t − p/t ≥ 1/t ≥ 1/qr. Hence, the value of some max vertex increases by 1/qr in each
iteration of GSIA. Since there are n max vertices and their values are bounded by 1, there
are at most nqr iterations. ◀

D Amortised Complexity of GSIA

Here, we prove Th. 25.

Proof. We assume that r < n, otherwise the theorem is trivial. Let σ′ be the strategy
computed by GSIA at some point, improving on the strategy σ. GSIA must compute G[A, σ′],
and thus vσ′ and we explain a method to do so efficiently.

We assume that the order of the values (in G) of the random vertices is the same for σ

and σ′. Then, knowing this order and σ′, it is easy to compute τ(σ′) a best response to σ′

in O(r log(r) + n) time [1]. Then, we can compute the values vσ′,τ(σ′) in time O(C1(r, qr)),
since it is done by solving a linear system of dimension r with precision qr, a task which
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is simpler than solving a linear program. Since C1(r, qr) is at least quadratic in r, then
C1(r, qr) < C1(n, qr)r/n and by hypothesis C2(n, r, q) = O(C1(n, qr)r/n), hence a step is of
complexity at most O(C1(n, qr)r/n). There are at most nqr such steps, for a total complexity
of O(rqrC1(n, qr)).

We need to detect when the assumption that the values of the random vertices are the
same for σ and σ′ is false. If vσ′,τ(σ′) satisfies the optimality conditions at the min vertices,
then τ(σ′) is a best response. Otherwise, we compute the best response by solving a linear
program in time C(n, qr). In that case, the order of the random vertices has changed:
there are two vertices x1 and x2 such that vσ(x1) < vσ(x2) and vσ′(x1) > vσ′(x2). Hence,
vσ′(x1) > vσ(x2), which implies that vσ′(x1)− vσ(x1) > vσ(x2)− vσ(x1) > q−r.

We have proved that when the random order changes, the value of some random vertex
increases by at least q−r, hence there are at most rqr such steps. The complexity from these
steps is bounded by O(rqrC1(n, qr)), which proves the theorem. ◀
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Abstract
We investigate the satisfiability problem for a logic for true concurrency, whose formulae predicate
about events in computations and their causal (in)dependencies. Variants of such logics have been
studied, with different expressiveness, corresponding to a number of true concurrent behavioural
equivalences. Here we focus on a mu-calculus style logic that represents the counterpart of history-
preserving (hp-)bisimilarity, a typical equivalence in the true concurrent spectrum of bisimilarities.

It is known that one can decide whether or not two 1-safe Petri nets (and in general finite
asynchronous transition systems) are hp-bisimilar. Moreover, for the logic that captures hp-
bisimilarity the model-checking problem is decidable with respect to prime event structures satisfying
suitable regularity conditions. To the best of our knowledge, the problem of satisfiability has been
scarcely investigated in the realm of true concurrent logics.

We show that satisfiability for the logic for hp-bisimilarity is undecidable via a reduction from
domino tilings. The fragment of the logic without fixpoints, instead, turns out to be decidable. We
consider these results a first step towards a more complete investigation of the satisfiability problem
for true concurrent logics, which we believe to have notable solvable cases.
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1 Introduction

When dealing with concurrent and distributed systems, the so-called true concurrent models
are used to provide a precise account of the computational steps and of their dependencies,
like causality and concurrency. An early and widely used foundational model in this class is
given by Winskel’s event structures [41]. They describe the behaviour of a system in terms
of events in computations and two dependency relations: a partial order modelling causality
and an additional relation representing conflict. A survey on the applications of such causal
models can be found in [42]. Recently they have been used in the study of concurrency
in weak memory models [31, 20], for process mining and differencing [14], in the study of
atomicity [15] and information flow [2] properties.

In the true concurrent approach numerous behavioural equivalences have been defined
ranging from hereditary history-preserving bisimilarity to the coarser pomset and step
equivalences (see, e.g., [37]). Correspondingly, behavioural logics have been proposed including
operators that allow one to express causal properties of computations (see, e.g., [12, 7, 32,
29, 25, 11, 33] just to mention a few).
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In particular, event-based logics have been introduced [3, 30], interpreted over event
structures, expressive enough to provide a logical characterization of the main behavi-
oural equivalences in the true concurrent spectrum [37], from hereditary history-preserving
(hhp-)bisimilarity [7] to the coarser equivalences. Formulae of such logics include variables
which can be bound to events in computations and describe their dependencies.

The relation between operational models, behavioural equivalences, and true concurrent
logics has been widely studied and the model-checking problem has been investigated for
various logics describing true concurrency properties (see, e.g.,[1, 18, 16, 17, 23, 6, 27]). The
decidability of true concurrent equivalences has also been settled in various papers.

A natural problem that, to the best of our knowledge, has been scarcely investigated for
true concurrent logics is satisfiability, which has been historically referred to as the classical
decision problem [10] in the context of first-order logic. The satisfiability problem for true
concurrent logics is the quest for an algorithm that, given as input any formula φ, determines
whether or not there exists an event structure that satisfies φ. From this point of view,
formulae are intended as abstract specifications of desired properties and event structures
are abstractions of actual systems that, if implemented, should have those properties. An
algorithm for satisfiability is therefore a sort of oracle that can tell system designers whether
or not their desires can be realized. Obviously, checking satisfiability allows one also to verify
whether two requirements, despite being syntactically different, are equivalent.

In this paper we tackle the satisfiability problem for the logic proposed in [3], referred to as
Lhp, corresponding to history-preserving (hp-)bisimilarity [9, 34, 13], a classical equivalence in
the spectrum. The logic is endowed with least and greatest fixpoint operators, in mu-calculus
style, in order to express interesting properties of infinite computations. For the propositional
mu-calculus, corresponding to ordinary interleaving bisimilarity, satisfiability is decidable
and every satisfiable formula has a finite model. For Lhp instead the finite model property
fails, essentially because of the presence of an interpreted transitive relation (causality).

Still, hp-bisimilarity and the related logic has been shown to have good decidability
properties. The equivalence itself is known to be decidable for finite safe Petri nets [38, 19, 24]
(while hhp-bisimilarity is undecidable [21]). Additionally, the model-checking problem has
been proved decidable for Lhp over event structures satisfying a suitable regularity property [5].

Here we show that satisfiability for Lhp is undecidable via a reduction from a well-known
undecidable tiling problem [8], similarly to what was done for some two-variable logics [26].
Despite the first-order features of Lhp, the reduction is not trivial since quantifications can
be used in a quite restricted way: formulae can refer only to events enabled in the current
configuration and execute them, inspecting their relations with (a limited number) of past
events. In particular, it is impossible to relate events which are not consistent (in conflict).
The “local” nature of quantifications makes it hard to constrain the event structure model
to have a “grid shape”. Still, we can show that, given a domino system, it is possible to
construct a formula which is satisfied only by event structures embedding an event-based
representation of a valid tiling for such domino. Consequently, the formula is satisfiable if
and only if the domino system admits a tiling, whence the undecidability of satisfiability.

We show that, instead, for Lf
hp, the fragment of Lhp without fixpoints, satisfiability is

decidable. The result relies on the fact that Lf
hp can be encoded into first-order logic and

the fact that it enjoys the finite model property.
We foresee that our results can be of help for settling the decidability status of other

similar logics for true concurrency, like other fragments of the logic in [3], or the event
identifier logic of [30] and the mu-calculi for true concurrency in [18, 16, 17], for which
satisfiability has not yet been investigated.
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Figure 1 A simple PES E and (part of) its set of configurations.

2 Event Structures

We recap the basics of prime event structures [41], a widely known model of concurrency.
Throughout the paper E is a fixed countable set of events from which all events are taken, Λ
a set of labels ranged over by a, b, c, . . ., and λ : E → Λ a labelling function.

▶ Definition 1 (prime event structure). A (Λ-labelled) prime event structure (PES) is a tuple
E = ⟨E,≤,#⟩, where E ⊆ E is the set of events and ≤, # are binary relations on E, called
causality and conflict respectively, such that:
1. ≤ is a partial order and ⌈e⌉ = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and for all e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

Hereafter, we will assume that the components of a PES E are named as in the definition
above, possibly with subscripts. Concurrency is a derived relation, defined as follows.

▶ Definition 2 (consistency, concurrency). Let E be a PES. We say that e, e′ ∈ E are consistent,
written e⌢ e′, if ¬(e#e′). A subset X ⊆ E is called consistent if e⌢ e′ for all e, e′ ∈ X. We
say that e and e′ are concurrent, written e || e′, if e⌢ e′ and ¬(e ≤ e′), ¬(e′ ≤ e).

Causality and concurrency will be sometimes used on set of events. Given X ⊆ E and
e ∈ E, by X < e we mean that for all e′ ∈ X, e′ < e. Similarly X || e, resp. X ⌢ e, means
that for all e′ ∈ X, e′ || e, resp. e′ ⌢ e.

A simple PES is depicted in Fig. 1(left). Graphically, curly lines represent immediate
conflicts and the causal partial order proceeds along the arrows. Events are denoted by their
labels, possibly with superscripts. For instance, in E , the events a1 and b1, labelled by a and
b, respectively, are in conflict. Event a0 causes the event b0 which, in turn, is concurrent
with each ai and bi (for i ≥ 1).

A state of a system modelled as a PES is represented as the set of events executed to
reach the state. It is formalised by the notion of configuration.

▶ Definition 3 (configuration). Let E be a PES. A configuration in E is a finite consistent
subset of events C ⊆ E closed w.r.t. causality (i.e., ⌈e⌉ ⊆ C for all e ∈ C). The set of finite
configurations of E is denoted by C(E).

In words, a configuration cannot contain events in conflict and it must be closed with
respect to causality. The empty set of events ∅ is always a configuration, which can be
interpreted as the initial state of the computation. The evolution of a system can be
represented by a transition system where configurations are states.

MFCS 2021
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▶ Definition 4 (transition system). Let E be a PES and let C ∈ C(E). Given e ∈ E \ C
such that C ∪ {e} ∈ C(E), and X,Y ⊆ C with X < e, Y || e we write C X,Y < e−−−−−→λ(e) C ∪ {e},
possibly omitting X, Y or the label λ(e).

Transitions are labelled by the executed event e. In addition, they can report its label λ(e),
a subset of causes X and a set of events Y ⊆ C concurrent with e. When X or Y are empty
they are normally omitted, e.g., we write C X < e−−−→λ(e) C

′ for C X,∅ < e−−−−−→λ(e) C
′ and C e−→λ(e) C

′

for C ∅,∅ < e−−−−→λ(e) C
′. Some configurations of the PES E in Fig. 1 (left) can be found in the

same figure, on the right. Examples of transitions are {a0, b0} a0,b0 < b1

−−−−−−→a {a0, b0, b1} and
{a0, b0} a0 < a1

−−−−→a {a0, b0, a1}.
A PES is called image-finite when every configuration enables a finite number of events

for each fixed label. In the rest of the paper all PESs will be assumed to be image-finite.
This assumption, as it commonly happens for modal logics, is crucial to have a logical
characterisation of bisimilarity in terms of a finitary logic.

▶ Definition 5 (image-finiteness). A PES E is called image-finite when, for every configuration
C ∈ C(E) and label a ∈ Λ, the set {C ′ ∈ C(E) | ∃e ∈ E.C

e−→a C
′} is finite.

3 A Logic for True Concurrency

We review the logic for concurrency of interest in the paper, a Hennessy-Milner style logic,
originally introduced in [3], which corresponds to history-preserving bisimilarity. Its formulae
predicate over executability of events in computations and their mutual relations (causality
and concurrency).

Syntax

In order to specify dependencies between events in computation, formulae include event
variables, from a fixed denumerable set Var , denoted by x, y, . . .. Tuples of variables like
x1, . . . , xn will be denoted by the corresponding boldface letter x and, abusing the notation,
tuples will be often used as sets. The logic, besides standard propositional connectives,
includes a diamond modality (and, dually, a box modality). The formula ⟨|x,y < a z|⟩φ holds
when in the current configuration an a-labelled event e is enabled which causally depends on
the events bound to the variables in x and is concurrent with those in y. Event e is executed
and bound to variable z, and then the formula φ must hold in the resulting configuration.

Fixpoint operators refer to propositional variables. In order to let them interact correctly
with event variables, whose values can be passed from an iteration to the next one in
the recursion, we use abstract propositions. For dealing with fixpoint operators we fix a
denumerable set X a of abstract propositions, ranged over by X, Y , . . . . Each abstract
proposition X has an arity ar(X) and it represents a formula with ar(X) (unnamed) free
event variables. Then, for x such that |x| = ar(X), we write X(x) to indicate the abstract
proposition X whose free event variables are named x.

▶ Definition 6 (hp-logic). The syntax of Lhp over the sets of event variables Var , abstract
propositions X a and labels Λ is defined as follows:

φ ::= T | φ ∧ φ | ⟨|x,y < a z|⟩φ | (µZ(x).φ)(y) | Z(x) |
F | φ ∨ φ | [[x,y < a z]]φ | (νZ(x).φ)(y)

The free event variables of a formula φ are denoted fv(φ) and defined in the obvious way.
Just note that the modalities act as binders for the variable representing the event executed,
hence fv(⟨|x,y < a z|⟩φ) = fv([[x,y < a z]]φ) = (fv(φ) \ {z}) ∪ x ∪ y. The free propositions
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in φ, i.e., the propositions not bound by µ, are denoted by fp(φ). In fixpoint formulae,
like (µX(x).φ)(y), we require that the tuple x does not include multiple occurrences of the
same variable and correspond exactly to the free event variables of the inner formula φ, i.e.,
fv(φ) = x. Intuitively, the fixpoint part µX(x).φ defines a recursive formula X(x) whose
free variables are then instantiated with y. The formula (µX(x).φ)(x) will be abbreviated
as µX(x).φ. When both fv(φ) and fp(φ) are empty we say that φ is closed. When x or y
are empty they are often omitted, e.g., we write ⟨|a z|⟩φ for ⟨|∅, ∅ < a z|⟩φ.

Given a formula φ and variables x, y ∈ V ar, we denote by φ[y/x] the formula obtained
from φ via a (capture avoiding) substitution of the free occurrences of x in φ by y. Similarly,
given a proposition Z(x) ∈ X and a formula ψ such that fv(ψ) ⊆ x, we denote by φ[Z(x) := ψ]
the formula obtained from φ by replacing free occurrences of Z(y) by ψ[y⧸x].

In the logic we can easily represent the possibility of performing concurrent events.
Borrowing the notation from [3], we write (⟨|a z|⟩ ⊗ ⟨|b z′|⟩)φ for the formula ⟨|a z|⟩⟨|z < b z′|⟩φ
that declares the existence of two concurrent events labelled by a and b, respectively, such
that if we execute such events and bind them to z and z′, respectively, then φ holds.

Consider again the PES in Fig. 1. Let ψ2b = (⟨|bx|⟩ ⊗ ⟨|b y|⟩)T be the formula stating that
two concurrent b-events can be executed. Then E satisfies the formula ⟨|a z|⟩ψ2b, which states
that after executing an a-labelled event one can execute two concurrent b-labelled events. It
satisfies also the formula [[ax]](νX(x).(ψ2b ∧ [[x < a z]]X(z))) stating that after any causal
chain of a-labelled events ψ2b holds. Instead the formula µX.(([[ax]] ⊗ [[a y]])T ∨ ⟨|a z|⟩X) that
asks for the reachability of a state where two concurrent a-labelled events can be executed, is
false in E . As a final example, the formula ⟨|ax|⟩(νX(x)⟨|x < a y|⟩X(y)) asks for the existence
of an infinite causal chain of a-labelled events and it is satisfied by E .

Semantics

Since the logic Lhp is interpreted over PESs, the satisfaction of a formula is defined with
respect to a configuration C, representing the state of the computation and an environment
η : Var → E, that binds free variables in the formula to events in C. Namely, if EnvE denotes
the set of environments, the semantics of a formula will be a set of pairs in C(E) × EnvE .
Given a set of pairs S ⊆ C(E) × EnvE and two tuples of variables x and y, with |x| = |y|, we
define S[y⧸x] = {(C, η′) | ∃(C, η) ∈ S ∧ η(x) = η′(y)}. The semantics of Lhp also depends
on a proposition environment providing a semantic interpretation for propositions.

▶ Definition 7 (proposition environment). Let E be a PES. A proposition environment is a
function π : X → 2C(E)×EnvE such that for all abstract propositions X and tuples of variables
x, y with |x| = |y| = ar(X) it holds π(X(y)) = π(X(x))[y⧸x]. The set of proposition
environments, ranged by π, is denoted PEnvE .

The condition posed on proposition environments ensures that the semantics of a formula
only depends on the events that the environment associates with its free variables and that
it does not depend on the naming of the variables.

We can now give the semantics of the logic Lhp. Given an event environment η and
an event e we write η[x 7→ e] to indicate the updated environment which maps x to e.
Similarly, for a proposition environment π and S ⊆ C(E) × EnvE , we write π[Z(x) 7→ S] for
the corresponding update. For a pair (C, η) ∈ C(E) × EnvE and variables x, y, z, we define
the (x,y < az)-successors of (C, η), as

Succx,y<az
E (C, η) = {(C ′, η[z 7→ e]) | C

η(x),η(y) < e−−−−−−−−→a C
′}.
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In words Succx,y<az
E (C, η) consists of the pairs (C ′, η′) where C ′ is a configuration reachable

from C, by executing an event e satisfying the requirement expressed by x,y < az, namely
events in η(x) are causes of e and events in η(y) are concurrent with e. The environment η′

is the update of η where event e has been bound to variable z.

▶ Definition 8 (semantics). Let E be a PES. The denotation of a formula in Lhp is given
by the function {|·|}E : Lhp → PEnvE → 2C(E)×EnvE defined inductively as follows, where we
write {|φ|}E

π instead of {|φ|}E(π):

{|T|}E
π = C(E) × EnvE {|F|}E

π = ∅ {|Z(y)|}E
π = π(Z(y))

{|φ1 ∧ φ2|}E
π = {|φ1|}E

π ∩ {|φ2|}E
π {|φ1 ∨ φ2|}E

π = {|φ1|}E
π ∪ {|φ2|}E

π

{|⟨|x, y < a z|⟩ φ|}E
π = {(C, η) ∈ C(E) × EnvE | Succx,y<az

E (C, η) ∩ {|φ|}E
π ̸= ∅}

{|[[x, y < a z]] φ|}E
π = {(C, η) ∈ C(E) × EnvE | Succx,y<az

E (C, η) ⊆ {|φ|}E
π}

{|νZ(x).φ|}E
π = ν(fφ,Z(x),π) {|µZ(x).φ|}E

π = µ(fφ,Z(x),π)

where fφ,Z(x),π : 2C(E)×EnvE → 2C(E)×EnvE is the function defined by fφ,Z(x),π(S) =
{|φ|}E

π[Z(x) 7→S], that we refer to as the semantic function of φ, Z(x), π. Moreover, α(fφ,Z(x),π),
for α ∈ {µ, ν}, denotes the corresponding (least or greatest) fixpoint. When (C, η) ∈ {|φ|}E

π

we say that the PES E satisfies the formula φ in the configuration C and environments η, π.

The semantics of boolean connectives is standard. The formula ⟨|x,y < a z|⟩φ holds in
(C, η) when configuration C enables an a-labelled event e that is causally dependent on (at
least) the events bound to the variables in x and concurrent with (at least) those bound to
the variables in y and can be executed producing a new configuration C ′ = C ∪ {e} which,
paired with the environment η′ = η[z 7→ e], satisfies φ. The semantics of [[x,y < a z]]φ is
dual. When φ is closed (so that the environments η, π are irrelevant) and E satisfies the
formula φ in the empty configuration, we simply say that E satisfies φ.

4 Undecidability of Lhp

In this section we study the satisfiability problem for the logic Lhp, i.e., the problem of
determining whether a closed formula in Lhp is satisfied by some (image-finite) PES. We
prove it to be undecidable by reduction from domino tilings.

Domino systems
Tiling problems are a simple and general form of combinatorial problems introduced in [39, 40]
for proving the unsolvability of the ∀∃∀-prefix class in the pure predicate calculus. Along the
years they revealed to be a powerful tool for proving undecidability results for fragments of
first-order logic and for decision problems in mathematical theories (see, e.g., [10]).

▶ Definition 9 (dominoes). A domino system is a tuple D = (D,H, V ) where D is a finite
set and H,V ⊆ D2 are binary relations.

The elements of D should be thought of as square tiles (called domino pieces, or Wang
tiles) with a color on each side and a fixed orientation. Hence for d, e ∈ D read (d, e) ∈ V , or
dV e, as “e can stand immediately above d” because the upper color of d and the lower color
of e are the same. Similarly (d, e) ∈ H, or dHe, should be read as “the left side of e can be
attached to the right side of d”. A tiling is thus a covering of N × N thought as an infinite
board on which each point is a spot to be occupied by a domino.
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The plane N×N together with the binary relations H = {((p, q), (p+1, q)) : p, q ∈ N} and
V = {((p, q), (p, q + 1)) : p, q ∈ N} can be seen as domino system referred to as the grid SN.
Given two domino systems D = (D,H, V ) and D′ = (D′, H ′, V ′) a homomorphism f : D → D′

is a function f : D → D′ such that for all (d1, d2) ∈ H it holds that (f(d1), f(d2)) ∈ H ′ and,
similarly, for all (d1, d2) ∈ V it holds that (f(d1), f(d2)) ∈ V ′. Tilings can be then formalised
relying on the notion of homomorphism.

▶ Definition 10 (tiling). A tiling of a domino system D is a homomorphism T : SN → D.

Given a tiling T : SN → D, intuitively T (p, q) = d means that the point (p, q) is filled
with a copy of the piece d. Our undecidability proof relies on the following well-known result
about domino tilings.

▶ Theorem 11 (undecidability of tiling [8]). The problem of establishing the existence of a
tiling for a given domino system is undecidable.

Reduction from Domino Tiling

In order to show that Lhp is undecidable, we associate with each domino system a formula
of Lhp such that the formula is satisfiable if and only if the domino system admits a tiling.

For various fragments of first-order logic (even with only two variables), the approach
consists in using suitable unary predicates to establish a correspondence between elements of
the model and domino pieces, and binary predicates to represent adjacency. For example,
undecidability results for two-variables logics are obtained in [26, 22] using in a crucial way
the transitivity of some predicates in the chosen relational vocabulary. A suitable interplay
between existential and universal quantifications allows to build formulae whose models are
grid-like, i.e., such that SN can be embedded into these models.

Similarly, the idea here is to embed the grid inside a PES. Events are associated, via their
label, with pieces of the domino and adjacency is suitably represented with arrangements of
causality and concurrency between events. This is far from trivial since formulae of the logic
can refer only to events enabled in the current configuration and execute them, checking
their relations with (a limited number) of past events. As a consequence, quantification has
a “local” nature and only the relations between consistent events can be inspected. This is
quite a subtle point, since similar restrictions upon quantifications can yield decidable logics,
like the guarded fragment with transitive guards studied in [35].

Greatest fixpoints like (νX(x).φ)(y) can be used to ensure that what is being predicated
by φ(x) holds repeatedly throughout an unbounded number of reachable configurations. For
a given domino system, we define formulae that verify the proper adjacency of pieces by
exploring the events along diagonal slices of the grid, starting from the bottom row and
ending at the leftmost column. All slices are finite causal chains but overall they grow
unboundedly in length. The formula for a domino system is quite complex and not immediate
to read, but the underlying intuition will be explained in detail after the definition.

▶ Definition 12 (formula for a domino). Let D be a domino system with D = {d1, . . . , dn}.
Define the set of 6n labels A = {bs

k | b ∈ {a, i, j} ∧ k ∈ {1, . . . , n} ∧ s ∈ {0, 1}}. For s ∈ {0, 1}
we let s̄ abbreviate 1 − s. Consider the following formulae (1)–(4).∨

dk H dh
dk V dv

⟨|i0k x|⟩⟨|x < i1h y|⟩⟨|y < j1v z|⟩T (1)

MFCS 2021



13:8 (Un)Decidability for History Preserving True Concurrent Logics

∧
b∈{a,j}

dk,dl∈D
s∈{0,1}

[[isk x]][[x < bs
l y]] (νX(x, y, z).

∨
dk H dh

⟨|x, y < is̄h u|⟩T ∧
∧

c∈{a,j}
dm∈D

[[z < cs
m v]]X(x, y, v))(x, y, y) (2)

∧
b∈{a,i}
c∈{a,j}

dl,dm∈D
dk H dh

s∈{0,1}

[[bs
k x]][[x < as

l y]][[y < cs
m z]][[x, y < bs̄

h w]] (νX(y, z, w, u).

∨
dk V dp

dl H dp

⟨|y, w, z < as̄
p r|⟩T ∧

∧
e∈{a,j}
dq∈D

[[u,w < es
q v]]X(y, z, w, v))(y, z, w, z) (3)

∧
b∈{a,i}
dl∈D

dk H dh

s∈{0,1}

[[bs
k x]][[x < jsl y]][[x, y < bs̄

h z]]
∨

dk V dp

dl H dp

dl V dq

⟨|y, z < as̄
p v|⟩⟨|v < js̄q w|⟩T (4)

Calling ψi the corresponding formula (i) above, we denote the formula for the domino system
D by φD = ψ1 ∧ νZ.(ψ2 ∧ ψ3 ∧ ψ4 ∧ [[Az]]Z), where we write [[Az]]Z for

∧
bs

k
∈A

[[bs
k z]]Z.

Intuitively, the formula φD requires a model to contain a grid of consistent events, as
depicted in Fig. 2. The formula also arranges causal dependencies that constrain the order
of exploration, i.e., of execution, of the grid as an ever growing right-angled triangle. This
allows to build the grid one diagonal at a time, starting from the leftmost smallest diagonal
which consists of a single event at coordinates (0, 0) in Fig. 2. Every diagonal, except the
first, is delimited by two events with special labels: the first at the bottom of the diagonal is
labelled i, the last at the top is labelled j. Inner events are, instead, all labelled a. Actually,
labels include also a subscript and a superscript. Subscripts k ∈ {1, . . . , n} represent the
associated domino piece dk. Superscripts s ∈ {0, 1}, instead, are used to distinguish events
in a diagonal from those in the next and previous ones. So the superscript for all the events
in a diagonal starting at coordinates (t, 0) is simply s = t mod 2, as shown in the figure.

To explain how the formula works we first comment on how the satisfaction of the formula
implies the existence of a grid in the model. For this, the superscripts on labels play no role
and can be safely ignored. They will become relevant later for the converse implication.

The first two diagonals are determined by the first subformula ψ1 (1). This formula
simply requires the existence of three events, executable from the initial state, such that
each one causes the next. Such events represent the first three domino pieces in the tiling.
So, they are required to be labelled ik, ih, jv, in a way that the adjacency constraints are
respected, i.e., dk H dh and dk V dv. Each diagonal beyond the first two is, instead, jointly
defined by the other three subformulae ψ2, ψ3, ψ4, which are guaranteed to be checked on
every reachable state of the computation via the outermost greatest fixpoint of φD.
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In Fig. 3 we give a graphical representation of such three subformulae. In each sub-figure,
greyed out events represent the configuration to which the subformula is intended to apply.
Events highlighted in red are universally quantified by box operators in the formula, while
events highlighted in blue are existentially quantified by diamond operators. The picture
also reports, close to events, the variables to which such events are bound in the formula.

The subformula ψ2 (2) starts a new diagonal. The first event in the new diagonal must
be labelled ip, for some domino piece dp horizontally compatible with the one corresponding
to the first event in the previous diagonal, labelled il in the figure. Moreover, the new event
ip must be caused by il and concurrent with the second event in the previous diagonal,
labelled am in the figure. In addition, using a fixpoint subformula, we ask that the new
event is executed after (hence consistent with) the whole red diagonal. This implies that
ip is necessarily concurrent with all the events in the red diagonal, although not explicitly
required. In fact, since it is consistent and executed after the diagonal, the only alternative
would be that ip were caused by some event in the diagonal. But this would mean that also
am causes ip, while we know that they are concurrent.

The subformula ψ3 (3) continues the “construction” of the new diagonal starting from
the second event and, with each successive application, up to the third-to-last event of the
new diagonal. Basically, it builds the a-labelled part of the new diagonal, except the last
a-labelled event. In particular, a single application of ψ3 ensures the executability of an event
labelled aq, for some domino piece dq vertically compatible with the one corresponding to
the event just below in the grid, which is necessarily part of the previous diagonal, labelled il
in the figure, and horizontally compatible with the one just after the latter in the previous
diagonal, that is am in the example. The new event aq must be caused by the one just before
it in the new diagonal, ip in this case. Furthermore, as in the previous property, the new
event must be caused by the event am at the same height in the previous diagonal, and
concurrent with the events coming after it in such diagonal.

Finally, the subformula ψ4 (4) concludes the construction of the new diagonal, requiring
the executability of the last two events labelled as and jt, respectively. As before, the
corresponding domino pieces ds and dt must be compatible with those of the adjacent events
below and on the left, all of which belonging to the previous diagonal. Moreover, the new
event as must be caused by the one just before it in the new diagonal and by the last event
of the previous diagonal. Instead, jt is just required to be caused by as, which, however, by
transitivity of the causality relation, means that jt is caused by every other event in the new
diagonal and all those in the previous diagonals.
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Figure 2 Grid of events for the domino tiling (with simplified event labels).

MFCS 2021



13:10 (Un)Decidability for History Preserving True Concurrent Logics

ik ih

jv

il
x

am
y

jo
z

ip
u

(a)

ik ih

jv

il
x

am
y

jo
z

ip
w

aq
r

(b)

ik ih

jv

il

am
x

jo
y

ip

aq
z

as
v

jt
w

(c)

Figure 3 Graphical representation of the properties, from left to right, (2), (3) and (4).

Note that the subformulae ψ2 and ψ3 use a (greatest) fixpoint in order to fully explore a
diagonal, which is unbounded. This ensures the consistency of each newly added event with
the previous diagonal and thus with the whole right-angled triangle up to such diagonal.

Relying on the intuitions described above we can prove the desired result: given a domino
system D, the formula φD is satisfiable if and only if D admits a tiling. We next present a
sketch of the proof.

For proving the first implication we show how, given a PES which satisfies the formula
φD, one can build a tiling for the domino system D. Recall that a tiling of D is a function
T : N × N → D complying with the adjacency relations H and V of D. Proceeding, as
mentioned before, by diagonals, we can inductively define an infinite chain of functions fi,
for all i ∈ N+, whose domain is the right-angled triangle up to the (i+ 1)-th diagonal, i.e.
{(x, y) ∈ N × N | x + y ≤ i}. The first function f1 is obtained directly from the events
guaranteed to exist by the satisfaction of the subformula ψ1 of φD. Every other function
fi is defined extending fi−1 and using the events whose existence is required by the other
subformulae of φD. The join of the fi’s is defined on the whole grid and provides a tiling.

▶ Theorem 13 (satisfiability implies tiling). Let D be a domino system with D = {d1, . . . , dn},
if the corresponding formula φD is satisfiable, then D admits a tiling.

For the converse implication, we need to show how to transform a tiling T of D into a
PES which satisfies the property φD. From the grid of domino pieces corresponding to the
tiling T we define a PES E whose events are E = N×N. Events are labelled isk if they belong
to the bottom row, jsk if in the left-most column, except (0, 0), or as

k otherwise, where k is the
subscript of the corresponding domino piece dk occupying the same position, and s is the
index corresponding to the diagonal to which the event belongs. Explicitly, if the coordinates
of the event are (x, y), then the index is s = (x+ y) mod 2, hence it is the same for all the
events in a same diagonal. The PES has empty conflict relation, while causality is defined as
in Fig. 4. In this way, every event

is caused exactly by those at lower or equal height in the smallest right-angled triangle
containing the event,
causes those at higher or equal height outside of such triangle or above the event along
its diagonal,
is concurrent with all the others.

For instance, consider the event at position (4, 2) in Fig. 4, labelled a0
k. It is caused by the

events highlighted in red, it causes those highlighted in green, and it is concurrent with those
highlighted in blue. It is easy to see that E is well-defined, i.e. it is a PES, in fact, the set of
causes of each event is clearly finite. Moreover, E is image-finite since every configuration
enables a finite number of events (bounded by 1 plus half the size of the configuration).
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Figure 4 PES for the canonical grid of the domino tiling (with simplified event labels).

Formalising the ideas outlined above, one can prove that φD holds in the initial state of
E . In particular, the formulae ψ2, ψ3 and ψ4, inside the outermost fixpoint, can be shown to
hold in every reachable state, sometimes vacuously. For example, consider the configuration
C consisting of all the events appearing in Fig. 4 except those highlighted in green. Let us
focus on the subformula ψ3 (3) and argue that it holds in configuration C. Observe that the
initial three box modalities in ψ3 require a specific structure to be executable, in absence of
which the formula holds vacuously. Such structure consists of a causal chain of three events,
labelled with some combination of letters i, a, j but all with the same superscript s. Inspecting
the structure in the figure, it occurs that there are only two possible causal chains of three
events executable from C: both starting with (4, 2), and then going either along its diagonal
up to (2, 4), or along its row up to (6, 2). However, since the three events must be labelled
with the same superscript s, only the chain along the diagonal is actually considered by the
formula (along rows events alternate superscripts instead). Then, exploiting the similarities
with the graphical representation of ψ3 in Fig. 3b, it is possible to see that after binding
those events the rest of the property holds.

▶ Theorem 14 (tiling implies satisfiability). Let D be a domino system with D = {d1, . . . , dn},
if D admits a tiling, then the formula φD is satisfiable.

By the theorems above and the undecidability of the domino problem we conclude.

▶ Corollary 15 (undecidability of Lhp). The satisfiability problem for Lhp is undecidable.

5 Decidability without fixpoints

In this section we show that, in absence of fixpoint operators, the logic Lhp has the finite
model property. Moreover, we provide an encoding of formulae into first-order logic preserving
their (un)satisfiability. As a consequence we deduce tha satisfiability for the logic without
fixpoints becomes decidable.

In the following we will denote by Lf
hp the fragment of the logic Lhp without fixpoint

operators (and propositions). Consequently, the semantics of formulae in Lf
hp can be defined

without proposition environments π, since there are no propositions to interpret.
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In order to prove the finite model property the idea consists in showing that every model
of a formula can be reduced to a finite one by restricting to a suitable chosen subset of events.
To this aim, we introduce a way to truncate PESs by keeping only events up to a certain
causal level and with a specific subset of labels. The causal level of an event e is inductively
defined as lev(e) = max{lev(e′) + 1 | e′ ∈ E ∧ e′ < e}, where it is intended that max ∅ = 0.

▶ Definition 16 (prefix of a PES). Let E be a PES. For k ∈ N and A ⊆ Λ, consider the set
of events E(A,k) = {e ∈ E | lev(e) ≤ k ∧ ∀e′ ∈ ⌈e⌉. λ(e′) ∈ A}. Then, the A-labelled k-prefix
of E is the PES defined as E(A,k) = ⟨E(A,k), <|E(A,k) ,#|E(A,k)⟩.

Note that, by the very definition of causal level, lev(e′) < lev(e) for all e′ < e; hence, the
(A-labelled) k-prefix E(A,k) of a PES E is a causally closed subset of E . From this observation,
it immediately follows that E(A,k) is indeed a PES, i.e., the definition is well-given.

Notably, when a PES is image-finite, the same holds for all its prefixes. Hence, for every
k ∈ N and finite A, the A-labelled k-prefix E(A,k) can be shown to be finite.

▶ Lemma 17 (finiteness of prefixes). Let E be a image-finite PES. For all k ∈ N and A ⊆ Λ,
if A is finite, then E(A,k) is finite.

Now, in order to prove the finite model property of Lf
hp it is enough to show that the

satisfaction of formulae of Lf
hp is preserved when truncating a PES up to a suitable level

k and set of labels A. Both k and A can be obtained directly from the formula. Let the
modal depth of a formula φ, denoted by d(φ), be defined as usual. If φ is T or F, its modal
depth is 0. If it is a conjunction or disjunction, the modal depth is the maximum of those
of the conjuncts, resp. disjuncts. Otherwise, when φ consists of a modality followed by a
subformula ψ, the modal depth is d(φ) = 1 + d(ψ). Let A(φ) be the (finite) set of labels
appearing in the formula φ. Then, whenever a formula φ is satisfied by a PES E , it is also
satisfied by the A(φ)-labelled d(φ)-prefix of E , which, by the previous lemma, is finite.

▶ Theorem 18 (finite model property of Lf
hp). Let φ be a closed formula of Lf

hp. If φ is
satisfiable, then there exists a finite PES satisfying φ.

The result above implies that satisfiability for Lf
hp is semi-decidable. In fact, finite PESs

are denumerable and checking whether a finite PES satisfies a formula is decidable. Then,
to conclude it is sufficient to observe that the axioms of PESs are expressible as first-order
formulae and Lf

hp, as it happens for many modal logics, can be encoded into first-order logic,
hence also unsatisfiability is semi-decidable.

First, as mentioned, for a fixed formula in Lf
hp the set of labels appearing in it is finite.

Once the finite set of labels A is fixed, the theory of prime event structures, apart from the
axiom of finite causes, is expressible as a finite set of first-order axioms.

▶ Definition 19 (first-order theory of PESs). Let A ⊆ Λ be a finite set of labels. The first
order theory of theory of PESs over A, consists of the following axioms with < and # as
binary predicates and labels as unary predicates.
1. ∀x, y, z. (x < y) ∧ (y < z) → (x < z)
2. ∀x. ¬(x < x)
3. ∀x. ¬(x#x)
4. ∀x, y. (x#y) → (y#x)
5. ∀x, y, z. (x < y) ∧ (x#z) → (y#z)
6. ∀x.

(∨
a∈A a(x) ∧

∧
a,b∈A,a̸=b ¬(a(x) ∧ b(x))

)
We denote by TP ES(A) the conjunction of the above axioms.
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Axioms (1) and (2) state that < is a (strict) partial order. Axioms (3) and (4) ask conflict
# to be irreflexive and symmetric, while (5) requires conflict to be inherited along causality.
Finally (6) asks that each event has exactly one label.

Now, given a set of variables X ⊆ Var and a variable y ∈ Var , let us write y ∈ X as an
abbreviation for

∨
x∈X(x = y). Then we can express the property of being a configuration as:

conf (X) ≡ ∀x, y.((x ∈ X) ∧ (y < x) → (y ∈ X))∧
∀x, y.((x#y) → ¬((x ∈ X) ∧ (y ∈ X))

We can finally provide the translation of Lf
hp into first-order formulae.

▶ Definition 20 (compiling Lf
hp to first-order logic). Let X be a finite set of variables and

let φ be a formula of Lf
hp. We denote by (φ)X the first-order formula inductively defined as

follows:
(T)X = T and (F)X = F
(φ ∧ ψ)X = (φ)X ∧ (ψ)X and (φ ∨ ψ)X = (φ)X ∨ (ψ)X

(⟨|x,y < a z|⟩φ)X = ∃z.
∧

x∈x(x < z) ∧
∧

y∈y ¬(y < z) ∧ a(z) ∧ ¬(z ∈ X)∧
conf (X ∪ {z}) ∧ (φ)X∪{z}

([[x,y < a z]]φ)X = ∀z. (
∧

x∈x(x < z) ∧
∧

y∈y ¬(y < z) ∧ a(z) ∧ ¬(z ∈ X)∧
conf (X ∪ {z})) → (φ)X∪{z}

Then, given a closed formula φ of the logic Lf
hp we can obtain an equisatisfiable first-order

formula by taking the conjuction of the first order theory of PESs and the encoding of φ
defined above.

▶ Proposition 21. Let φ be a closed formula of Lf
hp and let A be the set of labels occurring

in φ. It holds that φ is satisfiable iff the first-order formula TP ES(A) ∧ (φ)∅ is satisfiable.

The proof is straightforwardly based on the observation that a PES E satisfying φ can be
seen as a first-order structure satisfying TP ES(A) ∧ (φ)∅, and vice versa. The only delicate
aspects is the absence of the axiom of finite causes in TP ES(A). Hence, it could happen that
TP ES(A) ∧ (φ)∅ is satisfiable by a structure which, seen as a PES E , includes events with
infinitely many causes. However, in this case, since these events would never be executable,
it is clear that also the PES E ′ obtained from E by removing all events with infinitely many
causes is a model for φ.

We can finally deduce that the satisfiability for Lf
hp is decidable.

▶ Corollary 22 (decidability of Lf
hp). The satisfiability problem for the logic fragment Lf

hp is
decidable and every satisfiable formula has a finite model.

The proof combines the results proved above. First, by Theorem 18, when a formula φ
in Lf

hp is satisfiable it has a finite model labelled over the finite set A of labels occurring
in φ. Since the finite PESs labelled over a finite alphabet are denumerable and checking
whether a finite PES satisfies a formula is decidable, we can semi-decide satisfiability of a
formula φ by enumerating the finite PESs labelled over A and checking whether each of the
generated PES satisfies φ. Moreover, by Proposition 21, unsatisfiability of a formula φ in
Lf

hp is reducible to unsatisfiability of the first-order formula TP ES(A) ∧ (φ)∅, and thus it is
semi-decidable. We conclude that satisfiability for Lf

hp is decidable.
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6 Conclusions and Perspectives

The logic Lhp investigated in this paper is one of a number of fragments of a logic introduced
in [3]. Other fragments Lp and Ls can be obtained by syntactical restrictions, characterising
coarser true concurrent notions of bisimilarity, namely pomset and step bisimilarity. The full
logic, instead, corresponds to hereditary hp-bisimilarity, the finest behavioural equivalence
in the true concurrent spectrum of [37], finer than hp-bisimilarity. Each logic fragment
admits a variant with fixpoints and a variant without fixpoints. However, the induced logical
equivalences for image-finite PESs are the same with or without fixpoints. We proved that
the satisfiability problem for Lhp is undecidable, and thus the same holds also for the logic
for hereditary hp-bisimilarity in [3]. On the other hand, satisfiability is decidable for Lf

hp,
the fragment of Lhp without fixpoints.

Some preliminary investigations suggest that the step logic Ls (with fixpoints) is decidable
via a reduction to the propositional µ-calculus. The same technique appears to be promising
for the pomset logic Lp (with fixpoints) but this case is more complex and unresolved to this
day. Similar logics for true concurrent properties are event identifier logic of [30] and the
mu-calculi for true concurrency in [18, 16, 17]. Also in this case, to the best of our knowledge
satisfiability has not yet been investigated. This offer a range of open questions that, when
answered, would draw an interesting picture of problems across the decidability border.

In a sense there are “two dimensions” to the satisfiability problem: one is the syntax and
the other the semantics, so that there are also many interesting variants and facets of the
satisfiability question when the restrictions are imposed on the model side. For example
a notable semantics is that of regular models in the sense of [36]. Investigating whether
restricting the semantics with the constraint of regularity affects decidability is an intriguing
direction of future work.

A formalisation of the semantics of the logics in terms of suitable (parity) games is often a
source of inspiration for facing complexity and decidability issues for modal logics. Currently,
there is no established game-theoretical characterisation of the semantics of the logic in [3],
of which Lhp is a fragment. However, such a development could be naturally guided by the
approach in [16, 17] and by the relation between fixpoint games [4] and logics for concurrency,
hinted at in [28]. This also appears as an interesting route to explore.
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Abstract
We develop new algorithmic methods with provable guarantees for feature selection in regard to
categorical data clustering. While feature selection is one of the most common approaches to reduce
dimensionality in practice, most of the known feature selection methods are heuristics. We study
the following mathematical model. We assume that there are some inadvertent (or undesirable)
features of the input data that unnecessarily increase the cost of clustering. Consequently, we want
to select a subset of the original features from the data such that there is a small-cost clustering
on the selected features. More precisely, for given integers ℓ (the number of irrelevant features)
and k (the number of clusters), budget B, and a set of n categorical data points (represented by
m-dimensional vectors whose elements belong to a finite set of values Σ), we want to select m − ℓ

relevant features such that the cost of any optimal k-clustering on these features does not exceed
B. Here the cost of a cluster is the sum of Hamming distances (ℓ0-distances) between the selected
features of the elements of the cluster and its center. The clustering cost is the total sum of the
costs of the clusters.

We use the framework of parameterized complexity to identify how the complexity of the problem
depends on parameters k, B, and |Σ|. Our main result is an algorithm that solves the Feature
Selection problem in time f(k, B, |Σ|) · mg(k,|Σ|) · n2 for some functions f and g. In other words,
the problem is fixed-parameter tractable parameterized by B when |Σ| and k are constants. Our
algorithm for Feature Selection is based on a solution to a more general problem, Constrained
Clustering with Outliers. In this problem, we want to delete a certain number of outliers such
that the remaining points could be clustered around centers satisfying specific constraints. One
interesting fact about Constrained Clustering with Outliers is that besides Feature Selection, it
encompasses many other fundamental problems regarding categorical data such as Robust Clustering,
Binary and Boolean Low-rank Matrix Approximation with Outliers, and Binary Robust Projective
Clustering. Thus as a byproduct of our theorem, we obtain algorithms for all these problems. We
also complement our algorithmic findings with complexity lower bounds.
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1 Introduction

Clustering is one of the most fundamental concepts in data mining and machine learning.
A considerable challenge to the clustering approaches is the high dimensionality of modern
datasets. When the data contains many irrelevant features (or attributes), an application of
cluster analysis with a complete set of features could significantly decrease the solution’s
quality. The typical approach to overcome this challenge in practice is feature selection. The
method is based on selecting a small subset of relevant features from the data and applying the
clustering algorithm only on the selected features. The survey of [1] provides a comprehensive
overview on methods for feature selection in clustering. Due to the significance of feature
selection, there is a multitude of heuristic methods addressing the problem. However, very
few provably correct methods are known [6, 7, 11].

Kim et al. [20] introduced a model of feature selection in the context of k-means
clustering. We use their motivating example here. Decision-making based on market surveys
is a pragmatic marketing strategy used by manufacturers to increase customer satisfaction.
The respondents of a survey are segmented into similar-interest groups so that each group
of customers can be treated in a similar way. Consider such a market survey data that
typically contains responses of customers to a set of questions regarding their demographic
and psychographic information, shopping experience, attitude towards new products and
expectations from the business. The standard practice used by market managers to segment
customers is to apply clustering techniques w.r.t. the whole set of features. However,
depending on the application, responses corresponding to some of the features might not be
relevant to find the target set of market segments. Also, some of the responses might contain
incomplete or spurious information. To address this issue, Kim et al. [20] considered several
quality criteria to return Pareto optimal (or non-dominated) solutions that optimize one or
more criteria. One such solution removes a suitable subset of features and cluster the data
w.r.t. the remaining features.

The main objective of this work is to study clustering problems on categorical data. In
statistics, a categorical variable is a variable that can admit a fixed number of possible values.
For example, it could be a gender, blood type, political orientation, etc. A prominent example
of categorical data is binary data where the points are vectors each of whose coordinates can
take value either 0 or 1. Binary data arise in several important applications. In electronic
commerce, each transaction can be modeled as a binary vector (known as market basket data)
each of whose coordinates denotes whether a particular item is purchased or not [32, 22].
The most common similarity (or dissimilarity) measure for categorical data objects is the
Hamming distance, which is basically the number of mismatched attributes of the objects.

2 Our results

In this paper, we introduce a new model of feature selection w.r.t. categorical data clustering,
which is motivated by the work of Kim et al. [20]. We assume that there are some inadvertent
features of the input data that unnecessarily increase the cost of clustering. Consequently, in
our model, we define the best subset of features (of a given size) as the subset that minimizes
the corresponding cost of clustering. The goal is to compute such a subset and the respective
clusters. We provide the first parameterized algorithmic and complexity results for feature
selection in regard to categorical data clustering.

Let Σ be a finite set of non-negative integers. We refer to Σ as the alphabet and we denote
the m-dimensional space over Σ by Σm. Given two m-dimensional vectors x, y ∈ Σm, the
Hamming distance (or ℓ0-distance) dH(x, y) is the number of different coordinates in x and
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y, that is dH(x, y) = |{i ∈ {1, . . . , m} : x[i] ̸= y[i]}|. For a set of indices S ⊂ {1, 2, . . . , m}
and an m × n matrix A, let A−S be the matrix obtained from A by removing the rows
with indices in S. We denote the columns of A−S by aj

−S for 1 ≤ j ≤ n. We consider the
following mathematical model of feature selection.

Input: An alphabet Σ, an m × n matrix A with columns a1, a2, . . . , an such that
aj ∈ Σm for all 1 ≤ j ≤ n, a positive integer k, non-negative integers B and ℓ.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , m} of size at most ℓ, a partition
{I1, I2, . . . , Ik} of {1, 2, . . . , n}, and vectors c1, c2, . . . , ck ∈ Σm−|O| such that

k∑
i=1

∑
j∈Ii

dH(aj
−O, ci) ≤ B.

Feature Selection

In the above definition and all subsequent problem definitions, without loss of generality,
we assume that each cluster is non-empty, i.e., Ii ≠ ∅ for each 1 ≤ i ≤ k. Note that, otherwise,
one could probe different values k′ < k for the actual number of non-empty clusters. The
problem is defined as a decision problem, however if the instance is a yes-instance we would
also like to find such a clustering. For ℓ = 0, Feature Selection is the popular Binary
k-Clustering problem, which is known to be NP-hard for every k ≥ 2 [13]. This makes it
natural to investigate the parameterized complexity of Feature Selection.

Our main result is the following theorem.

▶ Theorem 1. Feature Selection is solvable in time f(k, B, |Σ|) · mg(k,|Σ|) · n2, where f

and g are computable functions.

In particular, this implies that for fixed k and |Σ|, the problem is fixed-parameter tractable
(FPT1) parameterized by B. Note that in any study concerning the parameterized complexity
of a problem, the value of the parameter is implicitly assumed to be sufficiently small
compared to the input size. Although the parameter B seems to be a natural choice from the
problem definition, in general B can be fairly large. Hence, Theorem 1 is mostly applicable
in the scenario when for the selected features the cost of clustering B is small and thus the
points are well-clustered on the selected features. Even in this case the problem is far from
being trivial. One can think of our problem as a problem from the broader class of editing
problems, where the goal is to check whether a given instance is close to a “structured” one.
In particular, our problem can be seen as the problem of editing the input matrix after
removing at most ℓ rows such that the resulting matrix contains at most k distinct columns
and the number of edits does not exceed the budget B. In this sense, our work is in line with
the work of [18] on matrix completion and [15] on clustering. Note that in many applications
it is reasonable to assume that k and |Σ| are bounded, as the alphabet size and the number
of clusters are small in practice. Indeed, for binary data, |Σ| = 2.

Another interesting property of our algorithm is that the running time does not depend
on the number of irrelevant features ℓ. In particular, for fixed k, B, and |Σ|, it runs in
polynomial time even when ℓ = Ω(m). Also, the theorem could be used to identify the
minimum number of irrelevant features ℓ such that the cost of k-clustering on the remaining
features does not exceed B. Note that our time complexity also exponentially depends on the

1 A problem is FPT or fixed-parameter tractable parameterized by a set of parameters if it can be solved
by algorithms that are exponential only in the values of the parameters while polynomial in the size of
the input.
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number of clusters k. In this regard, one can compare our result with the result in [15] that
shows that the binary version of the problem with ℓ = 0 (Binary k-Clustering) is FPT
parameterized by B only. However, in the presence of irrelevant features, the dependence on
k is unavoidable as we state in our next theorem.

▶ Theorem 2. Feature Selection is W[1]-hard parameterized by
either k + (m − ℓ)
or ℓ

even when B = 0 and Σ = {0, 1}. Moreover, assuming the Exponential Time Hypothesis
(ETH), the problem cannot be solved in time f(k) · mo(k) · nO(1) for any function f , even
when B = 0 and the alphabet Σ is binary.

Note that when B = 0 and Σ = {0, 1}, from Theorem 1 it follows that Feature
Selection can be solved in time f(k) · mg(k) · n2. Theorem 2 shows that the dependence of
such a function g on k is inevitable, unless W[1] = FPT, and g(k) is unlikely to be sublinear
up to ETH.

In order to prove Theorem 1, we prove a more general theorem about Constrained
Clustering with Outliers. In this problem, one seeks a clustering with centers of
clusters satisfying the property imposed by a set of relations. Constrained clustering [14]
was introduced as the tool in the design of approximation algorithms for binary low-rank
approximation problems. The Constrained Clustering with Outliers problem is
basically the robust variant of this problem. As we will see, by the reduction given in
Lemma 5, Theorem 4 proves Theorem 1. Besides Feature Selection, Constrained
Clustering with Outliers encompasses a number of well-studied problems around robust
clustering, low-rank matrix approximation, and dimensionality reduction. Our algorithm for
constrained clustering implies fixed-parameter tractability for all these problems.

To define constrained clustering, we need a few definitions. A p-ary relation on Σ is a
collection of p-tuples whose elements are in Σ.

▶ Definition 3 (Vectors satisfying R). An ordered set C = {c1, c2, . . . , cp} of m-dimensional
vectors in Σm is said to satisfy a set R = {R1, R2, . . . , Rm} of p-ary relations on Σ if
for all 1 ≤ i ≤ m, the p-tuple formed by the i-th coordinates of vectors from C, that is
(c1[i], c2[i], . . . , cp[i]), belongs to Ri.

We define the following constrained variant of robust categorical clustering.

Input: An alphabet Σ, an m × n matrix A with columns a1, a2, . . . , an such that
aj ∈ Σm for all 1 ≤ j ≤ n, a positive integer k, non-negative integers B and ℓ,
a set R = {R1, R2, . . . , Rm} of k-ary relations on Σ.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , n} of size at most ℓ, a partition
I = {I1, I2, . . . , Ik} of {1, 2, . . . , n} \ O, and a set C = {c1, c2, . . . , ck} of
m-dimensional vectors in Σm such that C satisfies R and

k∑
i=1

∑
j∈Ii

dH(aj , ci) ≤ B.

Constrained Clustering with Outliers

Thus in Constrained Clustering with Outliers we want to identify a set of
outliers ai, i ∈ O, such that the remaining n − ℓ vectors could be partitioned into k clusters
{I1, I2, . . . , Ik}. Each cluster Ij could be identified by its center cj ∈ Σm as the set of vectors
that are closer to cj ∈ Σm than to any other center (ties are broken arbitrarily). Then the
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cost of each cluster Ij is the sum of the Hamming distances between its vectors and the
corresponding center cj ∈ Σm. However, there is an additional condition that the set of
cluster centers C = {c1, c2, . . . , ck} must satisfy the set of k-ary relations R. And, the total
sum of costs of all clusters must not exceed B. We prove the following theorem.

▶ Theorem 4. Constrained Clustering with Outliers is solvable in time

(kB)O(kB)|Σ|kB · nO(k) · m2.

The connection between Constrained Clustering with Outliers and Feature
Selection is established in the following lemma.

▶ Lemma 5. For any instance (D, k, B, ℓ) of Feature Selection, one can construct in
time O(mn + k · |Σ|k) an equivalent instance (A, k′, B′, ℓ′, R) of Constrained Clustering
with Outliers such that A is the transpose of D, k′ = |Σ|k, B′ = B and ℓ′ = ℓ.

Theorem 1 follows from Theorem 4 and Lemma 5. Connections of constrained clustering
with several other clustering and low-rank matrix approximation problems have been estab-
lished in the literature [14]. Similarly, Theorem 4 allows to design parameterized algorithms
for robust variants of these problems.

Robust low-rank matrix approximation. Here we discuss two problems where for a given
matrix of categorical data, we seek to remove ℓ columns such that the remaining columns
are well approximated by a matrix of small rank. The vanilla case of the ℓ0-Low Rank
Approximation problem is the following. Given an m × n matrix A over GF(p) (a finite
field of order p), the task is to find an m × n matrix B over GF(p) of GF(p)-rank at most r

which is closest to A in the ℓ0-norm, i.e., the goal is to minimize ∥A − B∥0, the number of
different entries in A and B. In the robust version of this problem, some of the columns of
A could be outliers, which brings us to the following problem.

Input: An m × n matrix A over GF(p), a positive integer r, non-negative integers B

and ℓ.
Task: Decide whether there is a matrix B of GF(p)-rank at most r, and a matrix C

over GF(p) with at most ℓ non-zero columns such that ∥A − B − C∥0 ≤ B.

Robust ℓ0-Low Rank Approximation

Note that in this definition the non-zero columns of C can take any values. However, it
is easy to see that the problem would be equivalent if the columns of C were constrained
to be either zero columns or the respective columns of A. This holds since if C contains
a non-zero column, it could be replaced by the respective column of A, and the respective
column of B can be replaced by a zero column. This does not increase the cost nor the rank
of B. Thus any of the two formulations allows to restore the column outliers in A from C.

By a reduction [14, Lemma 1] similar to Lemma 5, we can show that Theorem 4 yields
the following theorem.

▶ Theorem 6. Robust ℓ0-Low Rank Approximation is FPT parameterized by B when
p and r are constants.

Another popular variant of low-rank matrix approximation is the case when the approx-
imation matrix B is of low Boolean rank. More precisely, let A be a binary m × n matrix.
Now we consider the elements of A to be Boolean variables. The Boolean rank of A is the
minimum r such that A = U ∧ V for a Boolean m × r matrix U and a Boolean r × n matrix

MFCS 2021
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V , where the product is Boolean, that is, the logical ∧ plays the role of multiplication and ∨
the role of sum. The variant of the low Boolean-rank matrix approximation is the following
problem.

Input: A binary m × n matrix A, a positive integer r, non-negative integers B and ℓ.
Task: Decide whether there is a binary matrix B of Boolean rank ≤ r, and a binary

matrix C with at most ℓ non-zero columns such that ∥A − B − C∥0 ≤ B.

Robust Low Boolean-Rank Approximation

By Theorem 4 and reduction from constrained clustering to Boolean-rank matrix approx-
imation identical to [14, Lemma 2], we have the following.

▶ Theorem 7. Robust Low Boolean-Rank Approximation is FPT parameterized by
B when r is a constant.

Finally, we consider clustering with outliers. This problem looks very similar to feature
selection. The only difference is that instead of features (the rows of the matrix A), we seek
to remove some columns of A. More precisely, we consider the following problem.

Input: An alphabet Σ, an m × n matrix A with columns a1, a2, . . . , an such that
aj ∈ Σm for all 1 ≤ j ≤ n, a positive integer k, non-negative integers B and ℓ.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , n} of size at most ℓ, a parti-
tion of {1, 2, . . . , n} \ O into k sets {I1, I2, . . . , Ik} called clusters, and vectors
c1, c2, . . . , ck ∈ Σm such that the cost of clustering

k∑
i=1

∑
j∈Ii

dH(aj , ci) ≤ B.

k-Clustering with Column Outliers

Note that k-Clustering with Column Outliers is also a special case of Constrained
Clustering with Outliers when every relation Ri ∈ R contains all possible k-tuples over
Σ, that is, there are no constraints on the centers. Hence, by Theorem 4, we readily obtain
the same result for this problem. However, in this special case we show that it is possible to
obtain an improved result.

▶ Theorem 8. k-Clustering with Column Outliers is solvable in time 2O(B log B)|Σ|B ·
(nm)O(1).

In particular, the theorem implies that the problem is FPT parameterized by B and |Σ|.
We note that the running time of Theorem 8 matches the running time in [15] obtained for
the Binary k-Clustering problem without outliers on binary data. The interesting feature
of the theorem is that the running time of the algorithm does not depend on the number
of outliers ℓ, matching the bound of the problem without outliers. Most of the clustering
procedures in robust statistics, data mining and machine learning perform well only for small
number of outliers. Our theorem implies that if all of the inlier points could be naturally
partitioned into k distinct clusters with small cost, then such a clustering could be efficiently
recovered even after arbitrarily many outliers are added.

Related Work. Constrained Clustering (without outliers) was introduced in [14] as a
tool for designing EPTAS for Low Boolean-Rank Approximation. Robust ℓ0-Low
Rank Approximation is a variant of robust PCA for categorical data. The study of robust
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PCA, where one seeks for a PCA when the input data is noisy or corrupted, is the large class
of extensively studied problems, see the books [30, 8]. There are many models of robustness
in the literature, most relevant to our work is the approach that became popular after the
work of [9]. The variant of robust PCA where one seeks for identifying a set of outliers, also
known as PCA with outliers, were studied in [4, 10, 31, 29].

For the vanilla variant, ℓ0-Low Rank Approximation, a number of parameterized and
approximation algorithms were developed [3, 14, 15, 21].

Low Boolean-Rank Approximation has attracted much attention, especially in the
data mining and knowledge discovery communities. In data mining, matrix decompositions
are often used to produce concise representations of data. Since much of the real data is
binary or even Boolean in nature, Boolean low-rank approximation could provide a deeper
insight into the semantics associated with the original matrix. There is a big body of work
done on Low Boolean-Rank Approximation. We refer to [23, 25, 27, 26] for further
references on this interesting problem. Parameterized algorithms for Low Boolean-Rank
Approximation (without outliers) were studied in [15].

There are several approximations and parameterized algorithms known for Binary k-
Clustering, which is the vanilla (without outliers) case of k-Clustering with Column
Outliers and with Σ = {0, 1} [28, 14, 3, 16]. Most relevant to our work is the parameterized
algorithm for Binary k-Clustering from [15]. Theorem 8 extends the result from [15] to
clustering with outliers.

Paper Outline. In the remaining part of this extended abstract we focus on our algorithmic
results. We briefly outline our techniques in Section 3. Then, in Section 4 we describe our
main result, the FPT algorithm for Constrained Clustering with Outliers. Finally,
in Section 5, we conclude with some open problems. Due to space constraints, the detailed
presentation of the remaining results appears in the attached full version of the paper.

3 Our Techniques

Both of our algorithmic results, Theorems 4 and 8, have at their core the subhypergraph
enumeration technique introduced by Marx [24]. This is fairly natural, since our algorithms
solve generalized versions of the vanilla binary clustering problem, and the only known FPT
algorithm [15] for the latter problem parameterized by B relies on the hypergraph enumeration
as well. In fact, our algorithm for k-Clustering with Column Outliers closely follows
this established approach of applying the hypergraph construction to clustering problems
([16], and partly [15]). However, for the Constrained Clustering with Outliers
problem the existing techniques do not work immediately. To deal with this, we generalize
the previously used hypergraph construction. In what follows, we present the key ideas
of both algorithms. We begin with the simpler case of k-Clustering with Column
Outliers, even though our main results are for Feature Selection and Constrained
Clustering with Outliers.

For the presentation of our algorithms, we recall standard hypergraph notations and the
notion of a fractional cover of a hypergraph. A hypergraph G(VG, EG) consists of a set VG of
vertices and a set EG of edges, where each edge is a subset of VG. Consider two hypergraphs
H(VH , EH) and G(VG, EG). We say that H appears in G at V ′ ⊆ VG as a partial hypergraph
if there is a bijection π between VH and V ′ such that for any edge e ∈ EH , π(e) ∈ EG, where
π(e) = ∪v∈eπ(v). H is said to appear in G at V ′ ⊆ VG as a subhypergraph if there is a
bijection π between V ′ and VH such that for any edge e ∈ EH , there is an edge e′ ∈ EG such
that π(e) = e′ ∩ V ′.

MFCS 2021
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A fractional edge cover of H is an assignment ϕ : EH → [0, 1] such that for every
vertex v ∈ VH , the sum of the values assigned to the edges that contain v is at least 1, i.e,∑

e∋v ϕ(e) ≥ 1. The fractional cover number ρ∗(H) of H is the minimum value
∑

e∈E ϕ(e)
over all fractional edge covers ϕ of H. The following theorem is required for our algorithm.

▶ Theorem 9 ([24]). Let H(VH , EH) be a hypergraph with fractional cover number ρ∗(H),
and let G(VG, EG) be a hypergraph where each edge has size at most L. There is an algorithm
that enumerates, in time |VH |O(|VH |) · L|VH |ρ∗(H)+1 · |EG|ρ

∗(H)+1 · |VG|2, every subset V ⊆ VG

where H appears in G as a subhypergraph.

3.1 The Algorithm for k-Clustering with Column Outliers
Given an instance (A, k, B, ℓ) of k-Clustering with Column Outliers, we note that
at most 2B distinct columns can belong to “nontrivial” clusters (with at least 2 distinct
columns), exactly like in the case without the outliers. So we employ a color-coding scheme
[2] to partition the columns in a way so that every column belonging to a nontrivial cluster
of a fixed feasible solution is colored with its own color. Thus we reduce to multiple instances
of the problem we call Restricted Clustering. In Restricted Clustering, we are given sets of
columns U1, U2, . . . , Up and a parameter B. The goal is to select p columns b1, b2, . . . , bp

and a cluster center s such that bt ∈ Ut for 1 ≤ t ≤ p and
∑p

t=1 dH(bt, s) ≤ B.
Restricted Clustering is similar to the Cluster Selection problem of [16] and [15], and

the hypergraph-based algorithm to solve it is essentially the same as in [16]. However, next
we briefly sketch the details, as this construction serves as the base for our more general
Constrained Clustering with Outliers algorithm. First, guess b1 ∈ U1 in the optimal
solution to the instance of Restricted Clustering. If the cost of the optimal solution is at
most B, then dH(b1, s) is at most B as well. If we know the set of at most B positions P

where b1 and s differ, we can easily identify s by trying all possible |Σ|B options at these
positions. For each option, we can find the closest bi from each Ui and check whether the
total cost is at most B.

To show that we can enumerate all potential sets of deviating positions in FPT time,
we identify the instance with the following hypergraph H(V, E). The vertices V are the
positions {1, . . . , m}. With each column x in

⋃p
i=1 Ui, we identify a hyperedge containing

exactly the positions where x is different from b1. Now the optimal set of positions P and
the optimal columns {bi}p

i=1 induce a subhypergraph H0(V0, E0) of H such that |V0| ≤ B

and the fractional cover number of H0 is at most two. The latter holds simply because
wherever s is different from x, at least half of the chosen columns must also be different
from x, otherwise modifying s to match x decreases the cost. If we enumerate all possible
subhypergraphs H0 and all possible locations in H where they occur, we can surely find
the optimal set of locations P . Since |V0| ≤ B, enumerating all choices for H0 is clearly in
FPT time. For a fixed H0, finding all occurrences in H is in FPT time by Theorem 9. Note
that applying Theorem 9 results in FPT time only when the fractional cover number of H0
is bounded by a constant. Also, by a sampling argument one can show that it suffices to
consider only those H0 with O(log B) hyperedges. It follows that the number of distinct
hypergraphs that we have to consider for enumeration is bounded by only 2O(B log B). Thus
it is possible to bound the dependence on B in the running time by 2O(B log B).

3.2 The Algorithm for Feature Selection
For Feature Selection, the above-mentioned approach is not applicable, for several reasons.
Most crucially, it does not seem that one can partition the problem into k independent
instances of a simpler single-center selection problem, in a way that we reduce k-Clustering
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with Column Outliers to k instances of Restricted Clustering (for a fixed coloring).
Intuitively, the possibility to remove a subset of features does not allow such a partition
as all the clusters depend simultaneously on the choice of those features. Moreover, our
hardness result shows that for Feature Selection the running time cannot match with
k-Clustering with Column Outliers, as no no(k) time algorithm is possible for constant
B, assuming ETH.

By Lemma 5, for solving Feature Selection, it suffices to solve Constrained
Clustering with Outliers. For the same reasons as with Feature Selection, the
approach used for k-Clustering with Column Outliers fails, as the constraints on the
centers do not allow to form clusters independently. Instead, we generalize the hypergraph
construction used for Restricted Clustering to handle the choice of all k centers simultaneously,
as opposed to just one center at a time. This is the most technical part of the paper. The
main idea is to base the hypergraph on k-tuples of columns instead of just single columns.
In the next section, we formalize this intuitive discussion, presenting the proof in full detail.

4 The Algorithm for Constrained Clustering with Outliers

In this section we prove Theorem 4 by giving an algorithm for Constrained Clustering
with Outliers that runs in (kB)O(kB)nO(k)m2|Σ|kB time. First, we prove a structural
lemma that will be useful for analysis of the algorithm.

4.1 Structural Lemma
Here we show that an optimal set of centers corresponds to a “good” subhypergraph in a
certain hypergraph. Consider a feasible clustering I = {I1, I2, . . . , Ik} having the minimum
cost. Let {c1, c2, . . . , ck} be a fixed set of centers corresponding to I. Also, let T be the set
of all tuples of the form (ai1 , ai2 , . . . , aik ) such that ij ∈ Ij for all j. Note that we do not
actually need to know the set T – we just introduce the notation for the sake of analysis.
For a k-tuple x = (x1, . . . , xk), we denote the tuple (x1[j], x2[j], . . . , xk[j]) by x[j]. Two
k-tuples x and y are said to differ from each other at location j if x[j] ̸= y[j].

Let C be the k-tuple such that C = (c1, c2, . . . , ck). Suppose x = (x1, . . . , xk) is such
that there are at most B positions h where x[h] ̸= C[h], and for each 1 ≤ j ≤ m, x[j] ∈ Rj .
Consider the hypergraph H defined in the following way with respect to x. The labels of the
vertices of H are in {1, 2, . . . , m}. For each k-tuple y = (y1, . . . , yk) of T , we add an edge
S ⊆ {1, 2, . . . , m} such that h ∈ S if x[h] ̸= y[h].

In the following lemma, we show that the hypergraph H has a “good” subhypergraph.

▶ Lemma 10 (Structural Lemma). Suppose the input is a yes-instance. Consider a k-tuple
x = (x1, . . . , xk) such that there are at most B positions h where x[h] ̸= C[h] and for each
1 ≤ j ≤ m, x[j] ∈ Rj. Also, consider the hypergraph H defined in the above with respect to
x. There exists a subhypergraph H∗(V ∗, E∗) of H with the following properties.
1. |V ∗| ≤ B.
2. |E∗| ≤ 200 ln B.
3. The indices in V ∗ are the exact positions h such that x[h] ̸= C[h].
4. The fractional cover number of H∗ is at most 4.

To prove the above lemma, first, we show the existence of a subhypergraph that satisfies
all the properties except the second one. Let P be the set of positions h such that x[h] ̸= C[h].
Let H0(V0, E0) be the subhypergraph of H induced by P . By definition of x, P contains
at most B indices. Thus, the first property follows immediately. The third property also
follows, as V0 = P , is exactly the set of positions h ∈ {1, 2, . . . , m}, where x[h] ̸= C[h]. Next,
we show that the fourth property holds for H0. In fact, we show a stronger bound.
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▶ Lemma 11. The fractional cover number of H0 is at most 2.

Proof. Note that the total number of edges of H0 is τ = |T |. We claim that each vertex of
H0 is contained in at least τ/2 edges.

Consider any vertex h of H0. Suppose there is a 1 ≤ j ≤ k, such that for at least
⌈|Ij |/2⌉ columns in Ij the value at location h is not xj [h]. Note that each such column
contributes to Πj−1

t1=1|It1 |·Πk
t2=j+1|It2 | = τ/|Ij | tuples (y1, . . . , yk) of T such that yj [h] ̸= xj [h].

Thus, the edge corresponding to each such tuple contains h. It follows that, at least
⌈|Ij |/2⌉ · (τ/|Ij |) ≥ τ/2 edges in E0 contain h.

In the other case, for all 1 ≤ j ≤ k and less than ⌈|Ij |/2⌉ columns in Ij , the value at
location h is not xj [h]. We prove that this case does not occur. Note that there is a k-tuple
z in Rh such that z = x[h]. Consider replacing C[h] by z at position h of C. Next, we
analyze the change in cost of the clustering I. Note that the cost corresponding to positions
other than h remains same. For a 1 ≤ j ≤ k, if previously cj [h] = xj [h], the cost remains
same. Otherwise, cj [h] ̸= xj [h]. Note that for more than ⌈|Ij |/2⌉ columns in Ij , the value
at location h is xj [h]. Thus, by replacing cj [h] by xj [h], the cost decrement corresponding
to the index j and location h is at least 1. As x[h] ̸= C[h], there is an index j such that
cj [h] ̸= xj [h]. It follows that the overall cost decrement is at least 1, which contradicts the
optimality of the previously chosen centers. Hence, this case cannot occur. This completes
the proof of the lemma. ◀

So far we have proved the existence of a subhypergraph that satisfies all the properties
except the second. Next, we show the existence of a subhypergraph that satisfies all the
properties. The following lemma completes the proof of Lemma 10. Its proof follows a
standard sampling argument, and is presented in the full version.

▶ Lemma 12. Let B ≥ 2. Consider the subhypergraph H0 that satisfies all the properties of
Lemma 10 except (2). It is possible to select at most 200 ln B edges from H0 such that the
subhypergraph H∗

0 obtained by removing all the other edges from H0 satisfies all the properties
of Lemma 10.

4.2 The Algorithm for Constrained Clustering
In this section, we describe our algorithm. The algorithm outputs a feasible clustering of
minimum cost if there is a feasible clustering of the given instance. Otherwise, the algorithm
returns “NO”.

The Algorithm. First, we consider all k-tuples x = (x1, . . . , xk) such that xj is a column
of A for 1 ≤ j ≤ k, and apply the following refinement process on each of them. Here, a
k-tuple x of columns of A is said to differ from R at a position j for 1 ≤ j ≤ m if x[j] /∈ Rj .

Let P ⊆ {1, 2, . . . , m} be the set of positions where x differs from R.
If |P | > B, probe the next k-tuple x.
For each position h ∈ P , replace x[h] by any element of Rh.

Next, for each refined k-tuple x = (x1, . . . , xk), we construct a hypergraph G whose
vertices are in {1, 2, . . . , m}. For each k-tuple y = (y1, . . . , yk) of columns of A, we add an
edge S ⊆ {1, 2, . . . , m} such that h ∈ S if x[h] ̸= y[h]. For all hypergraphs H∗

0 having at
most B vertices and at most 200 ln B edges, we check if each vertex of H∗

0 is contained in at
least 1/4 fraction of the edges. If that is the case, we use the algorithm of Theorem 9 to find
every place P ′ where H∗

0 appears in G as subhypergraph. For each such set P ′, we perform
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all possible B′ ≤ B · k edits of the tuple x at the locations in P ′. In particular, for each
B′, the editing is done in the following way. For each possible B′ entries (a1, . . . , aB′) in
(x1, . . . , xk) at the locations in P ′ and each set of B′ symbols (s1, . . . , sB′) from Σ, we put sj

at the entry aj for all j. After each such edit, we retrieve the edited tuple (x1, . . . , xk) and
perform a sanity check on this tuple to ensure that it is a valid k-tuple center. In particular,
for each index 1 ≤ h ≤ m, if there is a z ∈ Rh such that z = x[h], we tag x as a valid tuple.
Lastly, we output all such valid k-tuples as candidate centers if the corresponding cost of
clustering is at most B. If no k-tuple is output as a candidate center, we return “NO”.

Note that, given a k-tuple candidate center z = (z1, . . . , zk), one can compute a minimum
cost clustering in the following greedy way, which implies that we can correctly compute the
cost of clustering in the above. At each step i, we assign a new column of A to a center.
In particular, we add a column aj of A to a cluster I ′

t such that aj incurs the minimum
cost over all unassigned columns if it is assigned to a center, i.e, it minimizes the quantity
mink

t′=1 d(aj , zt′), and zt is a corresponding center nearest to aj . As we are allowed to
exclude ℓ outliers, we assign n − ℓ columns. The clustering {I ′

1, . . . , I ′
k} obtained at the end

of this process is the output. This finishes the description of our algorithm.

4.3 Analysis
Again consider the feasible clustering with partition I = {I1, I2, . . . , Ik} and the corresponding
center tuple C = (c1, c2, . . . , ck) having the minimum cost. First, we have the following
observation.

▶ Observation 13. Suppose for a k-tuple x, x differs from C at B1 positions. Then, after
refinement, there is at most B1 positions h such that x[h] ̸= C[h]. Moreover, after refinement,
dH(x, C) ≤ B1 · k.

The first part is true for the following reason. If x was different from R at a position
h, then x[h] ̸= C[h] as well. Thus, refinement is applied for a position h where x[h] already
differs from C[h]. Hence, refinement does not affect a position h where x[h] = C[h]. The
moreover part follows trivially from the first part as x is a k-tuple. Now, it is sufficient to
prove the following lemma.

▶ Lemma 14. Suppose there is a feasible clustering with partition I = {I1, I2, . . . , Ik} as
defined above. The above algorithm successfully outputs the k-tuple (c1, c2, . . . , ck).

Proof. Consider a k-tuple x = (x1, . . . , xk) such that the column xj is in cluster Ij . As the
algorithm considers all possible k-tuples of columns in A, it must consider x. By Observation
13, after refinement, there are at most B positions h where x[h] ̸= C[h]. Also, for each
1 ≤ j ≤ m, x[j] ∈ Rj . Let G be the hypergraph constructed by the algorithm corresponding
to this refined x. Note that the hypergraph H defined in Lemma 10 is a partial subhypergraph
of G. Thus, the subhypergraph H∗ of H is also a subhypergraph of G. As we enumerate
all hypergraphs having at most B vertices, at most 200 ln B edges and at most 4 fractional
covering number, H∗ must be considered by the algorithm. Let P ′ be the place in G where
H∗ appears. By the third property of Lemma 10, the locations in P ′ are the exact positions
h such that x[h] ̸= C[h]. It follows that an edit corresponding to P ′ generates the tuple
C = (c1, . . . , ck), as dH(x, C) ≤ B · k. It is easy to see that C also passes the sanity check.
Hence, C must be an output of the algorithm. ◀

Given the tuple center C = (c1, . . . , ck), we use the greedy assignment scheme (described
in the algorithm) to find the underlying clustering. Note that given any k-tuple candidate
center z = (z1, . . . , zk), this greedy scheme computes a minimum cost clustering with
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z1, . . . , zk being the cluster centers. Thus, the cost of the clustering computed by the
algorithm is at most B. Hence, the algorithm successfully outputs C as a candidate center.
We summarize our findings in the following lemma.

▶ Lemma 15. Suppose the input instance is a no-instance, then the algorithm successfully
outputs “NO”. If the input instance is a yes-instance, the algorithm correctly computes a
feasible clustering.

4.4 Time Complexity
Next, we discuss the time complexity of our algorithm. The number of choices of x is
nO(k). For each choice of x, the hypergraph G can be constructed in nO(k) time. The
number of distinct hypergraphs H∗

0 with at most B vertices and at most 200 ln B edges is
2B·200 ln B = BO(B), since there are 2B possibilities for each edge. Now we analyze the time
needed for locating a particular H∗

0 in G. For any tuple y ∈ T , dH(y, C) ≤ B. By triangle
inequality, dH(x, y) ≤ 2B. Thus, the size of any edge in H is at most 2B, and we can remove
any edge of G of size more than 2B. From Theorem 9, it follows that every occurrence of H∗

0
in G can be found in BO(B) · (2B)4B+1 · n4k+k · m2 = BO(B) · nO(k)m2 time. If H∗

0 appears
at some place in G, it would take O((kB|Σ|)kB) time to edit x. Hence, in total the algorithm
takes (kB)O(kB)|Σ|B · nO(k)m2 time. By the above discussion, we have Theorem 4.

5 Conclusion

We initiated the systematic study of parameterized complexity of robust categorical data
clustering problems. In particular, for k-Clustering with Column Outliers, we proved
that the problem can be solved in 2O(B log B)|Σ|B · (nm)O(1) time. Further, we considered the
case of row outliers and proved that Feature Selection is solvable in time f(k, B, |Σ|) ·
mg(k,|Σ|)n2. We also proved that we cannot avoid the dependence on k in the degree of the
polynomial of the input size in the running time unless W[1] = FPT, and the problem cannot
be solved in mo(k) · nO(1) time, unless ETH is false. To deal with row outliers, we introduced
the Constrained Clustering with Outliers problem and obtained the algorithm with
running time (kB)O(kB)|Σ|kB · m2nO(k). This problem is very general, and the algorithm
for it not only allowed us to get the result for Feature Selection, but also led to the
algorithms for the robust low rank approximation problems. In particular, we obtained that
Robust ℓ0-Low Rank Approximation is FPT if k and p are constants when the problem is
parameterized by B. However, even if the low rank approximation problems are closely related
to the matrix clustering problems, there are structural differences. For instance, we show
that the complexity of clustering with column outliers is different from row outliers, however,
low-rank approximation problems are symmetric. This leads to the question whether Robust
ℓ0-Low Rank Approximation, Robust Low Boolean-Rank Approximation and
Robust Projective Clustering could be solved by better algorithms specially tailored
for these problems. It is unlikely that potential improvements would considerably change the
general qualitative picture. For example, Robust ℓ0-Low Rank Approximation for p = 2
and ℓ = 0 is NP-complete if k = 2 [12, 19] and W[1]-hard when parameterized by B [17]. It
is also easy to observe that Robust ℓ0-Low Rank Approximation for p = 2, B = 0 and
k = n − ℓ − 1 is equivalent to asking whether the input matrix A has n − ℓ linearly dependent
columns. This immediately implies that Robust ℓ0-Low Rank Approximation for p = 2
and B = 0 is W[1]-hard when parameterized by k or n − ℓ by the recent results about the
Even Set problem [5]. The most interesting open question, by our opinion, is whether
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the exponential dependence on k in the degree of the polynomial of the input size in the
running time produced by our reduction of Robust ℓ0-Low Rank Approximation to
Constrained Clustering with Outliers could be avoided, even if p is a constant. Can
the dependence of k be made polynomial (or even linear)?
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15:2 Decision Questions for Probabilistic Automata on Small Alphabets

for a function f : N → N, if every word of length n has at most f(n) accepting runs. A run
is accepting if the probability of that run ending in a final state is strictly positive. The
degree of ambiguity is thus a property of the NFA underlying a PFA (i.e. the NFA produced
by setting all nonzero transition probabilities to 1). We may consider the notions of finite,
polynomial or exponential ambiguity of P based on whether f is bounded by a constant, is a
polynomial or else is exponential, respectively. Characterisations of the degree of ambiguity
of NFA are given by Weber and Seidel [23].

The authors of [8] show that emptiness for PFA remains undecidable even for polynomially
ambiguous automata (quadratic ambiguity), show PSPACE-hardness results for finitely
ambiguous PFA and that emptiness is in NP for the class of k-ambiguous PFA for every
k > 0. The emptiness problem for PFA was later shown to be undecidable for linearly
ambiguous automata [7].

Another restriction is to constrain input words of the PFA to come from a given language L.
If L is a letter-bounded language, then the emptiness and λ-reachability problems remain
undecidable for polynomially ambiguous PFA, even when all transition matrices commute [2].
In contrast, the cutpoint-isolation problem is decidable even for exponentially ambiguous
PFA when inputs are constrained to come from a given letter-bounded context-free language,
although it is NP-hard for 3-state PFA on letter-bounded inputs [3].

Our main results are as follows. We show that the λ-reachability and emptiness problems
for probabilistic finite automata are:

In EXPTIME for the class of polynomially ambiguous unary PFA and are NP-complete
if, in addition, the transition matrix is over {0, 1} [Theorem 4 and Corollary 11].
NP-hard for polynomially ambiguous PFA over a binary alphabet with fixed and com-
muting transition matrices of dimension 40 (strict emptiness problem), 37 (nonstrict
emptiness problem) and 9 (λ-reachability problem) [Theorem 12].

We also show NP-hardness for the class of finitely ambiguous unary PFA with {0, 1}
transition matrix [Theorem 10]. Our hardness results rely on the NP-hardness of solving
binary quadratic equations and the universality problem for unary regular expressions. An
interesting question, that is left open, is to find out the exact computational complexity of
the above problems in the case of polynomially ambiguous unary PFA, i.e. to close the gap
between the EXPTIME upper bound and NP lower bound.

2 Probabilistic Finite Automata and Notation

We denote by Qn×n the set of all n× n matrices over Q. Given two column vectors u ∈ Qn

and v ∈ Qm, we denote by [u|v] the column vector (u1, . . . , un, v1, . . . , vm)T ∈ Qn+m. For a
sequence of vectors u1, u2, . . . , uk, we write [u1|u2| · · · |uk] for the column vector which stacks
the vectors on top of each other.

Given A = (aij) ∈ Qm×m and B ∈ Qn×n, we define the direct sum A⊕B and Kronecker
product A⊗B of A and B by:

A⊕B =
[
A 0m,n

0n,m B

]
, A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
...

am1B am2B · · · ammB

 ,
where 0i,j denotes the zero matrix of dimension i × j. Note that neither ⊕ nor ⊗ are
commutative in general. The following useful properties of ⊕ and ⊗ are well known.
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▶ Lemma 1. Let A,B,C,D ∈ Qn×n. Then we have:
Associativity: (A⊗B)⊗C = A⊗(B⊗C) and (A⊕B)⊕C = A⊕(B⊕C), thus A⊗B⊗C

and A⊕B ⊕ C are unambiguous.
Mixed product properties: (A⊗B)(C⊗D) = (AC⊗BD) and (A⊕B)(C⊕D) = (AC⊕BD).
If A and B are stochastic matrices, then so are A⊕B and A⊗B.
If A,B ∈ Qn×n are both upper-triangular, then so are A⊕B and A⊗B.

See [13] for proofs of the first three properties of Lemma 1. The fourth property follows
directly from the definition of the direct sum and Kronecker product and is not difficult to
prove.

A Probabilistic Finite Automaton (PFA) P with n states over an alphabet Σ is defined
as P = (u, {Ma|a ∈ Σ}, v) where u ∈ Qn is the initial probability distribution; v ∈ {0, 1}n is
the final state vector and each Ma ∈ Qn×n is a (row) stochastic matrix. We will primarily
be interested in unary and binary PFA, for which |Σ| = 1 and |Σ| = 2 respectively. For a
word w = a1a2 · · · ak ∈ Σ∗, we define the acceptance probability P(w) : Σ∗ → Q of P as:

P(w) = uTMa1Ma2 · · ·Mak
v ∈ [0, 1],

which denotes the acceptance probability of w.1
For a given cutpoint λ ∈ [0, 1], we define the following languages: L≥λ(P) = {w ∈

Σ∗ | P(w) ≥ λ}, a nonstrict cutpoint language, and L>λ(P) = {w ∈ Σ∗ | P(w) > λ}, a strict
cutpoint language. The (strict) emptiness problem for a cutpoint language is to determine if
L≥λ(P) = ∅ (resp. L>λ(P) = ∅). We are also interested in the λ-reachability problem, for
which we ask if there exists a word w ∈ Σ∗ such that P(w) = λ.

2.1 PFA Ambiguity
The degree of ambiguity of a finite automaton is a structural parameter, roughly indicating
the number of accepting runs for a given input word. See [23] for a thorough discussion of
ambiguity for nondeterministic automata and [2, 3, 7, 8] for connections to PFA.

Let w ∈ Σ∗ be an input word of an NFA N = (Q,Σ, δ, QI , QF ), with Q the set of states,
Σ the input alphabet, δ ⊂ Q × Σ × Q the transition function, QI the set of initial states
and QF the set of final states. For each (p, w, q) ∈ Q× Σ∗ ×Q, define daN (p, w, q) as the
number of paths for w in N leading from state p to q. The degree of ambiguity of w in N ,
denoted daN (w), is defined as the number of all accepting paths for w (starting from an
initial and ending in a final state). The degree of ambiguity of N , denoted da(N ), is the
supremum of the set {daN (w) | w ∈ Σ∗}. N is called infinitely ambiguous if da(N ) = ∞,
finitely ambiguous if da(N ) < ∞, and unambiguous if da(N ) ≤ 1. The degree of growth
of the ambiguity of N , denoted deg(N ), is defined as the minimum degree of a univariate
polynomial h with positive integral coefficients such that for all w ∈ Σ∗, daN (w) ≤ h(|w|) (if
such a polynomial exists, in which case N is called polynomially ambiguous, otherwise the
degree of growth is infinite and N is called exponentially ambiguous).

The above notions relate to NFA. We may derive an analogous notion of ambiguity for
PFA by considering an embedding of a PFA P to an NFA N in such a way that for each
letter a ∈ Σ, if the probability of transitioning from a state i to state j is nonzero under P,
then there is an edge from state i to j under N for letter a. The initial states of N are those
of P having nonzero initial probability and the final states of N and P coincide. We then
say that P is finitely/polynomially/exponentially ambiguous if N is (respectively).

1 Some authors interchange the order of u and v and use column stochastic matrices, although the two
definitions are trivially equivalent.
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15:4 Decision Questions for Probabilistic Automata on Small Alphabets

A state q ∈ Q in an NFA (resp. PFA) is called useful if there exists an accepting
path which visits q (resp. an accepting path of nonzero probability which visits q). We
can characterise whether an NFA A (and thus a PFA by the above embedding) has finite,
polynomial or exponential ambiguity using the following properties:
EDA – There is a useful state q ∈ Q such that, for some word v ∈ Σ∗, daA(q, v, q) ≥ 2.
IDAd – There are useful states r1, s1, . . . , rd, sd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈ Σ∗

such that for all 1 ≤ i ≤ d, ri and si are distinct and (ri, vi, ri), (ri, vi, si), (si, vi, si) ∈ δ and
for all 2 ≤ i ≤ d, (si−1, ui, ri) ∈ δ.

▶ Theorem 2 ( [14, 20, 23]). An NFA (or PFA) A having the EDA property is equivalent to
it being exponentially ambiguous. For any d ∈ N, an NFA (or PFA) A having property IDAd

is equivalent to deg(A) ≥ d.

Clearly, if N agrees with IDAd for some d > 0, then it also agrees with IDA1, . . . , IDAd−1.
An NFA (or PFA) is thus finitely ambiguous if it does not possess property IDA1.

3 Unary PFA

Our main focus is on unary automata. We begin by giving a simple folklore proof that the
λ-reachability and emptiness problems are as computationally difficult as the famous Skolem
problem, which is only know to be decidable for instances of depth 4 [22]. See also [1] for
connections to reachability problems for Markov chains.

▶ Theorem 3. The λ-reachability and emptiness problems for unary exponentially ambiguous
Probabilistic Finite Automata are Skolem-hard.

Proof. (Folklore). The λ-reachability problem for unary exponentially ambiguous PFA can
be shown Skolem-hard based on the well known matrix formulation of Skolem’s problem [11]
and Turakainen’s technique showing the equivalence of (strict) cutpoint language acceptance
of generalised automata and exponentially ambiguous probabilistic automata [21].

The emptiness problem can be shown Skolem-hard by encoding the positivity problem
which is known to be Skolem-hard, see [17] for example. ◀

We now move to prove our main result, specifically that the emptiness and λ-reachability
problems for polynomially ambiguous unary probabilistic finite automata are in EXPTIME.
Note again that without the restriction of polynomial ambiguity the problem is Skolem-hard
by Theorem 3 and thus not even known to be decidable.

▶ Theorem 4. The λ-reachability and (strict) emptiness problems for unary polynomially
ambiguous Probabilistic Finite Automata are decidable in EXPTIME.

In order to establish Theorem 4, we need to prove a series of lemmas.
The next lemma states that we may consider a unary polynomially ambiguous PFA whose

transition matrix is upper-triangular. This will prove useful since in that case the eigenvalues
of the transition matrix are rational nonnegative. In general, a polynomially ambiguous
unary PFA may have a transition matrix with complex eigenvalues. The proof of the lemma
relies on the analysis of strongly connected components (SCCs) of the underlying transition
graph of a PFA.
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▶ Lemma 5. Let P = (u,A, v) be a polynomially ambiguous unary Probabilistic Finite
Automaton with acceptance function P(ak) = uTAkv. Then we can compute in EXPTIME
a set of d polynomially ambiguous unary PFAs {Ps = (us, U, v

′) | 0 ≤ s ≤ d − 1} such
that U is rational upper-triangular and P(ak) = Ps(ar) = uT

s U
rv′, where k = rd + s with

0 ≤ s ≤ d− 1.

Proof. We will identify P and its underlying graph in which an edge (p, q) exists iff Ap,q ̸= 0.
Two states p, q of a PFA are said to be connected if there exists a path from p to q and
from q to p. We partition the set of states into Strongly Connected Components (SCC)
denoted S1, S2, . . . , Sℓ so that for any SCC Sj , either |Sj | = 1, or else any two states in Sj

are connected. These SCCs can be computed in linear time.
A polynomially ambiguous PFA does not have the EDA property (see Sec. 2.1). This

implies that every Sj , with |Sj | > 1, consists of a single directed cycle, possibly with
transitions to other SCCs. To see this, suppose there are two different directed cycles inside
Sj of lengths m and n and a common vertex p. Then one can construct two different paths
of length mn from p to p by going m times along the first cycle and n time along the second
cycle, respectively, contradicting the assumption that P does not have the EDA property.

Note that if there exists a path from a state p ∈ Sj1 to some q ∈ Sj2 , then there does not
exist any path from any state in Sj2 to a state in Sj1 , otherwise Sj1 and Sj2 would merge
to a single SCC (since all vertices are then connected). This implies that the connected
components S1, S2, . . . , Sℓ can be reordered in such a way that there are no transitions from
Sj to Si for i < j. Hence there exists a permutation matrix P such that the following matrix
is stochastic block upper-triangular:

B = PAP−1 =


B1 ∗ · · · ∗

0 B2
. . . ∗

...
. . . . . .

...
0 0 · · · Bℓ

 ,

such that each Bj ∈ Qdj×dj , where dj is the size of Sj , and Bj ⪯ Pj , where Pj ∈ Ndj×dj

is a permutation matrix, and the entries ∗ are arbitrary. Here M ⪯ N means that M is
entrywise less than N , i.e. Mi,j ≤ Ni,j .

Let d = lcm{dj | 1 ≤ j ≤ ℓ} (in fact, we can simply take d =
∏ℓ

j=1 dj). We then see that:

U := Bd = PAdP−1 =


Bd

1 ∗ · · · ∗

0 Bd
2

. . . ∗
...

. . . . . .
...

0 0 · · · Bd
ℓ

 .

Note that each Bd
j ⪯ P d

j = Ij , where Ij ∈ Ndj×dj is the identity matrix, and the entries ∗
are arbitrary. Therefore, each Bd

j is diagonal, and so U is clearly upper-triangular.
We then define Ps = (us, U, v

′), for 0 ≤ s ≤ d − 1, with uT
s = uTAsP−1 and v′ = Pv

noting that Pv is a binary vector as required of a final state vector. We now see that:

P(ak) = uTAkv = uTAsArdv = uTAsP−1(PArdP−1)Pv = uT
s U

rv′ = Ps(ar)

for k = rd+ s with 0 ≤ s ≤ d− 1 as required. Here we used the identity Ur = PArdP−1.
Finally, note that d can be exponential in the number of states of P, which in turn

is bounded by the input size. Hence computing U and all us, for 0 ≤ s ≤ d − 1, takes
exponential time. ◀

MFCS 2021
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The next lemma gives us an efficient method to compute an explicit formula for the
acceptance probability function of a unary PFA with upper-triangular transition matrix.

▶ Lemma 6. Let P = (u,A, v) be a unary probabilistic finite automaton such that A is
rational upper-triangular, and let λ0 = 1 > λ1 > · · · > λm ≥ 0 be distinct eigenvalues of A.
Then there exist a constant c ∈ Q and univariate polynomials p1, . . . , pm over Q, all of which
can be computed in polynomial time, such that

P(ak) = c+
m∑

i=1
pi(k)λk

i .

Proof. First, we write A in Jordan normal form A = S−1JS, where S is a nonsingular
(det(S) ̸= 0) matrix consisting of the generalised eigenvectors of A. Recall that A is a rational
upper-triangular matrix. It follows that J and S must have rational entries. Moreover, to
compute J and S, we need to solve systems of linear equations over Q, which can be done
in polynomial time. Computing S−1 also requires polynomial time. Matrix J has the form
J =

⊕m
i=0

⊕ni

j=1 Jℓi,j (λi), where Jℓi,j (λi) is a ℓi,j × ℓi,j Jordan block and ni is the geometric
multiplicity of λi (hence

∑ni

j=1 ℓi,j is the algebraic multiplicity of λi). Recall that a Jordan
block Jℓ(λ) of size ℓ× ℓ that corresponds to an eigenvalue λ has the form:

Jℓ(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

 ∈ Qℓ×ℓ.

Noting that
(

x
y

)
= 0 if y > x, we see that

Jℓ(λ)k =


λk

(
k
1
)
λk−1 (

k
2
)
λk−2 · · ·

(
k

ℓ−1
)
λk−(ℓ−1)

0 λk
(

k
1
)
λk−1 · · ·

(
k

ℓ−2
)
λk−(ℓ−2)

0 0 λk · · ·
(

k
ℓ−3

)
λk−(ℓ−3)

...
...

...
. . .

...
0 0 0 · · · λk

 . (1)

Note that the entries of Jℓ(λ)k have the form qi,j(k)λk, where qi,j(k) are polynomials over Q
that can be computed in polynomial time. Namely, qi,i+p(k) =

(
k
p

)
λ−p for 0 ≤ p ≤ ℓ− i, and

qi,j(k) = 0 for i > j. Note that even though p appears in the exponent of λ−p and as p! in(
k
p

)
, these values are still computable in PTIME from the input data because p is bounded

by the dimension of the matrix, which in turn is bounded by the input size.
Next, we note that Jk =

⊕m
i=0

⊕ni

j=1 Jℓi,j
(λi)k. Hence the entries of Jk have the form

ps,t(k)λk
i , where ps,t(k) are polynomials over Q. So we can write the function P(ak) as

follows:

P(ak) = uTAkv = (uTS−1)Jk(Sv).

Note that in the above equation, uTS−1 and Sv are rational vectors. It follows that

P(ak) =
m∑

i=0
pi(k)λk

i
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for some polynomials pi(k) over Q. In fact, these polynomials are rational linear combinations
of those ps,t(k) that multiply λk

i in the expression for Jk, and so they can be computed in
polynomial time.

Finally, recall that λ0 = 1 and note that the Jordan blocks that correspond to the
dominant eigenvalues of a stochastic matrix have size 1 × 1 (for the proof of this fact see,
e.g. [9, Theorem 6.5.3]). It follows from (1) that the terms λk

0 in the formula for Jk are
multiplied by constant polynomials ps,t(k) = 1. Hence p0(k) = c for some constant c ∈ Q. ◀

The next technical lemma is crucial in our later analysis of the running time of the
algorithms for the emptiness and λ-reachability problems presented in Lemmas 8 and 9.

▶ Lemma 7. Let D ∈ R be such that lnD > 2. Then for all x > 3D lnD, we have D ln x < x.

Proof. Our goal is to find x0 > 0 such that every x > x0 satisfies D ln x < x. First, let us
make a substitution x = Dt, where t > 1. Then we can rewrite D ln x < x as follows

D ln(Dt) < Dt,

ln t+ lnD < t.

We want to find t0 > 1 such that every t > t0 satisfies ln t+ lnD < t. Let us make another
substitution t = lnD + u ln lnD, where u > 0. Then we can write the previous inequality as

ln(lnD + u ln lnD) + lnD < lnD + u ln lnD,

ln
(

lnD
(

1 + u
ln lnD
lnD

))
< u ln lnD,

ln lnD + ln
(

1 + u
ln lnD
lnD

)
< u ln lnD. (2)

So we need to find u0 > 0 such that for all u > u0, the inequality (2) holds. In order to do this,
we can replace the left-hand side of (2) with a larger value using ln

(
1 + u ln ln R

ln R

)
< u ln ln R

ln R .
Thus we obtain

ln lnD + u
ln lnD
lnD < u ln lnD,

1 + u

lnD < u, lnD + u < u lnD, lnD
lnD − 1 < u.

Recall that by our assumption lnD > 2. In this case, ln D
ln D−1 < 2, and hence we can choose

u0 = 2. This gives us the values t0 = lnD + u0 ln lnD = lnD + 2 ln lnD and x0 = Dt0 =
D(lnD + 2 ln lnD). Since ln lnD < lnD, we can choose x0 to be x0 = 3D lnD. ◀

We now proceed to the proof of our main result. We split the analysis into two cases
depending on whether or not the cutpoint λ coincides with the limit limk→∞ P(ak), which is
unique by Lemma 6.

▶ Lemma 8. Let P = (u,A, v) be a unary probabilistic finite automaton such that A is rational
upper-triangular, and let λ ∈ [0, 1] ∩ Q be a cutpoint. Assuming that λ ̸= limk→∞ P(ak), the
(strict) emptiness and λ-reachability problems for P and λ are decidable in EXPTIME.

Proof. By Lemma 6, we can write P(ak) = c +
∑m

i=1 pi(k)λk
i , where 1 > λ1 > · · · > λm

are the eigenvalues of A and c and the coefficients of pi are rational numbers that can be
computed in polynomial time. By assumption, limk→∞ P(ak) = c ̸= λ. Let ϵ = |c−λ|

2 . We
now determine a natural number k0 > 0 such that P(ak) ∈ (c− ϵ, c+ ϵ) for all k > k0.

MFCS 2021



15:8 Decision Questions for Probabilistic Automata on Small Alphabets

Let each pi(k) have the form pi(k) = ai,sk
s + ai,s−1k

s−1 + · · · + ai,0, where s ≤ n is the
size of the largest Jordan block in the Jordan normal form of A (we do not assume here that
ai,s ̸= 0). Then for all k > 0 we have∣∣∣∣∣

m∑
i=1

pi(k)λk
i

∣∣∣∣∣ ≤ λk
1

m∑
i=1

|pi(k)| ≤ λk
1k

s
m∑

i=1

s∑
j=0

|ai,j | = d ksλk
1 ,

where d =
∑m

i=1
∑s

j=0 |ai,j | ∈ Q can be computed in polynomial time by Lemma 6.
Let k1 > 0 be a number to be defined later such that for all k > k1,

ks <

(
1√
λ1

)k

= λ
− k

2
1 .

Then for all k > k1, we have d ksλk
1 < dλ

k
2
1 . Thus we need to find k0 ≥ k1 such that for all

k > k0, we have λ
k
2
1 < ϵ/d. Note that if ϵ/d ≥ 1, then we can take k0 = k1. Hence we assume

that ϵ/d < 1.
The inequality λ

k
2
1 < ϵ/d is equivalent to k ln λ1 < 2 ln(ϵ/d). Since ln λ1 < 0, the previous

inequality is equivalent to

k >
2 ln(ϵ/d)

ln λ1
= 2 ln(d/ϵ)

− ln λ1
. (3)

To determine k0, we need an upper bound on the right-hand side of (3). We will use the
fact that for any rational r > 1, ln r < log2 r ≤ log2⌈r⌉ < bins(⌈r⌉), where bins(n) is the size
of the binary representation of n. Thus bins(⌈r⌉) gives a polynomially computable integer
upper bound for ln r.

Next, using the fact that ln(1 + x) < x for x ̸= 0, we obtain

ln λ1 = ln(1 + (λ1 − 1)) < λ1 − 1,

which gives − ln λ1 > 1 − λ1. Hence a polynomially computable upper bound on the
right-hand side of (3) is

2 ln(d/ϵ)
− ln λ1

<
2 bins(⌈d/ϵ⌉)

1 − λ1
. (4)

Next we compute a value k1 such that for all k > k1:

ks < λ
− k

2
1 or, equivalently, C ln k < k, (5)

where C = 2s
− ln λ1

. Using the fact that ln(1 + x) < x for x ≠ 0, we obtain C <
2s

1 − λ1
.

Hence in order to find k1, we can replace C in (5) with D = 2s
1 − λ1

. In addition, we can
assume that lnD > 2, since otherwise we can replace D with a larger value that satisfies
this condition, e.g. with D = 9. Now, Lemma 7 implies that every k > 3D lnD satisfies
D ln k < k. To make this value polynomially computable, we can choose it to be

k1 = 3⌈D⌉bins(⌈D⌉), where D = max
{

2s
1 − λ1

, 9
}
.

Finally, combining the right-hand side of (4) with the above formula, we can define
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k0 = max
{

2 bins(⌈d/ϵ⌉)
1 − λ1

, 3⌈D⌉bins(⌈D⌉)
}
.

Note that all the values that appear in the above formula, e.g. ϵ, d and D, can be computed
in polynomial time from the input data.

At this point we have derived a polynomially computable k0 such that P(ak) = uTAkv ∈
(c− ϵ, c+ ϵ) and, in particular, P(ak) ̸= λ for all k > k0. Now, to decide the λ-reachability
problem, we need to check for each integer k ∈ [0, k0] whether uTAkv = λ. Note that
the number of integers in [0, k0] is equal to 2bins(k0), which is exponential in the instance
size. Also, computing Ak for a given k ∈ [0, k0] takes exponential time because bins(Ak) =
O(2bins(k0)bins(A)). So, the overall algorithm is in EXPTIME.

In a similar way, we can decide the (strict) emptiness problem in EXPTIME. For instance,
suppose λ > c. Then for all k > k0, we have P(ak) < c+ ϵ < λ. Thus deciding whether there
exists k such that P(ak) < λ is trivial. Suppose we want to know if there exists k such that
P(ak) ≥ λ. In this case, we need to check for each integer k ∈ [0, k0] whether uTAkv ≥ λ.
By the same argument as before, this can be done in EXPTIME. ◀

▶ Lemma 9. Let P = (u,A, v) be a unary polynomially ambiguous probabilistic finite
automaton such that A is upper-triangular and let λ ∈ [0, 1] ∩ Q be a cutpoint. Assuming
that λ = limk→∞ P(ak), the (strict) emptiness and λ-reachability problems for P and λ are
decidable in EXPTIME.

Proof. Recall that by Lemma 6, we can write P(ak) = c+
∑m

i=1 pi(k)λk
i , where 1 > λ1 >

· · · > λm are the eigenvalues of A and c and the coefficients of pi are rational numbers
computable in polynomial time. By our assumption, λ = limk→∞ P(ak) = c. As before, let
each pi(k) have the form pi(k) = ai,sk

s + ai,s−1k
s−1 + · · · + ai,0, where s ≤ n (we do not

assume here that ai,s ̸= 0).
In addition, assume that the leading coefficient of p1(k) is a1,t, for some t ≤ s. Without

loss of generality, suppose a1,t > 0; the case when a1,t < 0 is similar. First, we compute k0
such that p1(k) > 1

2a1,tk
t for all k > k0. To do this, we will use the following inequalities:

a1,tk
t + a1,t−1k

t−1 + · · · + a1,0 >
1
2a1,tk

t ⇐⇒ 1
2a1,tk

t + a1,t−1k
t−1 + · · · + a1,0 > 0

and |a1,t−1k
t−1 + · · · + a1,0| ≤ kt−1(|a1,t−1| + · · · + |a1,0|) = kt−1

t−1∑
j=0

|a1,j | if k ≥ 1.

So, the inequality p1(k) > 1
2a1,tk

t follows from 1
2a1,tk

t > kt−1 ∑t−1
j=0 |a1,j |, which is equivalent

to k > 2
a1,t

∑t−1
j=0 |a1,j |. Therefore, we conclude that

p1(k) > 1
2a1,tk

t for all k such that k > k0 := max

1, 2
a1,t

t−1∑
j=0

|a1,j |

 . (6)

Now we want to find k1 ≥ k0 such that for all k > k1, we have

λk
1p1(k) + λk

2p2(k) + · · · + λk
mpm(k) > 0. (7)

Note that

|λk
2p2(k) + · · · + λk

mpm(k)| ≤ λk
2(|p2(k)| + · · · + |pm(k)|) ≤ dksλk

2 , (8)

where d =
∑m

i=2
∑s

j=0 |ai.j |. Using (6) and (8), we see that (7) holds whenever k > k0 and
dksλk

2 <
1
2a1,tk

tλk
1 , which is equivalent to
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2dks−t

a1,t
<

(
λ1

λ2

)k

or ln 2d
a1,t

+ (s− t) ln k < k ln λ1

λ2

1
ln λ1/λ2

(
ln 2d
a1,t

+ (s− t) ln k
)
< k. (9)

We will use the following inequality

ln λ1

λ2
= − ln λ2

λ1
= − ln

(
1 + λ2 − λ1

λ1

)
> −λ2 − λ1

λ1
> λ1 − λ2.

Then we can replace (9) with a stronger inequality

1
λ1 − λ2

(
ln 2d
a1,t

+ (s− t) ln k
)
< k. (10)

In the following, we will assume t < s since otherwise (10) simplifies to 1
λ1−λ2

ln 2d
a1,t

< k.

Let us make the substitution k = t
(

2d
a1,t

)− 1
s−t , where t > 0. Then (10) can be written as

1
λ1 − λ2

(
ln 2d
a1,t

+ (s− t) ln t+ (s− t) −1
s− t

ln 2d
a1,t

)
< t

(
2d
a1,t

)− 1
s−t

(
2d
a1,t

) 1
s−t s− t

λ1 − λ2
ln t < t.

Let D = max
{

9,
(

2d
a1,t

) 1
s−t s−t

λ1−λ2

}
. Here 9 is needed to satisfy the requirement lnD > 2

in Lemma 7. Then by Lemma 7, the above inequality holds when t > 3D lnD. Therefore,

(10) and hence (9) holds when k > 3
(

2d
a1,t

)− 1
s−t

D lnD. To make this bound polynomially
computable, we can simplify it as follows. Suppose that 2d ≥ a1,t. Then (9) holds when

k > k1 := 3⌈E⌉bins(⌈E⌉), where E = max
{

9, 2d
a1,t

· s− t

λ1 − λ2

}

because in this case
(

2d
a1,t

) 1
s−t ≤ 2d

a1,t
and

(
2d

a1,t

)− 1
s−t ≤ 1. On the other hand, if 2d < a1,t,

then (9) holds when

k > k1 := 3
⌈a1,t

2d E
⌉

bins(⌈E⌉), where E = max
{

9, s− t

λ1 − λ2

}

because in this case
(

2d
a1,t

)− 1
s−t

<
(

2d
a1,t

)−1
and

(
2d

a1,t

) 1
s−t

< 1.
Finally, we conclude that (7) holds for all k > k2 := max{k0, k1}, where both k0 and k1

are computable in PTIME. In other words, we obtained a polynomially computable value
k2 such that P(ak) > c = λ for all k > k2. Using the same argument as at the end of the
proof of Lemma 8, we can show that the (strict) emptiness and λ-reachability problems are
decidable in EXPTIME. ◀

We are now ready to give a proof of Theorem 4.
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Proof of Theorem 4. Let P = (u,A, v) be a polynomially ambiguous unary PFA. By
Lemma 5, we can compute in EXPTIME a set of d polynomially ambiguous unary PFAs
{Ps = (us, U, v

′) | 0 ≤ s ≤ d− 1} such that U is rational upper-triangular and

P(ard+s) = Ps(ar) = uT
s U

rv′,

where 0 ≤ s ≤ d− 1.
Suppose λ is a given cutpoint. If we want to decide whether there exists k such that

P(ak) = λ (or P(ak) ≥ λ), we can check for every s from 0 to d− 1 whether there exists r
such that Ps(ar) = λ (or Ps(ar) ≥ λ, respectively), which can be done in EXPTIME using
Lemmas 8 and 9. Namely, we will use Lemma 8 if λ ̸= cs and Lemma 9 if λ = cs for the
current values of s ∈ [0, d − 1]. Finally, we note that even though the value of d can be
exponential in the input size, the whole procedure can still be done in EXPTIME. ◀

Skolem’s problem is at least NP-hard [6] implying that the λ-reachability and emptiness
problems are also NP-hard, at least for PFA of exponential ambiguity. Our next result shows
that NP-hardness can be established even for unary PFAs of finite ambiguity.

▶ Theorem 10. The λ-reachability and emptiness problems for unary finitely ambiguous
Probabilistic Finite Automata P = (u,A, v) with {0, 1}-matrix A are NP-hard.

Proof. The NP-hardness of Skolem’s problem was established in [6]. Specifically, Corollary 1.3
of [6] states that the problem of determining, for a given matrix A ∈ {0, 1}n×n and row
vectors b, c ∈ {0, 1}n, if bTAkc = 0 for some k ≥ 0 is NP-hard. Examination of the proof of
this corollary shows that in fact P is finitely ambiguous as we shall show.

The proof of Theorem 1.1 of [6] shows a reduction of 3SAT on m clauses with n letters
to a unary rational expression E of the form:

E =
k⋃

j=0
azj (arj )∗,

where k = O(n3m) and zj , rj = O(n6) as is not difficult to see from the proof in [6]. Notice
then that each zj , rj represented in unary has a polynomial size in terms of the 3SAT instance
and thus E also has a polynomial representation size.

We may then invoke Kleene’s theorem [15] to state that the language recognised by
E is also recognised by an NFA P = (b, {A}, c) which thus allows the derivation of Co-
rollary 1.3 of [6]. Note that E is simply the union of rational expressions of the form
Ej = azj (arj )∗. Each Ej can be transformed to an NFA Nj with zj + rj + 1 states
Sj = n0,j , . . . , nzj ,j , nzj+1,j , . . . , nzj+rj ,j with initial state n0,j , final state nzj+1,j and trans-
ition function δ : Sj × {a} → Sj given by δ(ni,j , a) = ni+1,j for 0 ≤ i ≤ zj + rj − 1 and
δ(nzj+rj

, a) = nzj+1,j .
We may then form an NFA N by N =

⋃k
j=0 Nj with the usual construction. In this

case, N has set of initial states {n0,j | 1 ≤ j ≤ k}, set of final states {nzj+1,j | 1 ≤ j ≤ k}
and states in disjoint subsets Sj and Sj′ with j ̸= j′ are not connected. This implies by the
IDA property of [23] that N is finitely ambiguous since there does not exist any state with
two outgoing transitions (by which reasoning we also know that each row of N ’s transition
matrix has exactly one entry 1 with all others 0). In fact one may see that N is k-ambiguous
with k = O(n3m). The number of states of N is d =

∑k
j=0 zj + rj + 1 = O(n9m) which is

polynomial in the 3SAT instance representation size.
We note that actually N is already close to a PFA. Since each row is zero except for

exactly one entry 1, matrix A is stochastic. We thus consider Probabilistic Finite Automaton
P = (u, {A}, c) where u = b

|b| is the initial (stochastic) vector. P has polynomial ambiguity
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since N does. Therefore, deciding if there exists k ≥ 0 such that P(ak) = 0 or P(ak) ≤ 0 is
NP-hard to determine, proving NP-hardness of the λ-reachability and emptiness problems.
Since we did not modify N to derive P other than to scale the initial vector, the degree of
ambiguity is retained. ◀

▶ Corollary 11. The λ-reachability and emptiness problems for unary polynomially ambiguous
PFA P = (u,A, v) with {0, 1}-matrix A are NP-complete.

Proof. NP-hardness follows from Theorem 10 since finite ambiguity is a stronger property
than polynomially ambiguity. To prove the NP upper bound, we will show that the algorithm
in the proof of Theorem 4 can be done in NP. We again use Lemmas 5, 6, 8 and 9. Note
that the value d from Lemma 5 can be exponential. However, its binary presentation has
polynomial size. So, instead of cycling though all s from 0 to d−1, we can nondeterministically
guess in polynomial time a value s ∈ [0, d− 1].

Next, we note that the values of k0 in Lemma 8 and k2 in Lemma 9 also have binary
representations of polynomial size. Again, instead of checking every k in [0, k0] or [0, k2], we
can nondeterministically guess k in polynomial time.

Finally, in the verification step of our algorithm we need to compute the matrices Ad, As

and (Ad)k. This can be done in polynomial time using exponentiation by squaring. Indeed,
the exponentiation by squaring requires polynomially many steps. Also, any power of a
stochastic {0, 1}-matrix is also a stochastic {0, 1}-matrix, so the entries of the power matrices
do not grow in size. ◀

4 Binary PFA

The following theorem shows that the λ-reachability and emptiness problems are NP-hard for
binary PFA of polynomial ambiguity with commuting transition matrices (and the matrices
can be assumed fixed in the case of λ-reachability and nonstrict emptiness). The emptiness
problem for non-commutative binary PFA over 25 states is known to be undecidable, at least
over exponentially ambiguous PFA [12]. Emptiness is also undecidable for exponentially
ambiguous commutative PFA, although with many more states and a larger alphabet [2].

▶ Theorem 12. The λ-reachability and emptiness problems are NP-hard for binary prob-
abilistic finite automata of polynomial ambiguity with commuting matrices of dimension 9
for λ-reachability, 37 for nonstrict emptiness, and 40 for strict emptiness. Moreover, the
matrices can be assumed fixed for the λ-reachability and nonstrict emptiness problems.

Proof. We use a reduction from the solvability of binary quadratic Diophantine equations.
Namely, given an equation of the form ax2 + by − c = 0, where a, b, c ∈ N, it is NP-hard to
determine if there exists x, y ∈ N satisfying the equation [16]. We begin with the λ-reachability
problem before considering the emptiness problem.

λ-Reachability reduction. Let A =
(

1 1
0 1

)
and note that Ak =

(
1 k

0 1

)
and that (A⊗

A)k
1,4 = (Ak⊗Ak)1,4 = k2. We form a weighted automaton2 W1 on binary alphabet Σ = {h, g}

in the following way to encode ax2 +by (we will deal with c later). Let W1 = (u1, ϕ, v1) where
u1, v1 ∈ N7 and ϕ : Σ∗ → N7×7. We define u1 = (a, 0, 0, 0, b, 0, 0)T , v1 = (0, 0, 0, 1, 0, 1, 0)T

and ϕ(ℓ) = 1
4ϕ

′(ℓ) for ℓ ∈ {h, g} with

2 For our purposes here, by a weighted automaton we simply mean an automaton whose initial vector,
final vector, and transition matrices are over nonnegative integers.
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ϕ′(h) =
(

(A⊗A) ⊕ I2 t1
06 4

)
, ϕ′(g) =

(
I4 ⊕A t2

06 4

)
,

with 0k = (0, 0, . . . , 0) ∈ Nk, t1 = (0, 2, 2, 3, 3, 3)T and t2 = (3, 3, 3, 3, 2, 3)T . We see
then that each row of ϕ′(ℓ) is nonnegative and sums to 4, thus ϕ(ℓ) is stochastic for
ℓ ∈ {g, h}. Furthermore, by the mixed product property of the Kronecker product, we see
that ((A⊗A) ⊕ I2)x = (Ax ⊗Ax) ⊕ I2 and (I4 ⊕A)y = I4 ⊕Ay for x, y ∈ N and thus by the
block upper triangular structure of ϕ′(h), ϕ′(g), we see that

ϕ′(hxgy) =
(

(Ax ⊗Ax) ⊕Ay txy

06 4x+y

)
,

where txy is a nonnegative vector maintaining the row sum at 4x+y. We now see that

uT
1 ϕ(hxgy)v1 = ax2 + by

4x+y
(11)

We define a second weighted automaton W2 = (u2, ψ, v2) with u2 = (c, 0)T , v2 = (0, 1)T

and ψ : Σ∗ → N2×2 with ψ(ℓ) = 1
4ψ

′(ℓ) for ℓ ∈ {h, g} defined thus: ψ′(h) = ψ′(g) =
(

1 3
0 4

)
.

We therefore see that

uT
2 ψ(hxgy)v2 = c(4x+y − 1)

4x+y
= c(1 − 1

4x+y
) (12)

We now join W1 and W2 into a 9-state PFA P = (u, γ, v) where u = 1
a+b+c [u1|u2],

v = [v1|v2] and γ(ℓ) = ϕ(ℓ) ⊕ ψ(ℓ). Combining Eqns (11) and (12) we see that

uT γ(hxgy)v = 1
a+ b+ c

(
ax2 + by

4x+y
+ c(1 − 1

4x+y
)
)

= 1
a+ b+ c

(
c+ ax2 + by − c

4x+y

)
(13)

which equals c
a+b+c if and only if ax2 + by − c = 0. Note that γ(h) and γ(g) commute by

their structure since clearly (A⊗A) ⊕ I and I4 ⊕A commute, giving (A⊗A) ⊕A in both
cases (as a consequence of the mixed product properties of Lemma 1) and the rightmost
vector of the matrix simply retains the row sum at 1 for such a product since the matrices
are stochastic. Both γ(h) and γ(g) are upper-triangular thus P is polynomially ambiguous.

Nonstrict Emptiness reduction. We now show the proof of the emptiness problem. We
showed that the λ-reachability problem is NP-hard by deriving a PFA P over the binary
alphabet {h, g} such that P(hxgy) is given by Eqn. 13. We note however that a non solution
to ax2 + by − c = 0 can be positive or negative and thus we may be above or below the
threshold c

a+b+c . This encoding thus cannot be used to show the NP-hardness of the
emptiness problem.

Instead, we can use a similar encoding of the quartic polynomial given by (ax2 +by−c)2 =
a2x4 + 2abx2y + b2y2 + c2 − 2acx2 − 2bcy with a, b, c ∈ N. Note that we arranged the four
positive terms first, followed by the two negative terms. Clearly (ax2 +by−c)2 is nonnegative
and equals zero if and only if ax2 + by − c = 0. We will derive a PFA P2 such that

P2(hxgy) = 1
z

(
(2ac+ 2bc) + 1

16x+y
(ax2 + by + c)2

)
,
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where z = a2 + 2ab+ b2 + c2 + 2ac+ 2bc, with the property that P2(hxgy) ≥ 2ac+2bc
z with

equality if and only if (ax2 + by − c)2 = 0 which is NP-hard to determine. To this end, we
compute the following four matrices {H+, G+, H−, G−}, the idea being that H+ and G+ will
be used to compute the positive four terms and H− and G− will compute the negative terms:

H+ = (A⊗A⊗A⊗A)︸ ︷︷ ︸
x4

⊕ (A⊗A⊗ I2)︸ ︷︷ ︸
x2y

⊕ (I2 ⊗ I2)︸ ︷︷ ︸
y2

⊕ 1︸︷︷︸
1

G+ = (I2 ⊗ I2 ⊗ I2 ⊗ I2)︸ ︷︷ ︸
x4

⊕ (I2 ⊗ I2 ⊗A)︸ ︷︷ ︸
x2y

⊕ (A⊗A)︸ ︷︷ ︸
y2

⊕ 1︸︷︷︸
1

H− = (A⊗A)︸ ︷︷ ︸
x2

⊕ I2︸︷︷︸
y

G− = (I2 ⊗ I2)︸ ︷︷ ︸
x2

⊕ A︸︷︷︸
y

and by the mixed product property of Kronecker products of Lemma 1),

Hx
+G

y
+ = (Ax ⊗Ax ⊗Ax ⊗Ax) ⊕ (Ax ⊗Ax ⊗Ay) ⊕ (Ay ⊗Ay) ⊕ 1

Hx
−G

y
− = (Ax ⊗Ax) ⊕Ay

Note that Hx
+G

y
+ and Hx

−G
y
− each contain the positive and negative (respectively) term

of (ax2 + by − c)2, excluding the coefficients, e.g. (Hx
+G

y
+)1,16 = x4 and (Hx

+G
y
+)17,24 = x2y

etc. Note also that H+G+ = G+H+ and H−G− = G−H− which also follows from the mixed
product properties and thus matrices {H+, G+} and {H−, G−} commute.

As before, we may now increase the dimension of each matrix {H+, H−, G+, G−} by 1 to
ensure a common row sum (of 16 in this case) by adding a new column on the right hand side
of each matrix, and then divide each matrix by this common value to give {H ′

+, H
′
−, G

′
+, G

′
−}

so that each of these matrices is row stochastic. Matrices {H ′
+, G

′
+} and {H ′

−, G
′
−} still

commute since this change only has an effect on the final column of the matrix.
We now show how to handle each term of (ax2+by−c)2. We first handle the positive terms.

We define u1 = (a2, 0, . . . , 0)T ∈ Q16, u2 = (2ab, 0, . . . , 0)T ∈ Q8, u3 = (b2, 0, 0, 0)T ∈ Q4

and u4 = c2 and then let u+ = [u1|u2|u3|u4|0] ∈ Q30. We let v1 = (0, . . . , 0, 1)T ∈ Q16,
v2 = (0, . . . , 0, 1)T ∈ Q8, v3 = (0, 0, 0, 1)T ∈ Q4 and v4 = 1, and let v+ = [v1|v2|v3|v4|0] ∈ Q30.
We then see that

uT
+(H ′

+)x(G′
+)yv+

= 1
16x+y

(
uT

1 (Ax ⊗Ax ⊗Ax ⊗Ax)v1 + uT
2 (Ax ⊗Ax ⊗Ay)v2 + uT

3 (Ay ⊗Ay)v3 + uT
4 v4

)
= 1

16x+y

(
a2x4 + 2abx2y + b2y2 + c2)

(14)

We next handle the negative terms, which is essentially accomplished by switching final
and non-final states in the final state vectors to follow. Define u5 = (2ac, 0, 0, 0)T ∈ Q4

and u6 = (2bc, 0)T ∈ Q2 and let u− = [u5|u6|0] ∈ Q7. We let v5 = (0, 0, 0, 1)T ∈ Q4 and
v6 = (0, 1)T ∈ Q2. Define v− = [v5|v6|0] ∈ Q7. We then see that

uT
−(H ′

−)x(G′
−)y(1 − v−)

= (2ac+ 2bc) − 1
16x+y

(
uT

5 (Ax ⊗Ax)v5 + uT
6 A

yv6 + 0
)

= (2ac+ 2bc) − 1
16x+y

(
2acx2 + 2bcy

)
, (15)

where 1 = (1, 1, . . . , 1)T ∈ Q7. We used here the fact that X1 = 1 for a row stochastic matrix
X. We finally define that H = H ′

+⊕H ′
− ∈ Q37×37 and G = G′

+⊕G′
− ∈ Q37×37, both of which

are row stochastic and commute, and let u⋆ = [u+|u−]
z ∈ Q37 and v⋆ = [v+|(1 − v−)] ∈ Q37,
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with z = a2 + 2ab + b2 + c2 + 2ac + 2bc to normalise vector u⋆. We see then that u⋆ is a
stochastic vector as required. We define the PFA P2 = (u⋆, {H,G}, v⋆) and we can now
compute that

P2(hxgy) = uT
⋆ H

xGyv⋆

= uT
⋆ (H ′x

+G
′y
+ ⊕H ′x

−G
′y
−)v⋆

= 1
16x+y

 [u+|u−]
z

T


Hx

+G
y
+ ∗

0 16x+y 0

0 Hx
−G

y
− ∗

0 16x+y

 [v+|(1 − v−)]


= 1

z16x+y

(
uT

+H
x
+G

y
+v+ + uT

−H
x
−G

y
−(1 − v−)

)
= 1

z

(
uT

+(H ′
+)x(G′

+)yv+ + uT
−(H ′

−)x(G′
−)y(1 − v−)

)
= 1

z

(
(2ac+ 2bc) + 1

16x+y

(
a2x4 + 2abx2y + b2y2 + c2)

− 1
16x+y

(
2acx2 + 2bcy

))
= 1

z

(
(2ac+ 2bc) + 1

16x+y
(ax2 + by − c)2

)
(16)

where ∗ denote the column vectors used to ensure row sums of 16x+y and 0 denotes zero
matrices of appropriate sizes. We also used Eqns (14) and (15).

Since (ax2 + by − c)2 is nonnegative, we see that uT
⋆ H

xGyv⋆ ≥ 2ac+2bc
z with equality if

and only if (ax2 + by − c)2 = 0, which is NP-hard to determine. Therefore using cutpoint
λ = 2ac+2bc

z ∈ Q ∩ [0, 1] means the (nonstrict) emptiness problem is NP-hard (i.e. does there
exist x, y ∈ N such that uT

⋆ H
xGyv⋆ ≤ λ is NP-hard). As before, matrices H and G are

upper-triangular and commute by their structure, and therefore the result holds.

Strict Emptiness reduction. Finally we show how to handle the strict emptiness problem.
We proceed with a technique inspired by [10]. By (16), if P2(hxgy) = uT

⋆ H
xGyv⋆ ̸=

1
z (2ac+ 2bc), then uT

⋆ H
xGyv⋆ ≥ 1

z

(
(2ac+ 2bc) + 1

16x+y

)
therefore P2(hxgy) ≤ 1

z (2ac+ 2bc)
if and only if P2(hxgy) < 1

z

(
(2ac+ 2bc) + 1

16x+y

)
.

Let us adapt P2 in the following way to create a new PFA P3. Note that P2 has 6 initial
states (by u⋆). We add three new states to P3, denoted q0, qF and q∗. State q0 is a new initial
state of P3 which, for any input letter, has probability 1

2·6 of moving to each of the 6 initial
states of P2 and probability 1

2 to move to new state qF . State qF is a new final state that
remains in qF for any input letter with probability 1 − 1

16z and moves to a new non-accepting
absorbing sink state q∗ with probability 1

16z . We now see that for any a ∈ {h, g}:

P3(aw) = 1
2P2(w) + 1

2

(
1 − 1

16|w|z|w|

)
If there exists w1 = hxgy with x, y ≥ 0 such that P2(w1) ≤ 1

z (2ac + 2bc) then P2(w1) =
1
z (2ac+ 2bc) and thus:

P3(aw1) = 1
2

(
1
z

(2ac+ 2bc)
)

+ 1
2

(
1 − 1

16|w1|z|w1|

)
<

1
2

(
1
z

(2ac+ 2bc) + 1
)
.

For any w2 = hxgy with x, y ≥ 0 such that P2(w2) > 1
z (2ac+ 2bc) then P2(w2) ≥ 1

z (2ac+
2bc) + 1

16x+y by (16). Thus:

P3(aw2) ≥ 1
2

(
1
z

(2ac+ 2bc) + 1
16|w2|

)
+ 1

2

(
1 − 1

16|w2|z|w2|

)
>

1
2

(
1
z

(2ac+ 2bc) + 1
)
.
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Thus determining if there exists w = hxgy such that P3(w) < 1
2

( 1
z (2ac+ 2bc) + 1

)
, i.e.

the strict emptiness problem for P3 on cutpoint 1
2

( 1
z (2ac+ 2bc) + 1

)
, is NP-hard. The

modifications to P2 retain polynomial ambiguity since q0 and qF have no incoming (non
self looping) edges and q∗ has no outgoing edges, therefore property EDA does not hold.
Commutativity of the PFA is unaffected since P3 is identical to P2 except for adding three
new states, behaving identically for both input letters. Note that P3 has 37 + 3 = 40
states. ◀
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Abstract
The polynomial Ideal Membership Problem (IMP) tests if an input polynomial f ∈ F[x1, . . . , xn] with
coefficients from a field F belongs to a given ideal I ⊆ F[x1, . . . , xn]. It is a well-known fundamental
problem with many important applications, though notoriously intractable in the general case. In
this paper we consider the IMP for polynomial ideals encoding combinatorial problems and where
the input polynomial f has degree at most d = O(1) (we call this problem IMPd).

A dichotomy result between “hard” (NP-hard) and “easy” (polynomial time) IMPs was achieved
for Constraint Satisfaction Problems over finite domains [6, 34] (this is equivalent to IMP0) and
IMPd for the Boolean domain [23], both based on the classification of the IMP through functions
called polymorphisms. For the latter result, there are only six polymorphisms to be studied in
order to achieve a full dichotomy result for the IMPd. The complexity of the IMPd for five of
these polymorphisms has been solved in [23] whereas for the ternary minority polymorphism it was
incorrectly declared in [23] to have been resolved by a previous result. In this paper we provide
the missing link by proving that the IMPd for Boolean combinatorial ideals whose constraints are
closed under the minority polymorphism can be solved in polynomial time. This completes the
identification of the precise borderline of tractability for the IMPd for constrained problems over the
Boolean domain. We also prove that the proof of membership for the IMPd for problems constrained
by the dual discriminator polymorphism over any finite domain can also be found in polynomial
time. Bulatov and Rafiey [8] recently proved that the IMPd for this polymorphism is decidable in
polynomial time, without needing a proof of membership. Our result gives a proof of membership
and can be used in applications such as Nullstellensatz and Sum-of-Squares proofs.
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1 Introduction

The study of polynomial ideals and related algorithmic problems goes back to David Hil-
bert [17]. The methods developed in this area to date find a wide range of applications
in mathematics and computer science. In this paper we consider the polynomial Ideal
Membership Problem, where we want to decide if a given polynomial belongs to a given ideal.
This problem is a fundamental algorithmic problem with important applications in solving
polynomial systems (see e.g. [12]), polynomial identity testing [12, 30] and underlies proof
systems such as Nullstellensatz and Polynomial Calculus (see e.g. [2, 9, 15]).
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16:2 Ideal Membership Problem for Boolean Minority and Dual Discriminator

To introduce the problem formally, let F[x1, . . . , xn] be the ring of polynomials over a
field F with indeterminates x1, . . . , xn. A polynomial ideal I is a subset of the polynomial
ring F[x1, . . . , xn] with two properties: for any two polynomials f, g in I, f + g also belongs
to I and so does hf for any polynomial h. By the Hilbert Basis Theorem [16] every ideal
I has a finite generating set F = {f1, . . . , fr} ⊂ I such that for every f ∈ F[x1, . . . , xn], we
have f ∈ I if and only if there is an “ideal membership proof”, namely a set of polynomials
{h1, . . . , hr} ⊂ F[x1, . . . , xn] such that f = h1f1 + . . . + hrfr. The polynomial Ideal
Membership Problem (IMP) is to find out if a polynomial f belongs to an ideal I or
not, given a set F of generators of the ideal (we use IMPd to denote IMP when the input
polynomial f has degree at most d = O(1)). The IMP is, in general, notoriously intractable.
The results of Mayr and Meyer show that it is EXPSPACE-complete [24, 25].

Semidefinite programming (SDP) relaxations have been a powerful technique for approx-
imation algorithm design ever since Goemans and Williamson celebrated result of Max-Cut
[14]. With the aim to construct stronger and stronger SDP relaxations, the Sum-of-Squares
(SoS) hierarchy has emerged as the most promising set of relaxations (see e.g. [20]). However,
we still do not know the answer to even very basic questions about its power. For example, we
do not even know when SoS is guaranteed to run in polynomial time! As recently observed by
O’Donnell [26], bounded degree SoS proof does not necessarily imply its low bit complexity,
showing that the often repeated claim, that for any fixed degree SoS runs in polynomial
time, is far from true. O’Donnell raised the open problem to establish useful conditions
under which “small” SoS proof can be guaranteed. With this aim, a first elegant sufficient
condition is due to Raghavendra and Weitz [27, 33]. For each instance C of a combinatorial
problem, the set of polynomials that vanish at every point of the set of solutions of C is
called the combinatorial ideal of C and denoted by IC . To satisfy Raghavendra and Weitz’s
criterion, it is necessary (but also sufficient) that the ideal membership problem IMPd for
each IC is polynomial time solvable and that ideal membership proofs can be efficiently
found too.1 So the tractability of the ideal membership proof ensures that SoS runs in
polynomial time for combinatorial problems. This is currently the only known general
result that addresses the SoS bit complexity issue. However, the IMPd tractability criterion
of Raghavendra and Weitz suffers from a severe limitation, namely it is not clear which
restrictions on combinatorial problems can guarantee an efficient computation of the IMPd

proofs for combinatorial ideals.
The Constraint Satisfaction Problem (CSP) provides a general framework for a wide range

of combinatorial problems, where we are given a set of variables and a set of constraints, and
we have to decide whether the variables can be assigned values that satisfy the constraints.
There are useful connections between IMPd and the CSP: for example a CSP instance C
is unsatisfiable if and only if 1 ∈ IC . It follows that CSP is just the special case of IMPd

with d = 0 (see Appendix A.1 for more details on Ideal-CSP correspondence). Restrictions
on CSPs, called CSP(Γ), in which the type of constraints is limited to relations from a set
Γ, have been successfully applied to study the computational complexity classification (and
other algorithmic properties) of CSPs (see [7] for an excellent survey).

Motivated by the aforementioned issue of Raghavendra and Weitz criterion, Mastrolilli [23]
initiated a systematic study of the IMPd tractability for combinatorial ideals of the form
IMPd(Γ) arising from combinatorial problems from CSP(Γ) for a set of relations Γ over the
Boolean domain. The classic dichotomy result of Schaefer [29] gives the complexity of CSP(Γ)
(and therefore of IMP0(Γ)) for the Boolean domain: CSP(Γ) is solvable in polynomial time

1 Note that answering whether a polynomial belongs to a certain ideal does not necessarily mean finding
an ideal membership proof of that.
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if all constraints are closed under one of six polymorphisms (majority, minority, MIN, MAX,
constant 0 and constant 1), else it is NP-complete. Mastrolilli [23] claimed a dichotomy result
for the IMPd(Γ) for the Boolean domain: for any constant d ≥ 1, the IMPd(Γ) of Boolean
combinatorial ideals is solvable in polynomial time if all constraints are closed under one
of four polymorphisms (majority, minority, MIN, MAX), else it is coNP-complete. In [23],
for three polymorphisms (majority, MIN, MAX), it is shown that IMPd(Γ) is polynomial
time solvable, and moreover ideal membership proofs can be efficiently found, too. Whereas
for the ternary minority polymorphism it was incorrectly declared to have been resolved
by a previous result2. As a matter of fact the complexity of the IMPd(Γ) for the ternary
minority polymorphism is open. It was mistakenly assumed in [23] that computing the
(mod 2) Gröbner basis in lexicographic order was sufficient to solve the IMPd problem in
polynomial time, but the issue is that we require polynomials to be over R and not GF(2).

We address these issues in this paper and therefore establish the full dichotomy result
claimed in [23] (see [22] for an updated version of the paper). To ensure efficiency of the
IMPd(Γ) for the ternary minority polymorphism, it is sufficient to compute a d-truncated
Gröbner basis in the graded lexicographic order (see Definition 8 and Appendix A for more
details). This is achieved by first showing that we can easily find a Gröbner basis in the
lexicographic order for the combinatorial ideal. Since polynomials in this Gröbner basis can
have degrees up to n and coefficients of exponential size, we show how this basis can be
converted to a d-truncated Gröbner basis in the graded lexicographic order in polynomial
time, whose polynomials have degrees up to d and coefficients of constant size. This efficiently
solves the IMPd(Γ) for combinatorial ideals whose constraints are over a language Γ closed
under the minority polymorphism. Together with the results in [23, 22], our result allows
to complete the answer of the aforementioned question by allowing to identify the precise
borderline of tractability of the Boolean IMPd(Γ). Thus the following summarizes our first
result of this paper:

▶ Theorem 1. Let Γ be a constraint language over the Boolean domain that is closed under
the minority polymorphism. For each instance C of CSP(Γ), the d-truncated reduced Gröbner
basis in the graded lexicographic monomial ordering of the combinatorial ideal IC can be
computed in nO(d) time.

▶ Corollary 2. If Γ is closed under the minority polymorphism, then the ideal membership
proofs of IMPd(Γ) over the Boolean domain can be computed in polynomial time for d = O(1).

After the appearance of a preliminary version of this paper [4], Bulatov and Rafiey [8]
have recently obtained exciting new results. For a finite domain D = {0, 1, . . . , p − 1}
with prime p elements, they consider the affine polymorphism ⊗ : D3 → D defined as
⊗(a, b, c) = a − b + c (mod p) (it is easy to see that this is the minority polymorphism for
the Boolean domain). By building on our approach, they prove that a d-truncated Gröbner
basis can be computed in time nO(d) for any fixed prime p.

In [3], we began the generalization of CSP(Γ) (viz. IMP0(Γ)) by working on the
corresponding IMPd(Γ) for any d = O(1) in the ternary domain, which expands the known
set of tractable IMPd cases by providing a suitable class of combinatorial problems. We
considered problems constrained under the dual discriminator polymorphism and prove that
we can find the reduced Gröbner basis of the corresponding combinatorial ideal in polynomial
time. This ensures that we can check if any degree d polynomial belongs to the combinatorial
ideal or not in polynomial time, and provide proof of membership if it does. Among the very
interesting results obtained in [8], the authors show that the IMPd is solvable in polynomial

2 This was pointed out by Andrei Bulatov, Akbar Rafiey and Stanislav Živný.
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time for any finite domain for problems constrained under the dual discriminator. This was
done by eliminating permutation constraints in some sense through a pre-processing step
and converting an instance C = (X, D, C) to an instance C′ = (X ′, D, C ′) where X ′ ⊆ X

and C ′ ⊆ C. Moreover, a polynomial f(X) was converted to a polynomial f ′(X ′) such that
f ∈ IC if and only if f ′ ∈ IC . They calculated a Gröbner basis of IC′ , in polynomial time,
which reflected the remaining constraints. This gives a proof of membership of f ′ in IC′ if it
does belong to the ideal, but it is not yet known as to how to recover the proof of membership
for f in IC . Meanwhile our results in [3] gives proof of membership, but is only constrained
to a 3-element domain.

In this paper, we compute a Gröbner basis for the entire combinatorial ideal over a
finite domain by showing that a Gröbner basis of the ideal associated with permutation
constraints can also be calculated in polynomial time. We forego the pre-processing step of
[8], include the permutation constraints and directly calculate a Gröbner basis of IC . The
set of polynomials that the elements of the Gröbner basis can come from is polynomial in
size and hence we show that a proof of membership can also be calculated in polynomial
time as required in [28]. The following summarizes the second result of this paper:

▶ Theorem 3. Let Γ be a constraint language over a finite domain D that is closed under
the dual discriminator polymorphism. For each instance C of CSP(Γ), a Gröbner basis in
the graded lexicographic monomial ordering of the combinatorial ideal IC can be computed
in time polynomial in the number of variables. The polynomials in this basis have degree at
most |D|.

▶ Corollary 4. If Γ is closed under the dual discriminator polymorphism, then membership
proofs for IMP(Γ), over a finite domain, can be computed in polynomial time.

The study of CSP-related IMPs is in its early stages. The results obtained in this paper
are steps towards the long term and challenging goal of extending the celebrated dichotomy
results of CSP(Γ) for finite domain [6, 34] to IMP(Γ). This would provide a complete
CSP-related characterization of when the IMP tractability criterion is applicable.

Due to space limitations, we provide a sketch for some of the proofs, and the complete
proofs will be updated in [4]. To make the paper more self-contained, some essential
background and standard (according to the book [12]) Gröbner basis notations can be found
in Appendix A.

2 Preliminaries

Let D denote a finite set (domain). By a k-ary relation R on a domain D we mean a subset
of the k-th cartesian power Dk; k is said to be the arity of the relation. We often use relations
and (affine) varieties interchangeably since both essentially represent a set of solutions. A
constraint language Γ over D is a set of relations over D. A constraint language is finite
if it contains finitely many relations, and is Boolean if it is over the 2-element domain {0, 1}.
A constraint over a constraint language Γ is an expression of the form R(x1, . . . , xk) where
R is a relation of arity k contained in Γ, and the xi are variables. A constraint is satisfied by
a mapping ϕ defined on the xi if (ϕ(x1), . . . , ϕ(xk)) ∈ R.

▶ Definition 5. The (nonuniform) Constraint Satisfaction Problem (CSP) associated
with language Γ over D is the problem CSP(Γ) in which: an instance is a triple C = (X, D, C)
where X = {x1, . . . , xn} is a set of n variables and C is a set of constraints over Γ with
variables from X. The goal is to decide whether or not there exists a solution, i.e. a mapping
ϕ : X → D satisfying all of the constraints. We will use Sol(C) to denote the set of solutions
of C.
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Moreover, we follow the algebraic approach to Schaefer’s dichotomy result [29] formulated by
Jeavons [18] where each class of CSPs that are polynomial time solvable is associated with a
polymorphism.

▶ Definition 6. An operation f : Dm → D is a polymorphism of a relation R ⊆ Dk if
for any choice of m tuples from R (allowing repetitions), it holds that the tuple obtained
from these m tuples by applying f coordinate-wise is in R. If this is the case we also say
that f preserves R, or that R is invariant or closed with respect to f . A polymorphism of a
constraint language Γ is an operation that is a polymorphism of every R ∈ Γ.

For a given instance C of CSP(Γ), the vanishing ideal of its solution set, I (Sol(C)), is
called its combinatorial ideal and is denoted by IC (see Definition 20 in Appendix A).
We call polynomials of the form Πa∈D(xi − a) domain polynomials, denoted by dom(xi).
They describe the fact that Sol(C) ⊆ Dn. For a more detailed Ideal-CSP correspondence we
refer to Appendix A.1.

▶ Definition 7. The Ideal Membership Problem associated with language Γ is the
problem IMP(Γ) in which the input consists of a polynomial f ∈ F[X] and a CSP(Γ)
instance C = (X, D, C). The goal is to decide whether f lies in the combinatorial ideal IC.
We use IMPd(Γ) to denote IMP(Γ) when the input polynomial f has degree at most d.

The Gröbner basis G of an ideal is a set of generators such that f ∈ ⟨G⟩ ⇐⇒ f |G = 0,
where f |G denotes the remainder of f divided by G (see [12] or Appendix A.2 for more
details and notations).

▶ Definition 8. If G is a Gröbner basis of an ideal in F[x1, . . . , xn], the d-truncated
Gröbner basis G′ of G is defined as

G′ = G ∩ F[x1, . . . , xn]d,

where F[x1, . . . , xn]d is the set of polynomials of degree less than or equal to d.

It is not necessary to compute a Gröbner basis of IC in its entirety to solve the IMPd.
Since the input polynomial f has degree d = O(1), the only polynomials from G that can
possibly divide f in the graded lexicographic order (see Definition 26 in Appendix A.2), are
those that are in G′. The remainders of such divisions are also in F[x1, . . . , xn]d. Therefore,
by Proposition 32 and Corollary 33, the membership test can be computed by using only
polynomials from G′ and therefore we have

f ∈ IC ∩ F[x1, . . . , xn]d ⇐⇒ f |G′ = 0.

From the previous observations it follows that if we can compute G′ in nO(d) time then this
yields an algorithm that runs in nO(d) time for the IMPd (note that the size of the input
polynomial f is bounded by nO(d)).

3 Boolean Minority

The Boolean Minority polymorphism is an affine polymorphism defined as follows. Note that
there is only one such polymorphism for the Boolean domain.

▶ Definition 9. For a finite domain D, a ternary operation ⊗ is called a minority poly-
morphism if ⊗(a, a, b) = ⊗(a, b, a) = ⊗(b, a, a) = b for all a, b ∈ D.
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3.1 Gröbner bases in lex order
Consider an instance C = (X = {x1, . . . , xn}, D = {0, 1}, C) of CSP(Γ) where Γ is ⊗-closed.
Any constraint of C can be written as a system of linear equations over GF(2) (see e.g.
[10]). These linear systems with variables x1, . . . , xn can be solved by Gaussian elimination.
If there is no solution, then we have from Hilbert’s Weak Nullstellensatz (Theorem 25)
that 1 ∈ IC ⇐⇒ Sol(C) = ∅ ⇐⇒ IC = R[x]. If 1 ∈ IC the reduced Gröbner basis is
{1}. We proceed only if Sol(C) ̸= ∅. In this section, we assume the lex order >lex with
x1 >lex x2 >lex · · · >lex xn. We also assume that the linear system has r ≤ n equations
and is already in its reduced row echelon form with xi as the leading monomial of the i-th
equation. Let Suppi ⊂ [n] such that {xj : j ∈ Suppi} is the set of variables appearing in the
i-th equation of the linear system except for xi. Let the i-th equation be Ri = 0 (mod 2)
where

Ri := xi ⊕ fi, (1)

with i ∈ [r] and fi is the Boolean function (
⊕

j∈Suppi
xj) ⊕ αi and αi = 0/1.

3.2 From (mod 2) to regular arithmetic Gröbner basis
In this section, we show how to transform Ri’s into polynomials in regular arithmetic. The
idea is to map Ri to a polynomial R′

i over R[x1, . . . , xn] such that a ∈ {0, 1}n satisfies Ri = 0
if and only if a satisfies R′

i = 0. Moreover, Ri is such that it has the same leading term as
R′

i. We produce a set of polynomials G1 and prove that G1 is the reduced Gröbner basis of
IC over R[x1, . . . , xn] in the lex ordering. We define R′

i as

R′
i := xi − M(fi) (2)

where

M(fi) =


|Suppi|∑

k=1

(
(−1)k−1 · 2k−1 ∑

{xj1 ,...,xjk
}⊆Suppi

xj1xj2 · · · xjk

)
when αi = 0

1 +
|Suppi|∑

k=1

(
(−1)k · 2k−1 ∑

{xj1 ,...,xjk
}⊆Suppi

xj1xj2 · · · xjk

)
when αi = 1

(3)

▶ Lemma 10. Consider the following set of polynomials:

G1 = {R′
1, . . . , R′

r, x2
r+1 − xr+1, . . . , x2

n − xn}, (4)

where R′
i is from Equation (2). G1 is the reduced Gröbner basis of IC in the lexicographic

order x1 >lex x2 >lex . . . , >lex xn.

Proof. For any two Boolean variables x and y,

x ⊕ y = x + y − 2xy. (5)

By repeatedly using Equation (5) to obtain the equivalent expression for fi, we see that
Ri = 0 (mod 2) and R′

i = 0 have the same set of 0/1 solutions. Therefore V (⟨G1⟩) is equal
to Sol(C). This implies that ⟨G1⟩ ⊆ IC . Moreover, LM(Ri) = LM(R′

i) = xi, by construction.
For every pair of polynomials in G1 the reduced S-polynomial is zero as the leading monomials
of any two polynomials in G1 are relatively prime. By Buchberger’s Criterion (see Theorem 36)
it follows that G1 is a Gröbner basis of ⟨G1⟩ over R[x1, . . . , xn] (according to the lex order).
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In fact, it can be seen by inspection that G1 is the reduced Gröbner basis of ⟨G1⟩. To prove
that IC = ⟨G1⟩, we need to prove that any p ∈ IC =⇒ p ∈ ⟨G1⟩. It is enough to prove
that p|G1 = 0 as this implies p ∈ ⟨G1⟩. We have that p|G1 cannot contain variable xi for
all 1 ≤ i ≤ r. Hence p|G1 is multilinear in xr+1, xr+2, . . . , xn. Each tuple of Dn−r extends
to exactly that n−tuple in Sol(C) whose coordinate associated with xi (1 ≤ i ≤ r) is the
unique value xi takes to satisfy xi ⊕ fi = 0 (see Equation (1) and Equation (2)). As p|G1 is
multilinear in xr+1, xr+2, . . . , xn, there are at most 2n−r coefficients. Since every point of
Dn−r is a solution of p|G1 , we see that every coefficeint of p|G1 is zero and hence p|G1 is the
zero polynomial. Hence G1 is the reduced Gröbner basis of IC . ◀

Note that the reduced Gröbner basis in Equation (4) can be “efficiently” computed by
exploiting the high degree of symmetry in each M(fi) and using elementary symmetric
polynomials with variables from Suppi.

3.3 Computing a truncated Gröbner basis
Now that we have the reduced Gröbner basis in lex order, we show how to obtain the
d-truncated reduced Gröbner basis in grlex order in polynomial time for any fixed d = O(1).
Before we describe our conversion algorithm, we show how to expand a product of Boolean
functions. This expansion will play a crucial step in our algorithm.

3.3.1 Expansion of a product of Boolean functions
In this section, we show a relation between a product of Boolean functions and (mod 2) sums
of the Boolean functions, which is heavily used in our conversion algorithm in Section 3.3.2.
We have already seen from Equation (5) that if f, g are two Boolean functions,3 then

2 · f · g = f + g − (f ⊕ g).

Hence it can be proved by repeated use of the above equation that the following holds for
Boolean functions f1, f2, . . . , fm:

f1 · f2 · · · fm = 1
2m−1

[ ∑
i∈[m]

fi −
∑

{i,j}⊂[m]

(fi ⊕ fj) +
∑

{i,j,k}⊂[m]

(fi ⊕ fj ⊕ fk) + · · · +

(−1)m−1(f1 ⊕ f2 ⊕ · · · ⊕ fm)
]
.

(6)

We call each Boolean function of the form (fi1 ⊕ · · · ⊕ fik
) in Equation (6) as a Boolean

term. We call the Boolean term (f1 ⊕ f2 ⊕ · · · ⊕ fm) as the longest Boolean term of the
expansion. Thus, a product of Boolean functions can be expressed as a linear combination of
Boolean terms. Note that Equation (6) is symmetric with respect to f1, f2, . . . , fm as any
fi interchanged with fj produces the same expression. It is no coincidence that we chose
the letter f in the above equation: we later apply this identity using fj from Rj := xj ⊕ fj

(see Section 3.1). When we use Equation (6) in the conversion algorithm, we will have to
evaluate a product of at most d functions, i.e. m ≤ d = O(1). We now see in the right hand
side of Equation (6) that the coefficient 1/2m−1 is of constant size and there are O(1) many
Boolean terms.

3 We earlier considered Boolean variables, but the same holds for Boolean functions.
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3.3.2 Our conversion algorithm
The FGLM [13] conversion algorithm is well known in computer algebra for converting a
given reduced Gröbner basis of a zero dimensional ideal in some ordering to the reduced
Gröbner basis in any other ordering. However, it does so with O(nD(⟨G1⟩)3) many arithmetic
operations, where D(⟨G1⟩) is the dimension of the R-vector space R[x1, . . . , xn]/ ⟨G1⟩ (see
Proposition 4.1 in [13]). D(⟨G1⟩) is also equal to the number of common zeros (with
multiplicity) of the polynomials from ⟨G1⟩, which would imply that for the combinatorial
ideals considered in this paper, D(⟨G1⟩) = O(2n−r). This exponential running time is
avoided in our conversion algorithm, which is a variant the FGLM algorithm, by exploiting
the symmetries in Equation (3) and by truncating the computation up to degree d.

Some notations necessary for the algorithm are as follows: G1 and G2 are the reduced
Gröbner basis of ⟨G1⟩ in lex and grlex ordering respectively. LM(Gi) is the set of leading
monomials of polynomials in Gi for i ∈ {1, 2}. Since we know G1, we know LM(G1), whereas
G2 and LM(G2) are constructed by the algorithm. B(G1) is the set of monomials that cannot
be divided (considering the lex order) by any monomial of LM(G1). Therefore, B(G1) is
the set of all multilinear monomials in variables xr+1, . . . , xn. Similarly, B(G2) is the set of
monomials that cannot by divided (considering the grlex order) by any monomial of LM(G2).
Recall the definition of fi for i ≤ r from Section 3.1. For i > r, for notational purposes, we
define the Boolean function fi := xi.

▶ Lemma 11. Consider a monomial q such that deg(q) ≤ d. Then q|G1 can be expressed as
a linear combination of Boolean terms.

Proof. Consider q = xi1xi2 · · · xik
where k ≤ d. Then from Equations (1) and (2), q|G1 =

fi1fi2 · · · fik
and the lemma holds using Equation (6). ◀

Let elements bi of B(G2) be arranged in increasing grlex order. We construct a set A in our
algorithm such that its elements ai are defined as ai = bi|G1 written as linear combinations
of Boolean terms using Lemma 11. We say that a Boolean term f of ai “appears in aj” for
some j < i if the longest Boolean term of aj is f ⊕ α where α = 0/1.

Let Q be the set of all monomials m such that 1 <grlex deg(m) ≤grlex d. We recommend
the reader to refer to the example in [4] for an intuitive working of the algorithm. The
conversion is described in full in Algorithm 1 (we assume 1 /∈ IC , else G1 = {1} = G2 and we
are done).

▶ Lemma 12. The set A is such that every ai is a linear combination of existing bj |G1 ’s
(j < i) and the longest Boolean term of bi|G1 .

Proof. By definition, element ai is added to A when a monomial q is added to B(G2) where
bi = q and ai = bi|G1 expressed in Boolean terms (see Algorithm 1). This means that q is
not divisible by any monomial in LM(G2). We prove the lemma by induction on the degree
of q. Note that b1 = 1 and hence a1 = b1|G1 = 1.

If deg(q) = 1, then q is some xi and xi|G1 is one of 0, 1 or fi. If xi|G1 is either 0 or 1,
then it appears in a1. We are now in the “else” condition of Algorithm 1, so q should be
added to LM(G2) and not B(G2). Hence xi|G1 can be neither 0 nor 1 and the lemma holds
for deg(q) = 1 as fi is the longest Boolean term.

Let us assume the statement holds true for all monomials with degree less than m.
Consider q such that deg(q) = m and q = xi1xi2 . . . xim

where ij ’s need not be distinct,
and the lemma holds for every monomial <grlex q. Then q|G1 = fi1 · fi2 · · · fim . Let
(fj1 ⊕ · · · ⊕ fjk

) be a Boolean term in the expansion of q|G1 (by using Equation (6)), that
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Algorithm 1 Computing the d-truncated reduced Gröbner basis.

Input: Degree d, G1, Q.
Output: d-Truncated versions of G2, B(G2).
Initialization: G2 = ∅, B(G2) = {b1 = 1}, A = {a1 = 1}.

1 while Q ̸= ∅ do
2 Let q be the smallest (according to grlex order) monomial in Q.
3 Find q|G1 , by which we simply replace any occurrence of xi by the Boolean

functions fi.
4 Expand q|G1 by using Equation (6).
5 if the longest Boolean term of q|G1 does not appear in any a ∈ A then
6 Write q|G1 as a linear combination of bi|G1 and its longest Boolean term (see

Lemma 12).
7 Add this polynomial to A and add q to B(G2).
8 else
9 Every Boolean term of q|G1 can be written as linear combinations of bj |G1 ’s.

Note that if the longest Boolean term f appears in a as f ⊕ 1, then we use
f ⊕ 1 = 1 − (f) (see Equation (5)). Thus we have
q|G1 =

∑
j kjbj |G1 =⇒ q −

∑
j kjbj ∈ ⟨G1⟩.

10 Add the polynomial q −
∑

j kjbj to G2 and q to LM(G2).
11 Delete any monomial in Q that q can divide.
12 Delete q from Q.
13 G2 is the d-truncated reduced Gröbner basis.

is not the longest Boolean term, so {j1, . . . , jk} ⊂ {i1, . . . , im} and k < m. Consider the
monomial xj1xj2 . . . xjk

. We will now prove that xj1xj2 . . . xjk
is in fact some bl ∈ B(G2)

and there exists al ∈ A which is a linear combination of bi|G1 ’s and (fj1 ⊕ · · · ⊕ fjk
). The

monomial xj1xj2 . . . xjk
either belongs to LM(G2) or B(G2). If xj1xj2 . . . xjk

∈ LM(G2)
then it divides q, a contradiction to our choice of q. Therefore, xj1xj2 . . . xjk

= bl ∈ B(G2).
Clearly bl <grlex q and the induction hypothesis applies, so there exists al ∈ A such that

bl|G1 = al =
∑
i<l

cibi|G1 + c0(fj1 ⊕ · · · ⊕ fjk
)

where ci’s are constants. Then we simply use the above equation to substitute for the Boolean
term fj1 ⊕ · · · ⊕ fjk

in q|G1 as a linear combination of bi|G1 where i ≤ l. We can do this for
every Boolean term of q|G1 except the longest one. Hence the lemma holds. ◀

▶ Theorem 13. The conversion algorithm terminates for every input G1 and correctly
computes a d-truncated reduced Gröbner basis, with the grlex ordering, of the ideal ⟨G1⟩ in
polynomial time.

Proof. Algorithm 1 runs at most |Q| = O(nd) times. Evaluation of any q|G1 can be done in
O(n) steps (see Equation (6)), checking if previous ai’s appear (and replacing every Boolean
term appropriately if it does) takes at most O(nd) steps since there are at most |Q| many
elements in A. Hence the running time of the algorithm is O(n2d).

Suppose the set of polynomials {g1, g2, . . . , gk} is the output of the algorithm for some
input G1. Clearly, deg(gi) ≤ d for all i ∈ [k]. We now prove by contradiction that the output
is the d-truncated Gröbner basis of the ideal ⟨G1⟩ with the grlex ordering. Suppose g is a

MFCS 2021



16:10 Ideal Membership Problem for Boolean Minority and Dual Discriminator

polynomial of the ideal with deg(g) ≤ d, but no LM(gi) can divide LM(g). In fact, since
every gi ∈ ⟨G1⟩ we can replace g by g|{g1,g2,...,gk} (g generalises the reduced S-polynomial).
The fact that g ∈ ⟨G1⟩ and g|G1 = 0 implies that LM(g) is a linear combination of monomials
that are less than LM(g) (in the grlex order) and hence must be in B(G2), i.e

g|G1 = 0 =⇒ LM(g)|G1 =
∑

i

kibi|G1

where every bi ∈ B(G2) and bi <grlex LM(g). When the algorithm runs for q = LM(g), since
q was not added to LM(G2),

LM(g)|G1 =
∑

j

kjbj |G1 + f

where f is the longest Boolean term of LM(g)|G1 which does not appear in any previous
element of A. But the two equations above imply that

∑
i kibi|G1 =

∑
j kjbj |G1 + f , which

proves that there exists some bl ∈ B(G2) such that al has f as its longest Boolean term, so f

should have appeared in al, a contradiction. Therefore the output is a d-truncated Gröbner
basis. Although unnecessary for the IMPd, we also prove that the output is reduced: every
non leading monomial of every polynomial in the output comes from B(G2) and no leading
monomial is a multiple of another by construction. ◀

Thus we have proof of Theorem 1 and Corollary 2.

4 Dual discriminator

We assume in this section that the solution set is non-empty, D ⊂ F is any finite domain
and the polymorphism in question is the dual discriminator ∇. The dual discriminator
is a majority polymorphism [19, 1] and is often used as a starting point in many CSP-
related classifications [1]. For a finite domain D, a ternary operation f is called a majority
polymorphism if f(a, a, b) = f(a, b, a) = f(b, a, a) = a for all a, b ∈ D.

▶ Definition 14. The dual discriminator, denoted by ∇, is a majority polymorphism such
that ∇(a, b, c) = a for pairwise distinct a, b, c ∈ D.

The constraints for ∇-closed problems can be assumed to be binary [19] and are of
three types: permutation constraints, complete constraints and two-fan constraints [31, 11].
Bulatov and Rafiey [8] recently proved that the IMP(Γ) over a finite domain is decidable in
polynomial time, without showing a proof of membership. They did so by cleverly eliminating
the permutation constraints, but were unable to recover a proof for the original problem.
We show that a Gröbner basis of the ideal restricted to the permutation constraints can be
computed in polynomial time in Section 4.1. We then show in Section 4.2 that the Gröbner
basis of constraints that are complete and two-fan constraints can come from a fixed set
(see Definition 17). We prove in Section 4.3 that the Gröbner basis of the entire ideal can
be found in polynomial time. This Gröbner basis is independent of degree d of the input
polynomial: it only contains polynomials with degree less than or equal to |D|. Due to space
constraints, we give a gist of the proofs as the full proofs will be updated in [4].

4.1 Permutation constraints
A permutation constraint is of the form R(xi, xj) where R = {(a, πij(a)) | a ∈ Dij} for
some Dij ⊆ D and some bijection πij : Dij → D′

ij , where D′
ij ⊆ D. Let P be the set of

input permutation constraints. We can assume that there exists at most one permutation
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constraint over every pair of variables: if there are two on the same set of variables, then their
intersection is a permutation constraint. Let Rij(xi, xj) represent the unique permutation
constraint on variables xi, xj , if one exists.

Informally, the goal is to make larger constraints called chained permutation constraints
(CPC’s). Permutation constraints on overlapping variables can be linked to form a larger
constraint by using bijections. For example, if there exists Rij(xi, xj), Rjk(xj , xk) ∈ P, we
form a new constraint on xi, xj , xk by using πij and πjk: the chained permutation constraint
is R(xi, xj , xk) where

R = {(π−1
ij (a), a, πjk(a)) | a ∈ D′

ij ∩ Djk}.

The number of tuples in any CPC is always less than or equal to the domain size, since there
is always a bijection between any two variables of a CPC. The constructing of CPC’s can
be carried out by the arc consistency algorithm described in [21]. A brief working of the
algorithm tailored to our application is as follows: let J ⊂ [n] be an index set for the CPC’s
(it becomes clear later why there can be at most ⌊n/2⌋ of them but we use n for convenience).
We initialise J = ∅. A general chained permutation constraint CPCi is defined as Ri(Xi)
where Ri is a relation and Xi ⊆ X is a variable set. We keep track of the values that each
variable is allowed to take, i.e., Sa is the set of solutions of xa that satisfies CPCi for all
xa ∈ Xi. The sets Sa and Xi are updated as CPCi grows. We define σab : Sa → Sb to be
the bijection between any two pairs of variables xa, xb ∈ Xi. Hence σba = σ−1

ab . Let σaa

denote the identity function for all a ∈ [n]. For any permutation constraint Rpq in P , one of
the four is true:

neither xp nor xq belong to ∪j∈JXj : in which case we create a CPC. We define
CPCi = Rpq(xp, xq) and Xi = {xp, xq} where i ∈ [n] \ J .
xp ∈ Xi and xq /∈ ∪j∈JXj , in which case we expand CPCi to include Rpq and xq is
included in Xi.
xp ∈ Xi, xq ∈ Xj and i ̸= j, in which case CPCi and CPCj have a permutation
constraint linking two of their variables, so we combine the two CPC’s into one. The set
Xi ∪ Xj is the new Xi and j is deleted from J .
both xp, xq ∈ Xi, in which case we update CPCi to retain only the common solutions
between CPCi and Rpq.

As Rpq(xp, xq) is now accounted for in some CPC, it is deleted from P . The algorithm runs
until P is empty. Once P is empty, CPCi is defined as

CPCi := Ri(Xi = {xi1 , xi2 , . . . , xir }) where Ri = {(a, σi1i2(a), . . . , σi1ir (a)) | a ∈ Si1}

for each i ∈ J .
▶ Remark 15. For i ̸= j, Xi ∩ Xj = ∅.

▶ Lemma 16. Let ICPCi
be the combinatorial ideal associated with CPCi. A Gröbner basis

of
∑

i ICPCi
can be calculated in polynomial time.

The main idea behind the proof is as follows: suppose we see a relation as a matrix where
each tuple is a row. Then the arity is equal to the number of columns. The relation Ri in
CPCi = Ri(Xi) is such that it has at most |D|! pairwise distinct columns, as there exists a
bijection between every pair of variables in Xi. If the columns corresponding to xj and xk are
the same, then the polynomial xj − xk ∈ ICPCi

. We can separate these linear polynomials,
and the problem reduces to finding a Gröbner basis of the ideal associated with a constraint
that has at most |D|! variables and |D| tuples. This implies that a Gröbner basis can be
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computed where the polynomials have degree at most |D|. We in fact do not need to find
the Gröbner basis of ICPCi

yet. We show in the Section 4.3 as to how we can compute the
rest of the polynomials in the Gröbner basis of IC by using the relations Ri, the sets Sj , the
bijections σkl and polynomials that define complete and two-fan constraints.

4.2 Complete and two-fan constraints

A complete constraint is of the form R(xi, xj) where R = Di × Dj for some Di, Dj ⊆ D.
The polynomials that can represent these constraints are

∏
a∈Di

(xi − a) and
∏

b∈Dj
(xj − b).

We call these polynomials partial domain polynomials. If no such input explicitly exists for
a variable, the domain polynomial in that variable itself is the partial domain polynomial.
A two-fan constraint is of the form R(xi, xj) where R = {({a} × Dj) ∪ (Di × {b})} for
some Di, Dj ⊆ D with a ∈ Di, b ∈ Dj . This constraint can be represented by the set of
polynomials {(xi − a)(xj − b),

∏
c∈Di

(xi − c),
∏

d∈Dj
(xj − d)}.

▶ Definition 17. The set of polynomials D, F and L is defined as follows:

D = {Πa∈A(xi − a) | i ∈ [n], A ⊆ D},

F = {(xi − a)(xj − b) | i, j ∈ [n], i ̸= j},

L = {xi − α2 − (xj − β2)(α1 − α2)/(β1 − β2) | i, j ∈ [n], i ̸= j},

for all a, b, α1, α2, β1, β2 ∈ D where α1 ̸= α2 and β1 ̸= β2.

In other words D ∪ F is the set of all complete constraints and two-fan constraints and L is
the set of polynomials in two variables that pass through two points (α1, β1), (α2, β2) ∈ D2

where α1 ̸= α2 and β1 ̸= β2. Let G ⊂ D ∪ F be the set of polynomials that describes the
input complete constraints and two-fan constraints of an instance of IMPd(Γ). Let ICF = ⟨G⟩
(combinatorial ideal for the Complete and two-Fan constraints). Then

IC =
∑
i∈J

ICPCi + ICF =
∑
i∈J

ICPCi + ⟨G⟩ .

▶ Lemma 18. The reduced Gröbner basis of ICF can be calculated in polynomial time and is
a subset of D ∪ F ∪ L.

Proof sketch. For any pair f, g ∈ G, we show that there are polynomials H ⊂ ⟨G⟩ such that
H ⊂ D ∪ F ∪ L and S(f, g)|H = 0. We then include these polynomials in G, i.e. G := G ∪ H .
The cases already considered in Lemma 5.16 of [8] are when:

f, g ∈ F where f = (xi − a)(xj − b), g = (xi − c)(xk − d) for a = c and a ̸= c,
f ∈ D, g ∈ F where f = Πa∈Di(xi − a), g = (xi − c)(xj − b) and c ∈ Di.

Of the remaining cases, the case that deserves most attention is when f, g ∈ F produces a
permutation constraint (i.e., when f = (xi − a)(xj − b) and g = (xi − c)(xj − d) where a ̸= c

and b ̸= d).
Hence, the S-polynomial for every two polynomials in G is such that there are polynomials

in ICF that belong in D∪F∪L which reduce the S-polynomial to zero. In fact, it is not difficult
to see that the reduced Gröbner basis is also a subset of D∪F ∪L. Since |D∪F ∪L| = O(n2),
the reduced Gröbner basis of ICF can be calculated in polynomial time. ◀
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Algorithm 2 Calculating Gröbner basis.

Input: G, CPCi.
Output: Gröbner basis of IC .

1 Compute and replace G by the reduced Gröbner basis of ICF.
2 for every g = Πa∈Dp

(xp − a) ∈ G ∩ D do
3 if Dp ̸= Sp then
4 Sp := Sp ∩ Dp. Suppose xp ∈ Xi.
5 Sk := {σpk(a) | a ∈ Sp} for every xk ∈ Xi \ {xp}.
6 Replace g by Πa∈Sp

(xp − a) in G. Go to Line 1.

7 Let C = G ∩ F .
8 while C ̸= ∅ do
9 Choose g = (xp − a)(xq − b) ∈ C. Suppose xp ∈ Xi.

10 if a /∈ Sp then
11 Add xq − b to G if a /∈ Sq else add xp − a to G. Go to Line 1.

/* At this point a ∈ Sp and b ∈ Sq. */
12 if xq ∈ Xj for some i ̸= j then
13 if b /∈ Sq then
14 Add xp − a to G. Go to Line 1.

/* At this point a ∈ Sp and b ∈ Sq. */
15 Let B := {(xk − σpk(a))(xl − σql(b)) | xk ∈ Xi, xl ∈ Xj} \ {g}.
16 if ∃h ∈ B such that h|G ̸= 0 then
17 G := G ∪ B. Go to Line 1.

18 if xq /∈ ∪j∈JXj then
19 Let B := {(xk − σpk(a))(xq − b) | xk ∈ Xi}.
20 if ∃h ∈ B such that h|G ̸= 0 then
21 G := G ∪ B. Go to Line 1.

22 Delete g from C.
23 Calculate Gi for every i.
24 A Gröbner basis of IC is ∪iGi ∪ G.

4.3 Computing a Gröbner basis
▶ Theorem 19. A Gröbner basis of the combinatorial ideal IC can be calculated in polynomial
time.

Proof sketch. Let G be the reduced Gröbner basis of ICF. Then,

IC =
∑
i∈J

ICPCi + ICF =
∑
i∈J

⟨Gi⟩ + ⟨G⟩ .

For two polynomials f, g ∈ ∪iGi ∪ G, we see what the reduced S-polynomial can imply. The
straightforward cases are when

f, g ∈ Gi: here S(f, g)|Gi = 0 since Gi is the reduced Gröbner basis of ICPCi ,
f ∈ Gi, g ∈ Gj where i ̸= j: as f and g don’t share any variable in common (see
Remark 15), the leading monomials are relatively prime, hence S(f, g)|{f,g} = 0,
f, g ∈ D ∪ F ∪ L: here S(f, g)|G = 0 because of Lemma 18.
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The only cases to examine is when f ∈ Gi and g ∈ G ⊂ D ∪ F ∩ L. In each case, polynomials
from ∪iGi and D ∪ F ∪ L reduce S(f, g) to zero.

Clearly, this Gröbner basis is independent of degree d of the input polynomial. Hence,
we have proof of Theorem 3 and Corollary 4. ◀

5 Conclusion

The IMPd tractability for combinatorial ideals has useful practical applications as it implies
bounded coefficients in Sum-of-Squares proofs. A dichotomy result between “hard” (NP-hard)
and “easy” (polynomial time) IMPs was achieved for the IMP0 [6, 34] over the finite domain
nearly thirty years after that over the Boolean domain [29]. The IMPd for d = O(1) over
the Boolean domain was tackled by Mastrolilli [23] based on the classification of the IMP
through polymorphisms, where the complexity of the IMPd for five of six polymorphisms
was solved. We solve the remaining problem, i.e. the complexity of the IMPd(Γ) when Γ
is closed under the ternary minority polymorphism. This is achieved by showing that the
d-truncated reduced Gröbner basis can be computed in polynomial time, thus completing the
missing link in the dichotomy result of [23]. We also show that a proof of membership can
be found in polynomial time regarding the IMP(Γ) for which constraints are closed under
the dual discriminator polymorphism. We believe that generalizing the dichotomy results
of solvability of the IMPd for a finite domain is an interesting and challenging goal that we
leave as an open problem.
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A Ideals, Varieties and Constraints

Let F denote an arbitrary field (for the applications of this paper F = R). Let F[x1, . . . , xn]
be the ring of polynomials over a field F and indeterminates x1, . . . , xn. Let F[x1, . . . , xn]d
denote the subspace of polynomials of degree at most d.

▶ Definition 20. The ideal (of F[x1, . . . , xn]) generated by a finite set of polynomials {f1,

. . . , fm} in F[x1, . . . , xn] is defined as

I (f1, . . . , fm) def=
{

m∑
i=1

tifi | t1, . . . , tm ∈ F[x1, . . . , xn]
}

.

The set of polynomials that vanish in a given set S ⊂ Fn is called the vanishing ideal of S

and denoted: I (S) def= {f ∈ F[x1, . . . , xn] : f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ S}.

▶ Definition 21. An ideal I is radical if fm ∈ I for some integer m ≥ 1 implies that f ∈ I.

Another common way to denote I (f1, . . . , fm) is by ⟨f1, . . . , fm⟩ and we will use both
notations interchangeably.

▶ Definition 22. Let {f1, . . . , fm} be a finite set of polynomials in F[x1, . . . , xn]. We call
V (f1, . . . , fm) def= {(a1, . . . , an) ∈ Fn| fi(a1, . . . , an) = 0 1 ≤ i ≤ m} the affine variety
defined by f1, . . . , fm.

▶ Definition 23. Let I ⊆ F[x1, . . . , xn] be an ideal. We will denote by V (I) the set
V (I) = {(a1, . . . , an) ∈ Fn|f(a1, . . . , an) = 0 ∀f ∈ I}.

▶ Theorem 24 ([12], Th.15, p.196). If I and J are ideals in F[x1, . . . , xn], then V (I ∩ J) =
V (I) ∪ V (J).
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A.1 The Ideal-CSP Correspondence

Indeed, let C = (X, D, C) be an instance of the CSP(Γ) (see Definition 5). Without loss of
generality, we shall assume that D ⊂ N and D ⊆ F.

Let Sol(C) be the (possibly empty) set of all feasible solutions of C. In the following, we
map Sol(C) to an ideal IC ⊆ F[X] such that Sol(C) = V (IC).

Let Y = (xi1 , . . . , xik
) be a k-tuple of variables from X and let R(Y ) be a non empty

constraint from C. In the following, we map R(Y ) to a generating system of an ideal such
that the projection of the variety of this ideal onto Y is equal to R(Y ) (see [32] for more
details).

Every v = (v1, . . . , vk) ∈ R(Y ) corresponds to some point v ∈ Fk. It is easy to check [12]
that I ({v}) = ⟨xi1 − v1, . . . , xik

− vk⟩, where ⟨xi1 − v1, . . . , xik
− vk⟩ ⊆ F[Y ] is radical. By

Theorem 24, we have

R(Y ) =
⋃

v∈R(Y )

V (I ({v})) = V
(
IR(Y )

)
, where IR(Y ) =

⋂
v∈R(Y )

I ({v}) , (7)

where IR(Y ) ⊆ F[Y ] is zero-dimensional and radical ideal since it is the intersection of radical
ideals (see [12], Proposition 16, p.197). Equation (7) states that constraint R(Y ) is a variety
of Fk. It is easy to find a generating system for IR(Y ):

IR(Y ) = ⟨
∏
v∈R

(1 −
k∏

j=1
δvj (xij )),

∏
j∈D

(xi1 − j), . . . ,
∏
j∈D

(xik
− j)⟩, (8)

where δvj
(xij

) are indicator polynomials, i.e. equal to one when xij
= vj and zero when

xij ∈ D \ {vj}; polynomials
∏

j∈D(xik
− j) force variables to take values in D and will be

denoted as domain polynomials.
The smallest ideal (with respect to inclusion) of F[X] containing IR(Y ) ⊆ F[x] will be

denoted IF[X]
R(Y ) and it is called the F[X]-module of I. The set Sol(C) ⊂ Fn of solutions of

C = (X, D, C) is the intersection of the varieties of the constraints:

Sol(C) =
⋂

R(Y )∈C

V
(

IF[X]
R(Y )

)
= V (IC) , where IC =

∑
R(Y )∈C

IF[X]
R(Y ). (9)

The following properties follow from Hilbert’s Nullstellensatz.

▶ Theorem 25. Let C be an instance of the CSP(Γ) and IC defined as in (9). Then

(Weak Nullstellensatz) V (IC) = ∅ ⇔ 1 ∈ I (IC) ⇔ IC = F[X], (10)
(Strong Nullstellensatz) I (V (IC)) =

√
IC , (11)

(Radical Ideal)
√

IC = IC . (12)

Theorem 25 follows from a simple application of the celebrated and basic result in algebraic
geometry known as Hilbert’s Nullstellensatz. In the general version of Nullstellensatz it is
necessary to work in an algebraically closed field and take a radical of the ideal of polynomials.
In our special case it is not needed due to the presence of domain polynomials. Indeed,
the latter implies that we know a priori that the solutions must be in F (note that we are
assuming D ⊆ F).
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A.2 Gröbner bases
In this section we suppose a fixed monomial ordering > on F[x1, . . . , xn] (see [12], Definition 1,
p.55), which will not be defined explicitly. We can reconstruct the monomial xα = xα1

1 · · · xαn
n

from the n-tuple of exponents α = (α1, . . . , αn) ∈ Zn
≥0. This establishes a one-to-one

correspondence between the monomials in F[x1, . . . , xn] and Zn
≥0. Any ordering > we

establish on the space Zn
≥0 will give us an ordering on monomials: if α > β according to this

ordering, we will also say that xα > xβ . The two monomial orderings that we use in this
paper are the lexicographic order >lex and the graded lexicographic ordering >grlex .

▶ Definition 26. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn
≥0 and |α| =

∑n
i=1 αi,

|β| =
∑n

i=1 βi.
(i) We say α >lex β if, in the vector difference α − β ∈ Zn, the left most nonzero entry is

positive. We will write xα >lex xβ if α >lex β.
(ii) We say α >grlex β if |α| > |β|, or |α| = |β| and α >lex β.

▶ Definition 27. For any α = (α1, · · · , αn) ∈ Zn
≥0 let xα def=

∏n
i=1 xαi

i . Let f =
∑

α aαxα be
a nonzero polynomial in F[x1, . . . , xn] and let > be a monomial order.

(i) The multidegree of f is multideg(f) def= max(α ∈ Zn
≥0 : aα ̸= 0).

(ii) The degree of f is deg(f) = |multideg(f)|. In this paper, this is always according to
grlex order.

(iii) The leading coefficient of f is LC(f) def= amultideg(f) ∈ F.
(iv) The leading monomial of f is LM(f) def= xmultideg(f) (with coefficient 1).
(v) The leading term of f is LT(f) def= LC(f) · LM(f).

The concept of reduction, also called multivariate division or normal form computation, is
central to Gröbner basis theory. It is a multivariate generalization of the Euclidean division
of univariate polynomials.

▶ Definition 28. Fix a monomial order and let G = {g1, . . . , gt} ⊂ F[x1, . . . , xn]. Given
f ∈ F[x1, . . . , xn], we say that f reduces to r modulo G, written f →G r, if f can be
written in the form f = A1g1 + · · · + Atgt + r for some A1, . . . , At, r ∈ F[x1, . . . , xn], such
that:

(i) No term of r is divisible by any of LT(g1), . . . , LT(gt).
(ii) Whenever Aigi ̸= 0, we have multideg(f) ≥ multideg(Aigi).

The polynomial remainder r is called a normal form of f by G and will be denoted by f |G.

A normal form of f by G, i.e. f |G, can be obtained by repeatedly performing the following
until it cannot be further applied: choose any g ∈ G such that LT(g) divides some term t of
f and replace f with f − t

LT(g) g. Note that the order we choose the polynomials g in the
division process is not specified.

In general a normal form f |G is not uniquely defined. Even when f belongs to the ideal
generated by G, i.e. f ∈ I (G), it is not always true that f |G = 0.

▶ Example 29. Let f = xy2 − y3 and G = {g1, g2}, where g1 = xy − 1 and g2 = y2 − 1.
Consider the graded lexicographic order (with x > y) and note that f = y · g1 − y · g2 + 0
and f = 0 · g1 + (x − y) · g2 + x − y.

This non-uniqueness is the starting point of Gröbner basis theory.
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▶ Definition 30. Fix a monomial order on the polynomial ring F[x1, . . . , xn]. A finite subset
G = {g1, . . . , gt} of an ideal I ⊆ F[x1, . . . , xn] different from {0} is said to be a Gröbner
basis (or standard basis) if ⟨LT(g1), . . . , LT(gt)⟩ = ⟨LT(I)⟩, where we denote by ⟨LT(I)⟩
the ideal generated by the elements of the set LT(I) of leading terms of nonzero elements
of I.

▶ Definition 31. A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G

for I such that:
(i) LC(g) = 1 for all g ∈ G.
(ii) For all g ∈ G, g cannot reduce any other polynomial from G, i.e f |g = f for every

f ∈ G \ {g}.
It is known (see [12], Theorem 5, p.93) that for a given monomial ordering, a polynomial
ideal I ̸= {0} has a reduced Gröbner basis (see Definition 31), and the reduced Gröbner
basis is unique.

▶ Proposition 32 ([12], Proposition 1, p.83). Let I ⊂ F[x1, . . . , xn] be an ideal and let
G = {g1, . . . , gt} be a Gröbner basis for I. Then given f ∈ F[x1, . . . , xn], f can be written in
the form f = A1g1 + · · · + Atgt + r for some A1, . . . , At, r ∈ F[x1, . . . , xn], such that:

(i) No term of r is divisible by any of LT(g1), . . . , LT(gt).
(ii) Whenever Aigi ̸= 0, we have multideg(f) ≥ multideg(Aigi).
(iii) There is a unique r ∈ F[x1, . . . , xn].

In particular, r is the remainder on division of f by G no matter how the elements of G are
listed when using the division algorithm.

▶ Corollary 33 ([12], Corollary 2, p.84). Let G = {g1, . . . , gt} be a Gröbner basis for I ⊆
F[x1, . . . , xn] and let f ∈ F[x1, . . . , xn]. Then f ∈ I if and only if the remainder on division
of f by G is zero.

▶ Definition 34. We will write f |F for the remainder of f by the ordered s-tuple F =
(f1, . . . , fs). If F is a Gröbner basis for ⟨f1, . . . , fs⟩, then we can regard F as a set (without
any particular order) by Proposition 32.

The “obstruction” to {g1, . . . , gt} being a Gröbner basis is the possible occurrence of
polynomial combinations of the gi whose leading terms are not in the ideal generated by the
LT(gi). One way (actually the only way) this can occur is if the leading terms in a suitable
combination cancel, leaving only smaller terms. The latter is fully captured by the so called
S-polynomials that play a fundamental role in Gröbner basis theory.

▶ Definition 35. Let f, g ∈ F[x1, . . . , xn] be nonzero polynomials. If multideg(f) = α and
multideg(g) = β, then let γ = (γ1, . . . , γn), where γi = max(αi, βi) for each i. We call xγ

the least common multiple of LM(f) and LM(g), written xγ = lcm(LM(f), LM(g)). The
S-polynomial of f and g is the combination S(f, g) = xγ

LT(f) · f − xγ

LT(g) · g.

The use of S-polynomials to eliminate leading terms of multivariate polynomials generalizes
the row reduction algorithm for systems of linear equations. If we take a system of homogen-
eous linear equations (i.e.: the constant coefficient equals zero), then it is not hard to see
that bringing the system in triangular form yields a Gröbner basis for the system.

▶ Theorem 36 (Buchberger’s Criterion). (See e.g. [12], Theorem 3, p.105) A basis
G = {g1, . . . , gt} for an ideal I is a Gröbner basis if and only if S(gi, gj) →G 0 for all i ̸= j.

By Theorem 36 it is easy to show whether a given basis is a Gröbner basis. Indeed, if G is a
Gröbner basis then given f ∈ F[x1, . . . , xn], f |G is unique and it is the remainder on division
of f by G, no matter how the elements of G are listed when using the division algorithm.
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Algorithm 3 Buchberger’s Algorithm.

1: Input: A finite set F = {f1, . . . , fs} of polynomials
2: Output: A finite Gröbner basis G for ⟨f1, . . . , fs⟩
3: G := F

4: C := G × G

5: while C ̸= ∅ do
6: Choose a pair (f, g) ∈ C

7: C := C \ {(f, g)}
8: h := S(f, g)|G
9: if h ̸= 0 then

10: C := C ∪ (G × {h})
11: G := G ∪ {h}
12: end if
13: end while
14: Return G

Furthermore, Theorem 36 leads naturally to an algorithm for computing Gröbner bases
for a given ideal I = ⟨f1, . . . , fs⟩: start with a basis G = {f1, . . . , fs} and for any pair
f, g ∈ G with S(f, g)|G ≠ 0 add S(f, g)|G to G. This is known as Buchberger’s algorithm [5]
(for more details see Algorithm 3 in Section A.2.1).

Note that Algorithm 3 is non-deterministic and the resulting Gröbner basis in not uniquely
determined by the input. This is because the normal form S(f, g)|G (see Algorithm 3, line 8)
is not unique as already remarked. We observe that one simple way to obtain a deterministic
algorithm (see [12], Theorem 2, p. 91) is to replace h := S(f, g)|G in line 8 with h := S(f, g)|G
(see Definition 34), where in the latter G is an ordered tuple. However, this is potentially
dangerous and inefficient. Indeed, there are simple cases where the combinatorial growth of
set G in Algorithm 3 is out of control very soon.

A.2.1 Construction of Gröbner Bases
Buchberger’s algorithm [5] can be formulated as in Algorithm 3. The pairs that get placed
in the set C are often referred to as critical pairs. Every newly added reduced S-polynomial
enlarges the set C. If we use h := S(f, g)|G in line 8 then there are simple cases where the
situation is out of control. This combinatorial growth can be controlled to some extent be
eliminating unnecessary critical pairs.
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1 Introduction

Graph searches are algorithms for visiting the vertices in a connected graph from a prescribed
source. Both graph searches and their resulting vertex orders, or traversals, are absolutely
fundamental in the theory of graph algorithms, and have important applications in other
areas of theoretical computer science such as computational complexity theory.

We start from the premise that a concept as natural as a traversal should be obtainable
canonically from the original graph. For example, let us consider the graph G in Figure 1,
and fix a as a source. Of the six vertex orderings of G starting with a, two are not traversals:
(a, d, b, c) and (a, d, c, b). This is because while searching a graph, each vertex added must be
in the boundary of previously visited vertices, but d is not in the boundary of {a}.

Of the four remaining vertex orders, two are breadth-first traversals ((a, b, c, d) and
(a, c, b, d)) and two are depth-first traversals ((a, b, d, c) and (a, c, d, b)). This can easily be
checked by hand: in a breadth-first search, we go level-by-level, and must visit both b and
c before we visit d. In a depth-first search, we prioritize the neighbor of the most recently
visited vertex, so we visit d before the latter of {b, c}.
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a

b

c

d

Figure 1 A 4-cycle.

However, notice that there is no way of canonically distinguishing between the two breadth-
first or the two depth-first traversals. Concretely, once we visit a, there is no canonical way
to choose between b and c. A natural fix is to linearly order each neighborhood and visit
lesser neighbors first. We call the resulting traversals lexicographic. For example, if we say
that b < c, then the lexicographic breadth-first traversal is (a, b, c, d) and the lexicographic
depth-first traversal is (a, b, d, c). If we say that c < b, we get (a, c, b, d) and (a, c, d, b)
respectively. We call a graph whose neighborhoods are linearly ordered an edge-ordered
graph.

In the present paper, we show that both the lexicographic breadth-first traversal and
lexicographic depth-first traversal are canonically obtainable from a given edge-ordered graph
with a distinguished source. Specifically, we equip edge-ordered graphs with two different
kinds of morphisms, and obtain lexicographic breadth- and depth-first traversals by applying
a functor out of each category of edge-ordered graphs into the category of linear orders. We
furthermore factor each functor as a composition of a forgetful functor and a sequence of
universal (free and cofree) constructions on edge-ordered graphs.

At a first approximation, each lexicographic traversal can be expressed as the composition
of a least-path tree and a transitive closure (see Figure 2). This decomposition was first
observed in [7] – not in the context of category theory – where it was used to derive efficient
parallel algorithms; see also [3, 6]. The main technical contribution of our paper is in
identifying precisely the right notions of edge-ordered graphs and homomorphisms that allow
us to formulate least-path trees and transitive closures as universal constructions.

To the best of our knowledge, equipping algorithmic problems with a categorical structure
is a relatively recent idea. While graphs have been studied extensively from a categorical
point of view, the focus has been on topics such as graph rewriting and string diagrams [8, 10]
and relationships with properads [9] rather than graph algorithms. Closer to our approach, a
surprisingly simple and elegant characterization of reachability in all coalgebras (i.e., including
graphs) is studied in [2, 14]. A categorical treatment of the open algebraic path problem is
given in [11], and a compositional algorithm for reachability in Petri nets is described in [12].

In [1], Abramsky describes a “great divide” between those areas of theoretical computer
science focused on structure (semantics and type theory), and those focused on power
(computability and complexity theory); they have “almost disjoint communities” with “no
common technical language or tools.” He proposes a high-level “theory-building” program of
integrating these approaches with the intent of solving hard problems, akin to Grothendieck’s
program in algebraic geometry. We envision developing a theory of compositional graph
algorithms through universal properties as a step along this way. A long-term goal of such a
project would be to see whether one could recover algorithms from problem statements, if
the latter are suitably formulated.
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Figure 2 The construction of the lexicographic depth-first traversal starting from a on a given
edge-ordered graph. First we extract the least-path tree, transitively close it, then isolate the ordered
neighborhood of a. Numerals indicate the edge ordering. Each transformation is universal, except
for a “silent” (forgetful) transformation fixing the transitive graph but forgetting some structure on
morphisms.

This paper is structured as follows: We describe the necessary background on graphs and
(lexicographic) traversals in Section 2, and present an alternate formulation of traversals
in Section 3 that the remaining work will build on. We go on to describe the categories of
edge-ordered graphs on which our work is founded in Section 4, and present the two categories
of least path trees and universal constructions associated with lexicographic breadth-first and
depth-first traversals respectively in Section 5 and Section 6. The categories of transitively
closed least path trees and their universal constructions are presented in Section 7 and
Section 8. Finally, we summarise our categorical construction of lexicographic breadth-first
and depth-first traversals by universal means in Section 9, and end with some concluding
remarks in Section 10.

Note that in the interests of space, we omit proofs in the pre-categorical development
(Sections 2 and 3), and we relegate the category-theoretic proofs from Sections 4 through
Section 9 to the Appendix. The omitted proofs may be found in [4].

2 Background and Preliminaries

Our objective is to give a categorical formulation of the canonical breadth-first and depth-
first traversals of directed edge-ordered graphs. But first, in Sections 2 and 3, we give a
“pre-categorical” account of these traversals in terms of extremal-path trees, which motivates
the subsequent categorical treatment in Sections 4 through 8. The main results of Sections 2
and 3 can be found in [7], but we provide our own presentation.

▶ Definition 1. A (directed) graph is a pair (V, →) where V is the set of vertices and
→ ⊆ V × V is the edge relation.

▶ Definition 2. The neighborhood of a vertex v ∈ V , denoted N(v), is the set of outgoing
edges of v; that is, N(v) = → ∩ {(v, x) | x ∈ V }. A graph with a distinguished vertex is
pointed.

▶ Definition 3. A path in a graph is a finite sequence of vertices v1 → v2 → · · · → vn; say
that v1 is the source of the path, and vn the target. We will write u⇝ v to say that there is
a path from u to v, and u

π
⇝ v about a specific such path named π. We say that a path is

proper when no vertex occurs more than once in the path, i.e., when vi = vj implies i = j

for all i, j ∈ I. We use ε to denote the unique empty (proper) path in each neighborhood.

▶ Remark 4. Notice that u⇝ v iff there exists a proper path from u to v, as repetitions in a
path can always be deleted.

MFCS 2021



17:4 Graph Traversals as Universal Constructions

▶ Definition 5. Two paths are co-initial in case they share a source, and co-final in case
they share a target. If the source of σ agrees with the target of π, we can compose them to
obtain πσ. For two co-initial paths π and σ, we say π ⊏ σ (read: σ extends π) in case π is
a proper initial subsequence (i.e., a proper prefix) of σ.

▶ Definition 6. A pointed graph (G, v0) is connected if for every vertex v, there exists a
path v0 ⇝ v.

2.1 Graph searching and traversals
By a graph search, we mean an algorithm for visiting all the vertices in a connected graph,
starting at a given source. Two of the most important types of graph search are depth-first
and breadth-first :

▶ Definition 7 (Depth-first search). Given as input a finite connected graph G = (V, E),
initialize a list L = (), and a stack S = (v0) for some vertex v0. While S is nonempty, pop
the first element v from S. If v is already contained in L, go back to the start of the loop.
Otherwise, let L = (L, v), and push every vertex in ∂v onto S, where ∂v = N(v) \ L.

▶ Definition 8 (Breadth-first search). Given as input a finite connected graph G = (V, E),
initialize a list L = (), and a queue Q = (v0) for some vertex v0. While S is nonempty,
dequeue the front element v from Q. If v is already contained in L, go back to the start of
the loop. Otherwise, let L = (L, v), and enqueue every vertex in ∂v to the back of Q, where
∂v = N(v) \ L.

Note that depth-first and breadth-first search are nondeterministic, in the sense that we do
not specify which order to add vertices from ∂v in. Moreover, vertices may occur more than
once in S or Q, as the same vertex may be added as a neighbor multiple times. However,
vertices may not occur more than once in L; when depth-first or breadth-first search is
complete, L lists all the vertices in G.

As we vary over all the nondeterministic traces of depth-first search or breadth-first search
over a graph G, the resulting orderings are depth-first or breadth-first traversals.

▶ Definition 9. A linear ordering < of the vertices of a graph G is a depth-first traversal,
respectively breadth-first traversal of G if there exists some computation of depth-first search,
respectively breadth-first search, on G according to which vertices are added to L in exactly
the order <.

Both depth- and breadth-first traversals have important characterizations in the first-order
language of ordered graphs; these are due to Corneil and Krueger [5], who state them in the
special case of undirected graphs. Here, we only need to know that they are necessary.

▶ Lemma 10. Suppose G is a finite, connected graph and · < · is a depth-first traversal of G.
Then for any vertices u < v < w such that u → w, there exists some v′ such that u ≤ v′ < v

and v′ → v.

▶ Lemma 11. Suppose G is a finite, connected graph and · < · is a breadth-first traversal
of G. Then for any vertices u < v < w such that u → w, there exists some v′ such that
v′ ≤ u < v and v′ → v.

These characterizations motivate the following definitions.
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▶ Definition 12. Let G be a finite connected graph and · < · be a depth-first traversal of G.
Then for any vertex v, define the depth-first predecessor dfp(v) to be the greatest u < v such
that u → v, if v is not the minimal vertex. For the minimal vertex v, let dfp(v) = v.

▶ Definition 13. Let G be a finite connected graph and · < · be a breadth-first traversal of G.
Then for any vertex v, define the breadth-first predecessor bfp(v) to be the least u < v such
that u → v, if v is not the minimal vertex. For the minimal vertex v, let bfp(v) = v.

Depth- and breadth-first predecessors allow for elegant restatements of Lemmata 10 and 11:
if · < · is a depth-first traversal of G, then for any v < w, if dfp(w) < v, then dfp(w) ≤ dfp(v).
Similarly, if · < · is a breadth-first traversal of G then for any v < w, if bfp(w) < v, then
bfp(v) ≤ bfp(w). In fact the second condition is equivalent to saying that bfp is weakly
monotone, viz., v ≤ w =⇒ bfp(v) ≤ bfp(w).

For the next definition, notice that the orbits {v, dfp(v), dfp2(v), . . . } and
{v, bfp(v), bfp2(v), . . . } of any vertex v are finite, and their reversals are paths from the
least vertex v0 to v.

▶ Definition 14. Let G be a finite connected graph, · < · be a depth-first traversal of G, and
v0 be the <-least vertex. Then the canonical df-path from v0 to any vertex v is the path
v0 → v1 → · · · → vℓ−1 such that vℓ−1 = v, and for every 0 ≤ i < ℓ − 1, dfp(vi+1) = vi.

Analogously, the canonical bf-path from v0 to any vertex v is the path v0 → v1 → · · · →
vℓ−1 such that vℓ−1 = v, and for every 0 ≤ i < ℓ − 1, bfp(vi+1) = vi.

2.2 Lexicographic searching
The objective of this paper is to show that the depth-first and breadth-first traversals of
a graph is canonical in some precise categorical sense. Of course, this cannot be true at
face value: in a complete graph, every ordering of the vertices is both a breadth-first and a
depth-first traversal, and none of them is canonical.

As we remarked in the introduction, an edge-ordering is precisely the amount of additional
structure we need. Over such graphs, we can make searching deterministic, as we now show.

▶ Definition 15. A finite edge-ordered graph is a finite graph where each neighborhood is
equipped with a (strict) linear order · ◁ ·.

▶ Definition 16 (Lexicographic depth-first search). Let G be a finite, pointed, connected,
edge-ordered graph with distinguished vertex v0. Initialize a list L = () and a stack S = (v0).
While S is nonempty, pop the first element v from S. If v is already contained in L, go back
to the start of the loop. Otherwise, let L = (L, v), and push every vertex in ∂v onto S in
reverse ◁ -order, where ∂v is the set of neighbors of v not in L.

▶ Remark 17. We push vertices from ∂v onto S in reverse ◁ -order, so that the least vertices
from ∂v end up on top of S.

▶ Definition 18 (Lexicographic breadth-first search). Let G be a finite, pointed, connected,
edge-ordered graph with distinguished vertex v0. Initialize a list L = () and a queue Q = (v0).
While Q is nonempty, dequeue first element v from S. If v is already contained in L, go back
to the start of the loop. Otherwise, let L = (L, v), and enqueue every vertex from ∂v onto Q

in ◁ -order, where ∂v is the set of neighbors of v not in L.

▶ Definition 19. The depth-first traversal computed by lexicographic depth-first search on
a finite, pointed, connected, edge-ordered graph G, is its lexicographic depth-first traversal.
Similarly, the breadth-first traversal computed by lexicographic breadth-first search is its
lexicographic breadth-first traversal.
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17:6 Graph Traversals as Universal Constructions

▶ Remark 20. The usage of lexicographic (depth, breadth)-first (search, traversal) is ambiguous
in the literature. Here, we use it in the same way as Delatorre and Kruskal [7, 6]; however, the
lexicographic breadth-first search of Rose and Tarjan [13] and the analogous depth-first version
of Corneil and Krueger [5] are different. The latter are further refinements of breadth-first
search and depth-first search over graphs, not a “determinization” by an edge-ordering.

3 Orders on paths

In this section, we give different characterizations of the lexicographic depth-first and breadth-
first traversals, independent of any graph search, which suggest the category-theoretic
treatment that occupies us for the rest of the paper.

▶ Definition 21. Fix an edge-ordered graph G. Define the lexicographic path relation · ≺ ·
on any proper co-initial paths π and σ in G as follows:

(i) if π ⊏ σ, then π ≺ σ, similarly if σ ⊏ π, then σ ≺ π; otherwise,
(ii) let ζ be the longest common prefix of π and σ, let u be the target of ζ, and let v1

and v2 be the first vertices immediately following ζ in π and σ respectively. Order
π ≺ σ ⇐⇒ u → v1 ◁ u → v2.

▶ Remark 22. The following properties hold of ≺:
1. The empty path (v) is least among all paths from v.
2. If π ≺ σ and π ̸⊑ σ, then for any α and β, πα ≺ σβ.
3. If π ≺ σ, then απ ≺ ασ.
4. If απ ≺ ασ, then π ≺ σ.
Since the set of proper paths is finite, any subset has a ≺-least element, which justifies the
next definitions.

▶ Definition 23. For vertices u, v in a finite edge-ordered graph, let min(u ⇝ v) be the
lexicographically least proper path from u to v.

▶ Definition 24. For vertices u, v in a finite edge-ordered graph, let mins(u ⇝ v) be the
lexicographically least shortest path from u to v.

In fact, it will be convenient to define the following relation, the shortlex order:

▶ Definition 25. Let π ≺s σ mean that either |π| < |σ|, or |π| = |σ| and π ≺ σ.

In this case, mins(u⇝ v) is simply, the ≺s-least path u⇝ v.
In the remainder of this section, we fix a finite, pointed, connected, edge-ordered graph G

with distinguished element v0. Reserve the symbol · ◁ · for the given ordering on co-initial
edges and · ≺ · for the induced lexicographic ordering on co-initial paths. Let · <D · and
· <B · denote the lexicographic depth-first and breadth-first traversals respectively. Let Pv

and Qv denote the canonical df- and bf-paths from v0 to v with respect to · <D · and · <B ·
respectively.

Our goal is to prove that <D and <B satisfy the following properties,

u <D v ⇐⇒ Pu ≺ Pv

u <B v ⇐⇒ Qu ≺s Qv,

which then in turn yield the following alternate characterizations:

u <D v ⇐⇒ min(v0 ⇝ v) ≺ min(v0 ⇝ u)

u <B v ⇐⇒ mins(v0 ⇝ v) ≺ mins(v0 ⇝ u).

▶ Lemma 26. If u ≤B v, then for any path π : v0 ⇝ v, |Qu| ≤ |π|. In addition, if |Qu| = |π|,
then Qu ⪯ π.
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▶ Corollary 27. The following are all true of the operator Q:
1. For any vertex v of G, Qv = mins(v0 ⇝ v).
2. u ≤B v iff Qu ⪯s Qv.
Corollary 27 yields u <B v ⇐⇒ mins(v0 ⇝ v) ≺ mins(v0 ⇝ u), as desired.

▶ Definition 28. Define v ≺D w in case min(v0 ⇝ v) ≺ min(v0 ⇝ w).

▶ Lemma 29. For any vertex v of G, Pv = min(v0 ⇝ v).

▶ Theorem 30. The order · ≺D · is exactly the lexicographic depth-first traversal · <D ·
of G.

4 Categories of graphs

We now work towards a categorical formulation of the above material. This means we need
to categorify, i.e., equip with morphisms, all the objects we defined in Section 2, as well as
introduce some new objects.

Continuing the convention established above, we use they symbol ≺ and variations thereof
to refer to orderings of co-initial paths, and the symbol ◁ to refer to neighborhood orders,
i.e., orderings of co-initial edges. We reserve the symbol < for vertex orders, but these will
not reappear until Section 9.

▶ Definition 31. A homomorphism of graphs G
h−→ H is a function from G-vertices to

H-vertices which preserves edge connectivity: For all G-vertices u, v, u → v in G implies
h(u) → h(v) in H. A homomorphism of pointed graphs G

h−→ H must additionally map the
distinguished vertex of G, and only that vertex, to the distinguished vertex of H.

▶ Definition 32. If h : G → H is a graph homomorphism and π is the path v1 → v2 → . . . vn

in G, then h(π) is defined to be the path h(v1) → h(v2) → . . . h(vn) in H.

▶ Remark 33. The following hold of any homomorphism h : G → H;
1. h(ε) = ε, h(πσ) = h(π)h(σ), and if π ⊏ σ, then h(π) ⊏ h(σ).
2. If h is injective on vertices and π is a proper path, then h(π) is a proper path.
3. If h is injective on vertices, then h preserves longest common prefixes.
We now define homomorphisms of edge-ordered graphs (cf. Definition 15). In addition to the
“straightforward” property of being monotone on neighborhoods, we also want to consider
homomorphisms that preserve lexicographically least paths. This gives us two refinements of
the notion of homomorphism, depending on whether we want to preserve lexicographically
(≺) least paths or short-lex (≺s) least paths.

▶ Definition 34. A homomorphism of finite, pointed, edge-ordered graphs G
h−→ H is a

homomorphism of pointed graphs that is monotone on neighborhoods; explicitly,
(i) u → v in G implies h(u) → h(v) in H,
(ii) vG is the unique vertex such that h(vG) = vH , where vG and vH are the distinguished

points of G and H respectively, and
(iii) u → v1 ◁ u → v2 implies h(u) → h(v1) ◁ h(u) → h(v2).

In addition, a lex-homomorphism must preserve least paths:
(iv) h(min(u⇝ v)) = min(h(u)⇝ h(v)),

and a short-lex homomorphism must preserve least shortest paths:
(v) h(mins(u⇝ v)) = mins(h(u)⇝ h(v)).

▶ Lemma 35. If h : G → H is a homomorphism of edge-ordered graphs then h preserves
· ≺ · as well as · ≺s ·.
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17:8 Graph Traversals as Universal Constructions

Table 1 Categories of edge-ordered graphs and their morphisms.

Category Objects Morphisms
FinGraph<

⋆ finite, pointed, connected edge-ordered
graphs

pointed, edge-ordered graph homo-
morphisms

FinGraphl
⋆ finite, pointed, connected edge-ordered

graphs
lex-homomorphisms (pointed, edge-
ordered graph homomorphisms that preserve
least paths)

FinGraphs
⋆ finite, pointed, connected edge-ordered

graphs
short-lex homomorphisms (pointed, edge-
ordered graph homomorphisms that preserve
least shortest paths)

LexGraph lex-graphs (finite, pointed, connected, and
edge-ordered by definition)

lex-homomorphisms

FinArb<
⋆ finite, pointed, edge-ordered arbores-

cences
pointed, edge-ordered graph homo-
morphisms

TLexGraph transitive lex-graphs lex-homomorphisms

An important special case of edge-ordered graphs are those where the edge order agrees with
the path order in each neighborhood.

▶ Definition 36. A lex-graph is a finite, pointed, connected, edge-ordered graph such that
the edge order is compatible with the lexicographic path order; explicitly, it is a finite directed
graph equipped with

(i) a distinguished vertex v0, and
(ii) a linear order ◁ on each neighbourhood N(u) such that for every v1, v2 ∈ N(u),

min(u⇝ v1) ≺ min(u⇝ v2) ⇐⇒ u → v1 ◁ u → v2.

▶ Remark 37. We might be tempted to define, analogously, a short-lex graph by demanding
that v1, v2 ∈ N(u), mins(u⇝ v1) ≺s mins(u⇝ v2) ⇐⇒ u → v1 ◁ u → v2. However notice
that this condition simply holds automatically for any edge-ordered graph: if there is an
edge u → v, that edge is the lexicographically least shortest path.
Finally, we isolate two extremal special cases of lex-graphs, one with very few edges, and one
with very many.

▶ Definition 38. An arborescence is a pointed directed graph G = (V, →, v0) such that for
every vertex u, there is a unique path v0 ⇝ u in G.

▶ Remark 39. If (V, →, v0) is an arborescence, its underlying undirected graph (V, E) is
connected and acyclic (where E(u, v) iff (u → v) or (v → u)), and every edge u → v is
oriented away from v0, meaning that the distance from v0 to u is less than the distance from
v0 to v. If G is a finite edge-ordered graph that is also an arborescence, then it is already
lex-graph, since the only path between u and v ∈ N(u) is the edge u → v. Moreover, if S

and T are arborescences and if h : S → T is a pointed, edge-ordered graph homomorphism,
then it is already both a lex-homomorphism and a short-lex homomorphism.

▶ Definition 40. A graph is transitive if its edge relation is; i.e., if u → v and v → w implies
u → w. A transitive lex-graph is a lex-graph with a transitive edge relation.

It follows readily that this zoo of graph variations each form a category, summarized in
Table 1. Diagrammatically, we show the relationships between these categories in Figure 3,
where each arrow indicates inclusion as a subcategory.

There is one additional category that will be introduced in Section 8, and that is TArb
(Definition 51) whose objects are transitive closures of arborescences with a particular edge
order depending on the underlying arborescence. Curiously, their morphisms preserve longest
paths instead of shortest paths.
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TLexGraph LexGraph FinGraphl
⋆ FinGraph<

⋆

FinArb<
⋆ FinGraphs

⋆

Figure 3 Categories of edge-ordered graphs and their relationships.

5 Least path trees

Given a finite, pointed, connected, edge-ordered graph, we can delete all edges which are
not on some lexicographically least path starting from the distinguished vertex v0. We get a
finite, edge-ordered arborescence. In this section, we show that this construction (denoted
Θ) is cofree, indeed coreflective: it is right adjoint to the inclusion functor I.

▶ Definition 41 (The functor Θ). Given a finite, pointed, connected, edge-ordered graph G,
with distinguished vertex v0, the graph Θ(G) is defined as follows:

the vertices of Θ(G) are the vertices of G, and
any edge u → v appears in Θ(G) iff u → v is contained in min(v0 ⇝ v).
Order co-initial edges u → v1 ◁ u → v2 in Θ(G) iff the same relation holds in G.

For a lex-homomorphism h : G → H define Θ(h) : Θ(G) → Θ(H) by Θ(h)(v) = h(v) for any
vertex v ∈ Θ(G).

The proof that Θ is a well-defined functor into the indicated category is in the appendix
(Lemma 61). Next we define I, which is simply inclusion of categories.

▶ Definition 42 (The functor I). Given a finite, edge-ordered arborescence T , the object I(T )
is simply identified with T . Given a pointed, edge-ordered homomorphism h : S → T , the
homomorphism I(h) : I(S) → I(T ) is simply identified with h.

Since every finite, edge-ordered arborescence is a finite, pointed, connected, edge-ordered
graph, and since morphisms in FinArb<

⋆ are defined to be morphisms of pointed, edge-ordered
graphs, I is well-defined.

▶ Theorem 43. There is an adjunction FinGraphl
⋆ FinArb<

⋆ .

Θ

I

⊣

Something for free

Since the image of I is always a lex-graph, and since LexGraph is a full subcategory of
FinGraphl

⋆, we actually get the following adjunction for free:

LexGraph FinArb<
⋆

Θ′

I′

⊣

where I ′ is the functor I but with target category LexGraph, and Θ′ is Θ restricted to
LexGraph. The proof is in the appendix (Lemma 62).
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Graph TGraph

LexGraph TLexGraph⊣
⊣

Figure 4 The lexicographic-transitive closure of lex-graphs specializes the transitive closure of
finite graphs.

6 Least shortest-path trees

Our objective in this section is to establish a shortest-paths analogue of the previous section,
i.e., to define a lexicographically least shortest-path tree functor FinGraphs

⋆
S−→ FinArb<

⋆

and an inclusion functor FinArb<
⋆

I−→ FinGraphs
⋆. (It is not, of course, the same I as in

the previous section, the source category being different.)

▶ Definition 44 (The functor S). Given a finite, pointed, connected, edge-ordered graph G,
with distinguished vertex v0, the graph S(G) is defined as follows:

the vertices of S(G) are identified with the vertices of G, and
any edge u → v appears in S(G) iff u → v is contained in mins(v0 ⇝ v).
Order co-initial edges u → v1 ◁ u → v2 in S(G) iff the same relation holds in G.

If h : G → H is a homomorphism, define S(h) : S(G) → S(H) by S(h)(v) = h(v), for any
vertex v ∈ S(G).

To show that S is functorial, it suffices to check that S(G) is always an arborescence. We
prove this in the appendix (Lemma 63).

▶ Theorem 45. There is an adjunction FinGraphs
⋆ FinArb<

⋆ .

S

I

⊣

7 Transitive closure of lex-graphs

There is a well-known adjunction between the category of graphs and the category TGraph
of transitive graphs, where the functor in one direction transitively closes the edge relation,
and in the other direction is simply inclusion [11]. Here, we refine this to an adjunction
between LexGraph and TLexGraph. Indeed, the usual transitive closure appears when
forgetting the order as in Figure 4 (where the functors (T)LexGraph → (T)Graph simply
forget the edge order).

While it is immediately clear that there is a forgetful (inclusion) functor TLexGraph U−→
LexGraph, we must construct the free functor in the other direction.

▶ Definition 46 (The functor F ). Given a lex-graph G, define the transitive lex-graph F (G)
as follows:

the vertices of F (G) are the vertices of G,
the distinguished point of F (G) is the distinguished point of G,
The edge relation of F (G) is the transitive closure of the edge relation of G, and finally
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for any vertices v1, v2 in a common neighborhood N(u), let u → v1 ◁ u → v2 in F (G) iff
min(u⇝ v1) ≺ min(u⇝ v2) in G.

On morphisms, given G
h−→ H we define F (G) F (h)−−−→ F (H) by F (h)(v) = h(v).

We must show that F is a well-defined functor, but before doing so, we state several important
relationships between the lex-graph G and the edge-ordered graph F (G):

▶ Lemma 47. For any lex-graph G,
(i) The neighborhood order of F (G) extends that of G

(ii) The lexicographic path order of F (G) extends that of G.
(iii) Least paths in G and F (G) coincide.

▶ Lemma 48. The map LexGraph F−→ TLexGraph is well-defined and functorial.

▶ Theorem 49. There is an adjunction LexGraph TLexGraph.

F

U

⊣

▶ Remark 50. In the title of this paper, we promise universal constructions – and while
such do arise from adjunctions (from the unit and counit), it seems fitting that we make
this explicit at least once. As a consequence of Theorem 49, for any lex-graph G in with
lexicographic-transitive closure U(F (G)), given any other transitive lex-graph U(G′) and
G

h−→ U(G′) there is a unique homomorphism of transitive lex-graphs F (G) ĥ−→ G′ such that
the diagram below commutes in LexGraph:

G U(F (G))

U(G′)
h U(ĥ)

The reader is invited to extract similar universal mapping properties from other adjunctions
in this paper.

8 Transitive closure of least shortest path trees

We now establish the final adjunction of our paper, and the second adjunction needed to
characterize breadth-first traversals. Analogously to the depth-first case, this adjunction
relates FinArb<

⋆ and a category of transitively closed graphs:

▶ Definition 51 (The category TArb). A finite, pointed, connected, edge-ordered graph G is
an object of TArb iff there exists a finite, pointed, connected, edge-ordered arborescence T

and an identification of the vertices of G with the vertices of T such that
the distinguished points of each are identical,
the edge relation of G is the transitive closure of the edge relation of T , and
u → v1 ◁ u → v2 in G iff v0 ⇝ v1 ≺s v0 ⇝ v2 in T , where v0 ⇝ v is the unique path
from v0 to v in T .

A map G1
h−→ G2 is a morphism in TArb if it is a homomorphism of edge-ordered graphs

((i)–(iii) of Defintion 34) and in addition it preserves longest paths.

This last property only makes sense if longest paths are unique. Luckily, longest paths in the
transitive closure of an arborescence are exactly the edges of the original tree.
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▶ Lemma 52. If T is an arborescence (not necessarily edge-ordered) with root v0, and G is
its transitive closure, then an edge u → v of G is an edge of T iff u → v appears on a longest
path v0 ⇝ v in G. Moreover, the longest path u⇝ v in G is unique.

▶ Remark 53. As a consequence of Lemma 52, for any graph G ∈ TArb, u → v1 ◁ u → v2 in
G iff v0 ⇝ v1 ≺s v0 ⇝ v2 in G, where v0 ⇝ v is the unique longest path from v0 to v in G.
While the presentation of depth- and breadth-first traversals has thus far been similar even at
a rather small scale, this adjunction diverges from the previous one in several ways: it does
not decompose into an inclusion and a functor which lifts the ordinary transitive closure, and
the curious preservation of longest paths by morphisms is not suggested by the pre-categorical
treatment of breadth-first traversals. This category arises somewhat mysteriously, and we
have no justification for introducing it other than it works.

We now define the two functors of the adjunction. The proofs that they are functorial
are Lemmas 64 and 65 in the appendix.

▶ Definition 54. Define the functor FinArb<
⋆

Γ−→ TArb by Γ(V, v0, →) = (V, v0,
trans−−−→),

and for any vertices (u, v1, v2) such that u → v1 and u → v2 in Γ(T ), define u → v1 ◁ u → v2

iff v0 ⇝ v1 ≺s v0 ⇝ v2 in T . For morphisms T
h−→ T ′, define Γ(h) : Γ(T ) → Γ(T ′) by

Γ(h)(v) = h(v).

▶ Definition 55. Define the functor TArb L−→ FinArb<
⋆ by identifying the set of vertices of

L(G) with the vertices of G, and including an edge u → v in L(G) iff it lies on the longest
path v0 ⇝ v in G. The neighborhood order in L(G) is inherited from G, and for morphisms
G

h−→ H, define L(h) : L(G) → L(H) by L(h)(v) = h(v).

▶ Theorem 56. There is an adjunction FinArb<
⋆ TArb.

Γ

L

⊣

9 Putting it all together

Combining the adjunctions from Sections 5 and 7, we get a chain of adjunctions

FinGraph<
∗ FinArb<

∗ LexGraph TLexGraph

Θ I′ F

UΘ′I

⊣ ⊣

⊣

Since adjunctions of the same handedness compose, we can rewrite this as

FinGraph<
∗ FinArb<

∗ TLexGraph

Θ

I

I′◦F

Θ′◦U

⊣⊣

Similarly, by combining the adjunctions of Sections 6 and 8 we get

FinGraphs
∗ FinArb<

∗ TArb

S

I

Γ

L

⊣⊣
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Suppose we fix a finite, pointed, edge-ordered graph, locate it in either FinGraphl
⋆ or

FinGraphs
⋆, then apply the appropriate least-path tree and the transitive closure functors.

Then the edge ordering of the distinguished vertex in the result is the lexicographic depth-first
or breadth-first traversal respectively.

▶ Lemma 57. Given any G ∈ FinGraphl
⋆, let T = (F ◦ I ′ ◦ Θ)(G). Then the neighborhood

ordering ◁ on the distinguished point in T is the lexicographic depth-first traversal of G.

▶ Lemma 58. Given any G ∈ FinGraphs
⋆, let T = (Γ ◦ S)(G). Then the neighborhood

ordering ◁ on the distinguished point in T is the lexicographic breadth-first traversal of G.

Finally, we show that these traversals can be extracted as vertex orders rather than edge
orders, by defining a functor that takes an edge-ordered graph into the ordered neighborhood
of its distinguished point. Let FinLoset denote the category of finite linearly ordered sets
with monotone functions.

▶ Lemma 59. There is a functor E : FinGraph<
⋆ → FinLoset that linearly orders the

vertices in a given graph according to the ordering on N(v0).

Since there are inclusions TLexGraph → FinGraph<
⋆ and TArb → FinGraph<

⋆ , we get

▶ Corollary 60. There are functors FinGraphl
⋆ → FinLoset and FinGraphs

⋆ → FinLoset
which compute the lexicographic depth-first and breadth-first traversals respectively.

Note that parts of this final step FinGraph<
⋆ → FinLoset can also be made universal, but

since we still have to accept the presence of inclusion functors without adjoints, we only
sketch this construction: The functor E from Lemma 59 restricts to a functor from the
category of transitive finite, pointed, edge-ordered graphs and their homomorphisms, and
into the category of finite nonempty linearly ordered sets with monotone functions which
additionally preserve the least element. This restricted functor has a left adjoint given by
mapping a finite linearly ordered set (V, <) to the graph with vertices V , distinguished vertex
the least element v0 of V (guaranteed to exist when V is finite), and edge relation given
by v0 → v for all v ∈ V with v ̸= v0. This specializes to neither TLexGraph nor TArb,
however, since the counit of this adjunction need not preserve either least or longest paths.

10 Discussion and open questions

We have described a construction of depth-first traversals from a category of finite edge-
ordered graphs whose morphisms preserve least paths as a series of universal constructions,
and in analogous fashion, a construction of breadth-first traversals from a category of finite
edge-ordered graphs whose morphisms preserve least shortest paths. A diagram summarizing
the various adjunctions involved is shown in Figure 5. The prevalence of coreflections in
our work is nicely aligned with previous work on reachability in coalgebras [2, 14], where
well-pointed and reachable coalgebras respectively turn out to form coreflective subcategories.

This begs the question of whether there is way of generalizing these two constructions
using a general notion of extremal path. Such a method is suggested by Delatorre and
Kruskal [7] using the machinery of a closed semiring system, which provides a general setting
for several lexicographic algebraic path problems; not only breadth-first and depth-first
search, but lexicographic topological search as well.

The deeper question raised by our work is how, if at all, the categorification of a problem
informs the algorithms which solve it. For example, it seems natural that problems which
can be expressed by a single (free or cofree) universal construction would be amenable to a
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TLexGraph FinGraphl
⋆

LexGraph FinArb<
⋆ FinGraphs

⋆

TArb

⊣

⊣

⊣

⊣

⊣

Figure 5 Categories of edge-ordered graphs and adjunctions between them.

solution by a greedy algorithm. Intuitively, if an object is free, then it can be built up over
here without affecting what happens over there, and can thus be constructed by making local
choices – exactly what a greedy algorithm does.

What if a problem can be expressed by a composition of two adjunctions of opposite
handedness, as we show here? Is there an algorithmic strategy for such problems? More
generally, is there a robust hierarchy of problems on graphs which classifies them by the
number of free-cofree alternations, and can we unite problems in the same level of the
hierarchy with a common algorithmic template?

Speculatively, we envision a world in which properties of algorithms could be inferred
from the appropriate categorical formulation of the problems they solve. In such a world,
a statement like problem X can be solved using two sequential applications of depth-first
search, but no fewer would have a precise meaning. The semantics functor that transforms
an algorithm into a problem that it solves could be decomposed in several meaningful ways,
which would give different pieces of information about the algorithm. (Perhaps, for example,
one decomposition would give upper bounds on the sequential complexity of solving the
problem, and another on the parallel complexity.)

This is a long-term goal. In the medium term, there are still many compelling questions
we might hope to answer. For example, the common sequential algorithm implementing
depth-first search uses stacks, and the analogous algorithm for breadth-first search uses
queues. Can we somehow infer “stacks” and “queues” from a common categorical formulation
of depth-first and breadth-first traversals? Can we recover the parallel complexities of these
problems proven in [6]?

Positive answers to these or similar questions would be strong evidence that the “cat-
egorical structure theory of algorithms” mentioned in the introduction is actually a viable
program; that it can not only describe problems, but suggest ways to solve them – in the
elegant characterization of [1], to lead rather than to follow.

References

1 S. Abramsky. Whither semantics? Theoretical Computer Science, 807:3–14, 2020.
2 J. Adámek, S. Milius, L. S. Moss, and L. Sousa. Well-pointed coalgebras. Logical Methods in

Computer Science, 9(3), 2013.
3 E. Allender, A. Chauhan, and S. Datta. Depth-first search in directed graphs, revisited.

Electronic colloquium on computational complexity, 20(74), 2020.
4 S. Bhaskar and R. Kaarsgaard. Graph traversals as universal constructions, 2021. arXiv:

2104.14877.
5 D. Corneil and R. Krueger. A unified view of graph searching. SIAM J. Discrete Math.,

22:1259–1276, January 2008.

http://arxiv.org/abs/2104.14877
http://arxiv.org/abs/2104.14877


S. Bhaskar and R. Kaarsgaard 17:15

6 P. Delatorre and C. P. Kruskal. Polynomially improved efficiency for fast parallel single-source
lexicographic depth-first search, breadth-first search, and topological-first search. Theory of
Computing Systems, 34:275–298, 2001.

7 P. Delatorre and C.P. Kruskal. Fast parallel algorithms for all-sources lexicographic search
and path-algebra problems. Journal of Algorithms, 19(1):1–24, 1995.

8 L. Dixon and A. Kissinger. Open-graphs and monoidal theories. Mathematical Structures in
Computer Science, 23(2):308–359, 2013.

9 J. Kock. Graphs, hypergraphs, and properads. Collectanea mathematica, 67(2):155–190, 2016.
10 S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO-Theoretical

Informatics and Applications, 39(3):511–545, 2005.
11 J. Master. The open algebraic path problem, 2020. arXiv:2005.06682.
12 J. Rathke, P. Sobociński, and O. Stephens. Compositional reachability in petri nets. In

J. Ouaknine, I. Potapov, and J. Worrell, editors, Reachability Problems, pages 230–243.
Springer, 2014.

13 D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination. In Proceedings of the
Seventh Annual ACM Symposium on Theory of Computing (STOC ’75), pages 245–254. ACM,
1975.

14 T. Wißmann, S. Milius, S. Katsumata, and J. Dubut. A coalgebraic view on reachability.
Commentationes Mathematicae Universitatis Carolinae, 60(4):605–638, 2019.

A Appendix: Proofs from Sections 4 through 9

Proof of Lemma 35. It suffices to show that h preserves · ≺ ·; the second statement follows
from the observation that graph homomorphisms preserve path length, i.e., |π| = |h(π)| for
every path π.

Suppose that π and σ are co-initial paths in G such that π ≺ σ. If π ⊏ σ, then
h(π) ⊏ h(σ) and we’re done. Otherwise, let u → v1 and u → v2 be the first edges in π and
σ respectively following their longest common prefix ζ. Since π ≺ σ, u → v1 ◁ u → v2, so
h(u) → h(v1) ◁ h(u) → h(v2).

Notice that h(ζ) is a common prefix of h(π) and h(σ), and since h(u) → h(v1) ◁ h(u) →
h(v2), it must be the longest one. Moreover, since h(u) → h(v1) ◁ h(u) → h(v2), h(π) ≺ h(σ),
which is what we wanted to show. ◀

▶ Lemma 61. The functor Θ is well-defined.

Proof. We first have to check that Θ(G) is a finite, edge-ordered arborescence. It is trivially
finite and edge-ordered. Notice that Θ(G) is connected: for every vertex u, every edge on
the path min(v0 ⇝ u) is contained in Θ(G). On the other hand, the in-degree of each vertex
is at most 1: there cannot be two distinct edges u → v and u′ → v in min(v0 ⇝ v).

Next we have to check that for any homomorphism h, Θ(h) is in fact a homomorphism
of pointed, edge-ordered graphs. First notice that Θ(h) actually maps into Θ(H): if u → v

is included in Θ(G), then it must be contained in min(v0 ⇝ v) in G, whose h-image is
min(h(v0)⇝ h(v)) by property (iv) of Definition 34; therefore, h(u → v) is contained in a
least path and so included in Θ(H).

Moreover, Θ(h) clearly fixes the distinguished vertex, and visibly inherits monotonicity
on co-initial edges from h. Hence, Θ(h) is a pointed, edge-ordered graph homomorphism. ◀

Proof of Theorem 43. First, given I(T ) h↑

−→ G in FinGraphl
⋆, we describe how to obtain

T
h↓−→ Θ(G) in FinArb<

⋆ . Define h↓(v) = h↑(v), for v ∈ T (which, remember is the same as
I(T )). To check that h↓ is well-defined, we must show that if u → v is an edge of T , then
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h↑(u → v) is contained in Θ(G). But since T is an arborescence, u → v is trivially contained
in min(v0 ⇝ v), so h↑(u → v) is contained in min(h(v0) ⇝ h(v)), and hence included in
Θ(G).

Moreover, the fact that h↓ maps edges to edges, preserves the distinguished point, and is
monotone on co-initial edges, is immediately inherited from h↑.

Next, given T
h↓

−→ Θ(G) in FinArb<
⋆ , define I(T ) h↑

−→ G in FinGraphl
⋆ by h↑(v) = h↓(v),

for v ∈ I(T ). In this case, we do not need to check that h↑ is well-defined, and the
properties of mapping edges to edges, preserving the distinguished point, and monotonicity
on neighborhoods, are inherited immediately from h↓. The fact that h↑ maps least paths to
least paths is easily justified by observing that h↑ maps into Θ(G), the tree of least paths in
G.

To check that this correspondence is bijective, notice that starting from either h↑ or h↓,
passing to the other one, and passing back again, gives us the same morphism we started
with. Naturality follows straightforwardly by observing that both functors are the identity
on morphisms, so naturality squares trivially commute. ◀

▶ Lemma 62. There is an adjunction LexGraph FinArb<
⋆ .

Θ′

I′

⊣
Proof. The adjunction from Theorem 43 factors as

LexGraph FinGraphl
⋆

FinArb<
⋆

ΘI

J

I′

⊣

where J is the fully faithful identity-on-objects functor witnessing the inclusion of LexGraph
in FinGraphl

⋆, and Θ′ = Θ ◦ J . The natural isomorphism

LexGraph(I ′(G), H) ∼= FinGraphl
⋆(J(I ′(G)), J(H))

= FinGraphl
⋆(I(G), J(H))

∼= FinArb<
⋆ (G, Θ(J(H)))

= FinArb<
⋆ (G, Θ′(H))

establishes this adjunction. ◀

▶ Lemma 63. For any finite, pointed, connected, edge-ordered graph G, S(G) is an arbores-
cence.

Proof. To verify that S(G) is a well-defined arborescence, it suffices to observe that S(G) is
connected (as it preserves least shortest paths), and that there is a unique path v0 ⇝ v: two
distinct edges u → v and u′ → v cannot both occur in mins(v0 ⇝ v).

To check that S(G h−→ H) is well defined, we have to verify for u → v ∈ S(G), h(u) →
h(v) ∈ S(H). But such morphisms h preserve least shortest paths by Definition 34 (v). ◀

Proof of Theorem 45. The proof is obtained by literally copying the proof of Theorem 43
and replacing FinGraphl

⋆ by FinGraphs
⋆, Θ by S, and min by mins throughout.
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Given I(T ) h↑

−→ G in FinGraphs
⋆, we describe how to obtain T

h↓−→ T (G) in FinArb<
⋆ .

Define h↓(v) = h↑(v), for v ∈ T (which we identified with I(T )). To check that h↓ is
well-defined, we must show that if u → v is an edge of T , then h↑(u → v) is contained in
S(G). But since T is an arborescence, u → v is trivially contained in mins(v0 ⇝ v), so
h↑(u → v) is contained in mins(h(v0)⇝ h(v)), and hence included in S(G).

Moreover, the fact that h↓ maps edges to edges, preserves the distinguished point, and is
monotone on co-initial edges, is immediately inherited from h↑.

Next, given T
h↓

−→ S(G) in FinArb<
⋆ , define I(T ) h↑

−→ G in FinGraphs
⋆ by h↑(v) = h↓(v),

for v ∈ I(T ) (which we identified with T ). In this case, we do not need to check that h↑

is well-defined, and the properties of mapping edges to edges, preserving the distinguished
point, and monotonicity on neighborhoods, are inherited immediately from h↓. The fact that
h↑ maps least shortest paths to least shortest paths is easily justified by observing that h↑

maps into S(G), the tree of least shortest paths in G.
To check that this correspondence is bijective, notice that starting from either h↑ or h↓,

passing to the other one, and passing back again, gives us the same morphism we started
with. Naturality follows straightforwardly by observing that both functors are the identity
on morphisms, so naturality squares trivially commute. ◀

Proof of Lemma 47. (i): If there are edges u → v1 and u → v2 of G, then u → v1 ◁ u → v2
in G iff min(u ⇝ v1) ≺ min(u ⇝ v2) in G (since G is a lex-graph) iff u → v1 ◁ u → v2 in
F (G) (by definition of F ).

(ii): Suppose σ and π are co-initial paths from G. We may assume that σ and π share no
nontrivial prefix; then either σ or π is empty (and the claim is trivial), or σ and π differ on
their first edge, and the claim follows from (i).

(iii): Work in F (G). It suffices to show that least paths in F (G) consist of only edges
in G; by the above remark, if two paths consist of G-edges, it does not matter whether we
compare them in G or in F (G).

Towards which, it suffices to show that every edge u → v not in G is greater than the
least path minG(u⇝ v) between u and v in G. Then any path with non-edges in G can be
lessened; in particular least paths in F (G) cannot contain any non-edges of G.

Let v1 ≠ v be the second vertex in minG(u⇝ v). Since least paths are closed under taking
prefixes, u → v1 = minG(u⇝ v1), in both G and F (G). Since minG(u⇝ v1) ≺ minG(u⇝ v),
u → v1 ◁ u → v in F (G). But then minG(u ⇝ v) ≺ u → v, which is what we wanted to
show. ◀

Proof of Lemma 48. Given any lex-graph G, F (G) is clearly a transitive edge-ordered graph,
but we must check that it satisfies the lex-graph property (Definition 36-(ii)). But for any
v1 and v2 in the neighborhood of a common u in F (G), u → v1 ◁ u → v2 in F (G) iff
min(u ⇝ v1) ≺ min(u ⇝ v2) in G (by definition of F ) iff min(u ⇝ v1) ≺ min(u ⇝ v2) in
F (G) (by Lemma 47 plus the preceding remark).

By definition, F immediately preserves identities and compositions of homomorphisms,
and it remains to check that for any lex-homomorphism G

h−→ H of lex-graphs, F (h) is a
lex-homomorphism F (G) → F (H). We check each of the conditions in Definition 34:

(i) If u → v in F (G), then there is a path u⇝ v in G, so there is a path h(u)⇝ h(v) in
H, and hence an edge h(u) → h(v) in F (H).

(ii) Since h preserves the distinguished point, so does F (h).
(iii) If u → v1 ◁ u → v2 in G, min(u⇝ v1) ≺ min(u⇝ v2), as G is a lex-graph. Since h is a

lex-homomorphism, minH(h(u)⇝ h(vi)) = h(minG(u⇝ vi)), so min(h(u)⇝ h(v1)) ≺
min(h(u)⇝ h(v2)) in H. By definition of F , h(u) → h(v1) ◁ h(u) → h(v2) in F (H).
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(iv) As the least path min(u ⇝ v) in F (G) is also least in G, as shown above, and as h

preserves least paths, h(min(u⇝ v)) is min(h(u)⇝ h(v)) in H , and this in turn is also
the least path in F (H). ◀

Proof of Theorem 49. Let F (G) h↑

−→ H be a homomorphism of TLexGraph. Since F (G)
has the same vertices as G, we may define G

h↓−→ U(H) by h↓(v) = h↑(v) (since H and U(H)
are exactly identical).

We check that h↓ is a lex-homomorphism by checking Definition 34 (i)-(iv). We write,
e.g., h(v) to refer unambiguously to the vertex h↑(v) = h↓(v).

(i) If u → v is an edge of G, it is an edge of F (G), so h(u) → h(v) is an edge of H, and
hence an edge of U(H).

(ii) h↓ directly inherits preservation of the distinguished point from h↑

(iii) If u → v1 ◁ u → v2 in G, then u → v1 ◁ u → v2 in F (G) (Lemma 47), so h(u) →
h(v1) ◁ h(u) → h(v2) in H (monotonicity of h↑), and hence the same holds in U(H).

(iv) If π is the least path u⇝ v in G, then it’s least in F (G) (Lemma 47), so h(π) is least
in H (since h↑ is a lex-homomorphism), and hence also in U(H).

In the other direction, we suppose that we are given some homomorphism of lex-graphs
G

h↓−→ U(H) in LexGraph. Define F (G) h↑

−→ H by h↑(v) = h↓(v). Again, we check (i)-(iv)
of Definition 34.

(i) If u → v is an edge of F (G), then there is a path u ⇝ v in G, and hence a path
h(u)⇝ h(v) in U(H), and (since H is transitive), and edge h(u) → h(v).

(ii) h↑ directly inherits preservation of the distinguished point from h↓
(iii) If u → v1 ◁ u → v2 in F (G), then min(u⇝ v1) ≺ min(u⇝ v2) in G; hence (since h↓

is a lex-homomorphism) min(h(u) ⇝ h(v1)) ≺ min(h(u) ⇝ h(v2)) in U(H), hence in
H. Since H is a lex-graph, h(u) → h(v1) ◁ h(u) → h(v2).

(iv) If π is the least path u⇝ v in F (G), then it’s the least path in G (Lemma 47), so h(π)
is least in U(H) (since h↓ is a lex-homomorphism), and hence in H.

We need only now to check that this correspondence is bijective and natural. Bijectivity
follows readily from the fact that we always have h↑ = h↓, so going from G

h↓−→ U(H) to
F (G) h↑

−→ H and back has no effect, and similarly in the other direction. Similarly, naturality
follows straightforwardly by noting that U(h)(v) = F (h)(v) = h(v) for all h and v, so
naturality squares trivially commute. ◀

Proof of Lemma 52. Notice that distances between vertices are never increased in G com-
pared to T , only decreased, meaning that if there is a path u⇝ v in G, there is a path u⇝ v

in T that is no shorter. Therefore, longest paths in G must consist entirely of edges in T ,
and are therefore unique.

Conversely, if u → v is an edge of T , then it appears on the unique path v0 ⇝ v in T . As
just observed, the longest path v0 ⇝ v in G is also a path in T ; hence, it is the unique path
v0 ⇝ v in T , and thus contains u → v. ◀

▶ Lemma 64. Γ is a well-defined functor.

Proof. Clearly Γ preserves identities and composition. We must check that for any morphism
h of FinArb<

⋆ , Γ(h) satisfies Definition 34 (i)-(iii) and preserves longest paths:
(i) If u → v in Γ(T ), then u⇝ v in T , so h(u)⇝ h(v) in T ′, so h(u) → h(v) in Γ(T ′).
(ii) Since h maps the distinguished point, and only that point, of T to the distinguished
point of T ′, Γ does the same from Γ(T ) to Γ(T ′).
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(iii) If u → v1 ◁ u → v2 in Γ(T ), then v0 ⇝ v1 ≺s v0 ⇝ v2 in T . By Lemma
35, h(v0 ⇝ v1) ≺s h(v0 ⇝ v2) in T ′ , and since paths in arborescences are unique,
h(u)⇝ h(v1) ≺s h(u)⇝ h(v2) in T ′. Hence h(u) → h(v1) ◁ h(v) → h(v2) in Γ(T ′).
Finally, if u⇝ v is the longest path in Γ(T ), then it is a path in T by Lemma 52, and
therefore, h(u⇝ v) = h(u)⇝ h(v) is a path in T ′. Again by Lemma 52, h(u⇝ v) is the
longest path in Γ(T ′). ◀

▶ Lemma 65. L is a well-defined functor TArb → FinArb<
⋆ .

Proof. In each graph G ∈ TArb, the unique longest paths are closed under taking prefixes.
Therefore, the union of all least longest paths forms an arborescence.

To check that L is a functor, note that for any morphism h ∈ TArb, L(h) clearly preserves
the distinguished point and is monotone on neighborhoods. We only need to show that if
u → v is an edge in L(G) and h : G → H is a morphism in TArb, then h(u) → h(v) is an
edge of L(H). But, this guaranteed by the fact that h preserves longest paths.

Finally, note that L preserves the identity morphism and respects composition. ◀

Proof of Theorem 56. Fix a pointed, connected, edge-ordered arborescence T and a pointed,
connected, transitive, edge-ordered graph G.

Given Γ(T ) h↑

−→ G in TArb, we define T
h↓−→ L(G) by h↓(v) = h↑(v). This is well-defined,

because if u → v is an edge in T , then by Lemma 52, it appears on the unique longest path
v0 ⇝ v in Γ(T ). Since h↑ preserves least longest paths, the edge u → v maps into L(G).
Moreover, h↓ preserves the distinguished point and inherits monotonicity in neighborhoods
from h↑, so satisfies the conditions of Definition 34 and is a morphism in FinArb<

⋆ .
In the other direction, given T

h↓−→ L(G) in FinArb<
⋆ , we define Γ(T ) h↑

−→ G by h↑(v) =
h↓(v); let us unambiguously write h(v) for brevity. If u → v is an edge of Γ(T ), then
there is a path u ⇝ v in T , hence a path h(u) ⇝ h(v) in L(G), and therefore an edge
h(u) → h(v) in G. Moreover, if u → v1 ◁ u → v2 in Γ(T ), then v0 ⇝ v1 ≺s v0 ⇝ v2 in T , so
h(u)⇝ h(v1) ≺s h(u)⇝ h(v2) in L(G), by Lemma 35. By the remark succeeding Lemma
52, h(u) → h(v1) ◁ h(u) → h(v2) in G. Finally, if u⇝ v is the longest path from u to v in
Γ(T ), then each of its edges lies in T by Lemma 52, hence its h-image lies in L(G), which
means it is a longest path of G. Therefore, h↑ is a morphism of TArb.

It remains to show that the maps relating h↑ and h↓ are bijective and natural. As in the
proof of Theorem 49, this is immediate from the definition of each map; the only thing to
show is that they were well-defined. ◀

Proof of Lemma 57. Fix u, v ̸= v0. By definition of F , v0 → u ◁ v0 → v in T iff min(v0 ⇝
u) ≺ min(v0 ⇝ v) in (I ′ ◦ Θ)(G). Since I ′ is an inclusion functor, this is equivalent to
min(v0 ⇝ u) ≺ min(v0 ⇝ v) in Θ(G); indeed, the unique path v0 ⇝ u is less than the unique
path v0 ⇝ v in Θ(G).

But the unique paths v0 ⇝ u and v0 ⇝ v in Θ(G) are exactly min(v0 ⇝ u) and
min(v0 ⇝ v) in G respectively; moreover, the relative order on the latter two paths in G is
inherited from the relative order on the former two in Θ(G).

Therefore, v0 → u ◁ v0 → v in T iff min(v0 ⇝ u) ≺ min(v0 ⇝ v) in G, but this is exactly
the relation <D of Definition 28, which is the lexicographic depth-first traversal of G by
Theorem 30. ◀

Proof of 58. Fix u, v ̸= v0. By definition of Γ, v0 → u ◁ v0 → v in T iff v0 ⇝ u ≺s v0 ⇝ v

in S(G) (where paths from v0 are unique). By definition of S, this is equivalent to mins(v0 ⇝
u) ≺s mins(v0 ⇝ v) in G. By Corollary 27, this is equivalent to u <B v. ◀
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Proof of Lemma 59. For a finite, edge-ordered graph G, we define E(G) to be the order
({v0} ∪ N(v0), <), where for u, v ̸= v0, u < v ⇐⇒ v0 → u ◁ v0 → v, and for u ̸= v0, v0 < u.

On morphisms, given a homomorphism of edge-ordered graphs G
h−→ H, we define

E(G) E(h)−−−→ E(H) by E(h)(v) = h(v). Notice that E is well-defined, since it maps the
distinguished point v0 of G to the distinguished point w0 of H, and also maps NG(v0) into
NH(w0). By definition, it is clear that E preserves both identities and compositions, so we
have only left to show that E(h) is monotone.

Since h maps only v0 to w0, it suffices to show that if u, v ∈ NG(v0) and v0 → u ◁ v0 → v

in G, then w0 → h(u) ◁ w0 → h(v) in H . But this follows from monotonicity of h (Definition
34-(iii)) ◀
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1 Introduction

The diameter is one of the most fundamental graph parameters. It plays a particular
significant role in the analysis of communication networks as the time to transmit a message
to all nodes is strongly related with the diameter. Several lines of work have recently attacked
the problem of computing the diameter in different settings. For example, Choudhary and
Gold [16] constructed diameter spanners, which are subgraphs that approximately preserve
the diameter of the original graph, Ancona et al. [6] developed algorithms for computing
the diameter in dynamic scenarios and proved matching conditional lower bounds, and
Bonnet [10] proved that, for any constant ε > 0, computing a (7/4 − ε)-approximation of the
diameter of a sparse graph n vertices and m = n1+o(1) edges requires m4/3−o(1) time, unless
the Strong Exponential Time Hypothesis fails.

In this paper, we approach the diameter from the perspective of fault tolerance. A
communication network may be subject to a small number of transient failures, and we want
to quickly find out the new diameter without recomputing it from scratch. Therefore, we
study the problem of constructing space-efficient data structures that can quickly report the
diameter even if up to f edges fail in the graph. We refer to them as f-edge fault-tolerant
diameter oracles (f -FDO, or simply FDO if f = 1). More precisely, given an undirected or
directed and possibly edge-weighted graph G and a positive integer f , we want to construct
an f -FDO that, when queried on a set F of up to f edges of G, returns a value D̂ that is
always at least as large the diameter of G − F , denoted by diam(G − F ). We say that an
f -FDO has a stretch of σ ⩾ 1 (or that it is σ-approximate) if the value D̂ returned by the
oracle additionally satisfies diam(G − F ) ⩽ D̂ ⩽ σ diam(G − F ).

When designing f -FDOs one must find a good compromise between the following param-
eters: the stretch, the time needed to query the oracle, the size of the data structure, and
the preprocessing time needed to build it. We focus particularly on space-optimal solutions,
while keeping the query and preprocessing times low. For the case of a single edge failure in
undirected edge-weighted graphs, there are two folklore FDOs known. One reports the exact
diameter and has size O(m), while the other takes O(n) space, but guarantees only a stretch
of 2. (more details are given in Section 2.1.) In a sense they mark the extreme points of a
spectrum. It is natural to ask whether there are more trade-offs possible between the stretch
and size of an FDO. More precisely, we pose the following question.

Question 1 – space vs. approximation trade-off. What is the minimum achievable size of
an FDO for a given stretch σ? To answer the question, we prove an information-theoretic
lower bound. It shows that for undirected unweighted graphs and every (even non-constant)
1 ⩽ σ < 3/2, every σ-approximate diameter oracle requires Ω(m) bits of space. The space
lower bound also holds for the harder case of directed graphs. The size of the exact folklore
FDO is thus optimal up to the size of a machine word. Moreover, we prove that the stretch 2
of the approximate FDO cannot be improved on weighted graphs while keeping O(n) space.

▶ Theorem 1. Any FDO with stretch σ = σ(m) < 3/2 must take Ω(m) bits of space on
undirected graphs with m edges. The bound increases to σ < 2 if the graphs are edge-weighted.

When we focus our attention on the preprocessing time, the exact FDO can be constructed
in Õ(n3) time1 using the distance sensitivity oracle (DSO) of Bernstein and Karger [8].
Henzinger et al. [30] proved an essentially matching conditional lower bound for combinatorial2

1 For a positive function g(n, m, f), we use Õ(g) to denote O(g · polylog(n)).
2 The term “combinatorial algorithm” is not well-defined, and is often interpreted as not using any

matrix multiplication. Arguably, combinatorial algorithms can be considered efficient in practice as the
constants hidden in the matrix multiplication bounds are rather high.
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algorithms. They assumed that any combinatorial algorithm requires n3−o(1) time to multiply
two Boolean n × n matrices, known as the BMM conjecture. The restriction to combinatorial
algorithms is crucial as the task is reducible to integer matrices and one can use fast matrix
multiplication to solve it in O(nω) time, where ω < 2.37286 is the matrix multiplication
exponent [2]. Under the BMM conjecture, Henzinger et al. [30] showed that, for 0 < ε < 1/3,
any combinatorial preprocessing algorithm requires n3−o(1) time to build an FDO of stretch
(1 + ε), even if we allow O(n2−δ) query time for any constant δ > 0.

They match this bound with an FDO with stretch (1 + ε) and O(1) query time that can
be constructed in time Õ(mn + n1.5

√
diam(G) · m/ε ). Their oracle also reports the radius

and vertex eccentricities in the presence of a single edge failure. Even on sparse graphs
with m = Õ(n) edges and constant diameter, the preprocessing time is Õ(n2.5/

√
ε ). For

constant ε > 0, this is by a factor
√

n larger than the Õ(mn) time needed to build the DSO
of Bernstein and Karger [8]. It is interesting whether one can close the gap.

Question 2 – fast preprocessing time. Does there exist a combinatorial algorithm that
constructs in Õ(mn) time an FDO with stretch (1 + ε) and constant query time? In addition,
can one bypass the combinatorial lower bound by using fast matrix multiplication? We
answer these questions affirmatively for the diameter case with the following theorem. The
proof of the algebraic part uses the DSO presented very recently by Gu and Ren [28].

▶ Theorem 2. For every unweighted directed graph and ε > 0, there exists a randomized
combinatorial (1 + ε)-approximate FDO that takes O(m) space and has Õ(mn + n2/ε)
preprocessing time and O(1) query time. The returned values are correct w.h.p.3 Using fast
matrix multiplication instead, one can construct the FDO in time Õ(n2.5794 + n2/ε).

Note that, for any constant 0 < ε < 1/3, our combinatorial (1 + ε)-approximate combina-
torial FDO from Theorem 2 is near-optimal with respect to all parameters. The Θ(m) space
is near-optimal by Theorem 1, the query time is Õ(1), and the Õ(mn) preprocessing time
comes within sub-polynomial factors of the conditional lower bound by Henzinger et al. [30].
Furthermore, when fast matrix multiplication is permitted, our algebraic preprocessing
algorithm is even faster on dense graphs. However, our FDO is randomized.

Question 3 – derandomization. Can the construction of Theorem 2 be derandomized in the
same asymptotic running time? We answer this question partially in that we derandomize
the approximation part of our algorithm. When combined with the DSO of Bernstein and
Karger [8] this gives a deterministic combinatorial FDO. For the derandomization, we adapt
the framework of Alon, Chechik, and Cohen [3]. We identify a set of O(n3/2) critical paths
one needs to hit, and show how to compute them in O(mn) time. It is then enough to let
the folklore greedy algorithm compute a hitting set in Õ(n2) time.

It remains an open problem whether one can derandomize the algebraic approach, whose
randomization stems solely from the DSO by Gu and Ren [28].

▶ Theorem 3. For every unweighted directed graph and ε > 0, there exists a deterministic
combinatorial (1 + ε)-approximate FDO that takes O(m) space and has Õ(mn + n2/ε)
preprocessing time and O(1) query time.

3 An event occurs with high probability (w.h.p.) if it has probability at least 1 − n−c for some c > 0.
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Question 4 – space vs. approximation trade-off for multiple failures. Finally, we consider
the case of multiple edge failures and examine similar questions. What is a the minimum
size for an exact, respectively, approximate, diameter oracle in the presence of up to f edge
failures? We again prove an information-theoretic lower bound and show that for arbitrary
finite stretch σ, any σ-approximation diameter oracle requires Ω(fn) bits of space, at least if
the oracle can be queried also with sets F that contain non-edges.

▶ Theorem 4. Suppose f < n. Any f-FDO with finite stretch that can be queried also for
non-edges must take Ω(fn) bits of space on graphs with n vertices.

We develop an efficient f -FDO whose space requirement almost matches the lower bound.
Our result adapts and improves a construction by Bilò et al. [9]. Note that we use the
Õ-notation to suppress polylogarithmic factors in n.

▶ Theorem 5. For every undirected graph with non-negative edge weights, there exists a
deterministic combinatorial (f + 2)-approximate f-FDO that takes Õ(fn) space and has
Õ(fm) preprocessing time and Õ(f2) query time.

Real-world networks are often described as having a small diameter, dubbed as the
“small world property” [35]. Many graph models used to analyze social and communication
networks have provable polylogarithmic guarantees on the diameter, e.g. Chung-Lu graphs [17],
hyperbolic random graphs [24], or the preferential attachement model [31]. We show that
on graphs with low diameter one can swap approximation for query time even for multiple
failures, while still retaining efficient preprocessing time and a low space requirement To
achieve this, we combine fault-tolerant trees that where introduced by Chechik et al. [13]
with the random graphs of Weimann and Yuster [43].

▶ Theorem 6. Let f be a positive integer and δ = δ(n, m) > 0 a real number. For every
undirected unweighted graph with diameter at most nδ/f /(f+1), there exists a randomized
combinatorial f -FDO that takes O(n2+δ) space, has O(2f ) query time, and with high probabil-
ity Õ(fmn1+δ + f n2+(2−1/f)δ) preprocessing time. Using fast matrix multiplication instead,
one can construct the FDO w.h.p. in time Õ(fnω+δ + f n2+(2−1/f)δ).

If the diameter is in fact polylogarithmic and the number of failures is bounded by
f = o(log n/ log log n), we obtain the following corollary.

▶ Corollary 7. Let f = o(log n/ log log n). For every undirected graph with polylogarithmic
diameter, there is an f-FDO that takes n2+o(1) space and has no(1) query time. It can
be preprocessed in time mn1+o(1), or algebraically in time nω+o(1). If f is constant, the
preprocessing times are Õ(mn), resp. Õ(nω), with Õ(n2) space and Õ(1) query time.

1.1 Related Work
We briefly review previous work on distance sensitivity oracles and diameter computation.

Distance sensitivity oracles. Distance oracles for all-pairs distances were introduced in
a seminal paper by Thorup and Zwick [42]. Demetrescu et al. [19] extended the notion of
distance oracles to the fault-tolerant setting in which either an edge or a vertex of a graph can
fail (i.e., distance sensitivity oracles or DSOs). They showed that it is possible to preprocess
a directed weighted graph in Õ(mn2) time to compute a data-structure of size O(n2 log n)
capable of answering distance queries in constant time. Bernstein and Karger [8] improved
the preprocessing time to Õ(mn) and Duan and Zhang [23] reduced the space to O(n2),
which is asymptotically optimal.
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Duan and Pettie [22] considered the more involved case of two failures and presented an
oracle with O(n2 log3 n) size, O(log n) query time and polynomial construction time. Chechik
et al. [13] presented a DSO of size O(n2+o(1)) that supports up to o(log n/ log log n) edge
failures and guarantees a stretch of (1 + ϵ), for every constant ϵ > 0. The approach has been
recently extended to also handle vertex failures by Duan, Gu, and Ren [21].

The construction of DSOs have also been considered in the approximate regime [13].
Algebraic algorithms are known to improve the preprocessing times, if one is willing to
employ fast matrix multiplication (for e.g., see [28, 12] and the references therein).

Diameter computation. The fastest known combinatorial algorithms (up to polylogarithmic
factor) for both solving the all-pairs shortest paths (APSP) problem and the diameter problem,
are the trivial ones with Õ(mn) running time. There is extensive research on developing
faster approximate APSP algorithms [7, 18, 33], as well as faster approximation algorithms
for the diameter [14, 40]. For special classes of graphs, for example planar graphs, efficient
exact algorithms for computing the diameter are known [25].

2 Preliminaries

We let G = (V, E) denote the (possibly directed) base graph on n vertices and m edges. We
tacitly assume that G is (strongly) connected, i.e., m = Ω(n). For a graph H, we denote by
V (H) the set of its vertices, and by E(H) its edges. The (closed) neighborhood of a vertex
v ∈ V (H) is the set N [v] = {u ∈ V (H) | {v, u} ∈ E(H)} ∪ {v}. Let P be a path in H,
its length |P | is the number of its edges. For any two vertices x, y ∈ V (P ), P [x..y] is the
subpath of P from x to y. For s, t ∈ V (H), the distance dH(s, t) is the minimum length of
an s-t-paths in H ; if s and t are disconnected, we set dH(s, t) = +∞. We drop the subscript
when talking about the base graph G. The eccentricity of s is ecc(s, H) = maxt∈V (H) dH(s, t)
and the diameter is diam(H) = maxs∈V (H) ecc(s, H). Any graph distance can be stored in a
single machine word on O(log n) bits. Unless explicitly stated otherwise, we measure the
space complexity in the number of words. For a collection F ⊆

(
V (H)

2
)

of 2-sets of vertices
(edges or non-edges), let H − F be the graph obtained from H by removing all edges in F

(graph H is not altered if F ∩ E(H) = ∅). A replacement path PH(s, t, F ) is a shortest path
from s to t in H − F . Its length dH(s, t, F ) = |PH(s, t, F )| is the replacement distance. The
fault-tolerant diameter of H with respect to F is the diameter of H − F .

For a positive integer f , an f -fault-tolerant diameter oracle (f -FDO) for the graph G is
a data structure that reports, upon query F with |F | ⩽ f , the value diam(G − F ). For any
σ = σ(n, m, f) ⩾ 1, such an oracle is σ-approximate, or has stretch σ, if it answers a query
F with a value D̂ such that diam(G − F ) ⩽ D̂ ⩽ σ · diam(G − F ). In case of a single failure,
we write FDO for 1-FDO and abbreviate F = {e} to e. An f-distance sensitivity oracle
(f -DSO) reports, upon query (s, t, F ) with |F | ⩽ f , the replacement distance d(s, t, F ).

2.1 (Mostly) Known FDOs for Single Edge Failures
The first folklore FDO handles single edge failures in unweighted (directed or undirected)
graphs. It has also been observed in [30]. The DSO of Bernstein and Karger [8] constructible
in Õ(mn) time and is able to report in constant time the exact distance of any pair of vertices
in the presence of a single edge failure. With this one can construct the FDO by explicitly
computing all the eccentricities ecc(v, G − e), for every vertex v and every edge e of G, in
O(n3) time. For a fixed vertex v, the m values ecc(v, G − e) can be obtained in O(n2) time
as follows. First compute a shortest paths tree Tv of G rooted at v. For each edge e that
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is not in Tv, we have that ecc(v, G − e) = ecc(v, G). For the tree-edges e in Tv, we use the
DSO to compute ecc(v, G − e) which is the maximum distance from v to any other vertex
in G − e. Therefore, ecc(v, G − e) can be computed by performing n − 1 queries, as there
are n − 1 edges in Tv, we need O(n2) time. The fault-tolerant diameter diam(G − e) is the
maximum of the ecc(v, G − e), it can be stored in O(m) space with one entry for each edge e.

The second folklore FDO can only be used for undirected edge-weighted graphs. The
FDO has stretch 2 and uses the fact that the diameter of the graph is intimately related to the
eccentricity of any vertex. For an arbitrary v, we have that ecc(v, G) ⩽ diam(G) ⩽ 2 ecc(v, G)
as, by the triangle inequality, we can bound the distance between any two vertices u, u′ ∈ V

by dG(u, u′) ⩽ dG(u, v) + dG(v, u′) ⩽ 2 ecc(v, G). The FDO again computes a shortest paths
tree T rooted at a fixed source v and stores an array of length n − 1, corresponding to the
edges of T . For every such edge e, one computes and stores 2 ecc(s, G − e). When queried
with edge e, the FDO returns the stored value or, if e is not in the tree, the value 2 ecc(s, G).
The size of this FDO is O(n).

A maybe lesser-known way of building FDOs is via spanners. For any σ > 0, we say
that a subgraph H of G is a spanner of stretch σ if, for every two vertices s, t of G, we have
dH(s, t) ⩽ σdG(s, t). For every positive integer k, it is known how to construct a spanner H

of G such that (a) H has a stretch of 2k − 1 and (b) the size of H is O(n1+1/k) [5]. Observe
that for every edge e = {u, v} that is in G but not in H, we have d(u, v, e) ⩽ 2k − 1. We
now describe how spanners can be used to construct another easy oracle for undirected
unweighted graphs whose stretch guarantee depends on both k and the inverse of diam(G).
This implies that the oracle already performs quite well for large-diameter graphs.

We construct such a spanner oracle with parameter k by first computing a spanner that
satisfies (a) and (b). Then, we associate the value diam(G − e) to each edge e in the spanner
H and build a dictionary in which we store information about the edges of the spanner
together with the corresponding associated values. Consider a query of edge e. If e ∈ E(H)
the we return the value associated with e; otherwise, we return diam(G) + 2(k − 1). The
proof of the next lemma is deferred to the full version.

▶ Lemma 8. For every positive integer k, the spanner oracle with parameter k has O(n1+1/k)
size, a constant query time, and a stretch of 1 + 2(k − 1)/ diam(G).

The result of Lemma 8 already implies the existence of sparse FDOs of o(m) size and
of stretch σ < 3/2 for sufficiently dense graphs with diameter strictly larger than 4. This
does not contradict the lower bound of Theorem 1, but allows us to conclude that strong
lower bounds on the size of FDOs for unweighted undirected graphs can only hold when the
diameter of the input graph is bounded by a small constant.

3 Single Edge Failures

First, we treat single edge failures, f = 1. In this section, we assume the base graph G to
be directed and present an (1 + ε)-approximate fault-tolerant diameter oracle with space
O(m) and O(1) query time. We give two variants, one is deterministic and combinatorial,
the other randomized and algebraic. We then show that the space requirement is optimal up
to the size of the machine word.

3.1 An (1 + ε)-approximate FDO for Single Failures
We construct here the approximate FDO, thereby proving Theorem 2. Suppose we know
for each s, t ∈ V some shortest path P (s, t) in G and additionally have access to a distance
sensitivity oracle that, for any edge e, reports in constant time the replacement distances
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d(s, t, e) whenever needed. Clearly, d(s, t, e) differs from the original graph distance only if e

is on P (s, t). To determine the diameters of all the graphs G − e, it is thus enough to query
the DSO only for the edges on the shortest paths, which can be done in time O(n2 · diam(G)).
We use approximation to avoid the cubic running time in case of a large diameter. For this,
we randomly sample a small set B of so-called pivots and prove that it is enough to compute
the replacement distances only between pairs from B × V , instead of all pairs of vertices.
Subsequently, we derandomize the pivot selection.

We fill in the details starting with the APSP computation in G and the preprocessing
of the DSO. The combinatorial version uses a breath-first search from every vertex and
the DSO of Bernstein and Karger [8], taking total time Õ(mn). Alternatively, compute
APSP algebraically and use the randomized DSO by Gu and Ren [28].4 APSP is computable
in time O(n2.575) on unweighted directed graphs with a variant of Zwick’s algorithm [44,
Corollary 4.5], this is in turn dominated by the O(n2.5794) preprocessing time of the DSO [28].
After these computation, the distances d(s, t), shortest paths P (s, t) in G, and the replacement
distances d(s, t, e) are available to us (w.h.p., in the randomized case) with a constant query
time per distance/path edge.

From here on out, the process for both variants is the same. Our fault-tolerant diameter
oracle also allows non-edges to be queried, for which we return the original diameter diam(G).
To account for this, we store all edges in a static dictionary of size O(m) that allows for
worst-case constant look-up times after an Õ(m) preprocessing [4, 29].5

Now fix a parameter ε > 0 for the approximation, possibly even depending on m, n.
We initialize an array D indexed by the edges of G, all its cells hold the value diam(G).
Assume first that ε · diam(G) = O(log n). For any two vertices s, t and edge e on the shortest
path P (s, t), we update D[e] to the maximum of the previous value and d(s, t, e). This
takes O(n2 diam(G)) = Õ(n2/ε) time. After all updates, the entry D[e] stores the exact
fault-tolerant diameter diam(G − e) (possibly w.h.p.). For ε · diam(G) = ω(log n), we first
give a randomized (1+ε)-approximation and later derandomize it in Section 3.2. This yields
the deterministic combinatorial algorithm of Theorem 3. The remaining use of randomness
in the algebraic variant is due to the DSO by Gu and Ren [28].

To guard for the case that the failure of e disconnects the graph, we compute all strong
bridges of G, that is, edges whose removal increases the number of strongly connected
components, in time O(m) with the algorithm by Italiano, Laura, and Santaroni [32]. For
each strong bridge e, we set D[e] = ∞. To compute the other entries, we construct the
set B ⊆ V of pivots by randomly sampling every vertex independently with probability
C(log n)/(ε diam(G)) for a sufficiently large constant C > 0. A simple calculation using
Chernoff bounds shows that |B| = Õ(n/(ε diam(G))) w.h.p. Moreover, with high probability
for all s, t ∈ V and e ∈ E such that ε diam(G) < d(s, t, e) < ∞, there exists a replacement
path from s to t that avoids e and additionally contains a pivot from B. See [27, 41] for details.
We update the entries of D in the same fashion as above, but now only use the (directed)
distance d(x, t, e) for all pivots x ∈ B and vertices t ∈ V . In the end, we add ε diam(G) to
the value in D[e]. The array D is computable in time O(m + n |B| diam(G)) = Õ(n2/ε).

4 The DSO by Gu and Ren [28] is not path-reporting; if it were, we would not have to compute APSP.
The fastest path-reporting algebraic DSO was given by Ren [38, 39] and can be constructed in time
O(n2.7233) on directed graphs, respectively in time O(n2.6865) on undirected graphs.

5 The weak non-uniformity mentioned in [29], i.e., the need of compile-time constants depending on the
word size, only holds if this size is ω(log n), which is not the case for us.
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We verify that D[e] is an (1+ε)-approximation of the fault-tolerant diameter diam(G − e).

▶ Lemma 9. We have diam(G − e) ⩽ D[e] ⩽ (1+ε) diam(G − e) w.h.p.

Proof. We can assume that G − e is strongly connected as otherwise D[e] = ∞ = diam(G − e).
The upper bound follows from D[e] = maxx∈B,t∈V d(x, t, e)+ε diam(G) ⩽ (1+ε) diam(G − e).

The main part consists of showing the lower bound D[e] ⩾ diam(G − e). The idea is
to prove the existence of a pivot x ∈ B and vertex t ∈ V whose replacement distance
underestimates the fault-tolerant diameter by at most an additive term ε diam(G), which we
offset when computing D[e]. If diam(G − e) ⩽ ε diam(G) (which can only happen for ε ⩾ 1),
the lower bound holds vacuously as we have D[e] ⩾ ε diam(G).

Let thus vertices s, t ∈ V be such that d(s, t, e) = diam(G − e) > ε diam(G). Since G − e

is strongly connected the diameter is finite and realized by some replacement path P (s, t, e).
In particular, we have |P (s, t, e)| > ε diam(G). Let y be the unique vertex on P (s, t, e) with
d(s, y, e) = ε diam(G). Recall that w.h.p. the set B hits some shortest path P ′ from s to
y that avoids e. The path P ′ is not necessarily equal to the subpath P (s, t, e)[s..y], but
they have the same length d(s, y, e). Substituting P ′ for P (s, t, e)[s..y] therefore guarantees
a replacement path from s to t that (w.h.p.) has a pivot x ∈ B on its prefix of length
ε diam(G). For notational convenience, we use P (s, t, e) to also denote this particular path.

The replacement distance from pivot x to target t satisfies d(x, t, e) = |P (s, t, e)[x..t]| =
|P (s, t, e)| − |P (s, t, e)[s..x]| ⩾ d(s, t, e) − ε diam(G). The entry D[e] is also updated using
the pivot x, whence D[e] ⩾ d(x, t, e) + ε diam(G) ⩾ d(s, t, e) = diam(G − e). ◀

3.2 Derandomization
For the randomized combinatorial FDO, we had a preprocessing time of Õ(mn + n2/ε).
The underlying APSP computation and the DSO are deterministic. We now derandomize
the approximation part in the same asymptotic running time, proving Theorem 3. In
Lemma 9, we used that the set B intersects at least one long replacement path from s to
t exactly. We argue that it is in fact enough to hit the set of all vertices with distance at
most ε diam(G) from s in each strongly connected G − e. The pivot x does not need to be
on any replacement path. The only assertion of Lemma 9 that is possibly in doubt is the
lower bound D[e] ⩾ diam(G − e). Let again s and t be such that d(s, t, e) = diam(G − e)
and let x ∈ B be a pivot with d(s, x, e) = dG − e(s, x) ⩽ ε diam(G). Whenever G − e is
strongly connected, a replacement path P (x, t, e) exists and, by the triangle inequality, we
have d(x, t, e) ⩾ d(s, t, e) − d(s, x, e) ⩾ d(s, t, e) − ε diam(G). The claim follows.

For the derandomization, we adopt the framework of Alon, Chechik and Cohen [3]. This
involves efficiently finding a small set of critical paths such that hitting them ensures to hit
each (ε diam(G))-ball in the strongly connected G − e. If the critical paths are both short
enough and few in numbers, it is then enough to compute the hitting set via the folklore
greedy algorithm. In [3], it was sufficient to give a single set of critical paths. We generalize
this to multiple sets, where the later-defined sets depend on the paths in the former.

Set ℓ = min{ε diam(G),
√

n } and let r be an arbitrary vertex in G. We compute the
in-tree Tin(r), containing the shortest paths in G leading to r, with breath-first search.
In the set P, we collect, for each vertex s with d(s, r) > ℓ, the path of Tin(r) starting in
s and having length ℓ. Let P ∈ P be a path with start vertex s and let e ∈ E(P ) be
such that it is not a strong bridge. We compute the in-tree Tin,e(r) in G − e rooted in r.
Note that s has distance d(s, r, e) ⩾ d(s, r) > ℓ from the root in the tree. We add the
corresponding path to the set Pe. The original in-tree Tin(r) contains only n − 1 edges, so all
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trees can be computed in total time6 O(mn). Moreover, there are at most ℓ + 1 paths with
starting vertex s. In total, we thus have O(nℓ) paths each of length ℓ. A greedy algorithm
computes a hitting set B for all paths in the P and Pe. It iteratively selects the vertex
that is contained in the most yet unhit paths, it terminates in time Õ(nℓ2) = Õ(n2) and
produces a set of |B| = Õ(n/ℓ) = Õ(n/(ε diam(G)) pivots, see [3, 34]. We used the definition
ℓ = min{ε diam(G),

√
n } for both estimates. Finally, we add the root r to the set B to cover

all paths in the trees that are shorter than ℓ.

▶ Lemma 10. For each vertex s ∈ V and edge e such that G − e is strongly connected, there
exists a pivot x ∈ B with d(s, x, e) ⩽ ε diam(G).

Proof. If d(s, r) ⩽ ε diam(G), we are done. Otherwise, let P be the prefix of length ℓ of the
path from s to r in the tree Tin(r), whence P ∈ P . If P does not contain the edge e, it also
exists in G − e and the corresponding pivot x ∈ B ∩ V (P ) satisfies d(s, x, e) = d(s, x) ⩽ ℓ ⩽
ε diam(G). If P contains e, then let instead P ′ ∈ Pe be the length-ℓ prefix of the path from
s to r in Tin,e(r). Again, x ∈ B ∩ V (P ′) implies d(s, x, e) ⩽ ε diam(G). ◀

3.3 Space Lower Bounds
Finally, we prove Theorem 1 thus showing that the space requirement of the FDOs in
Theorems 2 and 3 is near-optimal provided that the stretch is σ = σ(m, n) < 3/2, that is,
ε < 1/2. This even holds for the simpler task of computing the diameter in undirected graphs.
For better exposition, we first show that any diameter oracle with such a stretch requires
Ω(n2) space on at least one n-vertex graph, which is, however, only tight for dense graphs.
We then sparsify the construction to for an Ω(m) bound for graphs with m edges. Any
σ-approximate FDO solves the promise problem of distinguishing, for each edge e, whether
G − e has diameter 2 or 3.

▶ Lemma 11. There is a graph G on n vertices such that G − e has diameter 2 or 3 for any
e ∈ E. Any data structure that decides which one is the case must take Ω(n2) bits of space.

Proof. We give an incompressibility argument by encoding any binary (n/4)×(n/4) matrix
X in the fault-tolerant diameters of G. No data structure can store this in o(n2) bits. The
construction is illustrated in Figure 1a.

Without loosing generality, n is divisible by 4, we can add up to three dummy vertices
if needed. Split the vertex set equally into four groups A, B, C, D and let a1, . . . , an/4 be
an arbitrary numbering of the elements of A, same with the other groups. All groups are
made into cliques and, for all i ∈ [n/4], we make ai, bi, and ci into a triangle. This results in
matchings for the pairs (A, B), (B, C), and (A, C), respectively. We further add edges so as
to make (B, D) into a biclique. To encode the matrix X, we introduce the edge {ci, dj} if
and only if Xi,j = 1.

The graph G indeed has diameter 2 (even if X is the all-zeros matrix). Vertices ai and bj

are joined by the path (ai, aj , bj)–which by symmetry also holds for the other pairs of groups
among A, B, or C–and and the vertices ai or ci are connected to dj via the paths (ai, bi, dj)
or (ci, bi, dj), respectively. Removing any edge increases the diameter by at most 1 since for
any e = {u, v} there exists a common neighbor in w ∈ N [u] ∩ N [v]. This is clear inside the
(bi-)cliques. For the matching edges, say e = {ai, bi}, we have w = aj , j ̸= i. Finally, for
e = {ci, dj} (if it exists), we have w = bi.

6 For a single source, there are randomized algorithms known that compute the trees faster [11, 15, 26].
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Figure 1 Illustration of Lemma 11 (a) and of Lemma 12 (b). The full ellipses A, B, C, D are
cliques on the respective number of vertices, the dashed ellipse R is an independent set. The three
parallel lines stand for matchings, the two crossed lines for a biclique. Edges encoding the binary
matrix X run between C and D. Every vertex r ∈ R is connected to a1 ∈ A, b1 ∈ B, and c1 ∈ C.

We now prove that the graph G − {bi, dj} has diameter 3 if and only if the edge {ci, dj}
is not present in G, that is, iff Xi,j = 0. When arguing the diameter above, edge {bi, dj}
was only needed for the paths (ai, bi, dj) and (ci, bi, dj). Consider the neighborhoods of the
three vertices in G − {bi, dj}, N [ai] = A ∪ {ci, di}, N [ci] = C ∪ {ai, bi} ∪ {dk | Xi,k = 1},
and N [dj ] = D ∪ (B\{bi}) ∪ {ck | Xk,j = 1}. If Xi,j = 1, then the neighborhoods intersect,
namely in ci, keeping the diameter at 2. If, however, Xi,j = 0, then N [ai] ∩ N [dj ] = ∅ and
the diameter increases to 3. ◀

We now refine the result to give a better bound for sparse graphs. Note that a logarithmic
gap remains between Lemma 12 and Theorem 2 since we lower bound the space at Ω(m)
bits while the FDO takes this many words.

▶ Lemma 12. There is a graph G with m edges such that G − e has diameter 2 or 3 for any
edge e ∈ E. A data structure that decides which one is the case must take Ω(m) bits of space.

Proof. The main weakness of the construction in Lemma 11 is that it requires Ω(n2) edges
inside the cliques. As it turns out, this is not necessary and we can sparsify the graph G as
long as we keep its diameter at 2. Figure 1b shows the idea of the sparsification.

Let m′ be a parameter to be fixed later. We now store a binary
√

m′ ×
√

m′ matrix
X. Split the vertices into five groups, where A, B, C, D each contain

√
m′ vertices and

R the remaining n − 4
√

m′ . The edges among vertices in A through D are the same as in
Lemma 11. Each vertex in R has degree 3 and is connected to a1, b1, and c1. The graph G

has 4
(√

m′

2
)

+ 3
√

m′ + m′ + |{(i, j) | Xi,j = 1}| + 3(n − 4
√

m′ ) = O(m′) edges. We fix the
parameter m′ such that the total number of edges is m. If needed, we introduce additional
edges among vertices in R without affecting the result.

Note that the eccentricity of any vertex in r ∈ R is 2 (even if R is not an independent set).
Vertex ai is reached via the path (r, a1, ai), similar for the vertices in B and C, the ones in D

are reached via b1. Moreover, for any edge involving r, say {r, a1}, we have b1 ∈ N [r] ∩ N [a1].
Therefore, the proof that G has diameter 2, G − e has diameter 2 or 3, and G − {bi, dj} has
diameter 3 iff Xi,j = 0 is almost exactly as in Lemma 11. The sole difference is the case in
which the edge {b1, dj} fails since this may also increase the eccentricity of r. This is settled
by observing that the neighborhood N [r] = {r, a1, b1, c1} in G − {b1, dj} intersects N [dj ] iff
X1,j = 1. To accommodate all possible matrices X, we require Ω(m′) = Ω(m) bits. ◀
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The same construction shows that for edge-weighted graphs there is no (2−ε)-approximate
FDO, for any ε = ε(m) > 0, with space o(m). In more detail, we choose an ε′ > 0 small
enough so that ε′ < 2ε/(1 − ε) and give weight ε′ to all matching edges as well as the edges
incident to vertices in R, all other edges are weighted 2. One can verify that diam(G) = 2+ε′

and the fault-tolerant diameter diam(G−{bi, dj}) remains at that value iff {ci, dj} is present,
it raises to 4 + ε′ otherwise. The bound on the stretch cannot be improved as shown by the
trivial FDO discussed in the introduction, which gives a 2-approximation in O(n) space.

4 Multiple Edge Failures

We now turn to multiple edge failures. Recall that in the fault-tolerant setting the maximum
number f of failures is known in advance, and stretch, space, preprocessing, and query time
usually depend on f . In this section, we first prove the following lemma. Let α = α(m, n)
denote the inverse Ackermann function.

▶ Lemma 13 (Theorem 5 with explicit logarithmic factors). For every undirected graph with
non-negative edge weights, there exists a deterministic combinatorial (f + 2)-approximate
f-FDO that takes O(fn log2n) space and has O(fmα + fn log3n) preprocessing time and
O(f2 log2n) query time. For f = 1, the size of the oracle is O(n), the preprocessing time
O(mα + n log n), and the query time is constant.

Bilò et al. [9] designed an (2f+1)-approximate single-source f -DSO. That means, the
oracle processes an undirected graph G with non-negative edge weights and a distinguished
source s, and, upon query (t, F ) with |F | ⩽ f , it returns d(s, t, F ). The oracle can be built
in O

(
fmα + fn log3 n

)
time, has size O(fn log2 n), and answers queries in O(f2 log2 n) time.

In principle we can modify the oracle so as, when queried with the set F , it returns twice
the eccentricity of s in the graph G − F . This would clearly allow us to construct an f -FDO
of stretch 2·(2f+1). We show that the same oracle construction, but with a better query
algorithm, allows us to develop an f -FDO of stretch f + 2.

We let w(e) denote the weight of the edge e ∈ E. The length of a path is now defined as
the sum of its edge weights; the definitions of distance and diameter are adjusted accordingly.
The oracle in [9] first computes a shortest path tree T of G rooted at the source s and uses
it to re-weight all the edges of G. The new weight function w′ assigns weight of 0 to each
edge of T and weight w′(e) = d(s, x) + w(e) + d(y, s) to any other edge e = {x, y}. When
queried with (t, F ), the oracle computes a spanning forest TF of G − F w.r.t. the new weight
function w′ in O(f2 log2 n) time. Let k = |F ∩ E(T )|. The oracle replaces the k failing
edges in F ∩ E(T ) with a minimum-weight set of edges in G − F w.r.t. to w′, say EF , whose
addition to T − F forms a spanning forest of G − F .7 The obtained forest TF is then used to
estimate the distance from s to t in G − F . We reuse a nice property proven in [9].

▶ Lemma 14 (Bilò et al. [9]). TF is a minimum spanning forest of G − F w.r.t. w′.

Our query algorithm works as follows. Let tree T be rooted at s and F ∩ E(T ) =
{f1, . . . , fk} with k ⩽ f the edges in T that are also in F . Let T0, . . . , Tk denote the k + 1
subtrees of T − F , and ri the root of the subtree Ti. W.l.o.g., we assume r0 = s. We use

7 This is done by computing, for each unordered pair ϕ = (T ′, T ′′) of connected components of T − F ,
the minimum-weight edge w.r.t. w′, say eϕ, that has one endpoint in T ′ and the other endpoint in
T ′′. Then, the set EF is computed in O(f2) time using any time-efficient algorithm for computing a
minimum spanning tree of an auxiliary graph in which each of the connected components of T − F is
modelled by a vertex and the edge between the unordered pair ϕ = (T ′, T ′′) of T − F has a weight equal
to w′(eϕ). The authors of [9] design a data structure that is able to retrieve, for each pair ϕ = (T ′, T ′′)
of connected components of T − F , the edge eϕ in O(log2 n) time.
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f1, . . . , fk to compute the roots r1, . . . , rk in O(k) time. We then build a forest T ′ on k + 1
new vertices v0, . . . , vk, where vi represents Ti. The forest T ′ contains an edge {vi, vj} iff EF

contains an edge e with one end point in V (Ti) and the other in V (Tj). Obviously, if T ′ is not
connected, then we can simply certify that diam(G − F ) = ∞. So, we assume that T ′ is a tree.
We root T ′ at v0 and denote by ei the edge that joins vi with its parent p(vi). We compute
the value ∆ = max1⩽i⩽k w′(ei) − d(s, ri) and output D̂ = f∆ + 2 · maxt∈V d(s, t). The time
needed for the query algorithm is dominated by the computation of T in time O(f2 log2 n)
as all the new operations can be performed in O(f2) time. Observe that maxt∈V d(s, t) is
independent of F and can be precomputed in time O(n).

For a single failure, f = 1, the query time can be reduced to O(1). In fact, for each
edge e of T , it is enough to precompute the minimum weight edge of E(G)\E(T ), w.r.t.
weight function w′, that crosses the cut induced by T − e. This, a.k.a. the sensitivity analysis
problem of a minimum spanning tree, can be solved in O(m log α) time on a graph with m

edges [37]. We show in the remainder that D̂ is an (f + 2)-approximation of diam(G − F ).
The proof of the following lemma can be found in the full version.

▶ Lemma 15. We have that diam(G − F ) ⩾ ∆.

We now prove the approximation with the help of Lemma 15.

▶ Lemma 16. The value D̂ satisfies diam(G − F ) ⩽ D̂ ⩽ (f + 2) diam(G − F ).

Proof. Again, we only need to prove anything if T ′ is connected, which implies that TF

is connected. By Lemma 15, we have that diam(G − F ) ⩾ ∆. Moreover, diam(G − F ) ⩾
diam(G) ⩾ maxt∈V d(s, t). The value D̂ returned by the query algorithm satisfies D̂ ⩽
f∆ + 2 maxt∈V d(s, t) ⩽ (f + 2) diam(G − F ). It remains to show that D̂ ⩾ diam(G − F ).
We prove the latter by verifying that, for any two vertices x and y, D̂ ⩾ d(x, y, F ) holds.

Let rx and ry be the roots of the subtrees of T − F that contain x and y, respectively.
It is possible that rx = ry. Let rp(i) denote the root of the tree of T − F that corresponds
to the parent vertex p(vi) in T ′. Consider the subgraph of TF consisting of the edges of
the paths in TF between the following pairs of vertices: (a) rp(i) and ri for every i, (b) x

and rx, (c) y and ry. The subgraph contains a path from x to y since TF is connected.
Therefore, the replacement distance d(x, y, F ) is upper bounded by the total weight of
the subgraph. The path in TF between rx and x has length at most maxt∈V d(s, t) as rx

is an ancestor of x in the shortest path tree T rooted at s; same for ry and y. Finally,
for any i > 0, let ei = {xi, yi} be the edge in EF that caused the addition of the edge
(vi, p(vi)) in T ′. W.l.o.g., we assume that xi (resp., yi) is a vertex of the tree of T − F

represented by vi (resp., p(vi)) in T ′. The path from ri to rp(i) in G − F has length at most
d(ri, xi)+w(ei)+d(yi, rp(i)) ⩽ d(ri, xi)+w(ei)+d(yi, s)+d(s, ri)−d(s, ri) = w′(ei)−d(s, ri) ⩽
∆. Therefore, d(x, y, F ) ⩽ k∆ + 2 maxt∈V d(s, t) ⩽ f∆ + 2 maxt∈V d(s, t) = D̂. ◀

4.1 Exact f -FDO for Low Diameter
We show that one can swap approximation for query time in low-diameter graphs, namely,
with diameter at most nδ/f /(f+1) for arbitrary δ = δ(m, n) > 0. This is summarized
in Theorem 6. The case f = 1 is solved like in Section 3.1 only that there is no need for
approximation here as the diameter is small enough to process all pairs of vertices in time
O(n2+δ). We thus assume f ⩾ 2. We adapt a space-saving technique introduced by Chechik
et al. [13]. In a bird’s-eye view, we construct a recursion tree T (s, t) of size O(nδ) for each
pair of vertices s and t. It contains all relevant replacement distances d(s, t, F ) for sets F

with up to f failures. We then show how we can simulate the search for diam(G − F ) in the
O(n2) trees in total time O(2f ).
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Afek et al. [1, Theorem 1] showed that if G is undirected, then any shortest path in G − F ,
with |F |, is a concatenation of at most |F | + 1 shortest paths in G. The condition on the
diameter and |F | ⩽ f ensure that every path below has length at most (f+1)·diam(G) ⩽ nδ/f .

Assume we have access to a path-reporting f -DSO. That means, upon query (s, t, F ),
the oracle either certifies that d(s, t, F ) = ∞, i.e., s and t are disconnected in G −F , or
reports the replacement distance and a shortest s-t-path in G −F . The preprocessing time
of the combinatorial version is assumed to be Õ(fmn1+δ) with a Õ(fn(1−1/f)δ + |P |) =
Õ(fn(1−1/f)δ) query time w.h.p. reporting path P . Here, we used the assumption f ⩾ 2,
whence |P | ⩽ nδ/f = Õ(fn(1−1/f)δ). Alternatively, we have algebraic preprocessing in time
Õ(fnω+δ). We show how to obtain the oracle in the full version, using an idea of Weimann
and Yuster [43] with a more refined analysis of the query time.

Fix two vertices s and t. We construct the tree T (s, t) recursively. Each node in the tree
is associated with a set F ⊆

(
V
2
)

containing f ′ = |F ′| ⩽ f possible failures. We have F ′ = ∅
in the root. Upon creation, the node queries the assumed oracle with (s, t, F ′) and holds the
returned path P (s, t, F ′), if any. If f ′ = f or s and t are disconnected in G − F ′, the node is
a leaf. Otherwise, it has d(s, t, F ′) many children, one for each edge of e ∈ E(P (s, t, F ′)) of
the path. The respective child is associated with the set F ′ ∪ {e}.

The tree indeed has at least one node for every distinct replacement distance d(s, t, F )
with |F | ⩽ f . To see this, let F ′, F be two sets with F ′ ⊆ F ⊆

(
V
2
)
. Clearly, we have

d(s, t, F ′) ⩽ d(s, t, F ), but d(s, t, F ′) < d(s, t, F ) can only hold if F\F ′ contains an edge of
the path P (s, t, F ′) in the node associated with F ′. The fan-out of each node is at most nδ/f ,
the height of the tree is f . For all s, t ∈ V , the trees thus have O(n2+δ) nodes in total and
can be constructed with that many queries to the f -DSO in time Õ(fn2+(2−1/f)δ).

Consider the following naive algorithm to handle a query to the f -FDO for the fault-
tolerant diameter diam(G − F ). Each tree T (s, t) is searched individually starting in the
root. The processing of a node depends on the associated set F ′. If it is a leaf or the set
F\F ′ is disjoint from the replacement path P (s, t, F ′), then we return the length d(s, t, F ′)
of the path; otherwise, we recurse on all children associated with F ′ ∪ {e} for all edges
e ∈ (F\F ′) ∩ E(P (s, t, F ′)). By the argument as above, the maximum over all reported
distances is indeed maxs,t∈V ;F ′⊆F d(s, t, F ′) = diam(G − F ). This approach can be improved
significantly by aggregating the values {d(s, t, F ′)}s,t∈V already at construction.

Observe that we never query the underlying f -DSO with a set F ′ that contains non-
edges. We prepare a hash table H whose entries are indexed by subsets of E of size at
most f . For every query (s, t, F ′) we compare the returned replacement distance with the
value H[F ′]. If no such entry exists, we initialize it with d(s, t, F ′); else, we update it to
max{H[F ′], d(s, t, F ′)}. The final table has size O(n2+δ) and we discard the trees. The table
H is constructible w.h.p. in time O(n2+δ), guaranteeing constant query time [20, 36]. However,
to simulate the naive algorithm for the query F to the f -FDO, we have to check H[F ′] for
all O(2f ) subsets F ′ ⊆ F as we do not know which ones were used during construction.

4.2 Space Lower Bound
We conclude with the space lower bound of Theorem 4. It rules out any finite stretch in
o(fn) space for an arbitrary number f of failures. We use the fact that an f -FDO with finite
stretch is able to decide whether the edges in F are a cut-set of the graph.

Assume for now that f is even. Let k be the largest integer such that fk + 1 ⩽ n. We
construct a graph G as follows. It has vertices c, v1, . . . , vfk as well as n − fk − 1 auxiliary
vertices. Define Ei = {{vi, vj} | 1 ⩽ |i − j| ⩽ f/2}. The edge set of G is

⋃fk
i=1 Ei together

with all possible edges {c, u}, including to the auxiliaries. In other words, G consists of a star

MFCS 2021
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centered at c with n − 1 leaves, and leaves vi, vj are joined by an edge iff their indices have
difference at most f/2. Let set G contain all spanning subgraphs of G that retain at least all
star edges incident to c. Since |Ei| = f , there are |G| = 2(f−1)fk/2 = 2Ω(fn) such subgraphs.

Let H be any subgraph in G. For i ̸= j with |i − j| ⩽ f/2, define the set Fi,j =
(Ei\{{vi, vj}}) ∪ {{c, vi}}. Note that Fi,j may contain non-edges. We have |Fi,j | = f and
evidently {vi, vj} is present in H iff H − Fi,j is connected. Any two f -FDOs for graphs in G
thus differ in at least one bit. For odd values f ⩾ 3, we emulate this using f − 1 failures.

For the remaining case f = 1, we use a different construction. W.l.o.g., n is even,
connecting a single excess vertex to some other vertex in the graph is immaterial. The graph
G contains two parallel paths P1 and P2, each on n/2 vertices, respectively numbered from 1
to n/2. The graph also contains a matching M in which the i-th vertex of P1 is matched
with the i-th vertex of P2. Let G be the set of all spanning subgraphs that have at least
all the edges of P1 and M . We have |G| = 2(n/2)−1 = 2Ω(n). Let H ∈ G and define ei, with
i < n/2, be the edge of P1 between the i-th and (i+1)-th vertices. The corresponding edge
of P2 is present in H if and only H − ei is connected.
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1 Introduction

Among the many different approaches to language theory, the algebraic one seems to be
particularly convenient when studying questions of expressive power. While algebraic language
theories for word languages (both finite and infinite) were already fully developed a long
time ago, the corresponding picture for languages of trees, in particular infinite ones, is much
less complete. Seminal results contributing to such an algebraic framework for languages of
infinite trees were provided by the group of Bojańczyk [7, 8] with one article considering
languages of regular trees only, and one considering languages of thin trees. The first complete
framework that could deal with arbitrary infinite trees was provided in [2, 3]. Unfortunately,
it turned out to be too complicated and technical for applications. Recently, two new general
frameworks have been introduced [1, 4] which seem to be more satisfactory: one is based on
the notion of a branch-continuous tree algebra, while the other uses regular tree algebras. The
first one seems to be more satisfactory from a theoretical point of view, while the second one
is more useful for applications, in particular for characterisation results.

In this article we concentrate on the approach based on regular tree algebras from [4]
which seems to be emerging as the standard. The goal is to apply the framework to a few
test cases and to see how well it performs for its intended purpose. While the definition of a
regular tree algebra (given in Section 2 below) is a bit naïve and seems circular at first sight,
it turns out that it is sufficient to guarantee the properties we need for applications: one can
show that (i) the class of regular tree algebras forms a pseudo-variety and that (ii) every
regular tree language has a syntactic algebra, which is in fact a regular tree algebra. By
general category-theoretic results, such as those from [6] or [5], this implies that there exists
a Reiterman type theorem for such algebras, i.e., the existence of equational characterisations
for sub-pseudo-varieties. This is precisely what is needed for a characterisation theorem.

Unfortunately progress on an algebraic theory of infinite trees has been rather slow since
matters have turned out to be significantly more complicated than the case of words or
finite trees. Hence, every step of progress is very welcome. For instance, the recent paper [11]
characterises the languages of infinite trees that are recognised by algebras of bounded growth.
The applications we are looking at in the present paper concern certain temporal logics,
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in particular, the logic EF and its counting variant cEF, and we aim to derive decidable
algebraic characterisations for them using our algebraic framework. Note that Bojańczyk and
Idziaszek have already provided a decidable characterisation for EF in [7], but their result is
only partially algebraic. They prove that a regular language is definable in EF if, and only if,
the language is bisimulation-invariant and its syntactic algebra satisfies a certain equation,
but they were not able to provide an algebraic characterisation of bisimulation invariance.
Due to our more general algebraic framework we are able to fill this gap below.

We start in the next section with a short overview of the algebraic framework from [4].
We have to slightly modify this material since it was originally formulated in the setting of
ranked trees while, when looking at temporal logics, it is more natural to consider unranked
trees and forests. The remainder of the article contains our various characterisation results.
In Section 3 we derive an algebraic characterisation of bisimulation-invariance, the result
missing in [7]. Then, in Section 4, we turn to our main result and present characterisations
for the logic cEF and some of its fragments, including a new and complete characterisation
of the logic EF.

2 Forest algebras

The main topic of this article are languages of (possibly infinite) forests and the logics defining
them. Before introducing the algebras we will use to recognise such languages, let us start
by fixing some notation and conventions. Although our main interest is in unranked forests,
we will use a more general version that combines the ranked and the unranked cases. As we
will see below (cf. Theorem 3.1), the ability to use ranks will increase the expressive power
of equations for our algebras considerably. Thus, we will work with ranked sets, i.e., sets
where every element a is assigned an arity ar(a). Formally, we consider such sets as families
A = (Am)m<ω, where Am is the set of all elements of A of arity m. Functions between ranked
sets then take the form f = (fm)m<ω with fm : Am → Bm.

We will consider (unranked, finitely branching, possibly infinite) forests where each vertex
is labelled by an element of a given ranked set A and each edge is labelled by a natural
number with the restriction that, if a vertex is labelled by an element of arity m, the numbers
labelling the outgoing edges must be less than m. If an edge u → v is labelled by the
number k, we will call v a k-successor of u. Note that a vertex may have several k-successors,
or none at all. We assume that the roots of a forest are ordered from left to right, as are
all the k-successors of a given vertex v, while we impose no ordering between a k-successor
and an l-successor, for k ̸= l. We write F0A for the set of all such A-labelled forests. (We
shall explain the index 0 further below.) We write dom(s) for the set of vertices of a forest
s ∈ F0A, and we will usually identify s with the function s : dom(s) → A that maps vertices
to their labels. We denote the empty forest by 0 and the disjoint union of two forests s and t

by s+ t (where the roots of t are added after those of s). We will frequently use term notation
to denote forests such as

a(b + c, 0, b) + b ,

which denotes a forest with two components: the first one consisting of a root labelled by
an element a of arity 3 which has two 0-successors labelled b and c, no 1-successor, and one
2-successor; the second component consists of a singleton with label b.

We use the symbol ⪯ for the forest ordering where the roots are the minimal elements
and the leaves the maximal ones. For a forest s, we denote by s|v the subtree of s attached
to the vertex v. The successor forest of v in s is the forest obtained from s|v by removing
the root v.
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For a natural number n, set [n] := {0, . . . , n − 1}. An alphabet is a finite (unranked) set Σ

of symbols. If we use an alphabet in a situation such as F0Σ where a ranked set is expected,
we will consider each symbol in Σ as having arity 1. Thus, for us a forest language over an
alphabet Σ will be a set L ⊆ F0Σ consisting of the usual unranked forests. (The power to
have elements of various arities is useful when writing down algebraic equations, but it is
rather unnatural when considering languages defined by temporal logics.) We denote by Σ∗

the set of all finite words over Σ, by Σω the set of infinite words, and Σ∞ := Σ∗ ∪ Σω.
A family of (word, forest,. . . ) languages is a function K mapping each alphabet Σ to a class
K[Σ] of (word, forest,. . . ) languages over Σ.

Our algebraic framework to study forest languages is built on the notion of an Eilenberg–
Moore algebra for a monad. To keep category-theoretical prerequisites at a minimum we will
give an elementary, self-contained definition. The basic idea is that, in the same way we can
view the product of a semigroup as an operation turning a sequence of semigroup elements
into a single element, we view the product of a forest algebra as an operation turning a given
forest that is labelled with elements of the algebra into a single element. The material in this
section is taken from [4] with minor adaptations to accommodate the fact that we are dealing
with unranked forests instead of ranked trees. Proofs can also be found in [5], although in a
much more general setting. We start by defining which forests we allow in this process.

▶ Definition 2.1.
(a) We denote by F the functor mapping a ranked set A to the ranked set FA = (FmA)m

where FmA consists of all (A ∪ {x0, . . . , xm−1})-labelled forests such that
the new labels x0, . . . , xm−1 have arity 0,
each label xi appears at least once, but only finitely many times, and
no root is labelled by an xi.

(b) The singleton function sing : A → FA maps a label a of arity m to the forest
a(x0, . . . , xm−1).

(c) The flattening function flat : FFA → FA takes a forest s ∈ FFA and maps it to the forest
flat(s) obtained by assembling all forests s(v), for v ∈ dom(s), into a single large forest.
This is done as follows. For every vertex of s(v) that is labelled by a variable xk, we take
the disjoint union of all forests labelling the k-successors of v and substitute them for xk.
This is done simultaneously for all v ∈ dom(s) and all variables in s(v) (see Figure 1 for
an example.) ⌟

Now we can define a forest algebra to be a set A equipped with a product FA → A.

▶ Definition 2.2.
(a) An ω-forest algebra A = ⟨A, π⟩ consists of a ranked set A and a function π : FA → A

satisfying the following two axioms:

the associative law π ◦ Fπ = π ◦ flat and the unit law π ◦ sing = id .

We will denote forest algebras by fraktur letters A and their universes by the corresponding
roman letter A. We will usually use the letter π for the product, even if several algebras
are involved.

(b) A morphism of ω-forest algebras is a function φ : A → B that commutes with the
products in the sense that π ◦ Fφ = φ ◦ π. ⌟

▶ Remark.
(a) In the following we will simplify terminology by dropping the ω and simply speaking

of forest algebras. But note that, strictly speaking, this name belongs to the kind of
algebras introduced by Bojańczyk and Walukiewicz in [10].
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Figure 1 The flattening operation.

(b) One can show that the functor F together with the two natural transformations flat and
sing forms what is called a monad in category theory. In this terminology, we can define
forest algebras as Eilenberg-Moore algebras for this monad.

(c) Note that a forest algebra A = ⟨A, π⟩ contains a monoid ⟨A0, +, 0⟩ (called the horizontal
monoid) and an ω-semigroup ⟨A1, A0, · ⟩ (the vertical ω-semigroup), whose operations
are derived from the product π. For instance, the vertical product a · b, for a, b ∈ A1,
is formed as the produce π(s), where s consists of a root labelled a, an internal vertex
labelled b, and a leaf labelled be the variable x0.

(d) The reason why we do not allow forests where some root is labelled by a variable xk is
that an infinite product of such forests is not always defined. For instance, multiplying
an infinite sequence of forests of the form x0 + a would create a forest with infinitely
many components, which is not allowed.

Sets of the form FA can be equipped with a canonical forest algebra structure by using
the flattening operation flat : FFA → FA for the product. By general category-theoretical
considerations it follows that algebras of this form are exactly the free forest algebras
(generated by A). In this article we consider forest languages over an alphabet Σ as subsets
L ⊆ F0Σ. Such a language is recognised by a morphism η : FΣ → A of forest algebras if
L = η−1[P ] for some P ⊆ A0.

Example. Let Σ := {a, b}. We can recognise the language L ⊆ F0Σ of all forests s containing
at least one occurrence of the letter a as follows. Let A be the algebra consisting of two
elements 0m and 1m, for each arity m, where the product π maps a forest s ∈ FmA to 1m

if at least one vertex is labelled by 1n, for some n. Otherwise, s is mapped to 0m. Then
L = φ−1(10) where the morphism φ : F0Σ → A is defined by φ(a) := 11 and φ(b) := 01.
(As FΣ is freely generated by the set {a, b}, this determines φ for all inputs.)

In analogy to the situation with word languages we would like to have a theorem stating
that a forest language is regular if, and only if, it is recognised by a morphism into some
finite forest algebra. But this statement is wrong for two reasons. The first one is that every
forest algebra with at least one element of positive arity has elements of every arity and,
thus, is infinite. (For instance, given a ∈ A1, we obtain an element a(x0 + · · · + xn−1) ∈ An

of arity n). To fix this, we have to replace the property of being finite by that of having only
finitely many elements of each arity. We call such algebras finitary.
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But even if we modify the statement in this way it still fails since one can find finitary
forest algebras recognising non-regular languages. (An example for tree languages is given by
Bojańczyk and Klin in [9].) Therefore we have to restrict our class of algebras. A simple way
to do so is given by the class of (locally) regular algebras introduced in [4] where all of the
following results are taken from (again in the case of trees instead of forests).

▶ Definition 2.3. Let A be a forest algebra.
(a) A subset C ⊆ A is regularly embedded if, for every element a ∈ A, the preimage

π−1(a) ∩ FC is a regular (i.e., automaton recognisable) language over C.
(b) A is locally regular if every finite subset is regularly embedded.
(c) A is regular if it is finitary, finitely generated, and locally regular. ⌟
The definition of a regular forest algebra is not very enlightening. We refer the interested
reader to [4] for a purely algebraic (but much more complicated) characterisation.

▶ Theorem 2.4. Let L ⊆ F0Σ be a forest language. The following statements are equivalent.
(1) L is regular (i.e., automaton recognisable).
(2) L is recognised by a morphism into a locally regular forest algebra.
(3) L is recognised by a morphism into a regular forest algebra.
(The reason why we introduce two classes is that locally regular algebras enjoy better closure
properties, while the regular ones are more natural as recognisers of languages.) One can
show (see [4]) that the (locally) regular algebras form a pseudo-variety in the sense that
locally regular algebras are closed under quotients, subalgebras, finite products, and directed
colimits, while regular algebras are closed under quotients, finitely generated subalgebras,
finitely generated subalgebras of finite products, and so-called “rank-limits”. More important
for our current purposes is the existence of syntactic algebras and the fact that these are
always regular.

▶ Definition 2.5. Let L ⊆ FΣ be a forest language.
(a) The syntactic congruence of L is the relation

s ∼L t : iff p[s] ∈ L ⇔ p[t] ∈ L , for every context p ,

where a context is a (Σ ∪ {□})-labelled forest (where □ is a new symbol of the same
arity as s and t) and p[s] is the forest obtained from p by replacing each vertex labelled
by □ by the forest s.

(b) The syntactic algebra of L is the quotient S(L) := FΣ/∼L. ⌟

▶ Theorem 2.6. The syntactic algebra S(L) of a regular forest language L exists, it is regular,
and it is the smallest forest algebra recognising L. Furthermore, S(L) can be computed given
an automaton for L.

Regarding the last statement of this theorem, we should explain what we mean by
computing a forest algebra. Since forest algebras have infinitely many elements, we cannot
simply compute the full multiplication table. Instead, we say that a regular forest algebra A

is computable if, given a number n < ω, we can compute a list ⟨Aa⟩a∈An
of automata such

that Aa recognises the set π−1(a) ∩ FC, for some fixed set C of generators.

3 Bisimulation

To illustrate the use of syntactic algebras let us start with a simple warm-up exercise: we
derive an algebraic characterisation of bisimulation invariance. This example also explains
why algebras with elements of higher arities are needed (this is the reason Bojańczyk and
Idziaszek [7], whose framework supported only arity 1, had to leave such a characterisation
as an open problem).
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Recall that a bisimulation between two forests s and t is a binary relation Z ⊆
dom(s) × dom(t) such that ⟨u, v⟩ ∈ Z implies that

s(u) = t(v) and,
for every k-successor u′ of u, there is some k-successor v′ of v with ⟨u′, v′⟩ ∈ Z and vice
versa.

Two trees are bisimilar if there exists a bisimulation between them that relates their roots.
More generally, two forests are bisimilar if every component of one is bisimilar to some
component of the other. A language L of forests is bisimulation-invariant if s ∈ L implies
t ∈ L, for every forest t bisimilar to s.

▶ Theorem 3.1. A forest language L ⊆ F0Σ is bisimulation-invariant if, and only if, the
syntactic algebra S(L) satisfies the following equations:

c + c = c , a(x0 + x0) = a(x0) ,

c + d = d + c , a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3) ,

for all a ∈ S1(L) and c, d ∈ S0(L).

Proof. Let η : FΣ → S(L) be the syntactic morphism mapping a forest to its ∼L-class.
(⇒) Given elements c, d ∈ S0(L), we fix forests s ∈ η−1(c) and t ∈ η−1(d). If L is

bisimulation-invariant, we have

p[s] ∈ L iff p[s + s] ∈ L and p[s + t] ∈ L iff p[t + s] ∈ L ,

for every context p. Consequently, s ∼L s + s and s + t ∼L t + s, which implies that c = c + c

and c + d = d + c.
The remaining two equations are proved similarly. Fix a ∈ S1(L) and s ∈ η−1(a). Setting

s′ := s(x0 + x0), bisimulation-invariance of L implies that

p[s] ∈ L iff p[s′] ∈ L , for every context p .

Consequently s ∼L s′ and a(x0) = η(s) = η(s′) = a(x0 + x0).
Similarly, for t := s(x0 + x1 + x2 + x3) and t′ := s(x0 + x2 + x1 + x3), we have

p[t] ∈ L iff p[t′] ∈ L , for every context p .

Hence, t ∼L t′ and a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3).
(⇐) Suppose that S(L) satisfies the four equations above and let s and s′ be bisimilar

forests. We claim that η(s) = η(s′), which implies that s ∈ L ⇔ s′ ∈ L.
Fix a bisimulation relation Z ⊆ dom(s) × dom(s′). W.l.o.g. we may assume that Z only

relates vertices on the same level of the respective forests and that it only relates vertices
whose predecessors are also related. (If not, we can always remove the pairs not satisfying
this condition without destroying the fact that Z is a bisimulation.) Let ≈ be the equivalence
relation on dom(s) ∪ dom(s′) generated by Z.

We will transform the forests s and s′ in several steps while preserving their value under η

until both forests are equal. (Note that each of these steps necessarily modifies the given forest
at every vertex.) An example of this process can be found in Figure 2. The first step consists
in translating the problem into the algebra S(L). We define two new forests t0, t′

0 ∈ F0S(L)
with the same domains as, respectively, s and s′ and the following labelling. If v ∈ dom(s)
has the 0-successors u0, . . . , un−1, we set

t0(v) := η(s(v))(x0 + · · · + xn−1)

and we make ui an i-successor of v in t0. We obtain t′
0 from s′ in the same way. By associativity

it follows that π(t0) = η(s) and π(t′
0) = η(s′).
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Figure 2 Transforming bisimilar forests.

Next we make the shapes of the forests t0 and t′
0 the same. Let t1 and t′

1 be the forests
with the same domains as t0 and t′

0 and the following labelling. For every vertex v of t0 with
successors u0, . . . , un−1 and labelling

t0(v) = a(x0 + · · · + xn−1) ,

we set

t1(v) := a(x0 + · · · + x0 + · · · + xn−1 + · · · + xn−1) ,

where each variable xi is repeated mi times and the numbers mi are determined as follows.
Let M be some number such that, for every i < n, no vertex v′ ≈ v has at more than M

successors u′ with u′ ≈ ui. (Note that there are only finitely many such vertices.) We choose
the constants mi such that∑

k∈Ui

mk = M , where Ui := { k < n | uk ≈ ui } .

We obtain the forest t′
1 in the same way from t′

0. By the top right equation in the statement of
the theorem, the value of the product is not affected by this modification. Hence, π(t1) = π(t0)
and π(t′

1) = π(t′
0).

Finally, let t2 and t′
2 be the unravelling of, respectively, t1 and t′

1, i.e., the forest where
for every vertex v with successors u0, . . . , un−1 and label

t1(v) = a(x0 + · · · + x0 + · · · + xn−1 + · · · + xn−1) ,

we set

t2(v) := a(x0 + · · · + xk + · · · + xl + · · · + xm)

(where we number the variables from left-to-right, e.g., a(x0 + x0 + x1 + x2 + x2) becomes
a(x0 + x1 + x2 + x3 + x4)), and we duplicate each attached subforest a corresponding number
of times such that the value of the product does not change. We do the same for t′

2.
We have arrived at a situation where, for each component r of the forests t2, there is some

component r′ of t′
2 that differs only in the ordering of successors, but not in their number.

Consequently, there exists a bijection σ : dom(t) → dom(r′) such that, for a vertex v of r

with successors u0, . . . , un−1,

r′(v) = r(v)(xσv(0) + · · · + xσv(n−1)) ,

where the function σv : [n] → [n] is chosen such that σ(ui) is the σv(i)-successor of σ(v).
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Let r̂ be the tree obtained from r as follows. For a vertex v with successors u0, . . . , un−1
and labelling

r(v) = a(x0 + · · · + xn−1) ,

we set

r̂(v) := a(xσv(0) + · · · + xσv(n−1)) ,

and we reorder the attached subtrees accordingly. By associativity and the bottom right
equation, this does not change the value of the product. It follows that r̂ = r′. Consequently,
π(r) = π(r′).

We have shown that, for every component of t0 there is some component of t′
0 with the

same product. Therefore, we can write

π(t0) = a0 + · · · + am−1 and π(t′
0) = b0 + · · · + bn−1

where the sets {a0, . . . , am−1} and {b0, . . . , bm−1} coincide. Using the equations c + c = c

and c + d = d + c we can therefore transform π(t0) into π(t′
0). Consequently,

η(s) = π(t0) = π(t′
0) = η(s′) .

As η recognises L it follows that s ∈ L ⇔ s′ ∈ L, as desired. ◀

Note that we immediately obtain a decision procedure for bisimulation-invariance from
this theorem, since we can compute the syntactic algebra and check whether it satisfies the
given set of equations.

▶ Corollary 3.2. It is decidable whether a given regular language L is bisimulation-invariant.

4 The Logic cEF

Let us now proceed to the main result of this article: a characterisation of the temporal logic
cEF. For simplicity, the following definition of its semantics only considers forests instead of
arbitrary transition systems.

▶ Definition 4.1.
(a) Counting EF, cEF for short, has two kinds of formulae: tree formulae and forest formulae,

which are inductively defined as follows.
Every forest formula is a finite boolean combination of formulae of the form Ekφ

where k is a positive integer and φ a tree formula.
Every tree formula is a finite boolean combination of (i) forest formulae and (ii) for-
mulae of the form Pa, for a ∈ Σ.

To define the semantics we introduce a satisfaction relation |=f for forest formulae and
one |=t for tree formulae. In both cases boolean combinations are defined in the usual
way. For a tree t, we define

t |=t Pa : iff the root of t has label a ,

t |=t φ : iff t′ |=f φ , for a forest formula φ , where t′ denotes the successor
forest of the root of t .

For a forest s, we define

s |=f Ekφ : iff there exist at least k vertices v, distinct from the roots, such that

s|v |= φ .
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(b) For k, m < ω, we denote by cEFk the fragment of cEF that uses only operators El where
l ≤ k, and cEFm

k is the fragment of cEFk where the nesting depth of the operators El is
restricted to m. For k = 1, we set EF := cEF1 and EFm := cEFm

1 . ⌟

The following is our main theorem. Before giving the statement a few technical remarks
are in order. In the equations below we make use of the ω-power aω of an element a ∈ A1
(which is the infinite vertical product aaa . . . ), and the idempotent power aπ (which is the
defined as aπ = an for the minimal number n with anan = an). For the horizontal semigroup
we use multiplicative notation instead: n × a for a + · · · + a and π × a for n × a with n as
above.

When writing an ω-power of an element of arity greater than one, we need to specify with
respect to which variable we take the power. We use the notation aωi to indicate that the vari-
able xi should be used. Note that, when using several ω-powers like in (a(x0, (b(x0, x1))ω1))ω0 ,
the intermediate term after resolving the inner power can be a forest with infinitely many
occurrences of the variable x0. But after resolving the outer ω-power, we obtain a forest
without variables, i.e., a proper element of F0A. Consequently, the equations below are all
well-defined. Finally, to keep notation light we will frequently write x instead of x0, if this is
the only variable present.

▶ Theorem 4.2. A forest language L ⊆ F0Σ is definable in the logic cEFk if, and only if,
the syntactic algebra S(L) satisfies the following equations:

c + d = d + c (a(x) + b(x))ω = (ab(x))ω

(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω

aω + aω = aω (a(x + c + c))ω = (a(x + c))ω

(abb′)ω = (ab′b)ω
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0

(aab)ω = (ab)ω [a(x + bc + c)]ω = [a(x + bc)]ω

an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c ,

[a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)

for all a, b, b′ ∈ S1(L), c, d ∈ S0(L), an ∈ Sn(L), and n ≤ k.

No attempt was made to simplify the above axioms. While having a simpler description
would of course be nice, the importance of this result lies in the facts that (i) an equational
axiomatisation exists; that (ii) the equations can be checked algorithmically; and (iii) that
our framework was sufficient to derive them.

We defer the proof to the appendix. Let us here concentrate on some of the consequences
instead.

▶ Corollary 4.3. For fixed k, it is decidable whether a given regular language L is cEFk-
definable.

For the logic cEF, where the value of k is not bounded, a similar result can now be
derived as a simple corollary. The basic argument is contained in the following lemma.

▶ Lemma 4.4. Given a forest algebra A that is generated by A0 ∪ A1, we can compute a
number K such that, if A satisfies the equations of Theorem 4.2 for some value of k, it
satisfies them for k = K.

Proof. Set K := m2m1
0 + m0 where m0 := |A0| and m1 := |A1|. By assumption there is some

number k for which A satisfies the equations of Theorem 4.2. W.l.o.g. we may assume that
k ≥ K. The only two equations depending on k are
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(1)k an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c

(2)k [a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)
We have to show that A also satisfies (1)K and (2)K .

For (2)K , note that k ≥ K ≥ |A0| implies that K × c = π × c = k × c, for all c ∈ A0.
Consequently,

a(K × x)(c) = a(k × x)(c) and, therefore, (a(K × x))π(c) = (a(k × x))π(c) .

This implies the claim.
For (1)K , fix a ∈ An and c ∈ A0. If n ≤ K − m0, then K − n ≥ m0 = |A0| implies that

(K − n) × c = π × c. Consequently,

a(c, . . . , c) + (K − n) × c = a(c, . . . , c) + π × c = a(c, . . . , c) + π × c + c

and we are done. Thus, we may assume that n > K − m0 = m2m1
0 . As A is generated by

A0 ∪ A1, there exists some forest s ∈ Fi(A0 ∪ A1) with π(s) = a. We distinguish several cases.
If some of the variables x0, . . . , xn−1 does not appear in s, we can use (1)k to show that

a(c, . . . , c, . . . , c) + (K − n) × c = a(c, . . . , c + · · · + c, . . . c) + (K − n) × c

= a(c, . . . , k × c, . . . , c) + (K − n) × c

= a(c, . . . , k × c, . . . , c) + (K − n) × c + c .

Next, suppose that s is highly branching in the sense that it has the form

s = r(t0 + · · · + tm2
0−1)

where each subterm ti contains some variable. Then there are indices i0 < · · · < im0−1 such
that π(ti0(c̄)) = · · · = π(tim0−1(c̄)) (where c̄ denotes as many copies of c as appear in the
respective term). Hence, (1)k again implies that

a(c̄) + (K − n) × c = π(s(c̄)) + (K − n) × c

= π
(
r
(
t0(c̄) + · · · + tm2

0−1(c̄)
))

+ (K − n) × c

= π
(
r
(
t0(c̄) + · · · + tm2

0−1(c̄) + k × ti0(c̄)
))

+ (K − n) × c

= a(c̄) + (K − n) × c + c .

Note that a tree of height h := m1 where every vertex has at most d := m2
0 successors has

at most dh = m2m1
0 leaves. Hence, if s is not highly branching in the sense above, the fact

that it contains n > m2m1
0 variables implies that there must be a chain v0 ≺ · · · ≺ vm1 of

vertices such that, for every i < m1, there is some leaf u labelled by a variable with vi−1 ≺ u

and vi ⪯̸ u. (For i = 0, we omit the first condition.) Hence, we can decompose s as

s(c̄) = r0(c̄, r1(c̄, . . . rm1(c̄))) ,

and there are two indices i < j such that

π(r0(c̄, . . . ri(c̄, x))) = π(r0(c̄, . . . rj(c̄, x))) .

Consequently, we can use pumping to obtain a term

π(s(c̄)) = π
(
r0(c̄, . . . , ri(c̄, x))

[
ri+1(c̄, . . . , rj(c̄, x))

]k
rj+1(c̄, . . . , rm1(c̄))

)
which contains at least k occurrences of c, and the claim follows again by (1)k. ◀
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According to this lemma, we can check for cEF-definability of a language L, by computing
its syntactic algebra S(L), the associated constant K, and then checking the equations for
k = K.

▶ Corollary 4.5. It is decidable whether a given regular language L is cEF-definable.

When taking the special case of k = 1 in Theorem 4.2, we obtain the following character-
isation of EF-definability.

▶ Theorem 4.6. A forest language L ⊆ F0Σ is definable in the logic EF if, and only if, the
syntactic algebra S(L) satisfies the following equations:

c + d = d + c (a(x) + b(x))ω = (ab(x))ω

(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω

(abb′)ω = (ab′b)ω (a(x + c + c))ω = (a(x + c))ω

(aab)ω = (ab)ω
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0

ac = ac + c c = c + c [a(x + aπc)]ω = aπc ,

for all a, b, b′ ∈ S1(L) and c, d ∈ S0(L).

▶ Corollary 4.7. It is decidable whether a given regular language L is EF-definable.
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A The proof of Theorem 4.2

For the proof of Theorem 4.2, we need to set up a bit of machinery. We start by defining the
suitable notion of bisimulation for cEFk. The difference to the standard notion is that we
use reachability instead of the edge relation and that we also have to preserve the number of
reachable positions.

▶ Definition A.1. Let m, k < ω.
(a) For trees s, t ∈ FΣ, we define

s ≈0
k t : iff the roots of s and t have the same label

s ≈m+1
k t : iff the roots of s and t have the same label ,

for every k-tuple x̄ in dom(s) not containing the root, there is
some k-tuple ȳ in dom(t) not containing the root such that

s|xi ≈m
k t|yi for all i < k and,

for every k-tuple ȳ in dom(t) not containing the root, there is
some k-tuple x̄ in dom(s) not containing the root such that

s|xi
≈m

k t|yi
for all i < k .

To simplify notation, we will frequently write x ≈m
k y for vertices x and y instead of the

more cumbersome s|x ≈m
k t|y.

(b) For forests s, t ∈ FΣ with possibly several components, we set

s ∼m+1
k t : iff for every k-tuple x̄ in s there is some k-tuple ȳ in t such that

s|xi
≈m

k t|yi
for all i < k and,

for every k-tuple ȳ in t there is some k-tuple x̄ in s such that
s|xi ≈m

k t|yi for all i < k . ⌟

Let us show that this notion of bisimulation captures the expressive power of cEF. The
proof is mostly standard. We start by introducing the following notion of a type.

▶ Definition A.2.
(a) We define the type tpm

k (s) of a tree s ∈ FΣ by

tp0
k(s) := s(⟨⟩) and tpm+1

k (s) := ⟨s(⟨⟩), θs⟩

where ⟨⟩ denotes the root of s and

θs :=
{

⟨l, σ⟩
∣∣ l ≤ k , x0, . . . , xl−1 ∈ dom(s) distinct, not equal to the root ,

σ = tpm
k (s|x0) = · · · = tpm

k (s|xl−1)
}

.

(b) For an arbitrary forest s ∈ FΣ, we set Tpm+1
k (s) := θs, where

θs :=
{

⟨l, σ⟩
∣∣ l ≤ k , x0, . . . , xl−1 ∈ dom(s) distinct ,

σ = tpm
k (s|x0) = · · · = tpm

k (s|xl−1)
}

. ⌟

As standard proof establishes the following equivalences.
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▶ Lemma A.3. Let k, m < ω.
(a) For trees s, t ∈ F0Σ, the following statements are equivalent.

(1) s ≈m
k t

(2) tpm
k (s) = tpm

k (t)
(3) s |= φ ⇔ t |= φ , for all φ ∈ cEFm

k .

(b) For arbitrary forests s, t ∈ F0Σ, the following statements are equivalent.
(1) s ∼m

k t

(2) Tpm
k (s) = Tpm

k (t)
(3) s |= φ ⇔ t |= φ , for all φ ∈ cEFm

k .

▶ Corollary A.4. A language L ⊆ FΣ is cEFm
k -definable if, and only if, it is regular and

satisfies

s ∼m
k t implies s ∈ L ⇔ t ∈ L , for all regular forests s, t ∈ F0Σ .

Proof. (⇒) follows by the implication (1) ⇒ (3) of Lemma A.3.
(⇐) Set

φ :=
∨ {

χτ

∣∣ τ = Tpm
k (s) for some regular forest s ∈ L

}
,

where χτ are the formulae from the proof of Lemma A.3. For a regular forest t ∈ F0Σ, it
follows that

t |= φ iff Tpm
k (t) = Tpm

k (s) , for some regular forest s ∈ L ,

iff t ∼m
k s , for some regular forest s ∈ L ,

iff t ∈ L .

Let K be the language defined by φ. Since L and K are both regular languages that contain
the same regular forests, it follows that L = K. Thus, L is cEFm

k -definable. ◀

We want to show that an algebra recognises cEFk-definable languages if, and only if, it
satisfies the following equations.

▶ Definition A.5.
(a) A forest algebra A is an algebra for cEFk if it is finitary, generated by A0 ∪ A1, and

satisfies the following equations.
(G1)k an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c

(G1) (ab)π = b(ab)π

(G2) aω + aω = aω

(G3) c + d = d + c

(G4) (a(x) + b(x))ω = (ab(x))ω

(G5) (a(x) + c)ω = (a(x + c))ω

(G6) (a(x + c + c))ω = (a(x + c))ω

(G7)
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0

(G8) (abb′)ω = (ab′b)ω

(G9) (aab)ω = (ab)ω

(G10) [a(x + bc + c)]ω = [a(x + bc)]ω
(G12)k [a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)

where a, b, b′ ∈ A1, c, d ∈ A0, an ∈ An, and n ≤ k.
(b) A forest algebra A is an algebra for cEF if it is an algebra for cEFk, for some k ≥ 1. ⌟
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Figure 3 A forest s with a convex set U (in bold) that has three close U -ends (on the left) and
five far ones (on the right). The height is h(s, U) = 2.

In the proof that algebras for cEF recognise exactly the cEF-definable languages, we use
one of the Green’s relations (suitably modified for forest algebras).

▶ Definition A.6. Let A be a forest algebra. For a, b ∈ A0, we define

a ≤L b : iff a = c(b) or a = b + d , for some c ∈ A1 , d ∈ A0 . ⌟

▶ Lemma A.7. Let A be an algebra for cEFk.
(a) The relation ≤L is antisymmetric.
(b) For a ∈ A1 , c ∈ A0, we have

c = c + c implies ac = ac + c ,

c = a(c, c) implies c = c + c .

Proof.
(a) For a contradiction, suppose that there are elements a ̸= b with a ≤L b ≤L a. By

definition, we can find elements c and d such that (1) a = c(b) or (2) a = b + c, and
(i) b = d(a) or (ii) b = a + d. We have thus to consider four cases. In each of them we
obtain a contradiction via (G1)k or (G2).

(1, i) a = cb = cda = (cd)π(a) = d(cd)π(a) = da = b .

(1, ii) a = cb = c(a + d) = (c(x + d))π(a) = (c(x + d))π(a) + d = a + d = b .

(2, i) b = da = d(b + c) = (d(x + c))π(b) = (d(x + c))π(b) + c = b + c = a .

(2, ii) a = b + c = a + d + c = a + k × (d + c) = a + k × (d + c) + d = a + d = b .

(b) By (G1)k we have

c = c + c implies ac = a(c + c) = a(k × c) = a(k × c) + c = ac + c ,

c = a(c, c) implies c = a(c, c) = (a(x, c))π(c) = (a(x, c))π(c) + c = c + c . ◀

Let us take a look at the following situation (see Figure 3). Let s be a forest and U a set
of vertices. We assume that U is convex in the sense that u ⪯ v ⪯ w and u, w ∈ U implies
v ∈ U (where ⪯ denotes the forest order). We call the maximal elements (w.r.t. ⪯) of U the
U -ends. An U -end u is close if u′ ∈ U , for all u′ ⪯ u. Otherwise, it is far. We would like to
know how many of the U -ends are close.

▶ Lemma A.8. Let m ≥ 0 and k ≥ 1, let s ∼m+k+2
k t be two forests, U ⊆ dom(s) a convex

set that is closed under ≈m
k , and set

V := { v ∈ dom(t) | u ≈m
k v for some u ∈ U } .
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(a) V is convex and closed under ≈m
k .

(b) The numbers of ends of U and V are the same, or both numbers are at least k.
(c) If U has less than k ends, then U is finite if, and only if, V is finite.
(d) If U is finite and has less than k ends, then U and V have the same numbers of close

ends and of far ends.

Proof.
(a) If V is not convex, there are vertices v ≺ v′ ≺ v′′ of t with v, v′′ ∈ V and v′ /∈ V . Fix

vertices u ≺ u′ ≺ u′′ with u ≈m+2
k v, u′ ≈m+1

k v′, and u′′ ≈m
k v′′. By definition of V , we

have u, u′′ ∈ U and u′ /∈ U . This contradicts the fact that U is convex.
To see that V is closed under ≈m

k , suppose that v ∈ V and v ≈m
k v′. By definition of V ,

there is some u ∈ U with u ≈m
k v. Hence, u ≈m

k v ≈m
k v′. As ≈m

k is transitive, this implies
that v′ ∈ V .

(b) For a contradiction, suppose that U has n < k ends while V has more than n ends. (The
other case follows by symmetry.) Choose n + 1 ends v0, . . . , vn ∈ V . Since s ≈m+2

k t,
there are vertices u0, . . . , un in s with ui ≈m+1

k vi. By definition of V , we have ui ∈ U .
By assumption, there is some index j such that uj is not an end. Hence, we can find a
vertex u′ ≻ uj with u′ ∈ U . Fix a vertex v′ ≻ vj of t with u′ ≈m

k v′. Then v′ ∈ V and
vj is not an end. A contradiction.

(c) For a contradiction, suppose that U is finite, but V is not. (The other case follows by
symmetry.) By (b), V has only finitely many ends. Hence, there is some element v ∈ V

such that v ⪯̸ v′ for every end v′ of V . Since s ≈m+3
k t, we can find a vertex u of s with

u ≈m+2
k v. This implies that u ∈ U . As U is finite, we can find some end u′ of U with

u ⪯ u′. Fix some v′ ⪰ v with u′ ≈m+1
k v′. Then u′ ∈ U implies v′ ∈ V . By choice of v,

there is some v′′ ≻ v′ with v′′ ∈ V . Choose u′′ ≻ u′ with u′′ ≈m
k v′′. By choice of u′, we

have u′′ /∈ U . This contradicts the fact that v′′ ∈ V .
(d) By (b), we only need to prove that the number of close ends is the same. Let Û and V̂ be

the sets of U -ends and V -ends, respectively. We denote by N(s, U) the number of close
U -ends and by F (s, U) the set of all proper subforests s′ of s that are attached to some
vertex v that does not belong to U but where at least one root belongs to U . (A forest s′

is a proper subforest of s attached at v if s′ can be obtained from the subtree s|v by
removing the root v.) We define the following equivalence relation.

⟨s, U⟩ ≍0 ⟨t, V ⟩ : iff N(s, U) = N(t, V ) ,

⟨s, U⟩ ≍i+1 ⟨t, V ⟩ : iff N(s, U) = N(t, V ) and
#τ (s, U) = #τ (t, V ) , for every ≍i-class τ ,

where #τ (s, U) denotes the number of subforests s′ ∈ F (s, U) that belong to the class τ .
We define the U -height of s by

h(s, U) :=
{

0 if F (s; U) = ∅
1 + max { h(s′, U) | s′ ∈ F (s, U) } otherwise.

By induction on l, we will prove the following claim:

(∗) s ∼m+l+2
k t and h(s, U) ≤ l implies h(s, U) = h(t, V ) and ⟨s, U⟩ ≍l ⟨t, V ⟩ .

As h(s, U) ≤ |Û | < k, it then follows that ⟨s, U⟩ ≍k ⟨t, V ⟩. In particular, N(s, U) =
N(t, V ), as desired.
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It thus remains to prove (∗). First, consider the case where l = 0. If h(t, V ) > 0, there is
some V -end v that is not close. Fix some vertex v′ ≺ v with v′ /∈ V . Since s ∼m+2

k t, we
can find vertices u′ ≺ u of s with u′ ≈m+1

k v′ and u ≈m
k v. By definition of V , it follows

that u′ /∈ U and u ∈ U . As U is finite, we can find some U -end w ⪰ u. But u′ ≺ u ⪯ w

implies that w is not close. Hence, h(s, U) > 0. A contradiction.
For the second part, suppose that ⟨s, U⟩ ̸≍0 ⟨t, V ⟩, that is, N(s, U) ̸= N(t, V ). By
symmetry, we may assume that m := N(s, U) < N(t, v). Pick m+1 distinct close V -ends
v0, . . . , vm. Since m + 1 ≤ k and s ∼m+2

k t, there are elements u0, . . . , um ∈ dom(s) with
ui ≈m+1

k vi. There must be some index j such that uj is not a close U -end. As U is closed
under ≈m

k and uj ≈m
k vj ≈m

k u, for some u ∈ U , it follows that uj ∈ U . Furthermore,
uj ≈m+1

k vj and the fact that vj is a V -end implies that u′ /∈ U , for all u′ ≻ uj . Thus,
uj is a U -end. But h(s, U) = 0 implies that all U -ends of s are close. A contradiction.
For the inductive step, suppose that s ∼m+(l+1)+2

k t holds but we have h(s, U) ̸= h(t, V )
or ⟨s, U⟩ ̸≍l+1 ⟨t, V ⟩. We distinguish several cases.

(i) Suppose that h(s, U) > h(t, V ). By definition of h, there is a subforest s′ ∈ F (s, U)
with h(s′, U) = h(s, U) − 1. Then there is some subforest t′ of t with s′ ∼m+l+2

k t′.
By inductive hypothesis it follows that

h(s, U) = h(s′, U) + 1 = h(t′, V ) + 1 < h(t, V ) + 1 ≤ h(s, U) .

A contradiction.
(ii) Suppose that h(s, U) < h(t, V ). By definition of h, there is a subforest t′ ∈ F (t, V )

with h(t′, V ) = h(t, V ) − 1. Fix a subforest s′ of s with s′ ∼m+l+2
k t′. By inductive

hypothesis, it follows that

h(s, U) > h(s′, U) = h(t′, V ) = h(t, V ) − 1 ≥ h(s, U) .

A contradiction.
(iii) Suppose that N(s, U) ̸= N(t, v) and there is no ≍l-class τ with #τ (s, U) ̸= #τ (t, V ).

Then we have |Û | − N(s, U) = |V̂ | − N(t, V ). Since |Û | = |V̂ | it follows that
N(s, U) = N(t, V ). A contradiction.

(iv) Finally, suppose that there is some ≍l-class τ with #τ (s, U) ̸= #τ (t, V ). By
symmetry, we may assume that m := #τ (s, U) < #τ (t, V ). We choose m+1 vertices
v0, . . . , vm of t such that the attached subforests have class τ . Since s ∼m+(l+1)+2

k t

and m + 1 ≤ k, there are vertices u0, . . . , um of s such that ui ∼m+l+2
k vi, for all

i ≤ m. Let si be the subforest of s attached to ui, and ti the subforest of t attached
to vi. By inductive hypothesis, it follows that si ≍l ti, for i ≤ m. Thus, s has at
least m + 1 different subforest in the class τ . A contradiction. ◀

▶ Proposition A.9. Let A be an algebra for cEFk. Then

s ≈(k+3)(|A0|+1)
k t implies π(s) = π(t) , for all regular trees s, t ∈ F0(A0 ∪ A1) .

Proof. Let m be the number of L-classes above b := π(s) (including that of b itself). We will
prove by induction on m that

s ≈f(m)
k t implies π(t) = b ,

where f(m) := (m + 1)(k + 3). Set

S := { x ∈ dom(s) | π(s|x) = b } ,

T := { y ∈ dom(t) | x ≈f(m−1) y for some x ∈ S } .
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As t is regular it is the unravelling of some finite graph G. For each y ∈ T , we will prove
that π(t|y) = b by induction on the number of strongly connected components of G that
are contained in T and that are reachable from y. Hence, fix y ∈ T , let C be the strongly
connected component of G containing y, and choose some x ∈ S with x ≈f(m)−1

k y. We
distinguish two cases.
(a) Let us begin our induction with the case where C is trivial, i.e., it consists of the single

vertex y without self-loop. Then

t|y = a(t0 + · · · + tn−1 + t′
0 + · · · + t′

q−1)

where a := t(y) and the subtrees ti lie outside of T while the t′
i contain vertices in T . Set

di := π(ti). By our two inductive hypotheses, we already know that π(t′
i) = b and that

b <L di. Hence,

π(t|y) = a(d0 + · · · + dn−1 + q × b) .

We have to show that this value is equal to b. Suppose that

s|x = a(s0 + · · · + sl−1 + s′
0 + · · · + s′

p−1) ,

where again the trees si lie outside of S, while the s′
i contain vertices of S. Setting

ci := π(si) it follows that

π(s|x) = a(c0 + · · · + cl−1 + p × b) .

Since x ∈ S, we already know that this value is equal to b. Hence, it remains to show
that

a(c0 + · · · + cl−1 + p × b) = a(d0 + · · · + dn−1 + q × b) .

We start by proving that

c0 + · · · + cl−1 = d0 + · · · + dn−1 .

By (G4) it is sufficient to prove that, for every c ∈ A0, the number of occurrences of the
value c in the sum on the left-hand side is either the same as that on the right-hand
side, or that we can add an arbitrary number of c on both sides without changing
the respective values. Hence, consider some element c ∈ A0 where these numbers are
different. Let U be the set of all vertices u ≻ x such that π(s|u) = c and let V be the
set of vertices v ≻ y with π(t|v) = c. As ≤L is antisymmetric, these two sets are convex.
Furthermore, by inductive hypothesis on m, they are also closed under ≈f(m−1)

k . Since
f(m) − 1 = f(m − 1) + k + 2, we can therefore apply Lemma A.8 and we obtain one of
the following cases.

(i) U and V both have at least k ends. Then we can write s0+· · ·+sl−1 as r(s′
0, . . . , s′

k−1)
with π(s′

i) = c. Hence, it follows by (G1)k that

c0 + · · · + cl−1 = π(r)(c, . . . , c) = π(r)(c, . . . , c) + π × c

= c0 + · · · + cl−1 + π × c .

For t it follows in the same way that

d0 + · · · + dn−1 = d0 + · · · + dn−1 + π × c .

Consequently, we can add an arbitrary number of terms c to both sides of the above
equation and thereby make their numbers equal.
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(ii) Both U and V are infinite, but each has less than k ends. Thus, U contains an
infinite path and we can use Ramsey’s Theorem (or the fact that s is regular) to
write π(s0 + · · · + sl−1) as a′eω where ec = c = eω. By (G3) and (G1)k it follows
that

c0 + · · · + cl−1 = a′eω = a′(eω + · · · + eω) = a′(c + · · · + c)
= a′(c + · · · + c) + π × c

= c0 + · · · + cl−1 + π × c .

For t|y, we similarly obtain

d0 + · · · + dn−1 = d0 + · · · + dn−1 + π × c ,

and we can equalise the number of c as in Case (i).
(iii) The last remaining case is where both U and V are finite and they have the same

number of close ends. Then the sums c0 + · · · + cl−1 and d0 + · · · + dn−1 contain
the same number of terms with value c and there is nothing to prove.

We have thus shown that

c0 + · · · + cl−1 = d0 + · · · + dn−1 .

If p = q, we are done. Hence, we may assume that p ̸= q. To conclude the proof, we set

U := { u ∈ S | x ≺ u } and V := { v ∈ T | y ≺ v } .

If p > 0, then x ≈f(m)−1
k y and U ̸= ∅ implies V ̸= ∅. Hence, q > 0. In the same way,

q > 0 implies p > 0. Consequently, we have p, q > 0. We consider several cases.
(i) If b + b = b, then

a(d0 + · · · + dn−1 + q × b) = a(c0 + · · · + cl−1 + q × b)
= a(c0 + · · · + cl−1 + p × b) = b ,

as desired.
(ii) If U is not a chain, we obtain b = a′(b, b), for some a′, and Lemma A.7 implies that

we are in Case (i).
(iii) If U contains an infinite chain, we can use Ramsey’s Theorem (or the fact that s is

regular), to obtain a factorisation b = eω, which implies that b + b = b by (G3).
Hence, we are in Case (i) again.

(iv) If U is a finite chain, then so is V , by Lemma A.8. Hence, p = 1 = q and we are
done.

(b) It remains to consider the case where C is not trivial. Then we can factorise

t|y = r(t0, . . . , tn−1, t′
0, . . . , t′

q−1) ,

where r ∈ FA is the unravelling of C, the subtrees ti lie outside of T , while the subtrees t′
i

contain vertices in T . Setting di := π(ti), it follows by the two inductive hypotheses that
di >L b and π(t′

i) = b. Consequently,

π(t|y) = π(r)(d0, . . . , dn−1, b, . . . , b) .
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Let us simplify the term r. Introducing one variable xv, for every vertex v ∈ C, we can
write r as a system of equations

xv = av(xu0 + · · · + xul−1 + c0 + · · · + cq−1) , for v ∈ C ,

where u0, . . . , ul−1 are the successors of v that belong to C and c0, . . . , cq−1 are constants
from {d0, . . . , dn−1, b} that correspond to successors outside of C. Solving this system
of equations, we obtain a finite term r0 built up from elements of A0 ∪ A1 using as
operations the horizontal product, the vertical product, and the ω-power operation, such
that

π(t|y) = π(r0)(d0, . . . , dn−1, b) .

With the help of the equations (G5)–(G10), we can transform r0 in several steps (while
preserving its product) until it assumes the form[

a0 · · · aj−1
(
x + d0 + · · · + dn−1 + b

)]ω

or
[
a0 · · · aj−1

(
x + d0 + · · · + dn−1

)]ω

where a0, . . . , aj−1 are the labels of the vertices in C.
We distinguish two cases. First suppose that there is no term with value b in the above
sum. This means that every subtree attached to C lies entirely outside of the set T . Then
x ≈f(m)−1

k y implies that we can factorise s|x as

s|x = r′(s0, . . . , sl−1)

where
{π(s0), . . . , π(sl−1)} = {d0, . . . , dn−1} ,
all labels of r′ are among a0, . . . , aj−1,
every vertex of r′ has, for every i < k, some descendant labelled ai.

As above we can transform s|x into[
a0 · · · aj−1

(
x + c0 + · · · + cl−1

)]ω

where ci := π(si). Since {c0, . . . , cl−1} = {d0, . . . , dn−1} it follows that

π(t|y) = (a0 · · · aj−1(x + d0 + · · · + dn−1))ω

= (a0 · · · aj−1(x + c0 + · · · + cl−1))ω = π(s|x) = b .

It thus remains to consider the case where some term has value b. Using (G7) and (G11)
and the fact that b <L di, it then follows that

π(t|y) =
[
a0 · · · aj−1

(
x + d0 + · · · + dn−1 + b

)]ω =
[
a0 · · · aj−1(x + b)

]ω
.

For every i < j, we fix some zi ∈ S with label ai such that x ≺ zi and some successor
of zi also belongs to S. Then

π(s|zi) = ai(ci
0 + · · · + ci

li−1 + b + · · · + b) ,

for some ci
0, . . . , ci

li−1 >L b. Since

b = π(s|zi) = ai(ci
0 + · · · + ci

li−1 + b + · · · + b) ≤L ci
0 + · · · + ci

li+1 + b + · · · + b ≤L b
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it follows by asymmetry of ≤L that

ci
0 + · · · + ci

li+1 + b + · · · + b=b and ai(b) = ai(ci
0 + · · · + ci

li+1 + b + · · · + b)=b .

Consequently, a0 · · · aj−1b = b, which implies that aπb = b where a := a0 · · · aj−1. We
claim that b + b = b. It then follows that

b = a(b) = a(k × x)(b) = (a(k × x))π(b) ,

which, by (G12)k, implies that

π(t|y) = [a(x + b)]ω = [a(x + a(k × x)π(b))]ω = k × a(k × x)π(b) = k × b = b ,

as desired.
Hence, it remains to prove our claim that b + b = b. By our assumption on y and C, there
is some vertex u ∈ C that has some successor v /∈ C with v ∈ T . Since s|x ≈f(m)−1

k t|y
and f(m) ≥ f(m − 1) + k + 1, there are vertices x ⪯ u0 ≺ · · · ≺ uk−1 each of which has
some successor vi ∈ S with vi ⪯̸ ui+1. Consequently, we can write

π(s|x) = a′a′′(b, . . . , b) and π(s|u0) = a′′(b, . . . , b) ,

where a′ ∈ A1 and a′′ ∈ Ak. Hence, it follows by (G1)k that

b + b = π(s|u0) + b = a′′(b, . . . , b) + b = a′′(b, . . . , b) = π(s|u0) = b . ◀

▶ Theorem A.10. A regular forest algebra A is an algebra for cEFk if, and only if, there
exists a number m < ω such that

s ∼m
k t implies π(s) = π(t) , for all regular forests s, t ∈ F(A0 ∪ A1) .

Proof. (⇐) In each of the equations (G1)k–(G12)k, the two terms on both sides are ∼m
k -

equivalent.
(⇒) By Proposition A.9, there is some number m such that

s ≈m
k t implies π(s) = π(t) , for regular trees s, t ∈ F(A0 ∪ A1) .

Let s, t ∈ F(A0 ∪ A1) be regular forests. We claim that

s ∼m+k+2
k t implies π(s) = π(t) .

Suppose that s = s0 + · · · + sl−1 and t = t0 + · · · + tn−1, for trees si and ti, and set ci := π(si)
and di := π(ti). Analogous to Part (a) of the proof of Proposition A.9, we can use Lemma A.8
to show that

π(s) = c0 + · · · + cl−1 = d0 + · · · + dn−1 = π(t) . ◀

We complete the proof of Theorem 4.2 as follows.

▶ Theorem A.11. A regular language L ⊆ F0Σ is cEFk-definable if, and only if, its syntactic
algebra S(L) is an algebra for cEFk.

Proof. (⇐) Suppose that S(L) is an algebra for cEFk. By Theorem A.10, every language
recognised by S(L) is invariant under ∼m

k , for some m (when considering regular forests
only). Consequently, the claim follows by Corollary A.4.
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(⇒) If L is cEFk-definable, it follows by Corollary A.4 that L is ∼m
k -invariant, for

some m. Thus ∼m
k is contained in the syntactic congruence of L, which means that the

syntactic morphism η : FΣ → S(L) maps ∼m
k -equivalent forests to the same value. Given

forests s, t ∈ F(S0 ∪ S1) with s ∼m
k t, we can choose forests s′, t′ ∈ FΣ with s′ ∼m

k t′ and
s(v) = η(s′(v)) and t(v) = η(t′(v)). Thus,

s ∼m
k t implies π(s) = η(s′) = η(t′) = π(t) .

By Theorem A.10, it follows that S(L) is an algebra for cEFk. ◀
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Abstract
The RPNI algorithm (Oncina, Garcia 1992) constructs deterministic finite automata from finite sets
of negative and positive example words. We propose and analyze an extension of this algorithm
to deterministic ω-automata with different types of acceptance conditions. In order to obtain this
generalization of RPNI, we develop algorithms for the standard acceptance conditions of ω-automata
that check for a given set of example words and a deterministic transition system, whether these
example words can be accepted in the transition system with a corresponding acceptance condition.
Based on these algorithms, we can define the extension of RPNI to infinite words. We prove that
it can learn all deterministic ω-automata with an informative right congruence in the limit with
polynomial time and data. We also show that the algorithm, while it can learn some automata
that do not have an informative right congruence, cannot learn deterministic ω-automata for all
regular ω-languages in the limit. Finally, we also prove that active learning with membership and
equivalence queries is not easier for automata with an informative right congruence than for general
deterministic ω-automata.
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1 Introduction

In this paper we consider learning problems for automata on infinite words, also referred
to as ω-automata, which have been studied since the early 1960s as a tool for solving
decision problems in logic [7] (see also [26]), and are nowadays used in procedures for formal
verification and synthesis of reactive systems (see, e.g., [5, 27, 18] for surveys and recent work).
Syntactically ω-automata are very similar to NFA resp. DFA (standard nondeterministic
resp. deterministic finite automata on finite words), and they also share many closure and
algorithmic properties. However, many algorithms and constructions are much more involved
for ω-automata, one prominent such example being determinization [23, 22, 24, 15], and
another one the minimization of deterministic ω-automata [25], which is hard for most of
the acceptance conditions of ω-automata. The underlying reason is that regular languages of
finite words have a simple characterization in terms of the Myhill/Nerode congruence, and
the unique minimal DFA for a regular language can be constructed by merging language
equivalent states (see [13]). In contrast, deterministic ω-automata need, in general, different
language equivalent states for accepting a given regular ω-language.

The characterization of minimal DFA in terms of the Myhill/Nerode congruence is also
an important property that is used by learning algorithms for DFA. In automaton learning
one usually distinguishes the two settings of passive and active learning. We are mainly
concerned with passive learning in this paper, where the task is to construct an automaton
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from a sample, a given finite set of words together with a classification if they are in the
language or not. The RPNI algorithm [21] is a passive learning algorithm that constructs a
DFA from a given sample of positive and negative examples (words that are in the language
and words that are not in the language, respectively). It starts with the prefix tree acceptor,
a tree shaped DFA that accepts precisely the positive examples and subsequently it tries
to merge pairs of states in the canonical order of words (each state is associated with the
word reaching it in the prefix tree acceptor). If a merge results in a DFA that accepts a
negative example, the merge is discarded. Otherwise the merge is kept and the algorithm
continues with this DFA. RPNI can learn the minimal DFA for each regular language in the
limit with polynomial time and data. This means that RPNI runs in polynomial time in the
size of the given sample, and for each regular language L there is a characteristic sample
SL of polynomial size, such that RPNI produces the minimal DFA for L for each sample
that is consistent with L and contains SL [21]. The RPNI algorithm is a simple algorithm
that also produces useful results if the sample does not include the characteristic sample of
any language L. Therefore its principle of state merging has been used for other automaton
models, e.g., probabilistic automata [8, 17] and sequential transducers [20].

In this paper we propose and analyze an extension of RPNI to ω-automata. In the setting
of infinite words, one uses ultimately periodic words of the form uvω for finite words u, v.
These are infinite words with a finite representation, and each regular ω-language is uniquely
determined by the set of ultimately periodic words that it contains (see [26]). There are two
main obstacles that one has to overcome for a generalization of RPNI. First, it is not clear
how to generalize the prefix tree acceptor to infinite words, since a tree shaped acceptor for
a set of infinite words necessarily needs to be infinite. We therefore propose a formulation
of the algorithm that inserts transitions instead of merging states, and creates new states
in case none of the existing states can be used as a target of the transition. In the setting
of finite words, this method of inserting transitions produces the same result as RPNI, and
it can easily be used for infinite words as well. Because this algorithm produces growing
transition system, we call it Sprout.

The second problem arises in the test whether a merge (in our formulation an inserted
transition) should be kept or discarded. In the case of finite words, one can simply check
whether there are a positive and a negative example that reach the same state, which
obviously is not possible in a DFA that is consistent with the sample. For ω-automata the
situation is a bit more involved, because acceptance of a word is not determined by a single
state, but rather the set of states that is reached infinitely often. And furthermore, there
are various acceptance conditions using different ways of classifying these infinity sets into
accepting and rejecting. To solve this problem, we propose polynomial time algorithms for
checking whether a deterministic transition system admits an acceptance condition of a given
type (Büchi, generalized Büchi, parity, or Rabin) that turns the transition system into a
deterministic ω-automaton that is consistent with the sample. These consistency algorithms
are then used in Sprout in order to check whether a merge (inserted transition) produces a
transition system that can still be consistent with the sample (for the acceptance condition
under consideration). However, we believe that these consistency algorithms are of interest
on their own and might also be useful in other contexts. We also show that bounding the size
of the acceptance condition can make the problem hard: consistency with a Rabin condition
with three pairs or generalized Büchi condition with three sets is NP-hard.

Our analysis of Sprout reveals that it can learn every ω-regular language with an infor-
mative right congruence (IRC) in the limit from polynomial time and data. A deterministic
ω-automaton has an informative right congruence if it has only one state for each My-
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hill/Nerode equivalence class of the language that it defines [3]. Recently, another algorithm
that can learn every ω-regular language with an IRC in the limit from polynomial time and
data has been proposed [4]. This algorithm is an extension of the approach from [12] from
finite to infinite words. However, the algorithm from [4] has explicitly been developed for
automata with an IRC, and it can only produce such automata (it defaults to an automaton
accepting precisely the positive examples in case the sample does not completely characterize
the target automaton). In contrast, Sprout is not specifically designed for IRC languages, it
can also construct automata that do not have an IRC. But on the negative side we also show
that Sprout cannot learn a deterministic ω-automaton for every regular ω-language.

The positive results for passive learning of IRC languages raise the question whether this
class is also simpler for active learning than general deterministic ω-automata. The standard
model for active learning of automata uses membership and equivalence queries, and DFA
can be learned in polynomial time in this model [1]. This approach has been extended
to the class of weak deterministic Büchi automata [16], whose minimal automata can also
be defined using the standard right congruence. For general regular ω-languages, the only
known algorithms either learn a different representation based on DFA [2], or add another
query about the loop structure of the target automaton [19]. Since the characterization
of the minimal automata by a right congruence is a crucial point in many active learning
algorithms, it is tempting to believe that the algorithms can be extended to the classes of
languages with an IRC. We prove that this is not the case by showing that a polynomial
time active learning algorithm for deterministic ω-automata with an IRC can be turned into
a polynomial time learning algorithm for general deterministic ω-automata.

Finally, we also make the observation that polynomial time active learning (with mem-
bership and equivalence queries) is at least as hard as learning in the limit with polynomial
time and data.

The paper is structured as follows. In Section 2 we give basic definitions. In Section 3 we
present the consistency algorithms, and in Section 4 we describe our extension of RPNI to
ω-automata. In Section 5 we show that the property of an IRC does not help for polynomial
time active learning, and in Section 6 we conclude.

2 Preliminaries

For a finite alphabet Σ we use Σ∗ and Σω to refer to the set of finite and infinite words
respectively. The empty word is denoted by ε, and Σ+ = Σ∗ \ {ε}. A deterministic transition
system (TS) is defined by a tuple T = (Q, Σ, q0, δ) where Q is a finite set of states, Σ a
finite alphabet, q0 ∈ Q the initial state and δ : Q× Σ → Q is the transition function. We
use δ(q, a) = ⊥ to indicate that a transition (q, a) ∈ Q × Σ is not defined in T . Further
we extend δ to δ∗ : Q × Σ∗ → Q defined as δ∗(q, ε) = q and δ∗(q, aw) = δ∗(δ(q, a), w)
for q ∈ Q, a ∈ Σ and w ∈ Σ∗. Unless otherwise specified T will be used to refer to a
transition system with components as above. The unique run of T on w ∈ Σω is a sequence
of transitions ρ = q0w0q1w1 . . . with qi+1 = δ(qi, wi). For an infinite run ρ we denote by
inf(ρ) the infinity set of ρ, consisting of all state-symbol pairs that occur infinitely often in ρ.
A set of states ∅ ≠ C ⊆ Q is called strongly connected if for all p, q ∈ C we have δ∗(p, w) = q

for some w ∈ Σ+. The ⊆-maximal strongly connected sets of T are called strongly connected
components (SCCs) and for a set R we use SCC(R) to refer to the set of all SCCs S ⊆ R.

Augmenting a transition system T with an acceptance condition C yields an ω-automaton
⟨T , C⟩ = (Q, Σ, q0, δ, C). We now introduce different types of acceptance conditions (based
on the survey [26]), give a notion of their size |C| and define which sets X ⊆ Q× Σ satisfy
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them. Note that while acceptance is often defined based on states that occur infinitely often,
we opt for transition-based acceptance due to its succinctness (state-based acceptance can be
turned into transition-based acceptance without changing the transition system, while the
transformation in the other direction requires a blow-up of the transition system depending
on the acceptance condition).

A Büchi condition F ⊆ Q × Σ is satisfied if X ∩ F ≠ ∅, whereas a generalized Büchi
condition B = {F1, . . . , Fk} with Fi ⊆ Q× Σ is satisfied if X ∩ Fi ̸= ∅ for all i ∈ [1, k] ⊆ N.
The set X satisfies a parity condition κ : (Q × Σ) → C for a finite C ⊆ N if min(κ(X))
is even where κ(X) = {κ(q, a) : (q, a) ∈ X}. We call R = {(E1, F1), . . . , (Ek, Fk)} with
Ei, Fi ⊆ (Q×Σ) a Rabin condition and it is satisfied if Ei ∩X = ∅ and Fi ∩X ̸= ∅ for some
i ∈ [1, k] ⊆ N. Finally a Muller condition F ⊆ 2Q×Σ is satisfied if X ∈ F . For an acceptance
condition C of type Ω ∈ {Parity, generalized Büchi, Rabin} we use |C| to refer to the number
of priorities/recurring sets/Rabin pairs respectively. We use abbreviations (g)DBA, DPA,
DRA to refer to deterministic (generalized) Büchi, Parity and Rabin automata and introduce
a set Acc containing these acceptance types. An automaton A = ⟨T , C⟩ accepts w ∈ Σω if
inf(ρ) satisfies C, where ρ refers to the unique run of T on w. The set of all words that are
accepted by A is the language accepted by A, denoted by L(A).

Let ∼ be an equivalence relation over Σ∗. We refer to the equivalence class of x under
∼ as [x]∼ = {y ∈ Σ∗ : x ∼ y} and call ∼ a (right) congruence if u ∼ v implies ua ∼ va for
all a ∈ Σ. A regular language L ⊆ Σω induces the canonical right congruence ∼L in which
u ∼L v holds if and only if u−1L = v−1L with u−1L = {w ∈ Σω : uw ∈ L}. Using the
terminology of [3], we say that an automaton A has an informative right congruence (IRC)
if u ∼L(A) v implies that A reaches the same state from q0 when reading u or v. A language
L has an Ω-IRC for Ω ∈ Acc if an Ω-automaton with an IRC which recognizes L exists and
we denote by ind(L) the number of equivalence classes of ∼L.

A word w ∈ Σω is called ultimately periodic if w = uvω with u ∈ Σ∗, v ∈ Σ+. We denote
by UPΣ the set of all ultimately periodic words in Σω and note that two regular languages
K, L ⊆ Σω are equal if and only if K ∩ UPΣ = L ∩ UPΣ [7]. Note that there always exists a
reduced form w = uvω in which u and v are as short as possible. We call a pair S = (S+, S−)
with S+, S− ⊆ UPΣ and S+ ∩ S− = ∅ a sample and say that S is in reduced form if each
uvω ∈ S is in a reduced form where w ∈ S is used as a shorthand for w ∈ S+ ∪ S−. For
L ⊆ Σω we say that S is consistent with L if S+ ⊆ L and S−∩L = ∅. Similarly an automaton
A is consistent with S if S+ ⊆ L(A) and S− ∩ L(A) = ∅.

For Ω ∈ Acc we call a function f that maps a sample to an Ω-automaton a passive learner.
f is called consistent if for any sample S the constructed automaton f(S) is consistent with
S. A sample SL is characteristic for L and f if for any sample S that is consistent with L

and that contains SL, the learner produces an automaton f(S) recognizing L. For a class of
representations of languages C (in our case deterministic ω-automata) we use L(C) to refer
to the represented languages and define the size of L ∈ L(C) to be the size of the minimal
representation of L in C. Based on the definition in [10] we say C is learnable in the limit
using polynomial time and data if there exists a learner f that runs in polynomial time for
any input sample, and for each L ∈ L(C) there exists a characteristic sample whose size is
polynomial in the size of L.

We call w ∈ Σω escaping from p ∈ Q with a ∈ Σ in T if there exists a decomposition w =
uav with v ∈ Σω such that δ∗(q0, u) = p and δ(p, a) = ⊥. We refer to ua as the escape-prefix
and call av the exit string of w. Two escaping words w1, w2 are indistinguishable if they escape
T from the same state and their exit strings coincide. We call T Ω-consistent with a sample
S if there exists an Ω-acceptance condition C such that {w ∈ S+ : w not escaping in T } ⊆



L. Bohn and C. Löding 20:5

L(T , C), S− ∩ L(T , C) = ∅ and no pair of sample words from S+ × S− is indistinguishable.
Note that Ω-consistency with a transition system does not require all words from S+ to have
an infinite run in the transition system. It just means that T does not produce any conflicts
between words in S+ and in S−. In contrast, for an automaton to be considered consistent
with S it is required that all words from S+ are accepted.

3 Consistency Algorithms

The algorithm for learning ω-automata that we describe in Section 4 constructs a transition
system and then tests whether an acceptance condition can be found such that all sample
words are accepted and rejected accordingly. In this section we develop algorithms for this
test, so we assume that a transition system T = (Q, Σ, q0, δ) is given. We do not work with
the sample directly in this section, and rather work with the infinity sets induced by the
sample words. This leads to the notion of a partial condition, which we define below. Then
we investigate how different types of acceptance conditions that are consistent with such a
partial condition can be constructed.

Recall that a Muller condition F ⊆ 2Q×Σ is satisfied by an infinity set X ⊆ Q× Σ if and
only if X ∈ F . Instead of specifying such a Muller condition based solely on the infinity sets
that satisfy it, we can also define it as a partition F = (F0,F1) of 2Q×Σ into accepting and
rejecting sets, in the following also referred to as positive and negative sets respectively. In
other words such a condition assigns to each possible set X ⊆ Q×Σ a classification σ ∈ {0, 1},
which we denote as F(X) = σ for X ∈ Fσ. Note that any acceptance condition C can be
viewed as a Muller condition (FC

0 ,FC
1 ) by assigning to FC

0 exactly those sets X ⊆ Q×Σ that
satisfy C and defining FC

1 to contain all others.
To incorporate the fact that the infinity sets induced by sample words might not classify

all subsets of Q × Σ, we introduce the concept of a partial condition H = (H0,H1) with
H0,H1 ⊆ 2Q×Σ in which only a subset of all elements X ⊆ Q× Σ receives a classification
H(X) ∈ {0, 1}. We use X ∈ H to denote X ∈ H0 ∪ H1 and call a partial condition
H = (H0,H1) consistent if H0 ∩ H1 = ∅. A component Hσ of a partial condition is called
union-closed if for any finite collection X1, . . . , Xn ∈ Hσ we have X1 ∪ . . .∪Xn /∈ H1−σ or in
other words the union of positive sets is not negative and vice versa. We call an acceptance
condition C consistent with a partial condition H = (H0,H1) if H0 ⊆ FC

0 and H1 ⊆ FC
1 .

For each Ω ∈ Acc we can now define the decision problem Ω-Consistency: Given a
transition system T = (Q, Σ, q0, δ) and a partial conditionH = (H0,H1) withH0,H1 ⊆ 2Q×Σ,
the question is whether there exists an acceptance condition C of type Ω over Q× Σ that is
consistent with H. In the following we provide algorithms that decide Ω-consistency for
the various acceptance types we introduced and investigate their complexity.

Büchi and generalized Büchi conditions. For a Büchi condition F ⊆ Q× Σ we know that
every superset of some X ⊆ Q×Σ with X ∩F ≠ ∅ clearly has a non-empty intersection with
F . Based on this observation we can define an algorithm that computes for a given partial
condition H = (H0,H1) a Büchi condition F which is consistent with H. We forego a formal
definition of the algorithm itself and instead define the partial function it computes, where a
result of ⊥ is used to indicate that no Büchi condition exists that is consistent with H.

BuchiCons(H0,H1) =
{

return ⊥ if P ∈ H0 exists with P ⊆
⋃
H1

return (Q× Σ) \
⋃
H1 otherwise

It is easily verified that BuchiCons is computable in polynomial time and a formal proof for
the correctness of this algorithm can be found in the full version of this paper.
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With generalized Büchi conditions it is no longer guaranteed that the union of two negative
sets N, N ′ ∈ H1 is also negative. Consider a generalized Büchi condition B = {F, F ′} such
that N has a non-empty intersection with F but not with F ′, whereas N ′ ∩ F = ∅ and
N ′ ∩ F ′ ̸= ∅. Then their union F ∪ F ′ has a non-empty intersection with both F and F ′ and
hence satisfies B. Therefore we first isolate the ⊆-maximal sets N1, . . . , Nk in H1. As before
we give a function

genBuchiCons(H0,H1) =
{

return ⊥ if P ∈ H0 with P ⊆ Ni exists
return {(Q× Σ) \Ni : i ≤ k} otherwise

which maps a partial condition to a generalized Büchi condition that is consistent with H or
⊥ if no such condition exists. It is again not difficult to see that an algorithm can compute
genBuchiCons in polynomial time. A formal proof of the correctness of genBuchiCons can be
found in the full version of this paper.

▶ Theorem 1. The algorithm (gen)BuchiCons decides the (generalized) Büchi-Consistency
problem in polynomial time and returns a corresponding acceptance condition if one exists.

Parity Conditions. It is a well-known observation that for a given Muller condition (F0,F1)
there exists an equivalent parity condition κ if and only if F0 and F1 are union-closed [28]. We
show an analogous statement for partial conditions, starting with the following lemma which
establishes that if the union of positive and negative elements coincide, then no equivalent
parity condition can be found.

▶ Lemma 2. Let H = (H0,H1) be a consistent partial condition. If we have P = N for
P = P1 ∪ . . . ∪ Pk and N = N1 ∪ . . . ∪Nl with Pi ∈ H0 and Nj ∈ H1 then there exists no
parity condition that is consistent with H

It turns out that the opposite direction also holds, meaning if no such unions of positive and
negative sets can be found, then an equivalent parity condition must exist. This implication
arises as a consequence of the ParityCons algorithm we present later together with the proofs
of its correctness. For a given partial condition ParityCons (see Algorithm 1) attempts to
construct a chain of sets of transitions Z0 ⊇ Z1 ⊇ . . . ⊇ Zn−1 with alternating classifications
σi ∈ {0, 1}, i.e., σi+1 = 1− σi for i < n− 1. We refer to this as a Zielonka path because it
corresponds to the Split or Zielonka tree representation of a parity condition [28, 11].

From such a Zielonka path one obtains a parity condition κ where κ(q, a) = σ0 + i for
the maximal i such that (q, a) ∈ Zi. On the other hand every parity condition κ with
priorities C determines a chain Z0 ⊇ Z1 ⊇ . . . ⊇ Z|C|−1 and alternating classifications σi

where σ0 = min(C) mod 2, σi+1 = 1− σi and Zi contains all state-symbol pairs whose color
is greater or equal to σ0 + i. To guarantee the existence of such an alternating chain, we
assume that κ is optimal and contains no gaps, which can be ensured in polynomial time [9].

▶ Example 3. As an example consider a partial condition H = (H0,H1) with set inclusion
diagram as shown on the left of Figure 1, where H0 contains the transition sets drawn
with rounded border, and H1 those with rectangular border (the leaves of the tree, in this
example). We assume an underlying transition system in which the transition sets in H are
strongly connected. It is easily verified that H does not satisfy the condition of Lemma 2.
Since we claimed the converse of Lemma 2 to be true, a parity condition that is consistent
with H should exist. It turns out that such a parity condition requires 6 distinct priorities
(the corresponding Zielonka path is shown on the right of Figure 1) even though there is at
most one alternation between positive and negative sets along inclusion chains in H. This is
due to the fact that more alternations are introduced by unions of positive and negative sets.
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{τ1, τ2, τ3, τ4} {τ4, τ5, τ6, τ7}

{τ1, τ2} {τ2, τ3, τ4} {τ4, τ5, τ7} {τ4, τ6, τ7}
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{τ1, τ2}

{τ1}

Figure 1 On the left an inclusion graph for the partial condition H from Example 3 can be seen
in which positive elements are depicted with rounded and negative ones with rectangular borders.
The path depicted on the right corresponds to a priority function κ with domain {0, 1, 2, 3, 4, 5} such
that τ7 7→ 0, τ6 7→ 1, τ5 7→ 1, τ4 7→ 2, τ3 7→ 3, τ2 7→ 4, τ1 7→ 5 which is the minimal parity condition
that is consistent with H.

We now present an algorithm that given a consistent partial condition H over Q × Σ
constructs an equivalent parity condition with the least number of distinct priorities if one
exists. As a simplification we assume that the set Q × Σ of all transitions is classified by
H, which enables us to use Q× Σ as the first set Z0 of the chain that is constructed. We
describe later how partial conditions that do not satisfy this assumption can be dealt with.

Algorithm 1 ParityCons.

Input: A consistent partial condition H = (H0,H1) with Q× Σ ∈ H
Output: A Zielonka path (Z0, σ0), (Z1, σ1), . . . , (Zn−1, σn−1)
Z0 ← Q× Σ, σ0 ← H(Q× Σ), i← 0
repeat

i← i + 1
Z ←

⋃
{X ⊆ Zi−1 : H(X) = 1− σi−1}

if Z = Zi−1 then
return No consistent parity condition exists.

Zi ← Z, σi ← 1− σi−1

until Z = ∅
return (Z0, σ0), . . . , (Zi−1, σi−1)

After Z0 and its corresponding classification σ0 = H(Z0) have been determined, the
algorithm computes Z1 as the union of all 1− σ0 subsets of Z0. If this union coincides with
Z0 then the conditions for Lemma 2 are met and the algorithm terminates prematurely as no
equivalent parity condition can exist. Otherwise this construction ensures that every strict
superset of Z1 receives the same classification as Z0 from the constructed parity condition.
This process is then repeated for Z1 with σ1 = 1−σ0, Z2 with σ2 = 1−σ1 and so on until no
subsets of opposite classification remain. At this point the algorithm terminates and returns
the constructed chain of sets of transitions together with their corresponding classification.

Proving the correctness of this approach forms the opposite direction of Lemma 2 as it
entails that if no union of positive and negative sets as in Lemma 2 is found, an equivalent
parity condition can be constructed. One restriction on the partial conditions that can be
passed to ParityCons is that the set of all transitions, Q×Σ, must be present in either H0 or
H1. As these partial conditions arise from the infinity sets that words from a finite sample
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induce, however, it is easily conceivable that there are many scenarios - for example when the
automaton that we want to learn is made up of multiple SCCs - in which no word inducing
Q× Σ exists. In this case we can simply define two extended partial conditions Hp and Hn

in which Q × Σ is added as a positive or negative set respectively and execute ParityCons
separately for each of them. If only one computation results in a Zielonka path we are done,
otherwise the two resulting paths are compared with regard to their length and the longer
one is discarded.

▶ Theorem 4. ParityCons decides Parity-Consistency in polynomial time and returns a
corresponding parity condition with a minimal number of priorities if one exists.

Proof (sketch). We proceed in two steps and first show that the classification obtained by
the Zielonka path computed by ParityCons are indeed consistent with the original partial
condition. Subsequently one shows that if the computation exits prematurely, then there
exist positive and negative sets whose unions coincide, which by Lemma 2 means that no
equivalent parity condition exists. ◀

Rabin Conditions. We now turn towards computing an equivalent Rabin condition based
on a given partial condition, for which we again utilize an observation about union-closedness.
Specifically, a Muller condition is equivalent to a Rabin condition if and only if F1 is union-
closed [28]. The algorithm RabinCons (see Algorithm 2) computes for each positive set P in
H a separate Rabin pair (EP , FP ) in which each transition that is not part of P belongs to
EP and every transition which does not occur in a negative subloop of P belongs to FP . In
case a positive loop is equal to the union of its maximal negative subloops, no equivalent
Rabin condition can be found as the condition on union-closedness outlined above is violated.

Algorithm 2 RabinCons.

Input: A consistent partial condition H = (H0,H1)
Output: A Rabin condition R consistent with H
R ← ∅
foreach P ∈ H0 do

N1, . . . , Nk ← maximal sets in P(P ) ∩H1
EP ← (Q× Σ) \ P

FP ← P \ (N1 ∪ . . . ∪Nk)
if FP = ∅ then

return No consistent Rabin condition exists
R ← R∪ {(EP , FP )}

return R

▶ Theorem 5. The algorithm RabinCons decides Rabin-Consistency in polynomial time
and returns a corresponding Rabin condition if one exists.

A Rabin condition produced by RabinCons has |H0| pairs and is not guaranteed to have
the minimal number of pairs. Even though it is possible to find optimizations which might
make use of the underlying structure with regard to strongly connected components and
subset relations between positive and negative loops, we now illustrate why the computation
of an optimal Rabin condition (with a minimal number of pairs) is NP-hard.
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Figure 2 This figure contains a depiction of the transition system TG , which can be used to show
NP-completeness of k-generalized Büchi-Consistency and k-Rabin-Consistency.

Fixed-size consistency. For each acceptance type Ω ∈ {generalized Büchi, Parity, Rabin}
and every natural number k ∈ N we define the decision problem k-Ω-Consistency: Given
a transition system T and a consistent partial condition H the question is whether there
is an acceptance condition C of type Ω in T which is consistent with H such that |C| ≤ k.
The algorithm ParityCons we provided earlier decides k-Parity-Consistency in polynomial
time, however finding a Rabin or generalized Büchi condition of bounded size turns out to
be much more difficult.

Intuitively, the difficulty in finding an optimal generalized Büchi condition with at most k

components arises from the fact that the union of two negative sets is not necessarily
guaranteed to also be negative. As there are in general exponentially many possible ways of
partitioning the transitions into k sets, a procedure for constructing an optimal generalized
Büchi condition would need to consider all of them. In the following we establish that the
fixed-size consistency problem for generalized Büchi conditions is already NP-complete when
k = 3. This is done by giving a reduction from 3-Coloring for directed graphs, which is
known to be NP-complete [14].

▶ Lemma 6. 3-generalized Büchi-Consistency is NP-complete.

Proof. Let G = (V, E) be a finite directed graph with V = {v1, v2, . . . , vn}. We define the
deterministic partial transition system

TG = ({0, 1, 2, . . . , n}, {1, 2, . . . , n}, 0, δ) with δ(q, a) =


a if q = 0
0 if q = a

⊥ otherwise

which is depicted in Figure 2. Note that it is possible to construct an equivalent transition
system over a binary alphabet Σ′ = {a, b} by encoding i ∈ Σ as aib. Thus our choice of Σ
depending on the size of the graph merely serves to simplify notation in the following. We
define a sample SG = (PG , NG) with

PG = {pij : (vi, vj) ∈ E} and NG = {ni : 0 < i ≤ n} where pij = (iijj)ω, ni = iω

In the following we use p̄ij and n̄i to refer to the infinity set of the unique run of TG on
pij and ni respectively. Let c : V → {1, 2, 3} be a 3-coloring for V such that c(vi) ̸= c(vj)
for all (vi, vj) ∈ E. We construct a generalized Büchi condition BG = (F1, F2, F3) with
Fk = {i : c(vi) ̸= k}, witnessing membership in 3-generalized Büchi-Consistency. For all
i ≤ n we have for k = c(vi) that n̄i ∩ Fk = {0, i} ∩ Fk = ∅ and thus ni /∈ L(T ,BG). On
the other hand p̄ij ∩ Fk = {0, i, j} ∩ Fk ̸= ∅ for all k as c(vi) ̸= c(vj) is guaranteed for all
(vi, vj) ∈ E by the coloring function c. Hence pij ∈ L(T ,BG) and the constructed condition
is indeed consistent with the sample.
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For the other direction assume that there exists a generalized Büchi condition B =
(F1, F2, F3) such that ⟨T ,B⟩ is consistent with S. Clearly it must hold that F1 ∩F2 ∩F3 = ∅
as otherwise there would exist some word ni ∈ NG with n̄i ∩ Fk = {0, i} ∩ Fk ̸= ∅ for all k,
which would contradict consistency with S. We can now define a coloring c : V → {1, 2, 3}
with c(vi) = min{k : i /∈ Fk}. For any vi, vj ∈ V with c(vi) = c(vj) = k we have
(vi, vj) /∈ E. If not then there would exist a word pij ∈ PG for which consistency guarantees
that p̄ij ∩ Fk = {0, i, j} ∩ Fk ≠ ∅, which can only hold if vi and vj are assigned different
colors. Thus c is indeed a valid 3-coloring, which concludes the reduction proof.

Membership in NP holds as it is possible to verify for a guessed generalized Büchi
condition B of size 3 whether ⟨T ,B⟩ is consistent with S in polynomial time by iterating
over all w ∈ PG ∪NG and verifying adequate acceptance/rejection by ⟨T ,B⟩. ◀

A similar reduction can be used to show the NP-hardness of k-Rabin-Consistency as
well. This leads to the following theorem, which establishes the complexity of all fixed-size
consistency decision problems we defined above.

▶ Theorem 7. k-Parity-Consistency is solvable in polynomial time. For k > 2 both
k-generalized Büchi-Consistency and k-Rabin-Consistency are NP-complete.

4 Passive learning

Our procedure for the construction of a deterministic partial transition system is inspired
by the well known regular positive negative inference (RPNI) algorithm through which
deterministic finite automata can be constructed [21]. RPNI first constructs a prefix tree
automaton which accepts precisely the positive sample words from S+ and subsequently
attempts to merge states of this automaton in canonical order. If a merge introduces an
inconsistency with the sample (i.e. the resulting automaton accepts a word in S−) it is
reverted. Otherwise the algorithm continues with the resulting automaton until no further
merges are possible at which point it terminates.

When attempting to transfer this principle to infinite words, it is difficult to find a suitable
counterpart for the prefix tree automaton. If we simply attached disjoint loops to the prefix
tree at a certain depth, the resulting transition system could certainly be equipped with an
acceptance condition such that it accepts precisely S+. However, through the introduction of
loops with a fixed length that cannot be resolved during the execution, we already determine
parts of the structure of the resulting automaton. Instead, we start with a transition system
consisting of a single initial state and attempt to introduce new transitions in a specific order
(which is reminiscent of the algorithm presented in [6]).

The resulting algorithm Sprout is shown in Algorithm 3. In each iteration we begin
by computing Escapes(S+, T ), the set of all prefixes of words in S+ which are escaping
in T . From this set we now determine the word with the minimal escape-prefix ua in
length-lexicographic order. The existing states are then tested as a target for the missing
transition in canonical order and if the resulting transition system is Ω-consistent with the
sample, we continue with the next escaping word. Checking for consistency is done by using
the results from Section 3 and ensuring that no pair of indistinguishable words in S+ × S−
exists, both of which are possible in polynomial time. If no suitable target can be found,
a new state is introduced instead. See Figure 3 for an illustration. Note that the order in
which states are checked as a potential transition target coincides with the order in which
merges are attempted in RPNI.
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Algorithm 3 Sprout.

Input: A Sample S = (S+, S−) over the alphabet Σ and an acceptance type Ω ∈ Acc
Output: The deterministic Ω-automaton A = (Q, Σ, q0, δ, C) consistent with S

Q← {ε}, δ ← ∅, T ← (Q, Σ, ε, δ)
while Escapes(S+, T ) ̸= ∅ do

ua← length-lexicographic minimal escape-prefix of a word in S+
if |u| > Thres(S, T ) then

return Aut(Extend(Q, Σ, ε, δ, S+, S−), S, Ω)
forall q ∈ Q in canonical order do

δ′ ← δ ∪ {û a−→ q} for the û ∈ Q with δ∗(ε, u) = û

if (Q, Σ, ε, δ′) is Ω-consistent with S then
δ ← δ′ and continue with the next escpaing word

Q← Q ∪ {ûa}, δ ← δ ∪ {û a−→ ûa} for the û ∈ Q with δ∗(ε, u) = û
return Aut(T , S, Ω)

Unfortunately there exist samples for which this approach of introducing transitions does
not terminate. When executed on S = ({(baa)ω}, {(ab)ω, (ba)ω, (babaa)ω}) for example, the
algorithm would not terminate and instead construct an infinite b-chain with a-loops on
each state. We therefore introduce a threshold on the maximal length of escape-prefixes that
are considered in the algorithm. Once this threshold is exceeded, the algorithm terminates.
We have choosen the threshold such that we can show completeness for IRC, which works
for Thres(S, T ) = lb + l2

e + 1, where le and lb denote the maximal length of u and v for any
sample word uvω ∈ S. Intuitively, this value is sufficient to obtain completeness for IRC as
any two sample words must have already differed in at least one position once it is exceeded.

If the threshold is exceeded before a transition system is found that is consistent with the
sample and has no escaping words from S+, the transition system is extended with disjoint
loops that guarantee acceptance of the remaining words in S+ through the function Extend,
which we describe in the following. Assume that the algorithm has constructed a transition
system T = (Q, Σ, ε, δ) for which it then encounters an escape-prefix exceeding the defined
threshold. For each state q ∈ Q we collect all exit strings that leave T from q in a set Eq.
Note that since the shortest escape-prefix in T exceeded the threshold, each word in Eq must
be of the form uω for some u ∈ Σ+ and we can write Eq = {uω

1 , . . . , uω
k }.

For each state q such that Eq ≠ ∅ we now construct the transition system T ⟲
Eq

in which
exactly those words that belong to Eq induce loops. To prevent any unintended words from
being accepted, we additionally ensure that the initial state of T ⟲

Eq
is transient (meaning it

cannot be reached from any state within T ⟲
Eq

). In the following we use Prf(u) for a word
u ∈ Σ∗ to denote the set of all prefixes of u. Formally we define T ⟲

Eq
= (Q⟲

Eq
, Σ, q0, δ⟲Eq

) with

Q⟲
Eq

= {q0} ∪
⋃

uω∈Eq

Prf(u)

δ⟲Eq
(w, a) =


a if w = q0 and a ∈ Σ ∩Q⟲

Eq

ε if (wa)ω ∈ Eq

wa if wa ∈ Q⟲
Eq

and (wa)ω /∈ Eq

⊥ otherwise

It is easy to see that q0 is indeed transient in T ⟲
Eq

and we can clearly find a Büchi (and thus
also a generalized Büchi, Rabin and Parity) condition such that every word in Eq induces an
accepting run in T ⟲

Eq
. By attaching the corresponding T ⟲

Eq
to each state q for which Eq is

non-empty, we obtain a transition system in which no word from S+ is escaping.
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Figure 3 In this figure three transition systems that arise during the execution of Sprout on the
sample S = (S+, S−) are depicted. The dashed transition cannot lead to ε as otherwise the union of
the infinity sets of (ba)ω and (bba)ω would coincide with that of (bbbabbaba)ω and thus no consistent
parity condition exists. Similarly a self-loop on b would mean that the infinity sets induced by
(babb)ω and (bba)ω would coincide. Thus the b-transition must lead to a new state bb. On the right
we can see the DPA obtained by augmenting T3 with the parity function computed by ParityCons
on the partial condition induced by S.

Once the main loop terminates, the function Aut is called, which uses the results from
Section 3 to compute an automaton that is Ω-consistent with S, which is then returned.

▶ Proposition 8. For a given sample S and an acceptance type Ω ∈ Acc the algorithm Sprout
computes in polynomial time an automaton of type Ω that is consistent with S.

While Sprout cannot learn all regular ω-languages in the limit (see Proposition 10), we
can show completeness for languages with an IRC.

▶ Theorem 9. The algorithm Sprout learns every Ω-IRC language L for Ω ∈ Acc in the limit
with polynomial time and data.

Proof (sketch). We describe the properties that a sample S = (S+, S−) has to satisfy in
order to be characteristic for an Ω-IRC language L:

The set of prefixes of S+ has to contain for each ∼L equivalence class the minimal word
in length-lexicographic order on which it is reached.
Further the sample needs to contain words with which all pairs of equivalence classes can
be separated.
Finally S needs to contain sufficient information about the acceptance condition of an
automaton recognizing L.

The first two requirements can be satisfied in a similar way as for the original RPNI
algorithm [21]. For parity conditions this has already been investigated in [4]. Below we give
a description for Rabin conditions. Detailed definitions for the remaining types of acceptance
conditions we introduced can be found in the full version of this paper.

A sample SR = (S+, S−) capturing a Rabin condition R can be obtained as follows:
For each pair (Ei, Fi) we remove all transitions in Ei from the transition system that R is
defined in, decompose the result into its SCCs C1, . . . , Ck and compute sets Ki consisting of
all transitions in Ci. If the set of all transitions Ki in such an SCC satisfies R we add a word
wi inducing Ki to S+, otherwise wi is added to S−. For each accepting Ki we then remove
all transitions in an Fj for which Ki ∩Ej = ∅, and decompose the resulting transition system
into its SCCs D1, . . . , Dl. These are the maximal negative subloops of Ki and for each Dj a
word visiting all transitions in Dj is added to S−. ◀

While every Ω-IRC language can be learned through a characteristic sample, the same
does not hold for arbitrary ω-regular languages as the following proposition establishes.
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Figure 4 In this figure an excerpt of the transition system for the proof of Proposition 10 is
depicted. The transition from qn to qj forms a closed loop and words w1 ∈ L∨, w2 /∈ L∨ which
induce the same infinity set can be found. Based on the existence of these words we can conclude
that Sprout constructs a chain with self-loops on each state when attempting to learn an automaton
recognizing L∨.

▶ Proposition 10. The language L∨ = {w ∈ {a, b}ω : aaaa occurrs infinitely often in w or
bbbb occurrs infinitely often in w} cannot be learned by Sprout.

Proof. To simplify notation, we exchange the alphabet and use Σ = {0, 1} instead, as it allows
arithmetic on the symbols in Σ. We prove this claim by showing through induction that the
transition system constructed by Sprout must be a chain with loops on each state. Specifically
we show that every intermediate transition system T = (Q, Σ, q0, δ) with Q = {q0, q1, . . . , qn}
created by Sprout before the threshold is exceeded is either not Ω-consistent with L∨ for any
Ω ∈ Acc or the following holds:

for each i < n there exists a symbol σ ∈ Σ such that δ(qi, σ) = qi and δ(qi, 1− σ) = qi+1
if qn has an outgoing transition on some σ ∈ Σ then δ(qn, σ) = qn and δ(qn, 1− σ) = ⊥

The initial transition system is clearly Ω-consistent with L∨ for all Ω ∈ Acc. Further it
trivially satisfies the two outlined conditions as it has only one state, for which no outgoing
transitions exist. For the induction step assume that Sprout has constructed a transition
system T = (Q, Σ, q0, δ) with Q = {q0, q1, . . . , qn} for which the claim holds. We now show
that the next inserted transition either introduces an inconsistency with L∨ or it leads to a
transition system that also satisfies the two conditions.

If a transition from qn to some qj with j < n were inserted, then a closed cycle is formed.
As qj is reachable there must exist some word u ∈ Σ∗ such that δ∗(q0, u) = qj . Consider now
the word v ∈ Σ∗ such that δ∗(qj , v) = qj and the letters in v are such that they alternate
between taking the self-loop and moving to the next state along the cycle. If the loop on qn

does not exist, then v just transitions back to qj at this point. As can be seen in Figure 4,
no alphabet symbol can occur more than once in a row in v if the dashed self-loop on qn is
present. Otherwise at most three consecutive occurrences of the same symbol can appear in v

and we clearly have that w1 = uvω /∈ L∨. Consider now a word w2 which takes each self-loop
on the cycle four times before moving to the next state. This means w2 ∈ L∨ but because
the infinity sets induced by w1 and w2 coincide (as both words take all possible transitions
infinitely often), an automaton containing such a closed cycle cannot be consistent with L∨.

We have thus shown that no transition can lead from qn back to a state qj with j < n. If
qn has no outgoing transitions, then a self-loop on the currently escaping symbol is inserted
as it clearly does not introduce an inconsistency. On the other hand if qn already has a
self-loop on some symbol σ ∈ Σ, then the transition on 1− σ must lead to a new state qn+1
as otherwise (ab)ω /∈ L∨ and (aaab)ω ∈ L∨ would induce the same infinity set. Thus the
Sprout algorithm indeed constructs a chain with self-loops until it eventually exceeds the
threshold. Once this happens, the transition system is extended such that it accepts precisely
the positive sample words. As the sample is finite, the resulting automaton cannot recognize
L∨ since there will always be some word w ∈ L∨ that is not present in the sample. ◀
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However on the other hand Sprout is not limited to learning automata for languages with
IRC of some type. In the following proposition we give an infinite family of languages which
are not in Ω-IRC for any Ω ∈ Acc, and have polynomial size characteristic samples for Sprout.

▶ Proposition 11. For i > 1, consider Li = (Σ∗bi)ω and the sample Si = (Si
+, Si

−) with
Si

+ = {bω, (biabi−1a . . . b2ab1a)ω} ∪ {(bjabk)ω : j + k = i} and Si
− = {(bja)ω : j < i}. Then

Si is a characteristic sample for Li and the learner Sprout with parity as target condition.
(The sample for i = 3 is used in the example in Figure 3.)

Proof. In the following we show that Sprout constructs a DPA for the language Li from
the characteristic sample Si. Note first that the exit-strings of any two sample words are
distinct for every transition system constructed by Sprout, since all words in Si consist of
only a periodic part. Further in every word vω ∈ Si

+ the infix bi occurs, which means that an
infinite run on any positive sample word is only possible in a transition system that permits
i consecutive transitions on the symbol b.

Initially, the algorithm inserts a self-loop on a as no sample words prevent this. Sub-
sequently the b-transition cannot be a self-loop as otherwise the infinity sets induced by
positive and negative sample words would coincide. Thus a new state is added to which the
b-transition from ε leads. We now proceed inductively to show that a b-chain of length i− 1
with a-transitions leading back to the initial state is created. We will identify each state on
this chain with the minimal word of the form bj that reaches it.

Formally such a chain satisfies that for all j < i we have δ∗(ε, bj) = bj and δ∗(ε, bka) = ε

for all k < j. The base case for j = 1 has already been described above so assume now
that the statement holds for j − 1 and consider the two transitions that Sprout inserts for
the state bj−1. We see that inserting an a-transition from bj−1 to ε does not introduce an
inconsistency. This is because as outlined above no positive sample word induces an infinite
run and the exit string of any two sample words must be distinct.

It remains to be shown that the b-transition from bj−1 must lead to a new state bj . To
see this assume to the contrary that the introduction of a b-transition from bj−1 to some bl

with l < j leads to a transition system T ′ which is Parity-consistent with Si. It is not hard
to see that the infinity set P induced by the positive sample word (biabi−1 . . . b1a)ω contains
all transitions in T ′. Now let N0, N1, . . . , Nj be the infinity sets induced by the negative
sample words aω, (ba)ω, . . . , (bja)ω. It is easily verified that P = N0 ∪N1 ∪ . . . ∪Nj , thus
satisfying the conditions for Lemma 2. This means that T ′ cannot be Parity-consistent with
Si and hence no b-transition from bj−1 to any bl with l < j is kept.

Once this b-chain of length i− 1 is constructed, we simply need to verify that inserting
both the a- and b-transition from bi−1 to ε does not lead to an inconsistent transition system.
Since only positive sample words contain i consecutive occurrences of b, the b-transition from
bi−1 to ε occurs exclusively in the infinity set induced by positive but not negative words.
Thus a consistent parity condition exists and Sprout constructs a DPA recognizing Li. ◀

5 Active Learning

We consider the standard minimal adequate teacher (MAT) active learning scenario [1], in
which the learning algorithm has access to a teacher that can answer membership queries and
equivalence queries for the target language, and returns a counterexample if the automaton for
an equivalence query is not correct. A natural extension to ω-automata considers membership
queries for ultimately periodic words and equivalence queries with ultimately periodic words
as counterexamples (see [16]).
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Since there is a polynomial time active learning algorithm for deterministic weak au-
tomata [16], a natural next candidate for polynomial time active learning are deterministic
automata with an informative right congruence. However, the theorem below basically shows
that this class is as hard for active learning as general regular ω-languages.

▶ Theorem 12. Let Ω ∈ Acc be an acceptance type, and consider the active learning setting
with membership and equivalence queries for ultimately periodic words. There is a polynomial
time active learning algorithm for deterministic automata of type Ω with informative right
congruence if, and only if, there is a polynomial time active learning algorithm for general
deterministic automata of type Ω.

Proof (sketch). Assume that ALIRC is an active learning algorithm for automata with
informative right congruence of type Ω. The arguments used below work for all acceptance
types Ω ∈ Acc. For simplicity we use the parity condition in the following.

Our goal is to use ALIRC in order to define an active learning algorithm AL for general
DPA that runs in polynomial time if ALIRC does. The rough idea is as follows: We have to
learn an automaton A for a target language L ⊆ Σω that does not have an IRC, in general.
Such an automaton A can be turned into an automaton with IRC by adding new letters
to the alphabet, and then extending the automaton such that from each state a different
word over these new letters is accepted. Restricted to the original alphabet, this extended
automaton still accepts the same language as before. Since the new automaton has an IRC,
we can use ALIRC to learn it. The only problem with this approach is that we do not know
the target automaton A, so we cannot simply extend it and let ALIRC learn the extension.
However, we can simulate a teacher for ALIRC that answers queries of ALIRC such that
these answers are consistent with such an extension of A. We give the answers such that
they only reveal information on the original target language L. Hence, ALIRC first has to
learn, in some sense, an automaton for L in order to obtain information on the newly added
letters in the extension.

More formally, define an extended alphabet Σ⋆ = Σ ∪̇ {⋆, 0, 1} with new letters ⋆, 0, 1
that do not occur in Σ. Now let L ⊆ Σω be a target language which we want to learn. Our
algorithm AL simulates ALIRC over the alphabet Σ⋆. Note that AL has access to a teacher
T that answers queries for the language L over the alphabet Σ. We define a teacher TIRC
that answers queries that are asked by ALIRC during its simulation as follows:

Membership query for a word w = uvω: If none of the newly introduced symbols occur in
w, i.e. w ∈ Σω then we simply copy the answer T (w). Otherwise w must contain 0, 1 or
⋆ in which case TIRC always gives a negative answer.
Equivalence query for an automaton A: We construct a new automaton B by removing
from A all transitions on symbols 0, 1 or ⋆ and pruning any unreachable states. B is then
given to T for an equivalence query. If T (B) returns a counterexample w, then this is
used as the result of TIRC (A).
Otherwise the automaton B must recognize the target language L. In this case, the
simulation of ALIRC is stopped, and our algorithm AL returns B.

It can be shown that this algorithm AL learns the target language L in polynomial time
if ALIRC is a polynomial time algorithm. ◀

So the property of an IRC does not help for active learning, while for passive learning in
the limit it seems to make the problem simpler. We finish this section with the observation
that polynomial time active learning is at least as hard as learning in the limit with polynomial
time and data, given that the class K of target automata satisfies the following properties
(which are satisfied by standard classes of deterministic automata):
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(P1) It is decidable in polynomial time if a given word is accepted by a given automaton
from K.
(P2) For a given sample S, one can construct in polynomial time an automaton from K
that is consistent with S.
(P3) If two automata from K are not equivalent, then there exists a word of polynomial
size witnessing the difference.

▶ Proposition 13. Consider a class K of finite automata for which properties (P1)–(P3) are
satisfied. If there is a polynomial time active learning algorithm for K, then K can be learned
in the limit with polynomial time and data.

Proof (sketch). Assume that there is a polynomial time active learning algorithm ALK for
target automata from K. A passive learner can simulate an execution of ALK in which
equivalence queries are always answered with the smallest counterexample. A characteristic
sample can be constructed from all the words that are used in such an execution of ALK. ◀

6 Conclusion

We have presented polynomial time algorithms for checking the consistency of a (partial)
deterministic transition system with a set of positive and negative ultimately periodic words
for the acceptance conditions Büchi, generalized Büchi, parity, and Rabin. Since co-Büchi
and Streett conditions are dual to Büchi and Rabin conditions, respectively, one also obtains
algorithms for these conditions by flipping negative and positive examples.

The consistency algorithms allow us to extend the principle of the RPNI algorithm from
finite to infinite words, leading to the polynomial time algorithm Sprout that constructs
a deterministic ω-automaton from given ultimately periodic examples. We have shown
that Sprout can learn deterministic automata for languages with an IRC in the limit with
polynomial time and data. While Sprout is not restricted to IRC languages, there are regular
ω-langauges which it cannot learn. It is obviously an interesting open question whether
there is an algorithm that learns deterministic automata for general regular ω-languages with
polynomial time and data. Our results in Section 5 show that finding such an algorithm is not
more difficult than finding an active learning algorithm that learns deterministic automata
for IRC languages from membership and equivalence queries.
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Abstract
We initiate the study of computational complexity of graph coverings, aka locally bijective graph
homomorphisms, for graphs with semi-edges. The notion of graph covering is a discretization of
coverings between surfaces or topological spaces, a notion well known and deeply studied in classical
topology. Graph covers have found applications in discrete mathematics for constructing highly
symmetric graphs, and in computer science in the theory of local computations. In 1991, Abello et al.
asked for a classification of the computational complexity of deciding if an input graph covers a fixed
target graph, in the ordinary setting (of graphs with only edges). Although many general results are
known, the full classification is still open. In spite of that, we propose to study the more general
case of covering graphs composed of normal edges (including multiedges and loops) and so-called
semi-edges. Semi-edges are becoming increasingly popular in modern topological graph theory, as
well as in mathematical physics. They also naturally occur in the local computation setting, since
they are lifted to matchings in the covering graph. We show that the presence of semi-edges makes
the covering problem considerably harder; e.g., it is no longer sufficient to specify the vertex mapping
induced by the covering, but one necessarily has to deal with the edge mapping as well. We show
some solvable cases and, in particular, completely characterize the complexity of the already very
nontrivial problem of covering one- and two-vertex (multi)graphs with semi-edges. Our NP-hardness
results are proven for simple input graphs, and in the case of regular two-vertex target graphs,
even for bipartite ones. We remark that our new characterization results also strengthen previously
known results for covering graphs without semi-edges, and they in turn apply to an infinite class
of simple target graphs with at most two vertices of degree more than two. Some of the results
are moreover proven in a more general setting (e.g., finding k-tuples of pairwise disjoint perfect
matchings in regular graphs, or finding equitable partitions of regular bipartite graphs).
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1 Introduction

1.1 Graph coverings and complexity
The notion of a graph covering is a discretization of coverings between surfaces or topological
spaces, a notion well known and deeply studied in classical topology. Graph coverings
have found many applications. Primarily as a tool for construction of highly symmetric
graphs [5, 15, 24, 27], or for embedding complete graphs in surfaces of higher genus [48].

Graph coverings attracted attention of computer scientists as well. Angluin [2] exploited
graph covers when introducing models of local computations, namely by showing that a
graph and its cover cannot be distinguished by local computations. Later, Litovsky et
al. [39] proved that planar graphs and series-parallel graphs cannot be recognized by local
computations, and Courcelle and Metivier [14] showed that in fact no nontrivial minor-closed
class of graphs can. In both of these results, graph coverings were used as the main tool, as
well as in more recent papers of Chalopin et al. [8, 9]. Here, the authors presented a model for
distributed computations and addressed the algorithmic complexity of problems associated
with such a model. To this end, they used the existing results on NP-completeness of the
covering problem to provide their hardness results. In [10], the authors study a close relation
of packing bipartite graphs to a special variant of graph coverings called pseudo-coverings.

Another connection to algorithmic theory comes through the notions of the degree
partition and the degree refinement matrix of a graph. These notions were introduced by
Corneill [12, 13] in hope of solving the graph isomorphism problem efficiently. It can be easily
seen that a graph and all of its covers have the same degree refinement matrix. Motivated
by this observation, Angluin and Gardiner [3] proved that any two finite regular graphs of
the same valency have a finite common cover, and conjectured the same for every two finite
graphs with the same degree refinement matrix, which was proved by Leighton [37].

The stress on finiteness of the common cover is natural. For every matrix, there exists a
universal cover, an infinite tree, that covers all graphs with this degree refinement matrix.
Trees are planar graphs, and this inspired an at first sight innocent question of which graphs
allow a finite planar cover. Negami observed that projective planar graphs do (in fact, their
double planar covers characterize their projective embedding), and conjectured that these
two classes actually coincide [46]. Despite a serious effort of numerous authors, the problem is
still open, although the scope for possible failure of Negami’s conjecture has been significantly
reduced [4, 28, 29].

A natural computational complexity question is how difficult is to decide, given two
graphs, if one covers the other one. This question is obviously at least as difficult as the graph
isomorphism problem (consider two given graphs on the same number of vertices). It was
proven NP-complete by Bodlaender[7] (in the case of both graphs being part of the input).
Abello et al. [1] initiated the study of the computational complexity of the H-cover problem
for a fixed target graph H by showing that deciding if an input graph covers the dumbbell
graph W (0, 1, 1, 1, 0) (in our notation from Section 4) is NP-complete (note that the dumbbell
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graph has loops, and they also allowed the input graph to contain loops). Furthermore, they
asked for a complete characterization of the computational complexity, depending on the
parameter graphs H. Such a line of research was picked by Kratochvíl, Proskurowski and
Telle, who completely characterized the complexity for simple target graphs with at most 6
vertices [33], and then noted that in order to fully characterize the complexity of the H-cover
problem for simple target graphs, it is sufficient (but also necessary) to classify it for mixed
colored multigraphs with minimum degree at least three [30]. The latter result gives a hope
for a more concise description of the characterization, but is also in line with the original
motivation from topological graph theory, where loops and multiedges are widely considered.

The complexity of covering 2-vertex multigraphs was fully characterized in [30], the
characterization for 3-vertex undirected multigraphs can be found in [34]. The most general
NP-hardness result known so far is the hardness of covering simple regular graphs of valency
at least three [32, 17]. More recently, Bílka et al. [6] proved that covering several concrete
small graphs (including the complete graphs K4, K5 and K6) remains NP-hard for planar
inputs. This shows that planarity does not help in graph covering problems in general, yet
the conjecture that the H-Cover problem restricted to planar inputs is at least as difficult
as for general inputs, provided H itself has a finite planar cover, remains still open. Planar
graphs have also been considered by Fiala et al. [19] who showed that for planar input graphs,
H-RegularCover is in FPT when parameterized by H. This is in fact the first and only
paper on the complexity of regular covers, i.e., covering projections determined by a regular
action of a group of automorphisms on the covering graph.

Graph coverings were also extensively studied under a unifying umbrella of locally
constrained homomorphisms. In these relaxations, homomorphisms can be either locally
injective or locally surjective and not necessarily locally bijective. The computational
complexity of locally surjective homomorphisms has been classified completely, with respect
to the fixed target graph [22]. Though the complete classification of the complexity of locally
injective homomorphisms is still out of sight, it has been proved for its list variant [16]. The
problem is also interesting for its applied motivation – a locally injective homomorphism
into the complement of a path of length k corresponds to an L(2, 1)-labeling of span k,
an intensively studied notion stemming from the theory of frequency assignment. Further
generalizations include the notion of H(p, q)-coloring, a homomorphism into a fixed target
graph H with additional rules on the neighborhoods of the vertices [18, 35]. To find more
about locally injective homomorphisms, see e.g. [41, 11] or [21]. For every fixed graph H,
the existence of a locally injective homomorphism to H is provably at least as hard as the
H-cover problem. In this sense our hardness results extend the state of the art also for the
problem of existence of locally injective homomorphisms.

1.2 Graphs with semi-edges
The notion of semi-edges has been introduced in the modern topological graph theory and it
is becoming more and more frequently used (the terminology has not yet stabilized; semi-
edges are often called half-edges, and sometimes fins). Mednykh and Nedela recently wrote
a monograph [44] in which they summarize and survey the ambitions and efforts behind
generalizing the notion of graph coverings to the graphs with semi-edges. This generalization,
as the authors pinpoint, is not artificial as such graphs emerge “in the situation of taking
quotients of simple graphs by groups of automorphisms which are semiregular on vertices and
darts (arcs) and which may fix edges”. As the authors put it: “A problem arises when one
wants to consider quotients of such graphs (graphs embedded to surfaces) by an involution
fixing an edge e but transposing the two incident vertices. The edge e is halved and mapped
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to a semiedge – an edge with one free end.” This direction of research proved to be very
fruitful and provided many applications and generalizations to various parts of algebraic
graph theory. For example, Malnič et al. [42] considered semi-edges during their study of
abelian covers and as they write “...in order to have a broader range of applications we allow
graphs to have semiedges.” To highlight a few other contributions, the reader is invited
to consult [45, 43], the surveys [36] and (aforementioned) [44], and finally for more recent
results the series of papers [19, 23, 20]. It is also worth noting that the concept of graphs
with semi-edges was introduced independently and naturally in mathematical physics by
Getzler and Karpanov [26].

In the view of the theory of local computations, semi-edges and their covers prove very
natural, too, and it is even surprising that they have not been considered before in the
context. If a computer network is constructed as a cover of a small template, the preimages
of normal edges in the covering projection are matchings completely connecting nodes of two
types (the end-vertices of the covered edge). Preimages of loops are disjoint cycles with nodes
of the same type. And preimages of semi-edges are matchings on vertices of the same type.
The role of semi-edges was spotted by Woodhouse et. al. [51, 49] who have generalized the
fundamental theorem of Leighton on finite common covers of graphs with the same degree
refinement matrix to graphs with semi-edges.

Our goal is to initiate the study of the computational complexity of covering graphs with
semi-edges, and the current paper is opening the door in this direction.

1.3 Formal definitions
In this subsection we formally define what we call graphs. A graph has a set of vertices and
a set of edges (also referred to as links). As it is standard in topological graph theory, we
automatically allow multiple edges and loops. Every ordinary edge is connecting two vertices,
every loop is incident with only one vertex. On top of these, we also allow semi-edges. Each
semi-edge is also incident with only one vertex. The difference between loops and semi-edges
is that a loop contributes two to the degree of its vertex, while a semi-edge only one. A
very elegant description of ordinary edges, loops and semi-edges through the concept of
darts is used in more algebraic-based papers on covers. The following formal definition is a
reformulation of the one given in [44].

▶ Definition 1. A graph is a triple (D, V, Λ), where D is a set of darts, and V and Λ are
each a partition of D into disjoint sets. Moreover, all sets in Λ have size one or two.

With this definition, the vertices of a graph (D, V, Λ) are the sets of V (note that empty
sets correspond to isolated vertices, and since we are interested in covers of connected graphs
by connected ones, we assume that all sets of V are nonempty). The sets of Λ are referred
to as links, and they are of three types – loops (2-element sets with both darts from the
same set of V ), (ordinary) edges (2-element sets intersecting two different sets of V ), and
semi-edges (1-element sets). After this explanation it should be clear that this definition is
equivalent to a definition of multigraphs which is standard in the graph theory community:

▶ Definition 2. A graph is an ordered triple (V, Λ, ι), for Λ = E ∪ L ∪ S, where ι is the
incidence mapping ι : Λ −→ V ∪

(
V
2
)

such that ι(e) ∈ V for all e ∈ L ∪ S and ι(e) ∈
(

V
2
)

for
all s ∈ E.

For a comparison of Definitions 1 and 2, see Figure 1. Since we consider multiple edges
of the same type incident with the same vertex (or with the same pair of vertices), the edges
are given by their names and the incidence mapping ι expresses which vertex (or vertices)
“belong” to a particular edge. The degree of a vertex is then defined as follows.
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e2
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l2

l3

parts of Λ
parts of V

Figure 1 An example of a graph presented in a usual graph-theoretical way (left) and using the
dart-based Definition 1 (right).

▶ Definition 3. For a graph G = (V, Λ = E ∪ L ∪ S, ι), the degree of a vertex u ∈ V is
defined as

degG(u) = pS(u) + pE(u) + 2pL(u),

where pS(u) ( pL(u)) is the number of semi-edges e ∈ S (of loops e ∈ L) such that ι(e) = u,
and pE(u) is the number of ordinary edges e ∈ E such that u ∈ ι(e).

We call a graph G simple if pS(u) = pL(u) = 0 for every vertex u ∈ V (G) (the graph
has no loops or semi-edges) and ι(e) ̸= ι(e′) for every two distinct e, e′ ∈ E (the graph has
no multiple (ordinary) edges). We call G semi-simple if pS(u) ≤ 1 and pL(u) = 0 for every
vertex u ∈ V (G) and ι(e) ̸= ι(e′) for every two distinct e, e′ ∈ E.

Note that in the language of Definition 1, the degree of a vertex v ∈ V is simply |v|. And
in this language, the main object of our study, a graph cover (or equivalently a covering
projection), is defined as follows.

▶ Definition 4. We say that a graph G = (DG, VG, ΛG) covers a connected graph H =
(DH , VH , ΛH) (denoted as G −→ H) if there exists a map f : DG → DH such that:

For every u ∈ VG, there is a u′ ∈ VH such that the restriction of f onto u is a bijection
between u and u′.
For every e ∈ ΛG, there is an e′ ∈ ΛH such that f(e) = e′.

The map f is called graph cover (or covering projection).

One must appreciate how compact and elegant this definition is after translating it into
the language of Definition 2 in Proposition 5, which otherwise is the definition of (multi)graph
covering in the standard language of Definition 2.

▶ Proposition 5. A graph G covers a graph H if and only if G allows a pair of mappings
fV : V (G) −→ V (H) and fΛ : Λ(G) −→ Λ(H) such that
1. fΛ(e) ∈ L(H) for every e ∈ L(G) and fΛ(e) ∈ S(H) for every e ∈ S(G),
2. ι(fΛ(e)) = fV (ι(e)) for every e ∈ L(G) ∪ S(G),
3. for every link e ∈ Λ(G) such that fΛ(e) ∈ S(H) ∪ L(H) and ι(e) = {u, v}, we have

ι(fΛ(e)) = fV (u) = fV (v),
4. for every link e ∈ Λ(G) such that fΛ(e) ∈ E(H) and ι(e) = {u, v} (note that it must be

fV (u) ̸= fV (v)), we have ι(fΛ(e)) = {fV (u), fV (v)},
5. for every loop e ∈ L(H), f−1(e) is a disjoint union of loops and cycles spanning all

vertices u ∈ V (G) such that fV (u) = ι(e),
6. for every semi-edge e ∈ S(H), f−1(e) is a disjoint union of edges and semi-edges spanning

all vertices u ∈ V (G) such that fV (u) = ι(e), and
7. for every edge e ∈ E(H), f−1(e) is a disjoint union of edges (i.e., a matching) spanning

all vertices u ∈ V (G) such that fV (u) ∈ ι(e).
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G H

Figure 2 An example of a covering. The vertex mapping of the covering from G to H is determined
by the shape of the vertices, the edge mapping by the colors of the edges.

See an example of a covering projection in Fig. 2. Conditions 1–4. express the fact that
fV and fE commute with ι, i.e., that f is a homomorphism from G to H. Conditions 5–7
express that this homomorphism is locally bijective (for every ordinary edge e incident with
fV (u) in H, there is exactly one ordinary edge of G which is incident with u and mapped
to e by fE ; for every semi-edge e incident to fV (u) in H, there is exactly one semi-edge, or
exactly one ordinary edge (but not both) in G incident with u and mapped to e by fE ; and
for every loop e incident with fV (u) in H, there is exactly one loop or exactly two ordinary
edges (but not both) of G which are incident with u and mapped to e by fE).

Even though the aforementioned definitions of graphs and graph covers through darts are
compact and elegant, in the rest of the paper we shall work with the standard definition of
graphs and the equivalent description of graph covers given by Proposition 5, because they
are better suited for describing the reductions and understanding the illustrative figures.

It is clear that a covering projection (more precisely, its vertex mapping) preserves degrees.
One may ask when (or if) a degree preserving vertex mapping can be extended to a covering
projection. An obvious necessary condition is described by the following definition.

▶ Definition 6. A vertex mapping fV : V (G) −→ V (H) between graphs G and H is called
degree-obedient if
1. for any two distinct vertices u, v ∈ V (H) and any vertex x ∈ f−1

V (u), the number of
ordinary edges e of H such that ι(e) = {u, v} equals the number of ordinary edges of G

with one end-vertex x and the other one in f−1
V (v), and

2. for every vertex u ∈ V (H) and any vertex x ∈ f−1
V (u), the value pS(H)(u) + 2pL(H)(u)

equals pS(G)(x) + 2pL(G)(x) + r, where r is the number of edges of G with one end-vertex
x and the other one from f−1

V (u) \ {x},
3. for every vertex u ∈ V (H) and any vertex x ∈ f−1

V (u), pS(G)(x) ≤ pS(H)(u).

Finally, let us recall that the product G × H of graphs G and H is defined as the graph
with the vertex set being the Cartesian product V (G) × V (H) and with vertices (u, v) and
(u′, v′) being adjacent in G × H if and only if u is adjacent to u′, and v is adjacent to v′.

1.4 Overview of our results
The first major difference between graphs with and without semi-edges is that for target
graphs without semi-edges, every degree-obedient vertex mapping to it can be extended to a
covering. This is not true anymore when semi-edges are allowed (consider a one-vertex graph
with three semi-edges, every 3-regular graph allows a degree-obedient mapping onto it, but
only the 3-edge-colorable ones are covering it). In Section 2 we show that the situation is not
as bad if the source graph is bipartite. In Theorem 10 we prove that if the source graph is
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bipartite and has no semi-edges, then every degree-obedient vertex mapping can be extended
to a covering, while if semi-edges are allowed in the bipartite source graph, it can at least be
decided in polynomial time if a degree-obedient mapping can be extended to a covering.

All other results concern the complexity of the following decision problem

Problem: H-Cover
Input: A graph G.

Question: Does G cover H?

In order to present our results in the strongest possible form, we aim at proving the
hardness results for restricted classes of input graphs, while the polynomial ones for the
most general inputs. In particular, we only allow simple graphs as inputs when we prove
NP-hardness, and on the other hand, we allow loops, multiple edges as well as semi-edges
when we present polynomial-time algorithms.

The first NP-hardness result is proven in Theorem 11, namely that covering semi-simple
regular graphs of valency at least 3 is NP-hard even for simple bipartite input graphs. In
Sections 3 and 4 we give a complete classification of the computational complexity of covering
graphs with one and two vertices. This extends the main result of [30] to graphs with
semi-edges. Moreover, we strengthen the hardness results of [30] considerably by showing
that all NP-hard cases of covering regular two-vertex graphs (even those without semi-edges)
remain NP-hard for simple bipartite input graphs. It must be noted that through the
reduction from [31], our results on the complexity of covering one- or two-vertex graphs
provide characterization results on infinitely many simple graphs which contain at most two
vertices of degrees greater than 2.

All considered computational problems are clearly in the class NP, and thus we only
concentrate on the NP-hardness proofs in the NP-completeness results. We restrict our
attention to connected target graphs, in which case it suffices to consider only connected
input graphs. In this case every cover is a k-fold cover for some k, which means that the
preimage of every vertex has the same size.

2 The impact of semi-edges

In this section we demonstrate the huge difference between covering graphs with and without
semi-edges. First, we discuss the necessity of specifying the edge mapping in a covering
projection. In other words, we discuss when a degree mapping can always be extended to a
covering, and when this question can be decided efficiently. The following proposition follows
straightforwardly from the definitions.

▶ Proposition 7. For every graph covering projection between two graphs, the vertex mapping
induced by this projection is degree-obedient.

▶ Proposition * 8. If H has no semi-edges, then for any graph G, any degree-obedient
mapping from the vertex set of G onto the vertex set of H can be extended to a graph covering
projection of G to H.

Proof sketch. For simple graphs G, this is proved already in [30]. If multiple edges and loops
are allowed, we use a similar approach. The key point is that Petersen theorem [47] about
2-factorization of regular graphs of even valence is true for multigraphs without semi-edges
as well, and the same holds true for König-Hall theorem [40] on 1-factorization of regular
bipartite multigraphs. ◀
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As we will see soon, the presence of semi-edges changes the situation a lot. Even for simple
graphs, degree-obedient vertex mappings to a graph with semi-edges may not extend to a
graph covering projection, and the possibility of such an extension may even be NP-complete.

▶ Observation 9. Let F (3, 0) be the graph with one vertex and three semi-edges pending on
this vertex. Then a graph covers F (3, 0) if and only if it is 3-regular and 3-edge-colorable.
Testing 3-edge-colorability is well known to be NP-hard even for simple graphs.

However, if the input graph is bipartite, the situation gets much easier.

▶ Theorem * 10. If a graph G is bipartite, then for any graph H, it can be decided in
polynomial time whether a degree-obedient mapping from the vertex set of G onto the vertex
set of H can be extended to a graph covering projection of G to H. In particular, if G has
no semi-edges and is bipartite, then every degree-obedient mapping from the vertex set of G

onto the vertex set of H can be extended to a graph covering projection of G to H.

Proof sketch. To prove this statement, it is enough to analyze the edges of H and their
preimages in G according to the following classification:

For each vertex pair x ̸= y ∈ V (H) inducing k ≥ 0 parallel edges in H, their preimage
forms a k-regular subgraph Gx,y of bipartite G, and hence Gx,y is k-edge colorable which
immediately gives a covering projection for these edges.
For each vertex x ∈ V (H) with b ≥ 0 semi-edges and c ≥ 0 loops incident to x in H,
these semi-edges and loops lift to a (b + 2c)-regular subgraph G̃x of G. The algorithmic
task now is to decide whether G̃x admits a factor projecting onto the semi-edges incident
to x (this is efficiently solvable, e.g., by network flows since G̃x is again bipartite). If the
answer is true, a projection of the remaining edges onto the loops incident to x always
exists by Petersen theorem. ◀

Now we prove the first general hardness result, namely that covering semi-simple regular
graphs is always NP-complete (this is the case when every vertex of the target graph is
incident with at most one semi-edge, and the graph has no multiple edges nor loops). See
Fig. 3 for examples of semi-simple graphs H defining such hard cases.

Figure 3 Examples of small semi-simple graphs which define NP-complete covering problems.

▶ Theorem 11. Let H be a semi-simple k-regular graph, with k ≥ 3. Then the H-Cover
problem is NP-complete even for simple bipartite input graphs.

Proof. Consider H ′ = H × K2. This graph is simple, k-regular and bipartite, hence the
H ′-Cover problem is NP-complete by [32]. Given an input k-regular graph G, it is easy
to see that G covers H ′ if and only it is bipartite and covers H. Since bipartiteness can be
checked in polynomial time, the claim follows. ◀

3 One-vertex target graphs

We start the section by proving a slightly more general hardness result, which may be of
interest on its own. In particular, it implies that for every d ≥ 3, it is NP-complete to decide
if a simple d-regular graph contains an even 2-factor, i.e., a spanning 2-regular subgraph
whose every cycle has even length.
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▶ Theorem * 12. For every k ≥ 2 and every d ≥ k + 1, it is NP-complete to decide if a
simple d-regular graph contains k pairwise disjoint perfect matchings.

Proof sketch. The complement of the union of k pairwise disjoint perfect matchings in a
(k + 1)-regular graph is a perfect matching as well, and thus a (k + 1)-regular graph contains
k pairwise disjoint perfect matchings if and only if it is (k + 1)-edge colorable. Hence for
d = k + 1, the claim follows from the NP-completeness of d-edge colorability of d-regular
graphs which has been proven by Leven and Galil [38].

G1 G2

Hu,1

Hu,2

Hu,3

u1 u2

xu,1

xu,2

xu,3

Figure 4 An illustration to the construction of the graph G′ in the proof of Theorem 12.

For d ≥ k+2, we reduce from the previous case, as we sketch next. If G is a (k+1)-regular
instance (of the k disjoint perfect matchings problem), we construct an equivalent d-regular
instance G′ starting from two copies G1 and G2 of G, as shown in Fig. 4. Then for each
vertex u of G, we connect its two copies u1, u2 (in G1, G2) by d − k − 1 paths of length 2,
and add copies of a suitable gadget H to the middle vertices of those paths. The purpose of
this gadget is two-fold – it raises all degrees to d, and it prevents edges of the incident path
from being used in a perfect matching since the gadget is of an even order. It is routine to
finish the construction and to show that G contains k disjoint perfect matchings if and only
if G′ does so. ◀

Now we are ready to prove a dichotomy theorem on the complexity of covering one-vertex
graphs. Let us denote by F (b, c) the one-vertex graph with b semi-edges and c loops.

▶ Theorem * 13. The F (b, c)-Cover problem is polynomial-time solvable if b ≤ 1, or b = 2
and c = 0, and it is NP-complete otherwise, even for simple graphs.

Proof sketch. The high-level idea is similar to the second point of the proof of Theorem 10:
The input graph G possibly covering F (b, c) should better be (b + 2c)-regular (which can be
easily checked), and it remains to argue that such G covers F (b, c) if and only if it contains b

pairwise disjoint perfect matchings (then a covering projection onto the c loops follows easily).
The cases of b = 0, b = 1, or b = 2 and c = 0 can be efficiently solved using standard tools,
while the remaining cases are hard from Theorem 12 by setting k = b and d = b + 2c. ◀

4 Two-vertex target graphs

Let W (k, m, ℓ, p, q) be the two-vertex graph with k semi-edges and m loops at one vertex, p

loops and q semi-edges at the other one, and ℓ > 0 multiple edges connecting the two vertices
(these edges are referred to as bars). In other words, W (k, m, ℓ, p, q) is obtained from the
disjoint union of F (k, m) and F (q, p) by connecting their vertices by ℓ parallel edges. For
an example see the graph H from Fig. 2 which is isomorphic to both W (1, 1, 2, 1, 0) and
W (0, 1, 2, 1, 1).
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▶ Theorem 14. The W (k, m, ℓ, p, q)-Cover problem is solvable in polynomial time in the
following cases
1. k + 2m ̸= 2p + q and (k ≤ 1 or k = 2 and m = 0) and (q ≤ 1 or q = 2 and p = 0)
2. k + 2m = 2p + q and ℓ = 1 and k = q ≤ 1 and m = p = 0
3. k + 2m = 2p + q and ℓ > 1 and k = m = p = q = 0
and it is NP-complete otherwise.

Note that case 1 applies to non-regular target graph W , while cases 2 and 3 apply to
regular graphs W , i.e., they cover all cases when k + 2m + ℓ = 2p + q + ℓ.

We will refer to the vertex with k semi-edges as blue and the vertex with q semi-edges as
red. In a covering projection f = (fV , fE) from a graph G onto W (k, m, ℓ, p, q), we view the
restricted vertex mapping fV as a coloring of V (G). We call a vertex u ∈ V (G) blue (red)
if fV maps u onto the blue (red, respectively) vertex of W (k, m, ℓ, p, q). In order to keep
the text clear and understandable, we divide the proof into a sequence of claims in separate
subsections. This will also allow us to state several hardness results in a stronger form.

4.1 Polynomial parts of Theorem 14

We follow the case-distinction from the statement of Theorem 14:
1. If k + 2m ̸= 2p + q, then the two vertex degrees of W (k, m, ℓ, p, q) are different, and the

vertex restricted mapping is uniquely defined for any possible graph covering projection
from the input graph G to W (k, m, ℓ, p, q). For this coloring of G, if it exists, we check if
it is degree-obedient. If not, then G does not cover W (k, m, ℓ, p, q). If yes, we check using
Theorem 12 whether the blue subgraph of G covers F (k, m) and whether the red subgraph
of G covers F (q, p). If any one of them does not, then G does not cover W (k, m, ℓ, p, q).
If both of them do, then G covers W (k, m, ℓ, p, q), since the “remaining” subgraph of G

formed by edges with one end-vertex red and the other one blue is ℓ-regular and bipartite,
thus covering the ℓ parallel edges of W (k, m, ℓ, p, q) (Proposition 8).

2. In case 2, the input graph G covers W (1, 0, 1, 0, 1) only if G is 2-regular. If this holds,
then G is a disjoint union of cycles, and it is easy to see that a cycle covers W (1, 0, 1, 0, 1)
if and only if it length is divisible by 4. For the subcase of k = q = 0, see the next point.

3. The input graph G covers W (0, 0, ℓ, 0, 0) only if it is a bipartite ℓ-regular graph without
semi-edges, but in that case it does cover W (0, 0, ℓ, 0, 0), as follows from Proposition 8.

4.2 NP-hardness for non-regular target graphs

▶ Proposition * 15. Let the parameters k, m, p, q be such that k + 2m ̸= 2p + q, and ((k ≥ 3
or k = 2 and m ≥ 1), or (q ≥ 3 or q = 2 and p ≥ 1)). Then the W (k, m, ℓ, p, q)-Cover
problem is NP-complete.

Proof sketch. The proof essentially relies on the reductions from the preceding section. The
parameters ensure that after deleting the ℓ ordinary edges from the target graph, we end up
with two graphs, F (k, m) and F (p, q), where at least one of them identifies one of the hard
cases of covering one-vertex graphs. We then utilize a special gadget by which we connect the
vertices of instances of F (k, m)-Cover and F (q, p)-Cover to get a graph G′. We further
claim that we can decide both of these instances if and only if G′ covers W (k, m, ℓ, p, q). The
argument is significantly simplified by the determination of images of vertices due to the
different degrees of vertices in the target graph. ◀
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4.3 NP-hardness for connected regular target graphs
The aim of this subsection is to conclude the proof of Theorem 14 by showing the NP-hardness
for the case of ℓ ≥ 1 and k + 2m = 2p + q. We will actually prove a result which is more
general in two directions. Firstly, we formulate the result in the language of colorings of
vertices, and secondly, we prove the hardness for bipartite inputs. This might seem surprising,
as we have seen in Section 2 that bipartite graphs can make things easier. Moreover, this
strengthening in fact allows us to prove the result in a unified, and hence simpler, way.

Note that the following definition of a relaxation of usual proper 2-coloring resembles
the so-called defective 2-coloring (see survey of Wood [50]). Hoverer, the definitions are not
equivalent.

▶ Definition 16. A (b, c)-coloring of a graph is a 2-coloring of its vertices such that every
vertex has b neighbors of its own color and c neighbors of the other color.

▶ Observation 17. For any parameters k, m, ℓ, p, q such that k+2m = 2p+q, a bipartite graph
G with no semi-edges covers W (k, m, ℓ, p, q) if and only if it allows a (k + 2m, ℓ)-coloring.

Proof. On one hand, any graph covering projection from G to W (k, m, ℓ, p, q) induces a
(k +2m, ℓ)-coloring of G, provided k +2m = 2p+q. On the other hand, a (k +2m, ℓ)-coloring
of G is a degree-obedient vertex mapping from G to W (k, m, ℓ, p, q), again provided that
k + 2m = 2p + q. If G is bipartite and has no semi-edges, then this mapping can be extended
to a graph covering projection by Theorem 10. ◀

In view of the previous observation, we will be proving the NP-hardness results for the
problem (b, c)-Coloring which takes a graph G on input and asks if G allows a (b, c)-coloring.

▶ Theorem * 18. For every pair of positive integers b, c such that b + c ≥ 3, the (b, c)-
Coloring problem is NP-complete even for simple bipartite graphs.

Proof sketch. First observe that the (b, c)-Coloring and (c, b)-Coloring problems are
polynomially equivalent on bipartite graphs, as the colorings are mutually interchangeable
by switching the colors in one class of the bi-partition. Thus we may consider only b ≥ c.

a) b)

H1
P1 P2 P3 P4

Figure 5 A 20-vertex auxiliary graph H1, used in the first part of the proof of Theorem 18, and
its possible partial (2, 1)-colorings.

NP-hardness of the (2, 1)-Coloring is proved by a reduction from NAE-3-SAT [25] by
using three kinds of building blocks: a clause gadget (here K1,3), a vertex gadget enforcing
the same color on selected subset of vertices, and a garbage collection that allows to complete
the coloring to a cubic graph, that as a part contains the vertex and clause gadgets linked
together to represent a given instance of NAE-3-SAT. This reduction is the actual core of
the proof, and is briefly sketched in Figures 5 and 6. The former one shows a special gadget
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2i′ uz′′
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a) b)F

F ×K2

Figure 6 Garbage collection and the overall construction for the first part of Theorem 18. Clause
gadgets are in the corners of the figure b).
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Hu,b−2

u1 u2
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yu,2

yu,b−2
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tu,1

tu,2
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Figure 7 An illustration of the constructions used in the proof of Theorem 18; a reduction to
(b, 1)-Coloring on the left, and a reduction to (b, c)-Coloring on the right.

H1 used in the color-enforcing constructions of this reduction. For every variable, copies of
H1 are concatenated into a chain, whose one side is connected to ensure that the coloring P2
(or its inverse) is the only admissible (2,1)-coloring, the other side transfers this information
as the truth valuation of the variable to the clause gadgets of clauses containing it. The
latter figure sketches the garbage collection and the overall construction of the reduction.

The result on (2, 1)-Coloring, in particular, implies that W (0, 2, 1, 2, 0)-Cover is
NP-complete for simple bipartite input graphs, whereas the semi-edgeless dumbbell graph
W (0, 2, 1, 2, 0) is the smallest semi-edgeless graph whose covering is NP-complete.

Further on, we reduce (2, 1)-Coloring to (b, 1)-Coloring by using two copies of the
instance of (2, 1)-Coloring and linking them together by suitable graphs called bridges, that
enforce replication of colors for the desired coloring. See a brief sketch in Fig. 7 (left). In view
of the initial observation, at this point we know that (b, 1)-Coloring and (1, b)-Coloring
are NP-complete on bipartite inputs for all b ≥ 2.

Then we reduce (1, c)-Coloring to (b, c)-Coloring with b > c. Again we take two
copies of an instance of (1, c)-Coloring, say a (1 + c)-regular graph G. As sketched in
Fig. 7 (right), we construct an auxiliary graph H with two vertices of degree b − 1 (called
the “connector” vertices), all other vertices being of degree b + c (these are called the “inner”
vertices). This bridge graph is such that in every two-coloring of its vertices, such that all
inner vertices have exactly b neighbors of their own color and exactly c neighbors of the
opposite color, while the connector vertices have at most b neighbors of their own color and
at most c neighbors of the opposite color, in every such a coloring the connector vertices and
their neighbors always get the same color. And, moreover, such a coloring exists. We then
take two copies of G and for every vertex of G, identify its copies with the connector vertices
of a copy of the bridge graph (thus we have as many copies of the bridge graph as is the
number of vertices of G). The above stated properties of the bridge graph guarantee that
the new graph allows a (b, c)-coloring if and only if G allows a (1, c)-coloring.
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It is worth mentioning that we have provided two different constructions of the bridge
gadget. A general one for the case of b ≥ c + 2 and a specific one for the case of b = c + 1. It
is a bit surprising that the case analysis needed to prove the properties of the bridge graph
is much more involved for the specific construction in the case of b = c + 1.

Finally, for (b, b)-Coloring with b ≥ 2 we establish a completely different reduction
from a special variant of satisfiability (k-in-2k)-SATq, a generalization of NAE-3-SAT. ◀

Theorem 18 and Observation 17 imply the following proposition, which concludes the
proof of Theorem 14.

▶ Proposition 19. The W (k, m, ℓ, p, q)-Cover problem is NP-complete for simple bipartite
input graphs for all parameter sets such that k + 2m = 2p + q ≥ 1, ℓ ≥ 1, and k + 2m + ℓ ≥ 3.

5 Conclusion

The main goal of this paper is to initiate the study of the computational complexity of
covering graphs with semi-edges. We have exhibited a new level of difficulty that semi-
edges bring to coverings by showing a connection to edge-colorings. We have presented a
complete classification of the computational complexity of covering graphs with at most two
vertices, which is already a quite nontrivial task. In the case of one-vertex target graphs, the
problem becomes polynomial-time solvable if the input graph is bipartite, while in the case
of two-vertex target graphs, bipartiteness of the input graphs does not help. This provides a
strengthening of known results of covering two-vertex graphs without semi-edges.

It is worth noting that the classification in [30] concerns a more general class of colored
mixed (multi)graphs. I.e., graphs which may have both directed and undirected edges and
whose edges come with assigned colors which must be preserved by the covering projections.
It turns out that covering a two-vertex (multi)graph is NP-hard if and only if it is NP-hard
for at least one of its maximal monochromatic subgraphs. It can be shown that the same
holds true when semi-edges are allowed (note that all semi-edges must be undirected only).

We end up with an intriguing open problem.

▶ Problem. Do there exist graphs H1 and H2, both without semi-edges, such that H1 covers
H2, and such that the H1-Cover is polynomial-time solvable and H2-Cover is NP-complete?

If semi-edges are allowed, then H1 = W (0, 0, 3, 0, 0) and H2 = F (3, 0) is such a pair.
All further examples that we can obtain generalize this observation. They are unique in
the sense that NP-completeness of H2-Cover follows from the NP-completeness of the
edge-colorability problem of general graphs which becomes polynomialy solvable for bipartite
instances.
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Abstract
Even though coherent control of quantum operations appears to be achievable in practice, it is still
not yet well understood. Among theoretical challenges, standard completely positive trace preserving
(CPTP) maps are known not to be appropriate to represent coherently controlled quantum channels.
We introduce here a graphical language for coherent control of general quantum channels inspired
by practical quantum optical setups involving polarising beam splitters (PBS). We consider different
situations of coherent control and disambiguate CPTP maps by considering purified channels, an
extension of Stinespring’s dilation.

First, we show that in classical control settings, the observational equivalence classes of purified
channels correspond to the standard definition of quantum channels (CPTP maps). Then, we
propose a refinement of this equivalence class generalising the “half quantum switch” situation,
where one is allowed to coherently control which quantum channel is applied; in this case, quantum
channel implementations can be distinguished using a so-called transformation matrix. A further
refinement characterising observational equivalence with general extended PBS-diagrams as contexts
is also obtained. Finally, we propose a refinement that could be used for more general coherent
control settings.
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1 Introduction

Unlike the usual sequential and parallel compositions, coherent control allows one to perform
two or more quantum evolutions in superposition. It is fairly easy with quantum optics –
an important player in the development of quantum technologies – to construct setups that
perform some coherent control. A polarising beam splitter (PBS) precisely allows one to do
that: by reflecting for instance horizontally polarised particles and transmitting vertically
polarised ones, it lets the polarisation control the path, and thereby the physical devices
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encountered, in a coherent way [10, 16]. This finds some interesting applications for quantum
information processing (e.g., for error filtration [11]), including the ability to perform some
operations in an indefinite causal order, as for instance in the so-called quantum switch [6].
Intuitively, given two quantum operations A and B and a control qubit, a quantum switch
consists in applying A followed by B (resp. B followed by A) when the control qubit is in
state |0⟩ (resp. |1⟩). When the control qubit is in a superposition, we get a superposition of
the two possible orders. Quantum switch can be used to speed up information processing
tasks, e.g. deciding whether two operators are commuting or anticommuting [5, 2]. Actual
implementations of the quantum switch have been experimentally realised [12].

General quantum evolutions – a.k.a. quantum channels – are commonly represented as
completely positive trace preserving (CPTP) maps. CPTP maps can naturally be composed
in sequence and in parallel. However, it has been realised that the description of quantum
channels in terms of CPTP maps is not appropriate for some particular setups involving
coherent control [15, 1, 7, 13]. One indeed needs some more information about their practical
implementation to unambiguously determine the behaviour of such setups, and it was recently
proposed to complete the description of channels by so-called transformation matrices [1], or
vacuum extensions [7, 13].

Here we consider a general class of setups involving PBS, and study how these can be
used to coherently control quantum channels. We build upon the graphical language of
PBS-diagrams introduced in [8], in which the controlled operations were “pure” (typically,
unitary), and extend it to allow for the control of more general quantum channels. As the
description of channels as CPTP maps is inadequate here, we propose to work with purified
channels based on a unitary extension of Stinespring’s dilation [17].

We address the question of the observational equivalence of purified channels, and show
that different purified channels can be indistinguishable. To do so, we use PBS-diagrams to
formalise three kinds of contexts: when the context is PBS-free, we recover that two purified
channels are indistinguishable if and only if they lead to the same CPTP map. When the
context allows for PBS but no polarisation flips, we recover the characterisation in terms of
superoperators and transformation matrices which was introduced for a particular setup [1].
When we allow for arbitrary contexts, we obtain a characterisation of observational equivalence
involving “second-level” superoperators and transformation matrices. We finally open the
discussion to more general coherent-control settings, and propose a refined equivalence
relation as a candidate for characterising channel (in)distinguishabilty in such scenarios.

The omitted proofs are available in the full version of the paper [3].

2 PBS-diagrams

PBS-diagrams were introduced in [8] as a language for coherent control of “pure” quantum
evolutions. They aim at describing practical scenarios where a flying particle goes through an
experimental setup, and is routed via polarising beam splitters. In addition to its polarisation,
the particle carries some “data” register, whose state is described in some Hilbert space H,
and on which a number “pure” linear (typically, unitary) operators are applied.

Here we shall enrich the pure PBS-diagram language so as to incorporate the coherent
control of more general quantum channels. To this purpose, we start by defining an abstract
version of PBS-diagrams that we call bare diagrams, and which we equip with a word path
semantics describing the trajectory and change of polarisation of a particle that enters the
diagram through some given input wire: the word path semantics gives its new polarisation
and position at the output of the diagram, together with a word over some alphabet describing
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the sequence of bare gates – where the quantum channels we want to control are located
– crossed. Subscribing to the idea that any general quantum operation can be seen as a
unitary evolution of the system under consideration and its environment, we then define
purified channels, which can be coherently controlled in a similar way to the PBS-diagrams
of [8]. Replacing bare gates with purified channels, we obtain an extension1 of the graphical
language of [8], which we call extended PBS-diagrams and which we equip with a quantum
semantics obtained after discarding the (inaccessible) environments of all gates.

2.1 Bare PBS-diagrams
2.1.1 Syntax
A bare PBS-diagram is made of polarising beam splitters , polarisation flips ¬ , and
bare gates a . Every bare gate is indexed by a unique label (here, a) used to identify
the gate in the diagram. These building blocks are connected via wires represented using
the identity or the swap . The empty diagram is denoted by . Diagrams can be
combined by means of sequential composition ◦, parallel composition ⊕,2 and trace Tr(·),
which represents a feedback loop.

We define a typing judgement Γ ⊢ D : n, where Γ is the alphabet containing all gate
indices,3 to guarantee that the diagrams are well-formed – in particular, that the gate indices
are unique – using a linear typing discipline:

▶ Definition 1 (Bare PBS-diagram). A bare PBS-diagram Γ ⊢ D : n (with n ∈ N) is
inductively defined as:

∅ ⊢ : 0 ∅ ⊢ : 1 ∅ ⊢ ¬ : 1 ∅ ⊢ : 2 ∅ ⊢ : 2 {a} ⊢ a : 1

Γ1 ⊢D1 :n Γ2 ⊢D2 :n Γ1∩Γ2 =∅
Γ1 ∪ Γ2 ⊢ D2 ◦D1 : n

Γ1 ⊢D1 :n1 Γ2 ⊢D2 :n2 Γ1∩Γ2 =∅
Γ1 ∪ Γ2 ⊢ D1 ⊕D2 : n1 + n2

Γ ⊢ D : n+ 1
Γ ⊢ Tr(D) : n

Graphical representation. PBS-diagrams form a graphical language: compositions and
trace are respectively depicted as follows (for diagrams generically depicted as ··· ···D ):

D2··· ··· ◦ D1··· ··· = D1 D2··· ··· ··· D1··· ··· ⊕ D2··· ··· =
· D1
·· ···

·· ·· ·· D2
Tr

(
D··· ···

)
= ·· ·· ··

D

Examples of bare PBS-diagrams are given in Fig. 1 below. Note that two a priori distinct
constructions, like for instance Tr( a ⊕ ) and a ⊕Tr( ), can lead to the same
graphical representation a . To avoid ambiguity, we define diagrams modulo a structural

congruence detailed in Appendix A. Roughly speaking, the structural congruence guarantees
that (i) two constructions leading to the same graphical representation are equivalent, and
(ii) a diagram can be deformed at will (without changing its topology), e.g.:

=
D2

D1 =
D1

D2 = D2
D1 = D2

D1

1 Strictly speaking, the PBS-diagrams of [8] did not require the operations inside the gates to be unitary,
while here we impose such a restriction a priori. One could however also consider non-unitary operations
in our framework here, although one would lose our motivation based on the unitary extension of
Stinespring’s dilation.

2 Denoted ⊗ in [8]. Here we change the notation to reflect how the parallel composition affects the
structure of the Hilbert space describing the position of the particle (see Section 2.2).

3 We may write simply D : n, or even just D, when Γ is not relevant or is clear from the context.

MFCS 2021



22:4 Coherent Control and Distinguishability of Quantum Channels via PBS-Diagrams

a b
¬

a

¬¬ ¬
b

Figure 1 Two examples of bare PBS-diagrams, with the same word path semantics: (D, ↑, 0) abab===⇒

(↑, 0) and (D,→, 0) ϵ=⇒ (→, 0).

Note in particular that the length of the wires does not matter. Physically, if these
diagrams were to be realised in practical setups, this would mean that the experiment should
be insensible to the time at which the particle would go through the various elements; if
needed one could always add (possibly polarisation-dependent) delay lines (e.g., ) to
correct for a possible time mismatch between different paths.

2.1.2 Word path semantics
The word path semantics describes the trajectory of a particle which enters a bare PBS-
diagram Γ ⊢ D : n with a polarisation in the standard basis state c ∈ {→, ↑} (horizontal or
vertical) and from a definite position p ∈ [n] := {0, . . . , n−1}. Because of the polarising beam
splitters, the trajectory of the particle depends on its polarisation: we take it to be reflected
when the polarisation is horizontal, and transmitted when the polarisation is vertical. The
“negation” ¬ flips the polarisation, while the gates do not act on the polarisation. The
word path semantics of a diagram describes, given an initial polarisation and position, the
final polarisation and position together with the sequence of gates – represented by a word
over Γ – that the particle goes through:

▶ Definition 2 (Word path semantics). Given a bare PBS-diagram Γ ⊢ D : n, a polarisation
c ∈ {→, ↑} and a position p ∈ [n], let (D, c, p) w=⇒ (c′, p′) with w ∈ Γ∗ a word over Γ (or just
(D, c, p) ⇒ (c′, p′) for the empty word w = ϵ) be inductively defined as follows:

( , c, 0) ⇒ (c, 0) ( ¬ , ↑, 0) ⇒ (→, 0) ( ¬ ,→, 0) ⇒ (↑, 0)

( , c, p) ⇒ (c, 1 − p) ( ,→, p) ⇒ (→, p) ( , ↑ , p) ⇒ (↑, 1 − p)

(
a , c, 0

) a=⇒ (c, 0)
(D1, c, p) w1==⇒ (c′, p′) (D2, c

′, p′) w2==⇒ (c′′, p′′)

(D2 ◦D1, c, p) w1w2====⇒ (c′′, p′′)
(◦)

D1 : n1 p < n1 (D1, c, p) w=⇒ (c′, p′)

(D1 ⊕D2, c, p) w=⇒ (c′, p′)
(⊕1)

D1 : n1 p ≥ n1 (D2, c, p−n1) w=⇒ (c′, p′)

(D1 ⊕D2, c, p) w=⇒ (c′, p′+n)
(⊕2)

D : n+ 1 ∀i ∈ {0, . . . , k}, (D, ci, pi)
wi==⇒ (ci+1, pi+1) (pi+1 = n)⇔(i < k)

(Tr(D), c0, p0) w0···wk=====⇒ (ck+1, pk+1)
(Tk)

with k = 0, 1, and 2.
We denote by wD

c,p ∈ Γ∗ the word, cD
c,p ∈ {↑,→} the polarisation, and pD

c,p ∈ [n] the

position s.t. (D, c, p)
wD

c,p===⇒ (cD
c,p, p

D
c,p).
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The word path semantics is invariant modulo structural congruence (i.e., diagram deform-
ation). Moreover, note that despite the traces which form feedback loops, the word path
semantics is well-defined.4 Indeed, a particle entering the diagram through some input wire
cannot go through a feedback loop (or any other part of the diagram) twice with the same
polarisation, which justifies that k only needs to go up to 2 in Rule (Tk) above. Intuitively, if
a particle goes twice in a feedback loop with the same polarisation then it will loop forever;
but because of time symmetry this also means that the particle went though the feedback
loop infinitely many times in the past, which contradicts the fact that it entered through an
input wire. See Appendix B for details about the formal proofs of these facts.

For similar reasons, each gate cannot appear more than twice along any path, or even in
the family of all the possible paths of a diagram:

▶ Proposition 3. Given a bare PBS-diagram Γ ⊢ D : n, ∀a ∈ Γ, one has∑
c∈{→,↑},p∈[n]

|wD
c,p|a ≤ 2, where |w|a denotes the number of occurrences of a in the word

w. Moreover, if D is ¬ -free then for any c one has
∑

p∈[n] |wD
c,p|a ≤ 1.

The converse is also true:

▶ Proposition 4. For any family of words {wc,p}(c,p)∈{→,↑}×[n] such that every letter appears
at most twice in the whole family, there exists a bare PBS-diagram D : n such that wc,p = wD

c,p

for all c, p. Furthermore if for any c ∈ {→, ↑}, every letter appears at most once in {wc,p}p∈[n],
the bare PBS-diagram D can be chosen ¬ -free.

Note that the proof of Proposition 4 is constructive. For instance, the family {w↑,0 =
abab, w→,0 = ϵ} can be obtained from the diagram of Fig. 1 (Right). The solution is not
unique in general and there is actually a simpler diagram, see Fig. 1 (Left), with the same
word path semantics.

2.2 Extended PBS-diagrams
We will now introduce extended PBS-diagrams by filling every bare gate with the description
of a quantum channel. As recalled in the introduction, however, defining the coherent control
of general channels (as we wish to do with PBS-diagrams) in an unambiguous way is not
trivial. Here we propose to do so through the notion of purified channels, which are an
extension of Stinespring’s dilation of quantum channels [17].

2.2.1 Purified channels
A standard paradigm for quantum channels acting on a Hilbert space H is to describe them
as CPTP maps, or superoperators L(H) → L(H),5 where L(H) denotes the set of linear
operators on H. As exemplified e.g. in [15, 1], this representation is however ambiguous
when it comes to describing quantum coherent control: two quantum channels with the same
superoperator can behave differently in a coherent-control setting.

A possible way to overcome this issue is to “go to the Church of the larger Hilbert
space”, according to which any quantum channel can be interpreted as a pure quantum
operation acting on both the quantum system and an environment. Mathematically, this
corresponds to Stinespring’s dilation theorem [17], which states that any CPTP map acting

4 Definition 2 does not provide any word path semantics for diagrams of type D : 0. In fact, no word
path semantics needs to be defined for such diagrams, as there is no position p defining any input wire.
Note also that for diagrams D : n containing fully closed subdiagrams (e.g., of the form D = D1 ⊕D2
with D2 : 0), the semantics does not depend on these fully closed subdiagrams.

5 As this is the case of interest in PBS-diagrams (with H corresponding to the data register), we consider
here channels with the same input and output Hilbert spaces.
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on a Hilbert space H can be implemented with an isometry V : H → H ⊗ E , where E denotes
the Hilbert space attached to the environment, followed by a partial trace of the latter.
Note that in this representation, the isometry V can be understood as encoding both the
creation of the environment E and the evolution of the joint system H ⊗ E . Indeed, V can
always be decomposed into an environment initialisation |ε⟩ ∈ E and a unitary evolution
U : H ⊗ E → H ⊗ E such that V = U(IH ⊗ |ε⟩), where IH denotes the identity operator over
H. In our approach to defining coherent control for quantum channels, we will precisely
abide by this description in terms of unitary purifications, which we formalise as follows:

▶ Definition 5 (Purified channel). Given a Hilbert space H, a purified H-channel (or simply
purified channel, for short) is a triplet [U, |ε⟩, E ], where E is the local environment Hilbert
space, |ε⟩ ∈ E is the environment initial state, and U : H ⊗ E → H ⊗ E is a unitary operator
representing the evolution of the joint system. We denote the set of purified H-channels
by C(H).

As seen above, it directly follows from Stinespring’s dilation theorem that any CPTP
map L(H) → L(H) can be represented by a purified H-channel, which is however not unique.
Reciprocally, with any purified H-channel [U, |ε⟩, E ], we naturally associate the CPTP map
S(1)

[U,|ε⟩,E] : L(H) → L(H) = ρ 7→ TrE
(
U(ρ⊗ |ε⟩⟨ε|)U†), where TrE denotes the partial trace

over E , and which we shall represent graphically, using the circuit notations of Appendix C,6

as follows: S(1)
[U,|ε⟩,E] = |ε⟩

H

U
H

E .
One may however not trace out the environment straight away. In fact, decomposing

Stinespring’s dilation into an environment state initialisation and a unitary evolution of
the joint system, as we did above, allows one to apply the same channel several times in a
coherent manner if a particle goes through a gate several times. In that case we will consider
that the same unitary is applied each time, without re-initialising the environment state
(which we assume to not evolve between two applications of the channel).

2.2.2 From bare to extended PBS-diagrams
We are now in a position to define extended PBS-diagrams of type H(n), which are essentially
bare PBS-diagrams of type n, where the gate indices are replaced by purified H-channels.
Hence, instead of bare gates a , an extended PBS-diagram contains gates of the form
U, |ε⟩ , parametrised by a purified channel [U, |ε⟩, E ] ∈ C(H) (where the Hilbert space E is

not represented explicitly, in order not to overload the diagrams).
This leads to the following inductive definition:

▶ Definition 6 (Extended PBS-diagram). An extended PBS-diagram D : H(n) (with n ∈ N)
is inductively defined as:

:H(0) :H(1) ¬ :H(1) :H(2) :H(2) [U, |ε⟩, E ] ∈ C(H)
U, |ε⟩ : H(1)

D1 : H(n) D2 : H(n)

D2 ◦D1 : H(n)
D1 : H(n1) D2 : H(n2)

D1 ⊕D2 : H(n1+n2)
D : H(n+1)

Tr(D) : H(n)

6 To manipulate unitary operations and CPTP maps, it is convenient to use such circuit-like graphical
representations, which correspond to standard circuit notations for “pure” operations, supplemented
with a ground symbol for the case of CPTP maps; see Appendix C for details.
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Extended PBS-diagrams are defined up to the same structural congruence as for bare
PBS-diagrams. It is convenient to explicitly define the map which, given a family of purified
channels, transforms a bare diagram into the corresponding extended PBS-diagram:7

▶ Definition 7. Given a bare PBS-diagram Γ ⊢ D′ : n and a family of purified H-channels
G = ([Ua, |εa⟩, Ea])a∈Γ indexed by elements of Γ, let [D′]G : H(n) be the extended PBS-diagram
inductively defined as [ a ]([Ua,|εa⟩,Ea]) = Ua, |εa⟩ , ∀g ∈ { , , ¬ , , }, [g]∅ =
g, [D′

2 ◦ D′
1]G1⊎G2 = [D′

2]G2 ◦ [D′
1]G1 , [D′

1 ⊕ D′
2]G1⊎G2 = [D′

1]G1 ⊕ [D′
2]G2 and [Tr(D′)]G =

Tr([D′]G), where ⊎ is the disjoint union.

For any extended PBS-diagram D : H(n), there exists a bare diagram Γ ⊢ D′ : n and
an indexed family of purified H-channels G s.t. [D′]G = D. We call D′ an underlying bare
diagram of D (which is unique, up to relabelling of the gates).

2.2.3 Quantum semantics
We now equip the extended PBS-diagrams with a quantum semantics, which is a CPTP map
acting on the complete state of the particle that goes through it, i.e., its joint polarisation,
position and data state. To describe the quantum semantics of an extended PBS-diagram
D : H(n), it is convenient to rely on an underlying bare diagram Γ ⊢ D′ : n and a family of
purified channels G s.t. [D′]G = D (so as to keep track of the environment spaces and be
able to identify them via the bare gate indices).

As we defined them, every purified channel comes with its local environment and a unitary
evolution acting on both the data register and its local environment. In order to define the
overall evolution of the diagram, we consider the global environment as the tensor product of
these local environments, and extend every unitary transformation to a global transformation
acting on the data register and the global environment:

▶ Definition 8. Given an indexed family of purified H-channels G = ([Ua, |εa⟩, Ea])a∈Γ,
let EG :=

⊗
a∈Γ Ea, |εG⟩ :=

⊗
a∈Γ |εa⟩ ∈ EG, and ∀ a ∈ Γ, let V G

a := Ua

⊗
x∈Γ\{a} IEx ∈

L(H ⊗ EG).

If a particle enters an extended PBS-diagram D with a definite polarisation and position
in some basis states |c⟩ ∈ C{→,↑} and |p⟩ ∈ C[n], respectively, the sequence of transformations
applied to the particle and the global environment when the particle goes through the
diagram can be deduced from the word path semantics of the underlying bare diagram D′:

|c⟩ ⊗ |p⟩ ⊗ |ψ⟩ ⊗ |εG⟩ 7→ |cD′

c,p⟩ ⊗ |pD′

c,p⟩ ⊗ V G
wD′

c,p

(|ψ⟩ ⊗ |εG⟩)

where wD′

c,p, cD′

c,p, and pD′

c,p are given by the word path semantics, i.e., (D′, c, p)
wD′

c,p===⇒ (cD′

c,p, p
D′

c,p),
and V G

w is inductively defined as V G
ϵ := IH⊗E and ∀a ∈ Γ, ∀w ∈ Γ∗, V G

aw := V G
w V

G
a .

One can actually consider inputting a particle in an arbitrary initial state (i.e., including
superpositions of polarisation and position); the transformation applied by the diagram is
then obtained from the one above, by linearity. This leads us to define the following:

▶ Definition 9. Given a bare PBS-diagram Γ ⊢ D′ : n and a family of purified H-channels
G indexed with Γ, let

UG
D′ :=

∑
c∈{→,↑},p∈[n]

|cD′

c,p⟩⟨c| ⊗ |pD′

c,p⟩⟨p| ⊗ V G
wD′

c,p

7 To clarify which kind of diagram we are dealing with, in this subsection we use primed names (e.g., D′)
when referring to bare PBS-diagrams, and nonprimed names for extended PBS-diagrams.
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The triplet [UG
D′ , |εG⟩, EG ] is nothing but a purified (C{→,↑} ⊗ C[n] ⊗ H)-channel, which

describes the action of the corresponding extended PBS-diagram on the complete state of the
particle. Once the particle exits the diagram, the environments of all purified channels are
not accessible anymore. As is well-known, the statistics of any “input/output test”, which
consists in preparing an arbitrary input state of the particle and measuring the output in an
arbitrary basis, then only depend on the CPTP map (the superoperator) induced by UG

D′

above, with all environments initially prepared in the global state |εG⟩, and after tracing out
all environment spaces – i.e., using circuit-like notations: UG

D′|εG⟩ . This superoperator
thus precisely captures input/output (in)distinguishability: two quantum channels have the
same superoperator if and only if they are indistinguishable in any input/output test. This
provides the ground for our definition of the following quantum semantics:

▶ Definition 10 (Quantum Semantics). Given an extended PBS-diagram D : H(n), let
JDK : L(C{→,↑} ⊗ C[n] ⊗ H) → L(C{→,↑} ⊗ C[n] ⊗ H) be the superoperator defined as

JDK := ρ 7→ TrEG (UG
D′(ρ⊗ |εG⟩⟨εG |)UG

D′
†) = UG

D′|εG⟩

where Γ ⊢ D′ : n is an underlying bare diagram and G is an indexed family of purified
H-channels s.t. [D′]G = D.

Note that the quantum semantics is preserved by the “only topology matters” structural
congruence on diagrams. Indeed, it is defined using only the family G and the word path
semantics of its underlying bare diagram D′, which is invariant modulo diagram deformation.
It is clear that when deforming D we do not have to change D′ and G, since it suffices to
deform D′ accordingly.

3 Observational equivalence of purified channels

In this section we address the problem of deciding whether two purified channels [U, |ε⟩, E ]
and [U ′, |ε′⟩, E ′] can be distinguished in an experiment involving coherent control, within the
framework of PBS-diagrams just established. We introduce for that the notion of contexts,
which are extended PBS-diagrams with a “hole”: if for any context, filling its hole with
[U, |ε⟩, E ] or [U ′, |ε′⟩, E ′] leads to diagrams with the same quantum semantics, then the two
purified channels [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′] are indistinguishable within our framework, even
with the help of the coherent control provided by extended PBS-diagrams.

3.1 Contexts
A context is an extended PBS-diagram with a hole, i.e., a (unique) particular empty gate,
without any purified channel specified a priori. Equivalently a context can be seen as a bare
PBS-diagram partially filled: all but one gate are filled with purified channels. Formally:

▶ Definition 11 (Context). A context C[·] :H(n) (with n∈N) is inductively defined as follows:
The hole gate · : H(1) is a context;
If C[·] : H(n) is a context and D : H(n) is an extended PBS-diagram then D ◦ C[·] : H(n)

and C[·] ◦D : H(n) are contexts;
If C[·] : H(n) is a context and D : H(m) is an extended PBS-diagram then D⊕C[·] : H(m+n)

and C[·] ⊕D : H(n+m) are contexts;
If C[·] : H(n+1) is a context then Tr(C[·]) : H(n) is a context.

Like bare and extended PBS-diagrams, contexts are defined up to structural congruence.
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▶ Definition 12 (Substitution). For any context C[·] : H(n) and any purified H-channel
[U, |ε⟩, E ], let C[U, |ε⟩, E ] : H(n) be the extended PBS-diagram obtained by replacing the single
hole · in C[·] by the purified channel U, |ε⟩ .

After some purified channel is plugged in, contexts allow one to compare the quantum
semantics JC[U, |ε⟩, E ]K and JC[U ′, |ε′⟩, E ′]K induced by different purified channels [U, |ε⟩, E ]
and [U ′, |ε′⟩, E ′]. We consider in the following three subclasses of contexts, depending on the
kind of coherent control one may allow to distinguish purified channels: whether we exclude
the use of PBS ( ), of polarisation flips (“negations” ¬ ), or whether we allow both.
This leads us to define the following equivalence relations:

▶ Definition 13 (Observational equivalences). Given two purified H-channels [U, |ε⟩, E ] and
[U ′, |ε′⟩, E ′], we consider the three following refinements of observational equivalences (for
i ∈ {0, 1, 2}): [U, |ε⟩, E ] ≈i [U ′, |ε′⟩, E ′] if ∀C[·] ∈ Ci, JC[U, |ε⟩, E ]K = JC[U ′, |ε′⟩, E ′]K, where:

C0 is the set of -free contexts C[·] : H(1);
C1 is the set of ¬ -free contexts C[·] : H(1);
C2 is the set of all contexts C[·] : H(1).

Note that contexts in C0 do not perform any coherent control; these consist in just a
linear sequence of gates and negations, possibly composed in parallel with closed loops (i.e.,
traces of such sequences), including a hole gate somewhere. It is clear, by deformation of
diagrams, that more general contexts can always be described as follows:

▶ Proposition 14. For any context C[·] ∈ C2 there exists an extended PBS-diagram D such

that C[·] = ·D . Moreover if C[·] ∈ C1 then D can be chosen ¬ -free.

▶ Remark 15. In Definition 13 we only consider contexts with a single input/output wire.
This is because we intend to use contexts to distinguish purified channels; now, if one
can distinguish two purified channels with a context of type H(n) but no context of type
H(1), then intuitively this means that the extra power comes from the preparation of the
initial state and/or some particular measurement, which are not represented in the context.
Actually, except in the C0 case, allowing multiple input/output wires does not increase the
distinguishability power of the contexts.

3.2 Observational equivalence using PBS-free contexts
Let us start by characterising which purified channels are indistinguishable by -free con-
texts in C0. Not surprisingly, we recover the usual indistinguishability by input/output tests,
which is captured by the fact that the two purified channels lead to the same superoperator:8

▶ Definition 16 ((First-level) Superoperator). Given a purified H-channel [U, |ε⟩, E ], let
S(1)

[U,|ε⟩,E] : L(H) → L(H) = ρ 7→ TrE
(
U(ρ⊗ |ε⟩⟨ε|)U †) be the (“first-level”) superoperator of

[U, |ε⟩, E ]. Graphically,

S(1)
[U,|ε⟩,E] := |ε⟩ U

8 In other words, if two purified channels can be distinguished using a -free context, then they could
already be distinguished with simply an input/output test (or with a trivial context · ).
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▶ Theorem 17. Given two purified H-channels [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′], [U, |ε⟩, E ] ≈0
[U ′, |ε′⟩, E ′] iff they have the same (first-level) superoperator. Graphically,

[U, |ε⟩, E ] ≈0 [U ′, |ε′⟩, E ′] iff |ε⟩ U = |ε′⟩ U ′ (S1)

3.3 Observational equivalence using negation-free contexts
Allowing contexts with PBS significantly increases their power to distinguish purified channels.
In [1], a particular kind of coherent control – namely, the “first half of a quantum switch” [6,
2, 12] – has been considered, which can be rephrased using contexts of the form:

U, |ε⟩

·

The authors proved that with these particular contexts, two purified channels leading to the
same (first-level) superoperator are indistinguishable if and only if they also have the same
(first-level) transformation matrix, which is defined as follows9

▶ Definition 18 ((First-level) Transformation Matrix). Given a purified H-channel [U, |ε⟩, E ],
let T (1)

[U,|ε⟩,E] := (IH ⊗ ⟨ε|)U(IH ⊗ |ε⟩) ∈ L(H) be the (“first-level”) transformation matrix of
[U, |ε⟩, E ]. Graphically,

T
(1)
[U,|ε⟩,E] := U|ε⟩ ⟨ε|

We extend this result to any ¬ -free context.

▶ Theorem 19. Given two purified H-channels [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′], [U, |ε⟩, E ] ≈1
[U ′, |ε′⟩, E ′] iff they have the same (first-level) superoperator and the same (first-level) trans-
formation matrix. Graphically,

[U, |ε⟩, E ] ≈1 [U ′, |ε′⟩, E ′] iff


|ε⟩ U = |ε′⟩ U ′

U|ε⟩ ⟨ε|
= U ′

|ε′⟩ ⟨ε′|

(S1)

(T1)

One can illustrate how the transformation matrices enter the game by considering for
example the following context :

·
. By plugging in [U, |ε⟩, E ], the extended PBS-

diagram maps a pure input state |→⟩+|↑⟩√
2 ⊗ |ψ⟩ ∈ C{→,↑} ⊗ H (together with the environment

initial state |ε⟩ ∈ E) to the state 1√
2 |→⟩⊗|ψ⟩⊗|ε⟩+ 1√

2 |↑⟩⊗U(|ψ⟩⊗|ε⟩), so that after tracing
out the environment a cross term 1

2 |↑⟩⟨→|⊗TrE
[
U(|ψ⟩⟨ψ|⊗|ε⟩⟨ε|)

]
= 1

2 |↑⟩⟨→|⊗T (1)
[U,|ε⟩,E]|ψ⟩⟨ψ|

appears.

9 Originally, in [1], the transformation matrix was defined for a given unitary purification of a CPTP map
S : L(H) → L(H) in the form U : |ψ⟩H ⊗ |ε⟩ 7→

∑
i Ki|ψ⟩H ⊗ |i⟩E (where the Ki’s are Kraus operators

of S, and where an environment space E was introduced, with an orthonormal basis {|i⟩E}i and an
initial state |ε⟩), as T :=

∑
i⟨ε|i⟩E Ki. This is indeed consistent with our Definition 18 here, as with

these notations U(IH ⊗ |ε⟩) =
∑

i Ki ⊗ |i⟩E , so that (IH ⊗ ⟨ε|)U(IH ⊗ |ε⟩) =
∑

i⟨ε|i⟩E Ki = T .
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We note also that the two conditions (S1) and (T1) are nonredundant, i.e., one does
not imply the other. Indeed, there exist cases where S(1)

[U,|ε⟩,E] = S(1)
[U ′,|ε′⟩,E′] but T (1)

[U,|ε⟩,E] ̸=
T

(1)
[U ′,|ε′⟩,E′] (e.g., given any H, E = E ′ = C, U = IH, U

′ = −IH and |ε⟩ = |ε′⟩ = 1), and
cases where S(1)

[U,|ε⟩,E] ≠ S(1)
[U ′,|ε′⟩,E′] but T (1)

[U,|ε⟩,E] = T
(1)
[U ′,|ε′⟩,E′] (e.g., H = E = E ′ = C2,

U = IH ⊗X,U ′ = X ⊗X and |ε⟩ = |ε′⟩ = |0⟩).10

3.4 Observational equivalence using general contexts
We will now see that allowing negations ( ¬ ) increases the power of contexts to distinguish
purified channels. To characterise the indistinguishability of purified channels with arbitrary
contexts, we introduce second-level superoperators and second-level transformation matrices:

▶ Definition 20 (Second-level Superoperator and Transformation Matrix). Given a purified
H-channel [U, |ε⟩, E ], let S(2)

[U,|ε⟩,E] : L(H⊗2) → L(H⊗2) = ρ 7→ TrE
(
U (2)(ρ⊗ |ε⟩⟨ε|)U (2)†) be

the “second-level” superoperator and T (2)
[U,|ε⟩,E] := (IH⊗2 ⊗⟨ε|)U (2)(IH⊗2 ⊗|ε⟩) ∈ L(H⊗2) be the

“second-level” transformation matrix of [U, |ε⟩, E ], where U (2) := (IH ⊗ U)(S ⊗ IE)(IH ⊗ U)
and S := |ψ1⟩ ⊗ |ψ2⟩ 7→ |ψ2⟩ ⊗ |ψ1⟩ is the swap operator. Graphically, U (2) = U U ,

S(2)
[U,|ε⟩,E] := U|ε⟩ U and T

(2)
[U,|ε⟩,E] := U|ε⟩ ⟨ε|U

▶ Theorem 21. Given two purified H-channels [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′], [U, |ε⟩, E ] ≈2
[U ′, |ε′⟩, E ′] iff they have the same (first level) transformation matrix, the same second level
superoperator and the same second level transformation matrix. Graphically,

[U, |ε⟩, E ] ≈2 [U ′, |ε′⟩, E ′] iff



U|ε⟩ ⟨ε|
= U ′

|ε′⟩ ⟨ε′|

U|ε⟩ U = U ′
|ε′⟩ U ′

U|ε⟩ ⟨ε|U = U ′
|ε′⟩ ⟨ε′|U ′

(T1)

(S2)

(T2)

The contexts used in the proof to show that the constraints (S2) and (T2) are required

are of the form ·V0, |η0⟩ V1, |η1⟩¬ and
·

V, 1
¬

, respectively, for

some specific choices of purified channels [V0, |η0⟩,H ⊗ C2], [V1, |η1⟩,H ⊗ C2] and [V, 1,C].
Hence, if either the second level superoperators or the second level transformation matrices
of two purified channels differ, then the channels can be distinguished by using such contexts.

One may have expected the condition (S1) – i.e., that the two channels have the same
first-level superoperator – to also appear in Theorem 21 (as it did in the previous two cases).
This would however have been redundant, as can be seen from the following remark:

10 Where X =
(

0 1
1 0

)
.
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▶ Remark 22. Two purified channels [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′] having the same second level
superoperator also have the same first level superoperator, i.e., Condition (S2) implies (S1).

We note, on the other hand, that the three remaining conditions (T1), (S2) and (T2) are
nonredundant. I.e., for each of the three there exist cases where only this condition is not
satisfied, and where [U, |ε⟩, E ] and [U ′, |ε⟩′, E ′] can be distinguished. E.g., with E = E ′ = C,
U = IH, U

′ = −IH, |ε⟩ = |ε′⟩ = 1, only (T1) fails to hold; with H = E = E ′ = C2,
U = Cnot, U ′ = (

√
Z ⊗ Z)Cnot, |ε⟩ = |ε′⟩ = |0⟩, only (S2) fails to hold; and with

H = E = E ′ = C2, U = IH ⊗ X,U ′ = IH ⊗ ZX, |ε⟩ = |ε′⟩ = |0⟩, only (T2) fails to be
satisfied.11

4 Observational equivalence beyond PBS-diagrams

In this section, we define a new equivalence relation, inspired by the uniqueness (up to an
isometry) of Stinespring’s dilations, which subsumes the observational equivalences defined
so far. For that let us first introduce an isometry-based preorder over purified channels:

▶ Definition 23. Given two purified H-channels [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′], one has
[U, |ε⟩, E ] ◁iso [U ′, |ε′⟩, E ′] if there exists an isometry W : E → E ′ s.t. W |ε⟩ = |ε′⟩ and
(IH ⊗W )U=U ′(IH ⊗W ). In pictures:

|ε⟩ W = |ε′⟩ U
W

H H

E′E E = U ′
W

H H

E′E E′

Note that ◁iso is not an equivalence relation. It is not symmetric; moreover, its symmetric
closure is not transitive.12 This leads us to consider the following:

▶ Definition 24 (Iso-equivalence). The iso-equivalence of purified channels is defined as the
symmetric and transitive closure of ◁iso: ≈iso:= ◁∗

iso.

The iso-equivalence is a candidate for characterising indistinguishability of purified
channels in more general coherent-control settings. Actually, if [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′]
are two iso-equivalent purified channels, then intuitively, in any coherent-control setting,
[U, |ε⟩, E ] can be replaced by [U ′, |ε′⟩, E ′] without changing the global behaviour. Indeed, the
evolution of the environment associated with the purified channel is roughly speaking the
same (up to the isometry W ): initialised in the state W |ε⟩(and with the data register in
the state |ϕ⟩), the application of U ′ leads to the state U ′(IH ⊗W )(|ϕ⟩ ⊗ |ε⟩), which is equal
to (IH ⊗W )U(|ϕ⟩ ⊗ |ε⟩). So applying U ′ somehow first cancels the application of W , then
applies U , and finally applies W again – which will be cancelled again by the next application
of U ′, and so on. The last application of W is absorbed when the environment is traced out.
In pictures:

11 Where Z =
(

1 0
0 −1

)
,

√
Z =

(
1 0
0 i

)
and Cnot =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

12 Taking H = C, one has [1, 1,C]◁iso [IC2 , |0⟩,C2] (with W = |0⟩) but ¬([IC2 , |0⟩,C2] ◁iso [1, 1,C]) (as there
is no isometry from C2 to C). With the Pauli operator Z =

(
1 0
0 −1

)
one also has [1, 1,C] ◁iso [Z, |0⟩,C2]

(again with W = |0⟩), but [IC2 , |0⟩,C2] and [Z, |0⟩,C2] are not in relation since there is no unitary W
such that WIC2 = ZW (as IC2 and Z have distinct eigenvalues).
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U ′
|ε′⟩ U ′ U ′

. . .

. . .

= U ′ U ′ U ′
|ε⟩ W . . .

. . .

= U U ′ U ′
|ε⟩ W . . .

. . .

= . . . = U|ε⟩ U U
W. . .

. . .

= U|ε⟩ U U. . .

. . .

In the framework of PBS-diagrams, one can actually show that the iso-equivalence
subsumes, but does not coincide with the ≈2-equivalence (which in turn subsumes the ≈1-
and ≈0-equivalences).

▶ Proposition 25. ≈iso ⊊ ≈2 ⊊ ≈1 ⊊ ≈0.

Proof. [≈iso ⊆ ≈2] Since ≈2 is an equivalence relation it is enough to show that ◁iso ⊆≈2.
If [U, |ε⟩, E ] ◁iso [U ′, |ε′⟩, E ′], then the three conditions of Theorem 21 are satisfied, implying
[U, |ε⟩, E ] ≈2 [U ′, |ε′⟩, E ′].
[≈2 ̸= ≈iso] We consider the following two purified C-channels: [X, |0⟩,C3] and [XN, |0⟩,C3]
where X = |x⟩ 7→ |x−1 mod 3⟩ and N = |x⟩ 7→ (−1)x|x⟩ are two (qutrit) unitary trans-
formations. The two purified channels are ≈2-equivalent as they satisfy the conditions of
Theorem 21. In order to show that they are not iso-equivalent, note that if two purified
C-channels [U, |ε⟩, E ] and [U ′, |ε′⟩, E ′] are iso-equivalent then for any k ≥ 0 one has ⟨ε|Uk|ε⟩ =
⟨ε′|WUk|ε⟩ = ⟨ε′|U ′kW |ε⟩ = ⟨ε′|U ′k|ε′⟩. Since ⟨0|X3|0⟩ = 1 ̸= −1 = ⟨0|(XN)3|0⟩, it follows
that [X, |0⟩,C] and [XN, |0⟩,C] are indeed not iso-equivalent.
[≈2 ⊊ ≈1 ⊊ ≈0] The inclusions are clear from the characterisations of Theorems 17, 19
and 21, together with Remark 22. The fact that the inclusions are strict follows from the
observations that the various conditions appearing in these theorems are non-redundant. ◀

Although for PBS-diagrams, the ≈2-equivalence characterises the observational equival-
ence of purified channels, it could thus be that more general coherent-control settings may
distinguish ≈2-equivalent channels. For instance one can imagine including nonpolarising
beam splitters, or more general rotations of the polarisation than just the negation, or even
settings with “higher-dimensional polarisations”, which would allow a particle to go more
than twice through each gate. Such a setting would be able for instance to distinguish the
pair of purified channels used in the proof of Proposition 25.

We conjecture that two purified channels are not iso-equivalent if and only if they can
be distinguished by some coherently-controlled quantum computation. Here, the notion of
coherently-controlled quantum computation is left loosely defined, and corresponds intuitively
to some generalisation of PBS-diagrams allowing a particle to go through a gate an arbitrary
number of times.

5 Discussion

In this work, we have extended the PBS-diagrams framework of [8] to allow for the coherent
control of more general quantum channels, described as purified channels. By defining
observational equivalence relations, we have characterised which purified channels are dis-
tinguishable depending on the class of contexts allowed (defined as PBS-diagrams with a
hole). We also proposed the more refined iso-equivalence, which appears as a candidate
for channel indistinguishability in more general coherent-control setups than PBS-diagrams.

MFCS 2021
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However, unlike the previous equivalence relations that can be verified with simple criteria –
by comparing superoperators and transformation matrices – the iso-equivalence, defined as a
transitive closure, is a priori not as easy to check in general.

The framework of PBS-diagrams considered here has a number of limitations, which
could be lifted in future works. For instance, it would be of practical interest to allow for
nonpolarising beam splitters and more general operations on the polarisation; to consider
using higher-dimensional control systems, with generalised PBS; or to consider several
particles going through the diagrams, possibly correlating the different local environments
for future uses of the diagrams, and/or inducing interference effects. We note also that in
our description of purified channels, the state of the environment does not evolve by itself,
except when the flying particle goes through the channel and the unitary U is applied to
the joint system. In fact, as long as each channel is used at most twice (as it was case in
this paper), any free evolution of the environment between two uses could be included in U ;
however, introducing such an evolution could make a difference if the channels are used more
than twice, and the evolution is different between different uses.

Other open questions raised by our work here include equipping extended PBS-diagrams
with an equational theory, as was done in [8] for the case of “pure” PBS-diagrams; lifting
our observational equivalences to the diagrams themselves; and investigating more general
coherent-control settings, to check in particular whether our iso-equivalence is indeed the
good definition for general distinguishability, and if it has a more operational characterisation.
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A Structural congruence of PBS-diagrams

Bare PBS-diagrams, extended PBS-diagrams and contexts are defined up to the congruence
generated by the following equalities (with all n,m, k ≥ 0), where In is the “identity diagram”
In := ⊕n( ) (graphically: In = ···n

{
, with I0 = ); σ1,n is the “first-wire-goes-last

diagram” defined inductively by σ1,0 := and σ1,n+1 := (In ⊕ )◦ (σ1,n ⊕ ) (graphically:
σ1,n = ······n

{ ); and D : n denotes here either a bare PBS-diagram D : n, an extended
PBS-diagram D : H(n), or a context C[·] : H(n):

Neutrality of the identity: for any D : n,

D ◦ In = D = In ◦D

······ D = ··· ···D = ··· ···D

Neutrality of the empty diagram: for any D : n,

⊕D = D = D ⊕

··· ···D
= ··· ···D =

··· ···D
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Associativity of the sequential composition: for any D1, D2, D3 : n,

(D3 ◦D2) ◦D1 = D3 ◦ (D2 ◦D1)

D1 D2 ········· D3··· = D1 D2··· ··· ···D3···

Associativity of the parallel composition: for any D1 : n,D2 : m and D3 : k,

(D1 ⊕D2) ⊕D3 = D1 ⊕ (D2 ⊕D3)

D1··· ···

D2··· ···

D3··· ···

=

D1

··· ···

D2··· ···

D3

··· ···

Compatibility of the sequential and parallel compositions: for any D1, D2 : n and D3, D4 :
m,

(D2 ◦D1) ⊕ (D4 ◦D3) = (D2 ⊕D4) ◦ (D1 ⊕D3)

D1 D2··· ··· ···

D3 D4··· ··· ···
=

D1 D2··· ··· ···

D3 D4··· ··· ···

Naturality of the swap: for any D : n,

σ1,n ◦ ( ⊕D) = (D ⊕ ) ◦ σ1,n

··· ···D

··· =
······ D

···

Inverse law:

◦ = I2

=

Naturality in the input: for any D1 : n and D2 : n+ 1,

Tr(D2 ◦ (D1 ⊕ )) = Tr(D2) ◦D1

······ D2
D1··· = ······ D2

D1···
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Naturality in the output: for any D1 : n+ 1 and D2 : n,

Tr((D2 ⊕ ) ◦D1) = D2 ◦ Tr(D1)

··· ···D1
D2 ··· = ··· ···D1

D2 ···

Dinaturality: for any D1 : n+m and D2 : m,

Trm((In ⊕D2) ◦D1) = Trm(D1 ◦ (In ⊕D2))

···

···
D1

D2 ···
···

···

···

···

=
···

···
D1

D2···
···

···

···

···

where Trm denotes the mth power of the trace operation.

Superposing: for any D1 : n and D2 : m+ 1,

Tr(D1 ⊕D2) = D1 ⊕ Tr(D2)

···D2

D1

···

······

=
···D2

D1

···

······

Yanking:

Tr( ) =

=

These equalities are the coherence axioms of a traced PROP, that is, a PROP that is
also a traced symmetric monoidal category. An explicit definition of the concept of traced
PROP is given in [8]. See also [14] and [18] for a definition of PROPs and further details
about them.

B Well-definedness of the word path semantics and compatibility with
the structural congruence

It can be proved in the same way as for Propositions 5 and 6 in [8], that the word path
semantics is well-defined despite the restriction that k ≤ 2 in Rule (Tk), that it is deterministic
(i.e., that for any bare diagram D : n, polarisation c ∈ {→, ↑} and position p ∈ [n], there
exist some unique c′, p′ and w such that (D, c, p) w=⇒ (c′, p′) – which allows us to define cD

c,p,
pD

c,p and wD
c,p), and that conversely, for any target polarisation c′ and position p′, there exist

MFCS 2021
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c and p such that (D, c, p) w=⇒ (c′, p′) for some w (in other words, the map (c, p) 7→ (cD
c,p, p

D
c,p)

is a bijection). We give here some additional details about the fact that it is invariant modulo
diagram deformation:

▶ Proposition 26. The word path semantics is invariant modulo diagram deformation.

Proof. One has to check, for each of the equalities given in Appendix A, that the two
sides have the same word path semantics. This is straightforward in each case except
for dinaturality. In this case we first prove that Rule (Tm

k ) below follows from those of
Definition 2:

D : n+m ∀i ∈ {0, . . . , k}, (D, ci, pi)
wi==⇒ (ci+1, pi+1) (pi+1 ≥ n)⇔(i < k)

(Trm(D), c0, p0) w0···wk=====⇒ (ck+1, pk+1)
(Tm

k )

for all k,m ∈ N.
To prove this, we proceed by induction on m. The case m = 0 is trivial, and the case

m = 1 corresponds to Rule (Tk) of Definition 2 (the rule follows even for k ≥ 3 since it is
then not possible to satisfy its premises).

Now, assume that Rule (Tm
k ) follows from those of Definition 2. Let D : n + m + 1.

Let c0 ∈ {→, ↑} and p0 ∈ [n]. Let (c1, p1), . . . , (ck+1, pk+1) be the (unique) sequence of
couples such that ∀i ∈ {0, . . . , k}, (D, ci, pi)

wi==⇒ (ci+1, pi+1) and (pi+1 ≥ n)⇔(i < k) (that
is, k + 1 is the first index after 0 such that pk+1 < n). Let (ci0 , pi0), . . . , (cik′+1 , pik′+1), with
0 = i0 < i1 < · · · < ik′ < ik′+1 = k + 1, be the subsequence of (c1, p1), . . . , (ck+1, pk+1)
where all couples with pi = n+m have been removed. For each j ∈ {0, . . . , k′}, by Rule (Tk)
one has (Tr(D), cij , pij )

wij
···wij+1−1

=========⇒ (cij+1 , pij+1). Additionally, one has Tr(D) : n + m

and (pij+1 ≥ n) ⇔ (j < k′), so that by Rule (Tm
k ), one has (Trm+1(D), c0, p0) w0···wk=====⇒

(ck+1, pk+1), which validates Rule (Tm+1
k ).

Given Rule (Tm
k ) for all k,m, we check the compatibility of the word path semantics with

dinaturality as follows: given any D1 : n+m and D2 : m with n,m ≥ 0, on the one hand
one has

((In ⊕D2) ◦D1, c, p)
w

D1
c,p===⇒ (cD1

c,p , p
D1
c,p) if pD1

c,p < n

((In ⊕D2) ◦D1, c, p)

w
D1
c,p w

D2(
c

D1
c,p

)
,

(
p

D1
c,p −n

)
===============⇒ (cD2(

c
D1
c,p

)
,
(

p
D1
c,p−n

), pD2(
c

D1
c,p

)
,
(

p
D1
c,p−n

) + n) if pD1
c,p ≥ n

so that given c0 ∈ {→, ↑} and p0 ∈ [n], if one has a sequence ((In ⊕ D2) ◦D1, c0, p0) w0==⇒

(c1, p1), . . . , ((In ⊕ D2) ◦ D1, ck, pk) wk==⇒ (ck+1, pk+1) with (pi+1 ≥ n) ⇔ (i < k), then one

has a sequence (D1, c0, p0)
w′

0==⇒ (c′
1, p

′
1), (D2, c

′
1, p

′
1 − n)

w′′
1==⇒ (c1, p1 − n), (D1, c1, p1)

w′
1==⇒

(c′
1, p

′
1), . . . , (D1, ck−1, pk−1)

w′
k−1====⇒ (c′

k, p
′
k), (D2, c

′
k, p

′
k −n)

w′′
k==⇒ (ck, pk −n), (D1, ck, pk)

w′
k==⇒

(ck+1, pk+1) with ∀i ∈ {0, . . . , k − 1}, w′
iw

′′
i+1 = wi, and w′

k = wk, so that (Trm((In ⊕D2) ◦

D1), c0, p0)
w′

0w′′
1 ···w′

k−1w′′
k w′

k============⇒ (ck+1, pk+1).
On the other hand, one has

(D1 ◦ (In ⊕D2), c, p)
w

D1
c,p===⇒ (cD1

c,p , p
D1
c,p) if p < n

(D1◦(In⊕D2), c, p)
w

D2
c,p−nw

D1
(c

D2
c,p−n

),(p
D2
c,p−n

+n)
=================⇒ (cD1

(c
D2
c,p−n),(p

D2
c,p−n+n)

, pD1
(c

D2
c,p−n),(p

D2
c,p−n+n)

) if p ≥ n
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so that given c0 ∈ {→, ↑} and p0 ∈ [n], if one has a sequence (D1 ◦ (In ⊕ D2), c0, p0) w̃0==⇒

(c′
1, p

′
1), . . . , (D1 ◦ (In ⊕ D2), c′

k, p
′
k) w̃k==⇒ (c′

k+1, p
′
k+1) with (pi+1 ≥ n) ⇔ (i < k), then one

has a sequence (D1, c0, p0)
w′

0==⇒ (c′
1, p

′
1), (D2, c

′
1, p

′
1 − n)

w′′
1==⇒ (c1, p1 − n), (D1, c1, p1)

w′
1==⇒

(c′
1, p

′
1), . . . , (D1, ck−1, pk−1)

w′
k−1====⇒ (c′

k, p
′
k), (D2, c

′
k, p

′
k −n)

w′′
k==⇒ (ck, pk −n), (D1, ck, pk)

w′
k==⇒

(ck+1, pk+1) with w′
0 = w̃0 and ∀i ∈ {0, . . . , k−1}, w′′

i w
′
i = w̃i, so that one has (c′

k+1, p
′
k+1) =

(ck+1, pk+1) and (Trm(D1 ◦ (In ⊕ D2)), c0, p0)
w′

0w′′
1 ···w′

k−1w′′
k w′

k============⇒ (ck+1, pk+1). This proves
that the two sides of the equality have the same semantics. ◀

C Circuit notations

In this paper, we further develop the graphical representation of coherent control by means
of PBS-diagrams, but we also use circuit-like notations when it is convenient to represent
sequential and parallel compositions of linear transformations Hin → Hout for some Hilbert
spaces Hin and Hout (e.g., unitary operations, density matrices or matrices of the form |i⟩⟨j|)
and linear maps L(Hin) → L(Hout) (i.e., superoperators). We briefly review these circuit-like
notations: given a linear transformation U : H1 ⊗ . . .⊗ Hn → H′

1 ⊗ . . .⊗ H′
k,

U
...

...
H1 H′

1

Hn H′
k

is a circuit of type H1 ⊗ . . . ⊗ Hn → H′
1 ⊗ . . . ⊗ H′

k. Note that the Hilbert spaces on the
wires are generally omitted when these are clear from the context.

The identity operator on a Hilbert space is represented as a wire. Sequential composition
consists in plugging two circuits (with the appropriate types) in a row, and tensor product
consists in putting two circuits in parallel, e.g., for any linear maps U : H0 → H1,
V : H1 → H2, W : H2 → H3:

VU
H0 H2H1 = V ◦ U

H0 H2
H2 H3

U
H0 H1

W
= U⊗WH2 H3

H0 H1

The associativity of both ◦ and ⊗, and the mixed-product property ((U ′ ⊗V ′)◦ (U⊗V ) =
(U ′ ◦ U) ⊗ (V ′ ◦ V ) for some U : H0 → H1, U ′ : H1 → H2, V : H3 → H4, V ′ : H4 → H5)
guarantee the nonambiguity of the circuit-like notations. Quantum states (resp. their
adjoints) can be added to input (resp. output) wires, e.g., U|φ⟩ ⟨ψ| = ⟨ψ|U |φ⟩.

With the swap
H1

H2 H1

H2

= |φ1⟩ ⊗ |φ2⟩ 7→ |φ2⟩ ⊗ |φ1⟩, and with quantum states |φ⟩ ∈ H
(resp. their adjoints ⟨ψ| ∈ H†) seen as linear transformations C → H (resp. H → C), circuits
form a strict symmetric monoidal category. That is, in addition to the fact that the notation
is not ambiguous, circuits can be deformed at will (as long as their topology is preserved)
without changing the transformation that is represented.

Following [9, 4], we further extend these notations to represent linear maps L(Hin) →
L(Hout), using the “ground” symbol . Given a “pure” (i.e., -free) circuit, plugging one
(or several) in its output wire(s) corresponds essentially to tracing out the corresponding
systems – or more precisely, to defining the map that takes an operator (typically, a density
matrix, ρ) acting on the input Hilbert spaces, applies the linear map defined by the circuit
(as in ρ 7→ UρU †), and traces out the systems to which the ground symbol is attached, e.g.,
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U
H′

2
H′

3

H′
1

H2

H3

H1

= ρ 7→ TrH′
2⊗H′

3
(UρU †)

V|φ⟩ E

H1H0

= ρ 7→ TrE(V (ρ⊗ |φ⟩⟨φ|)V †)

where the top example defines a map L(H1 ⊗ H2 ⊗ H3) → L(H′
1), and the bottom example

defines a map L(H0) → L(H1). We say that such circuits are of type L(Hin) → L(Hout).
▶ Remark 27. With these definitions, for a circuit with input Hilbert spaces H1, . . . ,Hn

and output Hilbert spaces H′
1, . . . ,H′

k to represent a linear map L(H1 ⊗ . . . ⊗ Hn) →
L(H′

1 ⊗ . . . ⊗ H′
k), it must contain at least one symbol. As a consequence the CPTP

map ρ 7→ UρU † cannot be represented as U (which is a “pure” circuit) but for instance

as U
|0⟩

.

Note that one can consider H as a generator L(H) → L(C) = C and place it anywhere
in the circuit. Because of the strict symmetric monoidal structure of -free circuits and
the fact that = , this does not create ambiguity since all ways of pulling the

symbols to the right give the same linear map. Moreover, circuits with this additional
generator still form a strict symmetric monoidal category.
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1 Introduction

Let G be a graph and let k be a positive integer. The reconfiguration graph Rk(G) of
independent sets of size k in G has as its vertex set the set of all independent sets of size k in
G and two independent sets I, J of size k in G are adjacent in Rk(G) whenever I△J = {u, v}
and uv ∈ E(G).

When two sets I and J are in the same component of Rk(G) we say that I and J are
reconfigurable. In such case, we can perform the following transformation process: (1) start by
placing one token on each vertex of I; (2) in each step move one of the tokens to a neighboring
vertex in G but always keep the property that the vertices occupied by tokens induce an
independent set in G; (3) finish with tokens occupying all vertices of J . Let (I0, . . . , Im) be
a path from I to J in Rk(G) so I0 = I, Im = J . For i ∈ {1, . . . , m}, let (ui, vi) be a pair
of vertices in G such that Ii−1 \ Ii = {ui} and Ii \ Ii−1 = {vi}. We say that the sequence
((u1, v1), . . . , (um, vm)) is a reconfiguration sequence from I to J in G.

A large body of research is focused on the computational complexity of the corresponding
decision problem – Independent Set Reconfiguration: given a graph G and two independent
sets I and J , determine whether I and J are reconfigurable. If we do not assume anything
about the input graph this problem is PSPACE-complete, thus it is natural to investigate
how its complexity changes when input graphs are restricted to a particular class of graphs.
Demaine et al. [4] showed that the problem can be solved in polynomial time on trees.
Lokshtanov and Mouawad [8] proved that it remains PSPACE-complete on bipartite graphs.
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Hearn and Demaine [6] showed that it is PSPACE-complete on planar graphs. There are
polynomial time algorithms for the class of cographs [7] as well as claw-free graphs [2]. For a
general survey of problems related to reconfiguration see [9].

Bonamy and Bousquet [1] presented an algorithm that given an interval graph G and
two independent sets of size k in G verifies if the independent sets are reconfigurable in
O(n3) time. Curiously, their proof does not say anything meaningful about the length of the
reconfiguration sequence if the two independent sets are reconfigurable. Since there are at
most

(
n
k

)
independent sets of size k, we get a trivial bound on the length of the reconfiguration

sequence, namely: O(nk). The question whether every two reconfigurable independent sets
in an interval graph are connected by a reconfiguration sequence of polynomial length of
degree independent of k was raised by Bousquet [3], which we answer in the affirmative in
Theorem 1.

1.1 Our results
In this paper we will be mainly considering interval graphs. Our main results are stated in
Theorems 1 and 2 below.

▶ Theorem 1. Let G be an n-vertex interval graph and k be a positive integer. Then every
component of Rk(G) has diameter in O(k · n2).

Moreover, there is a polynomial time algorithm that given G, k, and two independent sets
I, J of size k in G decides if I and J are reconfigurable and if so outputs a reconfiguration
sequence connecting them of length O(k · n2).

A lower bound construction shows that the bound on the length of a reconfiguration
sequence given in Theorem 1 is close to tight.

▶ Theorem 2. For all integers m ⩾ 1 and k ⩾ 1, there is an interval graph Gm,k with
|V (Gm,k)| in O(m + k) and two reconfigurable independent sets I, J of size k in Gm,k such
that every reconfiguration sequence connecting I and J in G is of length Ω(k2 · m).

In light of Theorem 2, so long as k ∈ Θ(m), the bound of Theorem 1 is asymptotically
tight. However, if k is small compared to n, the bounds of Theorems 1 and 2 can differ by a
factor of O(n). This leads to an interesting problem in its own right. The authors are not
aware of any example giving a superlinear lower bound on the length of a reconfiguration
sequence when the number of tokens is constant – even on the class of all graphs. Specifically,
the case k = 2 remains open.

Interval graphs are a special case in the more general class of incomparability graphs. As
a somewhat expected (and indeed easy) result we have obtained the following theorem.

▶ Theorem 3. Independent Set Reconfiguration is PSPACE-hard on incomparability graphs,
even on incomparability graphs of posets of width at most w for some constant w ∈ N.

Another interesting specialization of the incomparability graphs are permutation graphs.
In [5] the authors show a polynomial time algorithm solving Independent Set Reconfiguration
on bipartite permutation graphs. We suspect that general permutation graphs should be
amenable to methods similar to the tools we use here on interval graphs, however we have
not been able to successfully apply them.

▶ Conjecture 4. Independent Set Reconfiguration is solvable in polynomial time when restricted
to permutation graphs.
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2 Preliminaries

A component of a graph G is a non-empty induced subgraph of G that is connected and
is vertex-maximal under these properties. The length of a path is the number of edges in
the path. The distance of two vertices u, v in a graph G is the minimum length of a path
connecting u and v in G. The diameter of a connected graph is the maximum distance
between any pair of vertices in the graph.

A graph G is an interval graph if the vertices of G can be associated with intervals on the
real line in such a way that two vertices are adjacent in G if and only if the corresponding
intervals intersect. Given an interval graph we will always fix an interval representation
and identify the vertices with the corresponding intervals. We will also assume that all the
endpoints of intervals in the representation are pairwise distinct. This can be easily achieved
by perturbing the endpoints where it is needed.

Let S be a reconfiguration sequence from I to J in G. We sometimes say that we apply S

to I in G and obtain an independent set S(I). When S = ((u, v)) we also simply say that
we apply a pair (u, v) to I and obtain S(I) = (I \ {u}) ∪ {v}.

Given a sequence S, we denote by S
∣∣
t

the prefix of S of length t (so S
∣∣
0 is the empty

sequence). Given a reconfiguration sequence S = ((u1, v1), . . . , (um, vm)) from I to J in G,
clearly for each t ∈ {0, . . . , m}, the prefix S

∣∣
t

is a reconfiguration sequence from I to the set
S

∣∣
t
(I) in G. Thus, we also have S

∣∣
0(I) = I.

3 Upper bound: The Algorithm

In this section we are going to prove Theorem 1. For brevity, we omit implementation
details as well as running time analyses of the algorithms outlined in this section. We note
that a straightforward implementation of Algorithm 3 below (which is the procedure whose
existence implies Theorem 1) would yield a O(n3) algorithm.

Let G be an n-vertex interval graph and let k be a positive integer. We fix an interval
representation of G distinguishing all the endpoints. There are two natural linear orderings
on the vertices of G: ⩽left the order increasing along the left endpoints of the intervals and
⩽right the order increasing along the right endpoints of the intervals.

An independent set in G is a set of pairwise disjoint intervals, as such they are naturally
ordered on the line. Thus given an independent set A = {a1, . . . , aℓ} in G we will treat it
as a tuple of intervals (a1, . . . , aℓ) with a1 < · · · < aℓ on the line. We define the projection
πi(A) = ai for each i ∈ {1, . . . , ℓ}. Also when we apply (u, v) to an independent set A, we
say that (u, v) moves the i-th token of A when u = ai.

Let ℓ be a positive integer and let C be a non-empty family of independent sets each of
size ℓ in G. For j ∈ {1, . . . , ℓ} we define

exj(C, left) = min
⩽right

{πj(A) : A ∈ C}, exj(C, right) = max
⩽left

{πj(A) : A ∈ C}.

For p ∈ {0, . . . , ℓ}, we define the p-extreme set of C to be⋃
1⩽j⩽p

{exj(C, left)} ∪
⋃

p+1⩽j⩽ℓ

{exj(C, right)}.

We are going to show (Lemma 7) that every component C of Rk(G) contains all its
p-extreme sets for p ∈ {0, . . . , k}. This gives a foundation for our algorithm: given two
independent sets I and J as the input, we are going to devise two reconfiguration sequences,
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transforming I into the (k − 1)-extreme set of its component in Rk(G) and J into the
(k − 1)-extreme set of its component in Rk(G) respectively. As the (k − 1)-extreme set is a
function of a connected component, we conclude that I and J are reconfigurable if and only
if the obtained (k − 1)-extreme sets are equal. Thus, the essence of our work is to show that
every independent set I can be reconfigured in O(k · n2) steps into the (k − 1)-extreme set of
its component in Rk(G).

The technical lemma below is our basic tool used to reason about and manipulate
reconfiguration sequences.

▶ Lemma 5. Let A = (a1, . . . , aℓ) and X = (x1, . . . , xℓ) be two independent sets in G

and let S = ((u1, v1), . . . , (um, vm)) be a reconfiguration sequence from A to X. With
A =

{
S

∣∣
t
(A) : t ∈ {0, . . . , m}

}
we denote the of all independent sets traversed from A to X

along S. Suppose that there are i, j ∈ {0, . . . , ℓ + 1} with i < j such that

exi(A, left) = xi if i ⩾ 1, and
exj(A, right) = xj if j ⩽ ℓ.

Then A′ = (x1, x2, . . . , xi, ai+1, . . . , aj−1, xj , . . . , xℓ) is also an independent set in G.
Moreover, if we let S′ be S restricted to those pairs (ut, vt) with ut being at a position p with
i < p < j in S

∣∣
t−1(A), then S′ is a reconfiguration sequence from A′ to X in G.

▶ Remark 6. Since none of the first i tokens nor the last l + 1 − j tokens are affected by
S′ we can alternatively conclude that S′ transforms (ai+1, . . . , aj−1) into (xi+1, . . . , xj−1) in
G\

⋃
p ̸∈{i+1,...,j−1}

N [xp]

Proof. Let B = (b1, . . . , bℓ) be a set in A. The aligned set of B is defined as
(x1, . . . , xi, bi+1, . . . , bj−1, xj , . . . , xℓ). We claim that the aligned set of B is an independ-
ent set in G. Note that some of the three parts Y1 = (x1, . . . , xi), Y2 = (bi+1, . . . , bj−1),
Y3 = (xj , . . . , xℓ) might be empty. Since all three parts are contained in an independent
set, i.e. X or B, all we need to show is that (1) if Y1 and Y2 are non-empty, then xi is
completely to the left of bi+1, and (2) if Y2 and Y3 are non-empty, then bj−1 is completely to
the left of xj . Thus, suppose that Y1 and Y2 are non-empty, so xi and bi+1 exist. By the
assumptions of the lemma xi = exi(A, left) ⩽right bi and clearly bi is completely to the left
of bi+1. Therefore, xi is completely to the left of bi+1 as desired. Symmetrically, if Y2 and
Y3 are non-empty, then bj+1 ⩽left xj+1 and bj is completely to the left of bj+1. Therefore, bj

is completely to the left of xj+1 as desired.
Since A′ is the aligned set of A, we conclude that A′ is independent in G. Let m′ be the

length of S′ and S′ = ((u′
1, v′

1), . . . , (u′
m′ , v′

m′)). Since S′ is a subsequence of S, we can fix
φ(t), for each t ∈ {1, . . . , m′} such that the pair (uφ(t), vφ(t)) in S corresponds to (u′

t, v′
t) in

S′. Let Aφ(t) = S
∣∣
φ(t)(A) and A′

t = S′
∣∣
t
(A′). By construction we have

πp(A′
t) = πp(X) if p ∈ {1, . . . , i} ∪ {j, . . . , ℓ}

πp(A′
t) = πp(Aφ(t)) if p ∈ {i + 1, . . . , j − 1}.

Thus for each t ∈ {0, . . . , m′} we have that S′
∣∣
t
(A′) is the aligned set of Aφ(t) ∈ A. Therefore

S′
∣∣
t
(A′) is independent in G which completes the proof that S′ is a reconfiguration sequence

from A′ to X. ◀

▶ Lemma 7. Let H be a non-empty induced subgraph of G, let ℓ ∈ {1, . . . , k}, and let C be a
component of Rℓ(H). For every p ∈ {0, . . . , ℓ}, the p-extreme set of C is independent in H

and lies in C.
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Proof. Fix p ∈ {0, . . . , ℓ}. Let X = (x1, . . . , xℓ) be the p-extreme set of C. We claim that
for every i ∈ {0, . . . , p} and j ∈ {p + 1, . . . , ℓ + 1}, there is a set Ai,j ∈ C such that for
all q ∈ {1, . . . , i} ∪ {j, . . . , ℓ}, we have πq(Ai,j) = xq. We prove this claim by induction on
m = i + (ℓ + 1 − j). For the base case, when m = 0, so i = 0 and j = ℓ + 1, we simply choose
A0,ℓ+1 to be any element in C.

For the inductive step, consider m > 0, so i > 0 or j < ℓ+1. The two cases are symmetric,
so let us consider only the first one. Thus suppose i > 0 and therefore by the induction
hypothesis, we get an independent set Ai−1,j ∈ C of the form

(x1, . . . , xi−1, ai, . . . , aj−1, xj , . . . , xℓ),

where ai, . . . , aj−1 are some vertices of H. Let B ∈ C such that πi(B) = exi(C, left) = xi.
Since B, Ai−1,j ∈ C, there is a reconfiguration sequence S from B to Ai−1,j . By Lemma 5,
we obtain that

(x1, . . . , xi−1, xi, bi+1, . . . , bj−1, xj , . . . , xℓ) ∈ C.

This set witnesses the inductive condition for (i, j) and finishes the inductive step. ◀

When k = 1, there is a single token in the graph which moves along a path in the interval
graph. This is a rather trivial setting still, we give explicit functions (Algorithm 1) to have a
good base for the general strategy.

Algorithm 1 A simple algorithm for moving a single token.
1: function PushTokenLeft(H, u)
2: w := min⩽right{v ∈ V (H) : v is reachable from u in H}
3: let (v0, . . . , vm) be the shortest path from u to w in H

4: return [w, ((v0, v1), . . . , (vm−1, vm))]
5: function PushTokenRight(H, u)
6: w := max⩽left{v ∈ V (H) : v is reachable from u in H}
7: let (v0, . . . , vm) be the shortest path from u to w in H

8: return [w, ((v0, vm), . . . , (vm−1, vm))]

▶ Proposition 8. Let H be an interval graph, and u be a vertex in H. Then
PushTokenLeft(H, u) outputs the ⩽right-minimum vertex w in the component of u in H

and a witnessing u-w path (v0, v1), . . . , (vm−1, vm) in H, where v0 = u, vm = w and
vm <right · · · <right v2 <right v1 and if m ⩾ 2, v2 <right v0.

Symmetrically, PushTokenRight(H, u) outputs the ⩽left-maximum vertex w in the
component of u in H and a witnessing u-w path (v0, v1), . . . , (vm−1, vm) in H, where v0 =
u, vm = w and vm >left · · · >left v2 >left v1 and if m ⩾ 2, v2 >left v0.

Proof. We prove the first part of the statement about PushTokenLeft(H, u). The second
part is symmetric. Consider a shortest path v0v1 · · · vm from u to w in H. Note that there
is no point on the line that belongs to three intervals in the path as otherwise we could
make the path shorter. It is easy to see that vi+1 left overlaps vi, i.e., vi+1 <right vi and
vi+1 <left vi for all i ∈ {0, . . . , m − 1} possibly except two cases: vm may be contained in
vm−1 and (if m ⩾ 2) v1 may contain v0. See Figure 1 for an illustration of such a shortest
path in an interval graph. ◀

For k = 2, we give an algorithm, see Algorithm 2, that finds a short reconfiguration from a
given independent set A in H to the 1-extreme set of the component of A in a reconfiguration
graph R2(H).

MFCS 2021



23:6 Reconfiguring Independent Sets on Interval Graphs

v0

v1

v2

v3v5v7

v4v6

Figure 1 A shortest path from v0 to v7 where v7 is an interval with leftmost right endpoint.

Algorithm 2 A specialized algorithm finding the 1-extreme set of the component of the given set
A in R2(H).

1: function PushApart(H, A)
2: a := π1(A) b := π2(A)
3: S := ()
4: do
5: [a, S1] := PushTokenLeft(H\N [b], a)
6: [b, S2] := PushTokenRight(H\N [a], b)
7: S := Concat(S, S1, S2)
8: while Concat(S1, S2) ̸= ∅
9: return (a, b), S

▶ Proposition 9. Let H be an interval graph and A be an independent set of size 2 in H.
Then PushApart(H, A) outputs the 1-extreme set of the component of A in R2(H) and a
reconfiguration sequence from A to the 1-extreme set of length at most 2|V (H)|.

Proof. Suppose that PushApart(H, A) outputs (a⋆, b⋆) and let (x1, x2) be the 1-extreme
set of the component C of A in R2(H). Suppose to the contrary that (a⋆, b⋆) ̸= (x1, x2) Thus,
either x1 = ex1(C, left) <right a⋆ or b⋆ <left ex2(C, right) = x2.

Consider a path ((a0, b0), . . . , (am, bm)) from (a⋆, b⋆) to (x1, x2) in R2(G). Let i be the
smallest index such that ai <right a0 = a⋆ or b⋆ <left bi. This index is well-defined as i = m

satisfies the condition and obviously i > 0. Now suppose that ai <right a⋆. The proof of the
other case goes symmetrically. By the minimality of i we have

ai <right a⋆ ⩽right ai−1 and bi = bi−1 ⩽left b⋆.

The inequalities on the right endpoints of ai, a⋆, and ai−1 imply that these three intervals
form a connected subgraph of H, because ai and ai−1 must intersect as they are adjacent.
Since ai−1 and ai are in the same component of H \ N [bi], we conclude that a⋆ is also in that
component. Finally, since bi ⩽left b⋆ we conclude that ai−1, a⋆, ai are together in the same
component of H \ N [b⋆]. See Figure 2 that illustrates all these inequalities. Consider the last

a?
ai−1

ai
b?

bi

Figure 2 ai <right a⋆ ⩽right ai−1 and bi ⩽left b⋆. The intervals ai, a⋆, ai−1 are together in a
component of H \ N [bi] and so they are together in a component of H \ N [b⋆] as well.

iteration of the loop in PushApart(H, A). The variables a and b keep the values a⋆ and b⋆

in this iteration. In particular PushTokenLeft(H \ N [b⋆], a⋆) did not change the value of
a. This is a contradiction as by Proposition 8 PushTokenLeft(H \ N [b⋆], a⋆) outputs the
⩽right minimum vertex in the component of a⋆ in H \ N [b⋆] but we already know that a⋆ is
not ⩽right-minimum there.
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Now, let us prove the claim about the length of the output reconfiguration sequence S.
Let (a0, b0), . . . , (am, bm) be the path in R2(H) corresponding to S, that is (at, bt) = S|t(A)
for t ∈ {0, . . . , m}. Suppose that (a, b) = (a0, b0) at the beginning of the loop in line 4 and
(a, b) = (a1, b1) after pushing left and right in lines 5-6. By Proposition 8, we know that
a1 ⩽right a0 and b0 ⩽left b1 and every intermediate configuration (a′, b′) on the path satisfies
a1 ⩽right a′ ⩽right a0 and b0 ⩽left b′ ⩽left b1 with a possible exception of the first move from
a0 and the first move from b0. This way we see that the total number of steps without the
exceptional moves is at most |V (H)| and each interval in H can be the target of at most one
exceptional move. This gives a bound 2|V (H)|, as desired. ◀

We present now our main reconfiguration algorithm, see Algorithm 3.

Algorithm 3 A general algorithm finding the (k − 1)-extreme set of the component of the given
set A in Rk(G).

1: function Reconfigure(G, k, A)
2: for i ∈ {1, 2, . . . , k} do
3: ai := πi[A]
4: lexti := ai ▷ lextk is unused
5: rexti := ai ▷ rext1 is unused
6: j := 1; S = ()
7: while j < k do
8: [(aj , aj+1), S′] := PushApart(G \

⋃
i̸=j,j+1

N [ai], {aj , aj+1})
9: S.Append(S′)

10: γ = 1
11: if (aj , aj+1) ̸= (lextj , rextj+1) then
12: lextj := aj

13: rextj+1 := aj+1
14: if j > 1 then γ = −1
15: j := j + γ

16: return (a1, . . . , ak), S

▶ Lemma 10. Let k ⩾ 2 and let A be an independent set of size k in G. Then
Reconfigure(G, k, A) outputs the (k − 1)-extreme set of the component of A in Rk(G) and
a reconfiguration sequence from A to this set of length O(k · n2).

Proof. We begin our consideration of Algorithm 3 by noting two invariants.

▷ Claim 11. Every time Algorithm 3 reaches line 15, we have

(a1, . . . , ak) = (lext1, . . . , lextj , rextj+1, . . . , rextk).

Proof. Note that the equation holds after the initialization in lines 4-5. Later on, the values
of (a1, . . . , ak) are updated only in line 8 and if so then corresponding values of lext and rext
are updated in lines 12-13. ◁

▷ Claim 12. For every j ∈ {2, . . . , k}, the values held by lextj are nonincreasing with
respect to ⩽right. Symmetrically, for every j ∈ {1, . . . , k − 1}, the values held by rextj are
nondecreasing with respect to ⩽left.

MFCS 2021



23:8 Reconfiguring Independent Sets on Interval Graphs

Proof. We prove the statement by induction over the iterations steps in Algorithm 3. Consider
the moment when the values of lextj and rextj+1 are updated in lines 12-13. Let (ℓ1, ℓ2, . . . , ℓk)
and (r1, r2, . . . , rk) be the values held by vectors lext and rext just after this update. Let
(ℓ′

1, . . . , ℓ′
k) and (r′

1, . . . , r′
k) be the values held by vectors lext and rext just after the previous

update of lextj or rextj+1 in lines 12-13 or the initial values of these vectors (assigned in
lines 4-5) if there was no previous update. All we need to show is that ℓj ⩽right ℓ′

j and
r′

j+1 ⩽left rj+1.
By Claim 11 we know that the algorithm had tokens in (ℓ′

1, . . . , ℓ′
j , r′

j+1 . . . , r′
k) and after

applying some reconfiguration sequence, say S = ((u1, v1), . . . , (um, vm)), it reached the
configuration (ℓ1, . . . , ℓj , rj+1, . . . , rk). Let A = {S

∣∣
t
(A) : t ∈ {0, . . . , m}}.

By induction hypothesis the statement holds for all the updates applied so far by Al-
gorithm 3. In particular, ℓj−1 is the ⩽right-minimal position of the (j − 1)-th token so far
and rj+2 it the ⩽left-maximal position of the (j + 2)-th token so far (assuming that these
tokens exist). Thus,

ℓj−1 = exj−1(A, left) if j − 1 ⩾ 1,
rj+2 = exj+2(A, right) if j + 2 ⩽ k.

Therefore, we may apply Lemma 5 and Remark 6 and conclude that (ℓ′
j , r′

j+1) and (ℓj , rj+1)
are in the same component of R2(G \

⋃
i̸=j,j+1

N [ai]). By Proposition 9, the execution of

PushApart in line 8 outputs the 1-extreme set, namely (ℓj , rj+1), of the component of
(ℓ′

j , r′
j+1) in R2(G\

⋃
i̸=j,j+1

N [ai]). Therefore, ℓj ⩽right ℓ′
j and rj+1 ⩾left r′

j+1, as desired. ◁

▷ Claim 13. Consider a moment when Algorithm 3 reaches the line 15 and γ = 1. Let α be
the value of variable j prior to the update. Let (ℓ1, . . . , ℓk), (r1, . . . , rk) be the values held at
this moment by vectors lext and rext, respectively. Then,

ℓi = exi(C, left) for i ∈ {1, . . . , α},

rα+1 = exα+1(C, right),

where C is the component of (ℓ1, . . . , ℓα, rα+1) in Rα+1(G \
⋃

i>α+1
N [ri]). In particular,

(ℓ1, . . . , ℓα, rα+1) is the α-extreme set in C.

Proof. We proceed by induction on α. First we deal with α = 1. When Algorithm 3 starts
an iteration of the while loop with j = 1, then by Claim 11 (and initialization in lines 4-5),
we have (a3, . . . , ak) = (r3, . . . , rk). By Proposition 9, PushApart(G \

⋃
i>2

N [ri], {a1, a2})

executed in line 8 outputs the 1-extreme set of the component of {a1, a2} in R2(G\
⋃

i>2
N [ri]).

After the update in lines 12-13, this set is stored in {lext1, rext2} = {ℓ1, r2} when Algorithm 3
reaches the line 15, as desired.

Let us assume that α > 1 and that the claim holds for all smaller values of α. Consider
an iteration of the while loop with j = α such that Algorithm 3 reaches line 15 with γ = 1.
Let (ℓ1, . . . , ℓk), (r1, . . . , rk) be the values held at this moment by vectors lext and rext,
respectively. For convenience, we call this iteration the present iteration.

Now starting from the present iteration consider the last iteration before with j = α − 1.
We call this iteration the past iteration. Clearly, the past iteration had to conclude with
γ = 1 and all iterations between the past and the present (there could be none) must have
the value of variable j ⩾ α and those with j = α must conclude with γ = 1. This implies
that the values of (lext1, . . . , lextα) and (rext2, . . . , rextα+1) did not change between the past
and the present iterations so they constantly are (ℓ1, . . . , ℓα) and (r2, . . . , rα+1).
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Let D be the connected component of (ℓ1, ℓ2, . . . , ℓα−1, rα) in Rα(G\N [rα+1]). The
inductive assumption for the past iteration yields:

ℓi = exi(D, left) for i ∈ {1, . . . , α − 1}, and (⋆)
rα = exα(D, right),

Note that in the iteration immediately following the past iteration (this was an iteration
with α = j and may be the present iteration) the only token movement was the travel
of the j-th token from rα to ℓα (the (j + 1)-th token stays at rα+1). In particular, there
is a path from rα to ℓα in G\(N [ℓα−1] ∪ N [rα+1]). Therefore, there is a path connecting
(ℓ1, . . . , ℓα−1, rα) and (ℓ1, . . . , ℓα) in Rα(G\N [rα+1]), so both independent sets are in D.

Now we argue, that

ℓα = exα(D, left).

Indeed, take any (v1, v2, . . . , vα) ∈ D and we aim to show that ℓα ⩽right vα. As (v1, . . . , vα)
and (ℓ1, . . . , ℓα) are in one component of the reconfiguration graph Rα(G\N [rα+1]) and
by (⋆), we may apply Lemma 5 to conclude that (ℓ1, ℓ2, . . . , ℓα−1, vα) also lies in D. Moreover
by Remark 6, the vertices ℓα and vα are connected by a path in G\(N [ℓα−1] ∪ N [rα+1]). Thus
by Proposition 9, PushApart executed in the present iteration guarantees that ℓα ⩽right vα

as claimed.
Let C be the component of (ℓ1, . . . , ℓα, rα+1) in Rα+1(G \

⋃
i>α+1

N [ri]). We proceed to

argue that

rα+1 = exα+1(C, right).

Assume for the sake of contradiction that there is some A ∈ C, such that rα+1 <left
πα+1(A) and fix such an A with a shortest possible reconfiguration sequence S =
((u1, v1), . . . , (um, vm)) from (ℓ1, . . . , ℓα, rα+1) to A in Rα+1(G \

⋃
i>α+1

N [ri]). Let At =

S
∣∣
t
((ℓ1, . . . , ℓα, rα+1)), for all t ∈ {0, . . . , m}. By the choice of A and S, for every

t ∈ {0, . . . , m − 1} we have πα+1(At) ⩽left rα+1. We apply now Lemma 5 (with i = 0,
j = α + 1) to a path from A0 = (ℓ1, . . . , ℓα, rα+1) to Am−1 and conclude that for each
t ∈ {0, . . . , m − 1} the set A′

t = (π1(At), . . . , πα(At), rα+1) is an independent set in C. Con-
sider now a path of independent sets of size α formed by dropping the (α + 1)-th coordinate
of each set in the path (A′

0, . . . , A′
m−1, Am). Since (π1(A0), . . . , πα(A0)) = (ℓ1, . . . , ℓα) ∈ D,

the whole path lives in D. Therefore, by (⋆) we have

ℓi ⩽right πi(At),

for all t ∈ {0, . . . , m} and i ∈ {1, . . . , α}. But this in turn allows us to apply
Lemma 5 and Remark 6 once more (this time with i = α, j = α + 2) to a path from
(ℓ1, . . . , ℓα, rα+1) to Am and we conclude that rα+1 and πα+1(Am) are in the same com-

ponent of G\
(

N [ℓα] ∪
⋃

i>α+1
N [ri])

)
. But PushApart executed in the present iteration

outputs (ℓα, rα+1) while rα+1 <left πα+1(Am). This contradicts Proposition 9 and completes
the proof that rα+1 = exα+1(C, right).

It remains to prove that ℓi = exi(C, left) for all i ∈ {1, . . . , α}. Pick an arbitrary
A = (v1, v2, . . . , vα+1) ∈ C. Since we already know that rα+1 = exα+1(C, right), we can apply
Lemma 5 (with i = 0, j = α + 1) to a path from (ℓ1, . . . , ℓα, rα+1) to (v1, v2, . . . , vα+1), and
we conclude that there is a reconfiguration sequence transforming (v1, . . . , vα) into (ℓ1, . . . , ℓα)
in G \ N [rα+1]). Thus, this path lies in D and the desired inequalities ℓi ⩽right vi for all
i ∈ {1, . . . , α} follow by (⋆). ◁
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Clearly, Claims 13 and 11 establish the correctness of the algorithm. Equipped with
the invariant given by Claim 12, we can bound the length of the returned reconfiguration
sequence. Indeed, observe that in each iteration of the while loop in line 7 either lextj

decreases wrt. ⩽right, or rextj+1 increases wrt. ⩽left while j drops by 1, or j increases by 1.
Now this implies that the outer loops can iterate at most 4nk + k, as the quantity

j + 2
k∑

i=1
Index⩽left(rexti) + (n − Index⩽right(lexti) + 1),

where Index⩽(x) denotes the position of element x in a given linear order ⩽ on some fixed
finite set, increases by at least one in each iteration and it is at most 4nk + k.

As seen in Proposition 9, each call of the procedure PushApart returns a sequence
consisting of at most 2n moves. Therefore, the length of reconfiguration sequence returned
by Algorithm 3 is at most 8kn2 + 2kn ∈ O(kn2). This completes the proof of Theorem 1. ◀

4 Lower bound: The Example

We present a family of graphs {Gm,k}m,k⩾1, such that |V (Gm,k)| = 8k+2m−5 and Rk(Gm,k)
contains a component of diameter at least k2

4 · m. This will prove Theorem 2.
Fix integers m, k ⩾ 1. We will describe a family of intervals Im,k. The graph Gm,k will be

simply the intersection graph of Im,k. We construct the family in three steps. We initialize
Im,k with (k − 1) + (m + 2k − 1) + k pairwise disjoint intervals:

ak−1, . . . , a1, v1, . . . , vm+2k−1, b1, . . . , bk,

listed with their natural left to right order on the line. We call these intervals, the base
intervals. Let N = m + 2k − 1. We put into Im,k further N − 1 intervals:

v1,2, v2,3, . . . , vN−1,N ,

where for each i ∈ {1, . . . , N −1}, the interval vi,i+1 is an open interval with the left endpoint
in the middle of vi and the right endpoint in the middle of vi+1. We call these intervals the
path intervals. Finally, we put into Im,k two groups of long intervals:

ℓ1, . . . , ℓk−1 and r1, . . . , rk,

where for each i ∈ {1, . . . , k − 1} the interval ℓi is the open interval with the left endpoint
coinciding with the left endpoint of ai and the right endpoint coinciding with the right
endpoint of vN−(k−1)−i. Symmetrically, for each i ∈ {1, . . . , k} the interval ri is the open
interval with the left endpoint coinciding with the left endpoint of vk−i+1 and the right
endpoint coinciding with the right endpoint of bi. This completes the construction of Im,k.
See Figure 3.

Consider two independent sets I = (v1, . . . , vk) and J = (b1, . . . , bk) in Gm,k.

▶ Lemma 14. The sets I and J are in the same component of Rk(Gm,k) and every reconfig-
uration sequence from I to J has length at least k2

4 · m.

Proof. We put most of the effort to prove the second part of the statement, that every
reconfiguration sequence from I to J has length at least k2

4 · m.
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G6,3

︸ ︷︷ ︸a1a2 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 b1 b2 b3

`2
`1

r3
r2

r1
v1,2 v2,3 . . .

m = 6

Figure 3 The graph G6,3 with two distinguished independent sets I = {v1, v2, v3} and J =
{b1, b2, b3}.

We define a sequence of independent sets (see Figure 4):

C0 = (v1, . . . , vk) = I,

C1 = (v1, . . . , vk−1, r1),
C2 = (ℓ1, vN−(k−1), . . . , vN , b1),

...
C2i−1 = (ai−1, . . . , a1, v1, . . . , vk−1, ri),

C2i = (ℓi, vN−(k−i−2), . . . , vN , b1, . . . , bi),
...

C2k = (b1, . . . , bk) = J.

C1 C2

C3 C4

C5 C6

Figure 4 The sets C1, . . . , C6 in G6,3.

It is easy to construct a path from Cj to Cj+1 in Rk(Gm,k) for j ∈ {0, . . . , 2k − 1} which
proves that I, J are in the same component of Rk(Gm,k).

Let (K0, . . . , KM ) be a path in Rk(Gm,k) from I to J . The proof will follow from two
claims. The first one is that (C0, . . . , C2k) is a subsequence of (K0, . . . , KM ), and the second
one is that for every i ∈ {1, . . . , k − 1} every path from C2i−1 to C2i is of length at least
(k − 2i − 1) · m. A symmetric argument can be used to bound the distance between C2i

and C2i+1 which we omit here as it would only improve the final lower bound by a constant
factor.
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Let P be the set of path intervals in Gm,k. Define for each i ∈ {1, . . . , k − 1} the following
graphs:

H2i−1 = Gm,k[{ai−1, . . . , a1, v1, . . . , vN , b1, . . . , bi} ∪ P ],
H2i = Gm,k[{ai, . . . , a1, v1, . . . , vN , b1, . . . , bi} ∪ P ].

Note that C0 = K0 and C2k = KM , so C0 and C2k occurs in (K0, . . . , KM ). Fix
j ∈ {0, . . . , 2k − 2}. Suppose that the independent set Cj occurs in (K0, . . . , KM ) and fix
such an occurrence. We will argue that Cj+1 must occur afterwards in the sequence.

Observe that all base intervals from Cj are in Hj . However bk /∈ Hj and bk ∈ KM , hence
to reconfigure from Cj to KM eventually a token has to be moved to some base interval not
in Hj . Thus, let Xj be the set of base intervals not in Hj , i.e.

Xj =
{

{ak−1 . . . , ai} ∪ {bi+1, . . . , bk} if j is odd,
{ak−1 . . . , ai+1} ∪ {bi+1, . . . , bk} if j is even.

Note that the only neighbours of intervals in Xj are long. Let Y be the first independent
set in (K0, . . . , KM ) that occurs after the fixed occurence of Cj and contains a long interval
u0 neighbouring some element in Xj . We claim that Y = Cj+1.

First, we show that u0 = ℓi if j = 2i − 1 and u0 = ri+1 if j = 2i respectively. Assume
for now that j = 2i − 1. Observe that for all p ∈ {1, . . . , i − 1} we have N(ℓp) ∩ Xj = ∅
and consequently u0 ≠ ℓp. On the other hand, for all p ∈ {i + 1, . . . , k − 1} we have
α (Hj\N(ℓp)) < k − 1. Therefore, whenever u0 = ℓp there is a token in Y that is not in
Hj . This contradicts the minimality of Y . Moreover, for all p ∈ {1, . . . , i + 1} we have
N(rp)∩Xj = ∅ in turn implying that u0 ̸= rp. On the other hand, for all p ∈ {i+2, . . . , k−1}
we have α (Hj\N(rp)) < k − 1, thus, u0 ̸= rp. This leaves only one possible option of u0 = ℓi.
The case j = 2i follows a symmetric argument. See Figure 5.

Recall that all k − 1 elements of Y \{u0} must be in Hj . It is easy to see that when
j = 2i − 1 then Hj\N(ℓi+1) has exactly one independent set of size k − 1, namely:
{vN−(k−i−2), . . . , vN , b1 . . . , bi}, symmetrically when j = 2i then Hj\N(ri+1) has exactly one
independent set of size k − 1, namely: {ai, . . . , a1, v1, . . . , vk−1}. This proves that Y = Cj+1.

H3 H3\N(`2)

`2
`1

r3
r2

r1

Figure 5 The set H3 for G6,3. We interpret H3\N(u) as the space where k − 1 tokens can “hide”.
All base neighbours of ℓ1, r1, and r2 are in H3. Also, α (H3\N(r3)) = 1 < 2. This gives u0 = ℓ2.

Let us now prove that for a fixed i ∈ {1, . . . , k − 1} every path from C2i−1 to C2i in
Rk(Gm,k) is of length at least (k − 2i − 1) · m.

Fix the shortest reconfiguration sequence from C2i−1 to C2i. As tokens do not interchange
their relative positions, note that tokens starting at the positions (v1, . . . , vk−2i) in C2i−1
must finish at the positions (vN−(k−2i−1), . . . , vN ) in C2i. We call these tokens heavy. Their
left to right ordinal numbers are i . . . , k − i, and there are exactly s := k − 2i − 1 of them.
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We prove that a heavy token cannot use any of the long intervals during the reconfiguration.
By the first part of the proof we know that on the shortest path from C2i−1 to C2i only base
intervals from H2i−1 can be used. For each long interval u we define Hℓ

u as a graph induced
by all intervals v in H2i−1\N(u) completely to the left of u. Analogously, define Hr

u as the
graph induced by all v ∈ H2i−1\N(u) completely to the right to u. Finally, put

nℓ(u) = α(Hℓ
u) and nr(u) = α(Hr

u).

Assume that a heavy token uses a fixed long interval w on the path from C2i−1 to C2i. Armed
with the knowledge of the ordinal numbers of the heavy tokens, we see that: nℓ(w) ⩾ i−1 and
nr(w) ⩾ i. Elementary computation shows that for every long interval u either nℓ(u) < i − 1
or nr(u) < i, which proves that no such long interval w exists.

As heavy tokens cannot use long intervals, each of them has to use base and path intervals
forcing it to make at least 2(N − s + 1) ⩾ m steps. Therefore, we need at least s · m steps in
the path.

Summing up all required steps, we conclude, that every path from I to J in Rk(Gm,k)
has length at least k2

4 · m. ◀

5 Hardness result for incomparability graphs

In this section, we present a simple reduction showing that Independent Set Reconfiguration
is PSPACE-hard on incomparability graphs in general. Note that interval graphs are
incomparability graphs of interval orders. The proof exhibits a reduction from H-Word
Reachability defined in [10]. For the readers’ convenience we state the definition of this
problem here. If H is a digraph (possibly with loops) and a = a1a2 . . . an ∈ V (H)∗ then a is
an H-word, if for any i ∈ {1, . . . , n − 1} we have aiai+1 ∈ E(H). In the H-Word Reachability
we are given two H-words of the same length a and b, and the question is whether one can
transform a into b by changing one letter at a time in such a way that each intermediate
word is an H-word.

▶ Theorem 15 ([10], Theorem 3). There exists a digraph H for which the H-Word Reachability
is PSPACE-complete.

▶ Theorem 16. There exists a constant w ∈ N, such that Independent Set Reconfiguration is
PSPACE-hard on incomparability graphs of posets of width at most w.

Proof. We demonstrate a reduction from H-Word Reachability for arbitrary H; the result
will follow from Theorem 15.

Fix an instance of H-Word Reachability consisting of two H-words a and b of equal length
n. We will construct a poset of width at most 2|V (H)|, and two independent sets A, B in its
incomparability graph, such that A is reconfigurable to B if and only if our starting instance
is a yes instance of H-Word Reachability. Define the poset Pn(H) as (V (H) × {1, . . . , n}, ≺)
where ≺ is defined as follows:

(x, i) ≺ (y, j) ⇐⇒ (j = i + 1 and xy ∈ E(H)) or (j > i + 1).

By the definition of ≺ each set of the form V (H)×{i} is an antichain, thus for any chain C

in Pn(H) of cardinality n and any i ∈ {1, . . . , n}, we have |(V (H) × {i}) ∩ C| = 1. Therefore,
any chain C of cardinality n, can be written as C = {(x1, 1), (x2, 2), . . . , (xn, n)}. Observe that
for each i ∈ {1, . . . , n − 1} we have (xi, i) ≺ (xi+1, i + 1) ⇐⇒ xixi+1 ∈ E(H). This implies
that the first coordinates x1x2 . . . xn of the elements of chain C form an H-word. Conversely,
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given an H-word consisting of n letters y1y2 . . . yn the set {(y1, 1), (y2, 2), . . . , (yn, n)} is a
chain of cardinality n in Pn(H). It follows that a word x1x2 . . . xn is an H-word if and only
if {(x1, 1), . . . , (xn, n)} is an independent set in the incomparability graph Inc(Pn(H)).

Let a = a1a2 . . . an and b = b1b2 . . . bn be the two given H-words of length n. We
define A = {(a1, 1), (a2, 2), . . . , (an, n)} and B = {(b1, 1), (b2, 2), . . . , (bn, n)}. These are two
independent sets in Inc(Pn). Using the fact that for each i ∈ {1, . . . , n} the set V (H) × {i}
is a clique in Inc(Pn(H)), we infer that each edge in Rn(Pn) corresponds to a move of the
form ((x, i), (y, i)) for some i ∈ {1, . . . , n}. Thus A is reconfigurable into B if and only if one
can transform a into b one letter at a time keeping each intermediate word an H-word.

All that remains is to observe that we can construct the incomparability graph of Pn(H)
together with the sets A and B for a fixed H in logarithmic space, and that the width of
Pn(H) is always at most 2|V (H)|. ◀
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Abstract
The modal µ-calculus can only express bisimulation-invariant properties. It is a simple consequence
of Kleene’s Fixpoint Theorem that on structures with finite bisimulation quotients, the fixpoint
iteration of any formula converges after finitely many steps. We show that the converse does not
hold: we construct a word with an infinite bisimulation quotient that is locally regular so that the
iteration for any fixpoint formula of the modal µ-calculus on it converges after finitely many steps.
This entails decidability of µ-calculus model-checking over this word. We also show that the reason
for the discrepancy between infinite bisimulation quotients and trans-finite fixpoint convergence lies
in the fact that the µ-calculus can only express regular properties.
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1 Introduction

The modal µ-calculus Lµ, as it was introduced by Kozen [17], has become a de-facto standard
yardstick amongst formal specification languages for programs. It is obtained in a principally
simple way, namely by extending standard modal logic with extremal fixpoint quantifiers.
Since most operators used in temporal logics can be characterised as least or greatest fixpoints,
Lµ can embed standard temporal logics like CTL, LTL and CTL∗ [10]. Lµ is also, in a sense,
the largest regular program specification logic as it is equi-expressive to the bisimulation-
invariant fragment of Monadic Second-Order Logic [13]. Hence, studying its model-theoretic
properties helps to answer questions after what can and cannot be formally expressed about
programs in regular specification languages.

Fixpoint formulas in Lµ denote sets of states in a labelled transition system (LTS), and
Kleene’s Fixpoint Theorem [16] can be used to approximate such fixpoints in a chain of sets:
for instance, the semantics of some fixpoint definition µX.φ(X) can be approximated from
below by the sequence of sets Xi, where X0 = ∅ and Xi+1 is obtained as the semantics of
φ(Xi). For infinite structures, it is generally necessary to extend this sequence to trans-finite
ordinal numbers. Over any LTS whose state space forms a set, this sequence must stabilise
eventually at precisely the least fixpoint of φ.

Recent times have seen increased interest in the details of this process, regarding questions
of when exactly it stabilises, and how this depends on the underlying structure and formula
in question. Such questions are not simplified by fixpoint alternation – the ability to nest
mutually dependent fixpoint definitions of different kinds. It is known that, over the class
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of all LTS, this is unavoidable in that alternation-free formulas do not capture all of Lµ’s
expressiveness [5]. However, some classes of structures are known, for instance words, over
which any Lµ formula is equivalent to an alternation-free one [15].

The first notable result regarding the question of fixpoint stabilisation in Lµ is that it
is decidable whether an Lµ formula is equivalent to a modal one [20]. Other and more
recent research concerns the ordinals at which fixpoint iteration stabilises, in particular which
ordinals are candidates for such a bound. This concerns the question whether, for a given
formula µX.φ, there is some ordinal α such that fixpoint iteration X0, X1, . . . stabilises after
at most α steps over any LTS. Such a (minimal) α is called the closure ordinal of µX.φ.
Czarnecki [9] shows that, for each ordinal α < ω2, there is some Lµ formula with closure
ordinal α. Afshari and Leigh [1] show that, for alternation-free formulas, ω2 is a tight upper
bound for closure ordinal candidates. [12] shows that ω1 is the closure ordinal of some Lµ

formula, and [19] shows that all ordinals below ωω are closure ordinals for some formula in
the two-way µ-calculus, i.e. the extension of Lµ by backwards modalities. The situation in
the intuitionistic setting is studied in e.g. [11].

The present paper is concerned with a slightly different but related question: we ask for
closure ordinals on particular structures, i.e. at which ordinal do the iteration processes of all
Lµ formulas stabilise? Similar problems have been investigated by Barwise and Moschovakis
in the context of first-order logic, see e.g. [4]. The problem of finding closure ordinals of classes
of structures relates to the previous problem, since the former closure ordinals obviously
bound the latter over the given class. Hence, studying closure ordinals of classes of structures
contributes to the understanding of closure ordinals of formulas.

For Lµ, the cardinality of the structure in question is an obvious upper bound for its
closure ordinal. Hence, on finite structures, fixpoint iteration must necessarily stabilise
at some finite bound that is uniform for all formulas. This simple observation extends to
structures with a finite bisimulation quotient, as an immediate consequence of Lµ’s inability
to distinguish bisimilar states. An interesting question arises as the converse of this: does an
inherently infinite structure, i.e. one whose bisimulation quotient is infinite, allow formulas
to have an infinite fixpoint iteration process? Put differently, are there structures with an
infinite bisimulation quotient such that fixpoint iteration for any Lµ formula converges after
finitely many steps? It is tempting to equate having a finite bisimulation quotient with the
finite convergence of all Lµ fixpoints, yet the answer to the latter question is “yes”.

We construct an LTS – in fact, an infinite word w∞ – which has an infinite bisimulation
quotient but all Lµ formulas are equivalent to some finite approximation over it. Locally it
seems to be regular, and no Lµ formula can “see” the non-regular global pattern in it. Hence,
Lµ fixpoints cannot exploit this non-regularity in order to only stabilise after more than
finitely many iteration steps. Local regularity means that w∞ is self-similar: it is made of
building blocks of increasing size, and some postfixes of it are w∞ again if one maps suitable
building blocks to certain symbols in the word’s alphabet.

The result on finite convergence over w∞ is obtained by first reducing the question for
arbitrary Lµ formulas to that of alternation-free ones. The aforementioned alternation-
hierarchy collapse cannot simply be used off-the-shelf here as it makes no statement about
the preservation of (in-)finiteness of closure ordinals. We then reduce the question to that
for Lµ formulas only containing fixpoints of one sort. We transform this into the analysis of
runs of a very rudimentary fragment of alternating parity automata over w∞, exploiting its
self-similar structure. Decidability of Lµ model checking over w∞ follows as a corollary.

Finally, we show that the reason for the discrepancy between infinite bisimulation quotients
and infinite Lµ closure ordinals is to be found in the regularity of Lµ’s expressive power. We
show that there are formulas of HFL – a natural higher-order extension of Lµ [22] – that do
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not have finite convergence on w∞. This is interesting because HFL can define the Kleene
fixpoint iteration for Lµ [8], and this can be used to disentangle fixpoint alternation, albeit
at the cost of blow-up in formula size and type order, and the restriction to structures on
which each Lµ formula is equivalent to some finite approximation. Thus, the result of the
paper at hand implies that this is not necessarily restricted a priori to structures with finite
bisimulation quotients, as the aforementioned w∞ is a counterexample.

The paper is organised as follows. In Sect. 2 we recall necessary preliminaries. In Sect. 3
we take a detailed look at fixpoint iteration for Lµ formulas to make the notion of “finite
convergence” formal. In Sect. 4 we develop an automata-theoretic criterion for a class of
words to have finite convergence. We use this in Sect. 5 to prove finite convergence for
w∞. Sect. 6 contains the considerations on modal fixpoints of higher-order on w∞. Sect. 7
concludes with remarks on further work.

2 Preliminaries

Words and languages. An alphabet is a finite, nonempty set Σ of letters, denoted by a, b, . . . .
A Σ-word is a finite or infinite sequence of letters. Infinite words are also called ω-words.
The empty word is denoted by ε. We write w = a1a2 · · · an for finite words, and w = a1a2 · · ·
for infinite words. Given two finite words u and v with v ≠ ε, then u · vω is an infinite word.
In both the finite and the infinite case, w[i] denotes the i-th letter of w. Σ∗ is the set of
finite Σ-words, a subset of which is a Σ-language (of finite words). Languages of ω-words
have no role in this paper. If the alphabet is clear from context, we simply speak of words
and languages.

Words are a special case of labelled transition systems for which the notion of bisimilarity
is well-known. We can simplify the definition for word structures and call two positions in a
word bisimilar if they have the same postfix, i.e. if the rest of the word is the same from
both positions. Obviously, an ω-word with two bisimilar positions is ultimately periodic.
The bisimulation quotient of a word is the quotient w.r.t. bisimilarity. It is either the word
itself (when all positions are mutually non-bisimilar), or a lasso-shaped representation of it
(when at least two, and then necessarily all following pairs of positions are bisimilar).

The modal µ-calculus. We introduce the modal µ-calculus in its linear-time version only.
Let Σ be an alphabet, let X be a set of fixpoint variables. The syntax of the linear-time
µ-calculus in negation normal form, just Lµ from now on, is given by the grammar

φ ::= a | φ ∨ φ | φ ∧ φ | ⃝φ | X | µX.φ | νX.φ

where X ∈ X and a ∈ Σ. Other connectives such as tt, ff,→ etc. are defined as usual. Note
that negation is definable using De Morgan, ¬a ≡

∨
b̸=a b and duality between µ and ν.

The notion of a subformula is standard. The size |φ| of a formula φ is the number of its
distinct subformulas. Fixpoint quantifiers σ ∈ {µ, ν} act as variable binders. The notion of
free and bound occurrence, as well as that of a closed formula are as usual. In a formula
σX.φ, the subformula φ is the defining formula of X. A variable bound by µ is a least-fixpoint
variable. It is a greatest-fixpoint variable if it is bound by ν.

We assume formulas to be well-named in the sense that each fixpoint variable is bound at
most once. Clearly, any formula is equivalent to a well-named one via renaming of variables.
In a well-named formula φ, there is a function fpφ that maps each fixpoint variable to the
defining formula of this variable. We drop the index if φ is clear from context. Well-namedness
induces a partial order <fp defined via X <fp Y iff fpφ(X) is a proper subformula of fpφ(Y ).
Note that, if X <fp Y , then X has no free occurrences in fpφ(Y ).

MFCS 2021
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We call a formula unipolar if it only contains one kind of fixpoint quantifiers. We call
a formula alternation-free if no variable bound by a least fixpoint quantifier appears freely
in the defining formula of a greatest fixpoint quantifier, and vice versa. In alternation-free
formulas, the fixpoint variables can be partitioned into sets X1, . . . ,Xk such that

fixpoint variables do not appear freely in the defining formulas of variables from another
set of the partition,
all variables of one set have the same polarity, and
for all X ∈ Xi and Y ∈ Xj with i ̸= j: if X <fp Y then j < i.

A closed formula that contains no fixpoint quantifiers is in Basic Modal Logic (ML). The
notion of modal depth md(φ) of φ is defined as usual: md(a) = 0, md(ψ1∨ψ2) = md(ψ1∧ψ2) =
max{md(ψ1),md(ψ2)} and md(⃝ψ) = 1 + md(ψ).

Let η : X → 2N be an environment. The semantics of an Lµ formula on an ω-word w is a
set of positions defined inductively as follows:

JaKw
η = {i ∈ N | w[i] = a} JXKw

η = η(X)

Jφ ∧ ψKw
η = JφKw

η ∩ JψKw
η JµX.φKw

η =
⋂

{U ⊆ N | JφKw
η[X 7→U ] ⊆ U}

Jφ ∨ ψKw
η = JφKw

η ∪ JψKw
η JνX.φKw

η =
⋃

{U ⊆ N | U ⊆ JφKw
η[X 7→U ]}

J⃝φKw
η = {i ∈ N | i+ 1 ∈ JφKw

η }

We say that φ is satisfiable under η over w if JφKw
η ̸= ∅. It is valid, written |= φ, if JφKw

η = N
for all w and η.

Two closed Lµ formulas φ and ψ are equivalent, written φ ≡ ψ, if they define the same
set on all words. We write φ ≡w ψ to denote that φ and ψ define the same set on w, and
φ ≡C ψ for a class of words C if φ and ψ define the same set on all words in C.

Trivial Automata. A trivial Σ-automaton (TrA) has the form (Q, δ, qI , F, b) where
Q is a finite nonempty set of states with initial state qI ∈ Q and final states F ⊆ Q,
δ : (Q \ F ) × Σ → Q is the transition function and
b ∈ {0, 1}.

A run of A starting from some position i in some ω-word w is a finite or infinite sequence
q0, q1, . . . of states with q0 = qI and qj+1 = δ(qj , wj+i). Note that if such a sequence is finite,
then the last state must necessarily be in F since δ is total on Q \ F . A run is accepting if it
is finite and b = 1, or if it is infinite and b = 0. The set of positions in an ω-word defined by
A is the set of positions from which it has an accepting run. Two TrA are equivalent if they
define the same set on every infinite Σ-word.

We write q v−→ q′ for q, q′ ∈ Q, v ∈ Σ∗ to denote that A will be in state q′ after reading the
finite word v starting from q. This includes the case in which A does not read the entirety of
v since it stops beforehand. In this case, q′ ∈ F .

Trivial automata are reminiscent of DFA but they operate on infinite words. They can
be thought of as restricted parity automata with a single priority b. If b = 1 then no infinite
run is accepting. Acceptance is typically still possible by hitting a state and alphabet symbol
to which the transition function assigns tt (as a Boolean combination of states). By making
acceptance explicit through final states instead, we can define these trivial automata to be
deterministic which is useful in proofs later on.
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▶ Lemma 1. Any unipolar Lµ formula is equivalent to a TrA.

Proof. (Sketch) It is well-known that Lµ formulas on words can be translated into alternating
parity automata (APA) [23]. Unipolar formulas result in APA of a single priority: 1 for least,
0 for greatest fixpoints. Since the APA has only one priority, determinisation is possible
through a double powerset construction, paying attention to states with no successors by
either introducing a sink state, or by making them final. ◀

3 Unfolding of Fixpoint Formulas

Single fixpoints. We formalise the notion of finite fixpoint convergence. First consider the
case of a formula with a single fixpoint. Let µX.φ be a formula, η be an environment, and w
be a word. Then φ defines a monotonic function f : T 7→ JφKw

η[X 7→T ]. Approximations to the
least fixpoint are defined via

T 0
X = ∅ , T i+1

X = f(T i
X) = JφKw

η[X 7→T i
X

] , Tω
X =

⋃
i∈N

T i
X .

Since we restrict ourselves to word structures with no branching, we do not need to consider
approximations beyond ω, and by Kleene’s Fixpoint Theorem we have Tω

X = JµX.φKw
η .

Note that the T i
X are definable in Lµ by (renaming instances of) formulas φi via φ0 =

ff, φi+1 = φ[φi/X] independently of w and η. We call φi the ith unfolding of µX.φ. If over
w we have T i

X = Tω
X for some i then the fixpoint is equivalent to its ith unfolding, and the

set defined by it can also be defined by a formula without the fixpoint. The definitions
for greatest fixpoints are analogue, except that one starts with N instead of ∅, and with tt
instead of ff.

Multiple and nested fixpoints. For formulas containing more than one fixpoint subformula,
possibly in a nested way, it is less clear what it means for these subformulas to be “unfolded
n times”, as there is some ambiguity w.r.t. the order in which the participating formulas are
to be unfolded. The literature also contains no standard agreed-upon definition. Instead, one
of the following three constructions is employed as the respective authors see fit: Unfolding
bottom-up, unfolding top-down, or unfolding on demand, following a construction seen in
e.g. [21]. We review all three of them here and show that they produce the same formula (cf.
Lem. 7). Hence, using either of them as suitable is permissible, and the results obtained in
Sect. 5 later on hold for any of these reasonable interpretations of finite fixpoint convergence.

This thorough discussion is necessitated by to two reasons: Note that we have very strict
requirements with respect to unfolding procedures in the sense that, for an “nth unfolding”,
whenever a fixpoint is to be unfolded during the procedure, it is unfolded exactly n times.
This differs from other notions where the amount of unfoldings can vary from fixpoint to
fixpoint as long as some fixpoint-free formula is produced. Moreover, contrary to the case
of only one fixpoint, monotonicity of the unfolding can be lost for formulas that are not
unipolar, contradicting what one might intuitively assume (cf. Ex. 8), in particular w.r.t.
stabilisation of the process.

The first unfolding procedure is quite straightforward: Pick a formula that is minimal
w.r.t. <fp and unfold it n times. Clearly, this procedure terminates after k steps, if the
formula in question contains k fixpoint definitions. However, it is not immediately clear
whether a common n exists if one is interested in producing a formula equivalent to the
original one over some structure.

MFCS 2021
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▶ Definition 2 (Bottom-up unfolding). Define µ̂ := ff and ν̂ := tt. Let n ≥ 0 and let φ be
an Lµ formula. Let X1, . . . , Xk be an enumeration of its fixpoint variables such that Xi is
bound by some σXi.ψi, and Xi ̸<fp Xj for j > i. Let φn

k , . . . , φ
n
0 with φn

k = φ be a sequence
of formulas defined via

ψ0
i = σ̂i , ψj+1

i = fpφn
i
(Xi)[ψj

i /Xi] , φn
i−1 = φn

i [ψn
i /σiXi. fpφn

i
(Xi)]

Then φn
0 is the nth bottom-up unfolding of φ.

▶ Example 3. Let φ = νX.⃝(µY.X ∧ Y ) and let n = 2. Clearly Y <fp X. Hence,
ψ2

2 = X ∧ (X ∧ ff) whence φ2
1 = νX.⃝(X ∧ (X ∧ ff)). Moreover ψ1

1 = ⃝(tt ∧ (tt ∧ ff)) and,
hence, φ2

0 = ⃝
(

⃝(tt ∧ (tt ∧ ff)) ∧ (⃝(tt ∧ (tt ∧ ff)) ∧ ff)
)
.

The second procedure is perhaps the most straightforward one: Given some formula that
contains fixpoints, and some n, pick some fixpoint definition that is maximal w.r.t <fp and
unfold it n times. Given that this may duplicate fixpoint definitions that are smaller w.r.t.
<fp, this requires renaming and raises questions regarding termination of the procedure.
Moreover, if one is interested into producing equivalent formulas over some structure, it is,
again, not immediately clear whether a common n exists that can be used for all fixpoint
definitions simultaneously. We start with an example.

▶ Example 4. Consider again the formula νX.⃝(µY.X ∧ Y ). Let ψ = ⃝(µY.X ∧ Y ).
By unfolding X twice as per above, we obtain the sequence of formulas ψ0 = tt, ψ1 =
⃝(µY.tt ∧ Y ), ψ2 = ⃝(µY.(⃝(µY.tt ∧ Y )) ∧ Y ). Not only are there now two fixpoint
definitions involving Y , their variables are also comparable via <fp. However, by renaming
one of them, we obtain the formula ⃝(µY.(⃝(µY ′.tt∧Y ′))∧Y ). Note that the two variables
are not mutually recursive since Y does not appear in the defining formula of Y ′.

Since the two variables are comparable, and Y >fp> Y ′, we proceed by unfolding it which,
after renaming, results in ⃝((⃝(µY ′.tt ∧ Y ′)) ∧ ((⃝(µY ′′.tt ∧ Y ′′)) ∧ ff)).

Again, we obtain two fixpoint definitions. However, this time, the two variables in question
are not comparable via <fp, whence the order of unfolding is obviously not important. We
unfold Y ′ first and obtain ⃝((⃝(tt ∧ (tt ∧ ff))) ∧ ((⃝(µY ′′. tt ∧ Y ′′)) ∧ ff)) and then, after
unfolding Y ′′, the formula ⃝((⃝(tt ∧ (tt ∧ ff))) ∧ ((⃝(tt ∧ (tt ∧ ff))) ∧ ff)).

This is the same formula as the one obtained by bottom-up unfolding in Ex. 3. This is in
fact no coincidence, cf. Lemma 7 below.

▶ Definition 5 (Top-down unfolding). Let n ≥ 0 and let φ be an Lµ formula. Define a
sequence φn

0 , φ
n
1 , . . . where φn

0 = φ, and φn
i+1 is obtained from φn

i via the following process:
if φn

i contains no fixpoint definitions, φn
i+1 = φn

i . Otherwise, let X be a variable that is
maximal w.r.t. <fp in φn

i . Let σX.ψ be the subformula that defines X. Define ψ0 = σ̂ and
ψj+1 = ψ[ψj/X]. Then φn

i+1 = φn
i [ψ′n/σX.ψ] where ψ′n is a copy of ψn made well-named

via renaming of variables. If φn
i = φn

i+1, then the nth top-down unfolding of φ is φn
i .

As already said, is not immediately obvious that the above process terminates, but
Ex. 4 already gives a hint. Unfolding a fixpoint formula may duplicate other, inner fixpoint
formulas but the duplicates are independent of each other. Unfolding the outer may create
further duplicates of inner duplicates, but these are not mutually recursive, which gives a
termination argument.

In order to not deal with ambiguities around the termination of the process, and to
avoid issues around unfolding formulas containing free fixpoint variables (cf. the bottom-up
approach), we review a third definition of the nth unfolding of a fixpoint formula centered
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around tracking for each fixpoint how often it has been unfolded already. This procedure is
also folklore and based on the well-known notion of µ-signatures [21] or techniques used to
unfold parity automata into Lµ-formulas [7].

▶ Definition 6. Let n ≥ 0 and let φ be an Lµ formula. Let X1, . . . , Xk be an enumeration
of its fixpoint variables such that Xi ̸<fp Xj for j > i and such that σi denotes the (polarity
of the) fixpoint quantifier for Xi. For a tuple s = (c1, . . . , ck) let s(i) = ci if 1 ≤ i ≤ k and,
if s(i) > 0, define s[i−−] as the k-tuple (c1, . . . , ci − 1, n, . . . , n).

Define φn as φsI , where sI = (n, . . . , n) and ψs is given inductively as

as = a (ψ1 ∨ ψ2)s = ψs
1 ∨ ψs

2

(¬ψ)s = ¬ψs (ψ1 ∧ ψ2)s = ψs
1 ∧ ψs

2

(⃝ψ)s = ⃝ψs Xs
i = (σXi. fpφ(Xi))s =

{
σ̂i , if s[i] = 0
fpφ(Xi)s[i−−] , otherwise.

Clearly, φsI is well-defined and fixpoint-free. Well-definedness follows from the fact that
s[i−−] is smaller than s in the lexicographical ordering. Note that we do not have to deal
with well-namedness since no intermediate formulas containing fixpoint definitions occur due
to the inductive definition centered around s.

We now establish that all three definitions given above actually produce the same formulas:

▶ Lemma 7. Let φ be an Lµ formula. Then the bottom-up unfolding of φ (cf. Def. 2) and
the top-down unfolding of φ (cf. Def. 5) are equivalent to the unfolding defined in Def. 6. In
particular, the top-down unfolding is well-defined.

The proof has been moved to the appendix. It mostly consists of tracking the various
substitutions.

We say that φ is equivalent to its nth unfolding over some word w if φ ≡w φm for all
m ≥ n, i.e. if φn defines the same set on each of these words, and so do all further unfoldings.
Note that, contrary to the case of a single fixpoint variable, it is not automatically the case
that if φn ≡w φ, then φn+1 ≡w φ. To illustrate this, consider the following example:

▶ Example 8. Let φ = νX.µY.(a ∧ ⃝X) ∨ ⃝Y . It defines the set of all positions after
which a occurs infinitely often. Its first unfoldings are

φ0 = tt

φ1 = (a ∧ ⃝ tt) ∨ ⃝ ff ≡ a

φ2 = (a ∧ ⃝((a ∧ ⃝ tt) ∨ ⃝((a ∧ ⃝ tt) ∨ ⃝ ff)))
∨ ⃝((a ∧ ⃝((a ∧ ⃝ tt) ∨ ⃝((a ∧ ⃝ tt) ∨ ⃝ ff))) ∨ ⃝ ff)

≡ (a ∧ ⃝(a ∨ ⃝ a)) ∨ ⃝((a ∧ ⃝(a ∨ ⃝ a)))

Take w = (ba)ω. Then φ0 obviously defines N, while φ1 defines {2n+ 1 | n ∈ N} and then φ2

again defines N and so do all further approximations. Similar examples can be constructed to
separate any two approximations. In fact, over a word of the form b1ab2ab3a · · · , the formula
φ is not equivalent to any of its unfoldings φi with i ≥ 1, but still defines N.

Note that φ from Ex. 8 is not unipolar. For unipolar formulas, monotonicity can be
used to show that |= φi → φi+1 for least fixpoint formulas, resp. |= φi+1 → φi for greatest
fixpoint formulas holds for all i.

MFCS 2021
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4 Finite Fixpoint Convergence for Lµ

In this section we define the notion of a word having finite convergence, i.e. the property
that all formulas, or all formulas of a certain kind, are equivalent to a finite unfolding over
this word. We also develop a sufficient criterion in terms of runs of TrA, for this to hold.

▶ Definition 9. Let w be an infinite word and let Φ be a set of Lµ formulas. We say that w
has finite convergence for Φ if, for every φ ∈ Φ, there is n such that φ is equivalent to φn

over w. We say that w has finite convergence for Lµ, if the above holds for the set of all Lµ

formulas.

The rest of the section is devoted to reducing finite convergence over w for the set of Lµ

formulas to a rather simple criterion on the runs of TrA over w. Lemmas 10 and 11 establish
that, if a word has finite convergence for the set of alternation-free formulas, it also has finite
convergence for the set of all Lµ formulas. The rest of the section establishes a criterion for
a word to have finite convergence for the set of alternation-free formulas.

▶ Lemma 10. Let w be an infinite word that has finite convergence for the set of all
alternation-free Lµ formulas. Then, every closed Lµ formula φ of the form σX.ψ is equivalent
over w to one in ML, and so are all its approximations Xi. Moreover, there is some i such
that φ agrees with Xi over w.

Proof. Let w and φ = µX.ψ. The case of σ = ν is analogous. By [15], φ is equivalent to an
alternation-free formula over the class of all words. Then, by the assumption of the lemma,
there is φ′ ∈ ML that is equivalent to this alternation-free formula, obtained via some finite
unfolding of φ. Now let Xi be the ith approximation of φ and let ψi be the Lµ formula that
defines it. Note that it possibly contains fixpoint definitions, since the only fixpoint to be
unfolded is X. However, with the same argument as before we obtain that ψi also must be
equivalent to some alternation-free formula and, hence, to some formula ψ′

i in ML.
Regarding the claim that one of the approximations is already equivalent to φ, assume that

this is not the case. Since the ψ′
i are obtained as formulas equivalent to finite approximations

of φ, we must have that for each i ∈ N, there must be some position ji ∈ Jψ′
i+1Kw \ Jψ′

iKw

and, hence ji ∈ Jφ′Kw \ Jψ′
iKw. Consider the set Φ = {φ′} ∪ {¬ψ′

i | i ∈ N}. We show that
it is satisfiable using the Compactness Theorem for ML. Consider any finite subset Ψ of
Φ, w.l.o.g. it is of the form {φ′} ∪ {¬ψ′

i | i ≤ k} for some k. By the above, Ψ is satisfiable
by a postfix of w, starting at jk. Hence, Φ is also satisfiable, i.e. there is an ω-word w′

that satisfies φ′, but none of the ψ′
i. This is a contradiction, since Jφ′Kw′ =

⋃
i∈NJψ′

iKw′ by
definition. This contradiction stems from the assumption that there is not already some i
such that ψ′

i ≡w φ′ ≡w φ. This finishes the proof. ◀

▶ Lemma 11. Let w be an infinite word. If w has finite convergence for the set of all
alternation-free Lµ formulas, it has finite convergence for the set of all Lµ formulas.

Proof. Let φ be an Lµ formula. Using Lem. 10, we can obtain a non-uniform unfolding φ′

of φ that is equivalent to φ over w, i.e. we show that there is m such that, following the
pattern of the top-down unfolding procedure in Def. 5, for each fixpoint subformula there is
some n ≤ m such that unfolding it n times yields an equivalent subformula. In a second step,
we show that we also obtain a formula equivalent to φ if we unfold all fixpoint subformulas
exactly m times. This is not immediately obvious due to the non-monotonicity seen in Ex. 8.

Towards the first goal, define a sequence φ0, φ1, . . . where φ0 = φ, and φi+1 is obtained
from φi via the following process, similarly to the top-down unfolding: if φi contains no
fixpoint definitions φi+1 = φi. Otherwise, let X be a variable in φi that is maximal w.r.t
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<fp. Let σX.ψ be the subformula that defines X. By Lem. 10, there is some mi such that
the mith unfolding of ψ is equivalent to σX.ψ, defined via ψ0 = σ̂ and ψi+1 = ψ[ψi/X].
Then φ′

i+1 = φi[ψmi+1/σX.ψ] resulting from the (mi + 1)th unfolding of X. Let φi+1 be a
obtained from φ′

i+1 via renaming such that φi+1 is well-named. Note that the amount of
times each fixpoint is unfolded varies. This is where the above differs from the top-down
unfolding. The above process stabilises for the same reason the top-down unfolding is
well-defined: unfolding an outermost fixpoint formula will create closed formulas, i.e. the
ψi as described above are all closed. Hence, while unfolding an outermost fixpoint X can
duplicate fixpoints smaller than X w.r.t <fp, the defining formulas of the duplicates reside in
different instances of the ψi and, hence, are not mutually recursive. In particular, unfolding
a formula in ψi+1 may create further duplicates by replicating ψi, but since ψi is closed,
these further duplicates can then be unfolded independently of each other.

Hence, let φ′ be the formula that results once this process stabilises. Note that, however,
the unfolding is not necessarily uniform. Let m = 1 + max{mi | i ∈ N}. Since the process
stabilises, this maximum exists. We claim that φ is equivalent to φm over w. We show this
by unfolding φ using the top-down procedure. Note that above, we have established that,
for each fixpoint X in the process, there is some mi < m such that unfolding it mi + 1 times,
once it is X’s turn, results in a formula equivalent to the one before. We now show that
this property is kept if we instead unfold it m times. Let X be such a variable, and assume
that the property holds so far. Note that X must be outermost by now. Let σX.ψ be the
defining formula of X. We compare ψmi and ψm, which are equivalent due to Lem. 10. Note
that ψmi+1 and ψmi are equivalent due to the definition of mi. Since m ≥ mi, we have that
ψm = ψmi+k for some k, and it contains ψmi as a subformula. Since that subformula is
closed, clearly the invariant holds for all fixpoint definitions in ψmi , since the process inside
this subformula will play out exactly like before. If mi + 1 = m, we are done. Otherwise,
consider a subformula in ψmi+1+k′ for some k′ ≤ m − mi − 1, but not in ψmi+1, i.e., it
is in the extra part of the formula due to the extra unfolding. Since ψmi+1 ≡w ψmi by
definition, we also have that ψmi+k′ ≡w ψmi . In other words, the part of the formula where
X used to be, but some ψj has been substituted, is equivalent over w due to the definition
of mi. Moreover, both substituted formulas are closed and, hence, can be exchanged without
interfering with unfolding of fixpoint formulas. Hence, for the purposes of fixpoint unfolding,
all fixpoint formulas in ψm, but not in ψmi+1 behave like a fixpoint formula in ψmi+1, but
not in ψmi . Since the invariant holds for the latter, it must also hold for the former.

It follows that we can make the unfolding uniform by just using the top-down unfolding
process with m. Moreover, any m′ ≥ m yields the same result by the same reasoning. This
finishes the proof. ◀

▶ Remark 12. Note that Lem. 11 yields more than just the collapse of Lµ to ML over w
which can already be inferred from the collapse of Lµ to alternation-free Lµ over the class of
all words (see [15]). Lem. 11 yields that every Lµ formula φ is equivalent, over w, not only to
some ML formula, but one obtained as an unfolding of φ (cf. also the remarks after Def. 9).

▶ Lemma 13. Let w be an infinite word. If w has finite convergence for the set of all
unipolar Lµ formulas, it has finite convergence for the set of all alternation-free Lµ formulas.

The proof is a standard induction on the alternation classes using the fact that alternation-
free Lµ is obtained by capture-avoiding substitution of unipolar formulas. It is spelled out in
the appendix.
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▶ Definition 14. Let w be an ω-word and A be a TrA. We say that A has k-bounded runs
on w if all finite runs of A in w are of length k or less. We say that TrA have bounded runs
on w if, for every TrA A, there is k such that A has k-bounded runs on w.

Clearly, if A has k-bounded runs on w, then acceptance of A can be expressed by a
ML-formula of modal depth at most k, i.e., there is some ML-formula φ of modal depth at
most k such that JφKw = {i | A accepts from i}.

▶ Lemma 15. Let w be an infinite word. If TrA have bounded runs over w then w has finite
convergence for all unipolar formulas.

Proof. We only show the result for least fixpoint formulas; for greatest it is analogous. Let
w be given, φ be unipolar containing only least fixpoints, and φi be its ith unfolding. Since
φ is unipolar, it is equivalent to a TrA A by Lem. 1. By the assumption, there is k such that
if A halts on w from some position then it halts in k steps or less. Hence, acceptance of A
on w can be expressed by some ML formula ψ, which means that ψ is equivalent to φ over
w. Then, similar to the proof of Lem. 10, we can use the Compactness Theorem to obtain
that φ is already equivalent to some φi. ◀

Lemmas 11, 13 and 15 yield the following.

▶ Corollary 16. Let w be an infinite word. If TrA have bounded runs on w, then w has finite
convergence for Lµ.

5 A Word with Finite Convergence

We are now ready to give the construction of a word with finite fixpoint convergence. Let
Σ = {a, b}. We define w∞ using the following mutually recursive definitions of families of
finite words αi, βi:

α0 = a , β0 = b , αi+1 = αiαiβiαiαi , βi+1 = βiβiαiβiβi

For example, α2 = aabaa aabaa bbabb aabaa aabaa. Then w∞ = α0α1 · · · .
We obtain the following properties of w∞:

▶ Lemma 17. Let w∞ be as above. Then it holds that
1. the length of αi and βi is 5i,
2. αi and βi do not overlap, i.e. the minimal size for a word that contains both of them is

2 · 5i,
3. the postfix of w∞ starting after position

∑i−1
j=0 5j , i.e. at the first occurrence of αi, can be

considered a word in {αi, βi}ω,
4. αi, respectively βi occurs at most 4 times in a row before the other one occurs.
5. the distance from any position to the next occurrence of one of αi or βi is at most 5i − 1,
6. The postfix of w∞ starting after position

∑i−1
j=0 5j is h(w∞) for the homomorphism h

with h(a) = αi and h(b) = βi,
7. w∞ has an infinite bisimulation quotient.

Proof. Item 1 is an immediate consequence of the definition of w∞. Item 2 follows from a
straightforward induction: The claim is obvious for i = 0, and for i > 0 we note that any
potential overlap of αi+1 and βi+1 either induces overlap of αi and βi, or contradicts the fact
that αi+1 contains only one occurrence of βi. Item 3 follows from the construction of αi+1,
resp. βi+1. Towards Item 4, we use Item 2 to note that consecutive occurrences of αi, resp.
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βi must occur aligned to the building pattern of w∞, i.e. following the pattern exhibited in
Item 3 applied to αi+1 and βi+1. The claim then follows directly from the construction of
αi+1 and βi+1.

Regarding Item 5, note that, by Item 3, eventually, w∞ consists entirely of a sequence of
αi and βi. Hence, one must occur after a distance of at most 5i − 1. Moreover, since the
first occurrence of αi is at position

∑i−1
j=0 5j ≤ 5i − 1, the claim also holds for the initial part

of the word. Item 6 follows from Item 3 and the building pattern of w∞.
It remains to prove Item 7, i.e. that w∞ has an infinite bisimulation quotient. This holds

since all positions of the form
∑i−1

j=0 5j , i.e. the first occurrences of αi for i ∈ N, are pairwise
not bisimilar. Towards this, note that α3

i is the word following at position
∑i−1

j=0 5j , since
the αi+1 following the first occurrence of αi begins with α2

i . Conversely, all positions of the
form

∑i′−1
j=0 5j with i′ > i mark the beginning of the first αi′ , which begins with α2

iβi by
construction. Hence, the positions

∑i−1
j=0 5j and

∑i′−1
j=0 5j for i′ > i are not bisimilar, which

yields infinitely many pairwise not bisimilar positions. ◀

The aim now is to show that TrA have finite runs on w∞. Let A = (Q, δ, qI , F, b) be a
TrA, fixed for the remainder of the section. W.l.o.g. b = 1 for the remainder of the section,
the proof for b = 0 is completely symmetric. Consider the subsets A0, A1, . . . ⊆ Q and
B0, B1, . . . ⊆ Q defined via q ∈ Ai iff q

αi−−→ q′ for some q′ ∈ F and q ∈ Bi iff q
βi−−→ q′ for

some q′ ∈ F .
Clearly, Ai ⊆ Ai+1 for all i ≥ 0 since αi+1 starts with αi, whence any word that begins

with αi+1 also begins with αi. Moreover, since |Q| < ∞, there must be i, h ∈ N such that
Aj = Ai for all j ≥ i and Bj = Bh for all j ≥ h. Let k = 1 + max{i, h}, A = Ak and B = Bk.
Note that A ∩B can be nonempty, and both A and B can be empty. Let M = Q \ (A ∪B).
Then M is the set of states such that A will not have accepted if it reads αj or βj for any j.

We now show that the self-similarity (cf. Lem. 17.6) and w∞ eventually becoming almost
featureless from the perspective of a bounded-memory automaton (cf. Lem. 17.3), together
imply that a TrA can get trapped in M if it does not escape it fast enough.

▶ Lemma 18. Let q ∈ M and j ≥ k. Then q
αj−−→ q′ for some q′ ∈ M , and q βj−−→ q′ for some

q′ ∈ M .

Proof. Let q0 ∈ M , j ≥ k. Remember that αj = α2
j−1βj−1α

2
j−1. Note that q0

αj−1−−−−→ q1 for
some q1 /∈ A, because otherwise q0

αj−−→ q2 for some q2 ∈ F contradicting q0 ∈ M . Moreover,
q0

αj−1αj−1−−−−−−−→ q2 for some q2 /∈ A. If it were the case that q2 ∈ A, then there would be q1
with q0

αj−1−−−−→ q1 and q1
αj−1−−−−→ q2. Since q2 ∈ A, there must be q3 ∈ F such that q2

αj−1−−−−→ q3.
Hence, q1

αj−−→ q3, which implies q1 ∈ A. This contradicts the previous result, whence q2 /∈ A.
In summary, q αj−1−−−−→ q′ or q αj−1αj−1−−−−−−−→ q′ for a state q ∈ M implies q′ /∈ A and it can

be easily inferred that q αj−1αj−1−−−−−−−→ q′ also implies q′ /∈ B. The same holds symmetrically
for βj−1. Now, these findings can be used to prove the lemma. Per assumption, the
automaton does not halt reading αj starting from q0. Hence, there are q1, q2, q3 such that
q0

αj−1αj−1−−−−−−−→ q1, q1
βj−1−−−−→ q2 and q2

αj−1αj−1−−−−−−−→ q3. From the findings above it immediately
follows that q1 ∈ M . With the symmetric arguments for βj it follows that q2 /∈ B and from
the fact that q0 ∈ M it also follows that q2 /∈ A, whence q2 ∈ M . Then, with the same
arguments as for q1 and, we obtain that q3 ∈ M , too. The case for βj is analogous. ◀

We are now ready to prove that all TrA are bounded over the word w.

▶ Theorem 19. TrA have bounded runs on w∞.
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Proof. Let A be a TrA, M,k be as above and let l be some position in w∞. We show that
if A accepts from position l, then it does so within 6 · 5k − 1 many steps. Let l′ be the first
position after l from which αk or βk starts. Let u be the word from position l to position l′.
If qI

u−→ q for q ∈ F , we are done since by Lem. 17.5 we have |u| ≤ 5k − 1.
Otherwise, let γ1 · · · γ5 be the sequence of length 5 · 5k following l′, which necessarily

consists of αk and βk by Lem. 17.3. We prove that A must accept within this sequence. Let
q0, q1, . . . , q5 with q = q0 be the sequence of states such that qi

γi+1−−−→ qi+1. Then qi /∈ M

for all 0 ≤ i ≤ 5, for otherwise, by Lem. 17.3 and Lem. 18, A does not accept at all from
l since the run gets trapped in M , which contradicts the assumption on acceptance from
l. By Lem. 17.4 the sequence γ1 · · · γ5 must contain two consecutive αk followed by βk or
two consecutive βk followed by αk. W.l.o.g. suppose that two consecutive αk are followed
by βk and that this concerns γ1, γ2, γ3. If q0 ∈ A, q1 ∈ A or q2 ∈ B, we are done, since
acceptance follows within the next γi. The remaining possibility is that all of q0, q1 ∈ B \A
and q2 ∈ A \B hold. However, this is not possible: Since q1

αk−−→ q2 and q2 ∈ A implies that
there must be q′ ∈ F such that q2

αk−−→ q′, we have that q1
αk+1−−−−→ q′ which implies q1 ∈ A.

Hence, A either accepts within l′ − l + 5 · 5k ≤ 6 · 5k − 1 steps from l, or does not accept
from l at all. ◀

Putting this together with the results obtained in the previous section we obtain the
following.

▶ Corollary 20. w∞ has finite convergence for Lµ (but no finite bisimulation quotient).

This follows from Cor. 16 and Lem. 17.7.

▶ Remark 21. Closer inspection of the proofs in this section yields two additional results. It
follows from the proof of Lem. 18 that if Ai = Ai+1, then Ai = Aj for all j ≥ i. Hence, k
can actually be computed effectively by computing the Ai and the Bi until both sequences
stabilise. Moreover, the results of Lem. 18 and Thm. 19 do not rely on the exact form of
w∞, but rather its pattern, and the results from Sec. 4 do not make any assumptions on the
word in question. It is possible to generalise the proof to words constructed via

α′
0 = a , β′

0 = b , α′
i+1 = α′m

i β′n
i α

′m
i , β′

i+1 = β′m
i α′n

i β
′m
i

where m > 1. I.e. the importance is the symmetry between the α′
i and β′

i, as well as the
use of two copies of α′

i at the beginning of α′
i+1 etc. Moreover, this sequence of finite words

does not have to be strictly monotonic in the use of its building blocks, i.e., the result also
holds for words of the form α′

i0
α′

i1
· · · , where ij ≤ ij+1 for all j ≥ 0. The case where the

pattern eventually stabilises is not very interesting, of course, but bounded runs for TrA and,
hence finite convergence of Lµ still follow for the case where for all k ∈ N there is j such
that ij ≤ k, i.e., the word uses α′

i of unbounded length as building blocks.

6 Infinite Convergence Through Higher-Order

We now show that the finite convergence of Lµ formulas on the word w∞ from Sec. 5 is due
to the well-known fact that the expressive power of Lµ is restricted to regular properties. In
contrast, finite convergence does not hold anymore for a higher-order extension of Lµ with
non-regular expressiveness: Higher-Order Modal Fixpoint Logic (HFL). It extends Lµ by
the ability to form function definitions via λ abstraction. We refer to the literature or the
appendix for a detailed introduction into HFL [22].
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Let τ = (N → N) → (N → N) → N be the set-theoretic type of functions that consume
two functions of type N → N and return a natural number. Consider the HFL formula

φ =
(
ν(X : τ). λ(f, g : N → N). f(tt) ∧X(f2 ◦ g ◦ f2, g2 ◦ f ◦ g2)

)
(⟨b⟩, ⟨a⟩).

Here, ψ = λ(f, g : N → N). f(tt) ∧ . . . defines an anonymous function that takes as input two
functions f and g of type N → N and returns the expression defined by the conjunction. The
left conjunct, for example, defines the result of applying f to the set defined by tt, i.e. N.
The formula ⟨a⟩ defines the function S 7→ {i | w[i] = a and i+ 1 ∈ S}, and similarly for ⟨b⟩.
The fixpoint X itself is now of higher-order, and it is equivalent to the expression

∧
i∈N ψ

i,
where ψ0 = λ(f, g : N → N). tt and ψi+1 = ψ[ψi/X]. Applying this expression to the original
arguments ⟨b⟩, ⟨a⟩ in φ and using some β-reduction, we obtain that φ is equivalent to

ψ0(⟨b⟩, ⟨a⟩) ∧ ψ1(⟨b⟩, ⟨a⟩) ∧ ψ2(⟨b⟩, ⟨a⟩) ∧ . . . .

With standard arguments about λ-expressions and modal logic, we obtain that ψi(⟨b⟩, ⟨a⟩)
defines the set of positions such that all the αj for j < i follow, where αj is as in Sec. 5.
Hence, we can conclude that φ defines the set of positions i in w∞ of Sec. 5 such that the
postfix following i starts with αj for all j ∈ N.

▶ Theorem 22. The extension HFL2 of Lµ by second-order functions does not have finite
convergence on w∞.

Proof. Following the argument above, we get JφKw∞ = ∅. However, from the previous
analysis we can see that a position

∑j−1
i=0 5i, namely the starting point of the first αj in

w∞, is still contained in the jth approximant (
∧

0≤i≤j ψ
i(⟨b⟩, ⟨a⟩) but not in the j + 1st one.

Hence, φ does not have finite convergence on w∞. ◀

▶ Remark 23. It is possible to strengthen Thm. 22 by constructing a formula in HFL1, the
first-order extension of Lµ. (We have Lµ = HFL0.) But the construction is complicated and
requires further insight into the semantics of HFL, so it is left out for space considerations.

7 Conclusion

We have presented a further contribution to the theory of closure ordinals for µ-calculi,
namely the – possibly surprising – fact that having finite bisimulation quotients is not an
equivalent but a strictly stronger property than having finite fixpoint convergence, and that
this discrepancy is due to Lµ’s relatively restricted expressive power. As a corollary, we
obtain decidability of Lµ model checking over w∞ (and the class of words built like it), i.e.
for given φ and i, it is decidable whether φ holds at position i in w∞. This follows since
every Lµ formula is equivalent to one in ML over w∞ and it is easily decidable whether the
letter at some position is an a or a b. The use of the Compactness Theorem in Lem. 11 might
look prohibitively non-constructive, but the result follows from the constructive nature of
the proof up to alternation-free Lµ (cf. Rem. 12). Note that this result does not follow from
results around morphic words (cf. e.g. [2]), since w∞ is not morphic. Hence, the construction
of w∞ can be used as the basis for a new class of infinite structures with decidable Lµ model
checking beyond pushdown processes. However, the design follows a pattern quite similar to
morphic words, and we plan to investigate possible links between the two concepts.

There are some other directions into which our research can be extended: for further
technical developments the theory of finite convergence has been formulated over classes of
structures, even though it has been used here for a single word structure only. It remains
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to be seen how far the construction pattern can be stretched, i.e. what a largest class of
structures with finite convergence is. One may leave the world of words without losing the
ability to reduce from the entire Lµ to the alternation-free fragment as there are richer classes
of structures with corresponding collapse of the alternation hierarchy [14].

The type hierarchy in HFL – which is strict in terms of expressiveness [3] – gives rise to
the question whether for each level i, there is a class of structures on which HFLi has finite
convergence but HFLi+1 does not. Here, we have answered the question for i = 0. For i > 0
this is tricky as these higher-order logics lack comparable automata-theoretic support, cf. [6].
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A Proof of Lemma 7

▶ Lemma 7. Let φ be an Lµ formula. Then the bottom-up unfolding of φ (cf. Def. 2) and
the top-down unfolding of φ (cf. Def. 5) are equivalent to the unfolding defined in Def. 6. In
particular, the top-down unfolding is well-defined.

Proof. We first show that the top-down unfolding of φ is equivalent to the unfolding defined
in Def. 6. W.l.o.g. let φ = σj+1Xj+1.ψj+1 be a formula with fixpoint variables X1, . . . , Xk

such that at most X1, . . . , Xj for j ≤ k − 1 appear freely in φ. Let n ≥ 0. We show that

(ψj+1[ψ1/X1, . . . , ψj/Xj ])(i,n,...,n) ≡ (ψi
j+1[ψ1/X1, . . . , ψj/Xj ])n (1)

for closed and fixpoint-free formulas ψ1, . . . , ψj and i ≤ n. Note that the left term refers to
the unfolding according to Def. 6, while the right one refers to the ith unfolding of the single
fixpoint Xj+1, followed by the nth top-down unfolding of all remaining fixpoint-subformulas.
The claim of the Lemma regarding the top-down unfolding procedure then follows with j = 0
and i = n.

We start with an induction over j. For the base case j = k − 1 it follows that ψj does
contain only one fixpoint-subformula and together with the observation that the ψ1, . . . , ψj are
closed and fixpoint-free formulas, both sides of Eq. 1 coincide with a single fixpoint unfolding.
Let j < k− 1 and assume that the result has been shown for all j′ with j < j′ ≤ k− 1 and for
all i ≤ n. We show the result for j by induction on i. For i = 0, we have that ψ0

j+1 = σ̂j+1 and,
hence (ψ0

j+1[ψ1/X1, . . . , ψj/Xj ])n = σ̂j+1 and (ψj+1[ψ1/X1, . . . , ψj/Xj ])(0,n,...,n) = σ̂j+1 as
well. Next let i > 0 and assume that the result has been proven for all i′ ≤ i. We show
this case by another induction on the structure of ψj+1. The base case a, as well as the
boolean cases and ⃝ are straightforward. The interesting cases are the base case of a fixpoint
variable Xj′ for j′ ≤ j, the case of Xj+1 itself and the case of a fixpoint definition of the
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form σj′Xj′ .ψj′ for j′ > j + 1. The first case results in the same subformula, because in both
versions of the unfolding ψj′ is substituted for Xj′ before the unfolding, and this is a closed and
fixpoint-free formula. For Xj+1 itself, we use the induction hypothesis of the induction over
i, namely that (Xj+1[ψ1/X1, . . . , ψj/Xj ])(i,n,...,n) = (ψj+1[ψ1/X1, . . . , ψj/Xj ])(i−1,n,...,n) is
equivalent to (ψi−1

j+1[ψ1/X1, . . . , ψj/Xj ])n. For the case of a formula of the form σj′Xj′ .ψj′ ,
we use the induction hypothesis for the induction over j, namely that

(ψj′ [ψ1/X1, . . . , ψj/Xj , ψ
′
j+1/Xj+1, ψ

′
j+2/Xj+2, . . . , ψ

′
j′−1/Xj′−1])(n,...,n) ≡

(ψn
j′ [ψ1/X1, . . . , ψj/Xj , ψ

′′
j+1/Xj+1, ψ

′′
j+2/Xj+2, . . . , ψ

′′
j′−1/Xj′−1])n

for ψ′
j+1 = (ψj+1[ψ1/X1, . . . , ψj/Xj ])(i−1,n,...,n) and ψ′′

j+1 = (ψi−1
j+1[ψ1/X1, . . . , ψj/Xj ])n,

which, by the induction hypothesis of the induction over i, are equivalent.1 This finishes the
induction over ψj+1 and with it, the induction over i, and the induction over j.

For the bottom-up unfolding of Def. 2, we show equivalence to the unfolding from Def. 6
by showing that unfolding an innermost formula will not change the formula generated by
either procedure. The result then follows by an induction over the ordering of fixpoints
used in the bottom-up unfolding. Let φ be a fixpoint formula, and let X1, . . . , Xk be an
enumeration of its fixpoint variables such that Xi ̸<fp Xj for j > i, and let σiXi. ψi be the
defining formula of Xi. Let φ[ψn

k /σkXk. ψk] be the formula obtained by unfolding Xk n

times. If we can show that, for all subformulas ψ of φ, and for all s = (i1, . . . , ik−1, n), we
have ψs ≡ (ψ[ψn

k /σkXk. ψk])s, we are done. We show this by induction on the lexicographical
ordering of the tuple, i.e starting with s = (0, . . . , 0, n), for which the result clearly holds.
Assume that we have shown it for all s′ that are lexicographically smaller than s. We show
the result by another induction on ψ. The base case a, the boolean cases, and the case ⃝ are
straightforward. The interesting cases are a variable Xj for j < k, a fixpoint definition of the
form σjXj .ψj for j < k, and the fixpoint definition of the form σkXk.ψk. For the case of Xj ,
if s(j) = 0, the result is immediate. For the case that s(j) > 0, and for the case of σjXj .ψj ,
the formula to be substituted is fp(Xj)s[j−−], respectively (fp(Xj)[ψn

k /σkXk.ψk])s[j−−], for
which the result holds since s[j−−] is lexicographically smaller than s. For the case σkXk.ψk,
there are two possibilities. If s(j) = 0 for all 0 ≤ j < k, then the result follows from the
base case. If not, note that Xk is minimal w.r.t. <f p and, hence, its defining formula
fp(Xk) = ψk contains no fixpoint definitions itself. However, it can contain free fixpoint
variables from among the X1, . . . , Xk−1. We first note that, by definition, fp(Xk)s for
s = (i1, . . . , ik−1, n) is equivalent to ψn

k [ψ1/X1, . . . , ψk−1/Xk−1], where ψj is σ̂j if s[j] = 0
and fp(Xj)s[j−−] otherwise. But, using the induction hypothesis for the ψi, this is exactly
(σkXk.ψk[ψn

k /σkXk.ψk])[ψ1/X1, . . . , ψk−1/Xk−1]. This finishes the proof. ◀

B Proof of Lemma 13

▶ Lemma 13. Let w be an infinite word. If w has finite convergence for the set of all
unipolar Lµ formulas, it has finite convergence for the set of all alternation-free Lµ formulas.

Proof. Let φ an alternation-free Lµ formula. The set of fixpoint variables of φ can be
partitioned into the sets X1, . . . ,Xk as described in Sec. 2. First, we show by induction on
these sets that all fixpoint-subformulas of φ can be unfolded starting from Xk and ending with
X1 while preserving equivalence over w. First, note that for all X ∈ Xk there is no fixpoint-
subformula in fp(X) that has a different polarity. This implies that all fixpoint-subformulas of

1 The equality ψ′
l = ψ′′

l for j + 2 ≤ l ≤ j′ − 1 can also be inferred via induction for a previous j′.
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φ with X ∈ Xk are unipolar, but not necessarily closed. If we take a fixpoint-subformula with
X ∈ Xk such that there is no X ′ ∈ Xk with X ′ <fp X it follows from the alternation-freeness
of φ that fp(X) is also closed and, thus, by the assumption of the lemma that there is an
equivalent unfolding over w. If we replace all such fixpoint-subformulas with their respective
equivalent unfolding we have unfolded all fixpoint-subformulas with X ∈ Xk. Under the
assumption that all fixpoint subformulas with X ∈ Xi are already unfolded, we can infer
with the same arguments that there is an equivalent unfolding for all fixpoint subformulas of
Xi−1. By the principle of induction this shows that there is some equivalent finite unfolding
of φ over w. What is left to argue is that there is a uniform one, i.e., that there is n such that
φn is equivalent to φ. Note that for each closed, unipolar fixpoint subformula σX.ψ with
equivalent unfolding ψm it holds that ψm′ with m′ ≥ m is equivalent as well. As the number
of fixpoint subformulas in φ is finite, n is given by the maximum number of unfoldings needed
for any fixpoint subformula. ◀

C Additional Material for Section 6

We give a brief introduction to HFL on words. A more thorough introduction for HFL on
arbitrary LTS can be found in e.g. [22]. We also point out that the exposition in Sect. 6
makes use of syntactic sugar that is not directly covered by the pure syntax. The constructs,
however, are all straightforward using only principles which are standard in λ-calculi. For
instance further below we explain that the subformula ⟨a⟩ is used to abbreviate something
like λx.⟨a⟩x, so this simply makes use of η-conversion.

Types. Consider the set of types defined via

τ ::= • | τ → τ.

The type • is the base type of subsets of N, for example those defined by an Lµ formula. A
type τ1 → τ2 is inhabited by monotone functions from τ1 to τ2.

Such a type induces a lattice over a given word w via the following definition

J•Kw = (P(N),⊆)
Jτ1 → τ2Kw = (Jτ2Kw → Jτ1Kw,⊑τ1→τ2)

where Jτ2Kw → Jτ1Kw denotes the set of functions from Jτ1Kw to Jτ2Kw and ⊑τ1→τ2 is defined
as the pointwise order via f ⊑τ1→τ2 g iff f(x) ⊑τ2 g(x) for all x ∈ Jτ1Kw. Here, ⊑• ordinary
set inclusion ⊆. All these lattices are complete since J•Kw is complete, and a lattice of
functions is complete if the functions are into a complete lattice and ordered pointwise.

Syntax. Let V = {x, y, . . . } be a set of λ variables. The syntax of HFL extends that of Lµ to

φ ::= a | φ ∨ φ | φ ∧ φ | ⃝φ | X | x | µ(X : τ).φ | ν(X : τ).φ | λ(x : τ).φ | φφ

where τ is a type.
The intuition behind the operators that are new in comparison to Lµ is as follows.
λx.φ defines an anonymous function that consumes an argument, bound to x, and returns
the value of φ if x is set to that argument.
φψ denotes the application of ψ to φ, and
the fixpoints can now be of higher order, i.e. define function type objects.

MFCS 2021
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Γ ⊢ a : • Γ, X : τ ⊢ X : τ Γ, x : τ ⊢ x : τ
Γ ⊢ φ1 : • Γ ⊢ φ2 : •

Γ ⊢ φ1 ∨ φ2 : •

Γ ⊢ φ1 : • Γ ⊢ φ2 : •
Γ ⊢ φ1 ∧ φ2 : •

Γ ⊢ φ : •
Γ ⊢ ⃝φ : •

Γ, X : τ ⊢ φ : τ ′

Γ ⊢ λ(X : τ). φ : τ → τ ′
Γ, X : τ ⊢ φ : τ

Γ ⊢ µ(X : τ). φ : τ

Γ, X : τ ⊢ φ : τ
Γ ⊢ ν(X : τ). φ : τ

Γ ⊢ φ : τ → τ ′ Γ ⊢ φ′ : τ
Γ ⊢ φφ′ : τ ′

Figure 1 The type system of HFL.

Note that we have chosen not to introduce negation. HFL admits negation normal form [18],
whence negation only needs to occur on front of atomic propositions. Over words, the formula
¬a however is equivalent to

∨
b∈Σ,b ̸=a b as stated for Lµ already, so negation can be avoided

altogether.
An advantage of this avoidance of negation is the simplification of the type system to

monotone functions only. The original definition of HFL includes negation as a syntactic
construct at the expense of a slightly more complex type systems which needs to keep track
of antitonicity information so that fixpoints are guaranteed to exists due to monotonicity.

Without this, the only purpose of the type system is to avoid misapplications as in a b

for instance which cannot be given proper meaning. Another example is a ∨ λ(x : N). x ∧ b.
In the absence of negation, an HFL formula φ is said to be well-typed if the statement

∅ ⊢ φ can be derived via the rules shown in Fig. 1. The sequence Γ on the left of a typing
statement is called a typing context and collects typing hypotheses.

Semantics. In order to endow well-typed HFL formulas with semantics, we extend environ-
ments to V , i.e. environments can also store values for λ-variables which may be higher-order
objects depending on the type of the variable. The semantics of an HFL formula φ is given
inductively as per the following:

JaKw
η = {i ∈ N | w[i] = a}

JXKw
η = η(X)

JxKw
η = η(x)

Jφ ∨ ψKw
η = JφKw

η ∪ JψKw
η

Jφ ∧ ψKw
η = JφKw

η ∩ JψKw
η

J⃝φKw
η = {i ∈ N | i+ 1 ∈ JφKw

η }
Jλ(x : τ).φKw

η = f ∈ Jτ → τ ′Kw where f.a. d ∈ JτKw.f(d) = JφKw
η[x 7→d]

with τ ′ the type of φ
JφψKw

η = JφKw
η (JψKw

η )

Jµ(X : τ).φKw
η =

l
{d ⊆ JτKw | JφKw

η[X 7→d] ⊑τ d}

Jν(X : τ).φKw
η =

⊔
{d ⊆ JτKw | d ⊑τ JφKw

η[X 7→d]}
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The formula φ from Sect. 6. We give some additional explanation about the formula φ
defined in Sec. 6. Recall that

φ =
(
ν(X : τ). λ(f, g : N → N). f(tt) ∧X(f2 ◦ g ◦ f2, g2 ◦ f ◦ g2)

)
(⟨b⟩, ⟨a⟩).

Notation such as λ(f, g : N → N). . . . can easily be seen to be an abbreviation of the longer
λ(f : . . . ). λ(g : . . . ). , and the same goes for the application to X written in a similar style.
Clearly, neither function composition nor the function ⟨a⟩ are in the official syntax of HFL.
The function ⟨a⟩ can be written in standard syntax as λ(x : N). a∧⃝x. Function composition,
here between five functions, is an abbreviation for λ(x : N). f(f(g(f(f x)))), respectively
λ(x : N). g(g(f(g(g x)))).

The intuition given for the semantics of φ is already close to the true semantics of φ.
Since the Kleene Fixpoint Theorem applies in this setting, too, we can use it to obtain the
semantics of φ on w∞. As in Sec. 6, write ψ for the defining formula of λf, g. f(tt) ∧X(f2 ◦
g ◦ f2, g2 ◦ f ◦ g2), write ψ0 for λf, g. tt and ψi+1 for ψ[ψi/X]. Given some functions f and
g, we introduce the following functions:

f1(x) = f(x) fi+1 = fi(fi(gi(gi(gi(x)))))
g1(x) = g(x) gi+1 = gi(gi(fi(gi(gi(x)))))

Then ψi defines the function f, g 7→ f1(tt) ∧ f2(tt) ∧ · · · ∧ fi(tt) by induction on i. Hence,
the semantics of X is f, g 7→

∧
i∈N fi(tt). Applied to the arguments ⟨a⟩ and ⟨b⟩, this yields,

by abuse of notation,
∧

i∈N⟨αi⟩tt, which is as claimed in Sec 6. The remarks on the infinite
convergence process of φ on w∞ then follow.
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Abstract
Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots & Boxes
is PSPACE-complete. Dots & Boxes has been studied extensively, with for instance a chapter in
Berlekamp et al. Winning Ways for Your Mathematical Plays, a whole book on the game The Dots
and Boxes Game: Sophisticated Child’s Play by Berlekamp, and numerous articles in the Games
of No Chance series. While known to be NP-hard, the question of its complexity remained open.
We resolve this question, proving that the game is PSPACE-complete by a reduction from a game
played on propositional formulas.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases Dots & Boxes, PSPACE-complete, combinatorial game

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.25

1 Introduction

Dots & Boxes is a popular paper-and-pencil game that is played by two players on a grid of
dots. The players take turns connecting two adjacent dots. If a player completes the fourth
side of a unit box, the player is awarded a point and an additional turn. When no more
moves can be made, the player with the highest score wins the game.1

Originally described in 1883 [29], Dots & Boxes has since received a considerable amount
of attention in the research community. In Winning Ways for Your Mathematical Plays,
Berlekamp, Conway, and Guy [6] were among the first to discuss a number of interesting
mathematical properties of the game. Later, Berlekamp [5] wrote an entire book The Dots-
and-Boxes game: Sophisticated Child’s Play about the game, in particular discussing winning
strategies in particular positions. Since then, the mathematics of Dots & Boxes and variants
have been discussed in many papers and books [1, 2, 7, 12, 16, 21, 22, 26, 30, 31, 33, 34].
There is also a rich body of work on solvers for Dots & Boxes [3, 4, 11, 27, 35].

Berlekamp et al. [6] argue that deciding the winner of a generalized version of Dots &
Boxes, called Strings-and-Coins, is NP-hard. In this game, players take turns in removing
edges of a given graph, scoring a point when they isolate a vertex. When restricted to
the dual graph of a square grid, this corresponds to a dual formulation of Dots & Boxes.
Eppstein [17] notes that the reduction given by Berlekamp et al. should extend to Dots &
Boxes, and a formal proof of the NP-hardness is given in [8].

Exactly 20 years ago at MFCS, Demaine posed the open problem whether Dots &
Boxes is PSPACE-complete [13]. Bounded two-player games, like Dots & Boxes, (that is,
games in which the number of moves is bounded) naturally lie in PSPACE, since a Turing
machine using space polynomial in the board size is able to search the entirety of the game

1 For a visual explanation of the game see https://youtu.be/KboGyIilP6k, last accessed 6.5.2021

© Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, and Max van Mulken;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.a.buchin@tue.nl
https://orcid.org/0000-0002-3022-7877
mailto:m.h.hagedoorn@student.tue.nl
mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:m.j.m.v.mulken@student.tue.nl
https://doi.org/10.4230/LIPIcs.MFCS.2021.25
https://youtu.be/KboGyIilP6k
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Dots & Boxes Is PSPACE-Complete

space. PSPACE-hardness of many bounded two-player games is shown by a reduction from
Generalized Geography, which is proven PSPACE-complete by Lichtenstein and Sipser [28].
For example, the PSPACE-completeness of Reversi [24], uncooperative UNO [14], and Tic-
Tac-Toe [23] were shown by a reduction from Generalized Geography. However, unlike Dots
& Boxes, the setting of Generalized Geography prescribes a stricter order on players’ moves,
making a reduction to Dots & Boxes challenging to obtain.

In their seminal work, Hearn and Demaine [20, 21] introduce Constraint Logic, a framework
for analyzing complexity of games and puzzles. Inspired by Flake and Baum’s proof of
Rush Hour [18], it specifies a type of game played on a constraint graph. The framework
includes bounded/unbounded state spaces and single/two-player variations. In the same
work, Hearn and Demaine go on to provide a number of simpler reductions for various
known PSPACE-complete games (including Rush Hour), as well as new proofs for several
PSPACE-complete games. However, the Constraint Logic framework is intended for proving
hardness of partisan games (games in which the moves available to the two players are
different), whereas Dots & Boxes is not a partisan game.

Strings-and-Coins and the related game of Nimstring were very recently (while we were
preparing this submission) proven to be PSPACE-complete by Demaine and Diomidov [15]
by a reduction from a game on a DNF formula Gpos(POS DNF) [32]. But, as they point
out, their results do not apply to Dots & Boxes, since the game positions they construct rely
on multi-graphs (which additionally are neither planar nor have a maximum degree of 4).
Specifically, they propagate signals through multi-edges consisting of a polynomial number
of parallel edges, and the winner is the player who removes the last edge. As consequence,
our reduction bears little commonalities with theirs.

In this paper, we prove that Dots & Boxes is PSPACE-complete by a reduction from
Gpos(POS CNF). The starting point of our construction are strategies for Dots & Boxes
endgames that were also used to prove NP-hardness. However, the NP-hardness is proven
by having one player be in control, such that therre is only one way for the other player
to respond. This de facto makes the game into a 1-player game. For PSPACE-hardness
we need both players to have choices, making it a true 2-player game. This gives a lot of
freedom to the players, and makes it much more difficult to construct gadgets to control
the gameplay, in particular because moves and scoring opportunities for one player – if not
played immediately – are also available to the other player.

In Section 1.1 we discuss the gameplay of Dots & Boxes, and introduce terminology
coined by Berlekamp et al. [6]. In Section 2 we present the general structure of our reduction,
and then describe our gadgets in Section 3. In Section 4 we first show properties of optimal
play for both players and finally prove PSPACE-hardness.

1.1 Dots & Boxes
On the surface, Dots & Boxes is quite a simple game. The starting and a typical final position
for a 10 × 10 grid are shown in Figure 1. We refer to the players playing the blue and the
red colors as Trudy and Fred, respectively. The color of a line connecting two dots indicates
which player drew it, and the color of a box indicates which player closed it.

Consider a dual graph G of a board of Dots & Boxes, where a node in G corresponds
to a box or the unbounded face, and a pair of nodes in G is connected with an edge if the
corresponding move is still available, i.e., the line between the boxes has not been drawn.
Let the degree of a box be the degree of the corresponding node in G.
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(a) Starting position of a Dots &
Boxes game with a 10 × 10 grid.

(b) An example of a loony end-
game state of the game.

(c) A possible end position.
Trudy (blue) won with 62 boxes
versus Fred’s (red) 19 boxes.

Figure 1 Typical starting, intermediate, and final position of a Dots & Boxes game.

In Dots & Boxes, a typical game usually results in a board state that consists exclusively
of moves that open the possibility for the opponent to claim a number of boxes in their next
turn (see Figure 1b). That is, in this state there are no degree-1 boxes, but any move made by
a player creates a degree-1 box that can be immediately claimed by the opponent. Consider
such a board configuration S and any available move ℓ in it. At least one box b incident to
ℓ has degree two in S (before the move ℓ is made). Consider a maximal component σ of
degree-2 boxes in S containing b. There are two cases, either σ is a chain ending in boxes of
degree higher than two (or the outer face), or σ is a cycle. Then we say that a player making
the move ℓ opens the chain (cycle) σ for the opponent.

To devise a good strategy for Dots & Boxes, it is important to note that a player is not
obliged to claim a box whenever they can. It is sometimes beneficial for a player to sacrifice
a small number of boxes for long-term gain. Consider the position in Figure 2, and let it be
Fred’s (red) turn. Here, Fred could claim the bottom three boxes (Figure 2 (top)). However,
after doing so Fred has to make an extra move, allowing Trudy (blue) to claim the remaining
four boxes and win the game. But by sacrificing two boxes (Figure 2 (bottom)), Fred can
force Trudy to make another move and open the middle chain for him to claim. That way,
Fred loses two boxes in the bottom chain, but gains all four boxes in the middle chain.

In Winning Ways, Berlekamp et al. [6] refer to the moves sacrificing a small number of
boxes but passing the turn onto the opponent as double-dealing moves. Double-dealing moves
can be made in chains of boxes, sacrificing two boxes, and in cycles, sacrificing four boxes
(see Figure 3). Each double-dealing move is usually immediately followed by the opponent
making at least one double-cross move, i.e., a move that closes two boxes at once. Note that

23

4 123

4

1

TrudyFred Fred

2 1

2 123

4

1

Figure 2 Two possible plays that Fred (red) can do. Fred can choose to claim all the available
boxes (top) and lose the game, or to perform a double-dealing move sacrificing two boxes (bottom,
second state, edge 2), and win the game. The order of the edges that are played by Trudy or Fred in
one turn is indicated by edge labels. This example is borrowed from Winning Ways, chapter 16 [6].
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Figure 3 Double-dealing move by Fred (red). If Trudy (blue) opens a chain (or a cycle), Fred
can claim a sequence of boxes. To pass the turn back to Trudy, Fred can leave two (or four) boxes
unclaimed.

double-dealing moves are only possible in long chains of at least three boxes, and in cycles.
(Chains of length one do not have enough boxes for a double-dealing move, and a chain of
length two can be opened by selecting the middle edge, thus preventing the opponent from
playing a double-dealing move.)

Berlekamp et al. [6] refer to moves opening a long chain or a cycle as loony moves. Making
a loony move is not always a choice, since at some point in the game, all unclaimed boxes
are part of long chains and cycles as in Figure 1b. Such positions are referred to as a loony
endgames. Note that in chains of length ≥ 4 and cycles of length ≥ 8, the player making
the double-dealing moves scores at least as many boxes as their opponent. Thus, in loony
endgames with chains of length ≥ 4 and cycles of length ≥ 8, under optimal play, the game
consists of one player making loony moves (opening chains and cycles), and the other player
claiming all but two or four boxes, and making double-dealing moves to pass the turn back
to the opponent [6]. Here, the player making the double-dealing moves is always better off,
since each chain or cycle yields at least as many boxes to this player as it yields to their
opponent. This player is thus referred to as being in control of the game. The benefit of
being in control can be seen in Figure 1c, which is the end result of Trudy being in control
of the loony endgame shown in Figure 1b.

In Winning Ways, Berlekamp et al. [6] argue that the player not in control has to maximize
the number of disjoint cycles to maximize their score, because double-dealing moves in cycles
yield twice as many boxes as double-dealing moves in chains. Since this property is important
for our reduction, we restate it here and, for completeness, present the argument in the
appendix.

▶ Lemma 1. Let the configuration of a loony endgame contain k boxes with degree higher
than 2, let T be the sum of the degrees of these boxes, and let c be the maximum number of
disjoint cycles in the configuration. Then, the player who is not in control can claim at most
4c + T − 2k − 4 boxes.

Note that in this lemma we only count boxes; even though the outer face contributes to the
degrees of adjacent boxes, it is not counted here.

2 Structure of the construction

To show that Dots & Boxes is PSPACE-hard we reduce from the game Gpos(POS CNF),
introduced and proven PSPACE-complete by Schaefer [32]. The game is played by two
players, Trudy and Fred, on a positive CNF formula F . The players take turns picking a
variable that has not yet been chosen. Variables picked by Trudy are set to true, variables
picked by Fred are set to false. When all variables have been chosen, the game ends. Trudy
wins if formula F evaluates to true, and Fred wins if formula F evaluates to false.
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Figure 4 A choice of a cycle can encode the value of a signal.

Given a positive CNF formula F with n variables and m clauses, we construct an instance
of Dots & Boxes in which Trudy has a winning strategy if and only if she also has a winning
strategy in the corresponding instance of Gpos(POS CNF). For simplicity we assume that
n is even, so that Trudy and Fred get to assign values to the same number of variables. If
the number of variables in F is odd, we can introduce dummy variables without changing
the outcome of a game such that the total number of the variables becomes even. For each
variable and clause of F we construct a variable and a clause gadget, respectively. We place
the variable gadgets in a row at the top of the board of Dots & Boxes, and the clause gadgets
in a row at the bottom. We connect the variable gadgets to their corresponding clause gadgets
using the wire gadgets, which transfer the values of the variables to the clauses. If a clause
consists of more than one variable, the wires from these variables must pass through an
or gadget. Since the signals propagating from the variables may need to cross each other,
we construct a crossover gadget that preserves the values in the two crossing wires. In our
instance of Dots & Boxes, only the gadgets contain available moves. The remaining boxes on
the board have all the incident edges present.

As we detail in Section 4, after the values of the variables are set, the game enters a
loony endgame where Fred is in control. Then Trudy’s winning strategy reduces to selecting
a maximum set of disjoint cycles Cmax in the remaining configuration (Lemma 1). In the
remainder of this paper, we describe a strategy for both players referred to as regular play.
Later, we will show that following the regular strategies is optimal for both players, in the
sense that it maximizes their scores. Under regular play, Trudy opens all the chains outside
of Cmax first, gaining two boxes per chain, and opens the chosen cycles last, gaining four
boxes per cycle except the last one. Regular play for Fred is to ensure that he will be in
control when the loony endgame starts. After entering the loony endgame, regular play for
Fred is simply making double-dealing moves until his very last turn.

Most of our gadgets consist of partially overlapping cycles of boxes. The choice of a set
of disjoint cycles determines the value of a signal. For example, in Figure 4 the choice of the
left vs. right cycle can encode the value true vs. false. Of course, Trudy could join the
cycles together to select the outermost cycle, but this, as we show later, will not be more
beneficial.

As both players must have a choice in picking which variable to set, the instance of Dots
& Boxes cannot yet be in a loony endgame. Thus, the variable gadgets, which we describe
in Section 3.4, contain non-loony moves instrumental in setting the value of a variable. We
ensure that under regular play the variables are set in alternating fashion, where Trudy sets
them to true, and Fred sets them to false. Once all variables are set, the loony endgame
is entered. At this point Fred is in control of the game, and it is up to Trudy to maximize
her score by maximizing the number of disjoint cycles in Cmax. The regular play by Trudy
results in a correct propagation of the signals from the variables to the clauses.

To ensure that regular play by both players in the instance of Dots & Boxes corresponds
to a valid Gpos(POS CNF) game, our gadgets need to give a specific number of boxes to
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Trudy depending on the signal values. We will show that after the variable values have been
set, under regular play, Trudy can maximize her score only if the signals are propagated
correctly. Every gadget, except for the clause, yields the same number of disjoint cycles
independent of the signals passing through the gadget. Only the clause gadget gives more
cycles to Trudy if a true signal reaches it. Exactly half of the variables are set to true,
and half to false. Thus we can tune the starting score count such that the game is won by
Trudy if and only if all the clauses are satisfied.

3 Gadgets

In this section we provide the details of the gadgets used in our reduction. When describing
the gadgets below, for a simpler exposition, we assume that the moves that Trudy and Fred
make follow the following sequence. First, in the first n moves Trudy and Fred set all the
variables to true and false respectively. Afterwards, when the loony endgame is entered,
the order in which Trudy selects which cycles to add to the disjoint set of cycles Cmax is
from the top to bottom, that is, from the variables, through the outgoing wires, through
the crossover and or gadgets, and finally down to the clause gadgets. Later, in Lemma 7, we
will show that, indeed, under regular play Trudy and Fred start by setting all the variables.
Furthermore, we will argue that the outcome of the game depends only on the choice of the
cycles in Cmax, and not on the order in which Trudy selects them.

3.1 Basic wiring

Signals from the variable gadgets are propagated to the clause gadgets through wires. A wire
gadget consists of a chain of an even number of partially overlapping cycles (see Figure 5).
The first cycle in the wire overlaps with the gadget from which the signal is propagated, and
the last cycle overlaps with the gadget towards which the signal is propagated. Consider
some wire w, let Ci be its first cycle overlapping with gadget Gi, and let Co be its last cycle
overlapping with gadget Go. If Ci is disjoint from the cycles of Gi that Trudy adds to Cmax,
then we say that the input signal to the wire is true; otherwise, if Ci overlaps with one of
the cycles of Gi in Cmax, the input value is false. If Trudy does not add Co to Cmax, then
the output signal is true, and the output signal is false otherwise.

Figure 5 A wire gadget consisting of four overlapping cycles and two ways of selecting disjoint
cycles. Shown in green are the connections to the adjacent gadgets. Selecting odd cycles in Cmax

corresponds to true (top), and selecting even cycles corresponds to false (bottom).
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To ensure that Fred always follows the strategy of double-dealing moves, we require that
each maximal chain of degree-2 boxes in a wire gadgets contain at least four boxes. That
way, Fred receives at least as many boxes in each chain (and cycle) as Trudy, and thus for
Fred being in control is always beneficial [6].

Note that, besides the lower bound on the length of a chain, the size and the embedding
of the overlapping cycles in a wire can be chosen freely. Thus wires are very flexible in
connecting components together, which facilitates the construction.

▶ Lemma 2. Let a wire w consist of 2k partially overlapping cycles. Then, under regular
play, if the signal in w changes from false to true, then Trudy can select at most k − 1
disjoint cycles from w to add to Cmax. Otherwise, under regular play, Trudy can select k

disjoint cycles from w to add to Cmax.

Proof. As we show in Lemma 7, after the first n moves, which Trudy and Fred make in the
variable gadgets, the game enters a loony endgame with Fred in control. If the output signal
in the wire matches the input signal, then only one of Ci or Co of w are in Cmax. Then Trudy
can select all odd (if Ci ∈ Cmax) or all even (if Co ∈ Cmax) cycles to add to Cmax, which
results in k disjoint cycles. If the the input signal is true, and the output signal is false,
then both Ci and Co are in Cmax. Then Trudy can, for example, select k − 1 odd cycles and
Co to add to Cmax, which again results in k cycles in total.

If, however, the input signal is false, and the output signal is true, then neither Ci

nor Co can be in Cmax. This leaves a chain of 2k − 2 cycles, of which at most k − 1 disjoint
cycles can be selected to be added to Cmax. ◀

In our construction we ensure that Trudy can win only if she gets k disjoint cycles from a
wire, and thus under regular play she cannot flip a signal propagating from a variable from
false to true. Flipping a signal from true to false is not beneficial for Trudy, as her goal
is to satisfy all the clauses. Nevertheless, flipping a signal from true to false leads to the
same number of boxes for her (at least locally within a wire), and is thus allowed.

3.2 Crossover gadget
Since the graph representing Gpos(POS CNF) is not necessarily planar, wires may need to
cross each other in our construction. We describe a crossover gadget that allows two signals
to cross while preserving the signal values. The gadget has two inputs and two outputs

Figure 6 The crossover gadget. Connections
to the adjacent wires are shown in green.

Figure 7 A possible choice of a set of disjoint
cycles. The selection has fourth degree rotational
symmetry.
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on the opposite sides of the gadget. Let C1,i and C2,i be the input cycles of the gadget,
and C1,o and C2,o be the output cycles (see Figure 6). An input cycle C∗,i is in Cmax if the
corresponding input signal is true, and otherwise it is false. An output cycle C∗,o is not in
Cmax if the output signal is true, and otherwise it is false.

There are four pairwise overlapping cycles Ca, Cb, Cc, and Cd in the middle of the gadget,
forming a cross shape. Only one of these cycles can be added to Cmax. A choice of which of
these cycles is added to Cmax is in one-to-one correspondence to the input signal values (see
Figure 7).

▶ Lemma 3. Under regular play, if a signal in a crossover gadget changes from false
to true, then Trudy can select at most 4 disjoint cycles from the gadget to add to Cmax.
Otherwise, under regular play, Trudy can select 5 disjoint cycles from the gadget.

Proof. If the output signals in the crossover gadget match the input signals, then only one of
each pair {C1,i, C1,o} and {C2,i, C2,o} are in Cmax. Since the four center cycles Ca, Cb, Cc,
and Cd all share a single square, only one of these four cycles can be chosen. Then Trudy
can select a corresponding cycle from the middle of the gadget, and two more cycles from
each signal. For example, a selection of five disjoint cycles for the case when the first input
signal is false and the second is true is shown in Figure 7. If an input signal is true, and
the corresponding output signal is false, then both C∗,i and C∗,o are in Cmax. Then Trudy
can, for example, make exactly the same choice as in the case where the output signal would
have been true.

Assume now, w.l.o.g., that the signal corresponding to C1,i and C1,o changes from false
to true in the gadget. That is, neither C1,i nor C1,o are in Cmax. Let C ′ and C ′′ be the
cycles in the gadget adjacent to C1,i and C1,o respectively. Thus, among cycles C ′, C ′′, Ca,
Cb, Cc, and Cd at most two cycles can be in Cmax, and therefore at most four cycles can be
chosen to be in Cmax. ◀

3.3 Or gadget
The or gadget consists of three pairwise overlapping cycles (see Figure 8 (left)). Two of the
cycles partially overlap with an end cycle of an input wire, and one cycle partially overlaps
with the output cycle. Let C1,w and C2,w be the last cycles of the two input wire gadgets,
and let C1,i and C2,i be the cycles of an or gadget adjacent to these two wires respectively.
Let Co be the third cycle of the or gadget, which is adjacent to an output wire. Cycles C1,w

and C2,w are not in Cmax if the input from their corresponding wire is true, and are in Cmax
if their input is false. If Co is not in Cmax then the output of the or gadget is true, and if
it is in Cmax then the output value is false. Only one of the three cycles in the or gadget
can be selected to be added to Cmax, and thus the output of the gadget can be true only if
one of C1,w or C2,w is in Cmax.

Figure 8 The or gadget (left) and the three possible combinations of the input values (right).
From left to right: two true inputs, one true and one false input, and two false inputs. The
boxes highlighted in green belong to a cycle in an adjacent wire gadget.
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▶ Lemma 4. Under regular play, if both input signals in an or gadget are false but the
output signal is true, then Trudy cannot add any cycles from the gadget to Cmax. Otherwise,
under regular play, Trudy can select 1 cycle from the gadget to add to Cmax.

Proof. First consider the case when one of the input signals in the or gadget is true. W.l.o.g.,
let the signal from the first wire be true, that is C1,w is not in Cmax. Then Trudy can
select C1,i to add to Cmax and thus the output from the or gadget would correspond to true.
Trudy may as well choose Co to add to Cmax and make the output of the gadget to be false.
In either case, one cycle from the gadget is in Cmax.

If both input signals are false, then both cycles C1,w and C2,w are in Cmax. Thus none
of C1,i and C2,i can be in Cmax. Trudy can choose to add Co to Cmax and make the output
of the gadget to be false. If, however, Trudy chooses to make the output of the or gadget
true, then Co is not in Cmax, and thus Trudy cannot select a single cycle to add to Cmax
from this or gadget. ◀

3.4 Variable gadget

The variable gadget is responsible for the assignment of true and false values to the
variables of the Gpos(POS CNF) instance. It consists of two components: the value-setting
component (see Figure 9) designed to set the value of the variable, and the fan-out component
designed to duplicate the variable signal. The whole construction is presented in Figure 10.
Let C1, C2, and C3 be the three cycles in the value-setting component. The variable gadget
is the only gadget that contains non-loony moves; there are two non-loony moves (shown in
purple in the figure) at the intersection of C1 and C2.

Regular play by both Trudy and Fred is to set all the variables in the first n moves, such
that Fred always sets a variable to false and Trudy – to true. Figure 11 shows the two
possible value assignments of the variable gadgets. To set a variable to false, Fred plays
one of the non-loony moves in the corresponding variable gadget. Then Trudy responds by
claiming the one box available (see Figure 11 (left)). This results in the cycles C1 and C2
getting merged. To set a variable to true, Trudy opens a side chain of C2 (see Figure 11
(right)). Then Fred responds by claiming every box in the opened chain, and proceeds to
setting the next variable. Note that after Trudy’s move the non-loony moves in the gadget
become loony moves (as they are now a part of a long chain).

C3

C1

C2

Figure 9 The value-setting component of
the variable gadget. There are two non-loony
moves (purple) available, of which only one
can be played as a non-loony move.

C4

Figure 10 The complete variable gadget consist-
ing of the value-setting component and the fan-out
component. Outgoing wires are shown in green.
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Figure 11 The variable is set to false (left) and true (right).

We make two observations which will be useful when proving correctness of the construc-
tion and the properties of the regular play in Section 4. First, observe that the non-loony
moves come in pairs, one in each variable, such that, for each pair, either both moves in the
pair are still non-loony or neither is anymore. We refer to them as non-loony pairs. Second,
note that in the process of assigning values to the variable gadgets, Trudy gets a box for each
variable set to false by Fred, and zero boxes for each variable set to true by herself.

Once the value of a variable is set, it propagates to the outgoing wires through the fan-out
component of the variable gadget. The fan-out component simply consists of one cycle C4
overlapping with the cycle C3 (see Figure 10), to which multiple wires can be attached. After
the variable is set, Trudy can add at most two cycles from it to Cmax. Then, if the variable is
set to false, cycle C4 has to be one of the two selected cycles, and thus the signal propagated
into the wires is false. If the variable is set to true, Trudy can add C1 and C3 to Cmax,
and thus propagate the true value into the wires. By considering the various cases under
regular play, we obtain the following lemma.

▶ Lemma 5. Under regular play, after a variable gadget is assigned a value, if it is set to
false but the output signal is true, then Trudy can add at most 1 cycle from the gadget to
Cmax. Otherwise, under regular play, Trudy can add 2 cycles from the gadget to Cmax.

Proof. As we show in Lemma 7, optimal play of both Trudy and Fred results in them setting
all the variables according to the rules described above in the first n moves. Afterwards the
game enters a loony endgame with Fred in control.

If a variable gadget is set to true, then there are three cycles left in the gadget: two
overlapping cycles C3 and C4, and the cycle C1 connected to C3 by a chain. Then Trudy
can select C1 and one of C3 or C4 to add to Cmax.

If the variable gadget is set to false, then there are still three cycles left in the gadget,
but now these cycles are forming a chain where each consecutive pair of cycles is overlapping.
Thus, if the output value is false, then C4 and the merged cycle of C1 and C2 can be added
to Cmax. On the other hand, if the output value is true then C4 cannot be in Cmax, and
from the remaining two cycles, only one can be selected to be added to Cmax. ◀

3.5 Clause gadget
Finally, we describe a clause gadget that yields more boxes to Trudy if the signal entering the
clause corresponds to true. A clause gadget is simply an extra cycle extending the end of a
wire gadget to an odd length. Figure 12 shows the gadget, and the two possible assignments
of this gadget. Whenever the signal is true, it is possible for Trudy to create a disjoint
cycle in the gadget which gives her four boxes. If the signal is false, Trudy can only make a
chain in this gadget which yields only two boxes. Again, by considering the various cases
that can occur under regular play, we obtain the following lemma.
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Figure 12 The clause gadget (left) yields four boxes to Trudy if the input signal is true (middle),
and only two boxes when the input is false (right). Boxes highlighted in green belong to the last
cycle in the adjacent wire.

▶ Lemma 6. Under regular play, if the clause gadget is set to true, then Trudy can add 1
cycle to Cmax. Otherwise, under regular play, Trudy cannot add any cycle from the clause
gadget to Cmax.

Proof. If the input signal to the clause gadget is true, the adjacent cycle to the clause
gadget is not in Cmax. Therefore, a the cycle of the gadget can be added to Cmax. When in
the loony endgame, this cycle yields four boxes to Trudy after Fred makes a double-dealing
move.

Otherwise, if the input signal is false, the adjacent cycle is in Cmax, and from the clause
gadget only a chain is left. This chain yields only two boxes to Trudy after Fred makes a
double-dealing move. ◀

4 Players’ strategies and PSPACE-completeness

With the gadgets described above, we construct a Dots & Boxes instance for any Gpos(POS
CNF) instance such that Trudy can win the Dots & Boxes instance if and only if she can
win the corresponding Gpos(POS CNF) instance. We lay out the variable gadgets, attach a
corresponding number of wire gadgets, pass the wires through or gadgets, using crossover
gadgets to cross signals, and finally connect wires to the clause gadgets. An example of our
construction is given in Figure 13 in the appendix.

The initial score we set to the Dots & Boxes instance depends on the number of gadgets
of each type in the construction. By Lemma 1 the total score in the loony endgame depends
on the number of disjoint cycles c, the number of boxes k with degree higher than two, and
their total degree T . The configuration of the loony endgame, and thus the values k and
T , is changed only when the variable gadgets are being assigned their values. We will argue
below that, under regular play, exactly half of the variables are set to true and half are
set to false. Thus the total values of k and T are the same, no matter which variables are
assigned to which values. If Trudy can satisfy formula F of the Gpos(POS CNF) game, she
can claim some cmax = |Cmax| cycles in the corresponding Dots & Boxes instance. Therefore,
by Lemma 1, she can claim 4cmax + T − 2k − 4 boxes in the loony endgame, and n/2 boxes
from the variables set to false. Let N be the total number of unclaimed boxes in our Dots
& Boxes instance. Then, Fred gets N − n/2 − (4cmax + T − 2k − 4) boxes. We set the initial
scores of Trudy and Fred such that Trudy’s final score is one larger than Fred’s if she can
satisfy F . Otherwise, her score will be strictly less than Fred’s.

Next, we describe the regular strategies for Trudy and Fred, both before the loony
endgame is entered and in the loony endgame.
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Regular strategies for Trudy and Fred in the loony endgame. We first discuss both
strategies in the loony endgame, assuming that all variables have already been assigned a
value as described in Section 3.4. As we argue below, Fred can always ensure that he is in
control of the loony endgame. It is always beneficial for Fred to stay in control, as then all
the chains and cycles in the loony endgame configuration yield at least as many boxes to
him as to Trudy.

In the loony endgame, Trudy can choose which chains and cycles to open. To maximize
her score, Trudy is going to select a maximum number of disjoint cycles Cmax in the loony
endgame (see Lemma 1). This can be done by first making a loony move in all chains, to
which Fred responds by claiming all but two boxes, finishing with a double-dealing move in
order to stay in control. Afterwards, Trudy makes loony moves in the remaining cycles, to
which Fred responds again by claiming all but four boxes, finishing with a double-dealing
moves each time, except for in the final cycle.

Regular strategy for Trudy before the loony endgame. Trudy’s strategy before the loony
endgame is to set enough variable gadgets to true in order to satisfy all the clauses. By
Lemmas 1 and 6, Trudy gains more boxes from each satisfied clause. Therefore, the regular
strategy for Trudy is to claim the boxes opened by Fred when setting variables to false, and
to set variables to true, by using a loony move in a side chain of cycle C2 of the variables.
As we show in Lemma 7, if Fred deviates from setting variables to false, and plays a loony
move when there are non-loony moves available, Trudy can adopt Fred’s regular strategy
and dominate the rest of the game by ensuring that she ends up in control when the loony
endgame is entered.

Regular strategy for Fred before the loony endgame. Fred’s strategy is to ensure that he
is in control when the loony endgame starts, and it can be described completely as responses
to what Trudy does. By our assumption the number of variables in F is even, thus initially
the number of non-loony move pairs is even. Fred’s strategy is then to keep the number of
non-loony move pairs even at the start of every one of Trudy’s turns. Then, once the number
of non-loony moves reaches zero (and the loony endgame is reached), it is Trudy’s turn, and
Fred is in control. Specifically, Fred responds to Trudy’s moves in the following way:

If Trudy follows regular play and makes a loony move in a variable to set it to true,
then Fred simply claims all boxes in the chain opened by Trudy (without making a
double-dealing move), and makes a non-loony move in another variable to set it to false.
If Trudy deviates from her strategy by making a non-loony move, setting a variable to
false, there must be at least one other non-loony move pair available to Fred. Therefore,
Fred claims the box opened by Trudy, and makes a non-loony move, thereby setting
another variable to false. The number of non-loony pairs is again even at the start of
Trudy’s next turn.
If Trudy deviates from her strategy by opening a chain with a loony move that does
not remove a non-loony pair, Fred responds with claiming all but two (or four in case
of a cycle) boxes and ends with a double-dealing move. The number of non-loony pairs
remains even before Trudy’s next turn.

Using this strategy, Fred can set a variable to false each time Trudy sets a variable to any
value, as well as gain control in the loony endgame.

Note that the order of moves in these strategies is not enforced. Trudy can play loony
moves she would play in the loony endgame even if there are still non-loony moves available,
as long as these moves do not interfere with the values set (or to be set) in the corresponding
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variables. For Fred, we consider it part of his regular strategy to simply respond to these
moves as if the game was already in the loony endgame, since otherwise he would be in
danger of losing control. Indeed, if Fred does not make a double-dealing move, the number of
non-loony moves will no longer be even at the start of Trudy’s turn, and Fred loses control
of the loony endgame. Thus, it is not more beneficial for any player to make a move in any
other gadget than the variable gadgets while there are still variables that have not been set.

▶ Lemma 7. Deviating from the regular strategies described above is sub-optimal for Fred
and cannot be more beneficial for Trudy.

Proof. Trivially, Trudy and Fred always claim open boxes before making their move, except
when Fred makes double-dealing moves. Otherwise the opponent can claim these boxes next
turn.

First, consider the regular strategies in the loony endgame. If Trudy deviates from her
strategy and does not select the maximum number of disjoint cycles, by Lemma 1 her score
will be too low and she loses the game. Therefore, the regular loony endgame strategy for
Trudy as described above is optimal. If, at any point in the loony endgame, except for his
last move, Fred does not make a double-dealing move, he loses control. Since being in control
is always beneficial in our construction, this play is sub-optimal.

The regular strategies described for before the loony endgame are also optimal. Observe
that, under the described strategies, the value-setting component of a variable yields the
same number of boxes to Trudy independent of whether it is set to true or to false. Indeed,
if it is set to true, the component contains three boxes with degree 3, while setting the
variable to true does not give any boxes to Trudy; if the variable is set to false, the
component contains two boxes with degree 3, but setting the value gives Trudy one box.
Thus, the value-setting component contributes the same number of points to Trudy’s final
score independent of the value.

If Trudy deviates from her strategy by making a non-loony move and setting a variable
to false, she loses one box to Fred. Furthermore, setting a variable to false can never help
Trudy to satisfy formula F . Thus, such a move is sub-optimal.

If Trudy deviates from her strategy by making a loony move in any other gadget than the
variable gadget, there are two options: either she makes a move that leads to the same score
as the strategy described above, or she makes a move that contradicts the setting of the
variables and reduces her total score. The former case does not have any bad repercussions
for Trudy. Fred will respond with a double-dealing move, otherwise Trudy would take control
of the endgame. Thus, we can reorder the sequence of Trudy’s moves and assume that she
first sets all the variables. However, in the latter case, the move reduces the number of
possible disjoint cycles, and thus leads to Trudy’s loss in the game. Therefore, deviating
from the regular strategy is never more beneficial for Trudy.

If Fred deviates from his strategy before the loony endgame, then Trudy can adopt his
strategy and ensure that the number of non-loony move pairs is even at the start of each
of Fred’s turn. Since, if Fred is not in control of the loony endgame, he loses the game,
deviating from his strategy is not optimal. ◀

Combining the lemmas above, we obtain the main theorem.

▶ Theorem 8. Dots & Boxes is PSPACE-complete.

Proof. A game of Dots & Boxes is finished after a polynomial number of turns. Thus, all
possible sequences of moves can be explored using polynomial sized memory. This implies
that Dots & Boxes is in PSPACE.

MFCS 2021
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We now show that Dots & Boxes is PSPACE-hard. Given a Gpos(POS CNF) formula
F , we construct a Dots & Boxes instance δ following the description above. We argue that
Trudy can win F if and only if Trudy can satisfy δ.

If Trudy can satisfy F , then there must be a variable assignment following the Gpos(POS
CNF) rules such that Trudy can ensure that every clause is connected to at least one variable
which has been set to true, regardless of what Fred does. Therefore, there can be at most
n/2 variables that need to be set to true by Trudy. Hence, Trudy can set the corresponding
variable gadgets in δ to true, and if needed set the remaining variables available to her to
true in any order. Thus, by Lemmas 2–6, Trudy can propagate the true values down to
all the clauses, that is, she can select the maximum number of disjoint cycles from all the
gadgets, including all the clause gadgets, leading to the winning score in δ.

In order for Trudy to win δ, the set of disjoint cycles Cmax that she selects must contain
a cycle from every clause gadget, and the maximum number of cycles from all the other
gadgets. By Lemmas 2–7, this can be done only if the output signals from each gadget
conform to their input signals, and thus there must be a set of variable gadgets set to true
whose signal is propagated all the way down to all the clause gadgets. In δ Trudy and Fred
have to alternate choosing which variable gadgets get set to true and false, respectively.
Thus, if Trudy has a winning strategy in δ, no matter how Fred plays, she can always pick
a subset of variable gadgets to assign, such that every clause gadget obtains a true signal.
This results in a winning strategy for Trudy to win the Gpos(POS CNF) game on F .

Thus, Dots & Boxes is PSPACE-complete. ◀

5 Conclusion

We proved that Dots & Boxes is PSPACE-complete, resolving a long-standing open problem.
There exist a number of other intriguing open problems related to Dots & Boxes. Does
restricting the game to a k × n grid for a small k make the game easier? How large
does k need to be to make the problem PSPACE-hard or even just NP-hard? These
are challenging questions, given that even for a 1 × n grid Dots & Boxes is not yet fully
understood [12, 19, 25]. Another direction of further research is the complexity of variants
of Dots & Boxes, in particular of misère Dots & Boxes [12], of Dots & Boxes under normal
play (where the last player to move wins), of Dots & Boxes on other grids, or even of Dots &
Boxes with more than two players as it was originally described by Lucas [29]. One variant
that our result resolves is Dots & Polygons, since the reduction from Dots & Boxes to Dots &
Polygons that was used to prove NP-hardness [8] now directly also shows PSPACE-hardness.

Our result can be interpreted as proving that Strings and coins restricted to grid graphs
is PSPACE-complete. What is the complexity of Strings and coins on other restricted graph
classes, for instance outerplanar graphs (which generalize 1 × n grids)?

This may also be a good moment to revisit other games, which are known to be PSPACE-
complete on general graphs, but for which the complexity on grid graphs is open. This, for
instance, includes NoGo, Fjords (on hexagonal grids), Cats-and-Dogs and GraphDistance,
which are known to be PSPACE-complete for planar graphs [9, 10].
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A Example game

z

y

x

w

c3

c2

c1

Cross-over OrVariable Clause

Figure 13 Example reduction from the Gpos(POS CNF) formula (w ∨ x) ∧ (w ∨ y) ∧ (x ∨ z). The
construction can be divided into four sections: a variable, crossover, or, and clause section. Each
section contains only the corresponding gadgets and wire gadgets that connect different gadgets
together.
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B Omitted proofs

▶ Lemma 1. Let the configuration of a loony endgame contain k boxes with degree higher
than 2, let T be the sum of the degrees of these boxes, and let c be the maximum number of
disjoint cycles in the configuration. Then, the player who is not in control can claim at most
4c + T − 2k − 4 boxes.

Proof. Let Fred be in control of the game. To simplify the argument, w.l.o.g., we assume
that the last move made by Trudy is made in a cycle. Let c denote the number loony moves
made by Trudy in a disjoint cycle and let ℓ be the number of loony moves made by Trudy in
chains. All but the last loony move in a disjoint cycle or chain yield 4 or 2 boxes for Trudy,
respectively. Thus, the score gained by Trudy in the loony endgame is

4c + 2ℓ − 4.

Consider the dual graph G = (V, E) to the Dots & Boxes instance. In it, a node corresponds
to a box, and an edge connects two nodes if the two corresponding adjacent boxes do not
have a line drawn between them. Suppose G has k nodes with degree higher than 2. We
define T to be the sum of the degrees of these nodes:

T =
∑

{v∈V |degree(v)>2}

degree(v).

A loony move on a disjoint cycle does not change T , since all disjoint cycles only contain
boxes of degree 2. A loony move on a chain, however, decreases the degree of the box at
both ends of the chain by 1. Furthermore, whenever the degree of a box reduces from 3 to 2
the degree of this box is no longer counted in T . Thus

T = 2ℓ + 2k,

which means the score for Trudy will be

4c + T − 2k − 4.

Since T and k are fixed, the score is maximized when the number of loony moves in disjoint
cycles is maximized. ◀
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Abstract
We study the problem of polygonal curve simplification under uncertainty, where instead of a sequence
of exact points, each uncertain point is represented by a region which contains the (unknown) true
location of the vertex. The regions we consider are disks, line segments, convex polygons, and
discrete sets of points. We are interested in finding the shortest subsequence of uncertain points
such that no matter what the true location of each uncertain point is, the resulting polygonal curve
is a valid simplification of the original polygonal curve under the Hausdorff or the Fréchet distance.
For both these distance measures, we present polynomial-time algorithms for this problem.
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1 Introduction

In this paper, we study the topic of curve simplification under uncertainty. There are many
classical algorithms dealing with curve simplification with different distance metrics; however,
it is typically assumed that the locations of points making up the curves are known precisely,
which often does not suit real-life data. An example highlighting the necessity of taking
uncertainty into account comes with GPS data, where each measured location is inherently
imprecise, and the real location is likely to be within a certain distance from the measurement.
This imprecision can be modelled as a disk (or some other shape if the GPS signals are
blocked or reflected by rocks, buildings, etc.). Curve simplification is used to reduce the
noise-to-signal ratio in the trajectory data before applying other algorithms or when storing
large amounts of data. In both cases modelling uncertainty could reduce the error introduced
by simplifying imprecise curves while maintaining a short, efficient representation of the data.

There is a large volume of foundational work on curve simplification [4], including work
on vertex-constrained simplification, such as the algorithms by Ramer and by Douglas and
Peucker [17, 34] using the Hausdorff distance, by Agarwal et al. [3] using the Fréchet distance,
by Imai and Iri [23] using either, and various improvements and related approaches [7, 8,
10, 16, 21, 22, 31, 36]. The Imai–Iri algorithm involves computing the shortcut graph, which
captures all the possible simplifications of a curve, and then finding a path through the graph
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(a)

(b)

(c)

ε

Figure 1 (a) An uncertain curve modelled with convex polygons and a realisation. (b) A
valid simplification under the Hausdorff distance with the threshold ε: for every realisation, the
subsequence is within distance ε from the full sequence. (c) An invalid simplification: there is a
realisation for which the subsequence is not within distance ε from the full sequence.

with minimal edge count from the start to the end node, yielding the shortest simplification.
We adapt this approach to the setting with uncertainty. It seems natural to apply disk
stabbing to test shortcuts [22]; we discuss why this does not work in our setting in Section 3.

There are recent advances in the study of uncertainty in computational geometry, with
work on optimising various measures on uncertain points [24, 25, 26, 28, 30], triangulations [11,
29, 37], visibility in uncertain polygons [15], and other problems [1, 2, 18, 19, 20, 27, 32, 35].
There is work by Ahn et al. [5], and, more recently, by Buchin et al. [9, 33] on various
minimisation and maximisation variants of curve similarity with the Fréchet distance under
uncertainty, and other work combining trajectory analysis and uncertainty [6, 13, 14]. To
our knowledge, there is no previous work studying curve simplification under uncertainty.

We use the locational model for uncertainty: we know that each point exists, but not
its exact location. It can be modelled as a discrete set of points, of which one is the true
location; this model uses indecisive points. We also use imprecise points, modelled as compact
continuous sets, such as disks, line segments, or convex polygons; the true location is one
unknown point from the set. An uncertain curve is a sequence of uncertain points of the
same kind. A realisation of an uncertain curve is a polygonal curve obtained by taking one
point from each uncertain point. We solve the following problem (see Figure 1): given an
uncertain curve as a sequence of n uncertain points, find the shortest subsequence of the
points such that for any realisation of the curve, the realisation restricted to the subsequence
is a valid simplification. We give efficient algorithms for this problem for the Hausdorff and
the Fréchet distance. They run in O(n3) time for uncertainty modelled with disks or line
segments and in O(n3k3) time for convex polygons and indecisive points with k vertices.

2 Preliminaries

Denote1 [n] def= {1, 2, . . . , n} for any n ∈ N>0. Given two points p, q ∈ R2, denote their
Euclidean distance with ∥p− q∥.

1 We use := and =: to denote assignment, def= for equivalent quantities in definitions or to point out equality
by earlier definition, and = in other contexts. We also use ≡, but its usage is always explained.
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Denote a sequence of points in R2 with π = ⟨p1, . . . , pn⟩. For only two points p, q ∈ R2,
we also write pq instead of ⟨p, q⟩. Denote a subsequence of a sequence π from index i to j
with π[i : j] = ⟨pi, pi+1, . . . , pj⟩. This notation can also be applied if we interpret π as a
polygonal curve on n vertices (of length n). It is defined by linearly interpolating between
the successive points in the sequence and can be seen as a continuous function, for i ∈ [n− 1]
and α ∈ [0, 1]: π(i+ α) = (1 − α)pi + αpi+1.

We also introduce the notation for the order of points along a curve. Let p := π(a) and
q := π(b) for a, b ∈ [1, n]. Then p ≺ q iff a < b, p ≼ q iff a ≤ b, and p ≡ q iff a = b. Note that
we can have p = q for a ̸= b if the curve intersects itself.

Finally, given points p, q, r ∈ R2, define the distance from p to the segment qr as
d(p, qr) def= mint∈qr∥p− t∥.

An uncertainty region U ⊂ R2 describes a possible location of a true point: it has to be
inside the region, but there is no information as to where exactly. We use several uncertainty
models, so the regions U are of different shape. An indecisive point is a form of an uncertain
point where the uncertainty region is represented as a discrete set of points, and the true
point is one of them: U = {p1, . . . , pk}, with k ∈ N>0 and pi ∈ R2 for all i ∈ [k]. Imprecise
points are modelled with uncertainty regions that are compact continuous sets. In particular,
we consider disks and polygonal closed convex sets. We denote a disk with the centre c ∈ R2

and the radius r ∈ R≥0 as D(c, r). Formally, D(c, r) def= {p ∈ R2 | ∥p − c∥ ≤ r}. Define a
polygonal closed convex set (PCCS) as a closed convex set with bounded area that can be
described as the intersection of a finite number of closed half-spaces. Note that this definition
includes both convex polygons and line segments (in 2D). Given a PCCS U , let V (U) denote
the set of vertices of U , i.e. vertices of a convex polygon or endpoints of a line segment.

We call a sequence of uncertainty regions an uncertain curve: U = ⟨U1, . . . , Un⟩. If
we pick a point from each uncertainty region of U , we get a polygonal curve π that we
call a realisation of U and denote it with π ⋐ U . That is, if for some n ∈ N>0 we have
π = ⟨p1, . . . , pn⟩ and U = ⟨U1, . . . , Un⟩, then π ⋐ U if and only if pi ∈ Ui for all i ∈ [n].

Suppose we are given a polygonal curve π = ⟨p1, . . . , pn⟩, a threshold ε ∈ R>0, and
a curve built on the subsequence of vertices of π for some set I = {i1, . . . , iℓ} ⊆ [n], i.e.
σ = ⟨pi1 , . . . , piℓ

⟩ with ij < ij+1 for all j ∈ [ℓ− 1] and ℓ ≤ n. We call σ an ε-simplification
of π if for each segment ⟨pij , pij+1⟩, we have δ(⟨pij , pij+1⟩, π[ij : ij+1]) ≤ ε, where δ denotes
some distance measure, e.g. the Hausdorff or the Fréchet distance.

The Hausdorff distance between two sets P,Q ⊂ R2 is defined as

dH(P,Q) def= max
{

sup
p∈P

inf
q∈Q

∥p− q∥, sup
q∈Q

inf
p∈P

∥p− q∥
}
.

For two polygonal curves π and σ in R2, since π and σ are closed and bounded, we get

dH(π, σ) = max
{

max
p∈π

min
q∈σ

∥p− q∥,max
q∈σ

min
p∈π

∥p− q∥
}
.

The Fréchet distance is often described through an analogy with a person and a dog
walking along their respective curves without backtracking, where the Fréchet distance is the
shortest leash needed for such a walk. Formally, consider a set of reparametrisations Φℓ of
length ℓ, defined as continuous non-decreasing surjective functions ϕ : [0, 1] → [1, ℓ]. Given
two polygonal curves π and σ of lengths m and n, respectively, we can define the Fréchet
distance as

dF(π, σ) def= inf
α∈Φm,β∈Φn

max
t∈[0,1]

∥π(α(t)) − σ(β(t))∥ .
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26:4 Uncertain Curve Simplification

We refer to the pair of reparametrisations as an alignment. We often consider the Fréchet
distance between a curve π = ⟨p1, . . . , pn⟩ and a line segment p1pn, for some n ∈ N≥3. In
this setting, the alignment can be described in a more intuitive way; see also Figure 2. It
can be described as a sequence of locations on the line segment with which the vertices of
the curve are aligned, ⟨s2, . . . , sn−1⟩, where si ∈ [1, 2] for all i ∈ {2, . . . , n− 1} and si ≤ si+1
for all i ∈ {2, . . . , n − 2}. To see that, assign s1 := 1 and sn := 2 and construct a helper
reparametrisation ϕ : [0, 1] → [1, n], defined as ϕ(t) = (n − 1) · t + 1 for any t ∈ [0, 1].
Construct another reparametrisation ψ : [1, n] → [1, 2], defined as

ψ(t) =
{
s⌊t⌋ · (1 − t+ ⌊t⌋) + s⌊t⌋+1 · (t− ⌊t⌋) if t ∈ [1, n),
sn if t = n.

Note that ϕ and ψ ◦ϕ satisfy the definition of reparametrisations for π and p1pn, respectively.
We also define an alignment between a curve and a line segment for the Hausdorff distance

(see Figure 2). It represents the map from the curve to the line segment, where each point
on the curve is mapped to the closest point on the line segment. It is given by a sequence
⟨s1, . . . , sn⟩, where si ∈ [1, 2] for all i ∈ [n], such that p1pn(si) = argminp′∈p1pn

∥p′ − pi∥. In
other words, p1pn(si) is the closest point to pi for all i ∈ [n]; as we discuss in Appendix A.1,
the Hausdorff distance is realised as the distance between pi and p1pn(si) for some i ∈ [n].
Therefore, establishing such an alignment and checking that ∥p1pn(si)−pi∥ ≤ ε for all i ∈ [n]
allows us to check that dH(π, p1pn) ≤ ε for some ε ∈ R>0.

We are discussing the following problem: given an uncertain curve U = ⟨U1, . . . , Un⟩
with n ∈ N≥3 and Ui ⊂ R2 for all i ∈ [n], and the threshold ε ∈ R>0, find a minimal-length
subsequence U ′ = ⟨Ui1 , . . . , Uiℓ

⟩ of U with ℓ ≤ n, such that for any realisation π ⋐ U , the
corresponding realisation π′ ⋐ U ′ forms an ε-simplification of π under some distance measure
δ. We solve this problem for the Hausdorff and the Fréchet distance for uncertainty modelled
with indecisive points, line segments, disks, and convex polygons.

3 Overview of the Approach

We first present the summary of our approach. On the highest level, we use the shortcut
graph. Each uncertain point of a curve U = ⟨U1, . . . , Un⟩ corresponds to a vertex. An edge
connects two vertices i and j if and only if the distance between any realisation of U [i : j]
and the corresponding line segment from Ui to Uj is below the threshold. The path with the
fewest edges from vertex 1 to vertex n then corresponds to the simplification using fewest
uncertain points. So, we construct the shortcut graph and find the shortest path between
two vertices. The key idea is that we find shortcuts that are valid for all realisations, so any
sequence of shortcuts can be chosen.

In order to construct the shortcut graph, we need to check whether an edge should be
added to the graph, i.e. whether a shortcut is valid. It is natural to think that shortcut
testing can be solved by disk stabbing with disks of suitable radius, as in the work by Guibas
et al. [22]. The idea would then be, given the distance threshold ε, to replace the uncertainty
regions with the intersection of ε-disks over all the points of a region; this way we would
e.g. replace disks of radius r by disks of radius ε − r, and then check if a shortcut stabs
these regions. However, except for disks, this approach does not work – the reader can see
this by trying to apply the method on an uncertainty region shaped as a long line segment
(or a skinny convex polygon) that is parallel to the potential shortcut line segment. The
intersection of ε-disks may be empty, while clearly one can create an alignment for both the
Hausdorff and the Fréchet distance. For disks the approach is more suitable; however, when
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Figure 2 Left: Alignment for the Hausdorff distance. Right: Alignment for the Fréchet distance.
In both cases, the alignment is described as the sequence ⟨s1 := p1, s2, s3, s4, s5, s6 := p6⟩.

testing a shortcut, the first and the last disk of a shortcut fulfil a different function than
the intermediate disks. This means that we can rephrase the problem for the intermediate
disks of a shortcut as disk stabbing, but not for the first and the last disk, as the quantifiers
in the problem are different. Furthermore, the work by Guibas et al. [22] does not provide
running time guarantees for disks of different radii, and the initialisation in their approach is
not applicable in our setting with no restriction on disk intersections. So, we need to use a
different approach to test shortcuts.

The approach is different for the Hausdorff and the Fréchet distance and for each
uncertainty model. For the first and the last uncertain point of the shortcut, we state in
Section 5 that there are several critical pairs of realisations that need to be tested explicitly,
and then for any other pair of realisations, we know that the distance is also below the
threshold. Testing each pair corresponds to finding the distance between a precise line
segment and any realisation of an uncertain curve; we discuss this in Section 4 and show the
procedures to do this in detail in Appendix A.

▶ Theorem 1. We can find the shortest vertex-constrained simplification of an uncertain
curve, such that for any realisation the simplification is valid, both for the Hausdorff and the
Fréchet distance, in time O(n3) for uncertainty modelled with disks and line segments, and
in time O(n3k3) for uncertainty modelled with indecisive points and convex polygons, where
k is the number of options or vertices and n is the length of the curve.

4 Shortcut Testing: Intermediate

Here we discuss testing a shortcut with the first and the last points fixed, i.e. we want to
check maxπ⋐U,π(1)≡p1,π(n)≡pn

δ(π, p1pn) ≤ ε for δ := dH and δ := dF. We can do so in linear
time in all the models; here we show the intuitive explanation, and we treat this topic in
detail in Appendix A. We solve the following problem.

▶ Problem 2. Given an uncertain curve U = ⟨U1, . . . , Un⟩ on n ∈ N≥3 uncertain points in
R2, as well as realisations p1 ∈ U1, pn ∈ Un, check if the largest Hausdorff or Fréchet distance
between U and its one-segment simplification is below a threshold ε ∈ R>0 for any realisation
with the fixed start and end points, i.e. for δ := dH or δ := dF, verify

max
π⋐U,π(1)≡p1,π(n)≡pn

δ(π, p1pn) ≤ ε .
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26:6 Uncertain Curve Simplification

Hausdorff distance. It is a well-known fact that the Hausdorff distance between the
curve and the line segment that simplifies that curve is the largest distance from a ver-
tex of the curve to the line segment, so dH(π, ⟨π(1), π(n)⟩) = maxi∈[n] d(π(i), ⟨π(1), π(n)⟩)
for a polygonal curve π of length n. (See Figure 2.) We can use the same idea in
the uncertain setting; however, for indecisive curves, we can choose any realisation for
each intermediate point, so we need to test all of them, so we need the largest distance
from any realisation of any indecisive point to the line segment. Then for indecisive
points, given a curve U = ⟨U1, . . . , Un⟩ with Ui = {p1

i , . . . , p
k
i } for all i ∈ [n], we have

maxπ⋐U,π(1)≡p1,π(n)≡pn
δ(π, p1pn) = maxi∈[n] maxj∈[k] d(pj

i , p1pn). For disks, line segments,
and convex polygons, the key point is the same: all of the realisations of the intermediate
points need to be close enough to the given line segment. For disks, we can simply check
the furthest points, which are one radius further away from the line segment than the disk
centre. For line segments and convex polygons, it suffices to test all the vertices.

Fréchet distance. For the Fréchet distance, there is also an intuitive procedure in the precise
setting [22, Lemma 8]. We can align each vertex from the curve with the earliest possible
point in the line segment. Each next point cannot be aligned before the previous points, so
choosing the earliest possible alignment point maximises the possibilities for the remainder of
the curve. (See Figure 2: s4 is as close as possible to p1.) We use the same approach in the
uncertain setting; however, for indecisive points, as any realisation of a point is possible, we
need to choose the realisation that pushes the earliest alignment forward the most, as this is
the most restrictive realisation for the remainder of the curve. In more detail, we iteratively
find the value for si. Given si−1, we find the earliest tji along the segment for each realisation
pj

i of Ui, such that ∥tji −pj
i ∥ ≤ ε and si−1 ≼ tji . Then we pick si := maxj∈[k] t

j
i , in terms of ≼.

We continue this procedure until the end of the segment, starting with s1 := p1 and assigning
sn := pn. In one direction, the sequence of si we find corresponds to a possible realisation; in
the other direction, we can see that for any i ∈ {2, . . . , n− 1}, we have si−1 ≼ tji ≼ si for all
j ∈ [k]; so for any other realisation the alignment is in order, as well. We can show for line
segments and convex polygons that we again only need to focus on the vertices. For disks,
we instead reframe the problem as that of disk stabbing. Instead of testing closeness from all
points of some D(c, r) to the line segment, we can check if the line segment stabs D(c, ε− r)
for the threshold ε. Then the correct alignment order corresponds to picking points inside
disks in order. Again, choosing the earliest possible one is key.

5 Shortcut Testing: All Points

In the previous section, we have covered testing a shortcut, given that the first and the last
points are fixed. Here we remove the restriction on the endpoints.
▶ Problem 3. Given an uncertain curve U = ⟨U1, . . . , Un⟩ on n ∈ N≥3 uncertain points
in R2, check if the largest Hausdorff or Fréchet distance between U and its one-segment
simplification is below a threshold ε ∈ R>0 for any realisation, i.e. for δ := dH or δ := dF,
verify maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε.

For the indecisive points, we can simply check all pairs from U1 × Un; this is quite easy
to show.
▶ Lemma 4. Given n, k ∈ N>0, n ≥ 3, and δ := dH or δ := dF, for any indecisive curve
U = ⟨U1, . . . , Un⟩ with Ui = {p1

i , . . . , p
k
i } for all i ∈ [n] and pj

i ∈ R2 for all i ∈ [n], j ∈ [k],
we have

max
π⋐U

δ(π, ⟨π(1), π(n)⟩) = max
a∈[k]

max
b∈[k]

max
σ⋐U,σ(1)≡pa

1 ,σ(n)≡pb
n

δ(σ, pa
1p

b
n) .
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Figure 3 Left: Illustration for Observation 5. The convex hull of the disks is highlighted in
black. The order in which the outer tangents touch the disks is the same. Right: Illustration for
Definition 6. Here O1 (t1 to t2) is to the right of O2 (u1 to u2).

Proof. We can derive

max
π⋐U

δ(π, ⟨π(1), π(n)⟩)

{Def. ⋐}
= max

p1∈U1,...,pn∈Un

δ(⟨p1, . . . , pn⟩, p1pn)

= max
p1∈U1

max
pn∈Un

max
p2∈U2,...,pn−1∈Un−1

δ(⟨p1, . . . , pn⟩, p1pn)

{Def. ⋐}
= max

p1∈U1
max

pn∈Un

max
σ⋐U,σ(1)≡p1,σ(n)≡pn

δ(σ, p1pn)

= max
a∈[k]

max
b∈[k]

max
σ⋐U,σ(1)≡pa

1 ,σ(n)≡pb
n

δ(σ, pa
1p

b
n) ,

as was to be shown. ◀

That is to say, for either Hausdorff or Fréchet distance we can simply test the shortcut using
the corresponding procedure from Lemma 16 or Lemma 20, and do so for each combination
of the start and end points. We can then test an indecisive shortcut of length n overall in
time O(k2 · nk) = O(nk3).

We now proceed to show the approach for disks and polygonal closed convex sets. The
procedure is the same for the Hausdorff and the Fréchet distance, but differs between disks
and PCCSs, since disks have some convenient special properties.

5.1 Disks
▶ Observation 5. Suppose we are given two non-degenerate disks D1 := D(p1, r1) and
D2 := D(p2, r2) with D1 ⊈ D2 and D2 ⊈ D1. We make the following observations.

There are exactly two outer tangents to the disks, and the convex hull of D1 ∪D2 consists
of an arc from D1, an arc from D2, and the outer tangents.
Assume the lines of the outer tangents intersect. When viewed from the intersection point,
the order in which the tangents touch the disks is the same, i.e. either both first touch D1
and then D2, or the other way around. If the lines are parallel, the same statement holds
when viewed from points on the tangent lines at infinity. (See Figure 3.)

To see that the second point is true, note that the distance from the intersection point to
the tangent points of a disk is the same for both tangent lines. These observations mean
that we can restrict our attention to the area bounded by the outer tangents and define an
ordering in the resulting strip.
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26:8 Uncertain Curve Simplification

▶ Definition 6. Given two distinct non-degenerate disks D1 := D(p1, r1) and D2 := D(p2, r2),
consider a strip defined by the lines that form the outer tangents to the disks. Assume we
have two circular arcs O1, O2 that intersect both tangents and lie inside the strip. Define s1
and v1 to be the points where one of the tangents touches D1 and D2, respectively, and let t1
and u1 be the points where O1 and O2 intersect that tangent, respectively. Define the order
on the tangents from D1 to D2, so s1 ≺ v1. Define points s2, t2, u2, v2 similarly for the
other tangent. We say that O2 is to the right of O1 if either ti = ui for i ∈ {1, 2} and the
radius of O1 is larger than that of O2; or if otherwise ti ≼ ui for i ∈ {1, 2} and O1 and O2
do not properly intersect. We say that O2 is to the left of O1 if either ti = ui for i ∈ {1, 2}
and the radius of O1 is smaller than that of O2; or if otherwise ui ≼ ti for i ∈ {1, 2} and O1
and O2 do not properly intersect. (See Figure 3 for a visual interpretation.)

We state the main result: it suffices to check the tangents to the first and the last disk
and the order of the intermediate disks.

▶ Lemma 7. Given n ∈ N≥3, for any imprecise curve modelled with disks U = ⟨U1, . . . , Un⟩
with Ui = D(ci, ri) for all i ∈ [n] and ci ∈ R2, ri ∈ R≥0 for all i ∈ [n], and assuming
U1 ̸= Un, we have with δ ∈ {dH, dF} that maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε if and only if both
of the following are true:

max
{

max
π⋐U,π(1)≡s,π(n)≡t

δ(π, st), max
π⋐U,π(1)≡u,π(n)≡v

δ(π, uv)
}

≤ ε ,

where s, u ∈ U1, t, v ∈ Un, and st and uv are the outer tangents to U1 ∪ Un;
for each i ∈ {2, . . . , n−1}, the right arc of the disk D(ci, ε−ri) bounded by the intersection
points with the tangent lines is to the right of the right arc of U1 and the left arc of the
disk D(ci, ε− ri) is to the left of the left arc of Un.

Proof. We first prove the claim for δ = dH. Assume the right side of the lemma statement
holds. First of all, as we have maxπ⋐U,π(1)≡s,π(n)≡t dH(π, st) ≤ ε, we know that for all
i ∈ {2, . . . , n − 1}, we have d(ci, st) + ri ≤ ε, or d(ci, st) ≤ ε − ri, so st stabs each disk
D(ci, ε − ri) (see Lemma 18 in Appendix A.1). We can draw a similar conclusion for uv.
Therefore, each disk D(ci, ε− ri) crosses the entire strip bounded by the tangent lines, with
the intersection points splitting it into the left and the right circular arcs. We can thus apply
Definition 6 to these arcs, as stated in the lemma.

First suppose that the disks U1 and Un do not intersect. Then for any line segment from
U1 to Un and any disk D′ := D(ci, ε− ri), we exit D′ after exiting U1 and enter D′ before
entering Un. Hence, for any line pq with p ∈ U1 and q ∈ Un and any i ∈ {2, . . . , n− 1}, we
can find a point w ∈ pq ∩D′; this means that indeed maxw′∈Ui

d(w′, pq) ≤ ε (see Lemma 22
in Appendix A.2). As this holds for all disks and any choice of p and q, we conclude that
maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε.

Now assume that the disks U1 and Un intersect. If we consider the line segments pq
with p ∈ U1, q ∈ Un, we end up in the previous case if either p /∈ U1 ∩ Un or q /∈ U1 ∩ Un.
So assume that the segment pq lies entirely in the intersection U1 ∩ Un. However, it can
be seen that for each disk D′ := D(ci, ε − ri), the left boundary of the intersection is to
the right of the left boundary of the disk, and the right boundary of the intersection is to
the left of the right boundary of the disk; hence, pq ⊂ U1 ∩ Un ⊆ D′. Therefore, we have
maxw′∈Ui

d(w′, pq) ≤ ε, and so also in this case maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε.
We now assume that the right side of the lemma statement is false and show that then

maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε. If maxπ⋐U,π(1)≡s,π(n)≡t dH(π, st) > ε, then immediately
maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε. Same holds for uv. So, assume those statements hold; then
it must be that for at least one intermediate disk the arcs do not lie to the left or to the
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Figure 4 Having established the alignments along the two tangents, we can connect them to
create a sequence of paths.

right of the arcs of the respective disks. Assume this is disk i, so the disk D′ := D(ci, ε− ri).
W.l.o.g. assume that the right arc of the disk does not lie entirely to the right of the right
arc of U1. The argument for the left arc w.r.t. Un is symmetric.

There must be at least one point p′ on the right arc of U1 that lies outside of D′. Assume
for now that U1 and Un are disjoint. Then a line segment p′q for any q ∈ Un does not stab D′,
so maxw′∈Ui d(w′, pq) > ε, and so maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε. If U1 and Un intersect,
then either p′ is outside of the intersection and of D′ and there is a point q ∈ Un such that
p′q does not stab D′; or we can pick the degenerate line segment p′p′, as p′ ∈ U1 ∩Un, and so
p′p′ also does not stab D′. In either case, we conclude that maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε.

For δ = dF, first assume that maxπ⋐U dF(π, ⟨π(1), π(n)⟩) ≤ ε. As dF(π, σ) ≥ dH(π, σ)
for any curves π, σ, this also means that maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε. Furthermore,
immediately we get that maxπ⋐U,π(1)≡s,π(n)≡t dF(π, st) ≤ ε, and the same for uv, which
yields the right side of the lemma as shown above.

Now assume that the right side holds. As for the Hausdorff distance, we know that
the disks cross the entire strip and that Definition 6 applies. It remains to show that for
any line segment pq with p ∈ U1, q ∈ Un, there is a valid alignment that maintains the
correct ordering and bottleneck distance, assuming it exists for every realisation for st and
uv. Consider a valid alignment established for st and uv, so the sequence of points ai on st

and bi on uv that are mapped to Ui. We can always find such points for each individual Ui

(see Lemma 21 in Appendix A.2), and as we know that the Fréchet distance is below the
threshold for st and uv, there is such a valid alignment, i.e. we know that ai ≼ ai+1 and
bi ≼ bi+1 for all i ∈ [n− 1].

For the rest of the proof, the rough idea is as follows. We can create paths from ai to bi

so that every segment pq with p ∈ U1 and q ∈ Un crosses these paths in the correct order,
thus proving that a Fréchet alignment exists. When U1 and Un are disjoint, these paths are
simply geodesic paths within the region bounded by the two tangents and the U1 and Un. If
they intersect, we can instead create these paths by connecting ai to the top intersection
point of the disks and bi to the bottom intersection point, as in Figure 4. Note that when
the two disks intersect and the segment pq goes through the intersection, it may not cross
the paths at all; however, every point in the intersection is close enough to all intermediate
disks. We now discuss this idea in more detail.

First suppose that the disks U1 and Un do not intersect. Consider the region R bounded
by the outer tangents and the disk arcs that are not part of the convex hull of U1 ∪ Un. We
connect, for each i ∈ {2, . . . , n−1}, ai to bi with a geodesic shortest path in R, as in Figure 4.
We claim that for any line segment pq defined above, the intersection points of the shortest
paths with the segment give a valid alignment, yielding maxπ⋐U,π(1)≡p,π(n)≡q dF(π, pq) ≤ ε.
As the choice of pq was arbitrary, this will complete the proof.
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To show that the alignment is valid, we need to show that the order is correct and that
the distances fall below the threshold. First consider the case where the geodesic shortest
path for point i does not touch the boundary formed by arcs of region R. In this case, it is
simply a line segment aibi. Note that by definition ai, bi ∈ D(ci, ε− ri); as disks are convex,
also aibi ⊂ D(ci, ε− ri); thus, the intersection point p′

i of pq with aibi is in D(ci, ε− ri), so
by Lemma 21, maxw∈Ui∥p′

i − w∥ ≤ ε. Furthermore, note that ai ≼ ai+1 and bi ≼ bi+1; thus,
the line segments aibi and ai+1bi+1 cannot cross, so also p′

i ≼ p′
i+1.

Now w.l.o.g. consider the case where the geodesic shortest path for point i touches the
arc of U1. The geodesic shortest paths do not cross: on the path from ai (or bi) to the arc
they form a tangent to the arc, thus for ai ≼ ai+1 the tangent point for ai comes before
that of ai+1 when going along the arc from s to u. So, just as in the previous case, these
line segments cannot cross. Having reached the arc, both shortest paths will follow it, as
otherwise the path would not be a shortest path; thus, the arcs do not cross, either. Finally,
a path from the previous case does not touch any path that touches the arc boundary of
R by definition. Finally, note that the condition that we have established on the right arcs
of disks being to the right of the right arc of U1 (and symmetric for the left arcs and Un)
means that the geodesic shortest paths that touch the arc boundary of R stay within the
respective disks D(ci, ε− ri). Thus, we have established that for all i we have p′

i ≼ p′
i+1 and

maxw∈Ui
∥p′

i − w∥ ≤ ε, concluding the proof for disjoint U1 and Un.
Finally, consider the case where U1 intersects Un. Above we used geodesic paths within

the region R. However, when U1 intersects Un, R consists of two disconnected regions.
Observe that one region contains ai and the other contains bi. To connect ai with bi we use
the geodesic from ai to the intersection point of the two inner boundaries of U1 and Un that
is in the same region of R, the geodesic from bi to the other intersection point of the inner
boundaries, and join these two by a line segment between the intersection points. Any line
segment from a point in U1 to a point in Un crosses these paths in order, just like in the
previous case. If the line segment goes through the intersection, note that any point in the
intersection is close enough to all the intermediate objects, as the intersection is the subset of
each disk. So, any point in the intersection can be chosen to establish the trivially in-order
alignment to all the intermediate objects. ◀

It is worth noting that the case of U1 = Un is similar to how we treat the intersection U1 ∩Un;
however, our definition for the ordering between two disks does not apply. So, if U1 = Un,
then maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε if and only if U1 ⊆ D(ci, ε− ri) for all i ∈ {2, . . . , n− 1}.

5.2 Non-intersecting PCCSs

Suppose the regions are modelled by convex polygons. Consider first the case where the
interiors of U1 and Un do not intersect, so at most they share a boundary segment.

▶ Observation 8. Given an uncertain curve modelled by convex polygons U = ⟨U1, . . . , Un⟩
with the interiors of U1 and Un not intersecting, note:

There are two outer tangents to the polygons U1 and Un, and the convex hull of U1 ∪ U2
consists of a convex chain from U1, a convex chain from Un, and the outer tangents.
Let Ci be the convex chain from Ui that is not part of the convex hull for i ∈ {1, n}. Then
for δ := dH or δ := dF,

max
π⋐U

δ(π, ⟨π(1), π(n)⟩) ≤ ε ⇐⇒ max
π⋐U,π(1)∈C1,π(n)∈Cn

δ(π, ⟨π(1), π(n)⟩) ≤ ε .



K. Buchin, M. Löffler, A. Popov, and M. Roeloffzen 26:11

p′ q′

p q
C1 Cn

U1
Un R

Figure 5 Left: Illustration for Observation 8. The convex hull of the polygons is shown in grey.
The dotted chains are C1 and Cn. Any line segment pq with p ∈ U1 and q ∈ Un crosses C1 and Cn.
Right: Illustration for the procedure. The region R is triangulated.

U1 U4

A2 A3

Figure 6 An example set of curves A = {A2, A3} discussed in Lemmas 9 and 10.

To see that the second observation is true, note that one direction is trivial. In the other
direction, note that any line segment pq with p ∈ U1, q ∈ Un crosses both C1 and Cn, say, at
p′ ∈ C1 and q′ ∈ Cn. We know that there is a valid alignment for p′q′, both for the Hausdorff
and the Fréchet distance; we can then use this alignment for pq. See Figure 5.

We claim that we can check maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε using the following procedure
(see Figure 5).
1. Triangulate the region R bounded by two convex chains C1 and Cn and the outer tangents.
2. For each line segment st of the triangulation with s ∈ C1, t ∈ Cn, and for either δ := dH

or δ := dF, check that maxπ⋐U,π(1)≡s,π(n)≡t δ(π, st) ≤ ε.

First of all, observe that we can compute a triangulation, and that every triangle has
two points from one convex chain and one point from the other chain. If all three points
were from the same chain, then the triangle would lie outside of R. Now consider some line
segment pq with p ∈ C1, q ∈ Cn. To complete the argument, it remains to show that the
checks in step 2 mean that also maxπ⋐U,π(1)≡p,π(n)≡q δ(π, pq) ≤ ε. Observe that the triangles
span across the region R, so when going from one tangent to the other within R we cross all
the triangles. Therefore, we can number the edges of the triangles that go from C1 to Cn, in
the order of occurrence on such a path, from 1 to k. Denote the alignment established on
line j ∈ [k] with the sequence of aj

i , for i ∈ {2, . . . , n− 1}; this alignment can be established
both for δ := dH and δ := dF. We can establish polygonal curves Ai := ⟨a1

i , . . . , a
k
i ⟩; they all

stay within R (see Figure 6). We claim that for any line segment pq defined above, we can
establish a valid alignment from intersection points of pq and Ai. We do this separately for
the Fréchet and the Hausdorff distance.

▶ Lemma 9. Given a set of curves A := {A2, . . . , An−1} in R described above for δ := dH
and a line segment pq with p ∈ C1, q ∈ Cn, we have maxπ⋐U,π(1)≡p,π(n)≡q dH(π, pq) ≤ ε.

Proof. Note that pq crosses each Ai at least once. We can take any one crossing for each
i and establish the alignment. Consider such a crossing point p′

i. It falls in some triangle
bounded by a segment from either C1 or Cn and two line segments that contain points aj

i

and aj+1
i for some j ∈ [k − 1]. We know, using Lemma 19, that maxw∈Ui∥a

j
i − w∥ ≤ ε

and maxw∈Ui
∥aj+1

i − w∥ ≤ ε. Consider any point w′ ∈ Ui. Then, using Lemma 14 with
c := d := w′, we find that ∥w′ − p′

i∥ ≤ ε. Therefore, also maxw∈Ui
∥p′

i − w∥ ≤ ε; using
Lemma 19, we conclude that indeed maxπ⋐U,π(1)≡p,π(n)≡q dH(π, pq) ≤ ε. ◀
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For the Fréchet distance, we can use the same argument to show closeness; however, we
need more care to establish the correct order for the alignment.

▶ Lemma 10. Given a set of curves A := {A2, . . . , An−1} in R described above for δ := dF
and a line segment pq with p ∈ C1, q ∈ Cn, we have maxπ⋐U,π(1)≡p,π(n)≡q dF(π, pq) ≤ ε.

Proof. Compared to Lemma 9, instead of taking any intersection point of pq with each Ai,
we take the last intersection point. First, we need to show that curves Ai and Ai+1 do not
cross for any i ∈ [n− 1]. Each curve Ai crosses each triangle once, so it suffices to show that
a segment aj

ia
j+1
i does not cross aj

i+1a
j+1
i+1 . Indeed, as aj

i ≼ aj
i+1 and aj+1

i ≼ aj+1
i+1 , these line

segments cannot cross.
Now consider, for each i ∈ {2, . . . , n − 1}. the polygon Pi bounded by C1, Ai, and the

corresponding segments of the outer tangents. With the previous statement, it is easy to see
that P2 ⊆ P3 ⊆ · · · ⊆ Pn−1. Assume this is not the case, so some Pi ̸⊆ Pi+1. Then there is a
point z ∈ Pi, but z /∈ Pi+1. The point z falls into some triangle with lines j and j + 1. In
this triangle, it means that z is between C1 and aj

ia
j+1
i , but not between C1 and aj

i+1a
j+1
i+1 .

However, as these segments do not cross, this would imply that aj
i+1 ≺ aj

i , but then the
check in step 2 would not pass for line j.

Consider the points at which the line segment pq leaves the polygons Pi for the last time.
From the definition it is obvious that p ∈ Pi for all i ∈ {2, . . . , n− 1}, so this is well-defined.
Clearly, due to the subset relationship, the order of such points p′

i is correct, i.e. p′
i ≼ p′

i+1.
Furthermore, each such p′

i ∈ Ai, so using the arguments of Lemma 9 we can show that also the
distances are below ε. Thus, we conclude that indeed maxπ⋐U,π(1)≡p,π(n)≡q dF(π, pq) ≤ ε. ◀

The proofs of Lemmas 9 and 10 show us how to solve the problem for two convex polygons
with non-intersecting interiors. We can also use them directly for the case of line segments
that do not intersect except at endpoints.

▶ Lemma 11. Given n ∈ N≥3, for any imprecise curve modelled with line segments U =
⟨U1, . . . , Un⟩ with Ui = p1

i p
2
i ⊂ R2 for all i ∈ [n], given a threshold ε ∈ R>0, and given that

U1 ∩Un ⊂ {p1
1, p

2
1}, and assuming that the triangles p1

1p
1
np

2
1 and p2

1p
1
np

2
n form a triangulation

of the convex hull of U1 ∪ Un, we have maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε if and only if

max
{

max
π⋐U,π(1)≡p1

1,π(n)≡p1
n

δ(π, p1
1p

1
n), max

π⋐U,π(1)≡p2
1,π(n)≡p1

n

δ(π, p2
1p

1
n),

max
π⋐U,π(1)≡p2

1,π(n)≡p2
n

δ(π, p2
1p

2
n)

}
≤ ε .

We should note that in this particular case it is not necessary to use a triangulation, so we
can get rid of the second term; also in the previous proofs a convex partition could work
instead, but a triangulation is easier to define.

5.3 Intersecting PCCSs
We now discuss the situation where the interiors of U1 and Un intersect, or where line
segments U1 and Un cross. The argument is the same for δ := dH and δ := dF.

Line segments. Assume line segments U1
def= p1

1p
2
1 and Un

def= p1
np

2
n cross; call their intersection

point s. Then we can use Lemma 11 separately on pairs of {p1
1s, sp

2
1} × {p1

ns, sp
2
n}. These

pairs cover the entire set of realisations pq with p ∈ U1, q ∈ Un, completing the checks.

▶ Lemma 12. Given n ∈ N≥3, for any imprecise curve modelled with line segments U =
⟨U1, . . . , Un⟩ with Ui = p1

i p
2
i ⊂ R2 for all i ∈ [n], given a threshold ε ∈ R>0, we can check

for both δ := dH and δ := dF, using procedures above, that maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε.
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Convex polygons. Convex polygons whose interiors intersect can be partitioned along
the intersection lines, so into a convex polygon R := U1 ∩ Un and two sets of polygons
P1 := {P 1

1 , . . . , P
k
1 } and Pn := {P 1

n , . . . , P
ℓ
n} for some k, ℓ ∈ N>0. Just as for line segments,

we can look at pairs from P1 × Pn separately. The pairs where R is involved are treated later.
Consider some (P,Q) ∈ P1 × Pn. Note that P and Q are convex polygons with a convex
cut-out, so the boundary forms a convex chain, followed by a concave chain. We need to
compute some convex polygons P ′ and Q′ with non-intersecting interiors that are equivalent
to P and Q, so that we can apply the approaches from Section 5.2.

We claim that we can simply take the convex hull of P and Q to obtain P ′ and Q′.
Clearly, the resulting polygons will be convex. Also, the concave chains of P are bounded by
points s and t and are replaced with the line segment st; same happens for Q with point
u and v. The points s, t, u, v are points of intersection of original polygons U1 and Un, so
they lie on the boundary of R, and their order along that boundary can only be s, t, u, v
or s, t, v, u. Thus, it cannot happen that st crosses uv, and it cannot be that uv is in the
interior of the convex hull of P , as otherwise R would not be convex. Hence, the interiors of
P ′ and Q′ cannot intersect, so they satisfy the necessary conditions.

Finally, we need to show that the solution for (P ′, Q′) is equivalent to that for (P,Q).
One direction is trivial, as P ⊆ P ′ and Q ⊆ Q′; for the other direction, consider any line
segment that leaves P through the concave chain. In our approach, we test the lines starting
in s and t; the established alignments are connected into paths. The paths Ai do not cross
st. So, any alignment in the region of CH(P ∪Q) \ (P ∪Q) can also be made in the region
CH(P ′ ∪Q′) \ (P ′ ∪Q′). So, this approach yields valid solutions for all pairs not involving R.

Now consider the pair (R,R). A curve may now consist of a single point, so the approach
for the Fréchet and the Hausdorff distance is the same: all the points of Ui need to be close
enough to all the points of R. To check that, observe that the pair of points p ∈ Ui and q ∈ R

that has maximal distance has the property that p is an extreme point of Ui in direction qp

and q is an extreme point of R in direction pq. So, it suffices, starting at the rightmost point
of Ui and leftmost point of R in some coordinate system, to then rotate clockwise around
both regions keeping track of the distance between tangent points. Note that only vertices
need to be considered, as the extremal point cannot lie on an edge.

Finally, any other pair that involves R is covered by the stronger case of (R,R): for any
line we can align every intermediate object with any point in R. To elaborate, the cases
above are not truly a case distinction, as all of these combinations should hold; so given a
line segment for a pair (P,R) or (R,Q) for some P ∈ P1, Q ∈ Pn, we can pick any point of
the segment that lies inside R to establish the alignment, deferring to the stronger previous
case (R,R). Also observe that some line segments covered by the case (P,Q) with P ∈ P1,
Q ∈ Pn may go through R; this does not impose any unnecessary constraints, so it does not
matter that the cases can overlap.

▶ Lemma 13. Given n ∈ N≥3, for any imprecise curve modelled with convex polygons
U = ⟨U1, . . . , Un⟩ with Ui ⊂ R2 for all i ∈ [n] and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n],

k ∈ N>0, given a threshold ε ∈ R>0, we can check for δ := dH and δ := dF, using procedures
above, that maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε.

6 Combining Steps

In the previous sections, we have shown how to check if a shortcut of length n ≥ 3 is valid
under the Hausdorff or the Fréchet distance, for indecisive points, disks, line segments, and
convex polygons. It is easy to see that a shortcut of length n = 2 is always valid. Therefore,
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Table 1 Running time of our approach in each setting. For indecisive points, k is the number of
options per point. For convex polygons, k is the number of vertices.

Indecisive Disks Line segments Convex polygons

Hausdorff distance O(n3k3) O(n3) O(n3) O(n3k3)
Fréchet distance O(n3k3) O(n3) O(n3) O(n3k3)

we can use the previously described procedures to construct a shortcut graph; any path
in such a graph from the vertex 1 to vertex n corresponds to a valid simplification, so the
shortest path gives us the result we need.

▶ Theorem 1. We can find the shortest vertex-constrained simplification of an uncertain
curve, such that for any realisation the simplification is valid, both for the Hausdorff and the
Fréchet distance, in time O(n3) for uncertainty modelled with disks and line segments, and
in time O(n3k3) for uncertainty modelled with indecisive points and convex polygons, where
k is the number of options or vertices and n is the length of the curve.

Proof. Correctness of the approaches has been shown before. We now analyse the running
time, also shown in Table 1. For the running time, observe that we need O(n2T ) time in any
setting, due to the shortcut graph construction.

For indecisive points, when testing a shortcut we do O(nk)-time testing for O(k2)
combinations of starting and ending points, where k is the number of options per point. For
disks, we do a linear number of constant-time checks and two linear-time checks, getting
T ∈ O(n). For line segments, we also do two (three) linear-time checks per part; two line
segments can be split into at most two parts each, so we repeat the process four times. Either
way, we get T ∈ O(n).

Finally, for convex polygons, assume the complexity of each polygon is at most k. Assume
the partitioning resulting from two intersecting polygons yields ℓ1 and ℓ2 parts for the first
and the second polygon, respectively. Denote the two polygons P and Q and the resulting
parts with P1, . . . , Pℓ1 and Q1, . . . , Qℓ2 , respectively. Suppose part Pi has complexity ki and
part Qj has complexity k′

j , so |V (Pi)| = ki and |V (Qj)| = k′
j for some i ∈ [ℓ1], j ∈ [ℓ2]. We

know that every vertex of the original polygons occurs in a constant number of parts, so∑ℓ1
i=1 ki ∈ O(k) and

∑ℓ2
j=1 k

′
j ∈ O(k); we also know ℓ1 + ℓ2 ∈ O(k). We consider all pairs

from P and Q, and for each pair we triangulate and do the checks on the triangulation. The
triangulation can be done in time O((ki + k′

j) · log(ki + k′
j)), yielding O(ki + k′

j) lines, each
of which is tested in time O(nk). The testing dominates, so we need O((ki + k′

j) · nk) time.
We are interested in

ℓ1∑
i=1

ℓ2∑
j=1

O((ki + k′
j) · nk) = O(nk) ·

ℓ1∑
i=1

ℓ2∑
j=1

O(ki + k′
j) = O(nk3) .

So, T ∈ O(nk3) both for the Fréchet and the Hausdorff distance. ◀

7 Conclusion

We have presented approaches for finding the optimal simplification of an uncertain curve
under various uncertainty models for the Hausdorff and the Fréchet distance. To recap,
we can use Lemmas 7, 12, and 13 and the procedure for indecisive points to test a single
shortcut. Constructing a shortcut graph yields the solution. In future work, it would be
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interesting to see, similarly to the precise simplification approaches, if an improvement in
the running time is possible to subcubic time, or whether one can show a conditional lower
bound [8]. It would also be interesting to consider what uncertainty means in the context of
global simplification; our approach does not seem easily transferable.
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A Shortcut Testing: Intermediate Points

In this appendix, we discuss testing a single shortcut where we fix the realisations of the first
and the last uncertain point. We provided intuitive explanations in Section 4 and discuss
the details here. We state some basic facts about the Hausdorff and the Fréchet distance in
the precise setting (see the full version [12] for the proofs) and use them to design simple
algorithms for testing shortcuts in the uncertain settings.

A.1 Hausdorff Distance
We start by recalling some useful facts about the Hausdorff distance in the precise setting.

▶ Lemma 14. Given points a, b, c, d ∈ R2 forming segments ab and cd, the largest distance
from one segment to the other is maxp∈ab d(p, cd) = max{d(a, cd), d(b, cd)}.

▶ Lemma 15. Given n ∈ N>0, for any precise curve π = ⟨p1, . . . , pn⟩ with pi ∈ R2 for all
i ∈ [n], we have dH(π, p1pn) = maxi∈[n] d(pi, p1pn).

Indecisive points. We generalise the setting to include imprecision. We first claim that the
straightforward setting with indecisive points permits an easy solution using Lemma 15; the
proof can be found in the full version [12].

▶ Lemma 16. Given n, k ∈ N>0, for any indecisive curve U = ⟨U1, . . . , Un⟩ with n ≥ 3, Ui =
{p1

i , . . . , p
k
i } for all i ∈ [n] and pj

i ∈ R2 for all i ∈ [n], j ∈ [k], and given some p1 ∈ U1 and
pn ∈ Un, we have maxπ⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = maxi∈{2,...,n−1} maxj∈[k] d(pj
i , p1pn).

Note that this means that when the start and end realisations are fixed, we can test that a
shortcut is valid using the lemma above in time O(nk) for a shortcut of length n.
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Disks. We proceed to present the way to test shortcuts for fixed realisations of the first
and the last points when the imprecision is modelled using disks. In the next arguments the
following form of a triangle inequality is useful (again, see the full version [12] for details).

▶ Lemma 17. For any p, q ∈ R2 and a line segment ab on a, b ∈ R2, d(p, ab) ≤ ∥p − q∥ +
d(q, ab).

▶ Lemma 18. Given n ∈ N≥3, for any imprecise curve modelled with disks U = ⟨U1, . . . , Un⟩
with Ui = D(ci, ri) for all i ∈ [n] and ci ∈ R2, ri ∈ R≥0 for all i ∈ [n], and given some
p1 ∈ U1 and pn ∈ Un, we have

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = max
i∈{2,...,n−1}

(
d(ci, p1pn) + ri

)
.

Proof. Assume the setting of the lemma. We derive

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = {Lemma 15} max
π⋐U,π(1)≡p1,π(n)≡pn

max
i∈[n]

d(π(i), p1pn)

= {Def. ⋐, d(p1, p1pn) = d(pn, p1pn) = 0} max
i∈{2,...,n−1}

max
p∈Ui

d(p, p1pn) .

It remains to show that maxp∈Ui d(p, p1pn) = d(ci, p1pn) + ri for any i ∈ {2, . . . , n− 1}.
Pick p′ := argmaxp∈Ui

d(p, p1pn). Note that by Lemma 17, d(p′, p1pn) ≤ ∥p′ − ci∥ +
d(ci, p1pn). Furthermore, as p′ ∈ Ui, by definition of Ui we have ∥p′ − ci∥ ≤ ri. Thus,
maxp∈Ui

d(p, p1pn) ≤ d(ci, p1pn) + ri, and we need to show the other direction.
Now pick a point q′ := argminq∈p1pn

∥q−ci∥, so that d(ci, p1pn) = ∥q′ −ci∥. Draw the line
through ci and q′ and pick the point p′ on that line on the boundary of Ui on the opposite
side of q w.r.t. ci. Clearly, ∥p′ − ci∥ = ri and q′ = argminq∈p1pn

∥q − p′∥. Thus,

d(p′, p1pn) = ∥p′ − q′∥ = ∥q′ − ci∥ + ∥p′ − ci∥ = d(ci, p1pn) + ri .

Note that p′ ∈ Ui, so we conclude maxp∈Ui d(p, p1pn) ≥ d(ci, p1pn) + ri. ◀

This lemma allows us to test a shortcut in time O(n) for a shortcut of length n.

Polygonal closed convex sets.

▶ Lemma 19. Given n, k ∈ N>0, n ≥ 3, for any imprecise curve modelled with PCCSs
U = ⟨U1, . . . , Un⟩ with Ui ⊂ R2 and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n], and given some

p1 ∈ U1 and pn ∈ Un, we have

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = max
i∈{2,...,n−1}

max
v∈V (Ui)

d(v, p1pn) .

Proof. Assume the setting of the lemma. As before, derive

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = {Lemma 15} max
π⋐U,π(1)≡p1,π(n)≡pn

max
i∈[n]

d(π(i), p1pn)

= {Def. ⋐, d(p1, p1pn) = d(pn, p1pn) = 0} max
i∈{2,...,n−1}

max
p∈Ui

d(p, p1pn) .

To show that the claim holds, it remains to show that for any PCCS U and a line segment
ab, maxp∈U d(p, ab) = maxv∈V (U) d(v, ab). Firstly, as V (U) ⊂ U , we immediately have
maxp∈U d(p, ab) ≥ maxv∈V (U) d(v, ab). Consider any p ∈ U . We show that there is some
v ∈ V (U) such that d(v, ab) ≥ d(p, ab), completing the proof, with a case distinction on p.
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Algorithm 1 Testing a shortcut on an indecisive curve with the Fréchet distance.

Require: U = ⟨U1, . . . , Un⟩, n, k ∈ N>0, ∀i ∈ [n] : Ui = {p1
i , . . . , p

k
i }, ∀i ∈ [n], j ∈ [k] : pj

i ∈
R2, ε ∈ R>0, p1 ∈ U1, pn ∈ Un

1: function CheckFréchetInd(U , p1, pn, n, k, ε)
2: s1 := 1
3: for i ∈ {2, . . . , n− 1} do
4: Ti := ∅
5: for j ∈ [k] do
6: Sj

i := {t ∈ [si−1, 2] | ∥pj
i − p1pn(t)∥ ≤ ε}

7: if Sj
i = ∅ then

8: return False
9: Ti := Ti ∪ minSj

i

10: si := max Ti

11: return True

p ∈ V (U). Then pick v := p, and we are done.
p /∈ V (U), but p is on the boundary of U . Consider the vertices v, w ∈ V (U) with p ∈ vw.
Using Lemma 14, we note maxq∈vw d(q, ab) = max{d(v, ab), d(w, ab)}. W.l.o.g. suppose
d(v, ab) ≥ d(w, ab). Then for v indeed we have d(v, ab) ≥ d(p, ab).
p is in the interior of U (cannot occur for line segments). Find the point q′ :=
argminq∈ab∥p − q∥, so d(p, ab) = ∥p − q′∥. Draw the line through p and q′; let p′

be the point on that line on the boundary of U on the opposite side of q′ w.r.t. p. Clearly,
q′ = argminq∈ab∥p′ − q∥, so d(p′, ab) > d(p, ab). Then we can find a vertex v ∈ V (U) as
in the previous cases, yielding d(v, ab) ≥ d(p′, ab) > d(p, ab).

This covers all the cases, so the statement holds. ◀

As before, this lemma gives us a simple way to test the shortcut with fixed realisations of the
first and the last points in time O(nk) for a shortcut of length n and PCCSs with k vertices.

A.2 Fréchet Distance
We omit results for the Fréchet distance in the precise setting here; see the full version [12].

Indecisive points. The idea is that in the precise case we can always align greedily as we
move along the line segment. In this case, we also need to find the realisation for each
indecisive point that makes for the ‘worst’ greedy choice.

▶ Lemma 20. Given n, k ∈ N>0 and ε ∈ R>0, for any indecisive trajectory U = ⟨U1, . . . , Un⟩
with Ui = {p1

i , . . . , p
k
i } for all i ∈ [n] and pj

i ∈ R2 for all i ∈ [n], j ∈ [k], and given some
p1 ∈ U1 and pn ∈ Un, we have, using Algorithm 1,

max
π⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε ⇐⇒ CheckFréchetInd(U , p1, pn, n, k, ε) = True .

Proof. First, assume that maxπ⋐U,π(1)≡p1,π(n)≡pn
dF(π, p1pn) ≤ ε. In the algorithm, we

compute some set Sj
i for each pj

i and then pick one value from it and add it to Ti; from
Ti we then pick a single value as si. So, si ∈ Sj

i for some ji ∈ [k], on every iteration
i ∈ {2, . . . , n− 1}. Consider a realisation π ⋐ U with π(1) ≡ p1, π(n) ≡ pn, and π(i) ≡ pji

i

for every i ∈ {2, . . . , n − 1}, where ji is chosen as the value corresponding to si. Then
we know dF(π, p1pn) ≤ ε. So, there is an alignment that can be given as a sequence of n
positions, ti ∈ [1, 2], such that ∥π(i) − p1pn(ti)∥ ≤ ε and ti ≤ ti+1 for all i. The alignment is
established by interpolating between the consecutive points on the curves (see Section 2).
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We now show by induction that si ≤ ti for all i. For i = 2, we get, for the chosen j2,
s2 := min{t ∈ [1, 2] | ∥pj2

2 − p1pn(t)∥ ≤ ε}. As we have t2 ∈ {t ∈ [1, 2] | ∥pji

2 − p1pn(t)∥ ≤ ε},
we get s2 ≤ t2. Now assume the statement holds for some i, then for i+ 1 we get si+1 :=
min{t ∈ [si, 2] | ∥pji+1

i+1 − p1pn(t)∥ ≤ ε}; we can rephrase this so that

si+1
def= min

(
{t ∈ [1, 2] | ∥pji+1

i+1 − p1pn(t)∥ ≤ ε} ∩ [si, 2]
)
.

So, there are two options.
si+1 = si. Then we know si+1 = si ≤ ti ≤ ti+1.
si+1 > si. Then we can use the same argument as for i = 2 to find that si+1 ≤ ti+1.

Now we know that for every i, ti ∈ Sji

i for the choice of ji described above. Therefore,
for any pji+1

i+1 there is always a realisation prefix such that any valid alignment has ti+1 ≥ si;
as we know that there is a valid alignment for every realisation, we conclude that every Sj

i is
non-empty. Thus, the algorithm returns True.

Now assume that the algorithm returns True. Consider any realisation π ⋐ U . We
claim that there is a valid alignment, described with a sequence of ti ∈ [1, 2] for i ∈
{2, . . . , n − 1}, such that si−1 ≤ ti ≤ si and ∥p1pn(ti) − π(i)∥ ≤ ε. Denote the realisation
π

def= ⟨p1, p
j2
2 , p

j3
3 , . . . , p

jn−1
n−1 , pn⟩, so the sequence ⟨j2, . . . , jn−1⟩ describes the choices of the

realisation. Consider the set Sji

i for any i ∈ {2, . . . , n− 1}. We know that it is non-empty,
otherwise the algorithm would have returned False. We claim that we can pick ti = minSji

i

for every i. By definition, Sji

i ⊆ [1, 2] and ∥p1pn(ti) − π(i)∥ ≤ ε. We also trivially get that
si−1 ≤ ti. Finally, note that ti ∈ Ti, and si := max Ti, so ti ≤ si.

This argument shows that ti ≤ ti+1 for every i, and that ∥p1pn(ti) −π(i)∥ ≤ ε. Therefore,
dF(π, p1pn) ≤ ε. As this works for any realisation with π(1) ≡ p1 and π(n) ≡ pn, we conclude
maxπ⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε. ◀

Disks. To show the generalisation to disks, it is helpful to reframe the problem as that of
disk stabbing for appropriate disks. We state some useful facts first (see the full version [12]).

▶ Lemma 21. Given a disk D1 := D(c, r) with c ∈ R2, r ∈ R≥0, a threshold ε ∈ R>0, and a
point p ∈ R2, define D2 := D(c, ε− r). We have maxp′∈D1∥p− p′∥ ≤ ε ⇐⇒ p ∈ D2.

▶ Lemma 22. Given a disk D1 := D(c, r) with c ∈ R2, r ∈ R≥0, ε ∈ R>0, and a line segment
pq with p, q ∈ R2, define D2 := D(c, ε− r). Then maxp′∈D1 d(p′, pq) ≤ ε ⇐⇒ pq ∩D2 ̸= ∅.

Algorithm 2 Testing a shortcut on an imprecise curve modelled with disks with the Fréchet
distance.

Require: U = ⟨U1, . . . , Un⟩, n ∈ N>0, ∀i ∈ [n] : Ui = D(ci, ri), ∀i ∈ [n] : ci ∈ R2, ri ∈ R≥0,
ε ∈ R>0, p1 ∈ U1, pn ∈ Un

1: function CheckFréchetDisks(U , p1, pn, n, ε)
2: s1 := 1
3: for i ∈ {2, . . . , n − 1} do
4: Si := {t ∈ [si−1, 2] | ∥ci − p1pn(t)∥ ≤ ε − ri}
5: if Si = ∅ then
6: return False
7: si := min Si

8: return True
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▶ Lemma 23. Given n ∈ N>0 and ε ∈ R>0, for any imprecise curve modelled with disks
U = ⟨U1, . . . , Un⟩ with Ui = D(ci, ri) for all i ∈ [n] and ci ∈ R2, ri ∈ R≥0 for all i ∈ [n], and
given some p1 ∈ U1 and pn ∈ Un, we have, using Algorithm 2,

max
π⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε ⇐⇒ CheckFréchetDisks(U , p1, pn, n, ε) = True .

Proof. We use Lemma 22 to change the problem: rather than establishing an alignment that
comes in the correct order and satisfies the distance constraints, we do disk stabbing and pick
the stabbing points in the correct order. So, we have maxπ⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε

if and only if there exists a sequence of points p′
i ∈ p1pn ∩D(ci, ε−ri) for all i ∈ {2, . . . , n−1}

such that p′
i ≼ p′

i+1 along p1pn for all i ∈ {2, . . . , n− 2}. We show that this is exactly what
Algorithm 2 computes in the full version [12]. ◀

Algorithm 3 Testing a shortcut on an imprecise curve modelled with PCCSs with the Fréchet
distance.

Require: U = ⟨U1, . . . , Un⟩, n, k ∈ N>0, ∀i ∈ [n] : Ui is a PCCS, V (Ui) = {p1
i , . . . , pk

i }, ∀i ∈ [n], j ∈
[k] : pj

i ∈ R2, ε ∈ R>0, p1 ∈ U1, pn ∈ Un

1: function CheckFréchetPCCS(U , p1, pn, n, k, ε)
2: s1 := 1
3: for i ∈ {2, . . . , n − 1} do
4: Ti := ∅
5: for j ∈ [k] do
6: Sj

i := {t ∈ [si−1, 2] | ∥pj
i − p1pn(t)∥ ≤ ε}

7: if Sj
i = ∅ then

8: return False
9: Ti := Ti ∪ min Sj

i

10: si := max Ti

11: return True

Polygonal closed convex sets.

▶ Lemma 24. Given n, k ∈ N>0 and ε ∈ R>0, for any imprecise curve modelled with PCCSs
U = ⟨U1, . . . , Un⟩ with Ui ⊂ R2 and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n], and given some

p1 ∈ U1 and pn ∈ Un, we have, using Algorithm 3,

max
π⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε ⇐⇒ CheckFréchetPCCS(U , p1, pn, n, k, ε) = True .

Proof. As we have shown in Lemma 19, it suffices to test the vertices of a PCCS to establish
that the distance from every point to the line segment is below the threshold. It remains
to show that the extreme alignment (in terms of ordering) for the Fréchet distance is also
achieved at a vertex. This case then becomes identical to the indecisive points case, so we
can use Lemma 20 to show correctness.

Consider an arbitrary point t ∈ Ui and let s be the earliest point in the ε-disk around t

that is on pq. Clearly, if t is in the interior of Ui, then we can take any t′ on the line through
t parallel to pq and get the corresponding s′ with s ≺ s′. So, assume t is on the boundary of
Ui. Suppose that t ∈ uv with u, v ∈ V (Ui). Rotate and translate the coordinate plane so
that pq lies on the x-axis. Derive the equation for the line containing uv, say, y′ = kx′ + b.
First consider k = 0, so the line containing uv is parallel to the line containing pq. In this
case, clearly, moving along uv in the direction coinciding with the direction from p to q

MFCS 2021



26:22 Uncertain Curve Simplification

x′

u

v

p qx

y′ε

Figure 7 Illustration for the computation in Lemma 24.

increases the x-coordinate of point of interest, so moving to a vertex is optimal. Now assume
k > 0. If k < 0, reflect the coordinate plane about y = 0. Geometrically, it is easy to see
(Figure 7) that the coordinate of interest can be expressed as

x = x′ −
√
ε2 − y′2 = y′ − b

k
−

√
ε2 − y′2 .

We want to maximise x by picking the appropriate y′. We take the derivative: dx/dy′ = 1/k+
y′/

√
ε2 − y′2. We equate it to 0 to find the critical point of the function, y′

0 = −ε/
√
k2 + 1.

We can check that for y′ < y′
0, the value of the derivative is negative, and for y′ > y′

0 it is
positive, so at y′ = y′

0 we achieve a local minimum. There are no other critical points, so to
maximise x, we want to move away from the local minimum as far as possible. As we are
limited to the line segment uv, the maximum is achieved at an endpoint. ◀
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characterization of the Sherali-Adams hierarchy applied to the homomorphism problem in terms of
fractional isomorphism. Collaterally, we also extend a number of known results from graph theory to
give a characterization of the notion of fractional isomorphism for relational structures in terms of
the Weisfeiler-Leman test, equitable partitions, and counting homomorphisms from trees. As a result,
we obtain a description of the families of CSPs that are closed under Weisfeiler-Leman invariance in
terms of their polymorphisms as well as decidability by the first level of the Sherali-Adams hierarchy.
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In turn, the complexity of the graph homomorphism problem has also been intensively
studied in combinatorics (see [21]) as well as in a more general setting, known as the Constraint
Satisfaction Problem (CSP), where A and B are not required to be graphs but can be arbitrary
relational structures. The CSP is general enough to encompass problems from areas as
diverse as artificial intelligence, optimization, computer algebra, computational biology,
computational linguistics, among many other. In contrast with the graph isomorphism
problem it was quickly established that the homomorphism problem is NP-complete even for
graphs, as it can encode graph coloring. Consequently, an important research effort has been
put into identifying tractable fragments of the problem, in particular by fixing the target
structure B. This culminated in the recent major result of Bulatov [8] and Zhuk [37], which
confirmed a conjecture by Feder and Vardi [15] that, given a fixed target structure B, the
homomorphism problem for B is either solvable in polynomial time or NP-complete.

Linear programming relaxations, among other relaxations such as SDP-based, have been
largely used in the study of both the isomorphism and the homomorphism problem. In fact,
the isomorphism problem for graphs A, B can be reformulated as an integer program which
asks whether there exists a permutation matrix X such that XNA = NBX, where NA and
NB are the adjacency matrices of A, B respectively. If we relax this condition to only require
that X is doubly stochastic, we obtain what is known as fractional isomorphism.

Fractional isomorphism has a combinatorial counterpart in the 1-dimensional Weisfeiler-
Leman (1-WL) algorithm [26], also known as colour refinement. In particular, it was shown
in [34, 35] and [30] that A and B are fractionally isomorphic if and only if 1-WL does not
distinguish between them. 1-WL produces a sequence of colourings c0, c1, . . . of the nodes of
a graph by means of an iterative refinement procedure which assigns a pair of nodes to the
same colour class of ci if they belong to the same class of ci−1, and additionally they have
the same number of neighbours of each colour in ci−1. The algorithm keeps iterating until a
fixed point is reached. The Weisfeiler-Leman algorithm is a very powerful heuristic to test
for graph isomorphism: if two graphs are distinguished by 1-WL (that is, they give rise to
distinct fixed-point colourings up to renaming of the vertices), then this is a witness that
the graphs are not isomorphic. In fact, it was shown that 1-WL decides the isomorphism
problem on almost all graphs (that is, all but o(2(n

2)) graphs on n vertices for every n) [5].
However, it is also easy to see that 1-WL fails on some very simple instances, such as

regular graphs. To address these limitations, the original Weisfeiler-Leman algorithm has
been extended so that at every iteration on a graph A it produces a colouring of the set of
k-tuples (k > 1) of nodes of A. It was initially conjectured that this hierarchy of increasingly
powerful methods, known as the k-dimensional Weisfeiler-Leman (k-WL) algorithm, would
provide a polynomial time graph isomorphism test at least for graphs of bounded degree.
While this conjecture was proved to be incorrect [10], k-WL turns out to have a number of
useful applications, such as the important role it plays in the aforementioned quasipolynomial
algorithm of Babai.

In addition, the k-WL algorithm has proven to be very robust and has a number of
equivalent formulations. In [14], a new characterization was given in terms of counting
homomorphisms: for every k ≥ 1, A and B are indistinguishable by the k-WL algorithm if
for every graph T of treewidth at most k, the number of homomorphisms from T to A is
equal to the number of homomorphisms from T to B. Further, it has been shown in [10] that
A and B are indistinguishable by the k-WL algorithm if and only if they are indistinguishable
in the logic Ck+1 consisting of all FO formulas with counting quantifiers that have at most
k + 1 variables.
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Similarly to the Weisfeiler-Leman hierarchy for fractional isomorphism, any LP relaxation
of an integer 0/1-program, like that of graph isomorphism, can be further strengthened by
sequentially applying so-called lift-and-project methods from mathematical programming
in order to obtain a hierarchy of increasingly tighter relaxations which can still be solved
efficiently. The main idea behind these is to add auxiliary variables and valid inequalities to
an initial relaxation of a 0/1 integer program. These methods, which include Lovász-Schrijver
[27] and Sherali-Adams [32], have been used to study classical problems in combinatorial
optimization such as Max-Cut, Vertex Cover, Maximal Matching, among many others.

Quite surprisingly, Atserias and Maneva [3] and Malkin [28] were able to lift the connection
between the 1-WL algorithm and fractional isomorphism to show a close correspondence
between the higher levels of the SA hierarchy for the graph isomorphism problem and
the k-WL algorithm (and, hence, with the logic Ck+1). This correspondence was further
tightened in [20].

Let us now turn our attention to the homomorphism problem. Here, LP relaxations have
been intensively used in the more general setting of the Constraint Satisfaction Problem and,
most usually, in the approximation of its optimization versions such as MaxCSP, consisting
of finding a map from the universe of A to the universe of B that maximizes the number
of constraints satisfied, among other variants. For instance, a simple linear programming
relaxation yields a 2-approximation algorithm for the Vertex Cover problem, and no better
polynomial time approximation algorithm is known.

One of the simplest and most widespread LP relaxations of the homomorphism problem
(see for example [24]) has an algebraic characterization that very much resembles that of
fractional isomorphism. For the sake of simplicity we shall present it here in the restricted case
of graphs. Let us start with the algebraic formulation of fractional isomorphism which can be,
alternatively, expressed as the existence of a pair of doubly stochastic matrices X and Y such
that XMA = MBY and MAY T = XT MB, where MA denotes the incidence matrix of A. If
we relax this condition to only require that X and Y are left stochastic and, additionally,
we drop the second equation, then we obtain a relaxation of graph homomorphism, which
we call fractional homomorphism. With some minor variations depending on whether the
objective function is present (as in MaxCSP) or not and how repeated elements in a tuple
are treated, this LP formulation has been extensively used [7, 12, 13, 18, 23, 24].

We consider relaxations arising from the application of the Sherali-Adams (SA) method.
Giving an explicit description of the inequalities produced by the SA method for homo-
morphism might be relatively cumbersome (because the constraints of the input structures
A and B must be encoded in the polytope-defining inequalities rather than in the objective
function as in the optimization variants) even when the target structure B is fixed. Hence,
we consider a simpler family of LP inequalities, interleaved with the SA hierarchy, of which
fractional homomorphism corresponds to the first level. Our hierarchy coincides with the
usual SA hierarchy for MaxCSP [11, 17, 33, 36] where the objective function has been turned
into a constraint.

Our main result is a combinatorial characterization of this family of LP relaxations which,
abusing slightly notation, we still shall refer to as SAk, k ≥ 1. Along the way, we extend
a number of the aforementioned results from graph isomorphism to general isomorphism
between relational structures which yields a hierarchy of relaxations of (relational structure)
isomorphism. Our results show that, for every k ≥ 1, the kth level relaxation of the
homomorphism problem, that is, SAk, is tightly related with the corresponding kth level
relaxation of isomorphism, which we denote using ≡k.

MFCS 2021
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Let us consider the first level of the hierarchy, i.e, fractional homomorphism and fractional
isomorphism. In the case of graphs ≡1-equivalence coincides precisely with 1-WL equivalence.
Here we show that a structure A is fractionally homomorphic to a structure B if and only if
there exists a sequence of structures X0, X1, . . . , Xn with A = X0, B = Xn, and for every
i < n, Xi is either homomorphic or ≡1-equivalent to Xi+1. The correspondence for any
higher level k is obtained by replacing X0 and Xn by suitably defined structures A∗

k, B∗
k

that allow to reduce the kth level of the hierarchy to the first level.
In particular, it follows that feasibility in SAk is preserved by structures that are ≡k-

equivalent.
In essence, this is due to the fact that the LP relaxation of homomorphism inherits the

symmetries of A and B. There are, indeed, several results exploring the symmetries of an
LP program in a similar fashion. In [3] such types of symmetries are used to transfer results
between the logic Ck and LP relaxations of several combinatorial problems, whereas [19] aims
to identify the partition classes (as in the WL algorithm) of the variables and constraints of
an LP program so that, by identifying those in the same class, the LP size is reduced. That
being said, the main interest of our result lies precisely in the opposite direction: that is,
the fact that the fractional homomorphism LP relaxation is able to certify that A is not
homomorphic to B unless A belongs to the backwards closure of B under homomorphism
and ≡1 equivalence, or, even more strongly, unless A is homomorphic to a structure X1
which is ≡1-equivalent to a structure X2 which in turn is homomorphic to B.

We apply our results to study the following question: for which structures B is the
set CSP(B), which contains all the structures homomorphic to B, closed under 1-WL
equivalence. This question arises in the context of solving CSPs in a distributed manner [9]
where the elements of the input instance (nodes, edges) are distributed among agents which
communicate with each other by sending messages through fixed communication channels.
Using our main results we can rederive the classification obtained in [9] using substantially
different techniques.

2 Preliminaries

Relational structures

For a positive integer n, We denote by [n] the set {1, . . . , n}. We shall denote tuples in
boldface. Let a = (a1, . . . , ak) ∈ Ak. We use a[i] to denote ai and {a} to denote the set
of variables which occur in a. For every tuple i = (i1, . . . , in) ∈ [k]n we use πi a to denote
the projection of a to i, i.e, the tuple (ai1 , . . . , ain

). If I ⊆ [k] we might abuse slightly
notation and use πI a to refer to πi a where i is the tuple that contains the elements of I in
increasing order. For every function f on a domain containing {a}, we denote by f(a) the
coordinate-wise application of f to a.

Given a set A and a positive integer k, a k-ary relation over A is a subset of Ak. A
signature σ is a finite collection of relation symbols, each with an associated arity. We shall use
arity(R) to denote the arity of a relation symbol R. A relational structure A over σ, or simply
a σ-structure, consists of a set A called the universe of A, and a relation R(A) over A for
each R ∈ σ of the corresponding arity. We denote by CA the set {(a, R) | a ∈ R(A), R ∈ σ}.
Elements (a, R) of CA will alternatively be denoted R(a) and will be referred to as constraints.
We shall usually use the same boldface and (standard) capital letter to refer to a structure
and its universe, respectively.

A graph is a relational structure whose signature consists of a single binary relation that
is symmetric and non-reflexive.



S. Butti and V. Dalmau 27:5

Let A, B be σ-structures. A homomorphism from A to B is a map h : A → B such
that for every R ∈ σ and every a ∈ R(A) it holds that h(a) ∈ R(B). If there exists a
homomorphism from A to B we say that A is homomorphic to B and we write A → B. We
shall use Hom(A; B) to denote the number of homomorphisms from A to B. The problem of
deciding, given two similar structures A and B, whether A is homomorphic to B is known as
the Constraint Satisfaction Problem (CSP). If we fix the target structure B so that the input
is only A, then we obtain the Constraint Satisfaction Problem over B, denoted CSP(B).

An isomorphism from A to B is a bijective map f : A → B such that for every R ∈ σ

and every a ∈ Aarity(R) it holds that a ∈ R(A) if and only if f(a) ∈ R(B).
The union A ∪ B of two σ-structures A and B is the structure C with C = A ∪ B and

R(C) = R(A) ∪ R(B) for every R ∈ σ. The disjoint union of two structures A and B is the
structure A ∪ C where C is any σ-structure isomorphic to B satisfying A ∩ C = ∅. We say
that a structure is connected if it cannot be expressed as the disjoint union of two structures.
We say that A is a substructure of B if A ∪ B = B. If, in addition, R(A) = R(B) ∩ Aarity(R)

for every R ∈ σ then A is the substructure of B induced by A.

Tree-like structures

We define the factor graph1 of a structure A to be the bipartite graph with nodes A ∪ CA
and where every R(a) in CA is joined by an edge with every a ∈ {a}.

Then, we say that a structure T is an ftree (factor tree) if its factor graph is a tree in the
ordinary graph-theoretic sense. If Q is a substructure of T and Q is an ftree then we say
that Q is a subftree of T.

A tree-decomposition of a structure A is a pair (G, β) where G = (V, E) is a tree and
β : V → P(A) is a mapping such that the following conditions are satisfied:
1. For every constraint R(a) in CA there exists a node v ∈ V such that {a} ⊆ β(v)
2. If a ∈ β(u) ∩ β(v) then a ∈ β(w) for every node w in the unique path in G joining u to v.

The width of a tree-decomposition (G, β) is max{|β(v)| | v ∈ V } − 1 and the treewidth of
A is defined as the smallest width among all its tree-decompositions.

The Sherali–Adams hierarchy

In this presentation we follow [3]. Let P ⊆ [0, 1]n be a polytope {x ∈ Rn : Mx ≥ b, 0 ≤ x ≤
1} for a matrix M ∈ Rm×n, and a column vector b ∈ Rm. We denote the convex hull of the
{0, 1}-vectors in P by PZ. The sequence of Sherali-Adams relaxations of PZ is the sequence
of polytopes P = P 1 ⊇ P 2 ⊇ · · · where P k is defined in the following way.

Each inequality in Mx ≥ b is multiplied by all possible terms of the form Πi∈IxiΠj∈J (1−
xj) where I, J ⊆ [n] satisfy |I ∪ J | ≤ k − 1 and I ∩ J = ∅. This leaves a system of polynomial
inequalities, each of degree at most k. Then, this system is linearized and hence relaxed in
the following way: each square x2

i is replaced by xi and each resulting monomial Πi∈Kxi is
replaced by a variable yK . In this way we obtain a polytope P k

L. Finally, P k
L is projected

back to n dimensions by defining

P k := {x ∈ Rn : there exists y ∈ P k
L such that y{i} = xi for each i ∈ [n]}.

We note here that PZ ⊆ P k for every k ≥ 1.

1 We note that the definition of factor graph presented here differs from that in [9], in which the edges
are labelled. We also note that the notion of factor graph, although similar, differs in several ways from
the incidence multigraph (see [25]) as the latter allows for parallel edges.
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In order to apply the SA method to the homomorphism problem there are different
possible choices for the polytope P (encoding a relaxation of homomorphism) to start with,
each one then yielding a different hierarchy.

Here we shall adapt a SA-based family of relaxations commonly used in optimization
variants of CSP [11, 17, 33, 36] which we transform into a relaxation of (plain) CSP by just
turning the objective function into a set of new restrictions. Hence, the resulting system of
inequalities is not, strictly speaking, obtained using the SA method. Nonetheless, we shall
abuse slightly notation and still use SAk to refer to our system of inequalities.

In fact, giving an explicit description of all inequalities obtained using the SA method
for any natural polytope P encoding the LP relaxation for a general CSP in our setting is a
bit cumbersome (because the constraints of the CSP are encoded in the polytope-defining
inequalities instead of the objective function as in CSP optimization variants). Hence, it
seems sensible to settle for a good approximation as SAk. Indeed, as it can be seen in
Appendix A, the sequence of relaxations SAk is tightly interleaved with the sequence P k

obtained by the SA method, in stricto sensu, for a natural choice of initial polytope P .
Given two structures A and B, the system of inequality SAk(A, B) for the homomorphism

problem over (A, B) contains a variable pV (f) for every V ⊆ A with 1 ≤ |V | ≤ k and every
f : V → B, and a variable pR(a)(f) for every R(a) ∈ CA and every f : {a} → B. Each
variable must take a value in the range [0, 1]. The variables are constrained by the following
conditions:∑

f :V →B

pV (f) = 1 V ⊆ A s.t. |V | ≤ k (SA1)

pU (f) =
∑

g:V →B,g|U =f

pV (g) U ⊆ V ⊆ A s.t. |V | ≤ k, f : U → B (SA2)

pU (f) =
∑

g:V →B,g|U =f

pR(a)(g) R(a) ∈ CA, U ⊆ {a} = V s.t. |U | ≤ k, f : U → B (SA3)

pR(a)(f) = 0 R(a) ∈ CA, f : {a} → B s.t. f(a) ̸∈ R(B) (SA4)

For the particular case of k = 1 we shall use the simplified notation pv(f(v)) to denote
the variable pV (f) for a singleton set V = {v} and a function f : V → B.

The transformation ∗k

For every k > 0 we define an operator ∗k that maps a structure into a new structure. As we
shall see later this operator will allow to reduce SAk feasibility to SA1 feasibility.

Let A be a σ-structure. Then we define the universe of A∗
k to be A∗

k := ∪j≤kAj ∪ CA.

Additionally, A∗
k contains the following relations:

Tj,S(A∗
k) = {(a1, . . . , aj) ∈ Aj | ai = ai′ ∀i, i′ ∈ S} j ≤ k, S ⊆ [j]

Tj,i(A∗
k) = {(a, πia) | a ∈ Aj} j′, j ≤ k, i ∈ [j]j

′

RS(A∗
k) = {(a1, . . . , aarity(R)) ∈ R(A) | ai = ai′ ∀i, i′ ∈ S} R ∈ σ, S ⊆ [arity(R)]

Ri(A∗
k) = {(R(a), πi a) | a ∈ R(A)} R ∈ σ, j ≤ k, i ∈ [arity(R)]j .

Then we have:

▶ Lemma 1. Let A, B be σ-structures. Then SAk(A, B) is feasible if and only if SA1(A∗
k, B∗

k)
is feasible.
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Iterated degree, fractional isomorphism, and equitable partitions

In order to prove our main result we need to lift the known equivalence between fractional
isomorphism and the WL algorithm from graphs to relational structures.

Let L := {(S, R) | R ∈ σ, S ⊆ [arity(R)]} be a set, the elements of which we shall call
labels. We construct the matrix representation MA of a σ-structure A as follows (it will be
convenient to assume that the indices of the rows and columns of a matrix are arbitrary sets).
MA is an A × CA matrix whose entries are elements of L. In particular, for all a ∈ A and
R(a) ∈ CA, we have that MA[a, R(a)] = (S, R) where S is the set containing all elements
i ∈ [arity(R)] such that a = a[i].

In a nutshell we are lifting from graph isomorphism to matrix isomorphism, where two
matrices are isomorphic if they are identical modulo a permutation of the rows and columns.
To formalize this, it will be convenient to associate A with a set of 0-1 incidence matrices.
In particular, for every ℓ ∈ L we define M ℓ

A ∈ {0, 1}A×CA as follows: M ℓ
A[a, R(a)] = 1 if

MA[a, R(a)] = ℓ and M ℓ
A[a, R(a)] = 0 otherwise. In [19], relaxations of matrix isomorphism

are also considered although in that setting the matrices have real entries and the goal is
different from ours.

We now describe a procedure akin to the 1-dimensional Weisfeiler-Leman algorithm to
calculate iterative refinements of a colouring of the universe and constraint set of a relational
structure. While there are syntactical differences, when run on graphs this procedure is
equivalent for all purposes to 1-WL. For every k ≥ 0 and x ∈ A ∪ CA, we define inductively
the iterated degree δA

k (x) of x on A as follows. We set δA
0 (x) to be one of two arbitrary

symbols that distinguish elements of A from elements of CA. For k ≥ 1 we set δA
k (a) =

{{(ℓ, δA
k−1(a, R)) | M ℓ

A[a, R(a)] = 1}} and δA
k (a, R) = {{(ℓ, δA

k−1(a)) | M ℓ
A[a, R(a)] = 1}},

where double curly brackets denote that δA
k (x) is a multiset.

We say that A and B have the same iterated degree sequence if for every k ≥ 0,
{{δA

k (a) | a ∈ A ∪ CA}} = {{δB
k (b) | b ∈ B ∪ CB}}. Note that if there exists a matrix

isomorphism from A to B (or alternatively, A and B are isomorphic) then A and B have
the same iterated degree sequence, but the converse does not hold.

The notion of equitable partition is key in the proof of the equivalence of the different
characterizations of fractional isomorphism. We present its adaptation to relational structures.
A partition of a σ-structure A is a pair (P, Q) where P = {Pi | i ∈ I} is a partition of A

and Q = {Qj | j ∈ J} is a partition of CA. We say that (P, Q) is equitable if for every i ∈ I,
j ∈ J , and ℓ ∈ L, there are integers cℓ

i,j , dℓ
j,i, called the parameters of the partition, such that

for every every i ∈ I, every a ∈ Pi, every ℓ ∈ L, and every j ∈ J , we have

|{(a, R) ∈ Qj | MA[a, R(a)] = ℓ}| = cℓ
i,j (P1)

and, similarly, for every j ∈ J , every R(a) ∈ Qj , every ℓ ∈ L, and every i ∈ I we have

|{a ∈ Pi | MA[a, (a, R)] = ℓ}| = dℓ
j,i. (P2)

We say that two structures A, B have a common equitable partition if there are equitable
partitions ({P A

i | i ∈ I}, {QA
j | j ∈ J}) and ({P B

i | i ∈ I}, {QB
j | j ∈ J}) of A and B with

the same parameters satisfying |P A
i | = |P B

i | for every i ∈ I and |QA
j | = |QB

j | for every j ∈ J .
We note that if A and B are connected it is not necessary to verify this latter requirement
and, instead, it is enough to check that |A| = |B|.

A matrix M of non-negative real numbers is said to be left (resp. right) stochastic if all
its columns (resp. rows) sum to 1. Note that we do not require M to be square. A doubly
stochastic matrix is a square matrix that is both left and right stochastic.

MFCS 2021
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▶ Theorem 2. Let A, B be σ-structures. The following are equivalent:
1. There exist doubly stochastic matrices X, Y such that XM ℓ

A = M ℓ
BY and M ℓ

AY T =
XT M ℓ

B for every ℓ ∈ L;
2. A and B have the same iterated degree sequence;
3. A and B have a common equitable partition;
4. Hom(T, A) = Hom(T, B) for all σ-ftrees T.
If, additionally, A and B are graphs, then the following is also equivalent:
5. There exists a doubly stochastic matrix X such that XNA = NBX where NA and NB

denote the adjacency matrices of A and B respectively.

We refer the reader to the full version of this paper for the proof. The equivalence between
(1), (2) and (3) is an immediate generalization of the equivalence between the algebraic and
combinatorial characterizations of fractional graph isomorphism (see for example [31]), while
(4) generalizes the corresponding characterization of graphs from [14] in terms of counting
homomorphisms from trees. Also, note that condition (5) shows that our definition coincides
with the standard notion of fractional isomorphism when A and B are graphs.

Similarly to the case of graphs, the notion of fractional isomorphism captured in Theorem 2
can be strengthened giving rise to a hierarchy of increasingly tighter relaxations. In particular,
for every k ≥ 1, we shall denote A ≡k B whenever A∗

k and B∗
k satisfy the conditions of

Theorem 2.
It is easy to see that the case k = 1 would be unchanged if one replaces A∗

1 and B∗
1 by

A and B respectively and, hence, Theorem 2 characterizes ≡1. For other small values of k

other than k = 1, ≡k is a bit more difficult to characterize. However, as long as k is at least
as large as the arity of any relation in the signature then we have the following result.

▶ Lemma 3. Let r be the maximum arity among all relations in σ and assume that r ≤ k.
Then for every pair of structures A, B the following are equivalent:
1. A ≡k B
2. Hom(Q; A) = Hom(Q; B) for every structure Q of treewidth < k.

This result, which follows easily from condition (4) in Theorem 2, is inspired by a similar
result [14] which states that two graphs A, B are indistinguishable by the k-WL algorithm
if and only if Hom(Q; A) = Hom(Q; B) for every graph Q of treewidth ≤ k. It is not that
surprising that a similar result can be shown for ≡k since, after all, the k-WL algorithm
can be seen as the 1-WL algorithm applied to k-ary tuples. However, note that the bound
on the treewidth differs in one unit between k-WL and ≡k. Still, using Lemma 3 it can be
shown that for r ≤ k, ≡k can be alternatively characterized in logical terms extending, again,
an analogous result for k-WL [22]. More precisely, A ≡k B if and only A and B satisfy
the same formulas in the k-variable fragment of first-order logic with counting quantifiers,
denoted Ck (we omit the definition as it will not be needed).

2.1 Main results
The main result of this paper is a new characterization in terms of fractional isomorphism of
the Sherali-Adams relaxation of the homomorphism problem.

▶ Theorem 4. Let A, B be relational structures. Then, the following are equivalent:
1. SAk(A, B) is feasible;
2. There exists a sequence of structures X0, . . . , Xn such that X0 = A∗

k, Xn = B∗
k, and for

all i = 0, . . . , n − 1 we have that Xi → Xi+1 or Xi ≡1 Xi+1;
3. There exist structures X1, X2 such that A∗

k → X1, X1 ≡1 X2, and X2 → B∗
k.

Theorem 4 is an immediate consequence, using Lemma 1, of the following Theorem.
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▶ Theorem 5. Let A, B be relational structures. Then, the following are equivalent:
1. SA1(A, B) is feasible;
2. There exist left stochastic matrices X, Y such that for every ℓ = (S, R) ∈ L, it holds that

XM ℓ
A ≤

∑
ℓ′ M ℓ′

B Y where ℓ′ ranges over all (S′, R) ∈ L with S ⊆ S′;
3. There exists a sequence of structures X0, . . . , Xn such that X0 = A, Xn = B, and for all

i = 0, . . . , n − 1 we have that Xi → Xi+1 or Xi ≡1 Xi+1;
4. There exist structures X1, X2 such that A → X1, X1 ≡1 X2, and X2 → B.
If in addition A and B have no loops (meaning that there are no repeated elements in any
constraint) then the following condition is also equivalent:
5. There exist left stochastic matrices X, Y such that for every ℓ ∈ L it holds that XM ℓ

A =
M ℓ

BY .

Note that for graphs condition (5) of the above theorem is naturally seen as the homo-
morphism counterpart of the notion of fractional isomorphism (see condition (1) in Lemma 2).
Consequently, we shall say that A is fractionally homomorphic to B whenever A and B
satisfy the conditions of Theorem 5.

While Theorems 4 and 5 have applications, for instance in the field of Constraint
Satisfaction Problems (see Section 4), we believe that their main interest is that they shed
light on the LP relaxations for homomorphism as they show that fractional homomorphism
and its higher order counterparts can be decomposed into a sequence of basic, better studied
morphisms, a fact which we find interesting on its own. Additionally, they establish a close
link between LP relaxations for isomorphism and homomorphism, which were introduced
initially in different fields.

3 Proof of Theorem 5

The equivalence (1) ⇔ (2) is merely syntactic. In particular we shall show that there is a
one-to-one satisfiability-preserving correspondence between pairs of matrices and variable
assignments of SA1(A, B). However, we first need to massage a bit the two formulations.
First, we can assume that for every RA(a) ∈ CA and RB(b) ∈ CB, the corresponding entry
in Y is null unless RA = RB and f(a) = b for some f : {a} → {b}, since otherwise there is
no way that Y can be part of a feasible solution. Secondly, we note that the feasibility of
SA1(A, B) does not change if in (SA3) we replace = by ≤ obtaining a new set of inequalities
(which to avoid confusion we shall denote by (SA3′)) and, in addition, we add for every
R(a) ∈ CA the equality∑

f :{a}→B

pR(a)(f) = 1. (SA5)

Finally, note that in SA1(A, B) we can ignore (SA2).
Then we can establish the following correspondence between pairs of matrices X, Y

and assignments SA1(A, B): for every a ∈ A and b ∈ B, we set pa(b) = X[b, a] and for
every R(a) ∈ CA and f : {a} → B we define pR(a)(f) = Y [R(f(a)), R(a)]. Then, it
is easy to see that (SA3′) corresponds to XM ℓ

A ≤
∑

ℓ′∈Lℓ
M ℓ′

B Y for every ℓ ∈ L (where
L(S,R) := {(S′, R) ∈ L | S ⊆ S′}), X being left stochastic corresponds to (SA1), and Y being
left stochastic corresponds to (SA5).

The equivalence (1) ⇐⇒ (5) is obtained as in (1) ⇐⇒ (2). We just need to notice that
when A and B have no loops, then none of the entries in MA and MB contain any label
ℓ = (S, R) ∈ L where |S| > 1 and hence it is only necessary to consider labels ℓ = (S, R) ∈ L

where S is a singleton. Observe that, in this case, the equation in (2) becomes XM ℓ
A ≤ M ℓ

BY
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since for every label ℓ = (S, R) where S is a singleton, the only label (S′, R) with S ⊆ S′ and
M ℓ

B not a zero matrix is ℓ itself. Finally, in order to replace ≤ by = in the previous equation
we just need to use (SA3) instead of (SA3′).

Notice that (4) =⇒ (3) is trivial.
The proof of (3) =⇒ (2) is by induction on n. If n = 0 the claim is immediate, so assume

that n ≥ 1. Let X0, X1, . . . , Xn be a sequence of structures satisfying (3). By the induction
hypothesis, there exist left stochastic matrices X, Y such that XM ℓ

X1
≤

∑
ℓ′∈Lℓ

M ℓ′

Xn
Y for

all ℓ ∈ L.
If X0 ≡1 X1 then it follows from Theorem 2 that there exist doubly stochastic matrices

X ′ and Y ′ such that X ′M ℓ
X0

= M ℓ
X1

Y ′ for all ℓ ∈ L, and so it is easy to verify that XX ′,
Y Y ′ are such that (2) holds. Assume that X0 → X1. We shall show that there exist left
stochastic matrices X ′ and Y ′ such that for all b ∈ B, for all R(a) ∈ CA, and for all ℓ ∈ L

there exists ℓ̂ = ℓ̂(b, R(a), ℓ) ∈ Lℓ such that XAℓ[b, R(a)] ≤ B ℓ̂Y [b, R(a)]. Assuming that
this holds, again it follows by the induction hypothesis that XX ′, Y Y ′ are left stochastic
matrices such that XX ′M ℓ

X0
≤

∑
ℓ′∈Lℓ

M ℓ′

Xn
Y Y ′ for all ℓ ∈ L.

Let h be a homomorphism from A to B. We define X ′[b, a] = 1 if b = h(a) and
X ′[b, a] = 0 otherwise. Similarly, we set Y ′[RB(b), RA(a)] = 1 if b = h(a) and RB = RA

and Y ′[RB(b), RA(a)] = 0 otherwise. It is easy to see that X ′ and Y ′ are left stochastic.
Now let ℓ = (S, R) ∈ L, b ∈ B and R(a) ∈ CA. If M ℓ

A[a, R(a)] = 0 for all a ∈ A then
XM ℓ

A[b, R(a)] = 0 and there is nothing to prove. So we can assume that there is a ∈ A such
that for all i ∈ [arity(R)], a[i] = a if and only if i ∈ S. Then we have that XM ℓ

A[b, R(a)] = 1
if b = h(a), and XM ℓ

A[b, R(a)] = 0 otherwise. Again in the latter case there is nothing to
prove so let us assume that b = h(a). It follows that h(a)[i] = b for all i ∈ S and hence there
exists ℓ̂ = (R, S′) with S ⊆ S′ such that M ℓ̂

B[b, R(h(a))] = 1, which completes the proof.
It only remains to prove (1) =⇒ (4). Assume that A and B satisfy (1). Further, we can

assume that there exists an integer m > 0 such that all variables in the feasible solution of
SA1(A, B) take rational values of the form n/m for some integer n. Let Y be the set of all
tuples ((b1, c1), . . . , (bm, cm)) ∈ (B × [m])m satisfying the following conditions:

(bi, ci) ̸= (bi′ , ci′) for every i ̸= i′ ∈ [m] (i.e, the tuple has no repeated elements), and
for every i ∈ [m], ci is at most |{j ∈ [m] | bj = bi}|.

In other words, Y is the set of tuples that can be obtained if in every tuple (b1, . . . , bm) ∈ Bm

we replace all occurrences, say n, of any symbol b ∈ B by n “copies” (b, 1), . . . , (b, n), in
any possible order. Let Π : Y → Bm be the function mapping ((b1, c1), . . . , (bm, cm)) to
(b1, . . . , bm).

Let X = A × Y . For every permutation τ on [m] and any m-ary tuple z = (z1, . . . , zm) ∈
Zm where Z is any arbitrary set we shall use z ◦ τ to denote the tuple (zτ(1), . . . , zτ(m)).
This notation is justified by the fact that we can see formally z as a mapping from [m] to Z.
For any x = (a, y) ∈ X, we shall abuse notation and write x ◦ τ to denote (a, y ◦ τ).

For any two z, z′ in any of the sets Bm, Y or X, we shall write z ∼ z′ iff there exists
some permutation τ on [m] such that z′ = z ◦ τ .

For every multiset U = {{b1, . . . , bm}} of m elements from B, we shall fix one arbitrary
element of Y , denoted ⟨U⟩, satisfying that the multiset of variables in Π(⟨U⟩) coincides
with U . We shall abuse slightly notation and for every b = (b1, . . . , bm) ∈ Bm we shall also
use ⟨b⟩ to denote ⟨{{b1, . . . , bm}}⟩. Clearly if b ∼ b′ then ⟨b⟩ = ⟨b′⟩. Moreover, for every
b ∈ Bm we shell denote by yb the tuple ((b1, c1), . . . , (bm, cm)) ∈ Y obtained by choosing
ci < cj whenever bi = bj and i < j. Notice that Π(y) = b and yb ∼ ⟨b⟩.
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Now we shall show how to construct two structures X1 and X2 which satisfy condition (4).
The domain of both X1 and X2 is X. The constraints of X1 and X2 are constructed as
follows. Let J be the set of all triplets (R, T, a) where R ∈ σ, a ∈ Aarity(R), and T is a
multiset of size m of tuples in R(B) such that for every s, s′ ∈ [arity(R)]:

a[s] = a[s′] ⇒ ∀t ∈ T (t[s] = t[s′]).

In other words, T only contains tuples t ∈ R(B) such that t = f(a) for some function
f : {a} → B. Then for every (R, T, a) ∈ J and d ∈ [2], we define Qd

j to be the set of m!
constraints obtained in the following way. Fix any arbitrary ordering t1, . . . , tm of the tuples
in T and let b1 . . . , br ∈ Bm, r = arity(R) such that bs[i] = ti[s] for every i ∈ [m] and s ∈ [r].
Then, for every permutation τ on [m], we include constraint R((a1, ⟨b1⟩)◦τ, . . . , (ar, ⟨br⟩)◦τ)
in Q1

j and constraint R((a1, yb1) ◦ τ, . . . , (ar, ybr ) ◦ τ) in Q2
j , where a = (a1, ..., ar).

Finally, we define CXd
, d ∈ [2] to be ∪j∈JQd

j (note that for each d ∈ [2], all sets Qd
j ,

j ∈ J are disjoint). To complete the proof it only remains to show that X1 and X2 satisfy
condition (4).

▷ Claim 6. A is homomorphic to X1.

Proof. Let p be a feasible solution of SA1(A, B). We define a mapping h : A → X by setting
h(a) = (a, ⟨ca⟩), where ca ∈ Bm is any tuple satisfying that every element b ∈ B occurs
exactly m · pa(b) times. We shall show that h is a homomorphism from A to X1. Let R ∈ σ,
a = (a1, . . . , ar) ∈ R(A) where r = arity(R), and consider the multiset T = {t1, . . . , tm}
of tuples in R(B) obtained by picking each tuple ti = fi(a) ∈ R(B) exactly m · pR(a)(fi)
times (note that we are using implicitly (SA4) to guarantee the existence of T ). For every
s, s′ ∈ [r] satisfying as = as′ it follows from the construction of T that t[s] = t[s′] for
every t ∈ T , and hence (R, T, a) ∈ J . Let t1, . . . , tm be the ordering of the elements in T

associated to (R, T, a) in the construction of X1 and b1, . . . , br be the tuples obtained by
setting bs[i] = ti[s] for i ∈ [m] and s ∈ [r]. Then, it follows that X1 contains the constraint
R((a1, ⟨b1⟩), . . . , (ar, ⟨br⟩)). It follows again from (SA3) that for every s ∈ [r] cas ∼ bs and
hence (as, ⟨bs⟩) is precisely h(as) as desired. ◁

▷ Claim 7. X2 is homomorphic to B.

Proof. Let h : X → B be the function mapping any (a, y) to π1(Π(y)). It is immediate that
h defines a homomorphism from X2 to B. ◁

▷ Claim 8. X1 and X2 have a common equitable partition.

Proof. We shall prove that (P, Q1) and (P, Q2) define a common equitable partition of X1
and X2 where P = {Pi | i ∈ I} is the partition given by the equivalence relation ∼ on X

and Qd = {Qd
j | j ∈ J}, d ∈ [2] are as defined in the construction of X1 and X2.

This follows immediately from the following fact. Let d ∈ [2], i ∈ I, j ∈ J , and ℓ ∈ L.
Then exactly one of the following conditions holds:
1. There is no x ∈ Pi and C ∈ Qd

j such that MXd
[x, C] = ℓ;

2. There exists a one-to-one correspondence between the elements of Pi and Qd
j such that

for every pair (x, C) of associated elements, MXd
[x, C] = ℓ.

Furthermore, for every i ∈ I, j ∈ J , and ℓ ∈ L, condition (1) holds for d = 1 if and only
if it holds for d = 2.

MFCS 2021



27:12 Fractional Homomorphism, WL Invariance, and the SA Hierarchy for the CSP

Let us prove it. Let j = (R, T, a) and let b1, . . . , br and yb1 , . . . , ybr be as in the
construction of Qd

j (where r = arity(R)). We first observe that for every x ∈ Pi, every C =
R(x1, . . . , xr) ∈ Qd

j , and every permutation τ on [m], MXd
[x, C] = ℓ ⇔ MXd

[x ◦ τ, C ◦ τ ] = ℓ

where we use C ◦ τ to denote R(x1 ◦ τ, . . . , xr ◦ τ). It then follows that if (1) fails then (2)
must hold.

Now it only remains to see that (1) holds for d = 1 if and only if (1) holds for d = 2.
Clearly, this follows immediately if the relation symbol in ℓ is different from R, so we can
assume that ℓ = (R, S) for some S ⊆ [r]. We then note that if there is some pair (x, C)
violating (1), then MXd

[x ◦ τ, C ◦ τ ] = ℓ for all permutations τ on [m], and hence C can be
chosen to be any constraint in Qd

j . Hence, if we choose R((a1, ⟨b1⟩), . . . , (ar, ⟨br⟩)) for d = 1
and R((a1, yb1), . . . , (ar, ybr )) for d = 2, in order to complete the proof it is enough to show
that for every s, s′ ∈ [r], (as, ⟨bs⟩) = (as′ , ⟨bs′⟩) ⇔ (as, ybs) = (as′ , ybs′ ).

The direction (⇐) is immediate. For the direction (⇒) assume that s, s′ satisfy the
left-hand side. Since as = as′ it follows that bs = bs′ . Since ybs and ybs′ are determined in
a unique way from bs and bs′ respectively, we are done. ◁

4 Some Applications

As an immediate consequence of Theorem 4 we obtain that feasibility of the kth Sherali-Adams
relaxation of the homomorphism problem is closed under ≡k.

▶ Corollary 9. Let A, A′ and B be σ-structures and suppose that A ≡k B. Then, SAk(A, B)
is feasible if and only if SAk(A′, B) is feasible.

We note that if the maximum arity on the signature σ is at most k, then the previous
corollary can be alternatively stated in the following way: if A and A′ are Ck-equivalent
then SAk(A, B) is feasible if and only if SAk(A′, B) is feasible. Then, one could be tempted
to use this observation to transfer results from LP relaxations to logical definability. In
particular one could infer that if SAk decides correctly CSP(B) then it is definable in the
logic Ck

∞,ω which is the extension of Ck consisting of all formulas made from atomic formulas
and equality by means of finitary and infinitary conjunctions, negations, and standard and
counting quantifiers. However, this is of limited interest as it follows by combining [2] and [6]
that CSP(B) would also be definable in the much weaker logic L

max(k,3)
∞,ω where counting

quantifiers are not allowed. Consequently, the previous corollary is most likely to find
applications in obtaining lower bounds on the Sherali-Adams rank for concrete instances
of CSP.

However, the principal novelty in our result is precisely the opposite direction, which leads
to an alternative combinatorial characterization of the Sherali-Adams relaxation. A concrete
application is the answer to the following question: for which structures B is CSP(B) closed
under ≡1-equivalence? This question arises in the context of the distributed CSP [9] where
the variables and constraints of an instance are distributed among agents which communicate
with each other by sending messages through fixed communication channels. In fact, the
connection between the Weisfeiler-Leman algorithm and distributed computation goes back
to the influential paper of Angluin on networks of processors [1]. For the distributed CSP,
one of the most natural configurations for the communication network is essentially identical
to the factor graph [16]. It then follows, under some technical requirements (agent anonymity
and synchronicity) that any distributed message passing algorithm will necessarily behave
in an identical manner on every two input instances that are ≡1-equivalent and, hence, it
follows that CSP(B) can only be solved by a distributed algorithm if CSP(B) is closed under
≡1-equivalence.
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This question was already answered in [9] where it was shown that CSP(B) is closed under
≡1 if and only if B has symmetric polymorphisms of all arities, where a k-ary symmetric
polymorphism of a σ-structure B is any homomorphism h from Bk to B that is invariant
under the permutation of its arguments (the reader can safely ignore the definition of
symmetric polymorphism as we will be using it as a black-box). The proof in [9] makes use
of a result from [24] stating that CSP(B) has symmetric polymorphisms of all arities if and
only if it is solvable by an LP relaxation known as the basic linear programming relaxation
(BLP). Although BLP is slightly different from SA1, both coincide over instances (A, B)
where A has no loops (i.e, every constraint has no repeated elements). It is then very easy
to obtain the following characterization:

▶ Lemma 10. Let B be a fixed finite σ-structure. The following are equivalent:
1. CSP(B) is closed under ≡1-equivalence;
2. SA1 decides CSP(B);
3. BLP decides CSP(B);
4. B has symmetric polymorphisms of all arities.

Proof (Sketch). (1) ⇔ (2) follows from Theorem 5 and (3) ⇔ (4) from [24]. Hence, it is
only necessary to verify (2) ⇔ (3). We use the following fact which follows from the Sparse
Incomparability Lemma [29]: for every instance A of CSP(B), there exists a structure A′

with no loops such that A′ → A and A → B iff A′ → B. Now, assume that BLP does not
solve CSP(B). This means that there exists a structure A not homomorphic to B and such
that BLP(A, B) is feasible. Now, let A′ be the structure given by the Sparse Incomparability
Lemma. Since A′ → A it follows that BLP(A′, B) is feasible, and, since A′ has no loops,
SA1(A′, B) is feasible as well. Since A′ is not homomorphic to B it follows that SA1 does
not solve CSP(B). The same argument can be used to show the converse although it is not
necessary as it also follows immediately by comparing the inequalities of SA1 and BLP. ◀
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A Applying the SA method to the Homomorphism problem

Here we shall show that the family of relaxations SAk considered in the present paper is
closely interleaved with the system of relaxations obtained by applying the SA method to a
natural choice of initial polytope P .

Let A and B be σ-structures. We define polytope P = P (A, B) using a system of
inequalities. The variables of the system are xa,b for each a ∈ A and b ∈ B. Each variable
must take a value in the range [0, 1]. We remark that by fixing some arbitrary ordering
on the variables in xa,b we can represent any assignment on the variables xa,b with a tuple
x ∈ Rn with n = |A| · |B|. Therefore we shall abuse notation and use xa,b to refer to the
value in x corresponding to variable xa,b.

The variables are subject to the following inequalities.∑
b∈B

xa,b = 1 for every a ∈ A, (1)
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∑
a∈{a}

xa,f(a) ≤ |{a}| − 1 for each R ∈ σ, a ∈ R(A),
and f : {a} → B with f(a) ̸∈ R(B). (2)

Note that if h is a homomorphism from A to B then the assignment setting xa,h(a) = 1
for every a ∈ A and the rest of variables to zero is feasible.

Now let P k, k ≥ 1 be the sequence of polytopes obtained using the SA method. The next
lemma shows that the sequence of relaxations defined by SAk and P k are interleaved.

▶ Lemma 11. Let k ≥ 1 and let r be the maximum arity of a relation in σ. Then
1. If P k ̸= ∅ and r ≤ k then SAk is feasible.
2. If SAk+r−1 is feasible then P k ̸= ∅

Proof. (1). Assume that P k ̸= ∅ and let y be a feasible solution of P k
L. We shall construct

a feasible solution of SAk. First, set every variable of the form pV (f) to yK where K =
{(a, f(a)) | a ∈ V }. We first observe that this assignment satisfies (SA1) and (SA2). Indeed,
let U ⊆ A with |U | < k, let f : U → B, and let I = {(u, f(u)) : u ∈ U}. Then, multiplying
the equality (1) with a ∈ A \ U by Πi∈Ixi and linearizing we obtain equality (SA2) for U , f ,
and V = U ∪ {a}. In this way we can obtain all equalities in (SA2) for |U | + 1 = |V |. We
note here that the rest of equalities in (SA2) along all equalities in (SA1) can be obtained as
a linear combination.

Secondly, let us set the rest of variables. For every (a, R) ∈ CA and f : {a} → B, set
p(a,R)(f) to be yK where K = {(a, f(a)) | a ∈ {a}} (note that we are using implicitly the
fact that r ≤ k). Then, (SA3) follows directly from (SA2). Finally, it only remains to show
that (SA4) is also satisfied. Indeed, for every f(a) ̸∈ R(B) we obtain equality p(a,R)(f) = 0
if we multiply (2) by the term Πi∈K and linearize. We want to note that, in fact, (1) also
holds under the weaker assumption r ≤ k + 1, but the proof is slightly more involved.

(2). Assume that SAk+r−1 is feasible. We construct a feasible solution y of P k
L as follows.

For every K ⊆ A × B which satisfies K = {(a, f(a)) | a ∈ U} for some U ⊆ A with |U | ≤ k

and f : U → B, we set yK := pU (f). Otherwise, we set yK to zero.
Let us show that this assignment satisfies all inequalities in P k

L. Let

cT y ≤ d (3)

be any inequality defining P k
L. Since (3) is obtained by multiplying an inequality which

contains at most r variables by a term of at most k − 1 variables, there exists a set V ⊆ A

with |V | ≤ r + k − 1 such that for every variable yK appearing in (3), V satisfies K ⊆ V × B.
Note that, by (SA1), variables pV (g), g : V → B define a probability distribution. For every
g : V → B in the support of this distribution, consider the assignment xg that sets xg

v,b = 1
if v ∈ V and b = g(v) and xv,b = 0 otherwise.

Inequality (3) has been obtained by multiplying an inequality from (1) or (2) by a
term and linearizing. We claim that in both cases, the inequality that has generated (3) is
satisfied by xg. If the inequality generating (3) is

∑
b∈B xa,b = 1 for some a ∈ A this follows

simply from the fact that a ∈ V . Assume now that (3) has been generated by inequality∑
a∈{a} xa,f(a) ≤ |{a}| − 1. In this case note that {a} ⊆ V and then the claim follows from

(SA3) and (SA4). This finalizes the proof of the claim.
Consequently, since xg is integral it follows that the assignment yg defined as yg

K =
Πi∈Kxg

i satisfies (3). Finally, note that if we set αg = pV (g), then for every K ⊆ V × B, yK

is precisely given by the convex combination
∑

g αgyg
K . ◀
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B Proof of Lemma 1

▶ Lemma 1. Let A, B be σ-structures. Then SAk(A, B) is feasible if and only if SA1(A∗
k, B∗

k)
is feasible.

Proof (Sketch). The proof is purely syntactical although it is convenient to massage first
a bit the LP formulations SAk(A, B) and SA1(A∗

k, B∗
k). We shall refer to the solutions of

SAk(A, B) and SA1(A∗
k, B∗

k) by appropriately indexed sets of variables p, q respectively.

In SAk(A, B), it follows from (SA4) that we can safely replace all variables pR(a)(f) with
f(a) ̸∈ R(B) by 0.
In SA1(A∗

k, B∗
k) we are required a bit more of work. First, for each j ≤ k and each

a ∈ Aj , it follows from conditions (SA3) and (SA4) for Tj,S (S ⊆ [j]) that for every x in
B∗

k , qa(x) must take value 0 unless x = f(a) for some function f : {a} → B. Hence, in a
first stage we set qa(x) to zero for each j ≤ k, each a ∈ Aj and each x that is not a tuple
of the form f(a) for some function f : {a} → B.
Furthermore, it follows from condition (SA3) for Tj,i that qa(f(a)) = qa′(f(a′)) for every
a, a′ satisfying {a} = {a′} and every f : {a} → B. Hence, in a second stage, for each
V ⊆ A with |V | ≤ k and every f : V → B we identify all variables qa(f(a)) which satisfy
{a} = V .
Then, consider now the variables of the form qR(a)(x), x ∈ B∗

k . It follows from conditions
(SA3) and (SA4) for RS (S ⊆ [arity(R)]) that qR(a)(x) must be set to 0 unless x = R(f(a))
for some function f : {a} → B.
The other variables in SA1(A∗

k, B∗
k) are of the form qC(f) where C ∈ CA∗

k
. As we shall see

they can always safely be identified with some of the other variables. Let us start first with
the case in which C is a unary constraint. If C = Tj,S(a) or C = RS(a), then it follows
from (SA3) that qC(f) = qa(f(a)). Assume now that C is a binary constraint, that is
C = Tj,i(a, πi a) or C = Ri(a, πi a). It follows again from (SA3) that qC(f) = qa(f(a))

Now we are ready to prove the lemma. In particular, consider the following one-to-one
correspondence between the assignments in SAk(A, B) and SA1(A∗

k, B∗
k):

Every variable pV (f) in SAk(A, B) is assigned as variable qa(f(a)) in SA1(A∗
k, B∗

k) where
a is any tuple satisfying {a} = V .
Every variable pR(a)(f) in SAk(A, B) is assigned as variable qR(a)(R(f(a))) in
SA1(A∗

k, B∗
k).

It is not difficult to see that this correspondence preserves feasibility. ◀

C Proof of Lemma 3

▶ Lemma 3. Let r be the maximum arity among all relations in σ and assume that r ≤ k.
Then for every pair of structures A, B the following are equivalent:
1. A ≡k B
2. Hom(Q; A) = Hom(Q; B) for every structure Q of treewidth < k.

From Theorem 2 it follows that for a pair of σ-structures A and B, A∗
k ≡k B∗

k if and
only if Hom(T, A∗

k) = Hom(T, B∗
k) for every σ∗

k-ftree T. So it only remains to prove the
following.

▷ Claim 12. Assume that r ≤ k. Then the following are equivalent:
1. Hom(Q, A) = Hom(Q, B) for every σ-structure Q of treewidth < k;
2. Hom(T, A∗

k) = Hom(T, B∗
k) for every σ∗

k-ftree T.
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Proof. (1) ⇒ (2). Let T be a σ∗-ftree. It follows immediately that if (1) holds then both
A and B must have the same number of elements and constraints. It then follows that (2)
holds for T if it consists of a single element and no constraints at all. Consequently we can
safely assume that all elements in T participate in at least one constraint.

In what follows D∗
k ∈ {A∗

k, B∗
k}. Let t be any node in T . Since t participates in

a constraint it follows that the possible image of t in homomorphism from T is heavily
restricted. In particular, if the image of t according to some homomorphism from T to D∗

k

is in Dj for some j ≤ k then necessarily the image of t in any homomorphism from T to
any structure C∗

k ∈ {A∗
k, B∗

k} must be in Cj . This means that we can safely add constraint
Tj,∅(t) to T without altering Hom(T, A∗

k) or Hom(T, B∗
k).

Likewise, if some homomorphism from T to a structure D∗
k maps t to a constraint R(d),

then likewise we can assume that constraint R∅(t) belongs to T.
To complete the proof we shall show that it is always possible to construct from T a

σ-structure Q of treewidth < k such that |Hom(T, D∗
k)| = |Hom(Q, D)|. It is convenient

to construct Q in two stages. First, let us construct a σ-structure P (not necessarily of
treewidth < k) satisfying that |Hom(T, D∗

k)| = |Hom(P, D)|. We shall allow to use equalities
in P, i.e., constraints of the form p1 = p2, indicating that p1 and p2 must be assigned to the
same element in D.

We shall define P along with a function α mapping every element t of T to a j-ary tuple
of elements in P (j ≤ k) inductively on the number of elements of T as follows.

Assume (base case) that T contains a unique element t. As discussed above we can
assume that T contains constraint Tj,∅(t) for some j ≤ k or R∅(t) for some R ∈ σ. In the
first case, we set the universe of P to contain j new elements p1, . . . , pj . Furthermore, for
every unary constraint Tj,S(t) in T and every i, i′ ∈ S, we include in P the equality pi = pi′ ,
and we define α(t) = (p1, . . . , pj). In the second case, we set the universe of P to contain
arity(R) new elements p1 . . . , parity(R) and we include in P the constraint R(p1, ..., parity(R)).
Similarly to the previous case, for every unary constraint RS(t) in T and every i, i′ ∈ S, we
include in P the equality pi = pi′ . Finally, we set α(t) = (p1, . . . , parity(R)).

Let us consider now the inductive case. Let t1 and t2 be nodes that participate in a binary
constraint U(t1, t2) (recall that U is either Tj,i or Ri) in T. By removing this constraint T gets
divided in two ftrees T1 and T2 such that T1 contains t1 and T2 contains t2. Now, assume
that Pi and αi are already constructed for Ti, i = 1, 2. We are ready to define P. First, we
compute the disjoint union of P1 and P2. Then, we add some further equalities depending
on constraint U(t1, t2). Consider first the case that U = Tj1,i, i = (i1, . . . , ij2) ∈ [j1]j2 for
some j1, j2 ≤ k and let αi(ti) = (pi

1, . . . , pi
ji

), i = 1, 2. Then, for every ℓ ≤ j2 we add the
equality p2

ℓ = p1
iℓ

. Finally, for every t ∈ T we define α(t) to be αi(t) where Ti contains t.
The procedure is identical for U = Ri, where we just substitute j1 by arity(R). It follows
immediately from the definition that Hom(P, D) = Hom(T, D∗

k).
Finally, let us define Q to be the structure obtained by identifying (i.e, merging into

a single element) all elements in P joined by a chain of equalities. It is immediate that
Hom(P, D) = Hom(Q, D).

We shall conclude by giving a tree-decomposition (G, β) of Q of width < k. In particular,
let G be the tree where the vertex set is precisely the universe of T and two different nodes
are adjacent if both participate in some common constraint in T and let β(t) = {α(t)}.

(2) ⇒ (1). Let Q be a σ-structure of treewidth < k and let D ∈ {A, B}. We note here
that we can assume that Q is connected since if Q is the disjoint union of structures Q1
and Q2 then Hom(Q, D) = Hom(Q1, D) · Hom(Q2, D). We shall show that there exists
a σ∗

k-ftree T such that Hom(T, D∗
k) = Hom(Q, D). Let (G, β) be a tree-decomposition of
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width at most k of Q. It is well-known and easy to prove that, since Q is connected we
can always construct (G, β) in such a way that for every pair u, v of adjacent nodes in G,
β(u) ⊆ β(v) or β(v) ⊆ β(u). Furthermore, it is easy to see that we can further enforce that
for every constraint R(q) in Q there exists a node v ∈ G such that β(v) = {q}.

The universe T of T is V ∪ CQ where V is the node-set of G. Furthermore T contains
the following constraints.

Let us start with the unary constraints. Let t be an element in T. If t = v ∈ G then we
include in T a constraint Tjv,∅(t) where jv = |β(v)|. Otherwise, if t = R(q) ∈ CQ then we
include in T all constraints R{i,i′}(t) where q[i] = q[i′].

Now, let us turn our attention to the binary constraints. Fix some arbitrary ordering
on Q and for every v ∈ V let qv = (qv

1 , . . . , qv
jv

) be an array containing the nodes in β(v)
following this fixed order.

Then, for every edge (u, v) in G include constraint Tju,i(u, v) where i = (i1, . . . , ijv ) is
defined as follows. First, we assume without loss of generality that β(v) ⊆ β(u). Then, for
every ℓ ≤ jv, iℓ is defined to be such that qu[iℓ] = qv[ℓ].

Finally, for every constraint t = R(q) in Q we pick some element v ∈ V satisfying
{q} = β(v) and we add the constraint Ri(t, v) with i = (i1, . . . , ijv

) where iℓ satisfies
q[iℓ] = qv[ℓ]. It is immediate to see that T is an ftree and that Hom(Q, D) = Hom(T, D∗

k) ◁
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Place/Transition Petri nets with inhibitor arcs (PTI nets for short), which are a well-known
Turing-complete, distributed model of computation, are equipped with a decidable, behavioral
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respects the causal semantics of PTI nets.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Petri nets, Inhibitor arc, Behavioral equivalence, Bisimulation, Decidability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.28

Related Version Previous Version: https://arxiv.org/abs/2104.14859 [11]

1 Introduction

Place/Transition Petri nets with inhibitor arcs (PTI nets, for short), originally introduced
in [2], are a well-known (see, e.g., [7, 19, 26]), Turing-complete (as proved first by Agerwala
in [1]), distributed model of computation, largely exploited, e.g., for modeling systems
with priorities [17], for performance evaluation of distributed systems [3] and to provide
π-calculus [24, 28] with a net semantics [8].

As finite PTI nets constitute a Turing-complete model of computation, essentially all
the properties of interest are undecidable, notably the reachability problem, and so even
termination: it is undecidable whether a deadlock marking is reachable from the initial one.
Also interleaving bisimulation equivalence is undecidable for finite PTI nets, as it is already
undecidable [20] on the subclass of finite P/T nets [27]. Similarly, one can prove that also
well-known truly-concurrent behavioral equivalences, such as fully-concurrent bisimilarity [6],
are undecidable [12] for finite PTI nets. Despite this, we show that it is possible to define
a sensible, behavioral equivalence which is actually decidable on finite PTI nets. This
equivalence, we call pti-place bisimilarity, is a conservative extension of place bisimilarity on
finite P/T nets, introduced in [4] as an improvement of strong bisimulation [25], (a relation
proposed by Olderog in [25] on safe nets which fails to induce an equivalence relation), and
recently proved decidable in [16].

Place bisimilarity on finite P/T nets is an equivalence over markings, based on relations
over the finite set of net places, rather than over the (possibly infinite) set of net markings.
This equivalence is very natural and intuitive: as a place can be interpreted as a sequential
process type (and each token in this place as an instance of a sequential process of that type),
a place bisimulation states which kinds of sequential processes (composing the distributed
system represented by the finite P/T net) are to be considered as equivalent. Moreover, this
equivalence does respect the causal behavior of P/T nets, as van Glabbeek proved in [29]
that it is slightly finer than structure preserving bisimilarity [29], in turn slightly finer than
fully-concurrent bisimilarity [6].
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28:2 A Decidable Equivalence

We extend this idea in order to be applicable to PTI nets. Informally, a binary relation
R over the set S of places is a pti-place bisimulation if for all markings m1 and m2 which
are bijectively related via R (denoted by (m1, m2) ∈ R⊕, where R⊕ is called the additive
closure of R), if m1 can perform transition t1, reaching marking m′

1, then m2 can perform a
transition t2, reaching m′

2, such that
the pre-sets of t1 and t2 are related by R⊕, the label of t1 and t2 is the same, the
post-sets of t1 and t2 are related by R⊕, and also (m′

1, m′
2) ∈ R⊕, as required by a place

bisimulation [4, 16], but additionally it is required that
whenever (s, s′) ∈ R, s belongs to the inhibiting set of t1 if and only if s′ belongs to the
inhibiting set of t2;

and symmetrically if m2 moves first. Two markings m1 and m2 are pti-place bisimilar,
denoted by m1 ∼p m2, if a pti-place bisimulation R exists such that (m1, m2) ∈ R⊕.

We prove that pti-place bisimilarity is an equivalence, but it is not coinductive as the
union of pti-place bisimulations may be not a pti-place bisimulation; so, in general, there is
not a largest pti-place bisimulation, rather many maximal pti-place bisimulations. In fact,
pti-place bisimilarity is the relation on markings given by the union of the additive closure
of each maximal pti-place bisimulation. We also prove that ∼p is sensible, as it respects
the causal semantics of PTI nets. As a matter of fact, following the approach in [9, 10], we
define a novel, process-oriented, bisimulation-based, behavioral semantics for PTI nets, called
causal-net bisimilarity, and we prove that this is slightly coarser than pti-place bisimilarity.

The other main contribution of this paper is to show that ∼p is decidable for finite
PTI nets. As a place relation R ⊆ S × S is finite if the set S of places is finite, there
are finitely many place relations for a finite net. We can list all these place relations, say
R1, R2, . . . Rn. It is possible to decide whether Ri is a pti-place bisimulation by checking two
finite conditions over a finite number of marking pairs: this is a non-obvious observation,
as a pti-place bisimulation requires that the pti-place bisimulation conditions hold for the
infinitely many pairs (m1, m2) belonging to R⊕

i . Hence, to decide whether m1 ∼p m2, it is
enough to check, for i = 1, . . . n, whether Ri is a pti-place bisimulation and, in such a case,
whether (m1, m2) ∈ R⊕

i .
The paper is organized as follows. Section 2 recalls the basic definitions about PTI nets,

including their causal semantics. Section 3 deals with pti-place bisimilarity, shows that it is
an equivalence relation, that it is not coinductive, and that it is slightly finer than causal-net
bisimilarity. Section 4 shows that ∼p is decidable. Finally, Section 5 discusses some related
literature and future research.

2 Basic definitions about P/T nets and PTI nets

▶ Definition 1 (Multiset). Let N be the set of natural numbers. Given a finite set S, a multiset
over S is a function m : S → N. The support set dom(m) of m is {s ∈ S | m(s) ̸= 0}.
The set of all multisets over S, denoted by M(S), is ranged over by m. We write s ∈ m if
m(s) > 0. The multiplicity of s in m is given by the number m(s). The size of m, denoted
by |m|, is the number

∑
s∈S m(s), i.e., the total number of its elements. A multiset m such

that dom(m) = ∅ is called empty and is denoted by θ. We write m ⊆ m′ if m(s) ≤ m′(s)
for all s ∈ S. Multiset union _ ⊕ _ is defined as follows: (m ⊕ m′)(s) = m(s) + m′(s).
Multiset difference _ ⊖ _ is defined as follows: (m1 ⊖ m2)(s) = max{m1(s) − m2(s), 0}. The
scalar product of a number j with m is the multiset j · m defined as (j · m)(s) = j · (m(s)).
By si we also denote the multiset with si as its only element. Hence, a multiset m over
S = {s1, . . . , sn} can be represented as k1 · s1 ⊕ k2 · s2 ⊕ . . . ⊕ kn · sn, where kj = m(sj) ≥ 0
for j = 1, . . . , n.
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▶ Definition 2 (Place/Transition Petri net). A labeled, finite Place/Transition Petri net (P/T
net for short) is a tuple N = (S, A, T ), where

S is the finite set of places, ranged over by s (possibly indexed),
A is the finite set of labels, ranged over by ℓ (possibly indexed), and
T ⊆ (M(S) \ {θ}) × A × (M(S) \ {θ}) is the finite set of transitions, ranged over by t

(possibly indexed).
Given a transition t = (m, ℓ, m′), we use the notation:

•t to denote its pre-set m (which cannot be empty) of tokens to be consumed;
l(t) for its label ℓ, and
t• to denote its post-set m′ (which cannot be an empty multiset) of tokens to be produced.

Hence, transition t can be also represented as •t
l(t)−→ t•. We also define the flow function

flow : (S × T ) ∪ (T × S) → N as follows: for all s ∈ S, for all t ∈ T , flow(s, t) = •t(s)
and flow(t, s) = t•(s). We will use F to denote the flow relation {(x, y) ∈ (S × T ) ∪ (T ×
S) | flow(x, y) > 0}. Finally, we define pre-sets and post-sets also for places as follows:
•s = {t ∈ T | s ∈ t•} and s• = {t ∈ T | s ∈ •t}. Note that while the pre-set (post-set) of a
transition is, in general, a multiset, the pre-set (post-set) of a place is a set.

▶ Definition 3 (Place/Transition net with inhibitor arcs). A finite Place/Transition net with
inhibitor arcs (PTI net for short) is a tuple N = (S, A, T, I), where

(S, A, T ) is a finite P/T net;
I ⊆ S × T is the inhibiting relation.

Given a transition t ∈ T , we denote by ◦t its inhibiting set {s ∈ S | (s, t) ∈ I} of places to be
tested for absence of tokens. Hence, a transition t can be also represented as (•t, ◦t) l(t)−→ t•.

We use the standard graphical convention for Petri nets. In particular, a pair (s, t) in
the inhibiting relation I is graphically represented by an arc from s to t ending with a small
circle on the transition side.

▶ Definition 4 (Marking, PTI net system). A PTI net system N(m0) is a tuple (S, A, T, I,

m0), where (S, A, T, I) is a PTI net and m0 is a multiset over S, called the initial marking.
We also say that N(m0) is a marked net.

▶ Definition 5 (Token game). A transition t is enabled at m, denoted m[t⟩, if •t ⊆ m

and ◦t ∩ dom(m) = ∅. The execution, or firing, of t enabled at m produces the marking
m′ = (m ⊖ •t) ⊕ t•, written m[t⟩m′.

▶ Definition 6 (Firing sequence, reachable marking, safe net). A firing sequence starting at m

is defined inductively as follows:
m[ϵ⟩m is a firing sequence (where ϵ denotes an empty sequence of transitions) and
if m[σ⟩m′ is a firing sequence and m′[t⟩m′′, then m[σt⟩m′′ is a firing sequence.

The set of reachable markings from m is [m⟩ = {m′ | ∃σ.m[σ⟩m′}. A PTI system N =
(S, A, T, I, m0) is safe if for each marking m ∈ [m0⟩, we have that m(s) ≤ 1 for all s ∈ S.

2.1 Causal semantics for P/T nets and PTI nets
We outline some definitions about the causal semantics of P/T nets, adapted from the
literature (cf., e.g., [6, 29, 13, 25]).

▶ Definition 7 (Acyclic net). A P/T net N = (S, A, T ) is acyclic if its flow relation F is
acyclic (i.e., ∄x such that x F + x, where F + is the transitive closure of F ).
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The concurrent semantics of a marked P/T net is defined by a class of particular acyclic
safe nets, where places are not branched (hence they represent a single run) and all arcs have
weight 1. This kind of net is called causal net. We use the name C (possibly indexed) to
denote a causal net, the set B to denote its places (called conditions), the set E to denote
its transitions (called events), and L to denote its labels.

▶ Definition 8 (Causal P/T net). A causal net is a finite marked net C(m0) = (B, L, E, m0)
satisfying the following conditions:
1. C is acyclic;
2. ∀b ∈ B |•b| ≤ 1 ∧ |b•| ≤ 1 (i.e., the places are not branched);

3. ∀b ∈ B m0(b) =
{

1 if •b = ∅
0 otherwise;

4. ∀e ∈ E •e(b) ≤ 1 ∧ e•(b) ≤ 1 for all b ∈ B (i.e., all the arcs have weight 1).
We denote by Min(C) the set m0, and by Max(C) the set {b ∈ B | b• = ∅}.

Note that any reachable marking of a causal net is a set, i.e., this net is safe; in fact, the
initial marking is a set and, assuming by induction that a reachable marking m is a set and
enables e, i.e., m[e⟩m′, then also m′ = (m ⊖ •e) ⊕ e• is a set, as the net is acyclic and because
of the condition on the shape of the post-set of e (weights can only be 1).

As the initial marking of a causal P/T net is fixed by its shape (according to item 3
of Definition 8), in the following, in order to make the notation lighter, we often omit the
indication of the initial marking (also in their graphical representation), so that the causal
net C(m0) is denoted by C.

▶ Definition 9 (Moves of a causal P/T net). Given two causal nets C = (B, L, E, m0) and
C ′ = (B′, L, E′, m0), we say that C moves in one step to C ′ through e, denoted by C[e⟩C ′, if
•e ⊆ Max(C), E′ = E ∪ {e} and B′ = B ∪ e•.

▶ Definition 10 (Folding and Process). A folding from a causal P/T net C = (B, L, E, m0)
into a P/T net system N(m0) = (S, A, T, m0) is a function ρ : B ∪ E → S ∪ T , which is
type-preserving, i.e., such that ρ(B) ⊆ S and ρ(E) ⊆ T , satisfying the following:

L = A and l(e) = l(ρ(e)) for all e ∈ E;
ρ(m0) = m0, i.e., m0(s) = |ρ−1(s) ∩ m0|;
∀e ∈ E, ρ(•e) = •ρ(e), i.e., ρ(•e)(s) = |ρ−1(s) ∩ •e| for all s ∈ S;
∀e ∈ E, ρ(e•) = ρ(e)•, i.e., ρ(e•)(s) = |ρ−1(s) ∩ e•| for all s ∈ S.

A pair (C, ρ), where C is a causal net and ρ a folding from C to a net system N(m0), is a
process of N(m0).

▶ Definition 11 (Moves of a P/T process). Let N(m0) = (S, A, T, m0) be a net system and
let (Ci, ρi), for i = 1, 2, be two processes of N(m0). We say that (C1, ρ1) moves in one step
to (C2, ρ2) through e, denoted by (C1, ρ1) e−→ (C2, ρ2), if C1[e⟩C2 and ρ1 ⊆ ρ2.

Following [9, 10], we define here a possible causal semantics for PTI nets. In order to
maintain the pleasant property that a process univocally determines the causal dependencies
among its events, it is not enough to just enrich causal P/T nets with inhibitor arcs. Indeed,
the reason why a condition is empty may influence the causal relation of events. To solve
the problem, in [9, 10] inhibitor arcs are partitioned into two sets: before inhibitor arcs and
after inhibitor arcs. If a condition is connected to an event by a before inhibitor arc, the
event fires because the condition has not held yet; if they are connected by an after inhibitor
arc, the event fires because the condition does not hold anymore.
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▶ Definition 12 (Causal PTI net). A causal PTI net is a tuple C(m0) = (B, L, E, Y be, Y af ,

m0) satisfying the following conditions, denoting the flow relation of C by F:
1. (B, L, E, m0) is a causal P/T net;
2. (B, L, E, Y be ∪ Y af , m0) is a marked PTI net;
3. before and after requirements are met, i.e.

(a) If b Y be e, then there exists e′ ∈ E such that e′ F b, and
(b) If b Y af e, then there exists e′ ∈ E such that b F e′;

4. relation F ∪ ≺af ∪ ≺be is acyclic, where ≺af = F−1 ◦ Y af and ≺be= (Y be)−1 ◦ F−1.

We denote by Min(C) the set m0, and by Max(C) the set {b ∈ B | b• = ∅}.

Relation ≺af ⊆ E × E states that e ≺af e′ if e consumes the token in a place b inhibiting
e′: this is clearly a causal dependency. Instead, relation ≺be⊆ E × E states that e ≺be e′ if e′

produces a token in a place b inhibiting e: this is clearly a temporal precedence, because the
two events can be causally independent, yet they cannot occur in any order, as if e′ occurs,
then e is disabled.

▶ Definition 13 (Folding and PTI process). A folding from a causal PTI net C = (B, L, E,

Y be, Y af , m0) into a PTI net system N(m0) = (S, A, T, I, m0) is a function ρ : B∪E → S∪T ,
which is type-preserving, i.e., such that ρ(B) ⊆ S and ρ(E) ⊆ T , satisfying the following:

ρ is a P/T folding from (B, L, E, m0) into (S, A, T, m0);
for all s ∈ S and e ∈ E, if (s, ρ(e)) ∈ I then for all b ∈ B such that ρ(b) = s, it holds
(b, e) ∈ Y be ∪ Y af ∪ F−1, and
for all b ∈ B and e ∈ E, if (b, e) ∈ Y be ∪ Y af then (ρ(b), ρ(e)) ∈ I.

A pair (C, ρ), where C is a causal PTI net and ρ a folding from C to a PTI net system
N(m0), is a PTI process of N(m0).

Each inhibitor arc in the causal net has a corresponding inhibitor arc in the net system.
The only case wherea condition b is not connected by an inhibitor arc to an event e is when
b is in the post-set of e: as b starts to hold only after e occurs, the only possibility is to put
a before arc. This would make the relation ≺be reflexive, invalidating item 4 of Definition 12.
However, since b is in the post-set of e, we are sure that e happens before b is fulfilled, hence
making useless the presence of a before inhibitor arc. For this reason, with the requirement
(b, e) ∈ Y be ∪ Y af ∪ F−1, we ask for the presence of an inhibitor arc only if there exists no
flow from e to b.

▶ Definition 14 (Moves of a PTI process). Let N(m0) = (S, A, T, I, m0) be a PTI net
system and let (Ci, ρi), for i = 1, 2, be two PTI processes of N(m0), where Ci = (Bi, L, Ei,

Y be
i , Y af

i , m0). We say that (C1, ρ1) moves in one step to (C2, ρ2) through e, denoted by
(C1, ρ1) e−→ (C2, ρ2), if the following hold:

•e ⊆ Max(C1), E2 = E1 ∪ {e}, B2 = B1 ∪ e•, ρ1 ⊆ ρ2, i.e. the P/T process of (C1, ρ1)
moves in one step through e to the P/T process of (C2, ρ2).
Given two relations B and A, defined as

∀b ∈ e•, ∀e′ ∈ E1 we have b B e′ if and only if (ρ2(b), ρ2(e′)) ∈ I,
∀b ∈ B2 such that b• ̸= ∅, we have b A e if and only if (ρ2(b), ρ2(e)) ∈ I,

we have {b ∈ B2 | b A e} ∩ Max(C1) = ∅.
Finally, Y be

2 = Y be
1 ∪ B and Y af

2 = Y af
1 ∪ A.

The item {b ∈ B2 | b A e} ∩ Max(C1) = ∅ models the fact that a transition can fire
only if all its inhibiting places are free. Indeed, an event can fire only if its (so far known)
inhibiting conditions are not maximal. Note that, by construction, before arcs can connect
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Figure 1 A marked PTI net and two PTI causal nets corresponding to its two maximal processes.

only new inhibiting conditions to past events and in particular we do not allow before arcs
connecting a condition in the post-set of a newly added event e with the event e itself.
Moreover, after arcs can only connect old inhibiting conditions to the new event e and since
{b ∈ B2 | b A e} ∩ Max(C1) = ∅, the old inhibiting conditions cannot be in the pre-set of
the newly added event e. Therefore, both relations ≺be

2 and ≺af
2 are acyclic, and since F2 is

acyclic too, (C2, ρ2) is truly a process of N(m0).

▶ Example 15. Consider the three nets in Figure 1, where we use the graphical convention
that before inhibitor arcs and after inhibitor arcs are represented by lines between a condition
and an event: the former labeled by b, the latter labeled by a. The initial marking of N

is m0 = s1 ⊕ s3. The shape of a process generated by N(m0) may depend on the order of
transitions in a given transition sequence. As a matter of fact, transition sequences containing
the same transitions but in a different order may generate different processes, e.g. C1 and
C2. Indeed, C1 represents the transition sequence t1 t3 t2, while C2 represents the transition
sequence t2 t1 t3. In the former case, t1 fires first, so that t2 can only fire after the inhibiting
token in s2 has been cleaned up by transition t3: therefore the causal net has an after arc
between b2 and e2. In the latter case, t2 is the first transition to fire and there are no tokens
in the inhibiting place b2, therefore the causal net has a before arc between b2 and e2. Note
that the underlying causal P/T net of these two processes is the same, but before and after
inhibitor arcs are different.

We are now ready to introduce a novel behavioral relation for PTI nets, namely causal-net
bisimulation, which is an interesting relation in its own right, as the induced equivalence,
namely causal-net bisimilarity, on P/T nets coincides with structure-preserving bisimilar-
ity [29], and so it is slightly finer than fully-concurrent bisimilarity [6]. However, since we
conjecture that causal-net bisimilarity is undecidable (already on finite P/T nets), we will
use this behavioral relation only for comparison with pti-place bisimilarity, showing the the
latter is a finer, but decidable, approximation of the former.

▶ Definition 16 (Causal-net bisimulation). Let N = (S, A, T, I) be a PTI net. A causal-net
bisimulation is a relation R, composed of triples of the form (ρ1, C, ρ2), where, for i = 1, 2,
(C, ρi) is a process of N(m0i) for some m0i, such that if (ρ1, C, ρ2) ∈ R then

i) ∀t1, C ′, ρ′
1 such that (C, ρ1) e−→ (C ′, ρ′

1), where ρ′
1(e) = t1, ∃t2, ρ′

2 such that
(C, ρ2) e−→ (C ′, ρ′

2), where ρ′
2(e) = t2, and (ρ′

1, C ′, ρ′
2) ∈ R;

ii) symmetrically, ∀t2, C ′, ρ′
2 such that (C, ρ2) e−→ (C ′, ρ′

2), where ρ′
2(e) = t2, ∃t1, ρ′

1 such
that (C, ρ1) e−→ (C ′, ρ′

1), where ρ′
1(e) = t1, and (ρ′

1, C ′, ρ′
2) ∈ R.

Two markings m1 and m2 of N are cn-bisimilar, denoted by m1 ∼cn m2, if there exists a
causal-net bisimulation R containing a triple (ρ0

1, C0, ρ0
2), where C0 contains no events and

ρ0
i (Min(C0)) = ρ0

i (Max(C0)) = mi for i = 1, 2.
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If m1 ∼cn m2, then these two markings have the same causal PTI nets, so that the
executions originating from the two markings have the same causal dependencies (determined
by F and ≺af ) and the same temporal dependencies (determined by ≺be). Causal-net
bisimilarity ∼cn is an equivalence relation (see the preliminary version of this paper [11]).

3 Pti-place bisimilarity

We now present pti-place bisimilarity, which conservatively extends place bisimilarity [4, 16]
to the case of PTI nets. First, an auxiliary definition.

3.1 Additive closure and its properties
▶ Definition 17 (Additive closure). Given a PTI net N = (S, A, T, I) and a place relation
R ⊆ S × S, we define a marking relation R⊕ ⊆ M(S) × M(S), called the additive closure
of R, as the least relation induced by the following axiom and rule.

(θ, θ) ∈ R⊕

(s1, s2) ∈ R (m1, m2) ∈ R⊕

(s1 ⊕ m1, s2 ⊕ m2) ∈ R⊕

Note that two markings are related by R⊕ only if they have the same size; in fact, the
axiom states that the empty marking is related to itself, while the rule, assuming by induction
that m1 and m2 have the same size, ensures that s1 ⊕ m1 and s2 ⊕ m2 have the same size.

▶ Proposition 18. For each relation R ⊆ S × S, if (m1, m2) ∈ R⊕, then |m1| = |m2|.

Note also that the membership (m1, m2) ∈ R⊕ may be proved in several different ways,
depending on the chosen order of the elements of the two markings and on the definition of
R. For instance, if R = {(s1, s3), (s1, s4), (s2, s3), (s2, s4)}, then (s1 ⊕ s2, s3 ⊕ s4) ∈ R⊕ can
be proved by means of the pairs (s1, s3) and (s2, s4), as well as by means of (s1, s4), (s2, s3).
An alternative way to define that two markings m1 and m2 are related by R⊕ is to state
that m1 can be represented as s1 ⊕ s2 ⊕ . . . ⊕ sk, m2 can be represented as s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

k

and (si, s′
i) ∈ R for i = 1, . . . , k.

▶ Proposition 19 ([14]). For each place relation R ⊆ S × S, the following hold:
1. If R is an equivalence relation, then R⊕ is an equivalence relation.
2. If R1 ⊆ R2, then R⊕

1 ⊆ R⊕
2 , i.e., the additive closure is monotone.

3. If (m1, m2) ∈ R⊕ and (m′
1, m′

2) ∈ R⊕, then (m1 ⊕ m′
1, m2 ⊕ m′

2) ∈ R⊕, i.e., the additive
closure is additive.

4. If R is an equivalence relation and, moreover, (m1 ⊕ m′
1, m2 ⊕ m′

2) ∈ R⊕ and (m1, m2) ∈
R⊕, then (m′

1, m′
2) ∈ R⊕, i.e., the additive closure of an equivalence place relation is

subtractive.

When R is an equivalence relation, it is rather easy to check whether two markings
are related by R⊕. An algorithm, described in [14], establishes whether an R-preserving
bijection exists between the two markings m1 and m2 of equal size k in O(k2) time. Another
algorithm, described in [22, 15], checks whether (m1, m2) ∈ R⊕ in O(n) time, where n is
the size of S. However, these performant algorithms heavily rely on the fact that R is
an equivalence relation, hence also subtractive (case 4 of Proposition 19). If R is not an
equivalence relation, which is typical for place bisimulations, the naive algorithm for checking
whether (m1, m2) ∈ R⊕ would simply consider m1 represented as s1 ⊕ s2 ⊕ . . . ⊕ sk, and
then would scan all the possible permutations of m2, each represented as s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

k,
to check that (si, s′

i) ∈ R for i = 1, . . . , k. Of course, this naive algorithm has worst-case
complexity O(k!).
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▶ Example 20. Consider R = {(s1, s3), (s1, s4), (s2, s4)}, which is not an equivalence relation.
Suppose we want to check that (s1 ⊕ s2, s4 ⊕ s3) ∈ R⊕. If we start by matching (s1, s4) ∈ R,
then we fail because the residual (s2, s3) is not in R. However, if we permute the second
marking to s3 ⊕ s4, then we succeed because the required pairs (s1, s3) and (s2, s4) are
both in R.

Nonetheless, the problem of checking whether (m1, m2) ∈ R⊕ has polynomial time
complexity because it can be considered as an instance of the problem of finding a perfect
matching in a bipartite graph, where the nodes of the two partitions are the tokens in the two
markings, and the edges are defined by the relation R. In fact, the definition of the bipartite
graph takes O(k2) time (where k = |m1| = |m2|) and, then, the Hopcroft-Karp-Karzanov
algorithm [18] for computing the maximum matching has worst-case time complexity O(h

√
k),

where h is the number of the edges in the bipartire graph (h ≤ k2) and to check whether
the maximum matching is perfect can be done simply by checking that the size of the
matching equals the number of nodes in each partition, i.e., k. Hence, in evaluating the
complexity of the algorithm in Section 4, we assume that the complexity of checking whether
(m1, m2) ∈ R⊕ is in O(k2

√
k).

A related problem is that of computing, given a marking m1 of size k, the set of all the
markings m2 such that (m1, m2) ∈ R⊕. This problem can be solved with a worst-case time
complexity of O(nk) because each of the k tokens in m1 can be related via R to n places at
most.

Now we list some necessary, and less obvious, properties of additively closed place relations
that will be useful in the following.

▶ Proposition 21 ([14]). For each family of place relations Ri ⊆ S × S, the following hold:
1. ∅⊕ = {(θ, θ)}, i.e., the additive closure of the empty place relation yields a singleton

marking relation, relating the empty marking to itself.
2. (IS)⊕ = IM , i.e., the additive closure of the identity on places IS = {(s, s) | s ∈ S}

yields the identity relation on markings IM = {(m, m) | m ∈ M(S)}.
3. (R⊕)−1 = (R−1)⊕, i.e., the inverse of an additively closed relation R equals the additive

closure of its inverse R−1.
4. (R1 ◦ R2)⊕ = (R⊕

1 ) ◦ (R⊕
2 ), i.e., the additive closure of the composition of two place

relations equals the compositions of their additive closures.

3.2 Pti-place bisimulation and its properties
We are now ready to introduce pti-place bisimulation, which is a non-interleaving behavioral
relation defined over the net places. Note that for P/T nets, place bisimulation [4, 16] and
pti-place bisimulation coincide because I = ∅.

▶ Definition 22 (Pti-place bisimulation). Let N = (S, A, T, I) be a PTI net. A pti-place
bisimulation is a relation R ⊆ S × S such that if (m1, m2) ∈ R⊕ then
1. ∀t1 such that m1[t1⟩m′

1, ∃t2 such that m2[t2⟩m′
2 and

(a) (•t1, •t2) ∈ R⊕, (t•
1, t•

2) ∈ R⊕, l(t1) = l(t2), and (m1 ⊖ •t1, m1 ⊖ •t2) ∈ R⊕,
(b) ∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2).

2. ∀t2 such that m2[t2⟩m′
2, ∃t1 such that m1[t1⟩m′

1 and
(a) (•t1, •t2) ∈ R⊕, (t•

1, t•
2) ∈ R⊕, l(t1) = l(t2), and (m1 ⊖ •t1, m1 ⊖ •t2) ∈ R⊕,

(b) ∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2).

Two markings m1 and m2 are pti-place bisimilar, denoted by m1 ∼p m2, if there exists a
pti-place bisimulation R such that (m1, m2) ∈ R⊕.
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Note that, by additivity of R⊕ (cf. Proposition 19), from (m1 ⊖ •t1, m2 ⊖ •t2) ∈ R⊕ and
(t•

1, t•
2) ∈ R⊕ we derive (m′

1, m′
2) ∈ R⊕, which is the condition required in the original

definition of place bisimulation in [4]. Our slightly stronger formulation is more adequate for
the proof of Theorem 27.

Conditions 1(b) and 2(b) make sure that the relation R respects the inhibiting behavior of
places. Indeed, an inhibiting place for one of the two transitions cannot be related via R to a
non-inhibiting place for the other transition. These conditions might appear rather restrictive,
and one may wonder whether they can be weakened or omitted altogether. However, their
presence is strictly necessary in the crucial step of the proof of Lemma 29. Moreover, these
conditions are also essential for proving Theorem 27.

▶ Example 23. Consider the PTI net N1 in Figure 2. Not only the loop labeled by b on the
left is unwound on the right, but also the a-labeled transition on the left is replicated three
times on the right. The relation

R = {(s0, s5), (s1, s11), (s2, s4), (s2, s7), (s3, s6), (s3, s8), (s3, s9), (s3, s10)}

is a pti-place bisimulation and so, e.g., 2 · s2 ⊕ s3 ∼p s4 ⊕ s7 ⊕ s9.
Now consider the PTI net N2 in Figure 2. In this case, the b-labeled transition on the left

can be matched by the b-labeled transition on the right, even if their inhibiting set differ in
size, because both (s1, s′

1) and (s3, s′
1) are in the following bisimulation. Indeed, the relation

R′ = {(s1, s′
1, (s2, s′

2), (s3, s′
1), (s4, s′

4), (s5, s′
4), (s6, s′

4)}

is a pti-place bisimulation and so, e.g., s1 ⊕ s3 ⊕ 2 · s2 ⊕ s5 ∼p 2 · s′
1 ⊕ 2 · s′

2 ⊕ s′
4.

▶ Example 24. Consider the PTI net in Figure 3, depicting two models of unbounded
producer-consumer with priority.

In the left part, denoted as UPAC for readability, the producer p can generate two
products of type a and b and stock them in wa and wb (for “warehouse”) respectively.
Transitions oa and ob model the order of a client c from the warehouse, which may then be
shipped (place s) and delivered (transition d). Product a has priority both in the production
and ordering phases, and this is modelled by two inhibiting arcs between wa and b and ob.
Roughly speaking, if there is an a in the warehouse, then no b can be produced or ordered.
Moreover, only one product of type a can be stored in either wa or w′

a, as the inhibiting arcs
between a warehouse for a and the other a-transition do not allow to perform the latter until
the former has been freed by the execution of transition oa.

In the right part, denoted as UPBC, we duplicate the production and ordering phases of
product b, and remove one of the two lines of product a. The behavior of the system remains
the same, and this is proved by the pti-place bisimulation

R = {(p, p), (wa, wa), (w′
a, wa), (wb, wb), (wb, w′

b), (s, s), (c, c)}.

We now prove that ∼p is an equivalence relation.

▶ Proposition 25. For each PTI net N = (S, A, T, I), relation ∼p ⊆ M(S) × M(S) is an
equivalence relation.

Proof. Direct consequence of the fact that for each PTI net N = (S, A, T, I), the following
hold:
1. The identity relation IS = {(s, s) | s ∈ S} is a pti-place bisimulation;
2. the inverse relation R−1 = {(s′, s) | (s, s′) ∈ R} of a pti-place bisimulation R is a pti-place

bisimulation;
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s′
4
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2
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Figure 2 Two PTI nets, whose transitions are labeled either by a or by b.

3. the relational composition R1 ◦ R2 = {(s, s′′) | ∃s′.(s, s′) ∈ R1 ∧ (s′, s′′) ∈ R2} of two
pti-place bisimulations R1 and R2 is a pti-place bisimulation.

See Appendix A.1 for details. ◀

By Definition 22, pti-place bisimilarity can be defined in the following way:
∼p=

⋃
{R⊕ | R is a pti-place bisimulation}.

By monotonicity of the additive closure (Proposition 19(2)), if R1 ⊆ R2, then R⊕
1 ⊆ R⊕

2 .
Hence, we can restrict our attention to maximal pti-place bisimulations only:

∼p=
⋃

{R⊕ | R is a maximal pti-place bisimulation}.

However, it is not true that
∼p= (

⋃
{R | R is a maximal pti-place bisimulation})⊕

because the union of pti-place bisimulations may be not a pti-place bisimulation (as already
observed for place bisimulation in [4, 16]), so that its definition is not coinductive.

▶ Example 26. Consider the net in Figure 4, whose transitions are t1 = (s2, s3) a−→ s1,
t2 = (s2 ⊕ s3, θ) a−→ s5 and t3 = (s3, s2) a−→ s4. Clearly, R1 and R2, defined as follows, are
both maximal pti-place bisimulations.

R1 = {(s2, s2), (s3, s3)} ∪ ({s1, s4, s5} × {s1, s4, s5})
R2 = {(s2, s3), (s3, s2)} ∪ ({s1, s4, s5} × {s1, s4, s5})
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w′
b
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s

d
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Figure 3 A PTI net representing two unbounded producers/consumers with priority. For
simplicity, we display the labels of transitions instead of their names.

Note that the union R = R1 ∪ R2 is not a pti-place bisimulation as, for example,
(2 · s2, s2 ⊕ s3) ∈ R⊕, but the pti-place bisimulation conditions are not satisfied. Indeed, if
2·s2 moves first by 2·s2[t1⟩s1 ⊕s2, then s2 ⊕s3 can only try to respond with s2 ⊕s3[t2⟩s5 since
t1 and t3 are inhibited. However, this is not possible because we have that (•t1, •t2) ̸∈ R⊕,
and, even worse, (s2, θ) ̸∈ R⊕.

3.3 Pti-place bisimilarity is finer than causal-net bisimilarity
▶ Theorem 27 (Pti-place bisimilarity implies causal-net bisimilarity). Let N = (S, A, T, I) be a
PTI net and m1, m2 two of its markings. If m1 ∼p m2, then m1 ∼cn m2.

Proof. See Appendix A.2. ◀

There are at least the following three important technical differences between causal-net
bisimilarity and pti-place bisimilarity.
1. A causal-net bisimulation is a very complex relation – composed of cumbersome triples of

the form (ρ1, C, ρ2) – that must contain infinitely many triples if the net system offers a
never-ending behavior. On the contrary, a pti-place bisimulation is always a very simple
finite relation over the finite set S of places.

2. A causal net bisimulation proving that m1 ∼cn m2 is a relation specifically designed for
showing that m1 and m2 generate the same causal nets, step by step. If we want to prove
that, e.g., n · m1 and n · m2 are causal-net bisimilar (which may not hold!), we have to
construct a new causal-net bisimulation to this aim. Instead, a pti-place bisimulation
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Figure 4 A PTI net.
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Figure 5 Two PTI nets.

R relates those places which are considered equivalent under all the possible R-related
contexts. Hence, if R justifies that m1 ∼p m2 as (m1, m2) ∈ R⊕, then for sure the same
R justifies that n · m1 and n · m2 are pti-place bisimilar, as also (n · m1, n · m2) ∈ R⊕.

3. Finally, while pti-place bisimilarity is decidable (see the next section), it is not known
whether causal-net bisimilarity is decidable on finite PTI nets.1

However, these technical advantages of pti-place bisimilarity over causal-net bisimilarity are
balanced by an increased discriminating power of the former over the latter, that, in some
cases, might appear even excessive, as the following intriguing example shows.

▶ Example 28. Consider the net in Figure 5. First of all, note that s2 ∼cn s′
2, because both

are stuck markings. However, we have that 2 · s2 ≁cn 2 · s′
2 because 2 · s2 is stuck, while 2 · s′

2
can perform b. This observation is enough to conclude that s2 ≁p s′

2, because a pti-place
bisimulation R relates places that are equivalent under any R-related context: if (s2, s′

2) ∈ R

then (2 · s2, 2 · s′
2) ∈ R⊕, but these two markings do not satisfy the pti-place bisimulation

conditions, so R is not a pti-place bisimulation.
Nonetheless, it is interesting to observe that s1 ∼cn s′

1, because they generate the same
causal PTI nets, step by step; moreover, even for any n ≥ 1 we have n ·s1 ∼cn n ·s′

1. However,
s1 ≁p s′

1 because it is not possible to build a pti-place bisimulation R containing the pair
(s1, s′

1). The problem is that it would be necessary to include, into the candidate pti-place
relation R, also the pair (s2, s′

2), which is not a pti-place bisimulation pair, as discussed
above. Therefore, no pti-place bisimulation R can relate s1 and s′

1.

1 Esparza observed [12] that, for finite P/T nets with at least two unbounded places, all the behavioral
relations ranging from interleaving bisimilarity to fully-concurrent bisimilarity [6] are undecidable. Even
if his proof does not apply to causal-net bisimilarity, we conjecture that this equivalence is undecidable
as well.
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4 Pti-place bisimilarity is decidable

In order to prove that ∼p is decidable, we first need a technical lemma which states that it
is decidable to check whether a place relation R ⊆ S × S is a pti-place bisimulation.

▶ Lemma 29. Given a finite PTI net N = (S, A, T, I) and a place relation R ⊆ S × S, it is
decidable whether R is a pti-place bisimulation.

Proof. It is enough to check two finite conditions on transitions and places of the net; full
detail in Appendix A.3. ◀

▶ Theorem 30 (Pti-place bisimilarity is decidable). Given a PTI net N = (S, A, T, I), for
each pair of markings m1 and m2, it is decidable whether m1 ∼p m2.

Proof. If |m1| ̸= |m2|, then m1 ≁p m2 by Proposition 18. Otherwise, we can assume that
|m1| = k = |m2|. As |S| = n, the set of all the place relations over S is of size 2n. Let us
list such relations as: R1, R2, . . . , R2n . Hence, for i = 1, . . . , 2n, by Lemma 29 we can decide
whether the place relation Ri is a pti-place bisimulation and, in such a case, we can check
whether (m1, m2) ∈ R⊕

i in O(k2
√

k) time. As soon as we have found a pti-place bisimulation
Ri such that (m1, m2) ∈ R⊕

i , we stop concluding that m1 ∼p m2. If none of the Ri is a
pti-place bisimulation such that (m1, m2) ∈ R⊕

i , then we can conclude that m1 ≁p m2. Since
this procedure might scan all place relations, the worst-case complexity of the algorithm is
exponential in the number of places n. ◀

5 Conclusion

Pti-place bisimilarity is the only decidable behavioral equivalence for finite PTI nets, which
constitute a powerful, Turing-complete distributed model of computation, widely used in
theory and applications of concurrency (e.g., [1, 3, 9, 7, 8, 17, 19, 26]). Thus, it is the
only equivalence for which it is possible (at least, in principle) to verify algorithmically the
(causality-preserving) correctness of an implementation by exhibiting a pti-place bisimulation
between its specification and implementation. It is also sensible, because it respects the
causal behavior of PTI nets, since it is finer than causal-net bisimilarity. Of course, pti-place
bisimilarity is a rather discriminating behavioral equivalence, as illustrated in Example 28,
and a proper evaluation of its usefulness on real case studies is left for future research.

In our interpretation, (pti-)place bisimilarity is an attempt of giving semantics to unmarked,
rather than marked, nets, shifting the focus from the usually undecidable question When
are two markings equivalent? to the decidable (but more restrictive) question When are two
places equivalent? A possible answer to the latter question may be: two places are equivalent
if, whenever the same number of tokens are put on these two places, the behavior of the
marked nets is the same. If we reinterpret Example 28 in this perspective, we clearly see
that place s2 and place s′

2 cannot be considered as equivalent because, even if the marking
s2 and s′

2 are equivalent (as they are both stuck), the marking 2 · s2 is not equivalent to the
marking 2 · s′

2 (as only the latter can move). More specifically, a (pti-)place bisimulation R

considers two places s1 and s2 as equivalent if (s1, s2) ∈ R, as, by definition of (pti-)place
bisimulation, they must behave the same in any R-related context.

The decidability result for pti-place bisimilarity is based on the fact that the net model is
finite, even if the associated reachability graph may be unboundedly large or even infinite:
indeed, one can decide pti-place bisimilarity simply checking a large, but finite, number of
conditions on the shape of the finite net, rather than inspecting its (possibly, infinitely many)
reachable markings.
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Turing completeness is achieved in PTI nets by means of their ability to test for zero.
Other Turing-complete models of computation may exploit different mechanisms to this aim.
For instance, in the π-calculus [24, 28] Turing completeness is achieved by means of the
ability to generate unboundedly new names (by means of the interplay between recursion
and the restriction operator), but this feature is not describable by means of a finite net
model [8, 23]. For this reason, we think it is hard to find a sensible, decidable behavioral
equivalence for the whole π-calculus.

To the best of our knowledge, this is the second paper proving the decidability of a
behavioral equivalence for a Turing-complete formalism. In fact, in [21] it is proved that
(interleaving) bisimilarity is decidable for a small process calculus, called HOcore, with
higher-order communication (but without restriction), that is, nonetheless, Turing-complete.

Future work will be devoted to see whether the pti-place bisimulation idea can be extended
to other, possibly even larger classes of nets, such as lending Petri nets [5], where transitions
are allowed to consume tokens from a place even if it does not contain enough tokens, thus
enabling negative-valued markings.
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A Properties of pti-place bisimilarity

A.1 Pti-place bisimilarity is an equivalence
▶ Proposition 31. For each PTI net N = (S, A, T, I), the following hold:
1. The identity relation IS = {(s, s) | s ∈ S} is a pti-place bisimulation;
2. the inverse relation R−1 = {(s′, s) | (s, s′) ∈ R} of a pti-place bisimulation R is a pti-place

bisimulation;
3. the relational composition R1 ◦ R2 = {(s, s′′) | ∃s′.(s, s′) ∈ R1 ∧ (s′, s′′) ∈ R2} of two

pti-place bisimulations R1 and R2 is a pti-place bisimulation.

Proof. The proof is almost standard, due to Proposition 21.
(1) IS is a pti-place bisimulation as for each (m, m) ∈ I⊕

S whatever transition t the left
(or right) marking m performs a transition (say, m[t⟩m′), the right (or left) instance of m in
the pair does exactly the same transition m[t⟩m′ and, of course, (•t, •t) ∈ I⊕

S , (t•, t•) ∈ I⊕
S ,

l(t) = l(t), (m ⊖ •t, m ⊖ •t) ∈ I⊕
S , by Proposition 21(2), and, also, ∀s ∈ S.(s, s) ∈ IS ⇒ (s ∈

◦t ⇔ s ∈ ◦t), as required by the pti-place bisimulation definition.
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(2) Suppose (m2, m1) ∈ (R−1)⊕ and m2[t2⟩m′
2. By Proposition 21(3) (m2, m1) ∈ (R⊕)−1

and so (m1, m2) ∈ R⊕. Since R is a pti-place bisimulation, item 2 of the bisimulation game
ensures that there exist t1 and m′

1 such that m1[t1⟩m′
1, with (•t1, •t2) ∈ R⊕, l(t1) = l(t2),

(t•
1, t•

2) ∈ R⊕ and (m1 ⊖ •t1, m2 ⊖ •t2) ∈ R⊕; moreover, ∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔
s′ ∈ ◦t2). Summing up, if (m2, m1) ∈ (R−1)⊕, to the move m2[t2⟩m′

2, m1 replies with
the move m1[t1⟩m′

1, such that (by Proposition 21(3)) (•t2, •t1) ∈ (R−1)⊕, l(t2) = l(t1),
(t•

2, t•
1) ∈ (R−1)⊕, (m2 ⊖ •t2, m1 ⊖ •t1) ∈ (R−1)⊕ and, moreover, ∀s, s′ ∈ S.(s′, s) ∈ R−1 ⇒

(s′ ∈ ◦t2 ⇔ s ∈ ◦t1), as required. The case when m1 moves first is symmetric and thus
omitted.

(3) Suppose (m, m′′) ∈ (R1 ◦ R2)⊕ and m[t1⟩m1. By Proposition 21(4), we have that
(m, m′′) ∈ R⊕

1 ◦ R⊕
2 , and so there exists m′ such that (m, m′) ∈ R⊕

1 and (m′, m′′) ∈ R⊕
2 . As

(m, m′) ∈ R⊕
1 and R1 is a pti-place bisimulation, if m[t1⟩m1, then there exist t2 and m2 such

that m′[t2⟩m2 with (•t1, •t2) ∈ R⊕
1 , l(t1) = l(t2), (t•

1, t•
2) ∈ R⊕

1 and (m ⊖ •t1, m′ ⊖ •t2) ∈ R⊕
1 ;

moreover, ∀s, s′ ∈ S.(s, s′) ∈ R1 ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2). But as (m′, m′′) ∈ R⊕
2 and R2

is a pti-place bisimulation, we have also that there exist t3 and m3 such that m′′[t3⟩m3
with (•t2, •t3) ∈ R⊕

2 , l(t2) = l(t3), (t•
2, t•

3) ∈ R⊕
2 and (m′ ⊖ •t2, m′′ ⊖ •t3) ∈ R⊕

2 ; moreover,
∀s′, s′′ ∈ S.(s′, s′′) ∈ R2 ⇒ (s′ ∈ ◦t2 ⇔ s′′ ∈ ◦t3). Summing up, for (m, m′′) ∈ (R1 ◦ R2)⊕,
if m[t1⟩m1, then there exist t3 and m3 such that m′′[t3⟩m3 and (by Proposition 21(4))
(•t1, •t3) ∈ (R1◦R2)⊕, l(t1) = l(t3), (t•

1, t•
3) ∈ (R1◦R2)⊕ and (m⊖•t1, m′′⊖•t3) ∈ (R1◦R2)⊕;

moreover, ∀s, s′′ ∈ S.(s, s′′) ∈ R1 ◦ R2 ⇒ (s ∈ ◦t1 ⇔ s′′ ∈ ◦t3), as required. The case when
m′′ moves first is symmetric and so omitted. ◀

▶ Proposition 32. For each PTI net N = (S, A, T, I), relation ∼p ⊆ M(S) × M(S) is an
equivalence relation.

Proof. Direct consequence of Proposition 31. ◀

A.2 Pti-place bisimilarity is finer than causal-net bisimilarity
▶ Theorem 33 (Pti-place bisimilarity implies causal-net bisimilarity). Let N = (S, A, T, I) be a
PTI net and m1, m2 two of its markings. If m1 ∼p m2, then m1 ∼cn m2.

Proof. If m1 ∼p m2, then there exists a pti-bisimulation R1 such that (m1, m2) ∈ R⊕
1 . Let

us consider

R2
def= {(ρ1, C, ρ2)|(C, ρ1) is a PTI process of N(m1) and

(C, ρ2) is a PTI process of N(m2) and
∀b ∈ B (ρ1(b), ρ2(b)) ∈ R1}.

We want to prove that R2 is a causal-net bisimulation. First of all, consider a triple of the
form (ρ0

1, C0, ρ0
2), where C0 is the causal PTI net without events and ρ0

1, ρ0
2 are such that

ρ0
i (Min(C0)) = ρ0

i (Max(C0)) = ρ0
i (B0) = mi for i = 1, 2, and (ρ0

1(b), ρ0
2(b)) ∈ R1 for all

b ∈ B0. Then (ρ0
1, C0, ρ0

2) must belong to R2, because (C0, ρ0
i ) is a process of N(mi), for

i = 1, 2 and, by hypothesis, (m1, m2) ∈ R⊕
1 . Hence, if R2 is a causal-net bisimulation, then

the triple (ρ0
1, C0, ρ0

2) ∈ R2 ensures that m1 ∼cn m2.
Assume (ρ1, C, ρ2) ∈ R2. In order for R2 to be a cn-bisimulation, we must prove that

(i) ∀t1, C ′, ρ′
1 such that (C, ρ1) e−→ (C ′, ρ′

1), where ρ′
1(e) = t1, ∃t2, ρ′

2 such that
(C, ρ2) e−→ (C ′, ρ′

2), where ρ′
2(e) = t2, and (ρ′

1, C ′, ρ′
2) ∈ R2;

(ii) symmetrical, if (C, ρ2) moves first.



A. Cesco and R. Gorrieri 28:17

Assume (C, ρ1) e−→ (C ′, ρ′
1) with ρ′

1(e) = t1. Since (ρ1, C, ρ2) ∈ R2, for all b ∈ Max(C) we
have (ρ1(b), ρ2(b)) ∈ R1 and therefore (ρ1(Max(C)), ρ2(Max(C))) ∈ R⊕

1 . Since ρ1(Max(C))
[t1⟩ρ′

1(Max(C ′)) and R1 is a pti-place bisimulation, there exist t2, m2 such that ρ2(Max(C))
[t2⟩m2 with (•t1, •t2) ∈ R⊕

1 , l(t1) = l(t2), (t•
1, t•

2) ∈ R⊕
1 ,

(ρ1(Max(C)) ⊖ •ρ′
1(e), ρ2(Max(C)) ⊖ •ρ′

2(e)) ∈ R⊕
1 and, moreover, ∀s, s′ ∈ S.(s, s′) ∈ R1 ⇒

(s ∈ ◦t1 ⇔ s′ ∈ ◦t2). Note that, since (t•
1, t•

2) ∈ R⊕
1 and (ρ1(Max(C))⊖•ρ′

1(e), ρ2(Max(C))⊖
•ρ′

2(e)) ∈ R⊕
1 , by additivity of additive closure (cf. Proposition 19), (ρ1(Max(C)) ⊖ •ρ′

1(e) ⊕
t•
1, ρ2(Max(C)) ⊖ •ρ′

2(e) ⊕ t•
2) ∈ R⊕

1 , i.e. (ρ′
1(Max(C ′)), m2) ∈ R⊕.

Therefore, since t1 and t2 have the same pre-sets/post-sets up to R1, it is possible to
derive (C, ρ2) e−→ (C ′′, ρ′

2), where ρ′
2 is such that ρ′

2(e) = t2 and (ρ′
1(b), ρ′

2(b)) ∈ R1 for each
b ∈ e• (which is really possible because (t•

1, t•
2) ∈ R⊕

1 ). Now we prove that C ′ = C ′′. The
underlying P/T parts of C ′ and C ′′ are obviously the same (so C ′ and C ′′ have the same
events, the same conditions and the same flow relation), therefore we have to check that also
the newly added (after/before) inhibitor arcs are the same, i.e.,

∀b ∈ B′ such that b• ̸= ∅ we have b A1 e ⇐⇒ b A2 e , and
∀b ∈ e• ∀e′ ∈ E we have b B1 e′ ⇐⇒ b B2 e′,

where we denote A1 (resp. B1) the after (before) inhibitor arcs obtained by extending
C to C ′ and A2 (resp. B2) the after (before) inhibitor arcs obtained by extending C

to C ′′. However, these additional requests are trivially satisfied because we know that
∀s, s′ ∈ S.(s, s′) ∈ R1 ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2). In fact, if b A1 e, then, by Definition 13,
there is an inhibitor arc from ρ1(b) to t1, i.e., ρ1(b) ∈ ◦t1. Since (ρ1(b), ρ2(b)) ∈ R1, this
implies that ρ2(b) ∈ ◦t2 and so b A2 e. The implication on the other side is symmetrical, and
therefore omitted. The argument for relations B1, B2 is the same, and therefore omitted.

To conclude, we have C ′ = C ′′. Thus, (C, ρ2) e−→ (C ′, ρ′
2) with ρ′

2(e) = t2 and (ρ′
1(b),

ρ′
2(b)) ∈ R1 for each b ∈ e•. Hence, for all b′ ∈ B′ it holds that (ρ′

1(b′), ρ′
2(b′)) ∈ R1, because

for all b′ ∈ B this holds by hypothesis and for all b′ ∈ e• this follows by construction (thanks
to the fact that (t•

1, t•
2) ∈ R⊕

1 ). As a consequence (ρ′
1, C ′, ρ′

2) ∈ R2.
The case where (C, ρ2) moves first is symmetrical and therefore omitted. Thus, R2 is a

causal-net bisimulation and, since (ρ0
1, C0, ρ0

2) ∈ R2, we have m1 ∼cn m2. ◀

A.3 It is decidable whether a place relation is a pti-place bisimulation
▶ Lemma 34. Given a finite PTI net N = (S, A, T, I) and a place relation R ⊆ S × S, it is
decidable whether R is a pti-place bisimulation.

Proof. We want to prove that R is a pti-place bisimulation if and only if the following two
finite conditions are satisfied:
1. ∀t1 such that •t1[t1⟩, ∀m such that (•t1, m) ∈ R⊕, ∃t2 such that •t2[t2⟩ and

(a) •t2 = m,
(b) (t•

1, t•
2) ∈ R⊕, l(t1) = l(t2),

(c) ∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2).
2. ∀t2 such that •t2[t2⟩, ∀m such that (m, •t2) ∈ R⊕, ∃t1 such that •t1[t1⟩ and

(a) •t1 = m,
(b) (t•

1, t•
2) ∈ R⊕, l(t1) = l(t2),

(c) ∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2).

First we prove the implication from left to right, only for condition 1, as the other is
symmetrical. If R is a pti-place bisimulation and (•t1, m) ∈ R⊕, then from •t1[t1⟩t•

1 it
follows that there exists t2 such that •t2[t2⟩t•

2 with •t2 = m, (t•
1, t•

2) ∈ R⊕, l(t1) = l(t2) and,
moreover, ∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2). Therefore, conditions (a), (b) and
(c) are trivially satisfied.
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Now we prove the implication from right to left, i.e., if conditions 1 and 2 hold for
R, then R is a pti-place bisimulation. Suppose (m1, m2) ∈ R⊕ and m1[t1⟩m′

1. Let q =
{(s1, s′

1), (s2, s′
2), . . . , (sk, s′

k)} be any multiset of associations that can be used to prove that
(m1, m2) ∈ R⊕. So this means that m1 = s1 ⊕ s2 ⊕ . . . ⊕ sk, m2 = s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

k and that
(si, s′

i) ∈ R for i = 1, . . . , k. If m1[t1⟩m′
1, then m′

1 = m1 ⊖ •t1 ⊕ t•
1. Consider the multiset of

associations p = {(s1, s′
1), . . . , (sh, s′

h)} ⊆ q, with s1 ⊕ . . . ⊕ sh = •t1.
Note that (•t1, s′

1 ⊕ . . . ⊕ s′
h) ∈ R⊕ and that •t1[t1⟩. Hence, by condition 1, there

exists a transition t2 such that •t2[t2⟩, •t2 = s′
1 ⊕ . . . ⊕ s′

h, (t•
1, t•

2) ∈ R⊕, l(t1) = l(t2),
and ∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2). By hypothesis, ◦t1 ∩ dom(m1) = ∅, so
since (m1, m2) ∈ R⊕ and condition (c) holds, we have that ◦t2 ∩ dom(m2) = ∅. Therefore,
since •t2 ⊆ m2, also m2[t2⟩m′

2 is firable, where m′
2 = m2 ⊖ •t2 ⊕ t•

2, and we have that
(•t1, •t2) ∈ R⊕, (t•

1, t•
2) ∈ R⊕, l(t1) = l(t2), (m1 ⊖ •t1, m2 ⊖ •t2) ∈ R⊕ and, moreover,

∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2), as required, where (m1 ⊖ •t1, m2 ⊖ •t2) ∈ R⊕

holds as, from the set q of matching pairs for m1 and m2, we have removed those in p.
If m2[t2⟩m′

2, then we have to use an argument symmetric to the above, where condition
2 is used instead. Hence, we have proved that conditions 1 and 2 are enough to prove that R

is a pti-place bisimulation.
Finally, the complexity of this procedure is as follows. For condition 1, we have to

consider all the net transitions, and for each t1 we have to consider all the markings
m such that (•t1, m) ∈ R⊕

i , and for each pair (t1, m) we have to check whether there
exists a transition t2 such that m = •t2, l(t1) = l(t2), (t•

1, t•
2) ∈ R⊕

i and, moreover, that
∀s, s′ ∈ S.(s, s′) ∈ R ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2). And the same for condition 2. Hence, this
procedure has worst-case time complexity O(q · np · q · (p2√

p + n2 · p)), where q = |T |, n = |S|
and p is the least number such that |•t| ≤ p, |◦t| ≤ p, and |t•| ≤ p for all t ∈ T , as the
number of markings m related via Ri to •t1 is np at most, checking whether (t•

1, t•
2) ∈ R⊕

i

takes O(p2√
p) in the worst case and, finally, checking the conditions on the inhibiting sets is

n2 · p at most. ◀
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What sort of code is so difficult to analyze that every potential analyst can discern essentially no
information from the code, other than its input-output behavior? In their seminal work on program
obfuscation, Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang (CRYPTO 2001)
proposed the Black-Box Hypothesis, which roughly states that every property of Boolean functions
which has an efficient “analyst” and is “code independent” can also be computed by an analyst
that only has black-box access to the code. In their formulation of the Black-Box Hypothesis,
the “analysts” are arbitrary randomized polynomial-time algorithms, and the “codes” are general
(polynomial-size) circuits. If true, the Black-Box Hypothesis would immediately imply NP ̸⊂ BPP.

We consider generalized forms of the Black-Box Hypothesis, where the set of “codes” C and the set
of “analysts” A may correspond to other efficient models of computation, from more restricted models
such as AC0 to more general models such as nondeterministic circuits. We show how lower bounds
of the form C ̸⊂ A often imply a corresponding Black-Box Hypothesis for those respective codes
and analysts. We investigate the possibility of “complete” problems for the Black-Box Hypothesis:
problems in C such that they are not in A if and only if their corresponding Black-Box Hypothesis is
true. Along the way, we prove an equivalence: for nondeterministic circuit classes C, the “C-circuit
satisfiability problem” is not in A if and only if the Black-Box Hypothesis is true for analysts in A.
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1 Introduction

What kind of code “behaves” like a black box to any code analyst? In particular, what
programs are so difficult to analyze that every potential analyst can discern essentially no
information from the code, other than its input-output behavior? Such questions are of great
importance in cryptography and formal verification: what sort of code is difficult to verify
without considerable resources? What kind of code can be obfuscated? What properties of
functions can be automatically tested?

A priori, the answers to such questions depend on three factors:
1. The complexity of the code: what instructions are allowed in the code, the computational

complexity (e.g. time/space/size/depth complexity) of the algorithm implemented by the
code, and so on.

2. The complexity of the analyst: what sorts of operations the analyst can perform, and
how much resources it has (time/space/size/depth) to analyze the code.

3. The actual function being computed by the code. If the function itself is trivial or
extremely complicated, this could affect how “black box” it can possibly look.
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29:2 Black-Box Hypotheses and Lower Bounds

In this paper, we consider these three factors carefully, and study obfuscation from a
different direction compared to most existing literature on the subject. In particular, we
propose generalized forms of the “Black-Box Hypothesis” considered in Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan, and Yang [5] and show how such questions are intimately
related to lower bound questions.

A Complexity-Theoretic View

In the pioneering work of Barak et al. [5] on obfuscation, the authors also proposed a
compelling conjecture about black-box obfuscation that they called a “Scaled-Down Rice’s
Theorem” [5, Conjecture 5.1]; the conjecture has recently been renamed the Black Box
Hypothesis (BBH) [20, 14]. Informally, the Black-Box Hypothesis posits that, when code
is represented as a small Boolean circuit, and a code analyst is represented as an efficient
(polynomial-time) randomized algorithm, the only possible analysis tasks are ones that could
have been performed using only the input-output behavior of the code (and not the code
itself).

While the original Black-Box Hypothesis is still a major open problem, other natural
variants of the hypothesis may be tractable for us to resolve, unconditionally. We consider
variants of the Black-Box Hypothesis in a more general complexity-theoretic setting, where
the complexity of the analyst, the complexity of the code being analyzed, and the function
to be obfuscated (the “box”) are carefully taken into account. For example, we consider the
case where the “analyst function” is taken from a “low” complexity class A (smaller than P,
polynomial time), and the box is also from a “low” complexity class C.

More formally, we study abstract forms of the Black-Box Hypothesis (sometimes abbrevi-
ated as BBH in the following). Let C be a set of circuits and let A be a complexity class
that permits oracles in its definition. We say that a property P : C → {0, 1} of C is semantic
if P (C) = P (C ′) for all pairs of circuits C and C ′ in C which compute the same function.

▶ Hypothesis 1 (C-Black-Box Hypothesis for A). [Informal Statement, cf. Hypothesis 14] Let
P : C → {0, 1} be any semantic property computable by some analyst A′ ∈ A. Then there
is a black-box analyst A ∈ A such that for every s and every circuit C ∈ C of size s on n

inputs, AC(1n0s−n) = P (C).

In prior work, the class of analysts A was always set to be BPP, and the class of circuits
C was generally set to be unrestricted circuits of fan-in two. In that full form, proving the
BBH would also prove NP ̸⊆ BPP, so that is presently out of reach! (The BBH could also
end up being false, of course.) By considering a range of natural possible choices for the weak
analysts A and the circuit sets C, we can try to delineate precisely how weak the analysts
from A need to be, in order for C-circuits to provably behave like black boxes, and to relate
the corresponding Black-Box Hypotheses to other core problems within complexity.

1.1 Our Results
We demonstrate several interesting relationships between circuit lower bounds and Black-Box
Hypotheses in the generalized setting. First, we prove that certain instances of the Black-Box
Hypothesis are true, from known circuit lower bounds. In fact we give a generic connection
from lower bounds to Black-Box Hypotheses. We also give some converse results, showing
that Black-Box Hypotheses imply certain circuit lower bounds. Finally, in some settings,
we can show that certain problems are “complete” for a Black-Box Hypothesis, in the sense
that proving the Black-Box Hypothesis is equivalent to proving a lower bound against the
aforementioned problem.
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Black-Box Hypotheses For Restricted Analysts, From Lower Bounds

In Section 4, we explore situations in which known lower bounds imply Black-Box Hypotheses.
We first consider Hypothesis 14 where the classes of analysts A are restricted, and the set
of potential “boxes” C consists of unrestricted circuits. We show that one can prove a
C-Black-Box Hypothesis for A, when the given set of boxes C is sufficiently powerful and
the set of analysts A is limited. We find this to be counterintuitive. It could have been
the case that, when the set of boxes C is powerful, an analyst with access to the code of
such a powerful box might be able to learn something interesting about it, and gain more
power than if it only had black-box access. However, it turns out that when the boxes are
sufficiently powerful, no analyst can learn any semantic property.

We find that, under very general conditions, circuit lower bounds against A (as an
algorithmic class) imply the Black-Box Hypothesis for A (as an analyst class).

▶ Theorem 2 (Informal Statement, cf. Theorem 16). Let A be a circuit class (of analysts), and
let f be a Boolean function computable with (general) circuits of size at most t(n). Suppose
f ̸∈ A, and suppose A is closed under projections from n variables onto O(t(n) log t(n))
variables. Then the (general) Black-Box Hypothesis for A is true.

The full formal version of the theorem appears in Section 4 as Theorem 16. Intuitively,
we apply a “input-switching” trick which reduces the task of computing f on an input y to
the task of deciding any non-trivial semantic property P on a circuit Dy.1 In particular,
given an analyst A computing P , we show how to map every Boolean string y (a potential
input for f) into a circuit Dy whose input-output behavior (and in particular, whether Dy
satisfies the property P ) depends on the value f(y). At a high level, Dy takes an input x,
evaluates f(y), and then (depending on f(y)) evaluates and outputs either C1(x) or C2(x),
where C1 and C2 are fixed circuits (independent of y), exactly one of which satisfies the
property P . In essence, we are “switching” the input y with a circuit Dy which can evaluate
f , and for which we can determine P . Then, we can run A on Dy without ever evaluating f

directly, and use its answer to determine f(y).
The conditions we impose on A are quite general, so Theorem 16 has several direct

corollaries. For example, recall AC0 is the class of unbounded fan-in circuits of constant
depth over And, Or, and Not.

▶ Corollary 3. The BBH for (polynomial-size) AC0 analysts is true. Moreover, the BBH for
2no(1)-size AC0 is true.

In particular, Theorem 16 implies that for every subexponential-size AC0 circuit family
{An} that is given the code of an arbitrary (general) circuit C as input, if {An} computes a
semantic property (i.e., its output depends only on the function computed by C, not the
code of C) then {An} must compute a trivial property (all-zeroes or all-ones). Similarly:

Let TC0
2 be the class of unbounded fan-in circuits of depth-two over Majority, And,

Or, and Not.

▶ Corollary 4. The BBH for (polynomial-size) TC0
2 is true. Moreover, the BBH for 2n1−ε-size

TC0
2 analysts is true for every ε > 0.

1 At this level of generality, the idea is similar in spirit to one of the proofs of Rice’s Theorem [19] which
shows that any non-trivial semantic property of Turing machines is undecidable, by way of a reduction
from the Halting Problem. However, Rice’s proof techniques do not translate to finite circuits, so we
prove Theorem 16 differently.

MFCS 2021



29:4 Black-Box Hypotheses and Lower Bounds

A Generalization

Next, we turn to an even more general setting of Black-Box Hypotheses, where both the class
A of “analysts” and the set C of “boxes” can vary. Here we find that, roughly speaking, if A
and C jointly satisfy some natural closure properties, and there are functions computable by
boxes in C but not by analysts in A, then the C-Black-Box Hypothesis for A still holds.

▶ Theorem 5 (Informal Statement, cf. Theorem 18 and Theorem 20). Let A be a circuit
(analyst) class, let C be a set of circuits, and let f ̸∈ A be a Boolean function. Suppose
there is an analyst in A which, given input y, generates a circuit Dy ∈ C whose input-output
behavior depends on the value of f(y). Then the C-Black-Box Hypothesis for A is true.

We prove two formal versions of this theorem in Section 4.1, as Theorem 18 and The-
orem 20. These theorems are general enough that C does not have to be a class of circuits per
se: other non-uniform computational models, such as branching programs or span programs,
would also work. The intuition and proof techniques are similar to those used in Theorem 16,
but given the extra conditions on A, we can tailor the input-switching reduction from
Theorem 16 to the set C in order to produce stronger results. For example:

▶ Corollary 6. For all primes p, the AC0[p]-Black-Box Hypothesis for (poly-size) AC0 holds.

Theorem 20 implies that for every AC0 circuit family {An} that tries to analyze the code
of a given AC0[p] circuit C, if {An} computes a semantic property of C, then that property
must be trivial. More generally, we can conclude the following.

▶ Theorem 7. For all depths d ≥ 2 and all distinct primes p ̸= q, the AC0
d[p]-Black-Box

Hypothesis for 2so(1)-size AC0[q] analysts is true.

That is, even if in the above, {An} can have subexponential size, use Modq gates, and
fail on input circuits C with depth greater than a fixed constant d, {An} must still compute
a trivial property. Similarly:

▶ Theorem 8. For all depths d ≥ 2, the AC0
d-Black-Box Hypothesis for 2so(1)-size AC0

d−1
analysts is true.

Equivalences With Lower Bounds?

So far, our results show how lower bound statements of the form C ̸⊂ A can sometimes
be applied to prove the corresponding C-Black-Box Hypothesis for A analysts. A natural
next question is, could Black-Box Hypotheses (for various pairs of boxes and analysts) be
equivalent to proving lower bounds? As a first step, in Section 5 we prove conditional lower
bounds against some analyst classes A, assuming some C-Black-Box Hypothesis for A.

▶ Theorem 9 (Informal Statement, cf. Theorem 28). Suppose every analyst in A has
subexponential-size circuits, and let C be a “reasonable” set of circuits (left undefined here). If
the C-Black-Box Hypothesis for A is true, then the circuit satisfiability problem for C-circuits
is not in A.

Roughly speaking, we observe that if the C-circuit Evaluation problem (C-Eval) is not in
A, then the C-Black-Box Hypothesis for A is true, and if the C-circuit Satisfiability problem
(C-Sat) is in A, then the C-Black-Box Hypothesis for A is false. However, C-Sat is generally
harder than C-Eval.
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To better understand how lower bounds connect to Black-Box Hypotheses, we propose a
notion of BBH-completeness for computational problems. Very roughly, we want a C-BBH-
complete problem Π to have the property that Π ∈ C, and for a general analyst class A, if
Π /∈ A then the C-BBH for A is true. We show that for nondeterministic circuit classes C,
both C-Sat and C-Eval are C-BBH-complete.

▶ Theorem 10 (Informal Statement, cf. Theorem 31). Suppose every analyst in A has
subexponential-size circuits, and let C be a nondeterministic circuit class with “natural”
closure properties. Then C-Eval and C-Sat are both C-BBH-complete for A.

Theorem 31 shows that lower bounds for the satisfiability problem are equivalent in
some sense to proving that nondeterministic circuits behave like black boxes. Impagliazzo,
Kabanets, Kolokolova, McKenzie, and Romani [14] considered the question of whether one
can show the Black-Box Hypothesis is equivalent to NP ̸⊂ P/poly, with some partial results.
A consequence of Theorem 31 is that NP ̸⊂ P/poly is equivalent to the Black-Box Hypothesis
when polynomial-size circuits are the analysts and nondeterministic circuits are the boxes.
In this light, it would be very interesting if one could show the Black-Box Hypothesis is
actually equivalent to NP ̸⊂ P/poly: it would show that two rather different-looking forms of
the Black-Box Hypothesis are in fact equivalent.

Finally, we note that the aforementioned work of Impagliazzo et al. on BBH [14, 20]
yields another kind of equivalence between a different variant of black-box hypothesis and a
circuit lower bound.

▶ Theorem 11 (Follows from [14], informal, cf. Theorem 33). The following are equivalent:
1. The Circuit Satisfiability problem, Ckt-Sat, is not in P/poly.
2. Any symmetric property P that can be decided in P/poly with white-box access to the

input circuit can also be decided in P/poly with black-box access to the input circuit.

We view this interpretation of their result as further promising evidence towards more
general connections between black-box hypotheses and circuit lower bounds.

Organization

Section 2 covers significant prior work related to black-box hypotheses. Section 3 carefully
discusses how to generalize the Black-Box Hypothesis for various sets of “analysts” and
sets of “boxes”. Section 4 proves our main theorems, showing how circuit lower bounds
imply Black-Box Hypotheses in a very generic way. Section 5 considers how we might prove
equivalences between Black-Box Hypotheses and lower bounds. Section 6 concludes. The
appendices include missing proofs, as well as additional related work.

2 Background

In this paper we assume basic familiarity with computational complexity, especially cir-
cuit complexity (knowledge of the first 13 chapters of Arora and Barak [4] would suffice).
Throughout the paper, we will recall notation and definitions as needed. Sometimes (as is
common in complexity) we will blur the distinction between the analyst class A as a set
of circuit families (computing some decision problems) and the actual decision problems
computed by analysts in A.

We will study generic versions of the circuit evaluation and circuit satisfiability problems.
In the C-Eval problem, we are given a circuit C from a set C and an input x, and wish to
know if C(x) = 1. In the C-Sat problem, we are given a circuit from a set C and wish to
know if there is an x such that C(x) = 1. The Ckt-Sat problem is C-Sat where C is the
set of arbitrary Boolean circuits (without loss of generality, each gate has fan-in two).
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Historically, researchers interested in so-called “black-box hypotheses” were looking for
what they called a “scaled-down” Rice’s Theorem. In the following paragraphs, we provide a
brief overview of this research.

Rice’s Theorem

We briefly recall the statement and implications of Rice’s Theorem. Let M be the set of
Turing Machines. We say a property P : M → {0, 1} of Turing Machines is semantic if
P (M) depends only on the (possibly partial) function computed by M . That is, for any
TMs M1 and M2 with the same input-output behavior, P (M1) = P (M2). A property P is
non-trivial if there are M1, M2 ∈ M such that P (M1) ̸= P (M2). In his 1951 doctoral thesis,
Henry Rice proved the following sweeping result:

▶ Theorem 12 ([19]). Every non-trivial semantic property of Turing Machines is undecidable.

Rice’s powerful theorem states that any interesting property that we might want to test
of a given program is undecidable, assuming the property being tested depends only on the
function computed by the program. That is, any property that could in principle be tested
using only black-box access to the program, is undecidable given a description the program.
Rice’s theorem generalizes (and can be proved from) the undecidability of the TM-Sat
problem of determining whether a given TM accepts any string at all.

The Black Box Hypothesis

In their pioneering obfuscation work, Barak et al. [5] consider the question: can Rice’s
Theorem be scaled down in a way that would be useful to complexity theory? Specifically, let
us assume we are not interested in all Turing Machines, but rather in the set of efficient
algorithms; for example, those represented by Boolean circuits. One can still define properties
that are non-trivial and semantic when restricted to the set of Boolean circuits. In this
setting, all such properties P are decidable, because the language of a circuit is simply its
2n-bit truth table, which can be computed in finite time. However, one might want to know
something about the computational complexity of such properties. In this setting, the circuit
satisfiability problem Ckt-Sat is an analogue of TM-Sat. Although Ckt-Sat is decidable,
it is NP-hard, so one might hope to be able to replace undecidability in Rice’s Theorem with
NP-hardness.

In earlier work, Borchert and Stephan [8] note that using circuits instead of Turing
Machines and NP-hardness instead of undecidability is not enough to prove an analogue
of Rice’s Theorem. For every string x, the property {M ∈ M : M(x) = 1} is undecidable
by Rice’s Theorem, but the circuit analogue is decidable in polynomial time: it is simply
the circuit evaluation problem! Borchert and Stephan’s response to this issue is to look
at function properties depending on more complex measures, such as the number of Sat
assignments of a given circuit (in other words, the property is a symmetric Boolean function
in the truth table of the circuit). They show that any non-trivial “counting” property of
circuits is UP-hard; the UP-hardness were improved in [13].

Barak et al. [5] gave a different response to the above issue. They observe the property
{C : C(x) = 1} for circuits C is still “trivial” in some sense: it can be efficiently determined
given only black-box oracle access to the input circuit. This observation led Barak et al.
to formulate the following conjecture. For two circuits C and C ′ on n-bit inputs, we write
C ≡ C ′ when C and C ′ compute the same n-bit function.
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▶ Conjecture 13 (Black Box Hypothesis [5]). Suppose L ⊆ {0, 1}∗ satisfies the property that
for all C and C ′ such that C ≡ C ′, we have C ∈ L ⇐⇒ C ′ ∈ L. If L ∈ BPP, then there is
a probabilistic polynomial time algorithm S that decides L given only oracle access to C and
0n1|C|−n as input, i.e.,

C ∈ L =⇒ Pr
[
SC

(
0n1|C|−n

)
= 1

]
>

2
3

C ̸∈ L =⇒ Pr
[
SC

(
0n1|C|−n

)
= 1

]
<

1
3 .

That is, the BBH claims that every “white box” semantic property of circuits that is
decidable in randomized poly-time can also be decided in randomized poly-time with “black
box” access to the circuit. If the conjecture were true, then a strong form of P ̸= NP would
follow: P = NP implies that circuit satisfiability is solvable in polynomial-time when we have
“white-box” access to the input circuit, but the Sat problem requires Ω(2n) time to solve
with only black-box oracle access to the input circuit.

Impagliazzo et al. [14] proved interesting results towards understanding BBH. They show
a partial converse of the observation from the previous paragraph: if the BBH is false for
certain kinds of properties, then the circuit satisfiability problem has sub-exponential size
circuits. Since we know that BBH implies P ̸= NP, this suggests that it may be difficult to
resolve BBH regardless of its truth or falsity. Romani’s master thesis [20] gives an excellent
overview of the BBH and this work.

An additional section on “Other Related Work” appears in Appendix A.

3 Generalized Black-Box Hypotheses

We study the Black-Box Hypothesis (Conjecture 13) in a more general setting. Specifically,
instead of considering L ∈ BPP and a randomized uniform algorithm S from Conjecture 13,
we study the family of hypotheses that arise when L and S come from various (possibly
non-uniform) circuit classes, which may be weaker or stronger than probabilistic poly-time.

Let us set up some notation. For a circuit C, we let ⟨C⟩ denote the binary description of
C. Note that if C has size s, then ⟨C⟩ is a binary string of length O(s log s), which we call
the description length of C.

Let C be a set of circuits. A property of circuits in C is a function P : C → {0, 1}. A
property S is semantic iff for any two circuits C1, C2 ∈ C computing the same function (that
is, ∀x, C1(x) = C2(x)), P (C1) = P (C2). Recall a circuit family is an infinite sequence of
circuits, one for each possible input length; circuit families compute functions of the form
f : {0, 1}⋆ → {0, 1} in the natural way. We say that a circuit family {As} computes P if for
every circuit C ∈ C with description length s, As(⟨C⟩) = P (C).

We define a circuit class A to be a set of circuit families; our analyst classes A will have
this form. By convention, an oracle circuit C may have oracle gates of arbitrary fan-in, but
we will think of C as taking an oracle O with a fixed number of inputs. If C contains oracle
gates with a different number of inputs than the given oracle O, then we define such oracle
gates to output the constant 0 (regardless of O).

We formulate a generalization of the Black Box Hypothesis, which we call the C-Black
Box Hypothesis for A (C-BBH for A), in the following way.

▶ Hypothesis 14 (Generalized Black Box Hypothesis: C-BBH for A). Let P be a semantic
property of circuits in C. Let {A′

s} ∈ A be a circuit family that computes P . Then there
exists a circuit family {As} ∈ AC such that AC

s (1n0s−n) = 1 iff P (C) = 1.
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That is, the C-BBH for A hypothesizes that every semantic property of C-circuits that
can be decided by A-analysts with “white box” access to the C-circuit, can also be decided
by A-analysts with only black-box access to the circuit. When C is the set of all Boolean
circuits, we refer to the C-BBH for A simply as the “BBH for A”. Note that if we replace A
in the above with BPP, we recover Conjecture 13.

3.1 Encoding Circuits
Unfortunately, if we allow the class of analysts A to be an arbitrary circuit class, we
can encounter some strange (and counterintuitive) consequences. For instance, suppose
A is AC0, the circuit families over And, Or, and Not with constant-depth, polynomial
size, and unbounded fan-in. We can construct an oracle circuit family {As} such that
AC

s (1n0s−n) = Parity(n), the parity of the number of inputs of C (AC
s ignores C, and just

computes the parity of strings of the form 1⋆0⋆). Depending on how the description ⟨C⟩ is
represented, this behavior may not be computable by any white-box AC0 circuit family {A′

s},
since Parity is not in AC0 [1, 9]! We would like to avoid this sort of behavior, because as in
Conjecture 13, the oracle circuit family A is supposed to capture some notion of triviality.
In order for the “BBH for A” to be meaningful, it should be that the white-box circuit
family A′ is at least as powerful as the black-box family A. To this end, we shall require the
binary descriptions of circuits to contain all the information given freely to the oracle family.
Specifically, we assume that the description of a circuit C with n input wires is prefixed by
1n0, and that the first n wires in ⟨C⟩ are the input wires.

4 Circuit Lower Bounds Imply Black-Box Hypotheses

What can we prove about the BBH for general pairs of circuit sets and analysts C, A? First,
we can show there are interesting pairs for which the C-BBH for A is true in a strong way:
every semantic property is in fact trivial. The following theorem shows that, whenever lower
bounds hold against a circuit class A satisfying some simple conditions, the (general) BBH
for A is true. First, we recall a definition.

▶ Definition 15. A projection from n variables onto m variables is a function π : {0, 1}n →
{0, 1}m such that for every j, there exists i such that the jth coordinate of π(x) depends only
on the ith coordinate of x.

Observe that a projection is a kind of very weak reduction which can be computed not
only very efficiently but also very locally. By requiring closure under such a weak class of
reductions, we aim to keep A as general as possible.

▶ Theorem 16. Let A be a circuit class, f : {0, 1}⋆ → {0, 1} be a decision problem, and
s : N → N be a monotone function with the properties:
1. f is computable by a size-s(n) circuit family, but f is not computable by any family in A.
2. Either {Orn ◦ And2} ⊆ C ∈ A for some family C, or {Orn ◦ And2} ⊆ C ∈ A for some

family C. That is, either A contains a family that either computes the read-once n-clause
2-DNFs on 2n variables, or it contains a family that computes the n-clause 2-CNFs on
2n variables.

3. A is closed under composition with projections from n variables onto O(s(n) log s(n))
variables.

Then for every property P over the set of all circuits, if P is semantic and computable in
A, then for all n, P restricted to circuits on n-bit inputs is also trivial. In particular, the
(general) BBH for A is true.
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Proof. Let A and f satisfy the above properties, and let {Fn} be a size-s(n) circuit family
computing f . Let P be a semantic property computable in A.

First, we will prove that P is trivial. The idea is that, if P is not trivial, we can use
a circuit family for P to construct a circuit in A for computing f , a contradiction to the
assumed lower bound on f (assumption 1).

Let k ∈ N. P is semantic, so assume WLOG that for every k-input circuit K0 computing
the constant 0 function, P (K0) = 0. Assume for sake of contradiction that there is a k-input
Ck such that P (Ck) = 1. Let n ∈ N be our desired input length; we want to build a circuit
computing f on n-bit inputs. For an n-bit vector y, define the following circuit Dy with k

input wires x, with y hard-coded as n constant wires:

Dy(x) := Ck(x) ∧ Fn(y).

The circuit Dy computes some Boolean function on k input bits. For a fixed Ck, define
the function ρCk

that maps the n-bit input y to the description ⟨Dy⟩ of Dy as defined above.
Observe that for all x and y, Dy(x) = Ck(x) if f(y) = 1, and otherwise Dy(x) = 0. Because
P is semantic, P (Dy) = P (Ck) = 1 if f(y) = 1, and P (Dy) = 0 otherwise. In other words,
we have P (Dy) = f(y) for all y.

Note the size of Dy is t(k) + ||Ck|| + 1, where ||Ck|| denotes the size of Ck (which is
independent of n), so Dy has description length O(s(n) log s(n)). For a fixed Ck, ρCk

(y) =
⟨Dy⟩ depends only the n-bit vector y. In particular, within the description ⟨Dy⟩, the
descriptions ⟨Ck⟩ and ⟨Fn⟩ are both independent of y, so the only bits in ⟨Dy⟩ that vary
with y are those describing the hard-coded constant y itself. Hence each bit in ⟨Dy⟩ depends
on at most one bit of y. That is, ρCk

is a projection from n variables onto O(s(n) log s(n))
variables.

Since A is closed under such projections (assumption 3), and P is computable in A by
assumption, the circuit

Dy

ρCk

y

P

is also computable in A. However, P (Dy) = f(y), which is not computable in A, a
contradiction. It follows that for all Ck on k inputs, P (Ck) = 0, so P (on circuits containing
k inputs) is trivial.

We now turn to proving that there exists an oracle circuit family {As} in A such
that for any circuit C of size s on n inputs, AC

s (1n0s−n) = P (C). In fact we prove
the stronger claim that there exists a circuit family {As} in A (with no oracle gates)
such that for any circuit C of size s on n inputs, As(1n0s−n) = P (C). To this end, let
X = {n ∈ N : ∃C on n inputs with P (C) = 1}. First, suppose that A contains a family that
can compute {Orn ◦ And2}. For s ∈ N, let As be the circuit of the form∨

i∈X∩[s]

(xi ∧ ¬xi+1) .
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By assumptions 2 and 3 (closure under projections from n to 2n variables), such circuits are
in A. If instead A contains {Andn ◦ Or2}, we let As be the circuit of the form∧

i∈[s]\X

(¬xi ∨ xi+1) .

Now As(1n0s−n) = 1 iff n ∈ X (using no oracle gates). Since P is trivial, for all circuits C

on n inputs, As(1n0s−n) = 1 iff P (C) = 1, as desired. ◀

The above proof can be thought of as an “input-switching” trick. We start with the fact
that P is non-trivial on some k-bit input circuits. We use the description of a k-input circuit
witnessing non-triviality, along with the description of a circuit computing f on n-bit inputs,
to construct the description of a larger circuit Dy with n “free variables” y. By feeding n-bit
y into that description, and feeding that description into P , we obtain the description of an
A-circuit computing f .

Theorem 16 has many immediate corollaries. For example:

▶ Reminder of Corollary 3. The BBH for (polynomial-size) AC0 is true. Moreover, the
BBH for 2no(1)-size AC0 is true.

Proof. Take A to be AC0 and f to be the Parity function in Theorem 16, using the fact
that Parity does not have subexponential-size AC0 circuits [12]. ◀

▶ Reminder of Corollary 4. The BBH for (polynomial-size) TC0
2 is true. Moreover, the

BBH for 2n1−ε-size TC0
2 is true for every ε > 0.

Proof. Take A to be TC0
2 and f to be the InnerProduct function (mod 2) in Theorem 16,

using the fact that InnerProduct requires 2Ω(n)-size TC0
2 circuits [3]. ◀

4.1 Generalization
The proof of Theorem 16 critically relies on the fact that the circuit Dy can be arbitrarily
large and complex in comparison to its input. If we restrict C to contain only “simple”
circuits and allow A′

s to behave arbitrarily on circuits not in C, then we would need to be
more careful to ensure that Dy is still in C. By extending the input-switching trick from
Theorem 16, we can restrict the circuit set C in some interesting ways and still prove the
corresponding Black-Box Hypotheses.

▶ Definition 17. Let C be a set of circuits, and let f and g be Boolean functions. We say
that a function I : C × {0, 1}∗ → {0, 1}∗ is an input-switching function for C and f iff for
some bit b, for every circuit C ∈ C and every Boolean string y, I(C, y) is the description
⟨Dy⟩ of a circuit Dy with the same number of inputs as C such that Dy(x) = C(x) when
f(y) = b and Dy(x) = g(x) otherwise.

▶ Theorem 18. Let A be a circuit class, f : {0, 1}∗ → {0, 1} be a decision problem, and C
be a set of circuits with the properties:
1. A computes neither f nor ¬f .
2. A is closed under composition with an input-switching function I for C and f , in the

sense that for every function g computable by a circuit family in A and for every C ∈ C,
the function y 7→ g(I(C, y)) is also computable by a circuit family in A.

Then for every property P over C, if P is semantic and computable in A, then for all input
lengths n, P restricted to circuits on n-bit inputs is also trivial. Furthermore, if A also
contains {Orn ◦ And2} (or {Andn ◦ Or2}), then the C-BBH for A is true.
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The proof is in Appendix B.
The preconditions for Theorem 18 are somewhat too restrictive to be applied easily in

many cases, so we strengthen it further. To this end, we first define a relation ∼n on sets of
circuits.

▶ Definition 19. For sets C1 and C2 of circuits, say that C1 ∼n C2 iff there exist n-input
circuits C1 ∈ C1 and C2 ∈ C2 such that C1 ≡ C2 (that is, C1 and C2 compute precisely the
same Boolean function).

The relation ∼n enables us to more easily reason about semantic properties across several
sets of differently structured circuits.

▶ Theorem 20. Let A be a circuit class, f : {0, 1}∗ → {0, 1} be a decision problem, C =
⋃
i∈N

Ci

be a set of circuits, and I : C × {0, 1}∗ → {0, 1}∗ a function with the properties:
1. A computes neither f nor ¬f .
2. A is closed under composition with I.
3. For all i, the restriction of I to Ci × {0, 1}∗ is an input-switching function for Ci and f .
4. For every input size n ∈ N, the transitive closure of ∼n on {Ci} is the universal relation

on {Ci}.
Then for every property P over C, if P is semantic and computable in A, then for all input
lengths n, P restricted to circuits on n-bit inputs is also trivial. Furthermore, if A also
contains {Orn ◦ And2} (or {Andn ◦ Or2}), then the C-BBH for A is true.

Proof. Let P be a property over C. Applying Theorem 18 to A, f , and to each Ci, for all n

and all i, the restrictions of P to circuits in each Ci with n-bit inputs is trivial. Since P is
semantic, if i ∼n j, then the restriction of P to circuits in Ci ∪ Cj with n-bit inputs is also
trivial. Finally since the transitive closure of ∼n is universal, by induction we have that for
every n, the restriction of P to circuits in C with n-bit inputs is trivial. ◀

4.2 Examples
We now define some input-switching functions. First, let f be any function computable by a
circuit family {Fn}, and let DC,y be the circuit defined as follows, where x are the input
wires and y are hard-coded as n constant wires:

DC,y(x) := C(x) ∧ Fn(y).

If Fn has size s(n), then the map y 7→ ⟨DC,y⟩ (where ⟨DC,y⟩ is the description of DC,y) is
both an input-switching function and a projection from n variables onto the O(s(n) log s(n))
variables describing DC,y, so we recover Theorem 16.

Recall that AC0
d[p] denotes circuit families of depth d with unbounded fan-in And, Or,

and Modp gates.

▶ Reminder of Corollary 6. For all primes p, the AC0[p]-Black-Box Hypothesis for
(polynomial-size) AC0 is true. Moreover, the AC0[p]-Black-Box Hypothesis for 2so(1)-size AC0

is true.

Proof. Follows from Theorem 18. We make use of the fact that the Modp function is
computable in linear size AC0[p] but requires exponential size in AC0, and that in AC0 we
can mask a given AC0[p] circuit with a given Modp function.
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Let A be 2so(1) -size AC0, f = Modp, and C = AC0[p]. We now define a circuit DC,y with
the same number of inputs as C as

DC,y(x) := C(x) ∧ Modp(y).

Then for all x and y, DC,y(x) = C(x) if Modp(y) = 1, and DC,y(x) = 0 otherwise. Now the
map (C, y) 7→ ⟨DC,y⟩ is an input-switching function for C and Modp. Furthermore, we can
think of the map y 7→ ⟨DC,y⟩ as a projection from n variables y onto Θ(n log n) variables
describing DC,y, so A is closed under composition with I. Now from Theorem 18, every
semantic property P over C computable in A is trivial, so the C-BBH for A is true. ◀

If we invoke Theorem 20 instead of Theorem 18, we can get an even stronger result.

▶ Theorem 21. For all depths d ≥ 2 and distinct primes p ̸= q, the AC0
d[p]-BBH for 2so(1)-size

AC0[q] is true.

The proof is in Appendix C. The proof of Theorem 21 relies on the fact that small AC0[q]
circuits cannot evaluate some function that can be evaluated with small AC0[p] circuits
(namely a single Modp gate). We can prove a similar result using the depth-d Sipser function,
which is easy for AC0 circuits of depth d but hard for depth d − 1 [22, 12].

▶ Definition 22. The Sipser function fd,n : {0, 1}
√

n
log n × {0, 1}nd−2 × {0, 1}

√
1
2 dn log n →

{0, 1} is defined as follows:

If d is odd, then fd,n(x) =

√
n

log n∧
i1=1

n∨
i2=1

n∧
i3=1

· · ·

√
1
2 dn log n∧
id=1

xi1,...,id
.

If d is even, then fd,n(x) =

√
n

log n∧
i1=1

n∨
i2=1

n∧
i3=1

· · ·

√
1
2 dn log n∨
id=1

xi1,...,id
.

▶ Theorem 23. For all depths d ≥ 2, the AC0
d-BBH for 2so(1)-size AC0

d−1 is true.

The proof is in Appendix D.

5 Some Black-Box Hypotheses Imply Lower Bounds

In Section 4, we showed that many circuit lower bounds of the form C′ ̸⊆ A can be used
to prove a corresponding C-Black-Box Hypothesis for A (for a set of boxes C that suitably
captures the complexity class C′). Now we consider the converse question: can Black-Box
Hypotheses also be used to prove circuit lower bounds? For certain sets C of boxes and
classes A of analysts, it turns out that the C-Black-Box Hypothesis for A does in fact imply
lower bounds against A.

For a function s : N → N, let Circuit(s(n)) denote the set of (general) Boolean circuits
on n inputs of size at most s(n), for every n. (Note this is different from Size(s(n)), which
is the class of languages computed by circuit families of size at most s(n).) As a starting
point, the following simple proposition was essentially noted by Barak et al. [5].

▶ Proposition 24. If NP ⊂ P/poly, then for every polynomial p, the Circuit(p(n))-BBH
for P/poly is false.



B. K. Chapman and R. R. Williams 29:13

Proof. Take P to be the Ckt-Sat property (that is, P (C) = 0 iff the circuit C encodes the
all-zeroes function). By assumption, P ∈ P/poly, but even with randomness, Ω(2n) oracle
queries are needed to determine whether a size-p(n) circuit on n inputs is the all-zeroes
function. For every polynomial q, the polynomial q ◦ p is o(2n), so there is no size-q(s) circuit
family making Ω(2n) oracle queries on size-p(n) circuits. ◀

In fact, Proposition 24 can be strengthened by replacing Ckt-Sat with the property
P (C) = 1 iff C has a satisfying assignment that sets the first k inputs to 0 (for some
appropriately large k).

▶ Proposition 25. If NP ⊂ Size(2no(1)), then for every polynomial p, the Circuit(p(n))-
BBH for P/poly is false.

Propositions 24 and 25 are arguably not particularly useful, since very few researchers
believe the hypotheses of these propositions. However, they still do illustrate an interesting
observation, and we may be able to generalize them in a useful manner. Let C-Sat be the
satisfiability problem for circuits from the set C. One might hope to prove the following
generalization of Proposition 24, for every circuit set C and every analyst class A:

▶ Hypothesis 26 (The Satisfiability Black-Box Hypothesis). If C-Sat ∈ A, then the C-BBH
for A is false.

In this fully generic form, there are some simple counterexamples to Hypothesis 26. For
instance, if A contains all Boolean functions, then (for every set C) C-Sat ∈ A. However,
the C-BBH for A is true, because A can decide any semantic property with only black-box
access to the circuit being analyzed. Hence we require additional restrictions on C and A to
make the hypothesis interesting. In particular, we would like A to contain only functions of
subexponential circuit complexity, and for a sufficiently simple function f , we would like C
circuits to be able to compute f efficiently.

Recall that a Boolean function f : {0, 1}∗ → {0, 1} is a point function if there is an
a ∈ {0, 1}∗ such that for all x, f(x) = 1 ⇐⇒ x = a. The following notion of “reasonability”
for circuit sets will be useful in multiple contexts.

▶ Definition 27 (Reasonability). A set C of circuits is reasonable if there is a polynomial p

such that for all point functions f , there is a circuit family {Cn} ⊂ C of size at most p(n)
computing f .

We can show that if C is reasonable and A has subexponential-size circuits, then Hypothesis 26
is true. The following can be viewed as a kind of converse of Theorem 16.

▶ Theorem 28. If C is reasonable, A ⊆ Size(2no(1)), and C-Sat ∈ A, then the C-BBH for
A is false.

Proof. Assume C is reasonable, A has subexponential-size circuits, and C-Sat ∈ A. As in
Proposition 24, we take P to be the satisfiability property. By assumption, P ∈ A. Even
with randomness, Ω(2n) oracle queries are required to determine whether a circuit of size
p(n) on n inputs computes the constant 0 function. However, an A circuit can make at most
2no(1) queries to its oracle when given an input of size p(n). Per the reasonableness of C,
there are both satisfiable and unsatisfiable C-circuits of size p(n), so A, with only black-box
access to a C-circuit, cannot compute P . ◀

The preconditions for Theorem 28 are very general; most complexity classes of interest
only deal with functions of subexponential complexity and can compute point functions
efficiently. However, this weak condition is sufficient to remove the simple counterexamples.
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5.1 A Notion of BBH-Completeness
For very general circuit sets C and classes A of analysts, we have shown (roughly) in Section 4
that

C ̸⊂ A =⇒ C-BBH for A,

and in the previous paragraphs that for “reasonable” A and C,

C-BBH for A =⇒ C-Sat ̸∈ A.

For many pairs of classes C and A, we have

C-Eval ̸∈ A ⇐⇒ C ̸⊂ A.

So the results of Section 4 imply, at least for many natural pairs C, A, that C-Eval lower
bounds imply BBHs. However, C-Sat is generally a harder problem than C-Eval, so there
remains a gap between the lower bounds that provably imply a Black-Box Hypothesis, and
those lower bounds provably implied by a Black-Box Hypothesis.

A natural question is then, which of these implications can be strengthened? Is there a
single problem on C circuits, such that proving a lower bound for it is equivalent
to proving a C-Black-Box Hypothesis? In particular, is proving either C-Eval ̸∈ A or
C-Sat ̸∈ A equivalent to proving the C-BBH for A? Similar to other completeness notions in
complexity theory, we propose a concept of BBH-completeness to study equivalences between
circuit lower bounds and Black-Box Hypotheses.2

▶ Definition 29 (BBH-completeness). Let C be a set of circuits and A a complexity class. A
Boolean function f is complete for the C-BBH for A (or C-BBH-complete for A) iff

C-BBH for A ⇐⇒ f ̸∈ A.

When A is either implicitly understood or general, we say that f is C-BBH-complete.

Are there natural pairs (C, A) for which either C-Eval or C-Sat is C-BBH-complete
for A?

The Case of Nondeterministic Boxes. For the case of sets C of nondeterministic circuits,
the answer is yes. To state our theorem, we require one new concept. Recall that a
nondeterministic circuit C has a sequence of “normal” inputs x as well as a sequence of
“auxiliary” nondeterministic inputs y, and we say that C accepts x if there is a setting of y
such that C(x, y) = 1.

▶ Definition 30. For a given circuit C, a nondeterminization of C is a circuit C ′ in which
normal inputs to C have been converted into auxiliary nondeterministic inputs. A set C of
circuits is closed under nondeterminization if C ∈ C implies that every nondeterminization
of C is also in C.

2 It must be said that both authors are not entirely comfortable with the following definition of BBH-
completeness. Ideally, the following would be a consequence of f being BBH-complete, and the actual
definition would involve a notion of reducibility. However, in order to give a completeness concept that
fits all possible classes A and C at a high level of generality, it does not seem possible to use reductions:
a sound reducibility notion would inevitably have to depend on A (in particular, its allowed “sizes” and
its closure properties) directly.
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▶ Theorem 31. Let C be a reasonable set of circuits closed under nondeterminization. Assume
A has circuits of size 2no(1) and that A is closed under composition with an input-switching
function for C and C-Eval. Then C-Eval and C-Sat are C-BBH-complete for A.

Proof. We wish to prove that the following are equivalent:
1. C-BBH for A
2. C-Sat ̸∈ A
3. C-Eval ̸∈ A

(1) =⇒ (2) Follows from Theorem 28.
(2) =⇒ (3) We reduce C-Sat to C-Eval by observing that changing the inputs of a

nondeterministic circuit into auxiliary nondeterministic inputs preserves satisfiability.
Hence, given a nondeterministic circuit C, we can convert all of its input bits into
additional nondeterministic auxiliary inputs to obtain a circuit C ′, and then determine
whether C ′ is still satisfiable. However, C ′ has no remaining free inputs, so determining
satisfiability of C ′ is simply the problem of evaluating C ′ (with no inputs).

(3) =⇒ (1) Follows from Theorem 18. ◀

Interpreting Impagliazzo et al. as an Equivalence. Recently, Impagliazzo et al. [14] proved
that if the BBH is false for certain kinds of function properties, then the circuit satisfiability
problem has sub-exponential size circuits. In particular, they show that Ckt-Sat has
2no(1) -size circuits if a property P is highly sensitive on a function f that has sub-exponential
size circuits.

Impagliazzo et al. indicate that in some sense Ckt-Sat is BBH-complete, at least for
large analyst classes A. Specifically, if we consider only symmetric semantic properties, i.e.,
properties that depend only on the number of ones in the truth table of the input circuit, we
can define the following conjecture:

▶ Hypothesis 32 (Symmetric-BBH). Let P be a semantic and symmetric property of circuits.
Let {A′

s} be a polynomial size circuit family. Assume that for every circuit C of size s on n

inputs, A′
s(C) = 1 iff P (C) = 1. Then there exists a polynomial size oracle circuit family

{As} such that AC
s (1n0s−n) = 1 iff P (C) = 1.

Now [14] implies:

▶ Theorem 33 (Follows from [14]). The following are equivalent:
1. Ckt-Sat is not in P/poly.
2. The Symmetric-BBH is true.

Proof. The forward direction is Corollary 4.3 in [14]. For the converse direction, observe
that Ckt-Sat is a symmetric property that requires exponentially many black-box oracle
queries (and in particular, cannot be solved in P/poly with only black-box access to the
input circuit). Hence if the Symmetric-BBH is true, then Ckt-Sat also cannot be solved in
P/poly with white-box access to the input circuit, i.e., Ckt-Sat ̸∈ P/poly. ◀

6 Conclusion

In this paper, we introduced generalized Black-Box Hypotheses, which parameterize both the
type of “box” being analyzed, and the type of “analyst” examining such boxes. We showed
that generalized Black-Box Hypotheses can follow generically from circuit lower bounds, and
we showed how lower bounds for the circuit satisfiability problem are essentially equivalent
to Black-Box Hypotheses where the “boxes” correspond to nondeterministic circuits. We
conclude with some additional interesting directions to consider.
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What Other Lower Bounds Are Implied by Black-Box Hypotheses? In Section 5 we noted
a simple example of a lower bound implying a BBH: the C-BBH for A implies C-Sat ̸∈ A.
However, this lower bound is rather weak-looking: C-Sat is NP-complete for many very
simple C. Are there circuit-analysis problems which are likely not to be NP-complete, which
would still be implied by a Black-Box Hypothesis? We find this to be a very interesting
question, and we currently do not have good candidates for such a problem.

Randomized Lower Bounds and Their Black-Box Hypotheses. We have shown that
(deterministic) worst-case lower bounds can lead to results about analyzing circuits as boxes.
What results can be derived from average-case or randomized lower bounds? We have obtained
some preliminary results in this direction. For instance, if our analyst class A consists of
randomized algorithms rather than deterministic ones, we can still prove connections between
lower bounds against A and BBHs for A, along the lines of Section 4. There are likely other
connections like this to be found within the vast landscape of complexity theory.

Black-Box Hypotheses From More Lower Bounds? While we have shown that various
Black-Box Hypotheses do follow from certain lower bounds in a generic way, some lower
bounds don’t seem to imply a Black-Box Hypothesis. For example, a circuit-size hierarchy is
well-known: for nice functions s, there are functions computable with size-s(n) circuits that
do not have circuits of size less than s(n) − 5n (cf. [15]). This suggests the possibility that,
for analysts A implemented by circuits of size less than s(n) − 5n, and boxes C which are
circuits of size at least s(n), the C-Black-Box Hypothesis for A is true. However, our current
methods are unable to prove such a sharp result. Are there other intermediate lower bounds
(weaker than against e.g. C-Eval) that would still imply Black-Box Hypotheses?
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A Other Related Work

Obfuscation in Cryptography

In recent years, the theory of program obfuscation has exploded into a huge subject area within
cryptography, starting with an influential paper of Barak et al. [5] which crystallized several
key definitions and proved key impossibility results for obfuscation. Two major concepts
they proposed are virtual black-box obfuscation (VBB for short) and indistinguishability
obfuscation (iO for short), which we now describe briefly.

A VBB obfuscator O would take any efficient program/circuit C of size s, and output
the code of an “obfuscated” O(C) such that, for every probabilistic polynomial time (PPT)
adversary A, there is another PPT adversary A′, such that the probability A outputs 1 on
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the input O(C) is very close to the probability that A′ outputs 1 on (1n, 1s) when given
C as an oracle. That is, whatever computation A is doing on the code of O(C), A′ can
simulate that knowing only the size of C, its number of inputs, and with input-output access
to C. Barak et al. showed that there are tasks for which VBB obfuscation is impossible
assuming one-way functions exist. The notion of iO asks for a weaker guarantee: for all PPT
A, and all pairs of size-s circuits C1, C2 such that C1 ≡ C2, the probability A outputs 1 on
C1 is very close to the probability A outputs 1 on C2. In contrast to VBB, iO is possible
under plausible hardness conjectures (e.g., [11, 10, 6]), and it turns out to be very powerful,
capable of implementing deniable encryption, public-key encryption from one-way functions,
multiparty key exchange, and more (e.g., [21, 7]).

All of the above work on building obfuscation requires hardness assumptions that are
unproved (and are typically much stronger than P ̸= NP), and study how we might efficiently
transform arbitrary code into obfuscated code, relative to some class of adversarial analysts.

We briefly note the connection between VBB and the BBH. One can think of a VBB
obfuscator as an efficient mapping from general circuits to “obfuscated class of circuits”, a
restricted subclass of circuits, such that the BBH holds when the analyzable code C must
come from this restricted subclass. Namely, the VBB property says that, for any efficient
analyst that takes circuits from this class as input, there is an efficient black-box analyst
that can carry out essentially the same analyses. That is, when VBB is possible, there is a
“promise” class of circuits (the image of the obfuscator) for which a black-box hypothesis
is true. Accordingly, Barak et al. [5] showed that a “promise” version of the BBH is false,
assuming one-way functions exist.

Automated Formal Verification

Additionally, settings in which the Black-Box Hypothesis is false are of great interest in
automated formal verification. One central question is the following: what properties of a
program’s input-output behavior can be more efficiently tested by analyzing the program’s
code, than by treating it as a black box and simply running it on selected inputs? Many
properties of interest depend on the program’s behavior on all possible inputs, which may
be infeasible (or even impossible) to determine exhaustively. One may instead want to
analyze the code of the program in order to determine whether or not it satisfies the given
property. This may still be impossible, as many properties of interest are Turing-complete
when considered over the space of all possible programs. However, by restricting the class of
programs being tested, some such verification problems can become feasible, cf. [16, 17, 2].
In fact, in any setting where the class of programs being analyzed is restricted such that the
black box hypothesis is false, there must exist properties that can be tested by analyzing the
program but not by treating it as a black box.

B Proof of Theorem 18

▶ Reminder of Theorem 18. Let A be a circuit class, f : {0, 1}∗ → {0, 1} be a decision
problem, and C be a set of circuits with the properties:
1. A contains neither f nor ¬f .
2. A is closed under composition with an input-switching function I for C and f , in the

sense that for every function g computable by a circuit family in A and for every C ∈ C,
the function y 7→ g(I(C, y)) is also computable by a circuit family in A.

Then for every property P over C, if P is semantic and computable in A, then for all input
lengths n, P restricted to circuits on n-bit inputs is also trivial. Furthermore, if A also
contains {Orn ◦ And2} (or {Andn ◦ Or2}), then the C-BBH for A is true.



B. K. Chapman and R. R. Williams 29:19

Proof. Let A and f satisfy the above properties, and let I be the input-switching function
for C and f . Let P be a semantic property computable in A.

First, we will prove that P is trivial. The idea is that, if P is not trivial, we can use
a circuit family for P to construct a circuit in A for computing f , a contradiction to the
assumed lower bound on f .

Let k ∈ N. Assume WLOG that for every circuit G computing g on k inputs, P (G) = 0.
Assume for sake of contradiction that there is a k-input Ck such that P (Ck) = 1. For an
n-bit input y, consider the circuit Dy = I(Ck, y). Note that Dy computes some Boolean
function on k input bits. From the definition of I, Dy(x) = Ck(x) if f(y) = b, and
otherwise Dy(x) = G(x). Because P is semantic, P (Dy) = P (Ck) = 1 if f(y) = b, and
P (Dy) = P (G) = 0 otherwise. In other words, we have P (Dy) = b ⊗ f(y) for all y.

Since A is closed under composition with I(CK , −), and P is computable in A by
assumption, the circuit

Dy

I(Ck, −)

y

P

is also computable in A. However, P (Dy) = f(y) or ¬f(y), which are not computable in
A, a contradiction. It follows that for all Ck on k inputs, P (Ck) = 0, so P (on circuits
containing k inputs) is trivial.

As in Theorem 16, there exists a circuit family {As} in A (with no oracle gates) such
that for any circuit C of size s on n inputs, As(1n0s−n) = P (C). ◀

C Proof of Theorem 21

▶ Reminder of Theorem 21. For all depths d ≥ 2 and distinct primes p ̸= q, the AC0
d[p]-BBH

for 2so(1)-size AC0[q] is true.

Proof. Follows from Theorem 20. We make use of the fact that the Modp function is
computable in linear size AC0

d[p] but requires exponential size in AC0[q] [18, 23], and that in
AC0 we can mask a given AC0

d[p] circuit with a given Modp function, without increasing its
depth.

Let d ≥ 2, A be 2so(1)-size AC0[q], f = Modp, C = AC0
d[p], C1 = Or ◦ AC0

d−1[p],
C2 = And ◦ AC0

d−1[p], and C3 = Modp ◦ AC0
d−1[p]. (Note that C = C1 ∪ C2 ∪ C3.) We now

define a function I : C × {0, 1}∗ → {0, 1}∗, so that I(C, y) = ⟨Dy⟩, where Dy has the same
number of inputs as C. We condition on whether the input circuit C comes from C1, C2,
or C3.

Case 1. If C ∈ C1, then it has the form ∨m ◦ C ′, where C ′ is a depth-(d − 1) circuit with n

inputs and m outputs, and ∨m is an Or of fan-in m. For a k-bit vector y, we construct Dy
as follows:
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∨m+1

C ′ Modp

x y

Then for all x and y, Dy(x) = C(x) if Modp(y) = 0, and Dy(x) = 1 otherwise. Hence the
restriction of I to C1 × {0, 1}∗ is an input-switching function for C1 and f .

Case 2. If C ∈ C2, we construct Dy similarly to case (1). Assuming C = ∧m ◦ C ′ for the
same sort of C ′, we can construct Dy as follows:

∧m+1

C ′ Modp

x y

Then for all x and y, Dy(x) = C(x) if Modp(y) = 1, and Dy(x) = 0 otherwise. Hence the
restriction of I to C2 × {0, 1}∗ is an input-switching function for C2 and f .

Case 3. If C ∈ C3, then C is a Modp gate of fan-in m, composed with some depth-(d − 1)
circuit C ′ having n inputs and m outputs. We define a ⊗m×k gate to take m + k inputs
x1, . . . , xm, y1, . . . , yk, and output xi · yj for all i, j, and define a circuit D′

y(x) as follows:

Modp

⊗m×k

C ′ y

x

Note that for C of depth d, D′
y has depth d + 1. However, when treating y as a constant,

each C ′(x)i ∧yj simplifies to a single wire (either C ′(x)i if yj = 1, or the constant 0 if yj = 0).
Performing these simplifications and removing the layer of And gates, we get a circuit Dy of
depth d. (Note that each bit in ⟨Dy⟩ still only depends on at most one bit of y.) Now for
all x and y, Dy(x) = Modp (C ′(x) ⊗ y) = Modp (C ′(x)) × Modp(y) = C(x) × Modp(y).
That is, Dy(x) = C(x) if Modp(y) = 1, and Dy(x) = 0 otherwise. Hence the restriction of
I to C3 × {0, 1}∗ is an input-switching function for C3 and f .
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Next, we observe that in every case, each bit in ⟨Dy⟩ depends on only one bit of y, so
A is closed under composition with I (a projection). Finally, there are circuits C1, C2, C3,
which have an Or, And, and Modp output gate (respectively), yet C1 ≡ C2 ≡ C3 (e.g. they
can ignore their input and ouput the constant 0). Hence ∼k as defined in Theorem 20 is the
universal relation. Now from Theorem 20, every semantic property P over C computable in
A is trivial, so the C-BBH for A is true. ◀

D Proof of Theorem 23

▶ Reminder of Theorem 23. For all depths d ≥ 2, the AC0
d-BBH for 2so(1)-size AC0

d−1 is
true.

Proof. We proceed as in Theorem 21. Let d ≥ 2, f be the depth-d Sipser function, A be
2so(1) -size AC0

d−1, C = AC0
d, C1 = And◦AC0

d−1, and C2 = Or◦AC0
d−1. (Note that C = C1 ∪C2.)

We now define a function I : C × {0, 1}∗ → {0, 1}∗, so that I(C, y) = ⟨Dy⟩, where Dy has
the same number of inputs as C. We condition on whether the input circuit C comes from
C1 or C2.

Case 1. If C ∈ C1, then it has the form ∧m ◦ C ′, where C ′ is a depth-(d − 1) circuit with n

inputs and m outputs, and ∧m is an And of fan-in m. Let k ∈ N, and take n′ = (2k/d)1/(d−1),
so that fd,n′ has k inputs. For a k-bit vector y, we construct D′

y as follows:

∧m+1

C ′ F d,n′

x y

Here, F d,n′ denotes the obvious depth-d circuit computing the Sipser function fd,n′ . Now
by collapsing the output And gate of F d,n′ into the ∧m+1, we obtain a depth-d circuit Dy
on n inputs such that Dy(x) = C(x) if fd,n′(y) = 1, and Dy(x) = 0 otherwise. Hence the
restriction of I to C1 × {0, 1}∗ is an input-switching function for C1 and f .

Case 2. If C ∈ C2, then it has the form ∨m ◦ C ′. In this case, we construct the circuit D′
y

as follows:

∨m+1

C ′ F ′d,n′

x y

Here F ′d,n′ denotes the circuit obtained by replacing all And gates in F d,n′ with Or gates
and vice-versa, and negating all of the input wires. By collapsing the output Or gate of
F ′d,n′ into the ∨m+1, we obtain a depth-d circuit Dy on n inputs such that Dy(x) = C(x)
if fd,n′(y) = 1, and Dy(x) = 1 otherwise. Hence the restriction of I to C2 × {0, 1}∗ is an
input-switching function for C2 and f .
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As before, we observe that each bit in ⟨Dy⟩ depends on at most one bit of y, and that
there are circuits C1 and C2 which have an And and Or output gate (respectively) and
compute the constant 0 function. Applying Theorem 20, every semantic property P over C
computable in A is trivial, so the C-BBH for A is true. ◀
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also show how to connect this new semantics to the usual standard interpretation of ZX-diagrams.
This model allows us to have a new look at what ZX-diagrams compute, and give a more local,
operational view of the semantics of ZX-diagrams.
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1 Introduction

Quantum computing is a model of computation where data is stored on the state of particles
governed by the laws of quantum physics. The theory is well established enough to have
allowed the design of quantum algorithms whose applications are gathering interests from
both public and private actors [29, 31, 17].

One of the fundamental properties of quantum objects is to have a dual interpretations.
In the first one, the quantum object is understood as a particle: a definite, localized point
in space, distinct from the other particles. Light can be for instance regarded as a set of
photons. In the other interpretation, the object is understood as a wave: it is “spread-out”
in space, possibly featuring interference. This is for instance the interpretation of light as an
electromagnetic wave.

The standard model of computation uses quantum bits (qubits) for storing information and
quantum circuits [30] for describing quantum operations with quantum gates, the quantum
version of Boolean gates. Although the pervasive model for quantum computation, quantum
circuits’ operational semantics is only given in an intuitive manner. A quantum circuit is
understood as some sequential, low-level assembly language where quantum gates are opaque
black-boxes. In particular, quantum circuits do not natively feature any formal operational
semantics giving rise to abstract reasoning, equational theory or well-founded rewrite system.

From a denotational perspective, quantum circuits are literal description of tensors
and applications of linear operators. These can be described with the historical matrix
interpretation [30], or with the more recent sum-over-paths semantics [1, 6] – this can be
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regarded as a wave-style semantics. In such a semantics, the state of all of the quantum bits
of the memory is mathematically represented as a vector in a (finite dimensional) Hilbert
space: the set of quantum bits is a wave flowing in the circuit, from the inputs to the output,
while the computation generated by the list of quantum gates is a linear map from the
Hilbert space of inputs to the Hilbert space of outputs.

In recent years, an alternative model of quantum computation with better formal prop-
erties than quantum circuits has emerged: the ZX-Calculus [7]. Originally motivated by
a categorical interpretation of quantum theory, the ZX-Calculus is a graphical language
that represents linear maps as special kinds of graphs called diagrams. Unlike the quantum
circuit framework, the ZX-Calculus comes with a sound and complete [24, 33], well-defined
equational theory on a small set of canonical generators making it possible to reason on
quantum computation by means of local graph rewriting.

The canonical semantics of a ZX diagram consists in a linear operator. This operator
can be represented as a matrix or through the more recent sum-over-path semantics [35].
But in both cases, these semantics give a purely functional, wave-style interpretation to the
diagram. Nonetheless, this graphical language – and its equational theory – has been shown
to be amenable to many extensions and is being used in a wide spectrum of applications
ranging from quantum circuit optimization [14, 4], verification [25, 15, 13] and representation
such as MBQC patterns [16] or error-correction [12, 11].

The standard models for both quantum circuits and ZX-Calculus is therefore based on
a wave-style interpretation. An alternative operational interpretation of quantum circuit
following a particle-style semantics has recently been investigated in the literature [9]. In
this model, quantum bits are intuitively seen as tokens flowing inside the wires of the circuit.
Formally, a quantum circuit is interpreted as a token-based automata, based on Geometry
of Interaction (GoI) [21, 20, 19, 22]. Among its many instantiations, GoI can be seen as a
procedure to interpret a proof-net [23] – graphical representation of proofs of linear logic [18]
– as a token-based automaton [10, 2]. The flow of a token inside a proof-net characterises an
invariant of the proof – its computational content. This framework is used in [9] to formalize
the notion of qubits-as-tokens flowing inside a higher-order term representing a quantum
computation – that is, computing a quantum circuit. However, in this work, quantum
gates are still regarded as black-boxes, and tokens are purely classical objects requiring
synchronicity: to fire, a two-qubit gate needs its two arguments to be ready.

As a summary, despite their ad-hoc construction, quantum circuits can be seen from
two perspectives: computation as a flow of particles (i.e. tokens), and as a wave passing
through the gates. On the other hand, although ZX-Calculus is a well-founded language, it
still misses such a particle-style perspective.

In this paper, we aim at giving a novel insight on the computational content of a ZX term
in an asynchronous way, emphasizing the graph-like behavior of a ZX-diagram.

Following the idea of using a token machine to exhibit the computational content of
a proof-net or a quantum circuit, we present in this paper a token machine for the ZX-
Calculus. To exemplify the versatility of the approach, we show how to extend it to mixed
processes [8, 5]. To assess the validity of the semantics, we show how it links to the standard
interpretation of ZX-diagrams. While the standard interpretation of ZX-diagrams proceeds
with diagram decomposition as tensors and products of matrices, the tokens flowing inside
the diagram really exploits the connectivity of the diagram.

This ability illustrates one fundamental difference between our approach and the one
in [9]. The latter follows a classical control approach: if qubits can be in superposition, each
qubit inhabits a token sitting in one single position in the circuit. For instance, on the circuit
on the right, the state of the two tokens
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2 (|00⟩ + |10⟩). Although the two tokens can be regarded as being in superposition,

their position is not. In our system, tokens and positions can be superposed. The second
fundamental difference lies in the asynchronicity of our token-machine. Unlike [9], we rely
on the canonical generators of ZX-diagrams: tokens can travel through these nodes in an
asynchronous manner. For instance, in the above circuit the orange token has to wait for the
blue token before crossing the CNOT gate. As illustrated in Table 1, in our system one token
can interact with multi-wire nodes. Finally, as formalized in Theorem 27, a third difference
is that compared to [9], the token-machine we present is non-oriented: in the circuit above,
tokens have to start on the left and flow towards the right of the circuit whereas our system
is agnostic on where tokens initially “start”.

Plan of the paper. The paper is organized as follows: in Section 2 we present the ZX-
Calculus and its standard interpretation into Qubit, and its axiomatization.

In Section 3 we present the actual asynchronous token machine and its semantics and
show that it is sound and complete with regard to the standard interpretation of ZX-diagrams.
Finally, in Section 4 we present an extension of the ZX-Calculus to mixed processes and
adapt the token machine to take this extension into account. Proofs are in the appendix.

2 The ZX-Calculus

The ZX-Calculus is a powerful graphical language for reasoning about quantum computation
introduced by Bob Coecke and Ross Duncan [7]. A term in this language is a graph – called
a string diagram – built from a core set of primitives. In the standard interpretation of
ZX-Calculus, a string diagram is interpreted as a matrix. The language is equipped with an
equational theory preserving the standard interpretation.

2.1 Pure Operators
The so-called pure ZX-diagrams are generated from a set of primitives, given on the right:
the Identity, Swap, Cup, Cap, Green-spider and H-gate:e0,

e0 e1
, e0 e1, e0 e1,

...e1 en

e′
1 e′

m

...
α ,

e0

e1

n,m∈N
α∈R

ei,e′
i∈E

We shall be using the following labeling convention: wires (edges) are labeled with ei, taken
from an infinite set of labels E . We take for granted that distinct wires have distinct labels.
The real number α attached to the green spiders is called the angle. ZX-diagrams are read
top-to-bottom: dangling top edges are the input edges and dangling edges at the bottom
are output edges. For instance, Swap has 2 input and 2 output edges, while Cup has 2 input
edges and no output edges. We write E(D) for the set of edge labels in the diagram D, and
I(D) (resp. O(D)) for the list of input edges (resp. output edges) of D. We denote :: the
concatenation of lists.
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ZX-primitives can be composed either sequentially or in parallel:

D2 ◦D1 :=

...

...

...
D2

D1
D1 ⊗D2 :=

...

...
D1

...

...
D2

We write ZX for the set of all ZX-diagrams. Notice that when composing diagrams with
(_ ◦ _), we “join” the outputs of the top diagram with the inputs of the bottom diagram.
This requires that the two sets of edges have the same cardinality. The junction is then made
by relabeling the input edges of the bottom diagram by the output labels of the top diagram.

▶ Convention 1. We define a second spider, red this time, by composition of Green-spiders
and H-gates, as shown below.

α

...
:=α

...

...

...

▶ Convention 2. We write σ for a permutation of wires, i.e any diagram generated by{
,

}
with sequential and parallel composition. We write the Cap as η and the Cup as

ϵ. We write Zn
k (α) (resp, Xn

k ) for the green-node (resp, red-node) of n inputs, k outputs
and parameter α and H for the H-gate. In the remainder of the paper we omit the edge
labels when not necessary . Finally, by abuse of notation a green or red node with no explicit
parameter holds the angle 0:

...

...
0

...

...
:= and

...

...
0

...

...
:= .

2.2 Standard Interpretation
We understand ZX-diagrams as linear operators through the standard interpretation. In-
formally, wires are interpreted with the two-dimensional Hilbert space, with orthonormal
basis written as {|0⟩ , |1⟩}, in Dirac notation [30]. Vectors of the form |.⟩ (called “kets”) are
considered as columns vector, and therefore |0⟩ = ( 1

0 ), |1⟩ = ( 0
1 ), and α |0⟩ + β |1⟩ = ( α

β ).
Horizontal juxtaposition of wires is interpreted with the Kronecker, or tensor product. The
tensor product of spaces V and W whose bases are respectively {vi}i and {wj}j is the vector
space of basis {vi ⊗ wj}i,j , where vi ⊗ wj is a formal object consisting of a pair of vi and
wj . We denote |x⟩ ⊗ |y⟩ as |xy⟩. In the interpretation of spiders, we use the notation |0m⟩ to
represent an m-fold tensor of |0⟩. As a shortcut notation, we write |ϕ⟩ for column vectors
consisting of a linear combinations of kets. Shortcut notations are also used for two very
useful states: |+⟩ := |0⟩+|1⟩√

2 and |−⟩ := |0⟩−|1⟩√
2 . Dirac also introduced the notation “bra” ⟨x|,

standing for a row vector. So for instance, α ⟨0| + β ⟨1| is ( α β ). If |ϕ⟩ = α |0⟩ + β |1⟩, we
then write ⟨ϕ| for the vector α ⟨0| + β ⟨1| (with (.) the complex conjugation). The notation
for tensors of bras is similar to the one for kets. For instance, ⟨x| ⊗ ⟨y| = ⟨xy|. Using this
notation, the scalar product is transparently the product of a row and a column vector:〈
ϕ ψ

〉
, and matrices can be written as sums of elements of the form |ϕ⟩⟨ψ|. For instance,

the identity on C2 is ( 1 0
0 1 ) = ( 1 0

0 0 ) + ( 0 0
0 1 ) = ( 1

0 ) ( 1 0 ) + ( 0
1 ) ( 0 1 ) = |0⟩⟨0| + |1⟩⟨1|. For

more information on how Hilbert spaces, tensors, compositions and bras and kets work, we
invite the reader to consult e.g. [30].

In the standard interpretation [7], a diagram D is mapped to a map between finite
dimensional Hilbert spaces of dimensions some powers of 2: JDK ∈ Qubit := {C2n → C2m |
n,m ∈ N}.
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=
D

=...
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D

...
...

... ...
= =

α

...

...
= α

...

...

σ
...

σ′
...

...

...
α =

...

...
α =

Figure 1 Connectivity rules. D represents any ZX-diagram, and σ, σ′ any permutation of wires.

If D has n inputs and m outputs, its interpretation is a map JDK : C2n → C2m (by abuse
of notation we shall use the notation JDK : n → m). It is defined inductively as follows.u

ww
v

...

...

...
D2

D1

}

��
~ =

t ...

...
D2

|

◦

t ...

...
D1

| t ...

...
D1

...

...
D2

|

=
t ...

...
D1

|

⊗

t ...

...
D2

|

r z
= idC2 = |0⟩⟨0| + |1⟩⟨1|

r z
=

∑
i,j∈{0,1}

|ji⟩⟨ij|

q y
=

q y† = |00⟩ + |11⟩
r z

= |+⟩⟨0| + |−⟩⟨1|
t

α

n...

...
m

|

= |0m⟩⟨0n| + eiα |1m⟩⟨1n|

t

α

n...

...
m

|

= |+m⟩⟨+n| + eiα |−m⟩⟨−n|

2.3 Properties and structure
In this section, we list several definitions and known results that we shall be using in the
remainder of the paper. See e.g. [34] for more information.

Universality. ZX-diagrams are universal in the sense that for any linear map f : n → m,
there exists a diagram D of ZX such that JDK = f .

The price to pay for universality is that different diagrams can possibly represent the
same quantum operator. There exists however a way to deal with this problem: an equational
theory. Several equational theories have been designed for various fragments of the language
[3, 26, 24, 27, 28, 33].

Core axiomatization. Despite this variety, any ZX axiomatization builds upon the core set
of equations provided in Figure 1, meaning that edges really behave as wires that can be
bent, tangled and untangled. They also enforce the irrelevance on the ordering of inputs and
outputs for spiders. Most importantly, these rules preserve the standard interpretation given
in Section 2.2. We will use these rules – sometimes referred to as “only connectivity matters”
– , and the fact that they preserve the semantics extensively in the proofs of the results of the
paper.

Completeness. The ability to transform a diagram D1 into a diagram D2 using the rules of
some axiomatization zx (e.g. the core one presented in Figure 1) is denoted zx ⊢ D1 = D2.

The axiomatization is said to be complete whenever any two diagrams representing the
same operator can be turned into one another using this axiomatization. Formally:

JD1K = JD2K ⇐⇒ zx ⊢ D1 = D2.

MFCS 2021
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It is common in quantum computing to work with restrictions of quantum mechanics. Such
restrictions translate to restrictions to particular sets of diagrams – e.g. the π

4 -fragment which
consists of all ZX-diagrams where the angles are multiples of π

4 . There exists axiomatizations
that were proven to be complete for the corresponding fragment (all the aforementioned
references tackle the problem of completeness).

The developments of this paper are given for the ZX-Calculus in its most general form,
but everything in the following also works for fragments of the language.

Input and output wires. An important result which will be used in the rest of the paper is
the following:

▶ Theorem 3 (Choi-Jamiołkowski). There are isomorphisms between {D ∈ ZX | D : n → m}
and {D ∈ ZX | D : n− k → k +m} (when k ≤ n).

To see how this can be true, simply add cups or caps to turn input edges to output edges (or
vice versa), and use the fact that we work modulo the rules of Figure 1.

When k = n, this isomorphism is referred to as the map/state duality. A related but
more obvious isomorphism between ZX-diagrams is obtained by permutation of input wires
(resp. output wires).

2.4 Notions of Graph Theory in ZX
Theorem 3 is essential: it allows us to transpose notions of graphs into ZX-Calculus. It is for
instance possible to define a notion of connectivity.

▶ Definition 4 (Connected Components). Let D be a non-empty ZX-diagram. Consider all
of the possible decompositions with D1, ..., Dk ∈ ZX and σ, σ′ permutations of wires:

D =
...
D1

σ′
...

... σ
...

...
Dk

...
...

The largest such k is called the number of connected components of D. It induces a decom-
position. The induced D1, ..., Dn are called the connected components of D. If D has only
one connected component, we say that D is connected.

We can also consider the notions of paths, distance and cycles of usual multi-graphs.
We denote Paths(e0, en) the set of paths from edge e0 to en. We denote Paths(D) (resp.
Cycles(D)) the set of paths (resp. cycles) of diagram D. For a path p, we denote |p| its
length. We denote d(e0, en) the distance i.e. the length of the shortest path between e0
and en.

3 A Token Machine for ZX-diagrams

Inspired by the Geometry of Interaction [21, 20, 19, 22] and the associated notion of token
machine [10, 2] for proof nets [23], we define here a first token machine on pure ZX-diagrams.
The token consists of an edge of the diagram, a direction (either going up, noted ↑, or down,
noted ↓) and a bit (state). The idea is that, starting from an input edge the token will
traverse the graph and duplicate itself when encountering an n-ary node (such as the green
and red) into each of the input / output edges of the node. Notice that it is not the case for
token machines for proof-nets where the token never duplicates itself. This duplication is
necessary to make sure we capture the whole linear map encoded by the ZX-diagram. Due
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to this duplication, two tokens might collide together when they are on the same edge and
going in different directions. The result of such a collision will depend on the states held
by both tokens. For a cup, cap or identity diagram, the token will simply traverse it. As
for the Hadamard node the token will traverse it and become a superposition of two tokens
with opposite states. Therefore, as tokens move through a diagram, some may be added,
multiplied together, or annihilated.

▶ Definition 5 (Tokens and Token States). Let D be a ZX-diagram. A token in D is a triplet
(e, d, b) ∈ E(D) × {↓, ↑} × {0, 1}. We shall omit the commas and simply write (e d b). The set
of tokens on D is written tk(D). A token state s is then a multivariate polynomial over C,
evaluated in tk(D). We define tkS(D) := C[tk(D)] the algebra of multivariate polynomials
over tk(D).

In the token state t =
∑

i αi t1,i · · · tni,i, where the tk,i’s are tokens, the components
αi t1,i · · · tni,i are called the terms of t.

A monomial (e1 d1, b1) · · · (en dn, bn) encodes the state of n tokens in the process of flowing
in the diagram D. A token state is understood as a superposition – a linear combination – of
multi-tokens flowing in the diagram.

▶ Convention 6. In token states, the sum (+) stands for the superposition while the product
stands for additional tokens within a given diagram. We follow the usual convention of
algebras of polynomials: for instance, if ti stands for some token (ei di bi), then (t1 + t2)t3 =
(t1t2)+(t1t3), that is, the superposition of t1,t2 flowing in D and t1,t3 flowing in D. Similarly,
we consider token states modulo commutativity of sum and product, so that for instance the
monomial t1t2 is the same as t2t1. Notice that 0 is an absorbing element for the product
(0 × t = 0) and that 1 is a neutral element for the same operation (1 × t = t).

3.1 Diffusion and Collision Rules
The tokens in a ZX-diagram D are meant to move inside D. The set of rules presented in
this section describes an asynchronous evolution, meaning that given a token state, we will
rewrite only one token at a time. The synchronous setting is discussed in Section 5.

▶ Definition 7 (Asynchronous Evolution). Token states on a diagram D are equipped with
two transition systems:

a collision system (⇝c), whose effect is to annihilate tokens;
a diffusion sub-system (⇝d), defining the flow of tokens within D.

The two systems are defined as follows. With X ∈ {d, c} and 1 ≤ j ≤ ni, if ti,j are tokens in
tk(D), then using Convention 6,∑

i

αiti,1 · · · ti,j · · · ti,ni
⇝X

∑
i

αiti,1 · · ·

(∑
k

βkt
′
k

)
· · · ti,ni

provided that ti,j ⇝X

∑
k βkt

′
k according to the rules of Table 1. In the table, each rule

corresponds to the interaction with the primitive diagram constructor on the left-hand-side.
Variables x and b span {0, 1}, and ¬ stands for the negation. In the green-spider rules, eiαx

stands for the the complex number cos(αx) + i sin(αx) and not an edge label.
Finally, as it is customary for rewrite systems, if (→) is a step in a transition system,

(→∗) stands for the reflexive, transitive closure of (→).

We aim at a transition system marrying both collision and diffusion steps. However, for
consistency of the system, the order in which we apply them is important as illustrated by
the following example.

MFCS 2021
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Table 1 Asynchronous token-state evolution, for all x, b ∈ {0, 1}.

e0 (e0 ↓ x)(e0 ↑ x)⇝c 1 (e0 ↓ x)(e0 ↑ ¬x)⇝c 0 (Positive/Negative Collision)
e0 e1 (eb ↓ x)⇝d (e¬b ↑ x) ( -diffusion)
e0 e1 (eb ↑ x)⇝d (e¬b ↓ x) ( -diffusion)

(ek ↓ x)⇝d e
iαx
∏
i̸=k

(ei ↑ x)
∏

j

(e′
j ↓ x)

(e′
k ↑ x)⇝d e

iαx
∏
j ̸=k

(e′
j ↓ x)

∏
i

(ei ↑ x)

(e0 ↓ x)⇝d (−1)x 1√
2

(e1 ↓ x) + 1√
2

(e1 ↓ ¬x)

(e1 ↑ x)⇝d (−1)x 1√
2

(e0 ↑ x) + 1√
2

(e0 ↑ ¬x)

...e1 en

e′
1 e′

m

...
α

e0

e1

( -Diffusion)

(
...
... -Diffusion)

▶ Example 8. Consider the equality given by the ZX equational theories: = .

If we drop a token with bit 0 at the top, we hence expect to get a single token with bit 0 at
the bottom. We underline the token that is being rewritten at each step. This is what we
get when giving the priority to collisions:

a

d

b c :: (a ↓ 0)⇝d (b ↓ 0)(c ↓ 0)⇝d (d ↓ 0)(c ↑ 0)(c ↓ 0)⇝c (d ↓ 0)

Notice that the collision (c ↑ 0)(c ↓ 0) rewrites to 1, and therefore the product (d ↓ 0) × 1 =
(d ↓ 0). If however we decide to ignore the priority of collisions, we may end up with a
non-terminating run, unable to converge to (d ↓ 0):

(a ↓ 0)⇝d (b ↓ 0)(c ↓ 0)⇝d (d ↓ 0)(c ↑ 0)(c ↓ 0)⇝d (d ↓ 0)(a ↑ 0)(b ↓ 0)(c ↓ 0)⇝d . . .

We therefore set a rewriting strategy as follows.

▶ Definition 9 (Collision-Free). A token state s of tkS(D) is called collision-free if for all
s′ ∈ tkS(D), we have s ̸⇝c s

′.

▶ Definition 10 (Token Machine Rewriting System). We define a transition system ⇝ as
exactly one ⇝d rule followed by all possible ⇝c rules. In other words, t⇝ u if and only if
there exists t′ such that t⇝d t

′ ⇝∗
c u and u is collision-free.

In [9], a token arriving at an input of a gate is blocked until all the inputs of the gates
are populated by a token, at which point all the tokens go through at once (while obviously
changing the state). The control is purely classical: it is causal. In our approach, the state
of the system is global and there is no explicit notion of qubit. Instead, tokens collect the
operation that is to be applied to the input qubits.

3.2 Strong Normalization and Confluence
The token machine Rewrite System of Definition 10 ensures that the collisions that can
happen always happen. The system does not a priori forbid two tokens on the same edge,
provided that they have the same direction. However this is something we want to avoid as
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there is no good intuition behind it: We want to link the token machine to the standard
interpretation, which is not possible if two tokens can appear on the same edge.

In this section we show that, under a notion of well-formedness characterizing token
uniqueness on each edge, the Token State Rewrite System (⇝) is strongly normalizing and
confluent.

▶ Definition 11 (Polarity of a Term in a Path). Let D be a ZX-diagram, and p ∈ Paths(D)
be a path in D. Let t = (e, d, x) ∈ tk(D). Then:

P (p, t) =


1 if e ∈ p and e is d-oriented
−1 if e ∈ p and e is ¬d-oriented
0 if e /∈ p

We extend the definition to subterms α t1...tm of a token-state s:

P (p, 0) = P (p, 1) = 0, P (p, α t1...tm) = P (p, t1) + ...+ P (p, tm).

In the following, we shall simply refer to such subterms as “terms of s”.

▶ Example 12. In the (piece of) diagram presented on the right, the blue directed line
p = (e0, e1, e2, e3, e4) is a path. The orientation of the edges in the path is represented
by the arrow heads, and e3 for instance is ↓-oriented in p which implies that we have
P (p, (e3 ↑ x)) = −1.

e0
e1

e2 e3
e4

▶ Definition 13 (Well-formedness). Let D be a ZX-diagram, and s ∈ tkS(D) a token state
on D. We say that s is well-formed if for every term t in s and every path p ∈ Paths(D) we
have P (p, t) ∈ {−1, 0, 1}.

▶ Proposition 14 (Invariance of Well-Formedness). Well-formedness is preserved by (⇝): if
s⇝∗ s′ and s is well-formed, then s′ is well-formed.

Well-formedness prevents the unwanted scenario of having two tokens on the same wire,
and oriented in the same direction (e.g. (e0 ↓ x)(e0 ↓ y)). As shown in the Proposition 15,
this property is in fact stronger.

▶ Proposition 15 (Full Characterisation of Well-Formed Terms). Let D be a ZX-diagram, and
s ∈ tkS(D) be not well-formed, i.e. there exists a term t in s, and p ∈ Paths(D) such that
|P (p, t)| ≥ 2. Then we can rewrite s ⇝ s′ such that a term in s′ has a product of at least
two tokens of the form (e0, d,_).

Although well-formedness prevents products of tokens on the same wire, it does not
guarantee termination: for this we need to consider polarities along cycles.

▶ Proposition 16 (Invariant on Cycles). Let D be a ZX-diagram, and c ∈ Cycles(D) a cycle.
Let t1, . . . , tn be tokens, and s be a token state such that t1...tn ⇝∗ s. Then for every non-null
term t in s we have P (c, t1...tn) = P (c, t).
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This proposition tells us that the polarity is preserved inside a cycle. By requiring the
polarity to be 0, we can show that the token machine terminates. This property is defined
formally in the following.

▶ Definition 17 (Cycle-Balanced Token State). Let D be a ZX-diagram, and t a term in a
token state on D. We say that t is cycle-balanced if for all cycles c ∈ Cycles(D) we have
P (c, t) = 0. We say that a token state is cycle-balanced if all its terms are cycle-balanced.

To show that being cycle-balanced implies termination, we need the following intermediate
lemma. This essentially captures the fact that a token in the diagram comes from some other
token that “traveled” in the diagram earlier on.

▶ Lemma 18 (Rewinding). Let D be a ZX-diagram, and t be a term in a well-formed token
state on D, and such that t⇝∗ ∑

i λiti, with (en, d, x) ∈ t1. If t is cycle-balanced, then there
exists a path p = (e0, ..., en) ∈ Paths(D) such that en is d-oriented in p, and P (p, t) = 1.

We can now prove strong-normalization.

▶ Theorem 19 (Termination of well-formed, cycle-balanced token state). Let D be a ZX-
diagram, and s ∈ tkS(D) be well-formed. The token state s is strongly normalizing if and
only if it is cycle-balanced.

Intuitively, this means that tokens inside a cycle will cancel themselves out if the token
state is cycle-balanced. Since cycles are the only way to have a non-terminating token
machine, we are sure that our machine will always terminate.

▶ Proposition 20 (Local Confluence). Let D be a ZX-diagram, and s ∈ tkS(D) be well-
formed and collision-free. Then, for all s1, s2 ∈ tkS(D) such that s1

⇝s⇝ s2, there exists
s′ ∈ tkS(D) such that s1 ⇝∗ s′ ∗ ⇝s2.

▶ Corollary 21 (Confluence). Let D be a ZX-diagram. The rewrite system ⇝ is confluent
for well-formed, collision-free and cycle-balanced token states.

▶ Corollary 22 (Uniqueness of Normal Forms). Let D be a ZX-diagram. A well-formed and
cycle-balanced token state admits a unique normal form under the rewrite system ⇝.

3.3 Semantics and Structure of Normal Forms
In this section, we discuss the structure of normal forms, and relate the system to the
standard interpretation presented in Section 2.

▶ Proposition 23 (Single-Token Input). Let D : n → m be a connected ZX-diagram with
I(D) = [ai]0<i≤n and O(D) = [bi]0<i≤m, 0 < k ≤ n and x ∈ {0, 1}, such that:

JDK ◦ (idk−1 ⊗ |x⟩ ⊗ idn−k) =
2m+n−1∑

q=1
λq |y1,q, ..., ym,q⟩⟨x1,q, ..., xk−1,q, xk+1,q, ..., xn,q|

Then: (ak ↓ x)⇝∗
2m+n−1∑

q=1
λq

∏
i

(bi ↓ yi,q)
∏
i̸=k

(ai ↑ xi,q)

This proposition conveys the fact that dropping a single token in state x on wire ak gives
the same semantics as the one obtained from the standard interpretation on the ZX-diagram,
with wire ak connected to the state |x⟩.

Proposition 23 can be made more general. However, we first need the following result on
ZX-diagrams:
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▶ Lemma 24 (Universality of Connected ZX-Diagrams). Let f : C2n → C2m . There exists a
connected ZX-diagram Df : n → m such that JDf K = f .

▶ Proposition 25 (Multi-Token Input). Let D be a connected ZX-diagram with I(D) =
[ai]1≤i≤n and O(D) = [bi]1≤i≤m; with n ≥ 1.

If: JDK ◦

( 2n∑
q=1

λq |x1,q, ..., xn,q⟩

)
=

2m∑
q=1

λ′
q |y1,q, ..., ym,q⟩

then:
2n∑

q=1
λq

n∏
i=1

(ai ↓ xi,q)⇝∗
2m∑
q=1

λ′
q

m∏
i=1

(bi ↓ yi,q)

▶ Example 26 (CNOT). In the ZX-Calculus, the CNOT-gate (up to some scalar) can be

constructed as follows:

u

wwww
v

a1

a2

b1

e1

e2 e3

e4

b2

}

����
~

= 1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


On classical inputs, this gate applies the NOT-gate on the second bit if and only if the

first bit is at 1. Therefore if we apply the state |10⟩ to it we get 1√
2 |11⟩.

We demonstrate how the token machine can be used to get this result. Following
Proposition 25, we start by initialising the Token Machine in the token state (a1 ↓ 1)(a2 ↓ 0),
matching the input state |10⟩.

We underline each step that is being rewritten, and take the liberty to sometimes do
several rewrites in parallel at the same time.

(a1 ↓ 1)(a2 ↓ 0)⇝d (b1 ↓ 1)(e1 ↓ 1)(a2 ↓ 0)⇝d (b1 ↓ 1)(e1 ↓ 1) 1√
2

(
(e3 ↓ 0) + (e3 ↓ 1)

)
⇝d

1√
2 (b1 ↓ 1)(e1 ↓ 1)

(
(e2 ↑ 0)(e4 ↓ 0) + (e2 ↑ 1)(e4 ↓ 1)

)
⇝d

1
2 (b1 ↓ 1)

(
(e2 ↓ 0) − (e2 ↓ 1)

)(
(e2 ↑ 0)(e4 ↓ 0) + (e2 ↑ 1)(e4 ↓ 1)

)
⇝2

c
1
2 (b1 ↓ 1)

(
(e4 ↓ 0) +

(
(e2 ↓ 0) − (e2 ↓ 1)

)
(e2 ↑ 1)(e4 ↓ 1)

)
⇝2

c
1
2 (b1 ↓ 1)

(
(e4 ↓ 0) − (e4 ↓ 1)

)
⇝d

1
2

√
2 (b1 ↓ 1)

(
(b2 ↓ 0) + (b2 ↓ 1) − (b2 ↓ 0) + (b2 ↓ 1)

)
= 1√

2 (b1 ↓ 1)(b2 ↓ 1)

The final token state corresponds to 1√
2 |11⟩, as described by Proposition 25. Notice that

during the run, each invariants presented before holds and that due to confluence we could
have rewritten the tokens in any order and still obtain the same result.

This proposition is a direct generalization of Proposition 23. It shows we can compute
the output of a diagram provided a particular input state. We can also recover the semantics
of the whole operator by initialising the starting token state in a particular configuration.

▶ Theorem 27 (Arbitrary Wire Initialisation). Let D be a connected ZX-diagram, with I(D) =
[ai]1≤i≤n, O(D) = [bi]1≤i≤m, and e ∈ E(D) ̸= ∅ such that (e ↓ x)(e ↑ x)⇝∗ tx for x ∈ {0, 1}
with tx terminal (the rewriting terminates by Corollary 22). Then:

JDK =
2m+n∑
q=1

λq |y1,q . . . ym,q⟩⟨x1,q . . . xn,q| =⇒ t0 + t1 =
2m+n∑
q=1

λq

∏
i

(bi ↓yi,q)
∏

i

(ai ↑xi,q).
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▶ Example 28. If we take back the diagram from Example 26 and decide to initialize any
wire e of the diagram in the state (e ↓ 0)(e ↑ 0) + (e ↓ 1)(e ↑ 1) and apply the rewriting as in

Theorem 27 we in fact end up with the token state 1√
2

(
(a1 ↑ 0)(a2 ↑ 0)(b1 ↓ 0)(b2 ↓ 0)+(a1 ↑

0)(a2 ↑ 1)(b1 ↓ 0)(b2 ↓ 1) + (a1 ↑ 1)(a2 ↑ 0)(b1 ↓ 1)(b2 ↓ 1) + (a1 ↑ 1)(a2 ↑ 1)(b1 ↓ 1)(b2 ↓ 0)
)

which matches the actual matrix of the standard interpretation.

▶ Remark 29. At this point, it is legitimate to wonder about the benefits of the token machine
over the standard interpretation for computing the semantics of a diagram. Let us first
notice that when computing the semantics of a diagram à la Theorem 27, we get in the token
state one term per non-null entry in the associated matrix (the one obtained by the standard
interpretation).

We can already see that the token-based interpretation can be interesting if the matrix is
sparse, the textbook case being Zn

n whose standard interpretation requires a 2n × 2n matrix,
while the token-based interpretation only requires two terms (each with 2n tokens).

Secondly, we can notice that we can “mimic” the standard interpretation with the token
machine. Consider a diagram decomposed as a product of slices (tensor product of generators)
for the standard interpretation. Then, for the token machine, without going into technical
details, we can follow the strategy that consists in moving token through the diagram one
slice at a time. This essentially computes the matrix associated with each slice and its
composition.

The point of the token machine however, is that it is versatile enough to allow for more
original strategies, some of which may have a worst complexity, but also some of which may
have a better one.

4 Extension to Mixed Processes

The token machine presented so far worked for so-called pure quantum processes i.e. with no
interaction with the environment. To demonstrate how generic our approach is, we show
how to adapt it to the natural extension of mixed processes, represented with completely
positive maps (CPM). This in particular allows us to represent quantum measurements.

4.1 ZX-diagrams for Mixed Processes
The interaction with the environment can be modeled in the ZX-Calculus by adding a unary
generator to the language [8, 5], that intuitively enforces the state of the wire to be
classical. We denote with ZX the set of diagrams obtained by adding this generator.

Similar to what is done in quantum computation, the standard interpretation J.K for
ZX maps diagrams to CPMs. If D ∈ ZX we define JDK as ρ 7→ JDK† ◦ ρ ◦ JDK, and we
set J K as ρ 7→ Tr(ρ), where Tr(ρ) is the trace of ρ.

There is a canonical way to map a ZX -diagram to a ZX-diagram in a way that preserves
the semantics: the so-called CPM-construction [32]. We define the map (conveniently named)
CPM as the map that preserves compositions (_ ◦ _) and (_ ⊗ _) and such that:

∀D ∈ ZX, CPM
( ...

...
D

)
=

...
D [D]cj

...
CPM ( ) =

Where [D]cj is D where every angle α has been changed to −α.
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With respect to what happens to edge labels, notice that every edge in D can be mapped
to 2 edges in CPM(D). We propose that label e induces label e in the first copy, and e in
the second, e.g, for the identity diagram: e0 7−→ e0 e0

In the general ZX-Calculus, it has been shown that the axiomatization itself could be
extended to a complete one by adding only 4 axioms [5].

▶ Example 30. A ZX -diagram and its associated CPM construction is shown on the right
(without names on the wires for simplicity).

α

7→

α −α

4.2 Token Machine for Mixed Processes
We now aim to adapt the token machine to ZX , the formalism for completely positive
maps. To do so we give an additional state to each token to mimic the evolution of two token
on CPM(D).

▶ Definition 31. Let D be a ZX-diagram. A -token is a quadruplet (p, d, x, y) ∈ E(D) × {↓
, ↑}×{0, 1}×{0, 1}. We denote the set of -tokens on D by tk (D). A -token-state is then
a multivariate polynomial over C, evaluated in tk (D). We denote the set of -token-states
on D by tkS (D)

In other words, the difference with the previous machine is that tokens here have an
additional state (e.g. y in (a ↓ x, y)). The rewrite rules are given in appendix in Table 2.

Table 2 The rewrite rules for ⇝ , where δ is the Kronecker delta.

e0 (e0 ↓ x, y)(e0 ↑ x′, y′)⇝c δx,x′δy,y′ (Collision)

e0 e1 (eb ↓ x, y)⇝d (e¬b ↑ x, y) ( -diffusion)
e0 e1 (eb ↑ x, y)⇝d (e¬b ↓ x, y) ( -diffusion)

(ek ↓ x, y)⇝d e
iα(x−y)

∏
j ̸=k

(ej ↑ x, y)
∏

j

(e′
j ↓ x, y)

(e′
k ↑ x, y)⇝d e

iα(x−y)
∏

j

(ej ↑ x, y)
∏
j ̸=k

(e′
j ↓ x, y)

(e0 ↓ x, y)⇝d
1
2

∑
z,z′∈{0,1}

(−1)xz+yz′
(e1 ↓ z, z′)

(e1 ↑ x, y)⇝d
1
2

∑
z,z′∈{0,1}

(−1)xz+yz′
(e0 ↑ z, z′)

e0
(e0 ↓ x, y)⇝d δx,y (Trace-Out)

...e1 en

e′
1 e′

m

...
α

e0

e1

( -Diffusion)

(
...
... -Diffusion)

It is possible to link this formalism back to the pure token-states, using the existing CPM
construction for ZX-diagrams. We extend this map by CPM : tkS (D) → tkS(CPM(D)),
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defined as:
2m+n∑
q=1

λq

∏
j

(pj , dj , xj,q, yj,q) 7→
∑
q=1

λq

∏
j

(pj , dj , xj,q)(pj , dj , yj,q)

Since CPM(D) can be seen as two copies of D where is replaced by , each token in
D corresponds to two tokens in CPM(D), at the same spot but in the two copies of D. The
two states x and y represent the states of the two corresponding tokens.

We can then show that this rewriting system is consistent:

▶ Theorem 32. Let D be a ZX -diagram, and t1, t2 ∈ tkS (D). Then whenever t1 ⇝ t2
we have CPM(t1)⇝{1,2} CPM(t2).

The notions of polarity, well-formedness and cycle-balancedness can be adapted, and we
get strong normalization (Theorem 19), confluence (Corollary 21), and uniqueness of normal
forms (Corollary 22) for well-formed and cycle-balanced token states.

5 Conclusion and Future Work

In this paper, we presented a novel particle-style semantics for ZX-Calculus. Based on
a token-machine automaton, it emphasizes the asynchronicity and non-orientation of the
computational content of a ZX-diagram. Compared to existing token-based semantics of
quantum computation such as [9], our proposal furthermore support decentralized tokens
where the position of a token can be in superposition.

As quantum circuits can be mapped to ZX-diagrams, our token machines induce a notion
of asynchronicity for quantum circuits. This contrasts with the notion of token machine
defined in [9] where some form of synchronicity is enforced.

Our token machines give us a new way to look at how a ZX-diagram computes with a
more local, operational approach. This could lead to extensions of the ZX-Calculus with
more expressive logical and computational constructs, such as recursion.

As a final remark, we notice that this formalism naturally extends to other graphical
languages for qubit quantum computation, and even for tensor networks. It suffices to adapt
the diffusion rewriting steps to the generators at hand, which is always possible in the setting
of finite dimensional Hilbert spaces, and if needs be to adapt the states in tokens to the
dimension of the wire they go through (e.g. if a wire in a tensor network is of dimension 4,
the state spans {0, 1, 2, 3}).
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Abstract
In this paper, we introduce a measure of Boolean functions we call diameter, that captures the
relationship between certificate complexity and several other measures of Boolean functions. Our
measure can be viewed as a variation on alternating number, but while alternating number can be
exponentially larger than certificate complexity, we show that diameter is always upper bounded
by certificate complexity. We argue that estimating diameter may help to get improved bounds on
certificate complexity in terms of sensitivity, and other measures.

Previous results due to Lin and Zhang [20] imply that s(f) ≥ Ω(n1/3) for transitive functions
with constant alternating number. We improve and extend this bound and prove that s(f) ≥

√
n

for transitive functions with constant alternating number, as well as for transitive functions with
constant diameter. We also show that bs(f) ≥ Ω(n3/7) for transitive functions under the weaker
condition that the “minimum” diameter is constant.

Furthermore, we prove that the log-rank conjecture holds for functions of the form f(x ⊕ y) for
functions f with diameter bounded above by a polynomial of the logarithm of the Fourier sparsity
of the function f .
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1 Introduction

The alternating number of a Boolean function f , denoted alt(f), measures how close the
function is to being monotone. It was first studied by Markov [22], who showed that
the minimum number of negation gates to compute f by any Boolean circuit is exactly
⌈log2(alt(f) + 1)⌉. This led to further studies of alternating number in connection to
understanding the effect of negation gates in various contexts such as circuit complexity
[31, 34, 26, 27], learning theory [8], and cryptography [16].

Our work is motivated by an interesting paper of Lin and Zhang [20], who studied
functions with small alternating number in the context of the sensitivity conjecture, and the
log-rank conjecture for XOR functions. The sensitivity conjecture of Nisan and Szegedy [28]
states that several important complexity measures, for example block sensitivity bs(f),
certificate complexity C(f), and degree deg(f) (over the reals) are all upper bounded by
a polynomial of sensitivity s(f). The sensitivity conjecture has been recently proved by
Huang [17], who showed that for any Boolean function f , deg(f) ≤ s(f)2. Huang’s result
was further strengthened by Laplante et al. [19] and Aaronson et al. [1]. Both conjectures
have been open for several decades, and – until Huang’s result resolving the sensitivity
conjecture – were verified only for a few special classes of Boolean functions. The log-rank
conjecture is still open even for XOR functions.
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Both conjectures can be easily verified to hold for monotone Boolean functions. Lin and
Zhang [20] showed that both conjectures remain true for functions that are close to monotone,
that is for functions with small alternating number. More precisely, they showed that the
conjectures hold for functions with constant alternating number, as well as for functions with
alternating number bounded above by some relevant complexity measures of the functions,
such as sensitivity in the case of the sensitivity conjecture, and Fourier sparsity in the case of
the log-rank conjecture for XOR functions. Thus, their work extended the class of functions
where the conjectures can be verified. On the other hand, Dinesh and Sarma [14] presented
a function f such that alt(f) is exponentially larger than the certificate complexity C(f).
This means that the sensitivity conjecture and the log-rank conjecture for XOR functions
cannot be proved in the general case by providing upper bounds on alternating number.

Diameter of Boolean functions. In this paper, we introduce a measure of Boolean functions
we call diameter, that captures the relationship between certificate complexity and several
other measures of Boolean functions. To define the diameter of a Boolean function f , we
first consider the “distance” between a vertex of the Boolean cube and subcubes where the
function f is constant. However, instead of measuring distance by the number of edges of the
Boolean cube along a path (which would correspond to Hamming distance), we allow flipping
several bits in one step. We consider paths in the Boolean cube, where one step of the path
involves flipping a block of input bits of the function, thus each step specifies a subcube.
We require that each step along a path corresponds to a subcube, where the subfunction
of f satisfies certain conditions. We define several variants, by considering different classes
of Boolean functions that can appear as subfunctions on the subcubes associated with the
steps of a path.

For example, in the first variant of our measure, the requirement is that each step along
the path corresponds to flipping bits of a minimal sensitive block of the function f . That
is, for a step x(i), x(i+1) along such a path, the requirement is that f(x(i)) ̸= f(x(i+1)), but
f(x(i)) = f(y) for every y ̸= x(i+1) from the subcube defined by the bits where x(i) and
x(i+1) differ. Notice that this condition means that the subfunction of f restricted to the
subcube associated with each step is either the AND function (when f(x(i)) = 0) or the
NAND function (when f(x(i)) = 1). Generalizing this idea, we define several variants of our
measure by specifying the class H of functions that can appear as subfunctions along the
steps of a legal path.

Once we specified which steps are legal along a path for a given variant of our measure,
we proceed as follows. For a given input x, we define the diameter of f on x as the length of
the shortest “legal” path from x̄ (the complement of x) to any certificate of f on x, that is
to any constant subcube containing x. Then, similarly to standard complexity measures like
certificate complexity, we take the maximum over all inputs. Depending on the class H of
functions we allow to appear as subfunctions along the steps of a path, we obtain variants of
our measure.

Comparison of diameter with alternating number. Our measure is motivated by alternating
number, but it is quite different from it.

First, the similarity is that both measures involve considering paths in the Boolean cube,
where one step of the path involves flipping a block of input bits of the function, thus each
step specifies a subcube. For alternating number, the requirement on the function values on
the subcubes is that the function takes different values on the two opposite (all 0 and all 1)
points of the subcubes. For our measure, we consider different classes of Boolean functions
that can appear as subfunctions on the subcubes associated with a path.
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We note that the definition of alternating number also requires that a path is monotone,
(that is the set of 1 bits of an input x on the path must be a subset of the 1 bits of any
input that appears later in the path). We do not impose such requirement. In contrast to
alternating number, diameter does not measure closeness to monotonicity.

Furthermore, alternating number considers the longest “legal” path between just two
specific points, the all 0 input and the all 1 input. For our measure, we consider the shortest
“legal” path between inputs x and subcubes corresponding to certificates of the function on
the complementary input x̄.

We note that in general, diameter and alternating number are incomparable, and we
provide examples that illustrate this. However, an important distinction is that while
alternating number can be exponentially larger than certificate complexity [14], each variant
of our measure considered in this paper is upper bounded by certificate complexity, up to
constant factors.

Diameter vs certificate complexity. We define the following variants, depending on the
class H of functions we allow to appear as subfunctions along the steps of a path: dia∧ where
H consists of the functions AND and NAND (these are the possible subfunctions associated
with minimal sensitive blocks, as discussed above), dias where H includes all functions with
full sensitivity, diadeg where H includes all functions with full real degree, diadeg2 where H
includes all functions with full F2-degree.

Note that each of the classes we consider contains the functions AND and NAND since both
of these functions have full sensitivity, full F2-degree and full real degree. Thus, each of the
measures dias(f), diadeg(f) and diadeg2(f) is upper bounded by dia∧(f), for every Boolean
function f . On the other hand, as we illustrate by examples, dias(f), diadeg(f) and diadeg2(f)
may be significantly smaller than dia∧(f), thus considering these variants may lead to stronger
bounds. Furthermore, since deg2(f) ≤ deg(f), we have that diadeg(f) ≤ diadeg2(f). We also
present examples showing that diadeg(f) may be significantly smaller than diadeg2(f).

We prove that for all the classes H considered in this paper,

diaH(f) ≤ dia∧(f) ≤ 2C(f).

Depending on the class H, we can lower bound diaH by certificate complexity divided by
specific complexity measures, such as sensitivity. We show that for any Boolean function f ,
C(f)/s(f) is upper bounded by dias(f) and thus we can upper bound certificate complexity
as follows:

C(f) ≤ dias(f)s(f) ≤ dia∧(f)s(f).

Similarly, considering the classes H consisting of Boolean functions with full real degree
and full F2-degree, respectively, we get the following bounds relating diameter and certificate
complexity. For any Boolean function f , C(f) ≤ diadeg(f)deg(f) ≤ dia∧(f)deg(f) and
C(f) ≤ diadeg2(f)deg2(f) ≤ dia∧(f)deg2(f).

Other variants. One could consider more versions of our measure, for various other classes
H. Another class that is natural to consider in connection to the log-rank conjecture for
XOR functions is taking H to be the class of Boolean functions with full Fourier sparsity,
that is functions such that all their Fourier coefficients are nonzero. We do not discuss this
variant in more details, as the results are analogous to our results on diadeg2 with similar
applications.

MFCS 2021
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We would like to mention another version of our definitions, that turns out to be helpful
in proving some of our results for special classes of Boolean functions. Several papers in
the literature consider minimum certificate complexity, defined as Cmin(f) = minxC(f, x).
Similarly, while we define diameter as diaH(f) = maxxdiaH(f, x), we also consider minimum
diameter defined as diamin,H(f) = minxdiaH(f, x).

Results on transitive functions with small diameter. There has been a long line of work
trying to estimate the sensitivity and block sensitivity for transitive functions [32] and also
for special classes of transitive functions such as symmetric functions and graph properties
[38, 33], minterm transitive functions and cyclically invariant functions [10, 2, 15], transitive
functions with sparse DNFs [12].

It has been conjectured that all transitive functions must have “large” sensitivity and
block sensitivity. No examples of transitive functions are known on n input bits with o(n1/3)
sensitivity. Chakraborty [10] constructed a transitive function on n variables with sensitivity
Θ(n1/3). It is noted in [12] that an argument in [32] together with Huang’s result gives that
any transitive function f on n variables has s(f) ≥ Ω(n1/6).

Previous results due to Lin and Zhang [20] imply that s(f) ≥ Ω(n1/3) for transitive
functions with constant alternating number. We improve and extend this bound and prove
that s(f) ≥

√
n for transitive functions with constant alternating number, as well as for

transitive functions with constant diameter, considering dias or dia∧.
Regarding block sensitivity, it has been conjectured that Ω(n3/7) is a lower bound on

the block sensitivity of all transitive functions. There is an example of a transitive function
f due to Amano [2] that has bs(f) = θ(n3/7), and no transitive function is known with
smaller block sensitivity. Sun[32] proved a lower bound of n1/3 on the block sensitivity for all
transitive functions. Since block sensitivity is at least sensitivity, our result above also implies
that for transitive functions with constant alternating number or constant diameter (dias or
dia∧), bs(f) ≥ Ω(

√
n). We prove that the conjectured Ω(n3/7) lower bound holds under a

weaker condition, for all transitive functions with constant minimum diameter (diamin,s or
diamin,∧).

Log-rank conjecture for XOR functions with small diameter. The log-rank conjecture
for functions of the form f(x ⊕ y) has been proved when f belongs to certain special classes
such as monotone or linear threshold functions [25], symmetric functions [39], functions
with low F2-degree or small spectral norm [35], AC0 functions [18], read-k functions [11],
and functions with constant alternating number by Lin and Zhang [20]. We prove that the
log-rank conjecture holds for functions of the form f(x ⊕ y) for functions f with diadeg2 or
dia∧ bounded above by a polynomial of the logarithm of the Fourier sparsity of f .

Further motivation for considering diameter. As we noted above, diaH(f) ≤ 2C(f) for
any f and any class H that contains the functions AND and NAND. Huang’s result implies
that C(f) = O(s(f)5), which in turn implies that for any f , and any class H that contains
the functions AND and NAND, (which means for every class considered in this paper), we
have

diaH(f) = O(s(f)5).

Obtaining new upper bounds on diaH could lead to the following interesting consequences:
An independent proof of the upper bound diaH(f) ≤ poly(s(f)) for dias or dia∧ could
lead to an independent, purely combinatorial proof of the sensitivity conjecture.
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Improving the upper bound on dias or dia∧ in terms of sensitivity to diaH(f) ≤ O(s(f)2),
would improve the current best upper bounds on block sensitivity and certificate com-
plexity to bs(f) ≤ C(f) ≤ O(s(f)3).
In connection to this question, we note that there are Boolean functions with dias(f)
(and thus dia∧(f)) at least Ω(s(f)(2−o(1))), since [3] exhibited a function with C(f) =
Ω(s(f)(3−o(1))) improving previous results of [6] and [5].
Proving that diadeg(f) ≤ deg(f) would imply the bound C(f) ≤ O(s(f)4), using Huang’s
result, but improving its current implication which gives only C(f) ≤ O(s(f)5). It
would also imply that C(f) ≤ O(deg(f)2), improving the current best bound giving
C(f) ≤ deg(f)3 by [24].
We note that there are Boolean functions with diadeg(f) (and thus diadeg2(f) and dia∧(f))
at least Ω(deg(f)(1−o(1))), since there are Boolean functions with C(f) = Ω(deg(f)(2−o(1)))
which was shown recently in [3] improving the previous Ω(deg(f)1.63) bound of [29].
Upper bounds on diaH (considering an appropriate H) for specific classes of Boolean
functions could give stronger upper bounds on block sensitivity or certificate complexity
in terms of sensitivity than currently known for these classes, and could verify the log-rank
conjecture for XOR functions for new classes.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function and x ∈ {0, 1}n be any input. For i ∈ [n] we
denote by xi the input obtained by flipping the i-th bit of x. More generally, for S ⊆ [n] we
denote by xS the input obtained by flipping the bits of x in all coordinates in the subset S.

For any two inputs x, y ∈ {0, 1}n, we say x ≺ y if xi ≤ yi for all i ∈ [n].

▶ Definition 2.1 (Sensitivity). The sensitivity s(f, x) of a Boolean function f on input x is
the number of coordinates i ∈ [n] such that f(x) ̸= f(xi). The sensitivity of f is defined as
s(f) = max{s(f, x) : x ∈ {0, 1}n}.

▶ Definition 2.2 (Block Sensitivity). The block sensitivity bs(f, x) of a Boolean function f

on input x is the maximum number of pairwise disjoint subsets S1, . . . , Sk of [n] such that
for each i ∈ [k] f(x) ̸= f(xSi). The block sensitivity of f is defined as bs(f) = max{bs(f, x) :
x ∈ {0, 1}n}.

▶ Definition 2.3 (Partial assignment, subcube and subfunction). Given an integer n > 0, a
partial assignment α is a function α : [n] → {0, 1, ⋆}. A partial assignment α corresponds
naturally to a setting of n variables (x1, x2, . . . , xn) to {0, 1, ⋆} where xi is set to α(i).

The variables set to ⋆ are called unassigned or free, and we say that the variables set to 0
or 1 are fixed. We say that x ∈ {0, 1}n agrees with α if xi = α(i) for all i such that α(i) ̸= ⋆.
The set of all inputs x ∈ {0, 1}n agreeing with α constitutes a subcube which we denote by Sα.

The size of a partial assignment α is defined as the number of fixed variables of α and
denoted as |α|.

For a function f : {0, 1}n → {0, 1}, we denote by fα the subfunction obtained by restricting
f to the subcube Sα.

▶ Definition 2.4 (Certificate). For a function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n a
partial assignment α is a certificate of f on x if x agrees with α, and any input y agreeing
with α satisfies f(y) = f(x).

We denote the set of all certificates of f on x by Γf (x).

MFCS 2021
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▶ Definition 2.5 (Certificate Complexity). The certificate complexity C(f, x) of a Boolean
function f on input x is the size of the smallest certificate of f on x. The certificate complexity
of f is defined as C(f) = max{C(f, x) : x ∈ {0, 1}n}. The minimum certificate complexity
of f is defined as Cmin(f) = min{C(f, x) : x ∈ {0, 1}n}.

▶ Definition 2.6 (Alternating path). For a Boolean function f : {0, 1}n → {0, 1}, an alter-
nating path is defined as any sequence of inputs x(0), x(1), x(2), . . . x(t), x(i) ∈ {0, 1}n for
i ∈ {0, 1, . . . , t}, that satisfies the following properties:

x(0) = 0n

x(i) ≺ x(i+1) for all i ∈ {0, 1, . . . , t − 1}.
f(x(i)) ̸= f(x(i+1)) for all i ∈ {0, 1, . . . , t − 1}

where a ≺ b denotes the property that the set of bits set to 1 in a forms a subset of the set of
bits set to 1 in b.

▶ Definition 2.7 (Alternating Number of a function). For a Boolean function f : {0, 1}n →
{0, 1}, the alternating number of f , alt(f), is defined as the maximum length of any alternating
path of f .

▶ Definition 2.8 (Invariance Group). A Boolean function f : {0, 1}n → {0, 1} is invariant
under a permutation σ : [n] → [n], if for any x ∈ {0, 1}n, f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).
The set of all permutations under which f is invariant forms a group, called the invariance
group of f.

▶ Definition 2.9 (Transitive Function). A Boolean function is transitive if its invariance
group Γ is transitive, that is, for each i, j ∈ [n], there is a σ ∈ Γ such that σ(i) = j.

For example, the set of all permutations on n bits, denoted by Sn is a transitive group of
permutations. Another example of a transitive group of permutations is the set of all cyclic
shifts on n bits, denoted by Shiftn = {ξ0, ξ1, . . . , ξn−1}, where the permutation ξj cyclically
shifts the string by j positions.

Communication Complexity. We consider a setting with two parties Alice and Bob and a
fixed Boolean function f : {0, 1}2n → {0, 1}. For x, y ∈ {0, 1}n, input x is provided to Alice
and input y to Bob. Their collective objective is to compute f(x, y).

The communication complexity of f , denoted CC(f), is the maximum value of the
minimum number of bits exchanged by Alice and Bob in order to compute f(x, y), where
the maximum is taken over all input pairs (x, y) ∈ {0, 1}2n.

The communication matrix corresponding to f , denoted Mf , is a 2n × 2n matrix with
rows indexed by all possible values of x ∈ {0, 1}n i.e. Alice’s part of the input and columns
indexed by all possible values of y ∈ {0, 1}n i.e. Bob’s part of the input. It can be shown
that CC(f) ≥ log rank(Mf ) [23].

The Log-rank conjecture proposed by Lovász and Saks [21] asks whether the communica-
tion complexity of a function can also be upper bounded by a polynomial in logarithm of the
rank of its communication matrix as:

▶ Conjecture 2.10. For any function f : {0, 1}2n → {0, 1},

CC(f) ≤ poly(log rank(Mf ))

Please see Section A in the Appendix for more definitions and background.
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2.1 Previous results
We now state some previous results that we use in our proofs.

First we state a couple of lemmas from a recent paper by Chaubal and Gál [12].

▶ Lemma 2.11 (Lemma 8 from [12]). For any non-constant transitive function f : {0, 1}n →
{0, 1}, we have C(f, 0n) · s(f) ≥ n and C(f, 1n) · s(f) ≥ n.

▶ Lemma 2.12 (Lemma 9 from [12]). For any non-constant transitive function f : {0, 1}n →
{0, 1}, and an integer 5 ≤ r ≤ 15, if Cmin(f) ≤ n3/r, then bs(f) ≥ Ω(n1− 4

r ).

We now state a lemma from the paper of Lin and Zhang [20]:

▶ Lemma 2.13 (Lemma 12 from [20]). For any function f : {0, 1}n → {0, 1}, the following
two statements hold:

max{C(f, 0n), C(f, 1n)} ≤ alt(f) · s(f)

max{C(f, 0n), C(f, 1n)} ≤ alt(f) · deg2(f)

We include more details about the approach and previous results of Lin and Zhang [20]
in Section A.1 in the Appendix.

3 Diameters of Boolean functions

We begin with some notation. For the Boolean cube Bn, a path is any sequence of inputs
x(0), x(1), x(2), . . . , x(t) where x(i) ∈ {0, 1}n for i ∈ {0, 1, . . . , t}. We define the length of such
a path to be the number of steps t. For a path x(0), x(1), x(2), . . . , x(t), we define a sequence
of partial assignments {β(0), β(1), . . . β(t−1)} where β(i) : [n] → {0, 1, ⋆} is defined as follows:
β

(i)
j = x

(i)
j for all j ∈ [n] such that x

(i)
j = x

(i+1)
j and β

(i)
j = ⋆ otherwise.

Note that we can view each step x(i) → x(i+1) on a path as flipping the bits where x(i)

and x(i+1) differ. The free variables of the partial assignment β(i) are exactly these bits.
Thus, for a Boolean function f , the subfunction fβ(i) depends on the bits where x(i) and
x(i+1) differ.

▶ Definition 3.1 (H-distance between an input and a certificate). Let H be a class of Boolean
functions. For a Boolean function f : {0, 1}n → {0, 1}, input x ∈ {0, 1}n and a partial
assignment α : [n] → {0, 1, ⋆} corresponding to a subcube where f is constant, we define an
H-path from x to α as any path x(0), x(1), . . . x(t) that satisfies the following properties:

x(0) = x

x(t) agrees with α

The subfunction fβ(i) belongs to class H for each i ∈ {0, 1, . . . , t − 1}.

We define the H-distance between x and α with respect to f , denoted distf,H(x, α), to be
the length of a shortest H-path from x to α.

▶ Definition 3.2 (H-diameter of a function). For a Boolean function f : {0, 1}n → {0, 1},
input x ∈ {0, 1}n, and a class of Boolean functions H, we use the notation

diaH(f, x) = min
α∈Γf (x)

distf,H(x̄, α) .

Recall that x̄ denotes the complement of x and Γf (x) denotes the set of all certificates of f

on x.
We define the H-diameter of f as:

diaH(f) = max
x∈{0,1}n

diaH(f, x) .

MFCS 2021
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In this work, we will be concerned with the H-diameter of functions for the following
classes H:

AND diameter denoted dia∧(f): Corresponds to the class H that includes the function
AND and its negation the NAND function.
Sensitivity diameter denoted dias(f): Defined by the class H with functions that have
sensitivity equal to the number of input variables.
Real degree diameter denoted as diadeg(f): Corresponding to the class of functions H
with real degree equal to the number of input variables.
F2-degree diameter denoted as diadeg2(f): Defined by the class H that include functions
with F2-degree equal to the number of variables.

Note that since the functions AND and NAND belong to each of the classes we consider
in this paper, and since deg2(f) ≤ deg(f) for any Boolean function f , we have

dias(f) ≤ dia∧(f) (1)

and

diadeg(f) ≤ diadeg2(f) ≤ dia∧(f) (2)

Similarly to minimum certificate complexity, we also define the minimum version of the
diameter:

▶ Definition 3.3 (Min H-diameter of a function). For a Boolean function f : {0, 1}n → {0, 1}
and a class of Boolean functions H, we define the min H-diameter of f as:

diamin,H(f) = min
x∈{0,1}n

diaH(f, x) .

and we define the closure of the min H-diameter of f as:

diaclo
min,H(f) = max

α
diamin,H(fα)

where the maximum is taken over all possible partial assignments α on n variables, or in
other words, over all possible subfunctions fα of f .

Note that for any function f and class H, we have diamin,H(f) ≤ diaclo
min,H(f) ≤ diaH(f).

3.1 Upper bounds on diameters
▶ Lemma 3.4. For any function f : {0, 1}n → {0, 1}, we have:

dia∧(f) ≤ 2C(f)

Proof. For any input x ∈ {0, 1}n, we shall prove that dia∧(f, x) ≤ 2C(f, x).
Let α be a certificate of f on x achieving |α| = C(f, x). We shall construct an AND-NAND

path x(0), x(1), . . . x(t) from x̄ to α, with length t ≤ 2|α|.
We start with x(0) = x̄ as required. We now give an inductive description of our

construction. Let us assume that we have found the first i + 1 vertices of the path i.e.
x(0), x(1), . . . x(i). Then we get the next vertex x(i+1) in the following way based on the value
of f(x(i)):
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1. Case 1: f(x(i)) = f(x)
If x(i) agrees with α, then we have successfully found the required H-path from x̄ to α

and we can stop.
Otherwise, if x(i) does not agree with α, then we choose x(i+1) = (x(i))S where S is any
minimal sensitive block of f on x(i) such that S does not contain any index where x(i)

and α agree. Note that such a block S must exist because otherwise, the set of bits where
x(i) and α agree would be a certificate of f , which would contradict the minimality of
the certificate α.
We note that in this case, x(i+1) agrees with α on at least as many bits as x(i) agrees
with α.

2. Case 2: f(x(i)) ̸= f(x)
In this case, we first observe that the set T of all the bits where x(i) and α disagree
constitutes a sensitive block for f on x(i). Therefore, there exists a subset S ⊂ T which
is a minimal sensitive block of f on x(i). We then choose x(i+1) = (x(i))S .
Note that the number of bits where x(i+1) agrees with α is strictly greater than the
number of bits where x(i) agrees with α.

First we note that since each step consists of flipping a minimal sensitive block, each of
the subfunctions fβ(i) is either AND or NAND: Recall that the subfunction fβ(i) depends
on the bits where x(i) and x(i+1) differ. So for example, if f(x(i)) = 0, then the subfunction
fβ(i) is 0 everywhere except when all its free variables agree with x(i+1).

Further, since an AND-NAND path is also an alternating path, the value of f(x(i))
alternates between 0 and 1. Therefore, the above described procedure to construct the
AND-NAND path alternates between case 1 and case 2.

Also, as noted before, the number of bits where x(i+1) agrees with α is strictly greater
than the number of bits where x(i) agrees with α in case 2, whereas in case 1, we can
guarantee that this number does not decrease. Since the procedure alternates between the
two cases, x(i+2) must agree with α on at least one more bit than x(i), for i ∈ {0, 1, . . . t − 2}.
Therefore, the procedure must terminate in at most 2|α| steps, implying that t ≤ 2|α|. ◀

Next, note that since each of our measures is upper bounded by certificate complexity
(as we proved above), known upper bounds on certificate complexity imply that for each
class H considered in this paper, we have diaH(f) ≤ O(s(f)5) (using Huang’s result [17])
and diaH(f) ≤ O(deg(f)3) by [24].

Improving these upper bounds would have interesting consequences, as we described in
the introduction.

3.2 Upper bounds on certificate complexity in terms of diameters
▶ Lemma 3.5. For any function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, we have:

C(f, x) ≤ dias(f, x) · s(f) ≤ dia∧(f, x) · s(f) (3)
C(f, x) ≤ diadeg(f, x)deg(f) ≤ dia∧(f, x) · deg(f) (4)
C(f, x) ≤ diadeg2(f, x)deg2(f) ≤ dia∧(f, x) · deg2(f) (5)

Proof. We shall first prove inequality 3.
Let α be a certificate of f on x and x(0), x(1), . . . , x(t) be a corresponding full sensitivity

path from x̄ to α that achieves the minimum value of distf,s(x̄, α).

MFCS 2021



31:10 Diameter vs. Certificate Complexity

Then note that every fixed bit of the certificate α must be contained in β(i) for some
i ∈ {0, 1, . . . , t − 1} since x(t) agrees with α and x(0) (i.e. x̄) disagrees with all the fixed bits
of α.

Therefore, |β(0)| + |β(1)| + . . . + |β(t−1)| ≥ |α|. So there must exist an i ∈ {0, 1, . . . , t − 1}
such that |β(i)| ≥ |α|

t . Now consider the subfunction fβ(i) . Since we considered a full
sensitivity path, this subfunction has sensitivity |β(i)|. Therefore, s(f) ≥ |β(i)| ≥ |α|

t .
This implies that s(f) · distf,s(x̄, α) ≥ |α|.
Taking the minimum over all the certificates for f on x gives the first part of inequality 3.

The second part follows due to inequality 1. The other two inequalities follow by an analogous
argument. ◀

Lemma 3.5 immediately implies the following two theorems.

▶ Theorem 3.6. For any function f : {0, 1}n → {0, 1}, we have:
1. C(f) ≤ dias(f) · s(f) ≤ dia∧(f) · s(f)
2. C(f) ≤ diadeg(f) · deg(f) ≤ dia∧(f) · deg(f)
3. C(f) ≤ diadeg2(f) · deg2(f) ≤ dia∧(f) · deg2(f).

Proof. Let x be the input achieving C(f, x) = C(f). Then, equation 3 gives:

C(f) = C(f, x)
≤ dias(f, x) · s(f)
≤ dias(f) · s(f).

This gives the first part of the first statement of the theorem, the second part follows by
equation 1. The other statements follow similarly from Lemma 3.5 and equation 2. ◀

▶ Theorem 3.7. For any function f : {0, 1}n → {0, 1}, we have:
1. Cmin(f) ≤ diamin,s(f) · s(f) ≤ diamin,∧(f) · s(f)
2. Cmin(f) ≤ diamin,deg(f) · deg(f) ≤ diamin,∧(f) · deg(f)
3. Cmin(f) ≤ diamin,deg2(f) · deg2(f) ≤ diamin,∧(f) · deg2(f).

Proof. Let x be the input for which the minimum value of dias(f, x) is achieved. Then,
equation 3 gives:

Cmin(f) ≤ C(f, x)
≤ dias(f, x) · s(f)
= diamin,s(f) · s(f).

The first statement of the theorem follows.
Similarly equations 4 and 5, respectively, imply the second and third statements of the

theorem. ◀

4 Results for families of functions with small diameters

4.1 Transitive functions with small diameters
In this section, we improve the lower bounds on sensitivity of transitive functions with
constant alternating number that follow from the work of Lin and Zhang [20] and then also
prove a similar result for transitive functions with constant AND diameter. We then proceed
to prove lower bounds on block sensitivity of transitive functions with constant minimum
AND diameter.
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▶ Lemma 4.1. For any non-constant transitive function f : {0, 1}n → {0, 1} the following
two statements hold:

s(f)2 · alt(f) ≥ n

s(f) · deg2(f) · alt(f) ≥ n

Proof. Recall that Lemma 2.11 gives that:

C(f, 0n)s(f) ≥ n

The first part of Lemma 2.13 gives that:

C(f, 0n) ≤ alt(f) · s(f)

Together they imply the first statement of the lemma.
The second statement follows similarly using the second part of Lemma 2.13. ◀

Note that this implies s(f) ≥
√

n for transitive functions with constant alternating
number, giving the best possible bound for such functions.

The first statement of Lemma 4.1 is tight for the TRIBES function on n variables:
TRIBES is monotone and therefore has alt(f) = 1. Also, TRIBES is transitive as noted
in [30]. It is easy to see that TRIBES has s(f) =

√
n.

▶ Lemma 4.2. For any non-constant transitive function f : {0, 1}n → {0, 1} the following
two statements hold:

s(f)2 · dia∧(f) ≥ n,

s(f) · deg2(f) · dia∧(f) ≥ n.

Proof. Recall that Lemma 2.11 gives that:

C(f, 0n)s(f) ≥ n

Further equation 3 gives that:

C(f, 0n) ≤ dia∧(f, 0n) · s(f)

Therefore, we get:

dia∧(f, 0n) · s(f)2 ≥ n

which implies the first part of the lemma.
A similar argument gives the second part of the lemma using equation 5. ◀

▶ Corollary 4.3. For any non-constant transitive function f : {0, 1}n → {0, 1} with constant
alternating number or constant AND diameter dia∧(f) = O(1), we have:

s(f) ≥ Ω(
√

n)

We now prove a lower bound on the block sensitivity of transitive functions under the
weaker condition of having constant minimum AND diameter.

▶ Lemma 4.4. For any non-constant transitive function f : {0, 1}n → {0, 1} with
diamin,∧(f) = O(1), we have:

bs(f) ≥ Ω(n3/7)

Proof. We have two cases:
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Case 1: Cmin(f) ≥ n3/7. The first part of Theorem 3.7 implies that Cmin(f) ≤
diamin,∧(f) · s(f) ≤ O(s(f)), since diamin,∧(f) = O(1).

Then n3/7 ≤ Cmin(f) ≤ O(s(f)) ≤ O(bs(f)) and we are done.

Case 2: Cmin(f) ≤ n3/7. Now we use Lemma 2.12 with r = 7. This implies that if any
transitive function f has Cmin(f) ≤ n3/7, then bs(f) ≥ n3/7, implying the statement of the
Lemma in this case. ◀

4.2 Implications to the log-rank conjecture for XOR functions
For any f : {0, 1}n → {0, 1}, the corresponding XOR function f ◦ ⊕ : {0, 1}2n → {0, 1} is
defined as: f ◦ ⊕(x, y) = f(x ⊕ y), where x ⊕ y is the bitwise XOR of x, y ∈ {0, 1}n.

Lin and Zhang [20] proved that the log-rank conjecture holds for XOR functions f ◦ ⊕
such that alt(f) is at most polynomial in log ||f̂ ||0 (see Theorem A.11).

In this section, we prove that the log-rank conjecture holds for functions of the form
f(x ⊕ y) such that the F2-degree diameter of f is upper bounded by a polynomial in the
logarithm of the Fourier sparsity of f .

First we prove an analogous result to Theorem A.11 implying the log-rank conjecture for
XOR functions with bounded F2-degree diameter. In contrast to the proof of Theorem A.11,
we do not need to upper bound Cclo

min(f), since Theorem 3.6 proves an upper bound directly
on C(f) in terms of the product of diadeg2(f) and deg2(f) for any function f . This gives us
the following result confirming the log-rank conjecture for functions f ◦ ⊕ with diadeg2(f)
upper bounded by a polynomial in the logarithm of the Fourier sparsity of f :

▶ Theorem 4.5. For any function f : {0, 1}n → {0, 1}, we have:

CC(f ◦ ⊕) ≤ 2diadeg2(f) log2 rank(Mf◦⊕)

Proof. Recall the third statement of Theorem 3.6 which states that:

C(f) ≤ diadeg2(f) · deg2(f)

Along with Lemma A.10, we get that:

CC(f ◦ ⊕) ≤ 2C(f) · log rank(Mf◦⊕)
≤ 2diadeg2(f) · deg2(f) · log rank(Mf◦⊕)
≤ 2diadeg2(f) · log2 rank(Mf◦⊕)

Here the last inequality follows from Lemmas A.6 and A.9. ◀

We note that the statement of Theorem 4.5 also holds with dia∧(f) replacing diadeg2(f),
since the F2-degree diameter is upper bounded by the AND diameter for any function f as
noted in equation 2. We state Theorem 4.5 with diadeg2(f) instead of dia∧(f) because it
gives a stronger statement since there exist functions with diadeg2 much smaller than dia∧
as illustrated by Example 5.2.

Next we prove a common strengthening of Theorem A.11 and Theorem 4.5. We show
that the communication complexity of a function of the form f(x ⊕ y) can also be upper
bounded in terms of the closure of its min F2-degree diameter and the square of the log of
rank of its communication matrix Mf◦⊕.

▶ Theorem 4.6. For any function f : {0, 1}n → {0, 1}:

CC(f ◦ ⊕) ≤ 2diaclo
min,deg2

(f) · log2 rank(Mf◦⊕)
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Proof. From the third statement of Theorem 3.7, we have that:

Cclo
min(f) ≤ diaclo

min,deg2
(f) · deg2(f)

Combining this with Lemmas A.6, A.9 and A.10 gives the result. ◀

As we shall note in Lemma 4.7, diamin,deg2(f) ≤ diamin,∧(f) ≤ alt(f). Since alternating
number is a downward non-increasing measure, this implies that diaclo

min,deg2
(f) ≤ alt(f).

Furthermore, Example 5.4 gives a family of functions f : {0, 1}n → {0, 1} with alternating
number exponentially larger than all our diameters. This shows that Theorem 4.6 is a strictly
stronger statement than Theorem A.11.

By definition, we have that for any function f , diaclo
min,deg2

(f) ≤ diadeg2(f). Therefore,
Theorem 4.6 is a potentially stronger statement than Theorem 4.5. As of now, we are not
aware of any example function f separating diaclo

min,deg2
(f) from diadeg2(f). However, we

remark that the TRIBES function separates diaclo
min,∧(f) from dia∧(f) as noted in Section 5.8.

We illustrate with examples in Section 5 that, in general, the alternating number of a
function and its H-diameter are incomparable for the different classes H that we consider.
However, in the following lemma, we show that the min AND diameter, and consequently,
the min H-diameter for all our different classes H, are upper bounded by the alternating
number.

▶ Lemma 4.7. For any function f : {0, 1}n → {0, 1}, we have,

diamin,∧(f) ≤ alt(f)

Proof. We prove the following relationship, which immediately implies the statement of the
lemma:

dia∧(f, 1n) ≤ alt(f) (6)

Let alt(f) = t and let Q = x(0), x(1), . . . x(t) be an alternating path of length t.
Now, we construct an AND-NAND path Q′ = z(0), z(1), . . . z(t) from 0n to a certificate α

of 1n in the following way:
Let z(0) = x(0) = 0n. Let z(1) ≤ x(1) be a minimal element such that f(z(1)) = f(x(1)).

Recall that by the definition of alternating path, f(x(i)) ̸= f(x(i+1)). Thus, the set of
variables where z(0) and z(1) differ forms a minimal sensitive block for f on z(0): for all
y ̸= z(1) such that z(0) ≺ y ≺ z(1), f(y) = f(z(0)) but f(z(1)) ̸= f(z(0)).

In general, for i ∈ {0, 1, . . . , t − 1}, let z(i+1) ≺ x(i+1) be a minimal element such that
f(z(i+1)) = f(x(i+1)), and z(i) ≺ z(i+1) Thus, the set of variables where z(i) and z(i+1)

differ forms a minimal sensitive block for f on z(i). As we noted before (see Section 3.1)
subfunctions over a set of variables that forms a minimal sensitive block are either the AND
or the NAND function. Thus, for the path Q′, each subfunction fβi is either an AND or a
NAND.

We will thus get an AND-NAND path z(0), z(1), . . . , z(t) of length t. Note that z(t) must
agree with some certificate of 1n, since otherwise, we can get an alternating path for f of
length greater than t in the following way: consider the alternating path Q′ = z(0), z(1), . . . z(t).
Since z(t) does not agree with any certificate of 1n, the partial assignment α defined as
αi = 1 whenever z

(t)
i = 1 and αi = ⋆ otherwise, is not a certificate of f . This implies the

existence of an input z(t+1) such that z(t) ≺ z(t+1) and f(z(t)) ̸= f(z(t+1)). Therefore, the
path Q′′ = z(0), z(1), . . . z(t), z(t+1) is an alternating path of length t + 1 contradicting the
fact that alt(f) = t.

Therefore, the path z(0), z(1), . . . , z(t) is an AND-NAND path from 0n to some certificate
of f on 1n and the statement follows. ◀
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5 Separating Examples

In this section, we give several examples, separating various types of diameters from alternating
number and from each other.

5.1 Separating dias(f) from dia∧(f)
The following example has constant sensitivity diameter, whereas its AND diameter equals
the number of input variables.

▶ Example 5.1. Let f : {0, 1}n → {0, 1} be the PARITY function on n bits i.e.
PARITY (x) =

⊕
i∈[n]

xi.

It is easy to see that dia∧(PARITY ) = n, since for any partial assignment α, the
subfunction PARITYα belongs to the AND-NAND class only if α fixes all but 1 variable.

On the other hand, for any input x ∈ {0, 1}n, dias(PARITY, x) = 1. This is because
we can consider α to be the certificate fixing all the bits of x and then the path x̄, x is a
valid H-path since s(PARITY ) = n (i.e. PARITY induced on the “entire cube” has full
sensitivity).

5.2 Separating diadeg(f) (and also diadeg2(f)) from dia∧(f)
The next example has constant values for both its real degree diameter as well as F2-degree
diameter, but has large AND diameter.

▶ Example 5.2. Define f : {0, 1}n → {0, 1} as follows:
f(0n) = 1,
f(x) =

⊕
i∈[n]

xi otherwise.

It is easy to show that dia∧(f) = n by a similar argument as in example 5.1.
Also, we note that deg2(f) = n. This follows from a result of Beigel and Bernasconi [4],

stating that for any Boolean function, deg2(f) = n iff |f−1(1)| is odd.
Therefore, by an analogous argument as in example 5.1, for any input x ∈ {0, 1}n,

diadeg2(f, x) = 1. (We can again consider α to be the certificate fixing all the bits of x and
the path x̄, x is a valid H-path since deg2(f) = n.)

Therefore, we have diadeg2(f) = 1.
We also have that for any Boolean function f , deg2(f) ≤ deg(f) (see for example,

proposition 6.23 in [30]).
Therefore, deg(f) = n, and by a similar argument as for the F2-degree, diadeg(f) = 1.

We note that the PARITY function from example 5.1 also separates diadeg(f)
from dia∧(f). This is because diadeg(PARITY ) = 1 as we discuss below, whereas
dia∧(PARITY ) = n as noted in Example 5.1.

5.3 Separating diadeg(f) from diadeg2(f)
Recall from equation 2 that diadeg(f) ≤ diadeg2(f) for any boolean function f . To separate
diadeg(f) from diadeg2(f), we consider again the PARITY function discussed in Example 5.1.
It is easy to see that deg2(PARITY ) = 1. Moreover, for any partial assignment α : [n] →
{0, 1, ⋆}, the subfunction PARITYα is also a PARITY function on the free bits and therefore,
deg2(PARITYα) = 1. So we have diadeg2(PARITY ) = n. However, deg(PARITY ) = n,
by the characterization due to Shi and Yao (see in the survey [9]) which states that for
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any function f : {0, 1}n → {0, 1}, deg(f) = n iff the number of 1-inputs with an even
number of 1’s does not equal the number of 1-inputs with an odd number of 1’s. Therefore,
diadeg(PARITY ) = 1.

5.4 Separating dias(f) and diadeg2(f) from each other
The measures dias(f) and diadeg2(f) are incomparable, and we provide examples separating
them in both directions.

We again revisit the PARITY function considered in Example 5.1 to illustrate a function
with small dias(f) and large diadeg2(f). As noted before, diadeg2(PARITY ) = n, whereas
dias(PARITY ) = 1, achieving the required separation.

To illustrate a separation in the other direction, we consider the TRIBES function
on n2 bits that has dias(TRIBES) = Θ(n) as we shall see in Example 5.3. However,
deg2(TRIBES) = n2 and therefore, diadeg2(TRIBES) = 1.

5.5 Separating dias(f) from diadeg(f)
We now mention a separating example with diadeg(f) much smaller than dias(f). The
TRIBES function (see also Example 5.3) on n2 bits has dias(TRIBES) = Θ(n). However,
deg(TRIBES) = n2 and therefore, diadeg(TRIBES) = 1.

We are not aware of any examples as yet, separating these measures in the other direction.
We do believe these measures to be incomparable, and it would be an interesting exercise to
find functions f with dias(f) asymptotically smaller than diadeg(f).

5.6 Example with alt(f) smaller than dias(f) (and also dia∧(f) )
We now present an example where the alternating number is much smaller than dia∧(f) as
well as dias(f).

▶ Example 5.3. Consider the TRIBES function f : {0, 1}n2 → {0, 1} defined as:

TRIBES(x11, x12, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . xnn) =
∨

i∈[n]

∧
j∈[n]

xij

We first note that since TRIBES is monotone, alt(TRIBES) = 1.
We shall show that dia∧(TRIBES) ≥ 2n − 1.
Consider the 1-input x = 1n(021n−2)n−1. In other words, the first block of n bits of x

are set to 1, the remaining n − 1 blocks of n bits each have the first 2 bits set to 0 and the
rest set to 1.

Note that TRIBES(x̄) = 0.
Now, let x(0), x(1), . . . , x(t) be any valid AND-NAND path from x to α where α is a

certificate of x̄. (Note that we have switched the roles of x and x̄ in this example for
convenience.)

Since TRIBES(x(0)) ̸= f(x(1)) = 0, the partial assignment β(0) must have free bits
belonging to the first block of n bits, and moreover, it cannot contain any free bits from any
of the other blocks, in order for the function TRIBESβ(0) to belong to the AND-NAND
class.

For the next step, since TRIBES(x(2)) = 1, it is necessary that both 0-bits must be
flipped from one of the remaining blocks. In other words, the partial assignment β(1) must
have exactly two free variables corresponding to the first two bits of some block (other than
the first block).
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Again, as before, the partial assignment β(2) must contain free variables from the block
which now only contains 1-bits.

In this way, any shortest valid AND-NAND path must alternate between changing some
block to contain only 1-bits (thereby changing the function value to 1), and then flipping
some 1-bit in that block to 0 (changing the function value to 0).

Eventually, every block will contain a bit that was flipped from a 1 to a 0, and the set of
these bits shall constitute a certificate of x̄.

Therefore, we have that dia∧(TRIBES) ≥ 2n − 1. We note that this bound is tight up
to constant factors, as can be seen from Theorem B.1 which implies that dia∧(TRIBES) ≤
O(n).

A similar argument also works to show that dias(TRIBES) ≥ 2n − 1, and therefore,
dias(TRIBES) = θ(n) due to Theorem B.1.

However, since deg(TRIBES) = n2, we have that diadeg(TRIBES) = 1.
Similarly, deg2(TRIBES) = n2 and therefore, diadeg2(TRIBES) = 1.

5.7 Example with alt(f) larger than all our diameters
We refer to an example from [13] that separates alt(f) from C(f) (and consequently, from
all of our diameters).

▶ Example 5.4. Let f be the function constructed in [13] as an example where alt(f) is
exponentially larger than DT (f) and therefore also C(f) (since DT (f) ≥ C(f)). We note
that since dia∧(f) ≤ 2C(f) due to Lemma 3.4, f also acts as a separating example where
alt(f) is exponentially larger than dia∧(f), and therefore, also exponentially larger than
dias(f), diadeg2(f) and diadeg(f) .

5.8 Separating diaclo
min,∧(f) from dia∧(f) and diaclo

min,s(f) from
dias(f)

For separating diaclo
min,∧(f) from dia∧(f), we revisit the TRIBES function considered in

Example 5.3. As noted in that example, dia∧(TRIBES) = Θ(n). On the other hand, we have
that diaclo

min,∧(TRIBES) ≤ alt(TRIBES) = 1, thereby achieving the required separation.
The same separation is also achieved for the TRIBES function between diaclo

min,s(f) and
dias(f) by an analogous argument.
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For any input x ∈ {0, 1}n, the label at the leaf reached by following the decision tree
queries is the evaluation of the decision tree on x. The decision tree is said to compute the
function f if it evaluates to f(x) on every input x ∈ {0, 1}n. The decision tree complexity of
a boolean function f , denoted DT (f), is defined as the smallest possible depth of any decision
tree computing f .

▶ Definition A.4 (Fourier sparsity of a function). Any function f : {0, 1}n → {0, 1} can be
uniquely represented as

f(x) =
∑

S⊆[n]

f̂(S)(−1)
∑

i∈S
xi

This is said to be the Fourier expansion of f and the coefficients f̂(S) are called the Fourier
coefficients of f . The number of non-zero Fourier coefficients of f is defined to be the Fourier
sparsity of f , denoted ||f̂ ||0.

We note that usually the Fourier representation is considered for functions of the form
f : {0, 1}n → {+1, −1}. We use this version of the definition because it exactly captures the
rank of the communication matrix for XOR functions (see Section A.1).

A.1 The approach of Lin and Zhang
We review the approach of Lin and Zhang [20] which we build upon in Section 4.2.

We first define the closure of min Certificate Complexity which was implicit in the
approach of [35], and defined in [20]:

▶ Definition A.5 (Closure of min Certificate Complexity; [35, 20]). For a function f : {0, 1}n →
{0, 1}, we define the closure of the min certificate complexity of f as:

Cclo
min(f) = max

α
Cmin(fα)

where the maximum is taken over all possible partial assignments α on n variables, or in
other words, over all possible subfunctions fα of f .

Note that Cclo
min(f) ≤ C(f).

They also note that it is possible to define the closure for any complexity measure M(f)
for function f as M clo(f) = maxα M(fα), where the maximum is taken over all subfunctions
fα of f . A measure M is said to be downward non-increasing if for any function f , it
holds that M(fα) ≤ M(f) for any subfunction fα of f . Note that the measures sensitivity,
block sensitivity, certificate complexity, decision tree complexity, F2-degree, Fourier sparsity,
alternating number are all downward non-increasing. It follows from the definition of
downward non-increasing measures that whenever measure M is downward non-increasing,
it holds that M clo(f) = M(f).

We first note the following result from [7] stating that the rank of the communication
matrix Mf◦⊕ exactly equals the Fourier sparsity of f :

▶ Lemma A.6 ([7]). For any function f : {0, 1}n → {0, 1}, we have: rank(Mf◦⊕) = ||f̂ ||0.

Next, we note the following lemma about communication complexity of XOR functions:

▶ Lemma A.7 ([25]). For any function f : {0, 1}n → {0, 1}, we have: CC(f ◦ ⊕) ≤ 2DT (f).
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The following lemma upper bounds the decision tree complexity in terms of the product of
its certificate complexity and F2-degree. We note that the second inequality follows because
Cclo

min(f) ≤ C(f).

▶ Lemma A.8 ([36, 37, 20]). For any function f : {0, 1}n → {0, 1}, we have:

DT (f) ≤ Cclo
min(f) · deg2(f) ≤ C(f) · deg2(f)

The F2-degree of any function is upper bounded by the logarithm of its Fourier sparsity
as proved in [7]:

▶ Lemma A.9 ([7]). For any function f : {0, 1}n → {0, 1}, we have: deg2(f) ≤ log ||f̂ ||0.

Lemmas A.6, A.7, A.8, A.9 imply the following result as also noted in [20]:

▶ Lemma A.10 ([20]). For any function f : {0, 1}n → {0, 1}:

CC(f ◦ ⊕) ≤ 2Cclo
min(f) · log rank(Mf◦⊕) ≤ 2C(f) · log rank(Mf◦⊕)

It follows from Lemma A.10 that proving an upper bound on the certificate complexity of
a function f in terms of a polynomial in log rank(Mf◦⊕) would imply the log-rank conjecture
for the corresponding XOR function f ◦ ⊕.

Another approach towards proving the log-rank conjecture for XOR functions would be
to upper bound Cclo

min(f) directly. One way to achieve this for a class of functions would be to
prove an upper bound of the form Cmin(f) ≤ M(f) where M(f) is a complexity measure that
is downward non-increasing, since that would imply the bound Cclo

min(f) ≤ M(f), thereby
proving the log-rank conjecture for functions f ◦ ⊕ with bounded value of M(f). Lin and
Zhang [20] use this approach to prove that the log-rank conjecture holds for XOR functions
f ◦ ⊕ which are such that alt(f) is at most polynomial in log ||f̂ ||0.

In particular, they achieve this by proving that for every boolean function f , Cmin(f) ≤
alt(f)deg2(f). Since both alt(f) and deg2(f) are downward non-increasing, they get the
following result:

▶ Theorem A.11 (Theorem 2 from [20]). For any function f : {0, 1}n → {0, 1}, we have:

CC(f ◦ ⊕) ≤ 2alt(f) · log2 rank(Mf◦⊕)

B Diameter under OR-composition

In this section, we study the behavior of diameters under OR-composition. In particular, we
prove that any diameter of the OR-composition of two functions is upper bounded by a sum
of their corresponding individual diameters (plus a constant factor).

In what follows, for two functions f, g : {0, 1}n → {0, 1}, we define the OR-composed
function f ∨ g : {0, 1}2n → {0, 1} as f ∨ g(x1, x2) = 1 if f(x1) = 1 or g(x2) = 1, and
f ∨ g(x1, x2) = 0 otherwise, for x1, x2 ∈ {0, 1}n.

We now prove a result relating the diameter of OR-composition of two functions with
their individual diameters as mentioned before:

▶ Theorem B.1. For any functions f, g : {0, 1}n → {0, 1}, we have:

dia∧(f ∨ g) ≤ dia∧(f) + dia∧(g) + 3

Proof. Consider any input (x1, x2) ∈ {0, 1}2n. We have two cases as follows:
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Case 1: f ∨ g(x1, x2) = 0. Consider the AND-NAND path z
(0)
1 , z

(1)
1 , . . . , z

(t1)
1 (where

x̄1 = z
(0)
1 ) achieving dia∧(f, x1) and the AND-NAND path z

(0)
2 , z

(1)
2 , . . . , z

(t2)
2 (where x̄2 =

z
(0)
2 ) achieving dia∧(g, x2).

We first deal with the case when f(x̄1) = 0 and g(x̄2) = 0. Observe that the following is
a valid AND-NAND path for f ∨ g:

(z(0)
1 , z

(0)
2 ), (z(0)

1 , z
(1)
2 ), . . . (z(0)

1 , z
(t2)
2 ), (z(1)

1 , z
(t2)
2 ), (z(2)

1 , z
(t2)
2 ), . . . , (z(t1)

1 , z
(t2)
2 ).

This follows because of the simple observation, that for any input (a, b) ∈ {0, 1}2n, if g(b) = 0,
then f ∨ g(a, b) = f(a). Due to this observation, in the first t2 steps of the above path, the
input to f is fixed to z

(0)
1 which is such that f(z(0)

1 ) = 0. Therefore, throughout these steps,
we have that f ∨ g(z(0)

1 , z
(i)
2 ) = g(z(i)

2 ) for any i ∈ {0, 1, . . . t2}. Since z
(0)
2 , z

(1)
2 , . . . , z

(t2)
2 is a

valid AND-NAND path of g, the first t2 steps form valid steps of an AND-NAND path of
f ∨ g.

Similarly, since z
(t2)
2 agrees with a certificate for g on x2, it holds that g(z(t2)

2 ) = 0.
Therefore, for the next t1 steps of the path, it holds that f ∨ g(z(i)

1 , z
(t2)
2 ) = f(z(i)

1 ) for any
i ∈ {0, 1, . . . t2}, and a similar argument goes through as for the first t2 steps of the path.

Finally, since z
(t1)
1 agrees with a certificate for f on x1 and z

(t2)
2 agrees with a certificate

for g on x2, the input (z(t1)
1 , z

(t2)
2 ) agrees on a certificate for f ∨ g on the input (x1, x2). We

therefore get a valid AND-NAND path for the function f ∨ g of length t1 + t2.

Now, we consider the case when f(x̄1) = 1 and g(x̄2) = 0. In this case, we first perform
an additional step of flipping the bits of any minimal sensitive block B for f on x̄1 to get
to a 0-input of f i.e. x̄1

B. We then follow the argument of the previous case, and without
changing the input to f , take t2 steps corresponding to the AND-NAND path for g i.e.
z

(0)
2 , z

(1)
2 , . . . , z

(t2)
2 . We then “undo” the first step by flipping back the bits of B in the

input corresponding to f to get to the input (x̄1, z
(t2)
2 ). Finally, we take the t1 steps of the

AND-NAND path for f starting from input x̄1 to get a valid AND-NAND path of total
length t1 + t2 + 2.

Similar argument works for the case when f(x̄1) = 0 and g(x̄2) = 1.
Finally, the case with f(x̄1) = 1 and g(x̄2) = 1 goes through a similar argument, with

the difference that the first step involves simultaneously flipping minimal sensitive blocks
for both f and g, on the respective inputs x̄1 and x̄2, to get input (x̄1

B1 , x̄2
B2), say. The

next step flips back these bits only for g to get the input (x̄1
B1 , x̄2). The argument then

proceeds as in the previous case, where we take the AND-NAND path for g starting from
input x̄2, followed by flipping back the bits of block B1 for the input to f , followed by the
AND-NAND path for f starting from input x̄1.

This gives a valid AND-NAND path of length t1 + t2 + 3 for f ∨ g starting from input
(x̄1, x̄2).

Case 2:f ∨ g(x1, x2) = 1. Wlog, assume that g(x2) = 1.
In this case, we follow a similar proof strategy as in Case 1, with the difference that in

this case, we only need to follow the steps corresponding to a valid AND-NAND path for
g starting from x̄2, since in this case, a certificate for g on x2 would also be a certificate
for f ∨ g on (x1, x2). Apart from that, we follow a similar argument, where we first flip
appropriate blocks of bits, if necessary, to ensure that we are at a 0-input of f . We then
follow the AND-NAND path for g to get a certificate for f ∨ g on (x1, x2). This gives an
AND-NAND path for f ∨ g of length at most t2 + 2. ◀
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We remark that Theorem B.1 also holds for the three other diameters we consider i.e. for
diadeg(f), diadeg2(f) and dias(f) by an analogous argument.

Note that the TRIBES function f : {0, 1}n2 → {0, 1} as discussed in Example 5.3 is an
OR-composition of n copies of the ANDn function (i.e. the AND function on n bits). Since
dia∧(ANDn) = 1, Theorem B.1 implies the bound: dia∧(TRIBES) ≤ Θ(n). As seen in
Example 5.3, dia∧(TRIBES) ≥ 2n − 1 and therefore, this bound is asymptotically tight for
the TRIBES function.

However, Theorem B.1 does not always give a tight bound for OR-composed functions,
as can be seen from the example of the function ORn : {0, 1}n → {0, 1} i.e. the OR function
on n bits. ORn is also an OR-composition of n copies of the function g : {0, 1} → {0, 1}
with single-bit inputs, where g(x) = x. Since dia∧(g) = 1, Theorem B.1 gives the bound
dia∧(ORn) ≤ Θ(n). This bound is not tight since it holds that dia∧(ORn) = 1.
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Abstract
We study the Budgeted Dominating Set (BDS) problem on uncertain graphs, namely, graphs with
a probability distribution p associated with the edges, such that an edge e exists in the graph
with probability p(e). The input to the problem consists of a vertex-weighted uncertain graph
G = (V, E, p, ω) and an integer budget (or solution size) k, and the objective is to compute a vertex
set S of size k that maximizes the expected total domination (or total weight) of vertices in the closed
neighborhood of S. We refer to the problem as the Probabilistic Budgeted Dominating Set (PBDS)
problem. In this article, we present the following results on the complexity of the PBDS problem.

1. We show that the PBDS problem is NP-complete even when restricted to uncertain trees of
diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem
is solvable in polynomial time in trees. We further show that PBDS is W[1]-hard for the budget
parameter k, and under the Exponential time hypothesis it cannot be solved in no(k) time.

2. We show that if one is willing to settle for (1 − ϵ) approximation, then there exists a PTAS for
PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be
solved optimally in polynomial time.

3. We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS
(where all edge probabilities are identical) is W[1]-hard for the parameter pathwidth. On the other
hand, we show that it is FPT in the combined parameters of the budget k and the treewidth.

4. Finally, we extend some of our parameterized results to planar and apex-minor-free graphs.

Our first hardness proof (Thm. 1) makes use of the new problem of k-Subset Σ−Π Maximization
(k-SPM), which we believe is of independent interest. We prove its NP-hardness by a reduction from
the well-known k-SUM problem, presenting a close relationship between the two problems.
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1 Introduction

Background and Motivation. Many optimization problems in network theory deal with
placing resources in key vertices in the network so as to maximize coverage. Some practical
contexts where such coverage problems occur include placing mobile towers in wireless
networks to maximize reception, assigning emergency vehicle centers in a populated area to
guarantee fast response, opening production plants to ensure short distribution lines, and so
on. In the context of social networks, the problem of spreading influencers so as to affect as
many of the network members as possible has recently attracted considerable interest.

Coverage problems may assume different forms depending on the optimized parameter.
A basic “full coverage” variant is the classical dominating set problem, which asks to find
a minimum vertex set S such that each vertex not in S is dominated by S, i.e., is adjacent
to at least one vertex in S. In the dual budgeted dominating set (BDS) problem, given a
bound k (the budget), it is required to find a set S of size at most k maximizing the number
of covered vertices. Over vertex weighted graphs, the goal is to maximize the total weight of
the covered vertices, also known as the domination. It is this variant that we’re concerned
with here.

Traditionally, coverage problems involve a fixed network of static topology. The picture
becomes more interesting when the network structure is uncertain, due to potential edge
connections and disconnections or link failures. Pre-selection of resource locations at the
design stage becomes more challenging in such partial-information settings.

In this work, we study the problem in one of the most fundamental settings, where the
input is a graph whose edges fail independently with a given probability. The goal is to find
a k-element set that maximizes the expected (1-hop) coverage (or domination). Our results
reveal that the probabilistic versions of the coverage problem are significantly harder than
their deterministic counterparts, and analyzing them require more elaborate techniques.

An uncertain graph G is a triple (V,E, p), where V is a set of n vertices, E ⊆ V × V is a
set of m edges, and the function p : E → [0, 1] assigns a probability of existence to each edge
in E. So an m edge uncertain graph G represents a probability space consisting of 2m graphs,
sometimes called possible worlds, derived by sampling each edge e ∈ E independently with
probability p(e). For H = (V,E′ ⊆ E), the event of sampling H as a possible world, denoted
H ⊑ G, occurs with probability Pr(H ⊑ G) =

∏
e∈E′ p(e)

∏
e∈E\E′

(
1 − p(e)

)
. The notion of

possible worlds dates back to Leibniz and possible world semantics (PWS) is well-studied in
the modal logic literature, beginning with the work of Kripke.

Our work focuses on budgeted dominating sets on vertex-weighted uncertain graphs,
i.e., the Probabilistic Budgeted Dominating Set (PBDS) problem. The input consists of a
vertex-weighted uncertain graph G = (V,E, p, ω), with a weight function ω : V → Q+ and
an integer budget k. Set p(vv) = 1 for every v. For a vertex u and a set S ⊆ V , denote by
Pr(u ∼ S) = 1−

∏
v∈S(1−p(uv)) the probability that u ∈ S or u is connected to some vertex

in S. For sets S1, S2 ⊆ V , the expected coverage (or domination) of S1 by S2 is defined as
C(S1, S2) =

∑
v∈S1

(
w(v) Pr(v ∼ S2)

)
. The PBDS problem aims to find a set S of size k that

maximizes C(V, S) over the possible worlds. Its decision version is defined as follows.

Probabilistic budgeted dominating set (PBDS)
Input: A vertex-weighted uncertain graph G = (V,E, p, ω), an integer k and a target
domination value t.
Question: Is there a set S ⊆ V of size at most k such that C(V, S) ≥ t ?
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Our Results and Discussion. The budgeted dominating set problem is known to have a
polynomial time solution on trees. A natural question is if the same applies to the probabilistic
version of the problem. We answer this question negatively, showing the following.

▶ Theorem 1. The PBDS problem is NP-hard on uncertain trees of diameter 4. Furthermore,
(i) the PBDS problem on uncertain trees is W[1]-hard for the parameter k, and (ii) an no(k)

time solution to PBDS will falsify the Exponential time hypothesis.

In order to prove the theorem, we introduce the following problem.

Subset Σ − Π Maximization (k-SPM)
Input: A multiset A = {(x1, y1), . . . , (xN , yN )} of N pairs of positive rationals, an integer
k, and a rational t.
Question: Is there a set S ⊆ [N ] of size exactly k satisfying

∑
i∈S xi −

∏
i∈S yi ≥ t ?

To establish the complexity of the k-SPM problem, we present a polynomial time
reduction from k-SUM to k-SPM, thereby proving that both k-PBDS and k-SPM are NP-
hard. Moreover, Downey and Fellows [23] showed that the k-SUM problem is W[1]-hard,
implying that if k-SUM has an FPT solution with parameter k, then the W hierarchy
collapses. This provides our second hardness result.

▶ Theorem 2. The k-SPM problem is W[1]-hard for the parameter k. Furthermore, any
No(k) time solution to k-SPM falsify the Exponential time hypothesis.

The k-SUM problem can be solved easily in Õ(n⌈k/2⌉) time. However, it has been a
long-standing open problem to obtain any polynomial improvement over this bound [1, 47].
Patrascu and Williams [48] showed an no(k) time algorithm for k-SUM falsifies the famous
Exponential time hypothesis (ETH). Hence, our polynomial time reductions also imply that
any algorithm optimally solving k-PBDS or k-SPM must require nΩ(k) time unless ETH fails.

▶ Theorem 3. Under the k-SUM conjecture, for any ε > 0, there does not exist an n⌈k/2⌉−ε

time algorithm to PBDS problem on vertex-weighted uncertain trees.

An intriguing question is whether the k-SPM is substantially harder than k-SUM. For the
simple scenario of k = 2, the 2-SUM problem has an O(n log n) time solution. However, it is
not immediately clear whether the 2-SPM problem has a truly sub-quadratic time solution
(i.e., O(n2−ε) time for some ε > 0). We leave this as an open question. This is especially of
interest due to the following result.

▶ Theorem 4. Let 1 ⩽ c < 2 be the smallest real such that 2-SPM problem has an Õ(nc)
time algorithm. Then, there exists an Õ

(
(dn)c⌈k/2⌉+1)

time algorithm for optimally solving
k-PBDS on trees with arbitrary edge-probabilities, for some constant d > 0.

Given the hardness of k-PBDS on uncertain trees, it is of interest to develop efficient
approximation algorithms. Clearly, the expected neighborhood size of a vertex set is a
submodular function, and thus it is known that the greedy algorithm yields a (1 − 1/ e)-
approximation for the PBDS problem in general uncertain graphs [39, 46]. For uncertain
trees, we improve this by presenting a fully polynomial-time approximation scheme for PBDS.

▶ Theorem 5. For any integer k, and any n-vertex tree with arbitrary edge probabilities, a
(1 − ϵ)-approximate solution to the optimal probabilistic budgeted dominating set (PBDS) of
size k can be computed in time Õ(k2ϵ−1n2).
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We also consider a special case that the number of distinct probability edges on the input
uncertain tree is bounded above by some constant γ.

▶ Theorem 6. For any integer k, and an n-vertex tree T with at most γ edge probabilities,
an optimal solution for the PBDS problem on T can be computed in time Õ(k(γ+2)n).

We investigate the complexity of PBDS on bounded treewidth graphs. The hardness
construction on bounded treewidth graphs is much more challenging. Due to this inherent
difficulty, we focus on the uniform scenario, where all edge probabilities p(e) are identical.
We refer to this version of the problem as Uni-PBDS. We show that for any 0 < q < 1, the
Uni-PBDS problem with edge-probability q is W[1]-hard for the pathwidth parameter of the
input uncertain graph G. In contrast, the BDS problem (when all probabilities are one) is
FPT when parameterized by the pathwidth of the input graph.

▶ Theorem 7. Uni-PBDS is W[1]-hard w.r.t. the pathwidth of the input uncertain graph.

Then, we consider the Uni-PBDS problem with combined k and treewidth parameters.
We show that the Uni-PBDS problem can be formulated as a variant of the Extended Monadic
Second order (EMS) problem due to Arnborg et al. [6], to derive an FPT algorithm for the
Uni-PBDS problem parameterized by the treewidth of G and k.

▶ Theorem 8. For any integer k, and any n-vertex uncertain graph of treewidth w with
uniform edge probabilities, k-Uni-PBDS can be solved in time O(f(k,w)n2), and thus is
FPT in the combined parameter involving k and w. By dynamic programming on a nice tree
decomposition we can show that f(k,w) is kO(w) (we do not present this here).

Finally, using the structural property of dominating sets from Fomin et al. [28], we derive
FPT algorithms parameterized by the budget k in apex-minor-free graphs and planar graphs.

▶ Theorem 9. For any integer k, and any n-vertex weighted planar or apex-minor free graph,
the Uni-PBDS problem can be solved in time 2O(

√
k log k)nO(1).

Related Work. Uncertain graphs have been used in the literature to model the uncertainty
among relationships in protein-protein interaction networks in bioinformatics [7], road
networks [8, 37] and social networks [22, 39, 52, 54]. Connectivity [9, 10, 33, 38, 51, 53],
network flows [27, 31], structural-context similarity [55], minimum spanning trees [26],
coverage [16, 34, 35, 44, 43], and community detection [11, 49] are well-studied problems
on uncertain graphs. In particular, budgeted coverage problems model a wide variety of
interesting combinatorial optimization problems on uncertain graphs. For example, the
classical facility location problem [36, 40] is a variant of coverage. As another example, in a
classical work, Kempe, Kleinberg, and Tardos [39] study influence maximization problem
as an expected coverage maximization problem in uncertain graphs. They consider the
scenario where influence propagates probabilistically along relationships, under different
influence propagation models, like the Independent Cascade (IC) and Linear Threshold
(LT) models, and show that choosing k influencers to maximize the expected influence is
NP-hard in the IC model. The coverage problem in the presence of uncertainty was studied
extensively also in sensor placement and w.r.t. the placement of light sources in computer
vision. SS A special case of the budgeted coverage problem is the Most Reliable Source
(MRS) problem, where given an uncertain graph G = (V,E, p), the goal is to find a vertex
u ∈ V such that the expected number of vertices in u’s connected component is maximized.
To the best of our knowledge, the computational complexity of MRS is not known, but
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it is polynomial time solvable on some specific graph classes like trees and series-parallel
graphs [12, 19, 20, 21, 43]. Domination is another special kind of coverage and its complexity
is very well-studied. The classical dominating set (DS) problem is known to be W[2]-hard
in general graphs [23], and on planar graphs it is fixed parameter tractable with respect to
the size of the dominating-set as the parameter [32]. Further, on H-minor-free graphs, the
dominating-set problem is solvable in subexponential time [4, 17]. It also admits a linear
kernel on H-minor-free graphs and graphs of bounded expansion [3, 25, 29, 30, 50]. On
graphs of treewidth bounded by w, the classical dynamic programming approach [15] can
be applied to show that the DS problem is FPT when parameterized by w. The Budgeted
Dominating Set (BDS) problem is known to be NP-hard [42] as well as W[1]-hard for the
budget parameter [23]. Furthermore, a subexponential parameterized algorithm is known for
BDS on apex-minor-free graphs [28]. The treewidth-parameterized FPT algorithm for the
dominating-set problem can be adapted to solve the BDS problem in time O(3wkn). In
particular, for trees there exists a linear running time algorithm. PBDS was studied as Max-
Exp-Cover-1-RF in the survey paper [45], and given a dynamic programming algorithm
on a nice tree decomposition with runtime 2O(w·∆)nO(1), where ∆ is the maximum degree of
G. The question whether PBDS has a treewidth parameterized FPT algorithm remained
unresolved; it is settled in the negative in this work.

2 Preliminaries

Consider a simple undirected graph G = (V,E) with vertex set V and edge set E, and let
n = |V | and m = |E|. Given a vertex subset S ⊆ V , the subgraph induced by S is denoted
by G[S]. For a vertex v ∈ V , N(v) denotes the set of neighbors of v and N [v] = N(v) ∪ {v}
is the closed neighborhood of v. Let deg(v) denote the degree of the vertex v in G. A vertex
subset S ⊆ V is said to be a dominating set of G if every vertex u ∈ V \ S has a neighbor
v ∈ S. For an integer r > 0, a vertex subset S ⊆ V is said to be an r-dominating set of
G if for every vertex u ∈ V \ S there exists a vertex v ∈ S at distance at most r from u.
A graph H is said to be an apex if it can be made planar by the removal of at most one
vertex. A graph G is said to be apex-minor-free if it does not contain as its minor some fixed
apex graph H. All planar graphs are apex-minor-free as they do not contain as minor the
apex graphs K3,3 and K5. The notations R, Q and N denote, respectively, the sets of real,
rational, and natural numbers (including 0). For integers a ≤ b, define [a, b] to be the set
{a, a + 1, . . . , b}, and for b > 0 let [b] ≡ [1, b]. Other than this, we follow standard graph
theoretic and parameterized complexity terminology [15, 18, 24].

Tree Decomposition. A Tree decomposition of an undirected graph G = (V,E) is a pair
(T, X), where T is a tree whose set of nodes is X = {Xi ⊆ V | i ∈ V (T)}, such that
1. for each edge u ∈ V , there is an i ∈ V (T) such that u ∈ Xi,
2. for each edge uv ∈ E, there is an i ∈ V (T) such that u, v ∈ Xi, and
3. for each vertex v ∈ V the set of nodes {i | v ∈ Xi} forms a subtree of T.
The width of a tree decomposition (T, X) equals maxi∈V (T) |Xi| − 1. The treewidth of a graph
G is the minimum width over all tree decompositions of G.

A tree decomposition (T, X) is nice if T is rooted by a node r with Xr = ∅ and every node
in T is either an insert node, forget node, join node or leaf node. Thereby, a node i ∈ V (T) is
an insert node if i has exactly one child j such that Xi = Xj ∪ {v} for some v /∈ Xj; it is a
forget node if i has exactly one child j such that Xi = Xj \ {v} for some v ∈ Xj; it is a join
node if i has exactly two children j and h such that Xi = Xj = Xh; and it is a leaf node if
Xi = ∅. Given a tree decomposition of width w, a nice tree decomposition of width w and
O(w n) nodes can be obtained in linear time [41].
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A tree decomposition (T ,X ) is said to be a path decomposition if T is a path. The
pathwidth of a graph G is minimum width over all possible path decompositions of G.
Let pw(G) and tw(G) denote the pathwidth and treewidth of the graph G, respectively.
The pathwidth of a graph G is one lesser than the minimum clique number of an interval
supergraph H which contains G as an induced subgraph. It is well-known that the maximal
cliques of an interval graph can be linearly ordered so that for each vertex, the maximal
cliques containing it occur consecutively in the linear order. This gives a path decomposition
of the interval graph. A path decomposition of the graph G is the path decomposition of the
interval supergraph H which contains G as an induced subgraph. In our proofs we start with
the path decomposition of an interval graph and then reason about the path decomposition
of graphs that are constructed from it.

Uncertain Graphs. For an uncertain graph G = (V,E, p, ω), the vertex weights and the
probabilities associated with the edges are given as rationals. The treewidth and diameter of
G are the same as the treewidth and diameter of its maximal possible world, G = (V,E).

Numerical Approximation. When analyzing our polynomial reductions, we employ nu-
merical analysis techniques to bound the error in numbers obtained as products of an
exponential and the root of an integer. We use the following well-known bound on the error
in approximating an exponential function by the sum of the lower degree terms in the series
expansion.

▶ Lemma 10 ([5]). For z ∈ [−1, 1], ez can be approximated using the Lagrange remainder as

ez = 1 + z + z2

2! + z3

3! + . . .+ zQ

Q! +RQ(z)

where |RQ(z)| ≤ e/(Q+ 1)! ≤ 1/2Q.

We use the following lemma for bounding the error in multiplying approximate values.

▶ Lemma 11. For any set {d1, . . . , dk} of k reals in the range [0, 1],∏
i∈[k]

(1 − di) ≥ 1 −
∑
i∈[k]

di.

Proof. The proof is by induction on k. The base case of k = 1 trivially holds. For any two
reals a, b ∈ [0, 1], (1 − a)(1 − b) ≥ 1 − (a+ b). Applying this result iteratively yields that for
any k ≥ 1, if

∏
i∈[k−1](1 − di) ≥ 1 − (

∑
i∈[k−1] di), then

∏
i∈[k]

(1 − di) ≥
(

1 −
( ∑

i∈[k−1]

di

))
(1 − dk) ≥ 1 −

∑
i∈[k]

di.

The claim follows. ◀

3 Hardness Results on Trees

3.1 k-SPM hardness
We first show that the k-Subset Σ − Π Maximization (k-SPM) problem is NP-hard by a
reduction from the k-SUM problem. Let ⟨X, k⟩ with X = {x1, . . . , xN } be an instance of
the k-SUM problem. Let L = 1 + maxi∈[N ] |xi|.
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Denote by ⟨A, k, t⟩ an instance of the k-SPM problem. Given an instance ⟨X, k⟩ of
k-SUM, we compute the array A(X) = {(x̃i, ỹi) | i ∈ [N ]} of the k-SPM problem as follows.
For 1 ≤ i ≤ N , set x̃i := (L+ xi)/(kL).

Let Q = 3 log2(kL). For i ∈ [N ], define yi = exi/(kL), and let ỹi be a rational approxima-
tion of yi that is computed using Lemma 10 such that 0 ≤ yi − ỹi ≤ 1/2Q. The new instance
of the k-SPM problem is ⟨A(X), k, t = 0⟩.

Observe that for each i ∈ [N ], ỹi ≥ yi − 1/2Q ≥ e−1/k −1/(kL)3 ≥ 1/2, for k ≥ 3. Thus,
the elements of A(X) are positive rationals. The next lemma provides a crucial property of
any set S of vertices of size k.

▶ Lemma 12. Let λ = 1
(2kL)2 . For each S ⊆ [N ] of size k, 0 ≤

∏
i∈S yi −

∏
i∈S ỹi ≤ λ.

Proof. Let α = 1/(kL)3. We have:∏
i∈S yi −

∏
i∈S ỹi ≤

∏
i∈S yi −

∏
i∈S(yi − α) =

∏
i∈S yi

(
1 −

∏
i∈S

(
1 − α

yi

))
≤

∏
i∈S yi

( ∑
i∈S

α
yi

)
≤ e

∑
i∈S

xi/(kL)
αk e1/k ≤ αk e2 ≤ 1

4(kL)2 ,

where the second inequality is obtained by Lemma 11. The claim follows. ◀

We now establish the correctness of the reduction.

▶ Theorem 13. The k-SUM problem is polynomial-time reducible to k-SPM.

Proof. Let M =
∑

i∈[N ](xi + L). Define a real valued function F (z) = z − e−1+z with
domain [0,M/(kL)]. Observe that F (1) = 0 and the derivative is F ′(1) = 0. The function
F (·) is clearly concave, which indicates that:

(i) F (z) ≤ 0, for each z ∈ [0,M/(kL)],
(ii) F (z) obtains its unique maximum at z = 1, where its value is 0, and
(iii) When restricted to the values in the set

{
z/(kL) | z ∈ [0,M ] is an integer

}
, F (z)

obtains its second largest value at z = 1 − 1/(kL).
For any S ⊆ [N ], denote zS =

∑
i∈S x̃i. For a set S ⊆ [N ] of size k, we have:∑

i∈S x̃i −
∏

i∈S yi = zS − e
∑

i∈S
xi/(kL) = zS − e

∑
i∈S

x̃i/(kL)−1/k (1)

= zS − e−1 · ezS/(kL) = F (zS). (2)

By combining Lemma 12 and Eq. (2), we obtain the following.

F (zS) ≤
∑

i∈S x̃i −
∏

i/∈S ỹi ≤ F (zS) + λ.

On the other hand, for any set S ⊆ [N ] of size k for which F (zS) < 0, we have F (zS) ≤
F (1 − 1/(kL)) = (1 − 1/(kL) − e−1/(kL)).

F (zS) ≤ F (1 − 1/(kL)) = (1 − 1/(kL) − e−1/(kL)).

Further,

1 − 1
kL − e−1/(kL) ≤

(
1 − 1

kL

)
−

(
1 − 1

kL + 1
2(kL)2 − 1

6(kL)3

)
≤ − 1

4(kL)2 = −λ .

So, for a set S,
∑

i∈S x̃i −
∏

i∈S ỹi ≥ 0 if and only if
∑

i∈S x̃i = 1, or equivalently
∑

i∈S xi = 0.
It follows that ⟨X, k⟩ is a yes instance of the k-SUM problem if and only if ⟨A(X), k, t = 0⟩ is
a yes instance of the k-SPM problem. The time to compute x̃i and ỹi from xi is polynomial
in Q · log2(kL), for 1 ≤ i ≤ N . Thus, the time-complexity of our reduction is N · logO(1)

2 (kL),
which is at most polynomial in N as long as L = 2O(N). Hence, the k-SUM problem is
polynomial-time reducible to the k-SPM problem. ◀
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ri

qi 1 1

a0

b1 bi bn

c11 c12 c1n ci1 ci2 cin cn1 cn2 cnn

. . . . . .

. . . . . . . . .

Figure 1 Illustration of the lower bound of Theorem 1. Here pi = 1 − yi/(Xmax · Ymax) and
qi = xi/(Xmax · Ymax)k for i ∈ [N ].

Proof of Theorem 2. The reduction given in the proof of Theorem 13 is a parameter
preserving reduction for the parameter k. That is, the parameters in the instances of the
k-SUM and the k-SPM problem are same in values and the constructed instance of the
k-SPM problem is of size polynomial in the input size of the k-SUM instance. Thus, the
reduction preserves the parameter k. Since the k-SUM problem is known to be W[1]-hard for
the parameter k [2, 23], the k-SPM problem is also W[1]-hard for the parameter k. Further,
it is known that under the Exponential time hypothesis (ETH), there cannot exist an o(Nk)
time solution for the k-SUM problem [48], so it follows that under ETH there is no o(Nk)
time algorithm for k-SPM as well. ◀

3.2 Hardness of PBDS on Uncertain Trees
In this subsection, we show the hardness results for the PBDS problem on trees, establishing
Theorem 1. In order to achieve this, we present a polynomial time reduction from k-SPM to
PBDS on unweighted trees.

Proof of Theorem 1. In order to prove our claim, we provide a reduction from k-SPM to
PBDS. Given an instance ⟨A = ((x1, y1), . . . , (xN , yN )), k, t⟩ of the k-SPM problem, where
t is a rational, an equivalent instance of the PBDS problem is constructed as follows. Let
n = N2 +N + 1. Construct an uncertain tree T = (V,E, p), where the vertex set V consists
of three disjoint sets, namely, A = {a0}, B = {b1, . . . , bN }, and C = {c11, c12, . . . , cNN } (see
Figure 1. Note that the uncertain tree T is considered to be unweighted or unit weight on the
vertices. The vertex a0 is connected by edges to the vertices in B. For each 1 ≤ i ≤ n, the
vertex bi is connected by edges to the vertices ci1 . . . , ciN . Let Xmax = max{1, x1, x2, . . . , xN }
and Ymax = max{1, y1, y2, . . . , yN }. To complete the construction, define the probability
function p : E → [0, 1] as follows:

p(vv̄) =


ri = 1 − (yi)/(Xmax · Ymax), if vv̄ = a0bi for 1 ≤ i ≤ N,

qi = xi/(Xmax · Ymax)k, if vv̄ = bici1 for 1 ≤ i ≤ N,

1, otherwise.

Since xi, yi ⪈ 0 for each 1 ≤ i ≤ n, we have that p(v, v̄) ∈ [0, 1] is rational for every (v, v̄) ∈ E.
This completes the construction of the instance for the PBDS problem. We show that the
given instance ⟨A, k, t⟩ is a yes instance of k-SPM if and only if T has a set S of size k such
that C(V, S) ≥ 1 + (N − 1)k + t/(XmaxYmax)k.

Let Sopt be a set of size k maximizing C(V, Sopt) in T . We show Sopt ⊆ B. Assume, to
the contrary, that there exists some z ∈ Sopt satisfying z /∈ B. Consider i ∈ [N ] such that
none of the vertices ci1, . . . , ciN lie in Sopt. Such i must exist since |Sopt| = k. If z ∈ C, then
replacing z by bi results in a set S′ = Sopt \{z}∪{bi} such that C(V, S′) ≥ C(V, Sopt)+N −3,
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contradicting the optimality of Sopt. Hence, Sopt must be contained in A∪B. In this case, z
must be a0. Now the set S′ = Sopt \ {z} ∪ {bi} is such that C(V, S′) ≥ C(V, Sopt) +N/2 − 2.
Since N ≥ 6, this contradicts the optimality of Sopt. It follows that Sopt ⊆ B.

Next, consider a set S ⊆ B of size k, and let IS = {i ∈ [N ] | bi ∈ S}. We have

C(V, S) =
(
1 −

∏
i∈IS

(1 − p(a0, bi))
)

+
(∑

i∈IS
(p(bi, ci1) +N − 1)

)
= 1 + (N − 1)k +

∑
i∈IS

xi/(Xmax · Ymax)k −
∏

i∈IS
yi/(Xmax · Ymax)

= 1 + (N − 1)k + (Xmax · Ymax)−k
(∑

i∈IS
xi −

∏
i∈IS

yi

)
.

This formulation of the coverage function shows that the given instance ⟨A, k, t⟩ is a yes
instance of k-SPM if and only if T has a set S of vertices of size k such that C(V, S) ≥
1 + (N − 1)k + t/(XmaxYmax)k. Thus, the k-SPM problem is reduced in polynomial time to
PBDS on unweighed trees.

It remains to prove NP-hardness, W[1]-hardness, and no(k) lower-bound under ETH.
Note that the above reduction is a parameterized preserving reduction for the parameter k.
That is, the parameter k in the k-SPM problem is the solution size (also called k) parameter
for the PBDS problem. Since the k-SPM problem (i) is NP-hard, (ii) is W[1]-hard for
the parameter k, and (iii) cannot have time complexity no(k) under the Exponential time
hypothesis (by Theorem 2), it follows that the same hardness results hold for PBDS as well.
Therefore, the PBDS problem on uncertain trees (i) is NP-hard, (ii) is W[1]-hard for the
parameter k, and (iii) cannot have time complexity no(k) if ETH holds true. ◀

The k-SUM conjecture [1, 47] states that the k-SUM, for the parameters N and k, requires
at least N⌈k/2⌉−o(1) time.

▶ Conjecture 14 (k-SUM Conjecture). There do not exist a k ≥ 2, an ε > 0, and an
algorithm that succeeds (with high probability) in solving k-SUM in N⌈k/2⌉−ε time.

Proof of Theorem 3. Consider the uncertain tree T constructed in the proof of Theorem 1.
We set n0 = 0. Modify the original construction of T by deleting the N − 2 vertices:
ci3, ci4, . . . , ciN , and setting ωci2 = N − 1, for 1 ≤ i ≤ N . Thus the tree contains exactly
n = 3N + 1 vertices. Now, k-SUM is reducible to k-SPM, and k-SPM is reducible to PBDS,
both in polynomial time, and, moreover the parameter k remains unaltered and the size of
problem grows by at most constant factor. This shows that, for ε > 0, an n⌈k/2⌉−ε time
algorithm to weighted PBDS implies an N⌈k/2⌉−Ω(ε) time algorithm to k-SUM, thereby,
falsifying the k-SUM conjecture. ◀

Note that since the PBDS problem is NP-hard on trees, it is also para-NP-hard [15, 24]
for the treewidth parameter.

4 Hardness of Uni-PBDS for the pathwidth parameter

In this section, we show that even for the restricted case of uniform probabilities, the
Uni-PBDS problem is W[1]-hard for the pathwidth parameter, and thus also for treewidth
(Theorem 7). This is shown by a reduction from the Multi-Colored Clique problem
to the Uni-PBDS problem. It is well-known that the Multi-Colored Clique problem is
W[1]-hard for the parameter solution size [23].

MFCS 2021



32:10 Budgeted Dominating Sets in Uncertain Graphs

Multi-Colored Clique
Input: A positive integer k and a k-colored graph G.
Parameter: k
Question: Does there exist a clique of size k with one vertex from each color class?

Let (G = (V,E), k) be an input instance of the Multi-Colored Clique problem, with n

vertices and m edges. Let V = (V1, . . . , Vk) denote the partition of the vertex set V in the
input instance. We assume, without loss of generality, |Vi| = n for each i ∈ [k]. For each
1 ≤ i ≤ k, let Vi = {ui,ℓ | 1 ≤ ℓ ≤ n}.

4.1 Gadget based reduction from Multi-Colored Clique
Let (G, k) be an instance of the Multi-Colored Clique problem. For any probability
0 < p < 1, and for any integer f such that f > max{knm, n + k2/p}, our reduction
constructs an uncertain graph G. The output of the reduction is an instance (G, k′, t′)
of the Uni-PBDS problem where each edge has probability p, k′ = (n + 1)(m + kn) and
t′ = (kn + m)

(
(n + 1)fp + n + np + 1 + 2(1 − (1 − p)n)

)
+ 4

(
k
2
)
(1 − (1 − p)n+1). In the

presentation below, we show that this choice of k′ and t′ ensures that there is a set of size k′

with expected domination at least t′ in G if and only if G has a multi-colored clique of size k.
We first construct a gadget graph to represent the vertices and edges of the input instance

of the Multi-Colored Clique problem. We construct two types of gadgets, D and I in
the reduction, illustrated in Figure 2 (in Appendix A.1). The gadget I is the primary gadget
and D is a secondary gadget used to construct I. When we refer to a gadget, we mean the
primary gadget I unless the gadget D is specified. For each vertex and edge in the given
graph, our reduction has a corresponding gadget. The gadget D is defined as follows.

Gadget of type D. Given a pair of vertices u and v, the gadget Du,v consists of vertices u,
v, and f additional vertices. The vertices u and v are made adjacent to every other vertex.
We refer to the vertices u and v as heads, and remaining vertices of Du,v as tails, and u are v
are said to be connected by the gadget Du,v.

▶ Observation 15. The pathwidth of a gadget of type D is 2.

Gadget of type I. We begin the construction of the gadget with 2n vertices partitioned into
two sets where each partition contains n vertices. Let A = {a1, . . . , an} and C = {c1, . . . , cn}
be this partition. For each i ∈ [n], vertices ai and ci are connected by the gadget Dai,ci . Let
ha and hc be two additional vertices connected by the gadget Dha,hc

. The vertices in the
sets A and C are made adjacent to ha and hc, respectively. This completes the construction
of the gadget. In the reduction, a gadget of type I is denoted by the symbol I along with an
appropriate subscript based on whether the gadget is associated with a vertex or an edge.

▷ Claim 16. The pathwidth of a gadget of type I is at most 4.

Description of the reduction. For 1 ≤ i < j ≤ k, let Ei,j = {xy | x ∈ Vi, y ∈ Vj} be the set
of edges with one end point in Vi and the other in Vj in G. For each 1 ≤ i < j ≤ k, the graph
G has an induced subgraph Gi corresponding to Vi, and has an induced subgraph Gi,j for the
edge set Ei,j . We refer to Gi as a vertex-partition block and Gi,j as an edge-partition block.
Inside block Gi, there is a gadget of type I for each vertex in Vi, and in the block Gi,j , there
is a gadget for each edge in Ei,j . For a vertex ui,x, Ix denotes the gadget corresponding to
ui,x in the partition Vi, and for an edge e, Ie denotes the gadget corresponding to e. The
blocks are appropriately connected by connector vertices which are defined below.
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We start by defining the structure of a block denoted by B. The definition of the block
applies to both the vertex-partition block and the edge-partition block. A block B consists
of gadgets and additional vertices as follows (See Figure 3 in Appendix A.1).

The block B corresponding to the vertex-partition block Gi for any i ∈ [k] is described as
follows: for each ℓ ∈ [n], add a gadget Iℓ to the vertex-partition block Gi, to represent
the vertex ui,ℓ ∈ Vi. In addition to the gadgets, we add n + 1 vertices to the block B

described as follows: Let F (B) = {b1, . . . , bn, di} be the set of additional vertices that
are added to the block B. For each ℓ ∈ [n], the vertices in the set C of the gadget Iℓ in
the block B are made adjacent to bℓ. For each ℓ ∈ [n], the vertices in the set A of the
gadget Iℓ in the block B are made adjacent to di.
The block B corresponding to the edge-partition block Gi,j for any 1 ≤ i < j ≤ k is
described as follows: for each e ∈ Ei,j , add a gadget Ie in the edge-partition block Gi,j , to
represent the edge e. In addition to the gadgets, we add |Ei,j | + 1 vertices to the block B
described as follows: Let F (B) = {be | e ∈ Ei,j} ∪ {di,j} be the set of additional vertices
that are added to the block B. For each e ∈ Ei,j , the vertices in the set C of the gadget
Ie in the block B are made adjacent to be. For each e ∈ Ei,j , the vertices in the set A of
the gadget Ie in the block B are made adjacent to di,j .

The blocks defined above are connected by the connector vertices described next. These con-
nector vertices are used to connect the edge-partition blocks and vertex-partition blocks, and
thus ensure that each edge in G is appropriately represented in G. Let R = {ri

i,j , s
i
i,j , r

j
i,j , s

j
i,j |

1 ≤ i < j ≤ k} be the connector vertices. The blocks are connected based on the cases
described below. The connections involving the I gadgets in two vertex-partition blocks and
an I gadget in an edge-partition block is illustrated in Figure 4 in Appendix A.1. First, we
describe the connection of vertex-partition blocks corresponding Vi and Vj to the appropriate
connector vertices. Following this, we describe the connection of the two vertex-partition
blocks to the edge-partition block corresponding to Ei,j through the appropriate connector
vertices.
For each i ∈ [k], each i < j ≤ k and each ℓ ∈ [n],

for each 1 ≤ t ≤ ℓ, at in the gadget Iℓ of Gi is made adjacent to si
i,j , and

for each ℓ ≤ t ≤ n, at in the gadget Iℓ of Gi is made adjacent to the vertex ri
i,j .

For each i ∈ [k], each 1 ≤ j < i and each ℓ ∈ [n],
for each 1 ≤ t ≤ ℓ, at in the gadget Iℓ of Gi is made adjacent to the vertex si

j,i, and
for each ℓ ≤ t ≤ n, at in the gadget Iℓ of Gi is made adjacent to the vertex ri

j,i.
Now, we describe the edges to connect the I gadgets in the vertex-partition blocks Gi and
Gj and to the appropriate I gadgets in the edge-partition block Gi,j . For each 1 ≤ i < j ≤ k,
and for each e = ui,xuj,y ∈ Ei,j ,

for each 1 ≤ t ≤ x, at in the gadget Ie of Gi,j is made adjacent to the vertex ri
i,j , and

for each x ≤ t ≤ n, at in the gadget Ie of Gi,j is made adjacent to the vertex si
i,j .

for each 1 ≤ t ≤ y, at in the gadget Ie of Gi,j is made adjacent to the vertex rj
i,j , and

for each y ≤ t ≤ n, at in the gadget Ie of Gi,j is made adjacent to the vertex sj
i,j .

This completes the construction of the graph G with O(mn2) vertices and O(mn3) edges.

▷ Claim 17. The pathwidth of a block B is at most 6.

The following lemma bounds the pathwidth of the graph G by a polynomial in k.

▶ Lemma 18. The pathwidth of the graph G is at most 4
(

k
2
)

+ 6.

Due to space constraints, we have deferred the complete proof to the expanded version.
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Proof of Theorem 7. Given an instance (G, k) of Multi-Colored Clique , the instance
(G, k′) is constructed in polynomial time where k′ and t′ are polynomial in input size. By
Lemma 18, the pathwidth of G is a quadratic function of k. Finally, we can also show that the
Uni-PBDS instance (G, k′, t′) output by the reduction is equivalent to the Multi-Colored
Clique instance (G, k) that was input to the reduction. Since Multi-Colored Clique
is known to be W[1]-hard for the parameter k, it follows that the Uni-PBDS problem is
W[1]-hard with respect to the pathwidth parameter of the input graph. ◀

This completes the proof of Theorem 7.

5 PBDS on Trees: PTAS and Exact Algorithm

In this section, we present our algorithmic results for the PBDS problem on trees. Throughout
this section, assume T is rooted at some vertex r. For each x ∈ V , denote by par(x) the
parent of x in V , and by T (x) the subtree of T rooted at x.

5.1 PTAS for PBDS on Trees
For each v ∈ V and each b ∈ [0, k], define Yv(par, curr, b) to be the optimal value of

C(V (T (v)), S) where par and curr are boolean indicator variables that, respectively, denote
whether or not par(v) and v are in S (written below as Ipar(v)∈S and Iv∈S), and b denotes
the number of descendants of v in S. Formally, Yv(par, curr, b) is represented as follows:

arg max
{ ∑

x∈T (v) C(x, S)
∣∣∣ S ⊆ V, |S ∩ (T (v) \ v)| = b, curr = Iv∈S , par = Ipar(v)∈S

}
The main idea behind our PTAS is to use the rounding method. Instead of computing Yx,
we compute its approximation, represented as Ŷx. This is done in a bottom-up fashion,
starting from leaf nodes of T . For each x ∈ V , define δ(x) to be |Yx − Ŷx|. Throughout our
algorithm, we maintain the invariant that Ŷx ≤ Yx, for every x ∈ V .

We now present an algorithm to compute Ŷ . Since Yx is easy to compute for a leaf x, we
set Ŷx = Yx. For a leaf x, Yx(par, curr, b) is (i) undefined if b ̸= 0, (ii) ωx if curr = 1, b = 0,
(iii) ωx p(par(x),x) if par = 1, curr = 0, b = 0, and (iv) zero otherwise. Consider a non-leaf
v. Let z1, . . . , zt be v’s children in T , and z0 be v’s parent in T (if exists). Let L(β), for
β ≥ 0, denote the collection of all integral vectors σ = (b1, curr1, . . . , bt, currt) of length 2t
satisfying (i) curri ∈ {0, 1} and bi ≥ 0, for i ∈ [1, t], and (ii)

∑
i∈[1,t](bi + curri) = β. In our

representation of σ as (b1, curr1, . . . , bt, currt), the term curri corresponds to the indicator
variable representing whether or not zi lies in our tentative set S, and bi corresponds to the
cardinality of S ∩

(
V (T (zi)) \ zi

)
. Further, for i ∈ [1, t], let Li(β) be the collection of those

vectors σ = (b1, curr1, . . . , bt, currt) ∈ L(β) that satisfy bj , currj = 0 for j > i.
For a given curr, par, b ≥ 0, we now explain the computation of Ŷv(par, curr, b). Assume

that we have already computed the approximate values Ŷzi (i ∈ [1, t]) corresponding to v’s
children in T . Setting W = maxu∈V ωu, and using the scaling factor M = ϵW/n, let

A(σ) =


ωv, if curr=1,

M

⌊
ωv

M

(
1 − (1 − par · p(z0,v)) •

∏
i∈[1,t]

curri=1
(1 − p(zi,v))

)⌋
, otherwise,

(3)

B(σ) =
∑

i∈[1,t]

Ŷzi
(curr, curri, bi), (4)

Ŷv(par, curr, b) = max
σ∈L(b)

(
A(σ) +B(σ)

)
. (5)
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In order to efficiently compute Ŷv, we define the notion of preferable vectors. For any
two vectors σ1, σ2 ∈ L(β), we say that σ1 is preferred over σ2 (and write σ1 ≥ σ2) if both
(i) A(σ1) ≥ A(σ2), and (ii) B(σ1) ≥ B(σ2). For i ∈ [1, t], let L∗

i (β) be a maximal subset of
Li(b) such that σ1 ≱ σ2 for any two vectors σ1, σ2 ∈ L∗

i (β).
Define ϕv = |{A(σ) | σ ∈ L(β), for β ∈ [0, k]}|. The following observation is immediate

by the definition of L∗
i .

▶ Observation 19. For each i ∈ [1, t] and β ∈ [0, k], |L∗
i (β)| ≤ ϕv.

In order to compute Ŷv(par, curr, b), we explicitly compute and store L∗
i (β), for 1 ≤ i ≤ t.

The set L∗
1(β) is quite easy to compute. Let σ1 = (β, 0, 0, . . . , 0) and σ2 = (β − 1, 1, 0, . . . , 0)

be the only two vectors lying in L1(β). Then L∗
1(β) is that vector among σ1 and σ2 that

maximizes the sum A(σ) +B(σ).
The lemma below provides an iterative procedure for computing the sets L∗

i (β), for i ≥ 2.

▶ Lemma 20. For every i, β ≥ 1, the set L∗
i (β) can be computed from L∗

i−1(β) in time
Õ

(
β +

∑
α∈[0,β] |L∗

i−1(α)|
)
.

Proof. Initialize L∗
i (β) to ∅. At each stage, maintain the list L∗

i (β) sorted by the values
A(·), and reverse-sorted by the values B(·). Our algorithm to compute L∗

i (β) involves the
following steps.
1. For each curr ∈ {0, 1} and b ∈ [0, β], first compute a set Pb,curr obtained by replacing

the values bi and curri in each σ ∈ L∗
i−1(β − (curr + b)) by b and curr respectively. Let

P =
⋃

b∈[0,β],curr∈{0,1} Pb,curr.
2. For each σ ∈ P , check in O(log |P|) time if there is a σ′ ∈ L∗

i (β) that is preferred over σ
(i.e. σ′ ≥ σ). If no such σ′ exists, then (a) add σ to L∗

i (β), and (b) remove all those σ′′

from L∗
i (β) that are less preferred than σ, that is, σ′′ < σ.

The runtime of the algorithm is O(β+ |P| log |P|) which is at most Õ(β+
∑

α∈[0,β] |L∗
i−1(α)|).

Next we now prove its correctness. Consider a σ = (b1, curr1, . . . , bt, currt) ∈ Li(β). It
suffices to show that if σ /∈ Pbi,curri

, then there exists a σ′ ∈ Pbi,curri
satisfying σ′ ≥ σ.

Let σ0 be obtained from σ by replacing bi, curri with 0. Since σ /∈ Pbi,curri , it follows that
σ0 /∈ Li−1(β − (bi + curri)). So there must exist a vector σ′

0 = (b′
1, curr

′
1, . . . , b

′
t, curr

′
t) ∈

Li−1(β − (bi + curri) satisfying A(σ′
0) ≥ A(σ0) and B(σ′

0) ≥ B(σ0). Let σ′ be the vector
obtained from σ′

0 by replacing b′
i, curr

′
i with bi, curri. It can be easily verified from Eq. (3)

and (4), that A(σ′) ≥ A(σ) and B(σ′) ≥ B(σ). Since the constructed σ′ indeed lies in
Pbi,curri

, the proof follows. ◀

The following claim is an immediate corollary of Lemma 20.

▶ Lemma 21. The value of Ŷv(par, curr, b), for any par, curr ∈ {0, 1} and b ∈ [0, k], is
computable in Õ(b · deg(v) · ϕv) time, given the values of Ŷzi for i ≤ t.

Proof. Observe that Ŷv(par, curr, b) = maxσ∈L∗
t (b)

(
A(σ) +B(σ)

)
, where A(σ) and B(σ) are

as defined in Eq. (3) and (4). By Observation 19 and Lemma 20, the total computation time
of the set L∗

t (b) is at most Õ(b · t · ϕv), which is equal to Õ(b · deg(v) · ϕv). ◀

Lemma 21 implies that starting from leaf nodes, the values Ŷx(par, curr, b) can be
computed in bottom-up manner, for each valid choice of triplet (par, curr, b) and each x ∈ V ,
in total time Õ(k2n · maxv∈V ϕv). We now prove ϕv = O(ϵ−1n). If curr = 1, then A(σ)
takes only one value. If curr = 0, then the value of A(σ) is a multiple of M and is also
bounded above by W . This implies that the number of distinct values A(σ) can take is
indeed bounded by W/M = O(ϵ−1n).
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▶ Proposition 22. Computing Ŷx for all x ∈ V takes in total Õ(k2n · maxx∈V ϕx) =
Õ(k2ϵ−1n2) time.

5.2 Approximation Analysis of PTAS on Trees
We provide here the approximation analysis of the (1 − ϵ)-bound. Let

Sopt = arg max
S⊆V,|S|=k

C(V, S) = arg max
S⊆V,|S|=k

∑
x∈V

ωx Pr(x ∼ S),

Ŝopt = arg max
S⊆V,|S|=k

( ∑
x∈S

ωx Pr(x ∼ S) +
∑

x∈V \S

M
⌊ωx Pr(x ∼ S)

M

⌋)
.

Observe that max{Yr(0, 0, k),Yr(0, 1, k−1)} = C(V, Sopt) and max{Ŷr(0, 0, k), Ŷr(0, 1, k−
1)} = C(V, Ŝopt). The following lemma proves that Ŝopt indeed achieves a (1−ϵ)-approximation
bound.

▶ Lemma 23. (1 − ϵ) C(V, Sopt) ≤ C(V, Ŝopt) ≤ C(V, Sopt).

Proof. In order to prove the first inequality, we first show that
C(V, Sopt) − C(V, Ŝopt) ≤ ϵ C(V, Sopt).

C(V, Sopt) − C(V, Ŝopt) ≤ max
S⊆V
|S|=k

( ∑
x∈V

ωx Pr(x ∼ S) −
∑
x∈S

ωx Pr(x ∼ S) −
∑

x∈V \S

M

⌊
ωx Pr(x ∼ S)

M

⌋)
≤ (n − k)M ≤ ϵ W ≤ ϵ C(V, Sopt).

Next, for each x ∈ V and S ⊆ V , we have M⌊M−1ωx Pr(x ∼ S)⌋ ≤ ωx Pr(x ∼ S), thereby
implying that C(V, Ŝopt) ≤ C(V, Sopt). This completes our proof. ◀

Proof of Theorem 5. For any integer k, any n-vertex tree T with arbitrary edge probabilities,
and for every ϵ > 0, a (1 − ϵ) approximate solution can be computed in time Õ(k2ϵ−1n2).
This follows from Proposition 22 and Lemma 23. This completes the proof Theorem 5. ◀

5.3 Linear-time algorithm for Uni-PBDS on Trees
We next establish our result for the scenario of Uni-PBDS on trees (Thm. 6). In fact, this
result holds for a somewhat broader scenario, wherein, for each vertex x, the cardinality of
probx = {pe | e is incident to x} is bounded above by some constant γ.

Proof of Theorem 6. Observe that the only place where approximation was used in our
PTAS was in bounding the number of distinct values that can be taken by A(σ) in Eq. (3). In
order to obtain an exact solution for the bounded probabilities setting, the only modification
performed in our algorithm is to redefine A(σ) as follows.

A(σ) = ωv · I(curr=1) + ωv

(
1 − (1 − par · p(z0,v)) •

∏
i∈[1,t]

curri=1

(1 − p(zi,v))
)

· I(curr ̸=1).

It can be verified that the algorithm correctly computes Yx at each step, that is, δ(x)
is essentially zero. The time it takes to compute Yv(par, curr, b), for a non-leaf v, crucially
depends on the cardinality of {A(σ) | σ ∈ L∗

t (b)}, where t is the number of children of v in T .
Observe that the number of distinct values A(σ) can take is at most b|probx| = O(kγ). This
along with Lemma 22 implies that the total runtime of our exact algorithm is Õ(kγ+2n). ◀
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5.4 Solving PBDS optimally on general trees
Let c ≥ 1 be the smallest real such that 2-SPM problem has an Õ(N c) time algorithm.
We will show that in such a case, k-PBDS can be solved optimally on trees with arbitrary
probabilities in Õ((δN)c⌈k/2⌉+1) time, for a constant δ > 0.

For any node v ∈ T , let T i
v , for 1 ≤ i ≤ deg(v), represent the components of the subgraph

T \ {v}. We start with the following lemma (proved in Appendix B.1), which is easy to
prove using a standard counting argument.

▶ Lemma 24. For any set S of size k in T , there exist a node v ∈ T and an index
q ∈ [1, deg(v)] such that the cardinalities of the sets S∩

( ⋃
i⪇q T

i
v

)
, S∩

(
T q

v

)
and S∩

( ⋃
i⪈q T

i
v

)
are all bounded by k/2.

For the rest of this section, we refer to a tuple (v, q) satisfying the conditions stated
in Lemma 24 as a valid pair. Let us suppose we are provided with a valid pair (v, q). For
sake of convenience, we assume that T is rooted at node v. Let U0 = T q

v , U1 =
⋃

i⪇q T
i
v,

and U2 =
⋃

i⪈q T
i
v. Also let {x1, . . . , xα} be the children of v in U1, where α = q − 1; let

{y1, . . . , yβ} be the children of v in U2, where β = deg(v) − q; and let z be qth child of v.
An important observation is that if the optimal S contains v, then the problem is easily

solvable in O(k2 · nk/2) time, as then the structures U0, U1 and U2 become independent.
Indeed, it suffices to consider all O(k2) partitions of k − 1 into triplet (c0, c1, c2) consisting
of integers in the range [0, k/2], and next we iterate over all the ci ≤ k/2 subsets in Ui.
This takes in total O(k2nk/2) time. So the challenge is to solve the problem when v is not
contained in S. Assuming (v, q) is a valid pair, and v is not contained in the optimal S, the
solution S to k-PBDS is the union S0 ∪ S1 ∪ S2 of the tuple (S0, S1, S2) ∈ U0 ×U1 ×U2 that
maximizes

C(U0, S0)+C(U1, S1)+C(U2, S2)+ωv

(
1−(1−d·p(v, z))•

∏
i∈[1,α]
xi∈S1

(1−p(v, xi))
∏

j∈[1,β]
yi∈S2

(1−p(v, yj))
)

(6)

where d is an indicator variable denoting whether or not z ∈ S0, and |S1|, |S2|, |S3| are
integers in the range [0, k/2] that sum up to k.

Define Γ to be set of all quadruples (d, c0, c1, c2) comprising of integers in the range
[0, k/2] such that d ∈ {0, 1} and c0 + c1 + c2 = k. For each γ = (d, c0, c1, c2) ∈ Γ, let

L1
γ =

{( C(U1, S1)
ωv(1 − d · p(v, z)) ,

∏
i∈[1,α]
xi∈S1

(1 − p(v, xi))
) ∣∣∣ S1 ⊆ U1 is of size c1

}
,

L2
γ =

{( C(U2, S2)
ωv(1 − d · p(v, z)) ,

∏
j∈[1,β]
yj∈S2

(1 − p(v, yj))
) ∣∣∣ S2 ⊆ U2 is of size c2

}
,

Zγ = max
{

C(U0, S0)
∣∣∣ S0 ⊆ U0 is of size c0, and d = Iz∈S0

}
.

So, the maximization considered in Eq. (6) is equivalent to the following optimization:

max
γ=(d,c0,c1,c2)∈Γ

(a,b) ∈ L1
γ , (ā,b̄) ∈ L2

γ

ωv + Zγ +
(
ωv(1 − d · p(v, z))

)(
a+ ā− bb̄

)
. (7)

In the next lemma we show that optimizing the above expression is equivalent to solving
|Γ| = O(k2) different 2-SPM problems (each of size O(nk/2)).
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▶ Lemma 25. Let A =
(
(a1, b1), . . . , (aN , bN )

)
and Ā =

(
(ā1, b̄1), . . . , (āN , b̄N )

)
be two arrays.

Then, solving the maximization problem maxi0,j0(ai0 + āj0 − bi0 b̄j0), can be transformed in
linear time to the following equivalent 2-SPM:

L =
(
(Q+ a1, Rb1), . . . , (Q+ aN , RbN ), (−Q+ ā1, R

−1b̄1), . . . , (−Q+ āN , R
−1b̄N )

)
,

where Q = maxi,j(bib̄j) + 2 maxi,j(ai + āj) and R =
√

4Q/mini(bi)2.

Proof. Consider the following 2-SPMs obtained by two equal partitions of L:

L1 =
(
(Q+ a1, Rb1), . . . , (Q+ aN , RbN )

)
, and

L2 = (−Q+ ā1, R
−1b̄1), . . . , (−Q+ āN , R

−1b̄N )
)
.

Observe that the optimal value of L1 is bounded above by 2Q+ 2 maxi(ai) −R2 mini(b̄i)2

which is strictly less than −Q. Similarly, the optimal value of L2 is bounded above by
2Q+ 2 maxi(āi) − mini(b̄i)2/R2, which is again strictly less than −Q.

Now the answer to the optimization problem maxi0,j0(ai0 + āj0 − bi0 b̄j0) is at least −Q.
This clearly shows that the solution to L cannot be obtained by its restrictions L1 and L2.
Hence, the maximization problem maxi0,j0(ai0 + āj0 − bi0 b̄j0) is equivalent to solving the
2-SPM L. ◀

Proof of Theorem 4. The time to compute L1
γ , L2

γ , Zγ , for a given γ, is Õ(nk/2). By
transformation presented in Lemma 25, it follows that the total time required to optimize the
expression in Eq. (7) is kO(1) · nc⌈k/2⌉, which is at most O

(
(δn)c⌈k/2⌉+1)

, for some constant
δ ≥ 1. Now recall that Eq. (7) provides an optimal solution assuming (v, q) is a valid pair,
and v is not contained in optimal S. Even when (v, q) is a valid pair, and v is contained in
the optimal S, the time complexity turns out to be O(k2 · nk/2). Iterating over all choices of
pair (v, q) incurs an additional multiplicative factor of n in the runtime. ◀

6 Parameterization based on graph structure

In this section, we state our results on structural parameterizations of the Uni-PBDS problem.
First, following the approach of Arnborg et al. [6], we formulate the MSOL formula for the
Uni-PBDS problem where the quantifier rank of the formula is O(k) (outlined in Appendix
C.1). This indeed yields an FPT algorithm for the Uni-PBDS problem parameterized by
budget k and the treewidth of the input graph.

In addition, we show that the Uni-PBDS problem is FPT for the budget parameter on
apex-minor-free graphs. In particular we show that, for any integer k, and any n-vertex
weighted apex-minor free graph with uniform edge probability, the Uni-PBDS problem can
be solved in time (2O(

√
k log k)nO(1)).

Due to space constraints, we defer our complete constructions and proofs to the upcoming
full-version of the paper.
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A Remainder of Section 4

A.1 Figures illustrated in the reduction

A C

ha hca

u

v

b

Figure 2 (a) The gadget I for n = 4. (b) The gadget D. The zigzag edges in I between two
vertices u and v is replaced by the gadget Du,v.

di

b1 b2 bn

A

C

I1 I2 In

Figure 3 Illustration of a vertex block Gi for a Vi, i ∈ [k]. Note the n I gadgets for the n vertices
in Vi. Similarly, an edge block Gi,j for some 1 ≤ i < j ≤ k has |Ei,j |-many I gadgets.

B Deferred Details from Section 5.4

B.1 Solving PBDS exactly on Trees
▶ Reminder of Lemma 24. For any set S of size k in T , there exists a node v ∈ T and
an index q ∈ [1, deg(v)] such that the cardinality of sets: S ∩

(
∪i⪇q T

i
v

)
, S ∩

(
T q

v

)
, and

S ∩
(

∪i⪈q T
i
v

)
, are all bounded by k/2.

Proof. We first show that there exists a node v in T satisfying the property |S∩T i
v| ≤ k/2, for

each i ∈ [1, deg(v)]. Consider a node u ∈ T . If u satisfies the above mentioned property then
we are done. Otherwise, there exists an index j ∈ [1, deg(u)] for which |S ∩ T j

u | ⪈ k/2. This
implies the number of elements of S lying in {u} ∪

(
T 1

u ∪ · · · ∪ T j−1
u

)
∪

(
T j+1

u ∪ · · · ∪ T deg(u)
u

)
is at most k/2. In such a case we replace u by its jth neighbor. Repeating the process
eventually leads to the required node v.
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Figure 4 An illustration of the connector vertices si
i,j , ri

i,j , sj
i,j and rj

i,j , which connect the
blocks Gi and Gi,j , and Gj and Gi,j , for some 1 ≤ i < j ≤ k. The gadget Ie represents an edge
e = ui,xuj,y ∈ Ei,j .

Now, let q ∈ [1, deg(v)] be the smallest integer for which S ∩
(
T 1

v ∪ · · · ∪ T q
v

)
is larger

than k/2. Then, S ∩
( ⋃

i⪇q T
i
v

)
and S ∩

( ⋃
i⪈q T

i
v

)
are both bounded by k/2, by definition

of q. Also, S ∩ T q
v is bounded by k/2 due to the choice of v. ◀

C Deferred details from Section 6

C.1 MSOL formulation of the Uni-PBDS problem

We show that an extension of Courcelle’s theorem due to Arnborg et. al. [6] results in an
FPT algorithm for the combined parameters treewidth and k. This is obtained by expressing
the Uni-PBDS problem as a monadic second order logic (MSOL) formula (see [13, 14]) of
length O(k). The following MSOL formulas are used in the MSOL formula for the Uni-PBDS
problem. The upper case variables (with subscripts) take values from the set of subsets of V ,
and the lower case variables take values from V .

The vertex set S contains d elements.

SIZEd(S) = ∃x1∃x2 · · · ∃xd∀y(y ∈ S →
d∨

i=0
(y = xi))

Given a vertex set X and a vertex x, there exists a set S ⊆ X of size d, and for each
vertex y in S, y is a neighbor of x.

INCd(x,X) = ∃S(SIZEd(S) ∧ ∀y((y ∈ S → y ∈ X) ∧ (y ∈ S → adj(x, y))))

The sets X, Y0, Y1, . . . , Yk partition the vertex set V .

PART(X,Y0, Y1, . . . , Yk) = ∀x
(

(x ∈ X ∨
k∨

i=0
x ∈ Yi) ∧

k∧
i=0

¬(x ∈ X ∧ x ∈ Yi) ∧
∧
i̸=j

¬(x ∈ Yi ∧ x ∈ Yj)
)

Now we define the MSOL formula for the Uni-PBDS problem. The formula expresses the
statement that V can be partitioned into X and V \X, and V \X can be partitioned into
k + 1 sets Y0, Y1, . . . , Yk such that for each set Yi and each vertex y in Yi, y has i neighbors
in X.

MFCS 2021
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Uni-PBDS = ∃X∃Y0∃Y1 · · · ∃Yk

(
PART(X,Y0, Y1, . . . , Yk) ∧

∀x∀y
((
y ∈ Y0 ∧ x ∈ X) → ¬

(
adj(x, y)

))
∀y

( k∧
i=1

(
y ∈ Yi → INCi(y,X)

)))
▶ Lemma 26. The quantifier rank of Uni-PBDS is O(k).

Proof. There are k + 2 initial quantifiers for the sets X,Y0, Y1, . . . , Yk. For two MSOL
formulas ϕ and ψ with quantifier rank qr(ϕ) and qr(ψ), respectively, qr(ϕ∧ψ) = qr(ϕ∨ψ) =
max{qr(ϕ), qr(ψ)}. Therefore, qr(Uni-PBDS) is bounded as follows:

qr(Uni-PBDS) = k + 2 + max{qr(PART), 1 + qr(INC)}
= k + 2 + max{1, 1 + max{qr(SIZE), 2}}
≤ k + 2 + k = 2k + 3 = O(k) ◀

We now show that the Uni-PBDS problem is fixed-parameter tractable in parameters k and
treewidth by expressing the maximization problem on the MSOL formula as a minor variation
of extended monadic second-order extremum problem as described by Arnborg et. al. [6].

Proof of Theorem 8. For each 0 ≤ i ≤ k, define the weight function wi associated with the
set variable Yi as follows: for each v ∈ V (G), wi

v = (1− (1−p)i)w(v). The difference between
the weight function in [6] and our problem is that in their paper w(v) is considered to be
constant value, for all vertices, for the set variable Yi. Observe, however, that the running
time of their algorithm does not change as long as wi

v can be computed in polynomial time,
which is the case in our definition. Therefore, our maximization problem is now formulated
as a variant of the EMS maximization problem in [6]:

Maximize
∑
u∈X

w(u)+
k∑

i=0

∑
u∈Yi

wi
v ·yi

v over partitions (X,Y0, Y1, . . . , Yk) satisfying Uni-PBDS

Using Theorem 5.6 in [6] along with the additional observation, we make, that wi
v can be

efficiently computed, an optimal solution for the Uni-PBDS problem can be computed in
time f(qr(Uni-PBDS), w) · poly(n), where f(qr(Uni-PBDS), w) is a function which does not
depend on n- it depends only on the quantifier rank of Uni-PBDS and the treewidth. By
Lemma 26, qr(Uni-PBDS) = O(k), and thus by [6], f(qr(Uni-PBDS), w) = f(O(k), w). This
shows that Uni-PBDS is FPT with resepect the parameters k and treewidth. Hence the
theorem is proved. ◀
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1 Introduction

In ambient space Rn, a discrete linear dynamical system is an orbit (Xt)t∈N defined by an
initial vector X0 and a matrix A through the recursion Xt+1 = AXt. Linear dynamical
systems are fundamental models across science and engineering, and the computability
and complexity of decision problems concerning them are of both theoretical and practical
importance.

In the study of dynamical systems, especially in control theory, considerable attention has
been given to analysing invariant sets, i.e., subsets of Rn from which no trajectory can escape;
see, e.g., [10, 5, 2, 21]. Our focus in the present paper is on sets with the dual property that
no trajectory remains trapped. Such sets play a key role in analysing liveness properties:
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progress is ensured by guaranteeing that all trajectories (i.e., from any initial starting point)
must eventually reach a point at which they “escape” (temporarily or permanently) the set
in question, thereby forcing a system transition to take place.

More precisely, given a rational matrix A and a semialgebraic set K ⊆ Rn, one may
consider the Discrete Escape Problem (DEP) which asks, for all starting points X0 in K,
whether the corresponding orbit of the discrete linear dynamical system (Xt)t∈N eventually
escapes K. By “escaping” K, we simply mean going outside of K – we are unconcerned
whether the trajectory might re-enter K at a later time.

The restriction of DEP to the case in which K is a convex polytope – alternately known
as termination of linear programs over either the reals or the rationals – was already studied
and shown decidable in the seminal papers [24, 6], albeit with no complexity bounds nor
upper bounds on the number of iterations required to escape.

In this paper we study the Compact Escape Problem (CEP), a version of DEP where in
addition we assume that the semialgebraic set K is compact. In practice, of course, this
is usually not a burdensome restriction; in most cyber-physical systems applications, for
instance, all relevant sets will be compact (see, e.g., [1]).

CEP was recently shown to be decidable for arbitrary compact semialgebraic sets in [18],
via non-constructive methods; consequently – as pointed out in that paper – no non-trivial
complexity bounds could be given. The main contribution of the present work is to precisely
pin down the complexity of CEP in terms of the first-order theory of the reals; more precisely,
we identify a natural fragment for which CEP is complete.

Recall that the theory of the reals is concerned with the structure R over the signature
⟨Z, +, ×, ≤, <⟩. Tarski famously showed that this theory is decidable and admits quanti-
fier elimination, with state-of-the-art techniques based on Collins’s Cylindrical Algebraic
Decomposition [12] that have complexity doubly exponential in the number of quantifiers.
Asymptotically faster but arguably impractical quantifier elimination algorithms due to
[14, 16, 20] have running time doubly exponential in the number of quantifier alternations,
singly exponential in the dimension, and polynomial in the rest of the data. The existential
fragment of the theory of the reals was famously shown to lie between NP and PSPACE
in [9].

In this paper, we consider the class of formulas consisting of positive Boolean combinations
of non-strict polynomial inequalities prefixed by a single alternation of a block of existential
and a block of universal quantifiers. Let us denote by ∃∀≤R the complexity class of all
problems reducible in polynomial time to the decision problem for this fragment. Using
sophisticated results from real algebraic geometry we show that ∃∀≤R corresponds to the
decision problem for another fragment of ∃∀-sentences in which the quantifiers are restricted
to range over compact sets, a result of independent interest. Finally, using techniques from
Diophantine approximation and algebraic number theory we show that the Compact Escape
Problem is complete for this class.

1.1 Overview
We formally define the Compact Escape Problem (CEP) as the following decision problem:

Given as input
A matrix A ∈ Qn×n with rational entries,
A list P of polynomials in Z[x1, . . . , xn],
A propositional formula Φ(x1, . . . , xn) which combines atomic predicates of the form
P (x1, . . . , xn) ≤ 0 with P ∈ P by means of the propositional connectives ∨ and ∧,

subject to the promise that the set K = {x ∈ Rn | Φ(x)} is compact, decide whether for all
x ∈ K there exists k ∈ N such that Akx /∈ K.
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We assume that the polynomials Pj in the list P are encoded as lists ⟨(αj,k, cj,k)⟩k=1,...,sj

of pairs of multi-indexes αj,k ∈ Nn, whose entries are encoded in unary, and coefficients
cj,k ∈ Z, encoded in binary, such that

Pj(x1, . . . , xn) =
sj∑

k=1
cj,k(x1, . . . , xn)αj,k . (1)

Note that the analogous problem for affine maps x 7→ Ax + b reduces to CEP, as a point
x ∈ K escapes the compact set K under iterations of the affine map Ax + b if and only if the
point (x, 1) ∈ K × {1} escapes K × {1} under iterations of the linear map B(x, z) = Ax + bz.

We capture the computational complexity of this decision problem by showing that it is
equivalent to the decision problem for a fragment of the theory of the reals.

Let ∃∀≤R denote the decision problem for sentences of the form

∃X ∈ Rn.∀Y ∈ Rm. (Φ0,≤(X, Y )) , (2)

where Φ0,≤ is a positive Boolean combination of non-strict polynomial inequalities. Evidently,
this class lies between the existential fragment of the theory of the reals (without restriction
on the types of inequalities) and the full ∃∀-fragment.

The main result of this paper is the following:

▶ Theorem 1. The compact escape problem is complete for the complexity class ∃∀≤R.

The proof consists of three steps:
First, we show that for any sentence of the form

∃X ∈ [−1, 1]n.∀Y ∈ [−1, 1]m. (Φ0,≤(X, Y )) , (3)

where Φ0,≤ is a positive Boolean combination of non-strict polynomial inequalities, one can
compute a matrix A ∈ Q(n+2m)×(n+2m) and a compact set K ⊆ Rn+2m such that (A, K) is
a negative instance of the compact escape problem if and only if (3) holds true.

Secondly, given any instance (A, K) with A ∈ Qn×n and K ⊆ Rn we can compute in
polynomial time a sentence of the form

∃X ∈ [−1, 1]m.∀Y ∈ [−1, 1]ℓ. (Ψ0,≤(Y ) → Φ0,≤(X, Y )) , (4)

where Ψ0,≤ and Φ0,≤ are a positive Boolean combination of non-strict polynomial inequalities,
such that (4) holds true if and only if (A, K) is a negative instance of the compact escape
problem.

Finally, we prove that the decision problems for sentences of the form (2), (3), and (4)
are all equivalent.

2 Preliminaries

2.1 Fragments of the theory of the reals
The statement and proof of Theorem 1 require complexity classes induced by decision
problems for fragments of the the first-order theory of the reals. The main goal of this
subsection is to formally define these complexity classes.

Thus, let L be the first-order language with signature ⟨Z, +, ×, <, ≤⟩, propositional
connectives, ∧ and ∨, and quantifiers ∃ and ∀. For complexity purposes, we assume that
integer constants are encoded in binary. See, e.g., [23, 25] for an introduction to first-order
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33:4 On the Complexity of the Compact Escape Problem

logic. We interpret all formulas in L in the structure of real numbers. Thus, we say that two
formulas are equivalent if their interpretations in R are equivalent. The restriction to the
connectives ∨ and ∧ is of course insubstantial, and we will make free use of the connectives
¬ and → throughout this paper, understanding them as syntactic sugar.

Let QFF denote the set of quantifier-free formulas in L. Let QFF≤ (resp. QFF<) denote
the subset of QFF consisting of those formulas that do not contain the relational symbol “<”
(resp. “≤”). Note that the negation of a QFF≤-formula is a QFF<-formula and vice versa.

We define the sets of formulas Σn,≤ and Πn,≤ inductively as follows:
1. Let Σ0,≤ = Π0,≤ = QFF≤.
2. A formula Ψ(y1, . . . , ys) belongs to Σn+1,≤ if and only if it is of the form

Ψ(y1, . . . , ys) = (∃x1). . . . (∃xt).Φ(x1, . . . , xt, y1, . . . , ys),

where Φ belongs to Πn,≤.
3. Dually, a formula Ψ(y1, . . . , ys) belongs to Πn+1,≤ if and only if it is of the form

Ψ(y1, . . . , ys) = (∀x1). . . . (∀xt).Φ(x1, . . . , xt, y1, . . . , ys),

where Φ belongs to Σn,≤.
We define Σn,< and Πn,< (resp. Σn and Πn) analogously, starting with QFF<-formulas (resp.
QFF-formulas).

By convention we denote vectors of variables X = (x1, . . . , xt) by upper case letters and
introduce the shorthand notations ∃X and ∀X for blocks of quantifiers (∃x1). . . . (∃xt) and
(∀x1). . . . (∀xt). Recall that a first-order formula Φ is called a sentence if it does not contain
any free variables.

The decision problem for a class C of first-order formulas in the language L is the following:
Given a sentence that belongs to C decide whether the sentence holds true in the universe of
real numbers.

It is natural to ask how the decision problems for the classes we have introduced above are
related with respect to polynomial-time reductions. By taking the negation of formulas it is
easy to see that the decision problem for Σn is equivalent to that of Πn, the decision problem
for Σn,≤ is equivalent to that of Πn,<, and the decision problem for Σn,< is equivalent to
that of Πn,≤. As such it suffices to consider the “Σ”-classes in the following.

By a standard trick, any QFF-formula Φ(X) with free variables X can be converted in
polynomial time into an equivalent formula ∃Y.f(X, Y ) = 0 where f is a single polynomial.
It follows that if n is odd then the decision problems for the classes Σn and Σn,≤ are
polynomial-time equivalent and if n is even then the decision problems for the classes Σn

and Σn,< are polynomial-time equivalent.
Of course, for n = 0 the decision problem is trivial for all three classes. For n = 1 we

have the following remarkable result:

▶ Theorem 2 ([22]). The decision problems for Σ1 and Σ1,< are polynomial-time equivalent.

We thus have polynomial-time reductions for decision problems as indicated below:

(Σ0 ≡ Σ0,≤ ≡ Σ0,<) → (Σ1 ≡ Σ1,≤ ≡ Σ1,<) → Σ2,≤ → (Σ2 ≡ Σ2,<) → Σ3,< → . . .

It is open to the best of our knowledge whether there exists a reduction of the decision
problem for Σ2 to that of Σ2,≤. The techniques from [22] do not seem to carry over to higher
orders of quantifier alternations.

We study the decision problem for the class Σ2,≤ in greater detail. Let us denote by
∃∀≤R the complexity class of all problems reducible in polynomial time to this decision
problem. To demonstrate the robustness of this complexity class and gauge its computational



J. D’Costa, E. Lefaucheux, E. Neumann, J. Ouaknine, and J. Worrell 33:5

power we give a number of equivalent characterisations. It turns out that, somewhat
surprisingly, the decision problem for Σ2,≤-sentences is equivalent to the decision problem
for exists-forall-sentences whose quantifiers are restricted to range over compact sets.

Let X = (x1, . . . , xn) be a vector of variables. Let y be a variable or a constant. We write
|X| ≤ y as an abbreviation for the formula

∧n
j=1 (−y ≤ xj ≤ y). Of course, this syntactic

construct will only have the intended semantics if our context ensures that y ≥ 0, and we
will only use it in such situations.

Write I = [−1, 1]. Let Φ0(X, Y, Z) be a quantifier-free formula in L. We introduce the
syntactic abbreviation

∃X ∈ In.∀Y ∈ Im. (Φ0(X, Y, Z))

for the formula

∃X ∈ Rn.∀Y ∈ Rm. (|Y | > 1 ∨ (|X| ≤ 1 ∧ Φ0(X, Y, Z)))

in the language L.
We have the following result, whose proof is the focus of Section 3:

▶ Theorem 3. The decision problems for the following three classes of sentences are equivalent
with respect to polynomial-time reduction:
1. The class Σ2,≤, consisting of sentences of the form

∃X ∈ Rm.∀Y ∈ Rn. (Φ0,≤(X, Y )) ,

where Φ0,≤ is a QFF≤-formula.
2. The class b-Σ2,≤, consisting of sentences of the form

∃X ∈ Im.∀Y ∈ In. (Φ0,≤(X, Y )) ,

where Φ0,≤ is a QFF≤-formula.
3. The class b-Σ++

2,≤, consisting of sentences of the form

∃X ∈ Im.∀Y ∈ In. (Ψ0,≤(Y ) → Φ0,≤(X, Y )) ,

where Φ0,≤ and Ψ0,≤ are QFF≤-formulas.

It is obvious that the decision problem for b-Σ2,≤-sentences reduces to that of b-Σ++
2,≤-

sentences. Note however that it is not clear that a reduction should exist in either direction
between Σ2,≤ and b-Σ2,≤. On the one hand, the latter class only allows for quantification
over bounded sets, which seems to make it more restrictive. On the other hand, b-Σ2,≤-
sentences involve strict inequalities and hence do not belong to the class Σ2,≤. Let us denote
by b-∃∀≤R and by b-∃∀++

≤ R the complexity classes induced respectively by the decision
problem for b-Σ2,≤-sentences and by the decision problem for b-Σ++

2,≤-sentences.
A remark is in order on the robustness of our definition of the class ∃∀≤R under different

encodings of polynomials. In practice it is common to encode a polynomial P as a list
⟨(αj , cj)⟩j=1,...,m where αj ∈ Nn are multi-indexes and cj ∈ Z are integers satisfying (1).
This is the encoding we have chosen in the definition of CEP. By contrast, the polynomials
that occur in atomic predicates of a formula in the language L are encoded as terms over the
signature ⟨Z, +, ×⟩. While one can translate the encoding (1) to a term over the signature
⟨Z, +, ×⟩ in polynomial time, a term of size N can encode a polynomial whose number of
non-zero coefficients grows exponentially in N , so that a polynomial-time translation in the
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33:6 On the Complexity of the Compact Escape Problem

other direction is not possible in general. One may hence raise the justified objection that
the reduction of CEP to the decision problem for Σ2,≤ sentences could hide an exponential
overhead in the encoding of the polynomials. Moreover, in order to show ∃∀≤R-hardness
of CEP we need to convert a compact set which is encoded as a QFF≤-formula into an
equivalent formula whose atoms use the encoding (1). We show in Theorem 20 that we can
efficiently convert any Σ2,≤-sentence into an equivalent one whose atoms have degree at
most 4. This resolves the issue, for a uniform bound on the degrees allows one to translate
back and forth in polynomial time between the two encodings of polynomials. While an
analogous result for Σ2-sentences (and, e.g., QFF≤-formulas) is straightforward (see e.g. [22,
Lemma 3.2] or the proof of Theorem 20 below for a proof idea), the argument becomes much
more involved for Σ2,≤-sentences. It relies on many of the results that are established in
the sequel. Thus, for the majority of this paper we have to insist on our specific choice of
encoding.

2.2 Mathematical tools
Our characterisation of the complexity class ∃∀≤R requires two sophisticated results from
effective real algebraic geometry: Singly exponential quantifier elimination and a doubly
exponential bound on a ball meeting all components of a semialgebraic set. We use the
following singly exponential quantifier elimination result given in [3]. For a historical overview
on this type of result see [3, Chapter 14, Bibliographical Notes].

▶ Theorem 4 ([3, Theorem 14.16]). Let P be a set of at most s polynomials with integer
coefficients, each of degree at most d, in k + n1 + · · · + nℓ variables. Let τ be a bound on the
bitsize of the coefficients of all P ∈ P. Let

Φℓ(Y ) = (Q1X1). . . . (QℓXℓ). (Ψ0(Y, X1, . . . , Xℓ)) ,

where Qj ∈ {∃, ∀} are alternating blocks of quantifiers, be a formula over the language L,
all of whose atoms involve polynomials contained in P. Assume that the size of the block of
variables Y is k and that the size of the block of variables Xj is nj.

Then there exists an equivalent quantifier-free formula

ω0(Y ) =
I∨

i=1

Ji∧
j=1

Mi,j∨
m=1

Pi,j,m(Y ) ▷◁i,j,m 0.

over L, where:
1. I ≤ s(n1+1)·····(nℓ+1)(k+1)dO(n1·····nℓ·k).
2. Ji ≤ s(n1+1)·····(nℓ+1)dO(n1·····nℓ).
3. Mi,j ≤ dO(n1·····nℓ).
4. The degrees of the polynomials Pi,j,m are bounded by dO(n1·····nℓ).
5. The bitsize of the coefficients of the polynomials Pi,j,m is bounded by τdO(n1·····nℓ·k).

Recall that a sign condition on a family P of polynomials in n variables is a mapping
σ : P → {−1, 0, 1}. The realisation of a sign condition σ in Rn is the set

Reali(σ) = {X ∈ Rn | ∀P ∈ P . sign(P (X)) = σ(P )} .

A sign condition σ is called realisable if its realisation is non-empty. Equivalently, a sign
condition is a formula over the language L involving only conjunctions.

The next theorem is due to Vorobjov [26]. See also [15, Lemma 9] and [4, Theorem 4].
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▶ Theorem 5. There exists an integer constant β′ with the following property: Let P be a
set of s polynomials with integer coefficients in n variables of degree at most d ≥ 2. Assume
that the bit-size of the coefficients of each polynomial in P is at most τ . Then there exists a
ball centred at the origin of radius at most

2τdβ′(n+1)

which intersects every connected component of every realisable sign condition on P in Rn.

Our proof of ∃∀≤R-completeness of CEP combines spectral methods with two well-known
but nontrivial results on algebraic numbers. We require a version of Kronecker’s theorem on
simultaneous Diophantine approximation. See [19, Corollary 3.1] for a proof.

▶ Theorem 6. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m = 1} .

Let (β1, . . . , βs) be a basis of L. Let Tm = {(z1, . . . , zm) ∈ Cm | |zj | = 1} denote the complex
unit m-torus. Then the closure of the set

{
(λk

1 , . . . , λk
m) ∈ Tm | k ∈ N

}
is the set S ={

(z1, . . . , zm) ∈ Tm | ∀j ≤ s.(z1, . . . , zm)βj = 1
}

.
Moreover, for all ε > 0 and all (z1, . . . , zm) ∈ S there exist infinitely many indexes k

such that |λk
j − zj | < ε for j = 1, . . . , n.

Moreover, the integer multiplicative relations between given complex algebraic numbers
in the unit circle can be elicited in polynomial time. For a proof see [8, 17]. We assume the
standard encoding of algebraic numbers, see [11] for details.

▶ Theorem 7. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m } .

Then one can compute in polynomial time a basis (β1, . . . , βs) ∈ (Zm)s for L. Moreover, the
integer entries of the basis elements βj are bounded polynomially in the size of the encodings
of λ1, . . . , λm.

3 Proof of Theorem 3

Our proof of Theorem 3 will use Theorems 4 and 5. The latter are formulated in terms of
the algebraic complexity of a family of polynomials. We will reformulate them in terms of
the bitsize of a formula in the language L.

The matrix size µ of a first-order formula

Ψ(Y ) = (Q1X1). . . . (QℓXℓ). (Φ0(Y, X1, . . . , Xℓ)) ,

where Qj ∈ {∃, ∀} is the number of bits required to write down the quantifier-free part
Φ0(Y, X1, . . . , Xℓ). The dimensions of the formula Ψ(Y ) are the numbers m, n1, . . . , nℓ,
where m is the dimension of Y . The size σ of the formula Ψ(Y ) is the number of bits required
to write down the whole formula. Note that we have σ = O(m + n1 + · · · + nℓ + µ).

Observe that if Φ(X) is a QFF-formula of (matrix) size µ and P (X) ▷◁ 0 is an atom of Φ
then P has degree at most µ and its coefficients are bounded in bitsize by µ. The following
is an immediate corollary to Theorem 4:
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33:8 On the Complexity of the Compact Escape Problem

▶ Theorem 8. There exists a constant α with the following property:
Let

(Q1X1). . . . (QℓXℓ).Φ0(Y, X1, . . . , Xℓ)

be a first-order formula in the language L of matrix size µ and with dimensions m, n1, . . . , nℓ.
Then there exists an equivalent quantifier-free formula Ψ0(Y ) of size at most

µαℓ+1((m+1)·(n1+1)·····(nℓ+1)).

Theorem 5 entails the following:

▶ Corollary 9. There exists a constant β with the following property: Let Φ0(X) be a
quantifier-free formula in the language L of matrix size µ and dimension n ≥ 1. Then the
sentence ∃X ∈ Rn. (Φ0(X)) is equivalent to the sentence

∃X.
(

|X| ≤ 2µβ(n+1)
∧ Φ0(X)

)
Theorem 8 and Corollary 9 will allow us to efficiently convert certain formulas into

equivalent ones whose quantifiers range over bounded intervals of doubly exponential size
in the input data. By the standard repeated squaring trick such formulas can further be
efficiently converted into equivalent ones whose quantifiers range over the interval I = [−1, 1].
See Lemma 25 in Appendix A for a precise statement and proof.

3.1 Showing ∃∀≤R ⊆ b-∃∀≤R
We now show that the decision problem ∃∀≤R reduces to b-∃∀≤R in polynomial time.

We first bound the existential quantifier. This bound does not yet require the quantifier-
free part of the sentence to involve only non-strict inequalities.

▶ Lemma 10. Let ∃X ∈ Rn.∀Y ∈ Rm. (Φ0(X, Y )) . be a sentence over the language L of
matrix size µ. Then, denoting I = [−1, 1], we can compute in polynomial time an equivalent
sentence of the form

∃X ∈ In+N .∀Y ∈ Rm. (Ψ0(X, Y )) .

Proof. Consider the formula χ1(X) = ∀Y ∈ Rm. (Φ0(X, Y )) . By Theorem 8 this formula is
equivalent to a quantifier-free formula χ0(X) of size at most µα2(n+1)(m+1). By Corollary 9
the sentence ∃X ∈ Rn. (χ0(X)) is equivalent to the sentence

∃X ∈ Rn.
(

|X| ≤ 2µα2β(n+1)2(m+1)
∧ χ0(X)

)
.

Hence, our original sentence is equivalent to the sentence

∃X ∈ Rn.∀Y ∈ Rm.
(

|X| ≤ 2µα2β(n+1)2(m+1)
∧ Φ0(X, Y )

)
.

Now, we can compute in polynomial time a positive integer N in unary such that we have
µα2β(n+1)2(m+1) ≤ 2N . By (the proof of) Lemma 25 in Appendix A we obtain an equivalent
sentence as claimed. ◀

Next we derive a similar bound for the universal quantifier in terms of the bound for the
existential one. This will require the assumption that all inequalities are non-strict. The
reason for this is the following simple continuity property of QFF<-formulas, which can fail
for general formulas in the language L:
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▶ Proposition 11. Let Φ0(X) be a QFF<-formula with a vector of n free variables X.
Assume that x ∈ Rn is such that Φ0(x) holds true. Then there exists ε > 0 such that Φ0(x̃)
holds true for all x̃ ∈ Rn with |x − x̃| < ε.

Proof. By structural induction on the formula Φ. The base case follows from the fact that
polynomials are continuous functions. The induction steps are easy. ◀

▶ Lemma 12. Let B ∈ N be a positive integer constant. Let

Ψ = ∀X ∈ Rn.∃Y ∈ Rm. (|X| > B ∨ Φ0(X, Y ))

be a Π2,<-sentence. Then the sentence Ψ holds true over the reals if and only if the sentence

Ψ′ = ∃C ∈ R.∀X ∈ Rn.∃Y ∈ Rm. (|X| > B ∨ (Y ≤ C ∧ Φ(X, Y )))

holds true over the reals.

Proof. Clearly, Ψ′ implies Ψ, so that if Ψ is false then Ψ′ is false.
Suppose now that Ψ is true. Let K = {X ∈ Rn | |X| ≤ B}. Then, by assumption,

for all X ∈ K there exists Y (X) ∈ Rm such that Φ(X, Y (X)) holds true. It follows from
Proposition 11 that there exists ε(X) > 0 such that Φ(X ′, Y (X)) holds true for all X ′ with
|X − X ′| < ε(X). The set {Ball(X, ε(X)) | X ∈ K}, where Ball(X, c) denotes the ball of
radius c centered at X, is an open cover of K. The set K is compact, so that this cover
has a finite subcover Ball(X1, ε(X1)), . . . , Ball(Xs, ε(Xs)). It follows that for all X ∈ K there
exists j ∈ {1, . . . , s} such that Φ(X, Y (Xj)) holds true. Thus, the formula Ψ′ holds true with
C = max{|Y (X1)|, . . . , |Y (Xs)|}. ◀

Note that the conclusion of Lemma 12 does not hold true in general for Π2,≤-formulas.
For instance, the formula

∀x ∈ [−1, 1].∃y ∈ R.
(
x2 (1 − xy) ≤ 0

)
is clearly true, but the formula

∃C ∈ R.∀x ∈ [−1, 1].∃y ∈ [−C, C].
(
x2 (1 − xy) ≤ 0

)
is clearly false.

▶ Lemma 13. Given a sentence of the form

∃X ∈ In.∀Y ∈ Rm. (Φ0,≤(X, Y )) ,

where Φ0,≤ is a QFF≤-formula, we can compute in polynomial time an equivalent b-Σ≤-
sentence

∃X ∈ In.∀Y ∈ In+M . (Ψ0,≤(X, Y )) .

Proof Sketch. The proof combines Lemma 12 with proof ideas similar to those used in the
proof of Lemma 10. See [13, Lemma 14] for details. ◀

Lemmas 10 and 13 together yield the inclusion ∃∀≤R ⊆ b-∃∀≤R.
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3.2 Showing b-∃∀≤R ⊆ ∃∀≤R
We next establish the inclusion b-∃∀≤R ⊆ ∃∀≤R. The key lemma is the following:

▶ Lemma 14. Let

∃ε > 0.(Q1X ∈ Rn).(Q2Y ∈ Rm). (Φ0(ε, X, Y ))

be a sentence over the language L of matrix size µ. If this sentence holds true, then there
exists ε > 2−µ4α3β(n+1)(m+1) witnessing the existential quantifier.

Proof. Consider the formula

χ2(ε) = (Q1X ∈ Rn).(Q2Y ∈ Rm). (Φ0(ε, X, Y )) .

By Theorem 8 this formula is equivalent to a quantifier-free formula χ0(ε) of size at most
µ2α3(n+1)(m+1). Let χ′

0(ε) be the sentence that results from χ0 by replacing each atom in
P (ε) ▷◁ 0 in χ0, where P has degree d, with the atom εdP (1/ε) ▷◁ 0. Then, evidently, a
number ε > 0 satisfies χ0(ε) if and only if 1/ε satisfies χ′

0(ε) and vice versa.
By Corollary 9 the sentence ∃x ∈ R. (x > 0 ∧ χ′

0(x)) is equivalent to the sentence

∃x ∈ R.
(

x > 0 ∧ |x| ≤ 2µ4α3β(n+1)(m+1)
∧ χ′

0(x)
)

.

The result follows. ◀

▶ Theorem 15. Given a b-Σ2,≤-sentence

∃X ∈ In.∀Y ∈ Im. (Φ0,≤(X, Y ))

we can compute in polynomial time an equivalent Σ2,≤-sentence.

Proof Sketch. The proof combines Lemma 14 and Proposition 11 with similar ideas as in
the proof of Lemma 10. See [13, Theorem 16] for details. ◀

3.3 Showing b-∃∀++
≤ R ⊆ b-∃∀≤R

Finally we show the inclusion b-∃∀++
≤ R ⊆ b-∃∀≤R.

We will in fact show a stronger but more technical result. Recall that the Hausdorff
distance of two non-empty compact subsets K and L of a metric space X is given by

d(K, L) = max{sup
x∈K

d(x, L), sup
x∈L

d(x, K)},

where, as usual, d(x, K) = infy∈K d(x, y). This distance function makes the non-empty
compact subsets of a metric space into a metric space F(X) of its own.

▶ Theorem 16. Consider a sentence of the form

∃X ∈ In.∀Y ∈ Im. (Ψ0,≤(X, Y ) → Φ0,≤(X, Y )) ,

where Ψ0,≤(X, Y ) and Φ0,≤(X, Y ) are QFF≤-formulas. Assume that the set-valued function
F (X) = {Y ∈ Im | Ψ0,≤(X, Y )} either maps some X ∈ In to the empty set or is continuous
as a map of type In → F(Im). Then we can compute in polynomial time an equivalent
b-Σ2,≤-sentence.
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We prepare the proof of Theorem 16 with three simple observations.

▶ Lemma 17. Given a sentence of the form

∃X ∈ In.∀Y ∈ Im. (H(X, Y ) > 0) ,

where H is a multivariate polynomial with integer coefficients we can compute in polynomial
time an equivalent b-Σ2,≤-sentence.

Proof. The sentence is equivalent to the sentence

∃ε > 0.∃X ∈ In.∀Y ∈ Im. (H(X, Y ) ≥ ε) .

By Lemma 14 this sentence is equivalent to the sentence

∃ε ∈ I.∃X ∈ In.∀Y ∈ Im.
(

ε ≥ 2µ4α3β(n+1)(m+1)
∧ H(X, Y ) ≥ ε

)
,

where µ is the size of h. Compute in polynomial time an integer N such that µ4α3β(n+1)(m+1) ≤
2N and apply Lemma 25 to obtain the result. ◀

▶ Lemma 18. Let P ∈ Z[X] be a polynomial in n variables, encoded by a term T over the
signature ⟨Z, +, ×⟩. Then we can compute in polynomial time an integer N (in binary) such
that |P (In)| ≤ N .

Proof. We can view T as a tree whose nodes are elements of the set {+, ×} and whose leaves
are either variables or constants. Let c1, . . . , cs ∈ Z denote the integer constants that occur
in T . Let M = max{2, |c1|, . . . , |cs|}.

Let S be the tree which is obtained by substituting M for all leaves in T . Then S encodes
a positive integer B. This integer B is clearly an upper bound for the absolute value of P

over In. By an easy induction argument B is bounded by MNT , where NT is the number of
nodes of T . The number MNT can be computed using at most NT arithmetic operations. Its
bitsize is bounded by NT τ , where τ is a bound on the bitsizes of the numbers c1, . . . , cs. ◀

▶ Proposition 19. Let Φ(X) be a quantifier-free formula over the language L whose atoms
consist of equalities only. Then we can compute in polynomial time a polynomial Q ∈ Z[X]
such that Φ(X) is equivalent to the formula Q(X) = 0.

Proof. Construct a new formula Φ′(X) that results from Φ(X) by replacing each atom
P (X) = 0 in Φ(X) by the atom P (X)2 = 0.

Now construct a polynomial QΦ′ by structural induction on Φ′ as follows:
1. If Φ′(X) ≡ (P (X) = 0) then let QΦ′ = P .
2. If Φ′(X) ≡ Ψ(X) ∨ ω(X) then let QΦ′ = QΨ · Qω.
3. If Φ′(X) ≡ Ψ(X) ∧ ω(X) then let QΦ′ = QΨ + Qω.
It is easy to see that QΦ′ can be computed in polynomial time from Φ. It has the desired
property by construction. ◀

We are now in a position to prove Theorem 16.

Proof of Theorem 16. The proof is a reduction to Lemma 17.
As a preparation we assign to every QFF≤-formula Φ a continuous function fΦ such that

Φ(X) holds true if and only if fΦ(X) ≤ 0:
1. If Φ(X) = (P (X) ≤ 0) then let fΦ(X) = P (X).
2. If Φ(X) = Ψ(X) ∨ χ(X) then let fΦ(X) = min{fΨ(X), fχ(X)}.
3. If Φ(X) = Ψ(X) ∧ χ(X) then let fΦ(X) = max{fΨ(X), fχ(X)}.
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Now assume we are given a sentence

∃X ∈ In.∀Y ∈ Im. (Ψ(X, Y ) → Φ(X, Y )) (5)

as above. The negation of this sentence is equivalent to the sentence

∀X ∈ In.∃Y ∈ Im. (Ψ(X, Y ) ∧ fΦ(X, Y ) > 0) . (6)

Let us for now assume that the set K(X) = {Y ∈ Im | Ψ(X, Y )} is non-empty for all
X ∈ In. Then by assumption this set depends continuously on X in the Hausdorff metric. It
follows by elementary calculus that the function h(X) = maxY ∈K(X) fΦ(X, Y ) is well-defined
and continuous.

We further have, by compactness of In, that the function h(X) attains its minimum in
In. By definition of fΦ, the sentence (6) holds true if and only if minx∈In h(x) > 0 if and
only if there exists ε > 0 such that minx∈In h(x) > ε. Thus, the sentence (6) is equivalent to
the sentence

∃ε > 0.∀X ∈ In.∃Y ∈ Im. (Ψ(X, Y ) ∧ fΦ(X, Y ) > ε) .

So far we have proved this equivalence under the assumption that the compact set K(X) =
{Y ∈ Im | Ψ(X, Y )} is non-empty for all X. But if the set K(X) is empty for some X then
both (6) and the above sentence are false, so that the two sentences are certainly equivalent.

Let χ(X, Y ) be the formula that results from Φ by swapping all occurrences of ∨ and ∧
and by replacing all atoms P (X, Y ) ≤ 0 in Φ by the atom P (X, Y ) > ε. One easily checks
that the above sentence is further equivalent to the sentence

∃ε > 0.∀X ∈ In.∃Y ∈ Im. (Ψ(X, Y ) ∧ χ(X, Y )) .

It follows from 10 that there exists a witness ε for the existential quantifier with ε >

2−µ4α3β(n+1)(m+1) . We can compute in polynomial time an integer N such that we have
µ4α3β(n+1)(m+1) ≤ 2N . Consider the formula χ(X, Y ). By Lemma 18 we can compute in
polynomial time an integer L such that |P (X, Y )| ≤ L for all (X, Y ) ∈ In × Im. We can
hence replace each atom P (X, Y ) > 0 in χ(X, Y ) with the equivalent formula

∃u ∈ [−L, L].∃v ∈ [−22N

, 22N

].
(
P (X, Y ) = u2 ∧ uv = 1

)
,

where u and v are fresh variables. By Proposition 19 the formula χ(X, Y ) is equivalent to a
formula of the form

∃U ∈ [−L, L]s.∃V ∈ [−22N

, 22N

]s. (Q(X, Y, U, V ) = 0)

where Q is computable in polynomial time from χ(X, Y ) and s is the number of atoms in
χ(X, Y ).

Now, consider the formula Ψ(X, Y ). By Lemma 18 we can compute in polynomial time an
integer M such that for all atoms P (X, Y ) ≤ 0 in Ψ(Y ) the polynomial P satisfies |P (X, Y )| ≤
M for all (X, Y ) ∈ In ×Im. The atom is hence equivalent to ∃w ∈ [−M, M ].P (X, Y ) = −w2,
where w is a fresh variable. Again by Proposition 19, letting t denote the number of atoms in
Ψ(X, Y ) we can hence compute in polynomial time a formula ∃W ∈ [−M, M ]t.R(X, Y, W ) =
0, which is equivalent to Ψ(X, Y ).

In total the sentence (6) is equivalent to the sentence

∀X ∈ In.∃Y ∈ Im.∃U ∈ [−L, L]s.∃V ∈ [−22N

, 22N

]s.∃W ∈ [−M, M ]t.
(R(X, Y, W ) + Q(X, Y, U, V ) = 0) .



J. D’Costa, E. Lefaucheux, E. Neumann, J. Ouaknine, and J. Worrell 33:13

In the above we have used that the functions R and Q admit only non-negative values by
construction. We may assume that 22N ≥ max{L, M}. Arguing as in the proof of Lemma 25
in Appendix A, we can introduce auxiliary variables B ∈ IN+1 to obtain an equivalent
sentence

∀X ∈ In.∃Y ∈ Im.∃U ∈ Is.∃V ∈ Is.∃W ∈ It.∃B ∈ IN+1. (H(X, Y, U, V, W, B) = 0)

which is computable in polynomial time from our original sentence (5).
The sentence (5) is hence equivalent to the sentence

∃X ∈ In.∀Y ∈ Im.∀U ∈ Is.∀V ∈ Is.∀W ∈ It.∀B ∈ IN+1. (H(X, Y, U, V, W, B) > 0) .

Again, we have used that H only admits non-negative values by construction. The result
now follows from Lemma 17. ◀

The inclusion b-∃∀++
≤ R ⊆ b-∃∀≤R follows from the special case of Theorem 16 where

the formula Ψ0,≤(Y ) does not depend on X.
Theorem 16, in its general form, finally allows us to prove that the complexity class ∃∀≤R

is robust under different encodings of polynomials.

▶ Theorem 20. Given a C-sentence, where C ∈ {Σ2,≤, b-Σ2,≤, b-Σp
2,≤} we can compute

in polynomial time an equivalent C-sentence whose atoms involve polynomials of degree at
most four. In particular we can compute in polynomial time a sentence whose atoms involve
polynomials encoded as in (1).

The proof of Theorem 20 requires the following proposition, which is easily established
using elementary calculus:

▶ Proposition 21. Let X and Y be metric spaces.
1. Let F : X → F(Y ) and G : X → F(Z) be continuous with respect to the Hausdorff metric.

Then the map

H : X → F(Y ) × F(Z), H(x) = F (x) × G(x)

is continuous with respect to the Hausdorff metric as well.
2. Let F : X → F(Y ) be continuous with respect to the Hausdorff metric. Let f : Y → Z be

a continuous function. Then the function

H : X → F(Y × Z), H(x) = F (x) × f(F (x))

is continuous with respect to the Hausdorff metric.

Proof of Theorem 20. We prove the result for b-Σ2,≤-sentences. The result for Σ2,≤ sen-
tences follows by applying the reductions from Lemmas 10 and 12, bounding the degrees
of the atoms of the resulting b-Σ2,≤-sentence, and translating back to a Σ2,≤-sentence
using Theorem 15. By inspecting the proof of Theorem 15 we observe that the degree does
not increase by this translation, since we only add new constraints, all of which involve
polynomials of degree at most 2. The result for b-Σ++

2,≤-sentences is implicitly contained in
the below proof.

To a term T over the signature ⟨Z, +, ×⟩ we assign a variable zT and a formula ηT , where
ηT is inductively defined as follows:
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1. If T is a variable xj then ηT = ⟨zT = xj⟩.
2. If T is a constant c then ηT = ⟨zT = c⟩.
3. If T is of the form U × V , then ηT = ⟨ηU ∧ ηV ∧ zT = zU × zV ⟩
4. If T is of the form U + V , then ηT = ⟨ηU ∧ ηV ∧ zT = zU + zV ⟩.
The formula ηT is computable in polynomial time from T . Its atoms have degree at most
two.

Let P (X, Y ) ≤ 0 be an atom in Φ≤(X, Y ), where P is encoded by a term T . Let ηT be
the formula associated with T as above. Then the formula P (X, Y ) ≤ 0 is equivalent to the
formula ∀Z.(ηT (X, Y, Z) → zT ≤ 0).

More generally, the sentence ∃X ∈ In.∀Y ∈ Im.Φ≤(X, Y ) is equivalent to the sentence

∃X ∈ In.∀Y ∈ Im.∀Z ∈ RM .
(

ηT1(X, Y, Z) ∧ · · · ∧ ηTs
(X, Y, Z) → Φ̂≤(Z)

)
,

where T1, . . . , Ts are the term representations of the atoms in Φ≤(X, Y ) and Φ̂≤(Z) is
obtained from Φ≤(X, Y ) by substituting each atom P (X, Y ) ≤ 0 with term representation
Tj by the atom zTj

≤ 0.
We can further compute in polynomial time an integer N in binary such that the above

sentence is equivalent to

∃X ∈ In.∀Y ∈ Im.∀Z ∈ [−N, N ]M .
(

ηT1(X, Y, Z) ∧ · · · ∧ ηTs
(X, Y, Z) → Φ̂≤(Z)

)
,

By the proof of Lemma 25 we can have Z range over [−1, 1]M up to introducing further
auxiliary variables and adding a conjunction of quadratic polynomial equations to the formula
Φ̂. For notational convenience, let us simply assume that the sentence is equivalent to

∃X ∈ In.∀Y ∈ Im.∀Z ∈ IM .
(

ηT1(X, Y, Z) ∧ · · · ∧ ηTs
(X, Y, Z) → Φ̂≤(Z)

)
.

This sentence involves polynomials of degree at most 2.
Let us write η(X, Y, Z) =

∧s
j=1 ηTj

(X, Y, Z). It remains to show that the set{
(Y, Z) ∈ Im × IM | η(X, Y, Z)

}
depends continuously on X in the Hausdorff metric. It then follows from Theorem 16 that
we can compute in polynomial time an equivalent Σ2,≤-sentence. By an inspection of the
proof of Theorem 16, the degree of the atoms is at most doubled in this new sentence.

Now, The formula η is a conjunction of atoms of the form zj = xk, zj = yk, zj = c,
zj = zk + zℓ, or zj = zk × zℓ.

We prove the result by structural induction, using Proposition 21. For a formula η(X, Y, Z)
with n + m + s free variables (X, Y, Z) write Fη : In → F(Im+s) for the map that sends
X ∈ In to the set {(Y, Z) ∈ Im × Is | η(X, Y, Z)}.

If η(X, Y, z) is of the form z = xk, z = yk, or z = c then the function Fη is easily seen to
be continuous.

If η(X, Y, z1, . . . , zs) = ν(X, Y, z1, . . . , zs−1) ∧ µ(X, Y, zs) where µ(X, Y, zs) is of the form
zs = xk, zs = yk, or zs = c then

Fη(X) = Fν(X) × {zs ∈ R | µ(X, Y, zs)} .

Continuity of Fη follows from the first part of Proposition 21.
If η(X, Y, z1, . . . , zs) = ν(X, Y, z1, . . . , zs−1) ∧ µ(X, Y, zj , zk, zs) where µ(X, Y, zj , zk, zs)

is of the form zs = zj□zs with □ ∈ {+, ×}, then

Fη(X) = Fν(X) × f(Fν(X)),

where f(Y, z1, . . . , zs−1) = zj□zk. Continuity of Fη follows from the second part of Proposi-
tion 21. ◀
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4 The complexity of deciding the Compact Escape Problem

We show that CEP is complete for the complexity class ∃∀≤R. Formally this is achieved by
locating CEP between the complexity classes b-∃∀≤R and b-∃∀++

≤ R and applying Theorem 3.
Let us first show that CEP is ∃∀≤R-hard. As a preparation we need to construct in

polynomial time an arbitrary finite number of irrational rotations with independent angles:

▶ Lemma 22. Given n ∈ N in unary we can compute in polynomial time a set of points
q1, . . . , qn ∈ T1 ⊆ C with rational real and imaginary part such that the only integer solution
(e1, . . . , en) ∈ Zn to the equation qe1

1 · · · · · qen
n = 1 is the zero vector.

Proof. See [13, Lemma 20]. ◀

▶ Theorem 23. The Compact Escape Problem is ∃∀≤R-hard.

Proof. By Theorem 3 the decision problem for b-Σ-sentences is ∃∀≤R-complete. It hence
suffices to reduce this problem to CEP.

Thus, given a b-Σ2,≤-sentence Ψ2,≤ = ∃x ∈ In.∀y ∈ Im. (Φ0,≤(x, y)) we compute in
polynomial time a compact set K and a rational matrix A ∈ Q(n+2m)×(n+2m) such that there
exists a point x ∈ K with Akx ∈ K for all n ∈ N if and only if Ψ2,≤ holds true.

By Theorem 20 we may assume that all polynomials that occur in Ψ2,≤ have degree at
most 4.

Consider the compact set

K =
{

(x, u1, v1, . . . , um, vm) ∈ In × I2m | u2
j + v2

j = 1, Φ0,≤(x, u1, . . . , um)
}

.

Use Lemma 22 to compute rational numbers a1, . . . , am, b1, . . . , bm ∈ Q such that the numbers
aj + ibj do not admit any non-trivial integer multiplicative relations. Denote by In the
(n×n)-identity matrix. Let R ∈ Q2m×2m be the matrix corresponding to the linear transform
which sends a vector (x1, y1, . . . , xm, ym) ∈ Q2m to the vector

(a1x1 − b1y1, b1x1 + a1y1, . . . , amxm − bmym, bmxm + amym).

Let A ∈ Q(n+2m)×(n+2m) be defined as follows:

A =
(

In

R

)
.

Then for all x ∈ K we have by Theorem 6

OA(x) = {x} ×
{

(u1, v1, . . . , um, vm) ∈ I2m | u2
j + v2

j = 1
}

.

It follows that OA(x) ⊆ K if and only if Φ0,≤(x, u1, . . . , um) holds true for all u1, . . . , um ∈ Im.
Thus, the instance (A, K) of CEP is a negative instance if and only if the sentence

Ψ2,≤ holds true. We can compute (A, K) in polynomial time from Ψ2,≤. This is almost
immediately obvious, except that the polynomial inequalities that represent K must be
encoded as lists of coefficients, while the polynomial inequalities in Ψ2,≤ are given as terms
over the signature ⟨Z, +, ×⟩. But since the polynomials that occur in Ψ2,≤ have degree at
most 4 we can efficiently compute a list of coefficients from the term representations. ◀

Conversely, we have:

▶ Theorem 24. The Compact Escape Problem is contained in ∃∀≤R.
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Proof Sketch. The full proof is given in Appendix B. We will only briefly sketch the proof
idea here.

Suppose we are given a matrix A ∈ Qn×n with rational entries and a family of polynomials
P together with a negation-free propositional formula which encodes a compact set K ⊆ Rn.
We can compute in polynomial time from this data a QFF≤-formula Φ which encodes K.
We will show that the existence of a point in K that is trapped under A is expressible as a
b-Σ++

2,≤-sentence. Together with Theorem 3 this yields the result. Let us assume for the sake
of simplicity that A is diagonalisable over the complex numbers. The general case employs
the Jordan normal form. It is not more difficult but requires more cumbersome notation.

We compute the complex eigenvalues λ1, . . . , λm, λm+1, . . . , λm+b, λm+b+1, . . . , λm+b+s

of A, counted with multiplicity. The eigenvalues are labelled such that λ1, . . . , λm have
modulus 1, such that λm+1, . . . , λm+b have modulus strictly greater than 1, and such that
λm+b+1, . . . , λm+b+s have modulus strictly smaller than 1. Using [7] we can compute in
polynomial time base change matrices Q and Q−1 such that D = Q−1AQ is a diagonal
matrix.

Let x ∈ K be a starting point. If the complex vector Q−1x has a non-zero component
(Q−1x)j with m + 1 ≤ j ≤ m + b then the orbit of x under A is unbounded, and hence forced
to leave the bounded set K.

Now assume that (Q−1x)j = 0 for all m + 1 ≤ j ≤ m + b. All components (Q−1x)j

with j ≥ m + b + 1 converge to zero under the iteration of A in the sense that the sequence
(Q−1(Akx))j converges to zero as k → ∞. It follows that the closure of the orbit of x under
A is equal to the range of the semialgebraic function

f(x, z) = Q diag (z1, . . . , zm, 0, . . . , 0) Q−1x,

where z1, . . . , zm range over the closure of the sequence (λk
1 , . . . , λk

m)k in the torus Tm. By
Theorem 6 the closure of this sequence is an algebraic subset of Tm, cut out by the integer
multiplicative relations between the eigenvalues λ1, . . . , λm. By Theorem 7 a QFF≤-formula
Ψ(Z) encoding this algebraic set, up to identifying Tm with a subset of the real hypercube
I2m ⊆ R2m.

It follows that we can express the existence of a trapped point by the following “informal”
sentence:

∃X ∈ In.∀Z ∈ I2n.(
Ψ(Z) →

(
X ∈ K ∧

(
(Q−1X)m+1 = 0 ∧ · · · ∧ (Q−1X)m+b = 0

)
∧ f(X, Z) ∈ K

))
.

Thanks to the polytime computability of Q and Q−1 we can compute in polynomial time
formulas that express the relations (Q−1X)j = 0 for j = m + 1, . . . , m + b, and f(X, Z) ∈ K.
This allows us to compute in polynomial time a b-Σ++

≤ -sentence which is equivalent to the
above “informal” sentence. ◀
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A Removing doubly exponential bounds

▶ Lemma 25. Given an integer N in unary and a sentence

(Q1X1).(Q2X2). . . . (QsXs).Φ0(X1, . . . , Xs),

we can in polynomial time in the size of the sentence and N compute a sentence

∃B ∈ [−1, 1]N+1.(Q1X1; |X1| ≤ 1).(Q2X2; |X2| ≤ 1). . . . (QsXs;|Xs| ≤ 1).
Ψ0(B, X1, . . . , Xs)

which is equivalent to the sentence

(Q1X1; |X1| ≤ 22N

).(Q2X2; |X2| ≤ 22N

). . . . (QsXs; |Xs| ≤ 22N

).Φ0(X1, . . . , Xs).

Here, the notation (Qj ; |Xj | ≤ c) indicates that the quantifier is restricted to the set{
Xj ∈ Rnj | |Xj,1| ≤ c, . . . , |Xj,nj

| ≤ c
}

.

Further, if Φ0 is a QFF≤-formula then so is Ψ0.

Proof. Introduce fresh variables b0, . . . , bN . Let Ψ′
0 be the formula that results from Φ0 by

replacing each atom

P (X1, . . . , Xs) ▷◁ 0

in Φ0, where ▷◁∈ {≤, <, =}, by the atom

bdP

N · P (X1/bN , . . . , Xs/bN ) ▷◁ 0,

where dP is the total degree of P . Let Ψ0 be the formula

Ψ′
0 ∧ 2b0 = 1 ∧ b1 = b2

0 · · · ∧ bN = b2
N−1. ◀

B Proof of Theorem 24

We start with a technical lemma:

▶ Lemma 26. Let A ∈ Rn×n be a real matrix. Denote by

λ1, . . . , λm, λm+1, . . . , λm+b, λm+b+1, . . . , λm+b+s

the complex eigenvalues of A, counted with geometric multiplicity. Let λ1, . . . , λm have
modulus 1. Let λm+1, . . . , λm+b have modulus strictly greater than 1. Let λm+b+1, . . . , λm+b+s

have modulus strictly smaller than 1. Fix a Jordan basis vj,k of Cn where vj,1 is an eigenvector
of λj and (A − λjI) vj,k = vj,k−1 for all k > 1.

Let B denote the span of the vectors vj,k with m + 1 ≤ j ≤ m + b and the vectors vj,k

with 1 ≤ j ≤ m and k > 1.
Let C denote the span of the vectors vj,k with m + b + 1 ≤ j ≤ m + b.
Let Q be the matrix that sends the standard basis of Cn to the basis

v1,1, . . . , vm,1,

v1,2, . . . , v1,t1 , . . . , vm,2, . . . , vm,tm ,

vm+1,1, . . . , vvm+1,tm+1 , . . . , vm+b+s,1, . . . , vm+b+s,tm+b+s
.
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Let

f : Rn × Tm → Cn, f(x, z) = Q



z1
. . .

zm

0
. . .

0


Q−1

x1
...

xn



Let S ⊆ Tm be the closure of the set
{

(λk
1 , . . . , λk

m) | k ∈ N
}

in Tm.
Let K ⊆ Rn be a compact set. Let x ∈ K. Then for all k ∈ N we have Akx ∈ K if and

only if both of the following two conditions are satisfied:
1. Let N = m + (t1 − 1) + · · · + (tm − 1) + tm+1 + · · · + tm+b. For all m < j ≤ N we have

(Q−1x)j = 0.
2. f(x, S) ⊆ K.

Proof. Let x ∈ K.
Assume that Akx ∈ K for all k ∈ N. Let J = Q−1AQ. Let us again write N =

m + (t1 − 1) + · · · + (tm − 1) + tm+1 + · · · + tm+b. If there exists m < j ≤ N such that
(Q−1x)j ̸= 0 then Q−1x has a non-zero component in a generalised eigenspace of A which
corresponds to an eigenvalue of modulus strictly greater than 1 or it has a non-zero component
in a generalised eigenspace of A corresponding to an eigenvalue of modulus 1 which is not an
eigenspace. In both cases the absolute value of Akx = QJk(Q−1x) is unbounded as k → ∞.
Since K is assumed to be bounded it follows that Akx leaves K after finitely many steps.

Now, assume that (Q−1x)j = 0 for all m < j ≤ N . We claim that f(x, S) is the set of
accumulation points of the orbit of x under A. The result then follows immediately.

First, observe that we have by construction

A = Q



λ1
. . .

λm

0
. . .

0
R


Q−1

where R is an (s × s)-matrix with |Rk| → 0 as k → 0.
Now, let z ∈ S. We claim that f(x, z) is an accumulation point of the sequence (Akx)k∈N.

Let ε > 0. By Theorem 6 there exist infinitely many k ∈ N such that |λk
j − zj | < ε/2.

For all sufficiently large n we have |Rk| < ε/2. It follows that for each such k we have
|(Akx) − f(z, x)| < ε. Thus, f(z, x) is an accumulation point of the sequence (Akx)k.

Conversely, let y ∈ K be an accumulation point of the sequence (Akx)k. Let (nk)k be
a sequence of natural numbers such that the sequence (Akj x)j converges to y. Since the
torus Tm is compact, the sequence (λkj

1 , . . . , λ
kj
m )j has a convergent subsequence. Thus, let

(kjℓ
)ℓ denote a subsequence of (kj)j such that the sequence (λkjℓ

1 , . . . , λ
kjℓ
m )ℓ converges to a

limit z = (z1, . . . , zm) ∈ Tm. Then the sequence (Akjℓ x)ℓ converges to both f(x, z) and y. It
follows that y = f(x, z). ◀
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Now, let us prove Theorem 24.
By Theorem 3 the decision problems for b-Σ++

2,≤-sentences is contained in ∃∀≤R. We
reduce the Compact Escape Problem to this problem.

Suppose we are given a matrix A ∈ Qn×n with rational entries, a family of polynomials
P in n free variables, represented in the standard encoding, and a negation-free propositional
formula Φ(X) over atoms of the form P ≤ 0, where P ∈ P. We can convert the standard
encodings of the polynomials P ∈ P into terms over the signature ⟨Z, +, ×⟩ in polynomial
time. We can hence convert the formula Φ(X) into a QFF≤-formula in polynomial time.
By very slight abuse of notation, let us denote this QFF≤-formula by Φ(X) as well. Let
K ⊆ Rn denote the set encoded by Φ(X).

By [7] we can compute in polynomial time the complex eigenvalues of A

λ1, . . . , λm, λm+1, . . . , λm+b, λm+b+1, . . . , λm+b+s

and the matrices Q and Q−1 as in Lemma 26. We can further compute the real an
imaginary parts of the eigenvalues λ1, . . . , λm+b+s in polynomial time. More precisely, letting
αj = Re(λj) denote the real part of λj , and βj = Im(λj) the imaginary part, we can compute
in polynomial time:
1. Univariate polynomials with integer coefficients h1, . . . , hm+b+s, g1, . . . , gm+b+s, such that

hj(αj) = gj(βj) = 0 for all j = 1, . . . , m + b + s.
2. Rational numbers a1, b1, c1, d1, . . . , am+b+s, bm+b+s, cm+b+s, dm+b+s, such that αj is the

unique root of hj in the real interval [aj , bj ] and βj is the unique root of gj in the real
interval [cj , dj ].

3. For j = 1, . . . , n and k = 1, . . . , n bivariate polynomials L0,j,k ∈ Q[u, v], L1,j,k ∈ Q[u, v],
and indexes ℓj,k ∈ {1, . . . , m + b + s} such that the matrix Q at row j and column k is
given by the complex algebraic number L0,j,k(αℓj,k

, βℓj,k
) + iL1,j,k(αℓj,k

, βℓj,k
).

4. For j = 1, . . . , n and k = 1, . . . , n bivariate polynomials R0,j,k ∈ Q[u, v], R1,j,k ∈ Q[u, v],
and indexes rj,k ∈ {1, . . . , m + b + s} such that the matrix R−1 at row j and column k is
given by the complex algebraic number R0,j,k(αrj,k

, βrj,k
) + iR1,j,k(αrj,k

, βrj,k
).

By Theorem 7 we can compute in polynomial time a finite set γ1, . . . , γs ∈ Zm of
generators of the free abelian group of integer multiplicative relations between the complex
eigenvalues λ1, . . . , λm. The size of the integer entries of γ1, . . . , γs – and not just their
bitsize – is bounded polynomially in the size of the input. It follows that we can compute
in polynomial time a QFF≤-formula Ψ(C, D) with 2m free variables that expresses for two
given real vectors C ∈ Rn, D ∈ Rn that the complex vector C + iD is contained in the set

S = {(z1, . . . , zm) ∈ Tm | (z1, . . . , zm)γj = 1, j = 1, . . . , s} .

By Theorem 6 the set S is equal to the closure of the set
{

(λk
1 , . . . , λk

m) | k ∈ N
}

.
Let f : Rn × Tm → Cn be defined as in Lemma 26, i.e.,

f(x, z) = Q diag(z1, . . . , zm, 0, . . . , 0)Q−1x.

Since we can compute the matrices Q and Q−1 in polynomial time as above, we can compute
in polynomial time polynomials Fk,j ∈ Q[U, V ][C, D] for k = 1, . . . , n, j = 1, . . . , n, where U

and V are vectors of m + b + s variables, such that

Re f(X, C + iD) =

 n∑
j=1

F1,j

(
α⃗, β⃗

)
(C, D) · Xj , . . . ,

n∑
j=1

Fn,j

(
α⃗, β⃗

)
(C, D) · Xj

 . (7)
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Note that the result is a polynomial with real algebraic coefficients. More precisely, the right
hand side of the above equation is an element of the ring

Q[α1, . . . , αm+b+s, β1, . . . , βm+b+s][X, C, D].

Define N = m + (t1 − 1) + · · · + (tm − 1) + tm+1 + · · · + tm+b as in Lemma 26. By Lemma
26 the existence of a point in K that is trapped under A is equivalent to the “informal”
sentence

∃X ∈ In.∀Y ∈ T. (8)(
Y ∈ S →

(
X ∈ K ∧

(
(Q−1X)m+1 = 0 ∧ · · · ∧ (Q−1X)N = 0

)
∧ f(X, Y ) ∈ K

))
.

We construct in polynomial time from A and Φ a b-Σ++
≤ -sentence

∃U ∈ Im+b+s.∃V ∈ Im+b+s.∃X ∈ In.∀C ∈ Im.∀D ∈ Im. (9)
(Ψ(C, D) → (χ(U, V ) ∧ Φ(X) ∧ ω(U, V, X) ∧ ξ(U, V, X, C, D))) .

Recall that the formula Ψ(C, D) expresses that the complex number C + iD is contained in
the set S. Intuitively speaking, the formula χ(U, V ) will express that the variables U and
V represent the real and imaginary parts of the eigenvalues λ1, . . . , λm+b+s. The formula
ω(U, V, X) will express that (Q−1X)k = 0 for k = m + 1, . . . , m + b + s. The formula
ξ(U, V, X, C, D) will express that f(X, C + iD) ∈ K.

More formally, let

χ(U, V ) =
m+b+s∧

j=1
(hj(U) = 0 ∧ aj ≤ U ≤ bj ∧ gj(V ) = 0 ∧ cj ≤ V ≤ dj) .

Let

ω(U, V, X) =
N∧

k=m+1

1∧
s=0

 n∑
j=1

Rs,k,j(Urj,k
, Vrj,k

) · Xj = 0

 ,

Let ξ(U, V, X, C, D) be the formula which is obtained from Φ by replacing each atom
P (X1, . . . , Xn) ≤ 0 in Φ by the atom

P

 n∑
j=1

F1,j(U, V )(C, D) · Xj , . . . ,

n∑
j=1

Fn,j(U, V )(C, D) · Xj

 ≤ 0,

Note that this substitution can be performed in polynomial time. The polynomial P is given
by a term t over the signature ⟨Z, +, ×⟩. A term representing the new atom is obtained by
substituting in the term t the occurrence of each variable Xk by the polynomial-size term∑n

j=1 Fk,j(U, V )(C, D) · Xj .
Now, observing that the formula χ(U, V ) forces U and V to be equal respectively to the

vector of real and imaginary parts of the eigenvalues λ1, . . . , λm+b+s it follows by construction
that the b-Σ++

≤ -sentence (9) is equivalent to the informal sentence (8) and hence expresses
the existence of a trapped point. There is only one small argument required: By (7) the
formula ξ(α⃗, β⃗, X, C, D) expresses that Re f(X, C + iD) ∈ K rather than f(X, C + iD) ∈ K.
But if Ψ(C, D) holds true then C + iD ∈ S, so that f(X, C + iD) is real-valued, for instance
since it is contained in the closure of the orbit of Akx by the proof of Lemma 26.

Deciding the truth of the sentence (9) is therefore equivalent to deciding non-termination
of the Escape Problem instance (A, K).
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Abstract
We study fundamental decision problems on linear dynamical systems in discrete time. We focus on
pseudo-orbits, the collection of trajectories of the dynamical system for which there is an arbitrarily
small perturbation at each step. Pseudo-orbits are generalizations of orbits in the topological
theory of dynamical systems. We study the pseudo-orbit problem, whether a state belongs to the
pseudo-orbit of another state, and the pseudo-Skolem problem, whether a hyperplane is reachable by
an ϵ-pseudo-orbit for every ϵ. These problems are analogous to the well-studied orbit problem and
Skolem problem on unperturbed dynamical systems. Our main results show that the pseudo-orbit
problem is decidable in polynomial time and the Skolem problem on pseudo-orbits is decidable. The
former extends the seminal result of Kannan and Lipton from orbits to pseudo-orbits. The latter
is in contrast to the Skolem problem for linear dynamical systems, which remains open for proper
orbits.
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1 Introduction

A (discrete-time) linear dynamical system in m dimensions is defined by a linear map x 7→ Ax

for an m × m rational matrix A. The map specifies how an individual state (a real-valued
vector in m dimensions) evolves over time; a trajectory starting from a state s is given
by the sequence (s, As, A2s, . . .). Linear dynamical systems are fundamental models in
many different domains of science and engineering, and the computability and complexity of
decision problems for linear dynamical systems are of both theoretical and practical interest.
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The orbit of a point s is the smallest set containing s and closed under the dynamic map.
The orbit problem for linear dynamical systems asks, given s and t, if t is in the orbit of s [11].
In a seminal paper, Kannan and Lipton [12] showed that the orbit problem can be decided in
polynomial time. However, a natural generalization of the orbit problem, the Skolem problem,
in which we ask whether the orbit of a given state s intersects a given hyperplane, turns out
to be notoriously difficult and remains open after many decades [20, 16]. A breakthrough
occurred in the mid-1980s, when Mignotte et al. [14] and Vereshchagin [21] independently
showed decidability in dimension 4 or less. These deep results make essential use of Baker’s
theorem on linear forms in logarithms (which earned Baker the Fields Medal in 1970), as
well as a p-adic analogue of Baker’s theorem due to van der Poorten. Unfortunately, little
progress on that front has since been recorded.

The orbit and Skolem problems are defined on the exact dynamics of the linear system.
In dynamical systems theory, one is often interested in “rough” dynamics of a system – in
topological terms, we wish to study closed sets containing the orbit. Orbits arising from
linear dynamics are usually not closed sets. Indeed the orbit of the point 1 under the map
x 7→ 1

2 x does not contain the limit point 0. One way to retain closure is through pseudo-orbits
[8], a concept going back several decades. A pseudo-orbit generalizes the orbit by allowing
arbitrarily small imprecisions throughout the dynamics. For a precision ϵ > 0, we say t is
in the ϵ-pseudo-orbit of s if there is a sequence of points (s = s0, s1, . . . , sn = t) with n > 0
such that ∥Asi − si+1∥ < ϵ for each i ∈ {0, . . . , n − 1}. That is, an ϵ-pseudo-orbit contains a
sequence of points that would be indistinguishable from an orbit if each state were known
only up to precision ϵ. Finally, t is in the pseudo-orbit of s if it is in the ϵ-pseudo-orbit of s

for all ϵ > 0.
One can provide a computational analogue of pseudo-orbits (see [17]). Alice is simulating

the trajectory of a dynamical system but in every iteration, her computation has a rounding
error ϵ. An infinitely powerful adversary, Bob, rounds Alice’s result in an arbitrary fashion
to a new state within a distance of ϵ of the actual outcome. A state t is pseudo-reachable
from s iff Bob can fool Alice into believing that t is reachable in the simulation no matter
how accurate her simulation is.

We can formulate analogous decision problems on pseudo-orbits. The pseudo-orbit problem
asks, given a linear dynamical system and two states s and t, whether t is in the pseudo-orbit
of s. The hyperplane pseudo-reachability (or pseudo-Skolem) problem asks, given a linear
dynamical system, an initial state s, and a hyperplane, if there is an ϵ-pseudo orbit from s

that intersects the hyperplane for every ϵ > 0.
In this paper, we study decision problems for pseudo-orbits of linear dynamical systems.

We show that the pseudo-orbit problem is decidable in polynomial time and that
the Skolem problem is decidable in full generality on pseudo-orbits.

We proceed in two steps. First, we generalize Kannan and Lipton’s analysis to show that
the pseudo-orbit problem can be decided in polynomial time. Our proof involves a careful
examination of the eigenvalues of the matrix A, similar to Kannan and Lipton’s proof. More
generally, we show that pseudo-reachability to a bounded semi-algebraic set is decidable.

Next, we consider the hyperplane pseudo-reachability (a.k.a. pseudo-Skolem) problem.
Our proof again proceeds by a case analysis on the eigenvalues of A. The most challenging
case is when there is an eigenvalue of modulus greater than 1. We analyze a series whose
terms are polynomial-exponential functions of n ∈ N associated with the dynamics. We
show that the infimum of this sum can be effectively computed. The proof of effective
computability uses tools from Diophantine approximation as well as a reduction to the
decision problem for the theory of real closed fields
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We show that the dynamics pseudo-reaches the hyperplane in case the infimum of the
above sum is 0. If the infimum is non-zero, we prove that we can find an effective bound
N such that the dynamics pseudo-reaches the hyperplane iff, for sufficiently small ϵ, it
pseudo-reaches the hyperplane within N steps.

Putting everything together, we conclude that the pseudo-Skolem problem is decidable.

Other related work. The study of pseudo-orbits goes back to Anosov, Bowen, and Conley [1,
3, 8]. Conley [8] formulated the fundamental theorem of dynamical systems: the iteration of
any continuous, possibly non-linear, map on a compact metric space decomposes the space
into a chain-recurrent part (the pseudo-orbit analogue of a period orbit) and a gradient-like
part. Our results imply that deciding if a state is chain recurrent is decidable for linear
systems.

In linear systems theory, controllability is a fundamental property of linear systems [19].
Controllability states that the system can be controlled from any point to any other point.
However, this may require unboundedly large control actions. A pseudo-orbit can be seen as
a stronger notion, where we ask if the dynamics can be controlled from a starting point to an
ending point no matter how small the control input is: if a state belongs to the pseudo-orbit,
then for every ϵ, there is a sequence of control inputs each bounded in norm by ϵ that steers
the system to that state.

2 Linear Dynamical Systems

Notation. The sets of natural numbers (including zero), rational numbers, real numbers,
and algebraic numbers are denoted by N, Q, R, and Q, respectively. We assume a standard
representation of algebraic numbers in terms of their defining polynomials, by which we can
perform arithmetic operations and test equality in polynomial time in their representation
(see, e.g., [6]).

For any column vector x = [x1, x2, . . . , xm]⊤ ∈ Rm, we use the notations ∥x∥2 :=
√

x⊤x

and ∥x∥∞ := maxi |xi| to indicate respectively the two norm and infinity norm of x. For any
matrix A = [aij ]i,j ∈ Rm×m, we define ∥A∥2 and ∥A∥∞ to indicate respectively the (induced)
two norm and infinity norm of A. Note that ∥Ax∥2 ≤ ∥A∥2 ∥x∥2 and ∥Ax∥∞ ≤ ∥A∥∞ ∥x∥∞
for all x ∈ Rm. We write 0 ∈ Rm for the zero vector and 1 ∈ Rm for the all-ones vector. We
denote by ρ(A) the spectral radius of a matrix A, which is the largest absolute value of the
eigenvalues of A. For any A ∈ Rm×m and any γ > ρ(A), recall that there is a constant c > 0
such that ∥An∥2 ≤ cγn for all n ∈ N.

Discrete-Time Linear Dynamical Systems. An m-dimensional discrete-time linear dynami-
cal system is specified by an m × m matrix A of rational numbers. The trajectory determined
by an initial state x0 ∈ Rm is the sequence (xn)n≥0 given by

xn+1 = Axn, (n ∈ N).

We call the set O(A, x0) := {xn | n ∈ N} the orbit of x0.
For any ϵ > 0, an ϵ-perturbed linear dynamical system has state trajectories (xn)n≥0

such that

xn+1 = Axn + dn, (n ∈ N),

where A is as before and dn ∈ [−ϵ, ϵ]m for all n. For an initial state x0 ∈ Rm, we define
the ϵ-pseudo-orbit Õϵ(A, x0) of the dynamics as the set of states reachable in the perturbed
dynamics. More formally, define
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for n = 0, Õ(n)
ϵ (A, x0) := {x0},

for all n ∈ N, Õ(n+1)
ϵ (A, x0) := {Ax + d ∈ Rm | x ∈ Õ(n)

ϵ (A, x0), d ∈ [−ϵ, ϵ]m}, and
Õϵ(A, x0) :=

⋃
n≥0 Õ(n)

ϵ (A, x0).

Finally, we define the pseudo-orbit Õ(A, x0) :=
⋂

ϵ>0 Õϵ(A, x0) as the intersection of all
the ϵ-pseudo orbits of x0, for all ϵ > 0. Clearly, O(A, x) ⊆ Õ(A, x) for any A and x.

We will make use of the following characterization, which follows directly from the
definition: Any t ∈ Õϵ(A, s) is of the form t = Ans +

∑n−1
i=0 Aidn−i−1 for some n ∈ N and

some sequence of perturbations di with ∥di∥∞ ≤ ϵ.
We also need the following properties of Õϵ(A, x) and Õ(A, x).

▷ Claim 1 (Transitivity). For every A and ϵ > 0, and for states s, t, u ∈ Rm, if t ∈ Õϵ(A, s)
and u ∈ Õϵ(A, t) then u ∈ Õϵ(A, s). If t ∈ Õ(A, s) and u ∈ Õ(A, t), then u ∈ Õ(A, s).

▷ Claim 2 (Closure). For every A, ϵ > 0, and state s ∈ Rm, the sets Õϵ(A, s) and Õ(A, s)
are closed sets.

▶ Problem 3 (Orbit problem). Given A ∈ Qm×m and s, t ∈ Qm, decide whether t ∈ O(A, s).

A celebrated result of Kannan and Lipton [12] shows that the Orbit Problem is decidable
in polynomial time.

▶ Theorem 4 ([12]). The orbit problem is decidable in polynomial time.

In this paper, we study the following problems.

▶ Problem 5 (Pseudo-orbit problem). Given A ∈ Qm×m and s, t ∈ Qm, decide whether
t ∈ Õ(A, s).

▶ Problem 6 (Hyperplane pseudo-reachability problem). Given A ∈ Qm×m, s ∈ Qm, and a
hyperplane cT · x = v for c, v ∈ Qm, decide whether Õϵ(A, s) intersects the hyperplane for all
ϵ > 0.

The following summarizes our main theorem.

▶ Theorem 7 (Main Theorem).
1. The pseudo-orbit problem is decidable in polynomial time.
2. The hyperplane pseudo-reachability problem is decidable.

The rest of the paper is devoted to the proof of this theorem.

2.1 Preliminaries

First we establish that pseudo-orbits can be translated with change of bases.

▶ Proposition 8. For matrices A, B, Q ∈ Rm×m with A = QBQ−1 and for any x ∈ Rm,
we have Q Õγ2(B, Q−1x) ⊆ Õϵ(A, x) ⊆ Q Õγ1(B, Q−1x), where γ1 = ϵ

∥∥Q−1
∥∥

∞ and γ2 =
ϵ/ ∥Q∥∞. Moreover, Õ(A, x) = Q Õ(B, Q−1x).

We will use Proposition 8 with matrix A represented using the Jordan canonical form.



J. D’Costa et al. 34:5

Jordan Decomposition. For a given rational square matrix A one can compute change of
basis matrix Q and Jordan normal form J so that A = QJQ−1 and J = diag(J1, J2, · · · , Jz)
with Ji representing the ith Jordan block taking the following form

Ji =


Λi 1 0 . . . 0 0
0 Λi 1 . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . Λi 1
0 0 0 . . . 0 Λi

 , (1)

where Λi denotes the ith eigenvalue of A. The size of Ji is equal to the multiplicity of the
eigenvalue Λi and is denoted by κ(Λi).

Real Jordan form. For any A ∈ Rn×n having complex eigenvalues, matrices Q and J in
the Jordan normal form could have complex entries. In this case, the complex eigenvalues
form complex conjugate pairs and give a real Jordan form: there are real matrices Q and J

such that A = QJQ−1 and J = diag(J1, J2, · · · , Jz). The matrix Ji represents the ith real
Jordan block corresponding to either a real eigenvalue Λi or a complex pair Λi = ai ± jbi. It
is equal to (1) for real Λi and has the following form for the complex pair Λi = ai ± jbi,

Ji =


Λi I2×2 02×2 . . . 02×2 02×2

02×2 Λi I2×2 . . . 02×2 02×2
...

...
. . . . . .

...
...

02×2 02×2 02×2 . . . Λi I2×2
02×2 02×2 02×2 . . . 02×2 Λi

 , (2)

where with abuse of notation, we have indicated Λi =
[
ai −bi

bi ai

]
. I2×2 and 02×2 denote

identity and fully zero matrices of size 2 by 2.
The real Jordan normal form and the change of basis matrices Q and Q−1 can be

computed in polynomial time (see [4] and also Appendix D).

Computing matrix powers. If A = QJQ−1, then we have An = QJnQ−1 for n ∈ N, where
Jn = diag(Jn

1 , Jn
2 , . . . , Jn

z ) and

Jn
i =


Λn

i nΛn−1
i

(
n
2
)
Λn−1

i · · ·
(

n
k−1
)
Λn−k+1

i

0 Λn
i nΛn−1

i · · ·
(

n
k−2
)
Λn−k+2

i
...

...
...

. . .
...

0 0 0 · · · nΛn−1
i

0 0 0 · · · Λn
i

 .

3 The pseudo-orbit problem is decidable in polynomial time

In this section, we show that Problem 5 is decidable in polynomial time. Fix a matrix A and
let J be the real Jordan form for A. Proposition 8 shows that Õ(A, x) can be obtained from
the pseudo-orbit Õ(J, x). Our decidability proof involves a case analysis on the modulus of
the eigenvalues of J . We first consider the cases where J is a single block, i.e.,
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J =


Λ I

Λ
. . .
. . . I

Λ

 with Λ =
[
a −b

b a

]
and I =

[
1 0
0 1

]
, or Λ = [r] and I = [1], (3)

with real matrix entries a, b, r ∈ R.
We shall case split on the spectral radius ρ(J), which is the absolute value of the unique

eigenvalue of the Jordan block J . We consider three cases: ρ(J) < 1, ρ(J) = 1 and ρ(J) > 1.
The following lemma will be useful in relating the first and third cases. Its proof is simply
by reversing time.

▶ Lemma 9 (Reversibility Lemma). For any invertible matrix A ∈ Rm×m, x ∈ Õϵ(A, s)
implies s ∈ Õγ(A−1, x) with γ = ϵ

∥∥A−1
∥∥

∞. Moreover,

x ∈ Õ(A, s) ⇐⇒ s ∈ Õ(A−1, x). (4)

▶ Lemma 10 (Eigenvalues inside the unit circle). Let J ∈ Rm×m be a Jordan block of the
form (3) with ρ(J) < 1. For every s ∈ Rm,

Õ(J, s) = O(J, s) ∪ {0} = O(J, s),

where O(J, s) denotes the closure of the orbit.

Proof. We prove the lemma by showing there is a constant C > 0 satisfying

O(J, s) ∗= O(J, s) ∪ {0}
∗∗
⊆ Õ(J, s)

†
⊆
⋂
ϵ>0

⋃
z∈O(J,s)

B(z, Cϵ)
§
⊆ O(J, s), (5)

where B(z, ϵ) := {y ∈ Rm | ∥z − y∥2 ≤ ϵ} is the closed ball with respect to two norm with
center z and radius ϵ. It is easy to see that equality (*) holds since all the eigenvalues of
J are inside the unit circle, limn→∞ Jn = 0, and 0 is the only limiting point of any state
trajectory.

It is also easy to see that inclusion (**) is correct. Note that for any ϵ > 0, O(J, s) ⊆
Õϵ(J, s) and the set Õϵ(J, s) is closed by definition. Taking intersection over ϵ > 0, we get
O(J, s) ⊆ Õ(J, s) with Õ(J, s) being a closed set. Therefore, O(J, s) ⊆ Õ(J, s).

We now choose a value of C which allows us to prove inclusion (†). First pick γ

such that ρ(J) < γ < 1. Next choose c1 to be a constant (which is guaranteed to exist)
satisfying ∥Jn∥2 ≤ c1γn for all n ∈ N, and finally set C := c1m/(1 − γ). We show that
Õϵ(J, s) ⊆

⋃
z∈O(J,s) B(z, Cϵ) for any ϵ > 0. Take any x ∈ Õϵ(J, s). Then there is a sequence

(d0, d1, . . .) and n ∈ N such that ∥di∥∞ ≤ ϵ and x = Jns +
∑n−1

i=0 J idn−i−1. Now

∥x − Jns∥2 =

∥∥∥∥∥
n−1∑
i=0

J idn−i−1

∥∥∥∥∥
2

≤
n−1∑
i=0

∥∥J i
∥∥

2 ∥dn−i−1∥2 ≤
n−1∑
i=0

c1γimϵ ≤ c1mϵ

1 − γ
= Cϵ,

We then get x ∈ B(z, Cϵ) for z := Jns ∈ O(J, s).
The inclusion § can be proven by taking an arbitrary point y ̸∈ O(J, s) and showing that

there is an ϵ > 0 for which y ̸∈ B(z, Cϵ) for all z ∈ O(J, s). Note that the complement of
O(J, s) is an open set, which means there is a θ > 0 such that B(y, θ) ∩ O(J, s) = ∅. Taking
ϵ such that Cϵ < θ will give the intended result. ◀
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Additionally, we prove the following lemma (that will be useful later) about the behaviour
of pseudo-orbits when all eigenvalues are inside the unit circle.

▶ Lemma 11. Let A ∈ Rm×m and s ∈ Rm. If ρ(A) < 1, then for every δ > 0 there exists
an effectively computable N ∈ N and ϵ > 0 such that after time N , all ϵ-pseudo-orbits are
contained inside the ball B(0, δ).

Proof. Let (xn)n∈N denote an ϵ-pseudo-orbit starting from s with a sequence of disturbances
(dn)n∈N. Suppose ρ(A) < 1 and let γ ∈ (ρ(A), 1). There is a constant c > 0 satisfying
∥An∥2 ≤ cγn for all n. Then we get

∥xn∥2 =

∥∥∥∥∥Ans +
n−1∑
k=0

Akdn−k−1

∥∥∥∥∥
2

≤ ∥An∥2 ∥s∥2 +
n−1∑
k=0

∥∥Ak
∥∥

2 ∥dn−k−1∥2

≤ cγn ∥s∥2 +
n−1∑
k=0

m ϵ cγk ≤ cγn ∥s∥2 + m ϵ c

1 − γ
.

Taking ϵ = δ(1 − γ)/(2mc) and N with γN ∥s∥2 ≤ δ/(2c) gives the intended result. ◀

▶ Lemma 12 (Eigenvalues outside the unit circle). Let J ∈ Rm×m be a Jordan block of the
form (3) with ρ(J) > 1. We have Õ(J, 0) = Rm and Õ(J, s) = O(J, s) if s ̸= 0.

Proof. In this case, J is invertible and all eigenvalues of J−1 are inside the unit circle. We
apply the Reversibility Lemma 9 and Lemma 10.

x ∈ Õ(J, s) ⇐⇒ s ∈ Õ(J−1, x) ⇐⇒ s ∈ O(J−1, x) ∪ {0} ⇐⇒ s = 0 or x ∈ O(J, s).

Therefore, any x is in Õ(J, s) if s = 0, and Õ(J, s) = O(J, s) for s ̸= 0. ◀

▶ Lemma 13 (Eigenvalues on the unit circle). Let J ∈ Rm×m be a Jordan block of the form
(3) with ρ(J) = 1. For every s ∈ Rm, we have Õ(J, s) = Rm.

Proof. The key part of the proof is to show that 0 ∈ Õ(A, s) for any s and for any A having
the eigenvalues on the unit circle. Once we show this, we know that s ∈ Õ(A−1, 0) is true
for any s and any matrix A due to the Reversibility lemma. Stated for the inverse of A and
any x, we get x ∈ Õ(A, 0). Since pseudo-orbits are transitive, we have x ∈ Õ(A, s) for any x

and s, which is the intended result.
We show 0 ∈ Õ(A, s) equivalently by replacing A with its Jordan form J and doing

induction on the structure of J . The proof has two stages. The first stage is to show that
0 ∈ Õ(J, s) for all s when J has a single block simple eigenvalues. The second stage is to
show that we can sequentially increase the multiplicity of eigenvalues and multiple blocks.

Base case. Suppose J =
[
a −b

b a

]
with a2 + b2 = 1 or J = r with |r| = 1. Observe that

the multiplication by J does not increase the two norm of a vector. Hence setting

dn =
{

−ϵ · Jxn

∥Jxn∥2
if ||Jxn||∞ > ϵ,

−Jxn otherwise,

we obtain the ϵ-pseudo-orbit (x0 = s, x1, x2, . . . , xm, 0, 0, . . .) from any s where ∥xk∥2 =
∥xk−1∥2 − ϵ for k ≤ m, which gives 0 ∈ Õ(J, s).
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Inductive case. We show that if 0 ∈ Õ(J1, s1) and 0 ∈ Õ(J2, s2) for all s1 and s2 of

appropriate dimensions, we also have 0 ∈ Õ(J, s) with J =
[
J1 B

0 J2

]
for any B and any

s with appropriate dimensions. Let us partition any state x = (x1, x2) according to the
dimensions of J1 and J2. Let ϵ > 0 and s = (s1, s2). By the assumption, there exist ϵ-
perturbations (d2

0, d2
1, . . . , d2

N−1) that bring s2 to 0 under J2. Let dn = (0, d2
n) for 0 ≤ n < N

be a sequence of ϵ-perturbations for the linear system with mapping J . We obtain the
sequence (x0 = s, x1, . . . , xN ) with x2

N = 0: the ϵ-perturbations d0, . . . , dN−1 have brought
the second coordinate to 0. By the assumption, we also have 0 ∈ Õϵ(J1, x1

N ), which gives
ϵ-perturbations (d1

0, . . . , d1
M ) that bring x1

N to 0 under J1. Let us expand the sequence of
perturbations for the linear system J with dn+N = (d1

n, 0) for 0 ≤ n ≤ M . It is easy to see
that (d0, . . . , dN+M ) bring the system from s to 0 due to the structure of J that is upper
triangular. ◀

We now consider the general case where J has multiple blocks.

▶ Definition 14. Let J ∈ Rm×m be a real Jordan block matrix and s ∈ Rm. We define

∆(J, s) :=


Rm if ρ(J) = 1 or, ρ(J) > 1 and s = 0,
{0} if ρ(J) < 1,
∅ otherwise.

The following lemma states that certain points in the pseudo-orbit of real Jordan blocks
are ϵ-pseudo reachable exactly at any sufficiently large time step, for every ϵ > 0. The lemma
provides the flexibility to “synchronize” reaching parts of the state for different Jordan blocks.

▶ Lemma 15 (Synchronization Lemma). Let J ∈ Rm×m be a Jordan block with eigenvalue λ.
For s ∈ Rm, t ∈ ∆(J, s) if and only if for every ϵ > 0 there exists Nϵ ∈ N such that for all
N > Nϵ, there exists an ϵ-pseudo-orbit (xi)i∈N of s under J such that xN = t.

Proof.
|λ| < 1 and ∆(J, s) = {0}. By Lemma 10, 0 ∈ Õ(J, s) and hence for every ϵ > 0, there
exists Nϵ such that t = 0 can be ϵ-pseudo reached at time Nϵ. Now simply observe
that once an ϵ-pseudo-orbit reaches 0, it can remain there forever by setting all future
perturbations to zero. To prove the other direction, suppose t ̸= 0. By Lemma 11, there
must exist a time bound T such that for sufficiently small ϵ, all ϵ-pseudo-orbits of s after
time T are contained in B(0,

∥t∥2
2 ). Hence for sufficiently small ϵ no Nϵ with the the

specified property can exist.
|λ| = 1 and ∆(J, s) = Rm. In the proof of Lemma 13, for every t ∈ Rm and ϵ > 0 we
construct an ϵ-pseudo-orbit from s that visits 0 followed by t. Let Nϵ be the number
of steps required to ϵ-reach t. We can postpone visiting t to any time step N > Nϵ by
simplying waiting at the point 0 for N − Nϵ steps.
|λ| > 1, s = 0 and ∆(J, s) = Rm. Similarly to the case above, in Lemma 12 for each ϵ

we construct an ϵ-pseudo-orbit that visits t at time Nϵ, and reaching t can be delayed
arbitrarily by spending a necessary number of steps at 0 at the beginning.
|λ| > 1, s ≠ 0 and ∆(J, s) = ∅. Let t ∈ Rm. In this case, observe that there must exist a
time bound T such that for sufficiently small ϵ, all ϵ-pseudo-orbits of s after time T are
contained outside B(0, 2 ∥t∥2). Hence for sufficiently small ϵ no Nϵ with the the specified
property can exist. ◀
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There are two modes of pseudo reachability: via orbit, or at larger and larger time steps
for smaller ϵ.

▶ Lemma 16. Let A ∈ Rm×m and s, t ∈ Rm. If there exists N such that for every ϵ, t is
ϵ-pseudo-reachable from s within the first N steps, then t ∈ O(A, s).

Proof. Suppose such N exists. By continuity of the map x 7→ Ax, for every δ > 0 there
exists ϵ > 0 such that for every ϵ′ < ϵ and ϵ′-pseudo-orbit (xi)i∈N,

∥∥xi − Ais
∥∥

2 < δ for
0 ≤ i < N . Hence the intersection of the first N elements of all ϵ-pseudo-orbits is exactly
{s, As, . . . , AN−1s}. ◀

▶ Lemma 17. For J = diag(J1, . . . , Jl) in real Jordan normal form and s ∈ Rm,

Õ(J, s) = O(J, s) ∪ Πl
i=1∆(Ji, si).

Proof. Suppose t = (t1, . . . , tl) ∈ Πl
i=1∆(Ji, si). That is, for every ϵ and 1 ≤ i ≤ l there

exists an ϵ-pseudo-orbit (xi
j)j∈N of si under Ji that reaches ti. By Lemma 15, for every ϵ

there exist ϵ-pseudo-orbits (yi
j)j∈N of s1, · · · , sl that reach t1, . . . , tl, respectively, at the same

time N . That is, yi
N = ti for 1 ≤ i ≤ m. Hence (y1

i , . . . , yz
i )i∈N is an ϵ-pseudo-orbit of s

under J that reaches t.
Now suppose t ∈ Õ(J, s) \ O(J, s). We prove, by a case analysis on Ji, that ti ∈ ∆(Ji, si)

for 1 ≤ i ≤ l. The main idea is that if t is pseudo-reachable but not reachable, then in order
to reach it via an ϵ-pseudo-orbit one will need longer and longer time horizons as ϵ → 0
(Lemma 16).
1. ρ(Ji) < 1. Since t is not in the orbit, we can find a sequence N1 < N2 < · · · of time steps

and ϵ1 > ϵ2 > · · · of perturbations such that t is ϵj-reachable from s earliest at time Nj .
In particular, ti is ϵj reachable from si at time Nj for every j. But by Lemma 11 this
means that |ti| < δ for every δ > 0. Hence ti = 0 ∈ ∆(Ji, si).

2. ρ(Ji) = 1. Since in this case ∆(Ji, si) = Rκ(i), trivially ti ∈ ∆(Ji, si).
3. ρ(Ji) > 1 and si = 0. Since in this case too ∆(Ji, si) = Rκ(i), trivially ti ∈ ∆(Ji, si).
4. ρ(Ji) > 1 and si ̸= 0. This case cannot arise, as similarly to Case 1, one can argue that if

pseudo-reaching ti requires larger and larger time steps as ϵ → 0, then |ti| > δ for every δ.
But in this case no such ti can exist. ◀

Proof. (of Theorem 7(1)). We now put everything together to show the pseudo-orbit problem
is decidable in polynomial time. Given A ∈ Qm×m, and s, t ∈ Qm, we compute (in polynomial
time) matrices Q, J, Q−1 ∈ (R∩Q)m×m such that A = QJQ−1 and J is in real Jordan normal
form (Appendix D). Then, we compute t′ = Q−1t and s′ = Q−1s, and by Proposition 8 we
have that t ∈ Õ(A, s) if and only if t′ ∈ Õ(J, s′). It remains to decide whether t′ ∈ Õ(J, s′).
For this we use the characterization described in Lemma 17. To decide whether t′ ∈ O(J, s′),
observe that Q−1t ∈ O(J, Q−1s) ⇐⇒ t ∈ O(A, s), and whether t ∈ O(A, s) is an instance
of the Orbit Problem and can be decided in polynomial time.1 Finally, it remains to check
whether ti ∈ ∆(Ji, si) for each block Ji, which can be done easily given the simplicity of
∆(Ji, si). ◀

We end the section with an application of Theorem 7(1). A set S is pseudo-reachable
from s under A if for every ϵ > 0, there exists a point xϵ ∈ S that is ϵ-pseudo-reachable from
s under A. An algebraic set is the set of zeros of a collection of polynomials. A semialgebraic

1 Technically, [12] consider the orbit problem for rational inputs and we require the orbit problem where
the input can contain algebraic numbers. However, a polynomial time algorithm is still possible.
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set is a union of algebraic sets and projections of algebraic sets. We show (in Appendix B.2)
that we can decide if a bounded semialgebraic set is pseudo-reachable, by reducing the
problem to the pseudo-orbit problem.

▶ Theorem 18. Given A ∈ Qm×m, x0 ∈ Qm, and a bounded semialgebraic set S, it is
decidable if S is pseudo-reachable from x0 under A.

4 Hyperplane pseudo-reachability is decidable

In this section, we prove Theorem 7(2). First we consider the case where we are given:
a hyperplane H = {x ∈ Rm : c⊤x = v} with (c, v) ∈ (R ∩ Q)m × (R ∩ Q),
J = diag(J1, . . . , Jz) ∈ (R ∩ Q)m×m in real Jordan normal form, and
a starting point x0 ∈ (R ∩ Q)m.

We show how to decide if for every ϵ > 0 there exists an ϵ-pseudo-orbit (xi)i∈N of x0 under
J that hits the hyperplane H, i.e. c⊤xN − v = 0 for some N ∈ N.

A block Ji is relevant with respect to hyperplane H = {x : c⊤x = v} if the coefficients of
c at the coordinates corresponding to Ji are not all 0. Intuitively, dimensions corresponding
to blocks that are not relevant can simply be omitted from the analysis as they do not play
a role in determining whether a point is in H or not. Relevant eigenvalues of J are the
eigenvalues of relevant blocks. The relevant spectral radius, written ρH(J), is the largest
modulus of all relevant eigenvalues. Our proof is based on a case analysis on the relevant
spectral radius of J . We shall see that the proof is simple when the relevant spectral radius
is ≤ 1 but requires more technical ideas when it is > 1.

▶ Lemma 19 (Case ρH(J) ≤ 1). Fix a matrix J in real Jordan normal form, a starting state
x0, and a hyperplane H = {x : c⊤x = v}.
1. If ρH(J) = 1, then H is pseudo-reachable.
2. If ρH(J) < 1 and 0 ∈ H then H is pseudo-reachable. If ρH(J) < 1 and 0 /∈ H, there

exists an effectively computable time bound N such that H is pseudo-reachable if and only
if there exists 0 ≤ i ≤ N such that J ix0 ∈ H (that is, H is reachable from x0 under J

after at most N steps).

Proof. First suppose ρH(J) = 1. We write J = diag(Jh, Jr), where ρH(Jh) = 1 and
ρH(Jr) < 1 (observe that wlog we can assume the blocks of J have non-decreasing spectral
radius when listed from top to bottom) and correspondingly set s = (sh, sr), c = (ch, cr).
Note that ch ̸= 0 by the relevance of at least one of eigenvalues of modulus 1.

By Lemma 10 we know 0 ∈ Õ(Jr, sr). By Lemma 13, we can select y such that c⊤
h y−v = 0

and y ∈ Õ(Jh, sh). Therefore, invoking Lemma 15, for every ϵ > 0 we can find N ∈ N and
construct ϵ-pseudo-orbits (xh

n)n∈N and (xr
n)n∈N such that xh

N = y and xr
N = 0, which implies

that for the ϵ-pseudo-orbit xn = (xh
n, xr

n), c⊤xN − v = c⊤
h y + c⊤

r 0 − v = 0 as desired.
Now suppose ρH(J) < 1.

Case 1: v = 0. Since 0 ∈ H and the origin is pseudo-reachable from x0 (Lemma 10), H is
pseudo-reachable.

Case 2: v ̸= 0. Using Lemma 11, and setting δ = |v|/(2 ∥c∥2), we can find ϵ > 0 and
horizon N ∈ N after which every ϵ-pseudo-orbit is trapped in B(0, δ). Thus, the hyperplane
cannot be pseudo-reached after time N , as the hyperplane does not intersect with B(0, δ). It
remains to check if the hyperplane is pseudo-reachable at any of the first N time-steps. In
fact, for a bounded time interval, a hyperplane is pseudo-reachable iff it is reachable. This is
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because the effect of finitely many disturbance terms (d0, . . . , dN−1) can be made arbitrarily
small for small enough ϵ. Therefore, decidability in this case only requires checking if the
bounded orbit (yn)0≤n≤N hits the hyperplane before the time horizon N , that is, if there
exists a time-step 0 ≤ n ≤ N such that c⊤yn − v = 0, which is clearly decidable. ◀

We now consider the case ρH(J) > 1. The main ideas of our proof are as follows:
1. A point xn in the ϵ-pseudo orbit belongs to the hyperplane (c, v) if c⊤xn − v = 0. In

particular, c⊤xn − v can be written as a sum over exponential polynomials in eigenvalues
of different sizes.

2. We factor out the scaling factor corresponding to the top eigenvalues, leaving a sum over
normalized eigenvalues, together with a sum over disturbances (of order ϵ) and additional
terms which go to zero with large n.

3. We relate hyperplane pseudo-reachability to the limit inferior of the sum over normalized
eigenvalues. If the limit is zero, we show the hyperplane is pseudo-reachable. If the
limit is positive, we show there is an effective bound N such that if the hyperplane is
pseudo-reachable, it is reachable within N steps.

4. We apply results from Diophantine approximation and the theory of reals to compute
the limit inferior of the sum over normalized eigenvalues.

Fix J = diag(J1, . . . , Jl) ∈ (R∩Q)m×m, a starting point x0 ∈ (R∩Q)m, and a hyperplane
H = {x ∈ Rm | c⊤x = v} with c, v ∈ (R ∩ Q)m. We assume without loss of generality that
all blocks are relevant.

Step 1: Analysing c⊤xn − v. Let L = ρH(J) > 1 be the largest modulus of a relevant
eigenvalue of J and suppose the blocks are arranged in non-increasing order of the modulus
of eigenvalues. In particular, let t ≤ l be such that the first t blocks (t for “top”) have
ρ(J1) = · · · = ρ(Jt) = L > 1. We call the eigenvalues of these blocks the top eigenvalues.
The remaining blocks satisfy L > ρ(Jt+1) ≥ · · · ≥ ρ(Jl).

Let (di)i∈N be a sequence of perturbations and (xi)i∈N the resulting pseudo-orbit. We
have that for all time steps n,

c⊤xn − v = c⊤

(
Jnx0 +

n−1∑
k=0

Jkdn−k−1

)
− v =

l∑
i=1

(
ciJn

i xi
0 + ci

n−1∑
k=0

Jk
i di

n−k−1

)
− v,

where for all 1 ≤ i ≤ l, ci, xi
n di

n are projections of c⊤, xn and dn, respectively, onto the
coordinates governed by Ji. Observe that ci is a row vector for every i.

Step 2: Normalized sum. We define a normalized version of this sum by factoring out Ln

(the size of the top eigenvalues) and nD, where we define D in such a way that we normalize
polynomials in n that appear in the sum. Observe that for 1 ≤ i ≤ t (the top eigenvalues),

ciJn
i =


[
pi

1(n)λn + pi
1(n)λn · · · pi

2κ(i)(n)λn + pi
2κ(i)(n)λn

]
if Ji has eigenvalues λ, λ[

pi
1(n)ρn · · · pi

κ(i)(n)ρn
]

if Ji has a single eigenvalue ρ

for polynomials pi
1, . . . , pi

κ(i) (with algebraic coefficients) where κ(i) is the multiplicity of the
block Ji.

We define D to be the largest number such that the monomial nD appears with a non-zero
coefficient in at least one of ciJn

i for 1 ≤ i ≤ t. (Note that if all entries of c are non-zero
D + 1 is equal to the largest multiplicity of a top eigenvalue block of J , as can be seen from
the description of powers of a Jordan block in Section 2.)
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We can now define

f(n) := c⊤ · xn − v

LnnD
=

l∑
i=1

(
ci Jn

i

LnnD
xi

0 + ci
n−1∑
k=0

Jk
i

LnnD
di

n−k−1

)
− v

LnnD

For notational convenience we define vector-valued functions gi(n) := ci Jn
i

LnnD for 1 ≤ i ≤ l.
The following technical lemma summarizes the relevant properties of these scaled terms.

▶ Lemma 20 (Normalization Lemma).
1. For 1 ≤ i ≤ t (top eigenvalues),

∥∥gi(n)
∥∥

∞ = O(1) (with respect to n).
2. For t + 1 ≤ i ≤ l (non-top eigenvalues), limn→∞

∥∥gi(n)
∥∥

∞ = 0.
3. There exists 1 ≤ j ≤ t and effectively computable N ∈ N and C > 0 such that n > N =⇒∥∥gj(n)

∥∥
∞ > C.

Proof. We address each point individually.

1: For 1 ≤ i ≤ t let Ji have eigenvalues λ and λ (the case where Ji has a single real
eigenvalue is similar but simpler) and observe that

gi(n) =
[

pi
1(n)
nD

(
λ
L

)n + pi
1(n)
nD

(
λ
L

)n

· · · pi
2κ(i)(n)

nD

(
λ
L

)n +
pi

2κ(i)(n)
nD

(
λ
L

)n
]

.

By the definition of top eigenvalues, |λ| = L and thus λ
L and λ

L have modulus 1. By
construction of nD, the polynomials pi

1(n), . . . , pi
2κ(i) all have degree at most D and hence

the terms pi
1(n)
nD , . . . ,

pi
2κ(i)(n)

nD are bounded from above by a constant.

2: For t + 1 ≤ i ≤ l let Ji have eigenvalues λ and λ and observe that

gi(n) =
[

pi
1(n)
nD

(
λ
L

)n + pi
1(n)
nD

(
λ
L

)n

· · · pi
κ(i)(n)

nD

(
λ
L

)n +
pi

κ(i)(n)
nD

(
λ
L

)n
]

.

By construction |λ| < L and thus γ := λ
L and γ have moduli |γ|, |γ| < 1. The polynomials

pi
1(n), . . . , pi

2κ(i)(n) may not be asymptotically bounded by nD (since nD was constructed
only considering top eigenvalues). However, it is clear that the exponentially vanishing

(
λ
L

)n

and
(

λ
L

)n

will dominate the polynomials and all entries of gi(n) will thus vanish.

3: Observe that by construction of nD, there must exist a top eigenvalue block Jj (1 ≤ j ≤ t)
for which at least one polynomial in cjJn

j has degree D. Let r > D be the multiplicity of
the block Jj , which has the form of a real Jordan matrix with a single block (Eq. (3)) with
sub-blocks Λ. One can write

cjJn
j =

[
cj

r cj
r−1 · · · cj

0

]


Λn nΛn−1 (
n
2
)
Λn−1 · · ·

(
n

r−1
)
Λn−r+1

0 Λn nΛn−1 · · ·
(

n
r−2
)
Λn−r+2

...
...

...
. . .

...
0 0 0 · · · nΛn−1

0 0 0 · · · Λn

 , (6)

where cj
k for 1 ≤ k ≤ r corresponds to a row vector of size two or one, respectively, when Λ

is a 2 × 2 or 1 × 1 matrix. Analyzing this product, we see that cj
r, . . . , cj

D+1 = 0, cj
D ̸= 0 and

the single entry of cjJn
j whose polynomial component has degree D is exactly cj

D

(
n
D

)
Λn−D.
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We define Λ̂ := Λ/L. Note that
∥∥∥Λ̂
∥∥∥

2
= 1. Now observe that for this block Jj , we have

gj(n) = 1
LnnD

cjJn
i = cj

D

1
D! Λ̂

n + 1
n

(O(1)).

Therefore, there exists sufficiently large N such that for all n ∈ N,

n > N =⇒
∥∥∥∥ 1

LnnD
cjJn

j

∥∥∥∥
∞

>
1
2

∥∥∥∥cj
D

1
D! Λ̂

n

∥∥∥∥
∞

>

∥∥∥cj
D

∥∥∥
2

4D! .

Thus we have shown Point 3 with C = ∥cj
D∥2

4D! . ◀

Step 3: Conditions for reachability and non-reachability. Now we are ready to attack
our original problem. Going back, H is ϵ-pseudo-reachable if and only if f(n) = 0 for some
disturbance sequence (di)i∈N with di ∈ [−ϵ, ϵ]m for all i. We analyze how f(n) can be brought
to 0 in this way.

▶ Lemma 21. Let

D = lim inf
n→∞

∣∣∣∣∣
t∑

i=1
gi(n)xi

0

∣∣∣∣∣ . (7)

If D = 0, then H is pseudo-reachable. If D > 0, there exists a computable time bound N

such that H is pseudo-reachable if and only if it is reachable (in the standard sense) within
the first N steps.

Proof. Suppose D = 0. Take an arbitrary ϵ > 0. We argue that H is ϵ-pseudo-reachable.
Recall that

f(n) =
l∑

i=1

(
ci Jn

i

LnnD
xi

0 + ci
n−1∑
k=0

Jk
i

LnnD
di

n−k−1

)
− v

LnnD

=
l∑

i=1

(
gi(n)xi

0 + ci
n−1∑
k=0

Jk
i

LnnD
di

n−k−1

)
− v

LnnD
.

Let I be such that
∥∥gI(n)

∥∥
∞ > C, for C > 0 and sufficiently large n (Point 3 of the

Normalization Lemma). We construct a pseudo-orbit with all perturbations set to zero
except di

0 and obtain

f(n) = cI Jn−1
I

LnnD
dI

0 +
t∑

i=1
gi(n)xi

0 +
l∑

i=t+1
ci Jn

i

LnnD
xi

0 − v

LnnD
.

Intuitively, we will use the term cI Jn−1
I

LnnD dI
0 to cancel out the remaining summands above,

but we have to argue that this can be done using a disturbance of size at most ϵ. Moreover,
observe that cI Jn−1

I

LnnD is very close to gI(n). Formally, we first find N large enough such that∥∥gI(N)
∥∥

∞ > C,∥∥∥∑l
i=t+1 ci JN

i

LN ND xi
0 − v

LN ND

∥∥∥
∞

< C2

∥Ji∥∞

ϵ
2 (possible because for t + 1 ≤ i ≤ l, ρ(Ji) < 1

and L > 1), and∥∥∥∑t
i=1 gi(N)xi

0

∥∥∥
∞

< C2

∥Ji∥∞

ϵ
2 (possible because lim infn→∞

∥∥∥∑t
i=1 gi(n)xi

n

∥∥∥ = 0).
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Finally, we determine the value of di
0. Without loss of generality, assume that gI(N) is of

the form
[
C ′ · · ·

]
where |C ′| > C, that is the first entry of gI(N) is large. We then observe

that cI JN−1
I

LN ND dI
0 = gI(N)J−1

I dI
0 and set

dI
0 = JI ·

[
− 1

C′

(∑t
i=1 gi(N)xi

0 +
∑l

i=t+1 ci JN
i

LN ND xi
0 − v

LN ND

)
0 0 · · · 0

]⊤

to obtain

cI JN−1
I

LN ND
dI

0 = −

(
t∑

i=1
gi(N)xi

0 +
l∑

i=t+1
ci JN

i

LN ND
xi

0 − v

LN ND

)

and hence f(N) = 0.
Now suppose D > 0. Recall

f(n) =
l∑

i=1

(
gi(n)xi

0 + ci
n−1∑
k=0

Jk
i

LnnD
di

n−k−1

)
− v

LnnD

=
t∑

i=1
gi(n)xi

0 +
l∑

i=t+1
ci Jn

i

LnnD
xi

0 +
l∑

i=1
ci

n−1∑
k=0

Jk
i

LnnD
di

n−k−1 − v

LnnD
.

In this case we shall construct a time bound N after which for all sufficiently small value of
ϵ, the term

∑t
i=1 gi(n)xi

0 will dominate the other summands. Let 2∆ > 0 be a lower bound
on lim infn→∞ |

∑t
i=1 gi(n)xi

0| > 0. We shall see how to obtain such a bound effectively later
(Lemma 22). We compute N with the following properties.

For all n > N ,
∣∣∣∑t

i=1 gi(n)xi
0

∣∣∣ > ∆. Possible because lim infn→∞

∣∣∣∑t
i=1 gi(n)xi

n

∣∣∣ > 2∆.

For all n > N ,
∣∣∣∑l

i=t+1 ci Jn
i

Lnnd xi
0

∣∣∣ , ∣∣ v
Lnnd

∣∣ ≪ ∆. The former is possible because for
t + 1 ≤ i ≤ l, ρ(Ji) < L.
For sufficiently small ϵ, for all n > N ,

∣∣∣ci
∑n−1

k=0
Jk

i

Lnnd di
n−k−1

∣∣∣ ≪ ∆ for 1 ≤ i ≤ l. To see
that this is always possible, observe that∣∣∣∣∣ci
n−1∑
k=0

Jk
i

Lnnd
di

n−k−1

∣∣∣∣∣ ≤
n−1∑
k=0

∥∥∥∥ci Jk
i

Lnnd

∥∥∥∥
∞

Mϵ (where fixed M bounds the matrix dimension)

and

lim
n→∞

n∑
k=0

∥∥∥∥ci Jk
i

Lnnd

∥∥∥∥
∞

≤ lim
n→∞

n∑
k=0

∥∥∥∥ci 1
Ln−k

Jk
i

Lkkd

∥∥∥∥
∞

= lim
n→∞

n∑
k=0

∥∥∥∥ 1
Ln−k

gi(k)
∥∥∥∥

∞
.

Recalling Point 1 of the Normalization Lemma,
∥∥gi(n)

∥∥
∞ = O(1) and hence

lim
n→∞

n∑
k=0

∥∥∥∥ 1
Ln−k

gi(k)
∥∥∥∥

∞
= O(1),

by bounding the sum
∑n

k=0
∥∥ 1

Ln−k gi(k)
∥∥

∞ from above by a geometric sequence. Therefore,∑n−1
k=0

∥∥∥ci Jk
i

Lnnd

∥∥∥
∞

Mϵ can be made ≪ ∆ by choosing ϵ to be sufficiently small.
Once we have chosen N , by the properties above we will have that for all n > N , for
sufficiently small ϵ,

|f(n)| ≥

∣∣∣∣∣
t∑

i=1
gi(n)xi

0

∣∣∣∣∣−

∣∣∣∣∣
l∑

i=t+1
ci Jn

i

Lnnd
xi

0 +
l∑

i=1
ci

n−1∑
k=0

Jk
i

Lnnd
di

n−k−1 − v

Lnnd

∣∣∣∣∣ > 0.
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Therefore, H is pseudo-reachable if and only if for every ϵ > 0, H is ϵ-pseudo-reachable
within the first N steps. By Lemma 16, this is the case if and only if H is reachable within
the first N steps. ◀

Step 4: Analyzing lim infn→∞ |
∑t

i=1 gi(n)xi
0|. Consider a single term gi(n)xi

0. Writing
xi

0 =
[
X0 X1 · · · Xz

]⊤, where X1, . . . , Xz ∈ R, we have

gi(n)xi
0 =

z∑
r=1

(
pi

r(n)
nD

(
λ

L

)n

+ pi
r(n)
nD

(
λ

L

)n
)

Xz.

Let γi = λ
L . Note that |γi| = 1. By the construction of nD, none of the polynomials have a

term of degree higher than D. Therefore, we can absorb the constants Xr and the monomial
nD into the polynomials, sum the terms up, and write them as polynomials in 1

n . That is,

gi(n)xi
0 = qi(1/n)γn

i + qi(1/n)γi
n

for suitable polynomials qi with algebraic coefficients. Thus

lim inf
n→∞

∣∣∣∣∣
t∑

i=1
gi(n)xi

n

∣∣∣∣∣ = lim inf
n→∞

∣∣∣∣∣
t∑

i=1
qi(1/n)γn

i + qi(1/n)γi
n

∣∣∣∣∣
We defer the proof of the following lemma, which requires tools from Diophantine analysis
and the theory of reals, to the next section.

▶ Lemma 22. Let γ1, . . . , γt be algebraic numbers with modulus 1. Let q1, . . . , qt be polyno-
mials with algebraic coefficients. The quantity

lim inf
n→∞

∣∣∣∣∣
t∑

i=1
qi(1/n)γn

i + qi(1/n)γi
n

∣∣∣∣∣
can be effectively computed. If it is greater than zero, there is an effectively computable N

satisfying the requirement of Lemma 21.

Proof of Theorem 7 (2). We are now ready to aggregate our case analysis into the proof
the pseudo-reachability in hyperplanes is decidable. Given A ∈ Qm×m, x0 ∈ Qm and
H = {x : c⊤ · x = 0}, we first convert A to real Jordan normal form as described in
Section 2 to obtain J = Q−1AQ. We then perform a coordinate transform on x0 and H to
obtain H ′ = {x : c⊤Qx = 0} and x′

0 = Q−1x0. The original problem is now equivalent to
pseudo-reachability of H ′ from x′

0 under J .
Next, we remove dimensions from x′

0, c⊤Q and J that do not correspond to relevant
blocks and determine the relevant spectral radius ρH(J) of J . If ρH(J) = 1 then H ′ is
reachable by Lemma 19(1). If ρH(J) < 1, then by Lemma 19(2), H ′ is pseudo-reachable if
and only if 0 ∈ H ′ or x′

0, Jx′
0, . . . , JN x′

0 hits H ′, where N is the computable bound in the
Lemma.

Finally, we consider the case where ρH(J) > 1. Let J1, . . . , Jt be the blocks of J with
ρ(J) = ρH(J) and c1, . . . , ct, x1

0, . . . , xt
0 be the corresponding coordinates of c⊤Q and x′

0,
respectively. Finally, compute the value of lim infn→∞

∣∣∣∑t
i=1 gi(n)xi

n

∣∣∣ using Lemma 22 and
use Lemma 21 to either immediately conclude reachability or to compute the bound N and
determine reachability by checking if x′

0, Jx′
0, . . . , JN x′

0 hits H ′.
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5 Proof of Lemma 22

We now prove a generalization of Lemma 22. Let λ1, . . . , λm be algebraic numbers of modulus
1 and let p1, . . . , pm be polynomials with algebraic coefficients. Let n range over the natural
numbers. We show how to effectively determine the value of lim infn→∞ |

∑m
j=1 pj(1/n)λn

j |.
Moreover, if the value is strictly greater than 0, we show we can find an explicit bound ∆
and N ∈ N such that for all n > N , we have |

∑m
j=1 pj(1/n)λn

j | > ∆. Lemma 22 follows as a
special case.

We require some technical machinery from the theory of Diophantine approximations.
We need the following theorem of Masser [13]. A proof can be found in [5] or [9].

▶ Theorem 23 ([13]). Let m ∈ N be fixed and let λ1, . . . , λm be complex algebraic numbers
each of modulus 1. Consider the free Abelian group

L = {(v1, . . . , vm) ∈ Zm : λv1
1 λv2

2 . . . λvm
m = 1}.

L has a basis {ℓ⃗1, . . . , ℓ⃗p} ⊆ Zm (with p ≤ m), where the entries of each of the ℓ⃗j are all
polynomially bounded in the total description length of λ1, . . . , λm. Moreover, such a basis
can be can also computed in time polynomial in the total description length.

Let L be as described in Theorem 23 above and suppose we have computed a basis
{ℓ⃗1, . . . , ℓ⃗p} ⊆ Zm. For each j ∈ {1, . . . , p}, let ℓ⃗j = (ℓj,1, . . . , ℓj,m). Now we define a set

T := {(z1, . . . , zm) ∈ Cm : |z1| = · · · = |zm| = 1 and

for each j ∈ {1, . . . , p}, z
ℓj,1
1 . . . zℓj,m

m = 1} (8)

Notice that |z| = 1 ⇐⇒ Re(z)2 + Im(z)2 − 1 = 0, and the ℓj,k are fixed integers, and
thus the conditions above can be written as polynomials in the real and imaginary parts of z.
Thus T is an algebraic set.

We now state a version of Kronecker’s theorem on simultaneous Diophantine approxima-
tion. A derivation of this version of the theorem from the standard version ([10] Chap 23)
can be found in [15].

▶ Theorem 24 (Kronecker’s theorem, density version). Let T be defined from λ1, . . . , λm as
in (8). Then {(λn

1 , . . . , λn
m) : n ∈ N} is a dense subset of T .

Theorem 24 enables us to compute the lim inf by minimizing a function over a compact
algebraic set:

▶ Theorem 25. Let λ1, . . . , λm be complex numbers of modulus 1. Let p1, . . . , pm be
polynomials (with algebraic coefficients) with constant terms c1, . . . , cm respectively. Let
z = (z1, . . . , zm) and c = (c1, . . . , cm). We have that

lim inf
n→∞

∣∣∣∣∣∣
m∑

j=1
pj(1/n)λn

j

∣∣∣∣∣∣ = lim inf
n→∞

∣∣∣∣∣∣
m∑

j=1
cjλn

j

∣∣∣∣∣∣ = inf
z∈T

|c⊤ · z| = min
z∈T

|c⊤ · z|,

where T is the algebraic set computed in (8) as the closure of {(λn
1 , . . . , λn

m) : n ∈ N}.

To prove the theorem, we need the following lemma that shows that we can replace the
polynomials by their constant terms.



J. D’Costa et al. 34:17

▶ Lemma 26. Let λ1, . . . , λm be complex numbers of modulus 1. Let p1, . . . , pm be polynomials
(with algebraic coefficients) with constant terms c1, . . . , cm respectively. Then

lim inf
n→∞

∣∣∣∣∣∣
m∑

j=1
pj(1/n)λn

j

∣∣∣∣∣∣ = lim inf
n→∞

∣∣∣∣∣∣
m∑

j=1
cjλn

j

∣∣∣∣∣∣ .
Proof. (of Theorem 25). The first equality follows from Lemma 26 and the second follows
from Theorem 24. The third equality holds because the function z 7→ |c⊤ · z| is continuous
and T is compact. ◀

Now, since T is an algebraic set, the minimum minz∈T |c⊤ · z| can be expressed in the
theory of reals with addition and multiplication (omitting the encoding of absolute values):

∃z ∈ T.v = |c⊤ · z| ∧ ∀z′ ∈ T.v ≤ |c⊤ · z′|

Therefore, by Tarski’s theorem [18, 2, 7], we can characterize the unique v that attains the
minimum.

Suppose the minimum v is some number B > 0. In this case, we require a bound ∆ ∈ R
and N ∈ N such that |

∑m
j=1 pj(1/n)λn

j | > B for all n > N . By emulating the proof of
Lemma 26, we can find a bound N such that for all n > N , we have |

∑m
j=1 pj(1/n)λn

j | > B/2.
The required bounds are ∆ = B/2 and this N .

This concludes the proof of Lemma 22 and therefore also Theorem 7.
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A Proof of Proposition 8

We want to show

Q Õγ2(B, Q−1x) ⊆ Õϵ(A, x) ⊆ Q Õγ1(B, Q−1x), (9)

where γ1 = ϵ
∥∥Q−1

∥∥
∞ and γ2 = ϵ/ ∥Q∥∞.

Take any y ∈ Õϵ(A, x). We show that Q−1y ∈ Õγ1(B, Q−1x) to get the right-hand
side of (9). Since y ∈ Õϵ(A, x), there is a state trajectory (x0, x1, . . .) and a sequence
(d0, d1, . . .) such that x0 = x, xn+1 = Axn + dn, dn ∈ [−ϵ, ϵ]m for all n ∈ N, and y appears
in the state trajectory. We construct a new state trajectory (y0, y1, . . .) and the sequence
(d̄0, d̄1, . . .) with the transformation xn = Qyn and dn = Qd̄n. Then we have yn+1 =
Q−1AQyn + Q−1dn = Byn + d̄n. Note that

∥∥d̄n

∥∥
∞ =

∥∥Q−1dn

∥∥
∞ ≤

∥∥Q−1
∥∥

∞ ∥dn∥∞ ≤ γ1.
Since y appears in the state trajectory (x0, x1, . . .), Q−1y appears in the state trajectory
(y0, y1, . . .) with y0 = Q−1x0 = Q−1x. Therefore, Q−1y ∈ Õγ1(B, Q−1x) which results in
y ∈ QÕγ1(B, Q−1x).

To prove the left-hand side of (9), We invoke the right-hand side by replacing (A, B, Q, x, ϵ)
with (B, A, Q−1, Q−1x, γ2). This gives Õγ2(B, Q−1x) ⊆ Q−1 Õγ′

1
(A, x) with γ′

1 = γ2 ∥Q∥∞.
Setting γ′

1 = ϵ proves the left-hand side of (9).
To prove that Õ(A, x) = QÕ(B, Q−1x), we take intersection of all the sides in (9) over

ϵ > 0:⋂
ϵ>0

Q Õγ2(B, Q−1x) ⊆
⋂
ϵ>0

Õϵ(A, x) ⊆
⋂
ϵ>0

Q Õγ1(B, Q−1x).

Due to the linear relation between γ1 and γ2 with ϵ, we get

Q Õ(B, Q−1x) ⊆ Õ(A, x) ⊆ Q Õ(B, Q−1x) ⇒ Õ(A, x) = Q Õ(B, Q−1x).
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B Proofs from Section 3

B.1 Proof of Lemma 9
Any t ∈ Õϵ(A, s) is of the form t = Ans +

∑n−1
i=0 Aidn−i−1 for some n ∈ N and some di

with ∥di∥∞ ≤ ϵ. This means s = A−nt +
∑n−1

i=0 A−id′
n−i−1 with d′

n−1−i = A−1di. Since∥∥d′
n−1−i

∥∥
∞ ≤

∥∥A−1
∥∥

∞ ϵ, we get s ∈ Õγ(A−1, t). To get (4), notice that

t ∈ Õ(A, s) ⇒ t ∈
⋂
ϵ>0

Õϵ(A, s) ⇒ s ∈
⋂
γ>0

Õγ(A−1, t) ⇒ s ∈ Õ(A−1, t).

Applying the same argument to the matrix A−1 will give the other side of (4).

B.2 Proof of Theorem 18
We show that S is pseudo-reachable from x0 under A if and only if there exists x ∈ S that is
pseudo-reachable from x0 under A, allowing us to restrict our attention to compact sets and
the existence of a pseudo-reachable point in a set as opposed to pseudo-reachability of the set
as a whole. Deciding pseudo-reachability then reduces to checking whether S ∩ Õ(J, x0) = ∅,
which can be computed using Lemma 17.

Suppose S is pseudo-reachable. Let (ϵi)i∈N be a sequence of positive numbers with
limϵ→0 = 0, and (xi)i∈N be a sequence of elements of S such that xi is ϵi-pseudo-reachable
for all i ≥ 0. By the Bolzano–Weierstrass theorem, boundedness of S implies that (xi)i∈N
must have a limit point x in S. To argue that x is pseudo-reachable, let ϵ > 0. Since x

is the limit point of (xi)i∈N, there must exist an ϵ
2 -pseudo-orbit (yi)i∈N containing a point

yN such that ∥x − yN ∥∞ < ϵ
2 . Therefore, x is ϵ-pseudo-reachable from s via the sequence

s, y1, . . . , yN−1, x.
Now suppose x ∈ S is pseudo-reachable. To argue that S is pseudo-reachable, let

ϵ > 0. Since x ∈ S, there must exist a point x′ ∈ S such that ∥x′ − x∥∞ < ϵ
2 . Since x is

ϵ
2 -pseudo-reachable, x′ must be ϵ-pseudo-reachable.

C Proof of Lemma 26

We can write pj(1/n) as cj +
∑dj

i=1 c(j,i)
1

ni , where cj is the constant term, c(j,i) are the other
coefficients, and dj is the degree. Define Ai =

∑dj

i=1 |c(j,i)| and observe that

|pj(1/n) − cj | < |
dj∑

i=1
c(j,i)

1
ni

| <

∑dj

i=1 |c(j,i)|
n

= Aj

n

Thus for any ϵ, setting Nj(ϵ) = ⌈Aj/ϵ⌉ ensures that

n > Nj(ϵ) =⇒ |pj(1/n) − cj | < ϵ.

Define N(ϵ) = maxj∈{1,...,m} Nj(ϵ/m).

▷ Claim 27. Let Sn be defined as |
∑m

j=1 cjλn
j |. For all ϵ > 0,

Sn − ϵ ≤ |
m∑

j=1
pj(1/n)λn

j | ≤ Sn + ϵ

Taking the limit inferior of each term gives us the desired result.
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Proof of Claim 27. We write

|
m∑

j=1
pj(1/n)λn

j | = |
m∑

j=1
(cj + pj(1/n) − cj)λn

j |,

which gives us

Sn − |
m∑

j=1
(pj(1/n) − cj)λn

j | ≤ |
m∑

j=1
pj(1/n)λn

j | ≤ Sn + |
m∑

j=1
(pj(1/n) − cj)λn

j |

and thus

Sn −
m∑

j=1
|(pj(1/n) − cj)λn

j | ≤ |
m∑

j=1
pj(1/n)λn

j | ≤ Sn +
m∑

j=1
|(pj(1/n) − cj)λn

j |,

by elementary properties of sums of absolute values. Observing that λjs have absolute value
1, we can reduce the proposition above to

Sn −
m∑

j=1
|(pj(1/n) − cj)| ≤ |

m∑
j=1

pj(1/n)λn
j | ≤ Sn +

m∑
j=1

|(pj(1/n) − cj)|.

Now setting n > N(ϵ) = maxj∈{1,...,m} Nj(ϵ/m)}, we have |(pj(1/n) − cj)| < ϵ/m for all
j, which gives us

Sn − ϵ ≤

∣∣∣∣∣∣
m∑

j=1
pj(1/n)λn

j

∣∣∣∣∣∣ ≤ Sn + ϵ ◁

D Computing real JNF in polynomial time

We discuss how to compute the the real Jordan normal form of A in polynomial time. First
compute, in polynomial time, the (complex) Jordan normal form J ′ and matrices T, T −1

such that A = TJ ′T −1 using the algorithm from [4].

Computing J . Suppose, without loss of generality, that

J ′ = diag(J ′
1, J ′

2, . . . , J ′
2k−1, J ′

2k, J ′
2k+1, . . . , J ′

2k+z)

where for 1 ≤ j ≤ k, the Jordan blocks J2j−1 and J2j have the same dimension and have
conjugate eigenvalues λj = aj +bji and λ = aj −bji, respectively. The blocks J ′

2k+1, . . . , J ′
2k+z,

on the other hand, have real eigenvalues. J is obtained by replacing, for each 1 ≤ j ≤ k,

diag(J ′
2j−1, J ′

2j) with a real Jordan block of the same dimension with Λ =
[
a −b

b a

]
and

keeping the blocks J ′
2k+1, . . . , J ′

2k+z unchanged.

Computing P . Let κ(j) denote the multiplicity of the Jordan block J ′
i for 1 ≤ i ≤ 2k + z,

and v1
1 , . . . , v1

κ(1), . . . , v2k
1 , . . . , v2k

κ(2k), . . . , v2k+z
1 , . . . , v2k+z

κ(2k+z) ∈ Qm be the columns of T . It

will be the case that for all 1 ≤ j ≤ k and l, v2j−1
l = v2j

l in the sense that v2j−1
l = xj

l + yj
l i

and v2j
l = xj

l −yj
l i for vectors xj

l , yj
l ∈ Rm. Moreover, for j > 2k, v2j

l ∈ Rm. Finally, columns
of P are obtained from columns of T as follows. For 1 ≤ j ≤ k and all l, replace v2j−1

l with
xj

l and v2j
l with yj

l and keep v2k+z
l for all l and m > 0 unchanged, in the same way the proof

of existence of real Jordan normal form proceeds.
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Computing P −1. Summarizing the construction above, P is obtained from T by replacing
columns x+yi and x−yi, x, y ∈ Rm by x and y, respectively. Since x = 1

2 (x+yi)+ 1
2 (x−yi)

and y = − 1
2 i(x + yi) + 1

2 i(x − yi), this construction is linear and we can write P = T · · · A for
some A ∈ Cm×m with entries in { 1

2 , − 1
2 , 1

2 i, − 1
2 i, 1, 0}. Moreover, the linear transformation

is clearly invertible: x + yi = 1 · x + iy and x − yi = 1 · x − (−i)y, and hence A−1 ∈ Cm×m

with entries in {1, i, −i}. Finally, compute P −1 via P = TA =⇒ P −1 = A−1T −1, observing
that we already know how to compute T −1 in polynomial time.
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1 Introduction

Implicit computational complexity aims at introducing and studying characterizations of
complexity classes by recursion theory, proof theory, and programming language tools. This
has allowed to shed some light on the impact of programming and recursion schemes to
resource consumption. As an example, nested recursion on notation is known to be harmful
to time complexity, and thus needs to be appropriately controlled if one wants to stay within
the realm of polynomial time computable functions, as shown by Bellantoni-Cook and Leivant
in their works on safe and tiered recursion [2, 9].

If one wants to go beyond polynomial time, a way of enriching recursion schemes without
breaking the correspondence with (relatively small) complexity classes is the use of recursion
schemes based on pointers [3], which leads to characterizations of NP and FPSPACE (the
class of functions corresponding to PSPACE), [14, 13].

One family of complexity classes between polytime and polyspace which has so far escaped
any implicit treatment are the probabilistic ones. Our goal in this paper is precisely the one
of exploring the potential of pointers in recursion-theoretic contexts as a tool to characterize
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probabilistic classes of computational complexity. In this work we study PP, the class of
decision problems solvable by probabilistic Turing machines in polynomial time with an error
probability of less than 1

2 for all instances. The class PP was originally defined by Gill in [6].
It is well-known that PP contains NP and that it is contained in PSPACE; it is open whether
these inclusions are proper or not.

Our strategy consists in extending the existing recursion scheme for NP going towards
the one for FPSPACE, but without going too far. Surprisingly, this is possible despite the
inherently quantitative nature of PP’s acceptance criterion. This way, we obtain the first
purely recursion-theoretic characterization of the probabilistic class PP.

This characterization is described in two stages, STP and STPP, where STP characterizes
the class of functions computable in polynomial time by deterministic Turing machines,
FPTIME – see [2]. STPP results then from “strengthening” STP with a scheme designed
to characterize the decision problems of PP. That scheme is the tree-recursion scheme of
FPSPACE [13], but with a fixed step function. Therefore, the characterization of the class
PP given here is aligned with the existing recursion-theoretic characterizations of FPTIME
and FPSPACE.

2 Algebras, Functions, and Complexity Classes

In this section, we introduce some preliminary concepts that will accompany us in the rest of
the paper. In particular, we will show how binary strings and functions over them allow us
to capture standard, deterministic classes like FPTIME and FPSPACE.

2.1 Algebras and Recursion Schemes

Let us consider the word algebra W, i.e. the algebra generated by one nullary and two
unary constructors, respectively indicated as ϵ, S0 and S1. The algebra W can naturally be
interpreted over the set {0, 1}∗ of all binary words. We abbreviate S0x and S1x as x0 and
x1, respectively. We consider a predecessor symbol P of arity 1, and a conditional function
symbol C of arity 4. They are defined as follows: P(ϵ) = ϵ, P(xi) = x and C(ϵ, x, y0, y1) = x,
C(zi, x, y0, y1) = yi, i ∈ {0, 1}.

Recursion schemes on the algebra W can be built in two different ways:
1. First of all, one can proceed by recursion on notation, namely by building a function f

out of g and h by stipulating that f(ϵ, x̄) = g(ϵ, x̄) and f(zi, x̄) = h(zi, x̄, f(z, x̄)), where
i ∈ {0, 1};

2. Secondly, one can also build f through tree-recursion with pointers from g and h, namely
by f(p, ϵ, x̄) = g(p, ϵ, x̄) and f(p, zi, x̄) = h(p, zi, x̄, f(p0, z, x̄), f(p1, z, x̄)), i ∈ {0, 1}.

In both the recursion schemes above, g is designated as the base function and h as the
step function. In tree-recursion, the first input of f is called the pointer. Noticeably, the
characterization of PP presented here results from considering the scheme (2) with a fixed
step function. Informally, the step function that we fix is a FPTIME function corresponding
to binary addition (we add the number of accepting configurations), but with some nuances
in order to capture the probabilistic class PP.

Above and along the paper, x̄ abbreviates x1, · · · , xn for some natural number n. Moreover,
|x̄| = (|x1|, · · · , |xn|) where, for 1 ≤ k ≤ n, |xk| denotes the length of xk, i.e. the number of
S0 and S1 in xk. We extend these notations to function symbols.
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2.2 Capturing Polynomial Time and Space: STP and STFPSPACE

If either recursion on notation or tree recursion are applied without any restriction, there is
no hope to capture interesting complexity classes: in either case we end up capturing the
whole class of primitive recursion. From now on, then, we adopt the framework introduced by
Bellantoni-Cook [2], which has proved to be quite useful in appropriately restricting function
algebras so as to capture small complexity classes. In particular, function terms have two
sorts of input positions, dubbed normal and safe. As is customary, we write normal and
safe input positions by this order, separated by semicolon, e.g. in the expression f(x̄; ȳ), the
parameters in x̄ are normal while those in ȳ are safe.

We are now in a position to define the three closure operators which we will employ in
the following, and which will be

▶ Definition 1 (Closure Operators). Let g, h, r̄ and s̄ be sorted functions. The following are
three ways of building a new sorted function term out of (some of) them.

Sorted Composition, SC, by which we can build the sorted function f such that

f(x̄; ȳ) = h(r̄(x̄; ); s̄(x̄; ȳ))

Sorted Recursion on Notation, SR, which allows us to derive the sorted function f

by a recursion scheme:

f(ϵ, x̄; ȳ) = g(ϵ, x̄; ȳ)
f(z0, x̄; ȳ) = h(z0, x̄; ȳ, f(z, x̄; ȳ))
f(z1, x̄; ȳ) = h(z1, x̄; ȳ, f(z, x̄; ȳ)).

Sorted Tree-Recursion, STR, which derives the sorted function f , again by recursion

f(p, ϵ, x̄; ȳ) = g(p, ϵ, x̄; ȳ)
f(p, z0, x̄; ȳ) = h(p, z0, x̄; ȳ, f(p0, z, x̄; ȳ), f(p1, z, x̄; ȳ))
f(p, z1, x̄; ȳ) = h(p, z1, x̄; ȳ, f(p0, z, x̄; ȳ), f(p1, z, x̄; ȳ))

A few observations about the two recursion operators are helpful now. Please note that,
according to the semi-colon discipline, both the pointer p and the recursion variable z are in
normal input positions, while the results of recursive calls go into safe input positions. This,
in particular, prevents the results of recursive calls to be fed to a function itself defined by
recursion on that same variable, ultimately avoiding a blowup in size and complexity.

▶ Definition 2 (Function Algebras). Let I be the class of function terms including the
constructors of W (i.e. the functions ϵ, S0, S1), the predecessor P, the conditional C, and
the projection functions (over both input sorts).
1. STP is the closure of I under SC and SR;
2. STFPSPACE is the closure of I under SC and STR.

As known results one has that:

▶ Proposition 3.
1. STP characterizes FPTIME and STFPSPACE characterizes FPSPACE – see, respectively,

[2] and [13];
2. STP ⊆ STFPSPACE, as classes of input-sorted function terms.
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Notice that in this framework one can run a recursion over an output of a function which is
itself defined by recursion. There are some other properties concerning STP that we use in
the paper. We summarize them here for further reference – see [2] and [14], Remark 2.

▶ Remark 4.
1. Let f(x̄) be a polytime function. Then f(x̄; ) is in STP.
2. For any polynomial (with natural coefficients) q, there exists a term t ∈ STP such that

∀x̄ q(|x̄|) = |t(x̄; )|;
3. For any polytime function F there exist a function term f , in STP, and a monotone

polynomial qF such that ∀w̄∀y |y| ≥ qF (|w̄|) ⇒ F (w̄) = f(y; w̄).

3 The Algebra STPP

In this section, we define a function algebra STPP, based on STP and on the tree-recursion
scheme with pointers. The main idea behind STPP is to constrain STFPSPACE in such a way
that tree-recursion is restricted to a very specific step function. The next section is devoted
to introducing and motivating this function.

3.1 On the ⊞ Function
In the following, we will extensively work with the following FPTIME functions:

The unary function read which, on input w, returns 10 if the last bit of w is 1, and 0
otherwise;
Addition on binary words seen as natural numbers, indicated as +. It results from
considering the following

0 1 10 11 100 . . . (binary words)
↕ ↕ ↕ ↕ ↕
0 1 2 3 4 . . . (natural numbers)

and the usual addition over N, extending it to all binary words assuming that the empty
string ϵ and words starting with 0 all correspond to 0 ∈ N. For instance, +(10, 10) = 100,
while +(00, 10) = 10. We use infix notation for +;
The binary function ⊕ such that ⊕(w, v) is read(w)+read(v), for which we also use the infix
notation. As an example, 01⊕100⊕1 = read(01)+read(100)+read(1) = 10+0+10 = 100.
The function ⊕ only depends on the last bit of its two arguments. Notice that any finite
sum

∑
n read(wn) is always a binary word ending with 0, because for every such binary

word w it holds that read(w) is 0 or 10;
The binary function # defined as follows:

#(z, w) =
{

1 if w > 2|z|

0 otherwise,

where 2|z| is the binary representation of the natural number 2|z|, i.e., it holds that 2|ϵ| = 1
and that 2|zi| = S0(2|z|).

We reserve the symbol + for the binary addition as described above. Whenever needed, we
use +N to denote the usual addition over the natural numbers. The “greater than” relation
defined over binary words ordered by length and, within the same length, lexicographically
is indicated as >;
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Finally, let the function ⊞ be a polytime function satisfying the following equations
(where i ranges over {0, 1}):

⊞(ϵ, i, w0, w1) = #(i, w0 ⊕ w1),
⊞(p, i, w0, w1) = w0 ⊕ w1, if p ̸= ϵ

⊞(ϵ, zi, w0, w1) = #(zi, w0 + w1), if z ̸= ϵ,
⊞(p, zi, w0, w1) = w0 + w1, if p, z ̸= ϵ,

The conditions imposed now will become clear later. ⊞ is a polytime function. Therefore
Remark 4(1) ensures the existence of a term in STP – let us reuse the symbol ⊞ to denote it
– such that ⊞(p, z, w0, w1; ) = ⊞(p, z, w0, w1). The input-sorted function ⊞ ∈ STP is used as
step function in the tree-recursion scheme.

3.2 The Algebra STPP

It is now time to introduce the function algebra which constitutes the main contribution of
this paper, and which will be proved to characterize the class PP in the coming section.

▶ Definition 5. STPP is the closure of STP under SCP and TR[⊞], where
Restricted sorted composition, SCP, allows to build a sorted function f out of h and
r̄, s̄ ∈ STP as follows:

f(x̄; ȳ) = h(r̄(x̄; ); s̄(x̄; ȳ))

Tree-recursion with step function ⊞ derives the function f out of g ∈ STP as follows:

f(p, ϵ, x̄; ) = g(p, ϵ, x̄; )
f(p, z0, x̄; ) = ⊞(p, z0, f(p0, z, x̄; ), f(p1, z, x̄; ); )
f(p, z1, x̄; ) = ⊞(p, z1, f(p0, z, x̄; ), f(p1, z, x̄; ); )

As already noticed, under this input-sorted discipline recursive calls are usually taken as
safe arguments of the step function. However, that becomes irrelevant when the recursion
scheme imposes a fixed step function – like in TR[⊞]. The definition of any function term in
STPP involves at most one application of TR[⊞]. This is a consequence of having the base
function of TR[⊞] – g – and the inner functions of SCP – r̄ and s̄ – all in STP.

It is known that P ⊆ PP ⊆ PSPACE. On the term system side we observe that the
correspondent inclusions are preserved.
▶ Remark 6. STP ⊆ STPP ⊆ STFPSPACE, as classes of input-sorted function terms. The first
inclusion is obvious, the second makes use of items (2) and (3) of Remark 4.

In the rest of this section, we will explain how the TR[⊞] scheme somehow mimics the
acceptance condition underlying PP. Suppose a function is obtained through TR[⊞] from a
base function g; then its evaluation on an input (p, z, x̄; ), for z ̸= ϵ gives rise to a tree similar
to that in Figure 1, where the pointer p and the recursion input z are omitted. By using
them (the first and the second inputs of ⊞), one is able to obtain different outputs for ⊞
depending on the level it occurs in the tree above. Therefore, according to the definition of
⊞, one can distinguish two different situations.

If f is evaluated on arguments in the form (ϵ, z, x̄), then the tree from Figure 1 becomes
the one in Figure 2(a). Again, inputs are omitted. One reads from the leaves, and by
performing binary addition at all internal nodes one brings up to the root of the tree the
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⊞

⊞ ⊞

⊞ ⊞ ⊞ ⊞

g g g g g g g g

Figure 1 The unfolding of f(p, z, x̄).

#

+ +

⊕ ⊕ ⊕ ⊕

g g g g g g g g

(a) The case p = ϵ.

+

+ +

⊕ ⊕ ⊕ ⊕

g g g g g g g g

(b) The case p ̸= ϵ.

Figure 2 The unfolding of f(p, z, x̄), depending on the value of p.

information about how many times 1 occurs at the leaves. Notice that the function #,
after performing the binary addition operation, returns 1 if the sum meets the threshold
(i.e. if strictly more than half of the leaves are labeled by 1) and 0 otherwise.
If f is evaluated on arguments in the form (p, z, x̄), where p ̸= ϵ, then the tree becomes
the one in Figure 2(b). The pointer increases along the paths of the tree. So, the first
input of ⊞ does not assume the value ϵ. Therefore, the test function # is not called.
Recall that ⊕ reads the last bit of the leaves, coding the 1’s by 10 (i.e. by the binary
representation of 2). It should be clear that all nodes are labeled by strings ending by
0 (because they are binary representation of even numbers). In particular, the value
returned to the root of the tree is a 0 -1 word ending by 0.

4 STPP Characterizes PP

In this section, we prove that the algebra STPP we introduced in the previous section indeed
characterizes our target class, namely PP.

We adopt the definition of PP given in [1]. In particular, we consider non-deterministic
Turing machines as the underlying model of computation, and we make the assumption
that every step of the computation can be made in exactly two possible ways. Thus, in
the course of the computation, every configuration of the machine has exactly two next
configurations. Machines are “clocked” by some constructible function, and the number of
steps in each computation is exactly the number of steps allowed by the clock. If a final state
is reached before this number of steps, then the computation is continued, doing nothing up
to this number of steps. Moreover, every computation ends in a final state, which can be
either ACCEPT or REJECT. A probabilistic Turing machine M , PTM for short, is a non-
deterministic Turing machine as above in which acceptance is defined quantitatively rather
than logically: the input x̄ is accepted if, and only if, more than half of the computations of
M on x̄ end in the ACCEPT final state.
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PP is the class of boolean functions (or languages) computed (resp. accepted) by poly-
nomially clocked PTMs. While PP is a class of two valued functions, STPP corresponds
to a class of functions whose values can range over binary words. As a consequence, our
correspondence theorem will say that B(STPP) coincides with PP, where B(STPP) denotes
the boolean part of STPP.

4.1 The Lower Bound
In this subsection, we will prove that STPP is powerful enough to capture the behavior of
any polynomially clocked probabilistic Turing machine. This proves that STPP is at least as
expressive as our target complexity class..

▶ Lemma 7. Polynomially clocked PTMs can be simulated by functions in STPP.

Proof. Let M be a PTM which is clocked by some polynomial q (on the length of the input).
We are going to simulate M by STPP function terms. Let us assume, without any loss of
generality, that machine configurations are encoded by binary words so that codes end by the
code of the respective state. Codes of accepting final states end by 1 and any other state ends
by 0. One may assume that, for a given input x̄, all the configuration codes have the same
length, l(|x̄|), which is polynomial on |x̄|. Notice that all non-terminating configurations have
two successor configurations. Therefore, we can split the transition function δ of M into two
δ0 and δ1. Let c be a STPP function such that c(x̄; ) is the code of the initial configuration.
Similarly, let t be a STPP function such that |t(x̄; )| = q(|x̄|). (That t can be defined in STPP
come from the fact that q is a polynomial, cf. Remark 4(2)). For i ∈ {0, 1}, one may consider
polytime computable functions ∆i which, for a given configuration code w, return the next
configuration code according to δi, or return w itself if there is no next configuration according
to δi. Thus, by Remark 4(3), there exists a function term ∆̂i in STP and a polynomial q∆i

such that ∀w ∀y |y| ≥ q∆i
(|w|) ⇒ ∆i(w) = ∆̂i(y; w). Replacing, in the previous expression, y

by L∆i
(x̄; ) one has that ∀w ∀x̄ |L∆i

(x̄; )| ≥ q∆i
(|w|) ⇒ ∆i(w) = ∆̂i(L∆i

(x̄; ); w), where L∆i

is a STP term as follows. Given an input x̄, all configuration codes w satisfy |w| = l(|x̄|) where
l is polynomial in |x̄|. Thus, q∆i

(|w|) is equal to (q∆i
◦l)(|x̄|). The composition of polynomials

is a polynomial, and so q∆i
◦ l is a polynomial in |x̄|. Therefore, by Remark 4(2), there

exists a function term L∆i
in STP such that |L∆i

(x̄; )| = (q∆i
◦ l)(|x̄|). Now, recalling that

q∆i
(|w|) is (q∆i

◦ l)(|x̄|), one has |L∆i
(x̄; )| = q∆i

(|w|) (thus, a fortiori |L∆i
(x̄; )| ≥ q∆i

(|w|)).
Therefore, for any input x̄, given a configuration code w, ∆i(w) = ∆̂i(L∆i

(x̄; ); w) where ∆̂i

and L∆i
are in STP. This means that (reusing the symbol ∆i) we can consider a function

term ∆i(x̄; w) = ∆̂i(L∆i
(x̄; ); w) in STP, which for any input x̄ and a given configuration

code w returns the next configuration code according to δi. Let us define an auxiliary
sorted function, called RUN. RUN is defined, in STP, by SR. For a path p and a (initial)
configuration code c(x̄; ), RUN simulates the (sequential) computation performed by M along
the branch p starting with the configuration code c(x̄; ).

RUN(ϵ, x̄; ) = c(x̄; )
RUN(p0, x̄; ) = ∆0(x̄; RUN(p, x̄; ))
RUN(p1, x̄; ) = ∆1(x̄; RUN(p, x̄; ))

Let us consider the function f defined by TR[⊞] in STPP:

f(p, ϵ, x̄; ) = RUN(p, x̄; )
f(p, z0, x̄; ) = ⊞(p, z0, f(p0, z, x̄; ), f(p1, z, x̄; ); )
f(p, z1, x̄; ) = ⊞(p, z1, f(p0, z, x̄; ), f(p1, z, x̄; ); ).

By construction, one has that M(x̄) = f(ϵ, t(x̄; ), x̄; ). ◀
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As a consequence, one can prove the following.

▶ Proposition 8. PP is contained in B(STPP).

Proof. Any boolean function in PP can by definition be computed by a polynomially clocked
PTM. It is thus immediate to conclude, from the previous lemma, that PP is contained in
B(STPP). ◀

Before moving to the dual result, it is instructive to take a further look at how Lemma 7 is
proved. Actually, closure of STPP by TR[⊞] is exploited just once. However, that single use
of TR[⊞] takes a non-boolean function as base function. So, although PP is a class of boolean
functions, the non-boolean functions of the algebra play a crucial role in the characterization.
To show that the boolean functions of the algebra, whose definitions involve TR[⊞] with
arbitrary polytime base functions, remain within the complexity class PP is nontrivial, and
is essentially what we are going to prove in the next section.

4.2 The Upper Bound

Knowing that STP characterizes FPTIME, it is clear that B(STP) – which corresponds to P,
the class of the polytime boolean-functions – is contained in PP. But how about the inclusion
between B(STPP) and PP? This is precisely what we are going to prove in this section.

We first of all need the following lemma, which tells us, essentially, that TR[⊞] makes
sense from the point of view of the class PP. In this statement only boolean base functions
are considered.

▶ Lemma 9. Let G be in P and let F be a function defined as follows:

F (p, ϵ, x̄) = G(p, ϵ, x̄)
F (p, z0, x̄) = ⊞(p, z0, F (p0, z, x̄), F (p1, z, x̄))
F (p, z1, x̄) = ⊞(p, z1, F (p0, z, x̄), F (p1, z, x̄)).

Then the function Fϵ defined as Fϵ(z, x̄) = F (ϵ, z, x̄), is in PP. Moreover, if G is computable
in time tG (on the sum of the length of its inputs), then F (ϵ, z, x̄) is clocked by c · |z| +N
tG(|p| +N |z| +N

∑
i |xi|) +N 1, for some constant c.

Proof. In order to compute Fϵ it is enough to compute something with the following structure

⊞

⊞ ⊞

⊞ ⊞ ⊞ ⊞

G G G G G G G G

where G is in P and, at each step, the first input (pointer) increases one bit and the second
input (recursion input) decreases one bit. At the root of the tree the pointer is ϵ, and at all
leaves the recursion input is ϵ. Therefore, what we really have is
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#

+ +

⊕ ⊕ ⊕ ⊕

G G G G G G G G

Intuitively this is clearly in PP. In order to prove it we consider PTMs with as many tapes
as the arity of F (and G). We also assume that each component of the input is placed in
one of the tapes (by the order that they show up), i.e. the n-th input is on the n-th tape,
and that the machines are initialized with the heads scanning the right most non-empty cell
(if there is one).

Let BRANCH be a TM with initial state qB, which works according to two transition
functions – Left and Right. Informally speaking, Left adds the bit “0” at the end of the first
input (in the first tape), and deletes the last bit of the second input (in the second tape).
The heads move one cell to the right and one cell to the left, respectively. Right proceeds in
an analogous way, but adds the bit “1”. This can be done in constant time.

G is in P, so there exists a deterministic TM, MG, which computes the boolean function
G, let us say, in time bounded by tG. We denote by qG the initial state of MG, and we
assume that the output – 0 or 1 – is written in the last tape.

A PTM for F , MF , can then be described as follows:
(1) if the head of the second tape scans ϵ, go to (3);

otherwise, go to state qB and (2);
(2) run BRANCH and (1);
(3) go to state qG and (4);
(4) run MG.
We say that final configurations of MF are accepting configurations if, and only if, the
rightmost bit of the last tape is 1.

To determine the computing time of MF notice that the only possibility of going into a
loop is when an instruction calls a previous one, i.e. in (2). Moreover, notice that, inputting
p, z, x̄ to the machine, (1) is called |z|-times, and each loop uses constant time. Therefore,
before reaching the instruction (3) the machine performs c · |z| steps, for some constant c.
(3) is one step, and (4) uses, at most, tG steps (notice that the inputs change along the
process, but the sum of their lengths remains constant). Thus MF runs in time bounded by
c · |z| +N tG(|p| +N |z| +N

∑
i |xi|) +N 1.

MF accepts (ϵ, z, x̄) if, and only if, more than half of the computations of MF on
(ϵ, z, x̄) end in the ACCEPT final state. Noticing that MF final configurations are MG

final configurations, we have that MF accepts (ϵ, z, x̄) if, and only if, more than half of
G(p, ϵ, x̄) with |p| = |z| end by 1. Abbreviate 0 · · · 0 and 1 · · · 1, of length |z|, by 0|z| and
1|z| respectively. Considering the lexicographic order, between 0|z| and 1|z| we have all
0 − 1 words with |z| bits. There are 2|z| different paths p of length |z|. So, MF accepts
(ϵ, z, x̄) if, and only if2,

∑1|z|

p=0|z| last-bit of G(p, ϵ, x̄) > 2|z|

2 , or equivalently, if and only if∑1|z|

p=0|z| 2 · last-bit of G(p, ϵ, x̄) > 2|z|. This is exactly what TR[⊞] tests: ⊕ doubles the last
bit of it inputs and add them; + adds the inputs; and # (at the root of the tree) tests
whether the global sum (i.e.

∑1|z|

p=0|z| 2 · last-bit of G(p, ϵ, x̄)) is greater than 2|z| – it returns
1 if YES, and 0 otherwise. ◀

2 In numeric notation.

MFCS 2021



35:10 The Probabilistic Class PP

Let us now show that any boolean function in STPP can be seen as one in the class PP.

▶ Proposition 10. B(STPP) is contained in PP.

Proof. It is enough to show that, for all f ∈ STPP, the function F such that F (x̄, ȳ) is 1 if
f(x̄; ȳ) ends by 1, and F (x̄, ȳ) = 0 otherwise, is in PP. We prove this by induction on the
definition of the function terms inside STPP.

Whenever the scheme TR[⊞] is not involved in the definition of f , one has that f ∈ STP
and therefore the result is immediate. Thus, the relevant cases are the ones where the TR[⊞]
is used in the definition of the function term. There are two cases:

First of all, let f be defined by TR[⊞] with base function g ∈ STP ⊆ STPP. Let G ∈ PP
be given by induction hypothesis. Consider

F (p, z, x̄) =


G(p, ϵ, x̄) if z = ϵ

0 if p, z ̸= ϵ

f(ϵ, z, x̄; ) if p = ϵ ∧ z ̸= ϵ.

F results from easy case distinctions involving three functions: G and the constant
function equal to 0 are in PP. Notice that for z ̸= ϵ, f(ϵ, z, x̄; ) = TR[⊞](g)(ϵ, z, x̄; ) =
TR[⊞](last-bit of g)(ϵ, z, x̄; ), where last-bit of w is C(w, 0, 0, 1; ). g belongs to FPTIME,
so last-bit of g is a boolean function in P. Thus, for z ̸= ϵ, f(ϵ, z, x̄; ) is equal to a function
– TR[⊞](last-bit of g)(ϵ, z, x̄; ) – which is in PP due to Lemma 9. So, F ∈ PP. It remains
to prove that

F (p, z, x̄) =
{

1 if f(p, z, x̄; ) ends by 1
0 otherwise.

Let us further distinguish three sub-cases:
1. If z = ϵ, then

F (p, ϵ, x̄) = G(p, ϵ, x̄) =
{

1 if g(p, ϵ, x̄; ) ends by 1
0 otherwise

=
{

1 if f(p, ϵ, x̄; ) ends by 1
0 otherwise.

2. If p, z ̸= ϵ, then f(p, z, x̄) is the value returned to the root of a tree as described in
Figure 2(b) of Section 3, because the function # is not involved (the pointer only
increases along the recursion, therefore if it is not ϵ at the root, it is never ϵ). Thus, as
explained in Section 3, the value returned to root of the tree is the binary representation
of an even number. Therefore, f(p, z, x̄) does not end by the bit 1. Consequently, in
this case, F (p, z, x̄) = 0.

3. If p = ϵ and z ̸= ϵ then, noticing that f(ϵ, z, x̄; ) is a single bit, we have that

F (ϵ, z, x̄) = f(ϵ, z, x̄; ) =
{

1 if f(p, ϵ, x̄; ) ends by 1
0 otherwise.

Hence, the function F ∈ PP defined above, is 1 if f ends by 1, and it is 0 otherwise.
If f is defined by SCP , let us say f(x̄; ȳ) = h(r̄(x̄; ); s̄(x̄; ȳ)) with r̄, s̄ ∈ STP. By induction
hypothesis for h, the function H such that H(x̄, ȳ) is 1 if h(x̄; ȳ) ends by 1, H(x̄, ȳ) = 0
otherwise, is in PP. Let MH be a PTM computing H in polynomial time pH . r̄, s̄ are in
STP, so let Mr̄ and Ms̄ be the correspondent deterministic Turing machines working in
polynomial time. One may define the desired machine for F in the obvious way. First



U. Dal Lago, R. Kahle, and I. Oitavem 35:11

running the deterministic polytime machines Mr̄ and Ms̄ in order to produce the input
(r̄(x̄; ); s̄(x̄; ȳ)). Let us say that this is done in time dominated by pr̄,s̄(|x̄|, |ȳ|). Second,
running MH on this input. The resulting machine is a PTM which computes F and works
in time dominated by pr̄,s̄(|x̄|, |ȳ|) +N pH(|r̄(x̄; )|, |s̄(x̄; ȳ)|). Evoking now the monotonicity
of the polynomials and knowing that the length of STP functions (i.e. FPtime functions)
is polynomial bounded – let us say |r̄(x̄; )| ≤ qr̄(|x̄|) and |s̄(x̄; )| ≤ qs̄(|x̄|, |ȳ|) for some
polynomials qr̄ and qs̄ – we have that the working time of MF , on the input x̄, ȳ, is
bounded by the polynomial pr̄,s̄(|x̄|, |ȳ|) +N pH(qr̄(|x̄|), qs̄(|x̄|, |ȳ|)).

This finishes the proof. ◀

4.3 Wrapping Up
From Proposition 8 and Proposition 10 one concludes that

▶ Theorem 11. STPP characterizes PP (i.e. PP = B(STPP)).

This establishes a purely recursion theoretic characterization of the probabilistic class
of complexity PP by adding a specific form of tree-recursion to FPTIME functions. One
should notice that the step function of the tree-recursion makes use of the pointer p and the
recursion variable z. The same happens in the characterization of FPSPACE given in [13], but
it contrasts with the similar characterization of NP given in [14]. For NP the tree-recursion
scheme is actually a tree-iteration scheme, i.e. pointers and recursion variable are used only
at the bottom (and not all the way along the tree). There the pointers and recursion variable
are not taken as inputs of the step function. It is, for instance, not known which class one
obtains by restricting the tree-recursion of [13] to tree-iteration.

Whenever working with the tree-recursion scheme or with restricted forms of it, as it
is the case here and in the papers mention above, one adopts W (i.e. 0 − 1 words) as base
algebra, instead of N. The pointers and the tree-recursion scheme have a natural formulation
over W, but the present work can be rewritten in numeric notation. Actually, the seminal
paper of Bellantoni and Cook for FPTIME [2], which uses recursion on notation only, is in
numeric notation.

A similar characterization of PP can be obtained working in a non-sorted context, by use
of explicit bounds on the recursion on notation scheme. Such formulation of PP is based
on Cobham’s characterization of FPTIME [4] and uses the TR[⊞] scheme neglecting the “;”.
There is no need of imposing explicit bounds to the non-sorted version of TR[⊞], because
due to the fixed step function the scheme is implicitly polynomial bounded.

5 Related Work

The recursion-theoretic approach to implicit computational complexity has proved to be
remarkably robust, with many different classes between logarithmic and polynomial space
characterized by various forms of recursion schemes [2, 9, 10, 11, 12, 13, 14]. Tree recursion
with pointers, in particular, is known to be capable of capturing classes larger than P. But no
probabilistic class of complexity was known to admit a recursion-theoretic characterization,
so our result is certainly novel. With the given syntactic approach, one cannot expect to
capture truly semantic classes like BPP and ZPP, but it may serve as a recursion-theoretic
substratum for characterizations of these classes. In addition, it may provide as basis for
proof-theoretic characterizations as provided for FPTIME and related classes by Strahm [15]
or for the polynomial hierarchy of functions in [8].
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Other logical approaches to computational complexity have faced the challenge of charac-
terizing probabilistic classes. As an example, a study of randomization and derandomization
in descriptive complexity is due do Eickmeyer and Grohe [5], who were also able to char-
acterize BPP in fixed-point logic with counting. The relationships between theories of
bounded arithmetic and probabilistic complexity classes have been studied by Jerábek [7].
The present work complements these approaches by exploiting the framework of safe/tiered
recursion [2, 9].
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We present a parallel algorithm for permanent mod 2k of a matrix of univariate integer polynomials.
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1 Introduction

The problem of computing the determinant of a matrix has been a very well studied problem
in the past, and several fast (both sequential and parallel) algorithms are known. On the
contrary, Valiant in his seminal paper [26] showed that computing permanent of a matrix, an
algebraic analogue of determinant, is hard. However modulo 2, determinant and permanent
are equal and so building up on this, he presented an algorithm for computing permanent of
an integer matrix modulo small powers of 2. The algorithm uses Gaussian elimination which
is known to be highly sequential and so it is desirable to have a parallel algorithm. This was
resolved by [3] who presented a ⊕L ⊆ NC algorithm.

Moreover, NC algorithms for computing determinant of matrices over arbitrary com-
mutative rings are also known, e.g. [18]. We would like to ask a similar question for the
permanent. One natural extension would be to consider the ring of polynomials with integer
coefficients. In this paper, we present an NC algorithm to compute permanent of matrices
over integer polynomials modulo 2k for any fixed k.

▶ Theorem 1. Let k ≥ 1 be fixed and A be an n× n matrix of integer polynomials, such that
the degree of each entry is at most poly(n). We can compute perm(A) (mod 2k) in ⊕L ⊆ NC2

© Samir Datta and Kishlaya Jaiswal;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 36; pp. 36:1–36:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sdatta@cmi.ac.in
mailto:kishlaya@cmi.ac.in
https://doi.org/10.4230/LIPIcs.MFCS.2021.36
https://arxiv.org/abs/2106.00714
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


36:2 Parallel Polynomial Permanent

In the second half of the paper, we consider some applications of our parallel polynomial
permanent algorithm. One direct consequence is that we are now able to parallelize the
shortest two disjoint paths problem [2]. Furthermore, we generalize this problem by adding
more constraints on the disjoint paths - that the paths should pass through any given set
of edges. This can also be viewed as a problem of finding two disjoint cycles, for which we
present a randomized parallel algorithm, using the techniques from [28] and [2].

▶ Theorem 2. Let k ≥ 1 be fixed and G be an undirected graph with k marked vertices. We
can find shortest two disjoint cycles passing through the marked vertices in ⊕L/poly (and
RNC).

Finally, we notice that a similar approach gives us an algorithm to compute Hafnians
modulo 2k of symmetric matrices of integers. Unfortunately, unlike the case of the permanent,
we weren’t able to extend this to a parallel algorithm. But nevertheless it gives a direct proof
of the fact that counting number of perfect matchings modulo 2k, in any general graph, is in
P, as proved in [3].

1.1 Historical Survey
The problem of computing permanent of an integer matrix was first shown to be NP-
hard by Valiant, where he also presented a O(n4k−3) running time algorithm to compute
permanent modulo 2k. It was also shown that computing permanent modulo any odd prime
still remains hard. Zanko [29] gave a proof for hardness of permanent under many-one
reductions strengthening the result from the weaker Turing reductions used by Valiant.
Later, Braverman, Kulkarni and Roy [3] presented a parallel ⊕SPACE(k2 log n) algorithm
for computing permanent modulo 2k. Björklund and Husfeldt [2] presented a d3nO(k) time
algorithm to compute permanent modulo 2k of matrices over integer polynomials where the
entries are of degree at most d.

Finding k disjoint paths in a graph has been a well studied problem in the past: given
a graph (undirected/directed) and k pairs of terminals (si, ti)1≤i≤k, find k pairwise vertex-
disjoint paths Pi from si to ti, if they exist.

When k is not fixed (and is part of input) then the problem is known to be NP-hard even
for undirected planar graphs [16]. Linear time algorithms are known when further restricting
directed planar graphs to the case: when all terminals lie on outer face [25], or when all
the si-terminals lie on one common face while all the ti-terminals lie on another common
face [22]. If we further ask for paths with minimal total length in the latter problem, then [7]
presented a O(kn log n) running time algorithm to achieve the same.

When k is fixed, the problem remains NP-hard for directed graphs, even for k = 2 [11],
who had also given given a poly time algorithm for the restricted case of directed acyclic
graphs. In the restriced setting of directed planar graphs, [24] presented a nO(k) running
time algorithm, which was further improved to a fixed parameter tractable algorithm by [4].

Shifting our focus to undirected graphs, the celebrated work of Robertson and Seymour [23]
gave a O(n3) algorithm for finding k disjoint paths in an undirected graph, for any fixed k.
[6] gave a parallel algorithm for class of planar graphs where all the terminals lie either on
one or two faces. All this while, the question of finding shortest disjoint paths in general
undirected graphs, remained open for many years until recently, Björklund and Husfeldt [2]
gave a polynomial time algorithm for finding the shortest two disjoint paths. For general k,
this problem still remains open. Björklund and Husfeldt also gave a parallel algorithm to
count shortest two disjoint paths but only for cubic planar graphs [1].
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1.2 Our Techniques
To compute permanent of a matrix A over integer polynomials, we closely follow the analysis
of [3] but immediately hit an obstacle. They give a reduction from perm(A) (mod 4) to
several computations of perm(.) (mod 2), which crucially uses the fact that Z2 is a field.
More precisely, when mimicking the proof, firstly it is required to find a non-trivial solution
of Av = 0 with the property that at least one of the entries of this vector is invertible. This
fails1 over Z2[x]. Moreover, their algorithm also uses the fact that a non-singular matrix
admits a LU decomposition iff all the leading principal minors are non-zero, which is known
to hold in general only for matrices over fields.

Therefore, replacing Z2k with Z2k [x] in their analysis doesn’t work as Z2[x] isn’t a field
while Z2 is. Furthermore, any finite field F of characteristic 2 only corresponds to modulo
2 arithmetic. We need a way to extend the field structure so that it supports modulo 2k
arithmetic as well. If F was realized as Z2[x]/(p(x)) where p(x) is irreducible over Z2 then a
possible candidate is the ring Z[x]/(2k, p(x)). Therefore, the appropriate algebraic structure
to consider would be the ring R = Z[x]/(p(x))

Now we see that replacing Z with R solves the above mentioned problems in the analysis,
primarily because of the fact that R (mod 2) is a finite characteristic 2 field. With a
slight bit of modification in the proof, we achieve that: given a matrix A over R, we
can find perm(A) (mod 2k) or in other words if A is a matrix over Z[x], we can compute
perm(A) (mod 2k, p(x)).

We are still not done because our aim was to compute perm(A) (mod 2k) over Z[x]. To
achieve that, we choose p(x) such that its degree is larger than the degree of polynomial
perm(A). This requires doing computations over a large field. Alternatively, we develop a
new way of interpolation over R, which allows us to choose p(x) such that its degree is of
logarithmic order of degree perm(A), but with a tradeoff of computing several (polynomially
many) more permanents. We present this technique for its novelty.

Wahlström [28] addressed the question of finding a cycle passing through given vertices.
We ask if we can also find shortest such cycle. And furthermore, can we also find shortest
two disjoint cycles passing through these vertices? We combine techniques of [28] and [2] to
answer the above questions, by reducing them to computing permanents modulo 2 of 2k−1

and modulo 4 of 2k−1 + 2k−2 matrices respectively. These matrices are adjacency matrix of
what we refer to as pattern graphs. Notice that for k = 2 finding shortest two disjoint cycles
corresponds to finding shortest two disjoint paths (by connecting each pair of terminals with
a common vertex), and in this case our pattern graphs are exactly those presented in [2].

1.3 Organization of the Paper
In section 2, we first introduce the preliminaries and the notation that we shall be using
throughout this paper. In the next section 3, we present proof of our main theorem 1 about
computing permanent modulo 2k, following which we also discuss the complexity of certain
computations over the ring R which shows that our algorithm is in ⊕L. We also present an
alternative proof for our main theorem in section 4 which uses new techniques. Then we
present applications of our result that is finding shortest disjoint cycles, in section 5.

Finally, we discuss an example of our permanent algorithm and we show that using the
same techniques as above we can also compute Hafnians and hence it gives an alternate proof
of the already known result that counting perfect matchings modulo 2k is in P. These are
listed in the appendix for lack of space.

1 Let A =
(

x x + 1
x x + 1

)
then there does not exist any null vector of the form

(
f
1

)
or
(1

f

)
for any f ∈ Z2[x]
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2 Preliminaries

We begin by stating the definition of the complexity class ⊕L.

▶ Definition 3. ⊕L is the class of decision problems solvable by an NL machine such that
If the answer is “yes”, then the number of accepting paths is odd.
If the answer is “no”, then the number of accepting paths is even.

By a slight abuse of notation, we say a function class is in ⊕L if each of its bits can be
computed in ⊕L. We will have the occasion to use only constantly many bits because we are
working mod 2k.

Given an n× n matrix A = (aij)i,j∈[n], determinant and permanent of A are defined as

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i) perm(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

The permanent of a matrix can be regarded as the weighted sum of cycle covers of an
undirected graph. This gives a combinatorial interpretation to a seemingly pure algebraic
quantity. We shall use this bridge to illustrate an application of our parallel polynomial
permanent.

Let G be a weighted undirected graph (not necessarily loopless) with the associated
weight function w.

▶ Definition 4. We say C ⊆ V (G)× V (G) is a cycle cover of G if
(u, v) ∈ C =⇒ {u, v} ∈ E(G)
C is a union of vertex-disjoint simple directed cycles in G

every vertex is incident to some directed edge in C

Note: loops are allowed as simple cycles in the above definition.

▶ Definition 5. For any cycle cover C we denote the weight of C by w̃(C) =
∏
e∈C w(e)

The above definition is well-defined because any directed edge (u, v) or (v, u) in our cycle
cover correspond to the same edge {u, v} in our underlying undirected graph. And hence
both these directed edges get the same weight, that is w((u, v)) = w((v, u)) = w({u, v}).
In literature, such type of weight functions are commonly referred to as symmetric weight
functions.

▶ Definition 6. Let V (G) = [n] then we say A = (aij)i,j∈[n] is the (n× n) adjacency matrix
of G if

aij =
{
w(e) if e = {i, j} ∈ E(G)
0 otherwise

▶ Observation 7. perm(A) =
∑
w̃(C) where the sum is taken over all cycle covers C of G

3 Permanent over R Mod 2k

To begin with, we fix some general notation. Let p(x) be an irreducible polynomial over
Z2[x] such that deg(p(x)) is at most poly(n). Denote by F the finite field of characteristic 2
which is realized as Z2[x]/(p(x)) and by Rk = Z[x]/(2k, p(x)). In particular R1 ∼= F. Now as
already discussed, we essentially replace Z by R in the algorithm of [3]. We are ready to
state the main theorem.
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▶ Theorem 8. Let k ≥ 1 be fixed and A ∈ Rn×n. We can compute perm(A) (mod 2k) in ⊕L

Proof is by induction on k. We start with the base case k = 1. Note that perm(A) ≡
det(A) (mod 2). Using corollary 17 we can find perm(A) (mod 2) in ⊕L. Now suppose k > 1,
we shall reduce it to computing several such determinants modulo 2, all of which can be
computed in parallel. In doing so, we first illustrate an algorithm which is sequential and
then we shall see how to parallelize it.

3.1 Sequential algorithm for computing permanent modulo 2k

We present the algorithm from [3] for computing permanent modulo 2k but translated within
our framework. Let A = (aij)i,j∈[n] ∈ Rn×n be such that det(A) ≡ 0 (mod 2). Therefore
we can find a non-zero vector v ∈ Fn such that AT v = 0 over F. Assume without loss of
generality v1 = 1.

Let ri denote the ith row of A and define A′ to be the matrix where the 1st row in matrix
A is replaced with

∑
i viri. Now if we expand the permanent along the first row then we get

perm(A′) =
n∑
i=1

viperm(A[1← i]) = perm(A) +
n∑
i=2

viperm(A[1← i]) (1)

where A[i ← j] is the matrix A but with ith row replaced with the jth row. For I, J ⊆
[n] denote by A[Î , Ĵ ] the matrix obtained from A by deleting rows indexed by I and
columns indexed by J . With this equation, modulo 2k computation reduces to modulo 2k−1

computations of the minors as follows:

perm(A′) =
n∑
j=1

(
n∑
i=1

viaij

)
perm(A[{̂1}, {̂j}])

Since AT v = 0 (mod 2), we can write
∑
i viaij = 2bj (mod 2k) for some bj ∈ Rk, therefore,

we can re-write the above permanents as:

perm(A′) (mod 2k) = 2

 n∑
j=1

bjperm(A[{̂1}, {̂j}]) (mod 2k−1)


Similarly, expanding perm(A[1← i]) along the 1st and ith rows, we get the reduction:

perm(A[1← i]) =
∑
j ̸=l

aijailperm(A[{̂1, i}, {̂j, l}])

perm(A[1← i]) (mod 2k) = 2

∑
j<l

aijailperm(A[{̂1, i}, {̂j, l}]) (mod 2k−1)


Substituting these equations back in 1, we get

perm(A) (mod 2k) = 2

 n∑
j=1

bjperm(A[{̂1}, {̂j}]) (mod 2k−1)



− 2
n∑
i=2

vi

 n∑
j,l=1
j<l

aijailperm(A[{̂1, i}, {̂j, l}]) (mod 2k−1)
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Since addition and multiplication in Rk is in ⊕L (see 14) we get that perm(A) (mod 2k)
⊕L-reduces to perm(.) (mod 2k−1). Hence by induction, we can compute perm(A) (mod 2k)
in ⊕L, provided that perm(A) ≡ 0 (mod 2).

Let us see how to drop this assumption. We expand the permanent of A along the ith
row, then

perm(A) =
∑
j

aijperm(A[{̂i}, {̂j}])

If perm(A) ̸≡ 0 (mod 2), then ∃i, j such that perm(A[{̂i}, {̂j}]) ̸≡ 0 (mod 2). We can find
this pair (i, j) by running over all n2 possibilities and evaluating perm(A[{̂i}, {̂j}]) (mod 2)
using corollary 17, as already discussed above. Consider the matrix C where all entries are
same as A except the (i, j)th entry which is replaced with aij + y. Then, we get perm(C) =
perm(A) + yperm(A[{̂i}, {̂j}]). Notice that perm(A) + yperm(A[{̂i}, {̂j}]) ≡ 0 (mod 2) is a
linear equation in y over the field F and so there exists a unique y ∈ F which satisfies this
equation, which is y0 = perm(A)perm(A[{̂i}, {̂j}])−1 (mod 2) and can be computed using
corollaries 14, 15 and 17. Setting y = y0 we get perm(C) ≡ 0 (mod 2), so we can compute
perm(C) (mod 2k) and then compute perm(A[{̂i}, {̂j}]) recursively as A[{̂i}, {̂j}] is a smaller
(n− 1)× (n− 1) size matrix. Hence we obtain perm(A) = perm(C)− y0perm(A[{̂i}, {̂j}])
(mod 2k). This yields a sequential algorithm for computing permanent modulo 2k over R.

3.2 Parallel algorithm for computing permanent modulo 2k

The bottleneck was finding i, j such that A[{̂i}, {̂j}] is non-singular over F. We fix this by
again appealing to the fact that we are working over a field, and modifying A such that
all leading principal minors are non-zero. This modification essentially derives from the
following fact.

▶ Theorem 9 ([14, Corollary 1]). Let A be an invertible matrix over a field F, then all leading
principal minors are non-zero iff A admits an LU decomposition

Every invertible matrix admits a PLU factorization [14] so let A = PLU . Denote by
Q = P−1, then QA = LU . Since Q is also a permutation matrix, we get that perm(QA) =
perm(A) (because permanent is invariant under row swaps). Therefore, it suffices to give a
⊕L algorithm to find Q so that we can replace A by QA which is an invertible matrix such
that all leading principal minors are non-zero. Thus computing perm(A) (mod 2k) reduces
to the problem of computing (in parallel) permanent modulo 2k of n − 1 matrices with
perm ≡ 0 (mod 2). This gives a ⊕L algorithm to compute permanent modulo 2k over R.

To find Q, we closely follow [9]. For each 1 ≤ i ≤ n, let Ai be the matrix formed from A

by only taking the first i columns. Let Aji matrix obtained from Ai by only taking the first j
rows. We construct a set Si ⊆ [n] inductively as follows:

Base case: l ∈ Si if rank(Ali) = 1 and rank(Aki ) = 0 for all k < l

Include j ∈ Si iff rank(Aji ) = 1 + rank(Aj−1
i )

Since rank(Ai) = i, we get |Si| = i. Furthermore note that Si ⊂ Si+1. So let S1 = {s1}
and for each i ≥ 2, denote by si ∈ Si \ Si−1. Consider the following permutation Q =
(n, sn) . . . (2, s2)(1, s1). Thus Q is our desired permutation, such that QA has all leading
principal minors non-zero.

As a corollary, we immediately get our desired result.
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▶ Corollary 10 (Theorem 1 restated). Given an n× n matrix A = (aij)i,j∈[n] over Z[x] with
deg(aij) at most poly(n), we can compute perm(A) (mod 2k) in ⊕L for any fixed k ≥ 1

Proof. Let N = nmax{deg(aij)}+ 1 and choose l = ⌈log3(N/2)⌉. Consider p(x) = x2·3l +
x3l + 1 which is irreducible over Z2[x] (see [27] Theorem 1.1.28)

Since deg(p(x)) ≥ N > deg(perm(A)), using this p(x) in above theorem, we get
perm(A) (mod 2k) for any fixed k. ◀

▶ Remark. See appendix A for a complete worked out example of the above algorithm.

3.3 Complexity Analysis
We discuss the complexity results for arithmetic operations over the ring Rk and matrix
operations over the field F, which were required in our above algorithm. To begin with, we
state a well-known fact about integer polynomials matrix multiplication modulo 2. This
shall form our basis for showing computations over F in ⊕L.

▶ Lemma 11 (Folklore [5]). Let A1, A2, . . . An ∈ Z2[x]n×n then the product A1A2 . . . An can
be computed in ⊕L

To obtain an analogous result over F we first perform multiplication over Z2[x] and then
divide all entries by p(x), using the following polynomial division, as demonstrated by Hesse,
Allender and Barrington in [12], to get that iterated matrix product over F is in ⊕L

▶ Lemma 12 ([12, Corollary 6.5]). Given g(x), p(x) ∈ Z[x] of degree at most poly(n), we can
compute g(x) (mod p(x)) in DLOGTIME− uniform TC0 ⊆ L

In particular, it follows that given an irreducible polynomial p(x) (over Z2[x]), then for
any g(x) ∈ Z[x] of degree at most poly(n) we can find g(x) (mod 2k, p(x)) in ⊕L, for any
fixed k ≥ 1.

▶ Corollary 13. Let A1, A2, . . . An ∈ Fn×n such that the degree of each entry is at most
poly(n) then the product A1A2 . . . An can be computed in ⊕L

Now we discuss arithmetic over Rk

▶ Lemma 14. Let k ≥ 1 be fixed then the following operations can be done in ⊕L
Multiplication : Given a, b ∈ Rk compute ab
Iterated Addition: Given c1, c2, . . . , cn ∈ Rk compute

∑
i ci

Proof. We use the fact that the arithmetic operations mentioned in the statement of lemma,
but over Z2k are in ⊕L (see for e.g. [12])

Let a(x), b(x) ∈ Rk and write a(x) =
∑D
i=0 aix

i and b(x) =
∑D′

i=0 bix
i, then a(x)b(x) =∑D+D′

i=0

(∑i
j=0 ajbi−j

)
xi. Finally, using lemma 12, divide a(x)b(x) by p(x) to obtain

ab ∈ Rk

Similarly, let c1(x), c2(x), . . . , cn(x) ∈ Rk and write ci(x) =
∑Di

j=0 cijx
j for each i ∈ [n],

then
∑n
i=1 ci(x) =

∑max{Di}
j=0 (

∑n
i=1 cij)xj where we assume cij = 0 if j > Di. ◀

Our algorithm also requires computing inverse of non-zero elements. To compute inverse
over F∗ we adopt the techniques from Fich and Tompa [8, 10]. Since F = Z2[x]/(p(x)) with
N = deg(p(x)) which is at most poly(n), then given a ∈ F∗, we observe that a−1 = aq−2

where q = 2N = |F|.

MFCS 2021
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We interpret this equation over Z2[x], that is we need to compute a(x)q−2 (mod p(x))
over Z2[x]. First we show how to compute a(x)2 (mod p(x)). Construct the N ×N matrix
Q whose ith row (Qi,0, Qi,1, . . . , Qi,N−1) is defined as:

N−1∑
j=0

Qi,jx
j = x2i (mod p(x))

for each 0 ≤ i ≤ N − 1. Matrix Q can be computed in ⊕L using the divison lemma 12. Then
the elements of the row vector (a0, a1, . . . , aN−1)Q are the coefficients of a(x)2 (mod p(x))
as explained in section 3 of [10]. Furthermore, the coefficients of a(x)2k (mod p(x)) are given
by (a0, a1, . . . , aN−1)Qk. From lemma 11 we get that a(x)2k (mod p(x)) can be computed
in ⊕L, for any k bounded by poly(n). Therefore. writing q − 2 = (c0, c1, . . . , cN−1) in binary,

a(x)q−2 (mod p(x)) =
N−1∏
i=0

a(x)ci2i

(mod p(x))

can be computed in ⊕L, which gives us a−1.

▶ Corollary 15. Let a ∈ F then a−1 ∈ F can be computed in ⊕L

Mahajan and Vinay [18] describe a way to reduce the computation of a determinant
over a commutative ring to a semi-unbounded logarithmic depth circuit with addition and
multiplication gates over the ring. In fact, the following is an easy consequence of their result:

▶ Lemma 16 (Mahajan-Vinay [18]). Let A ∈ Rn×n be a matrix over a commutative ring.
Then there exist M ∈ R(2n2)×(2n2) and two vectors a, b ∈ R2n2 such that det(A) = aTMnb.
Moreover, each entry of the matrix Mij and the vectors a, b is one of the entries Ai′,j′ or
a constant from {0, 1} and the mapping ϕ where for every (i, j) ∈ [2n2] × [2n2], ϕ(i, j) ∈
A[n]×[n] ∪ {0, 1} is computable in Logspace.

Proof. (Sketch) In [18], given a matrix A they construct a graph HA whose vertex set is
{s, t+, t−} ∪ Q where Q = {[p, h, u, i] : p ∈ {0, 1}, h, u ∈ [n], i ∈ {0, . . . , n − 1}}. Moreover,
the edges are one of the following forms (s, q), (q, q′), (q, t+) and (q, t−) where q, q′ ∈ Q and
have weights w(q, q′) that each depend on a single entry of A or are one of the constants
0, 1. Moreover the mapping is very simple to describe. Let us focus on the induced subgraph
HA[Q]. Notice that |Q| = 2n3 and each “layer” of HA[Q] is identical. In other words,
ei = ⟨[p, h, u, i], [p′, h′, u′, i+ 1]⟩ is an edge in HA[Q] iff ej = ⟨[p, h, u, j], [p′, h′, u′, j + 1]⟩ is
an edge in HA[Q] and both have the same weights for every i, j ∈ {0, . . . , n− 1}. Thus define
the matrix M by putting M[p,h,u],[p′,h′,u′] as the weight of any of the edges ei.

Finally to define a, b: let a[n mod 2,1,1] = 1 and aq = 0 for all other q. b[1,h,u] = auh and
b[0,h,u] = −auh. The correctness of our Lemma then follows from the proof of Lemma 2
of [18]. ◀

Using above lemma 16, we reduce determinant over F to matrix powering over F, which
can be computed in ⊕L using corollary 13. Hence we get

▶ Corollary 17. Let A ∈ Fn×n then det(A) can be computed in ⊕L

Now we demonstrate two results: computing rank and a null vector a matrix over F in
⊕L. We use Mulmuley’s algorithm [19], which requires finding determinant over the ring
F[y, t], which reduces to matrix powering over F[y, t] by the above result. We shall further
reduce this to matrix powering over F as follows: Let R be an arbitrary commutative ring.
We associate with each polynomial f(x) =

∑d−1
i=0 fix

i ∈ R[x] a d× d lower-triangular matrix
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P (f) =


f0
f1 f0
f2 f1 f0
...

...
...

. . .
fd−1 fd−2 fd−3 . . . f0

 ∈ Rd×d

Suppose we have two polynomials f(x) and g(x) of degree d1 and d2 respectively. We
can interpret them as degree d1 + d2 polynomials (with higher exponent coefficients as 0).
Then we have that P (f + g) = P (f) + P (g) and P (fg) = P (f)P (g).

▶ Theorem 18. Let R be any commutative ring and A1, A2, . . . An be n× n matrices over
R[x] such that the degree of each entry is at most poly(n). Denote by A =

∏
Al. There

exists poly(n)× poly(n) matrices B1, B2, . . . Bn over R such that the coefficient of xk in Aij

is equal to Bψ(i,j,k) where B =
∏
Bl and ψ is logspace computable.

In other words, iterated matrix multiplication over R[x] is logspace reducible to iterated
matrix multiplication over R.

Proof. Let N = nmaxi,j,k∈[n]{deg((Ai)jk)} where (Ai)jk denotes the (j, k)th entry of Ai.
By our assumption, N is at most poly(n). Now for each 1 ≤ i ≤ n, compute the matrix
Bi ∈ RnN×nN obtained from Ai by replacing each polynomial (Ai)jk with the N ×N matrix
P ((Ai)jk). These matrices Bi can be computed in log space. Now the coefficient of xk in
Aij can be read from the entry Bψ(i,j,k) where ψ(i, j, k) = ((i− 1)N + k+ 1, (j − 1)N + 1) is
logspace computable. The correctness follows from our observation P (fg) = P (f)P (g). ◀

▶ Remark. This gives us an alternate proof of the fact that iterated matrix multiplication
over Z2[x] is in ⊕L, as it follows immediately from the definition of ⊕L that iterated matrix
multiplication over Z2 is in ⊕L.

▶ Lemma 19 ([19]). Let A ∈ Fm×n then rank(A) can be computed in ⊕L

Proof. We can assume that A is a square (n × n) symmetric matrix because otherwise

replace A with
(

0 A

AT 0

)
which has rank twice that of A. Let Y be an n × n diagonal

matrix with the (i, i)th entry as yi−1. And let m be the smallest number such that tm has a
non-zero coefficient in the characteristic polynomial of Y A, that is det(tI − Y A). Then rank
of A = n−m.

Suffices to show that det(tI − Y A) can be computed in ⊕L. Notice that (tI − Y A) ∈
F[y, t]n×n and so det(tI − Y A) is logspace reducible to matrix powering over F[y, t]. Using
the canonical isomorphism F[y, t] ∼= F[y][t], repeated application of theorem 18 logspace
reduces it to matrix powering over F. ◀

▶ Observation 20. Let A ∈ Fn×n be an invertible matrix then A−1 can be computed in ⊕L

This follows from the fact that computing A−1 involves computing the determinant of
A and n2 cofactors, that is determinants of n2 matrices of size (n − 1) × (n − 1). Notice
that this also requires inverting the determinant, an element of F∗, which has been explained
above.

▶ Corollary 21. Let A ∈ Fn×n then finding a non-trivial null vector (if it exists) is in ⊕L
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Proof. Let rank(A) = m, then permute the rows and columns of A so that we can express

A =
(
B C

D E

)
such that B is an invertible m ×m matrix. Let

(
x

y

)
be a column vector

where x ∈ Fm and y ∈ Fn−m, such that

A

(
x

y

)
= 0 =⇒

(
B C

D E

)(
x

y

)
= 0

This reduces to the set of equations: Bx+ Cy = 0 and Dx+ Ey = 0. But the later is
a redundant set of equations because

(
D E

)
can be written in terms of

(
B C

)
. More

precisely, there exists a matrix V ∈ Fn−m×m such that D = V B and E = V C and so
Dx + Ey = V Bx + V Cy = V (Bx + Cy) = 0. Therefore setting x = 1 and y = −B−1C1,
gives us the desired null vector. So it suffices to give a ⊕L algorithm to transform A to the
form as specified above, which follows from [9]. Let Ai be the matrix formed from first i
rows of A. We construct a set S ⊆ [n] as follows:

Base case: i ∈ S if rank(Ai) = 1 and rank(Aj) = 0 for all j < i

Include k ∈ S iff rank(Ak) = 1 + rank(Ak−1)

It follows that |S| = m and let S = {i1 < i2 < · · · < im} and Pr be the permutation
matrix described by (m, im) . . . (2, i2)(1, i1). Then PrA is the required matrix having first
m rows as linearly independent. Next, consider the matrix A′ = (PrA)T and apply the
above algorithm to get a permutation matrix Pc such that first m rows of PcA′ are linearly
independent. Then PrAP

T
c is the required matrix such that the leading principal m−minor

is non-singular. ◀

4 Permanent via Interpolation

We now demonstrate another technique to compute permanent modulo 2k, which doesn’t
resort to computations over exponentially sized fields. This proceeds by choosing small degree
polynomial p(x). The techniques developed in this section are new and hence interesting by
themself.

First we mention a result from [15] used to interpolate the coefficients of a polynomial.

▶ Lemma 22 ([15, Lemma 3.1]). Let F be a finite, characteristic 2, field of order q.∑
a∈F∗

am =
{

0 if q − 1 ∤ m
1 otherwise

This dichotomy allows us to extract coefficients of any integer polynomial.

▶ Lemma 23 ([15, Corollary 3.2]). Let f(x) =
∑d
i=0 cix

i be a polynomial with integer
coefficients and q > d+ 1, then for any 0 ≤ t ≤ d,∑

a∈F∗

aq−1−tf(a) = ct (mod 2)

But this gives us the coefficients modulo 2 only. How do we get coefficients modulo 2k?
The crucial observation here is that the above sum was computed over F. So instead we

do so over R by identifying a copy of F∗ ↪−→ R, and then we have∑
a∈F∗

am =
{

2αm if q − 1 ∤ m
2βm + 1 otherwise

where αm, βm ∈ R.
Now we use repeated squaring method to obtain our desired modulo 2k result.
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▶ Lemma 24. ∀m ≥ 0, k ≥ 1

∑
a1,...,a2k−1 ∈F∗

(a1a2 · · · a2k−1)m =
(∑
a∈F∗

am

)2k−1

=
{

0 (mod 2k) if q − 1 ∤ m
1 (mod 2k) otherwise

Note: We remind the reader that the computation here is done over Rk

Proof. Fix any m ≥ 0. Clearly (2αm)2k−1 ≡ 0 (mod 2k).
Suffices to show (2βm + 1)2k−1 ≡ 1 (mod 2k). This follows from induction on k. For k = 1

the result holds as stated above. Assume that for some k ≥ 1, the result holds. Then we
have (2βm + 1)2k−1 = 2kγm,k + 1 where γm,k ∈ R

(2βm + 1)2k

=
(

(2βm + 1)2k−1
)2

= (2kγm,k + 1)2 = 1 (mod 2k+1) ◀

Using this we can interpolate coefficients of an integer polynomial as follows:

∑
a1,...,a2k−1 ∈F∗

(a1 . . . a2k−1)q−1−tf(a1 . . . a2k−1) = ct (mod 2k)

Finally let A(x) be an n×n matrix of integer polynomials and the permanent polynomial be

perm(A(x)) =
N∑
i=0

cix
i

From the above lemma it follows that

∑
a1,a2...∈F∗

(a1a2 · · · )q−1−tperm(A(a1a2 · · · )) = ct (mod 2k)

provided that our field F is of order at least N + 2. For this, fix l = ⌈ log logN
log 3 ⌉ so that

22.3l

> N + 1. Hence the field obtained from the irreducible polynomial p(x) = x2·3l +x3l + 1
([27] Theorem 1.1.28) serves the purpose. It suffices to compute |F∗|2k−1 = O(N2k−1) many
permanents over Rk to obtain all the coefficients ct modulo 2k, all of which can be computed
in parallel. Hence, we can compute the permanent of A modulo 2k over Z[x] in ⊕L.

5 Shortest Disjoint Cycles

Now that we have a ⊕L algorithm to compute permanent mod 2k for matrices over Z[x], we
are all set to demonstrate a parallel algorithm for shortest two disjoint paths. But we notice
that we can place this problem in a more general framework of shortest disjoint cycles. Let
us first formally define these problems.

SDP (k): Given a weighted undirected graph with k pairs of marked vertices {(si, ti) |
1 ≤ i ≤ k}, find the minimum of sum of weight of paths between each pair si and ti such
that all paths are pairwise disjoint.

SDC(l, k): Given a weighted undirected graph with k marked vertices, find the minimum
of sum of weight of l cycles such that they pass through all the marked vertices and are
pairwise disjoint and each cycle is incident to at least one of the marked vertices.

MFCS 2021
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▶ Note. We only consider non-trivial cycles that is we don’t consider self-loops in the above
problem.

Given an instance of the SDP (2) problem, join the pairs of vertices (s1, t1) and (s2, t2)
with new vertices u1 and u2 respectively, as show in Figure 1. Notice that any two disjoint
cycles passing through u1 and u2 give us two disjoint paths between (s1, t1) and (s2, t2).

s1

t1

u1

s2

t2

u2

1

1

1

1

Figure 1 Converting an instance of SDP (2) to SDC(2, 2).

Similarly, connecting the k-pairs of vertices via another new vertex and edges of weight
x0 = 1, gives us a reduction from k disjoint paths to k disjoint cycles via k vertices. Since
this reduction preserves the weight of the path/cycle, it is indeed a reduction from SDP (k)
to SDC(k, k).

To apply the techniques of [2] to disjoint cycles problem, we instead consider the following
variant SDCE(l, k): Given a weighted undirected graph with k marked edges, find the
minimum of sum of weight of l cycles such that they pass through all the marked edges and
are pairwise disjoint.

It can be easily seen that for a fixed k there is a logspace reduction from SDC(l, k)
to SDCE(l, k) as follows: Let (G, {v1, v2, . . . , vk}) be an instance of SDC(l, k). Assume
without loss of generality that the marked vertices form an independent set, or otherwise
split the edge into two by introducing a new vertex in the middle. For each i, choose a vertex
ui, a neighbour of vi, such that i ̸= j =⇒ ui ≠ uj , we solve (G, {e1, e2, . . . ek}) an instance
of SDCE(l, k) where ei = {ui, vi} and output the smallest solution amongst all the instances
of SDCE thus created. Since for each i, deg(vi) < n, number of instances of SDCE created
are bounded by O(nk) all of which can be solved in parallel as k is fixed.

5.1 Pre-processing

Given a graph G = (V,E,w) and k marked edges {ei = {si, ti}}i≤k, assign weight xw(e) to
the edge e of G and add self loops (weight 1) on all vertices except {si, ti}i≤k. Observe that
all the non-zero terms appearing in the permanent of adjacency matrix correspond to a cycle
cover in G. To force these k-edges in our cycle cover, we direct these edges in a certain way
which we shall call as a pattern.

Formally, define a pattern P as an ordered pairing of terminals of given edges {si, ti |
1 ≤ i ≤ k}. Furthermore, we view each undirected edge {u, v} in G as two directed edges
(u, v) and (v, u) with the same weight. For any pattern P , define a pattern graph GP with
the same vertex/edge set as of G but such that if (u, v) ∈ P then all outgoing edges from u,
except edge (u, v), are deleted. We denote by AP the adjacency matrix of GP .

Now we shall show how to solve the SDCE(1, k) problem for any k ≥ 1. This algorithm
essentially follows from the work of [28]. Next, we also present how to solve the SDCE(2, k)
problem for any k ≥ 2. As far as we know, no algorithm (better than brute force) was known
apriori to our work for k ≥ 3.
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5.2 Shortest Cycle
Let {ei = {si, ti}}i≤k be given k-edges. For each binary sequence b = (b1, b2, . . . , bk−1) of
length k − 1, consider the following pattern Pb:

(s1, t1) ∈ Pb
∀2 ≤ i ≤ k, if bi−1 = 0 then (si, ti) ∈ Pb else (ti, si) ∈ Pb

So {Pb}b is the collection of patterns with the orientation of e1 fixed and all possible
orientations of the other edges {ei}i≥2, as dictated by each binary sequence.

▷ Claim 25. Under the assumption that the shortest cycle is unique, the smallest exponent
with non-zero coefficient in f1(x) (mod 2) is the weight of unique shortest cycle passing
through the given edges, where

f1(x) =
∑
b

perm(APb
)

Proof. Let C be any cycle cover which consists of at least 2 non-trivial cycles. Consider the
cycle in C which doesn’t contain edge e1 - there are two ways of orienting this cycle, namely
clockwise and counter-clockwise. So this cycle cover contributes to f1(x) for at least two
such b-sequences and so it vanishes modulo f1 (mod 2).

Thus the only terms that survive in f1 (mod 2) are the cycle covers which consist of
one cycle passing through all the given edges and self-loops on the remaining vertices, and
furthermore number of cycles of this weight must be odd.

Since the shortest weight cycle was unique by our assumption, we get the desired result.
◁

To drop the assumption that a unique minimum weight solution exists, we instead assign
modified weights 2nmw(e) + w′(e) where n = |V (G)|, m = |E(G)|, w(e) is the given weight
of edge e and w′(e) ∈ {0, 2, . . . , 2m− 1} is choosen independently and uniformly at random
for each edge e. Then isolation lemma [20] tells us that, with probability 1

2 , the minimum
weight cycle is unique. Hence if the term xj survives as the smallest exponent with non-zero
coefficient term in f1(x) (mod 2) then we get the weight of shortest cycle as ⌊j/2nm⌋.

But this gives us only a randomized ⊕L algorithm (that is RNC algorithm). To further
show that a common poly weight scheme exists for all graphs of size n, we use the well-known
result of [21] which immediately places this problem in ⊕L/poly. For completeness sake, we
provide a proof of this fact in the appendix B.

5.3 Shortest Two Disjoint Cycles
We shall first prove the following stronger result:

▶ Theorem 26. Given a set of k-edges {ei}i≤k, we can find weight of the shortest two disjoint
cycles passing through these edges such that e1 and e2 appear in different cycles in ⊕L/poly
(and RNC)

Let {Pb}b be the patterns as defined above. Furthermore, for each binary sequence
c = (c1, c2, . . . , ck−2) of length k − 2, define pattern Qc as

(s1, s2) ∈ Qc
(t1, t2) ∈ Qc
∀3 ≤ i ≤ k, if ci−2 = 0 then (si, ti) ∈ Qc else (ti, si) ∈ Qc

MFCS 2021
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With a combination of these patterns, we can get our desired cycle covers. We claim that
the non-zero terms appearing in

f2(x) =
∑
b

perm(APb
)−

∑
c

perm(AQc
)

correspond to cycle covers in GPb
such that edges e1 and e2 appear in different cycles.

To prove our claim, we need to argue that the cycle covers of GPb
in which e1 and e2

appear in the same cycle are exactly the cycle covers of GQc Let

CQ =
⊔
c

cycle covers of GQc

CP =
⊔
b

cycle covers of GPb
such that edges e1 and e2 appear in the same cycle

where each cycle cover is counted with repetitions in CP and CQ.

▷ Claim 27. There is a one-one correspondence between CP and CQ.

Proof. We define the mapping φ : CP → CQ as follows. Given a cycle cover in CP , remove
the edges e1 and e2 and add edges (s1, s2) and (t1, t2), refer to Figure 2 below.

s1

t1

s2

t2

s1

t1

s2

t2

Type 1 cycle cover in CP Type 1 cycle cover in CQ

s1

t1

s2

t2

s1

t1

s2

t2

Type 2 cycle cover in CP Type 2 cycle cover in CQ

Figure 2 Bijection between CP and CQ.

To show that this a well-defined mapping and indeed a bijection, we partition CP into
type 1 and type 2 cycle covers, depending upon the orientation of the edge e2. Consider the
cycle in which e1 and e2 appear together. Then if the edge e2 is oriented as (s2, t2) then we
call it type 1 cycle cover otherwise we call it a type 2 cycle cover.

Similarly, we partition CQ into type 1 and type 2 cycle covers. If the edges {s1, s2} and
{t1, t2} appear in the same cycle then we call it a type 1 cycle cover otherwise we call it a
type 2 cycle cover.

Fix a type 1 cycle cover of CP . Then it contains a cycle of the form

(s1
e1−→ t1 → P1 → s2

e2−→ t2 → P2 → s1)

Applying φ to this cycle cover we get the cycle

(s1
e1−→ s2 → P reverse

1 → t1
e2−→ t2 → P reverse

2 → s1)

and the other cycles remain intact. This constitutes a type 1 cycle cover in CQ
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Similarly, consider a type 2 cycle cover of CP with the cycle

(s1
e1−→ t1 → P1 → t2

e2−→ s2 → P2 → s1)

Applying φ to this cycle cover we get two cycles

(s1
e1−→ s2 → P reverse

2 → s1)

(t1
e2−→ t2 → P reverse

1 → t1)

and the other cycles remain intact. This constitutes a type 2 cycle cover in CQ.
Therefore, φ is a well-defined mapping and furthermore type i cycle covers of CP are

mapped to type i cycle covers of CQ, i ∈ {1, 2}. Now consider ψ : CQ → CP defined as follows.
Given a cycle cover in CQ, remove the edges (s1, s2) and (t1, t2) in the cycle and insert edges
e1 and e2 with the orientation decided by the type. By an similar argument as above, we get
that ψ is well-defined and clearly ψ is inverse of φ. ◁

Now suppose C is a cycle cover of G such that edges e1 and e2 appear in different cycles.
We have two cases:
Case 1: number of non-trivial cycles in C is more than 2. Consider any two non-trivial

cycles in C such that e1 is not incident on them. We can orient these two cycles in both
clockwise and anti-clockwise direction and so we get that C is a cycle cover in GPb

for at
least 4 b-sequences. Hence, the term corresponding to C cancels out in f2 (mod 4)

Case 2: number of non-trivial cycles is exactly two. Then C is a cycle cover in GPb
for exactly

two b-sequences , that is the the cycle passing through e2 has two possible orientations
whereas cycle passing through e1 has a fixed orientation (as orientation of e1 remains
fixed in all GPb

). Hence, the term corresponding to C appears with a coefficient of two
in f2 (mod 4). Therefore, the non-zero terms in f2 (mod 4) correspond to only the cycle
covers in which edges e1 and e2 appear in different cycles and number of non-trivial cycles
is exactly 2. Assuming a unique shortest two disjoint cycle exists, it’s weight can be
obtained from the smallest exponent with a non-zero coefficient in f2 (mod 4). Finally,
to drop this assumption, we again assign random weights as done previously to ensure
that the minimum weight solution is unique, with high probability. Furthermore, as in
the previous case, we can again follow the proof of [21] to obtain a ⊕L/poly algorithm.
This completes the proof of Theorem 26.

▶ Corollary 28 (Theorem 2 restated). Given a set of k-edges {ei}i≤k, we can find weight of
the shortest two cycles passing through these edges in ⊕L/poly (and RNC)

Proof. For each pair of edges ei and ej , we can find weight of the shortest cycles separating
them using the above algorithm. Hence taking the minimum over all pairs, we get our desired
result. ◀

5.4 Constructing Cycles
We remark that under the assumption that the shortest cycle(s) are unique, we can recover
these cycles C just from the knowledge of their weight w(C). This follows the standard
strategy of solving search via isolation as in [20]: for each edge e ̸∈ {e1, . . . , ek}, delete the
edge e and call the resulting graph Ge. Running our algorithm on (Ge, {e1, . . . , ek}), if the
shortest cycle(s) weight is more than w(C), then discard e otherwise add e to the set C,
which gives us the required cycle(s). Doing this procedure in parallel for each edge e, it can
be easily seen that we can recover C in ⊕L/poly (or RNC).
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6 Conclusion

We started by recognizing the appropriate algebraic structure R over which we can present a
parallel algorithm to compute permanent modulo 2k. Then we saw two techniques to get
permanent over Z[x] (mod 2k) from R (mod 2k). First method was to choose a large enough
irreducible polynomial for our ring R. Another method was to interpolate over the ring R,
which was an extension of the commonly known interpolation over finite fields.

Then we considered applications for parallel polynomial permanent. This includes a
direct parallelization of the shortest two disjoint paths problem as given by [2]. Another
direct application, although which required some modification, was finding shortest cycle
passing through given vertices [28]. We further presented a common framework to view
the above mentioned problems. This also aided us in further generalizing and obtaining a
parallel algorithm to find shortest two disjoint cycles in any weighted undirected graph.

The more general question of computing permanent over arbitrary commutative rings of
characteristic 2k for k ≥ 2 still remains open. On the other hand, using the framework we
presented, we ask if it is possible to obtain shortest k disjoint cycles for k ≥ 3 in RNC or
even perhaps in randomized polynomial time?
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A Examples

Example 1

Let A =

 1 x+ 1 x+ 2
x x2 x2 + x

x2 3 x2 + 3

, p(x) = x6 + x3 + 1 be the irreducible polynomial and we

want to evaluate perm(A) (mod 4) over the ring R = Z[x]/(p(x)). First of all, a direct
computation gives us perm(A) = 2x5 + 6x4 + 2x3 + 12x2 + 12x. Now we demonstrate the
steps taken by our algorithm.

Step 1: We start by evaluating perm(A) (mod 2). We directly notice here that last column
is the sum of first two columns and so det(A) = 0 =⇒ perm(A) ≡ 0 (mod 2)

Step 2: Since det(A) ≡ 0 (mod 2), we solve the equation AT v = 0 over F by our method as

follows:

 1 x x2

x+ 1 x2 1
x x2 + x x2 + 1

v1
v2
v3

 = 0

Since rank of the principal 2 × 2 submatrix is already 2, we set v3 = 1 and solve the

equation:
(
v1
v2

)
= −

(
1 x

x+ 1 x2

)−1(
x2

1

)
1 to get v1 = x3 + 1 and v2 = x5 + x.

Step 3: For each j = 1, 2, 3, we find bj such that
∑
i viaij = 2bj (mod 4)

j = 1 : (x3 + 1) + x(x5 + x) + x2 = 2x2

j = 2 : (x+ 1)(x3 + 1) + x2(x5 + x) + 3 = 2x3

j = 3 : (x+ 2)(x3 + 1) + (x2 + x)(x5 + x) + x2 + 3 = 2x3 + 2x2

Step 4: We have the formula

perm(A) (mod 4) = 2

 3∑
j=1

bjperm(A[{̂3}, {̂j}]) (mod 2)



− 2
2∑
i=1

vi

 3∑
j,k=1
j<k

aijaikperm(A[{̂3, i}, {̂j, k}]) (mod 2)


Step 4.1:

perm(A[{̂3}, {̂1}]) = perm
(
x+ 1 x+ 2
x2 x2 + x

)
= x (mod 2)

perm(A[{̂3}, {̂2}]) = perm
(

1 x+ 2
x x2 + x

)
= x (mod 2)

perm(A[{̂3}, {̂3}]) = perm
(

1 x+ 1
x x2

)
= x (mod 2)

=⇒
3∑
j=1

bjperm(A[{̂3}, {̂j}]) = ((x3) + (x4) + (x4 + x3)) = 0 (mod 2)
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Step 4.2:

3∑
j,k=1
j<k

a1ja1kperm(A[{̂1, 3}, {̂j, k}])

= (x+ 1)(x2 + x) + (x+ 2)x2 + (x+ 1)(x+ 2)x = x3 + x2 + x (mod 2)
3∑

j,k=1
j<k

a2ja2kperm(A[{̂2, 3}, {̂j, k}])

= x3(x+ 2) + x(x2 + x)(x+ 1) + x2(x2 + x) = x4 + x3 + x2 (mod 2)

2∑
i=1

vi

 3∑
j,k=1
j<k

aijaikperm(A[{̂3, i}, {̂j, k}]) (mod 2)

 = x5 + x4 + x3 (mod 4)

Therefore, perm(A) (mod 4) = 2x5 + 2x4 + 2x3 which matches with our direct
computation.

Example 2

Consider A =

1 x x2

x x2 1
1 x2 x

, and so perm(A) = x5 + x4 + x2 + x. Therefore, we now have

det(A) ̸≡ 0 (mod 2)

Step 1: Find Q such that QA has all leading principal minors are non-zero. In this case, we

will get Q =

1 0 0
0 0 1
0 1 0

 =⇒ QA =

1 x x2

1 x2 x

x x2 1


Step 2: Consider matrix C whose all entries are same as A except the last one which

is incremented by y, that is C =

1 x x2

1 x2 x

x x2 1 + y

, then perm(C) = perm(A) +

yperm(A[{̂3}, {̂3}]). Again construct C ′ same as A[{̂3}, {̂3}] but replace the last entry

incremented by y′, that is C ′ =
(

1 x

x x2 + y′

)
=⇒ perm(C ′) = perm(A[{̂3}, {̂3}]) +

y′perm(A[{̂2, 3}, {̂2, 3}]). Written as one equation, we get

perm(A) = perm(C)− y (perm(C ′)− y′a11)

In this equation, both C,C ′ are matrices with det ≡ 0 (mod 2) with the correct choice of
y, y′, which were:

y0 = perm(A)perm(A[{̂3}, {̂3}])−1 (mod 2) = (x5 + x4 + x2 + x)(x4 + x3 + x2) = x3 + 1

y′
0 = perm(A[{̂3}, {̂3}])perm(A[{̂2, 3}, {̂2, 3}])−1 (mod 2) = x2 + x

So we can compute perm(C) and perm(C ′) by above method and substitute it into
previous equation to get perm(A) (mod 4).

MFCS 2021
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B Weights as a Polynomial Advice

Our proof is based on [21]. Call a weighted undirected graph (G,w) (w is the given weight
function on edges) min-k-unique, if for any k marked edges on G, there exists unique shortest
l disjoint cycles passing through these k edges. Our goal is to show for each n > 0 there exists
a set of n2 weight functions w1, . . . , wn2 such that given a graph G on n vertices, (G,wi) is
min-k-unique for some i ∈ [1, n2].

Given a graph G on n vertices and k marked edges e1, . . . , ek, let F(e1, . . . , ek) be the
family of all l disjoint cycles passing through e1, . . . , ek. Using isolation lemma [20], if w is a
random weight function, that is each edge is assigned a weight from [1, 4n2k+2] independently
and uniformly at random, then probability that F(e1, . . . , ek) has a unique minimum weight
element is at least 1− 1/4n2k. Therefore, probability that (G,w) is not min-k-unique for a
random weight function w is at most

Pr[∃e1, . . . , ek : F(e1, . . . , ek) doesn’t have a minimum weight element] ≤
∑

e1,...,ek

1
4n2k

≤ 1/4

Now we claim that there exists a set of n2 weight functions W = (w1, . . . , wn2) such that
for any given graph G on n vertices, (G,wi) is min-k-unique for some 1 ≤ i ≤ n2. We say
W is bad if it doesn’t meet this criteria and in particular W is bad for G, if none of (G,wi)
is min-k-unique. For a randomly choosen W , that is each wi is chosen independently and
uniformly at random, then

Pr[W is bad for G] ≤ Pr[∀i : (G,wi) is not min-k-unique] ≤
(

1
4

)n2

=⇒ Pr[W is bad] ≤ Pr[∃G : W is bad for G] ≤ 2n
2
(

1
4

)n2

< 1

Hence there exists some W = (w1, . . . , wn2) which satisfies the above property and so W
is the required poly advice. To complete the argument for SDCE(1, k), SDCE(2, k) ∈ ⊕L,
we obtain the weight of shortest cycle(s), using each of the weight functions wi and output
the minimum amongst them.

C Hafnians and counting perfect matchings modulo 2k

Similar to permanent and determinant, another pair of well-studied algebraic analogous
functions on a matrix are hafnians and pfaffians. Let A = (aij) be a symmetric 2n × 2n
matrix over integers, hafnian is defined as

hf(A) = 1
2nn!

∑
σ∈S2n

n∏
j=1

aσ(2j−1),σ(2j) (2)

Note that the diagonal entries of A don’t contribute in the calculation of hafnians and
hence we can assume them to be 0. Let B = (bij) be a skew-symmetric 2n × 2n matrix,
pfaffian is defined as

pf(B) = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏
j=1

bσ(2j−1),σ(2j) (3)
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But notice that hf(A) ≡ pf(A) (mod 2). [17] have shown that pf(A) can be computed in
NC and hence as an immediate consequence we get that hf(A) (mod 2) can be computed in
NC. We can reduce the computation of hafnian to several hafnians of smaller submatrices
using the following lemma. Denote by A[i, j] the matrix obtained from A by deleting rows i
and j, columns i and j.

▶ Lemma 29 ([13, Lemma 2.2]).

hf(A) =
∑
j:j ̸=i

aijhf(A[i, j])

hf(A) = aijhf(A[i, j]) +
∑

pq:p,q ̸∈{i,j},p ̸=q

(aipajq + aiqajp)hf(A[i, j, p, q])

Assume pf(A) ≡ 0 (mod 2), then det(A) ≡ 0 (mod 2) and we can find a vector v ∈ Z2n
2

such that Av = AT v = 0 (mod 2). Assume without loss of generality v1 = 1.
Let ri, ci denote the ith row and ith column of A respectively.

Construct A′ by replacing first row with
∑
viri and then replacing first column with∑

vici

Construct Ai by replacing first row with ri and first column with ci.

Then we check that

hf(A′) =
∑
j>1

∑
i≥1

viaij

 hf(A[1, j])

=
∑
i≥1

vi

∑
j>1

aijhf(A[1, j])


=
∑
j>1

a1jhf(A[1, j]) +
∑
i>1

vi

∑
j>1

aijhf(A[1, j])


= hf(A) +

∑
i>1

vihf(Ai)

Computing hf(A′): since AT v = 0 (mod 2) =⇒
∑
i≥1 viaij = 2bj (mod 2k) for some

cj ∈ Z and hence

hf(A′) =
∑
j>1

∑
i≥1

viaij

 hf(A[1, j])

=
∑
j>1

2bjhf(A[1, j])

=⇒ hf(A′) (mod 2k) = 2

∑
j>1

bjhf(A[1, j]) (mod 2k−1)
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Computing hf(Ai):

hf(Ai) = aiihf(A[1, i]) +
∑

pq:p,q ̸∈{1,i},p ̸=q

2aipaiqhf(A[1, i, p, q])

=⇒ hf(Ai) (mod 2k) = 2

 ∑
pq:p,q ̸∈{1,i},p ̸=q

aipaiqhf(A[1, i, p, q]) (mod 2k−1)


Thus, we can compute hf(A) (mod 2k) provided pf(A) ≡ 0 (mod 2).
Now if pf(A) ̸≡ 0 (mod 2), then we can find (i, j), i ̸= j such that hf(A[i, j]) ̸≡ 0 (mod 2).

Consider the matrix C where all entries are same as in A except aij is replaced with aij+1, then
we get hf(C) = hf(A)+hf(A[i, j]). Since hf(C) ≡ 0 (mod 2), we can compute hf(C) (mod 2k)
as described above and since hf(A[i, j]) is a (n− 2)× (n− 2) matrix, we compute it’s hafnian
recursively modulo 2k. Therefore, we can compute hf(A) = hf(C)− hf(A[i, j]) (mod 2k).

This gives us a P algorithm for computing hafnians modulo 2k.

Counting perfect matchings modulo 2k

Let G be an undirected graph and AG denote the adjacency matrix of the graph G. If G
has odd number of vertices, then clearly there aren’t any perfect matchings. Otherwise it is
straight-forward to see that number of perfect matchings in G is same as the value hf(AG).
Hence the result follows.
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1 Introduction

The graph isomorphism problem consists in deciding whether there is an edge-preserving
bijection between the vertex sets of two given graphs. Computationally, this problem is
polynomial-time equivalent to finding the partition into orbits of the action of the automorph-
ism group of a given graph on its vertex set. More generally, it is polynomial-time equivalent
to computing the partition into orbits of the induced action of the automorphism group on
the kth power of the vertex set for any fixed k [20] (we shall refer to this partition as the
k-orbit partition for a graph). The complexity of these problems is notoriously unresolved:
while there are reasons to believe that they are not NP-complete, it is still an open problem
as to whether they are in P. The best known upper bound to their computational time is
quasi-polynomial, which follows from a breakthrough by Babai [2].

There has been a recent surge of interest in linear-algebraic approaches to the graph
isomorphism problem (see for example [4, 12, 17, 19, 22]). In this paper, we consider
two distinct methods for incorporating algorithms for solving linear systems into graph
isomorphism solvers and compare them. The first is based on the use of algebraic proofs
systems, such as the polynomial calculus and the second are generalizations of the Weisfeiler-
Leman method, based on stability conditions and coherent algebras.
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For every k ∈ N, the k-Weisfeiler-Leman algorithm is a generalization of naïve colour
refinement, giving an approximation of the k-orbit partition. For a graph with vertex set
V , each of these algorithms outputs in time |V |O(k) a canonical labelled partition of V k
satisfying a stability condition and respecting local isomorphism. Informally, they can be
seen as forming a family of algorithms, each defining a notion of equivalence on both graphs
and tuples of vertices of graphs. A result by Cai, Fürer and Immerman [7] shows how to
construct graphs Γk of size O(k) for which the k-Weisfeiler-Leman algorithm fails to produce
the k-orbit partition. In the same paper, it is shown that the equivalence classes of the
output partition of the k-Weisfeiler-Leman algorithm coincide with the equivalence classes of
k-tuples of vertices distinguished by counting logic formulae with at most k + 1 variables.
Thus, one deduces from the tight connection made by Immerman and Lander (see Theorem
2.3 in [9]), that the equivalence notions defined by the Weisfeiler-Leman family of algorithms
delimit the expressive power of fixed point logic with counting (FPC). Intuitively, one such
limitation is the expressibility of solvability of systems of linear equations over finite fields,
since the above mentioned constructions by Cai, Fürer and Immerman are essentially graph
encodings of systems of linear equations over Z2 [1]. This has therefore prompted research
into families of algorithms graded by the natural numbers, whose notion of equivalence on
tuples of vertices of graphs is conceptually a linear algebraic invariance over some field F.
One such family is that of the invertible map tests over a field F, first defined in [12]. For
any graph, the kth algorithm of this family also produces a canonical labelled partition of
k-tuples of its vertices, satisfying a stability condition and respecting local isomorphism,
thus giving another notion of equivalence on both graphs and k-tuples of vertices thereof.
For a fixed characteristic, the output of the k-invertible map tests is independent of the
field; as such, F will hereafter be taken to be a prime field without loss of generality.One can
claim that the family of equivalences on tuples defined by the Weisfeiler-Leman algorithms
and that defined by the invertible map tests over Q simulate each other in the following
sense. For every k ∈ N, there is some k′ ∈ N such that for any graph, any pair of k-tuples
of its vertices distinguished by the k-Weisfeiler-Leman algorithm are distinguished by the
k′-invertible map test over Q. Conversely, for every k ∈ N there is a k′ ∈ N such that for
any graph, any pair of k-tuples of vertices distinguished by the k-invertible map test over Q
is distinguished by the k′-Weisfeiler-Leman algorithm. If the characteristic of F is positive
the former statement holds, but not the latter; indeed, it is shown in [18] and [10] how one
can construct graphs Γk,p for each k ∈ N and prime number p, for which the 3-invertible
map test over Zp outputs the 3-orbit partition, but the output of the k-invertible map test
over Zq with q ̸= p is strictly coarser than the k-orbit partition. A recent construction due
to Lichter [19] suggests a way of getting graphs, for any value of k, on which the k-orbit
partition cannot be obtained by the k-invertible map test over Zq for any q whatsoever.

Another approach to approximating the orbit partition is that of algebraic proof systems [3,
8]. These systems are the subject of very active study in the area of proof complexity. They
have been studied specifically in the context of graph isomorphism in [4] and [17]. In particular,
the proof systems studied are the polynomial calculus (PC), and the weaker Nullstellensatz
calculus (NC) and monomial calculus (MC). Each of these gives, for a fixed field F a set of
rules R dictating how new polynomials, with coefficients in F, may be derived from an initial
set of polynomials, which we shall refer to as axioms. In the context of graph isomorphism,
we encode any graph Γ on a vertex set V as a set of axioms Ax(Γ) ⊂ F[{xuv|u, v ∈ V }],
i.e. a collection of polynomials over variables xuv corresponding to potential edges in the
graph. An R-derivation of the polynomial xu1v1xu2v2 . . . xukvk

can then be seen as a proof
that the tuples u⃗, v⃗ ∈ V k are distinguishable. Say that such a derivation has degree d if all
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polynomials occurring in the derivation have degree at most d. For each of the calculi, fixing
the degree d gives us a polynomial-time algorithm for checking the existence of a derivation
and hence a polynomial-time approximation of the orbit partition for graphs. Again, we may
restrict F to a prime field without loss of generality.

The question we address in this paper is how the approximations of the orbit partition
obtained by these algebraic proof systems compare with those we get from the invertible
map test. In the case of fields of characteristic zero, the answer is quite clear, as both
approaches yield algorithms that are (up to constant factors) equivalent to the Weisfeiler-
Leman algorithms. This is shown for the invertible map tests in [13] and for the polynomial
calculus in [17]. In the case of positive characteristic, we show (in Section 4) the definability
of derivations of MC in FPS(p), an extension of fixed-point logic with quantifiers for the
solvability of systems of linear equations over fields of characteristic p. This implies, in
particular, that the approximation of the orbit partition obtained by MC in characteristic p
is no finer than that obtained by the invertible map test in characteristic p.

▶ Theorem 1. For any prime number p, k ∈ N and u⃗, v⃗ ∈ V k, there is a k′ ∈ N such
that if xu1v1 . . . xukvk

has a degree k MC derivation over Zp from Ax(Γ), then u⃗ and v⃗ are
distinguished by the k′-invertible map test over Zp.

In the other direction, we show that NC is able to simulate (as far as the graph isomorphism
problem is concerned) PC in characteristic zero and at least MC in positive characteristic.

▶ Theorem 2.
1. For any k ∈ N and u⃗, v⃗ ∈ V k, there is a k′ ∈ N such that if xu1v1 . . . xukvk

has a degree k
PC derivation of over Q from Ax(Γ), then there is also a degree k′ NC derivation over Q
from Ax(Γ).

2. For any prime number p, k ∈ N and u⃗, v⃗ ∈ V k, there is a k′ ∈ N such that if xu1v1 . . . xukvk

has a degree k MC derivation over Zp from Ax(Γ), then it also has a degree k′ NC
derivation over Zp from Ax(Γ).

From this, a strengthening of Theorem 6.3 in [4] also follows. Let V be the vertex set of
Γk,p as above.

▶ Theorem 3. If u⃗, v⃗ ∈ V 3 are not in the same equivalence class of the 3-orbit partition of
Γk,p, then xu1v1xu2v2xu3v3 has a degree 3 NC derivation over Zp from Ax(Γk,p).

Due to lack of space we omit the proofs of a number of results. These can be found in
the extended version [14].

Notational conventions

All sets are finite unless stated otherwise. Given two sets V and I, a tuple in V I is denoted
by v⃗, and its ith entry by vi, for each i ∈ I. We use the notation (vi)i∈I to denote the
element of V I with ith element equal to vi. We set [k] = {1, 2, . . . , k} ⊂ N and define
[k](r) = {x⃗ ∈ [k]r | xi ̸= xj ∀i, j ∈ [r], i ̸= j} for r ≤ k. For any v⃗ ∈ V k, u⃗ ∈ V r, and
i⃗ ∈ [k](r) we define v⃗⟨⃗i, u⃗⟩ ∈ V k to be the tuple with entries

(v⃗⟨⃗i, u⃗⟩)j =
{
uis if j = is for some s ∈ [r]
vj otherwise.

In other words, v⃗⟨⃗i, u⃗⟩ is the tuple obtained from v⃗ by substituting the elements of u⃗ in the
positions specified by i⃗. Given two tuples v⃗ ∈ V r and w⃗ ∈ V s, their concatenation is denoted
by v⃗ · w⃗ ∈ V r+s. For a relation R ⊆ V 2 we define the adjacency matrix of R to be the V × V
matrix whose (u, v) entry is 1 if (u, v) ∈ R and 0 otherwise.
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2 Preliminaries

2.1 Labelled partitions and refinement operators
A labelled partition of a set A is a map γ : A→ X, where X is a set of elements sometimes
referred to as colours, and γ(a) as the colour of a in γ. Denote the class of labelled partitions
of A by P(A). For partitions R and S on A we write R ⪯A S and say that S refines
R if, whenever a, b ∈ A are in the same equivalence class of S, they are also in the same
equivalence class of R. We extend the partial order ⪯A to labelled paritions by writing
γ ⪯A ρ to mean that the equivalence relation {(a, b) | ρ(a) = ρ(b)} refines the relation
{(a, b) | γ(a) = γ(b)}. Note that this does not require that the co-domains of γ and ρ are the
same or indeed related in any way.

Define an action of Sym(k) on V k by setting v⃗π to be the element of V k with ith entry
vπ−1(i). γ ∈ P(V k) is said to be invariant if γ(u⃗) = γ(v⃗) implies γ(u⃗π) = γ(v⃗π) for all
π ∈ Sym(k) and u⃗, v⃗ ∈ V k.

For t ∈ [k], the t-projection of γ is defined to be the labelled partition prtγ ∈ P(V t) such
that for all u⃗ ∈ V t

prtγ(u⃗) = γ(u1, u2, . . . , ut, . . . , ut).

For v⃗ ∈ V k, with t, k as above, we similarly define prtv⃗ to be the t-tuple (v1, v2, . . . , vt).

▶ Definition 4 (Refinement operator). A k-refinement operator is a map R which, for any
set V , assigns to each γ ∈ P(V k) a partition R ◦ γ ∈ P(V k) such that γ ⪯ R ◦ γ and it is
monotone; that is, γ ⪯ ρ =⇒ R ◦ γ ⪯ R ◦ ρ.

We say that γ ∈ P(V k) is R-stable if R ◦ γ = γ. Given an X ∈ P(V k), define a sequence
of labelled partitions by X0 = X and Xi+1 = R ◦Xi. Then, there is some s such that for all
i, i ≥ s implies that Xi is R-stable. For the minimal such s we denote Xs by [X]R.

In order to define the refinement operator leading to the invertible map test (in Section 3.1
below), we need the notion of character vectors. Let v⃗ ∈ V k be a k-tuple of vertices, i⃗ ∈ [k](2r)

a 2r-tuple of indices and γ ∈ P(V k) a labelled partition of V k . For a pair x⃗, y⃗ ∈ V r of
r-tuples of vertices, γ(v⃗⟨⃗i, x⃗ · y⃗⟩) is the colour of the tuple obtained by substituting x⃗, y⃗ into
v⃗ in the positions specified by i. For each σ ∈ Im(γ), we define the V r × V r matrix χσ with
01 entries as the adjacency matrix of the relation {(x⃗, y⃗) ∈ (V r)2 | γ(v⃗⟨⃗i, x⃗ · y⃗⟩) = σ}. The
(⃗i, v⃗)-character vector of γ is then defined to be the tuple χ⃗ = (χσ)σ∈Im(γ).

2.2 Extensions of first order and inflationary fixed point logics
We assume the reader has some familiarity with first-order (FO) and fixed-point logics (FP),
and logical interpretations. Details can be found in [16]. Throughout the paper, for a logic
L, we denote by Lk the class of all L-formulae (over some pre-specified vocabulary) with at
most k variables. We use C to denote the counting logics as in [21]. Let A be a structure with
universe V and fix u⃗, v⃗ ∈ V k. We say that some Lk formula ϕ(z⃗) distinguishes (A, z⃗ 7→ u⃗)
from (A, z⃗ 7→ v⃗) if either A |= ϕ(u⃗) and A ̸|= ϕ(v⃗) or A ̸|= ϕ(u⃗) and A |= ϕ(v⃗) . For a logic L
we denote its extension via solvability quantifiers slvp over a finite field of characteristic p by
L+S(p). Let ϕ(x⃗, y⃗, z⃗) be a formula of such a logic, where x⃗, y⃗, z⃗ are i, j, k-tuples of variables
respectively. Then slvp(x⃗y⃗.ϕ(x⃗, y⃗, z⃗)) is also a L+S(p) formula. See [11, 17] for more about
these quantifiers. The semantics of this quantifier is as follows. To each structure with
universe V and k-tuple v⃗ ∈ V k, we associate the V i × V j matrix Sv⃗ϕ over {0, 1} ⊆ Zp with
(r⃗, s⃗)-entry equal to 1 if, and only if, A |= ϕ(r⃗, s⃗, v⃗). Then, (A, z⃗ 7→ v⃗) |= slvp(x⃗y⃗.ϕ(x⃗, y⃗, z⃗))
if, and only if, there is some a⃗ ∈ ZV j

p such that Sv⃗ϕa⃗ = 1.
When L is FP or FO, we denote L+S(p) by FPS(p) or FOS(p) respectively.
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3 Refinement operators and proof systems with algebraic rules

We give an overview of the refinement operators and proof systems of interest.

3.1 The invertible map tests
The equivalence relations on tuples of vertices induced by the invertible map tests have been
originally introduced in [12], under the guise of a pebble game with algebraic rules on a
pair of graphs. Algorithmically, one can find these equivalence classes by computing a fixed
point of the invertible map operators IMF

k,r, as defined in Sections 8 of [13]. Each of these
is a k-refinement operator such that for γ ∈ P(V k), the colour of v⃗ ∈ V k in the partition
IMF

k,r ◦ γ is given by a tuple whose entries are γ(v⃗) and the equivalence classes under matrix
conjugation of the (⃗i, v⃗)-character vectors of γ, for all i⃗ ∈ [k](2r). Without going into the
details, one can show that γ is IMF

k,r-stable if for all u⃗, v⃗ ∈ V k and i⃗ ∈ [k](2r)

γ(u⃗) = γ(v⃗) =⇒ ∃M ∈ GLV r s.t. ∀σ ∈ Im(γ)(F),MχσM
−1 = ξσ

where (χσ)σ∈Im(γ) and (ξσ)σ∈Im(γ) are the (⃗i, v⃗) and (⃗i, u⃗)-character vectors of γ respectively.
For a graph Γ on V , let αk,Γ be a canonical labelled partition of V k into atomic types of

Γ.1 Define the k-refinement operator IMF
k so that for γ ∈ P(V k), the colour of v⃗ ∈ V k in

IMF
k ◦ γ is given by a tuple whose entries are the colours of v⃗ in IMF

k,r ◦ γ, for all r ≤ k/2.
Formally,

IMF
k ◦ γ(v⃗) = (IMF

k,1 ◦ γ(v⃗), IMF
k,2 ◦ γ(v⃗), . . . , IMF

k,⌊k/2⌋ ◦ γ(v⃗)).

Then, the output of the k-invertible map test over F is the labelled partition [αk,Γ]IMF
k . It

is explained in Proposition 4.6 in [13] how one can obtain this partition in time |V |O(k)

by iteratively applying IMF
k to αk,Γ. Note that for a fixed characteristic, the choice of F

is irrelevant: indeed, if k-tuples A⃗, B⃗ ∈ MatV (F)k are related by matrix conjugation over
F if, and only if, they are related by matrix conjugation over any field extension of F [15].
Since the entries of the character vectors are 01-matrices, we may assume, without loss of
generality, that F is a prime field. Hereafter, we shall then indicate the operators IMF

k,r and
IMF

k by IMc
k,r and IMc

k respectively, where c is the characteristic of F.

3.2 Counting logics operators
It is useful to express the partition of k-tuples into equivalence classes under finite variable
counting logics as the fixed point of a refinement operator. For this purpose, the k-refinement
operators Ck,r, for r < k, have been defined so that for any γ ∈ P(V k), the colour of v⃗ ∈ V k
in Ck,r ◦ γ is given by a tuple whose entries are γ(v⃗) and the multisets of colours in γ of the
tuples which can be obtained by substituting an r-tuple into v⃗ (see Section 4 of [13]). In
particular, γ is Ck,r-stable if, and only if, for all i⃗ ∈ [k](r) and σ ∈ Im(γ), the size of the set
{x⃗ ∈ V r | γ(v⃗⟨⃗i, x⃗⟩) = σ} is independent of the choice of v⃗ from within its equivalence class
in γ. As such, for a graph Γ on V , u⃗, v⃗ ∈ V k are in the same equivalence class of [αk,Γ]Ck,1

if, and only if, there are no Ck formulae distinguishing (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗). The
combinatorial properties of Ck,r-stable partitions can be used to show the relation between

1 By canonical we mean invariant under isomorphism. That is, if Γ and Γ′ are graphs on V and V ′

respectively and u⃗ ∈ V k and v⃗ ∈ (V ′)k, then αk,Γ(u⃗) = αk,Γ′ (v⃗) if, and only if, the mapping ui → vi is
an isomorphism of the subgraphs induced by the vertices in u⃗ and v⃗.
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the distinguishing powers of finite variable fragments of counting logics and the invertible
map tests. In short, the invertible map test over fields of characteristic zero is not more
distinguishing than counting logic, but over fields of positive characteristic it is. To be precise,
with Γ, u⃗, v⃗ as above, the following holds:

For any field F, if the k-invertible map test over F does not distinguish u⃗ and v⃗ in Γ,
then there are no Ck−1-formulae distinguishing (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗).
If the k-invertible map test over Q distinguishes u⃗ from v⃗ in Γ, then there is some
C2k−1-formula distinguishing (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗). 2

3.3 Solvability operators
In order to construct a refinement operator whose stable points reflect the properties of
FOS(p), we consider a weakened version of the invertible map operators, whose action on
labelled partitions can be computed solely by solving systems of linear equations. To achieve
this, we proceed by defining an equivalence relation ∼sol on the character vectors, which can
be seen as a relaxation of the conjugation relation ∼.

Let PV (F) = {A ∈ MatV (F) |
∑
w∈V Awv =

∑
w∈V Auw = 1, ∀u, v ∈ V }. Or, equival-

ently, PV (F) is the set of matrices A ∈ MatV (F) such that 1V is an eigenvector of both A

and At, with corresponding eigenvalue 1. Set JV to be the V × V all-ones matrix and for a
set I, let

X IV (F) = {A⃗ ∈ MatV (F)I |
∑
s∈I

As = JV and ∀i ∈ I, ∃j, Ati = Aj}.

Note that if γ is invariant and i⃗ ∈ [k](2r), then any (⃗i, v⃗)- character χ⃗ of γ is an element of
X Im(γ)
V (F), since∑
σ∈Im(γ)

χσ = JV r (1)

and by invariance of γ, for any σ ∈ Im(γ) there is some σ′ such that (χσ)t = χσ′ . Define the
relation ∼sol on X IV (F) as follows: A⃗ ∼sol B⃗ if there is some S ∈ PV (F) such that AiS = SBi
for all i ∈ I.

▶ Lemma 5. ∼sol is an equivalence relation on X IV (F).

Proof. Clearly, A⃗ ∼sol A⃗, since IV ∈ PV (F) and AiIV = IVAi for all i ∈ I. Suppose
A⃗ ∼sol B⃗. Let S ∈ PV (F) satisfy AiS = SBi for all i ∈ I. Then BtiS

t = StAti and thus,
from the definition of X IV , BiSt = StAi for all i ∈ I. Since St ∈ PV (F), B⃗ ∼sol A⃗. Finally,
suppose A⃗ ∼sol B⃗ and B⃗ ∼sol C⃗. Let S, T ∈ PV (F) satisfy AiS = SBi an BiT = TCi
for all i ∈ I. Then AiST = SBiT = STCi. Since S, T, St and T t must all have 1V r as
eigenvector, with corresponding eigenvalue 1, so must ST and (ST )t. Hence, ST ∈ PV (F)
and A⃗ ∼sol C⃗. ◀

2 This is a direct consequence of the following generalizations of Lemmata 7.1 and 7.3 in [13] respectively:
for all k, r ∈ N with 2r < k,

1. The k-projection of a graph-like IMc
k+r,r-stable partition is Ck,r-stable for any characteristic c.

2. The k-projection of a graph-like Ck+r,r-stable partition is IM0
k,r-stable.

The authors prove it only for the case r = 1, but a similar argument holds for any r ∈ N.
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For k, r ∈ N with 2r ≤ k, a field F, and an invariant γ ∈ P(V k), we define the solvability
operators SF

k,r by setting SF
k,r ◦ γ to be the labelled partition for which the colour of v⃗ ∈ V k

is a tuple whose entries are γ(v⃗) and the equivalence classes under the relation ∼sol of the
(⃗i, v⃗)-character vectors of γ, for all i⃗ ∈ [k](2r). Formally:

SF
k,r ◦ γ : V k → Im(γ)× (X Im(γ)

V r (F)/ ∼sol)[k](2r)

v⃗ 7→ (γ(v⃗), (χ⃗⃗i)⃗i∈[k](2r)),

where χ⃗⃗i is the (⃗i, v⃗)-character vector of γ.
As before, since the entries of the matrices in the character vector are all 0 and 1, we may

restrict F to being a prime field without loss of generality, and denote SF
k,r by Sck,r, where

c = char(F). It is easy to show that Sck,r is monotone on the class of invariant partitions of
V k and is thus a k-refinement operator when considered with this domain restriction.

For the remainder of this section, we assume that γ ∈ P(V k) is invariant and that χ⃗ and
ξ⃗ are the (⃗i, v⃗) and (⃗i, u⃗)-character vectors of γ respectively, for some fixed i⃗ ∈ [k](2r). The
following is a direct consequence of the definition of Sck,r.

▶ Proposition 6. Let F be the prime field of characteristic c. For all k, r ∈ N, with 2r ≤ k,
Sck,r ◦ γ(u⃗) = Sck,r ◦ γ(v⃗) if, and only if, γ(u⃗) = γ(v⃗) and for each i⃗ ∈ [k](2r) there exist some
M ∈ PV r (F) such that for all σ ∈ Im(γ), χσM = Mξσ. In particular, γ is Sck,r-stable if, and
only if, for all u⃗, v⃗ ∈ V k and i⃗ ∈ [k](2r)

γ(u⃗) = γ(v⃗) =⇒ ∃M ∈ PV r (F) s.t. ∀σ ∈ Im(γ), χσM = Mξσ ∀σ ∈ Im(γ).

We now show some useful properties of the operators Sck,r.

▶ Lemma 7. An IMc
k,r-stable partition is Sck,r-stable.

Proof. Let F be the prime field of characteristic c. Suppose γ is IMc
k,r-stable and let

γ(u⃗) = γ(v⃗). Then, for all i⃗ ∈ [k](2r), there is some M ∈ GLV r (F) such that M−1χσM = ξσ
for all σ ∈ Im(γ). By equation 1, MJV r = JV rM and thus, both M and M t have 1V r as
eigenvector with corresponding non-zero eigenvalue λ ∈ F. Since, 1

λM ∈ PV r (F), the result
follows. ◀

▶ Lemma 8. If γ is Sck,r-stable the following hold:
1. If γ(u⃗) = γ(v⃗), and γ is graph-like, then for all i⃗ ∈ [k](2r) and σ ∈ Im(γ), {w⃗ ∈ V r |

γ(u⃗⟨⃗i, w⃗ · w⃗⟩) = σ} is non-empty if, and only if, {w⃗ ∈ V r | γ(v⃗⟨⃗i, w⃗ · w⃗⟩) = σ} is
non-empty.

2. If c = 0, then γ is Ck,2r-stable.
Note that if c = 0, the second statement implies the first (refer to Section 4 and 5 of [13] for
more details on properties of Ck,r-stability).

Proof. Suppose {w⃗ ∈ V r | γ(u⃗⟨⃗i, (w⃗ · w⃗)⟩) = σ} is non-empty. Since γ is graph-like, χσ
must have all the non-zero entries on the diagonal. Hence, for any M ∈ PV r (F), χσM and,
consequently Mξσ must be non-zero. As such, {w⃗ ∈ V r | γ(v⃗⟨⃗i, (w⃗ · w⃗)⟩) = σ} is non-empty.
The converse can be argued by symmetry, thus showing (1).

For (2), it suffices to show that: if A,B ∈ MatV (F) are 01-matrices and AM = MB for
some M ∈ PV (F) then A and B have the same number of non-zero entries if char(F) = 0.
Indeed, note that if α and β are the number of non-zero entries of A and B respectively,
then αJV = JVAJV and βJV = JVBJV . Since MJV = JVM = JV ,

αJV = JVAJV = JVAMJV = JVMBJV = JVBJV = βJV ,

whence α = β. ◀
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In particular, if r = 1, statement (1) above implies that there is some x ∈ V such that
prk−1γ(prk−1u⃗⟨i, x⟩) = σ if, and only if, there is some y ∈ V, such that prk−1γ(prk−1v⃗⟨i, y⟩) =
σ. Furthermore, from (2) and Lemma 5.7 in [13], prk−1γ is Ck−1 stable.

▶ Corollary 9. Let γ = [αk,Γ]S
c
k,1 for some graph Γ on V . If prk−1γ(u⃗) = prk−1γ(v⃗), there

are no first-order formulae distinguishing (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗). In addition, if
c = 0, there are no Ck−1-formulae distinguishing (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗).

Similarly to the invertible map operators, we define the k-refinement operator Sck so that for
γ ∈ P(V k), the colour of v⃗ ∈ V k in Sck ◦ γ is given by a tuple whose entries are the colours of
v⃗ in Sck,r ◦ γ, for all r < k/2; that is,

Sck ◦ γ(v⃗) = (Sck,1 ◦ γ(v⃗), Sck,2 ◦ γ(v⃗), . . . , Sck,⌊k/2⌋ ◦ γ(v⃗)).

The next statement will be the crux of our main results.

▶ Theorem 10. For any prime number p, if γ = [αk,Γ]S
p
k and γ(u⃗) = γ(v⃗), there are no

FOSk−1(p) formulae distinguishing (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗).

Proof. We proceed by induction on the structure of FOS(p) formulae ϕ(z⃗), where z⃗ is a k-
tuple of pairwise distinct variables. If ϕ(z⃗) contains only atomic formulae, boolean connectives
and first order quantifiers, the statement holds by Corollary 9. Assume that for some ϕ(z⃗) ∈
FOSk(p), AΓ |= ϕ(u⃗) ⇐⇒ AΓ |= ϕ(v⃗), and suppose (AΓ, z⃗ 7→ v⃗) |= slvp[x⃗y⃗.ϕ(z⃗⟨⃗i, x⃗ · y⃗⟩)],
where i⃗ ∈ [k](2r) and x⃗, y⃗ are r-tuples of distinct variables (distinct from variables in the
tuple z⃗). Let Sv⃗ be the adjacency matrix of the relation {(⃗a, b⃗) ∈ V r × V r | (AΓ, z⃗ 7→ v⃗) |=
ϕ(v⃗⟨⃗i, a⃗ · b⃗⟩)}, and similarly define Su⃗. Then, there is some a⃗ ∈ ZV r

p such that Sv⃗a⃗ = 1V r .
By the induction hypothesis, Su⃗ =

∑
σ∈I χσ and Sv⃗ =

∑
σ∈I ξσ for some I ⊆ Im(γ). Since

there exists M ∈ PV r (Zp) such that χσM = Mξσ for all σ ∈ Im(γ), we have

Sv⃗a⃗ = 1V r =⇒ MSv⃗a⃗ = 1V r =⇒ Su⃗(Ma⃗) = 1V r ,

from which it follows that (AΓ, z⃗ 7→ u⃗) |= slvp[x⃗y⃗.ϕ(z⃗⟨⃗i, x⃗ · y⃗⟩)]. Using a symmetric argument,
we conclude that slvp[x⃗y⃗.ϕ(z⃗⟨⃗i, x⃗ · y⃗⟩)] does not distinguish (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗)
and the result follows by induction. ◀

3.4 Polynomial, monomial and Nullstellensatz calculi
The idea behind polynomial calculus (PC), monomial calculus (MC) and Nullstellensatz
calculus (NC) is that of encoding Boolean formulae as multivariate polynomials and concluding
that they are inconsistent if the polynomials do not have a common root. The PC inference
rules for a set of axioms A ⊂ F[x1, ..., xn] are as follows:
1. f for all f ∈ A.
2. Multiplication rule: f

xf for all derived polynomials f , and variables x ∈ {x1, ..., xn}.
3. Linearity rule: f,g

λf+µg for all derived polynomials f, g and λ, µ ∈ F.
The inference rules for MC are obtained by restricting f in the multiplication rule to be an
axiom times a monomial or a monomial. By further restricting f to be an axiom times a
monomial, one obtains the NC inference rules. The degree of a PC (or MC or NC) derivation
is the maximum degree of all polynomials involved in the derivation, and a PC (or MC or NC,
respectively) refutation of A is a derivation of 1 from A using PC (or MC or NC, respectively)
rules. We are really interested in roots where the variables are assigned 01-values, so as to
encode the Boolean framework. To enforce this, we assume that the axioms always includes
the polynomials x2 − x for all x ∈ {x1, . . . , xn}. We may therefore restrict our focus to
multilinear polynomials exclusively.
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We denote by PCk the proof system using the same inference rules as PC with the added
constraint that all derivations must have degree at most k, and we use the same convention
for MCk and NCk. Though these proof systems with bounded degree are not complete, their
refutations can be decided in polynomial time in the number of variables.

For a graph Γ on V we define Ax(Γ) ⊆ F[{xuv|u, v ∈ V }] to be the set of axioms containing
the following polynomials:
1.

∑
u∈V xuv − 1 for all v ∈ V .

2.
∑
u∈V xvu − 1 for all v ∈ V .

3. xuvxu′v′ if the map u 7→ u′, v 7→ v′ is not a local isomorphism in Γ.
4. x2

uv − xuv for all u, v ∈ V .
For u⃗, v⃗ ∈ V k, we further define Ax(Γu⃗→v⃗) to contain the above plus xviui − 1 for all i ∈ [k].

When considering these axiom we assume, without loss of generality, that F is a prime
field. Let ≡cPCk

be the relation on V k, where u⃗ ≡cPCk
v⃗ if there is no degree k PC refutation

of Ax(Γu⃗→v⃗) over the prime field of characteristic c, and similarly define ≡cMCk
and ≡cNCk

.

▶ Lemma 11. ≡cPCk
, ≡cMCk

and ≡cNCk
are equivalence relations on V k.

Proof. Clearly, u⃗ ≡cPCk
u⃗. Indeed, the polynomials in the ideal generated by Ax(Γu⃗→u⃗) have

the common root xrs = δrs, where δrs is the Kronecker delta. Hence, the ideal generated by
Ax(Γu⃗→u⃗) is non-trivial. The set Ax(Γ) is invariant under the transformation xrs → xsr for
all r, s ∈ V . Thus, u⃗ ≡cPCk

v⃗ =⇒ v⃗ ≡cPCk
u⃗.

Suppose u⃗ ≡cPCk
v⃗ and v⃗ ≡cPCk

w⃗. Let π be the map vi → wi for i ∈ [k]. Note that π is
well defined, for if vi = vj for some i ̸= j and π(vi) ̸= π(vj), then xviwixvjwj ∈ Ax(Γ) - a
contradiction. For A ⊆ V 2, define Aπ as follows:

Aπ =


{(r, π(s)) | (r, s) ∈ A} if for all (r, s) ∈ A there is some j such that s = vj ;
{(r, π−1(s)) | (r, s ∈ A)} if for all (r, s) ∈ A there is some j such that s = wj ; and
A otherwise.

For a multilinear polynomial f =
∑
aAXA, let pπ =

∑
aAXAπ . We show by induction

on the PC inference rules that there is a PCk derivation of p if, and only if, there is PCk
derivation of fπ. Indeed, if f is in Ax(Γ), then so is fπ. Suppose there is a PCk derivation of
f, g, fπ and gπ. Then there is a PCk derivation of (λf +µg)π = λfπ +µgπ. Finally, suppose
the degree of f is less than k, and suppose, without loss of generality that f = XA for some
A ⊆ V 2. Then, there is a PCk derivation of XA∪{(r,s)} for any r, s ∈ V . By checking case by
case, it follows that there is a PCk derivation of (XA∪{(r,s)})π. Since (Aπ)π = A and hence,
(fπ)π = f , there is a PCk derivation of f if, and only if, there is a PCk derivation of fπ.
In particular, since there is no PCk derivation of X{(vi,wi)|i∈[k]}, there is no derivation of
(X{(ui,vi)|i∈[k]})π = X{(ui,wi)|i∈[k]}. Whence, u⃗ ≡cPCk

w⃗. ◀

It is easy to see that the relation ≡cPCk
refines ≡cMCk

which, in turn, refines ≡cNCk
, since

a NCk refutation is a MCk refutation which is also a PCk refutation. More precisely:

▶ Lemma 12. For any graph on V and u⃗, v⃗ ∈ V k, u⃗ ≡cPCk
v⃗ =⇒ u⃗ ≡cMCk

v⃗ =⇒ u⃗ ≡cNCk
v⃗.

For c = 0, Grohe et al. have characterized these relations in terms of counting logics:

Let Γ be a graph on V and u⃗, v⃗ ∈ V k. Then u⃗ ≡0
MCk

v⃗ if, and only if, no Ck formula
distinguishes (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗) (Theorem 4.4 in [4]). Furthermore, if
u⃗ ̸≡0

PCk
v⃗, there a k′ = O(k), such that some Ck′ formula distinguishes (AΓ, z⃗ 7→ u⃗)

from (AΓ, z⃗ 7→ v⃗) (Theorem 6.6 in [17]).

Our main results attempt to give a similar characterization for c > 0 in terms of logics
with solvability quantifiers.
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4 Definability of monomial calculus refutations over finite fields

At the core of the proof of Theorem 1 is the definability of monomial calculus refutations in
FPS(p). More precisely, the main objective of this section is to prove the following statement
(we will explain what we mean by structural encoding in Section 4.1).

▶ Lemma 13. Let A be a structural encoding of a finite set of polynomials P of degree at
most d, over a finite field F of positive characteristic p. For any k ∈ N there is a FPS(p)
formula ϕd,k such that A |= ϕd,k if, and only if, there is an MCk refutation of P over F. 3

For the sake of argument, we assume that F = Zp. We first recall how to express the
solvability of linear equations with coefficients other than 0 and 1.

4.1 Defining solvability of linear equations over finite fields
For each prime number p, let LINp be a relational vocabulary with the following symbols:
1. A binary relational symbol Aq for each q ∈ Zp.
2. A unary relational symbol bq for each q ∈ Zp.
Let A ∈ MatE×V (Zp) and b⃗ ∈ ZEp . A LINp-structure A with universe V ∪E (V for variables
and E for equations) is a structural encoding of the system of linear equations Ax⃗ = b⃗ if, for
all e ∈ E, v ∈ V , A |= Aq(e, v) if Aev = q and A |= bq(e) if be = q.

Recall Lemma 4.1 in [11].

▶ Lemma 14. There is a quantifier free interpretation I of LINp into LINp such that if A
encodes the system of linear equations Ax⃗ = b⃗, then:
1. I(A) encodes a system of linear equations A′y⃗ = 1, where 1 is the all 1s vector of

appropriate length and A′ is a 01-matrix.
2. A′y⃗ = 1 has a solution if, and only if, Ax⃗ = b⃗ has a solution.
Thus, I(A) |= slvp(xy.A1(x, y)) if, and only if, Ax⃗ = b⃗ has a solution and hence, there is a
FOS(p) formula Φ such that A |= Φ if, and only if, the system encoded by A has a solution.

4.2 Idea of proof of Lemma 13
Deciding whether a set of axioms has a monomial calculus refutations of a given degree
can be understood as the following procedure. The input is a finite set of multilinear
polynomials P from the ring F[x1, . . . , xr], and the output is REFUTE or NOREFUTE. We
denote the multilinear monomial xa1xa2 . . . xar

by XA where A = {a1, a2 . . . , ar}, so that for
a polynomial f , XAf = xa1xa2 . . . xarf . In this form, X∅ denotes 1.

INPUT: P ⊂ F[x1, . . . , xr]
OUTPUT: REFUTE or NOREFUTE.
Initialize S = {XAf | f ∈ P, deg(XAf) ≤ k}.
while spanFS has changed since last round or 1 /∈ spanFS do
M← {A ⊆ [r] | |A| < k,XA ∈ spanFS}.
S ← S ∪ {XB | |B| ≤ k, ∃A ∈M, A ⊆ B}.

end while
if 1 ∈ spanFS then

OUTPUT REFUTE
else output NOREFUTE.
end if

3 Note that it is possible to derive a similar result independent of the parameter d. Since d = 2 for axioms
of the form Ax(Γ), the statement of Lemma 13 suffices for our purpose.
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Note that to verify the condition of the while loop, one need not store in memory the set
spanFS (whose size is exponential in the input); this can be done by checking the solvability
of linear equations. The number of iterations of the while loop is at most the number
of multilinear monomials of degree at most k, thus ensuring that the procedure runs in
polynomial time. Crucially, at each iteration of the while loop, the F-span of S has a
canonical generating set.

Recall that we are assuming that F = Zp. By viewing polynomials over Zp as vectors in
the standard basis given by monomials, we encode P as a structure A with universe V over
the vocabulary POLYp = (Var, U, C0, C1, . . . , Cp−1), where:
1. V = P ∪ {xi | i ∈ [r]} ∪ {1}.
2. Var and U are unary relational symbol with A |= Var(v) if, and only if, v ∈ {xi | i ∈ [r]},

and A |= U(v) if, and only if, v = 1.
3. Cq for q ∈ Zp are (d+ 1)-ary relations, where d is the maximal degree of the polynomials

in P . These encode P in matrix form; that is, A |= Cq(u, v1, . . . , vd) if, and only if, u ∈ P ,
each vi is equal to a variable or 1, and the coefficient of the monomial v1v2 . . . vd in u is
equal to q.

We now use a k-ary interpretation to obtain a structure whose universe is the set of multi-
linear polynomials of degree at most k. Formally, let POLY∗

p = (A0, A1, . . . , Ap−1, U∗, Mon, Sub)
be a vocabulary where Mon and U∗ are unary relational symbols, Sub is a binary relational
symbol, and Aq are as in the vocabulary LINp. One can then define an interpretation J from
POLYp into POLY∗

p such that:
1. The universe of J (A) are elements v⃗ ∈ V k where either all vi are equal to 1, all vi are

variables, or v1 is a polynomial in P and v2, . . . , vk are either all equal to 1 or are variables
such that |{vi | 2 ≤ i ≤ k}| ≤ k − deg(v1). The relation ≡J partitions the universe into
equivalence classes uniquely determined by the set of entries of each tuple. If the entries
of v⃗ are all equal to 1, we indicate its class by X∅, and similarly, if vi = xai

for all i ∈ [k],
we indicate its class by XA where A = {ai | i ∈ [k]}. If v1 = f for some f ∈ P and
v2, . . . , vk are all equal to 1, we indicate the class of v⃗ by f and if vi = ai for 2 ≤ i ≤ k,
we indicate its class by the pair (XA, f) where A = {ai | 2 ≤ i ≤ k}. We leave it to the
reader to check that such an equivalence relation can be defined with first-order formulae.

2. A |= U(v⃗) and A |= Mon(v⃗) if, and only if, the equivalence class of v⃗ is X∅ and XA with
|A| ≥ 1 respectively.

3. A |= Aq(u⃗, v⃗) if, and only if, the equivalence class of u⃗ and v⃗ are XA and (XB , f) for some
f ∈ P respectively, and the coefficient of XA in XBf equals q.

4. A |= Sub(u⃗, v⃗) if, and only if, the equivalence classes of u⃗ and v⃗ are XA and XB respectively
and A ⊆ B.

The last thing required for proving Lemma 13 is showing the definability of monomials in the
set S after each iteration of the while loop. In what follows, set T = {XAf | f ∈ P,A ⊆
[r], deg(XAf) ≤ k}.

Proof of Lemma 13. Let ψ(z) be some FPS(p) formula over the vocabulary POLY*p. There
is an interpretation K(t) of POLY∗

p into LINp such that K(J (A), t 7→ XA) encodes the system
of linear equations determining whether XA is in the Zp-span of the set

Tψ = T ∪ {XB | (A, z 7→ XB) |= ψ(z) ∧ Mon(z)}.

By Lemma 14, there is a FPS(p) formula θψ(z), depending on ψ, such that (J (A), z 7→
XA) |= θψ(z) if, and only if, the monomial XA is in the Zp-span of Tψ.
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In particular, replacing ψ with some unary relational variable Z,

(J (A), z 7→ XA) |= ∃y.θZ(y) ∧ Sub(y, z)

holds if, and only if, there is some B ⊆ A such that XB is in the Zp-span of TZ . Whence,

(J (A), z′ 7→ X∅) |= ifpZ,z(∃y.θZ(y) ∧ Sub(y, z))(z′) (2)

if, and only if, there is an MCk refutation of P over Zp. By applying the Interpretation
Lemma to the above formula and the interpretation J , the desired result follows. ◀

Note that in formula 2, the solvability quantifier is included in the formula θZ(y).

▶ Corollary 15. For any k ∈ N, there is some k′ such that for any graph Γ on V and
u⃗, v⃗ ∈ V k, if there is a MCk refutation of Ax(Γu⃗→v⃗) over Zp, then there is some FOSk′(p)
formula ϕ(z⃗) distinguishing (AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗).

Proof. By Lemma 13 the equivalence classes of ≡pMCk
are definable in FPS(p) and hence, by

the embedding of FPS(p) in infinitary FOS(p), the statement follows. ◀

Combining the latter with Theorem 10 and Lemma 7, one deduces Theorem 1.

5 Nullstellensatz refutations and Sp
k-stability

The focus of this section is the proof of the following statement.

▶ Lemma 16. Let Γ be a graph on V and let γ ∈ P(V k). If for all u⃗, v⃗ ∈ V k, γ(u⃗) = γ(v⃗)
if, and only if, u⃗ ≡pNCk

v⃗, then γ is Spk-stable.

Theorems 2 and 3 are its direct consequences.

5.1 Proof of Lemma 16

In what follows, γ ∈ P(V k) satisfies the assumptions of Lemma 16, u⃗, v⃗ ∈ V k and χ⃗ and ξ⃗

are the (⃗i, u⃗) and (⃗i, v⃗)-character vectors of γ respectively, where we may assume without
loss of generality that i⃗ = (k, k − 1, . . . , k − 2r + 1) ∈ [k](2r), for some r with 2r ≤ k. For
w⃗, z⃗ ∈ V l, denote by Xw⃗z⃗ the monomial xw1z1xw2z2 . . . xwlzl

(which need not be multilinear).
Recall that γ is Spk,r-stable, if, and only if, for every u⃗, v⃗ there is some matrix T ∈ PV r (Zp)

such that χσT = Tξσ, for all σ ∈ Im(γ). That is, the following system of equations is solvable
in the variables Tw⃗z⃗:∑

a⃗∈V r

(χσ)w⃗a⃗Ta⃗z⃗ −
∑
a⃗∈V r

Tw⃗a⃗(ξσ)a⃗z⃗ = 0 for σ ∈ Im(γ), w⃗, z⃗ ∈ V r

∑
a⃗∈V r

Tw⃗a⃗ − 1 = 0 and
∑
a⃗∈V r

Ta⃗z⃗ − 1 = 0 for w⃗, z⃗ ∈ V r,

where (χσ)w⃗a⃗ is equal to 1 if γ(u⃗⟨⃗i, w⃗ · a⃗⟩) = σ and 0 otherwise (similarly for ξσ).
We show that there is a NCk derivation from Ax(Γv⃗→u⃗) over Zp of the following multilinear

polynomials (Lemma 19):
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∑
a⃗|γ(u⃗⟨⃗i,w⃗·⃗a⟩)=σ

Xa⃗z⃗ −
∑

a⃗|γ(v⃗⟨⃗i,⃗a·z⃗⟩)=σ

Xw⃗a⃗ for σ ∈ Im(γ), w⃗, z⃗ ∈ V r (3)

∑
a⃗∈V r

Xw⃗a⃗ − 1 and
∑
a⃗∈V r

Xa⃗z⃗ − 1 for w⃗, z⃗ ∈ V r. (4)

We may view each monomial (apart from the constant term) as a distinct linear variable, so
that all of the above are linear polynomials. Since γ(u⃗) = γ(v⃗), there is no NCk refutation
of Ax(Γv⃗→u⃗) and hence, no linear combination of 3 and 4 gives the constant polynomial 1.
It follows that if viewed as linear polynomials, 3 and 4 have a common root, thus showing
Lemma 16.

▶ Lemma 17. If γ(u⃗⟨⃗i, w⃗ · z⃗⟩) ̸= γ(v⃗⟨⃗i, w⃗′ · z⃗′⟩), then there is a NCk derivation over Zp from
Ax(Γv⃗→u⃗) of Xw⃗w⃗′Xz⃗z⃗′ .

Proof. Set Y = Xw⃗w⃗′Xz⃗z⃗′ and let Xu⃗′v⃗′ be the degree k − 2r monomial where u′
j = uj and

v′
j = vj for j ∈ [k − 2r]. Then, there is a NCk derivation of Y (Xu⃗′v⃗′ − 1), for indeed

Y (Xu⃗′v⃗′ −1) = Y (xu1v1 −1)+Y xu1v1 (xu2v2 −1)+. . .+Y (xu1v1 . . . xuk−2r−1vk−2r−1 )(xuk−2rvk−2r −1).

By assumption, γ(u⃗⟨⃗i, w⃗ · z⃗⟩) ̸= γ(v⃗⟨⃗i, w⃗′ · z⃗′⟩) and hence, there is an NCk derivation of
Y Xu⃗′v⃗′ . Subtracting the latter from Y (Xu⃗′v⃗′ − 1) yields the desired statement. ◀

▶ Lemma 18. For any w⃗, z⃗ ∈ V r and s⃗ ∈ V t there is a NCt+r derivation over Zp from
Ax(Γv⃗→u⃗) of

Xw⃗z⃗

( ∑
a⃗∈V t

Xs⃗a⃗ − 1
)

and Xw⃗z⃗

( ∑
a⃗∈V t

Xa⃗s⃗ − 1
)
.

Proof. We proceed by induction on t. For t = 1, Xw⃗z⃗

( ∑
a∈V xsa − 1

)
is the product of a

monomial and an axiom, so has a NCr+1 derivation.
Assume Xw⃗z⃗

( ∑
a⃗∈V t Xs⃗a⃗ − 1

)
has a NCt+r derivation. It can be easily verified that if a

polynomial f has a NCr derivation from some set of axioms, then xf has a NCr+1 derivation
for any variable x. Thus, xs′a′Xw⃗z⃗

( ∑
a⃗∈V t Xs⃗a⃗ − 1

)
has a NCt+r+1 derivation. Finally∑

a′∈V
xs′a′Xw⃗z⃗

( ∑
a⃗∈V t

Xs⃗a⃗−1
)

= Xw⃗z⃗

( ∑
a⃗∈V t,a′∈V

X(s⃗·s′)(a⃗·a′)−1
)

= Xw⃗z⃗

( ∑
a⃗∈V t+1

X(s⃗·s′)a⃗−1
)

as required. ◀

▶ Lemma 19. There is a NCk derivation over Zp from Ax(Γv⃗→u⃗) of the polynomials in
formulae (3) and (4).

Proof. For a⃗ ∈ V r, set N (u⃗, w⃗) = {a⃗ ∈ V r | γ(u⃗⟨⃗i, w⃗ · a⃗⟩) = σ} and N (v⃗, z⃗) = {a⃗ ∈ V r |
γ(v⃗⟨⃗i, a⃗ · z⃗⟩) = σ} (note the slight asymmetry). By Lemma 18, there is a NC2r (and hence,
NCk, since 2r ≤ k) derivation of Xa⃗z⃗

( ∑
a⃗′∈V r Xs⃗a⃗′−1

)
for every a⃗, s⃗, z⃗ ∈ V r. By subtracting

from the above all monomials Xa⃗z⃗Xs⃗a⃗′ for which a⃗′ /∈ N (v⃗, z⃗) (which have a NCk derivation
by Lemma 17) one gets Xa⃗z⃗

( ∑
a⃗′∈N (v⃗,z⃗) Xs⃗a⃗′ − 1

)
. Adding these for all a⃗ ∈ N (u⃗, w⃗) yields∑

a⃗∈N (u⃗,w⃗)

Xa⃗z⃗

( ∑
a⃗′∈N (v⃗,z⃗)

Xs⃗a⃗′ − 1
)
. (5)
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A similar argument shows that there is a NCk derivation of∑
a⃗∈N (v⃗,z⃗)

Xw⃗a⃗

( ∑
a⃗′∈N (u⃗,w⃗)

Xa⃗′s⃗ − 1
)
. (6)

Subtracting (5) from (6) yields (3).
The polynomials in (4) can be derived by setting r = 0 in Lemma 18. ◀

5.2 Generalized Cai-Fürer-Immerman constructions
In 1992, Cai, Fürer and Immerman provided, for k ≥ 1, a family of pairs of non-isomorphic
graphs (Gk,Hk) which cannot be distinguished by Ck-formulae. These graphs really encode a
system of linear equations over Z2, the solvability of which can be decided in polynomial
time. These structures can be generalized to encode a systems of linear equations over an
arbitrary finite field. Loosely speaking, the generalized Cai-Fürer-Immerman construction
for the field Zp provides, for each k ∈ N, p non-isomorphic 3-regular graphs G(1)

k , . . . ,G(p)
k .

These delimit the power of well known linear algebra based polynomial-time approximations
of graph isomorphism. Let Γk,p be the disjoint union of the graphs G(1)

k , . . . ,G(p)
k and let V

denote its vertex set.

▶ Theorem 20 (Theorems 8.1 and 8.2 in [10]). If Γ = Γk,p and q ̸= p, then the equivalence
classes of [αk,Γ]IM

q
k do not coincide with those of the k-orbit partition for Γ. If q = p, the

equivalence classes of [α3,Γ]IM
q
3 coincide with those of the 3-orbit partition for Γ.

Originally, the generalized Cai-Fürer-Immerman constructions were introduced to delimit
the expressive power of the extension of fixed point logics with rank operators over a finite field
FPR(p) and, correspondingly, the distinguishing power of the extension of first order logic
by said operators, FOR(p) (see Chapter 7 of [18]). The distinguishing power of the invertible
map test in characteristic p is at least that of FOR(p), so in one direction Theorem 20 provides
a lower bound for this logic. In the other direction, we can show that the orbit partition on
Γk,p can already be defined in FPR(p). Indeed, it can be defined in the apparently weaker
logic FPS(p), giving the following result, of which Theorem 3 is a direct consequence.

▶ Theorem 21. Let Γ = Γk,p. If p ̸= q, there exist u⃗, v⃗ ∈ V k in different equivalence
classes of the k-orbit partition of Γ, such that there are no FOSk(q)-formulae distinguishing
(AΓ, z⃗ 7→ u⃗) from (AΓ, z⃗ 7→ v⃗). If q = p and u⃗, v⃗ ∈ V 2, then (AΓ, z⃗ 7→ u⃗) is distinguished
from (AΓ, z⃗ 7→ v⃗) by some FOS2(q)-formula if, and only if, u⃗, v⃗ are in different equivalence
classes of the 2-orbit partition of Γ.

6 Conclusions: where does polynomial calculus lie?

The invertible map tests can be thought of a family of algorithms, each of which distinguishes
tuples of vertices of graphs according to the most general linear algebraic invariants expressible
with a bounded number of variables in a logic. As bounded degree PC,MC and NC refutations
can be decided solely by using basic field operations, one expects that the equivalences defined
by the invertible map tests simulate those defined by the above mentioned proof systems.
Theorem 1 gives a partial proof of this conjecture, leaving it open as to whether the invertible
map tests can simulate bounded degree PC refutations, when taken over some finite field.

Our approach to this question was to attempt to define the above proof systems in the
simplest logics which could express the solvability of systems of linear equations. The proof
of Lemma 13 hints at the flaws of this choice. Deciding whether or not there is a PCk
refutation of P ⊆ F[x1, . . . , xr] can be understood as the following procedure, similar to that
in Section 4.2.
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INPUT: P ⊂ F[x1, . . . , xr]
OUTPUT: REFUTE or NOREFUTE.
Initialize S = {XAf | f ∈ P, deg(XAf) ≤ k}.
while spanFS has changed since last round or 1 /∈ spanFS do

Find a set B generating the F-space {f ∈ spanFS | deg(f) < k}.
S ← S ∪ {XAf | f ∈ B, deg(XAf) ≤ k}.

end while
if 1 ∈ spanFS output REFUTE. then
else output NOREFUTE
end if
This procedure runs in polynomial time, as one can find B by using Gaussian elimination

(there is no need to store the set spanFS as a generating set suffices), and the number of
iterations of the while loop is bounded by the number of monomials of degree at most k in
the variables {x1, . . . , xr}. If F is finite, this procedure is a priori not definable in FPS(p), as
it is not immediate whether there is a canonical choice for the set B (its counterpart in the
procedure for monomial calculus refutations was the set M of monomials in the span of S).
Put otherwise, defining the set B requires defining the solution space of a system of linear
equations over a field of positive characteristic p, rather than just determining the solvability
of the system and it is not clear if this can be done in FPS(p). The FPC definability of
bounded degree polynomial calculus over the field Q (Theorem 4.9 in [17]) relies in fact on
the FPC definability of solution spaces of linear equations over Q (Theorem 4.11 in [17]).

Let us view the problem from the viewpoint of proof complexity. It follows from Lemma 16,
that if PCk refutations over Zp are definable in FPS(p), then for every k, there is some k′

such that if Ax(Γu⃗→v⃗) has a PCk refutation over Zp, then it has a NCk′ refutation over Zp.
It is known that for all n and for any field, there is a set of axioms on n(n + 1) variables
which can be refuted by PC3 but require degree Ω(n) to be refuted by NC (Theorem 6 in [5]).
Furthermore, this lower bound can be shown to be optimal. On the other hand, Buss et
al. have shown that NC derivations can be used to simulate tree-like PC derivations (see
Theorems 5.3 and 5.4 in [6]) with only a small increase in degree. For a set of axioms of
the form Ax(Γu⃗→v⃗), it is not known if any PCk refutation of such can be converted into a
tree-like refutation without incurring in an unbounded increase in degree.
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Abstract
The computational complexity of the MaxCut problem restricted to interval graphs has been
open since the 80’s, being one of the problems proposed by Johnson on his Ongoing Guide to
NP-completeness, and has been settled as NP-complete only recently by Adhikary, Bose, Mukherjee
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1 Introduction

A cut is a partition of the vertex set of a graph into two disjoint parts and the maximum cut
problem (denoted MaxCut for short) aims to determine a cut with the maximum number
of edges for which each endpoint is in a distinct part. The decision problem MaxCut
is known to be NP-complete since the seventies [15], and only recently its restriction to
interval graphs has been announced to be hard [1], settling a long-standing open problem
that appeared in the 1985 column of the Ongoing Guide to NP-completeness by David S.
Johnson [17]. We refer the reader to a revised version of the table in [12], where one can also
find a parameterized complexity version of said table.
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An interval model is a family of closed intervals of the real line. A graph is an interval
graph if there exists an interval model, for which each interval corresponds to a vertex of the
graph, such that distinct vertices are adjacent in the graph if and only if the corresponding
intervals intersect. Ronald L. Graham proposed in the 80’s the study of the interval count
of an interval graph as the smallest number of interval lengths used by an interval model
of the graph. Interval graphs having interval count 1 are called unit intervals (can also be
called proper interval, or indifference). Understanding the interval count, besides being an
interesting and challenging problem by itself, can be also of value for the investigation of
problems that are hard for general interval graphs, and easy for unit interval graphs (e.g.
geodetic number [8,13], optimal linear arrangement [9,16], sum coloring [20,21]). The positive
results for unit interval graphs usually take advantage of the fact that a representation for
these graphs can be found in linear time [10, 11]. Surprisingly, the recognition of interval
graphs with interval count k is open, even for k = 2 [7]. Nevertheless, another generalization
of unit interval graphs has been recently introduced which might be more promising in
this aspect. These graphs are called k-nested interval graphs, introduced in [18], where the
authors, among other things, give a linear time recognition algorithm.

In the same way that MaxCut on interval graphs has evaded being solved for so long,
the community has been puzzled by the restriction to unit interval graphs. Indeed, two
attempts at solving it in polynomial time were proposed in [4, 6] just to be disproved closely
after [3, 19]. In this paper, we give the first classification that bounds the interval count,
namely, we prove that MaxCut is NP-complete when restricted to interval graphs of interval
count 4. This also implies NP-completeness for the newly generalized class of 4-nested graphs,
and opens the search for a full polynomial/NP-complete dichotomy classification in terms of
the interval count. It can still happen that the problem is hard even on graphs of interval
count 1. We contribute towards filling the complexity gap between interval and unit interval
graphs.

Next, we establish basic definitions and notation. Section 2 describes our reduction and
Section 3 discusses the interval count of the interval graph constructed in [1].

1.1 Preliminaries
In this work, all graphs considered are simple. For missing definitions and notation of graph
theory, we refer to [5]. For a comprehensive study of interval graphs, we refer to [14].

Let G be a graph. Let X and Y be two disjoint subsets of V (G). We let EG(X, Y ) be
the set of edges of G with an endpoint in X and the other endpoint in Y . For every subset
S ⊆ V (G), we let SX = S ∩ X and SY = S ∩ Y . A cut of G is a partition of V (G) into
two parts A, B ⊆ V (G), denoted by [A, B]; the edge set EG(A, B) is called the cut-set of
G associated with [A, B]. For each two vertices u, v ∈ V (G), we say that u and v are in a
same part of [A, B] if either {u, v} ⊆ A or {u, v} ⊆ B; otherwise, we say that u and v are in
opposite parts of [A, B]. Denote by mc(G) the maximum size of a cut-set of G. The MaxCut
problem has as input a graph G and a positive integer k, and it asks whether mc(G) ≥ k.

Let I ⊆ R be a closed interval of the real line. We let ℓ(I) and r(I) denote respectively
the minimum and maximum points of I, which we call the left and the right endpoints of
I, respectively. We denote a closed interval I by [ℓ(I), r(I)]. The length of an interval I is
defined as |I| = r(I)−ℓ(I). An interval model is a finite multiset M of intervals. The interval
count of an interval model M, denoted by ic(M), is defined as the number of distinct lengths
of the intervals in M. Let G be a graph and M be an interval model. An M-representation
of G is a bijection ϕ : V (G) → M such that, for every two distinct vertices u, v ∈ V (G), we
have that uv ∈ E(G) if and only if ϕ(u) ∩ ϕ(v) ̸= ∅. If such an M-representation exists, we
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say that M is an interval model of G. We note that a graph may have either no interval
model or arbitrarily many distinct interval models. A graph is called an interval graph if
it has an interval model. The interval count of an interval graph G, denoted by ic(G), is
defined as ic(G) = min{ic(M) : M is an interval model of G}. An interval graph is called a
unit interval graph if its interval count is equal to 1.

Note that, for every interval model M, there exists a unique (up to isomorphism) graph
that admits an M-representation. Thus, for every interval model M = {I1, . . . , In}, we let
GM be the graph with vertex set V (GM) = {1, . . . , n} and edge set E(GM) = {ij : Ii, Ij ∈
M, Ii ∩ Ij ̸= ∅, i ̸= j}. Since GM is uniquely determined (up to isomorphism) from M, in
what follows we may make an abuse of language and use graph terminologies to describe
properties related to the intervals in M. Two intervals Ii, Ij ∈ M are said to be true twins in
GM if they have the same close neighborhood in GM, i.e. NGM(Ii) ∪ {Ii} = NGM(Ij) ∪ {Ij}.

For each three positive integers a, b, c ∈ N+, we write a ≡b c to denote that a modulo b is
equal to c modulo b.

2 Our reduction

The following theorem is the main contribution of this work:

▶ Theorem 1. MaxCut is NP-complete on interval graphs of interval count 4.

This result is a stronger version of that of Adhikary et al. [1]. To prove Theorem 1, we
present a polynomial-time reduction from MaxCut on cubic graphs, which is known to be
NP-complete [2]. In order to explain the technical effort needed to push the construction of
Adhikary et al. enabling our construction of a reduction graph that uses only four different
lengths of intervals, we present our construction in three sections. First, we explain how
the key gadget of Adhikary et al. relates the number of intervals of each size to the part
where they are placed in a maximum cut. Second, we present our new gadget that organizes
copies of the original key gadget into an escalator grid, which constitutes our key gadget to
obtain a reduction graph that admits a model with an interval count bounded by a constant.
Third, an outline of the proof explains how our use of the base gadgetry due to Adhikary et
al. through the escalator allows us to relate maximum cuts of the input graph to maximum
cuts of the reduction graph.

2.1 Grained gadget
The interval graph constructed in the reduction of [1] is strongly based on two types of
gadgets, called V-gadgets and E-gadgets. In fact, these gadgets are the same, except for the
amount of intervals of certain kinds contained in each of them. In this subsection, we present
a generalization of such gadgets, rewriting their key properties to suit our purposes. In order
to discuss the interval count of the reduction of [1], we describe it in details in Section 3.

Let x and y be two positive integers. An (x, y)-grained gadget is an interval model H
formed by y long intervals (called left long) intersecting in their right endpoint with other
y long intervals (called right long), together with 2x short intervals, x of which intersect
exactly the y left long ones (called left short), and x of which intersect exactly the y right
long ones (called right short); see Figure 1. We write LS(H), LL(H), RS(H) and RL(H) to
denote the left short, left long, right short and right long intervals of H, respectively, and we
omit H when it is clear from the context.

MFCS 2021
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Note that, if H is an (x, y)-grained gadget, then GH is a split graph such that LS ∪ RS
is an independent set of size 2x, LL ∪ RL is a clique of size 2y, NGH(LS) = LL and
NGH(RS) = RL. Moreover, the intervals in LL are true twins in GH; similarly, the intervals
in RL are true twins in GH.

Figure 1 General structure of an (x, y)-grained gadget.

Let M be an interval model containing an (x, y)-grained gadget H. The possible types
of intersections between an interval I ∈ M \ H and H in our construction are depicted
in Figure 2, using our notation. More specifically, the cover intersection intersects all the
intervals, the weak intersection to the left (right) intersects exactly the left (right) long
intervals, while the strong intersection to the left (right) intersects exactly the left (right)
long and short intervals. We say that M respects the structure of H if I either does not
intersect H at all, or intersects H as depicted in Figure 2.

(a) Covering intersection. (b) Weak intersection to the left. (c) Weak intersection to the right.

(d) Strong intersection to the left. (e) Strong intersection to the right.

Figure 2 (a) Interval I ∈ M \ H covering H, (b-c) weakly intersecting H to the left and to the
right, and (d-e) strongly intersecting H to the left and to the right.

The advantage of this gadget is that, by manipulating the values of x and y, we can
ensure that, in a maximum cut, the left long and right short intervals are placed in the same
part, opposite to the part containing the left short and right long intervals. The next lemma
is a step in this direction. Denote by cM(H) the number of intervals of M that cover H; by
wklM(H) (resp. wkrM(H)) the number of intervals of M that weakly intersect H to the left
(resp. right); and by stlM(H) (resp. strM(H)) the number of intervals of M that strongly
intersect H to the left (resp. right).

▶ Lemma 2. Let x and y be positive integers, H be an (x, y)-grained gadget and M be an
interval model that respects the structure of H. For every maximum cut [A, B] of GM, the
following conditions hold:
1. if y + stlM(H) + cM(H) ≡2 1 and x > 2y − 1 + wklM(H) + stlM(H) + cM(H), then

LS(H) ⊆ A and LL(H) ⊆ B, or vice versa;
2. if y + strM(H) + cM(H) ≡2 1 and x > 2y − 1 + wkrM(H) + strM(H) + cM(H), then

RS(H) ⊆ A and RL(H) ⊆ B, or vice versa.
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Now, we want to add conditions that, together with the ones from the previous lemma,
ensure that the left long intervals will be put opposite to the right long intervals. Based on
Lemma 2, we say that (H, M) is well-valued if Conditions (1) and (2) hold, in addition to
the following inequality

y2 > y · wkrM(H) + (x − y) ·
(
strM(H) + cM(H)

)
. (1)

Let [A, B] be a maximum cut of GM. We say that H is A-partitioned by [A, B] if
LS(H) ∪ RL(H) ⊆ A, and RS(H) ∪ LL(H) ⊆ B. Define B-partitioned analogously. The
next lemma finally ensures what we wanted.

▶ Lemma 3. Let x and y be positive integers, H be an (x, y)-grained gadget, M be an
interval model and [A, B] be a maximum cut of GM. If M respects the structure of H and
(H, M) is well-valued, then H is either A-partitioned or B-partitioned by [A, B].

We have rewritten above in a more technical form the lemmas presented in [1], so that
we are able to explicitly give the conditions that ensure the key property of their gadgets.

2.2 Reduction graph
In this subsection, we formally present our construction. Recall that we are making a
reduction from MaxCut on cubic graphs. So, consider a cubic graph G on n vertices and m

edges. Intuitively, we consider an ordering of the edges of G, and we divide the real line into
m regions, with the j-th region holding the information about whether the j-th edge is in
the cut-set. For this, each vertex u will be related to a subset of intervals traversing all the
m regions, bringing the information about which part u belongs to. Let πV = (v1, . . . , vn)
be an ordering of V (G), πE = (e1, . . . , em) be an ordering of E(G), and G = (G, πV , πE).

Figure 3 General structure of a region of the (n, m)-escalator. The rectangles represent the
(p, q)-grained gadgets Hj

i .

We first describe the gadgets related to the vertices. Please refer to Figure 3 to follow
the construction. The values of p, q used next will be defined later. An (n, m)-escalator
is an interval model D formed by m + 1 (p, q)-grained gadgets for each vi, denoted by
H1

i , . . . , Hm+1
i , together with 2m link intervals, L1

i , . . . , L2m
i , such that L2j−1

i and L2j
i weakly

intersect Hj
i to the right and weakly intersect Hj+1

i to the left. Additionally, all the grained
gadgets are mutually disjoint, and given j ∈ {1, . . . , m + 1} and i, i′ ∈ {1, . . . , n} with i < i′,
the grained gadget Hj

i occurs to the left of Hj
i′ .

Now, we add the gadgets related to the edges. Please refer to Figure 4 to follow
the construction. The values of p′, q′ used next will be defined later. For each edge
ej = vivi′ ∈ E(G), with i < i′, create a (p′, q′)-grained gadget Ej and intervals C1

j , C2
j , C3

j , C4
j

in such a way that Ej is entirely contained in the j-th region (i.e., in the open interval between

MFCS 2021
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the right endpoint of Hj
n and the left endpoint of Hj+1

1 ), C1
j and C2

j weakly intersect Hj
i

to the right and weakly intersect Ej to the left, and C3
j and C4

j weakly intersect Hj
i′ to the

right and strongly intersect Ej to the left. Denote the constructed model by M(G).

Left short intervals

Figure 4 General structure of the constructed interval model M(G) highlighting the intersections
between the intervals of the (n, m)-escalator D, the intervals of the (p′, q′)-grained gadget Ej , and
the intervals C1

j , C2
j , C3

j , C4
j .

2.3 Outline of the proof
As above, consider a cubic graph G on n vertices and m = 3n

2 edges, and let πV = (v1, . . . , vn)
be an ordering of V (G), πE = (e1, . . . , em) be an ordering of E(G) and G = (G, πV , πE). We
give an outline of the proof that mc(G) ≥ k if and only if mc(GM(G)) ≥ f(G, k), where f

is defined at the end of the subsection. As it is usually the case in this kind of reduction,
constructing an appropriate cut of the reduction graph GM(G), given a cut of G, is an
easy task. On the other hand, constructing an appropriate cut [X, Y ] of G, from a given a
cut [A, B] of the reduction graph GM(G), requires that the intervals in M(G) behave in a
way with respect to [A, B] so that [X, Y ] can be inferred, a task achieved with the help of
Lemmas 2 and 3. In order to use these lemmas, we choose next suitable values for p, q, p′, q′,
and we observe that M(G) respects the structure of the involved grained gadgets. After
ensuring that each grained gadget behaves well individually, we also need to ensure that H1

i

can be used to decide in which part of [X, Y ] we should put vi, and for this it is necessary
that all gadgets related to vi agree with one another. In other words, for each vi, we want
that the behaviour of the first gadget H1

i influence the behaviour of the subsequent gadgets
H2

i , . . . , Hm+1
i , as well as the behaviour of the gadgets related to edges incident to vi. This

is done by choosing the following values for our floating variables:

q = 60n3 + 1, p = 2q + 7n, q′ = 18n3 + 1 and p′ = 2q′ + 5n. (2)

These values indeed satisfy Conditions (1) and (2) of Lemma 2, as well as Inequality (1).
As previously said, the idea behind this choice of values is to store information about vi in
the gadgets H1

i , . . . , Hm+1
i . Now, given ej = vivi′ , i < i′, a final ingredient is to ensure that

Ej is influenced only by the intervals C3
j and C4

j , which in turn are influenced by the vertex
vi′ , in a way that the number of edges in the cut-set of GM(G) increases when the edge vivi′

is in the cut-set of G. All these ideas are captured in the definitions below.
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Given vi ∈ V (G) and a cut [A, B] of GM(G), we say that the gadgets of vi alternate
in [A, B] if, for every j ∈ [m], we get that Hj

i is A-partitioned if and only if Hj+1
i is B-

partitioned. Also, we say that [A, B] is alternating partitioned if the gadgets of vi alternate
in [A, B], for every vi ∈ V (G), and the following conditions hold for every ej = vivi′ ∈ E(G),
with i < i′:

(i) If Hj
i is A-partitioned by [A, B], then {C1

j , C2
j } ⊆ B; otherwise, {C1

j , C2
j } ⊆ A; and

(ii) If Hj
i′ is A-partitioned by [A, B], then {C3

j , C4
j } ⊆ B and Ej is A-partitioned by [A, B];

otherwise, {C3
j , C4

j } ⊆ A and Ej is B-partitioned by [A, B].

The following lemma is a key element in our proof.

▶ Lemma 4. If [A, B] is a maximum cut of GM(G), then [A, B] is an alternating partitioned
cut.

Sketch. The proof of Conditions (i) and (ii) is similar to the proof of Lemma 3, and in fact
the same ideas are also part of the proof in [1]. Our ability to bound the interval count is
due mainly to the fact that the vertex gadgets alternate in [A, B], so we focus on this part of
the proof. Another skipped detail is the fact that the pairs of link intervals, and the pairs
of intervals of type C always go together. More formally, for every j ∈ {1, · · · , m}, we have
that C1

j , C2
j are in the same part, as well as C3

j , C4
j . Similarly, for every j ∈ {1, · · · , m} and

i ∈ {1, · · · , n}, the intervals L2j−1
i , L2j

i are in the same part. Just to give an idea for the
latter types of intervals, this is due to the fact that the intervals in Hj

i or Hj
i+1 outweigh

the total number of relevant intervals intersecting L2j−1
i , L2j

i that are outside such vertex
gadgets.

Denote M(G) by M for simplicity, and let Mi be the set of all the intervals related to
vertex vi; more formally, it contains the grained gadget Hj

i , for every j ∈ [m + 1], the link
interval Lj

i , for every j ∈ {1, · · · , 2m}, every interval of type Ch
j that intersects Hj

i to the
right (this happens if ej has vi as endpoint), and every interval in Ej for ej incident to vi.
We count the number fi of edges of the cut incident to some interval in Mi and argue that,
if the gadgets of vi do not alternate in [A, B], then we can obtain a bigger cut by rearranging
Mi, thus getting a contradiction.

Denote by Mi the set of intervals M \ Mi, and by L the set of all link intervals. In what
follows, we do the counting in terms of m, n, p, q, p′, q′ for simplicity, and we do not make
an exact counting, since it would be tedious and not help so much in the understanding of
the ideas behind the proof. Also, there will be some values that should be added to fi that
remain the same, independently from how Mi is partitioned; we call these values irrelevant
and do not add them to fi. Recall that every (x, y)-grained gadget has exactly x + y intervals
in A and x + y in B. Thus, for each j ∈ {1, · · · , 2m}, we know that the number of edges
between Lj

i and intervals in Mi that are within a grained gadget do not change if we switch
Lj

i from A to B or vice-versa; in other words, these values are irrelevant. Additionally,
because we are considering that Conditions (i) and (ii) hold, the number of edges of the cut
within each grained gadget of Mi, and between grained gadgets of type Hj

i and intervals of
Mi of type C can also be considered irrelevant. So now, for each j ∈ {1, · · · , m}, denote by
ℓj

A the number of intervals in Mi ∩ L ∩ A that intersect L2j
i ; define ℓj

B similarly. Observe
that ℓj

A + ℓj
B ≤ 4n since it includes all the link intervals in the j-th region, plus at most the

link intervals of the (j − 1)-th region related to vi′ for i′ > i, and the link intervals of the
(j + 1)-th region related to vi′ for i′ < i. Additionally, let aj be equal to 1 if L2j

i is opposite
to the right long intervals of Hj

i , and 0 otherwise; similarly, let bj be equal to 1 if L2j
i is

opposite to the left long intervals of Hj+1
i , and 0 otherwise. Now, let ej1 , ej2 , ej3 be the

edges incident to vi, and for each h ∈ {1, 2, 3}, write ejh
as vivih

. For each h ∈ {1, 2, 3},
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observe that the non-irrelevant number of edges of the cut incident to Ejh
is 2(p′ + q′) if Hj

i

and Hj
ih

are partitioned differently, and that it is equal to 2p′ otherwise. Therefore, if we let
ch be equal to 1 if Hj

i and Hj
ih

are partitioned differently, and 0 otherwise, we get that there
are 2p′ + 2q′ch edges in the cut incident to Ejh

. Because 2p′ is added for each h ∈ {1, 2, 3},
there is an irrelevant value of 6p′ that we ignore. Therefore, we get that (recall that L2j−1

and L2j are true twins):

fi ≤
m∑

j=1
(2q(aj + bj) + ℓj

A + ℓj
B) +

3∑
h=1

2q′ch. (3)

If L2j
i is on the same side as the right long intervals of Hj

i and the left long intervals of
Hj+1

i , we can increase fi simply by switching its side (together of course with L2j−1
i ). Indeed,

in this case we would lose at most max{ℓj
A, ℓj

B} ≤ 4n edges, while gaining 4q, a positive
exchange since q > n. Observe that this implies that aj + bj ≥ 1. Note also that this type
of argument can be always applied, i.e., whenever in what follows we switch sizes of some
subset of intervals, we can suppose that this property still holds. Now, let j be the minimum
value for which aj + bj = 1 (j is well defined since otherwise we get that the gadgets of vi

alternate in [A, B] and there is nothing to prove). Observe that this means that either both
Hj

i and Hj+1
i are A-partitioned, or both are B-partitioned. Suppose the former, without loss

of generality, and note that this means that RL(Hj
i ) ⊆ A, while LL(Hj+1

i ) ⊆ B. Also, let
j′ > j be the minimum value for which the left long intervals of Hj′+1

i are on the opposite
side of the right long intervals of Hj′

i ; if it does not exist, let j′ = m + 1. We switch sides
of the following intervals: Hh

i , for every h ∈ {j + 1, · · · , j′}; L2j−1
i , L2j

i if they are also in
A; L2h−1

i , L2h
i for each h ∈ {j + 1, · · · , j′ − 1}; and L2j′−1

i , L2j′

i if j′ < m + 1 and they are
on the same side as LL(Hj′+1

i ). Also switch the intervals of type C and intervals in edge
gadgets appropriately in order to maintain the desired properties. We prove that we gain at
least 2q − 4n edges, while losing at most 4nm + 6q′ = 6(n2 + q′) (recall that m = 3n

2 ). As
previously said, this is not the exact count but gives an idea as how to choose the values
for p, q, p′, q′. Indeed, it suffices to choose values in a way as to ensure that the number of
gained edges is bigger than the number of lost edges.

Observe that if we did not need to switch L2j−1
i , L2j , then, concerning these intervals, we

gain at least 2q edges and lose none; otherwise, we gain 2q edges but lose at most ℓj
B ≤ 4n;

thus we gain at least 2q − 4n. As for the intervals L2h−1
i , L2h

i for h ∈ {j + 1, · · · , j′ − 1}, by
the definition of j′ we know that we lose at most max{ℓh

A, ℓj
B} ≤ 4n, while maintaining the

same number between them and the vertex gadgets. And if j′ < m + 1, then we either gain
2q more edges if we did not need to change the side of L2j′−1

i , L2j′

i , or we gain 2q more edges
while losing at most max{ℓj′

A , ℓj′

B} ≤ 4n. Hence, concerning the link intervals in Mi, in total
we lose at most 4nm = 6n2. As for the 6q′ value, it suffices to see that, in the worst case
scenario, {j1, j2, j3} ⊆ {j + 1, · · · , j′} and all the values ch were previously equal to 1, and
are now equal to 0 (observe again Inequality 3). ◀

Now, if [A, B] is an alternating partitioned cut of GM(G), we let Φ(A, B) = [X, Y ] be
the cut of G such that, for each vertex vi ∈ V (G), we have vi ∈ X if and only if H1

i is
A-partitioned by [A, B]. Note that [X, Y ] is well-defined and uniquely determined by [A, B].
On the other hand, given a cut [X, Y ] of G, there is a unique alternating partitioned cut
[A, B] = Φ−1(X, Y ) of GM(G) such that [X, Y ] = Φ(A, B). Therefore, it remains to relate
the sizes of these cut-sets. Basically we can use the good behaviour of the cuts in GM(G) to
prove that the size of [A, B] grows as a well-defined function on the size of Φ(A, B). More
formally, we can prove that the function f previously referred to is given by (recall that k is
part of the input on the original problem):
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f(G, k) =
(

3n2

2 + n
)

(2pq + q2) + 3n
2 (2p′q′ + (q′)2) + 6nq(n + 1)

+
(
3n2 + 3n

)
(n − 1)(p + q) + 3n2(p′ + q′) + 3n((k + 1)q′ + p′) + 4k.

(4)

The above value is obtained using counting arguments much similar to the ones given
in the proof of Lemma 4. The only downside is that we are not able to give an exact value
for |EGM(G)(A, B)| as a function of |EG(X, Y )| and n, p, q, p′, q′. For instance, note that
the number of edges between link intervals within a region depend on the size of A and
B, instead of the size of EG(X, Y ). Nevertheless, we know that the range of values that
|EGM(G)(A, B)| can assume, given that |EG(X, Y )| = k, is distinct for each value of k, as the
following lemma states.

▶ Lemma 5. Let G be a cubic graph on n vertices, πV = (v1, . . . , vn) be an ordering
of V (G), πE = (e1, . . . , e 3n

2
) be an ordering of E(G), G = (G, πV , πE), [A, B] be an

alternating partitioned cut of GM(G) and [X, Y ] = Φ(A, B). If k = |EG(X, Y )|, then
f(G, k) ≤ |EGM(G)(A, B)| < f(G, k′) for any integer k′ > k.

Sketch. Since [A, B] is an alternating partitioned cut of GM(G), we shall count the edges in
the cut-set EGM(G)(A, B) according to the following three types of intervals incident to these
edges: the edges in the cut-set that have an endpoint in a (p, q)-grained gadget; the edges in
the cut-set that have an endpoint in a (p′, q′)-grained gadget; and the edges in the cut-set
that have both endpoints in a link interval and/or an interval of the type Cℓ

j .
First, we count the edges in the cut-set that have an endpoint in a (p, q)-grained gadget.

The possible combinations are as follows.
(1.1) Edges within (p, q)-grained gadgets related to vertices. There are exactly ( 3n2

2 +n)(2pq+
q2) such edges.

(1.2) Edges between link intervals L2j−1
i and L2j

i , and the (p, q)-gadgets related to vertices.
There are exactly m · n · (2q + 2q) = 6n2q such edges.

(1.3) Edges between intervals C1
j , . . . , C4

j and the (p, q)-grained related to the vertices incident
to edge ej . There are exactly 3n

2 (2q + 2q) = 6nq such edges.
(1.4) Edges between (p, q)-grained gadgets related to vertices, and link intervals covering

them. There are exactly mn(n − 1)(2p + 2q) = 3n2(n − 1)(p + q) such edges.
(1.5) Edges between intervals C1

j , . . . , C4
j and (p, q)-grained gadgets covered by them. There

are exactly
∑

i∈[n] 6(n − i)(p + q) = 3n(n − 1)(p + q) such edges.

Second, we count the edges in the cut-set that have an endpoint in a (p′, q′)-grained
gadget. The possible combinations are as follows.
(2.1) Edges within (p′, q′)-grained gadgets related to edges. There are exactly 3n

2 (2p′q′+(q′)2)
such edges.

(2.2) Edges between (p′, q′)-grained gadgets related to edges and the link intervals covering
them. There are exactly 3n2(p′ + q′) such edges.

(2.3) Edges between (p′, q′)-grained gadget Ej and intervals C1
j , . . . , C4

j . There are exactly
3n
2 (2kq′ + 2(p′ + q′)) = 3n((k + 1)q′ + p′) such edges (recall that k = |EG(X, Y )|).

Third, we count the edges in the cut-set that have both endpoints in a link interval
and/or an interval of the type Cℓ

j for some ℓ ∈ {1, . . . , 4} and j ∈ [m].

MFCS 2021
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(3.1) Edges between intervals C1
j , C2

j and C3
j , C4

j . There are exactly 4k such edges.
(3.2) Edges between pairs of intervals L2j−1

1 , L2j
1 , . . . , L2j−1

n , L2j
n . There are at most∑

j∈[m] n2 = mn2 = 3n3

2 such edges.
(3.3) Edges between intervals L2j−1

1 , L2j
1 , . . . , L2j−1

n , L2j
n and intervals in C1

j , . . . , C4
j . There

are at most
∑

j∈[m] 8(n − 1) = 8m(n − 1) = 12n(n − 1) = 12n2 − 12n such edges.
(3.4) Edges between link intervals in consecutive regions of the escalator. There are at most∑

j∈{2,...,m}

∑
i∈[n]

4(n − i) =
∑

j∈{2,...,m}

2n(n − 1) = 2(m − 1)n(n − 1)

= 3n2(n − 1) − 2n(n − 1) = 3n3 − 5n2 + 2n

such edges.
(3.5) Finally, edges between intervals C1

j , . . . , C4
j and link intervals in the previous regions

of the escalator. There are at most
∑

i∈[n] 12(n − i) = 6n2 − 6n such edges.

Therefore, summing up the number of edges in the cut-set EGM(G)(A, B) according to
three types described above, except for the edges described in Cases (3.2)–(3.5) which, as we
have seen, do not give exact values, we obtain that

|EGM(G)(A, B)| ≥
(

3n2

2 + n
)

(2pq + q2) + 3n
2 (2p′q′ + (q′)2) + 6nq(n + 1)

+ (3n2 + 3n)(n − 1)(p + q) + 3n2(p′ + q′)
+ 3n((k + 1)q′ + p′) + 4k

= f(G, k).

On the other hand, note that the number of edges in Cases (3.2)–(3.5) is upper bounded by
9n3

2 + 13n2 − 16n. Thus, since q′ > 9n3

2 + 13n2 − 16n, we have:

f(G, k) ≤ |EGM(G)(A, B)| ≤ f(G, k) + 9n3

2 + 13n2 − 16n < f(G, k) + q′.

As a result, because there is a factor kq′ in f(G, k), we obtain that f(G, k′) > |EGM(G)(A, B)|
for any k′ > k. ◀

The next lemma together with Lemma 7 stated next in Section 2.4 complete the proof of
Theorem 1.

▶ Lemma 6. Let G be a cubic graph on n vertices, πV = (v1, . . . , vn) be an ordering of V (G),
πE = (e1, . . . , e 3n

2
) be an ordering of E(G) and G = (G, πV , πE). For each positive integer

k, mc(G) ≥ k if and only if mc(GM(G)) ≥ f(G, k).

Proof. First, suppose that mc(G) ≥ k. Then, there is a cut [X, Y ] of G such that
|EG(X, Y )| ≥ k. Let [A, B] be the unique alternating partitioned cut of GM(G) that,
for each i ∈ [n], satisfies the following condition: if vi ∈ X, then H1

i is A-partitioned;
otherwise, H1

i is B-partitioned. One can verify that [A, B] = Φ−1(X, Y ). Therefore, it
follows from Lemma 5 that mc(GM(G)) ≥ |EGM(G)(A, B)| ≥ f(G, k). Conversely, sup-
pose that mc(GM(G)) ≥ f(G, k). Then, there exists a cut [A, B] of GM(G) such that
|EGM(G)(A, B)| ≥ f(G, k). Assume that [A, B] is a maximum cut of GM(G). It follows
from Lemma 4 that [A, B] is an alternating partitioned cut. Consequently, by Lemma 5,
[X, Y ] = Φ(A, B) is a cut of G such that |EG(X, Y )| ≥ k. Indeed, if |EG(X, Y )| < k, then
|EGM(G)(A, B)| < f(G, k). Therefore, mc(G) ≥ k. ◀
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2.4 Bounding the interval count
Consider a cubic graph G on n vertices and m = 3n

2 edges, and orderings πV , πE of the
vertex set and edge set of G. Denote the triple (G, πV , πE) by G. We want to prove that the
interval count of our constructed interval model M(G) is at most 4. But observe that the
construction of M(G) is actually not unique, since the intervals are not uniquely defined;
e.g., given such a model, one can obtain a model satisfying the same properties simply by
adding ϵ > 0 to all points defining the intervals. In this section, we provide a construction of
a uniquely defined interval model related to G that satisfies the desired conditions and has
interval count 4.

Consider our constructed interval model M(G), and denote, for each j ∈ [m], Sj =
Ej ∪

⋃
ℓ∈[4] Cℓ

j ∪
⋃

i∈[n](H
j
i ∪ {L2j

i ∪ L2j−1
i }). We show how to accommodate S1 within

[0, 6n − 2] in such a way that the same pattern can be adopted in the subsequent regions of
M(G) too, each time starting at multiples of 4n. More specifically, letting t = 4n, we will
accommodate Sj within [t · (j − 1), 6n − 2 + t · (j − 1)]. Assume e1 = vhvh′ , with h < h′.
Below, we say exactly which closed interval of the line corresponds to each interval I ∈ S1.

For each i ∈ [n], the left long intervals of H1
i are equal to [2i − 2, 2i − 3

2 ] and the left
short intervals are any choice of q distinct points within the open interval (2i − 2, 2i − 3

2 ),
whereas the right long intervals of H1

i are equal to [2i − 3
2 , 2i − 1] and the right short

intervals are any choice of q distinct points within the open interval (2i − 3
2 , 2i − 1). Note

that open intervals are used to locate the closed intervals of length zero, but that the
short intervals themselves are not open.
C1

1 and C2
1 are equal to [2h − 1, 2h + 2n − 2].

C3
1 and C4

1 are equal to [2h′ − 1, 2h′ + 2n − 2].
The left long intervals of E1 are equal to [2n, 4n − 1].
The left short intervals of E1 are any choice of q′ distinct points in the open interval
(2h + 2n − 2, 2h′ + 2n − 2). Again, the open interval is used just to locate the closed
intervals of length zero.
The right long intervals of E1 are equal to [4n − 1, 4n − 1

2 ] and the right short intervals
are any choice of q′ distinct points within the corresponding open interval.
For each i ∈ [n], intervals L1

i , L2
i are equal to [2i − 1, 4n + 2(i − 1)].

Figure 5 The closed intervals in S1 ∪
⋃4

i=1 H2
i of a graph on 4 vertices. We consider e1 to be

equal to v3v4. Each colour represents a different interval size. The short intervals are represented by
the dots located inside the open interval. Vertical lines mark the endpoints of the intervals in S1 \ L,
while the green vertical line marks the beginning of the intervals in S2.

The suitable chosen lengths of the above defined closed intervals are (see Figure 5, where
we denote by L the set of link intervals):
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1. 0: short intervals of all grained gadgets (dots in Figure 5);
2. 1/2: left long and right long intervals of each H1

i , and right long intervals of E1 (red
intervals in Figure 5);

3. 2n − 1: intervals C1
1 , . . . , C4

1 , and left long intervals of E1 (blue intervals in Figure 5);
4. 4n − 1: intervals L1

i and L2
i , for every i ∈ [n] (orange intervals in Figure 5).

Now, let M′(G) be the interval model where each Sj is defined exactly as S1, except
that we shift all the intervals to the right in a way that point 0 now coincides with point
t · (j − 1). More formally, an interval I in Sj corresponding to the copy of an interval [ℓ, r] in
S1 is defined as [ℓ + t · (j − 1), r + t · (j − 1)]. Also, we assign the intervals in the (m + 1)-th
grained gadgets to be at the end of this model, using the same sizes of intervals as above;
i.e., Hm+1

i is within the interval [2i − 2 + t · m, 2i − 1 + t · m].
We have shown above that M′(G) has interval count 4. The following lemma shows that

the above chosen intervals satisfy the properties imposed in Subsections 2.1 and 2.2 on our
constructed interval model M(G).

▶ Lemma 7. Let G be a cubic graph. Then, there exists an interval model M(G) with
interval count 4 for G = (G, πV , πE), for every ordering πV and πE of the vertex set and
edge set of G, respectively.

3 The interval count of Adhikary et al.’s construction

We provided in Section 2 a reduction from the MaxCut problem having as input a cubic
graph G into that of MaxCut in an interval graph G′ having ic(G′) ≤ 4. Although our
reduction requires the choice of orderings πV and πE of respectively V (G) and E(G) in order
to produce the resulting interval model, we have established that we are able to construct
an interval model with interval count 4 regardless of the particular choices for πV and πE

(Lemma 7). Our reduction was based on that of [1], strengthened in order to control the
interval count of the resulting model.

This section is dedicated to discuss the interval count of the original reduction [1].
Although the interval count was not of concern in [1], in order to contrast the reduction
found there with the presented in this work, we investigate how interval count varies in
the original reduction considering different vertex/edge orderings. First, we establish that
the original reduction yields an interval model corresponding to a graph G′ such that
ic(G′) = O( 4

√
|V (G′)|). Second, we exhibit an example of a cubic graph G for which a

choice of πV and πE yields a model M′ with interval count Ω( 4
√

|V (G′)|), proving that this
bound is tight for some choices of πV and πE . For bridgeless cubic graphs, we are able in
Lemma 8 to decrease the upper bound by a constant factor, but to the best of our knowledge
O( 4

√
|V (G′)|) is the tightest upper bound. Before we go further analysing the interval count

of the original reduction, it is worthy to note that a tight bound on the interval count of a
general interval graph G as a function of its number of vertices n is still open. It is known that
ic(G) ≤ ⌊(n + 1)/2⌋ and that there is a family of graphs G for which ic(G) = (n − 1)/3 [7,14].
That is, the interval count of a graph can achieve Θ(n).

In the original reduction, given a cubic graph G, an interval graph G′ is defined through
the construction of one of its models M, described as follows:
1. let πV = (v1, v2, . . . , vn) and πE = (e1, e2, . . . , em) be arbitrary orderings of V (G) and

E(G), respectively;
2. for each vi ∈ V (G), ej ∈ E(G), let G(vi) and G(ej) denote respectively a (p, q)-grained

gadget and a (p′, q′)-grained gadget, where:
q = 200n3 + 1, p = 2q + 7n, and
q′ = 10n2 + 1, p′ = 2q′ + 7n;
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3. for each vk ∈ V (G), insert G(vk) in M such that G(vi) is entirely to the left of G(vj) if
and only if i < j. For each ek ∈ E(G), insert G(ek) in M entirely to the right of G(vn)
and such that G(ei) is entirely to the left of G(ej) if and only if i < j;

4. for each ej = (vi, vi′) ∈ E(G), with i < i′, four intervals I1
i,j , I2

i,j , I1
i′,j , I2

i′,j are defined in
M, called link intervals, such that:

I1
i,j and I2

i,j (resp. I1
i′,j and I2

i′,j) are true twin intervals that weakly intersect G(vi)
(resp. G(vi′)) to the right;
I1

i,j and I2
i,j (resp. I1

i′,j and I2
i′,j) weakly intersect (resp. strongly intersect) G(ej) to

the left.
By construction, therefore, I1

i,j and I2
i,j (resp. I1

i′,j and I2
i′,j) cover all intervals in grained

gadgets associated to a vertex vℓ with ℓ > i (resp. ℓ > i′) or an edge eℓ with ℓ < j.

Note that the number of intervals in M is invariant under the particular choices of πV and
πE and, therefore, so is the number of vertices of G′. Let n′ = |V (G′)|. Since G is cubic,
m = 3n

2 . By construction,

n′ = n(2p + 2q) + m(2p′ + 2q′) + 4m = 1200n4 + 90n3 + 25n2 + 21n

and thus n = Θ( 4
√

n′). Since the set of intervals covered by any link interval depends on πV

and πE , distinct sequences yield distinct resulting graphs G′ having distinct interval counts.
We show next that ic(G′) = O( 4

√
n′). Note that

the intervals of all gadgets G(vi) and G(ej) can use only two interval lengths (one for all
short intervals, another for all the long intervals);
for each ej = vivi′ ∈ E(G), with i < i′, both intervals I1

i,j and I2
i,j may be coincident in

any model, and therefore may have the same length. The same holds for both intervals
I1

i′,j and I2
i′,j .

Therefore, ic(G′) ≤ 2m + 2 = 3n + 2 = Θ( 4
√

n′). Therefore, the NP-completeness result
derived from the original reduction in [1] can be strengthened to state that MaxCut is
NP-complete for interval graphs G having interval count O( 4

√
|V (G)|).

Second, we show that there is a resulting model M′ produced in the reduction, defined in
terms of particular orderings πV , πE for which ic(M′) = Ω( 4

√
n′). Consider the cubic graph

G depicted in Figure 6(a) which consists of an even cycle (v1, v2, . . . , vn) with the addition
of the edges (vi, vi+ n

2
) for all 1 ≤ i ≤ n/2. For the ordering πV = (vn, vn−1, . . . , v1) and any

ordering πE in which the first n edges are the edges of the cycle (v1, v2, . . . , vn), in this order,
the reduction yields a model M′ for which there is a chain I1

1,1 ⊂ I1
2,2 ⊂ . . . ⊂ I1

n,n of nested
intervals (see Figure 6(b)), which shows that ic(M′) ≥ n, and thus ic(M′) = Ω( 4

√
n′).

(a) (b)

Figure 6 (a) A cubic graph G, and (b) a chain of nested intervals in the model M′.

It can be argued from the proof of NP-completeness for MaxCut when restricted to
cubic graphs [2] that the constructed cubic graph may be assumed to have no bridges. This
fact was not used in the original reduction of [1]. In an attempt to obtain a model M having
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fewer lengths for bridgeless cubic graphs, we have derived Lemma 8. Although the number
of lengths in this new upper bound has decreased by the constant factor of 4/9, it is still
Θ(n) = Θ( 4

√
n′).

▶ Lemma 8. Let G be a cubic bridgeless graph with n = |V (G)|. There exist particular
orderings πV of V (G) and πE of E(G) such that:
1. there is a resulting model M produced in the original reduction of MaxCut such that

ic(M) ≤ 4n
3 + 3.

2. for all such resulting models M, we have that ic(M) ≥ 5 if G is not a Hamiltonian graph.

As a concluding remark, we note that the interval count of the interval model M produced
in the original reduction is highly dependent on the assumed orderings of V (G) and E(G),
and may achieve ic(M) = Ω( 4

√
n′). The model M′ produced in our reduction enforces that

ic(M′) = 4 which is invariant for any such orderings. On the perspective of the problem of
interval count 2 and beyond, for which very little is known, our NP-completeness result on a
class of bounded interval count graphs is also of interest.
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We introduce a very natural generalization of the well-known problem of simultaneous congruences.
Instead of searching for a positive integer s that is specified by n fixed remainders modulo integer
divisors a1, . . . , an we consider remainder intervals R1, . . . , Rn such that s is feasible if and only if s

is congruent to ri modulo ai for some remainder ri in interval Ri for all i.
This problem is a special case of a 2-stage integer program with only two variables per constraint

which is is closely related to directed Diophantine approximation as well as the mixing set problem.
We give a hardness result showing that the problem is NP-hard in general.

By investigating the case of harmonic divisors, i.e. ai+1/ai is an integer for all i < n, which was
heavily studied for the mixing set problem as well, we also answer a recent algorithmic question
from the field of real-time systems. We present an algorithm to decide the feasibility of an instance
in time O(n2) and we show that if it exists even the smallest feasible solution can be computed in
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1 Introduction

In the recent past there was a great interest in the so-called n-fold integer programs [10, 17, 19]
and 2-stage integer programs [18, 20]. The matrix A of a 2-stage integer program is
constructed by block matrices A(1), . . . , A(n) ∈ Zr×k and B(1), . . . , B(n) ∈ Zr×t as follows:

A =

 A(1) B(1) 0 ··· 0

A(2) 0 B(2) . . .
...

...
...

. . .
. . . 0

A(n) 0 ··· 0 B(n)


For an objective vector c ∈ Zk+nt

≥0 , a right-hand side b ∈ Znr, and bounds ℓ, u ∈ Zk+nt
≥0 the

2-stage integer program is formulated as

max { cTx | Ax = b, ℓ ≤ x ≤ u, x ∈ Zk+nt } .

A special case of a 2-stage integer program is given by the problem Mixing Set [6, 7, 15] (with
only two variables in each constraint) where especially r = k = t = 1 and A(1) = · · · = A(n).
Remark that 2-variable integer programming problems were extensively studied by various
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authors, e.g. [3, 22] or [12] (with two variables in total). Mixing Set plays an important
role for example in integer programming approaches for production planning [26]. Given
vectors a, b ∈ Qn one aims to compute

min { f(s, x) | s+ aixi ≥ bi∀i = 1, . . . , n, (s, x) ∈ Z≥0 × Zn } (1)

for some objective function f . Conforti et al. [8] pose the question whether the problem can
be solved in polynomial time for linear functions f . Unless P = NP this was ruled out by
Eisenbrand and Rothvoß [13] who proved that optimizing any linear function over Mixing
Set is NP-hard. However, the problem can be solved in polynomial time if ai = 1 [15, 24] or
if the capacities ai fulfil a harmonic property [30], i.e. ai+1/ai is integer for all i < n. The
case of harmonic capacities was intensively studied - see [8, 9] for simpler approaches.

More recently, real-time systems with harmonic tasks (the periods are integer multiples
of each other) have received increased attention [5] and also harmonic periods have been
considered before [2, 11, 27, 29]. Now a recent manuscript in the field of real-time systems
by Nguyen et al. [25] gives rise to the study of a new problem. Nguyen et al. present an
algorithm for the worst-case response time analysis of harmonic tasks with constrained release
jitter running in polynomial time. The release jitter of a task is the maximum difference
between the arrival times and the release times over all jobs of the task. Their algorithm uses
heuristic components to solve an integer program that can be stated as a bounded version of
Mixing Set with additional upper bounds Bi as follows.

Bounded Mixing Set (BMS)
Given capacities a1, . . . , an ∈ Z and bounds b, B ∈ Zn find (s, x) ∈ Z≥0 × Zn such that

bi ≤ s+ aixi ≤ Bi ∀i = 1, . . . , n.

In particular they depend on minimizing the value of s which can be achieved in linear
time in case of Mixing Set. While BMS may look artificial at first sight it is not; in
fact, leading to a very natural generalization it can be restated in the well-known form of
simultaneous congruences.

Fuzzy Simultaneous Congruences (FSC)
Given divisors a1, . . . , an ∈ Z \{0} and remainder intervals R1, . . . , Rn ⊆ Z
and an interval S ⊆ Z≥0 find a number s ∈ S such that

∃ ri ∈ Ri : s ≡ ri (mod ai) ∀i = 1, . . . , n.

Obviously, this also generalizes over the well-known problem of the Chinese Remainder
Theorem (CRT). Here we give its generalized form (cf. [21]).

▶ Theorem 1 (Generalized Chinese Remainder Theorem). Given divisors a1, . . . , an ∈ Z≥1
and remainders r1, . . . , rn ∈ Z≥0 the system of n simultaneous congruences s ≡ ri (mod ai)
admits a solution s ∈ Z if and only if ri ≡ rj (mod gcd(ai, aj)) for all i ̸= j.

Furthermore, Leung and Whitehead [23] showed that k-Simultaneous Congruences (k-SC) is
NP-complete in the weak sense. Given divisors a1, . . . , an ∈ Z≥1 and remainders r1, . . . , rn ∈
Z≥0 the task is to find a number s ∈ Z≥0 and a subset I ⊆ {1, . . . , n} with |I| = k s.t. s ≡ ri

(mod ai) for all i ∈ I. Later it was shown by Baruah et al. [4] that k-SC also is NP-complete
in the strong sense.
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Figure 1 The two possibilities for the modular projection of an interval.

Both problems BMS and FSC are interchangeable formulations of the same problem (see
Section 2). Therefore, we will use them as synonyms and we especially assume formally
that Ri = [bi, Bi]. Interestingly and to the best of our knowledge, FSC/BMS was not
considered before. However, the investigation of simultaneous congruences has always been
of transdisciplinary interest connecting a variety of fields and applications, e.g. [1, 14, 16].

Our Contribution

(a) We show that BMS is NP-hard for general capacities ai. For the reduction from Directed
Diophantine Approximation we refer to the appendix. Compared to Mixing Set this
is a stronger hardness result as BMS by itself only asks for an arbitrary feasible solution.
Remark that every feasible instance of Mixing Set may be solved by s = ∥b∥∞, x = 0.

(b) In the case of harmonic capacities (i.e. ai+1/ai is an integer for all i < n), which was
heavily studied for Mixing Set as mentioned before, we give an algorithm exploiting a
merge idea based on modular arithmetic on intervals to decide the feasibility problem of
FSC in time O(n2). See Section 3.1 for the details.

(c) Furthermore, for a feasible instance of FSC with harmonic capacities we present a
polynomial algorithm as well as a strongly polynomial algorithm to compute the smallest
feasible solution to FSC in time O(min{n2 log(an), n3}) ≤ O(n3). See Section 3.2 for
the details.

(d) Our algorithm gives a strongly polynomial replacement for the heuristic component
(which may fail to compute a solution) in the algorithm of Nguyen et al. [25]. However,
we present an algorithm to solve the problem in linear time. See Section 4 for the details.

2 Notation and General Properties

For the sake of readability we write X [α] = (X mod α) for numbers X as well as X [α] =
{ z mod α | z ∈ X } for sets X (of numbers) to denote the modular projection of some number
or interval, respectively. Extending the usual notation we also write X ≡ Y (mod α) if
X [α] = Y [α] for sets X,Y . Notice that on the one hand (X ∪ Y )[α] = X [α] ∪ Y [α] but on
the other hand be aware that (X ∩ Y )[α] ̸= X [α] ∩ Y [α] in general (cf. Lemma 9). Figure 1
depicts the structure of v[α] if v = [ℓv, uv] is an interval in Z.

The empty set is denoted by ∅. Also we use the well-tried notation t+X = { t+ z | z ∈ X }
to express the translation of a set of numbers X by some number t. For a set of sets S we
write

⋃
S to denote the union

⋃
S∈S S. Furthermore, we identify constraints by their indices.

So for i ≤ n we say that “bi ≤ s+ aixi ≤ Bi” is constraint i.

MFCS 2021
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Identity of BMS and FSC

It is important to notice that BMS allows zero capacities while FSC cannot allow zero
divisors since (mod 0) is undefined. However, consider a constraint i of BMS with ai ̸= 0. Let
bi ≤ s+ aixi ≤ Bi be satisfied and set ri = s+ aixi. Then r[ai]

i = s[ai] and ri ∈ [bi, Bi] = Ri.
Vice-versa let ri ∈ Ri s.t. ri ≡ s (mod ai). Then there is an xi ∈ Z s.t. s+ aixi = ri ∈ Ri =
[bi, Bi].

A constraint i that holds ai = 0 simply demands that s ∈ Ri. Hence, if ai = aj = 0 for
two constraints i ≠ j they can be replaced by one new constraint k defined by Rk = Ri ∩Rj .
Therefore, one may assume that there is at most one constraint i with a zero capacity ai.
However, as all our results can be lifted back to the general case with low effort we will
assume in terms of BMS that all capacities are non-zero and for FSC we make the equivalent
assumption that S = Z≥0.

With our notation we may easily express the feasibility of a value s for a single constraint
i as follows.

▶ Observation 2. A value s satisfies constraint i if and only if s[ai] ∈ R[ai]
i .

Proof. It holds that ∃ri ∈ Ri : ri ≡ s (mod ai) iff ∃ri ∈ Ri : r[ai]
i = s[ai] iff s[ai] ∈ R[ai]

i . ◀

By simply swapping the signs of the xi we may assume that ai ≥ 0 for all i. We may also
assume that the intervals are small in the sense that Bi − bi + 1 < ai holds for all i. Assume
that Bi − bi + 1 ≥ ai for an i and let s ≥ 0 be an arbitrary integer. Then bi ≤ Bi − ai + 1
and constraint i may always be solved by setting xi = ⌈(bi − s)/ai⌉ which satisfies

bi ≤ s+ ai ⌈ bi−s
ai
⌉︸ ︷︷ ︸

xi

≤ s+ ai⌈Bi−ai+1−s
ai

⌉ = s+ ai⌊Bi−s
ai
⌋ ≤ Bi.

Hence, constraint i is redundant and may be omitted. As a direct consequence there can be
at most one feasible value for each xi for a given guess s. In fact, we can decide the feasibility
of a guess s in time O(n) as for all constraints i and values xi it holds bi ≤ s+ aixi ≤ Bi

if and only if ⌈(bi − s)/ai⌉ = xi = ⌊(Bi − s)/ai⌋. So a guess s is feasible if and only if
⌈(bi − s)/ai⌉ = ⌊(Bi − s)/ai⌋ holds for all constraints i. Another consequence is that BMS
is a generalization of Mixing Set as one can always add trivial upper bounds. By smin we
denote the smallest feasible solution s that satisfies all constraints.

▶ Observation 3. For feasible instances it holds that smin < lcm(a1, . . . , an).

Proof. Let φ = lcm(a1, . . . , an). Remark that φ/ai is integral for all i. Assume that (s, x)
is a solution with s = smin ≥ φ. Let t = s− φ and yi = xi + φ/ai f.a. i. Then 0 ≤ t < smin
and t+ aiyi = s+ aixi f.a. i. So (t, y) is a solution that contradicts the optimality. ◀

3 Harmonic Divisors

Here we consider harmonic divisors in the sense that ai+1/ai is an integer for all i < n.
As we investigate some kind of a generalization of the setting of the Chinese Remainder

Theorem, it is natural to ask for a CRT for harmonic (instead of the usually coprime)
divisors and of course the (generalized) CRT answers this question; in this case we have
gcd(ai, an) = ai and so Theorem 1 reveals that if the system of n simultaneous congruences
s ≡ ri (mod ai) admits a solution then ri ≡ rn (mod an) which says that if there is any
solution then the set of all solutions is anZ+r[an]

n . However, it turns out that the investigation
of FSC is a lot more complicated.
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Figure 2 36a1 =18a2 =6a3 =3a4 =a5. The guess s is not feasible for constr. 3 and 5.

In this section we present an algorithm to decide the feasibility of an instance of FSC.
Also we show how optimal solutions can be computed in (strongly) polynomial time. Both
of these results are based on the fine-grained interconnection between modular arithmetic
on sets and the harmonic property. For some intuition Figure 2 gives a perspective on s as
an anchor for 1-dimensional lattices with basis ai which have to “hit” the intervals Ri. For
example, in the figure it holds that s+ a2 · (−1) = s− a2 ∈ R2, so the 1-dimensional lattice
(s+ a2z)z∈Z hits interval R2. Therefore, the choice of s satisfies constraint 2.

3.1 Deciding feasibility
The idea for our first algorithm will be to decide the feasibility problem by iteratively
computing modular projections from constraint i = n down to i = 1. In the following we will
say that an interval w ⊆ Z represents a set M ⊆ Z (modulo α) if w[α] = M [α]. Also a set of
intervals R represents a set M ⊆ Z (modulo α) if M [α] =

⋃
w∈R w[α]. Given an integer α ≥ 1

and two intervals v, w we need to study the structure of the intersection v[α] ∩ w[α] ⊆ [0, α).
To express it let v = [ℓv, uv], w = [ℓw, uw] and we define the basic intervals

φα(v, w) = [ℓ[α]
v , u[α]

w ] and ψα(v, w) = [max{ℓ[α]
v , ℓ[α]

w }, α+ min{u[α]
v , u[α]

w }]

for all intervals v, w. The former may be thought as the cases where v[α] and w[α] are two
overlapping intervals while the intuition for the latter are situations where v[α] and w[α] both
consist of two intervals which are in pairs overlapping. Remark that ψα(w, v) = ψα(v, w) is
always true.

▶ Lemma 4. Given an integer α ≥ 1 and two intervals v, w ⊆ Z it holds that

v[α] ∩ w[α] ∈ { ∅, v[α], w[α], ψα(v, w)[α], φα(v, w), φα(w, v),

φα(v, w) ∪̇ φα(w, v), φα(v, w) ∪̇ ψα(v, w)[α], φα(w, v) ∪̇ ψα(v, w)[α] }.

The important intuition is that such a “modulo α intersection” can always be represented
by at most two intervals. Remark that the sets in the second row are the only ones which
are represented by 2 > 1 intervals. Due to space reasons for the case distinction to prove
Lemma 4 we refer to Appendix B and especially to Figure 6.

While Lemma 4 gives structure to intersections of two modular projections of intervals,
the next lemma reveals how many intervals will be required to represent a one-to-many
intersection. We will use this bound in every step of our algorithm. We want to add that both
of these lemmas and even Lemma 6 do not depend on the harmonic property by themselves.
However, they turn out to be especially useful in this setting.

▶ Lemma 5. Let α ≥ 1, let v be an interval and let Q be a set of k ≥ 1 intervals. Then
there is a set R of at most k+1 intervals s.t. v[α] ∩ (

⋃
Q)[α] = (

⋃
R)[α].

MFCS 2021
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Proof. We simply obtain that

v[α] ∩
(⋃

Q
)[α]

=
⋃

w∈Q

(v[α] ∩ w[α]) =
⋃

w∈Q

w[α]⊆v[α]

w[α] ∪
⋃

w∈D

(v[α] ∩ w[α])

where D = {w ∈ Q | w[α] ⊈ v[α], w[α] ∩ v[α] ̸= ∅ } denotes the subset of intervals that cause
the interesting intersections with v[α] (cf. Lemma 4). Obviously, all other intersections can
be represented by at most one interval each. So we study the intersections with D. In fact,
everything gets simple if there are w1, w2 ∈ D such that v[α]∩w[α]

1 = φα(v, w1) ∪̇ψα(v, w1)[α]

and v[α] ∩ w[α]
2 = φα(w2, v) ∪̇ ψα(v, w2)[α]. By simply adapting the inequalities of the first

case distinction in the proof of Lemma 4 we find

(v[α] ∩ w[α]
1 ) ∪ (v[α] ∩ w[α]

2 )

= ([0, u[α]
v ] ∪̇ [ℓ[α]

v , u[α]
w1

] ∪̇ [ℓ[α]
w1
, α)) ∪ ([0, u[α]

w2
] ∪̇ [ℓ[α]

w2
, u[α]

v ] ∪̇ [ℓ[α]
v , α))

= [0, u[α]
v ] ∪̇ [ℓ[α]

v , α) = v[α]

which implies that v[α] ∩ (
⋃
Q)[α] = v[α] can be represented by only one interval, namely v.

Therefore, in order to get an upper bound we assume that these two types of intersections do
not come together. In more detail, we may assume by symmetry that D = D1 ∪̇D2 where

D1 = {w ∈ D | v[α] ∩ w[α] = φα(v, w) ∪̇ φα(w, v) } and

D2 = {w ∈ D | v[α] ∩ w[α] = φα(v, w) ∪̇ ψα(v, w)[α] } .

It turns out that⋃
w∈D1

(v[α] ∩ w[α]) =
⋃

w∈D1

([ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , u[α]

v ])

= [ℓ[α]
v , max

w∈D1
u[α]

w ] ∪ [ min
w∈D1

ℓ[α]
w , u[α]

v ] and⋃
w∈D2

(v[α] ∩ w[α]) =
⋃

w∈D2

([ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , α+ u[α]

v ][α])

= [ℓ[α]
v , max

w∈D2
u[α]

w ] ∪ [ min
w∈D2

ℓ[α]
w , α+ u[α]

v ][α]

which finally joins up to⋃
w∈D

(v[α] ∩ w[α]) = [ℓ[α]
v ,max

w∈D
u[α]

w ] ∪ [min
w∈D

ℓ[α]
w , α+ u[α]

v ][α].

Hence, all intersections with intervals in D may be represented by at most two intervals
in total while each other intersection can be represented by at most one interval. Thus, if
|D| = 0 then the whole intersection can be represented by at most k intervals. If |D| ≥ 1
then there are at most 2 + |Q| − |D| ≤ 2 + k − 1 = k + 1 intervals required. ◀

Let Si denote the set of all solutions s ∈ Z≥0 that are feasible for each of the constraints
i, i + 1, . . . , n. We set Sn+1 = Z≥0 to denote the feasible solutions to an empty set of
constraints. The correctness of Algorithm 1 is implied by the following fundamental lemma.
See Figure 3 for an example of a step inside the algorithm.

▶ Lemma 6. It holds true that S[ai]
i = R

[ai]
i ∩ S[ai]

i+1 for all i = 1, . . . , n.
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Figure 3 A step from i+1 to i; modular projection to [0, ai) and intersection with R
[ai]
i .

Algorithm 1 Feasibility test for FSC.
procedure Feasible(I = (a1, . . . , an, R1, . . . , Rn))

Qn ← {Rn}
for i = n− 1, . . . , 1 do

Compute set Qi s. t. (
⋃
Qi)[ai] = R

[ai]
i ∩ (

⋃
Qi+1)[ai] and |Qi| ≤ O(n− i)

if
⋃
Q1 = ∅ then

return “infeasible”
else

return “feasible”

Proof. Let r ∈ S[ai]
i . So there is a solution s ∈ Si such that r = s[ai] ∈ R[ai]

i . It holds that
Si ⊆ Si+1 which implies s ∈ Si+1 and thus r = s[ai] ∈ S[ai]

i+1.
Vice-versa let r ∈ R[ai]

i ∩ S[ai]
i+1. So there is a solution s ∈ Si+1 with s[ai] = r. From

r ∈ R[ai]
i we get s[ai] ∈ R[ai]

i . Hence, s ∈ Si and r = s[ai] ∈ S[ai]
i . ◀

▶ Theorem 7. Algorithm 1 decides the feasibility of an instance in time O(n2).

Proof. We show that
⋃
Qi ≡ Si (mod ai) for all i = n, . . . , 1. This will prove the algorithm

correct since then
⋃
Q1 ≡ S1 (mod a1) and that means

⋃
Q1 is empty if and only if S1 is

empty. Obviously it holds that
⋃
Qn ≡ Sn (mod an) since

⋃
Qn = Rn. Now suppose that⋃

Qi+1 ≡ Si+1 (mod ai+1) for some i ≥ 1. We have that (
⋃
Qi)[ai] = R

[ai]
i ∩ (

⋃
Qi+1)[ai]

where the harmonic property implies (
⋃
Qi+1)[ai] = ((

⋃
Qi+1)[ai+1])[ai] = (S[ai+1]

i+1 )[ai] = S
[ai]
i+1.

Together with Lemma 6 this yields (
⋃
Qi)[ai] = R

[ai]
i ∩ S[ai]

i+1 = S
[ai]
i and that proves the

algorithm correct. Using Lemmas 4–6 each set Qi can be computed in time O(n) and this
yields a total running time of O(n2). ◀

3.2 Optimal solutions
Unfortunately, Algorithm 1 neither calculates a solution nor it directly implies one. Here we
present an algorithm to compute the smallest feasible solution smin to FSC. However, by
searching in the opposite direction the same technique also applies to the computation of the
largest feasible solution smax < an. We start with a simple binary search approach.

▶ Corollary 8. For feasible instances smin can be computed in time O(n2 log(an)).

This can be achieved by introducing an additional constraint measuring the value of s as
follows. Let β be a positive integer. We extend the problem instance by a new constraint
with number n + 1 defined by an+1 = 2 · an, bn+1 = 0, and Bn+1 = β. Remark that this
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β-instance admits the same set of solutions as the original instance as long as β is large
enough, e.g. β = an (cf. Observation 3). Consider a feasible solution to the β-instance where
β ≤ an. It holds that

2anxn+1 = an+1xn+1 ≤ s+ an+1xn+1 ≤ Bn+1 = β ≤ an

which implies xn+1 ≤ ⌊ 1
2⌋ = 0. However, if xn+1 < 0 then s ≥ an+1 · |xn+1| and therefore the

solution s′ = s+ an+1xn+1 with x′
n+1 = 0 and x′

i = xi − (an+1/ai)xn+1 for all i = 1, . . . , n
is better than s and x′

n+1 = 0.
Thus we may assume generally that xn+1 = 0 which allows us to measure the value of

s using the upper bound β. We use β to do a binary search in the interval [0, an] using
Algorithm 1 to check the β-instance for feasibility. The smallest possible value for β then
states the optimum value and that proves Corollary 8. However, with additional ideas we
are able to achieve strongly polynomial time. We want to give some helpful intuition first.

Clearly, after revealing the intervals in Q1 with Algorithm 1 a straightforward idea is to
try tracing them back to a small solution for s, but routing through the modulus operations
appears to become a non-polynomial bottleneck.

However, the following idea is a first step to end up with a constraint aggregation
approach. Given the projections A[ab] and B[a] of two sets A,B ⊆ Z one can compute
the intersection A[a] ∩ B[a] in at least two ways; primitively we compute (A[ab])[a] = A[a]

and then intersect it with B[a], but also we can intersect A[ab] with b translated copies
B[a], a + B[a], . . . , (b − 1)a + B[a] of B[a] before computing the [a]-projection. In fact, the
following lemma seems to be a characteristic property of modular arithmetic on sets.

▶ Lemma 9. For all numbers a, b ∈ Z≥1 and sets A,B ⊆ Z it holds

A[a] ∩B[a] =
(
A[ab] ∩

b−1⋃
i=0

(ia+B[a])
)[a]

.

Proof. Let x be a number. Then it holds

x ∈

(
A[ab] ∩

b−1⋃
i=0

(ia+B[a])
)[a]

⇔ ∃y ∈ A[ab] : y ∈
b−1⋃
i=0

(ia+B[a]) ∧ x = y[a]

⇔ ∃y ∈ A[ab] : y[a] ∈ B[a] ∧ x = y[a]

⇔ x ∈ A[a] ∩B[a]

where the last equivalence follows from (A[ab])[a] = A[a]. ◀

Since the right side can be written as the modular projection of a union of intersections
we can find a sensible strengthening; in fact, for arbitrary sets X,M0, . . . ,Mm−1 it holds
that

m−1⋃
i=0

(X ∩Mi) =
m−1⋃
i=0

(X ∩ (Mi \
i−1⋃
j=0

(X ∩Mj))).

While the left-hand side may not, the right-hand side is always a disjoint union. Taking into
account the modular projections this leads to the following corollary.

▶ Corollary 10. For all numbers a, b ∈ Z≥1 and sets A,B ⊆ Z it holds A[a] ∩ B[a] =
(
⋃b−1

i=0 Di)[a] where Di = A[ab] ∩ Yi and Yi = ia+ (B[a] \
⋃i−1

j=0 D
[a]
j ) for all i = 0, . . . , b− 1.
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R
[an]
n :

an−10 an

Y0 =R
[an−1]
n−1 Y2 Y3

an−10 an
D0 D2 D3

Figure 4 An example of four required intervals to represent R
[an−1]
n−1 ∩R

[an−1]
n in Lemma 13.

We will use Corollary 10 to aggregate constraints in order to reduce the problem size.
The following observation gives a first bound for the smallest feasible solution smin.

▶ Observation 11. For feasible instances it holds that smin ∈ R[an]
n .

This is true since in the harmonic case smin < lcm(a1, . . . , an) = an due to Observation 3
which then implies that smin = s

[an]
min ∈ R

[an]
n using Observation 2. Motivated by Observation 11

the idea is to search for smin in the modular projection R[an]
n by aggregating the penultimate

constraint n − 1 into the last constraint n. In fact, the number of required intervals to
represent both constraints can be bounded by a constant. A fine-grained construction then
enforces the algorithm to efficiently iterate the feasibility test on aggregated instances to
find the optimum value.

▶ Theorem 12. For feasible instances smin can be computed in time O(n3).

Remark that the set of feasible solutions for the last two constraints is Sn−1 = R
[an−1]
n−1 ∩

(R[an]
n )[an−1] = R

[an−1]
n−1 ∩R[an−1]

n . Therefore, the next lemma states the crucial argument of
the algorithm.

▶ Lemma 13. The intersection R
[an−1]
n−1 ∩R[an−1]

n can always be represented by the disjoint
union U ⊆ R[an]

n of only constant many intervals in R
[an]
n such that

(a) U [an−1] = R
[an−1]
n−1 ∩R[an−1]

n and
(b) u ≡ r (mod an−1) implies u ≤ r for all u ∈ U , r ∈ R[an]

n .
Here the former property states that indeed the intervals in U are a proper representation
for the last two constraints. The important property is the latter; in fact, it ensures that
U is the best possible representation in the sense that U consists of the smallest intervals
possible (see Figure 4).

Proof of Lemma 13. (a). By defining Di = Yi ∩R[an]
n and

Yi = ian−1 + (R[an−1]
n−1 \

i−1⋃
j=0

D
[an−1]
j )

for all i ∈ {0, . . . , an/an−1 − 1} Corollary 10 proves the claim (cf. Figure 4). (b) follows by
construction.

It remains to show that
⋃

i Di is the union of only constant many disjoint intervals.
Apparently, the intervals are disjoint by construction.

We claim that there are at most three non-empty sets Di. Assume there are at least four
non-empty translates Di, namely Di, Dj , Dk, Dℓ. Then, since Rn is an interval it holds for
at least two p, q ∈ {i, j, k, ℓ} that the full interval translates Fp = [pan−1, (p+ 1)an−1) and
Fq = [qan−1, (q + 1)an−1) are subsets of R[an]

n . For p (and also for q) we get

MFCS 2021
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D[an−1]
p = ( Yp︸︷︷︸

⊆Fp

∩R[an]
n )[an−1] = Y [an−1]

p = R
[an−1]
n−1 \

p−1⋃
j=0

D
[an−1]
j

which implies with
⋃p−1

j=0 D
[an−1]
j ⊆ R[an−1]

n−1 that

p⋃
j=0

D
[an−1]
j = D[an−1]

p ∪
p−1⋃
j=0

D
[an−1]
j = R

[an−1]
n−1 .

Then it follows
⋃p

j=0 D
[an−1]
j = R

[an−1]
n−1 =

⋃q
j=0 D

[an−1]
j . W.l.o.g. let p < q. Then Dq =

Yq ∩R[an]
n is empty since

Yq = qan−1 +

R[an−1]
n−1 \

q−1⋃
j=0

D
[an−1]
j

 ⊆ qan−1 +
(
R

[an−1]
n−1 \R[an−1]

n−1

)
is empty and we have a contradiction.

Using the same case distinctions as in the proof of Lemma 4 one can show that each set
Di consist of at most two intervals. Therefore, all the non-empty sets Di consist of at most
3 · 2 = 6 intervals in total. In fact, one can improve this bound to a total number of at most
4 intervals (see Figure 4) by a more sophisticated case distinction. ◀

This admits an algorithm using an aggregation argument as follows. For constraints n and
n− 1 we use Lemma 13 to compute disjoint intervals E1, . . . , Ek ⊆ R[an]

n (representing the
constraints n and n− 1) where k ≤ C for a small constant C. If k ≥ 1 then use Algorithm 1
to check the feasibility of the instances I1, . . . , Ik defined by

(Ij) min { s | s[ai] ∈ R[ai]
i ∀i = 1, . . . , n− 2, s[an] ∈ E[an]

j , s ∈ Z≥0 } .

If none of the instances I1, . . . , Ik admits a solution then the original instance can not be
feasible. Assume that there is at least one feasible instance. Now, since E1, . . . , Ek are disjoint
exactly one of them contains the optimum value for s. W.l.o.g. assume that E1 < · · · < Ek.
Then there is a smallest index j such that Ij is feasible and we solve Ij recursively to find
the optimum value. Together this yields an algorithm running in time n ·C · O(n2) = O(n3).

4 Uniprocessor Real-Time Scheduling

In real-time systems an important question is to ask for the worst-case response time of
a task system. While the complexity is pseudo-polynomial in general [28], Nguyen et al.
proposed a new algorithm [25] to compute it in polynomial time for preemptive sporadic
tasks τ1, . . . , τn with harmonic periods Ti ≥ 0 and job processing times Ci ≥ 0 running
on a uniprocessor platform. The worst-case response time is the first point in time where
t = Cn +

∑n−1
i=1 Ci · ⌈t/Ti⌉. Be aware that they assume the harmonic property in the opposite

direction, i.e. Ti/Ti+1 ∈ Z. Their algorithm even allows the task execution to be delayed by
some release jitter Ji. However, their algorithm depends on a heuristic component which may
fail to compute correct solutions [25, Section 5.5, 6]. In fact, the fundamental computation
problem can be expressed as a BMS instance which immediately implies a robust approach
in time O(n3) with our algorithm. Nevertheless, it can be solved even more efficiently in
time O(n) which we describe here. The overall result will be the following theorem.
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▶ Theorem 14. The worst-case response time of a harmonic task real-time system with
constrained release jitter can be computed in polynomial time.

We adapt the notation of Nguyen et al. and extend it to our needs. The jobs of task τi

have the processing time Ci and we define ci =
∑n−1

t=i+1 Ct to accumulate the last of them.
The utilization of task τi is denoted by Ui = Ci/Ti and it holds that

∑n−1
t=1 Ut < 1. In [25,

Section 5.4.1] Nguyen et al. describe that also x1 = 1 may be assumed. The system to solve
(eq. (55), (56)) is described in [25, Section 5.5]:

min {xn | Ji + Tixi ≤ Jn + Tnxn,

Jn + Tnxn − ci ≤ Ji + Tixi ∀i ≤ n− 1 } (2)

which can be formulated as the following BMS instance:

min
{
xn

∣∣∣∣ ⌈Ji − Jn

Tn

⌉
≤ xn −

Ti

Tn
xi ≤

⌊
Ji − Jn + ci

Tn

⌋
∀i ≤ n− 1

}
(3)

▶ Lemma 15. If i < j ≤ n and (ci + cj)/Tj < 1 then in terms of variable xi there is at most
one feasible value for variable xj.

Proof. If j < n then by combining the constraints for i and j in (2) we find

Tixi + Ji − Jn ≤ Tjxj + Jj − Jn + cj and
Tjxj + Jj − Jn ≤ Tixi + Ji − Jn + ci

which with the harmonic property and the integrality of xj yields

Ti

Tj
xi +

⌈
Ji − Jj − cj

Tj

⌉
≤ xj ≤

Ti

Tj
xi +

⌊
Ji − Jj + ci

Tj

⌋
. (4)

However, if j = n then cj =
∑n−1

t=n+1 Ct = 0 and thus (4) follows from (2) too (cf. (3)). Now
by simply dropping the roundings we obtain in both cases that

Ti

Tj
xi +

⌊
Ji − Jj + ci

Tj

⌋
−
(
Ti

Tj
xi +

⌈
Ji − Jj − cj

Tj

⌉)
≤ ci + cj

Tj
< 1

which proves the claim. ◀

According to (4) we define interval bounds ℓ(i)
j (z) and u(i)

j (z) to denote the feasible values
for variable xj in terms of variable xi where z states a value for variable xi, i.e.

ℓ
(i)
j (z) = Ti

Tj
z +

⌈
Ji − Jj − cj

Tj

⌉
and u

(i)
j (z) = Ti

Tj
z +

⌊
Ji − Jj + ci

Tj

⌋
.

Thus, (4) is equivalent to xj ∈ [ℓ(i)
j (xi), u(i)

j (xi)] and if (ci + cj)/Tj < 1 then it either holds
that ℓ(i)

j (xi) = xj = u
(i)
j (xi) or there is no solution at all.

Fortunately, there is always a sequence of variables such that the value of every next
variable can be determined by the value of the current variable. The following lemma is
crucial.

▶ Lemma 16. If i < n and k = max { t ≤ n | Ti+1 = Tt } then there is at most one feasible
value for variable xk.
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x1 xi xi+1 xk xn

Figure 5 The variable revealing flow with vertical lines between blocks of equal periods.

Proof. If k < n− 1 then it holds by the harmonic property and the maximality of k that
Tk ≥ 2Tk+1 ≥ 2Tk+2 ≥ · · · ≥ 2Tn−1 and thus Tt/Tk ≤ 1/2 for all t = k+ 1, . . . , n− 1. Hence,

ci + ck

Tk
=

n−1∑
t=i+1

Ut
Tt

Tk
+

n−1∑
t=k+1

Ut
Tt

Tk
=

k∑
t=i+1

Ut
Tt

Tk︸︷︷︸
=1

+2
n−1∑

t=k+1
Ut

Tt

Tk︸︷︷︸
≤1/2

≤
n−1∑

t=i+1
Ut < 1.

If otherwise k ≥ n− 1 then ck = 0 and hence

ci + ck

Tk
= ci

Tk
=

n−1∑
t=i+1

Ut
Tt

Tk︸︷︷︸
=1

=
n−1∑

t=i+1
Ut < 1.

By Lemma 15 this proves the claim. ◀

This gives rise to the following algorithm. By iterating Lemma 16 and starting with
x1 = 1 we can reveal the last variable of each block of indices of equal periods (cf. Figure 5).
Finally, this reveals the variable xn and we only need to assure that the value of xn admits
feasible values for variables which are not revealed so far. Apparently we may restate the
constraints of (2) as⌈

Jn − Jj − cj + Tnxn

Tj

⌉
≤ xj ≤

⌊
Jn − Jj + Tnxn

Tj

⌋
∀j = 1, . . . , n− 1.

Therefore, we can simply compare these bounds to assure the existence of a feasible value for
each variable xj . See Algorithm 2 for a formal description.

Algorithm 2 Variable revealing flow.
procedure Reveal

x1 ← 1
k ← 1
while k < n do

i← k

k ← max { t ≤ n | Ti+1 = Tt }
if ℓ

(i)
k (xi) ̸= u

(i)
k (xi) then

return −1
else

xk ← ℓ
(i)
k (xi) ▷ Lemma 16

for j = 1, . . . , n− 1 do
if
⌈

Jn−Jj −cj +Tnxn

Tj

⌉
>
⌊

Jn−Jj +Tnxn

Tj

⌋
then ▷ no feasible solution for xj

return −1
return xn
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▶ Observation 17. By a more sophisticated investigation the number of index blocks of equal
periods can be bounded by a constant and thus, the while loop reveals xn in constant time.
Therefore, the final feasibility test appears to be the only computational bottleneck.
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A Hardness of BMS

We reduce from Directed Diophantine Approximation with rounding down. For
any vector v ∈ Rn let ⌊v⌋ denote the vector where each component is rounded down, i.e.
(⌊v⌋)i = ⌊vi⌋ for all i ≤ n.

Directed Diophantine Approximation with rounding down (DDA↓)
Given: α1, . . . , αn ∈ Q+, N ∈ Z≥1, ε ∈ Q, 0 < ε < 1
Decide whether there is a Q ∈ { 1, . . . , N } such that ∥Qα− ⌊Qα⌋∥∞ ≤ ε.

Eisenbrand and Rothvoß proved that DDA↓ is NP-hard [13]. In fact, every instance of
DDA↓ can be expressed as a BMS instance, which yields the following theorem.

▶ Theorem 18. BMS is NP-hard (even if bi = 0 for all i with ai ̸= 0).

Proof. Write αi = βi/γi for integers βi ≥ 0, γi ≥ 1 and set λ =
∏

j βj . Then λ/αi =
(λ/βi)γi ≥ 0 is integer. Let M denote the following instance of BMS:

0 ≤ Q′ − (λ/αi) · yi ≤ ⌊(λ/αi) · ε⌋ ∀i = 1, . . . , n (5)
λ ≤ Q′ − 0 · yn+1 ≤ λ ·N (6)
0 ≤ Q′ − λ · yn+2 ≤ 0 (7)

Q′, yi ∈ Z ∀i = 1, . . . , n+ 2

http://arxiv.org/abs/1912.01161
https://lup.lub.lu.se/search/ws/files/10751577/bare_conf.pdf
https://lup.lub.lu.se/search/ws/files/10751577/bare_conf.pdf
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w[α]:
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v[α] ∩ w[α]:
0 α1.1 0 α1.2 0 α1.3
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0 α2.2 0 α2.3 0 α3

Figure 6 Examples for the cases of the case distinction in the proof of Lemma 4.

So let Q ∈ { 1, . . . , N } with ∥Qα − ⌊Qα⌋∥∞ ≤ ε be given. We obtain readily that
Q′ = λQ and y = (⌊Qα1⌋, . . . , ⌊Qαn⌋, 0, Q) defines a solution of M since

0 ≤ Qαi − ⌊Qαi⌋ ≤ ε if and only if 0 ≤ λQ− (λ/αi) · ⌊Qαi⌋︸ ︷︷ ︸
∈Z

≤ (λ/αi) · ε.

Vice-versa let (Q′, y) be a solution to M. We see that (5) implies that

0 ≤ Q′ − (λ/αi) · yi ≤ ⌊(λ/αi) · ε⌋ ≤ (λ/αi) · ε

and by (7) we get Q′ = λ ·yn+2 which then implies 0 ≤ yn+2αi−yi ≤ ε < 1 for all i ≤ n. Now,
since yi is integer, there can be only one value for yi, i.e. yi = ⌊yn+2αi⌋. By Q′ = λ · yn+2
and (6) we get yn+2 ∈ {1, . . . , N} and by setting Q = yn+2 this yields ∥Qα− ⌊Qα⌋∥∞ ≤ ε
and that proves the claim. ◀

B Omitted proofs

Proof of Lemma 4. We do a case distinction (see Figure 6) as follows. We only look at
the non-trivial case, i.e. v[α] ∩ w[α] /∈ {∅, v[α], w[α] }, which especially implies |v| < α and
|w| < α.

We start with the case that neither v[α] nor w[α] is an interval, i.e. u
[α]
v < ℓ

[α]
v and

u
[α]
w < ℓ

[α]
w . Then it cannot be that u[α]

w ≥ ℓ[α]
v and u[α]

v ≥ ℓ[α]
w since that implies ℓ[α]

v ≤ u[α]
w <

ℓ
[α]
w ≤ u[α]

v . Hence, there are three cases as follows.
Case 1.1. u[α]

w < ℓ
[α]
v and u

[α]
v < ℓ

[α]
w . Then the intersection equals

[0,min{u[α]
v , u[α]

w }] ∪̇ [max{ℓ[α]
v , ℓ[α]

w }, α) = [max{ℓ[α]
v , ℓ[α]

w }, α+ min{u[α]
v , u[α]

w }][α]

= ψα(v, w)[α].

Case 1.2. u[α]
w ≥ ℓ[α]

v and u
[α]
v < ℓ

[α]
w . Then the intersection equals

[0, u[α]
v ] ∪̇ [ℓ[α]

v , u[α]
w ] ∪̇ [ℓ[α]

w , α) = [ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , α+ u[α]

v ][α] = φα(v, w) ∪̇ ψα(v, w)[α].

Case 1.3. u[α]
w < ℓ

[α]
v and u[α]

v ≥ ℓ[α]
w . By symmetry we get v[α]∩w[α] = φα(w, v)∪̇ψα(v, w)[α].

Now, w.l.o.g. assume that v[α] is an interval, i.e. ℓ[α]
v ≤ u

[α]
v , while w[α] consists of two

intervals, i.e. u[α]
w < ℓ

[α]
w . Then there are three cases as follows.
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Case 2.1. ℓ[α]
v ≤ u[α]

w < u
[α]
v < ℓ

[α]
w . Then the intersection equals [ℓ[α]

v , u
[α]
w ] = φα(v, w).

Case 2.2. u[α]
w < ℓ

[α]
v < ℓ

[α]
w ≤ u[α]

v . Then the intersection equals [ℓ[α]
w , u

[α]
v ] = φα(w, v).

Case 2.3. ℓ[α]
v ≤ u[α]

w < ℓ
[α]
w ≤ u[α]

v . Then the intersection is

[ℓ[α]
v , u[α]

w ] ∪̇ [ℓ[α]
w , u[α]

v ] = φα(v, w) ∪̇ φα(w, v).

Clearly, if both v[α] and w[α] are intervals (Case 3) (which are not disjoint) then their
intersection is either φα(v, w) or φα(w, v). ◀
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Abstract
Bojańczyk recently initiated an intensive study of deterministic pebble transducers, which are
two-way automata that can drop marks (named “pebbles”) on their input word, and produce an
output word. They describe functions from words to words. Two natural restrictions of this definition
have been investigated: marble transducers by Douéneau-Tabot et al., and comparison-free pebble
transducers (that we rename here “blind transducers”) by Nguyên et al.

Here, we study the decidability of membership problems between the classes of functions
computed by pebble, marble and blind transducers that produce a unary output. First, we show that
pebble and marble transducers have the same expressive power when the outputs are unary (which
is false over non-unary outputs). Then, we characterize 1-pebble transducers with unary output
that describe a function computable by a blind transducer, and show that the membership problem
is decidable. These results can be interpreted in terms of automated simplification of programs.
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1 Introduction

Regular languages can be described by several models such as deterministic, non-deterministic,
or two-way (the reading head can move in two directions) finite automata [12]. A natural
extension consists in adding an output mechanism to finite automata. Such machines, called
transducers, describe functions from words to words (or relations when non-deterministic)
and provide a natural way to model simple programs that produce outputs. The particular
model of a two-way transducer consists in a two-way automaton enhanced with an output
function. It describes the class of regular functions which has been intensively studied for its
fundamental properties: closure under composition [5], logical characterization by monadic
second-order transductions [7], decidable equivalence problem [9], etc.

Pebble transducers and their variants. The model of k-pebble transducer can be defined
as an inductive extension of two-way transducers. A 0-pebble transducer is just a two-way
transducer. For k ≥ 1, a k-pebble transducer T is a two-way transducer that, when in a given
configuration, can “call” an external function f, computed by some (k−1)-pebble transducer.
T gives as argument to f its input word together with a mark, named “pebble”, on the
position from which the call was performed, and uses the output of f within its own output.

The behavior of a 1-pebble transducer is depicted in Figure 1. Intuitively, a k-pebble
transducer is some recursive program whose recursion depth is at most k+1. Equivalently,
it can be seen as an iterative algorithm with “two-way for-loops”, such that the maximal
depth of nested loops is k+1. A k-pebble transducer can only produce an output whose
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40:2 Pebble Transducers with Unary Output

length is polynomial in its input’s length, more precisely O(nk+1) when n is the input’s
length (this is intuitive from the “nested loops” point of view). The functions computed
by a k-pebble transducer for some k ≥ 0 are thus called polyregular functions [3]. Several
properties of polyregular functions have been investigated: closure under composition [3],
logical characterization by monadic second-order interpretations [4], etc. The equivalence
problem (given two machines, do they compute the same function?) is however still open.

Input word⊢ ⊣
Run of the main machine

Input word⊢ ⊣
Run of the submachine for f

pebble

Figure 1 Behavior of a 1-pebble transducer.

Recently, two natural restrictions of pebble transducers have been introduced. First, the
k-marble transducers of [6] only give as argument to their external function the prefix of the
input word which ends in the calling position (see Figure 4). Second, the k-blind transducers1

of [11] give the whole input word, but no pebble on the calling position (see Figure 3). The
classes of functions they compute are strict subclasses of polyregular functions [6, 11].

Class membership problems. These various models of transducers raise several membership
problems: given a function computed by a machine of model X, can it be computed by some
machine of model Y ? When Y is a restriction of X, this problem reformulates as a program
optimization question: given a “complex” algorithm in a class X, can we build an equivalent
“simpler” one in class Y ? Thus it is of a foremost interest in practice.

Given a function f computed by an ℓ-pebble transducer, one can ask whether it is
computable by a k-pebble transducer for a given k < ℓ. The problem is decidable [10],
and it turns out that a necessary and sufficient condition for this membership is that
|f(w)| = O(|w|k+1). Using the “nested loops” interpretation of pebble transducers, it means
that an output of size O(|w|k+1) can always be produced with at most k+1 nested loops.
Similar results have been obtained in [6] and [11] for their variants, with the same conclusion:
an output of size O(|w|k+1) can always be produced with depth at most k+1.

Contributions. In this paper, we study a different membership problem: can a function
given by a k-pebble transducer be computed by a k-marble or k-blind transducer? It turns out
to be a more difficult question, since there is no intuitive and machine-independent candidate
for a membership condition (such as the size of the output). In general, membership problems
for transducers are difficult, since contrary to regular languages, there is no “canonical” object
known to represent a regular function. Hence, there can be several seemingly unrelated
manners to produce the same function, and moving from one to another can be technical.

We focus on transducers whose output alphabet is unary, and our proof techniques are
new. The first main result is that (when the outputs are unary) k-pebble transducers and
k-marble transducers compute the same functions (one direction is obvious since k-marble
is a restriction of k-pebble). The transformation is effective, but the way of producing the
output must sometimes be completely modified (the transformation modifies the origin
semantics, in the sense of [2]), which creates an additional difficulty. The correspondence
fails as soon as the output is not over a unary alphabet, as detailed in Example 1.

1 The original terminology of [11] is comparison-free pebble transducers, but we strongly believe that the
term “blind” is more adapted, since there are no pebbles in this model.
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▶ Example 1 ([6, 11]). The partial function {a, b}∗ → {a, b}∗, ambn 7→ (bna)m can be
computed by a 1-pebble transducer, but not by a k-marble for any k ≥ 0.

Since the equivalence problem is decidable for marble transducers, it follows from our
result that it is also decidable for pebble transducers with unary output.

As a second main result, we show how to decide (when the outputs are unary) whether a
function given by 1-pebble (≡ 1-marble) transducer can be computed by a 1-blind transducer,
or more generally by a k-blind transducer for some k ≥ 0. The technical proof also gives a
syntactical characterization of 1-marble transducers whose function verify this property: it
describes a kind of “symmetry” in the production of the machine on its input. Furthermore,
the conversion is effective when possible, but once more the manner of producing the output
can be strongly modified. Our techniques heavily rely on the theory of factorization forests;
this is, to our knowledge, the first time this notion is used for membership problems of
transducers, and we believe this approach to be fruitful.

Our results are summarized in red in Figure 2. We also give some examples of functions
(their outputs are non-negative integers, since we identify {a}∗ with N).

0-pebble
=

0-marble
=

0-blind

1-blind
1-pebble

=
1-marble

O(n)

O(n2)

O(nk+1)

k-pebble
=

k-marble k-blind

nb-a : w ∈ {a, b}∗ 7→ |w|a

letter-product : w ∈ {a, b}∗ 7→ |w|a|w|b
square : an 7→ n2

product : ambn 7→ mn

iterated-square : an1 ban2 b · · · banℓ b 7→
∑ℓ

i=1(ni)2

triangular-sum : anℓ banℓ−1 b · · · ban1 b 7→
∑ℓ

i=1 ini

decidable
membership

Figure 2 Classes of functions with unary output and results of this paper.

Outline. We first recall in Section 2 the definitions of k-pebble, k-marble and k-blind
transducers, simplified for the case of unary outputs. In Section 3, we define the notions of
k-pebble, k-marble and k-blind bimachines, and show their equivalence with the transducer
models. Bimachines are easier to handle in the proofs, due to the fact that they avoid
two-way moves. In Section 4, we show that k-marble and k-pebble transducers are equivalent.
Finally, we solve in Section 5 the class membership problem from 1-pebble to 1-blind. Due
to space constraints, several proofs are sketched in the main paper, and we focus on the most
significant lemmas and characterizations.

2 Preliminaries

N is the set of nonnegative integers. If 0 ≤ i ≤ j, the set [i:j] denotes {i, i+1, . . . , j} ⊆ N
(empty if j < i). Capital letters A, B denote finite sets of letters (alphabets). The empty
word is denoted ε. If w ∈ A∗, let |w| ∈ N be its length, and for 1 ≤ i ≤ |w| let w[i] be its i-th
letter. If I = {i1 < · · · < iℓ} ⊆ {1, . . . , |w|}, let w[I] := w[i1] · · ·w[iℓ]. If a ∈ A, we denote
by |w|a the number of letters a occurring in w. Given A = {a, . . . }, let A := {a, . . . } be a
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40:4 Pebble Transducers with Unary Output

disjoint copy of A. For 1 ≤ i ≤ |w|, we define w↑i := w[1:i−1]w[i]w[i+1:|w|] as “w in which
position i is underlined”. We assume that the reader is familiar with the basics of automata
theory, in particular the notion of two-way deterministic automaton.

Two-way transducers. A deterministic two-way transducer is a deterministic two-way
automaton enhanced with the ability to produce outputs along its run. The class of functions
described by these machines is known as regular functions [5, 7].

▶ Definition 2. A (deterministic) two-way transducer (A, B, Q, q0, F, δ, λ) is:
an input alphabet A and an output alphabet B;
a finite set of states Q with an initial state q0 ∈ Q and a set F ⊆ Q of final states;
a (partial) transition function δ : Q× (A ⊎ {⊢,⊣})→ Q× {◁, ▷};
a (partial) output function λ : Q× (A ⊎ {⊢,⊣})→ B∗ with same domain as δ.

When given as input a word w ∈ A∗, the two-way transducer disposes of a read-only
input tape containing ⊢w⊣. The marks ⊢ and ⊣ are used to detect the borders of the tape,
by convention we denote them as positions 0 and |w|+1 of w. Formally, a configuration over
⊢w⊣ is a tuple (q, i) where q ∈ Q is the current state and 0 ≤ i ≤ |w|+1 is the position of
the reading head. The transition relation → is defined as follows. Given a configuration
(q, i), let (q′, ⋆) := δ(q, w[i]). Then (q, i) → (q′, i′) whenever either ⋆ = ◁ and i′ = i − 1
(move left), or ⋆ = ▷ and i′ = i + 1 (move right), with 0 ≤ i′ ≤ |w|+1. A run is a sequence
of configurations (q1, i1) → · · · → (qn, in). Accepting runs are those that begin in (q0, 0)
and end in a configuration of the form (q, |w|+1) with q ∈ F (and it never visits such a
configuration before). The function f : A∗ → B∗ computed by the machine is defined as
follows. Let w ∈ A∗, if there exists an accepting run on ⊢w⊣, then f(w) is the concatenation
of the λ(q, w[i]) along this unique run on ⊢w⊣. To make f a total function, we let f(w) := ε

if there is no accepting run (the language of words having an accepting run in a two-way
transducer is regular [12], hence the domain does not matter).

▶ Example 3. reverse : A∗ → A∗, abac 7→ caba can be computed by a two-way transducer.

From now on, the output alphabet of the machines will always be a singleton. Up to
identifying {a}∗ and N, we assume that λ : Q× (A ⊎ {⊢,⊣})→ N and f : A∗ → N.

External functions. We now extend the notion of output function λ: it will not give directly
an integer, but performs a call to an external function which returns an integer. For pebbles,
the output of the external functions depends on the input word and the current position.

▶ Definition 4. A two-way transducer with external pebble functions (A, Q, q0, F, δ,F, λ) is:
an input alphabet A;
a finite set of states Q with an initial state q0 ∈ Q and a set F ⊆ Q of final states;
a (partial) transition function δ : Q× (A ⊎ {⊢,⊣})→ Q× {◁, ▷};
a finite set F of external functions f : (A ⊎A)∗ → N;
a (partial) output function λ : Q× (A ⊎ {⊢,⊣})→ F with same domain as δ.

Configurations (q, i) and runs of two-way transducers with external functions are defined
as for classical two-way transducers. The function f : A∗ → N computed by the machine
is defined as follows. Let w ∈ A∗ such that there exists an accepting run on ⊢w⊣. If
λ(q, w[i]) = f ∈ F, we let ν(q, i) := f(w↑i), that is the result of f applied to w marked in i.
Finally, f(w) is defined as the sum of the ν(q, i) along this unique accetping run on ⊢w⊣.
We similarly set f(w) = 0 if there is no accepting run.
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▶ Remark 5. If the external functions are constant, we exactly have a two-way transducer.

▶ Example 6. Let a, b ∈ A, fb : w ∈ (A ⊎ A)∗ 7→ |w|b and f0 : w ∈ (A ⊎ A)∗ 7→ 0. The
two-way transducer with external pebble functions, which makes a single pass on its input
and calls fb if reading a and f0 otherwise, computes letter-product : w ∈ A 7→ |w|a|w|b.

We define two other models. Their definition is nearly the same, except that the external
functions of F have type A∗ → N and ν(q, i) is defined in a slightly different way:

in a two-way transducer with external blind functions, we define ν(q, i) := f(w). The
external function is applied to w without marking the current position;
in a two-way transducer with external marble functions, we define ν(q, i) := f(w[1:i]). The
external function is applied to the prefix of w stopping at the current position.

Pebble, blind and marble transducers. We now describe the transducer models using the
formalism of external functions. These are not the original definitions from [3, 6, 11] (we are
closer to the nested transducers of [10]), but the correspondence is straightforward, as soon
as we know that pebble automata can only recognize regular languages.

▶ Definition 7. For k ≥ 0, a k-pebble (resp. k-blind, k-marble) transducer is:
if k = 0, a two-way transducer;
if k ≥ 1, a two-way transducer with external pebble (resp. blind, marble) functions that
are computed by (k−1)-pebble (resp. (k−1)-blind, (k−1)-marble) transducers.

The intuitive behavior of a 1-pebble transducer is depicted in Figure 1 in Introduction.
We draw in Figure 3 the behavior of a 1-blind transducer, which is the same except that the
calling position is not marked for the machine computing the external function.

Input word⊢ ⊣
Main machine

Input word⊢ ⊣
Submachine

Figure 3 Behavior of a 1-blind transducer.

Input word⊢ ⊣
Main machine

⊢ ⊣
Submachine

Figure 4 Behavior of a 1-marble transducer.

▶ Example 8. By restricting the functions fb and f0 of Example 6 to A∗, we see that
letter-product : w ∈ A∗ 7→ |w|a|w|b can be computed by a 1-blind transducer.

The intuitive behavior of a 1-marble transducer is depicted in Figure 4.

▶ Example 9. The function letter-product : w ∈ A∗ 7→ |w|a|w|b can be computed by a
1-marble transducer as follows. Assume that a ̸= b, let fa : w 7→ |w|a and fb : w 7→ |w|b. The
machine calls fb when reading a and fa when reading b. This way, each a is “counted” |w|b
times (from the call of fb starting in this a which computes all the b before it, plus each time
it is seen in a call of fa starting from some b after this a).
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40:6 Pebble Transducers with Unary Output

The strategy for computing letter-product is really different between Examples 8 and 9.
This illustrates the difficulty to obtain a “canonical” form for a transduction.

3 From two-way transducers to bimachines

Since we consider a commutative output monoid, the order in which the production is
performed does not matter. It is thus tempting to simplify a two-way transducer in a one-way
machine which visits each position only once. This is exactly what we do with bimachines,
with the subtlety that they are able to check regular properties of the prefix (resp. suffix)
starting (resp. ending) in the current position. From now on, we consider only total functions
of type A+ → N (the output on ε can be treated separately and does not matter).

▶ Definition 10. A bimachine with external pebble functions (A, M, µ,F, λ) consists of:
an input alphabet A;
a morphism into a finite monoid µ : A∗ →M ;
a finite set F of external functions f : (A ⊎A)+ → N;
a total output function λ : M ×A×M → F.

Given 1 ≤ i ≤ |w| a position of w ∈ A∗, let fi := λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|])) ∈ F.
The bimachine defines a function f : A+ → N as follows:

f(w) :=
∑

1≤i≤|w|

fi(w↑i).

As before, we can define bimachines with external blind (resp. marble) functions (in this
case we have fi : A+ → N). We then let:

f(w) :=
∑

1≤i≤|w|

fi(w)

Ñ
resp. f(w) :=

∑
1≤i≤|w|

fi(w[1:i])

é
.

As for two-way transducers, we define bimachines (without external functions) by setting
λ : M × A ×M → N. Equivalently, it corresponds to bimachines with external constant
functions f : w 7→ n. Going further, we define k-pebble bimachines by induction.

▶ Definition 11. For k ≥ 0, a k-pebble (resp. k-blind, k-marble) bimachine is:
if k = 0, a bimachine (without external functions);
if k ≥ 1, a bimachine with external pebble (resp. blind, marble) functions which are
computed by (k−1)-pebble (resp (k−1)-blind, (k−1)-marble) bimachines.

▶ Example 12. The function triangular-sum : anℓbanℓ−1b · · · ban1b 7→
∑ℓ

i=1 ini can be com-
puted by a 1-marble bimachine. It uses the singleton monoid M = {1M} and the morphism
µ : a, b 7→ 1M in all its bimachines. The output function of the main bimachine is defined
by λ(1M , a, 1M ) := fa and λ(1M , b, 1M ) := fb. For computing fa : w 7→ 0 we use output
λfa

(1M , a, 1M ) := 0 and λfa
(1M , b, 1M ) := 0, and for computing fb : w 7→ |w|a we use output

λfb
(1M , a, 1M ) := 1 and λfb

(1M , b, 1M ) := 0.

Standard proof techniques allow to relate bimachines and transducers.

▶ Proposition 13. k-pebble (resp. k-blind, k-marble) bimachines and k-pebble (resp. k-blind,
k-marble) transducers compute the same functions, and both conversions are effective.
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Proof sketch. Both directions are treated by induction. From bimachines to transducers, we
show that a bimachine with external pebble functions can be transformed in an equivalent
two-way transducer with the same external pebble functions (we use a lookaround [7] to
simulate µ). From transducers to bimachines, the induction step shows that a two-way
transducer with external pebble functions can be transformed in an equivalent bimachine
with external pebble functions, by adapting the classical reduction from two-way to one-way
automata [12]. However the new external functions can be linear combinations of the former
ones, since we produce “all at once” the results of several visits in a position. We only need
to use a finite number of combinations, since in its accepting runs, a two-way transducer can
only visit each position a bounded number of times. ◀

4 Equivalence between k-pebble and k-marble transducers

The main goal of this section is to show equivalence between k-pebble and k-marble trans-
ducers, over unary outputs. We shall use another model which is equivalent to marble
transducers [6]: a streaming string transducer (with unary output), which consists in a de-
terministic automaton with a finite set X of registers that store integers. At each letter read,
the values of the registers are updated by doing a linear combination of their former values,
whose coefficients depend on the current state of the automaton. In our definition we focus
on the registers and forget about the states, which corresponds to a weighted automaton
over the semiring (N, +,×) (it is shown in [6] that both models are equivalent). The update
is represented by a matrix from NX×X, which is chosen depending on the letter read.

▶ Definition 14. A streaming string transducer (SST) T = (A,X, I, T, F ) is:
an input alphabet A and a finite set X of registers;
an initial row vector I ∈ NX;
a register update function T : A→ NX×X;
an output column vector F ∈ NX.

T can be extended as a monoid morphism from A∗ to (NX×X,×). Given w ∈ A∗, the
vector IT (w) intuitively describes the values of the registers after reading w. To define the
function f : A∗ → N computed by T , we combine these values by the output vector:

f(w) := IT (w)F.

▶ Example 15. The function triangular-sum : anℓbanℓ−1b · · · ban1b 7→
∑ℓ

i=1 ini can be com-
puted by an SST. We use two registers x, y and allow constants in the updates for more
readability: x is initialized to 0 and updated x ← x + 1 on a and x ← x on b, and y is
initialized to 0 and updated y ← y on a and y ← y + x on b. Finally we output y.

We are now ready to state the main results of this section.

▶ Theorem 16. Given a k-pebble bimachine, one can build an equivalent SST.

The proof is done by induction on k ≥ 0. Consider a bimachine whose external functions
are computed by (k−1)-pebble bimachines. By hypothesis, we can compute these functions
by SSTs. The induction step is shown by Lemma 17, which uses new proof techniques.

▶ Lemma 17. Given a bimachine with external pebble functions computed by SSTs, one can
build an equivalent SST (with no external functions).
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Proof idea. Let T be the SST computing an external function f. On input w ∈ A+, the
bimachine calls f on several positions 1 ≤ i1 < · · · < iℓ ≤ |w|, which induces executions of
T on w↑i1, . . . , w↑iℓ. These executions are very similar: they only differ when reading the
marked letter. Thus we build an SST which computes “simultaneously” all these executions,
by keeping track of the sum of the values of the registers of T along them. ◀

As a consequence of Theorem 16, we obtain equivalence between pebbles and marbles
over unary outputs. The result is false over non-unary output alphabets [6, 11]. We also
relate these functions with those computed by SST, assuming that the output is bounded by
a polynomial in the input’s length.

▶ Corollary 18. For all k ≥ 0 and f : A∗ → N, the following conditions are equivalent:
1. f is computable by a k-pebble transducer;
2. f is computable by a k-marble transducer;
3. f is computable by an SST and f(w) = O(|w|k+1).

Furthermore the transformations are effective.

Proof. Clearly a k-pebble transducer can simulate a k-marble transducer, hence 2⇒ 1. Let
f be computed by a k-pebble transducer, we have f(w) = O(|w|k+1) and by Theorem 16
one can build an SST for f . Thus 1⇒ 3. Finally 3⇒ 2 is shown in [6]. ◀

Another important consequence is that we can decide equivalence of pebble transducers
with unary output, since we can do so for marble transducers [6].

▶ Corollary 19. One can decide if two pebble transducers compute the same function.

This has been an open question since [3], and it is still open for generic output alphabets.

5 Deciding if 1-pebble is 1-blind

Since the equivalence between marbles and pebbles is established, we now compare 1-pebble
(which are 1-marble) transducers with 1-blind transducers. It turns out that 1-pebble are
strictly more expressive; the main goal of this section is to show Theorem 20.

▶ Theorem 20 (Membership). One can decide if a function given by a 1-marble (or 1-pebble)
transducer can be computed by a k-blind transducer for some k ≥ 0. If this condition holds,
one can build a 1-blind transducer which computes it.

Let us fix a function f : A+ → N described by a 1-marble bimachine T = (A, M, µ,F, λ).
For f ∈ F, let Tf := (A, M, µ, λf) be the bimachine which computes it. We enforce the
morphism µ to be surjective (up to considering the co-restriction to its image) and the same
in all machines (up to taking the product of all morphisms used). Our goal is to give a
decidable condition on T for f to be computable by a 1-blind transducer. For this purpose,
we define the notion of bitype. Intuitively, it describes two disjoint factors in an input word,
together with a finite abstraction of their “context”.

Let Λ := 3|M | (it will be justified by Theorem 27).

▶ Definition 21. A bitype Φ := m⟨u1⟩m′⟨u2⟩m′′ consists in m, m′, m′′ ∈M , u1, u2 ∈ A+.

We can define “the production performed in u1 by the calls from u2”, in Φ. For 1 ≤ i ≤ |u1|
and 1 ≤ j ≤ |u2|, let Φ(i, j) := λfj (mµ(u1[1:i−1]), u1[i], µ(u1[i+1:|u1|])m′µ(u2[1:j])) ∈ N
where fj := λ(mµ(u1)m′µ(u2[1:j−1]), u2[j], µ(u2[j+1:|u2|])m′′). Then we set:

prod(m⟨u1⟩m′⟨u2⟩m′′) :=
∑

1≤i≤|u1|
1≤j≤|u2|

Φ(i, j) ∈ N.
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▶ Definition 22. The 1-marble bimachine T is symmetrical whenever ∀m, n, m1, n1, m2, n2∈
M and u1, u2 ∈ A+ such that |u1|, |u2| ≤ 2Λ, e1:=µ(u1), e2:=µ(u2) and e:=m1e1n1=m2e2n2
are idempotents, there exists K ≥ 0 such that ∀p ∈M :

if m1e1pe2n2 = e, em1e1pe2 = em2e2 and e1pe2n2e = e1n1e,
then prod(mem1e1⟨u1⟩e1pe2⟨u2⟩e2n2en) = K;
if m2e2pe1n1 = e, em2e2pe1 = em1e1 and e2pe1n1e = e2n2e,
then prod(mem2e2⟨u2⟩e2pe1⟨u1⟩e1n1en) = K.

ee em n
m1 e1

u1
e1 e1 p n2e2

u2
e2e2

e1n1eem2e2

(a) Bitype mem1e1⟨u1⟩e1pe2⟨u2⟩e2n2en.

ee em n
m2 e2

u2
e2 e2 p n1e1

u1
e1e1

e2n2eem1e1

(b) Bitype mem2e2⟨u2⟩e2pe1⟨u1⟩e1n1en

Figure 5 The bitypes used to define a symmetrical 1-marble bimachine.

Symmetry means that, under some idempotent conditions, prod(m⟨u1⟩m′⟨u2⟩m′′) only
depends on m, m′′, m′µ(u2)m′′ and mµ(u1)m′, that are the “contexts” of u1 and u2, but not
on the element m′ which separates them. The same holds if we swap u1 and u2. The bitypes
considered in Definition 22 are depicted in Figure 5, together with the equations they satisfy.

Symmetry is the decidable condition we are looking for, as shown in Theorem 23. Recall
that f is the function computed by the 1-marble bimachine T .

▶ Theorem 23 (Characterization). The following conditions are equivalent:
1. f is computable by a k-blind transducer for some k ≥ 0;
2. f is computable by a 1-blind transducer;
3. T is symmetrical.

Theorem 20 follows from Theorem 23, since it suffices to check whether the machine
is symmetrical, which can be decided by ranging over all monoid elements (including
idempotents) and words of length at most 2Λ.

▶ Example 24. Let us show that the bimachine of Example 12 computing triangular-sum is
not symmetrical. Let u1 := a, u2 := b, m, n, m1, n1, m2, n2, p, e = 1M , e1:=µ(u1) = 1M and
e2:=µ(u2) = 1M . Then prod(mem1e1⟨u1⟩e1pe2⟨u2⟩e2n2en) = prod(1M ⟨a⟩1M ⟨b⟩1M ) = 1
and prod(mem2e2⟨u2⟩e2pe1⟨u1⟩e1n1en) = prod(1M ⟨b⟩1M ⟨a⟩1M ) = 0. Furthermore the
equations of Definition 22 hold, thus triangular-sum is not computable by a k-blind bimachine.

Lemma 25 shows 1⇒ 3 in Theorem 23. It allows to show that some function cannot be
computed by a k-marble transducer. Its proof is technical; a coarse intuition is that a 1-blind
bimachine which makes a production on u1 when called from u2 cannot see the monoid
element m′ between u1 and u2 (since u2 is not marked, its position is “forgotten”).

▶ Lemma 25. If f is computable by a k-blind bimachine, then T is symmetrical.

MFCS 2021



40:10 Pebble Transducers with Unary Output

Since 2⇒ 1 in Theorem 23 is obvious, it remains to show that if T is symmetrical, then
f is effectively computable by a 1-blind bimachine. This is the goal of the two following
subsections. The main tool for the proof is the notion of factorization forest: using Lemma 36,
it allows us to compute the function f without directly referring to a machine.

5.1 Factorization forests
Recall that µ : A+ →M is a fixed monoid morphism. A factorization forest [1] of w ∈ A+ is
an unranked tree structure which decomposes w following the image of its factors by µ.

▶ Definition 26 ([13, 1]). A factorization (forest) of w ∈ A+ is a tree defined as follows:
if w = a ∈ A, it is a leaf a;
if |w| ≥ 2, then (F1) · · · (Fn) is a factorization of w if each Fi is a factorization of some
wi ∈ A+ such that w = w1 · · ·wn, and either:

n = 2: the root is a binary node;
or n ≥ 3 and µ(w1) = · · · = µ(wn) is an idempotent: the root is an idempotent node.

The set of factorizations over w is denoted Fact(w). Recall that Λ = 3|M |.

▶ Theorem 27 ([13, 1]). For all w ∈ A+, there is F ∈ Fact(w) of height at most Λ.

Let ÛA := A ⊎ {(, )}. We have defined Fact(w) as a set of tree structures, but we can
assume that Fact(w) ⊆ ÛA+. Indeed, in Definition 26, a factorization of w can also be seen as
“the word w with parentheses”. There exists a rational function which computes factorizations,
under this formalism. We reformulate this statement in Proposition 28 using a two-way
transducer (which, exceptionally in this paper, has a non-unary output alphabet ÛA).

▶ Proposition 28 (Folklore). One can build a two-way transducer which computes a function
A+ → ÛA+, w 7→ F ∈ Fact(w) for some F of height at most Λ.

We denote by Nodes(F) the set of (idempotent or binary) nodes of F . In order to simplify
the statements, we identify a node with the subtree rooted in this node. Thus Nodes(F)
can also be seen as the set of subtrees of F , and F ∈ Nodes(F). We shall use the standard
tree vocabulary of “height” (a leaf is a tree of height 1), “parent node”, “descendant” and
“ancestor” (defined in a non-strict way: a node is itself one of its ancestors), “branch”, etc.

▶ Example 29. Let A = {a, b, c}, M={1M , 2M , 3M} with 22
M =1M , 3M absorbing, µ(a):=2M

and µ(b):=µ(c):=3M . Then F := (aa)(bc(a(cbbcb))b) ∈ Fact(aabcaccbcbcb) (we dropped the
parens around single letters for more readability) is depicted in Figure 6. Idempotent nodes
are drawn using a horizontal line.

bcba a

a

bcbbc

Figure 6 The factorization (aa)(bc(a(cbbcb))b) of aabcacbbcbb.

We define Iterable-nodes(F) ⊆ Nodes(F) as the set of nodes which are the middle child of
an idempotent node. Intuitively, such nodes can be copied without modifying their “context”.
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▶ Definition 30. Let F ∈ Fact(w), we define the set of iterable nodes of F by induction:
if F = a ∈ A is a leaf, Iterable-nodes(F) := ∅;
if F = (F1) · · · (Fn) is a binary or idempotent node, then:

Iterable-nodes(F) := {Fi : 2 ≤ i ≤ n−1}
⊎

1≤i≤n

Iterable-nodes(Fi).

On the contrary, we now define sets of nodes which cannot be duplicated individually.

▶ Definition 31. Let F ∈ Fact(w), we define the dependency of F as follows:
if F = a ∈ A is a leaf, then Dep(F) := {a};
if F = (F1) · · · (Fn) is binary or idempotent, then Dep(F) := {F} ∪ Dep(F1) ∪ Dep(Fn).

Intuitively, Dep(F) ⊆ Nodes(F) contains all the nodes of F except those which are
descendant of a middle child. If I ∈ Nodes(F), we consider Dep(I) ⊆ Nodes(I) as a subset
of Nodes(F). We then define the frontier of I, denoted FrF (I) ⊆ {1, . . . , |w|} as the set of
positions of w which belong to Dep(I) (when seen as leaves of F).

▶ Example 32. In Figure 6, the top-most red node I is iterable. Furthermore Dep(I) is the
set of red nodes, FrF (I) = {5, 6, 10} and w[FrF (I)] = acb.

The relationship between iterable nodes and dependencies is detailed below. We denote
by Part(F) := Iterable-nodes(F) ⊎ {F}, the set of iterable nodes plus the root.

▶ Lemma 33. Let F ∈ Fact(w), then {Dep(I) : I ∈ Part(F)} is a partition of Nodes(F);
and {FrF (I) : I ∈ Part(F)} is a partition of {1, . . . , |w|}.

We define prod(i, j) in w as “the production performed in i when called from j”.

▶ Definition 34. Let w ∈ A+ and 1 ≤ i ≤ j ≤ |w| two positions of w. We define prod(i, j) ∈ N
as λfj (µ(w[1:i−1]), w[i], µ(w[i+1:j])), where fj := λ(µ(w[1:j−1]), w[j], µ(w[j+1:|w|])).

We extend this definition to pairs of nodes: given I,J ∈ Nodes(F), we define prod(I,J )
“the sum of all productions performed in the frontier of I, when called from the frontier of
J ” as follows (we have to ensure that the calling positions are “on the right”).

▶ Definition 35. Let w ∈ A+, F ∈ Fact(w) and I,J ∈ Nodes(F). We define:

prod(I,J ) :=
∑

i∈FrF (I)
j∈FrF (J )

i≤j

prod(i, j) ∈ N.

If I is an ancestor of J (or the converse) then FrF (I) and FrF (J ) are interleaved, hence
we can have both prod(I,J ) ̸= 0 and prod(J , I) ̸= 0. However, if I and J are not on the
same branch, we have either prod(I,J ) = 0 or prod(J , I) = 0.

Applying Lemma 33, it is not hard to compute f(w) using the prod(I,J ).

▶ Lemma 36. Let w ∈ A+, F ∈ Fact(w). Then:

f(w) =
∑

I,J ∈Part(F)

prod(I,J ).

5.2 Typology of pairs of nodes
We intend to compute (if possible) f using a 1-blind transducer. Following Lemma 36, it is
enough to consider the productions performed on the pairs of nodes of a factorization. For
this study, we split the pairs depending on their relative position in the tree.
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Pairs separated by the frontier of the root. The frontier of the root FrF (F) plays a very
specific role with respect to blind transducers. Indeed, over factorizations of height at most
Λ, the size of the frontier is bounded, hence it splits the word in a bounded number of
distinguishable “blocks”. Formally, we define the notion of basis.

▶ Definition 37. An idempotent node is a basis if it belongs to the dependency of the root.

The following result is shown by induction.

▶ Lemma 38. Let w ∈ A+ and F ∈ Fact(w). Given I ∈ Iterable-nodes(F), there exists a
unique basis, denoted basisF (I), such that I is the descendant of a middle child of basisF (I).

▶ Definition 39. Given w ∈ A+ and F ∈ Fact(w), we define D(F) ⊆ Part(F)×Part(F) by:

D(F) := {(I,J ) : I,J ∈ Iterable-nodes(F) and basisF (I) ̸= basisF (J )}.

Intuitively basisF (I) ̸= basisF (J ) means that FrF (I) and FrF (J ) belong to two different
“blocks” of the input. Lemma 40 is shown by building a 1-blind bimachine which visits
successively each basis B, and for each iterable J such that basisF (J ) = B, calls a submachine
which visits the I such that basisF (I) ̸= B and produces prod(I,J ). The key element for
doing this operation without pebbles is that the number of bases is bounded.

▶ Lemma 40. One can build a 1-blind bimachine computing:

fD : ( ÛA)+ → N,F 7→


∑

(I,J )∈D(F)

prod(I,J ) if F factorization of height at most Λ;

0 otherwise.

Linked pairs. Let U(F) := Part(F)×Part(F) ∖ D(F), it corresponds to the pairs of
Iterable-nodes(F) which have the same basis, plus all the pairs (F , I) and (I,F) for I ∈
Part(F). We now study the pairs of U(F) which are “linked”, in the sense that one node is
(nearly) the ancestor of the other.

▶ Definition 41. Let w ∈ A+, F ∈ Fact(w). Let L(F) be the set of all (I,J ) ∈ U(F) such
that I (or J ) is either the ancestor of, or the right/left sibling of an ancestor of J (or I).

In particular, we have (F ,F), (I,F), (F , I), (I, I) ∈ L(F ) for all I ∈ Part(F). If F has
height at most Λ, there are at most 3Λ nodes which are either an ancestor or the right/left
sibling of an ancestor of I. Lemma 42 follows from this boundedness.

▶ Lemma 42. One can build a 0-blind bimachine computing:

fL : ( ÛA)+ → N,F 7→


∑

(I,J )∈L(F)

prod(I,J ) if F factorization of height at most Λ;

0 otherwise.

Independent nodes. The remaining sum is the most interesting, since it is the only case
where we use the assumption that T to be symmetrical (and this assumption is crucial). Let
F ∈ Fact(w), we define the set I(F) := U(F)∖L(F). It contains the pairs (I,J ) of iterable
nodes such that basisF (I) = basisF (J ) (i.e. they descend from a common “big” idempotent),
and I (or J ) is not an ancestor of J (or I), nor the left or right sibling of its ancestor.
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▶ Lemma 43. If T is symmetrical, one can build a 1-blind bimachine computing:

fI : ( ÛA)+ → N,F 7→


∑

(I,J )∈I(F)

prod(I,J ) if F factorization of height at most Λ;

0 otherwise.

Proof idea. We define typeF (I) for I ∈ Iterable-nodes(F) as a bounded abstraction of I
which describes the frontier and the location of I in F and in basisF (I). Using symmetry,
we show that for (I,J ) ∈ I(F), prod(I,J ) only depends on typeF (I) and typeF (J ), but
not on their relative positions. Hence we build a 1-blind bimachine, whose main bimachine
ranges over all possible J and computes typeF (J ), and whose submachines range over all
possible I (a special treatment has to be done to avoid I such that (I,J ) ∈ L(F)), compute
typeF (I) and output prod(I,J ). The submachines do not need to “see” J . ◀

We finally show 3 ⇒ 2 in Theorem 23. Given w ∈ A+ we first compute F of height
at most Λ by Proposition 28. Then we use the machines from Lemmas 40, 42 and 43 and
build a 1-blind transducer computing the sum of their outputs. The original function can be
recovered since 1-blind transducers are closed under composition with two-way [11].

6 Conclusion and outlook

As a conclusion, we discuss future work. This paper introduces new proof techniques, in
particular the use of factorization forests to study the productions of transducers. We believe
that these techniques give a step towards other membership problems concerning pebble
transducers. Among them, let us mention the membership problem from k-pebble to k-blind,
at first over unary alphabets. Similarly, the membership from k-pebble to k-marble over
non-unary alphabets is worth being studied (the answer seems to rely on combinatorial
properties of the output, since unary outputs can always be produced using marbles).
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A Proof of Lemma 17

We show that given a bimachine with external pebble functions, which are computed by
SSTs, one can build an equivalent SST.

A.1 SST with lookaround
We first define a variant of SST with the same expressive power. Intuitively, this model is
similar to bimachines, in the sense that the register update not only depends on the current
letter, but also on a finite abstraction of the prefix and suffix.

▶ Definition 44. An SST with lookaround T = (A,X, M, µ, I, λ, F ) is:
an input alphabet A and a finite set X of registers;
a morphism into a finite monoid µ : A∗ →M ;
an initial row vector I ∈ NX;
a register update function λ : M ×A×M → NX×X;
an output column vector F ∈ NX.

Let us define its semantics. Intuitively, in position i of w ∈ A+, we perform the register
update λ(µ(w[1:i−1]), w[i], ]µ(w[i+1:|w|])). Formally, for 0 ≤ i ≤ |w|, we define T w,i ∈ NX

(“the values of the registers after reading w[1:i]”2) as follows:
T w,0 := I;
for i ≥ 1, T w,i := T w,i−1 × λ(µ(w[1:i−1]), w[i], ]µ(w[i+1:|w|])).

To define the function f : A+ → N computed by T , we combine the final values by the
output vector:

f(w) := T w,|w|F.

It is known that SST with lookaround are equivalent to SST (the proof is roughly a
“determinisation” procedure for eliminating the rightmost argument of λ, and an encoding of
the monoid in the registers for eliminating the leftmost argument).

▶ Lemma 45 ([8]). Given an SST with lookaround, we can build an equivalent SST.

Hence, it is sufficient to build an SST with lookaround.

2 Due to the fact that λ looks “on the right”, T w,i depends on the whole w and not only on w[1:i].
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A.2 Main proof of Lemma 17
Let T = (A, M, µ, λ,F) be the bimachine with external pebble functions. Each f ∈ F is
computed by an SST Tf := (A ⊎A,Xf, If, Tf, Ff).

▶ Example 46 (Running example). Let T = (A, M, µ, λ, {f}) with M = {1M} singleton and
λ(1M , a, 1M ) = f for a ∈ A. Let Tf have two registers x, y with x initialized to 1 and y

initialized to 0. When reading a ∈ A ⊎A it performs x← x, y ← y + x. Finally it outputs y.
Then f(w) = |w| and T computes f : w 7→ |w|2.

▶ Definition 47. Let w ∈ A∗ and f ∈ F. We define Calls(w, f) as the set of positions of w in
which f is called, that is {1 ≤ j ≤ |w| : λ(µ(w[1:j−1]), w[j], µ(w[j+1:|w|]) = f}.

For 1 ≤ j ≤ i ≤ |w|, IfTf(w[1:i]↑j) corresponds to the value of the registers of Tf in
position i when the call to f is performed from position j.

▷ Claim 48. For all w ∈ A∗, the following holds:

f(w) =
∑
f∈F

∑
1≤j≤|w|

j∈Calls(w,f)

IfTf(w↑j)Ff

Proof. By definition of external pebble functions we have:

f(w) :=
∑

1≤j≤|w|

fj(w↑j)

where fj := λ(µ(w[1:j−1]), w[j], µ(w[j+1:|w|])) is “the external function called in j”.
Hence by partitioning the sum depending on the external functions it follows:

f(w) :=
∑
f∈F

∑
1≤j≤|w|

j∈Calls(w,f)

f(w↑j)

And finally we note that f(w↑j) = IfTf(w↑j)Ff. ◁

Idea of the construction. Let us fix an external function f. Following Claim 48, we want
to build an SST with lookaround U which computes the values of the vector:∑

1≤j≤|w|
j∈Calls(w,f)

IfTf(w↑j) ∈ NX.

For this, it will keep track when in position i of the values of:∑
1≤j≤i

j∈Calls(w,f)

IfTf(w[1:i]↑j) ∈ NX

and these values will be updated when going from i to i + 1.

▶ Example 49 (Running example). We have IfTf(w[1:i]↑j)(x) = 1 and IfTf(w[1:i]↑j)(y) = i.
Hence

∑
1≤j≤i

j∈Calls(w,f)

IfTf(w[1:i]↑j)(x) = i and
∑

1≤j≤i
j∈Calls(w,f)

IfTf(w[1:i]↑j)(y) = i2.
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Formal construction. Let U = (A,X, M, µ, I, κ, F ) be an SST with lookaround with:
the set X :=

⊎
f∈F{Sumx : x ∈ Xf} ⊎ {Oldx : x ∈ Xf} of registers;

the morphism µ : A∗ →M used in T ;
an initial column vector I ∈ NX such that for all f ∈ F and x ∈ Xf:

I(Sumx) = 0;
I(Oldx) = If(x);

the update κ : M × A × M → NX×X as follows. Let (m, a, n) ∈ M × A × N and
f := λ(m, a, n). Then κ(m, a, n) performs the following updates:

for all g ̸= f and x ∈ Xg:
∗ Sumx ←

∑
y∈Xg

αy Sumy;
∗ Oldx ←

∑
y∈Xg

αy Oldy;
where x←

∑
y∈Xg

αyy is the update performed by Tg when reading a;
for all x ∈ Xf:
∗ Sumx ←

∑
y∈Xf

αy Sumy +
∑

y∈Xf
βy Oldy;

∗ Oldx ←
∑

y∈Xf
αy Oldy;

where x←
∑

y∈Xf
αyy is the update performed by Tf when reading a;

and x←
∑

y∈Xf
βyy is the update performed by Tf when reading a.

Intuitively, the sum with the βy corresponds to what is “added” by the new call to f.
the output line vector F ∈ NX such that for all f ∈ F and x ∈ Xf:

F (Sumx) = Ff(x);
F (Oldx) = 0.

▶ Example 50 (Running example). U performs the following updates:
Oldx ← Oldx, Oldy ← Oldy + Oldx;
Sumx ← Sumx + Oldx, Sumy ← Sumy + Sumx + Oldy + Oldx.

We can check that Uw,i(Oldx) = 1, Uw,i(Oldy) = i and Uw,i(Sumx) = i, Uw,i(Sumy) = i2.

Correctness of the construction. As the registers Oldx for x ∈ Xf are updated following
the updates of Tf, it follows immediately that:

▷ Claim 51. Given x ∈ Xf, for all w ∈ A+ and 1 ≤ i ≤ |w| we have:

Uw,i(Oldx) = IfTf(w[1:i])(x).

We can finally show that the registers Sumx store the information we wanted.

▷ Claim 52. Given x ∈ Xf, for all w ∈ A+ and 0 ≤ i ≤ |w| we have:

Uw,i(Sumx) =
∑

1≤j≤i
j∈Calls(w,f)

IfTf(w[1:i]↑j)(x).

Proof. We proceed by induction on 0 ≤ i ≤ |w|. For i = 0 both terms equal 0. For the
induction step with i ≥ 1 let f ∈ F and x ∈ Xf.

Suppose that λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|])) = f (the case when they differ is similar
and even easier), then:∑

1≤j≤i
j∈Calls(w,f)

IfTf(w[1:i]↑j)(x) = IfTf(w[1:i]↑i)(x) +
∑

1≤j≤i−1
j∈Calls(w,f)

IfTf(w[1:i]↑j)(x).
(1)
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Let x←
∑

y∈Xf
αyy be the update performed by Tf when reading a.

Then for j ≤ i− 1, IfTf(w[1:i]↑j)(x) =
∑

y∈Xf
αy × IfTf(w[1:i−1]↑j)(y).

Let x←
∑

y∈Xf
βyy be the update performed by Tf when reading a.

Then IfTf(w[1:i]↑i)(x) =
∑

y∈Xf
βy × IfTf(w[1:i−1])(y).

Hence we can rewrite Equation 1 using values in position i−1. By Claim 51 and the
induction hypothesis, this sum coincides with the update in U . ◁

The fact that U computes f follows from the definition of F and Claim 48.

MFCS 2021





Graph Characterization
of the Universal Theory of Relations
Amina Doumane #

CNRS, ENS Lyon, France

Abstract
The equational theory of relations can be characterized using graphs and homomorphisms. This
result, found independently by Freyd and Scedrov and by Andréka and Bredikhin, shows that the
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1 Introduction

Binary relations are a versatile mathematical object, used to model graphs, programs,
databases, etc. It is then a natural task to understand the laws governing them. Since the
seminal work of Tarski [14], this task has occupied researchers for several decades [15, 12, 3,
9, 11, 10, 2, 4, 13].

Relations usually come with a certain number of standard operations: union ∪, intersection
∩, composition ·, converse ◦ etc. We are interested in containment between terms built
with these operations with respect to their relational interpretations. When a containment
between two terms t and u holds, we say that t ≥ u is a valid inequation for relations and
write Rel |= t ≥ u. For instance, an emblematic valid inequation is the following one:

(a · b) ∩ (a · c) ≥ a · (b ∩ c)

This law is valid because no matter how we interpret the letters a, b and c as relations, the
relation denoted by the term a · (b ∩ c) will be contained in the relation denoted by the term
(a · b) ∩ (a · c). A very simple way to check that this inequation is valid relies on the following
characterization ([1, Thm. 1], [7, p. 208]):

Rel |= t ≥ u ⇔ G(t) ▷ G(u) (⋆)

In this theorem, G(t) and G(u) are finite graphs associated to the terms t and u respectively,
and ▷ denotes the existence of a graph homomorphism. For example, the validity of the law
above is witnessed by this homomorphism (in red) from the graph of (a · b) ∩ (a · c) to the
graph of a · (b ∩ c):

a

c

b

a

a

c

b
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41:2 Graph Characterization of the Universal Theory of Relations

Using this characterization, we can show that relational validity of inequations is decidable.
As maybe noticed by the reader, inequations are implicitly universally quantified. They

actually form a fragment of the more general universal first-order formulas. The latter
comprises universal positive formulas which are basically disjunctions of inequations, and
Horn formulas which are implications between inequations.

Universal first-order formulas have received a lot of attention in the model theory
community. They enjoy for example the Łoś–Tarski theorem [8, Thm.5.4.4], which states that
the set of universal first-order formulas is exactly the set of first-order formulas preserved
under taking substructures.

In this paper, we give a graph characterization for those universal first-order formulas
which are valid for relations, generalizing the characterization (⋆). To this end, we proceed
in three steps. First, we provide a characterization of relational validity for positive universal
formulas. Based on this, we show that relational validity is decidable for this fragment. As
a second step, we characterize relational validity for Horn formulas. Finally we combine
the techniques used for both fragments to characterize validity for all universal first-order
formulas. Before presenting our results, we start by recalling some background in Section 2.

2 Preliminaries

2.1 Universal theory of relations
We let a, b . . . range over the letters of an alphabet A. Terms are generated by this syntax:

t, u ::= t · u | t ∩ u | t◦ | 1 | ⊤ | a a ∈ A

We denote the set of terms by T . We often write tu for t · u, and assign priorities to symbols
so that ab ∩ c, a ∩ b◦ and ab◦ parse respectively as (a · b) ∩ c, a ∩ (b◦) and a · (b◦).

First-order formulas are generated by the following syntax:

φ,ψ := t ≥ u | ¬(t ≥ u) | φ ∨ ψ | φ ∧ ψ | ∃a.φ | ∀a.φ t, u ∈ T , a ∈ A.

Formulas of the form t ≥ u are called inequations. We extend the operation of negation ¬ to
all formulas in the standard way, for instance ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ. Implication φ ⇒ ψ is a
shortcut for ¬φ ∨ ψ. Free and bound variables are defined as usual, and we call sentence a
formula without free variables.

A universal formula is a formula from the syntax above which does not use existential
quantification. A generalized Horn formula is a formula of the following form, where ∀a⃗
denotes a sequence of universal quantifications:

∀a⃗.
∧
j∈J

(vj ≥ wj) ⇒
∨
i∈I

(ti ≥ ui)

We generally write it as follows, where H is the set of inequations {vj ≥ wj , j ∈ J}:

∀a⃗. H ⇒
∨
i∈I

(ti ≥ ui)

We call H its hypothesis and
∨

i∈I

(ti ≥ ui) its conclusion. A Horn formula is a generalized

Horn formula whose conclusion contains a single disjunct. We write it like this:

∀a⃗. H ⇒ t ≥ u
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A Positive universal formula is a generalized Horn formula whose set of hypothesis is empty.
It looks like this:

∀a⃗.
∨
i∈I

(ti ≥ ui)

A universal inequation is a positive universal formula with a single disjunct. We will
sometimes call it simply inequation. It looks like this:

∀a⃗. t ≥ u

In the rest of the paper, we will be interested only on universal sentences, this is why we will
omit the universal quantification in front of our formulas.

Note that every universal formula can be written as the conjunction of generalized Horn
formulas. In the rest of the paper, we will mainly focus on the latter.

Let us define relational validity for generalized Horn sentences. An interpretation σ is a
function σ : A! P(B ×B) mapping letters into relations over a base set B. We can extend
σ to all terms σ : T ! P(B ×B), by interpreting the operations ·,∩,◦ , 1 and ⊤ on relations
as follows:

R · S = {(x, y) | ∃z.(x, z) ∈ R and (z, y) ∈ S} (Composition)
R ∩ S = {(x, y) | (x, y) ∈ R and (x, y) ∈ S} (Intersection)
R◦ = {(x, y) | (y, x) ∈ R} (Converse)
1 = {(x, x) | x ∈ B} (Identity)
⊤ = {(x, y) | x, y ∈ B} (Full relation)

Let σ be an interpretation as above. An inequation t ≥ u is true under σ, noted σ |= t ≥ u,
if σ(t) ⊇ σ(u). A set of inequations H are true under σ, noted σ |= H, if this is the case for
every inequation in H. A generalized Horn sentence

φ := (H ⇒
∨
i∈I

(ti ≥ ui))

is true under σ, noted σ |= φ if either σ ̸|= H or there exists i ∈ I such that σ |= ti ≥ ui. We
say that φ is valid for relations, noted Rel |= φ, if φ is true under all interpretations, using
all possible base sets B.

Here are respectively a universal inequation (1), a positive universal sentence (2), and a
Horn sentence (3), that are all valid for relations:

a(ba ∩ 1)b ≥ ab ∩ 1 (1)(
⊤c⊤ ∩ ab ∩ ad ≥ a(b ∩ d)

)
∨

(
d ≥ ac

)
(2)

ef◦ ≥ ⊤ ⇒ (ae ∩ cf)(e◦b ∩ f◦d) ≥ ab ∩ cd (3)

We will see in the upcoming sections how to check their validity.

2.2 Graph characterization of the inequational theory of relations
Let A be an alphabet. A 2-pointed labeled graph is a structure (V,E, ι, o) where V is a set of
vertices, E ⊆ V ×A× V is a set of edges and ι and o are two distinguished vertices called
the input and output. We simply call them graphs in the sequel; we depict them as expected,
with unlabeled ingoing and outgoing arrows to denote the input and the output, respectively.
We denote by Gr the set of finite graphs. If G is a graph and x, y two of its vertices, we
denote by (x,G, y) the graph obtained from G by forgetting the original input and output of
G, and considering x and y as the new input and output respectively.

MFCS 2021



41:4 Graph Characterization of the Universal Theory of Relations

We define the following operations of graphs.

G ∩H =
G

H
G ·H = G H G◦ = G

We associate to every term t ∈ T a graph G(t) called the graph of t, by letting

G (a) = a G (1) = G (⊤) =

and by interpreting the operations ·,∩ and ◦ on graphs as above.
▶ Example 1. The graphs G(⊤c⊤ ∩ ab), G(ab ∩ 1) and G(bd◦) are respectively the following:

b d
a b

a b

c

Graph homomorphisms play a central role in the paper, they are defined as follows:
▶ Definition 2 (Graph homomorphism). Given two graphs G = ⟨V,E, ι, o⟩ and G′ =
⟨V ′, E′, ι′, o′⟩, a (graph) homomorphism h : G ! H is a mapping from V ! V ′ that
preserves labeled edges, ie. if (x, a, y) ∈ E then (h(x), a, h(y)) ∈ E′, and preserves input and
output, ie. h(ι) = ι′ and h(o) = o′.
The image of G by h, denoted h(G), is the graph ⟨h(V ), E′′, ι′, o′⟩ where

E′′ = {(h(x), a, h(y)) | (x, a, y) ∈ E} .

We write G▷H if there exists a graph homomorphism from G to H, and G ↪! H if there
exists an injective graph homomorphism from G to H. In the later case, we usually consider
G as an actual subgraph of H.

Our starting point was this characterization of the inequational theory of relations:
▶ Theorem 3 ([1, Thm. 1], [7, p. 208]). For all terms u, v,

Rel |= u ≥ v iff G (u) ▷ G (v)

2.3 Graphs and interpretations
We state below the main lemma (Lemma 6) that was used to prove Theorem 3, which will
be useful for us too. But first, let us explicit a link between graphs and interpretations.
▶ Definition 4 (Graphs and interpretations). Let σ : A ! P(B × B) be an interpretation.
The graph associated to σ, G(σ), is the graph whose set of vertices is B and

(x, a, y) is an edge of G(σ) iff (x, y) ∈ σ(a).

Conversely if G = (V,E) is a graph, the interpretation associated to G, I(G), is the function

A ! P(V × V )
a 7! {(x, y) | (x, a, y) ∈ E}

In the above definition, graphs are considered without distinguished input and output.
▶ Remark 5. The functions G and I are inverses of each other: I ◦ G and G ◦ I are the
identity function on interpretations and graphs respectively.
Recall that (x,G, y) is the graph G where x and y are chosen to be the input and output.
▶ Lemma 6 ([1], Lemma 3). Let t be a term, σ : A! P(B ×B) be an interpretation and
x, y ∈ B. We have that:

σ(t) ∋ (x, y) iff G(t) ▷ (x,G(σ), y)
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3 Characterizing the positive universal theory of relations

Given two graphs G and H , we define G⊕H as the disjoint union of G and H , whose input
and output are those of G. Note that ⊕ is associative, but not commutative. However, note
that the following holds:

G⊕H ⊕K = G⊕K ⊕H

G▷H ⊕H ⊕K ⇔ G▷H ⊕K

Now we can state our first characterization theorem:

▶ Theorem 7. For all terms ti, ui where i ∈ [1, n], the following holds

Rel |=
∨

i∈[1,n]

(ti ≥ ui) iff
∨

i∈[1,n]

(
G(ti) ▷ G(ui) ⊕G

)
where G = G(u1) ⊕ · · · ⊕ G(un).

Using the remark above, the case of two disjuncts can be formulated as follows

Rel |= (t0 ≥ u0) ∨ (t1 ≥ u1) iff G(t0)▷G(u0) ⊕ G(u1) or G(t1)▷G(u1) ⊕ G(u0)

Before proving Theorem 7, let us see an example of its application.

▶ Example 8. The validity of the following positive universal sentence(
⊤c⊤ ∩ ab ∩ ad ≥ a(b ∩ d)

)
∨

(
d ≥ ac

)
(2)

is witnessed by this homomorphism depicted below:

G(⊤c⊤ ∩ ab ∩ ad) ▷ G(a(b ∩ d)) ⊕ G(ac)

a b

d

a c

a b

a d

c

▶ Remark 9. Surprisingly, this characterization tells us that only one left-hand-side (lhs) of
the disjuncts of a positive universal sentence plays a role in its validity. For instance, in the
sentence (2) above, we can replace the lhs of the second inequation, d, by any term without
affecting the validity.

Proof. We show here the case of binary disjunctions to lighten notations. The general case
works exactly in the same way.

(⇒) Suppose that Rel |= (t0 ≥ u0) ∨ (t1 ≥ u1), let us show that either

G(t0) ▷ G(u0) ⊕ G(u1) or G(t1) ▷ G(u1) ⊕ G(u0)

Let G be the graph (without specified input and output) which is the disjoint union of
G(u0) and G(u1), and let σ be the interpretation associated to G. We denote by G0 the
graph G(u0) ⊕ G(u1) and by G1 the graph G(u1) ⊕ G(u0). To conclude the proof of this
direction, we show that, for i = 0, 1:

σ(ti) ⊇ σ(ui) ⇒ G(ti) ▷Gi

MFCS 2021



41:6 Graph Characterization of the Universal Theory of Relations

Suppose that σ(t0) ⊇ σ(u0), the other case is treated symmetrically. Let ι and o be
respectively the vertices corresponding to the input and output of G(u0) in G. We have
that G(u0) ▷ (ι, G, o), then by Lemma 6, σ(u0) ∋ (ι, o). Thus, σ(t0) ∋ (ι, o) and again by
Lemma 6, G(t0) ▷ (ι, G, o). But (ι, G, o) is G0 and this remark concludes the proof.

(⇐) Suppose that G(t0) ▷ G(u0) ⊕ G(u1) and let us show that:

Rel |= (t0 ≥ u0) ∨ (t1 ≥ u1)

The other case is treated symmetrically. Let σ : A! P(B ×B) be an interpretation, and let
G be its graph. We distinguish two cases. We have either:

∀x, y ∈ B, G(u1) ̸ ▷(x,G, y)

In this case, by Lemma 6, there is no pair (x, y) such that (x, y) ∈ σ(u1), hence σ(t1) ⊇ σ(u1)
is vacuously true.
Suppose now that there is x1 and y1 in B such that G(u1) ▷ (x1, G, y1), let h1 be such
homomorphism. Notice the following:

∀x, y ∈ B, G(u0) ▷ (x,G, y) ⇒ G(u0) ⊕ G(u1) ▷ (x,G, y) (†)

Indeed, if h0 is a homomorphism from G(u0) to (x,G, y), then we can combine it with h1 to
get a homomorphism from G(u0) ⊕ G(u1) to (x,G, y).

Let us show that σ(t0) ⊇ σ(u0). If σ(u0) ∋ (x, y), then by Lemma 6, we have that
G(u0) ▷ (x,G, y). Using the remark (†), we get that G(u0) ⊕ G(u1) ▷ (x,G, y). By our
hypothesis, we know that G(t0) ▷ G(u0) ⊕ G(u1), thus G(t0) ▷ (x,G, y). We conclude that
σ(t0) ∋ (x, y), and this ends the proof of our first characterization theorem. ◀

Testing the existence of a homomorphism between finite graphs is decidable. Hence, we
get as a corollary of Theorem 7 that:

▶ Theorem 10. The positive universal theory of relations is decidable.

4 Characterizing the Horn theory of relations

To give a characterization of the Horn theory of relations, we need to generalize the homo-
mophism relation between graphs to take into account some set of hypothesis.

A context is a graph with a distinguished edge labeled by a special letter •, called its
hole. If G is a graph and C a context, then C[G] is the graph obtained by “plugging G in
the hole” of C, that is, C[G] is the graph obtained as the disjoint union of G and C, where
we identify the input (resp. output) of G with the input (resp. output) of the edge labeled
by • in C, and we remove the edge of C labeled •.

▶ Definition 11 (The relation ▷H). Let H be a set of inequations. We define the relation >H
on graphs as follows. We set G >H H if and only if there is a context C and an inequation
(t ≥ u) ∈ H such that

G = C[G(t)] and H = C[G(u)]

We define ▷H as the transitive closure of ▷∪ >H .

In the definition above, the graphs G, H and C are not necessarily the graphs of some terms.
We can state now the main theorem of this section:
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▶ Theorem 12. For all terms t, u and set of inequations H, we have:

Rel |= (H ⇒ t ≥ u) iff G(t) ▷H G(u)

Hence, in order to show that a Horn sentence (H ⇒ t ≥ u) is valid, we need to find a sequence
of graphs G0, . . . , Gn such that G0 = G(t), Gn = G(u) and for every i ∈ [0, n− 1] the graphs
Gi and Gi+1 are either related by homomorphism or by the relation >H . We say that this
sequence witnesses the validity of this Horn sentence.

▶ Example 13. The validity of the following Horn sentence:

ef◦ ≥ ⊤ ⇒ (ae ∩ cf)(e◦b ∩ f◦d) ≥ ab ∩ cd (3)

is witnessed by the following sequence:

a e

c f

e b

f d

▷

a
e

c
f

b

d

>H

a

c

b

d

We start by applying a homomorphism represented by the dotted lines, then we factorize the
obtained graph into a context (in green) and an inner graph (in red) which is the graph of
ef◦, the lhs of the hypothesis ef◦ ≥ ⊤. We replace it by the graph of the rhs ⊤, which is
the empty graph. Doing so, we get the graph of ab ∩ cd

Notice that the intermediary graph is not the graph of a term.

▶ Remark 14. One may wonder whether Theorem 12 leads to a decidability result for the
Horn theory of relations. Actually, the latter is undecidable, as it subsumes the word problem
for monoids [6, Thm.4.5].

The next two subsections are dedicated to the proof of Theorem 12.

4.1 From ▷H to validity
In this section we prove the right-to-left implication of Theorem 12. But first, let us show
the following lemma, which says that ▷H collapses to ▷ if the target graph is the graph of
an interpretation making H true.

▶ Lemma 15. Let H be a set of inequations and σ an interpretation. If the inequations H
are true under σ, then for every graph G:

G▷H (x,G(σ), y) iff G▷ (x,G(σ), y)

Proof. The right-to-left direction is trivial. We prove the other direction by induction on
the length of a sequence witnessing that G▷H (x,G(σ), y). The most interesting base case is
when, for some graph H:

G >H H ▷ (x,G(σ), y) (BC)

The other two base cases are: G▷ (x,G(σ), y), which is trivial, and G >H (x,G(σ), y), which
can be seen as a particular case of the interesting base case, by taking H to be (x,G(σ), y).
The inductive step is easy, as the composition of two homomorphisms is a homomorphism.
Now, let us prove the interesting base case. Suppose that there is a graph H satisfying (BC),
and let us find a homomorphism from G to (x,G(σ), y).

MFCS 2021



41:8 Graph Characterization of the Universal Theory of Relations

Since G >H H , there is an inequation (t ≥ u) ∈ H and a context C such that G = C[G(t)]
and H = C[G(u)]. We have also that H ▷ (x,G(σ), y), so let h be a homomorphism:

h : C[G(u)] ! (x,G(σ), y)

Let x′ and y′ be respectively the image of the input and the output of G(u) by h. By
considering the restriction of h to G(u), we have that G(u)▷(x′,G(σ), y′). Hence, by Lemma 6,
we have that (x′, y′) ∈ σ(u). As H is true under σ, we have also that (x′, y′) ∈ σ(t), and
again by Lemma 6, G(t) ▷ (x′,G(σ), y′). Let us denote by k a homomorphism:

k : G(t) ! (x′,G(σ), y′)

With these ingredients, we construct a homomorphism f from G = C[G(t)] to (x,G(σ), y)
as follows: the restriction of f to C is h and the restriction of f to G(t) is k. It is easy to
check that f is indeed an homomorphism, and this ends the proof. ◀

We can now prove the right-to-left direction of Theorem 12.

Proof of Theorem 12 (⇐). Suppose that G(t)▷H G(u). Let σ be an interpretation satisfying
H and suppose that (x, y) ∈ σ(u).

σ(u) ∋ (x, y) ⇒ G(u) ▷ (x,G(σ), y) Lem. 6
⇒ G(t) ▷H (x,G(σ), y) By hypothesis
⇒ G(t) ▷ (x,G(σ), y) Lem. 15
⇒ σ(t) ∋ (x, y) Lem. 6 ◀

4.2 From validity to ▷H

The main ingredient to prove the left-to-right direction of Theorem 12 is to construct, given a
set of hypothesis H, an interpretation making them true. For that we start from an arbitrary
graph and “saturate” it by the hypothesis H, then we iterate this construction ω-times and
take the limit graph. The desired interpretation will be the interpretation associated to this
graph. In the sequel, we define the notions of graph limit and saturation, then we proceed to
the proof of our theorem.

4.2.1 Limit of a sequence of graphs
When we consider an increasing sequence of graphs (Gi)i∈ω, that is, Gi ↪! Gi+1 for every
i ∈ ω, the notion of limit is clear: it is just the union of the graphs Gi, its input and output
being respectively the common input and output of the graphs Gi; we denote it by lim

i∈ω
Gi.

We denote by θi : Gi ! lim
i∈ω

Gi the natural injection of Gi into the limit graph, we call it the
limit injection for Gi. Here is an illustration of this construction:
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In the following, we extend this notion of limit to the case where the graphs Gi and Gi+1
are related by an arbitrary homomorphism, not necessarily an injective one. Let us start
with an observation.

Let G0
h0−! G1

h1−! G2 . . . be a sequence of finite graphs related by homomorphism. Let
(Hi)i∈ω be the successive images of G0 by these homomorphisms, that is:

H0 = G0, and Hi+1 = hi(Hi) for i ≥ 0.

At some point, the image of G0 will stabilize, in other words there is an index s such that,
for all i > s the function ki : Hi ! Hi+1, the restriction of hi to Hi is a bijection. We call
stabilization index of G0 the least index s satisfying this property, we denote it by s0. We
call stable image of G0 the graph Hs0 and we denote it by S(G0).

We define in the same way the stabilization index of Gi, and denote it si: it is the least
index starting from which the homomorphisms hj for j > si do not merge nodes coming
from Gi. We define similarly the stable image of Gi and denote it by S(Gi).

Note that if i ≤ j then si ≤ sj and S(Gi) ↪! S(Gj). By considering the sequence of the
stable images of the graphs Gi, we can now define the limit of this sequence:

▶ Definition 16 (Limit of a sequence of graphs). Let (Gi)i∈ω be a sequence of finite graphs
such that there is a homomorphism hi : Gi ! Gi+1 for every i ∈ ω. As the sequence of stable
images (S(Gi))i∈ω is increasing, its limit lim

i∈ω
S(Gi) is well defined. For every i ∈ ω, let θi

be the limit injection θi : S(Gi) ! lim
i∈ω

S(Gi).

We define the limit of the sequence (Gi)i∈ω as follows:

lim
i∈ω

Gi = lim
i∈ω

S(Gi)

For every i < j ∈ ω, we denote by h[i,j] the homomorphism h[i,j] : Gi ! Gj obtained as the
composition hj−1 ◦ · · · ◦ hi. We denote by πi : Gi ! lim

i∈ω
Gi the homomorphism θsi

◦ h[i,si].
We call πi the limit homomorphism for Gi.

▶ Example 17. Consider the sequence of terms (ti)i∈ω defined by:

ti = (
i
∩

k=0
ak ·

i
∩

k=0
bk) ∩ (ai+1 · bi+1).

There is a (unique) homomorphism hi : G(ti) ! G(ti+1). The limit of the sequence of graphs
(G(ti))i∈ω related by the homomorphisms (hi)i∈ω, converges to the graph of this “term”1:

∞
∩

k=0
ak ·

∞
∩

k=0
bk

Here is an illustration of this example:

1 This is not really a term since it contains infinite intersections, but it is clear how to define the graphs
of such generalized terms.
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Note that the limit does not depend only on the sequence of graphs, but also on the
homomorphisms relating them. Consider for instance the following sequence of terms.

ui = (
i
∩

k=0
ak ·

i
∩

k=0
bk) ∩

i+1
∩

k=0
(ak · bk).

If we consider the injections ιi : G(ui) ! G(ui+1), then the sequence (G(ui))i∈ω related by
the homomorphisms (ιi)i∈ω converges to the graph of this “term”:

(
∞
∩

k=0
ak ·

∞
∩

k=0
bk) ∩

∞
∩

k=0
(ak · bk)

But if we consider the homomorphisms ki : G(ui) ! G(ui+1) which merges all the inner
nodes2 of G(ui), we obtain as limit the graph of this “term”:

∞
∩

k=0
ak ·

∞
∩

k=0
bk

▶ Remark 18. This notion of limit is a well known concept of category theory. Since the
category of graphs and graph homomorphisms is cocomplete, every infinite sequence of
homomorphisms has a colimit, unique up to isomorphism. We made the choice to give an
explicit definition for the readers which are, as the author, not familiar with category theory.

Here are some properties satisfied by the limit of a sequence of graphs.

▶ Proposition 19. Let (Gi)i∈ω be a sequence of graphs, and hi : Gi ! Gi+1. Let Gω be their
graph limit, πi be the limit homomorphism for Gi and H be a finite graph.
1. For every i ∈ ω, if H ▷ (x,Gi, y) then H ▷ (πi(x), Gω, πi(y)).
2. Conversely, if H ▷ (x,Gω, y) then H ▷ (x′, Gi, y

′) for some i, x′, y′ satisfying πi(x′) = x

and πi(y′) = y.
3. In particular, we have that: H ▷Gω ⇔ ∃i ∈ ω, H ▷Gi.

Proof. Property (1) is trivial. Indeed, if h : H ! (x,Gi, y) is a homomorphism then
hi ◦ h : H ! (πi(x), Gω, πi(y)) is also a homomorphism.

Suppose that H ▷ (x,Gω, y). Since H is finite, there is i ∈ ω such that H ▷ (x′, S(Gi), y′)
where πi(x′) = x and πi(y′) = y. But S(Gi) is a subgraph of some Gj , where j ∈ ω. Hence
H ▷ (x′, Gj , y

′). ◀

2 That is, nodes different from the input and the output.
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4.2.2 Saturation by hypothesis
Let G,H ∈ Gr and let x, y be two vertices of G. We denote by G[H/xy] the graph obtained
from G by merging the input of H with x and its output with y. The input and output of
G[H/xy] are those of G.

▶ Remark 20. Note that if the input and output of H are equal, then the operation G[H/xy]
merges the nodes x, y. Note also that G▷G[H/xy], but this homomorphism is not necessarily
injective because of the possible merge of x and y.

▶ Definition 21 (Saturation). Let H be a finite set of inequations, G ∈ Gr and V its set of
vertices. Let T ⊆ V × V × Gr be the set of triplets satisfying:

(x, y,H) ∈ T iff ∃(t ≥ u) ∈ H, G(u) ▷ (x,G, y) and H = G(t)

Let (xi, yi, Hi)i≤n be an enumeration of T . The saturation of G by H is the graph denoted
SatH(G) and defined as:

SatH(G) = G[H0/x0y0] . . . [Hn/xnyn]

In words, a triplet (x, y,H) is in T means that in the graph G, we “identified” the graph
G(u), the rhs of a hypothesis in H, between the nodes x and y. The graph H is G(t), the
graph of the lhs of this hypothesis. To make G “agree” with hypothesis H, we need to plug
H between x and y. When we do that for all the triplets in T , we obtain the saturation of G
by H. Now, let us make some properties of saturation explicit.

▶ Proposition 22. Let G be a graph and H a set of inequations.
1. For every inequation (t ≥ u) ∈ H, we have:

G(u) ▷ (x,G, y) ⇒ G(t) ▷ (x, SatH(G), y)

2. G▷ SatH(G).
3. SatH(G) ▷H G.

Proof. To prove (1), suppose that (t ≥ u) ∈ H and G(u) ▷ (x,G, y). This means that the
triplet (x, y,G(t)) is in the set T of Definition 21. Hence SatH(G) is of the form K[G(t)/xy].
It is clear then that G(t) ▷ (x, SatH(G), y).

Property (2) is a consequence of Remark 20 above. For property (3), we will show that
if (x, y,H) ∈ T , where T is as in definition 21, then G[H/xy] ▷H G. The result will be an
iteration of this argument for all elements of T . By definition of T , there is a hypothesis
(t ≥ u) such that G(u) ▷ (x,G, y) and H = G(t). Let us denote by k a homomorphism from
G(u) to (x,G, y). Let C be the context obtained from G by adding an edge labeled • between
x and y. We have that:

G[H/xy] = C[G(t)] >H C[G(u)] ▷G

Indeed, the equality and inequation >H are trivially true. To justify the ▷ inequation,
we define a homomorphism from C[G(u)] to G as follows: its restriction to G(u) its is the
homomorphism k, and its restriction to C is the identity. ◀

Now, we can define the ω-saturation of a graph by a set of hypothesis.
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▶ Definition 23 (ω-saturation). If G is a graph and H a set of inequations, we define the
sequence (Sati

H
(G))i∈ω as the successive iterations of G by saturation by the hypothesis H:

Sat0
H

(G) = G, Sati+1
H

(G) = Sat(Sati
H

(G)) (i ∈ ω).

By Proposition 22 (2), we have that Sati
H

(G) ▷ Sati+1
H

(G). The limit is then well defined by
Definition 16. We define the ω-saturation of G by H as the graph:

Satω
H

(G) = lim
i∈ω

Sati
H

(G).

The ω-saturation satisfies the following property. It says that given a set of inequations
H, if we start from an arbitrary graph G (so in general, the inequations of H are not true
under the interpretation associated to G) and we ω-saturate it by H, then the inequations
from H are true under the interpretation associated to the obtained graph.

▶ Proposition 24. Let H be a set of inequations, G be a graph, and σ the interpretation
associated to Satω

H
(G). The inequations from H are true under σ.

Proof. We denote by Gω the graph Satω
H

(G), by Gi the graph Sati
H

(G) for every i ∈ ω and
by σ the interpretation associated to Gω. By Remark 5, the graph associated to σ is Gω.
Let πi : Gi ! Gω be the limit homomorphism for Gi.

Let (t ≥ u) ∈ H, let us show that σ(t) ⊇ σ(u). Suppose that σ(u) ∋ (x, y).

σ(u) ∋ (x, y) =====⇒ G(u) ▷ (x,Gω, y) Lem. 6
∃i,x′,y′

=====⇒ G(u) ▷ (x′, Gi, y′), x = πi(x′) and y = πi(y′) Prop. 19 (2)

=====⇒ G(t) ▷ (x′, Gi+1, y′) Prop. 22 (1)

=====⇒ G(t) ▷ (x,Gω, y) Prop. 19 (1)

=====⇒ σ(t) ∋ (x, y) Lem. 6

And this concludes the proof. ◀

We can go back to the proof of Theorem 12.

Proof of Theorem 12 (⇐). Suppose that Rel |= H ⇒ t ≥ u and let us show that G(t) ▷H

G(u). We denote by G(u)ω the graph Satω
H

(G(u)), by G(u)i the graph Sati
H

(G(u)) for every
i ∈ ω, and by σ be the interpretation associated to G(u)ω. By Proposition 24, the inequations
H are true under σ. Note that the graph associated to σ is G(u)ω and that the input and
output of G(u)ω are those of G(u), let us denote them by ι and o respectively.

By Poposition 19 (1), we have G(u) ▷ G(u)ω. It follows that:

G(u) ▷ G(u)ω ⇒ σ(u) ∋ (ι, o) Lem. 6
⇒ σ(t) ∋ (ι, o) By hypothesis
⇒ G(t) ▷ G(u)ω Lem. 6
⇒ G(t) ▷ G(u)i for some i ∈ ω Prop. 19 (3)
⇒ G(t) ▷H G(u) Prop. 22 (3)

This ends the proof of Theorem 12. ◀
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4.3 Characterizing the universal theory of relations
We characterize now the validity of the generalized Horn sentences. The proof is a mix of
the techniques used to prove Theorems 7 and 12.

▶ Theorem 25. For all terms ti, ui where i ∈ [1, n], and set of inequations H, the following
holds:

Rel |= H ⇒
∨

i∈[1,n]

(ti ≥ ui) iff
∨

i∈[1,n]

(
G(ti) ▷H

G(ui) ⊕G
)

where G = G(u1) ⊕ · · · ⊕ G(un).

Proof. As for Theorem 7, we prove this result in the case of binary dijunctions, that is:

Rel |= H ⇒ (t0 ≥ u0) ∨ (t1 ≥ u1) iff G(t0)▷
H

G(u0)⊕G(u1) or G(t1)▷
H

G(u1)⊕G(u0)

(⇒) Suppose that Rel |= H ⇒ (t0 ≥ u0) ∨ (t1 ≥ u1), let us show that either

G(t0) ▷H G(u0) ⊕G(u1) or G(t1) ▷H G(u1) ⊕G(u0)

We set G = G(u0) ⊕ G(u1), and let Gω denote the graph Satω
H

(G), Gi denote the graph
Sati

H
(G) for every i ∈ ω, and let σ be the interpretation associated to Gω. By Proposition 24,

the inequations H are true under σ. Hence, we have either σ(t0) ⊇ σ(u0) or σ(t1) ⊇ σ(u1).
Let us study the former case, the latter being symmetric.

Suppose that σ(t0) ⊇ σ(u0). Let ι and o be respectively the input and output of Gω.
Notice that G(u0) ▷ (ι, Gω, o), it follows that:

G(u0) ▷ (ι, Gω, o) ⇒ σ(u0) ∋ (ι, o) Lem. 6
⇒ σ(t0) ∋ (ι, o) By hypothesis
⇒ G(t0) ▷Gω Lem. 6
⇒ G(t0) ▷Gi for some i ∈ ω Prop. 19 (3)
⇒ G(t0) ▷H G Prop. 22 (3)

This concludes the proof of this direction.

(⇐) Suppose that G(t0) ▷H G(u0) ⊕G(u1) and let us show that:

Rel |= H ⇒ (t0 ≥ u0 ∨ t1 ≥ u1)

Note that the other case is symmetric. Let σ : A! P(B ×B) be an interpretation under
which H is true, and let G be its graph. We distinguish two cases. We have either:

∀x, y ∈ B, G(u1) ̸ ▷(x,G, y)

In this case, by Lemma 6, there is no pair (x, y) such that (x, y) ∈ σ(u1), hence σ(t1) ⊇ σ(u1)
is vacuously true.
Suppose now that there is x1 and y1 in B such that G(u1)▷ (x1, G, y1). Notice the following:

∀x, y ∈ B, G(u0) ▷ (x,G, y) ⇒ G(u0) ⊕ G(u1) ▷ (x,G, y)

By using Lemma 6 and this remark, we get that if σ(u0) ∋ (x, y) then G(t0)▷H (x,G, y). By
Lemma 15, and since the inequations H are true under σ, we have that G(t0) ▷ (x,G, y).
Hence, by Lemma 6, we get σ(t0) ∋ (x, y) which concludes the proof. ◀

As every universal sentence can be written as the conjunction of some generalized Horn
sentences, Theorem 25 gives us a characterization of the validity of all universal sentences.
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5 Conclusion

We end this paper by some concluding remarks and open problems.
By characterizing the universal theory of relations, we characterized also their existential

theory. Now, can we characterize the full first-order theory of relations using graphs and
homomorphisms?

Another direction of work is to extend the syntax of terms. For instance, we could add
the operations of union and Kleene star. In this case, terms are interpreted, not by a single
graph as we did here, but by a set of graphs as in [4, Def. 4]. Graph homomorphism is
generalized to the relation ▶ between sets of graphs as follows:

C ▶ D ⇔ ∀H ∈ D, ∃G ∈ C, G▷H

With these interpretations, Theorem 7 can be easily adapted when union is added to the
syntax. However, it is not clear how to adapt it in the presence of the Kleene star. Theorem 12
seems hard to adapt both for the union and the Kleene star extensions.

Even if Theorems 12 and 25 do not give decidability for the corresponding theories, we
can wonder whether it can be obtained under some restrictions on the hypothesis H. For
instance, is it the case when the hypothesis H form a Noetherian rewriting system?

We can easily adapt this work to the realm of conjunctive queries. Indeed, terms can
be replaced by conjunctive queries and inequations between terms by equivalence between
conjunctive queries Q1 ≡ Q2. For example, by adapting Theorem 7 we get the decidability
of the following problem:

Input: Conjunctive queries Q1, Q2, Q3 and Q4.
Output: Do we have (Q1 ≡ Q2) ∨ (Q3 ≡ Q4)?

which generalizes the result of Chandra and Merlin [5].
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Abstract
Clique-width and treewidth are two of the most important and useful graph parameters, and
several problems can be solved efficiently when restricted to graphs of bounded clique-width or
treewidth. Bounded treewidth implies bounded clique-width, but not vice versa. Problems like
Longest Cycle, Longest Path, MaxCut, Edge Dominating Set, and Graph Coloring
are fixed-parameter tractable when parameterized by the treewidth, but they cannot be solved
in FPT time when parameterized by the clique-width unless FPT = W[1], as shown by Fomin,
Golovach, Lokshtanov, and Saurabh [SIAM J. Comput. 2010, SIAM J. Comput. 2014]. For a given
problem that is fixed-parameter tractable when parameterized by treewidth, but intractable when
parameterized by clique-width, there may exist infinite families of instances of bounded clique-width
and unbounded treewidth where the problem can be solved efficiently. In this work, we initiate a
systematic study of the parameters co-treewidth (the treewidth of the complement of the input
graph) and co-degeneracy (the degeneracy of the complement of the input graph). We show that
Longest Cycle, Longest Path, and Edge Dominating Set are FPT when parameterized by
co-degeneracy. On the other hand, Graph Coloring is para-NP-complete when parameterized
by co-degeneracy but FPT when parameterized by the co-treewidth. Concerning MaxCut, we
give an FPT algorithm parameterized by co-treewidth, while we leave open the complexity of the
problem parameterized by co-degeneracy. Additionally, we show that Precoloring Extension
is fixed-parameter tractable when parameterized by co-treewidth, while this problem is known to
be W[1]-hard when parameterized by treewidth. These results give evidence that co-treewidth is a
useful width parameter for handling dense instances of problems for which an FPT algorithm for
clique-width is unlikely to exist. Finally, we develop an algorithmic framework for co-degeneracy
based on the notion of Bondy-Chvátal closure.
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1 Introduction

Treewidth and clique-width are two of the most important and useful graph parameters.
Families of graphs of bounded treewidth include cactus graphs, outerplanar graphs, series-
parallel graphs, Halin graphs, Apollonian networks [3], and graphs of bounded branch-
width [45]. Graph classes with bounded clique-width include cographs [10], distance-hereditary
graphs [35], and graphs of bounded treewidth [20]. Additionally, the clique-width of a graph
is asymptotically equivalent to its rank-width [43].

An algorithmic meta-theorem due to Courcelle, Makowsky and Rotics [15] states that
any problem expressible in the monadic second-order logic of graphs (MSO1) can be solved
in f(cw) · n time, i.e., it is fixed-parameter tractable when parameterized by the clique-width,
cw, of the input graph. Originally this required a clique-width expression as part of the
input. This restriction was removed when Oum and Seymour [43] gave an FPT algorithm,
parameterized by the clique-width of the input graph, that finds a 2O(cw)-approximation
of an optimal clique-width expression. In addition, Courcelle [16] states that any problem
expressible in the monadic second-order logic of graphs with edge set quantifications (MSO2)
can be solved in time f(tw) · n, where tw is the treewidth of the input graph. Clearly, every
MSO1 property is also a MSO2 property. However, there are MSO2 properties like “G has an
Hamiltonian cycle” that are not MSO1 expressible [18]. These results have been extended a
number of times [1, 9, 15, 37]. In particular, the MSO meta-theorems mentioned above were
extended to LinEMSO by allowing the expressibility of optimization problems concerning
maximum or minimum sets (LinEMSO properties are equivalent to MSO properties for
optimization problems which can be expressed as searching for sets of vertices/edges that are
optimal concerning some linear evaluation functions) [1, 17, 15]. From these meta-theorems,
it follows that several problems can be efficiently solved when restricted to graphs of bounded
clique-width or treewidth. Many optimization problems are LinEMSO2-expressible, but
Graph Coloring, the problem of determining the chromatic number of the input graph is
not a LinEMSO problem [41]. However, on graphs G with bounded treewidth, the chromatic
number of G is also bounded; therefore, in this specific case, the problem is Turing-reducible
to a MSO1 problem (k-Coloring for fixed k).

Bounded treewidth implies bounded clique-width [13] but the opposite implication is
not valid, as in the case of complete graphs. On the other hand, LinEMSO2 is more
expressive than LinEMSO1, and there exist LinEMSO2-expressible problems like MaxCut,
Longest Cycle, Longest Path and Edge Dominating Set that cannot be FPT when
parameterized by clique-width [28, 29, 30, 31], unless FPT = W[1]. Additionally, Graph
Coloring is also an FPT problem concerning treewidth parameterization that cannot be
FPT when parameterized by clique-width, unless FPT = W[1], see [30].

For problems that are fixed-parameter tractable when parameterized by treewidth, but
intractable when parameterized by clique-width, the identification of tractable classes of
instances of bounded clique-width and unbounded treewidth becomes a fundamental quest.
The goal of this work is to show that co-treewidth, that is to say, the treewidth of the
complement of the input graph, is a parameter that fulfills this quest. More precisely, we will
show that several natural problems that are unlikely to be in FPT when parameterized by
clique-width can be solved in FPT time when parameterized by co-treewidth. Examples of
such problems are Longest Path, Longest Cycle, MaxCut, Edge Dominating Set,
and Graph Coloring. In addition, since bounded treewidth implies bounded degeneracy
(the degeneracy of a graph is upper bounded by its treewidth), we also consider the degeneracy
of the complement graph, called co-degeneracy, as a parameter.
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Let us say that a parameter x is weaker than parameter y, and y stronger than x, if the
set of graph classes where x is bounded is a subset of those where y is bounded. In 2016,
Saether and Telle [46] considered a graph parameter called sm-width which is stronger than
treewidth and weaker than clique-width. They showed that MaxCut, Graph Coloring,
Hamiltonian Cycle and Edge Dominating Set are FPT when parameterized by sm-
width. However, co-treewidth and sm-width are incomparable since trees have bounded
sm-width but unbounded co-treewidth, and the complements of paths have bounded co-
treewidth but unbounded sm-width. Also, note that neighborhood diversity [40], twin-
cover [33], shrub-depth [34], and modular-width [32] are all weaker than clique-width, but
none of them are stronger than co-treewidth. Gajarský, Lampis, and Ordyniak [32] showed
that Graph Coloring and Hamiltonian Path are W[1]-hard parameterized by shrub-
depth but FPT parameterized by modular-width (which is stronger than neighborhood
diversity and twin-cover), they also leave as an open problem the complexity of MaxCut
and Edge Dominating Set parameterized by modular-width. Besides, also in the context
“between treewidth and clique-width”, Eiben, Ganian, Hamm, and Kwon [26] develop hybrid
parameters (H-treewidth) combining advantages of treewidth and modulators, the aim of
H-treewidth is to capture the treewidth of a modulator to the class H (see [26]).

In 2016, Dvořák, Knop, and Masařík [25] showed that k-Path Cover is FPT when
parameterized by the treewidth of the complement of the input graph (i.e., the co-treewidth
of the input). This implies that Hamiltonian Path is FPT when parameterized by co-
treewidth. In 2017, Knop, Koutecký, Masařík, and Toufar [38] asked about the complexity
of deciding graph problems Π on the complement of G considering a parameter p of G (i.e.,
with respect to p(G)), especially for sparse graph parameters such as treewidth. In this
paper, by showing that Longest Path, Longest Cycle, MaxCut, Edge Dominating
Set, and Graph Coloring are all FPT when parameterized by co-treewidth, we exemplify
that co-treewidth is a useful width parameter for dealing with problems for which an FPT
algorithm for clique-width is unlikely. Besides, to the best of our knowledge, this is the first
work dealing with co-degeneracy parameterization.

It is also natural to consider the clique-width of the complement graph as parameter,
however, Courcelle and Olariu [20] proved that for every graph G we have cw(Ḡ) ≤ 2 · cw(G).
Therefore, the notion of “co-clique-width” is redundant from the point of view of parameterized
complexity. On the other hand, the notion of co-treewidth seems to be interesting given that
bounded co-treewidth implies bounded clique-width; and treewidth and co-treewidth are
incomparable parameters. Moreover, although co-degeneracy is incomparable with clique-
width, it is stronger than co-treewidth and a useful parameter for handling some problems on
dense instances. In this paper, we show that Longest Path, Longest Cycle, and Edge
Dominating Set are FPT when parameterized by co-degeneracy, while Graph Coloring
is para-NP-hard. The complexity of MaxCut parameterized by co-degeneracy is left open.

Finally, we also remark that for some graph problems, co-treewidth can be a parameter
more useful than treewidth. For instance, Equitable Coloring and Precoloring
Extension are well-known W[1]-hard problems concerning treewidth; however, we remark
that both problems are fixed-parameter tractable when parameterized by co-treewidth.

1.1 Preliminaries
We use standard graph-theoretic and parameterized complexity notation, and we refer the
reader to [21, 24] for any undefined notation.

The degeneracy of a graph G is the least k such that every induced subgraph of G

contains a vertex with degree at most k. Equivalently, the degeneracy of G is the least k

such that its vertices can be arranged into a sequence so that each vertex is adjacent to most
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k vertices preceding it in the sequence. We denote by co-deg(G) the co-degeneracy of G, i.e.,
the degeneracy of G. Also, for a graph G, we denote by co-tw(G) the co-treewidth of G, i.e.,
the treewidth of G. For short, we use co-deg and co-tw whenever the graph G is implicit.

In general, for a tree decomposition (T, {Xt}t∈V (T )) it is common to distinguish one
vertex r of T which will be the root of T . This introduces natural parent-child and ancestor-
descendant relations in the tree T [21]. It is useful to design dynamic programming algorithms
based on tree decompositions to obtain rooted tree decompositions that satisfy some auxiliary
conditions. Such decompositions are so-called nice tree decompositions.

▶ Definition 1. A tree decomposition (T, {Xt}t∈V (T )) with root node Xr is nice, if the
following conditions are satisfied:

Xr = ∅; (the root is an empty bag of T )
If Xℓ is a leaf node of T , then Xℓ = ∅; (each leaf Xℓ is an empty bag of T )
Every non-leaf node of T is of one of the following three types:

1. Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some
vertex v /∈ Xt′ ; we say that v is introduced at t.

2. Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ ; we say that w is forgotten at t.

3. Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

Let G be a graph and let (T, {Xt}t∈V (T )) be a nice tree-decomposition of the graph G.
For each node t of T , we denote by Tt the subtree of T rooted by t. Also, we denote by Gt

the subgraph of G induced by the set of vertices contained in some bag of Tt.
Based on the following results, we can assume that we are given a nice tree decomposition

of G without loss of generality.

▶ Theorem 2 ([5]). There exists an algorithm that, given an n-vertex graph G and an integer
k, runs in time 2O(k) · n and either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k + 4.

▶ Lemma 3 ([21]). Given a tree decomposition (T, {Xt}t∈V (T )) of G of width at most k, one
can in time O(k2 · max(|V (T )|, |V (G)|)) compute a nice tree decomposition of G of width at
most k that has at most O(k · |V (G)|) nodes.

The clique-width of a graph is another parameter that we will mention very often, and
therefore, we briefly define this parameter for completeness. Given a graph G, the clique-width
of G, denoted by cw(G), is defined as the minimum number of labels needed to construct G,
using the following four operations: create a single vertex v with an integer label ℓ (denoted
by ℓ(v)); take the disjoint union (i.e., co-join) of two graphs (denoted by ⊕); join by an (arc)
edge every vertex labeled i to every vertex labeled j for i ̸= j (denoted by η(i, j)); relabel all
vertices with label i by label j (denoted by ρ(i, j)). An algebraic term representing such a
construction of G and using at most k labels is a k-expression of G. The clique-width of G

is the minimum k for which G has a k-expression.
Given a graph G and a vertex v ∈ V (G), N(v) denotes the (open) neighborhood of v,

N [v] denotes the closed neighborhood of v ( N [v] = N(v) ∪ {v}), and d(v) denotes the degree
of v (d(v) = |N(v)|).

We say that two vertices v, w of G have the same type if N(v) \ {w} = N(w) \ {v}.
A graph G has neighborhood diversity at most k, if there exists a partition of V (G) into

at most k sets, such that all the vertices in each set have the same type. We denote by nd(G)
(or just nd when the graph G is implicit) the least k such that G has neighborhood diversity
at most k.



G. L. Duarte, M. de Oliveira Oliveira, and U. S. Souza 42:5

A set S ⊆ V (G) is a vertex cover of a graph G if for each edge of G at least one of its
endpoints is in S. The vertex cover number of G, denoted by vc(G), is the least k such that
G has a vertex cover of size k. It is well known that if a graph G has vertex cover at most k,
then nd(G) ≤ 2k + k (c.f. [40]).

A path cover P of a graph G is a set of vertex-disjoint paths of G such that each vertex
in V (G) belongs to a path in P.

A graph G is Hamiltonian if there is a cycle which includes every vertex of G (such a
cycle is called a Hamiltonian cycle). A graph G is said k-Hamiltonian if the deletion of at
most k vertices from G results in a Hamiltonian graph.

Finally, we denote by n the number of vertices of the graph under consideration.

2 Monadic second-order logic for graphs with bounded co-treewidth

Dvořák, Knop, and Masařík [25] asked whether it is possible to extend the meta-theorem for
MSO2 for the complementary setting – i.e. to allow quantification over sets of non-edges. As
shown by Courcelle, Makowsky and Rotics [15] (assuming P ̸= NP on unary languages), it is
not possible to allow quantification over sets of edges as well as quantification over sets of
non-edges, under the requirement that for the target parameter the complete graphs should
have bounded width. However, as observed by Knop, Koutecký, Masařík, and Toufar [38],
the result that k-Path Cover2 is FPT when parameterized by co-treewidth suggests that
at least sometimes some extension of MSO theorem can be useful to decide properties of the
complement graph. Next, by way of illustration, we show that this is precisely the case of
Balanced co-Biclique, the problem of determining the maximum integer k for which the
input graph G has a pair of cliques K1, K2 such that |K1| = |K2| = k and there is no edge
from K1 to K2. Such a pair of cliques is the complement of a balanced complete bipartite
graph (balanced biclique).

Let LinEMSO2̄ be the extension of LinEMSO1, where quantification is allowed over
sets of non-edges, but quantification over sets of edges is not allowed. It is easy to see
that LinEMSO2̄-expressible problems are FPT concerning co-treewidth since LinEMSO2-
expressible problems are FPT concerning treewidth. Note that expressing a property in
LinEMSO2̄ is equivalent to expressing the complementary property in LinEMSO2.

▶ Lemma 4. Finding the maximum balanced biclique of a graph is LinEMSO2-expressible.

Proof. Given a graph G and set of vertices S1, it is easy to express in MSO1 the existence of
a disjoint set S2 such that S1 and S2 form an induced complete bipartite subgraph: S1 and
S2 must be independent sets, and G must contain all possible edges from S1 to S2. Although
comparing the cardinality of sets is not allowed in LinEMSO2, in this particular case, it
would still be possible by verifying the existence of a perfect matching in the subgraph
induced by S1 ∪ S2. Thus, the problem of finding the largest S1 meeting these conditions is
LinEMSO2-expressible. ◀

From Lemma 4 and the LinEMSO2 meta-theorem for optimization problems parameterized
by treewidth [19], it follows that Corollary 5 holds.

▶ Corollary 5. Balanced co-Biclique is fixed-parameter tractable when parameterized by
the co-treewidth of G.

2 k-Path Cover is the problem of finding a path cover of size k, where k is fixed.
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3 Bondy-Chvátal closure, stability and co-degeneracy

Let G be a graph with n vertices and let u and v be distinct nonadjacent vertices of G such
that d(u) + d(v) ≥ n. Ore’s theorem states that G is hamiltonian if and only if G + uv is
hamiltonian. In 1976, Bondy and Chvátal [8] generalized Ore’s theorem and defined a helpful
tool: the closure of a graph.

Let ℓ be an integer. The (n + ℓ)-closure cln+ℓ(G) of a graph G is obtained from G by
recursively adding an edge between pairs of nonadjacent vertices whose degree sum is at
least n + ℓ until no such pair remains. Bondy and Chvátal showed that cln+ℓ(G) is uniquely
determined by G and that G is hamiltonian if and only if cln(G) is hamiltonian.

First, observe that the classes of graphs with bounded co-degeneracy and bounded co-
treewidth are both closed under completion (edge addition), just as bounded degeneracy and
treewidth are closed under edge removals. Therefore, regarding Hamiltonian Cycle on
graphs with co-degeneracy or co-treewidth k, without loss of generality, we can assume that
G = cln(G).

Dvořák, Knop and Masařík [25] showed that if a graph G has co-treewidth k and
G = cln(G) (that is, closed under Bondy-Chvátal closure) then G has neighborhood diversity
bounded by 22(k2+k) + 2(k2 + k). Below we present some stronger results.

We call by co-vertex cover any set of vertices whose removal makes the resulting graph
complete, i.e., a vertex cover in the complement. The co-vertex cover number, co-vc(G), of a
graph G is the minimum cardinality of a co-vertex cover in G. Recall that co-vc(G) is also
called distance to clique, and a co-vertex cover set is also called a clique modulator.

▶ Theorem 6. Let ℓ ≥ 0 be an integer. If a graph G has co-degeneracy k and G = cln+ℓ(G)
then G has co-vertex cover number bounded by 2k + ℓ + 1. In addition, a co-vertex cover of
G with size at most 2k + ℓ + 1 can be found in polynomial time.

Proof. Let G be a graph such that G = cln+ℓ(G) and co-deg(G)=k.
We may assume that G has at least 2k + ℓ + 2 vertices.
Let v1, v2, v3, . . . , vn be an ordering of the vertices of G obtained by repeatedly removing

the minimum-degree vertex of G. For each t ∈ {1, 2, . . . , n} we denote by Gt the subgraph of
G induced by {vi : 1 ≤ i ≤ t}.

Note that G1 is a complete graph (i.e., a K1). Therefore, t = 1 is the base case.
Now, let t be an integer such that 2 ≤ t ≤ n and |V (G) \ V (Gt)| ≥ 2k + ℓ + 1.
Suppose by hypothesis that Gt−1 is a complete graph. At this point, it remains to prove

that Gt is also a complete graph.
Since V (Gt−1) = {v1, . . . , vt−1} is a clique of G and co-deg(G)=k, it holds that each

vertex of V (Gt−1) has degree at least n − k − 1 in G. Also, the vertex vt has at least k + ℓ + 1
neighbors in V (G) \ V (Gt), because |V (G) \ V (Gt)| ≥ 2k + ℓ + 1, and by the co-degeneracy
the vertex vt has at most k non-neighbors in V (G) \ V (Gt). Finally, as G = cln+ℓ(G) it
holds that vt is adjacent to all vertices of Gt−1 in the graph G, which implies that V (Gt) is
also a clique of G.

Thus, in a left-right manner according the ordering, v1, v2, v3, . . . , vn, we can observe that
each V (Gt) induces a clique until meeting the first vertex vj such that |V (G) \ V (Gj)| <

2k + ℓ + 1. This implies that {vj , vj+1, . . . , vn} is a co-vertex cover of G with size at most
2k + ℓ + 1, and it can be computed in polynomial time. ◀

As a corollary we improve the Dvořák-Knop-Masařík bound with respect to neighborhood
diversity for ℓ = 0.
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▶ Corollary 7. Let ℓ ≥ 0 be an integer. If a graph G has co-degeneracy k and G = cln+ℓ(G)
then G has neighborhood diversity bounded by 22k+ℓ+1 + 2k + ℓ + 1.

In [25], from the fact that if G = cln(G) then the neighborhood diversity is bounded by a
function of the co-treewidth, it is claimed that Hamiltonian Path is in FPT concerning co-
treewidth. For an FPT algorithm for Hamiltonian Path parameterized by the neighborhood
diversity (nd), they point to the seminal paper of Lampis [40], which uses an algorithm of
Cosmadakis and Papadimitriou [14] resulting in solving the problem in time O∗(2nd·log nd).
Recall that this strategy implies a solution for Hamiltonian Path in double exponential
time with respect to the co-treewidth. Below we present a much more efficient algorithm.
First, we consider co-vertex cover number parameterization.

▶ Lemma 8. Longest Path and Longest Cycle can be solved in time 2O(k·log k) · nO(1)

where k is the co-vertex cover number of the input graph.

Proof. Let S, K be a partition of the vertices of a graph G into a co-vertex cover S and
a clique K, where |S| = k. We assume that |K| > 2|S|; otherwise we can “guess”, in
single-exponential time, the vertices in the longest path/cycle, so one can solve both problems
using single-exponential exact algorithms for Hamiltonian Cycle (or TSP), such as the
Bellman–Held-Karp algorithm [2, 36].

Since |K| > 2|S|, there is a longest cycle and a longest path containing all vertices of K,
otherwise any longest cycle/path either has no edge between two vertices of K (therefore, it
has size at most 2|S|), or it has an edge uv where u, v ∈ K, implying that there is a larger
cycle/path obtained by replacing uv by a uv-path containing as internal vertices the vertices
of K that were not in the cycle/path, both cases contradict the fact that the cycle/path is
the longest. Also, note that Longest Path can be reduced to Longest Cycle by adding
one universal vertex. Therefore, we focus on Longest Cycle.

Now, in time 2O(|S|) one can branch by guessing the set Sx of vertices of S that are not in
the longest cycle, and then removing Sx. After that, we may assume that we are dealing with
an instance G′ of the Hamiltonian Cycle problem, where V ′ = V (G) \ Sx, G′ = G[V ′],
K ′ = K, and S′ = S \ Sx is a co-vertex cover of G′.

Let k′ be the cardinality of S′. Recall that k′ ≤ k. Now, we branch by guessing a
permutation s1, s2, . . . , sk′ of the vertices of S′ representing a circular order of visits of the
vertices of S′ in the Hamiltonian cycle C (if any). Given such a permutation s1, s2, . . . , sk′ ,
we guess the edges si, si+1 of G′ that are in C. Note that these branching steps take O(k! ·2k)
time. Recall that O(k! · 2k) = 2O(k log k). At this point, we have guessed the set of subpaths
of C induced by S′. Let P1, P2, . . . , Pr be the circular order of visits of such paths according
to the guessed permutation.

For each pair of consecutive paths Pi, Pi+1 either their corresponding endpoints are
connected by a common neighbor in C or there is a path of vertices of K between them in
such a cycle. Again, we branch by guessing in time 2O(k) the pairs connected by a common
neighbor. After that, we can construct a bipartite graph B with bipartiton V (B) = (B1, B2)
where: each vertex of B1 represents either a pair of endpoints of the paths that must have a
common neighbor in C, or an endpoint that has a distinct neighbor inside K along C; B2 is
the set of vertices of the clique K, and E(B) is defined according to the edges from S′ to K

(for vertices representing pairs of endpoints, the neighborhood is the vertices of K that are
neighbors of both endpoints). Clearly, if the guessed structures are feasible for obtaining a
Hamiltonian cycle C then B has a matching of size |B1|. Let M be such a matching, if any.

Since |K| > 2|S| we assume that for at least one pair Pi, Pi+1 its corresponding endpoints
do not have a common neighbor in C. Hence, having the matching M and such a path cover
P1, . . . , Pr of G′[S′], a Hamiltonian cycle can be easily obtained for G′. Therefore, Longest
Cycle and Longest Path can be solved in time 2O(k log k) ·nO(1), where k = co-deg(G). ◀
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Since Hamiltonian Path can be reduced to Hamiltonian Cycle by adding a universal
vertex, from Bondy-Chvátal Theorem, Theorem 6 and Lemma 8, the following holds.

▶ Corollary 9. Hamiltonian Cycle and Hamiltonian Path can be solved in time
2O(k log k) · nO(1), where k is the co-degeneracy of the input graph.

In order to extend the previous result to Path Cover, Longest Cycle, and Longest
Path as well as considering the same strategy for other properties, it becomes necessary to
introduce the notion of stability.

3.1 The stability of a property
A property P defined on all graphs of order n is said to be (n + ℓ)-stable if for any graph
G of order n that does not satisfy P , the fact that uv is not an edge of G and that G + uv

satisfies P implies d(u) + d(v) < n + ℓ. In other words, if uv /∈ E(G), d(u) + d(v) ≥ n + ℓ

and G + uv has property P , then G itself has property P (c.f. [12]). We denote by s(P ) the
smallest integer n + ℓ such that P is (n + ℓ)-stable, and call it the stability of P .

Note that if a graph property P is (n + ℓ)-stable then edges between pair of vertices u, v

such that d(u) + d(v) ≥ n + ℓ can be added without destroying such a property P .
Our co-degeneracy+closure+co-vertex cover framework is based on the following facts:

1. If a property P is (n + ℓ)-stable and cln+ℓ(G) satisfies P , then G itself satisfies P .
2. If a property P is (n + ℓ)-stable, regarding the problem of recognizing property P

parameterized by co-degeneracy we can assume without loss of generality that G =
cln+ℓ(G).

3. If G = cln+ℓ(G) and G has co-degeneracy k then G has a co-vertex cover of size at most
2k + ℓ + 1. In particular, we are interested in cases where ℓ is bounded by a function of k.

4. Many problems are easily solved in FPT-time concerning co-vertex cover parameterization.

Next, we list the stability of some graph properties P (see [8, 11, 12]):
Longest Cycle: “G has circumference k” satisfies s(P ) = n. (Thm. 4 in [11])
Longest Path: “G contains a Pk” satisfies s(P ) = n − 1 for 4 ≤ k ≤ n. (Thm. 2.40 in [12])
Path Cover: “G has a path cover of size at most k” satisfies s(P ) = n − k. (Thm. 9.13 in [8])
k-Hamiltonian: “G is k-Hamiltonian” satisfies s(P ) = n + k. (Thm. 2.25 in [12])

At this point, it is easy to see that Corollary 10 holds.

▶ Corollary 10. Longest Cycle/Path can be solved in time 2O(co-deg log co-deg) · nO(1), and
k-Hamiltonian graphs can be recognized in time 2O((co-deg+k) log(co-deg+k)) · nO(1).

Proof. By the stability of the properties regarding the computation of the longest cycle,
longest path, and recognition of k-Hamiltonian graphs, it holds that one can assume that
G is closed under Bondy-Chvátal closure for an appropriated integer ℓ (G = cln+ℓ(G)). By
Theorem 6, it holds that G has a co-vertex cover S of size O(co-deg), or O(co-deg + k) in
the k-Hamiltonian case, and such a co-vertex cover can be obtained in polynomial time.

Given a co-vertex cover S of G, in time 2O(|S|) one can “guess” the vertices of S that
must be removed or are not in the longest cycle/path. After that, the proof follows as in
Lemma 8. ◀

Next, we deal with the Path Cover problem.

▶ Corollary 11. Path Cover can be solved in time 2O(co-deg log co-deg) · nO(1).



G. L. Duarte, M. de Oliveira Oliveira, and U. S. Souza 42:9

Proof. By the stability of the property P of having a path cover of size at most k (see [8]),
without loss of generality, we can assume G = cln−k(G). Note that E(G) ⊆ E(cln(G)) ⊆
E(cln−k(G)). Thus, from Theorem 6 it holds that G has co-vertex cover number at most
2k+1, where k = co-deg(G). In addition, such a co-vertex cover S can be found in polynomial
time. Thus, G has a path cover of size at most 2k + 2, because one can use a trivial path for
each vertex of the co-vertex cover, and a single path for the remaining vertices (they induce
a clique). So, the path cover number of a graph G is bounded by 2k + 2. At this point, it is
enough to determine the least r ∈ [1, 2k + 2] for which G has an r-path cover (path cover
of size r). Since one can reduce the problem of finding an r-path cover to Hamiltonian
Path by adding r − 1 universal vertices, and the addition of universal vertices preserve the
co-vertex cover number of the input graph, by Corollary 9 it holds that Path Cover can
also be solved in time 2O(k log k) · nO(1), where k = co-deg(G). ◀

4 Edge Dominating Set parameterized by co-degeneracy

An edge dominating set of a graph G is a set Q ⊆ E(G) such that every edge of G is either
in Q or incident to at least one edge of Q. The Edge Dominating Set problem consists of
determining the size of a minimum edge dominating set.

In [30], Fomin et al. showed that Edge Dominating Set parameterized by clique-width
is W[1]-hard. In [29, 31], they showed that Edge Dominating Set cannot be solved in
time f(cw) · no(cw), unless ETH fails.

In this section, we present a single-exponential FPT algorithm for Edge Dominating
Set parameterized by the co-degeneracy.

▶ Theorem 12. Edge Dominating Set can be solved in time 2O(co-deg) · nO(1).

Proof. First, we observe the following key property.

▷ Claim 13. The problem of finding a minimum edge dominating set is equivalent to finding
the smallest vertex cover S such that G[S] contains a perfect matching.

Proof. Yannakakis and Gavril [49] showed that given a minimum edge dominating set Q

of G, one could find a minimum maximal matching with |Q| edges. Since every maximal
matching is an edge dominating set, the size of a minimum edge dominating set equals the
size of a minimum maximal matching.

Now, let Q be a minimum edge dominating set that is also a minimum maximal matching.
Since Q is a maximal matching then V (Q) is a vertex cover inducing a graph having perfect
matching. In addition, there is no vertex cover smaller than V (Q) that also induces a graph
having perfect matching; otherwise, Q is not a minimum maximal matching.

Conversely, let S be the smallest vertex cover S of G such that G[S] contains a perfect
matching. Let Q be such a perfect matching of G[S]. Since S is a vertex cover of G then
V \ S is an independent set, which implies that Q is a maximal matching of G. In addition,
Q must be a minimum maximal matching, otherwise using the previous argument we obtain
a vertex cover smaller than S also having a perfect matching, a contradiction. ◁

Now, recall that enumerating vertex covers in G is the same as enumerating independent
sets in the same graph, which is equivalent to enumerating the cliques of G.

Since G has degeneracy k, we can enumerate all cliques containing some vertex of degree
at most k (such a vertex must exist and there are at most 2k cliques containing it); by deleting
this vertex and continuing the enumeration in the remaining graph, we can enumerate every
clique of G.
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Therefore, if a graph G has co-degeneracy k, then G has at most 2k · n distinct vertex
covers which we can enumerate in time O(2k · nO(1)). Thus, by checking the existence of
perfect matchings, one can find the minimum edge dominating set in time 2k · nO(1). ◀

5 MaxCut parameterized by co-treewidth

A cut [S, V \ S] of a graph G = (V, E) is a partition of V into two subsets S and V \ S.
The size of the cut [S, V \ S] is the number of edges crossing it, i.e., the cardinality of the
cut-set {uv ∈ E | u ∈ S, v ∈ V \ S}. In the MaxCut problem, we are given an unweighted
undirected graph G = (V, E), and our goal is to find a cut of maximum size.

From the parameterized complexity point of view, to determine if G has a cut of size at
least k is fixed-parameter tractable when parameterized by either k or k − | |E|

2 | (c.f. [42, 44]).
In addition, in 2000, Bodlaender and Jansen [6] showed that MaxCut can be solved in
FPT time when parameterized by the treewidth, and, in 2013, Bodlaender, Bonsma, and
Lokshtanov presented an O(2tw ·n) time algorithm for the problem, where tw is the treewidth
of the input graph. On the other hand, Fomin, Golovach, Lokshtanov and Saurabh [29, 31]
showed that MaxCut cannot be solved in time f(cw) · no(cw), unless ETH fails, where cw is
the clique-width of the input graph G.

Regarding co-degeneracy parameterization we left the complexity of MaxCut open. To
the best of our knowledge, the complexity of MaxCut is unknown even for co-planar graphs
(the class of planar graphs is a subclass of the 5-degenerate graphs).

Concerning co-treewidth, it is not clear whether MaxCut can be expressed in LinEMSO2̄.
Given a cut [S, V \ S] of a graph G, the complement of the cut-set of [S, V \ S] is the set
of non-edges that have one endpoint in each subset of the partition. The main challenge
to express MaxCut using just quantification over sets of vertices and sets of non-edges is
that the size of [S, V \ S] is given by (|S| · |V \ S|) − |{uv /∈ E | u ∈ S, v ∈ V \ S}|, thus, the
natural objective function is not linear, and it is not appropriate to express the problem in
LinEMSO. However, using a nice tree decomposition of the complement graph, we can find
the maximum cut of the input graph in single-exponential time concerning the co-treewidth.

Given a graph G and a nice tree-decomposition (T, {Xt}t∈V (T )) of G, our goal is to use
(T, {Xt}t∈V (T )) in order to find a maximum cut of G. Recall that for each node t of T , we
denote by Gt the subgraph of G induced by the set of vertices contained in some bag of Tt.
Also, for each Xt the set of forgotten vertices in Gt is denoted by Ft (Ft = V (Gt) \ Xt).

Given a cut [S, V \ S], we say that S is left part of the partition defined by the cut, and
V \ S is the right part.

Let C[t, S, ℓ] be the size of a maximum cut of the subgraph Gt, where S are the vertices
of Xt to the left part of the partition defined by the cut, and Xt \ S are the vertices of Xt on
the right part. Also, ℓ represents how many forgotten vertices are in the left part of this cut.

At this point, it is sufficient to show how to compute in a bottom-up manner the entries
of the matrix (which is regarding G (not G)) according to each type of node of the nice tree
decomposition of G. Note that the maximum size of a cut in G equals max0≤ℓ≤n{C[r, ∅, ℓ]},
where r is the root of the tree decomposition.

For each node t of T we denote by t′ and t′′ the children of t (if any), and for each bag
Xt we denote by E(Xt) the set of edges with both endpoints in Xt. Thus, we proceed as
follows:
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Leaf: Since Xt = ∅, it holds that S = ∅, ℓ = 0, and C[t, S, ℓ] = 0.

Introduce vertex: Xt = Xt′ ∪ {v}. Recall that we are working with the tree decomposition
of G, so the size of cuts of G is given by non-edges of G.

C[t, S, ℓ] =
{

C[t′, S \ {v}, ℓ] + |Xt \ S| − |{uv ∈ E(Xt) : u /∈ S}| + (|Ft′ | − ℓ) if v ∈ S

C[t′, S, ℓ] + |S| − |{uv ∈ E(Xt), u ∈ S}| + ℓ if v /∈ S
(1)

Note that |Ft′ | − ℓ is the number of vertices forgotten to the right part of the cut.

Forget vertex: Xt = Xt′ \ {v}. In this case, we take the best of two possibilities: v in the
left or right part of the cut.

C[t, S, ℓ] = max{C[t′, S ∪ {v}, ℓ − 1], C[t′, S, ℓ]} (2)

Join: Xt = Xt′ = Xt′′ . In this case we have to do the union of two partial solutions. Since
non-edges of G[Xt] are non-edges of both Gt′ and Gt′′ , they must not be counted twice.
In addition, there are non-edges between forgotten vertices of Gt′ and Gt′′ that must be
counted, so:

C[t, S, ℓ] = max
0≤i≤ℓ

{C[t′, S, i] + C[t′′, S, ℓ − i] − (|S| · |Xt \ S| − |{uv ∈ E(Xt) : u ∈ S, v /∈ S}|)+

i · (|Ft′′ | − (ℓ − i)) + (|Ft′ | − i) · (ℓ − i)} (3)

Since the correctness of the recurrences is straightforward, the matrix has size 2O(co-tw)·n2,
and each entry can be computed in time O(n), the following theorem holds.

▶ Theorem 14. MaxCut can be solved in 2O(co-tw) · n3.

6 Treewidth vs. co-treewidth

In the previous sections we showed that Path Cover, Longest Cycle, Longest Path,
MaxCut, and Edge Dominating Set are all FPT concerning co-treewidth parameteriza-
tion. These results contrast with the intractability of such problems regarding clique-width
parameterization. Since all of these problems are also fixed-parameter tractable when para-
meterized by treewidth, it becomes interesting to identify problems that are tractable for
co-treewidth but intractable concerning treewidth, as well as the opposite.

The TSP problem is NP-hard on complete graphs (co-treewidth equal to zero) but
fixed-parameter tractable when parameterized by treewidth [4]. On the other hand, Fellows
et al. [27] showed that Precoloring Extension and Equitable Coloring are W[1]-hard
when parameterized by treewidth; next, we contrast these results by remarking that both
problems are fixed-parameter tractable using co-treewidth as the parameter.

6.1 Coloring and covering problems
Each color class of a proper coloring of a graph G is an independent set, i.e., each color
class is a clique in the complement. So, to solve Graph Coloring working with the
complement graph, we must solve Clique Cover in G. Therefore, Graph coloring
parameterized by co-degeneracy/co-treewidth is equivalent to Clique Cover parameterized
by degeneracy/treewidth. It is known that Graph coloring and Clique Cover are NP-
hard on planar graphs [39, 22]. Thus, they are para-NP-hard with respect to co-degeneracy.
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Regarding co-treewidth, it is not clear if Clique Cover can be solved using the MSOL2
framework because in contrast with Graph Coloring, the size of the solution is unbounded
on bounded treewidth graphs. However, in [47], van Rooij, Bodlaender, van Leeuwen,
Rossmanith, and Vatshelle present an FPT algorithm for γ-Clique Cover parameterized
by treewidth. The γ-Clique Cover problem is a generalization of Clique Cover where
the goal is to find a minimum collection C of disjoint cliques covering V (G) such that the
size of every clique in C is contained in γ (a set of integers). They showed a FPT algorithm
that computes the size and number of minimum γ-clique covers of G. Preliminary parts
of [47] have appeared in [7, 48]. Thus, Graph Coloring is FPT concerning co-treewidth.

The Equitable Coloring problem is a variation of Graph Coloring where we are
asked to find the minimum integer k for which the input graph G admits a proper k-coloring
such that the sizes of any two color classes differ by at most one. Again, to solve Equitable
Coloring one can consider the complementary problem, i.e., Equitable Clique Cover
parameterized by treewidth. In the Equitable Clique Cover problem, we are asked to
find the minimum integer k such that the input graph G admits a clique cover of size k such
that the sizes of any two cliques of the cover differ by at most one. Thus, one can use the
algorithm for γ-Clique Cover to solve Equitable Clique Cover, considering that all
the cliques must have size either ℓ or ℓ − 1 (γ = {ℓ, ℓ − 1}). Using the folklore fact that
for a graph G, every clique of G is contained in some bag of a tree decomposition of G, it
follows that we only need to consider ℓ in [2, tw(G) + 1]. Therefore, the running time of the
algorithm increases by a factor of at most tw(G), and Equitable Coloring can also be
solved in FPT time concerning co-treewidth. Besides, Gomes, Lima and dos Santos [23],
using fast subset convolution as in [47], also showed an FPT-algorithm concerning treewidth
for counting clique covers of G having only cliques of size ℓ and ℓ − 1.

6.1.1 Precoloring Extension parameterized by co-treewidth

Precoloring Extension is a generalization of Graph Coloring, where we are given a
graph G = (V, E) with a subset P ⊆ V of precolored vertices, a precoloring cP of the vertices
of P , and asked to determine the minimum integer k for which G admits a proper k-coloring
c which extends cP (that is, c(v) = cP (v) for all v ∈ P ).

Again, we work with the complementary problem, which we propose to call Clique
Cover Extension. In such a problem the input is the same as in Precoloring Extension,
and the goal is to determine the minimum size of a clique cover for which vertices with the
same color are in the same clique, and no clique has a pair of precolored vertices v, u such
that cP (v) ̸= cP (u).

Next, we present a standard dynamic programming based on nice tree decompositions to
solve Clique Cover Extension parameterized by treewidth. The proposed algorithm has
a single-exponential dependency on the treewidth and preserves linearity with respect to n.

First, we assume that each color class induces a clique; otherwise, there is no solution.
Thus, in the forget node t of a precolored vertex v it holds that all vertices precolored with
color cP (v) belong to the graph Gt.

Let C[t, S] be the minimum number of cliques needed to cover the vertices of V (Gt) \ S

in Gt (the subgraph rooted by the node t) according to the constraints of Clique Cover
Extension, where S is a subset of Xt. Since each clique is contained in some bag, we assume
that each clique is formed when its last vertex is introduced. Therefore, the matrix is filled
in a bottom-up manner as follows.
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Leaf: Xt = ∅, thus S = ∅ and C[t, S] = 0.

Introduce vertex: We are introducing the vertex v and all its edges. Thus, we have two
possibilities: v ∈ S or v /∈ S. In the second case, v forms a new clique which either has size
one or is formed by v together with some non-covered neighbors in Gt′ .

C[t, S] =

C[t′, S \ {v}], if v ∈ S

min
∀ W

{C[t′, S ∪ W ]} + 1, if v /∈ S
(4)

where the minimum is taken over all possible W ⊆ N(v) ∩ (Xt \ S) such that G[W ] is a
clique (including the empty set) and:

W ∪ {v} contains no pair of precolored vertices u, w such that cP (u) ̸= cP (w);
if W ∪ {v} contains a precolored vertex then it contains all vertices precolored with the
same color.

Forget vertex: In this node the vertex v is forgotten. Since this vertex must be covered
with a clique of Gt′ , we have the following

C[t, S] = C[t′, S]

Join: In this case, we are joining solutions of the graphs rooted by nodes Xt′ and Xt′′ .
Every vertex of V (Gt) \ S should be covered by a clique in either Gt′ or Gt′′ . To avoid
counting twice some cliques of G[Xt], it is sufficient to note that if a vertex of Xt is covered
in Gt′ , then we can assume that it is not covered in Gt′′ , and vice versa. This implies that
for each pair of solutions to be analyzed (one from each child), the cliques of G[Xt] are
considered in at most one of them.

C[t, S] = min
∀S′,S′′

{C[t′, S′] + C[t′′, S′′]}

where the minimum is taken over all possible S′, S′′ such that S = S′ ∩ S′′, S′ ∪ S′′ = Xt.
Since the matrix has size O(2tw(G) · tw(G) · n), and each entry can be computed in

O(2tw(G)), the following holds.

▶ Theorem 15. Clique Cover Extension can be solved in 2O(tw(G)) · n.

▶ Corollary 16. Precoloring Extension can be solved in 2O(co-tw(G)) · n.

7 Concluding Remarks

Longest Cycle, Longest Path, Path Cover, MaxCut, Edge Dominating Set
and Graph Coloring are all fixed-parameter tractable when parameterized by treewidth,
but they are W[1]-hard when parameterized by clique-width. To handle dense instances of
problems that are hard when parameterized by clique-width, we have considered the notions
of co-degeneracy and co-treewidth of a graph.
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We have proposed a framework based on Bondy-Chvátal closure for working with co-
degeneracy. Using this framework we showed that Longest Cycle, Longest Path and
Path Cover are FPT when parameterized by co-degeneracy. Additionally, using a different
approach, we showed that Edge Dominating Set is also FPT when parameterized by
co-degeneracy. Conversely, we remark that Graph Coloring is para-NP-hard regarding
co-degeneracy parameterization while the complexity of MaxCut is left open. On the other
hand, both Graph Coloring and MaxCut are FPT when parameterized by co-treewidth.

We also have shown that Precoloring Extension is fixed-parameter tractable taking
the co-treewidth as parameter, while it is known to be W[1]-hard when parameterized by
treewidth (see [27]). The same holds for Equitable Coloring. In contrast, Clique Cover
Extension and Equitable Clique Cover are FPT when parameterized by treewidth
and W[1]-hard when parameterized by co-treewidth.

These results, which are summarized in Table 1, give evidence that co-degeneracy and
co-treewidth are handy width parameters for dealing with problems for which FPT algorithms
parameterized by clique-width are unlikely to exist.

Table 1 Parameterized complexity concerning treewidth, co-treewidth, co-degeneracy, and clique-
width of graph problems addressed in this work. Courcelle and Olariu [20] proved that for every
graph G we have cwd(G) ≤ 2.cwd(G), thus the W[1]-hardness of Clique Cover is implied from
Graph Coloring. Also, the indicated para-NP-hardness are inherited from Graph Coloring or
Clique Cover. The main results presented in this work are highlighted in red.

tw co-tw co-deg cw

Longest Path FPT FPT FPT W[1]-h
Longest Cycle FPT FPT FPT W[1]-h
Edge Dominating Set FPT FPT FPT W[1]-h
Maximum Cut FPT FPT open W[1]-h
Graph Coloring FPT FPT para-NP-h W[1]-h
Clique Cover FPT FPT para-NP-h W[1]-h
Precoloring Extension W[1]-h FPT para-NP-h W[1]-h
Equitable Coloring W[1]-h FPT para-NP-h W[1]-h
Clique Cover Extension FPT W[1]-h para-NP-h W[1]-h
Equitable Clique Cover FPT W[1]-h para-NP-h W[1]-h

We remark that min{treewidth,co-treewidth} seems to be a nice parameter between tree-
width and clique-width. Note that every problem which can be expressed in both LinEMSO2
and LinEMSO2̄ is solvable in FPT-time when parameterized by min{treewidth,co-treewidth}.
Therefore, co-treewidth is a powerful tool to manipulate dense graphs.

We left the complexity of MaxCut parameterized by co-degeneracy as an open problem.
We remark that determining the complexity of MaxCut seems to be a challenge even for
co-planar graphs. Also, investigating the applicability of co-treewidth for problems that are
hard when parameterized by treewidth is an interesting research direction. In particular, the
complexity of List Coloring parameterized by co-treewidth is another interesting question.

Finally, we note that one can also consider parameters between co-degeneracy and co-
treewidth such as co-contraction degeneracy, which is defined as the maximum degeneracy of
a minor of the complement of G.
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Isometric Embeddings in Trees and Their Use in
Distance Problems
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Abstract
We present powerful techniques for computing the diameter, all the eccentricities, and other related
distance problems on some geometric graph classes, by exploiting their “tree-likeness” properties.
We illustrate the usefulness of our approach as follows:

We propose a subquadratic-time algorithm for computing all eccentricities on partial cubes of
bounded lattice dimension and isometric dimension O(n0.5−ε). This is one of the first positive
results achieved for the diameter problem on a subclass of partial cubes beyond median graphs.
Then, we obtain almost linear-time algorithms for computing all eccentricities in some classes of
face-regular plane graphs, including benzenoid systems, with applications to chemistry. Previously,
only a linear-time algorithm for computing the diameter and the center was known (and an
Õ(n5/3)-time1 algorithm for computing all the eccentricities).
We also present an almost linear-time algorithm for computing the eccentricities in a polygon
graph with an additive one-sided error of at most 2.
Finally, on any cube-free median graph, we can compute its absolute center in almost linear time.
Independently from this work, Bergé and Habib have recently presented a linear-time algorithm
for computing all eccentricities in this graph class (LAGOS’21), which also implies a linear-time
algorithm for the absolute center problem.

Our strategy here consists in exploiting the existence of some embeddings of these graphs in either a
system or a product of trees, or in a single tree but where each vertex of the graph is embedded in a
subset of nodes. While this may look like a natural idea, the way it can be done efficiently, which is
our main technical contribution in the paper, is surprisingly intricate.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis

Keywords and phrases Tree embeddings, Range queries, Centroid decomposition, Heavy-path
decomposition, Diameter, Radius and all Eccentricities computations

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.43

Funding Guillaume Ducoffe: This work was supported by project PN-19-37-04-01 “New solutions
for complex problems in current ICT research fields based on modelling and optimization”, funded
by the Romanian Core Program of the Ministry of Research and Innovation (MCI) 2019–2022.

1 Introduction

This paper is about classic location problems on graphs and metric spaces. Although we
focus on unweighted undirected graphs in what follows, it should be clear to the reader
that most of our results could also be applied to discrete metric spaces. For standard graph
terminology, see [12, 33]. The distance in a graph G = (V, E) between two vertices u, v ∈ V

equals the minimum number of edges in a uv-path, and is denoted dG(u, v). For any vertex u

in G, let eG(u) := maxv∈V dG(u, v) be its eccentricity. The diameter and the radius of G are
the maximum and minimum eccentricities of a vertex. We denote the former and the latter

1 The Õ(·) notation suppresses poly-logarithmic factors.
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by diam(G) and rad(G), respectively. The center of G contains all vertices with minimum
eccentricity. We study the problem of computing all eccentricities in Sec. 2. Finally, to any
graph G we can associate a continuous metric space (XG, d): obtained from G by replacing
every edge with a unit-length geodesic. Motivated by the problem of locating the “switching
center” in a communication network, Hakimi’s absolute center problem consists in, being
given G, computing all points of XG that minimize their largest distance to a vertex of
G [59]. We investigate this problem in Sec. 5.

Related work. There is a naive algorithm for computing all the eccentricities, resp. the
absolute center, in an n-vertex m-edge graph in total O(nm) time. Conversely, assuming
the so-called Strong-Exponential-Time Hypothesis (SETH), if an algorithm computes all the
eccentricities in a graph, or even just the diameter, in O(namb) time, then we must have
a + b ≥ 2 [70]. In what follows, by truly subquadratic we mean O(namb) time where a + b < 2.
The problem of finding truly subquadratic algorithms for the diameter problem on some
special graph classes has been addressed in many papers [1, 14, 15, 17, 18, 23, 30, 31, 42,
46, 47, 45, 51, 55, 69]. There are comparatively much fewer results for the absolute center
problem, e.g., see [60, 63, 65] for previous results on trees and cacti.

As it is often the case, such problems become much easier for the graphs with a suitable
“tree-like” representation such as: bounded tree-width graphs [17] and bounded clique-
width graphs [44]. In the context of Metric Graph Theory (hereafter called MGT), one
natural way to define tree-likeness of a graph is by using embeddings in trees. Recall
that, if (X, dX) and (Y, dY ) are metric spaces, then an embedding is simply an injective
function φ : X → Y . Its distortion is the least α ≥ 1 s.t., for all x, x′ ∈ X, we have
α−1dX(x, x′) ≤ dY (φ(x), φ(x′)) ≤ αdX(x, x′). The stretch is the least β ≥ 0 s.t., for all
x, x′ ∈ X, we have |dX(x, x′) − dY (φ(x), φ(x′))| ≤ β. An isometric embedding is one s.t.
α = 1, or equivalently β = 0. A quasi isometric embedding is one such that α = O(1), or even
better β = O(1). If we are given an isometric embedding of a graph in a tree (resp., a quasi
isometric embedding), then we can solve exactly (resp., approximately) the diameter problem
in linear time. Unfortunately, the graph classes to which this nice result can be applied are
rather restricted. E.g., the graphs that can be isometrically embedded in a weighted tree are
exactly the block graphs [4, 61]. See also [5, 9] for an efficient recognition of tree metrics.
More generally, all the metric spaces that embed in a tree with constant distortion have a
bounded Gromov hyperbolicity: a polynomial-time computable parameter from geometric
group theory that is inspired by the four-point characterization of tree metrics [58]. While
many real-life networks are known to have bounded hyperbolicity [2], this is not the case for
important classes in MGT such as: median graphs (even of dimension at most two), Helly
graphs (even of strong isometric dimension at most two) and ℓ1-graphs. We refer to [3] for
their respective definitions (median graphs are defined in Sec. 5).

Thus, we need to consider stronger notions of tree embeddings, or embeddings in more
complicated “tree-like” spaces. Recall that the Cartesian product of graphs G1, G2, denoted
by G1□G2, has vertex-set V (G1) × V (G2) and edge-set {(u1, u2)(u1, v2) | u2v2 ∈ E(G2)} ∪
{(u1, u2)(v1, u2) | u1v1 ∈ E(G1)}. In [21], Chepoi studied the benzenoid systems: a subclass
of planar graphs with applications to chemistry, and he proved that they can be isometrically
embedded in linear time in the Cartesian product of three trees. In a subsequent work [23],
Chepoi et al. used this nice property in order to compute the diameter, and even the center,
of these graphs in linear time. However, they also needed certain “total monotonic” property
to hold for the distance-matrix of the graphs considered. To our best knowledge, the problem
of computing all the eccentricities within benzenoid systems in almost linear time has been
open until our work. Furthermore, we point out that the existence of similar embeddings
as the one in [23], in a product or a system of constantly many trees, has been thoroughly
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investigated for many graph classes [8, 6, 7, 25, 20, 35, 36, 37, 38, 39, 40, 41, 48, 68]. While
it is NP-hard in general to decide whether such an embedding exists [8], we note that several
of these above previous works have presented almost linear-time algorithms for this problem
on some special cases.

Our results. We first prove that, for any fixed k, we can compute all eccentricities in a
graph in quasi linear time if it is isometrically embedded in the Cartesian product of k

trees (Theorem 1). This improves on Chepoi et al. [23] since we needn’t any additional
assumption on the distance-matrix and we solve a more general problem than just computing
the diameter or the center. We apply this very general result to the following geometric
graph classes:

the triangular systems and hexagonal systems (a.k.a., benzenoids), see Sec. 2.2;
and the graphs of bounded lattice dimension, that can be isometrically embedded in the
product of constantly many paths (with an additional technical assumption needed for
computing the embedding), see Sec. 2.1.

Our actual result for Theorem 1 is even more general than what we stated above, since it
can also be applied to other types of tree embeddings. If the embedding is not isometric but
it has O(1) stretch or distortion, then our above approach leads to approximation algorithms
for computing all the eccentricities. In particular,

we prove that for any fixed k, all eccentricities in a k-polygon graph can be approximated
in almost linear time within an additive one-sided error of at most 2, see Sec. 2.3.

In the second part of the paper, we consider a different type of tree embedding: from a
graph G to a single tree T , but where each vertex u of G is mapped to a subset of nodes
U ⊆ V (T ). This is similar to the notion of clan embedding, introduced in [52]. It leads us to
solve a more general eccentricity problem on trees, that may be of independent interest for
k-facility location problems [64, 73]. This is our second main technical contribution in the
paper. More precisely, given an n-node tree T , the eccentricity of a node-subset U is defined
as eT (U) = maxv∈V (T ) minu∈U dT (v, u).

We prove that after an O(n log n)-time pre-processing, the eccentricity of any node-subset
U can be computed in O(|U | log2 n) query time. See Theorem 9. These running times
are optimal up to polylogarithmic factors.

Let k ∈ N and ε ∈ (0; 1) be arbitrary. We observe that, combined to Theorem 1 in [52], our
result implies a data structure for computing, for any graph G and any vertex-subset U (up
to pre-processing), a 16k-approximation of eG(U) (resp., an Õ

(
log n

ε

)
-approximation) in

expected Õ(|U |n1/k) time (resp., in expected Õ((1 + ε) · |U |) time). See Sec. 5.1.
We give another application of Theorem 9, in the context of distance and routing labelling

schemes. Indeed, a successful approach for computing such schemes with small label sizes
on geometric graph classes is as follows. Roughly, the vertices of a graph get partitioned
recursively into convex subgraphs. At each step, the vertices of such convex subgraphs are
projected to their respective boundary, so as to hit all shortest-paths to vertices in nearby
convex subgraphs of the decomposition. Then, by mimicking the recursive construction of
the labels, if the projections to the boundaries have some nice properties then, it becomes
possible to compute all eccentricities, as well as to solve other related distance problems.
It turns out that such embeddings are often tree-like, in the sense of either Theorem 1 or
Theorem 9. We illustrate this with the case of cube-free median graphs (formally defined in
Sec. 5). The cube-free median graphs properly contain the partial double trees (which can
be isometrically embedded in the Cartesian product of two trees), and if their maximum
degree is ∆ then, they can be isometrically embedded in the Cartesian product of ∆O(1)
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trees [25]. However, in general they cannot be embedded in the product of constantly many
trees, and so, Theorem 1 cannot be applied. We overcome this issue by relying on a recursive
partition scheme as above, where the boundaries induce isometric trees, see [26]. Doing so,

we present the first almost linear-time algorithm for computing the absolute center of
cube-free median graphs, see Theorem 10. Our approach can also be used in order to
compute all eccentricities in this graph class.

Recently, Bergé and Habib have presented a linear-time algorithm for computing all ec-
centricities within the median graphs of bounded dimension (generalizing cube-free median
graphs) [11]. A reviewer observed that the absolute center of a median graph is always:
either its center if it is an independent set, or the middle points of all edges with their both
ends in the center. As a result, we can also compute the absolute center of cube-free median
graphs in linear time. That being said, we think that our alternative algorithm, although it is
slightly slower, has the potential to be generalized to other graph classes beyond the median
graphs. Indeed, to prove Theorem 10, we use some deep structural properties obtained
recently for cube-free median graphs [26]. We point out that very similar properties have
been obtained in the past for completely unrelated graph classes, such as planar graphs of
non-positive combinatorial curvature [24, 29, 28]. Thus, there is room for generalizing our
approach far beyond the cube-free median graphs.

Since both Theorems 1 and 9 are very general, we expect them to find applications beyond
the classes studied in the paper.

Organization of the paper. In Sec. 2 we state Theorem 1, then we summarize our results
obtained for subclasses of partial cubes, planar graphs and circle graphs. We postpone the
proof of Theorem 1 to Sec. 3, due to its technicality. Our algorithms in Sec. 3 have an
exponential dependency on the number k of trees considered. In Sec. 4, we give simple
conditional lower bounds showing their near optimality. Finally, in Sec. 5, we address the
problem of computing the eccentricity of k-subsets of nodes in a tree, and its application to
the absolute center problem for cube-free median graphs.

Due to lack of space, several proofs are omitted from the following technical sections.

2 Eccentricity computation in some geometric graph classes

This section is devoted to the applications of our Theorem 1, which we formally state
in what follows. We defined the Cartesian product of two graphs in Sec. 1. The strong
product of graphs G1, G2, denoted by G1 ⊠ G2, is a supergraph of the Cartesian product
with additional edge-set {(u1, u2)(v1, v2) | u1v1 ∈ E(G1), u2v2 ∈ E(G2)}. Finally, an
embedding of a graph G = (V, E) in a system of trees T1, T2, . . . , Tk is defined as k projections
φi : V → V (Ti), 1 ≤ i ≤ k. Then, the distortion of this embedding (resp. its stretch)
is defined as the least α s.t., ∀x, y ∈ X, α−1d(x, y) ≤ mini dTi(φi(x), φi(y)) ≤ αd(x, y)
(resp., as the least β s.t. ∀x, y ∈ X, |d(x, y) − mini dTi

(φi(x), φi(y))| ≤ β). We consider
quasi-isometric embeddings of graphs and metric spaces in: Cartesian products of trees,
strong products of trees, and systems of trees.

▶ Theorem 1. Let G = (V, E) be a graph and let T1, T2, . . . , Tk be a collection of k trees,
where N :=

∑k
i=1 |V (Ti)|.

1. If we are given an isometric embedding of G in either the system or the Cartesian product
of these k trees, then we can compute all eccentricities in G in O(2O(k log k)(N + n)1+o(1))
time2.

2 See [17, Lemma 5] for a more careful analysis of the running time.
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2. If we are given an embedding of G with distortion α (resp., with stretch β) in either the
system or the Cartesian product of these k trees, then we can compute an α2-approximation
(resp., an +2β-approximation) of all eccentricities in G in O(2O(k log k)(N + n)1+o(1))
time. It can be improved to an α-approximation (resp., a +β-approximation) if the
embedding only has one-sided distance errors.

3. All the results above also hold if we are given an embedding of G in the strong product of
these k trees, with an improved runtime in O(N + kn).

See Sec. 3 for a sketch of the proof. We left open whether our approach could be
generalized to, say, the direct product or the layered cross product [50] of constantly many
trees. In what follows, we apply Theorem 1 to several geometric graph classes.

2.1 Partial cubes

The lattice dimension of a graph is the smallest k such that it isometrically embeds in the
Cartesian product of k paths. This parameter only exists for partial cubes, a.k.a., isometric
subgraphs of hypercubes (where, by a hypercube, we mean a Cartesian product of edges).
The isometric dimension of a partial cube is the least τ such that it isometrically embeds in
the τ -dimensional hypercube.

▶ Theorem 2. All eccentricities in an n-vertex partial cube with lattice dimension k and
isometric dimension τ can be computed in O((τ2 + 2O(k log k)) · n1+o(1)) time.

This is truly subquadratic provided k = o(log n) and τ = O(n0.5−ε), for some ε > 0.

Proof. Let G = (V, E) be a partial cube. It is well-known that E can be partitioned in
so-called θ-classes, where each class represents a dimension of the smallest hypercube in which
G can be isometrically embedded [34, 75]. Furthermore, given an edge, we can compute
its θ-class in linear time (see Sec. 3 in [49]). Therefore, we can isometrically embed G

in a smallest hypercube in Õ(τn) (here, we implicitly use that G only has Õ(n) edges,
see Lemma 2 in [49]). Being given such an embedding, Eppstein’s algorithm computes an
embedding of G in the Cartesian product of a least number of paths in O(τ2n) time [48].
Then, we are done applying Theorem 1 to the resulting embedding. ◀

2.2 Triangular and hexagonal systems

A triangular system is a subgraph of the regular triangular grid which is induced by the
vertices lying on a simple circuit and inside the region bounded by this circuit. Similarly, a
hexagonal system (a.k.a., benzenoid) is a subgraph of the regular hexagonal grid bounded by
a simple circuit. Improving on two prior works [21, 23], but at the price of a slightly slower
running time, we prove that:

▶ Theorem 3. All eccentricities in an n-vertex triangular system can be computed in Õ(n)
time. All eccentricities in an n-vertex hexagonal system can be computed in Õ(n) time.

Proof. Every hexagonal system can be isometrically embedded in the Cartesian product of
three trees, in linear time [21]. Then, we are done applying Theorem 1. The same holds for
triangular system, but it is a scale embedding: all distances in the tree are multiplied by
two [23]. As it shall become clearer in Sec. 3.2, our framework easily accommodates to this
more general type of embeddings. ◀
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2.3 Polygon graphs
A circle graph is the intersection graph of chords in a cycle. For every k ≥ 2, a k-polygon
graph is the intersection graph of chords in a convex k-polygon where the ends of each chord
lie on two different sides. Note that the k-polygon graphs form an increasing hierarchy of all
the circle graphs. We obtain:

▶ Theorem 4. All eccentricities in an n-vertex m-edge k-polygon graph can be computed in
O(2O(k)(n + m)1+o(1)) time, within an additive one-sided error of at most two.

Proof. Every k-polygon graph can be embedded in a system of 2 log3/2 k + 7 spanning trees
with stretch two. Furthermore, such a system can be computed in linear time, if the graph is
given together with its intersection model [36]. It was observed in [72] that an intersection
model can be computed in O(4k(n + m)α(n + m)) time, where α(·, ·) denotes the Ackermann
inverse function. We are now done applying Theorem 1 to the system (for k′ = O(log k)). ◀

3 Proof of Theorem 1

We devote this section to the proof of our first main result in the paper (Theorem 1). In
Sec. 3.1, we reduce to a more general query-answering problem on trees. We then solve this
problem in Sec. 3.2.

3.1 Reductions
It turns out that all three types of embeddings that are considered in Theorem 1 can be
reduced to the design of an efficient data structure for some abstract problem over a system
of trees. In what follows, ⊙ denotes a binary associative operation over the nonnegative real
numbers (e.g., the addition, minimum or maximum of two numbers).

▶ Problem 1 (⊙-Eccentricities).
Global Input: A system (Ti)1≤i≤k of trees, and a subset S ⊆

∏k
i=1 V (Ti).

Query Input: v = (v1, v2, . . . , vk) ∈
∏k

i=1 V (Ti)
Query Output: e⊙(v, S) := max{dT1(s1, v1) ⊙ dT2(s2, v2) ⊙ . . . ⊙ dTk

(sk, vk) |
(s1, s2, . . . , sk) ∈ S}.

Due to lack of space, formal reductions are omitted from the paper. Let us only sketch
one of them (we stress that all these reductions are pretty similar to each other). Specifically,
let φ be an isometric embedding of a graph G = (V, E) (or of a discrete metric space) to
the Cartesian product of the trees T1, T2, . . . , Tk. We set S := φ(V ), and then, for every
u ∈ V we obtain: e+(φ(u)) = maxv∈V

∑k
i=1 dTi(φi(u), φi(v)) = maxv∈V d□k

i=1Ti
(φ(u), φ(v)),

where □ stands for the Cartesian product and, for every 1 ≤ i ≤ k, φi denotes the projection
of φ to V (Ti). In particular, e+(φ(u)) is equal to the eccentricity of u. Similarly, we can
reduce the eccentricity problem in systems and strong products of trees to min- and max-
Eccentricities, respectively. We also stress that being given a quasi isometric embedding,
our above approach leads to approximation algorithms for computing all the eccentricities.

3.2 A range-query framework
Our main result in this section is as follows:
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▶ Theorem 5. For every (Ti)1≤i≤k and S, let N :=
∑k

i=1 |V (Ti)|. We can solve min-
Eccentricities (resp., +-Eccentricities) with O(2O(k log k)(N + |S|)1+o(1)) pre-processing
time and O(2O(k log k)(N + |S|)o(1)) query time.

We need to introduce two useful tools. First, let V be a set of k-dimensional points,
and let f : V → R. A box is the Cartesian product of k intervals. A range query asks,
given a box R, for a point −→p ∈ V ∩ R s.t. f(−→p ) is maximized. Up to some pre-processing
in O(|V | logk−1 |V |) time, such query can be answered in O(logk−1 |V |) time [74]. The
corresponding data structure is called a k-dimensional range tree. Furthermore, note that
for any ε > 0, ∀x > 0, logk x ≤ 2O(k log k)xε [17].

Second, for an n-node tree T = (V, E), a centroid is a node whose removal leaves subtrees
of order at most n/2. A classic theorem from Jordan asserts that such node always exists [62].
Furthermore, we can compute a centroid in O(n) time by dynamic programming (e.g.,
see [56]). A centroid decomposition of T is a rooted tree T ′, constructed as follows. If
|V (T )| ≤ 1, then T ′ = T . Otherwise, let c be a centroid. Let T ′

1, T ′
2, . . . , T ′

p be centroid
decompositions for the subtrees T1, T2, . . . , Tp of T \ {c}. We obtain T ′ from T ′

1, T ′
2, . . . , T ′

p

by adding an edge between c and the respective roots of these rooted subtrees, choosing c as
the new root. Note that we can compute a centroid decomposition in O(n) time [32]. We
rather use the folklore O(n log n)-time algorithm since, for any node v, we also want to store
its path P (v), in T ′, until the root, and the distances dT (v, ci), in T , for any ci ∈ P (v).

Sketch proof of Theorem 5. Due to lack of space, we only give a proof for the case ⊙ =
+. During a pre-processing phase, we compute a centroid decomposition for each tree
Ti, 1 ≤ i ≤ k separately, in total O(N log N) time. Then, we iterate over the elements
s = (s1, s2, . . . , sk) ∈ S. For every 1 ≤ i ≤ k, let P (si) be the path of si to the root into
the centroid decomposition T ′

i computed for Ti. We consider all possible k-sequences c =
(c1, c2, . . . , ck) s.t., ∀1 ≤ i ≤ k, ci ∈ P (si). Since the length of each path P (si) is in O(log N),
there are O(logk N) possibilities. W.l.o.g., all nodes have a unique identifier. Throughout
the remainder of the proof, we identify the nodes with their identifiers, thus treating them
as numbers. For any sequence c, we create an 2k-dimensional point −→p c(s), as follows: for
every 1 ≤ i ≤ k, the (2i − 1)th and 2ith coordinates are equal to ci and the unique neighbour
of ci onto the cisi-path in T ′

i , respectively (if ci = si, then we may set both coordinates
equal to si). The construction of all these O(|S| logk N) points takes time O(k|S| logk N).
We include these points −→p c(s), with an associated value f(−→p c(s)) (to be specified later in
the proof) in some 2k-dimensional range tree. It takes O((|S| logk N) log2k−1 (|S| logk N)) =
O(2O(k log k)(N + |S|)1+o(1)) time.

Then, in order to answer a query, let v = (v1, v2, . . . , vk) be the input. As before, for
every 1 ≤ i ≤ k, let P (vi) be the path of vi to the root into T ′

i . We iterate over all the
k-sequences c = (c1, c2, . . . , ck) s.t., ∀1 ≤ i ≤ k, ci ∈ P (vi). Let Sc ⊆ S contain every
(s1, s2, . . . , sk) s.t. ∀1 ≤ i ≤ k, ci is the least common ancestor of vi and si in T ′

i . The
subsets Sc partition S, and so, e+(v, S) = maxc e+(v, Sc). We are left explaining how to
compute e+(v, Sc) for any fixed c. For that, we observe that ci is the least common ancestor
of vi and si in T ′

i if and only if ci ∈ P (si) ∩ P (vi), and either ci ∈ {vi, si} or the two
neighbours of ci onto the civi-path and cisi-path in T ′

i are different. In the latter case, let
us denote by ui the neighbour of ci onto the civi-path in T ′

i . We can check these above
conditions, for every 1 ≤ i ≤ k, with the following constraints, over the 2k-dimensional points
−→p = (p1, p2, . . . , p2k) constructed during the pre-processing phase: ∀1 ≤ i ≤ k, p2i−1 = ci

and if ci ̸= vi, p2i ̸= ui. Since p2i ̸= ui is equivalent to p2i ∈ (−∞, ui) ∪ (ui, +∞),
each inequality can be replaced by two range constraints over the same coordinate. In
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particular, since there are ≤ k such inequalities, we can transform these above constraints
into O(2k) range queries. Therefore, we can output a point −→p c(s), for some s ∈ Sc,
maximizing f(−→p c(s)), in O(2k log2k−1 (|S| logk N)) = O(2O(k log k)(N + |S|)o(1)) time. Let
f(−→p c(s)) =

∑k
i=1 dTi(si, ci). Since we have s ∈ Sc, dTi(si, vi) = dTi(si, ci) + dTi(ci, vi) [54].

As a result: e+(v, Sc) = f(−→p c(s)) +
∑k

i=1 dTi
(ci, vi). There are O(logk N) possible c, and

so, the final query time is in O(2O(k log k)(N + |S|)o(1)).
For the case when ⊙ = min, we need points with O(k) more coordinates in order to

correctly identify some index i s.t. dTi(vi, si) = min1≤j≤k dTj (vj , sj). This is a similar trick
as the one used in [1, 17, 19]. ◀

In contrast to Theorem 5, the distance between two vertices in the strong product of k

trees equals the maximum distance between their k respective projections. Hence, we can
process each tree of the system separately, and we obtain:

▶ Lemma 6. For every (Ti)1≤i≤k and S, let N :=
∑k

i=1 |V (Ti)|. We can solve max-
Eccentricities with O(N + k|S|) pre-processing time and O(k) query time.

Proof. For every 1 ≤ i ≤ k, let φi : S → V (Ti) be the projection of S to Ti. We stress
that the projections φi(S), 1 ≤ i ≤ k, can be computed in total O(k|S|) time. Then, we
iteratively remove from Ti the leaves that are not in φi(S). Let T ′

1, T ′
2, . . . , T ′

k be the k

subtrees resulting from this above pre-processing. Note that, for every 1 ≤ i ≤ k, Ti \ T ′
i

is a forest whose each subtree can be rooted at some node adjacent to a leaf of T ′
i , and so,

adjacent to a node of φi(S). For every node vi ∈ V (Ti) \ V (T ′
i ), let ϕ(vi) be the unique

leaf of T ′
i s.t. the subtree of Ti \ T ′

i that contains vi also contains a neighbour of ϕ(vi). We
compute, and store, the distance dTi

(vi, ϕ(vi)). Since, for doing so, we only need to perform
breadth-first searches on disjoint subtrees, the total running time of this step is in O(N).
Finally, we compute, for 1 ≤ i ≤ k, all eccentricities in T ′

i . Again, this can be done in total
O(N) time (e.g., see [22, 43]). This concludes the pre-processing phase.

In order to answer a query, let us consider some input v = (v1, v2, . . . , vk). Our key
insight here is that we have:

emax(v, S) = max{ max
1≤i≤k

dTi (vi, si) | (s1, s2, . . . , sk) ∈ S} = max
1≤i≤k

max{dTi (vi, si) | si ∈ φi(S)}.

Therefore, in order to compute emax(v, S) in O(k) time, it suffices to compute
max{dTi(vi, si) | si ∈ φi(S)} in O(1) time for every 1 ≤ i ≤ k. If vi ∈ V (T ′

i ) then, since
φi(S) ⊆ V (T ′

i ) and furthermore all the leaves of T ′
i are in φi(S), we get max{dTi

(vi, si) | si ∈
φi(S)} = eT ′

i
(vi). Otherwise, max{dTi(vi, si) | si ∈ φi(S)} = dTi(vi, ϕ(vi)) + eT ′

i
(ϕ(vi)). ◀

Theorem 1 now follows from our reductions in Sec. 3.1 combined with Theorem 5 and
Lemma 6.

4 Hardness results

We complete the positive results of Theorem 1 with two conditional lower bounds. Both
theorems follow from a “SETH-hardness” result in order to compute the diameter of split
graphs with a logarithmic3 clique-number [13], and from the observation that every split
graph with a maximal clique K embeds in any system of |K| shortest-path trees rooted at
the vertices of K.

3 The logarithmic upper bound is not explicitly stated in [13], but it easily follows from the sparsification
lemma applied to k-SAT.
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▶ Theorem 7. For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute the
diameter of n-vertex graphs in O(n2−ε) time, even if we are given as input an isometric
embedding of the graph in a system of at most c(ε) log n spanning trees. In particular, under
SETH, there is no data structure for min-Eccentricities with O(2o(k)(N + |S|)1−o(1))
pre-processing time and O(2o(k)(N + |S|)o(1)) query time, where N :=

∑k
i=1 |V (Ti)|.

We believe our Theorem 7 to be important since the embeddings of graphs in systems of
tree spanners are well-studied in the literature [35, 36, 37, 38, 39, 40, 41].

▶ Theorem 8. For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute the
diameter of n-point metric spaces in O(n2−ε) time, even if we are given as input an isometric
embedding of the space in a Cartesian product of at most c(ε) log n tree factors. In particular,
under SETH, there is no data structure for +-Eccentricities with O(2o(k)(N + |S|)1−o(1))
pre-processing time and O(2o(k)(N + |S|)o(1)) query time, where N :=

∑k
i=1 |V (Ti)|.

Proof. Recall that for any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute
the diameter in O(n2−ε) time on the split graphs of order n and clique-number at most
c(ε) log n [13]. Let G = (K ∪ I, E) be a split graph, where K and I are a clique and a
stable set, respectively. If it is not given, such a bipartition of V (G) can be computed in
linear time [57]. For every u ∈ K, we construct a tree T ′

u, and an embedding φu of G into
the latter, as follows. We start from a single-node tree, to which we map vertex u. Then,
for every v ∈ NG(u), we add a leaf into the tree, adjacent to the image of u, to which we
map the vertex v. We add another node u∗ in T ′

u, that is also adjacent to the image of u

(note that u∗ is not the image of a vertex of G). Finally, for every vertex v ∈ V (G) \ NG[u],
we add a leaf node, to which we map vertex v, that we connect to u∗ by a path of length
two. Let φ : V (G) → V (□u∈KT ′

u) be s.t., for every v ∈ V (G), φ(v) = (φu(v))u∈K . The
metric space considered is (φ(V (G)), d), where d is the sub-metric induced by d□u∈K T ′

u

(distances in the Cartesian product). Indeed, let v, v′ ∈ V (G). For every u ∈ K, by
construction we have diam(T ′

u) = 4, and so, dT ′
u
(φu(v), φu(v′)) ≤ 4. Specifically, if u ∈ {v, v′}

then dT ′
u
(φu(v), φu(v′)) ≤ 3; if v, v′ ∈ NG(u) then dT ′

u
(φu(v), φu(v′)) = 2; otherwise,

dT ′
u
(φu(v), φu(v′)) = 4. Altogether combined, if dG(v, v′) = 3 (in particular, v, v′ ∈ I) then

we get d(φ(v), φ(v′)) = 4|K|, otherwise we get d(φ(v), φ(v′)) ≤ 3+4(|K|−1) = 4|K|−1. ◀

5 One-to-many tree embeddings

We end up discussing a different type of tree-like embedding than in Sec. 2. First we present
an algorithm for computing all eccentricities being given such an embedding (Sec. 5.1). We
then propose, in Sec 5.2, an application of our result to the absolute center problem in a
subclass of median graphs.

5.1 Computation of subset-eccentricities
We now address the problem of computing the eccentricity of subsets of nodes, in one tree:

▶ Theorem 9. Let T be any n-node tree, and let α : V (T ) → R. After a pre-processing in
O(n log n) time, for any subset U of nodes and function β : U → R, we can compute the
value eT,α(U, β) = maxv∈V (T ) minu∈U (α(v) + dT (v, u) + β(u)) in O(|U | log2 n) time.

In particular, after an O(n log n)-time pre-processing we can compute eT (U) in
O(|U | log2 n) time by setting α(v) = 0 for every node v ∈ V (T ) and β(u) = 0 for every node
u ∈ U . The proof of Theorem 9 is technical, and we omit it due to lack of space. It is based
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on a completely different processing method of the tree than in Sec. 3.2: using heavy-path
decomposition [71] and the local computation of so-called Cartesian trees for maximum range
queries [53].
Here is a possible application of our Theorem 9 for general graphs. By a clan embedding of a
graph G = (V, E) in a tree T , we mean a one-to-many embedding S : V → 2V (T ) such that,
to each vertex v ∈ V , we also associate a leader χ(v) ∈ Sv in its corresponding node-subset
of T . This embedding must further satisfy dT (Su, Sv) ≥ dG(u, v) for every u, v ∈ V . The
distortion of a clan embedding can be defined as t := maxu̸=v dT (χ(u), Sv)/dG(u, v).

For each node x of T , we set α(x) to 0 if x = χ(u) for some vertex u ∈ V ; otherwise, we
set α(x) to some large enough negative value. Then, for any subset U ⊆ V , we can apply
Theorem 9 to

⋃
u∈U Su in order to compute a t-approximation of eG(U). We refer to [52] for

various trade-offs between the size of the subsets Su and the resulting distortion t.

5.2 Application to a distance-labelling scheme
We devote our last section to cube-free median graphs. Recall that a graph G = (V, E) is
called median if, for any triple x, y, z ∈ V , there exists a unique vertex c that is simultaneously
on some shortest xy-, yz- and zx-paths. This class is ubiquitous in Theoretical Computer
Science. Indeed, the median graphs are exactly the 1-skeletons of CAT(0) cube complexes [58],
the domains of event structures [67] and the solution sets of 2-SAT formulas [66], among
many characterizations. The dimension of a median graph G is the largest d ≥ 1 such that
G contains a d-cube (hypercube of dimension d) as an induced subgraph. In particular,
the median graphs of dimension 1 are exactly the trees. The median graphs of dimension
at most 2, a.k.a., cube-free median graphs, have already received some attention in the
literature [7, 16, 25, 26, 27].

In what follows, we abusively call eccentricity of a point x ∈ XG, denoted by eG(x), its
maximum distance to a vertex of G.

▶ Theorem 10. There is an Õ(n)-time algorithm for computing the absolute center of
n-vertex cube-free median graphs. More generally, the algorithm encodes in O(n) space the
eccentricity of all the points of XG.

The remainder of this section is devoted to the proof of Theorem 10. Given any point
x ∈ XG, if W ⊆ V then, let eG(x, W ) = maxw∈W d(x, w). We observe that:

▶ Lemma 11. For a bipartite graph G = (V, E) and an edge uv ∈ E, let Wu,v = {w ∈
V | d(u, w) < d(v, w)}. If x is a point of the edge uv such that d(u, x) = t, then, we have
e(x) = max{t + e(u, Wu,v), 1 − t + e(v, Wv,u)}.

Proof. We have V = Wu,v ∪ Wv,u because G is bipartite. Let w ∈ Wu,v. Every xw-path
going by vertex v would have length 1 − t + d(v, w) = 2 − t + d(u, w) > t + d(u, w), and
therefore, it cannot be a shortest xw-path. In the same way, let w ∈ Wv,u. Every xw-path
going by vertex u would have length t + d(u, w) = 1 + t + d(v, w) > 1 − t + d(v, w), and
therefore, it cannot be a shortest xw-path either. ◀

As a result of Lemma 11, we are left computing the values e(u, Wu,v) and e(v, Wv,u) for
every edge uv. Since the cube-free median graphs are sparse [26], there are only O(n) values
to be stored. Furthermore, for median graphs, the subsets Wu,v are called half-spaces and
they induce convex subgraphs. Thus, in a way, we could reduce the absolute center problem
to the computation of all eccentricities in various convex subgraphs of the input. However,
the number of subgraphs to be considered is in general super-constant, even for the cube-free
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median graphs. Since by Lemma 11, a point in the absolute center must be either a vertex
or at the middle of an edge, we could also reduce the absolute center problem to computing
all eccentricities in the subdivision of G. Unfortunately, median graphs are not closed by
taking subdivisions. We take an alternative approach in what follows.

For that, we first recall some notions and results from [26]. These results are specific to
cube-free median graphs but, as we pointed it out in Sec. 1, similar structural decomposition
theorems were proved in [24, 29, 28] for completely unrelated geometric graph classes.

In what follows, let G = (V, E) be a cube-free median graph. A centroid is any vertex
minimizing the sum of its distances to all other vertices. Recently, it was shown that a
centroid in a median graph can be computed in linear time [10]. So, let c ∈ V be a centroid.

A subgraph H of G is gated if, for every v ∈ V \ V (H), there exists a v∗ ∈ V (H) s.t.,
∀u ∈ V (H), dG(u, v) = dG(u, v∗) + dG(v∗, v). We define the fibers F (x) = {x} ∪ {v ∈
V (G \ H) | x is the gate of v in H}. The fibers F (x), x ∈ V (H) partition the vertex-set of
G, and each induces a gated subgraph [26].

For any z ∈ V , the star St(z) of z is the subgraph of G induced by all edges and squares
of G incident to z. Any such star St(z) is gated and, if furthermore z = c, every fiber
F (x), x ∈ St(c) contains at most |V |/2 vertices [26].

A fiber F (x) of the star St(c) is a panel if x ∈ NG(c), and a cone otherwise. We say that
two fibers F (x), F (y) are neighboring if there exists an edge with an end in F (x) and the
other end in F (y). If two fibers are neighboring then one must be a panel and the other must
be a cone; furthermore, a cone has two neighboring panels [26]. Two fibers are 2-neighboring
if they are cones adjacent to the same panel. Finally, two fibers that are neither neighboring
nor 2-neighboring are called separated.

The subset of vertices in F (x) with a neighbour in F (y) is denoted by ∂yF (x) (with the
understanding that ∂yF (x) = ∅ when F (x), F (y) are not neighboring). The total boundary
of F (x) is defined as ∂∗F (x) = ∪y∂yF (x).

For a set of vertices A, an imprint of a vertex u is a vertex a ∈ A such that there is no
vertex of A (but a itself) on any shortest au-path. A subgraph H of G is quasigated if every
vertex of V (G \ H) has at most two imprints. It is known that for each fiber F (x) of a star
St(z), the total boundary ∂∗F (x) is an isometric quasigated tree [26].

▶ Lemma 12 ([26]). Let G = (V, E) be a cube-free median graph, let c ∈ V be a centroid, and
let F (x), F (y) be two fibers of the star St(c). The following hold for every u ∈ F (x), v ∈ F (y).

If F (x) and F (y) are separated, then dG(u, v) = dG(u, c) + dG(c, v);
If F (x) and F (y) are neighboring, F (x) is a panel and F (y) is a cone, then let u1, u2 be
the two (possibly equal) imprints of u on the total boundary ∂∗F (x), and let v∗ be the
gate of v in F (x). We have dG(u, v) = min{dG(u, u1)+dG(u1, v∗)+dG(v∗, v), dG(u, u2)+
dG(u2, v∗) + dG(v∗, v)};
If F (x) and F (y) are 2-neighboring, then let F (w) be the panel neighboring F (x) and
F (y). Let u∗ and v∗ be the gates of u and v in F (w). Then dG(u, v) = dG(u, u∗) +
dG(u∗, v∗) + dG(v∗, v).

Sketch proof of Theorem 10. We compute for each edge uv ∈ E two values, denoted by
fG(u, v) and fG(v, u), so that: fG(u, v) ≤ eG(u, Wu,v), fG(v, u) ≤ eG(v, Wv,u) and, for each
point x of the edge such that d(u, x) = t, eG(x) = max{t + fG(u, v), 1 − t + fG(v, u)}. If
E = {uv} then, we set fG(u, v) = fG(v, u) = 0. Otherwise, we compute a centroid c and we
use an algorithmic procedure from [26] in order to compute in O(n) time the vertex-set and
the edge-set of all fibers F (x), x ∈ St(c). We enumerate all the fibers F (x), x ∈ St(c), and
we compute D(x) = maxv∈F (x) dG(v, c). It can be done in total O(n) time by performing a
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BFS rooted at c. Also, for each x ∈ St(c), let Gx be induced by F (x). Since, F (x) is gated,
and so convex, Gx is a cube-free median graph. In particular, we can apply our algorithm
recursively on it in order to compute the values fGx

(·, ·) associated to its edges. Then, we
apply the following steps (some of which not being detailed due to lack of space):

Step 1. We consider all edges with their both ends in St(c) and we compute the cor-
responding values fG(·, ·). Roughly, it can be done in total O(n log n) time if we or-
der the vertices of St(c) by non-decreasing D(·) value, and if we keep track for each
x ∈ St(c) of its neighbours in the star. To illustrate this, consider for example some
edge xc. Then, Wx,c =

⋃
{F (y) | y ∈ N [x] ∩ (St(c) \ {c})}, and so it becomes possible to

compute fG(x, c), fG(c, x) from the D(·) values. In the same way for an edge xy, where
x ∈ N(c), y ∈ St(c) \ N [c], we have Wy,x = F (y) ∪ F (x′) where F (x), F (x′) are the two
panels neighboring F (y), and so, we can proceed as in the previous case for computing
fG(x, y), fG(y, x). Thus from now on, we only consider edges with at least one end not in
St(c).

Step 2. We consider each remaining edge uv sequentially, where d(u, c) < d(v, c). Let
x, y ∈ St(c) satisfy u ∈ F (x), v ∈ F (y). Let A be the union of all the fibers F (z) s.t. F (z) is
separated from both F (x) and F (y). By Lemma 12, we have A ⊆ Wu,v. We want to compute
maxw∈A dG(u, w). There are three cases: x = y and F (x) is a panel; x = y and F (x) is a
cone; x ≠ y. Due to lack of space, we only detail the first case (the other two cases can be
handled with similar techniques). Specifically, let z ≠ x be such that F (z) is a panel and
D(z) is maximized. It can be computed in constant-time assuming the panels were ordered
during a pre-processing phase. Recall that two panels are always separated. Therefore, the
maximum distance between u and a vertex of A in a panel is equal to d(u, c) + D(z). The
case of separated cones is more complicated, and it requires some pre-processing. Specifically,
we assign to all the fibers F (z) pairwise different positive numbers, that we abusively identify
with the vertices z of the star St(c). Then, we enumerate the cones F (z′), z′ ∈ St(c) \ NG[c].
Let F (z1), F (z2) be the two panels neighboring F (z′). We create a point −→p (z′) = (z1, z2),
to which we associate the value f(−→p (z′)) = D(z′). To complete the pre-processing, we put
these points and their associated values in a 2-dimensional range tree, that takes O(n log n)
time. Now, to compute the maximum value between u and a vertex of A in a cone, it suffices
to compute a point −→p (z′) = (p1, p2) such that:{

p1 ̸= x, p2 ̸= x

f(−→p (z′)) is maximized for these above properties.

Indeed, this maximum distance is exactly dG(u, c)+D(z′) = dG(u, c)+f(−→p (z′)). Furthermore,
since each inequality gives rise to two disjoint intervals to which the corresponding coordinate
must belong, a point −→p (z′) as above can be computed using four range queries. It takes
O(log n) time. As a result, the total running time of this step is in O(n log n).

Step 3. We consider each edge uv with at least one end not in St(c) and such that u ∈ F (x)
for some panel F (x). In what follows, for any z, z′ ∈ St(c), we write z ∼ z′ if F (z), F (z′) are
neighboring. Let B =

⋃
{F (y) | x ∼ y and v /∈ F (y)}. Intuitively, what we try to do at this

step is to compute e(u, Wu,v ∩B) and e(v, Wv,u ∩B). There are two cases: either v /∈ F (x) or
v ∈ F (x). In both cases, we reduce our computations to some suitable eccentricity problem
on the tree T = ∂∗F (x). Next, we detail the case v ∈ F (x), which is the one to which we
need to apply Theorem 9 (the case v /∈ F (x) is solved by using a rather standard dynamic
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programming approach on the tree T ). For each node z ∈ V (T ), let α(z) be the maximum
distance between z and any vertex w in a neighboring cone F (y) of which z is the gate in
F (x) (with the understanding that, if no vertex has z as its gate, then α(z) is a sufficiently
large negative value, say α(z) = −|V (T )|). All these nodes weights can be pre-computed in
O(

∑
y|x∼y |F (y)|) time. Furthermore, note that a cone is neighboring two panels [26]. As a

result, if we consider each panel F (x) sequentially then, we scan each cone only twice, and
the total running-time of this pre-computation phase is in O(n).

We compute eG(u, B), eG(v, B) and eG({u, v}, B) =def maxw∈B dG(w, {u, v}). For that,
let u1, u2 ∈ V (T ) be the two (possibly equal) imprints of u, and similarly let v1, v2 ∈ V (T )
be the imprints of v. Set β(u1) = dG(u, u1), β(u2) = dG(u, u2) and in the same way β(v1) =
dG(v, v1), β(v2) = dG(v, v2). Since T is isometric, then it follows from the distance formulae
in Lemma 12 that the values to be computed are exactly eT,α({u1, u2}, β), eT,α({v1, v2}, β)
and eT,α({u1, v1, u2, v2}, β). By Theorem 9, the latter can be computed in O(log2 n) time,
up to some initial pre-processing of T in O(|V (T )| log |V (T )|) = O(|F (x)| log |F (x)|) time.
Overall, the running-time of this step is in O(n log2 n).

Let eG(u, B) = p1, eG(v, B) = p2 and eG({u, v}, B) = p. W.l.o.g., p1 ≤ p2. It implies
p2 = p + 1. Then, eG(u, B ∩ Wu,v) = p. In the same way, if p1 = p + 1 then we also have
eG(v, B ∩ Wv,u) = p. From now on, we assume p1 < p + 1. In particular, p1 = p. But then,
eG(v, B ∩Wv,u) ≤ p−1, and therefore we needn’t compute this value (i.e., because we always
have t + p ≥ 1 − t + eG(v, B ∩ Wv,u) for any t ∈ (0; 1)).

Step 4. Finally, consider each edge uv with at least one end not in St(c) and such that
v ∈ F (y) for some cone F (y). Let C =

⋃
{F (y′) | F (y) and F (y′) are either neighboring or

2-neighbouring, and u /∈ F (y′)}. We would like to compute eG(u, Wu,v ∩C) and eG(v, Wv,u ∩
C). There are two cases: either u ∈ F (y) or u /∈ F (y). Consider the case u ∈ F (y) (the other
case can be dealt with similarly). We consider each x s.t. F (x) is a panel neighboring F (y)
sequentially (there are only two such x). Let Cx contain F (x) and all cones of C that are
neighboring F (x). We now consider T = ∂∗F (x) which we assume to be pre-processed as
during the previous Step 3. Let u∗, v∗ ∈ V (T ) be the respective gates of u, v. Indeed, by
Lemma 12 there is always a shortest-path between u (resp., v) and any vertex of Cx that
goes by u∗ (resp., by v∗). This part is solved through a delicate case analysis which depends
on: some values fGx

(·, ·) (obtained by applying our algorithm recursively to Gx) and some
eccentricity functions computed for T during Step 3.

Overall, each fiber contains at most n/2 vertices, and so there are O(log n) recursive
stages. Since a stage runs in O(n log2 n) time (the bottleneck being Step 3), the total running
time for computing all the values fG(·, ·) is in O(n log3 n). ◀

Open problem. To which other graph classes can our framework in this section be applied?
A good candidate could be the planar graphs of non positive combinatorial curvature [24],
and especially the trigraphs [29]. To our best knowledge, it is open whether the eccentricities
in a trigraph can be computed in almost linear time (there exists a linear-time algorithm for
computing the diameter and the center [53]).
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Abstract
The Wiener index of a graph G is the sum of all its distances. Up to renormalization, it is also
the average distance in G. The problem of computing this parameter has different applications
in chemistry and networks. We here study when it can be done in truly subquadratic time (in
the size n + m of the input) on n-vertex m-edge graphs. Our main result is a complete answer to
this question, assuming the Strong Exponential-Time Hypothesis (SETH), for all the hereditary
subclasses of chordal graphs. Interestingly, the exact same result also holds for the diameter problem.
The case of non-hereditary chordal subclasses happens to be more challenging. For the chordal Helly
graphs we propose an intricate Õ(m3/2)-time algorithm for computing the Wiener index, where m

denotes the number of edges. We complete our results with the first known linear-time algorithm for
this problem on the dually chordal graphs. The former algorithm also computes the median set.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis

Keywords and phrases Wiener index, Graph diameter, Hardness in P, Chordal graphs, Helly graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.44

Funding Guillaume Ducoffe: This work was supported by project PN-19-37-04-01 “New solutions
for complex problems in current ICT research fields based on modelling and optimization”, funded
by the Romanian Core Program of the Ministry of Research and Innovation (MCI) 2019–2022.

1 Introduction

This paper is about the fine-grained complexity of computing the average distance in a
graph, a fundamental distance problem. For any undefined graph terminology, see [4, 20].
Unless stated otherwise, we only consider graphs that are simple, loopless, unweighted
undirected, and more importantly connected. Let G = (V, E) be such a graph. Throughout
the paper, let n = |V | and m = |E|. The distance between two vertices x, y ∈ V equals
the minimum number of edges on a xy-path in G. We denote it by dG(x, y), or simply
by d(x, y) whenever the graph G is clear from the context. The Wiener index of a graph
G is W (G) =

∑
x,y∈V d(x, y). Let also diam(G) = maxx,y∈V d(x, y) be the diameter of G.

Note that diam(G) and 1
n(n−1) W (G) represent the maximum and average distances in G.

Although we focus in this work on computing W (G), as it turns out, this problem is closely
related to computing diam(G). One of our objectives with this paper is to make clearer the
connection between both problems.

The study of both parameters has applications in the fields of network optimization and
analysis. For instance, delays are amongst the main causes of QoS degradation in a network.
Roughly, if we further assume the network is subject to uniformly distributed demand,
then we can approximate delays in the networks by distances in the underlying graph. In
particular, with this interpretation in mind, the diameter and the (normalized) Wiener index
would correspond to the maximum and average delays in the network, respectively. On a
different note, for the analysis of social networks, and of more general complex networks
with a core-periphery structure, various centrality indices have been introduced in order to
measure the importance of a node. One of them, the so-called eccentricity centrality [34],
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is tighly related to the diameter: in fact, with respect to this centrality measurement, the
most peripheral vertices are exactly the diametral vertices (whose eccentricity equals the
diameter). In the same way, the Wiener index is related to the closeness centrality [34]. In
chemistry, relations were also shown between some quantities of molecules and the Wiener
index of their chemical graph representation [42].

By a straightforward reduction to All-Pairs Shortest-Paths (APSP), the Wiener index
and the diameter of a graph can both be computed in O(nm) time. Somehow, this is
optimal, even for sparse graphs. Indeed, assuming the Strong Exponential-Time Hypothesis
(SETH) [32], one cannot decide in Õ(n2−ϵ) time, for any ϵ > 0, whether a graph with Õ(n)
edges has diameter either 2 or 3 [39]. The former implies that one cannot compute either the
Wiener index of such graph in Õ(n2−ϵ) time, for any ϵ > 0 [12]. If we allow approximation
algorithms, then the situation is completely different. Indeed, while for any fixed ε we can
compute an (1 + ε)-approximation of the Wiener index in almost linear time [27], a long
line of recent works has ruled out such possibility for the diameter problem, establishing
various trade-off between the allowed running-time and the best possible approximation
factor [1, 5, 6, 18, 36]. In what follows, we only consider exact computations, but on restricted
graph classes rather than on general graphs.

Let us call an algorithm truly subquadratic if it runs in Õ(namb) time, for some non
negative a, b such that a + b < 2. On sparse graphs, such running time becomes Õ(na+b)
which for the Wiener index and the diameter problem is ruled out by SETH. For dense graphs,
the running time becomes Õ(na+2b), that may be worse than the classic O(nm) = O(n3)-time
algorithm for APSP if a + 2b > 3. Therefore, so as to avoid this caveat, we are especially
interested in running times in Õ(nam), for some non negative a < 1. Algorithms with such
running times are known, for the diameter problem, on many graph classes [22, 24]. However,
so far, we lack a good picture about the (non)existence of truly subquadratic-time algorithms
for the Wiener index and the diameter problems within special graph classes. Indeed, the
systematic study of the (non)existence of such algorithms is quite recent, motivated by the
hardness results obtained in [7, 39]. Most prior works were about the (non)existence of
almost linear-time algorithms, a much more restricted case [17]. We here make progress
toward getting such good picture for the subclasses of chordal graphs.

Recall that, in what follows, most of our results apply to the Wiener index. What is
remarkable, we think, is that many recent results for the Wiener index were obtained as
a byproduct of similar results for the diameter [12, 14, 26]. Said otherwise, many SETH-
hardness results for the diameter also apply to the Wiener index and, conversely, many truly
subquadratic-time algorithms for computing the diameter can be modified in order to also
compute the Wiener index (although this is not the case for all of them, e.g., see [2, 24, 28]).
It would be interesting to identify relevant graph classes where the complexity of the Wiener
index and the diameter problem are different. One of our results in the paper, obtained for
the subclass of chordal Helly graphs, may be a first step in this direction.

Our results. A graph is chordal if it has no induced cycle of length at least four. We here
propose linear-time and truly subquadratic-time algorithms for computing the Wiener index,
on subclasses of chordal graphs and related graph classes. First, in Sec. 2, we consider
dually chordal graphs (a.k.a., the clique-graphs of chordal graphs). The former are not
chordal graphs in general, but they generalize strongly chordal graphs, and so, directed path
graphs and interval graphs [11]. A linear-time algorithm for computing the diameter of
dually chordal graphs was presented in [9] (it was recently extended to the computation of
all eccentricities, see [21]). We propose a simple linear-time algorithm for computing the
Wiener index in this class of graphs (Theorem 1). Doing so, we obtain the first linear-time
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algorithm for computing the Wiener index on strongly chordal graphs, and on even larger
chordal subclasses such as doubly chordal graphs. Then, in Sec. 3, we design a general
divide-and-conquer method on the clique-tree of any chordal graph in order to compute
its Wiener index. We give applications of this method in Sec. 4 and 5. Our main result is
proved in Sec. 4, where under SETH we completely characterize the hereditary subclasses
of chordal graphs for which we can compute the diameter, resp. the Wiener index, in truly
subquadratic time. These subclasses turn out to be the same and they can be characterized
via a VC-dimension argument or, in more graph-theoretic terms, as those subclasses excluding
at least one split graph. See our Theorem 7 for details. Doing so, we get a simple criterion
for the existence of truly subquadratic-time algorithms, both for the Wiener index and the
diameter, on many subclasses of chordal graphs that have been considered in the literature
(Corollary 13). Our characterization for the diameter problem follows from several previous
works, although to our best knowledge it has not been observed before. Our main technical
contribution in Sec. 4 is to prove that the same characterization also holds for the Wiener
index. Finally, in Sec. 5, we end up studying the Wiener index for chordal Helly graphs,
a prominent non-hereditary subclass of chordal graphs. – Recall that a graph is Helly if
any family of pairwise intersecting balls (of arbitrary centers and radii) have a nonempty
common intersection. – We state a few open questions in Sec. 6.

Due to lack of space, some proofs are omitted from the following technical sections.

2 Warm-up: Maximum neighbourhood orderings

Let G = (V, E) be a graph. Recall that for a vertex v, N(v) = {u ∈ V | uv ∈ E} denotes its
open neighbourhood, while we call N [v] = N(v) ∪ {v} its closed neighbourhood. A maximum
neighbour of a vertex v is some u ∈ N [v] (possibly, u = v) such that N [w] ⊆ N [u] for
every w ∈ N [v]. We call a graph G dually chordal if its vertex-set can be totally ordered
as (v1, v2, . . . , vn) so that, for every 1 ≤ i ≤ n, vertex vi has a maximum neighbour in the
induced subgraph G \ {v1, v2, . . . , vi−1} [11]. Such ordering is sometimes called a MNO
(Maximum Neighbourhood Ordering), and it can be computed in linear time [9]. In what
follows, we implicitly use the fact that, if a vertex v has a maximum neighbour u ̸= v, then
G \ v is an isometric (distance-preserving) subgraph of G.

▶ Theorem 1. The Wiener index of a dually chordal graph can be computed in linear time.

Proof. Fix a MNO (v1, v2, . . . , vn) for G. Let G0 = G and, for every 1 ≤ i < n, let
Gi = G \ {v1, v2, . . . , vi}. We observe that, for a vertex in Gi−1 to be its own maximum
neighbour, it must be a universal vertex. Since such a universal vertex can always be chosen
last in a MNO of Gi−1, we assume from now on that every vi, i < n has a maximum
neighbour ui ̸= vi in Gi−1. In what follows, we scan the ordering once in order to define some
variables Si and functions πi := V (Gi) → N. Then, we reverse scan the MNO to compute,
for every i and every u ∈ V (Gi),

Di(u) = Si +
∑

w∈V (Gi)

πi(w) · d(u, w).

Initially, let S0 = 0 and, for every v ∈ V , let π0(v) = 1. Doing so, we ensure that at
the end of the algorithm we have W (G) =

∑
v∈V D0(v). Then, let us assume Si−1 and πi−1

to be known, for some i > 0. Let ui ∈ NGi−1(vi) have maximum degree in the (isometric)
subgraph Gi−1. Note that by maximality of |NGi−1(ui)|, this vertex ui must be a maximum
neighbour of vi in Gi−1. We set Si = Si−1 + πi−1(vi), πi(ui) = πi−1(ui) + πi−1(vi) and
πi(w) = πi−1(w) for every other w ∈ V (Gi) \ {ui}.

MFCS 2021
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We now reverse scan the MNO. Clearly, Dn−1(vn) = Sn−1. Let us assume the values
Di(u) to be known. We set:

Di−1(vi) = Di(ui) + n − 2πi−1(vi) −

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w)


and we proceed to the following update for every w ∈ NGi−1(vi) \ {ui}: Di−1(w) = Di(w) −
πi−1(vi). Indeed, as it shall become clearer in the remainder of our proof, this update is
because these are the only vertices x ∈ V (Gi) for which we do not have dGi−1(vi, x) =
dGi−1(ui, x) + 1. For every other vertex x ∈ V (Gi−1), Di−1(x) = Di(x).

All the above operations can be performed in total
∑

i O(|NGi−1(vi)|) = O(m + n) time.
Furthermore, if all values Di(x) are correctly computed, then we get D0(x) =

∑
y∈V d(x, y).

In particular, W (G) =
∑

x∈V D0(x). Let us assume in what follows all the values Di(x) to
be correctly computed, for some i > 0. Since ui is a maximum neighbour of vi we have
d(vi, x) = d(ui, x) + 1 for every x /∈ NGi−1 [vi]. In particular:

Di−1(x) = Si−1 +
∑

y∈V (Gi−1)

πi−1(y) · d(y, x)

= Si−1 + πi−1(vi) · d(x, vi) + πi−1(ui) · d(x, ui) +
∑

y∈V (Gi)\{ui}

πi−1(y) · d(y, x)

= Si−1 + πi−1(vi) · (d(x, ui) + 1) + πi−1(ui) · d(x, ui) +
∑

y∈V (Gi)\{ui}

πi(y) · d(y, x)

= Si−1 + πi−1(vi) + (πi−1(vi) + πi−1(ui)) · d(x, ui) +
∑

y∈V (Gi)\{ui}

πi(y) · d(y, x)

= Si +
∑

y∈V (Gi)

πi(y) · d(y, x) = Di(x).

In the same way (using d(ui, ui) = 0),

Di−1(ui) = Si−1 + πi−1(vi) +
∑

y∈V (Gi−1)\{vi}

πi−1(y) · d(y, ui)

= Si +
∑

y∈V (Gi)

πi(y) · d(y, ui)

= Di(ui).

However, for every w ∈ NGi−1(vi) \ {ui}, πi−1(vi) · d(vi, w) = πi−1(vi) is counted twice in
Di(w): once in Si, and once in πi(ui) · d(ui, w) = πi(ui) = πi−1(ui) + πi−1(vi). In particular,
we obtain Di−1(w) = Di(w) − πi−1(vi).

We are left proving that Di−1(vi) is correctly computed. By induction, ∀j,
∑

x πj(x) = n.
Then, we have:

Di−1(vi) = Si−1 +
∑

y

πi−1(y) · d(y, vi) = Si +

(∑
y

πi−1(y) · d(y, vi)

)
− πi−1(vi)

= Si +

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w) +
∑

y /∈NGi−1 (vi)\{ui}

πi−1(y) · (d(y, ui) + 1)

− πi−1(vi)

= Si +

 ∑
y /∈NGi−1 (vi)\{ui}

πi−1(y) · d(y, ui)

+

(∑
y ̸=vi

πi−1(y)

)
− πi−1(vi)
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= Si +

 ∑
y /∈NGi−1 (vi)\{ui}

πi(y) · d(y, ui)

+ n − 2πi−1(vi)

= Si +

(∑
y

πi(y) · d(y, ui)

)
−

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w)

+ n − 2πi−1(vi)

= Di(ui) −

 ∑
w∈NGi−1 (vi)\{ui}

πi−1(w)

+ n − 2πi−1(vi). ◀

A vertex v is a median if it minimizes
∑

u∈V d(u, v). The median set of a graph G

contains all its medians. With the same proof as for Theorem 1, we obtain:

▶ Corollary 2. The median set of a dually chordal graph can be computed in linear time.

Finally, a graph G is doubly chordal if it is both chordal and dually chordal [37]. Note
that doubly chordal graphs properly contain the strongly chordal graphs, and so, the directed
path graphs and the interval graphs.

▶ Corollary 3. The Wiener index and the median set of a doubly chordal graph (and so, of a
strongly chordal graph, resp. directed path graph, resp. interval graph) can be computed in
linear time.

We refer to [19] for a previous linear-time algorithm for the interval graphs. In contrast
to our own algorithm, the former is taking an interval representation of the graph as input.

3 A framework for chordal graphs

We introduce a general method for computing the Wiener index of chordal graphs. We recall
that a graph is called a split graph if its vertex-set can be bi-partitioned into a clique and a
stable set [29]. In the Split-Weighted-Wiener problem, we are given as input a tuple
(P(V ), E′, α, β) where, for some split graph H = (V, E):

P(V ) = (K, S1, S2, . . . , Sc) is a partition of the vertex-set V , where K is a clique and
S :=

⋃c
i=1 Si is a stable set.

E′ = {uv | u ∈ K, v ∈ S} ⊆ E.
α, β : V → N≥1 are weight functions.

We call H the underlying input split graph.
The output is equal to

∑
i̸=j

∑
x∈Si,y∈Sj [β(y)α(x) + β(x)β(y)d(x, y) + β(x)α(y)].

▶ Theorem 4. There is an Õ(m + n)-time reduction from computing the Wiener in-
dex on a chordal graph G to the Split-Weighted-Wiener problem on some instances
(P(Vk), E′

k, αk, βk). Furthermore, each underlying split Hk is obtained from some induced
subgraph of G by removing the edges with their both ends in the same group Si

k of the partition.

We need to introduce a few additional notions and related intermediate results.
First, recall that a clique-tree of a graph G is a tree T of which the nodes are the

maximal cliques of G, and such that for every vertex v the set of all the maximal cliques that
contain v induces a connected subtree. It is known that G is chordal if and only if it has a
clique-tree [13, 30, 41] and, furthermore, a clique-tree can be computed in linear time [40]. –
See also [3, 10] and the references therein. – We may see a clique-tree T as a node-weighted
tree where, for any maximal clique C, w(C) = |C|. Then, let w(T ) :=

∑
C w(C). For a

chordal graph, w(T ) = O(n + m) [3].

MFCS 2021
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For a set S and a vertex x, let us define Pr(x, S) = {y ∈ S | d(x, y) = d(x, S)}. Let also
I(x, y) = {z ∈ V | d(x, y) = d(x, z) + d(z, y)} for every vertices x and y. The following two
results will be useful in our proofs:

▶ Lemma 5 ([15]). In a chordal graph G, if C is a clique and x /∈ C, then there exists a
vertex g(x) ∈

⋂
{I(x, y) | y ∈ Pr(x, C)} that is adjacent to all vertices from Pr(x, C). This

vertex g(x) is sometimes called a gate of x.

▶ Lemma 6 ([22]). If T is a clique-tree of a chordal graph G then, for every (not necessarily
maximal) clique C of G, for every v /∈ C we can compute dG(v, C) and a corresponding gate
v∗ in total O(w(T )) time, where w(T ) denotes the sum of cardinalities of all the maximal
cliques of G.

Finally, for an n-node tree T = (V, E), a centroid is a node whose removal leaves subtrees
of order at most n/2. A classic theorem from Jordan asserts that such node always exists [33].
Furthermore, we can compute a centroid in O(n) time by dynamic programming (e.g.,
see [31]).

Proof of Theorem 4. Up to additional O(n + m)-time pre-processing, we may assume each
input graph G to be given under the form of a clique tree T . Our reduction is recursive.
Consider first the following two base cases:

Case |V (T )| = 1. Then, G is a clique, and we have W (G) = n(n − 1).
Case |V (T )| = 2. Then, G is the union of two intersecting cliques X and X ′. In
particular, diam(G) = 2, and so (see [12]), we have W (G) = 2n(n − 1) − 2m. Note that
n = |X|+ |X ′|−|X ∩X ′| and 2m = |X|·(|X|−1)+ |X ′|·(|X ′|−1)−|X ∩X ′|·(|X ∩X ′|−1)
(computable by scanning once the maximal cliques of G).

From now on, |V (T )| ≥ 3. We compute X a centroid of T . Let T1, T2, . . . , Tc be the subtrees
of T \ {X}. For each i, let Gi be induced by the vertices contained in at least one node of Ti.
By the properties of a clique-tree, each Gi is an isometric subgraph of G.

(1) Computation of the W (Gi)’s. We apply our reduction to G1, G2, . . . , Gc (encoded by
their respective clique-trees T1, T2, . . . , Tc). Doing so (throughout one-to-many reductions
to the Split-Weighted-Wiener problem), we computed their respective Wiener indices
W (G1), W (G2), . . . , W (Gc).

(2) Computation of a first (non definitive) instance (P, E′, α, β). We apply Lemma 6
in order to compute, for every v /∈ X, d(v, X) and a gate g(v), whose existence is ensured by
Lemma 5. For every i, let Ui = {g(vi) | vi ∈ V (Gi) \ X}. We set, for every ui ∈ Ui:

α(ui) =
∑

{d(vi, X) − 1 | g(vi) = ui}, and β(ui) = #{vi ∈ V (Gi) \ X | g(vi) = ui}.

We consider the following instance (P, E′, α, β) where we have:
P = (X, U1, U2, . . . , Uc);
E′ = E ∩ (X × V \ X) (edges between X and the neighbours of X);
and α, β as they were previously defined in the proof.

We claim that by solving the Split-Weighted-Wiener problem on this above instance,
one computes the sum of all distances d(vi, vj) for vi ∈ V (Gi) \ X, vj ∈ V (Gj) \ X and
i ≠ j. Indeed, let vi ∈ V (Gi) \ X and vj ∈ V (Gj) \ X, for some i ̸= j. Every vivj-path
crosses X. Furthermore, since X is a clique, there is a shortest vivj-path such that the vertex
of X closest to vi (resp., to vj) is in Pr(vi, X) (resp., in Pr(vj , X)). As a result, we have
d(vi, vj) = d(vi, g(vi)) + d(g(vi), g(vj)) + d(g(vj), vj). For vi fixed, we get:
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∑
vj∈V (Gj)\X

d(vi, vj) =
∑

vj∈V (Gj)\X

(d(vi, g(vi)) + d(g(vi), g(vj)) + d(g(vj), vj))

=
∑

uj∈Uj

∑
vj |g(vj)=uj

(d(vi, g(vi)) + d(g(vi), uj) + d(uj , vj))

=
∑

uj∈Uj

(β(uj) · (d(vi, g(vi)) + d(g(vi), uj)) + α(uj)) .

If we sum the above over all the vi’s, we obtain:∑
vi∈V (Gi)\X

∑
vj ∈V (Gj )\X

d(vi, vj) =
∑

vi∈V (Gi)\X

∑
uj ∈Uj

(β(uj) · (d(vi, g(vi)) + d(g(vi), uj)) + α(uj))

=
∑

ui∈Ui

∑
uj ∈Uj

(β(uj) · (α(ui) + β(ui)d(ui, uj)) + β(ui)α(uj))

=
∑

ui∈Ui

∑
uj ∈Uj

(β(uj)α(ui) + β(uj)β(ui)d(ui, uj) + β(ui)α(uj)) .

(3) Computation of a reduced instance. The problem with the above instance (P, E′, α, β)
is that, in order to fit with our claimed running time for the reduction, we further need to
have |E′| = O(w(T )), that may not be the case in general. Thus, we need to reduce the
instance. For that, let U :=

⋃
i Ui. For every u ∈ U , there is a maximal clique that contains

{u} ∪ (N(u) ∩ X). Thus, in order to relate u with its neighbours in X, it suffices to compute
amongst all maximal cliques containing u one Xu maximizing |Xu ∩ X|. We can do so, in
O(w(T )) time, as follows:

We scan all the maximal cliques X ′ ̸= X in order to compute |X ′ ∩ X|.
We order the maximal cliques X ′ ̸= X by non increasing value of |X ′ ∩ X|. It can be
done by using, e.g., counting sort.
We scan all the ordered maximal cliques X ′. Initially, all the vertices are left unmarked.
When scanning a maximal clique X ′, we set Xu = X ′ for every u ∈ X ′ ∩ U unmarked.
Then, we mark all vertices in X ′.

Let u, u′ ∈ U be such that Xu = Xu′ . Since u and u′ are adjacent, there is an i such
that u, u′ ∈ Ui. Since furthermore, N(u) ∩ X = N(u′) ∩ X (these vertices are twins in
the underlying split graph H), we may remove u′ from U and update α(u), β(u) as follows:
α(u) := α(u) + α(u′), β(u) = β(u) + β(u′). Doing so until it can no more be done, we
end up with a smaller set U∗ such that no two vertices u ∈ U∗ are associated to the same
maximal clique Xu. For every i, let us replace Ui in the above instance for Split-Weighted-
Wiener by the subset Si = Ui ∩ U∗. Then, for E∗ = {uv | u ∈ U∗, v ∈ X} we obtain
|E∗| <

∑
u∈U∗ |Xu| = O(w(T )), as desired.

From now on, we assume to be given W0 :=
∑

i̸=j

∑
vi∈V (Gi)\X,vj∈V (Gj)\X d(vi, vj) (i.e.,

by the above reduction to one instance of Split-Weighted-Wiener).

(4) Computation of the sum of distances between X and V \ X. Next, we compute
WX :=

∑
x∈X,v /∈X d(x, v). For that, recall that we computed the set U =

⋃
i Ui of all the

gates, and the weight functions α, β. Furthermore, for each x ∈ X and index i we have:∑
vi∈V (Gi)\X

d(x, vi) =
∑

vi∈V (Gi)\X

(d(x, g(vi)) + d(g(vi), vi)) =
∑

ui∈Ui

(β(ui)d(x, ui) + α(ui)) .
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Note that, for every u ∈ U , d(u, x) ∈ {1, 2}. Hence, we get:

∑
v /∈X

d(x, v) = 2 ·

(∑
u∈U

β(u)
)

−

 ∑
u∈N(x)∩U

β(u)

+
(∑

u∈U

α(u)
)

.

The two sums
∑

u∈U β(u) and
∑

u∈U α(u) can be pre-computed in O(|U |) = O(w(T )) time.
Therefore, in order to compute WX , we are left computing

∑
u∈N(x)∩U β(u) for every x ∈ X.

For each x ∈ X, let γ(x) = 0 (at the end of the procedure, we shall have γ(x) =∑
u∈N(x)∩U β(u).

We root T arbitrarily and we start a BFS from the root.
When we reach some maximal clique X ′ during the search, we further assume to have
access to its intersection Y = X ′ ∩ p(X ′) with its parent node (Y = ∅ if X ′ is the root).
For every x ∈ (X ∩ X ′) \ Y , we increment γ(x) by

∑
u∈U∩X′ β(u). However, in order to

avoid overcounting, for every x ∈ X ∩ Y , we increment γ(x) by
∑

u∈(U∩X′)\Y β(u).
After processing each X ′, we scan all the maximal cliques X ′′ that are children nodes of
X ′ in order to compute X ′ ∩ X ′′.

Since each maximal clique is scanned O(1) times, the total running time is in O(w(T )).

(5) A formula for computing W (G). At this point of the reduction, we are almost done
for computing W (G). However, if we sum all the partial estimates computed so far, there
are a few distances overcounted. Specifically, let Yi = X ∩ V (Gi). We have:

W (G) = W0 +
(

c∑
i=1

W (Gi)
)

+ |X| · (|X| − 1) + 2WX

−
c∑

i=1

|Yi| · (|Yi| − 1) + 2 ·
∑

yi∈Yi

∑
vi∈V (Gi)\X

d(vi, yi)


Each set Yi above can be computed as the intersection between X and the unique maximal
clique Xi ∈ V (Ti) ∩ NT (X). Furthermore, for yi ∈ Yi fixed, we have:

∑
vi∈V (Gi)\X

d(vi, yi) = 2 ·

( ∑
ui∈Ui

β(ui)
)

−

 ∑
ui∈N(yi)∩Ui

β(ui)

+
( ∑

ui∈Ui

α(ui)
)

.

Hence, we are left computing γi(yi) =
∑

ui∈Ui∩N(yi) β(ui) for every yi ∈ Yi. This can be
done in O(w(Ti)) time, by using the same procedure as for computing the values γ(x), but
restricted to the clique-subtree Ti. Since all the Ti’s are disjoint, the total running time is
still in O(w(T )).

Complexity. Since we use in our reduction a centroid decomposition of the clique-tree T ,
there are O(log |V (T )|) = O(log n) recursive stages. At each recursive stage, we proceed on
disjoint clique-subtrees T ′. Therefore, each recursive stage takes O(w(T )) time (excluding
the calls to an oracle solving Split-Weighted-Wiener). The total running time of the
reduction, excluding the calls of the oracle, is in O(w(T ) log n) = O(m log n). ◀

We shall use the heavy machinery presented above in the next two sections.
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4 Application: Hereditary subclasses of chordal graphs

Recall that a class of graphs is called hereditary if it is stable by induced subgraph. The
complexity of the diameter problem has been studied for many hereditary subclasses of
chordal graphs [9, 17, 25, 22, 23, 38]. For the special case of the interval graphs, a linear-time
algorithm for computing the Wiener index is also known [19] (which we extended to the
strongly chordal graphs in Sec. 2). However, even for the hereditary subclass of split graphs,
under SETH there is no truly subquadratic algorithm for computing the diameter nor the
Wiener index. In this section, we exactly characterize the hereditary subclasses of chordal
graphs for which such algorithms exist (conditioned on SETH).

Recall that a hypergraph is a pair H = (X, R) such that each element of R (called a
hyperedge) is a subset of X (the elements of X are called vertices, by analogy to graphs). A
vertex-subset Y ⊆ X is shattered by H if, for any possible subset Z ⊆ Y , there exists an
e ∈ R such that e ∩ Y = Z. The VC-dimension of H is the largest cardinality of a shattered
subset. For a graph, its VC-dimension is the VC-dimension of its neighbourhood hypergraph
N (G) = (V, {N [v] | v ∈ V }). Finally, a class of graphs has bounded VC-dimension if there
exists a constant d such that every graph in the class has VC-dimension at most d.

▶ Theorem 7. Under SETH, for any hereditary subclass C of chordal graphs, the following
statements are equivalent:
1. There is a truly subquadratic algorithm for computing the Wiener index within C.
2. There is a truly subquadratic algorithm for computing the diameter within C.
3. There is a truly subquadratic algorithm for deciding if a graph in C has diameter ≤ 2.
4. C does not contain all the split graphs.
5. C has bounded VC-dimension.

The above theorem follows from previous works in the literature, and a new result on our
own in Sec. 4.1. Specifically, we will use the following lemmas in our proof:

▶ Lemma 8 ([7]). For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot compute
the diameter in O(n2−ε) time on the split graphs of order n and clique-number at most
c(ε) log n.

▶ Lemma 9 ([22]). If C is a subclass of chordal graphs of bounded VC-dimension, then there
exists a randomized truly subquadratic-time algorithm for computing the diameter of the
graphs in C.

The next result of Bousquet et al. [8] shows that for any hereditary chordal subclass,
either Lemma 8 or Lemma 9 can be applied.

▶ Lemma 10 ([8]). Let C be a hereditary class. If C has infinite VC-dimension, then C must
contain either all the bipartite graphs, or all the co-bipartite graphs, or all the split graphs.

We also prove a quantitative version of Lemma 10, for chordal graphs. Note that the
worst-case running time of the algorithms presented in Lemma 9 and in Sec. 4.1 depends on
the largest VC-dimension of a graph in the class C.

▶ Lemma 11. If H is a split graph, then every H-free chordal graph has VC-dimension at
most |V (H)| − 1.

In Sec. 4.1, we prove that:
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▶ Theorem 12. If C is a subclass of chordal graphs of bounded VC-dimension, then there
exists a deterministic truly subquadratic-time algorithm for computing the Wiener index of
the graphs in C.

We are finally ready to prove our main result:

Proof of Theorem 7. Let G ∈ C be arbitrary. It is known [12] that W (G) ≤ 2n(n − 1) − 2m

if and only if diam(G) ≤ 2. Therefore, (1) =⇒ (3). We also have (2) =⇒ (3). Since the
diameter of a split graph is at most three, we get by Lemma 8 that (3) =⇒ (4). Furthermore,
since not all bipartite graphs and co-bipartite graphs are chordal, by Lemma 10 we get
that (4) =⇒ (5). Finally, by Lemma 9 we have (5) =⇒ (2), and by Theorem 12 we have
(5) =⇒ (1). ◀

▶ Corollary 13. The following subclasses of chordal graphs admit truly subquadratic algorithms
for the Wiener index and the diameter problem: chordal bull-free graphs, chordal claw-free
graphs, block graphs, interval graphs [38], strongly chordal graphs [9], directed path graphs [17],
undirected path graphs [22], chordal dominating pair graphs [25], hereditary Helly graphs [22],
k-separator chordal graphs [35], chordal graphs of bounded interval number, chordal graphs
of bounded asteroidal number [25].

To our best knowledge, our results are new for chordal bull-free graphs, chordal claw-free
graphs, k-separator chordal graphs and chordal graphs of bounded interval number, both
for the Wiener index and the diameter problem (references to prior works are given in the
statement of Corollary 13). For the Wiener index only, our results are also new for the
subclasses of strongly chordal graphs (see also Sec. 2 for a faster algorithm), directed path
graphs, undirected path graphs, chordal dominating pair graphs, hereditary Helly graphs
and chordal graphs of bounded asteroidal number. This above listing is far from exhaustive.

4.1 Sketch Proof of Theorem 12
In what follows, let G = (V, E) ∈ C. By Theorem 4, computing the Wiener index of G can
be reduced in Õ(m + n) time to solving the Split-Weighted-Wiener problem on some
instances (P(Vk), E′

k, αk, βk). Let d be the maximum VC-dimension of a graph in C. We
prove below that each instance (P(Vk), E′

k, αk, βk) can be solved in Õ(|E′
k| · |Vk|1−εd) time,

where εd is a constant that only depends on d. Note that
∑

k |E′
k| = Õ(m + n) since it is the

total running time of our reduction. Furthermore, since by Theorem 4 each Vk is a subset of
V , maxk |Vk| = O(n). Hence, our result below implies an Õ(

∑
k |E′

k| · |Vk|1−εd) = Õ(mn1−εd)
running time in order to compute W (G).

For the remainder of the proof, let (P(Vk), E′
k, αk, βk) be fixed. Recall (see Sec. 3)

P(Vk) = (Kk, S1
k, S2

k, . . . , Sck

k ) with Kk a clique of G. Let Sk =
⋃

j Sj
k = Vk \ Kk. By

Theorem 4, E′
k = E(G) ∩ (Kk × Sk) (i.e., there is no edge added or removed between Kk

and Sk compared to G). We start with a simple observation:

▶ Lemma 14. Let G = (V, E) have VC-dimension at most d, and let X, Y ⊆ V . The
hypergraph H = (X, {NG[y] ∩ X | y ∈ Y }) also has VC-dimension at most d.

Proof. Any subset shattered by H is shattered by the neighbourhood hypergraph of G. ◀

We apply Lemma 14 to X = Sk and Y = Kk. Let Hk be the corresponding hypergraph.
A spanning path of a hypergraph H is a total order of its vertex-set. The stabbing number

of such spanning path is the least t such that every hyperedge of H is the union of at most t

intervals onto the path. The following result is based on a prior work of Chazelle and Welzl
about range queries [16]:
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▶ Lemma 15 ([24]). For every d > 0, there exists a constant εd ∈ (0; 1) such that in
Õ(m+n2−εd) deterministic time, for every n-vertex hypergraph H = (X, R) of VC-dimension
at most d and size m =

∑
e∈R |e|, we can compute a spanning path of stabbing number

Õ(n1−εd). Moreover, εd = 1
2d+1[c(d+1)−1]+1 for some constant c > 2.

Apply Lemma 15 to Hk. Doing so, for every u ∈ Kk, NH(u) ∩ Sk is the union of
Õ(|Sk|1−εd) intervals of the resulting spanning path of Hk. Then, for every s ∈ Sk, define
N2

k (s) to be the set of all vertices in Sk at distance two from s in the underlying split graph
(Kk ∪ Sk, E′

k ∪ (Kk × Kk)). We have that N2
k (s) is the union of Õ(|NG(s) ∩ Kk| · |Sk|1−εd)

intervals of the spanning path computed for Hk.

One more ingredient is needed in our proof. Consider a set Q of 2-dimensional points.
Each point (x, y) ∈ Q is assigned some weight f(x, y). A box is the Cartesian product of two
intervals (we also allow intervals that are infinite, semi-finite, or reduced to a singleton). Note
that each box defines a rectangle in the plane (possibly, a line or a point if some intervals
are reduced to a singleton). A (counting) range query asks, for a given box, the sum of the
weights of all points in Q that are contained into this rectangle.

▶ Lemma 16 ([43]). Let Q be a set of 2-dimensional points. After a pre-processing in
O(|Q| log |Q|) time, one can answer any range query in O(log |Q|) time.

Let σk : Sk → {1, 2, . . . , |Sk|} be the mapping of Sk to the nodes of the spanning path. For
each 1 ≤ i ≤ ck and si ∈ Si

k, we create a point (σk(si), i) with weight f(σk(si), i) = βk(si).
Let Qk be the resulting 2-dimensional point-set. We apply Lemma 16 in order to compute,
for each i and si ∈ Si

k, the weighted sum Φ(si) =
∑

{βk(s′) | s′ ∈ N2
k (si) \ Sk

i }; indeed, for
any fixed si, this operation can be reduced to Õ(|NG(si) ∩ Kk| · |Sk|1−εd) range queries, by
using the interval representation of N2

k (si).

Finally, for every j, define αj =
∑

s′∈Sj
k

αk(s′) and βj =
∑

s′∈Sj
k

βk(s′). Let also
α∗ =

∑ck

j=1 αj and β∗ =
∑ck

j=1 βj . All the values αj , βj , 1 ≤ j ≤ ck and α∗, β∗ can be
pre-computed in total O(|Sk|) time. Since in the underlying split graph Hk, the distance
d(s, s′) between two different vertices s, s′ ∈ Sk in the stable set is either two or three, we
may rewrite the output of Split-Weighted-Wiener as follows:

∑
i ̸=j

∑
s∈Si

k
,s′∈S

j
k

[
βk(s′)αk(s) + βk(s)βk(s′)d(s, s′) + βk(s)αk(s′)

]
=

∑
i

∑
s∈Si

k

(β∗ − βi) · αk(s) + βk(s) ·

∑
s′ /∈Si

k

βk(s′)d(s, s′)

+ βk(s) · (α∗ − αi)


=

[∑
i

(β∗ − βi)αi

]
+

∑
i

∑
s∈Si

k

βk(s) ·

∑
s′ /∈Si

k

βk(s′)d(s, s′)

+

[∑
i

βi(α∗ − αi)

]

=

[∑
i

(β∗ − βi)αi

]
+

∑
i

∑
s∈Si

k

βk(s) ·
(
3(β∗ − βi) − Φ(s)

)+

[∑
i

βi(α∗ − αi)

]

=

[∑
i

(β∗ − βi)(αi + 3βi)

]
−

[∑
s∈Sk

βk(s)Φ(s)

]
+

[∑
i

βi(α∗ − αi)

]
.

Now, given the pre-computed values αi, βi, α∗, β∗ and Φ(s), we can compute the desired
output in additional O(|Sk|) time. ◀
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5 Application: Chordal Helly graphs

We end up our study investigating the complexity of the Wiener index on non-hereditary
subclasses of chordal graphs. The chordal Helly graphs are a prominent such subclass. Indeed,
they are a strict generalization of doubly chordal graphs, and so, of strongly chordal graphs,
interval graphs, etc. Recently, a linear-time algorithm for computing the diameter of this
subclass of graphs was proposed [22].

▶ Theorem 17. There is an Õ(m3/2)-time algorithm for computing the Wiener index of
chordal Helly graphs.

Proof. Let G = (V, E) be a chordal Helly graph. We apply Theorem 4 in order to reduce
the computation of W (G) to solving the Split-Weighted-Wiener problem on some
instances (P(Vk), E′

k, αk, βk). Write P(Vk) = (Kk, S1
k, S2

k, . . . , Sck

k ). We also know from
Theorem 4 that Kk is a clique of G. In what follows, we present an algorithm for solving
the instance (P(Vk), E′

k, αk, βk) in O(|Kk| · |E′
k|) time. Doing so, we can compute W (G) in∑

k O(|Kk| · |E′
k|) time. Since we further have

∑
k |E′

k| = Õ(n + m) (time of the reduction of
Theorem 4) and maxk |Kk| = O(m1/2) because each subset Kk is a clique, we get a running
time in Õ(m3/2).

Throughout the remainder of the proof, let (P(Vk), E′
k, αk, βk) be fixed. Let also Sk =⋃ck

i=1 Si
k = Vk \ Kk. We write s ∼ s′ if there exists an i such that s, s′ ∈ Si

k. Then, our goal
is to compute the following value:

Ψk :=
∑

{βk(s)βk(s′) | s ̸∼ s′ and d(s, s′) = 2}.

Indeed, let us define αi =
∑

s∈Si
k

αk(s) and βi =
∑

s∈Si
k

βk(s) for every i. Similarly, let α∗ =∑
i αi and β∗ =

∑
i βi. All these values can be pre-computed in total O(|Sk|) = O(|E′

k|) time.
Then, the desired output

∑
i̸=j

∑
s∈Si

k
,s′∈Sj

k
[βk(s′)αk(s) + βk(s)βk(s′)d(s, s′) + βk(s)αk(s′)]

can be rewritten as:

∑
i

(β∗ − βi)αi +

∑
i̸=j

∑
s∈Si

k
,s′∈Sj

k

βk(s)βk(s′)d(s, s′)

+
∑

i

βi(α∗ − αi).

Since in the underlying split graph, the distance between two distinct vertice in the stable
set Sk is either two or three, we get:

∑
i̸=j

∑
s∈Si

k
,s′∈Sj

k

βk(s)βk(s′)d(s, s′) = 3
(∑

i

βi(β∗ − βi)
)

− Ψk.

The algorithm. Let us define the adjacency lists Nk(u) = {s ∈ Sk | us ∈ E′
k}, for every

u ∈ Kk. In the same way, let us define the adjacency lists Nk(s) = {u ∈ Kk | us ∈ E′
k},

for every s ∈ Sk. We set initially Ψk := 0. Then, let Kk = (u1, u2, . . . , u|Kk|) be totally
ordered. We consider each ui ∈ Kk sequentially, and in order from i = 1 to i = |Kk|. At
step i, let us define for every u′ ∈ Kk the subset Nk,i(u′) := Nk(u′) \

(⋃
j<i Nk(uj)

)
. For

each s ∈ Sk \
(⋃

j<i Nk(uj)
)

, let t be such that s ∈ St
k. We select a vertex u′ ∈ Nk(s) such

that |(Nk,i(u′) ∩ Nk,i(ui)) \ St
k| is maximized. Then, we increment Ψk by:{

βk(s) ·
∑

{βk(s′) | s′ ∈ (Nk,i(ui) ∩ Nk,i(u′)) \ St
k} if s ∈ Nk,i(ui)

2βk(s) ·
∑

{βk(s′) | s′ ∈ (Nk,i(ui) ∩ Nk,i(u′)) \ St
k} if s /∈ Nk,i(ui).
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Correctness. We first need to observe that Nk,1(u1) (= Nk(u1)), Nk,2(u2), . . . , Nk,i(ui), . . .

is a partition of Sk. Therefore in order to prove correctness of the algorithm, it suffices to
prove that at each step i, we increment Ψk by twice the sum of all βk(x)βk(y) with x ∈
Nk,i(ui), y ∈ Sk\

(⋃
j<i Nk(uj)

)
, x ̸∼ y and d(x, y) = 2. For that, let s ∈ Sk\

(⋃
j<i Nk(uj)

)
be arbitrary and such that s ∈ St

k for some t. We prove next that for the vertex u′ selected
for s, all the vertices in Nk,i(ui) \ St

k and at distance two from s are also in Nk,i(u′). In
particular, all the desired pairs (x, y) are enumerated: twice if x, y ∈ Nk,i(ui), and only once
otherwise, thus proving correctness of our above formula for incrementing Ψk.

By maximality of u′, it is sufficient to prove the existence of a vertex u∗ ∈ Nk(s) such
that all the vertices of Nk,i(ui) \ St

k that are at distance two from s are also contained into
Nk,i(u∗). We do so by reasoning on the whole graph G. Specifically, let F = {NG[x] | x =
s or ( x ∈ Nk,i(ui) \ St

k and d(s, x) = 2 )}. The balls in F pairwise intersect. Therefore, by
the Helly property, all balls in F contain some common vertex z. We claim that z ∈ Kk.
Note that it will prove the existence of the desired vertex u∗ because in such a case we can
always choose u∗ = z. It follows from the proof of Theorem 4 that St

k and Sk \ St
k are in

separate connected components of G \ Kk, thus immediately proving the claim.

Implementation and Complexity. As a starter, we observe that all the lists Nk(u), for
u ∈ Kk (resp., all the lists Nk(s), for s ∈ Sk) can be constructed in O(|E′

k|) time. Throughout
the algorithm, we maintain an |Sk|-size array A, whose entries are indexed by Sk and are
initialized to 0 (at the end of the algorithm, we have for all s ∈ Nk,i(ui) that A[s]= i).
We also store two auxiliary matrices of dimensions |Kk| × (ck + 1), denoted by Int and
Sum, whose entries are indexed by Kk × {0, 1, 2, . . . , ck} and of which we ensure that all
entries equal 0 at the beginning of any step i. Finally, we find more convenient for certain
operations to maintain a stack Stack and a boolean |Kk|-size array InStack whose entries
are indexed by Kk; before each step, we ensure that the stack is emptied and that all entries
in InStack are set to False. Note that all the above data structures can be constructed in
O(|Sk| + |Kk| · ck) = O(|Kk| · |Sk|) = O(|Kk| · |E′

k|) time.
We proceed as follows during any step i. First, we scan Nk(ui) and, for every s ∈ Nk(ui)

such that A[s]= 0, we set A[s]= i. Furthermore, if we set A[s]= i, then we add every u′ ∈ Nk(s)
in Stack (we use the auxiliary array InStack in order to avoid adding twice a vertex). Then,
we consider each vertex in Stack sequentially, until we emptied the stack. For every vertex
u′ considered, we scan the list Nk(u′). If s ∈ Nk(u′) is such that A[s]= i (equivalently, if
s ∈ Nk,i(ui)) then, we increment Int[u′][0] by one (intersection size with Nk,i(ui)). Similarly,
we increment Sum[u′][0] by βk(s). For the unique t such that s ∈ St

k, we also increment
Int[u′][t] by one and Sum[u′][t] by βk(s), respectively. Finally, we apply our above formula in
order to increment Ψk:
1. For every s ∈ Nk(ui), if A[s]= i, then let t be the unique index such that s ∈ St

k. We
increment Ψk by βk(s) × (Sum[ui][0] − Sum[ui][t]).

2. For every s ∈ Sk such that A[s]= 0, let also t be the unique index such that s ∈ St
k. We

scan the list Nk(s) in order to find some u′ maximizing Int[u′][0] − Int[u′][t]. Then, we
increment Ψk by 2βk(s) × (Sum[u′][0] − Sum[u′][t]).

The whole step only takes O(|E′
k|) time because each adjacency list is scanned O(1) times. ◀

Although it is a truly subquadratic algorithm (in the size n + m of the input), our
algorithm does not perform better than the classic O(nm)-time algorithm for general graphs
if m = Θ(n2). This is in sharp contrast with our results in Sec. 4, for hereditary chordal
subclasses, where all our algorithms run in Õ(nam) time, for some a < 1. It would be very
interesting to improve the running time of Theorem 17, and to bring it much closer to the
linear-time complexity of the diameter problem on this subclass of graphs.

MFCS 2021
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6 Open problems

We left open whether there are there relevant graph classes where the complexity of the
Wiener index and the diameter are different. In particular, are both problems subquadratic
equivalent? Another interesting question is whether we could compute the Wiener index
of Helly graphs in truly subquadratic time. In this paper, we only managed to find such
algorithm for the subclasses of dually chordal graphs and chordal Helly graphs.
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Abstract
We consider the Trivially Perfect Editing problem, where one is given an undirected graph
G = (V, E) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to
obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially
Perfect Deletion problems are obtained by only allowing edge additions or edge deletions,
respectively. Trivially perfect graphs are both chordal and cographs, and have applications related
to the tree-depth width parameter and to social network analysis. All variants of the problem are
known to be NP-complete [6, 29] and to admit so-called polynomial kernels [13, 23]. More precisely,
the existence of an O(k3) vertex-kernel for Trivially Perfect Completion was announced by
Guo [23] but without a stand-alone proof. More recently, Drange and Pilipczuk [13] provided O(k7)
vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work,
we answer positively to this question for all three variants of the problem.
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Introduction

A broad range of optimization problems on graphs are particular cases of so-called modification
problems. Given an arbitrary graph G = (V, E) and an integer k, the question is whether G

can be turned into a graph satisfying some desired property by at most k modifications. By
modifications we mean, according to the problem, vertex deletions (as for Vertex Cover
and Feedback Vertex Set where we aim to obtain graphs with no edges, or without
cycles respectively) or edge deletions and/or additions (as for Minimum Fill-In, also known
as Chordal Completion, where the goal is to obtain a chordal graph, with no induced
cycles with four or more vertices, by adding at most k edges).

Here we consider edge modifications problems, that can be split in three categories,
depending whether we allow only edge additions, only edge deletions, or both operations, in
which case we speak of edge editing. Consider a family H of graphs, called obstructions. In
the H-free editing problem we seek to edit at most k edges of G to obtain a graph that
does not contain any obstruction from H as an induced subgraph. One can similarly define
H-free completion and H-free deletion variants of this problem by only allowing the
addition or deletion of edges, respectively. E.g., Minimum Fill-In corresponds to H-free
completion, where H is formed by all cycles with at least four vertices. For most families
H, all three versions are NP-complete, but thinking of k as of some suitably small quantity,
they have been intensively studied in the framework of parameterized complexity (see [11] for
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a comprehensive survey). The aim of parameterized complexity is to determine whether it is
possible to decide the instance at hand in time f(k) · nO(1) for some computable function f .
Such problems are said to be FPT (fixed-parameter tractable). With a simple but elegant
and powerful argument, Cai [7] proved that whenever H is finite all three variants are FPT.
Basically, whenever the graph contains one of the obstructions (graphs of H), the algorithm
branches on all possible modifications to destroy it, and makes the recursive calls with
a lesser parameter k. When the family H contains all cycles with at least four vertices,
the corresponding edition problem Chordal Editing was shown to be FPT relatively
recently [10]. The completion variant, i.e., the Minimum Fill-in, was known to be FPT
since the 90’s [7, 25].

We consider an equivalent definition of fixed-parameter tractability, namely kernelization.
Given a parameterized problem Π, a kernelization algorithm for Π (or kernel for short) is
an algorithm that given any instance (I, k) of Π runs in time polynomial in |I| and k and
outputs an equivalent instance (I ′, k′) of Π such that |I ′| ⩽ h(k) and k′ ⩽ g(k) for some
computable functions g and h. Whenever h is polynomial, we say that Π admits a polynomial
kernel. A kernelization algorithm uses a set of polynomial-time computable reduction rules
to reduce the instance at hand. We say that a reduction rule is safe whenever its application
on an instance (I, k) of Π results in an equivalent instance (I ′, k′) of Π. It is well-known
that a parameterized problem is FPT if and only if it admits a kernelization algorithm [17].
While many polynomial kernels are known to exist for editing problems (see [11] or [27] for
surveys), it is known that some editing problems are unlikely to admit polynomial kernels
under reasonable complexity-theoretic assumptions [8, 22, 26]. When H contains only a
single obstruction, several results towards a dichotomy regarding the existence of polynomial
kernels have been obtained [1, 8, 28]. Very recently, Marx and Sandeep [28] narrowed down
the problem for obstructions containing at least 5 vertices to only nine distinct obstructions.
In other words, the non-existence of polynomial kernels for H-free editing for all such
obstructions would imply the non-existence of polynomial kernels for any obstruction with at
least 5 vertices. When H contains several obstructions, a very natural setting is to include
all cycles of length at least 3 in H, thus targeting a subclass of chordal graphs. Indeed,
editing (and especially completion) problems towards such classes cover classical problems
with both theoretical and practical interest [15, 21, 24, 25, 33]. Notice that many known
polynomial kernels for editing problems concern such classes [3, 4, 13, 23, 25]. For completion
and deletion versions, polynomial kernels are often used as a first step in the design of
subexponential parameterized algorithms [5, 12, 18, 19].

In this work, we focus on editing problems towards trivially perfect graphs, that is
H = {P4, C4} (respectively a path and a cycle on 4 vertices). This problem is known as
Trivially Perfect Editing in the literature. By allowing edge addition or edge deletion
only, we obtain the Trivially Perfect Completion and Trivially Perfect Deletion
problems, respectively.

Related work

While the NP-Completeness of Trivially Perfect Completion and Trivially Perfect
Deletion has been known for some time [6], the complexity of Trivially Perfect Editing
remained open until a work of Nastos and Gao [29]. Trivially perfect graphs have recently
regained attention since they are related to the well-studied width parameter tree-depth [20, 30]
which corresponds to the size of the largest clique of a trivially perfect supergraph of G with
the smallest clique number. Moreover, Nastos and Gao [29] proposed a new definition for
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community structure based on small obstructions. In particular, the authors emphasized
that editing a given graph into a trivially perfect graph yields meaningful clusterings in real
networks [29]. Trivially perfect graphs also correspond to chordal cographs and admit a
so-called universal clique decomposition [12]. Polynomial kernels with O(k7) vertices have
been obtained for all variants of the problem by Drange and Pilipczuk [13]. The technique
used relies on a reduction rule bounding the number of vertices in any trivially perfect
module and the computation of a so-called vertex modulator, that is a maximal packing
of obstructions with additional properties. Combined with sunflower-like reduction rules
and a careful analysis of the graph remaining apart from the vertex modulator, the authors
managed to provide polynomial kernels. They then asked whether the O(k7) bound could
be improved, and qualify as “really challenging question” whether one can match the O(k3)
bound for Trivially Perfect Completion claimed by Guo [23].

Our contribution

We answer positively to this question and provide kernels with O(k3) vertices for all considered
problems. To be complete, a quadratic vertex-kernel for the completion version only is claimed
in [2, 9]. While our kernelization algorithm shares similarities with the work of Drange and
Pilipczuk [13], our technique differs in several points. In particular, we do not rely on the
computation of a vertex modulator, a useful technique to design polynomial kernels but
somehow responsible for the large bound obtained. To circumvent this issue, we only rely on
the so-called universal clique decomposition of trivially perfect graphs. This decomposition
partitions the vertices of trivially perfect graph G into cliques, the bags being structured
as nodes of a rooted forest such that two vertices are adjacent in G if and only they are
in a same bag, or in two bags such that one is an ancestor of the other in the forest. For
any positive instance of the problem, at most 2k bags contain vertices incident to modified
edges. Informally, the rest of the bags can be regrouped into two types of ’chunks’. Some
correspond to trivially perfect modules of the input graph (which are known to be reducible
to small sizes by [13]), others have a more complicated but still particular structure, similar
to the combs of [13]. We show how to reduce the size of these combs. Altogether we believe
that our rules not only improve the size of the kernel but also significantly simplify the
kernelization algorithm of [13]. Last but not least, we think that this approach based on
tree-like decompositions and the analysis of large chunks of the graph that are not affected by
the modified edges might be exploitable for other editing problems. Indeed the technique has
strong similarities with the notion of branches introduced by Bessy et al. [3] for modification
to 3-leaf power graphs, a closely related graph class.

Outline

We begin with some preliminaries definitions and results about trivially perfect graphs
(Section 1). We then introduce the notion of combs and provide the set of reduction rules
needed to obtain an O(k3) vertex-kernel for Trivially Perfect Editing (Section 2). The
combinatorial bound on the kernel size is provided in Section 3. We explain how these
results can be adapted to obtain similar kernels for Trivially Perfect Completion and
Trivially Perfect Deletion (Section 4). The Conclusion section summarizes the results
and suggests further developments. Proofs of statements labeled with (⋆) are omitted in this
extended abstract. The interested reader may refer to [14] for a full version of this paper.
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1 Preliminaries

We consider simple, undirected graphs G = (V, E) where V denotes the vertex set and
E ⊆ (V × V ) the edge set of G. We will sometimes use V (G) and E(G) to clarify the context.
Given a vertex u ∈ V , the open neighborhood of u is the set NG(u) = {v ∈ V : uv ∈ E}.
The closed neighborhood of u is defined as NG[u] = NG(u) ∪ {u}. A vertex u ∈ V is universal
if NG[u] = V , and two vertices u and v are true twins if NG[u] = NG[v]. The set of universal
vertices forms a clique and is called the universal clique of G. Given a subset of vertices
S ⊆ V , NG[S] is the set ∪v∈SNG[v] and NG(S) is the set NG[S]\S. We will omit the mention
to G whenever the context is clear. The subgraph induced by S is defined as G[S] = (S, ES)
where ES = {uv ∈ E : u ∈ S, v ∈ S}. For the sake of readability, given a subset S ⊆ V

we define G \ S as G[V \ S]. A subset of vertices C ⊆ V is a connected component of G if
G[C] is a maximal connected subgraph of G. A subset of vertices M ⊆ V is a module of
G if and only if NG(u) \ M = NG(v) \ M holds for every u, v ∈ M . A maximal set of true
twins K ⊆ V is a critical clique. Notice that G[K] is a clique module and that the set K(G)
of critical cliques of any graph G partitions its vertex set V (G). Notice that the universal
clique is a critical clique.

Trivially perfect graphs

A graph G = (V, E) is trivially perfect if and only if it does not contain any P4 (a path on 4
vertices) nor C4 (a cycle on 4 vertices) as an induced subgraph (see Figure 1). We consider
the following problem.

Trivially Perfect Editing
Input: A graph G = (V, E), a parameter k ∈ N
Question: Does there exist a set of pairs F ⊆ (V × V ) of size at most k such that the graph
H = (V, E△F ) is trivially perfect, with E△F = (E \ F ) ∪ (F \ E)?

Given an instance (G = (V, E), k) of Trivially Perfect Editing, a set F ⊆ (V × V )
such that H = (V, E△F ) is trivially perfect is an edition of G. When F is constrained to be
disjoint from (resp. contained in) E, we say that F is a completion (resp. a deletion) of G. The
corresponding problems are Trivially Perfect Completion and Trivially Perfect
Deletion, respectively. For the sake of simplicity, given an edition (resp. completion,
deletion) F of G, we use G△F , G + F and G − F to denote the graphs (V, E△F ), (V, E ∪ F )
and (V, E \ F ), respectively. A vertex is affected by F whenever it is contained in some pair
of F . The set F is a k-edition (resp. k-completion, k-deletion) whenever |F | ⩽ k. Finally,
we say that such a set F is optimal whenever it is minimum-sized.

Figure 1 The C4, P4 and claw graphs, respectively. The claw will be useful in some of our proofs.

Trivially perfect graphs are hereditary and closed under true twin addition. This property
will be useful to deal with critical cliques, as stated by the following result. Recall that
critical cliques are maximal sets of true twins (or, equivalently, maximal clique modules),
they will play a central role throughout this paper.
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▶ Lemma 1 ([3]). Let G be a hereditary class of graphs closed under true twin addition.
For every graph G = (V, E), there exists an optimal edition (resp. completion, deletion) F

into a graph of G such that for any two critical cliques K and K’ either (K × K ′) ⊆ F or
(K × K ′) ∩ F = ∅.

Several characterizations are known to exist for trivially perfect graphs. We will mainly
use the following ones.

▶ Proposition 2 ([32]). The class of trivially perfect graphs can be defined recursively as
follows:

a single vertex is a trivially perfect graph.
Adding a universal vertex to a trivially perfect graph results in a trivially perfect graph.
The disjoint union of two trivially perfect graphs results in a trivially perfect graph.

▶ Definition 3 (Universal clique decomposition, [12]). A universal clique decomposition (UCD)
of a connected graph G = (V, E) is a pair T = (T = (VT , ET ), B = {Bt}t∈VT

) where T is a
rooted tree and B is a partition of the vertex set V into disjoint nonempty subsets, such that:

if vw ∈ E and v ∈ Bt, w ∈ Bs then s and t are on a path from a leaf to the root, with
possibly s = t, and
for every node t ∈ VT , the set of vertices Bt is the universal clique of the induced subgraph
G[

⋃
s∈V (Tt) Bs], where Tt denotes the subtree of T rooted at t.

The vertices of T are called nodes of the decomposition, while the sets of B are called
bags. We will sometimes abuse notation and identify nodes of T with their corresponding
bags in B. Notice moreover that in a universal clique decomposition, every node t of T that
is not a leaf has at least two children since otherwise Bt would not contain all universal
vertices of G[

⋃
s∈V (Tt) Bs].

▶ Lemma 4 ([12]). A connected graph G admits a universal clique decomposition if and only
if it is trivially perfect. Moreover, such a decomposition is unique up to isomorphisms.

One can observe that finding a universal clique decomposition can be done in polynomial
time by iteratively identifying universal cliques and connected components. Finally, both
Definition 3 and Lemma 4 can be naturally extended to disconnected trivially perfect graphs
by considering a rooted forest instead of a rooted tree. More precisely, the universal clique
decomposition of a disconnected graph G = (V, E) is a rooted forest of universal clique
decompositions of its connected components. Such a graph is thus trivially perfect if and
only if it admits a universal clique decomposition shaped like a rooted forest.

We conclude this section by providing a new characterization of trivially perfect graphs
in terms of maximal cliques and nested families.

▶ Definition 5 (Nested family). Let U be a universe and F ⊆ 2|U | a family of subsets of U .
The family F is nested if and only if for every A, B ∈ F , A ⊆ B or B ⊆ A holds.

▶ Lemma 6 (⋆). Let G = (V, E) be a graph, S ⊆ V a maximal clique of G and K1, ..., Kr

the connected components of G\S. The graph G is trivially perfect if and only if the following
conditions are verified:

(i) G[S ∪ Ki] is trivially perfect for every 1 ≤ i ≤ r,
(ii)

⋃
1≤i≤r{NG(Ki)} is a nested family,

(iii) (Ki × NG(Ki)) ⊆ E for every 1 ≤ i ≤ r.
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2 Kernelization algorithm for Trivially Perfect Editing

We begin this section by providing a high-level description of our kernelization algorithm. As
mentioned in the introductory section, we use the universal clique decomposition of trivially
perfect graphs to bound the number of vertices of a reduced instance. Let us consider a
positive instance (G = (V, E), k) of Trivially Perfect Editing, F a suitable solution
and H = G△F . Denote by T = (T, B) the universal clique decomposition of H as described
Definition 3. Since |F | ⩽ k, we know that at most 2k bags of T may contain affected vertices.
Let A be the set of such bags, and let A′ denote the lowest common ancestor closure of A in
forest T (Definition 17). As we shall see later, the size of A′ is also linear in k (Lemma 18).
The removal of every bag of A′ from T will disconnect the forest T into several components
(see Figure 2).

Such a connected component D of T \ A′ may see zero, one or two nodes of A′ in the
forest T (Lemma 4). If D has no neighbour in A′, the union of all bags of D corresponds
to a connected component of H and of G, inducing a trivially perfect graph in G, and will
be eliminated by a reduction rule. We shall see that the union of all components Da of the
second type, seeing a unique bag a ∈ A′ in the forest T , corresponds to a trivially perfect
module of graph G. We use the reductions rules of [13] to shrink such a module to O(k2)
vertices, which boils down to a total O(k3) vertices since |A′| = O(k).

Our efforts will be focused on components D seeing two bags a1, a2 ∈ A′, one of them
being ancestor of the other in forest T . We call such a structure D a comb (Definition 9 and
Figure 2).

a1

a2

Figure 2 Analysis of a universal clique decomposition of a connected trivially perfect graph.
Black vertices represent bags of A, gray vertices bags of A′ and triangles are connected trivially
perfect subgraphs of G. The leftmost rectangle is a comb of G, the rightmost a trivially perfect
module. Note that any group of triangles rooted at a same bag is a trivially perfect module.

Such combs (the union of their bags) induce, in graph G, a trivially perfect subgraph
that can be partitioned with regard to critical cliques and trivially perfect modules with
nice inclusion properties on their neighborhoods. We provide two distinct reduction rules
on these structures. Rule 4 reduces the so-called shaft of the comb (intuitively, the path
strictly between a1 and a2 in T ) to length O(k). Rule 5 reduces the size of the whole comb
(the union of its bags) to O(k2). Altogether, the reduced instance cannot contain more than
O(k3) vertices.

We would like to note that the combs considered in this work are similar to the ones
defined by Drange and Pilipczuk [13] and thus named after them. However, the two structures
are not strictly identical, in particular since they were originally defined with respect to a
vertex modulator (i.e. a packing of obstructions), and thus their neighborhood towards the
rest of the graph was structured differently.
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In the remaining of this section we assume that we are given an instance (G = (V, E), k)
of Trivially Perfect Editing.

2.1 Reducing critical cliques and trivially perfect modules
We first give a classical reduction rule when dealing with modification problems. This rule is
trivially safe for trivially perfect graphs.

▶ Rule 1. Let C ⊆ V be a subset of vertices such that G[C] is a trivially perfect connected
component of G. Remove C from G.

We now give known reduction rules that deal with critical cliques and trivially perfect
modules. The safeness of Rule 2 comes from the fact that trivially perfect graphs are
hereditary and closed under true twin addition combined with Lemma 1. The safeness and
polynomial-time application of Rule 3 was proved by Drange and Pilipczuk [13]. We would
like to mention that while the statement of their rule assumes the instance at hand to be
reduced by classical sunflower rules, this is actually not needed to prove the safeness of the
rule. Altogether, we have the following.

▶ Rule 2. Let K ⊆ V be a set of true twins of G such that |K| > k + 1. Remove |K| − (k + 1)
arbitrary vertices in K from G.

▶ Rule 3. Let M ⊆ V be a module of G such that G[M ] is trivially perfect and M contains
an independent set I of size at least 2k + 5. Remove all vertices of M \ I from G.

▶ Lemma 7 (Folklore, [3, 13]). Rules 1 to 3 are safe and can be applied in polynomial time.

Using a structural result on trivially perfect graphs where critical cliques and independent
sets have bounded size, Drange and Pilipczuk [13] proved the following.

▶ Lemma 8 ([13]). Let (G = (V, E), k) be an instance of Trivially Perfect Editing
reduced under Rules 2 and 3. Then for every module M ⊆ V such that G[M ] is trivially
perfect, |M | = O(k2).

2.2 Reducing shafts of combs
We now consider the main structure of our kernelization algorithm, namely combs. Recall
that such structures are similar to the ones defined by Drange and Pilipczuk [13] but not
strictly identical. More precisely, the inner part of the structure is the same but not their
neighborhoods towards the rest of the graph. We however choose to use the same name since
it is well-suited to illustrate the structure (see Figure 3).

▶ Definition 9 (Comb). Let G = (V, E) be a graph and C, R ⊆ V be such that C is a clique
which can be partitioned into l critical cliques {C1, ..., Cl} and R can be partitioned into l

non-empty and non-adjacent trivially perfect modules {R1, ..., Rl}. The pair P = (C, R) is a
comb if and only if:

there exist Vf , Vp ⊆ V (G)\{C, R}, Vf ≠ ∅ such that ∀x ∈ C, NG(x)\(C ∪ R) = Vp ∪ Vf

and ∀y ∈ R, NG(y)\(C ∪ R) = Vp,
NG(Ci) ∩ R =

⋃l
j=i Rj and NG(Ri) ∩ C =

⋃i
j=1 Cj for 1 ≤ i ≤ l.

By the following property, given a comb (C, R) of graph G = (V, E), the subgraph G[C ∪R] is
trivially perfect, and has a universal clique decomposition in which critical cliques (C1, . . . , Cl)
are arranged in a path starting from the root, the shaft of the comb, and the decomposition of
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CR

Vp

Vf

R1

R2

Rl

Figure 3 Illustration of a comb, with shaft C and teeth R. The edges between Vp and Vf can be
anything. Every tooth Ri induces a (possibly disconnected) trivially perfect module.

each tooth Ri is attached to Ci; see Figure 3. The length of (C, R) is l, the number of critical
cliques in C. We can observe that NG[Cl] ⊊ · · · ⊊ NG[C1] and NG(R1) ⊊ · · · ⊊ NG(Rl)
because for 1 ≤ i ≤ l, NG[Ci] = (

⋃l
j=i Rj) ∪ Vp ∪ Vf and NG(Ri) = (

⋃i
j=1 Cj) ∪ Vp.

▶ Proposition 10 (⋆). Given a comb (C, R) of graph G = (V, E), the subgraph G[C ∪ R] is
trivially perfect. Moreover the sets Vp and Vf , and the ordered partitions (C1, . . . , Cl) of C

and (R1, . . . , Rl) of R are uniquely determined.

▶ Lemma 11. Given an instance (G = (V, E), k) of Trivially Perfect Editing and a
comb (C, R) of length l ≥ 2k + 2 of G, there is no optimal k-edition that affects vertices in
C ∪ R.

Proof. Consider a k-edition F of G and H = G△F . Denote by F ′ ⊆ F the subset of pairs
from F which does not contain any vertex from C ∪R and let H ′ = G△F ′. Since |F | ≤ k and
(C, R) is a comb of length at least 2k + 2, there exist i ̸= j ∈ {1, . . . , l} such that Ci, Ri, Cj

and Rj do not include affected vertices of F . Let us take c1 ∈ Ci, r1 ∈ Ri, c2 ∈ Cj and
r2 ∈ Rj .

Suppose that H ′ is not trivially perfect, then there exists an obstruction W of H ′ such
that A = W ∩ (C ∪ R) ̸= ∅. Since pairs of F ′ do not contain vertices of C ∪ R, (C, R)
is a comb in H ′ and |A| = 4 is impossible since H ′[C ∪ R] = G[C ∪ R] is trivially perfect
by Proposition 10. We show that |A| = 3 is also impossible. If |A| = 3 then the vertex
x ∈ W\(C ∪ R) is in the set Vp ∪ Vf , otherwise the obstruction W would not be connected.
We now show that H ′[W ] is a claw, contains a triangle (as subgraph) or is not connected. If
x ∈ Vp, then by construction x is adjacent to every vertex of the comb and H ′[W ] would be
a claw. If x ∈ Vf and A contains at least two vertices in C, then these vertices would induce
a triangle with x. If x ∈ Vf and A contains at least two vertices r′, r′′ ∈ R, then x is not
adjacent to any of them (since Vf does not see R in G). If r′ and r′′ are not adjacent in H ′,
either the fourth vertex of W sees r′, r′′ and x so H ′[W ] is a claw, or H ′[W ] is disconnected.
If r′ and r′′ are adjacent in H ′, they must belong to a same module Ri. Again the fourth
vertex of W must either see them both thus forming a triangle, or none of them and H ′[W ]
is disconnected. In any case, A cannot be an obstruction and we conclude that either |A| = 1
or |A| = 2. We shall now construct an obstruction W ′ = (W\A) ∪ A′ such that H ′[W ] and
H ′[W ′] are isomorphic and A′ ⊆ {c1, r1, c2, r2}. We can observe that W must contain a
vertex from Vp or Vf .

If |A| = 1, take x ∈ A. If x ∈ R then let A′ = {r1}, else let A′ = {c1}. Since (C, R) is a
comb, H ′[W ] and H ′[W ′] are isomorphic.



M. Dumas, A. Perez, and I. Todinca 45:9

If |A| = 2, denote by x and y the elements of A. If x, y ∈ C, then H[W ] contains
a triangle. If x ∈ C and y ∈ R, in the subcase xy ∈ E(H ′) let A′ = {c1, r1} and
observe that c1r1 ∈ E(H ′), hence H ′[W ] and H ′[W ′] are isomorphic; in the other subcase
xy /∈ E(H ′), take A′ = {c2, r1}, so c2r1 /∈ E(H ′) thus again H ′[W ] and H ′[W ′] are
isomorphic. Eventually consider the last case x, y ∈ R. If xy ∈ E(H ′) then H[W ]
contains a triangle, else xy /∈ E(H ′), so let A′ = {r2, r1} and note that r2r1 /∈ E(H ′)
thus H ′[W ] and H ′[W ′] are isomorphic.

The set W ′ is an obstruction of H ′ and since the vertices in {c1, r1, c2, r2} are not incident
to any pair of F , W ′ is also an obstruction of H. Therefore H is not trivially perfect, which
is a contradiction, concluding the proof of the Lemma. ◀

▶ Rule 4. Given a comb (C, R) of length l ≥ 2k + 2 of G, remove from G the vertices in
Ci ∪ Ri for 2k + 2 < i ≤ l.

▶ Lemma 12 (⋆). Rule 4 is safe.

2.3 Reducing the teeth
▶ Lemma 13. Let (G = (V, E), k) be a yes-instance of Trivially Perfect Editing, and
(C, R) be a comb of G such that there exist a, b ∈ {1, . . . , l} with Σa≤i≤l|Ri| ≥ 2k + 1 and
Σb≤i<a|Ri| ≥ 2k + 1. Then there exists an optimal k-edition F of G such that for every
m ∈ {1, . . . , b − 1}, the vertices of Rm are all adjacent to the same vertices of V (G)\Rm in
G△F , and F contains no pair of vertices of Rm.

Proof. Let F be an optimal k-edition of G and H = G△F . There exist v2 ∈ (Ra ∪ Ra+1 ∪
· · · ∪ Rl) and v1 ∈ (Rb ∪ Rb+1 ∪ · · · ∪ Ra−1) unaffected by F . The neighborhood of v1 in H\R

must be a clique: indeed, if there exist x, y ∈ NG(v1)\R such that xy /∈ E(H), then since
(NG(v1)\R) ⊆ (NG(v2)\R), the vertices {v1, x, v2, y} would induce a C4. Let 1 ⩽ m < b, we
will construct an edition Fm such that |Fm| ⩽ |F |, Fm contains no pair of vertices included
in Rm and the vertices of Rm are all adjacent to the same vertices in G△Fm. Applying this
construction iteratively to each Rm, 1 ⩽ m < b will yield an edition F ∗ that verifies the
desired properties.

Let S be a maximal clique in H that contains NG(v1)\R and v1, and let K1, . . . , Kr be
the connected components of H\S. Observe that K1, . . . , Kr respect the conditions i, ii
and iii of Lemma 6 with S. Let vm ∈ Rm be a vertex contained in the least number of pairs
of F with the other element in S.

Denote by N the set of vertices of S adjacent to vm in graph H. Let H ′ be the graph
constructed from H\Rm and G[Rm] by adding the edges N × Rm, and Fm be the edition
such that H ′ = G△Fm. By construction |Fm| ≤ |F |, we will now show that H ′ is trivially
perfect.

We can observe that Rm ∩ S = ∅ (because v1 is unaffected by F and is non-adjacent with
Rm in G) and therefore that S is a maximal clique of H\Rm.

By construction of H ′, S is also a maximal clique of H ′ and Rm is a connected component
of Hm \ S. Let K ′

1, . . . , K ′
r′ be the connected components of (H\Rm)\S. Sets K ′

1, . . . , K ′
r′

verify the conditions i, ii and iii of Lemma 6 with respect to S in H\Rm and thus also in
H ′. Moreover H ′[S ∪ Rm] is trivially perfect and (NH′(Rm) × Rm) ⊆ E(H ′) by construction.
The family

⋃
1≤i≤r{NH(Ki)} is nested according to Lemma 6, and, by construction of H ′,⋃

1≤i≤r′{NH′(K ′
i)} ⊆

⋃
1≤i≤r{NH(Ki)}. We also have that N ∈

⋃
1≤i≤r{NH(Ki)}. Indeed,

let K(vm) the connected component of H \ S containing vm, according to condition iii from
Lemma 6 we have NH(K(vm)) = NH(vm)∩S = N . Therefore the family

⋃
1≤i≤r{NH′(K ′

i)}∪
{N} is also nested. By Lemma 6 applied on H ′ and S, graph H ′ is trivially perfect.
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As mentioned previously, we can apply this construction iteratively to each Rm, 1 ⩽ m < b

and obtain an edition F ∗ that verifies the desired properties. ◀

▶ Rule 5. Given a comb (C, R) of G such that there exist a, b ∈ {1, . . . , l} with Σa≤i≤l|Ri| ≥
2k + 1 and Σb≤i<a|Ri| ≥ 2k + 1. Then for every i ∈ {1, . . . , b − 1}, replace Ri by a clique of
size min(|Ri|, k + 1) with the same neighborhood.

▶ Lemma 14 (⋆). Rule 5 is safe.

▶ Lemma 15 (⋆). Let (G = (V, E), k) be an instance of Trivially Perfect Editing such
that Rules 2 to 5 are not applicable. Then, for every comb (C, R) of G, |C ∪ R| = O(k2).

▶ Lemma 16 (⋆). Given an instance (G = (V, E), k) of Trivially Perfect Editing,
Rules 4 and 5 can be exhaustively applied in polynomial time.

3 Bounding the size of a reduced instance

We now prove thoroughly that any reduced yes-instance of Trivially Perfect Editing
contains O(k3) vertices. To that end, we need the following definition and result.

▶ Definition 17 (LCA-closure [16]). Let T = (V, E) be a rooted tree and A ⊆ V (T ). The
lowest common ancestor-closure (LCA-closure) A′ of A is obtained as follows. Initially, set
A′ = A. Then, as long as there exist x, y ∈ A′ whose lowest common ancestor w is not in
A′, add w to A′. The LCA-closure of A is the last set A′ obtained using this process.

▶ Lemma 18 ([16]). Let T = (V, E) be a rooted tree, A ⊆ V (T ) and A′ = LCA-closure(A).
Then |A′| ⩽ 2 · |A| and for every connected component C of T \ A′, |NT (C)| ⩽ 2.

▶ Theorem 19. Trivially Perfect Editing admits a kernel with O(k3) vertices.

Proof. Let (G = (V, E), k) be a reduced yes-instance of Trivially Perfect Editing and
F a k-edition of G. Let H = G△F and T = (T, B) the universal clique decomposition of
H. The graph G is not necessarily connected, thus T is a forest. Let A be the set of nodes
t ∈ V (T ) such that the bag Bt contains a vertex affected by F . Since |F | ≤ k, we have
|A| ≤ 2k. Let A′ ⊆ V (T ) be the set containing the nodes of LCA-closure(A) and the root of
each connected component of T (in case the closure does not contain them). According to
Lemma 18 and Rule 1 which implies that there are at most 2k connected components in G

and thus 2k roots, we have |A′| ≤ 6k.
Let D be a connected component of T \ A′. We can observe that, by construction of A′

(which for every pair of nodes, contains also the smallest common ancestor in T ), only three
cases are possibles (see Figure 4):

NT (D) = ∅ (D is a connected component of T ).
NT (D) = {a} (D is a subtree of T whose parent is a ∈ A′).
NT (D) = {a1, a2} with one of the nodes a1, a2 ∈ A′ being an ancestor of the other in T .

We will say that these connected components are respectively of type 0, 1 or 2. For D ⊆ V (T ),
we denote by W (D) =

⋃
t∈D Bt the set of vertices of G corresponding to bags of D.

There is no connected component of type 0 or else W (D) would be a connected component
of G inducing a trivially perfect graph. Rule 1 would have been applied to this component,
contradicting the fact that G is a reduced instance.

Now consider the set of type 1 components D1, D2, . . . , Dr of T \ A′ attached in T to the
same node a ∈ A′. We show that Wa = W (D1) ∪ W (D2) ∪ · · · ∪ W (Dr) is a trivially perfect
module of G. In the graph H, Wa is by construction a module of the decomposition. Since
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a1

a2

CR

Vp

Vf
O(k2)

≤ k + 1

≤ k + 1

Figure 4 (Left) universal clique decomposition of a connected component of H. (Right) shape of
a reduced comb.

no vertex of Wa was affected by the edition F , Wa is also a module of G, trivially perfect by
heredity. By Lemma 8, we have |Wa| = O(k2). There are at most |A′| ⩽ 6k such sets Wa,
thus the set of vertices of G in bags of type 1 components is of size O(k3).

Now consider the type 2 connected components D of T \ A′ which have two neighbors
in T . Let a1 and a2 be these neighbors, one being the ancestor of the other, say a1 is the
ancestor of a2. Let t1, . . . , tl be the nodes of the tree on the path from a1 to a2, in this
order. The component D can be seen as a comb of shaft (Bt1 , . . . , Btl

). More precisely, by
construction of the universal clique decomposition, W (D) can be partitioned into a comb
(C, R) of H: the critical clique decomposition of C is (C1 = Bt1 , . . . , Cl = Btl

), and each
Ri corresponds to the union of bags of the subtrees rooted at ti which do not contain ti+1,
for 1 ⩽ i < l, and to the union of bags of the subtrees rooted at tl which do not contain
a2, for i = l. Since (C, R) was not affected by F , it is also a comb of G. Thus for each
type 2 component D, W (D) contains O(k2) vertices by Lemma 15. Since T is a forest, it
can contain at most |A′| − 1 ⩽ 6k − 1 such components in T \ A. Therefore the set of bags
containing type 2 connected components of T \ A contains O(k3) vertices.
It remains to bound the set of vertices of G which are in bags of A′. The vertices corresponding
to nodes of A′\A are critical cliques of G, and are hence of size at most k + 1 by Rule 2.
Thus the set of vertices in bags of A′\A is of size O(k2). The vertices corresponding to nodes
of A are critical cliques in H but not necessarily of G. Let Ba be a bag corresponding to a
node a ∈ A. We will show that Ba is covered by at most 2k + 1 critical cliques of G, which
by Rule 2 will imply that Ba contains O(k2) vertices of G, and thus the set of vertices in
bags of A′ is of size O(k3).

To see this, observe that Ba is a critical clique of H, and that G is obtained from H by
editing at most k pairs of vertices. A result from [31] claims that, starting from a graph H

and editing an edge, we add at most two critical cliques. The same arguments allow to claim
that if B is a set of vertices covered by at most p critical cliques in H, and if H ′ is obtained
by editing a pair of vertices x, y of H , then p + 2 critical cliques are enough to cover B in H ′.
To be complete, we now show this claim. Let C1, C2, . . . , Cp, . . . , Cq be the critical cliques of
H, suppose that B is covered by the first p cliques C1, . . . , Cp. For each i, 1 ≤ i ≤ q, the
set C ′′

i = Ci \ {x, y} is a clique module (not necessarily maximal) of H ′. In particular, each
C ′′

i is contained in a critical clique C ′
i of H (the C ′

i are not necessarily distinct). Let C ′(x)
and C ′(y) be the critical cliques of H ′ containing respectively x and y. Clearly, the critical
cliques C ′

1, . . . , C ′
p, C ′(x) and C ′(y) of H ′ cover the vertices of B, showing our claim. By

applying this argument k times (one for each pair of F ) to the bag Ba, which was a critical
clique of H, we conclude that it is covered by at most 2k + 1 critical cliques of G. Thus
|Ba| = O(k2) by Rule 2.
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We conclude that |V (G)| = O(k3). Finally, we claim that a reduced instance can
be computed in polynomial time. Indeed, Lemma 7 states that it is possible to reduce
exhaustively a graph under Rules 2 to 3. Once this is done, it remains to apply exhaustively
Rules 4 and 5 which is ensured by Lemma 16. ◀

4 Kernels for trivially perfect completion/deletion

In this section we show that the rules used for Trivially Perfect Editing are safe for
Trivially Perfect Completion and Trivially Perfect Deletion. First Rules 1, 2
and 3 are safe for both problems. Indeed, the safeness of Rule 2 directly follows from Lemma 1
and Rule 3 was shown safe in [13].

We will now argue that Rules 4 and 5 are also safe. Lemma 11 states that no trivially
perfect edition for an instance (G = (V, E), k) of Trivially Perfect Editing affects a
comb of G of length at least 2k + 2. This is also true when allowing only edge addition or
edge deletion, implying the safeness of Rule 4 in both cases. In the proof of Lemma 13, for a
trivially perfect edition F we construct another edition F ′ ⊆ F . In case F consists only of
edge additions or deletions, it is also the case for F ′, thus Lemma 13 holds for Trivially
Perfect Completion and Trivially Perfect Deletion and Rule 5 is safe for these
problems.

The proof for the size of the kernel is the same as the proof of Theorem 19. Altogether,
we obtain the following result.

▶ Theorem 20. Trivially Perfect Completion and Trivially Perfect Deletion
admits a kernel with O(k3) vertices.

5 Conclusion

We have provided a kernelization algorithm for Trivially Perfect Editing, producing
a cubic vertex-kernel, hence improving upon the O(k7)-size kernel of [13]. The techniques
extend to the deletion and completion versions of the problem, within the same bounds. A
natural question is whether the size of the kernel for Trivially Perfect Editing can
still be reduced – note that for Trivially Perfect Completion, Bathie et al. claim a
quadratic kernel [2].

Some ideas used in this work remind of very similar techniques applied to kernelization
problems for edge editing towards classes of graphs G having a tree-like decomposition. The
simplest case – like here or for the class of so-called 3-leaf power graphs, see [3] – is when the
vertices of the graph can be partitioned into bags inducing modules, and these bags can be
structured as nodes of a forest T , with specific adjacency rules. If an arbitrary graph G can
be turned into a graph of class G by editing at most k pairs of vertices, the edited pairs are
in some set A of at most 2k bags. Again by taking the lowest common ancestor closure A′ of
A, set A′ is of size O(k) and its removal from forest T will produce some chunks attached in
T to 0, 1 or 2 nodes of A′ (e.g., in [3], the authors speak of 1 and 2-branches, playing similar
roles to modules and combs in this article). Kernelization algorithms can be obtained if we
are able to reduce the bags themselves as well as the chunks, which hopefully have good
structural properties. It is natural to wonder how general are these techniques, especially on
subclasses of chordal graphs.
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Abstract
For a DFA, a word avoids a subset of states, if after reading that word the automaton cannot be
in any state from the subset regardless of its initial state. A subset that admits an avoiding word
is avoidable. The k-avoiding threshold of a DFA is the smallest number such that every avoidable
subset of size k can be avoided with a word no longer than that number. We study the problem
of determining the maximum possible k-avoiding thresholds. For every fixed k ≥ 1, we show a
general construction of strongly connected DFAs with n states and the k-avoiding threshold in
Θ(nk). This meets the known upper bound for k ≥ 3. For k = 1 and k = 2, the known upper
bounds are respectively in O(n2) and in O(n3). For k = 1, we show that 2n − 3 is attainable for
every number of states n in the class of strongly connected synchronizing binary DFAs, which is
supposed to be the best possible in the class of all DFAs for n ≥ 8. For k = 2, we show that
the conjectured solution for k = 1 (an upper bound in O(n)) also implies a tight upper bound in
O(n2) on 2-avoiding threshold. Finally, we discuss the possibility of using k-avoiding thresholds of
synchronizing automata to improve upper bounds on the length of the shortest reset words.
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1 Introduction

A deterministic finite complete semi-automaton (called simply automaton) is a 3-tuple
(Q, Σ, δ), where Q is a finite set of states, Σ is an input alphabet, and δ : Q × Σ → Q is the
transition function. The transition function is naturally extended to a function Q × Σ∗ → Q.
Throughout the paper, by n we always denote the number of states in Q.

Given a subset S ⊆ Q, the image of S under the action of a word w ∈ Σ∗ is δ(S, w) =
{δ(q, w) | q ∈ S}. The preimage of S under the action of w is δ−1(S, w) = {q ∈ Q | δ(q, w) ∈
S}.

The rank of a word w is the cardinality of the image δ(Q, w). A word w is reset if it has
rank 1, i.e., its action maps all the states to one state. If an automaton admits a reset word,
then it is called synchronizing, and its reset threshold is the length of the shortest reset word.

The central problem in the theory of synchronizing automata is the famous Černý
conjecture, which states that every synchronizing n-state automaton has reset threshold at
most (n−1)2. Fig. 1 shows the 4-state automaton from the well-known Černý series [2], which
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meets the conjectured upper bound for every n. The Černý conjecture is one of the most
longstanding open problems in automata theory, with constantly growing literature around
the topic; see an old survey [15] and a recent special issue dedicated to the problem [17]. The
best known general upper bound on reset threshold is cubic and equals ∼ 0.1654n3+o(n3) [11].
Better bounds are known for many subclasses of automata.

q1 q2

q3q4

b b

b

a

a

a

a, b

Figure 1 The Černý automaton with n = 4 states.

1.1 Avoiding words
Avoiding words are defined similarly to reset words. For a state q ∈ Q, a word w is avoiding
if q /∈ δ(Q, w), i.e., no state is mapped by the action of w to q. More generally, a word w

avoids a subset S ⊂ Q if δ(Q, w) ∩ S = ∅. Note that a word of rank n − k is also a word
avoiding some subset S of size k. In this way, a reset word is a specific case of an avoiding
word.

A subset S is avoidable if there exists an avoiding word for S. Then, the S-avoiding
threshold is the length of the shortest words avoiding S. The k-avoiding threshold is the
maximum S-avoiding threshold over all subsets S ⊂ Q of size k. In other words, every
avoidable subset of size k can be avoided with a word of length not exceeding the k-avoiding
threshold.

Obviously, a k-avoiding threshold is never larger than the (k + 1)-avoiding threshold. In
a synchronizing automaton, every subset of size ≤ n − 1 is avoidable.

For example, for the automaton from Fig. 1, the k-avoiding thresholds for k = 1, 2, 3 are
respectively equal to 4, 8, 12. For instance, the shortest word avoiding subset {q2, q3} is
ba3ba3, and no other subset of size two requires a longer word.

Avoiding words are closely related to reset words and can be interesting as such for similar
reasons. Yet, so far the focus was put on their application to bounding reset thresholds.

Originally, the concept was first used by Trahtman as a tool for improving the cubic upper
bound on the reset threshold [14]. This turned out to be wrong as is based on the claim
that 1-avoiding threshold is at most n, whereas it can be larger [5]. Nevertheless, the idea of
applying avoiding words has been shown to be useful. A non-trivial quadratic upper bound
on 1-avoiding threshold already led to the first improvement [12] of the old and well-known
upper bound on the reset threshold [8]. This was later refined to ∼ 0.1654n3 + o(n3) [11],
using the same method but improving the counting argument.

Better upper bounds on avoiding thresholds should lead to better upper bounds on reset
thresholds. Yet, the problem of avoiding may be of similar difficulty.

Avoiding a subset is closely related to subset reachability. The latter is the question for
a given subset T ⊆ Q, are there and how long are words w such that δ(Q, w) = T . It is
known that the decision problem is PSPACE-complete even if the automaton is strongly
connected [18] and the shortest such words can have a length larger than 2n/n [4]. It
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holds similarly in the weaker included version where w is such that δ(Q, w) ⊆ T [4]. This is
equivalent to avoiding the complement of T : δ(Q, w) ⊆ T is equivalent to δ(Q, w)∩(Q\T ) = ∅.
It is also equivalent to that w is totally extending, i.e., δ−1(T, w) = Q, which was shown to be
PSPACE-complete even if the automaton is strongly connected and binary [1]. It follows that
avoiding a subset, in general, should require exponentially long words, but precise bounds
were not shown so far. In particular, these results do not say what happens in the case of a
synchronizing automaton nor if the size of the subset S to avoid is small. Yet, as we note,
these cases are particularly important.

1.2 Known upper bounds
For the 1-avoiding threshold, the best known upper bound is quadratic in n. It is derived
through linear algebraic methods applied to automata.

▶ Theorem 1 (rephrased [12, Corollary 5]). For an n-state automaton, the 1-avoiding threshold
is at most (n − 2)(n − 1) + 2.

In the general case, for k-avoiding threshold, we have the following asymptotic bound:

▶ Theorem 2 (rephrased [1, Theorem 12]). Let A = (Q, Σ, δ) be an n-state automaton, let r

be the minimal rank in A over all words, and let m be the length of the shortest words of the
minimal rank. Then the k-avoiding threshold is at most O(nmin(r,k) + m).

Since for m we have only a cubic upper bound O(n3), this component is dominating for
k = 1 and k = 2. In these cases, it is unlikely to be tight. There is also the well-known rank
(Pin-Černý) conjecture [8] stating that m ≤ (n − r)2.

No better bounds on avoiding thresholds are known in the case of a synchronizing
and/or strongly connected automaton. Except for the obvious fact that for a synchronizing
automaton O(n3) is an upper bound on every k-avoiding threshold, and O(n2) would be an
upper bound if the (weak version of) Černý conjecture holds.

We note that it is also an easy exercise to prove that avoiding thresholds are small (at most
linear) for many subclasses of automata. For example, for Eulerian automata, the k-avoiding
threshold is at most k(n − 1) [6]. For aperiodic automata [13, 16], or more generally, for
automata with letters whose transitions contain only trivial cycles (self-loops), it is at most
n − 1.

1.3 Known lower bounds
Concerning automata with the largest possible avoiding thresholds, only a few particular
examples of automata were described so far. Moreover, they were limited to 1-avoiding
threshold.

The first such example is a 4-state automaton with the 1-avoiding threshold equal to
6, which was found as a counterexample to the conjecture that the 1-avoiding threshold is
bounded above by the number of states [5]. Later experiments [7] revealed several other
examples with n ≤ 11 states, suggesting that 2n − 2 may be an upper bound.

It is also known that deciding whether 1-avoiding threshold or {q}-avoiding threshold
(for a given q) is smaller than a given integer is NP-complete [1].

1.4 Contribution
We tackle the problem of constructing automata with large avoiding thresholds. In this
paper, we summarize our efforts.

MFCS 2021
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First, we show that 1-avoiding threshold can be equal to 2n − 3, for every number of
states n ≥ 2, and this is met by a series of strongly connected synchronizing automata. We
conjecture that it is best possible, except for finitely many examples meeting 2n − 2.

For the general case, we show a series of automata with k-avoiding thresholds in Θ(nk).
These automata are strongly connected but not synchronizing. This matches the asymptotic
upper bound for k ≥ 3, leaving open the cases k = 2 and k = 1. Yet, we show that the case
of k = 2 can be reduced to a possible solution of the case of k = 1.

Finally, we note the potential of avoiding words for improving upper bounds on the
reset threshold. So far, only an application of 1-avoiding threshold was considered; being in
O(n), it would imply an upper bound on the reset threshold equal to 7/48n3 + O(n2) [14].
However, with the generalized concept of avoiding subsets of size k, we can achieve more. If
the k-avoiding threshold is subquadratic for all k bounded by any growing function in n (e.g.,
if for all k ≤ log n, the k-avoiding threshold is o(n2)), then the reset threshold is subcubic.

2 1-avoiding threshold

We show a series of binary strongly connected synchronizing automata with 1-avoiding
threshold equal to 2n − 3. The existence of the series has been mentioned several times
([7, 12]), but it has not been described yet.

For each n ≥ 5, we define An = (Q = {q1, . . . , qn}, Σ = {a, b}, δ), which is shown in
Fig. 2. The transition function is defined as follows: δ(q1, a) = q2; δ(q1, b) = q1; δ(q2, a) = q1;
δ(q2, b) = q3; δ(q3, a) = q1; δ(q3, b) = q4; δ(qi, a) = δ(qi, b) = qi+1 for all i ∈ {4, . . . , n − 1};
δ(qn, a) = q4; δ(qn, b) = q2.

q4

q5

q6

q7

. . .

qn−1

qn

q3 q2

q1

a

a

b

a

b

a, b

a, b

a, b a, b

a, b

a, b

a

bb

Figure 2 The binary automaton An with the 1-avoiding threshold equal to 2n − 3.

▶ Proposition 3. For n ≥ 5, the automaton An is strongly connected and synchronizing,
and its reset threshold is at most 3n − 4.
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Proof. We can avoid all even-indexed states on the a-cycle by word (ab)k for some k:

Q
ab−→ Q \ {q4} ab−→ Q \ {q4, q6} ab−→ · · · ab−→ {q1, q2, q3} ∪ {q5, q7, . . .}.

Moreover, if n is even, then we can continue applying word ab to avoid also all odd-indexed
states on the a-cycle:

{q1, q2, q3} ∪ {q5, q7, . . .} ab−→ {q1, q2, q3} ∪ {q7, q9, . . .} ab−→ · · · ab−→ {q1, q2, q3} ab−→ {q1, q3}.

If n is odd, then we can apply one additional a letter to avoid all odd-number states and
repeat the procedure of avoiding even-number states, that is:

{q1, q2, q3} ∪ {q5, q7, . . .} a−→ {q1, q2, q3} ∪ {q4, q6, . . .} ab−→ {q1, q2, q3} ∪ {q6, q8, . . .}
ab−→ · · · ab−→ {q1, q2, q3, qn−1} ab−→ {q1, q2, q3}.

Overall, we can compress the automaton to the set {q1, q2, q3} using a word of length at
most 2(n − 3) for an even and 2(n − 3) + 1 for an odd n, since each ab application decreases
the size of the image by 1 until there are only three states left. The set {q1, q2, q3} can be
easily synchronized to q1 by the word abn−3aba. ◀

Informally, the key property of the construction is the following. To avoid q1, we must
avoid both q2 and q3. But to do so, we must first avoid two consecutive states in the cycle
q4, . . . , qn on a. This requires one full round on this cycle. In particular, the avoided states
on the cycle will be always q4 and q5 at some point. Then, we need a second round to map
these two gaps to q2 and q3, respectively. Hence, the shortest avoiding words for q1 have
length ∼ 2n.

▶ Theorem 4. For n ≥ 7, the 1-avoiding threshold of An equals 2n − 3.

Proof. We show that the length of the shortest avoiding words for state q1 is 2n − 3.
If n is even, then (ab)n−3bba is an avoiding word for q1 of length 2n − 3. We have:

Q
(ab)n−3

−−−−−→ {q1, q2, q3} bba−−→ {q2, q4, q5}.

If n ≥ 9 is odd, then aban−5babn−3a is the desired word. We have:

Q
ab−→ Q\{q4} an−5

−−−→ Q\{q3, qn−1} ba−→ Q\{q3, q4, q5} bn−3

−−−→ Q\{qn, q2, q3} a−→ Q\{q1, q4, q3}

For n = 7, a shortest avoiding word is abaabaaabba.
To prove the lower bound, we start with an auxiliary claim.

Claim 1: If a word v avoids state qn, then |v| ≥ n − 2. It follows because the only state that
can be avoided with one letter (a) is q3, and the shortest words with an action mapping q3
to qn have length n − 3.

Let w be a shortest word avoiding state q1. Since δ(q1, b) = q1, δ(q1, aa) = q1, and
δ(q1, aba) = q1, it follows that w must end with bba, as otherwise it would not be a shortest
such word. Let write w = w′bba. We have δ(qn, bba) = δ(qn−1, bba) = q1, which implies that
w′ must avoid both qn and qn−1. From Claim 1, |w′| ≥ n − 2, so we can write w = w′′xyubba,
where |u| = n − 5, |x| = |y| = 1, and |w′′| ≥ 1. Since w′ = w′′xyu avoids both qn and qn−1,
and these states are mapped respectively to qn and qn−1 by the action of every word of
length n − 5, we know that w′′xy avoids both q5 and q4.
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We consider three cases:
1. If y = a, then w′′x must avoid qn (as δ(qn, a) = q4). From Claim 1, we get that

|w′′x| ≥ n − 2, hence |w| ≥ (n − 2) + 1 + (n − 5) + 3 = 2n − 3.
2. If y = b and x = a, then w′′ must avoid qn (as δ(qn, ab) = q5). Similarly as in the previous

case, we get that |w| ≥ 2n − 2.
3. If y = b and x = b, then w′′ must avoid both q2 and q3. Then, however, w′′a would avoid

q1, which contradicts that w is a shortest such word. ◀

The proof covers the cases n ≥ 7, whereas the lower bound for the cases n ≤ 6 was
confirmed by experiments [7].

Automata An have another extremal property: The quadratic upper bound on the
1-avoiding threshold is derived by an iterative application of [12, Lemma 3], which for a given
subset S gives a word w of length at most n − |S| + 1 that either avoids a fixed state q ∈ Q

or compresses S (i.e., |δ(S, w)| < |S|). In the worst case, we must apply this lemma a linear
number of times, hence a quadratic upper bound follows. The automata An demonstrate
that this may be the case: we may be forced to apply the lemma Θ(n) times obtaining each
time the word w = ba, which compresses the subset. On the other hand, ba is very short
compared to the linear upper bound n − |S| + 1. Yet, it would be possible that also this
bound can be met. There also exists another series of automata (similar to the automaton
from Fig. 4) showing that the upper bound n − |S| + 1 on the length of shortest avoiding
or compressing word is tight for each n ≥ |S| ≥ 1. However, it is an open question whether
both these bounds can be met simultaneously.

2.1 Exceptional examples

q2

q3

q4

q5

q6q7

q1

a
a

a

a

b

b b

b

bb

a

a

a

b

Figure 3 An automaton with the 1-avoiding threshold equal to 2n − 2 = 12 (for state q1).

There are several particular examples of synchronizing automata with 1-avoiding threshold
equal to 2n − 2. For instance, for the automaton A5 it is 8. Another example is shown Fig. 3,
which is a largest known automaton meeting this bound.
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No such example seems to belong to a series keeping that 1-avoiding threshold. It is
known that there are no binary synchronizing automata exceeding 1-avoiding threshold 2n−3
in range n ∈ {8, 9, 10, 11} [7] (the case of n = 11 was verified later).

3 k-avoiding thresholds

3.1 General lower bound
For every fixed k ≥ 1, we show an infinite series of (non-synchronizing) automata such that
their k-avoiding threshold is in Θ(nk). The construction is built from gadgets of two types.

3.1.1 One-track counting gadget

q0

q1 . . . qℓ−1 qℓ

aI,ΣN

aR

aR

aR

aR,ΣN

ΣN
ΣN

ΣN
aI

aI aI aI

Figure 4 The one-track counting gadget. The identity action of ΣP is not drawn.

Let ℓ ≥ 2 be an integer, ΣP, ΣN be disjoint sets of letters, and aR, aI /∈ ΣP∪ΣN be two other
distinct letters. We define the one-track counting gadget T (ℓ, aR, ΣP, aI, ΣN) (shown in Fig. 4),
which is the automaton (QT , ΣT , δT ), where P = {q0, q1, . . . , qℓ}, ΣT = {aR, aI} ∪ ΣP ∪ ΣN
and δT is defined as follows. Letter aR is the reset letter with the action mapping all the
states to q1:

δT (qi, aR) = q1 for i ∈ {0, 1, . . . , ℓ}.

Letter aI is the incrementing letter with the action shifting the states q1, . . . , qk:

δT (qi, aI) = qi+1 for i ∈ {1, . . . , ℓ − 1}; δT (qℓ, aI) = q0; δT (q0, aI) = q0.

The letters from ΣP are called previous letters and they all act as the identity. The letters
from ΣN are called next letters; they have the same action mapping all the states to q0 except
qℓ, which is mapped to q1:

δT (qi, a) = q0 for i ∈ {0, 1, . . . , ℓ − 1}, a ∈ ΣN; δT (qℓ, a) = q1 for a ∈ ΣN.
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The mechanism of the gadget is that, in order to avoid q0, applications of next letters are
restricted. We must start with aR and then keep applying aℓ−1

I alternatingly with one next
letter. Additionally, previous letters can be applied interleaving at any time. Formally, we
have the following:

▶ Lemma 5. Consider T and a word w ∈ ({aI} ∪ ΣP ∪ ΣN)∗. If the word aRw avoids q0,
then in w, the number of occurrences of aI is at least ℓ − 1 times larger than the total number
of occurrences of letters from ΣN.

Proof. In the analysis, we can ignore the occurrences of ΣP and assume equivalently that
w ∈ ({aI} ∪ ΣN)∗.

Since w does not contain aR and this is the only letter with the action mapping q0
to another state, for every prefix w′ of w, aRw′ must also avoid q0. In the beginning,
δT (QT , aR) = {q1}. The only possibility to keep q0 avoided is to apply aℓ−1

I , which must
be followed by a letter from ΣN. We end with the singleton {q1} and the argument repeats,
keeping the proportion between the numbers of occurrences of aI and of letters from ΣN. ◀

3.1.2 Two-track counting gadget

q0

q1 . . . qℓ−1 qℓ

p1 . . . pℓ−1 pℓ

aI

aI aI aI

aI

aI aI aI

aI

aR

aR aR aR aR

aR aR aR aR

Figure 5 The two-track counting gadget. The identity action of ΣP is not drawn.

Let ℓ ≥ 1 be an integer, ΣP be a set of letters, and aR, aI be two other distinct letters.
We define the two-track counting gadget D(ℓ, aR, ΣP, aI) (shown in Fig. 5), which is the
automaton (QD , ΣP ∪{aR, aI}, δD), where QD = {q0, q1, . . . , qℓ, p1, . . . , pℓ}, and δD is defined
as follows. Letter aR is the reset letter, whose action maps the corresponding states qi to pi:

δD(qi, aR) = pi for i ∈ {1, . . . , ℓ}; δD(pi, aR) = pi for i ∈ {1, . . . , ℓ}; δD(q0, aR) = q0.

Letter aI is the incrementing letter acting as follows:

δD(qi, aI) = qi+1, δD(pi, aI) = pi+1 for i ∈ {1, . . . , ℓ − 1}; δD(pℓ, aI) = δD(qℓ, aI) = q0.

Finally, the letters from ΣP act as identity.
The point of the gadget is that, in order to avoid pℓ, we have to apply ℓ − 1 times letter

aI without applying letter aR in between.
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▶ Lemma 6. For D , if a word w ∈ Σ∗
D avoids pℓ, then w contains at least ℓ occurrences of

aI without any occurrence of aR in between.

Proof. Observe that for every word u ∈ Σ∗
D , we have δD(QD , uaR) = {q0, p1, . . . , pℓ}. Thus,

if pℓ is avoided by w, then w must contain a subword (factor) w′ ∈ ΣD \ {aR} such that
pℓ /∈ δD({q0, p1, . . . , pℓ}, v). Ignoring the letters from ΣP, the only such words are ai

I for
i ≥ ℓ. ◀

3.1.3 The construction
We build the construction as a union of gadgets. For each k ≥ 1 and ℓ ≥ 2, we build the
automaton K (k, ℓ) = (QK (k,ℓ), ΣK (k,ℓ), δK (k,ℓ)). Let ΣK (k,ℓ) = {aR, a1, . . . , ak} be the
input alphabet. The automaton is the disjoint union of the following gadgets:

D = D(ℓ, aR, {ak, . . . , a2}, a1);
Ti = T (ℓ, aR, {ak, . . . , ai+1}, ai, {ai−1, . . . , a1}) for all i ∈ {2, . . . , k}.

As it contains states from several gadgets, when denoting a state, we specify the owning
gadget in the superscript. Finally, we define the subset to be avoided:

Sk = {pD
ℓ } ∪

⋃
i∈{1,...,k−1}

{qTi
0 }.

Observe that the number of states n of K (k, ℓ) equals (k − 1)(ℓ + 1) + (1 + 2ℓ) =
kℓ + k + ℓ = ℓ(k + 1) + k.

Note that for every k, we have QK (k,ℓ) ⊊ QK (k+1,ℓ), ΣK (k,ℓ) ⊊ ΣK (k+1,ℓ), δK (k,ℓ) ⊊
δK (k+1,ℓ), and also Sk ⊊ Sk+1. Hence, every letter of K (k, ℓ) acts the same on the same
common states in every K (k + i) for i ≥ 0.

For every word u ∈ Σ∗, further applying aR yields the same fixed image, that is:

δK (k,ℓ)(QK (k,ℓ), uaR) = δK (k,ℓ)(QK (k,ℓ), aR) = {qD
0 }∪

⋃
j∈{1,...,ℓ}

{pD
j }∪

⋃
i∈{1,...,k}

{qTi
1 }. (1)

▶ Lemma 7. For K (k, ℓ), the subset Sk is avoidable and the length of the shortest avoiding
words for Sk equals 1 + ℓk (and ℓ if k = 1).

Proof. For k = 1, the shortest avoiding word for S1 is aℓ
1. For the remaining part, assume

that k ≥ 2.
Let wk be a shortest avoiding word for Sk in K (k, ℓ). First, we observe that wk must

contain aR, since otherwise the states qCi
0 could not be avoided. From (1), we know that

wk may contain only one occurrence of aR and it must appear at the beginning; otherwise,
there would exist a shorter avoiding word.

To show that Sk is avoidable with a word of length 1+ℓk, we use induction on k. We show
that there is an avoiding word wk from aR{a1, . . . , ak}∗ of the required length. For k = 1, there
is only the gadget D , and the word w1 = aRaℓ

1 does the job. Assuming the statement for k, we
show that it holds for k+1. Then wk acts the same in K (k+1, ℓ) as in K (k, ℓ) on the common
states. Let wk+1 be the word obtained from wk by inserting aℓ−1

k+1 before each occurrence of
every letter from {a1, . . . , ak}. Since ak+1 works as the identity in the gadgets D , T1, . . . , Tk,
Sk is avoided. Also, we can see that δK (k+1,ℓ)({q

Tk+1
0 , . . . , q

Tk+1
ℓ }, wk+1) = {q

Tk+1
1 }. Thus

wk+1 avoids Sk+1 and has length 1 + ℓk · ℓ = 1 + ℓk+1.
To show that there are no shorter avoiding words, we also use induction on k. We show

that every avoiding word for Sk contains at least ℓk occurrences of letters from {a1, . . . , ak}.
For k = 1, by Lemma 6, w has at least ℓ occurrences of a1. Assuming the statement for k,
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we show that it holds for k + 1. Let wk+1 = aRw′
k+1 be a shortest avoiding word for Sk+1.

Since Sk ⊂ Sk+1, wk+1 also avoids Sk. Let w′
k be the word obtained from w′

k+1 by removing
every occurrence of ak+1. Then, aRw′

k is over the alphabet of K (k, ℓ) and is an avoiding
word for Sk in K (k, ℓ). Thus, by the inductive assumption, it has at least ℓk occurrences of
letters from {a1, . . . , ak}. Then w′

k+1 contains them as well. By Lemma 4 for the last gadget
Tk+1, where the set of the next letters is {a1, . . . , ak}, we get that w′

k+1 also must contain
at least (ℓ − 1) · ℓk occurrences of ak+1. Altogether, w′

k+1 contains at least ℓk+1 occurrences
of letters from {a1, . . . , ak+1}. ◀

3.1.4 Strong connectivity

Each particular gadget is already strongly connected. We can make the whole construction
strongly connected by redefining the special action of aR so that its transitions work cyclically
on the gadgets. Let

δK (k,ℓ)(qD
0 , aR) = qT1

1 ;

δK (k,ℓ)(qTi
j , aR) = q

Ti+1
1 for i ∈ {1, . . . , k − 1}, j ∈ {0, . . . , ℓ};

δK (k,ℓ)(qTk
j , aR) = qD

0 for j ∈ {0, . . . , ℓ};

and the action is left unchanged for the other states of D : qD
1 , . . . , qD

ℓ , pD
1 , . . . , pD

ℓ .
Since (1) still holds for the modified construction, Lemma 7 works as well. We conclude

the construction with the following:

▶ Theorem 8. For every k ≥ 2, there exists an infinite series of strongly connected automata
such that its k-avoiding threshold is at least 1 +

(
n−k
k+1

)k

. For a fixed k, its k-avoiding
threshold is in Θ(nk).

Proof. For an integer k ≥ 2, the build the automata K (k, ℓ) for all ℓ ≥ 2. Each K (k, ℓ)
has n = ℓ(k + 1) + k states and its k-avoiding threshold is at least 1 + ℓk, thus we get the
lower bound.

Note that aR is the shortest word of the minimal rank, so for a fixed k, the lower bound
asymptotically coincides with the upper bound from Theorem 2 for k ≥ 2, thus the k-avoiding
threshold is in Θ(nk). ◀

3.2 2-avoiding threshold reduction

The bound O(nk) is asymptotically tight for k ≥ 3, but the cases of k = 1 and k = 2 remain
open. This is due to the cubic upper bound on the length of the shortest minimal-rank words.
However, we can reduce the problem for k = 2 to the case of k = 1. If 1-avoiding threshold is
bounded by f(n), then 2-avoiding threshold is at most O(n2 + n · f(n)). Thus, if 1-avoiding
threshold is at most linear, then 2-avoiding threshold is at most quadratic, which would be a
tight bound.

A similar result, but restricted to strongly connected synchronizing automata, was shown
in [12, Lemma 13]. Here, we show it in the general case, which in essence combines both
techniques behind Theorem 8 and Theorem 4.

▶ Theorem 9. For every n-state automaton, if the 1-avoiding threshold is at most f(n) for
some function f , then the 2-avoiding threshold is at most O(n2 + n · f(n))).
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Proof. A strongly connected bottom component is a minimal non-empty set of states X ⊆ Q

such that for every word w we have δ(X, w) ⊆ X. A synchronizing automaton has exactly
one strongly connected bottom component, whereas a non-synchronizing automaton can have
many of them. Let z be a shortest word such that all states in δ(Q, z) are in the strongly
connected bottom components of the automaton. It is well-known that the length of z is in
O(n2) [9].

Let {q1, q2} be a subset to avoid. States q1 and q2 are either in the same strongly
connected component or in separate ones. In any case, we can ignore every other strongly
connected component, since their states cannot be mapped to q1 or q2. Let C1 and C2 be
these components, respectively of q1 and q2. From now, consider the automaton containing
only C1 and C2.

Let u1 and u2 be avoiding words respectively for q1 and q2, both of length at most f(n).
We build iteratively some words w1, w2, . . . , wn−1. Each wi will be of length O(i(n+f(n))).

Let w0 = ε.
Assume that we have built wi, and let X = δ(Q, wi). Now, we use a linear algebraic

argument to infer that one of three possibilities hold:
(1) there exists a word v of length at most n − 1 such that q1 /∈ δ(X, vu2), or
(2) there exists a word v of length at most n − 1 such that there are at least two distinct

states r1, r2 ∈ X such that δ(r1, vu2) = δ(r2, vu2) = q1, or
(3) there does not exist any word v (of any length) satisfying (1) or (2).
We omit to repeat the argument here since it follows in the same way as in the proof of [12,
Lemma 13] and requires introducing many linear algebraic definitions. In [12, Lemma 13],
however, (3) cannot happen due to the assumption that the automaton is synchronizing and
strongly connected, so such a word v always exist.

If (1) holds, then wivu2 is an avoiding word for {q1, q2} and it has a desired length. If (2)
holds, then let wi+1 = wivu2, which is longer than wi by at most n − 1 + f(n). If (3) holds,
then it means that wi in the automaton restricted to C1 has the minimal rank. Otherwise,
we could map two distinct states from X ∩ C1 to the same state, and then map it to q1. In
this case, we also stop with wi.

If we have stopped with (3), then we repeat the construction symmetrically for q2. If
we also do not find an avoiding word, then we obtain a word w′

i′ that has the minimal rank
in the automaton restricted to C2. Altogether, wiwi′ has the minimal rank the automaton
with both C1 and C2.

Then, it remains to use the upper bound from Theorem 2. Since the length of wiwi′ is
an upper bound on m, we get the upper bound O(n2 + n · f(n)).

Finally, we have to add z at the beginning to construct an avoiding word in the original
automaton, and the length of z is also at most O(n2). ◀

4 Bounding reset threshold with avoiding words

If 1-avoiding threshold is subquadratic, it would yield an upper bound on reset threshold
equal to 7/48n3 + o(n3). However, the application of 1-avoiding threshold to bound reset
threshold can be generalized to the usage of k-avoiding thresholds, if they are small enough.
It turns out that, in a synchronizing automaton, a subquadratic value of k-avoiding thresholds
already for small values of k is enough to imply a subcubic upper bound on the reset threshold.
In the following calculations, we disregard particular constants and focus only on asymptotic
bounds.

MFCS 2021



46:12 Lower Bounds on Avoiding Thresholds

▶ Lemma 10. Let (Q, Σ, δ) be an n-state synchronizing automaton and w be a word of rank
r ≥ 2. There exist at least one state q ∈ δ(Q, w) such that |δ−1({q}, w)| ≤ ⌊n/r⌋.

Proof. For each q, the states in δ−1({q}, w) are pairwise disjoint and they cover the whole Q.
As we have r states in R, there exist a state q ∈ R such that the cardinality of δ−1({q}, w)
is at most n/r. ◀

▶ Lemma 11. Let (Q, Σ, δ) be an n-state synchronizing automaton and w be a word of rank
r ≥ 2. There is a word of rank at most r − 1 and of length at most |w| + d, where d is the
⌊n/r⌋-avoiding threshold.

Proof. We take the state q from Lemma 10. Since r ≥ 2, so ⌊n/r⌋ < n, thus every subset of
that size is avoidable. We first avoid the subset δ−1({q}, w) by a word u of length at most
d, and then apply w. We have δ(Q, uw) ⊆ δ(Q, w) and q ∈ δ(Q, w), but also q /∈ δ(Q, uw),
thus we obtain that δ(Q, uw) ⊊ δ(Q, w). ◀

Taking the usual notation, ω(1) is the set of R → R functions growing faster than a
constant.

▶ Theorem 12. If there exists a function f ∈ ω(1) such that for every n-state synchronizing
automaton and every k ≤ f(n), the k-avoiding threshold is at most O(n2)/f(n), then the
reset threshold is in o(n3).

Proof. We build a reset word in two phases. First, we start with the empty word and
iteratively apply Lemma 11 until the built word reaches a rank of at most n/f(n). Thus,
there are at most n − n/f(n) applications of the lemma. The rank is at least n/f(n) every
time, so we need the k-avoiding threshold for k ≤ n/(n/f(n)) = f(n). Hence, d from the
lemma is bounded above by O(n2)/f(n) from the assumption of the theorem. It follows that
the resulted word of rank n/f(n) has length at most (n−n/f(n)) ·O(n2)/f(n) = O(n3)/f(n).

In the second phase, we use the usual pair compression [8]. We need to compress a pair
at most n/f(n) − 1 times, each time appending a word of length smaller than n2. Thus, the
word from this phase also has length at most O(n3)/f(n).

Altogether, our reset word has length at most n3/f(n), which is in o(n3). ◀

5 Conclusions, discussion, and open problems

In the general case of an automaton and its k-avoiding threshold, we have a complete
asymptotic solution for k ≥ 3. The cases of k = 2 and k = 1 are open, yet a conjectured
solution to the latter would solve also the former.

As for now, determining the maximum 1-avoiding threshold is the core problem, in
particular in the class of synchronizing automata, but the general case of an automaton does
not seem different for k = 1. Here, we considered a precise bound and have shown that
2n − 3 is attainable for every n ≥ 2. Yet, a few isolated examples reach 2n − 2. We have the
following conjecture:

A trivial extension of an automaton (Q, Σ, δ) is any automaton (Q, Σ ∪ Σ′, δ ∪ δ′) such
that each letter from Σ′ act either as an identity or as a letter from Σ.

▶ Conjecture 13. For an n-state automaton, the 1-avoiding threshold is at most 2n − 3,
except for a finite number of cases and their trivial extensions, where it is equal to 2n − 2.

A weak version (with any linear bound) of Conjecture 13 implies the following:
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▶ Conjecture 14. For an n-state automaton, a tight upper bound on 2-avoiding threshold is
O(n2).

Conjecture 13 was verified for small cases [7], in particular up to 11 states for binary
synchronizing automata. We have also experimented with the case of k = 2. The maximum
2-avoiding threshold of an n-state binary synchronizing automaton for n = 3, . . . , 10 equals
respectively 6, 8, 12, 17, 19, 23, 25, and 28. However, for this problem, the range is much
too small to reveal the tendency.

The case of synchronizing automata is much harder, and the problem remains open for
all k. We have the trivial upper bound O(n3), thus the situation is surely different than in
the general case already for k ≥ 4 and most likely already for k ≥ 2.

We have made an effort to find a lower bound on the maximum possible k-avoiding
threshold also for k ≥ 2. We have not found any series of automata that would exceed the
upper bound O(kn) (when k is a variable). This bound is easily met, for example by the
well-known Rystsov series [10] with a sink (zero) state and reset threshold n(n − 1)/2. We
should consider the following:

▶ Conjecture 15. For an n-state synchronizing automaton, the k-avoiding threshold is at
most O(kn) (when k is a variable).

It turns out that this is a weaker (by several means) version of the disproved Don’s
conjecture [3, Conjecture 18], which states that if a subset T is reachable, then it is reachable
with a word of length at most n(n − |T |). We know that Conjecture 15 does not hold
for non-synchronizing automata, and even for synchronizing automata with the original
non-asymptotic bound (by e.g., Theorem 4 for k = 1). On the other hand, if the reset
threshold is at most quadratic, then the conjecture trivially holds for k ∈ Θ(n).

Finally, we have noted that a subquadratic upper bound on k-avoiding threshold of a
synchronizing automaton for small, but non-constant, values of k, is enough to imply a
subcubic upper bound on reset threshold. This should motivate further efforts on bounding
avoiding thresholds. Since the current upper bound on 1-avoiding threshold is quadratic, this
requires both decreasing it and generalizing to k-avoiding thresholds for small k. We know
that a subquadratic upper bound for k = 2 is not possible in the class of non-synchronizing
automata. Yet, our conjectures are much stronger than the required upper bound to give
further improvements.
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Abstract
Temporal logics for the specification of information-flow properties are able to express relations
between multiple executions of a system. The two most important such logics are HyperLTL
and HyperCTL*, which generalise LTL and CTL* by trace quantification. It is known that this
expressiveness comes at a price, i.e. satisfiability is undecidable for both logics.
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1 Introduction

Most classical temporal logics like LTL and CTL∗ refer to a single execution trace at a time
while information-flow properties, which are crucial for security-critical systems, require
reasoning about multiple executions of a system. Clarkson and Schneider [13] coined the
term hyperproperties for such properties which, structurally, are sets of sets of traces. Just
like ordinary trace and branching-time properties, hyperproperties can be specified using
temporal logics, e.g. HyperLTL and HyperCTL∗ [12], expressive, but intuitive specification
languages that are able to express typical information-flow properties such as noninterference,
noninference, declassification, and input determinism. Due to their practical relevance
and theoretical elegance, hyperproperties and their specification languages have received
considerable attention during the last decade [1, 2, 5, 6, 7, 10, 12, 13, 14, 16, 26, 28, 31, 32, 39].
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HyperLTL is obtained by extending LTL [34], the most influential specification language
for linear-time properties, by trace quantifiers to refer to multiple executions of a system.
For example, the HyperLTL formula

∀π. ∀π′. G(iπ ↔ iπ′) → G(oπ ↔ oπ′)

expresses input determinism, i.e. every pair of traces that always has the same input (represen-
ted by the proposition i) also always has the same output (represented by the proposition o).
Similarly, HyperCTL∗ is the extension of the branching-time logic CTL∗ [17] by path quan-
tifiers. HyperLTL only allows formulas in prenex normal form while HyperCTL∗ allows
arbitrary quantification, in particular under the scope of temporal operators. Consequently,
HyperLTL formulas are evaluated over sets of traces while HyperCTL∗ formulas are evaluated
over transition systems, which yield the underlying branching structure of the traces.

All basic verification problems, e.g. model checking [18, 25], runtime monitoring [3,
8, 11, 24], and synthesis [9, 21, 22], have been studied. Most importantly, HyperCTL∗

model checking over finite transition systems is decidable and TOWER-complete for a fixed
transition system [25, 33]. However, for a small number of alternations, efficient algorithms
have been developed and were applied to a wide range of problems, e.g. an information-flow
analysis of an I2C bus master [25], the symmetric access to a shared resource in a mutual
exclusion protocol [25], and to detect the use of a defeat device to cheat in emission testing [4].

But surprisingly, the exact complexity of the satisfiability problems for HyperLTL and
HyperCTL∗ is still open. Finkbeiner and Hahn proved that HyperLTL satisfiability is
undecidable [19], a result which already holds when only considering finite sets of ultimately
periodic traces and ∀∃-formulas. In fact, Finkbeiner et al. showed that HyperLTL satisfiability
restricted to finite sets of ultimately periodic traces is Σ0

1-complete [20] (i.e. complete for
the set of recursively enumerable problems). Furthermore, Hahn and Finkbeiner proved
that the ∃∗∀∗-fragment has decidable satisfiability [19] while Mascle and Zimmermann
studied the HyperLTL satisfiability problem restricted to bounded sets of traces [33]. The
latter work implies that HyperLTL satisfiability restricted to finite sets of traces (even non
ultimately periodic ones) is also Σ0

1-complete. Finally, Finkbeiner et al. developed tools and
heuristics [20, 23].

As every HyperLTL formula can be turned into an equisatisfiable HyperCTL∗ formula,
HyperCTL∗ satisfiability is also undecidable. Moreover, Rabe has shown that it is even
Σ1

1-hard [35], i.e. it is not even arithmetical. However, both for HyperLTL and for HyperCTL∗

satisfiability, only lower bounds, but no upper bounds, are known.

Our Contributions. In this paper, we settle the complexity of the satisfiability problems for
HyperLTL and HyperCTL∗ by determining exactly how undecidable they are. That is, we
provide matching lower and upper bounds in terms of the analytical hierarchy and beyond,
where decision problems (encoded as subsets of N) are classified based on their definability
by formulas of higher-order arithmetic, namely by the type of objects one can quantify over
and by the number of alternations of such quantifiers. We refer to Roger’s textbook [36]
for fully formal definitions. For our purposes, it suffices to recall the following classes. Σ0

1
contains the sets of natural numbers of the form

{x ∈ N | ∃x0 · · · ∃xk. ψ(x, x0, . . . , xk)}

where quantifiers range over natural numbers and ψ is a quantifier-free arithmetic formula.
The notation Σ0

1 signifies that there is a single block of existential quantifiers (the subscript 1)
ranging over natural numbers (type 0 objects, explaining the superscript 0). Analogously, Σ1

1
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is induced by arithmetic formulas with existential quantification of type 1 objects (functions
mapping natural numbers to natural numbers) and arbitrary (universal and existential)
quantification of type 0 objects. Finally, Σ2

1 is induced by arithmetic formulas with existential
quantification of type 2 objects (functions mapping type 1 objects to natural numbers) and
arbitrary quantification of type 0 and type 1 objects. So, Σ0

1 is part of the first level of the
arithmetic hierarchy, Σ1

1 is part of the first level of the analytical hierarchy, while Σ2
1 is not

even analytical.
In terms of this classification, we prove that HyperLTL satisfiability is Σ1

1-complete while
HyperCTL∗ satisfiability is Σ2

1-complete, thereby settling the complexity of both problems
and showing that they are highly undecidable. In both cases, this is a significant increase of
the lower bound and the first upper bound.

First, let us consider HyperLTL satisfiability. The Σ1
1 lower bound is a reduction from

the recurrent tiling problem, a standard Σ1
1-complete problem asking whether N × N can be

tiled by a given finite set of tiles. So, let us consider the upper bound: Σ1
1 allows to quantify

over type 1 objects: functions from natural numbers to natural numbers, or, equivalently,
over sets of natural numbers, i.e. countable objects. On the other hand, HyperLTL formulas
are evaluated over sets of infinite traces, i.e. uncountable objects. Thus, to show that
quantification over type 1 objects is sufficient, we need to apply a result of Finkbeiner and
Zimmermann proving that every satisfiable HyperLTL formula has a countable model [26].
Then, we can prove Σ1

1-membership by expressing the existence of a model and the existence
of appropriate Skolem functions for the trace quantifiers by type 1 quantification. We also
prove that the satisfiability problem remains Σ1

1-complete when restricted to ultimately
periodic traces, or, equivalently, when restricted to finite traces.

Then, we turn our attention to HyperCTL∗ satisfiability. Recall that HyperCTL∗ formulas
are evaluated over (possibly infinite) transition systems, which can be much larger than
type 2 objects whose cardinality is bounded by c, the cardinality of the continuum. Hence,
to obtain our upper bound on the complexity we need, just like in the case of HyperLTL,
an upper bound on the size of minimal models of satisfiable HyperCTL∗ formulas. To this
end, we generalise the proof of Finkbeiner and Zimmermann to HyperCTL∗, showing that
every satisfiable HyperCTL∗ formula has a model of size c. We also exhibit a satisfiable
HyperCTL∗ formula φc whose models all have at least cardinality c, as they have to encode
all subsets of N by disjoint paths. Thus, our upper bound c is tight.

With this upper bound on the cardinality of models, we are able to prove Σ2
1-membership

of HyperCTL∗ satisfiability by expressing with type 2 quantification the existence of a model
and the existence of a winning strategy in the induced model checking game. The matching
lower bound is proven by directly encoding the arithmetic formulas inducing Σ2

1 as instances of
the HyperCTL∗ satisfiability problem. To this end, we use the formula φc whose models have
for each subset A ⊆ N a path encoding A. Now, quantification over type 0 objects (natural
numbers) is simulated by quantification of a path encoding a singleton set, quantification
over type 1 objects (which can be assumed to be sets of natural numbers) is simulated by
quantification over the paths encoding such subsets, and existential quantification over type 2
objects (which can be assumed to be subsets of 2N) is simulated by the choice of the model,
i.e. a model encodes k subsets of 2N if there are k existential type 2 quantifiers. Finally,
the arithmetic operations can easily be implemented in HyperLTL, and therefore also in
HyperCTL∗.

After settling the complexity of satisfiability, we turn our attention to the HyperLTL
quantifier alternation hierarchy and its relation to satisfiability. Rabe remarks that the
hierarchy is strict [35], and Mascle and Zimmermann show that every HyperLTL formula has

MFCS 2021
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a polynomial-time computable equi-satisfiable formula with one quantifier alternation [33].
Here, we present a novel proof of strictness by embedding the FO[<] alternation hierarchy,
which is also strict [15, 37]. We use our construction to prove that for every n > 0, deciding
whether a given formula is equivalent to a formula with at most n quantifier alternations is
Π1

1-complete (i.e. the co-class of Σ1
1).

All proofs omitted due to space restrictions can be found in the full version [27].

2 Preliminaries

Fix a finite set AP of atomic propositions. A trace over AP is a map t : N → 2AP, denoted
by t(0)t(1)t(2) · · · . It is ultimately periodic, if t = x · yω for some x, y ∈ (2AP)+, i.e. there are
s, p > 0 with t(n) = t(n+ p) for all n ≥ s. The set of all traces over AP is (2AP)ω.

A transition system T = (V,E, vI , λ) consists of a set V of vertices, a set E ⊆ V × V

of (directed) edges, an initial vertex vI ∈ V , and a labelling λ : V → 2AP of the vertices by
sets of atomic propositions. A path ρ through T is an infinite sequence ρ(0)ρ(1)ρ(2) · · · of
vertices with (ρ(n), ρ(n+ 1)) ∈ E for every n ≥ 0.

HyperLTL. The formulas of HyperLTL are given by the grammar

φ ::= ∃π. φ | ∀π. φ | ψ ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ranges over atomic propositions in AP and where π ranges over a fixed countable
set V of (trace) variables. Conjunction, implication, and equivalence are defined as usual,
and the temporal operators eventually F and always G are derived as Fψ = ¬ψUψ and
Gψ = ¬ F ¬ψ. A sentence is a formula without free variables.

The semantics of HyperLTL is defined with respect to a trace assignment, a partial
mapping Π: V → (2AP)ω. The assignment with empty domain is denoted by Π∅. Given a
trace assignment Π, a variable π, and a trace t we denote by Π[π → t] the assignment that
coincides with Π everywhere but at π, which is mapped to t. Furthermore, Π[j,∞) denotes
the trace assignment mapping every π in Π’s domain to Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · ,
its suffix from position j onwards.

For sets T of traces and trace assignments Π we define
(T,Π) |= aπ if a ∈ Π(π)(0),
(T,Π) |= ¬ψ if (T,Π) ̸|= ψ,
(T,Π) |= ψ1 ∨ ψ2 if (T,Π) |= ψ1 or (T,Π) |= ψ2,
(T,Π) |= Xψ if (T,Π[1,∞)) |= ψ,
(T,Π) |= ψ1 Uψ2 if there is a j ≥ 0 such that (T,Π[j,∞)) |= ψ2 and for all 0 ≤ j′ < j:
(T,Π[j′,∞)) |= ψ1,
(T,Π) |= ∃π. φ if there exists a trace t ∈ T such that (T,Π[π → t]) |= φ, and
(T,Π) |= ∀π. φ if for all traces t ∈ T : (T,Π[π → t]) |= φ.

We say that T satisfies a sentence φ if (T,Π∅) |= φ. In this case, we write T |= φ and say
that T is a model of φ. Although HyperLTL sentences are required to be in prenex normal
form, they are closed under Boolean combinations, which can easily be seen by transforming
such formulas into prenex normal form. Two HyperLTL sentences φ and φ′ are equivalent if
T |= φ if and only if T |= φ′ for every set T of traces.



M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann 47:5

HyperCTL∗. The formulas of HyperCTL∗ are given by the grammar

φ ::= aπ | ¬φ | φ ∨ φ | Xφ | φUφ | ∃π. φ | ∀π. φ

where a ranges over atomic propositions in AP and where π ranges over a fixed countable
set V of (path) variables, and where we require that each temporal operator appears in the
scope of a path quantifier. Again, other Boolean connectives and temporal operators are
derived as usual. Sentences are formulas without free variables.

Let T be a transition system. The semantics of HyperCTL∗ is defined with respect to a
path assignment, a partial mapping Π from variables in V to paths of T . The assignment
with empty domain is denoted by Π∅. Given a path assignment Π, a variable π, and a path ρ
we denote by Π[π → ρ] the assignment that coincides with Π everywhere but at π, which is
mapped to ρ. Furthermore, Π[j,∞) denotes the path assignment mapping every π in Π’s
domain to Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · , its suffix from position j onwards.

For transition systems T and path assignments Π we define
(T ,Π) |= aπ if a ∈ λ(Π(π)(0)), where λ is the labelling function of T ,
(T ,Π) |= ¬ψ if (T ,Π) ̸|= ψ,
(T ,Π) |= ψ1 ∨ ψ2 if (T ,Π) |= ψ1 or (T ,Π) |= ψ2,
(T ,Π) |= Xψ if (T ,Π[1,∞)) |= ψ,
(T ,Π) |= ψ1 Uψ2 if there exists a j ≥ 0 such that (T ,Π[j,∞)) |= ψ2 and for all 0 ≤ j′ < j:
(T ,Π[j′,∞)) |= ψ1,
(T ,Π) |= ∃π. φ if there exists a path ρ of T , starting in rcnt(Π), such that (T ,Π[π →
ρ]) |= φ, and
(T ,Π) |= ∀π. φ if for all paths ρ of T starting in rcnt(Π): (T ,Π[π → ρ]) |= φ.

Here, rcnt(Π) is the initial vertex of Π(π), where π is the path variable most recently added
to Π, and the initial vertex of T if Π is empty.1 We say that T satisfies a sentence φ if
(T ,Π∅) |= φ. In this case, we write T |= φ and say that T is a model of φ.

Complexity Classes for Undecidable Problems. A type 0 object is a natural number n ∈ N,
a type 1 object is a function f : N → N, and a type 2 object is a function f : (N → N) → N.
As usual, predicate logic with quantification over type 0 objects (first-order quantifiers) is
called first-order logic. Second- and third-order logic are defined similarly.

We consider formulas of arithmetic, i.e. predicate logic with signature (0, 1,+, ·, <)
evaluated over the natural numbers. With a single free variable of type 0, such formulas
define sets of natural numbers (see, e.g. Rogers [36] for more details):

Σ0
1 contains the sets of the form {x ∈ N | ∃x0 · · · ∃xk. ψ(x, x0, . . . , xk)} where ψ is a

quantifier-free arithmetic formula and the xi are variables of type 0.
Σ1

1 contains the sets of the form {x ∈ N | ∃x0 · · · ∃xk. ψ(x, x0, . . . , xk)} where ψ is an
arithmetic formula with arbitrary (existential and universal) quantification over type 0
objects and the xi are variables of type 1.
Σ2

1 contains the sets of the form {x ∈ N | ∃x0 · · · ∃xk. ψ(x, x0, . . . , xk)} where ψ is an
arithmetic formula with arbitrary (existential and universal) quantification over type 0
and type 1 objects and the xi are variables of type 2.

Note that there is a bijection between functions of the form f : N → N and subsets of N,
which is implementable in arithmetic. Similarly, there is a bijection between functions of the

1 For the sake of simplicity, we refrain from formalising this notion properly, which would require to keep
track of the order in which variables are added to Π’s domain.
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form f : (N → N) → N and subsets of 2N, which is again implementable in arithmetic. Thus,
whenever convenient, we use quantification over sets of natural numbers and over sets of sets
of natural numbers, instead of quantification over type 1 and type 2 objects; in particular
when proving lower bounds. We then include ∈ in the signature.

3 HyperLTL satisfiability is Σ1
1-complete

In this section we settle the complexity of the satisfiability problem for HyperLTL: given a
HyperLTL sentence, determine whether it has a model.

▶ Theorem 1. HyperLTL satisfiability is Σ1
1-complete.

We should contrast this result with [20, Theorem 1], which shows that HyperLTL
satisfiability by finite sets of ultimately periodic traces is Σ0

1-complete. The Σ1
1-completeness

of HyperLTL satisfiability in the general case implies that, in particular, the set of satisfiable
HyperLTL sentences is neither recursively enumerable nor co-recursively enumerable. A
semi-decision procedure, like the one introduced in [20] for finite sets of ultimately periodic
traces, therefore cannot exist in general.

The Σ1
1 upper bound relies on the fact that every satisfiable HyperLTL formula has

a countable model [26]. This allows us to represent these models, and Skolem functions
on them, by sets of natural numbers, which are type 1 objects. In this encoding, trace
assignments are type 0 objects, as traces in a countable set can be identified by natural
numbers. With some more existential type 1 quantification one can then express the existence
of a function witnessing that every trace assignment consistent with the Skolem functions
satisfies the quantifier-free part of the formula under consideration.

▶ Lemma 2. HyperLTL satisfiability is in Σ1
1.

Proof. Let φ be a HyperLTL formula, let Φ denote the set of quantifier-free subformulas of φ,
and let Π be a trace assignment whose domain contains the variables of φ. The expansion of
φ on Π is the function eφ,Π : Φ × N → {0, 1} with

eφ,Π(ψ, j) =
{

1 if Π[j,∞) |= ψ, and
0 otherwise.

The expansion is completely characterised by the following consistency conditions:
eφ,Π(aπ, j) = 1 if and only if a ∈ Π(π)(j).
eφ,Π(¬ψ, j) = 1 if and only if eφ,Π(ψ, j) = 0.
eφ,Π(ψ1 ∨ ψ2, j) = 1 if and only if eφ,Π(ψ1, j) = 1 or eφ,Π(ψ2, j) = 1.
eφ,Π(Xψ, j) = 1 if and only if eφ,Π(ψ, j + 1) = 1.
eφ,Π(ψ1 Uψ2, j) = 1 if and only if there is a j′ ≥ j such that eφ,Π(ψ2, j

′) = 1 and
eφ,Π(ψ2, j

′′) = 1 for all j′′ in the range j ≤ j′′ < j′.

Every satisfiable HyperLTL sentence has a countable model [26]. Hence, to prove that
the HyperLTL satisfiability problem is in Σ1

1, we express, for a given HyperLTL sentence
encoded as a natural number, the existence of the following type 1 objects (relying on the
fact that there is a bijection between finite sequences over N and N itself):

A countable set of traces over the propositions of φ encoded as a function T from N×N to
N, mapping trace names and positions to (encodings of) subsets of the set of propositions
appearing in φ.
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A function S from N×N∗ to N to be interpreted as Skolem functions for the existentially
quantified variables of φ, i.e. we map a variable (identified by a natural number) and a
trace assignment of the variables preceding it (encoded as a sequence of natural numbers)
to a trace name.
A function E from N×N×N to N, where, for a fixed a ∈ N encoding a trace assignment Π,
the function x, y 7→ E(a, x, y) is interpreted as the expansion of φ on Π, i.e. x encodes a
subformula in Φ and y is a position.

Then, we express the following properties using only type 0 quantification: For every trace
assignment of the variables in φ, encoded by a ∈ N, if a is consistent with the Skolem
function encoded by S, then the function x, y 7→ E(a, x, y) satisfies the consistency conditions
characterising the expansion, and we have E(a, x0, 0) = 1, where x0 is the encoding of the
maximal quantifier-free subformula of φ. We leave the tedious, but standard, details to the
industrious reader. ◀

Now, we prove hardness.

▶ Lemma 3. HyperLTL satisfiability is Σ1
1-hard.

Proof. By a reduction from the recurring tiling problem which is given as follows. A tile
is a function τ : {east,west,north, south} → C that maps directions into a finite set C of
colours. Given a finite set T of tiles, a tiling of the positive quadrant with T is a function
T : N × N → T with the property that:

if T (i, j) = τ1 and T (i+ 1, j) = τ2, then τ1(east) = τ2(west) and
if T (i, j) = τ1 and T (i, j + 1) = τ2 then τ1(north) = τ2(south).

The recurring tiling problem is to determine, given a finite set T of tiles and a designated
τ0 ∈ T , whether there is a tiling T of the positive quadrant with T such that there are
infinitely many j ∈ N such that T (0, j) = τ0. This problem is known to be Σ1

1-complete [29],
so if we reduce it to HyperLTL satisfiability this will establish the desired hardness result.

In our reduction, each x-coordinate in the positive quadrant will be represented by a
trace, and each y-coordinate by a point in time.2 In order to keep track of which trace
represents which x-coordinate, we use one designated atomic proposition x that holds on
exactly one time point in each trace: x holds at time i if and only if the trace represents
x-coordinate i.

For this purpose, let T be given, and define the following formulas over AP = {x} ∪ T :

Every trace has exactly one point where x holds:

φ1 = ∀π. (¬xπ U(xπ ∧ X G ¬xπ))

For every i ∈ N, there is a trace with x in the i-th position:

φ2 = (∃π. xπ) ∧ (∀π1. ∃π2. F(xπ1 ∧ Xxπ2))

If two traces represent the same x-coordinate, then they contain the same tiles:

φ3 = ∀π1. ∀π2. (F(xπ1 ∧ xπ2) → G(
∧
τ∈T

(τπ1 ↔ τπ2)))

2 Note that this means that if we were to visually represent this construction, traces would be arranged
vertically.
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Every time point in every trace contains exactly one tile:

φ4 = ∀π. G
∨
τ∈T

(τπ ∧
∧

τ ′∈T\{τ}

¬(τ ′)π)

Tiles match vertically:

φ5 = ∀π. G
∨
τ∈T

(τπ ∧
∨

τ ′∈{τ ′∈T |τ(north)=τ ′(south)}
X(τ ′)π)

Tiles match horizontally:

φ6 = ∀π1. ∀π2. (F(xπ1 ∧ Xxπ2) → G
∨
τ∈T

(τπ1 ∧
∨

τ ′∈{τ ′∈T |τ(east)=τ ′(west)}
(τ ′)π2))

Tile τ0 occurs infinitely often at x-position 0:

φ7 = ∃π. (xπ ∧ G F τ0)

Finally, take φT =
∧

1≤i≤7 φi. Technically φT is not a HyperLTL formula, since it
is not in prenex normal form, but it can be trivially transformed into one. Collectively,
subformulas φ1–φ3 are satisfied in exactly those sets of traces that can be interpreted as
N × N. Subformulas φ4–φ6 then hold if and only if the N × N grid is correctly tiled with
T . Subformula φ7, finally, holds if and only if the tiling uses the tile τ0 infinitely often at
x-coordinate 0. Overall, this means φT is satisfiable if and only if T can recurrently tile the
positive quadrant.

The Σ1
1-hardness of HyperLTL satisfiability therefore follows from the Σ1

1-hardness of the
recurring tiling problem [29]. ◀

The Σ1
1-completeness of HyperLTL satisfiability still holds if we restrict to ultimately

periodic traces.

▶ Theorem 4. HyperLTL satisfiability restricted to sets of ultimately periodic traces is
Σ1

1-complete.

Proof. The problem of whether there is a tiling of {(i, j) ∈ N2 | i ≥ j}, i.e. the part of
N × N below the diagonal, such that a designated tile τ0 occurs on every row, is also Σ1

1-
complete [29].3 We reduce this problem to HyperLTL satisfiability on ultimately periodic
traces.

The reduction is very similar to the one discussed above, with the necessary changes
being: (i) every time point beyond x satisfies the special tile “null”, (ii) horizontal and
vertical matching are only checked at or before time point x and (iii) for every π1 there is a
π2 such that π2 has designated tile τ0 at the time where π1 satisfies x (so τ0 holds at least
once in every row).

Membership in Σ1
1 can be shown similarly to the proof of Lemma 2. So, the problem is

Σ1
1-complete. ◀

3 The proof in [29] is for the part above the diagonal with τ0 occurring on every column, but that is easily
seen to be equivalent.
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4 The HyperLTL Quantifier Alternation Hierarchy

The number of quantifier alternations in a formula is a crucial parameter in the complexity of
HyperLTL model-checking [25, 35]. A natural question is then to understand which properties
can be expressed with n quantifier alternations, that is, given a sentence φ, determine if
there exists an equivalent one with at most n alternations. In this section, we show that
this problem is in fact exactly as hard as the HyperLTL unsatisfiability problem (which asks
whether a HyperLTL sentence has no model), and therefore Π1

1-complete. Here, Π1
1 is the

co-class of Σ1
1, i.e. it contains the complements of the Σ1

1 sets.
Formally, the HyperLTL quantifier alternation hierarchy is defined as follows. Let φ be a

HyperLTL formula. We say that φ is a Σ0- or a Π0-formula if it is quantifier-free. It is a
Σn-formula if it is of the form φ = ∃π1 · · · ∃πk. ψ and ψ is a Πn−1-formula. It is a Πn-formula
if it is of the form φ = ∀π1 · · · ∀πk. ψ and ψ is a Σn−1-formula. We do not require each block
of quantifiers to be non-empty, i.e. we may have k = 0 and φ = ψ. By a slight abuse of
notation, we also let Σn denote the set of hyperproperties definable by a Σn-sentence, that
is, the set of all L(φ) = {T ⊆ (2AP)ω | T |= φ} such that φ is a Σn-sentence of HyperLTL.

▶ Theorem 5 ([35, Corollary 5.6.5]). The quantifier alternation hierarchy of HyperLTL is
strict: for all n > 0, Σn ⊊ Σn+1.

The strictness of the hierarchy also holds if we restrict our attention to sentences whose
models consist of finite sets of traces that end in the suffix ∅ω, i.e. that are essentially finite.

▶ Theorem 6. For all n > 0, there exists a Σn+1-sentence φ of HyperLTL that is not
equivalent to any Σn-sentence, and such that for all T ⊆ (2AP)ω, if T |= φ then T contains
finitely many traces and T ⊆ (2AP)∗∅ω.

This fact is a necessary ingredient for our argument that membership at some fixed level
of the quantifier alternation hierarchy is Π1

1-hard. It could be derived from a small adaptation
of the proof in [35], and we provide an alternative proof in the extended version [27] by
exhibiting a connection between the HyperLTL quantifier alternation hierarchy and the
quantifier alternation hierarchy for first-order logic over finite words, which is known to be
strict [15, 38].

Our goal is to prove the following.

▶ Theorem 7. Fix n > 0. The problem of deciding whether a HyperLTL sentence is equivalent
to some Σn-sentence is Π1

1-complete.

The easier part is the upper bound, since a corollary of Theorem 1 is that the problem of
deciding whether two HyperLTL formulas are equivalent is Π1

1-complete. The lower bound
is proven by reduction from the HyperLTL unsatisfiability problem. The proof relies on
Theorem 6: given a sentence φ, we are going to combine φ with some Σn+1-sentence φn+1
witnessing the strictness of the hierarchy, to construct a sentence ψ such that φ is unsatisfiable
if and only if ψ is equivalent to a Σn-sentence. Intuitively, the formula ψ will describe models
consisting of the “disjoint union” of a model of φn+1 and a model of φ. Here “disjoint” is to
be understood in a strong sense: we split both the set of traces and the time domain into
two parts, used respectively to encode the models of φn+1 and those of φ.

To make this more precise, let us introduce some notations. We assume a distinguished
symbol $ /∈ AP. We say that a set of traces T ⊆ (2AP∪{$})ω is bounded if there exists b ∈ N
such that T ⊆ (2AP)b · {$}ω.
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{$} · · ·

· · ·

Figure 1 Example of a split set of traces where each row represents a trace and b = 3.

▶ Lemma 8. There exists a Π1-sentence φbd such that for all T ⊆ (2AP∪{$})ω, we have
T |= φbd if and only if T is bounded.

Proof. We let

φbd = ∀π. ∀π′. (¬$π U G $π) ∧
∧
a∈AP

G(¬(aπ ∧ $π)) ∧ F (¬$π ∧ ¬$π′ ∧ X $π ∧ X $π′) .

The conjunct (¬$π U G $π)∧
∧
a∈AP G(¬(aπ∧$π)) ensures that every trace is in (2AP)∗ ·{$}ω,

while F (¬$π ∧ ¬$π′ ∧ X $π ∧ X $π′) ensures that the $’s in any two traces π and π′ start at
the same position. ◀

We say that T is split if there exist b ∈ N and T1, T2 such that T = T1 ⊎ T2, T1 ⊆
(2AP)b · {$}ω, and T2 ⊆ {$}b · (2AP)ω. Note that b is unique here. Hence, we define the
left and right part of T as Tℓ = T1 and Tr = {t ∈ (2AP)ω | {$}b · t ∈ T2}, respectively (see
Figure 1).

It is easy to combine HyperLTL specifications for the left and right part of a split model
into one global formula.

▶ Lemma 9. For all HyperLTL sentences φℓ, φr, one can construct a sentence ψ such that
for all split T ⊆ (2AP∪{$})ω, it holds that Tℓ |= φℓ and Tr |= φr if and only if T |= ψ.

Proof of Lemma 9. Let φ̂r denote the formula obtained from φr by replacing:
every existential quantification ∃π. φ with ∃π. ((F G ¬$π) ∧ φ);
every universal quantification ∀π. φ with ∀π. ((F G ¬$π) → φ);
the quantifier-free part φ of φr with $π U(¬$π ∧ φ), where π is some free variable in φ.

Here, the first two replacements restrict quantification to traces in the right part while the
last one requires the formula to hold at the first position of the right part. We define φ̂ℓ by
similarly relativizing quantifications in φℓ. The formula φ̂ℓ ∧ φ̂r can then be put back into
prenex normal form to define ψ. ◀

Conversely, any HyperLTL formula that only has split models can be decomposed into a
Boolean combination of formulas that only talk about the left or right part of the model.
This is formalised in the lemma below.

▶ Lemma 10. For all HyperLTL Σn-sentences φ there exists a finite family (φiℓ, φir)i of
Σn-sentences such that for all split T ⊆ (2AP∪{$})ω: T |= φ if and only if there is an i with
Tℓ |= φiℓ and Tr |= φir.

We are now ready to prove Theorem 7.

Proof of Theorem 7. The upper bound is an easy consequence of Theorem 1: Given a
HyperLTL sentence φ, we express the existence of a Σn-sentence ψ using first-order quanti-
fication and encode equivalence of ψ and φ via the formula (¬φ ∧ ψ) ∨ (φ ∧ ¬ψ), which is
unsatisfiable if and only if φ and ψ are equivalent. Altogether, this shows membership in Π1

1,
as Π1

1 is closed under existential first-order quantification (see, e.g. [30, Page 82]).
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We prove the lower bound by reduction from the unsatisfiability problem for HyperLTL.
So given a HyperLTL sentence φ, we want to construct ψ such that φ is unsatisfiable if and
only if ψ is equivalent to a Σn-sentence.

We first consider the case n > 1. Fix a Σn+1-sentence φn+1 that is in not equivalent to
any Σn-sentence, and such that every model of φn+1 is bounded. The existence of such a
formula is a consequence of Theorem 6. By Lemma 9, there exists a computable ψ such that
for all split models T , we have T |= ψ if and only if Tℓ |= φn+1 and Tr |= φ.

First, it is clear that if φ is unsatisfiable, then ψ is unsatisfiable as well, and thus equivalent
to ∃π. aπ ∧ ¬aπ, which is a Σn-sentence since n ≥ 1.

Conversely, suppose towards a contradiction that φ is satisfiable and that ψ is equivalent
to some Σn-sentence. Let (ψiℓ, ψir)i be the finite family of Σn-sentences given by Lemma 10
for ψ. Fix a model Tφ of φ. For a bounded T , we let T denote the unique split set of traces
such that Tℓ = T and Tr = Tφ. For all T , we then have T |= φn+1 if and only if T is bounded
and T |= ψ. Recall that the set of bounded models can be defined by a Π1-sentence φbd
(Lemma 8), which is also a Σn-sentence since n > 1. We then have T |= φn+1 if and only if
T |= φbd and there exists i such that T |= ψiℓ and Tφ |= ψir. So φn+1 is equivalent to

φbd ∧
∨

i with Tφ|=ψi
r

ψiℓ ,

which, since Σn-sentences are closed (up to logical equivalence) under conjunction and
disjunction, is equivalent to a Σn-sentence. This contradicts the definition of φn+1.

We are left with the case n = 1. Similarly, we construct ψ such that φ is unsatisfiable if
and only if ψ is unsatisfiable, and if and only if ψ is equivalent to a Σ1-sentence. However,
we do not need to use bounded or split models here. Every satisfiable Σ1-sentence has a
model with finitely many traces. Therefore, a simple way to construct ψ so that it is not
equivalent to any Σ1-sentence (unless it is unsatisfiable) is to ensure that every model of ψ
contains infinitely many traces.

Let x /∈ AP, and Tω = {∅n{x}∅ω | n ∈ N}. As seen in the proof of Lemma 3, Tω is
definable in HyperLTL: There is a sentence φω such that T ⊆ (2AP∪{x})ω is a model of φω if
and only if T = Tω. By relativising quantifiers in φω and φ to traces with or without the
atomic proposition x, one can construct a HyperLTL sentence ψ such that T |= ψ if and only
if Tω ⊆ T and T \ Tω |= φ.

Again, if φ is unsatisfiable then ψ is unsatisfiable and therefore equivalent to ∃π. aπ∧¬aπ,
a Σ1-sentence. Conversely, all models of ψ contain infinitely many traces and therefore, if ψ
is equivalent to a Σ1-sentence then it is unsatisfiable, and so is φ. ◀

5 HyperCTL∗ satisfiability is Σ2
1-complete

Here, we consider the HyperCTL∗ satisfiability problem: given a HyperLTL sentence,
determine whether it has a model T (of arbitrary size). We prove that it is much harder
than HyperLTL satisfiability. As a key step of the proof, we also prove that every satisfiable
sentence admits a model of cardinality at most c (the cardinality of the continuum), and
conversely, we exhibit a satisfiable sentence whose models are all of cardinality at least c.

▶ Theorem 11. HyperCTL∗ satisfiability is Σ2
1-complete.

On the other hand, HyperCTL∗ satisfiability restricted to finite transition systems is
Σ0

1-complete. The upper bound follows from HyperCTL∗ model checking being decidable [12]
(therefore, the problem is recursively enumerable and thus in Σ0

1) while the matching lower
bound is inherited from HyperLTL [19].
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Upper bound. We begin by proving membership in Σ2
1. The first step is to obtain a bound

on the size of minimal models of satisfiable HyperCTL∗ sentences. For this, we use an
argument based on Skolem functions, which is a transfinite generalisation of the proof that
all satisfiable HyperLTL sentences have a countable model [26].

In the following, we use ω and ω1 to denote the first infinite and the first uncountable
ordinal, respectively, and write ℵ0 and ℵ1 for their cardinality.

▶ Lemma 12. Each satisfiable HyperCTL∗ sentence φ has a model of size at most c.

Proof sketch. Suppose φ has a model T of arbitrary size, and fix Skolem functions witnessing
this satisfaction. We then create a transfinite sequence of transition systems Tα. We start by
taking T0 to be any single path from T starting in the initial vertex, and obtain Tα+1 by
adding to Tα all vertices and edges of the paths that are the outputs of the Skolem functions
when restricted to inputs from Tα. If α is a limit ordinal we take Tα to be the union of all
previous transition systems.

This sequence does not necessarily stabilise at ω, since Tω may contain a path ρ such that
ρ(i) was introduced in Ti. This would result in Tω containing a path that was not present in
any earlier model Ti with i < ω, and therefore we could have Tω+1 ̸= Tω.

The sequence does stabilise at ω1, however. This is because every path ρ contains only
countably many vertices, so if every element ρ(i) of ρ is introduced at some countable αi,
then there is a countable α such that all of ρ is included in Tα. It follows that Tω1 does not
contain any “new” paths that were not already in some Tα with α < ω1, and therefore the
Skolem function f does not generate any “new” outputs either.

In each step of the construction at most c new vertices are added, so Tω1 contains at most
c vertices. Furthermore, because Tω1 is closed under the Skolem functions, the satisfaction of
φ in T implies its satisfaction in Tω1 . ◀

With the upper bound at hand, we can place HyperCTL∗ satisfiability in Σ2
1, as the

existence of a model of size c can be captured by quantification over type 2 objects.

▶ Lemma 13. HyperCTL∗ satisfiability is in Σ2
1.

Proof. As in the proof of Theorem 1. Because every HyperCTL∗ formula is satisfied in a
model of size at most c, these models can be represented by objects of type 2. Checking
whether a formula is satisfied in a transition system is equivalent to the existence of a winning
strategy for Verifier in the induced model checking game. Such a strategy is again a type 2
object, which is existentially quantified. Finally, whether it is winning can be expressed
by quantification over individual elements and paths, which are objects of types 0 and 1.
Checking the satisfiability of a HyperCTL∗ formula φ therefore amounts to existential third-
order quantification (to choose a model and a winning strategy) followed by a second-order
formula to verify that φ holds on the model. Hence HyperCTL∗ satisfiability is in Σ2

1.
Formally, we encode the existence of a winning strategy for Verifier in the HyperCTL∗

model checking game G(T , φ) induced by a transition system T and a HyperCTL∗ formula φ.
This game is played between Verifier and Falsifier, one of them aiming to prove that T |= φ

and the other aiming to prove T ̸|= φ. It is played in a graph whose positions correspond to
subformulas which they want to check (and suitable path assignments of the free variables):
each vertex (say, representing a subformula ψ) belongs to one of the players who has to pick
a successor, which represents a subformula of ψ. A play ends at an atomic proposition, at
which point the winner can be determined.
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Formally, a vertex of the game is of the form (Π, ψ, b) where Π is a path assignment, ψ is
a subformula of φ, and b ∈ {0, 1} is a flag used to count the number of negations encountered
along the play; the initial vertex is (Π∅, φ, 0). Furthermore, for until-subformulas ψ, we need
auxiliary vertices of the form (Π, ψ, b, j) with j ∈ N. The vertices of Verifier are

of the form (Π, ψ, 0) with ψ = ψ1 ∨ ψ2, ψ = ψ1 Uψ2, or ψ = ∃π. ψ′,
of the form (Π, ∀π. ψ′, 1), or
of the form (Π, ψ1 Uψ2, 1, j).

The moves of the game are defined as follows:
A vertex (Π, aπ, b) is terminal. It is winning for Verifier if b = 0 and a ∈ λ(Π(π)(0)) or if
b = 1 and a /∈ λ(Π(π)(0)), where λ is the labelling function of T .
A vertex (Π,¬ψ, b) has a unique successor (Π, ψ, b+ 1 mod 2).
A vertex (Π, ψ1 ∨ ψ2, b) has two successors of the form (Π, ψi, b) for i ∈ {1, 2}.
A vertex (Π,Xψ, b) has a unique successor (Π[1,∞), ψ, b).
A vertex (Π, ψ1 Uψ2, b) has a successor (Π, ψ1 Uψ2, b, j) for every j ∈ N.
A vertex (Π, ψ1 Uψ2, b, j) has the successor (Π[j,∞), ψ2, b) as well as successors
(Π[j′,∞), ψ1, b) for every 0 ≤ j′ < j.
A vertex (Π, ∃π. ψ, b) has successors (Π[π 7→ ρ], ψ, b) for every path ρ of T starting in
rcnt(Π).
A vertex (Π, ∀π. ψ, b) has successors (Π[π 7→ ρ], ψ, b) for every path ρ of T starting in
rcnt(Π).

A play of the model checking game is a finite path through the graph, starting at the
initial vertex and ending at a terminal vertex. It is winning for Verifier if the terminal vertex
is winning for her. Note that the length of a play is bounded by 2d, where d is the depth4 of
φ, as the formula is simplified during each move.

A strategy σ for Verifier is a function mapping each of her vertices v to some successor
of v. A play v0 · · · vk is consistent with σ, if vk′+1 = σ(vk′) for every 0 ≤ k′ < k such that
vk′ is a vertex of Verifier. A straightforward induction shows that Verifier has a winning
strategy for G(T , φ) if and only if T |= φ.

Recall that every satisfiable HyperCTL∗ sentence has a model of cardinality c (Lemma 12).
Thus, to place HyperCTL∗ satisfiability in Σ2

1, we express, for a given natural number
encoding a HyperCTL∗ formula φ, the existence of the following type 2 objects (using
suitable encodings):

A transition system T of cardinality c.
A function σ from V to V , where V is the set of vertices of G(T , φ). Note that a single
vertex of V is a type 1 object.

Then, we express that σ is a strategy for Verifier, which is easily expressible using quanti-
fication over type 1 objects. Thus, it remains to express that σ is winning by stating that
every play (a sequence of type 1 objects of bounded length) that is consistent with σ ends
in a terminal vertex that is winning for Verifier. Again, we leave the tedious, but standard,
details to the reader. ◀

Lower bound. We first describe a satisfiable HyperCTL∗ sentence φc that does not have
any model of cardinality less than c (more precisely, the initial vertex must have uncountably
many successors), thus matching the upper bound from Lemma 12. We construct φc with
one particular model Tc in mind, defined below, though it also admits other models.

4 The depth is the maximal nesting of quantifiers, Boolean connectives, and temporal operators.
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Figure 2 A depiction of Tc. Vertices in black (on the left including the initial vertex) are labelled
by fbt, those in red (on the right, excluding the initial vertex) are labelled by set.

The idea is that we want all possible subsets of A ⊆ N to be represented in Tc in the form
of paths ρA such that ρA(i) is labelled by 1 if i ∈ A, and by 0 otherwise. By ensuring that the
first vertices of these paths are pairwise distinct, we obtain the desired lower bound on the
cardinality. We express this in HyperCTL∗ as follows: First, we express that there is a part
of the model (labelled by fbt) where every reachable vertex has two successors, one labelled
with 0 and one labelled with 1, i.e. the unravelling of this part contains the full binary tree.
Thus, this part has a path ρA as above for every subset A, but their initial vertices are not
necessarily distinct. Hence, we also express that there is another part (labelled by set) that
contains a copy of each path in the fbt-part, and that these paths indeed start at distinct
successors of the initial vertex.

We let Tc = (Vc, Ec, tε, λc) (see Figure 2), where

Vc = {tu | u ∈ {0, 1}∗} ∪ {si
A | i ∈ N ∧ A ⊆ N}

λc(tε) = {fbt} λc(tu·0) = {fbt, 0} λc(tu·1) = {fbt, 1} λc(si
A) =

{
{set, 0} if i /∈ A

{set, 1} if i ∈ A

Ec = {(tu, tu0), (tu, tu1) | u ∈ {0, 1}∗} ∪ {(tε, s0
A) | A ⊆ N} ∪ {(si

A, si+1
A ) | A ⊆ N, i ∈ N} .

▶ Lemma 14. There is a satisfiable HyperCTL∗ sentence φc that has only models of cardinality
at least c.

Proof. The formula φc is defined as the conjunction of the formulas below:
1. The label of the initial vertex is {fbt} and the labels of non-initial vertices are {fbt, 0},

{fbt, 1}, {set, 0}, or {set, 1}:

∀π. (fbtπ ∧ ¬0π ∧ ¬1π ∧ ¬setπ) ∧ X G
(
(setπ ↔ ¬fbtπ) ∧ (0π ↔ ¬1π)

)
2. All fbt-labelled vertices have a successor with label {fbt, 0} and one with label {fbt, 1},

and all fbt-labelled vertices that are additionally labelled by 0 or 1 have no set-labelled
successor:

∀π. G
(
fbtπ → ((∃π0. X(fbtπ0 ∧0π0))∧(∃π1. X(fbtπ1 ∧1π1))∧((0π∨1π) → ∀π′. X fbtπ′))

)
3. For every path of fbt-labelled vertices starting at a successor of the initial vertex, there

is a path of set-labelled vertices (also starting at a successor of the initial vertex) with
the same {0, 1} labelling:

∀π.
(
(X fbtπ) → ∃π′. X(setπ′ ∧ G(0π ↔ 0π′))

)
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4. Any two paths starting in the same set-labelled vertex have the same sequence of labels:

∀π. G
(
setπ → ∀π′. G(0π ↔ 0π′)

)
.

It is easy to check that Tc |= φc. Note however that it is not the only model of φc: for
instance, some paths may be duplicated, or merged after some steps if their label sequences
share a common suffix. So, consider an arbitrary transition system T = (V,E, vI , λ) such
that T |= φc. By condition 2, for every set A ⊆ N, there is a path ρA starting at a successor
of vI such that λ(ρA(i)) = {fbt, 1} if i ∈ A and λ(ρA(i)) = {fbt, 0} if i /∈ A. Condition 3
implies that there is also a set-labelled path ρ′

A such that ρ′
A starts at a successor of vI , and

has the same {0, 1} labelling as ρA. Finally, by condition 4, if A ≠ B then ρ′
A(0) ̸= ρ′

B(0). ◀

Before moving to the proof that HyperCTL∗ satisfiability is Σ2
1-hard, we introduce

one last auxiliary formula that will be used in the reduction, showing that addition and
multiplication can be defined in HyperCTL∗, and in fact even in HyperLTL, as follows: Let
AP = {arg1, arg2, res, add, mult} and let T(+,·) be the set of all traces t ∈ (2AP)ω such that

there are unique n1, n2, n3 ∈ N with arg1 ∈ t(n1), arg2 ∈ t(n2), and res ∈ t(n3), and
either add ∈ t(n) for all n and n1 + n2 = n3, or mult ∈ t(n) for all n and n1 · n2 = n3.

▶ Lemma 15. There is a HyperLTL sentence φ(+,·) which has T(+,·) as unique model.

To establish Σ2
1-hardness, we give an encoding of formulas of existential third-order

arithmetic into HyperCTL∗. As explained in Section 2, we can (and do for the remainder of
the section) assume that first-order (type 0) variables range over natural numbers, second-
order (type 1) variables range over sets of natural numbers, and third-order (type 2) variables
range over sets of sets of natural numbers.

▶ Lemma 16. Suppose φ = ∃x1 . . . ∃xn. ψ, where x1, . . . , xn are third-order variables, and
ψ is a formula of second-order arithmetic. One can construct a HyperCTL∗ formula φ′ such
that (N, 0, 1,+, ·, <,∈) is a model of φ if and only if φ′ is satisfiable.

Proof. The idea of the proof is as follows. We represent sets of natural numbers as infinite
paths with labels in {0, 1}, so that quantification over sets of natural numbers in ψ can be
replaced by HyperCTL∗ path quantification. First-order quantification is handled in the
same way, but using paths where exactly one vertex is labelled 1. In particular we encode
first- and second-order variables x of φ as path variables πx of φ′. For this to work, we
need to make sure that every possible set has a path representative in the transition system
(possibly several isomorphic ones). This is where formula φc defined in Lemma 14 is used.
For arithmetical operations, we rely on the formula φ(+,·) from Lemma 15. Finally, we
associate with every existentially quantified third-order variable xi an atomic proposition ai,
so that for a second-order variable y, the atomic formula y ∈ xi is interpreted as the atomic
proposition ai being true on πy. This is all explained in more details below.

Let AP = {a1, . . . , an, 0, 1, set, fbt, arg1, arg2, res, mult, add}. Given an interpretation
ν : {x1, . . . , xn} → 2(2N) of the third-order variables of φ, we denote by Tν the transition
system over AP obtained as follows: We start from Tc, and extend it with an {a1, . . . , an}-
labelling by setting ai ∈ λ(ρA(0)) if A ∈ ν(xi); then, we add to this transition system all
traces in T(+,·) as disjoint paths below the initial vertex.

From the formulas φc and φ(+,·) defined in Lemmas 14 and 15, it is not difficult to
construct a formula φ(c,+,·) such that:

For all ν : {x1, . . . , xn} → 2(2N), the transition system Tν is a model of φ(c,+,·).
Conversely, in any model T = (V,E, vI , λ) of φ(c,+,·), the following conditions are satisfied:
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1. For every path ρ starting at a set-labelled successor of the initial vertex vI , the vertex
ρ(0) has a label of the form λ(ρ(0)) = {set, b} ∪ ℓ with b ∈ {0, 1} and ℓ ⊆ {a1, . . . , an},
and every vertex ρ(i) with i > 0 has a label λ(ρ(i)) = {set, 0} or λ(ρ(i)) = {set, 1}.

2. For every A ⊆ N, there exists a set-labelled path ρA starting at a successor of vI such
that 1 ∈ λ(ρA(i)) if i ∈ A, and 0 ∈ λ(ρA(i)) if i /∈ A. Moreover, all such paths have
the same {a1, . . . , an} labelling; this can be expressed by the formula

∀π. ∀π′. X
(

G(setπ ∧ setπ′ ∧ (1π ↔ 1π′)) →
∧

a∈{a1,...,an}
aπ ↔ aπ′

)
.

3. For every path ρ starting at an add- or mult-labelled successor of the initial vertex,
the label sequence λ(ρ(0))λ(ρ(1)) · · · of ρ is in T(+,·).

4. Conversely, for every trace t ∈ T(+,·), there exists a path ρ starting at a successor of
the initial vertex such that λ(ρ(0))λ(ρ(1)) · · · = t.

We then let φ′ = φ(c,+,·) ∧ ∃π0.∃π1. X(1π0 ∧ X G 0π0 ∧ 0π1 ∧ X 1π1 ∧ X X G 0π1) ∧ h(ψ),
where π0 and π1 are used to encode the constants 0 and 1, and h(ψ) is defined inductively
from the second-order body ψ of φ as follows:

h(ψ1 ∨ ψ2) = h(ψ1) ∨ h(ψ2) and h(¬ψ1) = ¬h(ψ1).
If x ranges over sets of natural numbers, h(∃x. ψ1) = ∃πx. ((X setπx

) ∧ h(ψ1)), and
h(∀x. ψ1) = ∀πx. ((X setπx) → h(ψ1)).
If x ranges over natural numbers, h(∃x. ψ1) = ∃πx. ((X setπx

)∧X(0πx
U(1πx

∧X G 0πx
))∧

h(ψ1)), and h(∀x. ψ1) = ∀πx. ((X setπx
) ∧ X(0πx

U(1πx
∧ X G 0πx

)) → h(ψ1)).
If y ranges over sets of natural numbers, h(y ∈ xi) = X(ai)πy .
If x ranges over natural numbers and y over sets of natural numbers, h(x ∈ y) =
F(1πx

∧ 1πy
).

h(x < y) = F(1πx ∧ X F 1πy ).
h(x · y = z) = ∃π. (X addπ) ∧ F(arg1π ∧ 1πx) ∧ F(arg2π ∧ 1πy ) ∧ F(resπ ∧ 1πz ), and
h(x+ y = z) = ∃π. (X multπ) ∧ F(arg1π ∧ 1πx

) ∧ F(arg2π ∧ 1πy
) ∧ F(resπ ∧ 1πz

).

If ψ is true under some interpretation ν of x1, . . . , xn as sets of sets of natural numbers,
then the transition system Tν defined above is a model of φ′. Conversely, if T |= φ′ for some
transition system T , then for all sets A ⊆ N there is a path ρA matching A in T , and all such
paths have the same {a1, . . . , an}-labelling, so we can define an interpretation ν of x1, . . . , xn
by taking A ∈ ν(xi) if and only if ai ∈ λ(ρA(0)). Under this interpretation ψ holds, and thus
φ is true. ◀

▶ Lemma 17. HyperCTL∗ satisfiability is Σ2
1-hard.

Proof. Let N be a Σ2
1 set, i.e. N = {x ∈ N | ∃x0 · · · ∃xk. ψ(x, x0, . . . , xk)} for some second-

order arithmetic formula ψ with existentially quantified third-order variables xi. For every
n ∈ N, we define a sentence

φn = ∃x0 · · · ∃xk. (∃x. x = 0 +1 + 1 + · · · + 1︸ ︷︷ ︸
n times

∧ψ(x, x0, . . . , xk)) .

Then φn is true if and only if n ∈ N . Combining this with Lemma 16, we obtain a computable
function that maps any n ∈ N to a HyperCTL∗ formula φ′

n such that n ∈ N if and only if
φ′
n is satisfiable. ◀
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6 Conclusion

In this work, we have settled the complexity of the satisfiability problems for HyperLTL
and HyperCTL∗. In both cases, we significantly increased the lower bounds, i.e. from Σ0

1
and Σ1

1 to Σ1
1 and Σ2

1, respectively, and presented the first upper bounds, which are tight
in both cases. Along the way, we also determined the complexity of restricted variants, e.g.
HyperLTL satisfiability restricted to ultimately periodic traces (or, equivalently, to finite
traces) is still Σ1

1-complete while HyperCTL∗ satisfiability restricted to finite transition
systems is Σ0

1-complete. As a key step in this proof, we showed a tight bound of c on the size
of minimal models for satisfiable HyperCTL∗ sentences. Finally, we also show that deciding
membership in any level of the HyperLTL quantifier alternation hierarchy is Π1

1-complete.
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Abstract
A pattern α is a string of variables and terminal letters. We say that α matches a word w, consisting
only of terminal letters, if w can be obtained by replacing the variables of α by terminal words.
The matching problem, i.e., deciding whether a given pattern matches a given word, was heavily
investigated: it is NP-complete in general, but can be solved efficiently for classes of patterns with
restricted structure. In this paper, we approach this problem in a generalized setting, by considering
approximate pattern matching under Hamming distance. More precisely, we are interested in what
is the minimum Hamming distance between w and any word u obtained by replacing the variables
of α by terminal words. Firstly, we address the class of regular patterns (in which no variable
occurs twice) and propose efficient algorithms for this problem, as well as matching conditional lower
bounds. We show that the problem can still be solved efficiently if we allow repeated variables, but
restrict the way the different variables can be interleaved according to a locality parameter. However,
as soon as we allow a variable to occur more than once and its occurrences can be interleaved
arbitrarily with those of other variables, even if none of them occurs more than once, the problem
becomes intractable.
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1 Introduction

A pattern (with variables) is a string which consists of terminal letters (e. g., a, b, c), treated
as constants, and variables (e. g., x1, x2). A pattern is mapped to a word by substituting the
variables by strings of terminals. For example, x1x1babx2x2 can be mapped to aaaababbb
by the substitution (x1 → aa, x2 → b). If a pattern α can be mapped to a string of terminals
w, we say that α matches w. The problem of deciding whether there exists a substitution
which maps a given pattern α to a given word w is called the matching problem.

Patterns with variables and their matching problem appear in various areas of theoretical
computer science. In particular, the matching problem is a particular case of the satisfiability
problem for word equations. These are equations whose both sides are patterns with variables
and whose solutions are substitutions that map both sides to the same word [37]; in the pattern
matching problem, one side of the input equation is a string of terminals. Patterns with
variables occur also in combinatorics on words (e.g., unavoidable patterns [38]), stringology
(e.g., generalized function matching [2]), language theory (e.g., pattern languages [3]), or
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database theory (e.g., document spanners [27, 26, 19, 44]). In a more practical setting, patterns
with variables are used in connection to extended regular expressions with backreferences [14,
29, 25, 28], used in various programming languages.

The matching problem is NP-complete [3] in general. This is especially unfortunate for
some computational tasks on patterns which implicitly solve the matching problem and are
thus intractable as well. For instance, in algorithmic learning theory, this is the case for
the task of computing descriptive patterns for finite sets of words [3, 21]. Such descriptive
patterns are useful for the inductive inference of pattern languages, a prominent example of a
language class which can be inferred from positive data (see, the survey [46] and the references
therein). This and many other applications of pattern matching provide a good motivation to
identify cases in which the matching problem becomes tractable. A natural approach to this
task is to consider restricted classes of patterns. A thorough analysis [42, 45, 23, 24, 22, 43]
of the complexity of the matching problem has provided several subclasses of patterns
for which the matching problem is in P, when some structural parameters of patterns are
bounded by constants. Prominent examples in this direction are patterns with a bounded
number of repeated variables occurring in a pattern, patterns with bounded scope coincidence
degree [42], or patterns with bounded locality [18]. The formal definitions of these parameters
are given in Section 4, and corresponding efficient matching algorithms be found in [22, 18],
but, to give an intuition, we mention that they are all numerical parameters which describe
the structure of patterns and parameterize the complexity of the matching algorithms. That
is, in all cases, if the respective parameter equals k, the matching algorithm runs in O(nck)
for some constant c, and, moreover, the matching problem can be shown to be W [1]-hard
w.r.t. the respective parameter. A more general approach [42] introduces the notion of
treewidth of patterns, and shows that the matching problem can be solved in O(n2k+4) time
for patterns with bounded treewidth k. The algorithms resulting from this general theory
are less efficient than the specialized ones, while the matching problem remains W [1]-hard
w.r.t. treewidth of patterns. See also the survey [39].

In this paper, we extend the study of patterns which can be matched efficiently to the
case of approximate matching: we allow mismatches between the word w and the image
of α under a substitution. More precisely, we consider two problems. In the decision
problem MisMatchP we are interested in deciding, for a given pattern α from a class P , a
given word w, and a non-negative integer ∆ whether there exists a variable-substitution
h such that the word h(α) has at most ∆ mismatches to the word w; in other words,
the Hamming distance dHAM(h(α), w) between h(α) and w is at most ∆. Alternatively, we
consider the corresponding minimisation problem MinMisMatchP of computing dHAM(α, w) =
min{dHAM(h(α), w) | h is a substitution of the variables in α}.

As most real-world textual data (e.g., involving genetic data or text written by humans)
contains errors, considering string-processing algorithms in an approximate setting is natural
and has been heavily investigated. See, e.g., the recent papers [16, 32, 31, 47], and the
references therein, as well as classical results such as [1, 41, 35]. Closer to the topic of this
paper, the problem of approximate pattern matching was also considered in the context of
regular expression matching – see [6, 41] and the references therein. Continuing this line of
research, we initiate a study of approximate matching problems for patterns with variables.
Intuitively, in our problems, we ask if the input word w is a few mismatches away from
matching the pattern α, i.e., if w can be seen as a slightly erroneous version of a word which
exactly matches α.
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Table 1 Our results are listed in columns 3 and 4. We assume |w| = n, |α| = m, |var(α)| = p.

Class Match(w, α) MisMatch(w, α, ∆) MinMisMatch(w, α)
Reg O(n) [folklore] O(n∆) O(ndHAM(α, w))

matching cond. lower bound matching cond. lower bound
1Var O(n) [folklore] O(n) O(n)
NonCross O(nm log n) [22] O(n3p) O(n3p)
1RepVar O(n2) [22] O(nk+2m) O(nk+2m), PTAS
k=# x-blocks W[1]-hard w.r.t. k W[1]-hard w.r.t. k

no EPTAS (if F P T ̸= W [1])
kLOC O(mkn2k+1) [18] O(n2k+2m) O(n2k+2m)

W[1]-hard w.r.t. k W[1]-hard w.r.t. k W[1]-hard w.r.t. k

no EPTAS (if F P T ̸= W [1])
kSCD O(m2n2k) [22] NP-hard for k ≥ 2 NP-hard for k ≥ 2

W[1]-hard w.r.t. k

kRepVar O(n2k) [22] NP-hard for k ≥ 1 NP-hard for k ≥ 1
W[1]-hard w.r.t. k

k-bounded O(n2k+4) [42] NP-hard for k ≥ 3 NP-hard for k ≥ 3
treewidth W[1]-hard w.r.t. k

Our Contribution. Our results are summarized in Table 1. In that table, we describe the
results we obtained for the problems MisMatchP and MinMisMatchP (introduced informally
above and formally in Section 2) for a series of classes P of patterns for which the matching
problem Match can be solved in polynomial time. The classes P we consider are the following:
The class Reg of regular patterns, which contain at most one occurrence of any variable;
the class 1Var of unary patterns, which contain several occurrences of a single variable and
terminals; the class NonCross of non-cross-patterns, which can be factorized in multiple 1Var-
patterns whose variables are pairwise different; the class 1RepVar of one-repeated-variables,
where only one variable (say x) is allowed to occur more than once; the classes kLOC of k-local
patterns and kSCD of patterns with scope coincidence degree at most k, defined formally
in Section 4; the class kRepVar of k-repeated-variables, where only k variables are allowed
to occur more than once. We also (indirectly) obtain a lower bound for the complexity of
MisMatch and MinMisMatch in the case of patterns with treewidth at most k.

Interestingly, for Reg we obtain matching upper and conditional lower bounds. As regular
patterns are, in fact, a particular case of regular expressions, it is worth mentioning that, due
to the conditional lower bounds from [4] on exact regular expression matching, it is not to
be expected that the general case of matching regular-expressions under Hamming distance
can be solved as efficiently as the case of regular patterns. Regarding patterns with repeated
variables, we note that while in the case when the number of repeated variables, the scope
coincidence degree, or the treewidth was bounded by a constant, polynomial-time algorithms
for the exact matching problem were obtained. This does not hold in our approximate
setting, unless P=NP. Only the locality measure has the same behaviour as in the case of
exact matching: MisMatchkLOC and MinMisMatchkLOC can still be solved in polynomial time
for constant k. In the simpler case of 1RepVar-patterns, the locality corresponds to the
number of x-blocks, so, if this is bounded by a constant, the two problems we consider can
be solved in polynomial time.

The paper is organized as follows: after some preliminaries, we present in detail the
results on Reg-patterns. Then we overview the results on patterns with repeated variables.
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Future Work. While our results paint a detailed image of the complexity of MisMatch and
MinMisMatch for some prominent classes of patterns for which the matching problem can be
solved efficiently, some continuations of this work can be easily identified. Following [22], it
would be interesting to try to optimise the algorithms for all classes from the table (except
Reg, where the upper and conditional lower bounds match). In the case of Reg, it would be
interesting to consider the problem for regular patterns with a constant number of variables;
already in the case of two variables (also known as approximate string matching under
Hamming distance) the known complexity upper and lower bounds do not match anymore
[31, 47]. Another direction is to consider the two problems for other distance functions
(e.g., edit distance) instead of the Hamming distance. Finally, it would be interesting if the
applications of pattern matching in the area of algorithmic learning theory can be formulated
(and still remain interesting) in this approximate setting.

2 Preliminaries

Let Σ be a finite alphabet of terminal letters. Let Σ⋆ be the set of all words and ε the empty
word. The concatenation of k words w1, w2, . . . , wk is written Πk

i=1wi. The set Σ+ is defined
as Σ⋆ \ {ε}. For w ∈ Σ⋆ the length of w is defined the number of symbols of w, and denoted
as |w|. Further, let Σn = {w ∈ Σ⋆ | |w| = n} and Σ≤n =

⋃n
i=0 Σi. The letter on position i of

w, for 1 ≤ i ≤ |w|, is denoted by w[i]. For w ∈ Σ+ and x, y, z ∈ Σ⋆, the word y is a factor of
w, if w = xyz; moreover, if x = ε (respectively, z = ε), then y is called a prefix (respectively,
suffix) of w. Let w[i : j] = w[i] · · ·w[j] be the factor of w starting on position i and ending
on position j; if i > j then w[i : j] = ε. By [i : j] we denote the set {i, i + 1, . . . , j} and
D[i : j] denotes a subarray of D whose positions are indexed by the numbers in [i : j].

Let X = {x1, x2, x3, . . .} be a set of variables. For the set of terminals Σ and the set of
variables X with Σ ∩ X = ∅, a pattern α is a word containing both terminals and variables,
i.e., an element of PATΣ = (X ∪ Σ)+. The set of all patterns, over all terminal-alphabets,
is denoted PAT =

⋃
Σ PATΣ. Given a word or a pattern γ, for the smallest sets (w.r.t.

inclusion) B ⊆ Σ and Y ⊆ X with γ ∈ (B ∪ Y )⋆, define the set of terminal symbols in γ,
denoted by alph(γ) = B, and the set of variables of γ, denoted by var(γ) = Y . For any
symbol t ∈ Σ ∪ X and α ∈ PATΣ, |α|t denotes the number of occurrences of t in α.

A substitution (on the variables of α) is a mapping h : var(α)→ Σ⋆. For every x ∈ var(α),
we say that x is substituted by h(x) and h(α) denotes the word obtained by substituting
every occurrence of a variable x in α by h(x) and leaving all the terminals unchanged. We say
that the pattern α matches a word w ∈ Σ+, if there exists a substitution h : var(α)→ Σ⋆

such that h(α) = w. The Matching Problem is defined for any family of patterns P ⊆ PAT :

Exact Matching Problem for P : MatchP

Input: A pattern α ∈ P , with |α| = m, a word w, with |w| = n.
Question: Is there a substitution h with h(α) = w?

In this paper, we will consider an extension of the Matching Problem, in which we allow
mismatches between the image of the pattern under a substitution and the matched word.

For words w1, w2 ∈ Σ⋆ with |w1| = |w2|, the Hamming distance between w1 and w2 is
defined as dHAM(w1, w2) = |{i | w1[i] ̸= w2[i] ∧ 1 ≤ i ≤ |w1|}|. The Hamming distance
describes, therefore, the number of mismatches between two words. For a pattern α and a word
w, we can define the Hamming distance between α and w as dHAM(α, w) = min{dHAM(h(α), w) |
h is a substitution of the variables of α}. With these definitions we can introduce two new
pattern matching problems for families of patterns P ⊆ PAT . In the first problem, we allow
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for a certain distance ∆ between the image h(α) of α under a substitution h and the target
word w instead of searching for an exact matching. In the second problem, we are interested
in finding the substitution h such that the number of mismatches between h(α) and the
target word w is minimal, over all possible choices of h.

Approximate Matching Decision Problem for P : MisMatchP

Input: A pattern α ∈ P , with |α| = m, a word w, with |w| = n, an integer ∆ ≤ m.
Question: Is dHAM(α, w) ≤ ∆?

Approximate Matching Minimisation Problem for P : MinMisMatchP

Input: A pattern α ∈ P , with |α| = m, a word w, with |w| = n.
Question: Compute dHAM(α, w).

When analysing the number of mismatches between h(α) and w we need to argue about
the number of mismatches between corresponding factors of h(α) and w, i.e., the factors
occurring between the same positions i and j in both words. To simplify the presentations,
for a substitution h that maps a pattern α to a word of the same length as w, we will call the
factors h(α)[i : j] and w[i : j] aligned under h. We omit h when it is clear from the context.
Moreover, saying that we align a factor α[i : j] to a factor w[i′ : j′] with a minimal number
of mismatches, we mean that we are looking for a substitution h such that |h(α)| = |w|,
h(α[i : j]) is aligned to w[i′ : j′] under h, and the resulting number of mismatches between
h(α[i : j]) and w[i′ : j′] is minimal w.r.t. all other choices for the substitution h.

We make some preliminary remarks. Firstly, in all the problems we consider here, we can
assume that the pattern α starts and ends with variables, i.e., α = xα′y, with α′ pattern
and x and y variables. Indeed, if this would not be the case, we could simply reduce the
problems by considering them for inputs α′ and the word w′ obtained by removing from w

the prefix and suffix aligned, respectively, to the maximal prefix of α which contains only
terminals and the maximal suffix of α which contains only terminals. Clearly, in the case
of the exact-matching problem the respective prefixes (suffixes) of w and α must match
exactly, while in the case of the approximate-matching problems one needs to account for
the mismatches created by these prefixes and suffixes. So, from now on, we will work under
the assumption that the patterns we try to align to words start and end with variables.

Secondly, solving MatchP is equivalent to solving MisMatchP for ∆ = 0. Also, in a general
framework, MinMisMatchP can be solved by combining the solution of the decision problem
MisMatchP with a binary search on the value of ∆. Given that the distance between α and
w is at most n = |w|, one needs to use the solution for MisMatchP a maximum of log n

times in order to find the exact distance between α and w. Sometimes this can be done even
more efficiently, as shown in Theorem 3.4. On the other hand, solving MinMisMatchP leads
directly to a solution for MisMatchP .

3 Matching Regular Patterns with Mismatches

A pattern α is regular if α = w0
∏M

i=1(xiwi), with wi ∈ Σ⋆. The class of regular patterns
is denoted by Reg. For example, the pattern α0 = abxabyzbaab, with varα = {x, y, z} is
in Reg.

In this section we consider MisMatchReg and MinMisMatchReg.
As mentioned already, a solution for MisMatchReg with distance ∆ = 0 is a solution to

MatchReg. The latter problem can be solved in O(n) by a greedy approach. As noted in
Section 2, we can assume that w0 = wM = ε, so α = (

∏M−1
i=1 xiwi)xM . Thus, we identify the

last occurrence w[ℓ + 1 : ℓ + |wM−1|] of wM−1 in w, assign the string w[ℓ + |wM−1|+ 1 : n]
to xM , and then recursively match the pattern α = (

∏M−2
i=1 xiwi)xM−1 to w[1 : ℓ].
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In the following, we propose a solution for MinMisMatchReg which generalizes this approach.
Further, we will show a matching lower bound for any algorithm solving MinMisMatchReg.

An equivalent formulation of MinMisMatchReg is to find factors w[ℓi + 1 : ℓi + |wi|], with
1 ≤ i ≤M−1, such that

∑M−1
i=1 dHAM(wi, w[ℓi+1 : ℓi+|wi|]) is minimal and ℓi+|wi|+1 ≤ ℓi+1,

for all i ∈ {1, . . . , M−2}. In other words, we want to find the M−1 factors w[ℓi +1 : ℓi +|wi|],
with i from 1 to M − 1, such that these factors occur one after the other without overlapping
in w, they correspond (in order, from left to right) to the words wi, for i from 1 to M − 1,
and the total sum of mismatches between w[ℓi + 1 : ℓi + |wi|] and wi, added up for i from 1
to M − 1, is minimal.

To approach this problem we need the following data-structures-preliminaries.
Given a word w, of length n, we can construct in O(n)-time longest common suffix-

data structures which allow us to return in O(1)-time the value LCSw(i, j) = max{|v| |
v is a suffix of both w[1 : i] and w[1 : j]}. See [33, 34] and the references therein. Given
a word w, of length n, and a word u, of length m, we can construct in O(n + m)-time
data structures which allow us to return in O(1)-time the value LCSw,u(i, j) = max{|v| |
v is a suffix of both w[1 : i] and u[1 : j]}. This is achieved by constructing LCSw-data
structures for wu, as above, and noting that LCSw,u(i, j) = min(LCSw(i, n + j), j).

The following two lemmas are based on the data structures defined above and the technique
called kangaroo-jump [35]. Their respective proofs can be found in the Appendix B.

▶ Lemma 3.1. Let w and u, with |w| = |u| = n, be two words and δ a non-negative integer.
Assume that, in a preprocessing phase, we have constructed LCSw,u-data structures. We can
compute min(δ + 1, dHAM(u, w)) using δ + 1 LCSw,u queries, so in O(δ) time.

▶ Lemma 3.2. Given a word w, with |w| = n, a word u, with |u| = m < n, and a non-
negative integer δ, we can compute in O(nδ) time the array D[m : n] with n−m+1 elements,
where D[i] = min(δ + 1, dHAM(w[i−m + 1 : i], u)).

The following result is the main technical tool of this section.

▶ Theorem 3.3. MisMatchReg can be solved in O(n∆) time. For an accepted instance w, α, ∆
of MisMatchReg we also compute dHAM(α, w) (which is upper bounded by ∆).

Proof. Assume α =
∏M−1

i=1 (xiwi)xM and let αℓ =
∏M−1

i=ℓ (xiwi)xM , for ℓ ∈ {1, . . . , M − 1}.
A first observation is that the problem can be solved in a standard way by dynamic

programming in O(nm) time.
We only give the main idea behind this approach. We can compute the minimum number

of mismatches T [i][j] which can be obtained when aligning the suffix of length i of w to the
suffix of length j of α, for all i ≤ n and j ≤ m. Clearly, T [i][j] can be computed based on
the values T [i + 1][j + 1] and, if α[j] is a variable, T [i + 1][j]. The full technicalities of this
standard approach are easy to obtain so we do not go into further details.

We present a more efficient approach below.
Our efficient algorithm starts with a preprocessing phase, in which we compute LCSw,u-

data structures, where u =
∏M−1

i=ℓ wi. This allows us to retrieve in constant time answers to
LCSw,wi -queries, for 1 ≤ i ≤M − 1.

In the main phase of our algorithm, we compute an (M − 1)×∆ matrix Suf [·][·], where,
for ℓ ≤M − 1 and d ≤ ∆, we have Suf [ℓ][d] = g if and only if w[g..n] is the shortest suffix
of w with dHAM(αℓ, w[g : n]) ≤ d.

Once more, we note that the elements of Suf [·][·] can be computed by a relatively
straightforward dynamic programming approach in O(nM∆) time. But, the strategy we
present here is more efficient than that.
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In our algorithm, we first use Lemma 3.2 to compute Suf [M − 1][·] in O(n∆) time. We
simply run the algorithm of that lemma on the input strings w and wM−1 and the integer ∆.
We obtain an array D[·], where D[i] = min(∆ + 1, dHAM(w[i− |wM−1|+ 1 : i], wM−1)). We
now go with j from |wM−1| to n and, if D[j] ≤ ∆, we set Suf [M − 1][D[j]] = j−|wM−1|+ 1.
It is clear that h = Suf [M − 1][d] will be the starting position of the shortest suffix w[h : n]
of w such that dHAM(wM−1xM , w[h : n]) ≤ d. Thus, Suf [M − 1][·] was correctly computed,
and the time needed to do so is O(n∆).

Further, we describe how to compute Suf [ℓ][·] efficiently, based on Suf [ℓ + 1][·] (for
ℓ from M − 2 down to 1). We use the following approach. We go through the positions
i of w from right to left and maintain a queue Q. When i is considered, Q stores all
elements d such that Suf [ℓ][d] was not computed yet until reaching that position, but
i < Suf [ℓ + 1][d]. Accordingly, the fact that d is in Q means that with a suitable alignment
of wℓ ending on position i, we could actually find an alignment with ≤ d mismatches of αℓ

with w[i− |wℓ|+ 1 : n]: when Q contains d, . . . , d− t, for some t ≥ 0, an alignment of wℓ to
w[i−|wℓ|+1 : i] with ≤ t mismatches would lead to an alignment of αℓ with w[i−|wℓ|+1 : n]
with ≤ d mismatches by extending the alignment of αℓ+1 to w[Suf [ℓ + 1][d − t] : n]. The
values d present in Q at some point are ordered increasingly (the older values are larger), the
array Suf [ℓ + 1][·] is also monotonically increasing, and, as Suf [ℓ][d] cannot be set before
Suf [ℓ][d′], for any d and d′ such that d′ < d, the queue Q is actually an interval of integers
[new : old], where new is the newest element of Q, and old the oldest one. When we consider
position i of the word, if the alignment of wℓ ending on position i causes t mismatches, then
to be able to set a value Suf [ℓ][d], with d ∈ Q, we need to have that Suf [ℓ + 1][d− t] > i.
As Suf [ℓ + 1][d] > Suf [ℓ + 1][d− t] and d ∈ Q, this means that d− t ∈ Q, so the number of
mismatches t must be strictly upper bounded by |Q|, in order to be useful. Accordingly, when
considering position i, we compute the number t ← min{dHAM(wℓ, w[i − |wℓ| + 1 : i]), |Q|},
and if t < |Q| we set Suf [ℓ][d] ← i − |wℓ| + 1 for all d such that d − t ∈ Q; we also
eliminate all these elements d from the queue. Before considering a new position i, we check
if i = Suf [ℓ + 1][new − 1], and, if yes, we insert new − 1 in Q and update new ← new − 1.

This computation of Suf [ℓ][·] is implemented in the following algorithm:
1. Initialization: We maintain a queue Q, which initially contains only the ∆.

Let new ← ∆ (this is the top element of the queue).
2. Iteration: For i = Suf [ℓ + 1][∆]− 1 down to |wℓ| we execute the steps a, b, and c:

a. Using Lemma 3.1 we compute t← min(dHAM(wl, w[i− |wℓ|+ 1 : i]), |Q|).
b. If t < |Q|, we remove from Q all elements d, such that d− t ≥ new, and set, for each

of them, Suf [ℓ][d]← i− |wℓ|+ 1.
c. If Suf [ℓ + 1][top − 1] = i then we insert top − 1 in Q and top ← top − 1. Else, if

Suf [ℓ + 1][top− 1] = 0 then set i← 0 and exit the loop.
3. Filling-in the remaining positions: Set all the positions of Suf [ℓ][·] which were not filled

during the above while-loop to 0.

The matrix Suf [·][·] is computed correctly by the above algorithm, as it can be shown by
the following inductive argument.

To show that Suf [ℓ][·] is computed correctly by our algorithm, under the assumption
that Suf [ℓ + 1][·] was correctly computed, we make several observations.

Firstly, it is clear that Suf [ℓ+1][d] ≤ Suf [ℓ+1][d+1]. Secondly, when computed correctly,
Suf [ℓ][d] should be the rightmost position g of w such that dHAM(w[g : n], wℓ) = t ≤ d and
Suf [ℓ + 1][d− t] ≥ g + |wℓ|. Clearly, if Suf [ℓ][d + 1] ̸= 0, then Suf [ℓ][d] < Suf [ℓ][d + 1].

Regarding the algorithm described in the main part of the paper, it is important to
observe that the queue Q is ordered increasingly (i.e., the newer is an element in Q, the
smaller it is) and the elements of Q form an interval [new : old].
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Now, let us show the correctness of the algorithm.
Let d be a non-negative integer, d ≤ ∆. Assume that our algorithm sets Suf [ℓ][d] = g,

with g > 0.
This means that d was removed from the queue in step 2.b when the for-loop was executed

for i = g + |wℓ| − 1. The reason for this removal was that dHAM(w[g : g + |wℓ| − 1], wℓ) = t ≤
|Q| − 1. Hence, in this step we have removed exactly those elements δ such that new ≤ δ− t.
Accordingly, we also have that new ≤ d− t holds. Let g′ = Suf [ℓ + 1][new]. We thus have
g′ > i = g + |wℓ| − 1, dHAM(αℓ+1, w[g′ : n]) ≤ new, and dHAM(wℓxℓ, w[g : g′ − 1]) = t. Putting
this all together, we get that dHAM(αℓ, w[g : n]) ≤ new + t ≤ d.

Now, assume for the sake of a contradiction, that there exists g′′ > g such that
dHAM(αℓ, w[g′′ : n]) ≤ d, i.e., w[g : n] is not the shortest suffix s of w such that dHAM(αℓ, s) ≤ d.
In this case, there exists d′′ such that g′′ + |wℓ| − 1 < Suf [ℓ + 1][d′′] and d′′ + dHAM(w[g′′ :
g′′ + |wℓ| − 1], wℓ) ≤ d. Because d is in Q when i = g + |wℓ| − 1 is reached in the for-loop,
then d must also be in Q when i′′ = g′′ + |wℓ| − 1 is reached in the for-loop, because
i < i′′ < Suf [ℓ + 1][d′′] ≤ Suf [ℓ + 1][d]. In fact, as Suf [ℓ + 1][d] ≥ Suf [ℓ + 1][d′′] > i′′,
it follows that d′′ must also be in Q when i′′ is reached. Thus, q ≥ d − d′′ and, as
we have seen above, d − d′′ ≥ dHAM(w[g′′ : g′′ + |wℓ| − 1], wℓ). Moreover, if new′′ is the
element on the top of the queue when i′′ is reached, we have that new′′ ≤ d′′. Hence,
new′′ + dHAM(w[g′′ : g′′ + |wℓ| − 1], wℓ) ≤ d′′ + dHAM(w[g′′ : g′′ + |wℓ| − 1], wℓ) ≤ d. Therefore,
when i′′ was reached, all the conditions needed to remove d from Q and set Suf [ℓ][d]← g′′

were met. We have reached a contradiction with our assumption that g′′ > g.
In conclusion, if our algorithm sets Suf [ℓ][d] = g, with g > 0, then w[g : n] is the shortest

suffix of w such that dHAM(w[g : n], wℓ) ≤ d. By an analogous argument as the one used above
in our proof by contradiction, we can show that if our algorithm sets Suf [ℓ][d] = 0 then
there does not exist any suffix w[g : n] of w such that dHAM(w[g : n], wℓ) ≤ d.

This means that our algorithm computing Suf [·][·] is correct.
To finalize the proof of the theorem, we note that, after computing the entire matrix

Suf [·][·], we can accept the instance w, α, ∆ of MisMatchReg if and only if there exists d ≤ ∆
such that Suf [1][d] ̸= 0. Moreover, dHAM(α, w) = min({d | Suf [1][d] ̸= 0} ∪ {+∞}).

In the following we show that this algorithm works in O(n∆) time. We will compute the
complexity of this algorithm using amortized analysis. Firstly, we observe that the complexity
of the algorithm is proportional to the total number of LCSw,wℓ

-queries we compute in step
2.a, for each ℓ ≤M or, in other words, over all executions of the algorithm. Now, we observe
that when position i of w is considered (for a certain ℓ), we do |Q| many LCSw,wℓ

-queries.
So, this means that we do one query per each current element of Q (and none if |Q| = 0).
Thus, the number of queries corresponding to each pair (ℓ, d) which appears in Q at some
point equals the number of positions considered between the step when it was inserted in Q

and the step when it was removed from Q. This means O(Suf [ℓ + 1][d]− Suf [ℓ][d]) queries
corresponding to (ℓ, d). Summing this up for a fixed d and ℓ from 1 to M − 2 we obtain
that the overall number of queries corresponding to a fixed δ is O(Suf [M − 1][d]) = O(n).
Adding this up for all d ≤ ∆, we obtain that the number of LCS-queries performed in our
algorithm is O(n∆). So, together with the complexity of the initialization of Suf [M − 1][·],
the complexity of this algorithm is O(n∆).

This algorithm outperforms the other two algorithms solving MinMisMatchReg which we
mentioned, and, for ∆ = 0, it is a reformulation of the greedy algorithm solving MatchReg. ◀

▶ Theorem 3.4. MinMisMatchReg can be solved in O(nΦ) time, where Φ = dHAM(α, w).
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Proof. We use the algorithm of Theorem 3.3 for ∆ = 2i, for increasing values of i starting with
1 and repeating until the algorithm returns a positive answer and computes Φ = dHAM(α, w).
The algorithm is clearly correct. Moreover, the value of i which was considered last is
such that 2i−1 < Φ ≤ 2i. So i = ⌈log2 Φ⌉, and the total complexity of our algorithm is
O(n

∑⌈log2 Φ⌉
i=1 2i) = O(nΦ). ◀

In order to show that MinMisMatchReg and MisMatchReg cannot be solved by algorithms
running polynomially faster than the algorithms from Theorems 3.3 and 3.4, we will reduce the
Orthogonal Vectors problem OV [10] to MisMatchReg. The overall structure of our reduction
is similar to the one used for establishing hardness of computing edit distance [5, 11] or
LCS [12], however we needed to construct gadgets specific to our problem. We recall the OV
problem.

Orthogonal Vectors: OV
Input: Two sets U, V consisting each of n vectors from {0, 1}d, where d ∈ ω(log n).
Question: Do vectors u ∈ U, v ∈ V exist, such that u and v are orthogonal, i.e., for all

1 ≤ k ≤ d, v[k]u[k] = 0 holds?

In general, for a vector u = (u[1], . . . , u[d]) ∈ {0, 1}d, the bits u[i] are called coordinates.
It is clear that, for input sets U and V as in the above definition, one can solve OV trivially
in O(n2d) time. The following conditional lower bound is known for OV.

▶ Lemma 3.5 (OV-Conjecture). OV can not be solved in O(n2−ϵdc) for any ϵ > 0 and constant
c, unless the Strong Exponential Time Hypothesis (SETH) fails.

See [10, 48] and the references therein for a detailed discussion regarding conditional
lower bounds related to OV. In this context, we can show the following result.

▶ Theorem 3.6. MisMatchReg can not be solved in O(|w|h∆g) time (or in O(|w|h|α|g) time)
with h + g = 2− ϵ for some ϵ > 0, unless the OV-Conjecture fails.

Proof. We reduce OV to MinMisMatchReg. For this, we consider an instance of OV: U =
{u1, . . . , un} and V = {v1, . . . , vn}, with U, V ⊂ {0, 1}d. We transform this OV-instance into
a MisMatchReg-instance (α, w, ∆), where ∆ = n(d + 1)− 1. More precisely, we ensure that for
the respective MisMatchReg-instance, there exists a way to replace the variables with strings
leading to exactly n(d + 1) mismatches between the image of α and w if and only if no two
vectors ui and vj are orthogonal. But, if there exists at least one orthogonal pair of vectors
ui and vj , there also exists a way to replace the variables of α such that the resulting string
has strictly less than n(d + 1) mismatches to w. Both |w| and |α| are in O(nd), and can
be built in O(nd) time. The reduction consists of three main steps. First we will present a
gadget for encoding the single coordinates of vectors ui and vi from U and V , respectively.
Then we will show another gadget to encode a full vector of each respective set. And, finally,
we will show how to assemble these gadgets of the vectors from set U into the word w and
from V into α.

First gadget. Let ui = (ui[1], ui[2], . . . , ui[d]) ∈ U, vj = (vj [1], vj [2], . . . , vj [d]) ∈ V and let
k be a position of these vectors. We define the following gadgets:

A′(ik) =
{

001, if ui[k] = 0.

100, if ui[k] = 1.
B′(jk) =

{
000, if vj [k] = 0.

011, if vj [k] = 1.

Note that, when aligned, the pair of strings (A′(ik), B′(jk)) produces exactly one mismatch
if and only if ui[k] · vj [k] = 0; otherwise it produces three mismatches. So, A′(ik) and B′(jk)
encode the single coordinates of ui and vj respectively.
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48:10 Matching Patterns with Variables Under Hamming Distance

Further, we construct a gadget X ′ = 010 that produces always one mismatch if aligned
to any of the strings B′(jk) corresponding to coordinates vj [k]. See also Figure 1.

001A′(ik) = 0

100A′(ik) = 1

000 B′(jk) = 0

011 B′(jk) = 1

010 X ′

1

1 1
3

1
1

Figure 1 Gadgets for the encoding of single coordinates of the vectors. On each edge we wrote
the number of mismatches between the strings in the nodes connected by that edge.

Second gadget. The gadget A(i) encodes the vector ui, for 1 ≤ i ≤ n, while the gadget
B(j) encodes the vector vj , for 1 ≤ j ≤ n. We construct these gadgets such that aligning
B(j) to A(i) with a minimum number of mismatches yields exactly d mismatches, if the two
corresponding vectors are orthogonal, and exactly d + 1 mismatches, otherwise. Moreover,
we show that any other alignment of the gadgets B(j) with other factors of w yields more
mismatches.

In order to assemble the gadgets A(i) and B(j), for 1 ≤ i, j ≤ n, we extend the terminal
alphabet by three new symbols {a, b, #}, as well as use two fresh variables xj , yj for each
vector vj . The gadgets A(i), for all i, and, respectively, the gadgets B(j), for all j, consist of
the concatenation of the coordinate gadgets A′(ik) and, respectively, B′(jk) from left to right,
in ascending order of k. Each two such consecutive gadgets A′(ik) and A′(ik+1) (respectively,
B′(jk) and B′(jk+1)) are separated by ###. We prepend to A(i) the string bba and append
the string bbbX, where X = (X ′###)d−1X ′. In the case of B(j), we prepend xjbba and
append yj . The full gadgets A(i) and B(j) are defined as follows.

A(i) = bbaA′(i1)###A′(i2)### . . . A′(id)bbbX

B(j) = xjbbaB′(j1)###B′(j2)### . . . B′(jd)yj .
For simplicity of the exposure, let B′(j) = bbaB′(j1)###B′(j2)### . . . ###B′(jd).

Note that |A(i)| is the same for all i, so we can define M = |A(i)|.

Final assemblage. To define the word w, we use a new terminal $. The word w is:
w = $M A(1)$M A(2)$M . . . A(n)$M A(1)$M A(2) . . . $M A(n)$M

To define α, we use two new fresh variables x and y. The pattern α is:
α = x$M B(1)$M B(2)$M . . . $M B(n)$M y.

The correctness of the reduction. We show that there exists a way to align α with w with
< n(d + 1) mismatches if and only if a pair of orthogonal vectors ui ∈ U and vj ∈ V exists.
Otherwise, there exists an alignment of α to w with exactly n(d + 1) mismatches.

To formally prove that the reduction fulfills this requirement, we proceed as follows.
A general idea: the repetition of the gadgets A(i) in the word w guarantees that, if needed,

a pair of gadgets A(i) and B(j), corresponding to the vectors ui ∈ U and, respectively,
vj ∈ V , can be aligned. More precisely, we can align B′(j) to bbaA′(i1)### . . . A′(id). The
variables x, y and xj , yj , for j ∈ {1, . . . , n}, act as spacers: they allow us to align a string
B′(j) to the desired factor of w. This kind of alignment is enough for our purposes, as we
only need to find one orthogonal pair of vectors, not all of them; however, we need enough
space in w for the factors of α occurring before and after B′(j), thus the repetition of the
A(i) gadgets.
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We now analyse how a factor B′(j) can be aligned to a factor of w. The main idea is to
show that if there are no orthogonal vectors, then any alignment of B′(j) to a factor of w

creates at least d + 1 mismatches. Otherwise, we can align it with d mismatches only.
Case 1: B′(j) is aligned to a factor w[i : h] of w which starts with $. Then the prefix bba of
B′(j) causes at least two mismatches, as the first b in bba is aligned to a $ letter, while the
a is aligned to either a b letter (from a bba factor) or a $ letter. The rest of B′(j) causes,
overall, at least d mismatches, one per each group B′(jk). So, in this case, we have at least
d + 2 mismatches caused by B′(j).
Case 2: B′(j) is aligned a factor w[i : h] of w which ends with $. Then, its prefix bba cannot
be aligned to a factor bba of w. So, the a of the prefix bba of B′(j) produces one mismatch,
while the suffix B′(jd) causes at least 2 mismatches. The rest of B′(j) causes at least d− 1
mismatches, one per each remaining group B′(jk). So, in this case, we have again at least
d + 2 mismatches caused by B′(j).
Case 3: B′(j) is aligned exactly to the factor bbaA′(i1)### . . . A′(id) and ui and vj are
orthogonal, then B′(j) causes exactly d mismatches.
Case 4: B′(j) is aligned exactly to the factor bbaA′(i1)### . . . A′(id) and ui and vj are not
orthogonal, then B′(j) causes at least d + 2 mismatches.
Case 5: B′(j) is aligned exactly to the factor bbbX, then B′(j) causes d + 1 mismatches.
Case 6: B′(j) is aligned to a factor starting strictly inside bbaA′(i1)### . . . A′(id), then
the prefix bba of B′(j) cannot be aligned to a factor bba of w, so it causes at least two
mismatches (from the alignment of ba). The rest of B′(j) causes at least d mismatches, one
per each group B′(jk). So, overall, B′(j) causes at least d + 2 mismatches in this case.

To ease the understanding, cases 3 and 4 are illustrated in the following table: when
aligning A(i) to B(j), to obtain the desired number of mismatches, we can match the parts
of A(i) to the parts of B(j) as described in this table in the two cases 3. and 4.

Gadget I II III IV mismatches
A(i) = ε bbaA′(i1)###. . .###A′(id) bbbX ′ ###. . .###X ′ ε

3. B(j) = xj bbaB′(j1)###. . .###B′(jd) yj ε d (in II)
4. B(j) = ε xj bbaB′(j1)###. . .###B′(jd) yj d + 1 (in IV)

Wrapping up, there are no other ways than those described in cases 1-6 above in which
B′(j) can be aligned to a factor of w. In particular, in order to reach an alignment with at
most n(d + 1) − 1 mismatches, at least one B′(j) should be aligned to a factor of w such
that it only causes d mismatches (as in case 3). Thus, in that case we would have a pair of
orthogonal vectors. Conversely, if there exist ui and vj which are orthogonal and i ≥ j, then
we can align B′(j) to the occurrence of bbaA′(i1)### . . . A′(id) from the first A(i) and all
the other gadgets B′(ℓ) to factors bbbX, and obtain a number of n(d + 1)− 1 mismatches.
Note that such an alignment is possible as there exist at least j − 1 factors bbbX before
the first A(i) and at least n more occurrences of bbbX after it; moreover the variables xℓ

and yℓ can be used to align as desired the strings B′(vℓ) to the respective bbbX factors
of w. If there exist ui and vj which are orthogonal and i < j, then we can align B′(j) to
the occurrence of bbaA′(i1)###A′(i2)### . . . A′(id) from the second A(i) and all the other
gadgets B′(ℓ) to factors bbbX, and obtain again a number of n(d + 1)− 1 mismatches. This
is possible for similar reasons to the ones described above.

This shows that our reduction is correct. The instance of OV defined by U and V

contains two orthogonal vectors if and only the instance of MisMatchReg defined by w, α, and
∆ = n(d + 1)− 1 can be answered positively. Moreover, the instance of MisMatchReg can be
constructed in O(nd) time and we have that |w|, |α|, ∆ ∈ Θ(nd).
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Assume now that there exists a solution of MisMatchReg running in O(|w|g|α|h) with
g +h = 2− ϵ for some ϵ < 0. This would lead to a solution for OV running in O(nd+ (nd)2−ϵ),
a contradiction to the OV-conjecture. Similarly, if there exists a solution of MisMatchReg

running in O(|w|g∆h) with g + h = 2 − ϵ for some ϵ < 0, then there exists a solution
for OV running in O(nd + (nd)2−ϵ), a contradiction to the OV-conjecture. This proves our
statement. ◀

▶ Remark 3.7. An immediate consequence of the previous theorem is that MinMisMatchReg

can not be solved in O(nhdHAM(α, w)g) time (or in O(|w|h|α|g) time) with h + g = 2 − ϵ

for some ϵ > 0, unless the OV-Conjecture fails. Thus, as dHAM(α, w) ≤ |α|, MinMisMatchReg

and MisMatchReg cannot be solved polynomially faster than our algorithms, unless the
OV-Conjecture fails.

4 Patterns with Repeated Variables

In Section 3 we have shown that if no variable occurs more than once in the input pattern α,
then the problems MisMatch and MinMisMatch can be solved in polynomial time. Let us now
consider patterns where variables are allowed to occur more than once, i.e., patterns with
repeated variables. Firstly, we recall two measures of the structural complexity of patterns.

For every variable x ∈ var(α), the scope of x in α is defined by scα(x) = [i : j], where
i is the leftmost and j the rightmost occurrence of x in α. The scopes of the variables
x1, . . . , xk ∈ var(α) coincide in α if

⋂k
i=1 sc(xi) ̸= ∅. By scd(α) we denote the scope

coincidence degree of α: the maximum number of variables in α whose scopes coincide. By
kSCD we denote the class of patterns whose scope coincidence degree is at most k.

Given a pattern α, with p variables, a marking sequence of α is an ordering x1 < x2 <

. . . < xp of var(α). The skeleton αvar of α is obtained from α by removing all the terminals.
A marking of αvar w.r.t. a marking sequence x1 < x2 < . . . < xp of α is a p-steps procedure:
in step i we mark all occurrences of variable xi. The pattern α is called k-local if and only if
there exists a marking sequence of x1 < x2 < . . . < xp of α such that, for i from 1 to p, the
variables marked in the first i steps of the marking of αvar w.r.t. this marking sequence form
at most k non-overlapping length-maximal factors in αvar; the respective marking sequence
is called witness for the k-locality of α. By kLOC we denote the class of k-local patterns.
See [18, 15] for an extended discussion and examples regarding k-locality.

Several more particular classes which we consider in this context are the following:
The class of unary patterns 1Var: α ∈ 1Var if there exists x ∈ X such that var(α) = {x};
example: α1 = abxabxxbaab ∈ 1Var.
The class of one-repeated-variable patterns 1RepVar: α ∈ 1RepVar if there exists at most
one variable x ∈ X such that |α|x > 1; example: α2 = abxyabzxxbaabv ∈ 1RepVar.
The class NonCross = 1SCD, called the class of non-cross patterns; as examples, consider
α3 = abxxyabzzzbbvvvabvu ∈ NonCross \ 1RepVar and α4 = abxyabzxxbbvabx ∈
1RepVar \ NonCross. Note that α ∈ NonCross if and only if α can be written as the
concatenation of several 1Var-patterns, whose variables are pairwise distinct. Thus,
NonCross-patterns are 1-local.

Note that in a NonCross-pattern α, for any two variables x, y ∈ var(α), where the
last occurrence of y is to the right of the first occurrence of x in α, we can actually write
α = βxγyδ such that x, y /∈ var(γ), x /∈ var(δ), and y /∈ var(β). In other words, there are
no interleaved occurrences of two variables. Moreover, if α ∈ NonCross, then α is 1-local: the
marking sequence is obtained by ordering the variables according to the position of their first
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occurrence. Clearly, 1Var ⊂ 1RepVar and 1Var ⊂ NonCross, but 1RepVar and NonCross are
incomparable. Indeed, if α ∈ NonCross then α is 1-local and 1RepVar contains patterns α

with scd(α) = 2.
Further, if α is a pattern and x ∈ var(α), then an x-block is a factor α[i : j] such that

α[i : j] ∈ 1Var with var(α[i : j]) = x and it is length-maximal with this property: it cannot
be extended to the right or to the left without introducing a variable different from x.

The next lemma is fundamental for the results of this section.

▶ Lemma 4.1. Given a set of words w1, . . . , wp ∈ Σm, we can find in O(|Σ|+ mp) a median
string for {w1, . . . , wp}, i.e. a string w such that

∑p
j=1 dHAM(wi, w) is minimal.

Proof. We will use an array C with Σ elements, called counters, indexed by the letters of Σ,
and all initially set to 0. For each i between 1 and m, we count how many times each letter
of Σ occurs in the multi-set {w1[i], w2[i], . . . , wp[i]} using C. Let w[i] be the most frequent
letter of this multi-set. After computing w[i], we reset the counters which were changed in
this iteration, and repeat the algorithm for i + 1. After going through all values of i, we
return the word w = w[1]w[2] . . . w[m] as the answer to the problem. The correctness of the
algorithm is immediate, while its complexity is clearly O(|Σ|+ mp). ◀

The typical use of this lemma is the following: we identify the factors of w to which
a repeated variable is aligned, and then compute the optimal assignment of this variable.
Based on this, the following theorem can now be shown. The corresponding proof can be
found in the full version of this paper [30].

▶ Theorem 4.2. MinMisMatch1Var and MisMatch1Var can be solved in O(n) time.

By a standard dynamic programming approach, we use the previous result to obtain a
polynomial-time solution for MinMisMatchNonCross based on the solution for MinMisMatch1Var

(in the statement, p = |var(α)|). The corresponding proof can be found in the full version of
this paper [30].

▶ Theorem 4.3. MinMisMatchNonCross and MisMatchNonCross can be solved in O(n3p) time.

The results presented so far show that MinMisMatchP and MisMatchP can be solved
in polynomial time, as long as we do not allow interleaved occurrences of variables in the
patterns of the class P . We now consider the case of 1RepVar-patterns, the simplest class of
patterns which permits interleaved occurrences of variables. For simplicity, in the results
regarding 1RepVar we assume that the variable which occurs more than once in the input
pattern is denoted by x. The corresponding proof and the proof of the following more general
result can be found in the Appendix B.

▶ Theorem 4.4. MinMisMatch1RepVar and MisMatch1RepVar can be solved in O(nk+2m) time,
where k is the number of x-blocks in the input pattern α.

▶ Theorem 4.5. MinMisMatchkLOC and MisMatchkLOC can be solved in O(n2k+2m) time.

Note that NonCross-patterns are 1-local, while the locality of an 1RepVar-pattern is
upper bounded by the number of x-blocks. However, the algorithms we obtained in those
particular cases are more efficient than the ones which follow from Theorem 4.5.

The fact that Lemma 4.1 is used as the main building block for our results regarding
MisMatchP and MinMisMatchP for P ∈ {1RepVar, kLOC}, suggests that these problems could
be closely related to the following well-studied problem [36, 20, 7, 13].
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Consensus Patterns: CP
Input: k strings w1, . . . , wk ∈ Σℓ, integer m ∈ N with m ≤ ℓ, an integer ∆ ≤ mk.
Question: Do the strings s, of length m, and s1, . . . , sk, factors of length m of each

w1, . . . , wk, respectively, exist, such that
∑k

i=1 dHAM(si, s) ≤ ∆?

Exploiting this connection, and following the ideas of [36], we can show the following
theorem. In this theorem we restrict to the case when the input word w of MinMisMatch1RepVar

is over Σ = {1, . . . , σ} of constant size σ.

▶ Theorem 4.6. For each constant r ≥ 3, there exists an algorithm with run-time O(nr+3) for
MinMisMatch1RepVar whose output distance is at most min

{
2,

(
1 + 4σ−4√

e(
√

4r+1−3)

)}
dHAM(α, w).

The proof can be found in the Appendix B. It remains open whether other algorithmic
results related to CP (such as those from, e.g., [8, 9, 40]) apply to our setting too.

In the following we show two hardness results which explain why the algorithms in
Theorems 4.4 and 4.6 are interesting.

▶ Theorem 4.7. MisMatch1RepVar is W [1]-hard w.r.t. the number of x-blocks.

Proof. We reduce CP to MisMatch1RepVar, such that an instance of CP with k different input
strings is mapped to an instance of MisMatch1RepVar with k + 1 x-blocks (where x is the
repeated variable), each containing exactly one occurrence of x.

Hence, we consider an instance of CP which consists of k strings w1, . . . wk ∈ Σℓ of length
ℓ and two integer m, ∆ defining the length of the target factors and the number of allowed
mismatches, respectively.

The instance of MisMatch1RepVar which we construct consists of a text w and a pattern
α, such that α contains k + 1 x-blocks, each with exactly one occurrence of x, and is of
polynomial size w.r.t. the size of the CP-instance. Moreover, the number of mismatches
allowed in this instance of MisMatch1RepVar is ∆′ = m + ∆. That is, if there exists a solution
for the CP-instance with ∆ allowed mismatches, then, and only then, we should be able to
find a solution of the MisMatch1RepVar-instance with ∆ + m mismatches.

The construction of the MinMisMatch1RepVar is realized in such a way that the word w

encodes the input strings, while α creates the mechanism for selecting the string s and
corresponding factors s1, . . . , sk. The general idea is that x should be mapped to s, and the
factors to which the occurrences of x are aligned should correspond to the strings s1, . . . , sk.

The structure of the word w and that of the pattern α ensure that, in an alignment of α

with w which cannot be traced back to a admissible solution for the CP-instance (that is, the
occurrences of x are not aligned to factors of length m of the words w1, . . . , wk or x is not
mapped to a string of length m) we have at least M ≫ ∆′ mismatches, hence it cannot lead
to a positive answer for the constructed instance of MisMatch1RepVar.

The reduction consists of three main steps. Firstly, we present a pair of gadgets to encode
the relation of the strings wi and their factors si, for i from 1 to k. Then, we present a
second pair of gadgets, which ensures that, in a positive solution of MisMatch1RepVar, the
variable x can only be mapped to a string of length m, corresponding to the string s. Finally,
we show how to assemble these gadgets into the input word w and the input pattern α for
MisMatch1RepVar.

First pair of gadgets. We introduce the new letters {a, b}, not contained in the input
alphabet of the CP-instance, as well as the variable x and two fresh variables yi, zi, for each i

form 1 to k. We construct the following two gadgets for each input string wi with 1 ≤ i ≤ k.
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A gadget to be included in w: gi = wi

M︷ ︸︸ ︷
aM bM . . . aM bM .

A gadget to be included in α: fi = yixzi

M︷ ︸︸ ︷
aM bM . . . aM bM .

These gadgets allows us to align the ith occurrence of x to an arbitrary factor of the word
wi, for i from 1 to k.

Second pair of gadgets. In this case, we use three new letters {c, d, $} which are not
contained in the input alphabet of CP. Also, let M = (kℓ)2. We define two new gadgets.

A gadget to be included in w: Aw =

M︷ ︸︸ ︷
cM dM . . . cM dM $m.

A gadget to be included in α: Aα =

M︷ ︸︸ ︷
cM dM . . . cM dM x.

These gadgets enforce that, in an alignment of α and w, the variable x is mapped to a string
of length m, at the cost of exactly m extra mismatches. Note that, because ∆ ≤ km, we
have that M ≫ ∆.

Final assemblage. The word w and the pattern α are defined as follows.
w = g1g2 . . . gkAw and α = f1f2 . . . fkAα.

To wrap up, the instance of MinMisMatch1RepVar is defined by w, α, ∆ + m.

The correctness of the reduction. We will show that our reduction is correct by a detailed
case analysis. We consider an alignment of α and w with minimal number of mismatches,
and we make the following observations.
A. Firstly, if every gi is aligned to fi, for i from i to k, it is immediate that x is mapped

to a string of length m, as the last occurrence of x will be aligned to the $m suffix of w.
Thus, the total number of mismatches between α and w in an alignment with a minimum
number of mismatches is upper-bounded by (k + 1)m.

B. Secondly, we assume, for the sake of a contradiction, that the length of the image of x

is not m. If |x| > m (respectively, |x| < m) then the prefix (cMdM)M of Aα is aligned to
a factor of w which starts strictly to the left of (respectively, to the right of) the first
position of the prefix (cMdM)M of Aw. It is not hard to see that this causes at least M

mismatches. Indeed, in the case when |x| > m, if the factor (cMdM)M of α is aligned to a
factor that starts at least M position to the left of the factor (cMdM)M of w, the conclusion
is immediate; if the factor (cMdM)M starts less then M positions to the left of the factor
(cMdM)M of w, then each group cM in α will be aligned to a factor of w that includes at
least a d letter, so we again reach the conclusion. In the case when |x| < m, then, again,
each group cM in α will be aligned to a factor of w that includes at least a d letter, so
the alignment leads to at least M mismatches.
So, we can assume from now on that x is mapped to a string of length m. This also
implies that Aα and Aw are aligned, so we will largely neglect them from now on.

C. Thirdly, we assume that there exists i such that |h(yi)| + |h(zi)| ̸= |wi| − m. Let
j = min{i ≤ k | |h(yi)|+ |h(zi)| ̸= |wi| −m}. Then the suffixes (aMbM)M of gj and fj do
not align perfectly to each other. If |h(yj)|+ |h(zj)| < |wi| −m, then the suffix (aMbM)M

of fj is aligned to a factor of w which starts inside wj . This immediately causes at least
M mismatches, as each group aM will overlap to a group of which contains at least one b
letter. If |h(yj)|+ |h(zj)| > |wi| −m, then the suffix (aMbM)M of fj is aligned to a factor of
w which starts strictly to the right of the factor wj . However, because M = (kℓ)2 ≫ kℓ,
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and fj and gj are followed by the same number of factors (aMbM)M (until the factors Aα

and Aw are reached), the factor corresponding to the suffix (aMbM)M of fj cannot start
more than kℓ positions to the right of wj . It is then immediate that this factor (aMbM)M

of fj will cause at least M mismatches: each group aM will overlap to a group of which
contains at least one b letter.
So, from now on we can assume that the factors (aMbM)M of gj and fj are aligned.

D. At this point, it is clear that in each alignment of α and w which fulfils the conditions
described in items B and C: the variable x is mapped to a string of length m, and its first
k occurrences are aligned to factors of the words w1, . . . , wk. We will now show that for
each alignment of α and w in which the image of x contains a $ symbol and fulfills the
conditions above, there exists an alignment of α and w with at most the same number of
mismatches, in which the image of x does not contain a $ symbol and, once more, fulfills
the conditions B and C. Assume that in our original alignment x is mapped to a string ux

of length m such that ux[i] = $. Let u1, . . . , uk be the factors of w1, . . . , wk, respectively,
to which the first occurrences of the variable x are aligned. Consider the string u′

x which
is obtained from ux by simply replacing the $ symbol on position i by u1[i]. And then
consider the alignment of α and w which is obtained from the original alignment by
changing the image of x to u′

x instead of ux. When compared to the original alignment,
the new alignment has an additional mismatch caused by the occurrence of x aligned to
$m, but at least one less mismatch caused by the alignments of the first k occurrences of
x. Indeed, in the original alignment, the ith position of ux was a mismatch to the ith

position of any string u1, . . . , uk, but now at least the ith positions of w1 and u′
x coincide.

This shows that our claim holds. A similar argument shows that for any alignment in
which x is mapped to a string containing other letters than the input letters from the
CP-instance there exits an alignment in which x is mapped to a string containing only
letters from the CP-instance.
Hence, from now on we can assume that the factors (aMbM)M of gj and fj are aligned and
that the image of x has length m and is over the input alphabet of CP-instance.

Based on the observations A-D, we can show that the reduction has the desired properties.
If the CP-instance admits a solution s, s1, . . . , sk which causes a number of mismatches less
or equal to ∆, then we can produce an alignment of α to w as follows. We map x to s and,
for i from 1 to k, we map xi and yi to the prefix of wi occurring before si and, respectively,
the suffix of wi occurring after si. This leads to ∆ + m mismatches between α and w, so the
input (w, α, ∆ + m) of MisMatch1RepVar is accepted. Conversely, if we have an alignment of α

and w with at most ∆ + m mismatches, then we have an alignment with the same number
of mismatches which fulfills the conditions summarized at the end of item D above. Hence,
we can define s as the image of x in this alignment, and the strings s1, . . . , sk as the factors
of w aligned to the first k occurrences of x from α. Clearly, for i between 1 and k, si is a
factor of wi. As m mismatches of the alignment were caused by the alignment of the last x

to $m, we get that
∑k

i=1 dHAM(s, si) ≤ ∆. Thus, the instance of CP is accepted.
This concludes the proof of the correctness of our reduction. As M is clearly of polynomial

size w.r.t. the size of the CP-instance, it follows that both w and α are of polynomial size
O(kM2). Therefore, the instance of MinMisMatch1RepVar can be computed in polynomial
time, and our entire reduction is done in polynomial time. Moreover, we have shown that
the instance (w, α, ∆ + M) of MinMisMatch1RepVar is answered positively if and only if the
original instance of CP is answered positively. Finally, as the number of x blocks in α is
k + 1, where k is the number of input strings in the instance of CP, and CP is W [1]-hard
with respect to this parameter, it follows that MinMisMatch1RepVar is also W [1]-hard when
the number of k-blocks in α is considered as parameter. This completes our proof. ◀
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Note that the pattern α constructed in the reduction above is k−1-local (and not k-local):
a witness marking sequence is z1 < y2 < z2 < y3 < . . . < zk−1 < yk < x < y1 < zk. Thus,
MisMatch1RepVar is W[1]-hard w.r.t. locality of the input pattern as well. Also, it is easy to see
that scd(α) = 2, and, by the results of [42], this shows that the treewidth of the pattern α, as
defined in the same paper, is at most 3. Thus, even for classes of patterns with constant scd,
number or repeated variables, or treewidth, the problems MisMatchP and MinMisMatchP

can become intractable. In Theorem 4.6 we have shown that MinMisMatch1RepVar admits a
polynomial time approximation scheme (for short, PTAS). We will show in the following that
it does not admit an efficient PTAS (for short, EPTAS), unless FPT = W [1]. This means
that there is no PTAS for MinMisMatch1RepVar such that the exponent of the polynomial
in its running time is independent of the approximation ratio. To show this, we consider
an optimisation variant of the problem CP, denoted minCP. In this problem, for k strings
w1, . . . , wk ∈ Σℓ of length ℓ and an integer m ∈ N with m ≤ ℓ, we are interested in the
smallest non-negative integer ∆ for which there exist strings s, of length m, and s1, . . . , sk,
factors of length m of each w1, . . . , wk, respectively, such that

∑k
i=1 dHAM(si, s) = ∆. In [7], it

is shown that minCP has no EPTAS unless FPT = W [1]. We can use this result and the
reduction from the Theorem 4.7 to show the following result (see Appendix B).

▶ Theorem 4.8. MinMisMatch1RepVar has no EPTAS unless FPT = W [1].

References
1 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with

k mismatches. J. Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)00097-X.
2 Amihood Amir and Igor Nor. Generalized function matching. J. Discrete Algorithms, 5:514–523,

2007. doi:10.1016/j.jda.2006.10.001.
3 Dana Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62,

1980. doi:10.1016/0022-0000(80)90041-0.
4 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In

Proc. 57th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2016, pages
457–466, 2016. doi:10.1109/FOCS.2016.56.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1145/2746539.
2746612.

6 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theor.
Comput. Sci., 409(3):486–496, 2008. doi:10.1016/j.tcs.2008.08.042.

7 Christina Boucher, Christine Lo, and Daniel Lokshantov. Consensus patterns (probably) has
no EPTAS. In Proc. 23rd Annual European Symposium, ESA, volume 9294 of Lecture Notes
in Computer Science, pages 239–250, 2015. doi:10.1007/978-3-662-48350-3_21.

8 Brona Brejová, Daniel G. Brown, Ian M. Harrower, Alejandro López-Ortiz, and Tomás Vinar.
Sharper upper and lower bounds for an approximation scheme for consensus-pattern. In Proc.
16th Annual Symposium Combinatorial Pattern Matching, CPM 2005, volume 3537 of Lecture
Notes in Computer Science, pages 1–10, 2005. doi:10.1007/11496656_1.

9 Brona Brejová, Daniel G. Brown, Ian M. Harrower, and Tomás Vinar. New bounds for
motif finding in strong instances. In Proc. 17th Annual Symposium Combinatorial Pattern
Matching, CPM 2006, volume 4009 of Lecture Notes in Computer Science, pages 94–105, 2006.
doi:10.1007/11780441_10.

10 Karl Bringmann. Fine-grained complexity theory (tutorial). In Proc. 36th International
Symposium on Theoretical Aspects of Computer Science, STACS 2019, volume 126 of LIPIcs,
pages 4:1–4:7, 2019. doi:10.4230/LIPIcs.STACS.2019.4.

MFCS 2021

https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1016/j.jda.2006.10.001
https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1016/j.tcs.2008.08.042
https://doi.org/10.1007/978-3-662-48350-3_21
https://doi.org/10.1007/11496656_1
https://doi.org/10.1007/11780441_10
https://doi.org/10.4230/LIPIcs.STACS.2019.4


48:18 Matching Patterns with Variables Under Hamming Distance

11 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. 56th IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pages 79–97, 2015. doi:10.1109/FOCS.2015.15.

12 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. 29th ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, pages 1216–1235. SIAM, 2018. doi:10.1137/1.9781611975031.79.

13 Laurent Bulteau and Markus L. Schmid. Consensus strings with small maximum distance and
small distance sum. Algorithmica, 82(5):1378–1409, 2020. doi:10.1007/s00453-019-00647-9.

14 Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular expressions.
Int. J. Found. Comput. Sci., 14:1007–1018, 2003. doi:10.1142/S012905410300214X.

15 Katrin Casel, Joel D. Day, Pamela Fleischmann, Tomasz Kociumaka, Florin Manea, and
Markus L. Schmid. Graph and string parameters: Connections between pathwidth, cutwidth
and the locality number. In Proc. 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, volume 132 of LIPIcs, pages 109:1–109:16, 2019. doi:
10.4230/LIPIcs.ICALP.2019.109.

16 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In Proc. 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, pages 978–989, 2020. doi:10.1109/FOCS46700.2020.00095.

17 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007. doi:10.1017/CBO9780511546853.

18 Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. Local patterns. In
Proc. 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, volume 93 of LIPIcs, pages 24:1–24:14, 2017. doi:10.4230/
LIPIcs.FSTTCS.2017.24.

19 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document spanners:
A formal approach to information extraction. J. ACM, 62(2):12:1–12:51, 2015. doi:10.1145/
2699442.

20 Michael R. Fellows, Jens Gramm, and Rolf Niedermeier. On the parameterized intractability
of motif search problems. Comb., 26(2):141–167, 2006. doi:10.1007/s00493-006-0011-4.

21 Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Revisiting Shinohara’s
algorithm for computing descriptive patterns. Theor. Comput. Sci., 733:44–54, 2018. doi:
10.1016/j.tcs.2018.04.035.

22 Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching
with variables: Efficient algorithms and complexity results. ACM Trans. Comput. Theory,
12(1):6:1–6:37, 2020. doi:10.1145/3369935.

23 Henning Fernau and Markus L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. Inf. Comput., 242:287–305, 2015. doi:10.1016/j.ic.2015.03.006.

24 Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised complexity
of string morphism problems. Theory Comput. Syst., 59(1):24–51, 2016. doi:10.1007/
s00224-015-9635-3.

25 Dominik D. Freydenberger. Extended regular expressions: Succinctness and decidability.
Theory of Comput. Syst., 53:159–193, 2013. doi:10.1007/s00224-012-9389-0.

26 Dominik D. Freydenberger. A logic for document spanners. Theory Comput. Syst., 63(7):1679–
1754, 2019. doi:10.1007/s00224-018-9874-1.

27 Dominik D. Freydenberger and Mario Holldack. Document spanners: From expressive
power to decision problems. Theory Comput. Syst., 62(4):854–898, 2018. doi:10.1007/
s00224-017-9770-0.

28 Dominik D. Freydenberger and Markus L. Schmid. Deterministic regular expressions with
back-references. J. Comput. Syst. Sci., 105:1–39, 2019. doi:10.1016/j.jcss.2019.04.001.

29 Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, third edition,
2006.

https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1007/s00453-019-00647-9
https://doi.org/10.1142/S012905410300214X
https://doi.org/10.4230/LIPIcs.ICALP.2019.109
https://doi.org/10.4230/LIPIcs.ICALP.2019.109
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1017/CBO9780511546853
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.24
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.24
https://doi.org/10.1145/2699442
https://doi.org/10.1145/2699442
https://doi.org/10.1007/s00493-006-0011-4
https://doi.org/10.1016/j.tcs.2018.04.035
https://doi.org/10.1016/j.tcs.2018.04.035
https://doi.org/10.1145/3369935
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.1007/s00224-012-9389-0
https://doi.org/10.1007/s00224-018-9874-1
https://doi.org/10.1007/s00224-017-9770-0
https://doi.org/10.1007/s00224-017-9770-0
https://doi.org/10.1016/j.jcss.2019.04.001


P. Gawrychowski, F. Manea, and S. Siemer 48:19

30 Pawel Gawrychowski, Florin Manea, and Stefan Siemer. Matching patterns with variables
under hamming distance. CoRR, abs/2106.06249, 2021. arXiv:2106.06249.

31 Pawel Gawrychowski and Przemyslaw Uznanski. Optimal trade-offs for pattern matching with
k mismatches. CoRR, abs/1704.01311, 2017. arXiv:1704.01311.

32 Pawel Gawrychowski and Przemyslaw Uznanski. Towards unified approximate pattern matching
for hamming and l_1 distance. In Proc. 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, volume 107 of LIPIcs, pages 62:1–62:13, 2018. doi:10.4230/
LIPIcs.ICALP.2018.62.

33 Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In Proc. 30th
International Colloquium Automata, Languages and Programming, ICALP 2003, volume 2719
of Lecture Notes in Computer Science, pages 943–955, 2003. doi:10.1007/3-540-45061-0_73.

34 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

35 Gad M. Landau and Uzi Vishkin. Efficient string matching in the presence of errors. In Proc.
26th Annual Symposium on Foundations of Computer Science, FOCS 1985, pages 126–136,
1985. doi:10.1109/SFCS.1985.22.

36 Ming Li, Bin Ma, and Lusheng Wang. Finding similar regions in many sequences. J. Comput.
Syst. Sci., 65(1):73–96, 2002. doi:10.1006/jcss.2002.1823.

37 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997. doi:10.1017/
CBO9780511566097.

38 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002. doi:
10.1017/CBO9781107326019.

39 Florin Manea and Markus L. Schmid. Matching patterns with variables. In Proc. 12th
International Conference Combinatorics on Words, WORDS 2019, volume 11682 of Lecture
Notes in Computer Science, pages 1–27, 2019. doi:10.1007/978-3-030-28796-2_1.

40 Dániel Marx. Closest substring problems with small distances. SIAM J. Comput., 38(4):1382–
1410, 2008. doi:10.1137/060673898.

41 Eugene W. Myers and Webb Miller. Approximate matching of regular expressions. Bull. Math.
Biol., 51(1):5–37, 1989. doi:10.1007/BF02458834.

42 Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth. Inf. Comput.,
239:87–99, 2014. doi:10.1016/j.ic.2014.08.010.

43 Markus L. Schmid. A note on the complexity of matching patterns with variables. Inf. Process.
Lett., 113(19):729–733, 2013. doi:10.1016/j.ipl.2013.06.011.

44 Markus L. Schmid and Nicole Schweikardt. A purely regular approach to non-regular core
spanners. In Proc. 24th International Conference on Database Theory, ICDT 2021, volume
186 of LIPIcs, pages 4:1–4:19, 2021. doi:10.4230/LIPIcs.ICDT.2021.4.

45 Takeshi Shinohara. Polynomial time inference of pattern languages and its application. In
Proc. 7th IBM Symposium on Mathematical Foundations of Computer Science, MFCS, pages
191–209, 1982.

46 Takeshi Shinohara and Setsuo Arikawa. Pattern inference. In Algorithmic Learning for
Knowledge-Based Systems, GOSLER Final Report, volume 961 of LNAI, pages 259–291, 1995.

47 Przemyslaw Uznanski. Recent advances in text-to-pattern distance algorithms. In Proc. 16th
Conference on Computability in Europe, CiE 2020, volume 12098 of Lecture Notes in Computer
Science, pages 353–365, 2020. doi:10.1007/978-3-030-51466-2_32.

48 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

A Computational Model

The computational model we use to describe our results is the standard unit-cost RAM
with logarithmic word size: for an input of size n, each memory word can hold log n bits.
Arithmetic and bitwise operations with numbers in [1 : n] are, thus, assumed to take O(1)

MFCS 2021

http://arxiv.org/abs/2106.06249
http://arxiv.org/abs/1704.01311
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.1007/3-540-45061-0_73
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1109/SFCS.1985.22
https://doi.org/10.1006/jcss.2002.1823
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1137/060673898
https://doi.org/10.1007/BF02458834
https://doi.org/10.1016/j.ic.2014.08.010
https://doi.org/10.1016/j.ipl.2013.06.011
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.1007/978-3-030-51466-2_32
https://doi.org/10.1016/j.tcs.2005.09.023


48:20 Matching Patterns with Variables Under Hamming Distance

time. Numbers larger than n, with ℓ bits, are represented in O(ℓ/ log n) memory words, and
working with them takes time proportional to the number of memory words on which they
are represented. In all the problems, we assume that we are given a word w and a pattern α,
with |w| = n and |α| = m ≤ n, over a terminal-alphabet Σ = {1, 2, . . . , σ}, with |Σ| = σ ≤ n.
The variables are chosen from the set {x1, . . . , xn} and can be encoded as integers between
n + 1 and 2n. That is, we assume that the processed words are sequences of integers (called
letters or symbols), each fitting in O(1) memory words. This is a common assumption in
string algorithms: the input alphabet is said to be an integer alphabet. For instance, the
same assumption was also used for developing efficient algorithms for Match in [21]. For a
more detailed general discussion on this model see, e.g., [17].

B Proofs

▶ Lemma 3.1. Let w and u, with |w| = |u| = n, be two words and δ a non-negative integer.
Assume that, in a preprocessing phase, we have constructed LCSw,u-data structures. We can
compute min(δ + 1, dHAM(u, w)) using δ + 1 LCSw,u queries, so in O(δ) time.

Proof. Let a = b = m and d = 0. While a > 0 and d ≤ δ execute the following steps.
Compute h = LCSw,u(a, b). If h < b, then increment d by 1, set a ← a − h − 1 and
b ← b− h− 1, and start another iteration of the while-loop. If h = b, then set b ← 0 and
exit the while-loop.

It is not hard to note that before each iteration of the while loop it holds that d =
dHAM(w[a + 1 : m], u[b + 1 : m]). When the while loop is finished, d = min(dHAM(w[i−m + 1 :
i], u[1 : m]), δ + 1). In each iteration we first identify the length h of the longest common
suffix of w[1 : a] and u[1 : b]. Then, we jump over this suffix, as it causes no mismatches, and
have either traversed completely the words w and u (and we do not need to do anything
more), or we have reached a mismatch between w and u, on position a− h = b− h. In the
latter case, we count this mismatch, jump over it, and repeat the process (but only if the
number of mismatches is still at most δ). So, in other words, we go through the mismatches
of w and u, from right to left, and jump from one to the next one using LCSw,u queries. If
we have more than δ mismatches, we do not count all of them, but stop as soon as we have
met the (δ + 1)th mismatch. Accordingly, the algorithm is correct. Clearly, we only need δ + 1
LCSw,u-queries and the time complexity of this algorithm is O(δ), once the LCSw,u-data
structures are constructed. ◀

▶ Lemma 3.2. Given a word w, with |w| = n, a word u, with |u| = m < n, and a non-
negative integer δ, we can compute in O(nδ) time the array D[m : n] with n−m+1 elements,
where D[i] = min(δ + 1, dHAM(w[i−m + 1 : i], u)).

Proof. We first construct, in linear time, the LCSw,u-data structures for the input words.
Note that the LCSw,u-data structure can be directly used as LCSw[i:i+m−1],u data structure,
for all i ≤ n−m + 1.

Then, for each position i of w, with i ≤ m, we use Lemma 3.1 to compute, in O(δ) time
the value d = min(dHAM(u, w[i−m + 1 : i]), δ + 1). We then set D[i]← d. By the correctness
of Lemma 3.1, we get the correctness of this algorithm. Clearly, its time complexity is
O(nδ). ◀

▶ Theorem 4.4. MinMisMatch1RepVar and MisMatch1RepVar can be solved in O(nk+2m) time,
where k is the number of x-blocks in the input pattern α.
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Proof. Once more, we only show how MinMisMatch1RepVar can be solved. The result for
MisMatch1RepVar follows then immediately.

In MinMisMatch1RepVar, we are given a word w, of length n, and a pattern α, of length m,
which, as stated above, has exactly k x-blocks. Thus α =

∏k
i=1(γi−1βi)γk, where the factors

βi, for i ∈ {1, . . . , k}, are the x-blocks of α. It is easy to observe that var(γi) ∩ var(γj) = ∅,
for all i and j, and γ = γ0γ1 · · · γk is a regular pattern.

When aligning α to w we actually align each of the patterns γj and βi, for 0 ≤ j ≤ k and
1 ≤ i ≤ k, to respective factors of the word w. Moreover, the factors to which these patterns
are respectively aligned are completely determined by the length ℓ of the image of x, and
the starting positions hi of the factors aligned to the patterns βi, for 1 ≤ i ≤ k. Knowing
the length ℓ of the image of x, we can also compute, for 1 ≤ i ≤ k, the length ℓi of βi, when
x is replaced by a string of length ℓ. In this case, γ0 is aligned u0 = w[1..h1 − 1] and, for
1 ≤ i ≤ k, βi is aligned to wi = w[hi : hi + ℓi − 1] and γi is aligned ui = w[hi + ℓi : hi+1 − 1]
(where hk+1 = n + 1). Thus, β1 · · ·βk matches w1 · · ·wk and we can use Theorem 4.2 to
determine dHAM(β1 · · ·βk, w1 · · ·wk) (or, in other words, determine the string ux that should
replace x in order to realize this Hamming distance). Further, we can use Theorem 3.4 to
compute dHAM(γi, ui), for all i ∈ {0, . . . , k}. Adding all these distances up, we obtain a total
distance Dℓ,h1,...,hk

; this value depends on ℓ, h1, . . . , hk.
So, we can simply iterate over all possible choices for ℓ, h1, . . . , hk and find dHAM(α, w) as

the minimum of the numbers Dℓ,h1,...,hk
.

By the explanations above, it is straightforward that the approach is correct: we simply try
all possibilities of aligning α with w. The time complexity is, for each choice of ℓ, h1, . . . , hk,
O(

∑k
i=1 |wi|) ⊆ O(n) for the part corresponding to the computation of the optimal alignment

between the factors βi and the words wi, and O(
∑k

i=0 |ui|dHAM(γi, ui)) ⊆ O(nm) for the part
corresponding to the computation of the optimal alignment between the factors γi and the
words ui. So, the overall complexity of this algorithm is O(nk+2m). ◀

▶ Theorem 4.5. MinMisMatchkLOC and MisMatchkLOC can be solved in O(n2k+2m) time.

Proof. We only present the solution for MinMisMatchkLOC (as it trivially works in the case of
MisMatchkLOC too).

Let us note that, by the results in [18], we can compute a marking sequence of α in
O(m2kk) time. So, after such a preprocessing phase, we can assume that we have a word w,
a k-local pattern α (with p variables) with a witness marking sequence x1 ≤ . . . ≤ xp for the
k-locality of α, and we want to compute dHAM(α, w).

Generally, the main idea behind matching kLOC-patterns is that when looking for possible
ways to align such a pattern α to a word w we can consider the variables in the order given
by the marking sequence, and, when reaching variable xi, we try all possible assignments for
xi. The critical observation here is that after each such assignment of a new variable, we
only need to keep track of the way the t ≤ k length-maximal factors of α, which contain only
marked variables and terminals, match (at most) t ≤ k factors of w.

We will use this approach in our algorithm for MinMisMatchkLOC.
The first step of this algorithm is the following. We go through α and identify all x1-blocks:

β1,1, . . . , β1,j1 . Because α is k-local, we have that j1 ≤ k. For each 2j1-tuple (i1, . . . , i2j1) of
positions of w, we compute the minimum number of mismatches if we align (simultaneously)
the patterns βg to the factors w[i2g−1 : i2g], for g from 1 to j1, respectively. This reduces
to finding an assignment for x1 which aligns optimally the patterns β1,g to the respective
factors, and can be done in O(n) time using Theorem 4.2. For each 2j1-tuple (i1, . . . , i2j1) of
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positions of w, we denote by M1(i1, . . . , i2j1) the minimum number of mismatches resulting
from the (simultaneous) alignment of the patterns β1,g to the factors w[i2g−1 : i2g], for g

from 1 to j1, respectively. Clearly, M1 can be seen as a j1-dimensional array.
Assume that after h ≥ 1 steps of our algorithm we have computed the factors

βh,1, . . . , βh,jh
of α, which are length-maximal factors of α which only contain the vari-

ables x1, . . . , xh and terminals (i.e., extending them to the left or right would introduce a
new variable xℓ with ℓ > h); as α is k-local, we have jh ≤ k. Moreover, for each 2jh-tuple
(i1, . . . , i2jh

) of positions of w, we have computed Mh(i1, . . . , i2jh
), the minimum number of

mismatches if we align (simultaneously) the patterns βh,g to the factors w[i2g−1 : i2g], for g

from 1 to jh, respectively. Mh is implemented as a jh dimensional array, and this assumption
clearly holds after the first step.

We now explain how step h + 1 is performed.
1. We compute the factors βh+1,1, . . . , βh+1,jh+1 of α, which are length-maximal factors of

α which only contain the variables x1, . . . , xh+1 and terminals (i.e., extending them to
the left or right would introduce a new variable xℓ with ℓ > h + 1). Clearly, βh+1,r is
either an xh+1-block or it has the form βh+1,r = γr,0βh,ar

γr,1 · · ·βr,ar+br
γr,br+1 where

the patterns γr,t contain only the variable xh+1 and terminals and extending βh+1,r to
the left or right would introduce a new variable xℓ with ℓ > h + 1.

2. We initialize the values Mh+1(i1, . . . , i2jh+1)←∞, for each 2jh+1-tuple (i1, . . . , i2jh+1) of
positions of w.

3. For each ℓ ≤ n (where ℓ corresponds to the length of the image of xh+1) and each 2jh-tuple
(i1, . . . , i2jh

) of positions of w such that Mh(i1, . . . , i2jh
) is finite do the following:

a. We compute the tuple (i′
1, . . . , i′

2jh+1
) such that βh+1,g is aligned to the factor w[i′

2g−1 :
i′
2g], for g from 1 to jh+1, respectively. This can be computed based on the fact that

the factors βh,g are aligned to the factors w[i2g−1 : i2g], for g from 1 to jh, respectively,
and the image of xh+1 has length ℓ.

b. We compute the factors of w aligned to xh+1 in the alignment computed in the previous
line. Then, we can use the algorithm from Theorem 4.2 and the value of Mh(i1, . . . , i2jh

)
to compute an assignment for xh+1 which aligns optimally the patterns βh+1,g to the
corresponding factors of w.

c. If the number of the mismatches in this alignment is smaller than the current value of
Mh+1(i′

1, . . . , i′
2jh+1

), we update Mh+1(i′
1, . . . , i′

2jh+1
).

This dynamic programming approach is clearly correct. In Mh+1(i1, . . . , i2jh+1) we have
the optimal alignment of the patterns βh+1,1, . . . , βh+1,jh+1 to w[i1 : i2], . . . , w[i2jh+1−1 :
i2jh+1 ], respectively. As far as the complexity is concerned, the lines 1, 3.a, 3.b, 3.c can
be implemented in linear time, while the for-loop is iterated O(n2k+1) times. Line 2 takes
O(n2k) times. The whole computation in step h + 1 of the algorithm takes, thus, O(n2k+1)
time.

Now, we execute the procedure described above for h from 2 to m, and, in the end, we
compute the array Mm. The answer to our instance of the problem MinMisMatchkLOC is
Mm(1, n). The overall time complexity needed to perform this computation is O(mn2k+1)
time. The preprocessing phase, in which the marking sequence and the array M1 were
computed, takes also O(mn2k+1) time. So, the complexity stated in the statement is reached
by our algorithm. ◀

▶ Theorem 4.6. For each constant r ≥ 3, there exists an algorithm with run-time O(nr+3) for
MinMisMatch1RepVar whose output distance is at most min

{
2,

(
1 + 4σ−4√

e(
√

4r+1−3)

)}
dHAM(α, w).
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Proof. We first note that there exists a relatively simple algorithm solving MinMisMatch1RepVar

such that the output distance is no more than 2dHAM(α, w) (which also works for integer
alphabets).

Indeed, assume that we have a substitution h for which dHAM(h(α), w) = dHAM(α, w). Assume
that the repeated variable x is mapped by h to a string u and the t occurrences of x are aligned,
under h, to the factors w1, w2, . . . , wt of w. Now, let wi be such dHAM(u, wi) ≤ dHAM(u, wj)
for all j ̸= i. Let us consider now the substitution h′ which substitutes x by wi and
all the other variables exactly as h did. We claim that dHAM(h′(α), u) ≤ 2dHAM(h(α), u).
It is easy to see that dHAM(h′(α), w) − dHAM(h(α), w) =

∑t
j=i(dHAM(wi, wj) − dHAM(u, wj)) ≤∑t

j=i(dHAM(wi, u) + dHAM(u, wj) − dHAM(u, wi)) (where the last inequality follows from the
triangle inequality for the Hamming distance). Thus, dHAM(h′(α), w) − dHAM(h(α), w) ≤∑t

j=i dHAM(wi, u) ≤
∑t

j=i dHAM(wj , u) ≤ dHAM(h(α), u). So our claim holds.
A consequence of the previous observation is that there exists a substitution h′ that maps

x to a factor of w and produces a string h′(α) such that dHAM(h′(α), u) ≤ 2dHAM(α, u). So, for
each factor u of w, we x by u in α to obtain a regular pattern α′, then use Theorem 3.4 to
compute dHAM(α′, w). We return the smallest value dHAM(α′, w) achieved in this way. Clearly,
this is at most 2dHAM(α, u). The complexity of this algorithm is O(n4), as it simply uses the
quadratic algorithm of Theorem 3.4 for each factor of w.

We will now show how this algorithm can be modified to produce a value closer to
dHAM(α, w), while being less efficient.

The algorithm consists of the following main steps:
1. For ℓ ≤ n/r and r factors u1, . . . , ur of length ℓ of w do the following:

a. Compute uu1,...,ur
the median string of u1, . . . , ur using Lemma 4.1.

b. Let α′ be the regular pattern obtained by replacing x by uu1,...,ur in α.
c. Compute the distance du1,...,ur

= dHAM(α′, w) using Theorem 3.4.
2. Return the smallest distance du1,...,ur computed in the loop above.

Clearly, for r = 1 the above algorithm corresponds to the simple algorithm presented in
the beginning of this proof. Let us analyse its performance for an arbitrary choice of r.

The complexity is easy to compute: we need to consider all possible choices for ℓ and
the starting positions of u1, . . . , ur. So, we have O(nr+1) possibilities to select the non-
overlapping factors u1, . . . , ur of length ℓ of w. The computation done inside the loop can be
performed in O(n2) time. So, overall, our algorithm runs in O(nr+3) time.

Now, we want to estimate how far away from dHAM(α, w) is the value this algorithm returns.
In this case, we will make use of the fact that the input terminal-alphabet is constant. We
follow closely (and adapt to our setting) the approach from [36].

Firstly, a notation. In step 1.b of the algorithm above, we align α′ to w with a minimal
number of mismatches. In this alignment, let d′

u1,...,ur
be the total number of mismatches

caused by the factors uu1,...,ur
which replaced the occurrences of the variable x in α.

Now, assume that we have a substitution h for which dHAM(h(α), w) = dHAM(α, w) = dopt.
Assume also that the repeated variable x is mapped by h to a string uopt of length L and
the t occurrences of x are aligned, under h, to the factors w1, w2, . . . , wt of w. Let d′

opt be
the number of mismatches caused by the alignment of the images of the t occurrences of x

under h to the factors w1, w2, . . . , wt. Finally, let ρ = 1 + 4σ−4√
e(

√
4r+1−3) .

Note that, for ℓ = L, u1, . . . , ur correspond to a set of randomly chosen numbers
i1, . . . , ir from {1, . . . , n}: their starting positions. We will show in the following that
E

[
d′

u1,...,ur

]
≤ ρd′

opt. If this inequality holds, then we can apply the probabilistic method:
there exists at least a choice of u1, . . . , ur of length L such that d′

u1,...,ur
≤ ρd′

opt. As we try
all possible lengths ℓ and all variants for choosing u1, . . . , ur of length ℓ, we will also consider
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the choice of u1, . . . , ur of length L such that d′
u1,...,ur

≤ ρd′
opt, and it is immediate that,

for that, for the respective u1, . . . , ur we also have that du1,...,ur
≤ ρdopt. Thus, the value

returned by our algorithm is at most ρdopt.
So, let us show the inequality E

[
d′

u1,...,ur

]
≤ ρdopt.

For a ∈ Σ, let fj(a) = |{i | 1 ≤ i ≤ t, wi[j] = a}|. Now, for an arbitrary string
s of length L, we have that

∑t
i=1 dHAM(wi, s) =

∑L
j=1(t − fj(s[j])). So, for s = uopt we

get
∑t

i=1 dHAM(wi, uopt) =
∑L

j=1(t − fj(uopt[j])), and for s = uu1,...,ur
we have that d′

opt =∑t
i=1 dHAM(wi, uu1,...,ur

) =
∑L

i=j(t− fj(uu1,...,ur
[j])).

Therefore, E
[
d′

u1,...,ur

]
= E

[∑L
j=1(t− fj(uu1,...,ur

[j]))
]

=
∑L

j=1 E [t− fj(uu1,...,ur
[j])].

Consequently, E
[
d′

u1,...,ur
− d′

opt

]
=

∑L
j=1(E [t− fj(uu1,...,ur [j])]− t + fj(uopt[j])).

That is, E
[
d′

u1,...,ur
− d′

opt

]
=

∑L
j=1 E [fj(uopt[j])− fj(uu1,...,ur

[j])] .

By Lemma 7 of [36], we have that E [fj(uopt[j])− fj(uu1,...,ur
[j])] ≤ (ρ−1)(t−fj(uopt[j])).

Hence, E
[
d′

u1,...,ur
− d′

opt

]
≤ (ρ− 1)

∑L
j=1(t− fj(uopt[j])) = (ρ− 1)d′

opt.

So, we indeed have that E
[
d′

u1,...,ur

]
≤ ρd′

opt.

In conclusion, the statement of the theorem holds. ◀

▶ Theorem 4.8. MinMisMatch1RepVar has no EPTAS unless FPT = W [1].

Proof. Assume, for the sake of a contradiction, that MinMisMatch1RepVar has an EPTAS.
That is, for an input word w and an 1RepVar-pattern α, there exists a polynomial time
algorithm which returns as answer to MinMisMatch1RepVar a value δ′ ≤ (1 + ϵ)dHAM(α, w), and
the exponent of the polynomial in its running time is independent of ϵ.

An algorithm for minCP would first implement the reduction in Theorem 4.7 to obtain a
word w and a pattern α. Then it uses the EPTAS for MinMisMatch1RepVar to approximate the
distance between α and w with approximation ratio (1 + ϵ

2m ). Assuming that this EPTAS
returns the value D, the answer returned by this algorithm for the minCP problem is D −m.

As explained in the proof of Theorem 4.7, it is easy to see that the distance between
the word w and the pattern α constructed in the respective reduction is m + ∆, if ∆ is
the answer to the instance of the minCP problem. Thus, the value D returned by the
EPTAS for MinMisMatch1RepVar fulfils m + ∆ ≤ D ≤ (1 + ϵ

2m )(m + ∆). So, we have
∆ ≤ D −m ≤ ϵ

2 + (1 + ϵ
2m )∆. We get that ∆ ≤ D −m ≤ (1 + ϵ

2m + ϵ
2∆ )∆ ≤ (1 + ϵ)∆. So,

indeed, D −m would be a (1 + ϵ)−approximation of ∆.
Therefore, this would yield an EPTAS for minCP. This is a contradiction to the results

reported in [7], where it was shown that such an EPTAS does not exist, unless FPT = W [1].
This concludes our proof. ◀
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atomic operations (writing a letter, erasing a letter, going to the right or to the left) and we define a
keyboard as a set of finite sequences of such operations, called keys. The generated language is the
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1 Introduction

We present a new formalisation of languages, called keyboards. A keyboard K is a finite set
of keys, which are finite sequences of atomic operations, such as writing or erasing a letter,
going one position to the right or to the left... The language of K is the set of words obtained
by applying a sequence of its keys on an initially empty writing space. The idea comes from
the image of a malfunctioning keyboard, in which a key does a sequence of operations instead
of just one (for instance the key ’a’ writes b then c, and then goes to the left).

Studying the set generated by a set of algebraic operations is far from new: many works
exist on the sets generated by a subset of elements of an algebraic structure, for instance in
the context of semigroup and group theory [2, 7], of matrix monoids [1, 8] or the theory of
codes [3]. There is however, to the best of the author’s knowledge, no previous work on a
model resembling the one presented here.

The atomic operations we use in this paper are the base of other models of computation,
such as forgetting automata and erasing automata [4, 5, 9]. The use of those operations was
originally to simulate some analysis strategies in linguistics. As a first study of the model, we
chose the actions of the operations (backspace and arrows) to behave like an actual keyboard
in a text editor.
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49:2 Keyboards

We can define various classes of languages based on the set of atomic operations we
consider, and compare their expressive powers between them, and to well-known classes of
languages. We obtain a strict hierarchy of classes, with a wide range of expressiveness and
difficulty of comprehension. The expressiveness of keyboards seems to be overall orthogonal
to the ones of classical models of computation, which we explain by two key differences with
the latter.

First, keyboards are blind and memoryless, in that they do not have states and cannot
read the tape at any point. Second, because of this weakness, we can allow operations such
as moving in the word or erasing letters without blowing up their expressive power too much.

The main interests of keyboards are: 1. to obtain many deep and complex mathematical
questions from a deceptively simple model, and 2. that their expressiveness is very different
from the ones of classical models. A language that is simple to express with a keyboard may
be more complicated for automata, and vice versa. This paper is meant as a first step in the
study and comprehension of keyboards and their languages.

The paper is organised as follows. In Sections 2 and 3 we establish notations and basic
definitions. Section 4 and 5 are dedicated to building properties and tools necessary to
the study of keyboards. In Section 6 we dive into the specific properties of each keyboard
class, and prove the inclusions of some of them in regular, context-free and context-sensitive
languages. Then in Section 7, we study the inclusions between those classes, in particular
showing that they are all different. Some complexity results are given in Section 8. Finally,
in Section 9 we show that keyboard classes are not stable by union or intersection, and that
some (but not all) of them are stable by mirror.

We do not provide full proofs, but only sketch of proofs for some results. The technical
details can be found in the full version.

2 Preliminaries

Given a finite alphabet A, we note A∗ the set of finite words over A and A+ for the set of
non-empty ones. Given a word w = a1 · · · an ∈ A∗, we write |w| for its length and, for all
a ∈ A, |w|a the number of occurrences of a in w. For all 1 ≤ i, j ≤ n we use the notation
w[i] for the ith letter of w (i.e. ai) and w[i, j] for its factor ai · · · aj (and ε if j < i). We
denote the mirror of w by w̃ = an · · · a1.

We write Pref(w) for the set of prefixes of w, Suff(w) for its set of suffixes, Fact(w) for
its set of factors and Sub(w) for its set of subwords.

We represent a finite automaton A as a tuple (Q, ∆, Init, Fin) with Q a finite set of states,
∆ : Q×A→ 2Q a transition function, and Init, Fin ⊆ Q sets of initial and final states.

We represent a pushdown automaton on A as a tuple (Q, Γ,⊥, ∆, Init, Fin) with
Q a finite set of states ;
Γ a finite stack alphabet ;
⊥ ∈ Γ an initial stack symbol ;
∆: Q×A× (Γ ∪ {−})2 → 2Q a transition function ;
Init and Fin sets of initial an final states.

We accept a word on final states with an empty stack. We write transitions as follows:

s1
a−−−−−→

op1,op2
s2

with
op1 = ↑γ if we pop γ ∈ Γ, and op1 = − if we do not pop anything.
op2 = ↓γ if we push γ ∈ Γ on the stack, and op2 = − if we do not push anything.

We will use ε-transitions in both finite and pushdown automata to simplify some proofs.
For more details and properties of those models, we refer the reader to [6].
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3 Definitions

We fix a finite alphabet A and the following special symbols, taken out of A:

The backspace :← The left arrow : ◀ The right arrow : ▶

The set of all symbols is S ≜ A ∪ {←,◀,▶}. An element of S is called an atomic operation.

▶ Definition 1. A configuration is a pair of words (u, v) ∈ A∗ × A∗. We will use C(A) to
denote the set of configurations over A, and ⟨u|v⟩ to denote the configuration (u, v).

We define the notation ⟨u|v⟩i as the letter at position i in the configuration with respect
to the cursor: ⟨u|v⟩i = ũ[−i] if i < 0 and v[i] if i > 0.

▶ Definition 2. The action of an atomic operation σ ∈ S on a configuration ⟨u|v⟩ is written
⟨u|v⟩ · σ and is defined as follows:

⟨u|v⟩ · a = ⟨ua|v⟩ if a ∈ A.

⟨ε|v⟩ · ← = ⟨ε|v⟩ and ⟨u′a|v⟩ · ← = ⟨u′|v⟩
⟨ε|v⟩ ·◀ = ⟨ε|v⟩ and ⟨u′a|v⟩ ·◀ = ⟨u′|av⟩
⟨u|ε⟩ ·▶ = ⟨u|ε⟩ and ⟨u|av′⟩ ·▶ = ⟨ua|v′⟩

We will sometimes write ⟨u|v⟩ σ−→ ⟨u′|v′⟩ for ⟨u′|v′⟩ = ⟨u|v⟩ · σ.

▶ Example 3. By applying the following sequence of atomic operations ←, a, ▶, ▶, b to the
configuration ⟨c|d⟩, we obtain the following rewriting derivation:

⟨c|d⟩ ←−→ ⟨ε|d⟩ a−→ ⟨a|d⟩ ▶−→ ⟨ad|ε⟩ ▶−→ ⟨ad|ε⟩ b−→ ⟨adb|ε⟩.

▶ Definition 4. We define other semantics for atomic operations, called effective semantics.
The difference with the previous ones is that we forbid application of atomic operations
without effect (such as backspace when the left word of the configuration is empty). Formally,
given u, v ∈ A∗, a ∈ A we have:

⟨u|v⟩ a−→e⟨ua|v⟩ ⟨u′a|v⟩ ←−→e⟨u′|v⟩

⟨u′a|v⟩ ◀−→e⟨u′|av⟩ ⟨u|av′⟩ ▶−→e⟨ua|v′⟩

We also define the operator ⊙ by ⟨u|v⟩ ⊙ σ = ⟨u′|v′⟩ if and only if ⟨u|v⟩ σ−→e ⟨u′|v′⟩.

▶ Definition 5. A key is a sequence of atomic operations, seen as a word on S. We will use
T (S) to denote the set of keys on S (variables k, t, ...), or T if there is no ambiguity.

▶ Definition 6. The action of a key over a configuration is defined inductively as follows:{
⟨u|v⟩ · ε = ⟨u|v⟩

⟨u|v⟩ · (σt) = (⟨u|v⟩ · σ) · t

We extend the notation ⟨u|v⟩ t−→ ⟨u′|v′⟩ to keys. We define ⟨u|v⟩ t−→e ⟨u′|v′⟩ and ⟨u|v⟩ ⊙ t

analogously.

▶ Remark 7. We will also consider sequences of keys τ = t1 . . . tn. The action of τ is
obtained by composing the actions of the ti, hence applying τ has the same effect as applying
sequentially t1, . . . , tn. Note that τ is seen as a word on T (S) (and not on S), thus |τ | is n.
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▶ Definition 8. The length of a key t, written |t|, is its length as a word on S. Further,
given σ ∈ S, we note |t|σ the number of occurrences of σ in t. The size of a configuration
⟨u|v⟩ is defined as |⟨u|v⟩| = |u|+ |v|.

▶ Definition 9. Two keys t and t′ are equivalent, denoted t ∼ t′, if for all u, v ∈ A∗,
⟨u|v⟩ · t = ⟨u|v⟩ · t′.

▶ Example 10. ε is equivalent to a← for all a ∈ A, but not to ▶◀, as we have ⟨a|ε⟩·▶◀ = ⟨ε|a⟩
whereas ⟨a|ε⟩ · ε = ⟨a|ε⟩.

Example 10 illustrates how ◀, ▶ and ← act differently if one side of the configuration
is empty. We will see that these “edge effects” add some expressiveness compared to the
effective semantics, but make proofs more complex.

▶ Definition 11 (Automatic Keyboard). An automatic keyboard is a finite subset of T (S).

▶ Definition 12. An execution of an automatic keyboard K on a configuration c0 ∈ C is a
non-empty finite sequence ρ = (t1, c1), . . . , (tn+1, cn+1) ∈ (K × C)n+1 (n ∈ N) such that

∀i ∈ J1 ; n + 1K, ci−1
ti−→ ci.

By default, we take as initial configuration c0 = ⟨ε|ε⟩. We usually write c0
τ−→ cn+1 to mean

the execution (τ [1], c0 · τ [1]), ..., (τ [n + 1], c0 · τ [1, n + 1]).

▶ Definition 13. A word w ∈ A∗ is recognised by an automatic keyboard K if there exist
u, v ∈ A∗ and an execution ⟨ε|ε⟩ τ−→ ⟨u|v⟩ such that w = uv. The language L(K) of K is the
set of words recognised by K.

We now define keyboards as automatic keyboards to which we added some final keys
“with entry”, which mark the end of the execution.

▶ Definition 14 (Keyboard (with entry)). A keyboard K on S is a pair (T, F ) of finite sets
T, F ⊂ T (S). We call the elements of F the final keys of K and the elements of T its
transient keys.

▶ Definition 15 (Accepting execution of a keyboard). Let K = (T, F ) be a keyboard and
c0 = ⟨u0|v0⟩ an initial configuration. An accepting execution of K on c0 is a finite sequence
ρ = (t1, c1), . . . , (tn+1, cn+1) ∈ (T × C)n · (F × C) (n ∈ N) such that

∀i ∈ J1 ; n + 1K, ci−1
ti−→ ci.

By default, an accepting execution is on the empty configuration ⟨ε|ε⟩.

▶ Definition 16. A word w ∈ A∗ is recognised by a keyboard K if there exist u, v ∈ A∗ and
an execution ⟨ε|ε⟩ τ−→ ⟨u|v⟩ such that w = uv. The language L(K) of K is the set of words
recognised by K.

▶ Example 17. The keyboard with one transient key aa and one final key a, recognises
sequences of a of odd length.

▶ Remark 18. Let Ka be an automatic keyboard, then L(Ka) is recognised by the keyboard
with entry (Ka, Ka). In all that follows, we will thus see automatic keyboards as a subclass
of keyboards.
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▶ Definition 19 (Size of a keyboard). The size of a keyboard K = (T, F ) is defined as

∥K∥∞ = max{|t| | t ∈ T ∪ F}.

We may also use another measure |K| of the size of K for complexity purposes:

|K| =
∑

t∈T∪F

(|t|+ 1).

▶ Definition 20 (Minimal keyboard). A minimal keyboard K is an automatic keyboard without
any operation besides writing letters. It can therefore be seen as a finite subset of A∗. We
will note MK the class of minimal keyboards.

▶ Remark 21. We construct our keyboard classes through the sets of special operations we
allow. Class names are obtained by adding B (for ←), E (for the entry, noted ■), L (for ◀)
and A (for ◀ and ▶) to K. We obtain these classes.

MK : {} LK : {◀} AK : {◀,▶}
EK : {■} LEK : {◀,■} EAK : {◀,▶,■}
BK : {←} BLK : {◀,←} BAK : {◀,▶,←}

BEK : {←,■} BLEK : {◀,←,■} BEAK : {◀,▶,←,■}

▶ Remark 22. We do not consider classes with ▶ without ◀ because, without the ◀ operator,
we can only reach configurations of the form ⟨u|ε⟩ and thus ▶ never has any effect.

▶ Remark 23. We use the class names above to designate both keyboard classes and language
classes. For instance, we will write that L is in AK if there exists a keyboard K ∈ AK such
that L = L(K).

4 General properties

In this section, we establish some properties on keyboard. Although most of them are quite
intuitive, we take the time to be as formal as possible in order to build solid bases for the
study of keyboards.

Our first lemma states that applying a key can only affect a bounded part of the word
around the cursor.

▶ Lemma 24 (Locality). Let t = σ1 . . . σn be a key. If ⟨u|v⟩ t−→ ⟨u′|v′⟩, then u[1, |u| − n] is a
prefix of u′ and v[n + 1, |v|] is a suffix of v′.

Furthermore, u′[1, |u′| − n] is a prefix of u and v′[n + 1, |v′|] is a suffix of v.

Then we formalize the fact that if the cursor is far enough from the extremities of the
word, then we do not have edge effects.

▶ Lemma 25 (Effectiveness far from the edges). Let t = σ1 . . . σn be a key, ⟨u|v⟩ a configuration
and ⟨un|vn⟩ = ⟨u|v⟩ · t. If n ≤ min(|u|, |v|), then ⟨u|v⟩ t−→e ⟨un|vn⟩, meaning that all the
arrows and backspaces are applied effectively.

The two next lemmas bound the variation in length of the configuration when applying
a key.
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▶ Lemma 26 (Bounds on the lengths). Let t = σ1 . . . σn be a key, ⟨u|v⟩ a configuration and
⟨un|vn⟩ = ⟨u|v⟩ · t. Then

|uv| − |t|← +
∑
x∈A

|t|x ≤ |unvn| ≤ |uv|+
∑
x∈A

|t|x.

In particular
∣∣|unvn| − |uv|

∣∣ ≤ n. Moreover
∣∣|un| − |u|

∣∣ ≤ n and
∣∣|vn| − |v|

∣∣ ≤ n.

▶ Lemma 27 (Length evolution without left edge effects). Let t = σ1 . . . σn be a key, ⟨u|v⟩ a
configuration such that |u| ≥ n. Let ⟨un|vn⟩ = ⟨u|v⟩ · t, then

|unvn| = |uv| − |t|← +
∑
x∈A

|t|x.

Then, we obtain the following lemma that can be used to show that some languages are
not recognised by a keyboard.

▶ Lemma 28. Let K be a keyboard with language L. Let (ℓn)n∈N be the sequence obtained
by sorting the lengths of the words in L by increasing order. Then (ℓn+1 − ℓn)n∈N is bounded
by 3∥K∥∞.

▶ Example 29. The languages
{

an2
∣∣∣ n ∈ N

}
and {ap | p prime} are not recognised by a

keyboard.

The two following lemmas will be useful when studying effective executions.

▶ Lemma 30. Let t = σ1 . . . σn be a key such that ⟨u|v⟩ t−→e ⟨un|vn⟩. Then, for all words
x, y, ⟨xu|vy⟩ t−→e ⟨xun|vny⟩.

▶ Lemma 31. Let t = σ1 . . . σn be a key, ⟨u|v⟩ and ⟨x|y⟩ configurations such that |u| = |x|
and |v| = |y|. Then t acts efficiently from ⟨u|v⟩ if and only if it acts efficiently from ⟨x|y⟩.

5 Key behaviour

This section aims at providing tools to describe the behaviour of a key. How can we formally
express the intuitive fact that the ith symbol of c · t was written by t or that the ith symbol
of c was moved by t? We are going to distinguish letters from t and c in order to keep track
of where t writes its letters and how the letters of c were affected.

▶ Definition 32 (Tracking function). Let Zt and Zc be two duplicates of Z. We denote by k

the elements of Zc and by k̂ the elements of Zt.
We define the tracking functions, one for keys ft : S∗ → (S ∪ Zt)∗, defined as follows:

ft(σ1 . . . σn) = σ′1 . . . σ′n where

σ′i =
{

î if σi ∈ A

σi otherwise

and one for configurations fc : C(A)→ Z∗c × Z∗c defined by

fc(a1 . . . ak, b1 . . . bj) =
〈
−k . . .−1

∣∣1 . . . j
〉
.

By applying ft(t) to fc(c), we can keep track of which letters of the configuration and of
the key were written, erased, or displaced, and where. We need two copies of Z to differentiate
between the symbols of ft(t) (added by the key) and fc(c) (already in the configuration).
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▶ Definition 33. Let ⟨u|v⟩ be a configuration and t a key. We note ⟨u′|v′⟩ = ⟨u|v⟩ · t
and ⟨x|y⟩ = fc(u, v) · ft(t). We say that t writes its kth symbol at position i from ⟨u|v⟩ if
⟨x|y⟩i = k̂.

▶ Remark 34. Let t = σ1 . . . σn be a key, ⟨u|v⟩ a configuration and 1 ≤ j < k ≤ n integers.
Then t writes its kth symbol at position i from ⟨u|v⟩ if and only if σj+1 . . . σn writes its
(k − j)th symbol at position i from ⟨u|v⟩ · σ1 . . . σj . In particular, t writes its kth symbol at
position i from ⟨u|v⟩ if and only if σk . . . σn writes its 1st symbol from ⟨u|v⟩ · σ1 . . . σk−1.

We defined an intuitive notion of writing the kth symbol of t. In particular, if t writes its
kth symbol in ith position from ⟨u|v⟩, then ⟨u′|v′⟩i = tk, as stated below.

▶ Proposition 35. Let t = σ1 . . . σn be a key, ⟨u|v⟩ a configuration. We note

⟨un|vn⟩ = ⟨u|v⟩ · t ⟨x′n|y′n⟩ = fc(u, v) · t
⟨u′n|v′n⟩ = ⟨u|v⟩ · ft(t) ⟨xn|yn⟩ = fc(u, v) · ft(t)

Then |un| = |xn| = |u′n| = |x′n| and |vn| = |yn| = |v′n| = |y′n|. And for all a ∈ A,

⟨un|vn⟩j = a iff ⟨xn|yn⟩j = k and ⟨u|v⟩k = a or ⟨xn|yn⟩j = k̂ and tk = a

iff ⟨u′n|v′n⟩j = a or ⟨u′n|v′n⟩j = k̂ and tk = a

iff ⟨x′n|y′n⟩j = k and ⟨u|v⟩k = a or ⟨x′n|y′n⟩j = a

(iff a already in configuration or a added by t).

Tracking functions are a convenient formalism to show some results on keyboards. Besides,
they permit to take multiples points of view.

▶ Corollary 36. Let t be a key and ⟨u|v⟩ a configuration. Then t writes its kth symbol at
position i from ⟨u|v⟩ if and only if (⟨u|v⟩ · ft(t))i = k̂.

▶ Definition 37. Let t be a key, ⟨u|v⟩ a configuration. We say that t writes an a in ith

position from ⟨u|v⟩ if there exists k such that tk = a and t writes its kth symbol in position i

from ⟨u|v⟩. We say that t writes an a from ⟨u|v⟩ if t writes an a in some position from ⟨u|v⟩.

Then, we obtain some results, which are direct consequences of Proposition 35.

▶ Proposition 38. If t writes its kth symbol in ith position from ⟨u|v⟩ then (⟨u|v⟩ · t)i = tk.
In particular, if t writes an a in ith position from ⟨u|v⟩ then (⟨u|v⟩ · t)i = a and if t writes
an a from ⟨u|v⟩ then ⟨u|v⟩ · t contains an a.

▶ Proposition 39. Let t be a key and ⟨u|v⟩, ⟨u′|v′⟩ two configurations such that |u| = |u′|
and |v| = |v′|. Then t writes its kth symbol in ith position from ⟨u|v⟩ if and only if t writes
its kth symbol in ith position from ⟨u′|v′⟩. In particular, t writes an a in jth position from
⟨u|v⟩ if and only if t writes an a in jth position from ⟨x|y⟩, and t writes an a from ⟨u|v⟩ if
and only if t writes an a from ⟨x|y⟩.

This proposition makes explicit the fact that keys cannot read the content of a configura-
tion. This leads to the following characterization.

▶ Proposition 40. Let t be a key, a ∈ A and ⟨u|v⟩ a configuration containing no a. Let
⟨u′|v′⟩ = ⟨u|v⟩ · t. t writes an a in position i from ⟨u|v⟩ if and only if ⟨u′|v′⟩i = a. In
particular, t writes an a from ⟨u|v⟩ if and only if ⟨u′|v′⟩ contains an a.

MFCS 2021



49:8 Keyboards

Clearly, if the number of a’s in a configuration increases after applying a key then this
key writes an a.

▶ Proposition 41. Let t be a key and ⟨u|v⟩ a configuration. If |⟨u|v⟩|a < |⟨u|v⟩ · t|a, then t

writes an a from ⟨u|v⟩.

Note that if a key behaves differently from two configurations, then there must be some
edge effects. In what follows we focus on effective executions.

▶ Proposition 42. Let t be a key and ⟨u|v⟩ and ⟨x|y⟩ two configurations on which t acts
effectively. Then t writes its kth symbol in ith position from ⟨u|v⟩ if and only if t writes its
kth symbol in ith position from ⟨x|y⟩. Therefore, t writes an a in position i from ⟨u|v⟩ if and
only if t writes an a in position i from ⟨x|y⟩.

In other words, a key always behaves the same way far from the edges of the configuration.

▶ Definition 43. Let t be a key. We say that t ensures an a in position i far from the edges
if there exists a configuration ⟨u|v⟩ such that t acts effectively on ⟨u|v⟩ and t writes an a in
position i from ⟨u|v⟩.

Then, we immediately obtain the following propositions.

▶ Proposition 44. Let t be a key and u, v ∈ A∗ such that |u| ≥ |t| and |v| > |t|. Then t

ensures an a far from the edges if and only if t writes an a from ⟨u|v⟩ .

▶ Proposition 45. Let t be a key and u, v ∈ A∗ such that |u| ≥ |t| and |v| ≥ |t|. If
|⟨u|v⟩|a < |⟨u|v⟩ · t|a, then t ensures an a far from the edges.

▶ Proposition 46. Let t be a key which ensures an a far from the edges and ⟨u|v⟩ such that
|u| ≥ |t| and |v| ≥ |t|. Then ⟨u|v⟩ · t contains an a.

6 Characterisation of the classes

6.1 Languages of BEK (without the arrows)
To begin, we study keyboards that do not contain any arrows. As these keyboards has no ◀
operation, the right component of a configuration in an execution of K ∈ BEK (starting from
⟨ε|ε⟩) is always empty. Thus, in this part, we will sometimes denote u for the configuration
⟨u|ε⟩.

6.1.1 MK and EK
MK and EK are quite easy to understand. Indeed, since a key of a minimal keyboard K is
just a word on A, K ⊂ A∗.

▶ Remark 47. Let K = {w1, . . . , wn} be a minimal keyboard. Then L(K) = (w1 + · · ·+wn)+.

EK languages are rather similar.

▶ Lemma 48. Let K = (T, F ) be a EK keyboard. Then, L(K) = T ∗F and this regular
expression can be computed in O(|K|).

Thus, we can build in linear time a regular expression that recognises L(K).
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6.1.2 BK and BEK
Some of the expressiveness of BEK comes from edge effects. For instance, finite languages
are recognised by BK keyboards.

▶ Example 49. Let L be a finite language and M = max{|w| | w ∈ L}. Then L is recognised
by K =

{
←M w

∣∣ w ∈ L
}

.

These edge effects could make BEK languages quite complex. On the other hand, we
show that BEK keys can be put in a particular form.

▶ Lemma 50 (Normal form). Let t ∈ S∗ be a key from BEK. Then there exist m ∈ N and
w ∈ A∗ such that t ∼ ←mw. Further, m and w can be computed from t in polynomial time.

Using this normal form, we understand that the action of a BEK key always consists
in deleting a bounded number of letters at the end of the word, then adding a bounded
number of letters. This reminds us of stacks. Following this intuition, we can easily encode
the behaviour of a BEK keyboard into a pushdown automaton.

However, BEK is even more narrow since all languages of BEK are regular.

▶ Theorem 51. Let K be a BEK keyboard. Then, L(K) is regular, and we can build an NFA
A(K) recognising L(K) in polynomial time.

▶ Remark 52. There are several ways to prove this result. One of them is to apply the
pushdown automaton construction from the proof of Theorem 57 (presented later in the
paper) in the particular case of BEK. The language of the BEK keyboard is then essentially
the stack language of this automaton. A slight adaptation of the classical proof that the
stack language of a pushdown automaton is rational then yields the result.

We choose to include another proof in this work, as it is elementary, not much longer
than the one aforementioned, and seems more elegant to the authors.

We first show the result for languages of BK. Let K be an BK keyboard. The key idea is
that at any point of the execution, we can split the word into:

a prefix v of letters that will never be erased,
a suffix x of letters which will eventually be erased.

As an example, in order to write abb with the keys ←2abcc,←3b and ←2cbc, we can write
ab with t1 and the remaining b with t2. However, when applying t1 and then t2, t2 erases too
many letters and we obtain ab instead of abb. We therefore need a sequence of keys which
does not erase the prefix ab, but replaces the two c by three letters, allowing us to apply
t2. This is done by applying t3, replacing cc with cbc. We can therefore write abb with the
sequence t1t3t2.

Given a keyboard K of BK, we construct an automaton following this idea. Its states are
integers from 0 to ∥K∥∞, state i meaning that we have i extra letters to be erased at the
end of the current word.

A transition from i to j labelled by w ∈ A+ means there exists a key erasing i letters
and writing wx with |x| = j (w is a part of the word we are trying to recognise and x is
a suffix of extra letters to be erased).
A transition from i to j labelled by ε means there exists a sequence of keys turning the
suffix of extra letters of length i into one of length j, without erasing any of the other
letters.
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Figure 1 Automaton corresponding to keyboard
{
←abc,←4bb

}
.

Figure 1 shows the automaton obtained from keyboard {←abc,←4bb} with this construc-
tion (slightly simplified as we erased some useless states).

The red transitions (full arrows) are the ones we can do with ←abc and the blue (dashed)
ones those we can do by applying ←4bb. The black (dotted) transitions, are the ones we use
to switch from i to j extra letters.

As an example, let us see how we can recognise babababb with this automaton and this
keyboard. We decompose it into b · a · b · ab · abc.

We write a b with ←4bb, leading us to state 1 (we need to erase the second b before to
write the rest of the word).
The key ←abc then allows us to erase the second b and write a,leading to state 2 (we
need to erase the bc suffix).
A sequence of keys then allows us to switch from two extra letters (state 2 in the
automaton) to four (state 4).
The key ←4bb then allows us to erase four letters and write b, leaving us in state 1.
The key ←abc erases b and writes ab, leaving us in state 1.
The key ←abc erases the last letter and writes abc, with no extra letters, leaving us in
state 0 in the automaton, where we can accept.

We need to construct the transitions of our NFA recognising the language of an BK
keyboard. The construction of the transitions labelled by letters is rather straightforward,
whereas the construction of the ε-transitions requires some arithmetic arguments, which are
detailed in the full version of this paper.

We slightly adapt this construction to obtain an automaton for a keyboard of BEK.
The state 0 is no longer final, and we add a final state Fin.
For all states i and tf =←iw ∈ F , we add a transition from i to Fin labelled by w. This
simulates the action of, after producing vx (with |x| = i) with T , applying tf .
For all tf =←rw ∈ F , we add a transition from Init to Fin labelled by w.
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6.2 Languages of BLEK (without the right arrow)
In this section, we allow the use of ◀. With this symbol, we have the possibility to move
into the word, and then erase or write letters. It opens a new complexity level.

Moreover, we provide a non-regular language of BLEK, hence showing that it is more
expressive than BEK (see Theorem 51).

▶ Example 53. Let K = {aa◀, bb◀}. Then, L(K) = {uũ | u ∈ (a + b)+}, that is, K

recognises the non-empty palindromes of even length.

Thus, we can represent context-free non-regular languages with BLEK (one can observe
that the keyboard of Example 53 is actually even in LK).

However, a basic observation helps us to understand the behaviour of a key of BLEK: as
we do not have the symbol ▶, we cannot go back to the right and all the letters to the right
of the cursor are written forever. The following lemma can be proven easily by induction.

▶ Lemma 54. Let t = σ1 . . . σn be a sequence of atomic operations, and ⟨u|v⟩ a configuration.
Then, ⟨u|v⟩ · t is of the form ⟨u′|v′v⟩.

Then, we can make some assertions about a key observing its result over a configuration.

▶ Lemma 55 (Independence from position). Let t be a key of BLEK and ⟨u|v⟩ a configuration.
If t writes an a from ⟨u|v⟩, then for all configurations ⟨u′|v′⟩, t writes an a from ⟨u′|v′⟩.

Proof. We set t = σ1 · · ·σn. Let ⟨x|y⟩ be a configuration. By Proposition 39, we can assume
it does not contain any a and by Remark 34, we can assume σ1 = a and t writes its first
symbol from ⟨u|v⟩. We then define for all 1 ≤ i ≤ n

⟨ui|vi⟩ = ⟨u|v⟩ · σ1 . . . σi and ⟨xi|yi⟩ = ⟨x|y⟩ · σ1 . . . σi.

Let i be the smallest index such that ui or xi is empty, and i = n if such an index does not
exist (note that i > 1 as u1 and x1 contain the a written by σ1). As t writes its first symbol
from ⟨u|v⟩, σ1 . . . σi writes an a from ⟨u|v⟩ in some position j.

Further, σ1 . . . σi acts efficiently on ⟨u|v⟩ and on ⟨x|y⟩, thus by Proposition 42, t writes
an a from ⟨x|y⟩ at position j. If i = n, the result is proven.

Otherwise, as either ui or xi is empty, we have j > 0 and yi[j] = vi[j] = a. By
Lemma 54, yn contains an a, while ⟨x|y⟩ does not by assumption, showing the result by
Proposition 40. ◀

Moreover, we can refine Lemma 54.

▶ Theorem 56 (BLEK fundamental). Let t = σ1 . . . σn be a sequence of atomic operations,
and ⟨u|v⟩ a configuration. We set ⟨xn|yn⟩ = ⟨ε|ε⟩ · t. Then ⟨u|v⟩ · t is of the form ⟨unxn|vnv⟩
with yn a subword of vn and un a prefix of u.

These observations help us to better understand BLEK. A key observation is that we can
see the left part of the configuration as a stack, which can be modified, and the right part
as the fixed one, just as the prefix of a word that has been read by an automaton. We can
then recognise (the mirror of) a BLEK language with a pushdown automaton which guesses
a sequence of keys, maintains the left part of the configuration in the stack and reads the
right part of the configuration.

▶ Theorem 57. Let K be a BLEK keyboard. Then, L(K) is context-free, and we can build a
non-deterministic pushdown automaton A(K) recognising L(K) in polynomial time.
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The idea is to use the fact that what is written to the right of the cursor is unaffected by
a key without right arrows (see Theorem 56).

We construct a pushdown automaton maintaining the invariant “After simulating the
application of keys t1, . . . , tn we have read a word v and have as stack content a word u such
that ⟨ε|ε⟩ · t1 · · · tn = ⟨u|ṽ⟩”.

Atomic operations are easily translated to satisfy that invariant. Writing a letter comes
down to pushing it on the stack, applying a backspace to deleting the stack head, and
applying a left arrow to popping and reading the stack head.

After simulating a sequence of keys, the automaton pops and reads the content of its stack
before to accept. At this point, the automaton has read the mirror of the word produced
by this sequence of keys. We then simply construct a pushdown automaton recognising the
mirror of the language of the previous one.

6.3 Languages of EAK (without backspace)
A third interesting class is EAK, where the backspace is not allowed. Thus, the size of a
configuration does not decrease along an execution. The execution of such a keyboard can
therefore be easily simulated on a linear bounded automaton, as stated in Theorem 60.

In all the proofs of this section we will say that t writes an a when t contains an a (as we
have no ← if t contains an a then this a will not be erased when applying t).

▶ Lemma 58. Let K = (T, F ) be a EAK keyboard. Let u, v ∈ A∗, let τ ∈ (T ∪ F )∗ and let
⟨u′|v′⟩ = ⟨u|v⟩ · τ . Then uv is a subword of u′v′. In particular |uv| ≤ |u′v′|.

▶ Lemma 59. Let K = (T, F ) be a EAK keyboard, let w ∈ L(K). There exists an execution
τ = t1 · · · tn ∈ T ∗F such that ⟨ε|ε⟩ · τ = ⟨u|v⟩ with uv = w and n ≤ |w|2 + 1.

Proof. Let w ∈ L(K), and let u, v ∈ A∗, τ = t1 · · · tn ∈ T ∗F be such that w = uv and
⟨ε|ε⟩ · τ = ⟨u|v⟩.

We show that if n > |w|2 + 1 then there exists a shorter execution writing ⟨u|v⟩.
Suppose n > |w|2 + 1, and for all 0 ≤ i ≤ n let ki = |⟨ε|ε⟩ · t1 · · · ti| and ⟨ui|vi⟩ =

⟨ε|ε⟩ · t1 · · · ti. By Lemma 58, the sequence (ki) is nondecreasing. As n > |w|2 + 1 and
kn = |w|, there exists 0 ≤ i ≤ n−|w| such that ki = ki+1 = · · · = ki+|w|. Again by Lemma 58,
we have uivi = ui+1vi+1 = · · · = ui+|w|vi+|w|. If uivi = w then the execution t1 · · · ti writes
w.

If uivi ̸= w then ki < |w|. There are |w| > ki configurations ⟨u′|v′⟩ such that u′v′ = uivi,
thus there exist i ≤ j1 < j2 ≤ i + |w| such that ⟨uj1 |vj1⟩ = ⟨uj2 |vj2⟩.

As a result, the execution t1 · · · tj1tj2+1 . . . tn writes w.
The lemma is proven. ◀

▶ Theorem 60. For all keyboards K = (T, F ) of EAK we can construct a linear bounded
automaton A(K) of polynomial size recognising L(K).

Proof. We construct A(K) the linear bounded automaton which, given an input w, proceeds
as follows:

It divides the tape in three parts: one to memorize the input (of linear size), one to
simulate an execution of K (of linear size as well by Lemma 58) and one containing a
counter (of logarithmic size).
It guesses a sequence of keys of T followed by a key of F and computes their effect on
the fly. After the application of each key, the counter is incremented.
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If the counter goes beyond |w|2 + 1, then the automaton rejects.
If not, the automaton compares the obtained word to w, accepts if they are equal, and
rejects otherwise.

This machine guesses a sequence of at most |w|2 + 1 keys and accepts if the word obtained
by their actions is the input.

Clearly if a word is accepted by A(K) then it is in L(K). Conversely, if a word w is in
L(K) then by Lemma 59 there exists an execution of length at most |w|2 + 1 accepting it,
thus A(K) can guess this execution and accept w.

As a result, L(K) = L(A(K)). ◀

7 Comparison of the keyboard classes

The characterisations that we provide give us some information about each class independently.
We now compare the subclasses of BEAK in order to find out which inclusions hold between
them. One of these inclusions, between BAK and BEAK, is especially interesting since it
shows that keyboards with entry are strictly more powerful than automatic ones.

We decompose our results into the following propositions. Those establish that a class is
included in another if and only if that same inclusion holds between their sets of operators,
except possibly for the inclusion of EK and BEK in BAK, which we do not prove or disprove.

To start with, we show that a class containing the left arrow cannot be included in a
class lacking it. This is a direct consequence of Example 53 and Theorem 51 as we have a
language of LK which is not rational, and thus not in BEK.

▶ Proposition 61. LK ̸⊆ BEK.

We continue with the two next propositions, showing that a class containing the entry
cannot be included in a class excluding it, except possibly for BAK.

▶ Proposition 62 (EK ⊈ BLK). EK is not included in BLK.

▶ Proposition 63 (EK ⊈ AK). EK is not included in AK.

Then we prove that a class with ← cannot be included in a class without ←.

▶ Proposition 64 (BK ⊈ EAK). BK is not included in EAK.

The next proposition states that a class containing ▶ cannot be included in a class
lacking it.

▶ Proposition 65 (AK ⊈ BLEK). AK is not included in BLEK.

And finally we show that, except possibly for EK and BEK, a class with entry cannot be
included in a class without entry.

▶ Proposition 66 (LEK ⊈ BAK). LEK is not included in BAK.

The inclusion Hasse diagram of all subclasses of BEAK and traditional language classes is
displayed in Figure 2.
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Figure 2 Hierarchy of language classes.

8 Complexity results

In this section we establish some complexity upper bounds on the membership and univer-
sality problems for various keyboard classes. The following three propositions are direct
consequences of the known complexity bounds of the models which we translated keyboards
into (in Remark 47, Lemma 48, Theorem 51 and Theorem 57).

▶ Proposition 67. The membership problem on MK and EK is in PTIME. The universality
problem is in PTIME on MK and PSPACE on EK.

The problem for EK seems simple: it amounts to deciding, given two finite sets of words
T and F , if T ∗F is universal.

▶ Proposition 68. The membership problem over BEK is in PTIME, and the universality
problem over BEK in PSPACE.

▶ Proposition 69. The membership problem over BLEK is in PTIME.

For BK keyboards, we prove that there exists a word not accepted by a given BK keyboard
if and only if there exists one of polynomial length.

▶ Proposition 70. The universality problem for BK keyboards is in coNP.

For EAK keyboards, we know by Lemma 59 that every word w recognised by a EAK
keyboard can be written with an execution of length polynomial in |w|, hence this proposition:

▶ Proposition 71. The membership problem for EAK keyboards is in NP.

9 Closure properties

In this section, we study closure properties of keyboard classes. We selected three operators,
the union and the intersection, as they are the most natural closure operators, and the mirror,
under which some classes are stable.

▶ Proposition 72 (Mirror). MK, AK and EAK are stable by mirror. EK, BK, BEK and BLK
are not stable by mirror.
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▶ Proposition 73 (Intersection). None of the keyboard language classes are stable by inter-
section.

▶ Proposition 74 (Union). None of the keyboard language classes are stable by union.

We end this section with an undecidability result, showing that intersecting keyboards
can lead to highly complex languages. This shows another link with context-free languages,
as the emptiness of the intersection of two context-free languages is undecidable as well.

▶ Proposition 75 (Intersection emptiness problem). The following problem is undecidable:
Input: K1, K2 two LK keyboards.
Output: Is L(K1) ∩ L(K2) empty?

10 Conclusion

A natural question when it comes to models of computation is what we can do without any
memory or any information on the current state of the system. We initiated a line of research
aiming at studying such “blind” models. The one we considered here, keyboards, proved to
be mathematically complex and interestingly orthogonal in expressiveness to several of the
most classical models. We have established a number of properties of keyboards, as well as
a vocabulary facilitating their study. We separated almost all classes and compared their
expressiveness, thereby uncovering the lattice of their power.

Future work

As keyboards are a completely new model, there are many open problems we are working on
or intend to address. We conjecture that EK is not included in BAK, but we do not have a
proof. We also conjecture that not all AK languages are algebraic (the language generated
by {a▶▶, b◀◀} is a candidate as a counter-example) and that BEAK does not contain all
rational languages (a∗ + b∗ being a potential counter-example). We plan on extending the
set of operations to add, for instance, a right erasing operator, symmetric to ←. It could also
be interesting to study the semantics in which we forbid non-effective operations. Finally, we
could equip the model with states and transitions labelled with keys. We would then have
more control over which keys are applied at which times, thus increasing the expressiveness
of the model and facilitating its study.
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A Comparisons between classes

▶ Proposition 62 (EK ⊈ BLK). EK is not included in BLK.

Proof. The language L = (a2)∗(b + b2) is clearly in EK. We first show that a keyboard K

of BLK recognising L does not use the ◀ operation. The idea is that if we could reach a
configuration with letters to the right of the cursor, we could then apply a sequence of keys
writing b2 from ⟨ε|ε⟩, which would yield a word with letters after the second b (thus not in
L) by Theorem 56.

K is therefore an BK keyboard which can write b2, hence there exists a sequence of keys
of K whose normal form is ←kb2 for some k. We reach a contradiction by considering a
word w ∈ L, applying τ , and distinguishing cases according to the parity of k. ◀

▶ Proposition 63 (EK ⊈ AK). EK is not included in AK.

Proof. Consider the language {a}. It is recognised by the keyboard (∅, {a}) of EK.
Suppose there exists K a keyboard of AK recognising {a}. Then there exists t ∈ K

exactly containing an a. As K does not contain any ←, applying t twice from ⟨ε|ε⟩ yields a
configuration with two a, and thus a word outside of {a}. We obtain a contradiction. ◀

Proof of Proposition 64
Define ta =←a♢♦ and tb =←←b♢♦♦, and L♢♦ as the language recognised by the keyboard
{ta, tb}. L♢♦ is in BK, and we show that it is not in EAK using mainly the non-erasing
property of EAK keyboards.

In all that follows, we will use the notations ta =←a♢♦ and tb =←←b♢♦♦.
We define L♢♦ as the language recognised by the BK keyboard {ta, tb}.

▶ Lemma 76. Let x = x1 · · ·xn ∈ {a, b}+, we have

⟨ε|ε⟩ · tx1 · · · txn = x1wx1x2x2wx2x3x3 · · ·wxn−1xnxnvxn

with waa = wbb = ♢, wab = ε, wba = ♢♦, va = ♢♦ and vb = ♢♦♦.
In particular, for all u1, u2, u3 ∈ A∗, if u1bu2au3 ∈ L♢♦ then u2 contains a ♦.

▶ Proposition 64 (BK ⊈ EAK). BK is not included in EAK.

Proof. Suppose there exists a keyboard K = (T, F ) of EAK recognising L = L♢♦. In this
proof, we will use the letter k to denote keys of K, in order to avoid confusion with the keys
ta and tb.

As a♢♦ ∈ L, there exists τf ∈ T ∗F yielding that word.

https://doi.org/10.1016/0304-3975(76)90068-2
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Moreover, w = (a♢)3∥K∥∞a♢♦ ∈ L (obtained by applying ta 3∥K∥∞ times). Hence, there
exists an execution of K writing that word. By Lemma 58, as |k|a ≤ ∥K∥∞ for all k ∈ T ∪F ,
this execution contains at least three keys containing an a, including at least two in T (as
the execution only has one final key).

As w contains a single ♦, there exists a key ka of T writing an a, but writing neither ♦
nor b. By applying ka then τf , we obtain a word of L containing a single ♦ and no b. By
lemma Lemma 76 this word must be of the form (a♢)ia♢♦. We infer that ka contains as
many a and ♢. Let n be its number of a.

We can similarly show, using the word (b♢)3∥K∥∞b♢♦♦, that there exists kb ∈ T containing
as many b and ♢ but neither ♦ nor a. Let m be its number of b (and of ♢).

Let τ = kakb. We write

⟨u|v⟩ = ⟨ε|ε⟩ · τ and ⟨u′|v′⟩ = ⟨u|v⟩ · τf

We have that u′v′ contains a single ♦. As u′v′ ∈ L, u′v′ has to be of the form wa♢♦ with w

not containing any ♦, |w|a = n, |w|b = m and |w|♢ = n + m.
As wa contains at least a b, wa it is of the form u1bu2a, thus by Lemma 76, u2 contains

a ♦, yielding a contradiction. As a conclusion, L ̸∈ EAK. ◀

Proof of Proposition 65
Consider the keyboard K = {a◀2▶b}.

By applying a◀2▶b on ⟨ε|ε⟩ we obtain ⟨ab|ε⟩, and by applying it on a configuration of
the form ⟨ub|v⟩ we obtain ⟨ubb|av⟩. Hence, after applying it n times on ⟨ε|ε⟩ we get abn+1an.
The language of K is therefore L =

{
abn+1an

∣∣ n ∈ N
}

.

▶ Lemma 77. Let K be a keyboard of BLEK. If K recognises L then, for all τ ∈ T ∗, ⟨ε|ε⟩ · τ
is of the form

〈
u

∣∣ak
〉
.

Proof. As abba ∈ L, there exists τ ∈ T ∗ and tf ∈ F such that ⟨ε|ε⟩ · τtf = ⟨x|y⟩ with
xy = abba.

Let ⟨u|v⟩ be a configuration reachable by a sequence of keys of τ with v containing a b.
By Theorem 56, ⟨u|v⟩ · τtf is of the form ⟨u′x|v′v⟩ with y a subword of v′. As a consequence,
abba is a subword of u′xv′. With the assumption, we get that abbab is a subword of u′xv′v,
which contradicts the fact that u′xv′v ∈ L. ◀

▶ Proposition 65 (AK ⊈ BLEK). AK is not included in BLEK.

Proof. Let K = (T, F ) be a keyboard of BLEK, suppose it recognises L. Let τ ∈ T ∗ and
tf ∈ F . We set:

⟨x|y⟩ = ⟨ε|ε⟩ · tf and ⟨u|v⟩ = ⟨ε|ε⟩ · τ.

There exists n ∈ N such that xy = abn+1an. By Theorem 56, ⟨ε|ε⟩ · τtf = ⟨u|v⟩ · tf is of the
form ⟨u′x|v′v⟩ with y a subword of v′.

As abn+1an is a subword of xv′ and u′xv′v ∈ L, u′ is necessarily empty (otherwise
u′ would contain an a and as ab is a subword of xv′, aab would be a subword of u′xv′v,
contradicting u′xv′v ∈ L).

By Lemma 26, |v′v| − |v| ≤ |t| ≤ ∥K∥∞, i.e., |v′| ≤ ∥K∥∞. Furthermore, again by
Lemma 26, |x| ≤ ∥K∥∞.

By Lemma 77, v is of the form ak. Hence, all b in u′xv′v are in xv′, thus u′xv′v contains
at most 2∥K∥∞ b.

We have shown that all words in L(K) contain at most 2∥K∥∞ b, contradicting L(K) = L

as the number of b of words of L is unbounded. ◀
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Proof of Proposition 66
Consider the following language over A = {a, b, c}:

L = L1 ∪ L2 with L1 =
{

wcw̃
∣∣ w ∈ {a, b}∗

}
and L2 =

{
wccw̃

∣∣ w ∈ {a, b}∗
}

.
We are going to prove that L is in LEK but not in BAK. L is recognised by K =

({aa◀, bb◀}, {c, cc}), then L is in LEK.
We now show that L /∈ BAK. The intuition is as follows:
Suppose we have a keyboard K of BAK recognising L. As we want to recognise palindromes,

we need to stay close to the centre in order to always modify both halves of the word.
If the word is large enough, this means that we have to get far from the edges. In

particular, there is a key t writing an a far from the edges (even two a, as we have to stay in
the language).

We study the behaviour of this key on bncbn and bnccbn with large n. The cursor being
far from the edges, t behaves the same way in both cases. In particular, we make the following
remarks:

The maximal distance d between two a will be the same in both words. Thus, the
resulting words have either both two c or both one c in the centre.
In both cases the key adds a number of letters δ, and thus if bncbn is turned into a word
of even length, then bnccbn is turned into a word of odd length, and vice-versa.
As a result, they have different numbers of c in the centre.

As those facts are contradictory, we conclude that there cannot exist such a keyboard.

▶ Proposition 66 (LEK ⊈ BAK). LEK is not included in BAK.

B Complexity

Proof of Proposition 70
▶ Lemma 78. Let K be an BK keyboard. For all τ ∈ K∗ there exists τ ′ ∈ K∗ whose normal
form is ←k′

w′ with k′ ≤ ∥K∥∞ such that ε · τ = ε · τ ′.

Proof. We proceed by induction on τ . The result hold for τ = ε (by taking τ ′ = ε). Let
τ ∈ K∗, suppose there exists τ ′ ∈ K∗ whose normal form is ←k′

w′ with k′ ≤ ∥K∥∞ such
that ε · τ = ε · τ ′. Let t ∈ K, we study the sequence tτ . We need to provide τ ′′ such that
ε · tτ = ε · τ ′′ and with normal form ←k′′

w′′ with k′′ ≤ ∥K∥∞.
There exist k and w such that ←kw is the normal form of t. Let n = |w| − k′.
If n > 0, then tτ ′ is equivalent to ←kw[1, n]w′ and we can set τ ′′ = tτ ′ (as n > 0, we
have k′ < |w| < ∥K∥∞).
Otherwise, ε · tτ = w · τ = w · τ ′ = w′ = ε · τ and we can set τ ′′ = τ ′.

The result is proven. ◀

▶ Proposition 70. The universality problem for BK keyboards is in coNP.

Proof. We prove that if a BK keyboard K is not universal, then there is a word of length at
most ∥K∥∞ + 1 it does not recognise.

Let K be a keyboard of BK, suppose there exists w ∈ A∗ not recognised by K. We take
w of minimal length. If |w| ≤ ∥K∥∞ + 1 then the property holds.

If |w| > ∥K∥∞ + 1 then there exist a ∈ A, v ∈ A+ such that av = w. As we assumed w

to be of minimal length, v is recognised by K. By Lemma 78, there exist k ≤ ∥K∥∞, τ ∈ K∗

whose normal form is ←kv, such that ε · τ = v.
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As
∣∣ak+1

∣∣ = k + 1 ≤ ∥K∥∞ + 1 < |w|, ak+1 is recognised by K. Let τ ′ be such that
ε · τ ′ = ak+1, then we have ε

τ ′

−→ ak+1 τ−→ av = w.
This contradicts the fact that w is not recognised by K. The property is proven. ◀

C Closure properties

Proof of Proposition 72
▶ Proposition 72 (Mirror). MK, AK and EAK are stable by mirror. EK, BK, BEK and BLK
are not stable by mirror.

For MK the result is clear as the mirror of L(K) is L
(

K̃
)

when K is an MK keyboard.
As for AK and EAK, we first define the mirror of an atomic operation: the mirror of ◀

is ▶ (and vice-versa) and the mirror of a is a◀. By turning every atomic operation in a
keyboard into its mirror, we obtain a keyboard recognising the mirror language.

The language L = b∗a is in EK and BK but its mirror is not in BEK, thus EK, BK and
BEK are not stable under mirror.

The language L = (b + b2)a∗ is recognised by the BLK keyboard

K =
{
←2a◀b,←2a◀bb,←2b,←2bb

}
but its mirror a∗(b + b2) is not in BLK as is shown in the proof of Proposition 62.

Proof of Proposition 73
▶ Proposition 73 (Intersection). None of the keyboard language classes are stable by inter-
section.

For MK and EK, we use the intersection of (ab + ba + bb)∗ and (ba + b)∗ as our counterex-
ample.

For BK and BEK, we use again the language L♢♦ from the proof of Proposition 64. We
also define L′ = (a + b + ♢)+♦2 recognised by the BK keyboard{

←2a♦2,←2b♦2,←2♢♦2}
.

Thus L and L′ are in BK, and we show that their intersection is not.
For the other classes, we show that L = {anbncn | n ∈ N} is not in BEAK. Further, it is

the intersection of the following LK languages:
(a + b)∗c∗, recognised by {a, b, c◀},
a∗(b + c)∗, recognised by {a, b◀, c◀},
{w ∈ (a + b + c)∗ | |w|a = |w|b}, recognised by {ab, ba, c,◀},
{w ∈ (a + b + c)∗ | |w|b = |w|c}, recognised by {bc, cb, a,◀}.

Proof of Proposition 74
▶ Proposition 74 (Union). None of the keyboard language classes are stable by union.

To start with, we consider the languages a∗ and b∗, both in MK, and prove that their
union is neither in BLEK nor in EAK.

▶ Lemma 79. The language L = a∗ + b∗ is not in BLEK.
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Proof. Suppose there exists a keyboard K = (T, F ) of BLEK recognising L. Then there
exists τa ∈ T ∗, fa ∈ F such that ⟨ε|ε⟩ · τafa = ⟨ua|va⟩ with uava = a.

There also exists τb ∈ T ∗, fb ∈ F such that ⟨ε|ε⟩ · τbfb = ⟨ub|vb⟩ with ubvb =
b1+∥K∥∞(|τa|+2).

By Lemma 24, applying τb to ⟨ε|ε⟩ yields a configuration with at least 1 + ∥K∥∞(|τa|+ 1)
b. We apply τbτafa to ⟨ε|ε⟩, by Theorem 56 the resulting configuration contains an a, and as
τafa can only erase at most (|τa|+ 1)∥K∥∞ letters, it contains a b. This is impossible, as
the resulting word should be in L. ◀

▶ Lemma 80. The language L = a∗ + b∗ is not in EAK.

Proof. Suppose there exists K = (T, F ) a keyboard of EAK recognising L. As a∥K∥∞+1 and
b∥K∥∞+1 are both in L, there exist ta, tb ∈ T such that ta writes an a and tb a b (and those
letters are never erased, as we do not have ←). Let f ∈ F , tatbf writes a word containing
both a and b, thus not in L. ◀

To finish, we define the language L = La ∪ Lb with La = {ancan | n ∈ N} and Lb =
{bncbn | n ∈ N}. We can prove that L is not in BEAK, showing that all BAK and BEAK are
not stable by intersection.

Proof of Proposition 75
▶ Proposition 75 (Intersection emptiness problem). The following problem is undecidable:

Input: K1, K2 two LK keyboards.
Output: Is L(K1) ∩ L(K2) empty?

Proof. We reduce the Post Correspondence Problem. Let (ui, vi)i∈J1,nK be a PCP instance.
For all i ∈ J1, nK, let u♦

i and v♦
i be ui and vi where we added a ♦ at the right of every letter,

i.e., if ui = a1a2 · · · an then u♦
i = a1♦a2♦ · · · an♦.

We set for all i ∈ J1, nK, ti = u♦
i ṽ♦

i ◀
2|vi|. Let

Kpal = {aa◀ | a ∈ A ∪ {♦}} ∪ {ε}

Kpal recognises the language of even palindromes over A ∪ {♦}. Now let

K = {ti | i ∈ J1, nK}.

We easily show that L(K) ∩ L(Kpal) ̸= ∅ if and only if (ui, vi)i∈J1,nK ∈ PCP. ◀
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examine a generalization of the Boolean hypercube graph, the n-dimensional lattice graph Q(D, n)
with vertices in {0, 1, . . . , D}n. We study the complexity of the following problem: given a subgraph
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1 Introduction

Dynamic programming (DP) algorithms have been widely used to solve various NP-hard
problems in exponential time. Bellman, Held and Karp showed how DP can be used to solve
the Travelling Salesman Problem in Õ(2n)1 time using DP [5, 22], which still remains
the most efficient classical algorithm for this problem. Their technique can be used to solve
a plethora of different problems [16, 7].

The DP approach of Bellman, Held and Karp solves the subproblems corresponding to
subsets of an n-element set, sequentially in increasing order of the subset size. This typically
results in an Θ̃(2n) time algorithm, as there are 2n distinct subsets. What kind of speedups
can we obtain for such algorithms using quantum computers?

It is natural to consider applying Grover’s search, which is known to speed up some
algorithms for NP-complete problems. For example, we can use it to search through the 2n

possible assignments to the SAT problem instance on n variables in Õ(
√

2n) time. However,
it is not immediately clear how to apply it to the DP algorithm described above. Recently,
Ambainis et al. showed a quantum algorithm that combines classical precalculation with
recursive applications of Grover’s search that solves such DP problems in Õ(1.817n) time,
assuming the QRAM model of computation [4].

In their work, the authors applied this result to obtain quantum speedups for the
algorithms solving graph vertex ordering problems like Pathwidth and Sum Cut [7], and
using a more involved analysis, for the Graph Bandwidth problem [12]. They also used
similar ideas to provide speedups for the Travelling Salesman, Feedback Arc Set and
Minimum Set Cover problems by combining the Divide & Conquer and DP techniques.
Subsequently, these ideas have been used to construct quantum speedups for the Graph
Coloring [29], Minimum Steiner Tree [26] and finding the optimal variable ordering for
the binary decision diagrams (OBDDs) [30]. More surprisingly, [1] used the quantum speedup
for the Minimum Set Cover to prove non-trivial conditional lower bounds for the k-SUM
problem [1] (assuming the Set Cover Conjecture, which states that Minimum Set Cover
cannot be solved classically in time O((2− δ)n) for any δ > 0).

The Õ(1.817n) quantum speedup of Ambainis et al. for the aforementioned DP algorithm
on the subsets of the n-element set examines the underlying transition graph, which can be
seen as a directed n-dimensional Boolean hypercube, with edges connecting smaller weight
vertices to larger weight vertices. A natural question arises, for what other graphs there exist
quantum algorithms that achieve a speedup over the classical DP? In this work, we examine
a generalization of the hypercube graph, the n-dimensional lattice graph with vertices in
{0, 1, . . . , D}n.

While the classical DP for this graph has running time Θ̃((D + 1)n), as it examines
all vertices, we prove that there exists a quantum algorithm (in the QRAM model) that
solves this problem in time and space poly(n)log nT n

D for TD < D + 1 (Theorems 4, 7). Our
algorithm essentially is a generalization of the algorithm of Ambainis et al. We show the
following running time for small values of D:

Table 1 The complexity of the quantum algorithm.

D 1 2 3 4 5 6

TD 1.81692 2.65908 3.52836 4.42064 5.33149 6.25720

1 f(n) = Õ(g(n)) if f(n) = O(logc(g(n))g(n)) for some constant c.
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A detailed summary of our numerical results is given in Section 5.3. Note that the case
D = 1 corresponds to the hypercube, where we have the same algorithm and complexity as
Ambainis et al. In our proofs, we extensively use the saddle point method from analytic
combinatorics to estimate the asymptotic value of the combinatorial expressions arising from
the complexity analysis.

It is interesting to compare our analysis and that of Ambainis et al. Their original
algorithm is recursive, and solves instances of the problem of smaller size (on the subcubes of
smaller dimensions). These instances are symmetrical, so the recursive calls can be analyzed
identically, and the calculation of the complexity is relatively simple. However, this is
not the case in our generalization for the n-dimensional lattice. To see this, consider, for
example, the lattice {0, 1, 2}n. In the recursive calls, our algorithm will examine sublattices
{0, 1}n1 × {0, 1, 2}n2 with fixed maximum vertex weight w = n1 + 2n2. The first obstacle
is that now there are many different cases (n1, n2) to analyze. The second obstacle is that
recursively we have to solve the problem for a lattice {0, 1}n1 × {0, 1, 2}n2 : now it becomes
difficult to describe and analyze the sublattices examined in the recursion of depth at least
2. To solve these issues, we first make an ansatz that the exponential complexity of the
algorithm on the lattice

ŚD
d=1{0, 1, . . . , d}nd can be expressed as T n1

1 T n2
2 · · ·T

nD

D , for some
positive constants Td. Then we make use of the saddle point method to find such optimal
constants (that minimize TD), and also prove that the ansatz is correct. Our analysis provides
exactly the same Õ(1.816...n) complexity for the hypercube algorithm as by Ambainis et al.

Next, we also prove a lower bound on the query complexity of the algorithm for general
D. Our motivation is to check whether our algorithm, for example, could achieve complexity
Õ((D + 1)cn) for large D for some c < 1. We prove that this is not the case: more
specifically, for any D, the algorithm performs at least Ω̃

((
D+1

e
)n
)

queries (Theorem 5),
where e = 2.71828 . . . is the Euler’s number.

As an example application, we apply our algorithm to the Set Multicover problem
(SMC), which is a generalization of the Set Cover problem. In this problem, the input
consists of m subsets of the n-element set, and the task is to calculate the smallest number
of these subsets that together cover each element at least D times, possibly with overlap and
repetition. While the best known classical algorithm has running time O(m(D + 1)n) [27, 24],
our quantum algorithm has running time poly(m, n)log nT n

D, improving the exponential
complexity (Theorem 8).

The paper is organized as follows. In Section 2, we formally introduce the n-dimensional
lattice graph and some of the notation used in the paper. In Section 3, we define the
generic query problem that models the examined DP. In Section 4, we describe our quantum
algorithm. In Section 5, we establish the query complexity of this algorithm and prove the
aforementioned lower bound. In Section 6, we discuss the implementation of this algorithm
and establish its time complexity. Finally, in Section 7, we show how to apply our algorithm
to SMC, and discuss other related problems.

2 Preliminaries

The n-dimensional lattice graph is defined as follows. The vertex set is given by {0, 1, . . . , D}n,
and the edge set consists of directed pairs of two vertices u and v such that vi = ui + 1 for
exactly one i, and uj = vj for j ≠ i. We denote this graph by Q(D, n). Alternatively, this
graph can be seen as the Cartesian product of n paths on D + 1 vertices. The case D = 1 is
known as the Boolean hypercube and is usually denoted by Qn.

We define the weight of a vertex x ∈ V as the sum of its coordinates |x| :=
∑n

i=1 xi.
Denote x ≤ y iff for all i ∈ [n], xi ≤ yi holds. If additionally x ≠ y, denote such relation by
x < y.
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Throughout the paper we use the standard notation [n] := {1, . . . , n}. In Section 7.1,
we use notation for the superset 2[n] := {S | S ⊆ [n]} and for the characteristic vector
χ(S) ∈ {0, 1}n of a set S ∈ [n] defined as χ(S)i = 1 iff i ∈ S, and 0 otherwise.

We write f(n) = poly(n) to denote that f(n) = O(nc) for some constant c. We also write
f(n, m) = poly(n, m) to denote that f(n, m) = O(ncmd) for some constants c and d.

For a multivariable polynomial p(x1, . . . , xm), we denote by [xc1
1 · · ·xcm

m ]p(x1, . . . , xm) its
coefficient at the multinomial xc1

1 · · ·xcm
m .

3 Path in the hyperlattice

We formulate our generic problem as follows. The input to the problem is a subgraph G

of Q(D, n). The problem is to determine whether there is a path from 0n to Dn in G. We
examine this as a query problem: a single query determines whether an edge (u, v) is present
in G or not.

Classically, we can solve this problem using a dynamic programming algorithm that
computes the value dp(v) recursively for all v, which is defined as 1 if there is a path from 0n

to v, and 0 otherwise. It is calculated by the Bellman, Held and Karp style recurrence [5, 22]:

dp(v) =
∨

(u,v)∈E

{dp(u) ∧ ((u, v) ∈ G)}, dp(0n) = 1.

The query complexity of this algorithm is O(n(D + 1)n). From this moment we refer to this
as the classical dynamic programming algorithm.

The query complexity is also lower bounded by Ω̃((D + 1)n). Consider the sets of edges
EW connecting the vertices with weights W and W + 1,

EW := {(u, v) | (u, v) ∈ Q(D, n), |u| = W, |v| = W + 1}.

Since the total number of edges is equal to (D + 1)n−1Dn, there is such a W that |EW | ≥
(D + 1)n−1Dn/Dn = (D + 1)n−1 (in fact, one can prove that the largest size is achieved for
W = ⌊nD/2⌋ [13], but it is not necessary for this argument). Any such EW is a cut of HD,
hence any path from 0n to Dn passes through EW . Examine all G that contain exactly one
edge from EW , and all other edges. Also examine the graph that contains no edges from
EW , and all other edges. In the first case, any such graph contains a desired path, and in
the second case there is no such path. To distinguish these cases, one must solve the OR
problem on |EW | variables. Classically, Ω(|EW |) queries are needed (see, for example, [8]).
Hence, the classical (deterministic and randomized) query complexity of this problem is
Θ̃((D + 1)n). This also implies Ω̃(

√
(D + 1)n) quantum lower bound for this problem [6].

4 The quantum algorithm

Our algorithm closely follows the ideas of [4]. We will use the well-known generalization of
Grover’s search:

▶ Theorem 1 (Variable time quantum search (VTS), Theorem 3 in [3]). Let A1, . . ., AN be
quantum algorithms that compute a function f : [N ]→ {0, 1} and have query complexities t1,
. . ., tN , respectively, which are known beforehand. Suppose that for each Ai, if f(i) = 0, then
Ai = 0 with certainty, and if f(i) = 1, then Ai = 1 with constant success probability. Then
there exists a quantum algorithm with constant success probability that checks whether f(i) = 1
for at least one i and has query complexity O

(√
t2
1 + . . . + t2

N

)
. Moreover, if f(i) = 0 for all

i ∈ [N ], then the algorithm outputs 0 with certainty.
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Even though Ambainis formulates the main theorem for zero-error inputs, the statement
above follows from the construction of the algorithm.

Now we describe our algorithm. We solve a more general problem: suppose s, t ∈
{0, 1, . . . , D}n are such that s < t and we are given a subgraph of the n-dimensional lattice

n
ą

i=1
{si, . . . , ti},

and the task is to determine whether there is path from s to t. We need this generalized
problem because our algorithm is recursive and is called for sublattices.

Define di := ti − si. Let nd be the number of indices i ∈ [n] such that di = d. Note that
the minimum and maximum weights of the vertices of this lattice are |s| and |t|, respectively.

We call a set of vertices with fixed total weight a layer. The algorithm will operate with K

layers (numbered 1 to K), with the k-th having weight |s|+Wk, where Wk :=
⌊∑D

d=1 αk,ddnd

⌋
.

Denote the set of vertices in this layer by

Lk := {v | |v| = |s|+ Wk}.

Here, αk,d ∈ (0, 1/2) are constant parameters that have to be determined before we run
the algorithm. The choice of αk,d does not depend on the input to the algorithm, similarly
as it was in [4]. For each k ∈ [K] and d ∈ [D], we require that αk,d < αk+1,d. In addition
to the K layers defined in this way, we also consider the (K + 1)-th layer LK+1, which is
the set of vertices with weight |s|+ WK+1, where WK+1 :=

⌊
|t|−|s|

2

⌋
. We can see that the

weights W1, . . . , WK+1 defined in this way are non-decreasing.
The informal description of the algorithm (Path) is as follows. First, we use the classical

dynamic programming to calculate which vertices v with weight |v| ≤ |s|+ W1 are reachable
from s. Then, we store all of these answers in memory. Symmetrically, we also calculate from
which vertices v with weight |v| ≥ |t| −W1 we can reach t, and also store this in memory.
We refer to these steps as the classical precalculation part.

Next, we use VTS to search for a vertex v(K+1) in the layer LK+1 such that there is path
from s to v(K+1) and from v to t. The LayerPath function is then used to detect whether
there is a path from s to v(K+1). First, we use VTS to search for a vertex v(K) ∈ LK such
that: (1) there exists a path from v(K) to v(K+1); (2) there exists a path from s to v(K). The
first condition we can check using Path recursively for the lattice bounded by the vertices
v(K) and v(K+1). The second condition is checked recursively using LayerPath in a similar
fashion. Finally, for the vertex v(1) ∈ L1, the LayerPath will need to check whether there
is a path from s to v(1): this can be then simply read out from the memory, using the results
of the precalculation part. We then similarly find whether t is reachable from v(K).

5 Query complexity

For simplicity, let us examine the lattice
n

ą

i=1
{0, . . . , ti − si},

as the analysis is identical.

Let the number of positions with maximum coordinate value d be nd. We make an ansatz
that the exponential complexity can be expressed as

T (n1, . . . , nD) := T n1
1 T n2

2 · . . . · T nD

D
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Algorithm 1 The quantum algorithm for detecting a path in the hyperlattice.
Path(s, t):
1. Calculate n1, . . ., nD, and W1, . . ., WK+1. If Wk = Wk+1 for some k, determine whether

there exists a path from s to t using classical dynamic programming and return.
2. Otherwise, first perform the precalculation step. Let dp(v) be 1 iff there is a path from s

to v. Calculate dp(v) for all vertices v such that |v| ≤ |s|+ W1 using classical dynamic
programming. Store the values of dp(v) for all vertices with |v| = |s|+ W1.
Let dp′(v) be 1 iff there is a path from v to t. Symmetrically, we also calculate dp′(v) for
all vertices with |v| = |t| −W1.

3. Define the function LayerPath(k, v) to be 1 iff there is a path from s to v such that
v ∈ Lk. Implement this function recursively as follows.

LayerPath(1, v) is read out from the stored values.
For k > 1, run VTS over the vertices u ∈ Lk−1 such that u < v. The required value is
equal to

LayerPath(k, v) =
∨
u

{LayerPath(k − 1, u) ∧ Path(u, v)}.

4. Similarly define and implement the function LayerPath′(k, v), which denotes the exist-
ence of a path from v to t such that v ∈ L′

k (where L′
k is the layer with weight |t| −Wk).

To find the final answer, run VTS over the vertices in the middle layer v ∈ LK+1 and
calculate∨

v

{
LayerPath(K + 1, v) ∧ LayerPath′(K + 1, v)

}
.

for some values T1, T2, . . . , TD > 1 (we also can include n0 and T0, however, T0 = 1 always
and doesn’t affect the complexity). We prove it by constructing generating polynomials
for the precalculation and quantum search steps, and then approximating the required
coefficients asymptotically. We use the saddle point method that is frequently used for such
estimation, specifically the theorems developed in [9].

5.1 Generating polynomials
First we estimate the number of edges of the hyperlattice queried in the precalculation step.
The algorithm queries edges incoming to the vertices of weight at most W1, and each vertex
can have at most n incoming edges. The size of any layer with weight less than W1 is at most
the size of the layer with weight exactly W1, as the size of the layers is non-decreasing until
weight WK+1 [13]. Therefore, the number of queries during the precalculation is at most
n ·W1 · |L1| ≤ n2D|L1|, as W1 ≤ nD. Since we are interested in the exponential complexity,
we can omit n and D, thus the exponential query complexity of the precalculation is given
by |L1|.

Now let Pd(x) :=
∑d

i=0 xi. The number of vertices of weight W1 can be written as the
coefficient at xW1 of the generating polynomial

P (x) :=
D∏

d=0
Pd(x)nd .
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Indeed, each Pd(x) in the product corresponds to a single position i ∈ [n] with maximum
value d and the power of x in that factor represents the coordinate of the vertex in this
position. Therefore, the total power that x is raised to is equal to the total weight of the
vertex, and coefficient at xW1 is equal to the number of vertices with weight W1. Since the
total query complexity of the algorithm is lower bounded by this coefficient, we have

T (n1, . . . , nD) ≥
[
xW1

]
P (x). (1)

Similarly, we construct polynomials for the LayerPath calls. Consider the total com-
plexity of calling LayerPath recursively until some level 1 ≤ k ≤ K and then calling Path
for a sublattice between levels Lk and Lk+1. Define the variables for the vertices chosen by
the algorithm at level i (where k ≤ i ≤ K + 1) by v(i). The Path call is performed on a
sublattice between vertices v(k) and v(k+1), see Fig. 1.

LK+1
LK

Lk+1
Lk

L1

. . .. . .

v
(K+1)

v
(K)

v
(k+1)

v
(k)

Figure 1 The choice of the vertices v(i) and the application of Path on the sublattice.

Define

Sk,d(xk,k, . . . , xk,K+1) :=
d∑

i=0
T 2

i ·
∑

pk,...,pK+1∈[0,d]
pk+1≤...≤pK+1

pk+1−pk=i

K+1∏
j=k

x
pj

k,j .

Again, this corresponds to a single coordinate. The variable xk,j corresponds to the vertex
v(j) and the power pj corresponds to the value of v(j) in that coordinate.

Examine the following multivariate polynomial:

Sk(xk,k, . . . , xk,K+1) :=
D∏

d=0
Snd

k,d(xk,k, . . . , xk,K+1).

We claim that the coefficient[
xWk

k,k · · ·x
WK+1
k,K+1

]
Sk(xk,k, . . . , xk,K+1)

is the required total complexity squared.
First of all, note that the value of this coefficient is the sum of t2, where t is the variable

for the running time of Path between v(k) and v(k+1), for all choices of vertices v(k), v(k+1),
. . ., v(K+1). Indeed, the powers pj encode the values of coordinates of v(j), and a factor of
T 2

i is present for each multinomial that has pk+1 − pk = i (that is, v
(k+1)
l − v

(k)
l = i for the

corresponding position l).
Then, we need to show that the sum of t2 equals the examined running time squared.

Note that the choice of each vertex v(j) is performed using VTS. In general, if we perform
VTS on the algorithms with running times s1, . . ., sN , then the total squared running time

MFCS 2021
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is equal to s2
1 + . . . + s2

N by Theorem 1. By repeating this argument in our case inductively
at the choice of each vertex v(j), we obtain that the final squared running time indeed is the
sum of all t2.

Therefore, the square of the total running time of the algorithm is lower bounded by

T (n1, . . . , nD)2 ≥
[
xWk

k,k · · ·x
WK+1
k,K+1

]
Sk(xk,k, . . . , xk,K+1). (2)

Together the inequalities (1) and (2) allow us to estimate T . The total time complexity
of the quantum algorithm is twice the sum of the coefficients given in Eq. (1) and (2)
for all k ∈ [K] (twice because of the calls to LayerPath and its symmetric counterpart
LayerPath′). This is upper bounded by 2K times the maximum of these coefficients. Since
2K is a constant, and there are O(log n) levels of recursion (see Appendix A), in total
this contributes only (2K)O(log n) = poly(n) factor to the total complexity of the quantum
algorithm.

5.2 Saddle point approximation
In this section, we show how to describe the tight asymptotic complexity of T (n1, . . . , nD)
using the saddle point method (a detailed review can be found in [15], Chapter VIII). Our
main technical tool will be the following theorem.

▶ Theorem 2. Let p1(x1, . . . , xm), . . ., pD(x1, . . . , xm) be polynomials with non-negative
coefficients. Let n be a positive integer and b1, . . . , bD be non-negative rational numbers such
that b1 + . . . + bD = 1 and bdn is an integer for all d ∈ [D]. Let ai,d be rational numbers
(for i ∈ [m], d ∈ [D]) and αi := ai,1b1 + . . . + ai,DbD. Suppose that αin are integer for all
i ∈ [m]. Then

(1) [xα1n
1 · · ·xαmn

m ]
∏D

d=1 pd(x1, . . . , xm)bdn ≤

(
infx1,...,xm>0

∏D
d=1

(
pd(x1,...,xm)
x

a1,d
1 ···x

am,d
m

)bd
)n

(2) [xα1n
1 · · ·xαmn

m ]
∏D

d=1 pd(x1, . . . , xm)bdn = Ω
((

infx1,...,xm>0
∏D

d=1

(
pd(x1,...,xm)
x

a1,d
1 ···x

am,d
m

)bd
)n)

,

where Ω depends on the variable n.

Proof. To prove this, we use the following saddle point approximation.2

▶ Theorem 3 (Saddle point method, Theorem 2 in [9]). Let p(x1, . . . , xm) be a polynomial
with non-negative coefficients. Let α1, . . . , αm be some rational numbers and let ni be the
series of all integers j such that αkj are integers and

[
xα1j

1 · · ·xαmj
m

]
p(x1, . . . , xm)j ≠ 0.

Then

lim
i→∞

1
ni

log([xα1ni
1 · · ·xαmni

m ]p(x1, . . . , xm)ni) = inf
x1,...,xm>0

log
(

p(x1, . . . , xm)
xα1

1 · · ·x
αm
m

)
.

Let p(x1, . . . , xm) :=
∏D

d=1 pd(x1, . . . , xm)bd , then

p(x1,...,xm)
xα1

1 ···x
αm
m

=
∏D

d=1pd(x1,...,xm)bd

xα1
1 ···x

αm
m

=
D∏

d=1

pd(x1,...,xm)bd

x
a1,dbd

1 ···xam,dbd
m

=
D∏

d=1

(
pd(x1,...,xm)
x

a1,d

1 ···xam,d
m

)bd

.

2 Setting γ = 1 in the statement of the original theorem.
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For the first part, as p(x1, . . . , xm)n has non-negative coefficients, the coefficient at the
multinomial xα1n

1 · · ·xαmn
m is upper bounded by

inf
x1,...,xm>0

p(x1, . . . , xm)n

xα1n
1 · · ·xαmn

m
=
(

inf
x1,...,xm>0

p(x1, . . . , xm)
xα1

1 · · ·x
αm
m

)n

The second part follows directly by Theorem 3. ◀

5.2.1 Optimization program
To determine the complexity of the algorithm, we construct the following optimization
problem. Recall that the Algorithm 1 is given by the number of layers K and the constants
αk,d that determine the weight of the layers, so assume they are fixed known numbers.
Assume that αk,d are all rational numbers between 0 and 1/2 for k ∈ [K]; indeed, we can
approximate any real number with arbitrary precision by a rational number. Also let T0 = 1
and αK+1,d = 1/2 for all d ∈ [D] for convenience.

Examine the following program OPT(D, K, {αk,d}):

minimize TD s.t. Td ≥
Pd(x)
xα1,dd

∀d ∈ [D]

T 2
d ≥

Sk,d(xk,k, . . . , xk,K+1)
x

αk,dd
k,k · · ·xαK+1,dd

k,K+1

∀d ∈ [D], ∀k ∈ [K]

Td ≥ 1 ∀d ∈ [D]
x > 0
xk,j > 0 ∀k ∈ [K], ∀j ∈ {k, . . . , K + 1}

Let n := n1 + . . . + nD and αk :=
∑D

d=1
αk,ddnd

n . Suppose that T1, . . . , TD is a feasible
point of the program. Then by Theorem 2 (1) (setting bi := ni/n and ai,d := αi,dd) we have

[xα1n]P (x) ≤ inf
x>0

D∏
d=1

(
Pd(x)
xα1,dd

)nd

≤ T n1
1 · · ·T

nD

D .

Similarly,

[xαkn
k,k · · ·x

αK+1n
k,K+1 ]Sk(xk,k, . . . , xk,K+1) ≤ inf

xk,k,...,xk,K+1>0

D∏
d=1

(
Sk,d(xk,k, . . . , xk,K+1)

x
αk,dd
k,k · · ·xαK+1,dd

k,K+1

)nd

≤ (T n1
1 · · ·T

nD

D )2.

Therefore, the program provides an upper bound on the complexity. There are two subtleties
that we need to address for correctness: firstly, what happens when αkn is not an integer;
secondly, the case when Wk = Wk+1 for some k. We show that both do not raise an issue in
Appendix B.

5.2.2 Optimality of the program
In the start of the analysis, we made an assumption that the exponential complexity
T (n1, . . . , nD) can be expressed as T n1

1 · · ·T
nD

D . In Appendix C, using the lower bound
of Theorem 3 (2), we show that OPT(D, K, {αk,d}) (which gives an upper bound on the
complexity) can indeed achieve such value and also gives the best possible solution.
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5.2.3 Total complexity
Finally, in Appendix D we argue that there exists a choice for the parameters {αk,d} such
that OPT(D, K, {αk,d}) < D + 1. Therefore, putting all together, we have the main result:

▶ Theorem 4. There exists a bounded-error quantum algorithm that solves the path in the
n-dimensional lattice problem using Õ(T n

D) queries, where TD < D + 1. The optimal value
of TD can be found by optimizing OPT(D, K, {αk,d}) over K and {αk,d}.

5.3 Complexity for small D

To find the estimate on the complexity for small values of D and K, we have optimized the
value of OPT(D, K, {αk,d}) using Mathematica (minimizing over the values of αk,d). Table
2 compiles the results obtained by the optimization. In case of D = 1, we recovered the
complexity of the quantum algorithm from [4] for the path in the hypercube problem, which
is a special case of our algorithm.

Table 2 The complexity of the quantum algorithm for small values of D and K.

D = 1 D = 2 D = 3 D = 4 D = 5 D = 6

K = 1 1.86793 2.76625 3.68995 4.63206 5.58735 6.55223
K = 2 1.82562 2.67843 3.55933 4.46334 5.38554 6.32193
K = 3 1.81819 2.66198 3.53322 4.42759 5.34059 6.26840
K = 4 1.81707 2.65939 3.52893 4.42148 5.33263 6.25862
K = 5 1.81692 2.65908 3.52836 4.42064 5.33149 6.25720

For K = 1, we were able to estimate the complexity for up to D = 18. Figure 2 shows
the values of the difference between D + 1 and TD for this range.

5 10 15

0.1

0.2

0.3

0.4

0.5

0.6

D

D
+

1
−

T
D

Figure 2 The advantage of the quantum algorithm over the classical for K = 1.

Our Mathematica code used for determining the values of TD can be accessed at https:
//doi.org/10.5281/zenodo.4603689. In Appendix E, we list the parameters for the case
K = 1.

https://doi.org/10.5281/zenodo.4603689
https://doi.org/10.5281/zenodo.4603689
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5.4 Lower bound for general D

Even though Theorem 4 establishes the quantum advantage of the algorithm, it is interesting
how large the speedup can get for large D. In this section, we prove that the speedup cannot
be substantial, more specifically:

▶ Theorem 5. For any fixed integers D ≥ 1 and K ≥ 1, Algorithm 1 performs Ω̃
((

D+1
e
)n
)

queries on the lattice Q(D, n).

Proof. The structure of the proof is as follows. First, we prove that if α1,D > 1
4 , then

the number of queries used in the algorithm during the precalculation step 2 is at least
Ω̃((0.664554(D + 1))n) queries. Then, we prove that if α1,D ≤ 1

4 , then the quantum search
part in steps 3 and 4 performs at least Ω̃

((
D+1

e
)n
)

queries. Therefore, depending on whether

α1,D > 1
4 , one of the precalculation or the quantum search performs Ω̃((c(D + 1))n) queries

for constant c, and the claim follows, since 1
e < 0.664554. Due to space limitations, the proof

can be accessed online in the full version of the paper [18] (Appendix B). ◀

6 Time complexity

In this section we examine a possible high-level implementation of the described algorithm
and argue that there exists a quantum algorithm with the same exponential time complexity
as the query complexity.

Firstly, we assume the commonly used QRAM model of computation that allows to access
N memory cells in superposition in time O(log N) [17]. This is needed when the algorithm
accesses the precalculated values of dp. Since in our case N is always at most (D + 1)n, this
introduces only a O(log((D + 1)n)) = O(n) additional factor to the time complexity.

The main problem that arises is the efficient implementation of VTS. During the VTS
execution, multiple quantum algorithms should be performed in superposition. More formally,
to apply VTS to algorithms A1, . . ., AN , we should specify the algorithm oracle that, given
the index of the algorithm i and the time step t, applies the t-th step of Ai (see Section 2.2
of [11] for formal definition of such an oracle and related discussion). If the algorithms Ai

are unstructured, the implementation of such an oracle may take even O(N) time (if, for
example, all of the algorithms perform a different gate on different qubits at the t-th step).

We circumvent this issue by showing that it is possible to use only Grover’s search to
implement the algorithm, retaining the same exponential complexity (however, the sub-
exponential factor in the complexity will increase). Nonetheless, the use of VTS in the
query algorithm not only achieves a smaller query complexity, but also allowed to prove the
estimate on the exponential complexity, which would not be so amiable for the algorithm
that uses Grover’s search.

6.1 Implementation
The main idea of the implementation is to fix a “class” of vertices for each of the 2K + 1
layers examined by the algorithm, and do this for all r = O(log n) levels of recursion. We will
essentially define these classes by the number of coordinates of a vertex in such layer that are
equal to 0, 1, . . ., D. Then, we can first fix a class for each layer for all levels of recursion
classically. We will show that there are at most nD2 different classes we have to consider
at each layer. Since there are 2K + 1 layers at one level of recursion, and O(log n) levels
of recursion, this classical precalculation will take time nO(D2K log n). For each such choice
of classes, we will run a quantum algorithm that checks for the path in the hyperlattice
constrained on these classes of the vertices the path can go through. The advantage of

MFCS 2021
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the quantum algorithm will come from checking the permutations of the coordinates using
Grover’s search. The time complexity of the quantum part will be nO(K log n)T n

D (T n
d as in the

query algorithm, and nO(K log n) from the logarithmic factors in Grover’s search), therefore
the total time complexity will be nO(D2K log n) · nO(K log n)T n

D = nO(D2K log n)T n
D, thus the

exponential complexity stays the same.

6.2 Layer classes
In all of the applications of VTS in the algorithm, we use it in the following scenario: given
a vertex x, examine all vertices y with fixed weight |y| = W such that y < x (note that VTS
over the middle layer LK+1 can be viewed in this way by taking x to be the final vertex in
the lattice, and VTS over the vertices in the layers symmetrical to LK+1 can be analyzed
similarly).

We define a class of y’s (in respect to x) in the following way. Let na,b be the number
of i ∈ [n] such that yi = a and xi = b, where a ≤ b. All y in the same class have the same
values of na,b for all a, b. Also define a representative of a class as a single particular y from
that class; we will define it as the lexicographically smallest such y.

As mentioned in the informal description above, we can fix the classes for all layers
examined by the quantum algorithm and generate the corresponding representatives classically.
Note that in our quantum algorithm, recursive calls work with the sublattice constrained on
the vertices s ≤ y ≤ t for some s < t, so for each position of yi we should have also yi ≥ si;
however, we can reduce it to lattice 0n ≤ y′ ≤ x, where xi := ti − si for all i. To get the real
value of y, we generate a representative y′, and set yi := y′

i + si.
Consider an example for D = 2. The following figure illustrates the representative y (note

that the order of positions of x here is lexicographical for simplicity, but it may be arbitrary).

x = 00 . . . 0 11 . . . . . . . . 1 22 . . . . . . . . . . . . . . 2
y = 00 . . . 0︸ ︷︷ ︸

n0,0

00 . . . 0︸ ︷︷ ︸
n0,1

11 . . . 1︸ ︷︷ ︸
n1,1

00 . . . 0︸ ︷︷ ︸
n0,2

11 . . . 1︸ ︷︷ ︸
n1,2

22 . . . 2︸ ︷︷ ︸
n2,2

Figure 3 The (lexicographically smallest) representative for y for D = 2.

Note that na,b can be at most n. Therefore, there are at most nD2 choices for classes at
each layer. Thus the total number of different sets of choices for all layers is nO(D2K log n).
For each such set of choices, we then run a quantum algorithm that checks for a path in the
sublattice constrained on these classes.

6.3 Quantum algorithm
The algorithm basically implements Algorithm 1, with VTS replaced by Grover’s search.
Thus we only describe how we run the Grover’s search. We will also use the analysis of
Grover’s search with multiple marked elements.

▶ Theorem 6 (Grover’s search). Let f : S → {0, 1}, where |S| = N . Suppose we can generate
a uniform superposition 1√

N

∑
x∈S |x⟩ in O(poly(log N)) time, and there is a bounded-error

quantum algorithm A that computes f(x) with time complexity T . Suppose also that there is
a promise that either there are at least k solutions to f(x) = 1, or there are none. Then there
exists a bounded-error quantum algorithm that runs in time O(T log N

√
N/k), and detects

whether there exists x such that f(x) = 1.
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Proof. First, it is well-known that in the case of k marked elements, Grover’s algorithm [21]
needs O(

√
N/k) iterations. Second, the gate complexity of one iteration of Grover’s search

is known to be O(log N). Finally, even though A has constant probability of error, there is
a result that implements Grover’s search with a bounded-error oracle without introducing
another logarithmic factor [23]. ◀

Now, for a class C of y’s (for a fixed x) we need to generate a superposition 1√
|C|

∑
y∈C |y⟩

efficiently to apply Grover’s algorithm. We will generate a slightly different superposition for
the same purposes. Let I1, . . . , ID be sets Id := {i ∈ [n] | xi = d} and let nd := |Id|. Let yC
be the representative of C. We will generate the superposition

D⊗
d=0

1√
nd!

∑
π∈Snd

|π(yCId
)⟩ |π⟩ , (3)

where yCId
are the positions of yC in Id.

We need a couple of procedures to generate such state. First, there exists a procedure
to generate the uniform superposition of permutations 1√

n!

∑
π∈Sn

|π1, . . . , πn⟩ that requires
O(n2 log n) elementary gates [2, 10]. Then, we can build a circuit with O(poly(n)) gates that
takes as an input π ∈ Sn, s ∈ {0, 1, . . . , D}n and returns π(s). Such an circuit essentially
could work as follows: let t := 0n; then for each pair i, j ∈ [n], check whether π(i) = j; if yes,
let tj ← tj + sπ(i); in the end return t. Using these two subroutines, we can generate the
required superposition using O(poly(n)) gates (we assume D is a constant).

However, we do not necessarily know the sets Id, because the positions of x have been
permuted by previous applications of permutations. To mitigate this, note that we can access
this permutation in its own register from the previous computation. That is, suppose that x

belongs to a class C′ and x = σ(xC′), where xC′ is the representative of C′ generated by the
classical algorithm from the previous subsection. Then we have the state |σ(xC′)⟩ |σ⟩.

We can then apply σ to both π(yC) and π. That is, we implement the transformation

|π(yC)⟩ |π⟩ → |σ(π(yC))⟩ |σπ⟩ .

Such transformation can also be implemented in O(poly(n)) gates. Note that now we store
the permutation σπ in a separate register, which we use in a similar way recursively.

Finally, examine the number of positive solutions among π(yC). That is, for how many π

there exists a path from π(y) to x? Suppose that there is a path from y to x for some y ∈ C.
Examine the indices Id; for na,d of these indices i we have yi = a. There are exactly na,d!
permutations that permute these indices and don’t change y. Hence, there are

∏d
a=0 na,d!

distinct permutations π ∈ Snd
such that π(y) = y.

Therefore, there are k :=
∏D

d=0
∏d

a=0 na,d! distinct permutations π among the considered
such that π(y) = y. The total number of considered permutations is N :=

∏D
d=0 nd!. Among

these permutations, either there are no positive solutions, or at least k of the solutions are
positive. Grover’s search then works in time O(T log N

√
N/k). In this case, N/k is exactly

the size of the class C, because nd!
n0,d!···nd,d! is the number of unique permutations of yCPd

, the
multinomial coefficient

(
nd

n0,d,...,nd,d

)
. Hence the state Eq. (3) effectively replaces the need for

the state 1√
|C|

∑
y∈C |y⟩.

6.4 Total complexity
Finally, we discuss the total time complexity of this algorithm. The exponential time
complexity of the described quantum algorithm is at most the exponential query complexity
because Grover’s search examines a single class C, while VTS in the query algorithm examines
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all possible classes. Since Grover’s search has a logarithmic factor overhead, the total time
complexity of the quantum part of the algorithm is what is described in Section 5 multiplied
by nO(K log n), resulting in nO(K log n)T n1

1 · · ·T
nD

D .
Since there are nO(D2K log n) sets of choices for the classes of the layers, the final total

time complexity of the algorithm is nO(D2K log n)T n1
1 · · ·T

nD

D .
For the space complexity, note that the precalculation step requires asymptotically the

same exponential amount of space as time, thus T n1
1 · · ·T

nD

D is also the exponential space
complexity of the algorithm.

Therefore, we have the following result.

▶ Theorem 7. Assuming QRAM model of computation, there exists a quantum algorithm
that solves the path in the n-dimensional lattice problem with time and space complexity
poly(n)D2 log n · T n

D.

7 Applications

7.1 Set multicover
As an example application of our algorithm, we apply it to the Set Multicover problem
(SMC). This is a generalization of the Minimum Set Cover problem. The SMC problem is
formulated as follows:

Input: A set of subsets S ⊆ 2[n], and a positive integer D.
Output: The size k of the smallest tuple (S1, . . . , Sk) ∈ Sk, such that for all i ∈ [n], we

have |{j | i ∈ Sj}| ≥ D, that is, each element is covered at least D times (note that each set
S ∈ S can be used more than once).

Denote this problem by SMCD, and m := |S|. This problem has been studied classically,
and there exists an exact deterministic algorithm based on the inclusion-exclusion principle
that solves this problem in time Õ(m(D + 1)n) and polynomial space [27, 24]. While there
are various approximation algorithms for this problem, we are not aware of a more efficient
classical exact algorithm.

There is a different simple classical dynamic programming algorithm for this problem
with the same time complexity (although it uses exponential space), which we can speed up
using our quantum algorithm. For a vector x ∈ {0, 1, . . . , D}n, define dp(x) to be the size k

of the smallest tuple (C1, . . . , Ck) ∈ Sk such that for each i, we have |{j ∈ [k] | i ∈ Cj}| ≥ xi.
It can be calculated using the recurrence

dp(0n) = 0, dp(x) = 1 + min
S∈S
{dp(x′)},

where x′ is given by x′
i = max{0, xi − χ(S)i} for all i. Consequently, the answer to the

problem is equal to dp(Dn). The number of distinct x is (D + 1)n, and dp(x) for a single x

can be calculated in time O(nm), if dp(y) has been calculated for all y < x. Thus the time
complexity is O(nm(D + 1)n) and space complexity is O((D + 1)n).

Note that even though the state space of the dynamic programming here is {0, 1, . . . , D}n,
the underlying transition graph is not the same as the hyperlattice examined in the quantum
algorithm. A set S ∈ S can connect vertices that are |S| distance apart from each other,
unlike distance 1 in the hyperlattice. We can essentially reduce this to the hyperlattice-like
transition graph by breaking such transition into |S| distinct transitions.
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More formally, examine pairs (x, S), where x ∈ {0, 1, . . . , D}n, S ∈ S. Let e(x, S) :=
min{i ∈ S | xi > 0}; if there is no such i, let e(x, S) be 0. Define a new function

dp(x, S) =


0, if x = 0n,
dp(x− χ({e(x, S)}), S), if e(x, S) > 0,
1 + minT ∈S,e(x,T )>0{dp(x− χ({e(x, T )}), T}, if e(x, S) = 0.

The new recursion also solves SMCD, and the answer is equal to minS∈S{dp(Dn, S)}.
Examine the underlying transition graph between pairs (x, S). We can see that there is

a transition between two pairs (x, S) and (y, T ) only if yi = xi + 1 for exactly one i, and
yi = xi for other i. This is the n-dimensional lattice graph Q(D, n). Thus we can apply our
quantum algorithm with a few modifications:

We now run Grover’s search over (x, S) with fixed |x| for all S ∈ S. This adds a poly(m, n)
factor to each run of Grover’s search.
Since we are searching for the minimum value of dp, we actually need a quantum algorithm
for finding the minimum instead of Grover’s search. We can use the well-known quantum
minimum finding algorithm that retains the same query complexity as Grover’s search
[14]3. It introduces only an additional O(log n) factor for the queries of minimum finding
to encode the values of dp, since dp(x, S) can be as large as Dn.
A single query for a transition between pairs (x, S) and (y, T ) in this case returns the
value of the value added to the dp at transition, which is either 0 or 1. If these pairs are
not connected in the transition graph, the query can return ∞. Note that such query can
be implemented in poly(m, n) time.

Since the total number of runs of Grover’s search is O(K log n), the additional factor
incurred is poly(m, n)O(K log n). This provides a quantum algorithm for this problem with
total time complexity

poly(m, n)O(K log n) · nO(D2K log n)T n
D = mO(K log n)nO(D2K log n)T n

D.

Therefore, we have the following result.

▶ Theorem 8. Assuming the QRAM model of computation, there exists a quantum algorithm
that solves SMCD in time and space poly(m, n)log nT n

D, where TD < D + 1.

7.2 Related problems
We are also aware of a couple of other works that implement the dynamic programming on
the {0, 1, . . . , D}n n-dimensional lattice.

Psaraftis examined the job scheduling problem [28], with application to aircraft landing
scheduling. The problem requires ordering n groups of jobs with D identical jobs in each
group. A cost transition function is given: the cost of processing a job belonging to group
j after processing a job belonging to group i is given by f(i, j, d1, . . . , dn), where di is the
number of jobs left to process. The task is to find an ordering of the nD jobs that minimizes
the total cost. This is almost exactly the setting for our quantum algorithm, hence we get
poly(n)log nT n

D time quantum algorithm. Psaraftis proposed a classical O(n2(D + 1)n) time

3 Note that this algorithm assumes queries with zero error, but we apply it to bounded-error queries.
However, it consists of multiple runs of Grover’s search, so we can still use the result of [23] to avoid the
additional logarithmic factor.

MFCS 2021



50:16 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

dynamic programming algorithm. Note that if f(i, j, d1, . . . , dn) are unstructured (can be
arbitrary values), then there does not exist a faster classical algorithm by the lower bound of
Section 3.

However, if f(i, j, d1, . . . , dn) are structured or can be computed efficiently by an oracle,
there exist more efficient classical algorithms for these kinds of problems. For instance, the
many-visits travelling salesman problem (MV-TSP) asks for the shortest route in a weighted
n-vertex graph that visits vertex i exactly Di times. In this case, f(i, j, d1, . . . , dn) = w(i, j),
where w(i, j) is the weight of the edge between i and j. The state-of-the-art classical algorithm
by Kowalik et al. solves this problem in Õ(4n) time and space [32]. Thus, our quantum
algorithm does not provide an advantage. It would be quite interesting to see if there exists
a quantum speedup for this MV-TSP algorithm.

Lastly, Gromicho et al. proposed an exact algorithm for the job-shop scheduling problem
[20, 31]. In this problem, there are n jobs to be processed on D machines. Each job consists
of D tasks, with each task to be performed on a separate machine. The tasks for each job
need to be processed in a specific order. The time to process job i on machine j is given by
pij . Each machine can perform at most one task at any moment, but machines can perform
the tasks in parallel. The problem is to schedule the starting times for all tasks so as to
minimize the last ending time of the tasks. Gromicho et al. give a dynamic programming
algorithm that solves the problem in time O((pmax)2n(D + 1))n, where pmax = maxi,j{pij}.

The states of their dynamic programming are also vectors in {0, 1, . . . , D}n: a state x

represents a partial completion of tasks, where xi tasks of job i have already been completed.
Their dynamic programming calculates the set of task schedulings for x that can be potentially
extended to an optimal scheduling for all tasks. However, it is not clear how to apply Grover’s
search to calculate a whole set of schedulings. Therefore, even though the state space is the
same as in our algorithm, we do not know whether it is possible to apply it in this case.
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A Depth of recursion

Note that the algorithm stops the recursive calls if for at least one k, we have Wk = Wk+1,
in which case it runs the classical dynamic programming on the whole sublattice at step 1.
That happens when⌊

D∑
d=1

αk,ddnd

⌋
=
⌊

D∑
d=1

αk+1,ddnd

⌋
.

If this is true, then we also have
∑D

d=1 αk+1,ddnd −
∑D

d=1 αk,ddnd = c for some constant
c < 1. By regrouping the terms, we get

D∑
d=1

(αk+1,d − αk,d)dnd = c.

Denote h := mind∈[D]{αk+1,d − αk,d}. Then
∑D

d=1 dnd ≤ c
h . Note that the left hand side is

the maximum total weight of a vertex. However, at each recursive call the difference between
the vertices with the minimum and maximum total weights decreases twice, since the VTS
call at step 4 runs over the vertices with weight half the current difference. Since c and h

is constant, after O(log(nD)) = O(log n) recursive calls the recursion stops. Moreover, the
classical dynamic programming then runs on a sublattice of constant size, hence adds only a
factor of O(1) to the overall complexity.
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Lastly, we can address the contribution of the constant factor of VTS from Theorem 1 to
the complexity of our algorithm. At one level of recursion there are K + 1 nested applications
of VTS, and there are O(log n) levels of recursion. Therefore, the total overhead incurred is
O(1)O(K log n) = poly(n), since K is a constant.

B Complexity technicalities of the optimization program

For correctness, we need to address the following two subtleties.
The numbers αkn might not be integer; in Algorithm 1, the weights of the layers are
defined by Wk = ⌊αkn⌋. This is a problem, since the inequalities in the program use
precisely the numbers αk,d. Examine the coefficient [x⌊α1n⌋

1 · · ·x⌊αmn⌋
m ]p(x1, . . . , xm) in

such general case (when we need to round the powers). Let δk := αkn − ⌊αkn⌋, here
0 ≤ δk < 1. Then, by Theorem 2 (1),[

x
⌊α1n⌋
1 · · ·x⌊αmn⌋

m

]
p(x1, . . . , xm)n ≤ inf

x1,...,xm≥0

p(x1, . . . , xm)n

xα1n−δ1
1 · · ·xαmn−δm

m

. (4)

Now let x̂1, . . . , x̂m be the arguments that achieve infx1,...,xm≥0
p(x1,...,xm)
x

α1
1 ···xαm

m
. Since 0 ≤

δk < 1, we have x̂δk

k ≤ max{x̂k, 1}. Hence, (4) is at most

(x̂δ1
1 · · · x̂δm

m ) · p(x̂1, . . . , x̂m)n

x̂α1n
1 · · · x̂αmn

m
≤

(
m∏

k=1
max{x̂k, 1}

)
·
(

inf
x1,...,xm≥0

p(x1, . . . , xm)
xα1

1 · · ·x
αm
m

)n

.

As the additional factor is a constant, we can ignore it in the complexity.
The second issue is when Wk = Wk+1 for some k. Then according to Algorithm 1, we run
the classical algorithm with complexity Θ̃((D + 1)n). However, in that case n is constant
(see Appendix A), which gives only a constant factor to the complexity.

C Proof of the optimality of the optimization program

First, we prove that OPT(D, K, {αk,d}) has a feasible solution. For that, we need to
show that all polynomials in the program can be upper bounded by a constant for some
fixed values of the variables.
First of all, Pd(x)

xα1,dd is upper bounded by d + 1 (setting x = 1). Now fix k and examine
the values Sk,d(xk,k,...,xk,K+1)

x
αk,dd

k,k
···x

αK+1,dd

k,K+1

. Examine only such assignments of the variables xk,j that

xk,kxk,k+1 = 1 and xk,j = 1 for all other j > k + 1. Now we write the polynomial as a
univariate polynomial Sk,d(y) := Sk,d(1/y, y, 1, 1, . . . , 1). Note that for any summand of
Sk,d(y), if it contains some T 2

i as a factor, then it is of the form xpk

k,kxpk+i
k,k+1 · T 2

i = yiT 2
i .

Hence the polynomial can be written as Sk,d(y) =
∑d

i=0 ciy
iT 2

i for some constants
c1, . . . , cd. From this we can rewrite the corresponding program inequality and express T 2

d :

T 2
d ≥

∑d
i=0 ciy

iT 2
i

y(αk+1,d−αk,d)d
(5)

T 2
d ≥

∑d−1
i=0 ciy

iT 2
i

y(αk+1,d−αk,d)d
+ y(1−αk+1,d+αk,d)dcdT 2

d

T 2
d ≥

1
1− y(1−αk+1,d+αk,d)dcd

·
∑d−1

i=0 ciy
iT 2

i

y(αk+1,d−αk,d)d
.
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Note that cd are constants that do not depend on Ti. If the right hand side is negative,
then it follows that the original inequality Eq. (5) does not hold. Thus we need to pick
such y that the right hand side is positive for all d. Hence we require that

y <

(
1
cd

) 1
(1−αk+1,d+αk,d)d

.

Since the right hand side is a constant that does not depend on Ti, we can pick such y

that satisfies this inequality for all d. Then it follows that all Ti is also upper bounded by
some constants (by induction on i).
Now the question remains whether the optimal solution to OPT(D, K, {αk,d}) gives the
optimal complexity. That is, is the complexity T n

1 · · ·T
nD

D given by the optimal solution
of the optimization program such that TD is the smallest possible?
Suppose that indeed the complexity of the algorithm is upper bounded by T n

1 · · ·T
nD

D

for some T1, . . ., TD. We will derive a corresponding feasible point for the optimization
program.
Examine the complexity of the algorithm for n1 = b1n, . . . , nD = bDn for some fixed
rational bi such that b1 + . . . + bD = 1. The coefficients of the polynomials P and Sk

give the complexity of the corresponding part of the algorithm (precalculation, and
quantum search until the k-th level, respectively). Such coefficients are of the form
[xα1n

1 · · ·xαmn
m ]

∏D
d=1 pd(x1, . . . , xm)nd . Let Ad := Td, if p = P , and Ad := T 2

d , if p = Sk.
Then we have

An1
1 · · ·A

nD

D ≥ [xα1n
1 · · ·xαmn

m ]
D∏

d=1
pd(x1, . . . , xm)nd . (6)

On the other hand, (6) is at least

Ω
((

inf
x1,...,xm>0

D∏
d=1

(
pd(x1, . . . , xm)
x

a1,d

1 · · ·xam,d
m

)bd
)n)

when n grows large by Theorem 2 (2) (setting ai,d := αi,dd). Then, in the limit n→∞,
we have

Ab1
1 · · ·A

bD

D ≥ inf
x1,...,xm>0

D∏
d=1

(
pd(x1, . . . , xm)
x

a1,d

1 · · ·xam,d
m

)bd

. (7)

Now let ∆D−1 be the standard D-simplex defined by {b ∈ RD | b1 + . . . + bD = 1, bd ≥ 0}.
Define Fd(x) := pd(x1,...,xm)

x
a1,d
1 ···x

am,d
m

, and F (b, x) :=
∏D

d=1 Fd(x)bd for b ∈ ∆D−1 and x ∈ Rm
>0.

First, we prove that that for a fixed b, the function F (b, x) is strictly convex. Examine
the polynomial pd(x1, . . . , xm), which is either Pd(x) or Sk,d(xk,k, . . . , xk,K+1). It was
shown in [19], Theorem 6.3 that if the coefficients of pd(x1, . . . , xm) are non-negative, and
the points (c1, . . . , cm), at which

[xc1
1 · · ·xcm

m ]pd(x1, . . . , xm) > 0,

linearly span an m-dimensional space, then log(Fd(x)) is a strictly convex function. If
pd = Pd, then this property immediately follows, because there is just one variable x and
the polynomial is non-constant. For pd = Sk,d, the polynomial consists of summands
of the form T 2

ck+1−ck
xck

k,kx
ck+1
k,k+1 · · ·x

cK+1
k,K+1, for ck ≤ ck+1 ≤ . . . ≤ cK+1. Note that the
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coefficient T 2
ck+1−ck

is positive. Thus the points (ck, . . . , cK+1) = (0, . . . , 0, 1, . . . , 1) indeed
linearly span a (K − k + 2)-dimensional space. Therefore, log(Fd(x)) is strictly convex.
Then also the function

∑D
d=1 bd log(Fd(x)) = log(F (b, x)) is strictly convex (for fixed b),

as the sum of strictly convex functions is convex. Therefore, F (b, x) is strictly convex
as well.
Therefore, the argument x̂(b) achieving infx∈Rm

>0
F (b, x) is unique. Let F̂d(b) := Fd(x̂(b))

and define D subsets of the simplex Cd := {b ∈ ∆D−1 | F̂d(b) ≤ Ad}. We will apply the
following result for these sets:
▶ Theorem 9 (Knaster-Kuratowski-Mazurkiewicz lemma [25]). Let the vertices of ∆D−1
be labeled by integers from 1 to D. Let C1, . . ., CD be a family of closed sets such that
for any I ⊆ [D], the convex hull of the vertices labeled by I is covered by ∪d∈ICd. Then
∩d∈[D]Cd ̸= ∅.

We check that the conditions of the lemma apply to our sets. First, note that F (b, x) is
continuous and strictly convex for a fixed b, hence x̂(b) is continuous and thus F̂d(b) is
continuous as well. Therefore, the “threshold” sets Cd are closed.
Secondly, let I ⊆ [D] and examine a point b in the convex hull of the simplex vertices
labeled by I. For such a point, we have bd = 0 for all d ̸∈ I. For the indices d ∈ I, for
at least one we should have F̂d(b) ≤ Ad, otherwise the inequality in Eq. (7) would be
contradicted. Note that it was stated only for rational b, but since F̂d(b) are continuous
and any real number can be approximated with a rational number to arbitrary precision,
the inequality also holds for real b. Thus indeed any such b is covered by ∪d∈ICd.
Therefore, we can apply the lemma and it follows that there exists a point b ∈ ∆D−1
such that Ad ≥ F̂d(b) for all d ∈ [D]. The corresponding point x̂(b) is a feasible point for
the examined set of inequalities in the optimization program.

D Proof of the quantum speedup

Examine the algorithm with only K = 1; the optimal complexity for any K > 1 cannot be
larger, as we can simulate K levels with K + 1 levels by setting α2,d = α1,d + ϵ for ϵ→ 0 for
all d ∈ [D]. For simplicity, denote αd := α1,d.

Now examine the precalculation inequalities in OPT(D, 1, {α1,d}). For any values of α1,d,

if we set x = 1, we have Pd(x)
xαdd =

∑d

i=0
xi

xαdd = d + 1. The derivative is equal to(∑d
i=0 xi

xαdd

)′

=
xαdd ·

∑d
i=1 ixi−1 − αddxαdd−1 ·

∑d
i=0 xi

x2αdd
= d(d + 1)

2 − αdd(d + 1)

at point x = 1. Thus when αd < 1
2 , the derivative is positive. It means that for arbitrary

αd < 1
2 , there exists some x(d) such that Pd(x)

xαdd < d + 1, and Pd(x)
xαdd monotonically grows

on x ∈ [x(d), 1]. Thus, for arbitrary setting of {αd} such that αd < 1
2 for all d ∈ [D], we

can take x̂ := maxd∈[D]{x(d)} as the common parameter, in which case all Pd(x̂)
x̂αdd < d + 1.

Now examine the set of the quantum search inequalities. Let y := x1,1 and z := x1,2 for
simplicity. Then such inequalities are given by

T 2
d ≥ S1,d(y, z) =

∑d
i=0 T 2

i

∑d−i
p=0 ypzp+i

yαddzd/2 .
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Now restrict the variables to condition yz = 1. In that case, the polynomial above
simplifies to

S1,d(z) :=
∑d

i=0 T 2
i

∑d−i
p=0 zi

y
d
2 +d(αd− 1

2 )zd/2
=
(

d∑
i=0

T 2
i (d− i + 1)zi

)
· zd(αd− 1

2 ).

We now find such values of z and α1, . . . , αD so that S1,d(z) < (d + 1)2 for all d ∈ [D],
where T1, . . . , TD are any values such that Td ≤ d + 1 for all d ∈ [D]. Denote Ŝ1,d(z) to
be S1,d(z) with Td = d + 1 for all d ∈ [D], then Ŝ1,d(z) < (d + 1)2 as well. Now let Td

be the maximum of Pd(x̂)
x̂αdd from the previous bullet and Ŝ1,d(z). Then, Td < d + 1, and

we have both Td ≥ Pd(x̂)
x̂αdd and T 2

d ≥ Ŝ1,d(z) ≥ S1,d(z), since S1,d(z) cannot become larger
when Td decrease.
Now we show how to find such z and α1, . . . , αD. Examine the sum in the polynomial
Ŝ1,d(z)

d∑
i=0

(i + 1)2(d− i + 1)zi = (d + 1) +
d∑

i=1
(i + 1)2(d− i + 1)zi.

Examine the second part of the sum. We can find a sufficiently small value of z ∈ (0, 1)
such that this part is smaller than any value ϵ > 0 for all d ∈ [D]. Now, let αd = 1

2 −
c
d

for some constant c > 0. Then

zd(αd− 1
2 ) = z−c

for all d ∈ [D]. Thus, the total value of the sum now is at most (d + 1 + ϵ)z−c. As
z−1 > 1, take a sufficiently small value of c so that this value is at most (d + 1)2.

E Numerical results for K = 1

D = 1

T1 = 1.86793
x = 0.464808

x1,1 = 6.0606
x1,2 = 0.104715
α1,1 = 0.317317

D = 2

T1 = 1.87788
T2 = 2.76626
x = 0.595073

x1,1 = 5.74769
x1,2 = 0.12725
α1,1 = 0.314447
α1,2 = 0.337219

D = 3

T1 = 1.89454
T2 = 2.77944
T3 = 3.68995
x = 0.684299

x1,1 = 5.41613
x1,2 = 0.146775
α1,1 = 0.310059
α1,2 = 0.336865
α1,3 = 0.351627
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D = 4

T1 = 1.91039
T2 = 2.80346
T3 = 3.7035
T4 = 4.63207
x = 0.747046

x1,1 = 5.11625
x1,2 = 0.163892
α1,1 = 0.306472
α1,2 = 0.335557
α1,3 = 0.351929
α1,4 = 0.362866

D = 5

T1 = 1.92386
T2 = 2.828
T3 = 3.72975
T4 = 4.64486
T5 = 5.58737
x = 0.792588

x1,1 = 4.8582
x1,2 = 0.178964
α1,1 = 0.304026
α1,2 = 0.334429
α1,3 = 0.351624
α1,4 = 0.36331
α1,5 = 0.371992

D = 6

T1 = 1.93495
T2 = 2.85009
T3 = 3.75806
T4 = 4.6709
T5 = 5.600
T6 = 6.55224
x = 0.826544

x1,1 = 4.63595
x1,2 = 0.192435
α1,1 = 0.302631
α1,2 = 0.333786
α1,3 = 0.351339
α1,4 = 0.363364
α1,5 = 0.372425
α1,6 = 0.379599
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A Note on the Join of Varieties of Monoids with LI
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Abstract
In this note, we give a characterisation in terms of identities of the join of V with the variety of finite
locally trivial semigroups LI for several well-known varieties of finite monoids V by using classical
algebraic-automata-theoretic techniques. To achieve this, we use the new notion of essentially-V
stamps defined by Grosshans, McKenzie and Segoufin and show that it actually coincides with the
join of V and LI precisely when some natural condition on the variety of languages corresponding
to V is verified.

This work is a kind of rediscovery of the work of J. C. Costa around 20 years ago from a rather
different angle, since Costa’s work relies on the use of advanced developments in profinite topology,
whereas what is presented here essentially uses an algebraic, language-based approach.
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1 Introduction

One of the most fundamental problems in finite automata theory is the one of characterisation:
given some subclass of the class of regular languages, find out whether there is a way to
characterise those languages using some class of finite objects. This problem is often linked
to and motivated by the problem of decidability: given some subclass of the class of regular
languages, find out whether there exists an algorithm testing the membership of any regular
language in that subclass. The obvious approach to try to find a characterisation of a class of
regular languages would be to look for properties shared by all the minimal finite automata of
those languages. If we find such characterising properties, we can then ask whether they can
be checked by an algorithm to answer the problem of decidability for this class of languages.
However, one of the most fruitful approaches of those two problems has been the algebraic
approach, in which we basically replace automata with morphisms into monoids: a language
L over an alphabet Σ is then said to be recognised by a morphism φ into a monoid M if and
only if L is the inverse image by φ of a subset of M . Under this notion of recognition, each
language has a minimal morphism recognising it, the syntatic morphism into the syntactic
monoid of that language, that are minimal under some notion of division. The fundamental
result on which this algebraic approach relies is that a language is regular if and only if its
syntactic monoid is finite. One can thus try to find a characterisation of some class of regular
languages by looking at the algebraic properties of the syntactic monoids of these languages.

And many such characterisations that are decidable were indeed successfully obtained
since Schützenberger’s seminal work in 1965 [18]. His famous result, that really started the
field of algebraic automata theory, states that the star-free regular languages are exactly
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those whose syntactic monoids are finite and aperiodic. Another important early result in
that vein is the one of Simon [19] characterising the piecewise testable languages as exactly
those having a finite J-trivial syntactic monoid. Eilenberg [12] was the first to prove that
such algebraic characterisations actually come as specific instances of a general bijective
correspondence between varieties of finite monoids and varieties of languages – classes of,
respectively, finite monoids and regular languages closed under natural operations. Thus,
a class of regular languages can indeed be characterised by the syntactic monoids of these
languages, as soon as it verifies some nice closure properties. Eilenberg’s result was later
completed by Reiterman’s theorem [17], that uses a notion of identities defined using profinite
topology and states that a class of finite monoids is a variety of finite monoids if and only
if it is defined by a set of profinite identities. Therefore, one can always characterise the
variety of finite monoids associated to a variety of languages by a set of profinite identities
and, additionally, this characterisation often leads to decidability, especially when this set is
finite. A great deal of research works have been conducted to characterise varieties of finite
monoids or semigroups by profinite identities (see the book of Almeida [3] for an overview;
see also the book chapter by Pin [15] for more emphasis on the “language” part).

A kind of varieties of finite monoids or semigroups that has attracted many research
efforts aiming for characterisations through identities are the varieties defined as the join
of two other varieties. Given two varieties of finite monoids V and W, the join of V and
W, denoted by V ∨ W, is the least variety of finite monoids containing both V and W.
One of the main motivations to try to understand V ∨ W is that the variety of languages
corresponding to it by the Eilenberg correspondence, L(V ∨ W), is the one obtained by
considering direct products of automata recognising languages from both L(V) and L(W),
the varieties of languages corresponding to, respectively, V and W. This is a fundamental
operation on automata, and while it is straightforward that L(V ∨ W) is simply the least
variety of languages containing both L(V) and L(W), this does not at all furnish a decidable
characterisation of L(V ∨ W), let alone a set of identities defining V∨W. Generally speaking,
the problem of finding a set of identities defining V ∨ W is difficult (see [3, 23]): in fact,
there exist two varieties of finite semigroups that have a decidable membership problem but
whose join has an undecidable membership problem [1]. However, sets of identities have been
found for many specific joins: have a look at [2, 4, 6, 22, 21, 7, 9, 10] for some examples.

In this paper, we give a general method to find a set of identities defining the join of an
arbitrary variety of finite monoids V and the variety of finite locally trivial semigroups LI, as
soon as one has a set of identities defining V and V verifies some criterion. Joins of that sort
have been studied quite a lot in the literature we mentioned in the previous paragraph (e.g.
in [6, 21, 9, 10]), but while these works usually rely heavily on profinite topology with some
in-depth understanding of the structure of the elements of the so-called free pro-V monoids
and free pro-LI semigroups, we present a method that reduces the use of profinite topology
to the minimum and that relies mainly on algebraic and language-theoretic techniques. The
variety LI is well-known to correspond to the class of languages for which membership only
depends on bounded-length prefixes and suffixes of words. In [13], McKenzie, Segoufin and
the author introduced the notion of essentially-V stamps (surjective morphisms φ : Σ∗ → M

for Σ an alphabet and M a finite monoid) to characterise the built-in ability that programs
over monoids in V have to treat separately some constant-length beginning and ending of a
word. Informally said, a stamp is essentially-V when it behaves like a stamp into a monoid
of V as soon as a sufficiently long beginning and ending of the input word has been fixed.
Our method builds on two results, that we prove in this article.
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1. The first result is a characterisation in terms of identities of the class EV of essentially-V
stamps given a set of identities E defining V: a stamp is in EV if and only if it satisfies
all identities xωyuztω = xωyvztω for u = v an identity in E and where x, y, z, t do appear
neither in u nor in v.

2. The second result says that EV and V ∨ LI do coincide if and only if V verifies some
criterion, that can be formulated in terms of quotient-expressibility in L(V): any language
L ∈ L(V) must, for an arbitrary choice of x, y, be such that the quotient u−1Lv−1 for u
and v long enough can be expressed as the quotient (xu)−1K(vy)−1 for a K ∈ L(V).

Using these results, we can find a set of identities defining V∨LI as soon as a set of identities
defining V is known by proving that V verifies the criterion in point 2. Note that actually, for
technical reasons, we work with the so-called ne-variety of stamps corresponding to V ∨ LI
rather than directly with the variety of finite semigroups V ∨ LI, but this is not a problem
since a variety of finite semigroups can always be seen as an ne-variety of stamps and vice
versa. We apply this method to reprove characterisations of the join of LI with each of the
well-known varieties of finite monoids R, L, J and any variety of finite groups.

The author noticed after proving those results that his work actually forms a kind of
rediscovery of the work of J. C. Costa in [9]. He defines an operator U associating to each set
of identities E the exact same new set U(E) of identities as in point 1. Costa then defines a
property of cancellation for varieties of finite semigroups such that for any V verifying it,
U(E) defines V ∨ LI for E defining V. He finally uses this result to derive characterisations
of V ∨ LI for all the cases we are treating in our paper and many more.

What is, then, the contribution of our article? In a nutshell, it does mainly use algebraic
and language-theoretic techniques while Costa’s work relies heavily on profinite topology. In
our setting, once the stage is set, all proofs are quite straightforward without real difficulties
and rely on classical language-theoretic characterisations of the varieties under consideration.
This is to contrast with Costa’s work, that for instance draws upon the difficult analysis of
the elements of free pro-R monoids by Almeida and Weil [5] to characterise R ∨ LI.

Organisation of the article. Section 2 is dedicated to the necessary preliminaries. In
Section 3, we recall the definition of essentially-V stamps and prove the characterisation
by identities of point 1 above. Section 4 is then dedicated to the necessary and sufficient
criterion for EV and V ∨ LI to coincide presented in point 2 and finally those results are
applied to specific cases in Section 5. We finish with a short conclusion.

2 Preliminaries

We briefly introduce the mathematical material used in this paper. For the basics and the
classical results of automata theory, we refer the reader to the two classical references of the
domain by Eilenberg [11, 12] and Pin [14]. For definitions and results specific to varieties of
stamps and associated profinite identities, see the articles by Straubing [20] and by Pin and
Straubing [16]. We also assume some basic knowledge of topology.

General notations. Let i ∈ N be a natural number. We shall denote by [i] the set of all
natural numbers n ∈ N verifying 1 ≤ n ≤ i.

Words and languages. Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite
words over Σ. We also denote by Σ+ the set of all finite non empty words over Σ, the empty
word being denoted by ε. Our alphabets and words will always be finite, without further
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51:4 A Note on the Join of Varieties of Monoids with LI

mention of this fact. Given a word w ∈ Σ∗, we denote its length by |w| and the set of letters
it contains by alph(w). Given n ∈ N, we denote by Σ≥n, Σn and Σ<n the set of words over
Σ of length, respectively, at least n, exactly n and less than n.

A language over Σ is a subset of Σ∗. A language is regular if it is recognised by a
deterministic finite automaton. The quotient of a language L over Σ relative to the words u
and v over Σ is the language, denoted by u−1Lv−1, of the words w such that uwv ∈ L.

Monoids, semigroups and varieties. A semigroup is a non-empty set equipped with an
associative law that we will write multiplicatively. A monoid is a semigroup with an identity.
An example of a semigroup is Σ+, the free semigroup over Σ. Similarly Σ∗ is the free monoid
over Σ. A morphism φ from a semigroup S to a semigroup T is a function from S to T such
that φ(xy) = φ(x)φ(y) for all x, y ∈ S. A morphism of monoids additionally requires that
the identity is preserved. A semigroup T is a subsemigroup of a semigroup S if T is a subset
of S and is equipped with the restricted law of S. Additionally the notion of submonoids
requires the presence of the identity. A semigroup T divides a semigroup S if T is the image
by a semigroup morphism of a subsemigroup of S. Division of monoids is defined in the same
way. The Cartesian (or direct) product of two semigroups is simply the semigroup given by
the Cartesian product of the two underlying sets equipped with the Cartesian product of
their laws. An element s of a semigroup is idempotent if ss = s.

A variety of finite monoids is a non-empty class of finite monoids closed under Cartesian
product and monoid division. A variety of finite semigroups is defined similarly. When
dealing with varieties, we consider only finite monoids and semigroups, so we will drop the
adjective finite when talking about varieties in the rest of this article.

Varieties of stamps. Let f : Σ∗ → Γ∗ be a morphism from the free monoid over an alphabet
Σ to the free monoid over an alphabet Γ, that we might call an all-morphism. We say that
f is an ne-morphism (non-erasing morphism) whenever f(Σ) ⊆ Γ+.

We call stamp a surjective morphism φ : Σ∗ → M for Σ an alphabet and M a finite
monoid. We say that a stamp φ : Σ∗ → M all-divides (respectively ne-divides) a stamp
ψ : Γ∗ → N whenever there exists an all-morphism (respectively ne-morphism) f : Σ∗ → Γ∗

and a surjective morphism α : Im(ψ ◦ f) → M such that φ = α ◦ ψ ◦ f . The direct product
of two stamps φ : Σ∗ → M and ψ : Σ∗ → N is the stamp φ× ψ : Σ∗ → K such that K is the
submonoid of M ×N generated by {(φ(a), ψ(a)) | a ∈ Σ} and φ× ψ(a) = (φ(a), ψ(a)) for
all a ∈ Σ.

An all-variety of stamps (respectively ne-variety of stamps) is a non-empty class of stamps
closed under direct product and all-division (respectively ne-division).

We will often use the following characteristic index of stamps, defined in [8]. Consider
a stamp φ : Σ∗ → M . As M is finite there is a k ∈ N>0 such that φ(Σ2k) = φ(Σk): this
implies that φ(Σk) is a semigroup. The least such k is called the stability index of φ.

Varieties of languages. A language L over an alphabet Σ is recognised by a monoid M if
there is a morphism φ : Σ∗ → M and F ⊆ M such that L = φ−1(F ). We also say that φ
recognises L. It is well known that a language is regular if and only if it is recognised by a
finite monoid. The syntactic congruence of L, denoted by ∼L, is the equivalence relation
on Σ∗ defined by u ∼L v for u, v ∈ Σ∗ whenever for all x, y ∈ Σ∗, xuy ∈ L if and only if
xvy ∈ L. The quotient Σ∗/∼L is a monoid, called the syntactic monoid of L, that recognises
L via the syntactic morphism ηL of L sending any word u to its equivalence class [u]∼L

for
∼L. A stamp φ : Σ∗ → M recognises L if and only if there exists a surjective morphism
φ : M → Σ∗/∼L verifying ηL = α ◦ φ.
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A class of languages C is a correspondence that associates a set C(Σ) to each alphabet
Σ. A (all-)variety of languages (respectively an ne-variety of languages) V is a non-empty
class of regular languages closed under Boolean operations, quotients and inverses of all-
morphisms (respectively ne-morphisms). A classical result of Eilenberg [12, Chapter VII,
Section 3] says that there is a bijective correspondence between varieties of monoids and
varieties of languages: to each variety of monoids V we can bijectively associate L(V)
the variety of languages whose syntactic monoids belong to V. This was generalised by
Straubing [20] to varieties of stamps: to each all-variety (respectively ne-variety) of stamps
V we can bijectively associate L(V) the all-variety (respectively ne-variety) of languages
whose syntactic morphisms belong to V. Given two all-varieties (respectively ne-varieties)
of stamps V1 and V2, we have V1 ⊆ V2 ⇔ L(V1) ⊆ L(V2).

For V a variety of monoids, we define ⟨V⟩all the all-variety of all stamps φ : Σ∗ → M

such that M ∈ V. Of course, in that case L(V) = L(⟨V⟩all). Similarly, for V a variety of
semigroups, we define ⟨V⟩ne the ne-variety of all stamps φ : Σ∗ → M such that φ(Σ+) ∈ V.
In that case, we consider L(V) to be the ne-variety of languages corresponding to ⟨V⟩ne.
The operations ⟨·⟩all and ⟨·⟩ne form bijective correspondences between varieties of monoids
and all-varieties of stamps and between varieties of semigroups and ne-varieties of stamps,
respectively (see [20]).

Identities. Let Σ be an alphabet. Given u, v ∈ Σ∗, we set

r(u, v) = min{|M | | ∃φ : Σ∗ → M stamp s.t. φ(u) ̸= φ(v)}

and d(u, v) = 2−r(u,v), using the conventions that min ∅ = +∞ and 2−∞ = 0. Then d

is a metric on Σ∗. The completion of the metric space (Σ∗, d), denoted by (Σ̂∗, d̂), is a
metric monoid called the free profinite monoid on Σ∗. Its elements are all the formal
limits limn→∞ xn of Cauchy sequences (xn)n≥0 in (Σ∗, d) and the metric d on Σ∗ extends
to a metric d̂ on Σ̂∗ defined by d̂(limn→∞ xn, limn→∞ yn) = limn→∞ d(xn, yn) for Cauchy
sequences (xn)n≥0 and (yn)n≥0 in (Σ∗, d). Note that, when it is clear from the context, we
usually do not make the metric explicit when talking about a metric space. One important
example of elements of Σ̂∗ is given by the elements xω = limn→∞ xn! for all x ∈ Σ∗.

Every finite monoid M is considered to be a complete metric space equipped with the

discrete metric d defined by d(m,n) =
{

0 if m = n

1 otherwise
for all m,n ∈ M . Every stamp

φ : Σ∗ → M extends uniquely to a uniformly continuous morphism φ̂ : Σ̂∗ → M with
φ̂(limn→∞ xn) = limn→∞ φ(xn) for every Cauchy sequence (xn)n≥0 in Σ∗. Similarly, every
all-morphism f : Σ∗ → Γ∗ extends uniquely to a uniformly continuous morphism f̂ : Σ̂∗ → Γ̂∗

with f̂(limn→∞ xn) = limn→∞ f(xn) for every Cauchy sequence (xn)n≥0 in Σ∗.
For u, v ∈ Â∗ with A an alphabet, we say that a stamp φ : Σ∗ → M all-satisfies

(respectively ne-satisfies) the identity u = v if for every all-morphism (respectively ne-
morphism) f : A∗ → Σ∗, it holds that φ̂ ◦ f̂(u) = φ̂ ◦ f̂(v). Given a set of identities E,
we denote by [[E]]all (respectively [[E]]ne) the class of stamps all-satisfying (respectively ne-
satisfying) all the identities of E. When [[E]]all (respectively [[E]]ne) is equal to an all-variety
(respectively ne-variety) of stamps V, we say that E all-defines (respectively ne-defines) V.

▶ Theorem 1 ([16, Theorem 2.1]). A class of stamps is an all-variety (respectively ne-variety)
of stamps if and only if it can be all-defined (respectively ne-defined) by a set of identities.

MFCS 2021



51:6 A Note on the Join of Varieties of Monoids with LI

To give some examples, the classical varieties of monoids J, R and L can be characterised
by identities in the following way:

⟨R⟩all = [[(ab)ωa = (ab)ω]]all = [[(ab)ωa = (ab)ω]]ne

⟨L⟩all = [[b(ab)ω = (ab)ω]]all = [[b(ab)ω = (ab)ω]]ne

⟨J⟩all = [[(ab)ωa = (ab)ω, b(ab)ω = (ab)ω]]all = [[(ab)ωa = (ab)ω, b(ab)ω = (ab)ω]]ne .

Finite locally trivial semigroups and the join operation. The variety LI of finite locally
trivial semigroups is well-known to verify ⟨LI⟩ne = [[xωyxω = xω]]ne and to be such that for
any alphabet Σ, the set L(LI)(Σ) consists of all Boolean combinations of languages of the
form uΣ∗ or Σ∗u for u ∈ Σ∗, or equivalently of all languages of the form UΣ∗V ∪W with
U, V,W ⊆ Σ∗ finite (see [14, p. 38]).

Given a variety of monoids V, the join of V and LI, denoted by V ∨ LI, is the inclusion-
wise least variety of semigroups containing both V and LI. In fact, a finite semigroup S

belongs to V ∨ LI if and only if there exist M ∈ V and T ∈ LI such that S divides the
semigroup M×T . (See [12, Chapter V, Exercise 1.1].) We can prove the following adaptation
to ne-varieties of the classical results about joins (see the appendix for the proof).

▶ Proposition 2. Let V be a variety of monoids. Then ⟨V ∨ LI⟩ne is the inclusion-wise
least ne-variety of stamps containing both ⟨V⟩all and ⟨LI⟩ne. Moreover, L(V ∨ LI) is the
inclusion-wise least ne-variety of languages containing both L(V) and L(LI) and verifies that
L(V ∨ LI)(Σ) is the Boolean closure of L(V)(Σ) ∪ L(LI)(Σ) for each alphabet Σ.

3 Essentially-V stamps

In this section, we give a characterisation of essentially-V stamps (first defined in [13]), for
V a variety of monoids, in terms of identities. We first recall the definition.

▶ Definition 3. Let V be a variety of monoids. Let φ : Σ∗ → M be a stamp and let s be its
stability index.

We say that φ is essentially-V whenever there exists a stamp µ : Σ∗ → N with N ∈ V
such that for all u, v ∈ Σ∗, we have

µ(u) = µ(v) ⇒
(
φ(xuy) = φ(xvy) ∀x, y ∈ Σs

)
.

We will denote by EV the class of all essentially-V stamps.1

Now, we give a characterisation for a stamp to be essentially-V, based on a specific
congruence depending on that stamp.

1 Essentially-V stamps are called that way by analogy with quasi-V stamps and the class of essentially-V
stamps is denoted by EV by analogy with QV, the notation for the class of quasi-V stamps. This makes
sense since the initial motivation for the definition of essentially-V stamps was to capture the class of
stamps into monoids of V that have the additional ability to treat separately some constant-length
beginning and ending of a word. This ability can indeed be seen as orthogonal to the additional
ability of stamps into monoids in V to perform modular counting on the positions of letters in a word,
which is often handled by considering quasi-V stamps. (See [13] for more.) Our definition of EV
does unfortunately not coincide with the usual definition of EV, that classically denotes the variety of
monoids M such that the submonoid generated by the idempotents of M is in V. (This comes, among
others, from the fact that the obtained variety of monoids does always contain at least all finite groups.)
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▶ Definition 4. Let φ : Σ∗ → M be a stamp and let s be its stability index. We define the
equivalence relation ≡φ on Σ∗ by u ≡φ v for u, v ∈ Σ∗ whenever φ(xuy) = φ(xvy) for all
x, y ∈ Σ≥s.

▶ Proposition 5. Let φ : Σ∗ → M be a stamp. Then ≡φ is a congruence of finite index and
for any variety of monoids V, we have φ ∈ EV if and only if Σ∗/≡φ∈ V.

Proof. Let us denote by s the stability index of φ.
The equivalence relation ≡φ is a congruence because given u, v ∈ Σ∗ verifying u ≡φ v,

for all α, β ∈ Σ∗, we have αuβ ≡φ αvβ since for any x, y ∈ Σ≥s, it holds that φ(xαuβy) =
φ(xαvβy) because xα, βy ∈ Σ≥s. Furthermore, this congruence is of finite index because for
all u, v ∈ Σ∗, we have that φ(u) = φ(v) implies u ≡φ v.

Let now V be a variety of monoids. Assume first that Σ∗/≡φ∈ V. It is quite direct to
see that φ ∈ EV, as the stamp µ : Σ∗ → Σ∗/≡φ defined by µ(w) = [w]≡φ

for all w ∈ Σ∗

witnesses this fact. Assume then that φ ∈ EV. This means that there exists a stamp
µ : Σ∗ → N with N ∈ V such that for all u, v ∈ Σ∗, we have

µ(u) = µ(v) ⇒
(
φ(xuy) = φ(xvy) ∀x, y ∈ Σs

)
.

Now consider u, v ∈ Σ∗ such that µ(u) = µ(v). For any x, y ∈ Σ≥s, we have that x = x1x2
with x1 ∈ Σ∗ and x2 ∈ Σs as well as y = y1y2 with y1 ∈ Σs and y2 ∈ Σ∗, so that
φ(xuy) = φ(x1)φ(x2uy1)φ(y2) = φ(x1)φ(x2vy1)φ(y2) = φ(xvy). Hence, u ≡φ v. Therefore,
for all u, v ∈ Σ∗, we have that µ(u) = µ(v) implies u ≡φ v, so we can define the mapping
α : N → Σ∗/≡φ such that α(µ(w)) = [w]≡φ for all w ∈ Σ∗. It is easy to check that α
is actually a surjective morphism. Thus, we can conclude that Σ∗/≡φ, which divides N ,
belongs to V. ◀

Using this characterisation, we prove that given a set of identities ne-defining ⟨V⟩all for a
variety of monoids V, we get a set of identities ne-defining EV.

▶ Proposition 6. Let V be a variety of monoids and let E be a set of identities such that
⟨V⟩all = [[E]]ne. Then EV is an ne-variety of stamps and

EV = [[xωyuztω = xωyvztω | u = v ∈ E, x, y, z, t /∈ alph(u) ∪ alph(v)]]ne .

Proof. Let

F = {xωyuztω = xωyvztω | u = v ∈ E, x, y, z, t /∈ alph(u) ∪ alph(v)} .

Central to the proof is the following claim.

▷ Claim 7. Let φ : Σ∗ → M be a stamp. Consider the stamp µ : Σ∗ → Σ∗/≡φ defined by
µ(w) = [w]≡φ

for all w ∈ Σ∗. It holds that for all u, v ∈ Σ̂∗,

µ̂(u) = µ̂(v) ⇔
(
φ̂(αωβuγδω) = φ̂(αωβvγδω) ∀α, β, γ, δ ∈ Σ+)

.

Before we prove Claim 7, we use it to prove that EV = [[F ]]ne.

Inclusion from left to right. Let φ : Σ∗ → M be a stamp in EV. Consider the stamp
µ : Σ∗ → Σ∗/≡φ defined by µ(w) = [w]≡φ

for all w ∈ Σ∗. Since φ ∈ EV, Proposition 5 tells
us that Σ∗/≡φ∈ V, hence µ ∈ ⟨V⟩all.

Let us consider any identity xωyuztω = xωyvztω ∈ F . It is written on an alphabet B
that is the union of the alphabet A on which u = v ∈ E is written and of x, y, z, t ∈ B \A.
Let f : B∗ → Σ∗ be an ne-morphism. Since µ ∈ ⟨V⟩all, we have that µ ne-satisfies the
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identity u = v, so that µ̂(f̂(u)) = µ̂(f̂(v)). Notice that we have that f̂(xω) = f(x)ω as well
as f̂(tω) = f(t)ω and that f(x), f(y), f(z), f(t) ∈ Σ+ because f is non-erasing. Therefore,
we have

φ̂
(
f̂(xωyuztω)

)
= φ̂

(
f(x)ωf(y)f̂(u)f(z)f(t)ω

)
= φ̂

(
f(x)ωf(y)f̂(v)f(z)f(t)ω

)
= φ̂

(
f̂(xωyvztω)

)
by Claim 7. As this holds for any ne-morphism f : B∗ → Σ∗, we can conclude that φ
ne-satisfies the identity xωyuztω = xωyvztω.

This is true for any identity in F , so φ ∈ [[F ]]ne. In conclusion, EV ⊆ [[F ]]ne.

Inclusion from right to left. Let φ : Σ∗ → M be a stamp in [[F ]]ne. Consider the stamp
µ : Σ∗ → Σ∗/≡φ defined by µ(w) = [w]≡φ

for all w ∈ Σ∗. We are now going to show that
µ ∈ ⟨V⟩all.

Take any identity u = v ∈ E written on an alphabet A. There exists an identity
xωyuztω = xωyvztω ∈ F written on an alphabet B such that A ⊆ B and x, y, z, t ∈ B \ A.
Let f : A∗ → Σ∗ be an ne-morphism.

Take any α, β, γ, δ ∈ Σ+. Let us define the ne-morphism g : B∗ → Σ∗ as the unique one
which extends f by letting g(x) = α, g(y) = β, g(z) = γ and g(t) = δ. Observe in particular
that ĝ(w) = f̂(w) for any w ∈ Â∗ and that ĝ(xω) = g(x)ω = αω as well as ĝ(tω) = δω. Now,
as φ ne-satisfies xωyuztω = xωyvztω, we have that

φ̂
(
αωβf̂(u)γδω

)
= φ̂

(
ĝ(xωyuztω)

)
= φ̂

(
ĝ(xωyvztω)

)
= φ̂

(
αωβf̂(v)γδω

)
.

Since this holds for any α, β, γ, δ ∈ Σ+, by Claim 7, we have that µ̂(f̂(u)) = µ̂(f̂(v)).
Therefore, µ̂(f̂(u)) = µ̂(f̂(v)) for any ne-morphism f : A∗ → Σ∗, which means that µ

ne-satisfies u = v.
Since this holds for any u = v ∈ E, we have that µ ∈ ⟨V⟩all, which implies that Σ∗/≡φ∈ V

and thus φ ∈ EV by Proposition 5. In conclusion, [[F ]]ne ⊆ EV.

The claim still needs to be proved.

Proof of Claim 7. Let φ : Σ∗ → M be a stamp of stability index s. Consider the stamp
µ : Σ∗ → Σ∗/≡φ defined by µ(w) = [w]≡φ for all w ∈ Σ∗. We now want to show that for all
u, v ∈ Σ̂∗,

µ̂(u) = µ̂(v) ⇔
(
φ̂(αωβuγδω) = φ̂(αωβvγδω) ∀α, β, γ, δ ∈ Σ+)

.

Let u, v ∈ Σ̂∗. There exist two Cauchy sequences (un)n≥0 and (vn)n≥0 in Σ∗ such that
u = limn→∞ un and v = limn→∞ vn. As Σ∗/≡φ and M are discrete, we have that all
four Cauchy sequences

(
µ(un)

)
n≥0,

(
φ(un)

)
n≥0,

(
µ(vn)

)
n≥0 and

(
φ(vn)

)
n≥0 are ultimately

constant. So there exists k ∈ N such that µ̂(u) = µ(uk), φ̂(u) = φ(uk), µ̂(v) = µ(vk) and
φ̂(v) = φ(vk).

Assume first that µ̂(u) = µ̂(v). Take any α, β, γ, δ ∈ Σ+. Since M is discrete, both
Cauchy sequences

(
φ(αn!)

)
n≥0 and

(
φ(δn!)

)
n≥0 are ultimately constant. So there exists

l ∈ N such that for all m ∈ N,m ≥ l, we have φ̂(αω) = φ(αm!) and φ̂(δω) = φ(δm!). Hence,
taking m ∈ N,m ≥ l such that

∣∣αm!β
∣∣ ≥ s and

∣∣γδm!
∣∣ ≥ s, it follows that

φ̂(αωβuγδω) = φ(αm!βukγδ
m!) = φ(αm!βvkγδ

m!) = φ̂(αωβvγδω)
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because [uk]≡φ
= µ̂(u) = µ̂(v) = [vk]≡φ

. Thus, we have that

φ̂(αωβuγδω) = φ̂(αωβvγδω)

for all α, β, γ, δ ∈ Σ+.
Assume then that φ̂(αωβuγδω) = φ̂(αωβvγδω) for all α, β, γ, δ ∈ Σ+. Take any α, β ∈

Σ≥s. Since φ(Σs) is a finite semigroup and verifies that φ(Σs) = φ(Σs)2, by a classical result
in finite semigroup theory (see e.g. [14, Chapter 1, Proposition 1.12]), we have that there
exist α1, e, f, β2 ∈ Σs and α2, β1 ∈ Σ≥s such that φ(α1eα2) = φ(α) and φ(β1fβ2) = φ(β)
with φ(e) and φ(f) idempotents. Now, since φ(e) is idempotent, we have that

φ̂(eω) = φ̂( lim
n→∞

en!) = lim
n→∞

φ(en!) = lim
n→∞

φ(e)n! = φ(e)

and similarly, φ̂(fω) = φ(f). So it follows that

φ(αukβ) = φ(α1eα2ukβ1fβ2)
= φ̂(α1e

ωα2uβ1f
ωβ2)

= φ̂(α1e
ωα2vβ1f

ωβ2)
= φ(α1eα2vkβ1fβ2)
= φ(αvkβ) .

As this is true for any α, β ∈ Σ≥s, by definition it holds that uk ≡φ vk, hence µ̂(u) = µ(uk) =
µ(vk) = µ̂(v). ◁

This concludes the proof of the proposition. ◀

4 Essentially-V stamps and the join of V and LI

In this section, we establish the link between essentially-V stamps and V ∨ LI and give a
criterion that characterises exactly when they do correspond.

More precisely, consider the following criterion for a variety of monoids V.

▶ Criterion (A). For any L ∈ L(V)(Σ) with Σ an alphabet, we have xLy ∈ L(V ∨ LI)(Σ)
for all x, y ∈ Σ∗.

It is a kind of mild closure condition that appears to be a sufficient and necessary condition
for EV and V ∨ LI to correspond.

▶ Proposition 8. Let V be a variety of monoids. Then ⟨V ∨ LI⟩ne ⊆ EV and equality holds
if and only if V verifies criterion (A).

Why this proposition is useful to give characterisations of V ∨ LI in terms of identities
will become clear in the next section. For now, we focus on its proof, that entirely relies on
the following characterisation of the languages recognised by essentially-V stamps.

▶ Proposition 9. Let V be a variety of monoids. For any alphabet Σ, the set L(EV)(Σ)
consists of all Boolean combinations of languages of the form xLy for L ∈ L(V)(Σ) and
x, y ∈ Σ∗.

Proof. Let C be the class of languages such that for any alphabet Σ, the set C(Σ) consists of
all Boolean combinations of languages of the form xLy for L ∈ L(V)(Σ) and x, y ∈ Σ∗.

Let Σ be an alphabet. We need to show that L(EV)(Σ) = C(Σ).

MFCS 2021



51:10 A Note on the Join of Varieties of Monoids with LI

Inclusion from right to left. Let L ∈ L(V)(Σ) and x, y ∈ Σ∗. Let µ : Σ∗ → N be
the syntactic morphism of L: this implies that N ∈ V and that there exists F ⊆ N

such that L = µ−1(F ). Let also φ : Σ∗ → M be the syntactic morphism of the language
xLy = xΣ∗y ∩ Σ|x|µ−1(F )Σ|y| and let s be its stability index. We then consider u, v ∈ Σ∗

such that µ(u) = µ(v). Take any x′, y′ ∈ Σ∗ such that |x′| ≥ |x| and |y′| ≥ |y|. We clearly
have that x′uy′ ∈ xΣ∗y if and only if x′vy′ ∈ xΣ∗y. Moreover, x′ = x′

1x
′
2 for x′

1 ∈ Σ|x| and
x′

2 ∈ Σ∗ and y′ = y′
1y

′
2 for y′

1 ∈ Σ∗ and y′
2 ∈ Σ|y|, so that

x′uy′ ∈ Σ|x|µ−1(F )Σ|y| ⇔ µ(x′
2uy

′
1) ∈ F

⇔ µ(x′
2vy

′
1) ∈ F

⇔ x′vy′ ∈ Σ|x|µ−1(F )Σ|y| .

Hence, x′uy′ ∈ xLy if and only if x′vy′ ∈ xLy for all x′, y′ ∈ Σ∗ such that |x′| ≥ |x| and
|y′| ≥ |y|, so that, by definition of the stability index s of φ and as φ is the syntactic morphism
of xLy, we have φ(x′uy′) = φ(x′vy′) for all x′, y′ ∈ Σs. Thus, it follows that φ ∈ EV.

This implies that xLy ∈ L(EV)(Σ). Therefore, since this is true for any L ∈ L(V)(Σ)
and x, y ∈ Σ∗ and since L(EV)(Σ) is closed under Boolean operations, we can conclude that
C(Σ) ⊆ L(EV)(Σ).

Inclusion from left to right. Let L ∈ L(EV)(Σ) and let φ : Σ∗ → M be its syntactic
morphism: it is an essentially-V stamp. Given s its stability index, this means there exists a
stamp µ : Σ∗ → N with N ∈ V such that for all u, v ∈ Σ∗, we have

µ(u) = µ(v) ⇒
(
φ(xuy) = φ(xvy) ∀x, y ∈ Σs

)
.

For each m ∈ N and x, y ∈ Σs consider the language xµ−1(m)y. For any two words
w,w′ ∈ xµ−1(m)y, we have w = xuy and w′ = xvy with µ(u) = µ(v) = m, so that
φ(w) = φ(w′). By definition of the syntactic morphism, this means that for all m ∈ N

and x, y ∈ Σs, either xµ−1(m)y ⊆ L or xµ−1(m)y ∩ L = ∅. Therefore, there exists a set
E ⊆ N × Σs × Σs such that L ∩ Σ≥2s =

⋃
(m,x,y)∈E xµ

−1(m)y, hence

L =
⋃

(m,x,y)∈E

xµ−1(m)y ∪ F

for a certain F ⊆ Σ<2s.
Take w ∈ F . We have that {w} = wΣ∗ ∩

⋂
a∈Σ(Σ∗ \ waΣ∗) with Σ∗ ∈ L(V)(Σ). Thus,

the singleton language {w} belongs to C(Σ) and since this is true for any w ∈ F and F

is finite, we can deduce from this that F is in C(Σ), as the latter is trivially closed under
Boolean operations.

Now, for all m ∈ N , the language µ−1(m) belongs to L(V)(Σ), so we finally have L ∈ C(Σ).
This is true for any L ∈ L(EV)(Σ), so in conclusion, L(EV)(Σ) ⊆ C(Σ). ◀

Proposition 8 then follows from the two next lemmata, that are both easy consequences
of Proposition 9. For completeness, we give the proofs in the appendix.

▶ Lemma 10. Let V be a variety of monoids. Then ⟨V ∨ LI⟩ne ⊆ EV.

▶ Lemma 11. Let V be a variety of monoids. Then EV ⊆ ⟨V ∨ LI⟩ne if and only if V
verifies criterion (A).
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5 Applications

In this last section, we use the link between essentially-V stamps and V ∨ LI to reprove some
characterisations of joins between LI and some well-known varieties of monoids in terms of
identities.

One thing seems at first glance a bit problematic about proving that a variety of monoids
V satisfies criterion (A). Indeed, to this end, one needs to prove that certain languages belong
to L(V ∨ LI); however, this poses a problem when one’s goal is precisely to characterise
V ∨ LI, because one shall a priori not know more about L(V ∨ LI) than what is given by
Proposition 2. Nevertheless, there is a natural sufficient condition for criterion (A) to hold
that depends only on L(V): if given any language L ∈ L(V)(Σ) and any x, y ∈ Σ∗ with
Σ an alphabet, there exists a language K ∈ L(V)(Σ) such that L is equal to the quotient
x−1Ky−1, then V verifies criterion (A). We don’t know whether this quotient-expressibility
condition that solely depends on the variety V (without explicit reference to LI) is actually
equivalent to it satisfying criterion (A), but we can prove such an equivalence for a weaker
quotient-expressibility condition for V. The proof is to be found in the appendix.

▶ Proposition 12. Let V be a variety of monoids. Then V satisfies criterion (A) if
and only if for any L ∈ L(V)(Σ) and any x, y ∈ Σ∗ with Σ an alphabet, there exist
k, l ∈ N such that for all u ∈ Σk, v ∈ Σl, there exists a language K ∈ L(V)(Σ) verifying
u−1Lv−1 = (xu)−1K(vy)−1.

This quotient-expressibility condition appears to be particularly useful to prove that a
variety of monoids V does not satisfy criterion (A) without needing to understand what
L(V ∨ LI) is. We demonstrate this for the variety of finite commutative and idempotent
monoids J1.

▶ Proposition 13. J1 does not satisfy criterion (A).

Proof. Given an alphabet Σ, the set L(J1)(Σ) consists of all Boolean combinations of
languages of the form Σ∗aΣ∗ for a ∈ Σ (see [14, Chapter 2, Proposition 3.10]).

Let L = {a, b}∗b{a, b}∗ ∈ L(J1)({a, b}) and x = b, y = ε. Take any k, l ∈ N and set u = ak

and v = al. Consider a K ∈ L(J1)({a, b}). We have that xuavy ∈ K ⇔ xuabvy ∈ K so that
a ∈ (xu)−1K(vy)−1 ⇔ ab ∈ (xu)−1K(vy)−1. But a /∈ u−1Lv−1 and ab ∈ u−1Lv−1, hence
u−1Lv−1 ̸= (xu)−1K(vy)−1 and this holds for any choice of K. So for any k, l ∈ N, there
exists u ∈ Σk, v ∈ Σl such that no K ∈ L(J1)({a, b}) verifies u−1Lv−1 = (xu)−1K(vy)−1.

In conclusion, by Proposition 12, J1 does not satisfy criterion (A). ◀

We now prove the announced characterisations of joins between LI and some well-known
varieties of monoids in terms of identities.

▶ Theorem 14. We have the following.
1. ⟨R ∨ LI⟩ne = ER = [[xωy(ab)ωaztω = xωy(ab)ωztω]]ne.
2. ⟨L ∨ LI⟩ne = EL = [[xωyb(ab)ωztω = xωy(ab)ωztω]]ne.
3. ⟨J ∨ LI⟩ne = EJ = [[xωy(ab)ωaztω = xωy(ab)ωztω, xωyb(ab)ωztω = xωy(ab)ωztω]]ne.
4. ⟨H ∨ LI⟩ne = EH for any variety of groups H.

Proof. In each case, we prove that the variety of monoids under consideration satisfies
criterion (A) using Proposition 12. We then use Propositions 8 and 6.
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Proof of 1. It is well-known that given an alphabet Σ, the set L(R)(Σ) consists of all
languages that are disjoint unions of languages that are of the form A∗

0a1A
∗
1 · · · akA

∗
k where

k ∈ N, a1, . . . , ak ∈ Σ, A0, A1, . . . , Ak ⊆ Σ and ai /∈ Ai−1 for all i ∈ [k] (see [14, Chapter 4,
Theorem 3.3]).

Let Σ be an alphabet and take a language A∗
0a1A

∗
1 · · · akA

∗
k where k ∈ N, a1, . . . , ak ∈ Σ,

A0, A1, . . . , Ak ⊆ Σ and ai /∈ Ai−1 for all i ∈ [k]. Take x, y ∈ Σ∗. Observe that y can be
uniquely written as y = zt where z ∈ A∗

k and t ∈ {ε} ∪ (Σ \Ak)Σ∗. We have

A∗
0a1A

∗
1 · · · akA

∗
k = x−1

(
xA∗

0a1A
∗
1 · · · akA

∗
kt ∩

⋂
v∈A

<|z|
k

(Σ∗ \ xA∗
0a1A

∗
1 · · · akvt)

)
y−1

using the convention that xA∗
0a1A

∗
1 · · · akvt = xvt for all v ∈ A

<|z|
k when k = 0. The language

xA∗
0a1A

∗
1 · · · akA

∗
kt∩

⋂
v∈A

<|z|
k

(Σ∗ \xA∗
0a1A

∗
1 · · · akvt) does belong to the set L(R)(Σ) because

the latter is closed under Boolean operations and by definition of z and t. Thus, we can
conclude that for each L ∈ L(R)(Σ) and x, y ∈ Σ∗, there exists K ∈ L(R)(Σ) such that
L = x−1Ky−1 by using the characterisation of L(R)(Σ), the fact that quotients commute
with unions [14, p. 20] and closure of L(R)(Σ) under unions.

Proof of 2. It is also well-known that given an alphabet Σ, the set L(L)(Σ) consists of all
languages that are disjoint unions of languages that are of the form A∗

0a1A
∗
1 · · · akA

∗
k where

k ∈ N, a1, . . . , ak ∈ Σ, A0, A1, . . . , Ak ⊆ Σ and ai /∈ Ai for all i ∈ [k] (see [14, Chapter 4,
Theorem 3.4]). The proof is then dual to the previous case.

Proof of 3. Given an alphabet Σ, for each k ∈ N, we define the equivalence relation ∼k

on Σ∗ by u ∼k v for u, v ∈ Σ∗ whenever u and v have the same set of subwords of length
at most k. This relation is a congruence of finite index on Σ∗. Simon proved [19] that a
language belongs to L(J)(Σ) if and only it is equal to a union of ∼k-classes for a k ∈ N.

Let Σ be an alphabet and take L ∈ L(J)(Σ) as well as x, y ∈ Σ∗. Thus, there exists k ∈ N
such that L is a union of ∼k-classes. Define the language K =

⋃
w∈L[xwy]∼|xy|+k

: it belongs
to L(J)(Σ) by construction. We now show that L = x−1Ky−1, which concludes the proof.
Let w ∈ L: we have that xwy ∈ [xwy]∼|xy|+k

⊆ K, so that w ∈ x−1Ky−1. Let conversely
w ∈ x−1Ky−1. This means that xwy ∈ K, which implies that there exists w′ ∈ L such that
xwy ∼|xy|+k xw

′y. Actually, it holds that any u ∈ Σ∗ of length at most k is a subword of w
if and only if it is a subword of w′, because xuy is a subword of xwy if and only if it is a
subword of xw′y. Hence, w ∼k w

′, which implies that w ∈ L.

Proof of 4. Consider any variety of groups H. Take a language L ∈ L(H)(Σ) for an
alphabet Σ and let x, y ∈ Σ∗. Consider the syntactic morphism η : Σ∗ → M of L: we
have that M is a group in H. Define the language K = η−1(

η(x)η(L)η(y)
)
: it belongs to

L(H)(Σ). We now show that L = x−1Ky−1, which concludes the proof. Let w ∈ L: we
have that η(xwy) ∈ η(x)η(L)η(y), so that w ∈ x−1Ky−1. Conversely, let w ∈ x−1Ky−1.
We have that xwy ∈ K, which means that η(xwy) = η(x)η(w′)η(y) for a w′ ∈ L, so that
η(w) = η(w′) ∈ η(L), as any element in M is invertible. Thus, w ∈ L. ◀

6 Conclusion

The general method presented in this paper actually allows to reprove in a straightforward
language-theoretic way even more characterisations of the join of LI with some variety of
finite monoids. This can for instance be done for the variety of finite commutative monoids
Com or the variety of finite commutative aperiodic monoids ACom.
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In fact, as already observed in some sense by Costa [9], many varieties of finite monoids
seem to verify criterion (A). The main question left open by this present work is to understand
better what exactly those varieties are. Another question left open is whether Proposition 12
can be refined by using the stronger quotient-expressibility condition alluded to before the
statement of the proposition. The answers to both questions are unclear to the author, but
making progress on them may also lead to a better understanding of joins of varieties of
finite monoids with LI.
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A Missing proofs

Proof of Proposition 2. Let W be an ne-variety of stamps such that ⟨V⟩all ∪ ⟨LI⟩ne ⊆ W.
There exists a variety of semigroups W′ such that ⟨W′⟩ne = W.

Let S ∈ V ∪ LI. We denote by S1 the monoid S if S is already a monoid and the monoid
S ∪ {1} otherwise. Then the evaluation morphism ηS : S∗ → S1 such that ηS(s) = s for
all s ∈ S verifies ηS(S+) = S and additionally S1 = S when S ∈ V. This implies that
ηS ∈ ⟨V⟩all ∪ ⟨LI⟩ne ⊆ W. But by definition of W′, it must be that S = ηS(S+) ∈ W′.

Therefore, W′ contains both V and LI, which implies that V∨LI ⊆ W′ by inclusion-wise
minimality of V ∨ LI. By definition, we can then conclude that ⟨V ∨ LI⟩ne ⊆ ⟨W′⟩ne = W.
So ⟨V ∨ LI⟩ne is the inclusion-wise least ne-variety of stamps containing both ⟨V⟩all and
⟨LI⟩ne.

Let now W be an ne-variety of languages such that L(V) ∪ L(LI) ⊆ W. It holds that
W = L(W) for an ne-variety of stamps W. We have that ⟨V⟩all, which is in particular an
ne-variety of stamps, is included in W because L(⟨V⟩all) = L(V) ⊆ W = L(W), but also
that ⟨LI⟩ne is included in W because L(⟨LI⟩ne) = L(LI) ⊆ W = L(W). By inclusion-wise
minimality of ⟨V ∨ LI⟩ne, it follows that ⟨V ∨ LI⟩ne ⊆ W. Hence, using again the above
fact on the Eilenberg correspondence, we can conclude that L(V ∨ LI) = L(⟨V ∨ LI⟩ne) ⊆
L(W) = W . So L(V ∨ LI) is the inclusion-wise least ne-variety of languages containing both
L(V) and L(LI).

Consider now the class of languages C such that C(Σ) is the Boolean closure of L(V)(Σ) ∪
L(LI)(Σ) for each alphabet Σ. By closure under Boolean operations of L(V ∨ LI), we
have that C ⊆ L(V ∨ LI). Now, as Boolean operations commute with both quotients [14,
p. 20] and inverses of ne-morphisms [14, Proposition 0.4], by closure of L(V) and L(LI)
under quotients and inverses of ne-morphisms, we actually have that C is an ne-variety
of languages. Therefore, by inclusion-wise minimality of L(V ∨ LI), we can conclude that
L(V ∨ LI) = C. ◀

Proof of Lemma 10. We actually have that L(V) ∪ L(LI) ⊆ L(EV), which allows us to
conclude by inclusion-wise minimality of L(V ∨ LI) (Proposition 2) and by the fact that
L(EV) is an ne-variety of languages (Proposition 6).

Let Σ be an alphabet. The fact that L(V)(Σ) ⊆ L(EV)(Σ) follows trivially from
Proposition 9. Moreover, for all u ∈ Σ∗, since necessarily Σ∗ ∈ L(V)(Σ), we have that both
uΣ∗ and Σ∗u belong to L(LI)(Σ). Thus, as L(EV)(Σ) is closed under Boolean operations,
it follows that L(LI)(Σ) ⊆ L(EV)(Σ).

This concludes the proof, since it holds for any alphabet Σ. ◀

https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-45995-2_46
https://doi.org/10.1007/bf02573532
https://doi.org/10.1142/S0218196795000057
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Proof of Lemma 11. Assume that EV ⊆ ⟨V ∨ LI⟩ne. For any L ∈ L(V)(Σ) and any x, y ∈
Σ∗ with Σ an alphabet, by Proposition 9, we have that xLy ∈ L(EV)(Σ) ⊆ L(V ∨ LI)(Σ).
Hence, V verifies criterion (A).

Conversely, assume that V verifies criterion (A). For any alphabet Σ, the set L(V ∨ LI)(Σ)
contains all languages of the form xLy for L ∈ L(V)(Σ) and x, y ∈ Σ∗, so it contains all
Boolean combinations of languages of that form, since it is closed under Boolean operations.
Therefore, by Proposition 9, we have L(EV) ⊆ L(V ∨ LI), so that EV ⊆ ⟨V ∨ LI⟩ne. ◀

Proof of Proposition 12. Let us first observe that given any alphabet Σ, given any language
K on that alphabet and given any two words x, y ∈ Σ∗, we have that x(x−1Ky−1)y =
xΣ∗y ∩K and x−1(xKy)y−1 = K.

Implication from right to left. Assume that for any L ∈ L(V)(Σ) and any x, y ∈ Σ∗ with
Σ an alphabet, there exist k, l ∈ N such that for all u ∈ Σk, v ∈ Σl, there exists a language
K ∈ L(V)(Σ) verifying u−1Lv−1 = (xu)−1K(vy)−1. Take L ∈ L(V)(Σ) for an alphabet Σ
and take x, y ∈ Σ∗. Consider also k, l ∈ N that are guaranteed to exist by the assumption we
just made.

For all u ∈ Σk, v ∈ Σl, there exists a language K ∈ L(V)(Σ) verifying u−1Lv−1 =
(xu)−1K(vy)−1, so that by our observation at the beginning of the proof, we have

x(uΣ∗v ∩ L)y = xu(u−1Lv−1)vy = xu
(
(xu)−1K(vy)−1)

vy = xuΣ∗vy ∩K .

Using Proposition 2, we thus have that x(uΣ∗v ∩ L)y ∈ L(V ∨ LI)(Σ) for all u ∈ Σk, v ∈ Σl.
Moreover, since we have that the set of words of L of length at least k + l is

Σ≥k+l ∩ L =
⋃

u∈Σk,v∈Σl

(uΣ∗v ∩ L)

and since

L = (Σ≥k+l ∩ L) ∪ F

where F is a finite set of words on Σ of length less than k + l, we have that

xLy = x
(
(Σ≥k+l ∩ L) ∪ F

)
y =

⋃
u∈Σk,v∈Σl

x(uΣ∗v ∩ L)y ∪ xFy .

We can thus conclude that xLy ∈ L(V ∨ LI)(Σ) since xFy ∈ L(LI)(Σ) and because
L(V ∨ LI)(Σ) is closed under unions.

Implication from left to right. Assume that V satisfies criterion (A). Take L ∈ L(V)(Σ)
for an alphabet Σ and take x, y ∈ Σ∗. By hypothesis, we know that xLy ∈ L(V ∨ LI)(Σ).

By Proposition 2, this means that xLy is a Boolean combination of languages in L(V)(Σ)∪
L(LI)(Σ). Further, this implies that xLy can be written as the union of intersections of
languages of L(V)(Σ) and L(LI)(Σ) or their complements, which in turn implies, by closure
of L(V)(Σ) and L(LI)(Σ) under Boolean operations, that xLy can be written as a finite
union of languages of the form K ∩ (UΣ∗V ∪W ) with K ∈ L(V)(Σ) and U, V,W ⊆ Σ∗ finite.
Since any word in xLy must be of length at least |xy| and have x as a prefix and y as a
suffix, we can assume that any language K ∩ (UΣ∗V ∪ W ) appearing in a finite union as
described above verifies that U ⊆ xΣ∗, that V ⊆ Σ∗y and that W ⊆ xΣ∗y. Now, if we take
k, l ∈ N big enough, we thus have that
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xLy =
⋃

u∈Σk,v∈Σl

(Ku,v ∩ xuΣ∗vy) ∪ F

where Ku,v ∈ L(V)(Σ) for all u ∈ Σk, v ∈ Σl and F ⊆ Σ<|xy|+k+l. Hence, for all u ∈ Σk, v ∈
Σl, we have

u−1Lv−1 = u−1(
x−1(xLy)y−1)

v−1

= (xu)−1
( ⋃

u′∈Σk,v′∈Σl

(Ku′,v′ ∩ xu′Σ∗v′y) ∪ F
)

(vy)−1

=
⋃

u′∈Σk,v′∈Σl

(xu)−1
(
xu′((xu′)−1Ku′,v′(v′y)−1)

v′y
)

(vy)−1∪

(xu)−1F (vy)−1

= (xu)−1Ku,v(vy)−1 ,

using classical formulae for quotients [14, p. 20] and observing that (xu)−1K(vy)−1 = ∅ for
any K ⊆ Σ∗ such that K ∩ xuΣ∗vy = ∅. ◀
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1 Introduction

During the last two decades or so, literally hundreds of research papers have been investigating
deterministic and nondeterministic state complexity of regular languages. Here, general
purpose lower bound techniques are available, and in many cases, upper and lower bounds can
be obtained that match exactly, not only asymptotically. For recent surveys, see, e.g., [8, 15].

The situation is less desirable if we investigate the minimum required size of regular
expressions describing a regular language. While several different lower bound techniques
are available, often the best known upper and lower bounds match only asymptotically. For
illustration, the size blow-up when going from finite automata over a binary alphabet to
regular expressions is at least cn for some c > 1 for large enough n, cf. [12]. The current
record holder for the upper bound is O(1.682n), see [5]. This gives a “tight” bound of 2Θ(n),
which is on closer inspection a bit loose. To our knowledge, exactly matching upper and
lower bounds for the minimum required expression size are known only for very few nontrivial
language families: Namely, the Boolean n-bit parity function [7, 14], the less-than relation
on an n-set [2], given as { ij | 1 ≤ i < j ≤ n }, and the permutations of an n-set [23].

The set of all palindromes over the alphabet {a, b} is context-free but not regular; virtually
every computer science student in the world will learn this during their curriculum. Not
surprisingly, this basic observation is as old as the Chomsky hierarchy itself [3]. Of course, if
we consider only palindromes of a given length, the set thus obtained is finite, and therefore
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regular. We exactly determine the optimum regular expressions for this set, for every given
length. In the course of the proof, we also determine the optimum regular expressions
for the lexicographically first k palindromes of a given length, for every k. The difficulty
of course lies in establishing a matching lower bound. To this end, we use and expand a
method from [23] to obtain a recurrent lower bound. The recurrence thus obtained involves
a “minvolution” in the sense of [11] and the minimum operator of course yields a nonlinear
recurrence. A long line of research concerns asymptotic and exact solutions of recurrences
involving minimum and maximum functions, see, e.g., [18] and references therein. Our
recurrence falls into neither of the known categories. So we develop a tailor-made strategy
for solving the recurrence, and derive a novel identity involving sums of Hamming weights.
We hope that this will serve as a helpful example for researchers in need of solving similar
nonlinear recurrences.

Some of our results contribute to the knowledge about integer sequences: We give a
characterization of the number of multiplications to compute the (n + 1)th power by the
ancient Indian Chandah-sutra method in terms of Hamming weights (Lemma 8). Also, we
find a new recurrence for the numbers having a partition into distinct Mersenne numbers
greater than zero (Lemma 10). The functions giving the optimal lengths of the regular
expressions we consider can be enumerated in lexicographic order; accompanying submissions
to the On-line Encyclopedia of Integer Sequences (OEIS) are in preparation, since these
sequences are not yet covered by OEIS.

With some extra effort, all of our results can be generalized to larger alphabet sizes.
These results will be presented in the full version of this paper.

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal language theory
as contained in [16]. In particular, let Σ be an alphabet and Σ∗ the set of all words over
the alphabet Σ, including the empty word ϵ. The length of a word w is denoted by |w|,
where |ϵ| = 0, and the total number of occurrences of the alphabet symbol a in w is denoted
by |w|a. In this paper, we mainly deal with finite languages. The order of a finite language L

is the length of a longest word belonging to L. A finite language L is homogeneous if all
words in the language have the same length. In order to fix the notation, we briefly recall
the definition of regular expressions and the languages described by them.

The regular expressions over an alphabet Σ are defined inductively in the usual way:2 ∅,
ϵ, and every letter a with a ∈ Σ is a regular expression; and when E and F are regular
expressions, then (E+F ), (E ·F ), and (E)∗ are also regular expressions. The language defined
by a regular expression E, denoted by L(E), is defined as follows: L(∅) = ∅, L(ϵ) = {ϵ},
L(a) = {a}, L(E + F ) = L(E) ∪ L(F ), L(E · F ) = L(E) · L(F ), and L(E∗) = L(E)∗. The
alphabetic width or size of a regular expression E over the alphabet Σ, denoted by awidth(E),
is defined as the total number of occurrences of letters of Σ in E. For a regular language L,
we define its alphabetic width, awidth(L), as the minimum alphabetic width among all regular
expressions describing L.

2 For convenience, parentheses in regular expressions are sometimes omitted and the concatenation is
simply written as juxtaposition. The priority of operators is specified in the usual fashion: concatenation
is performed before union, and star before both product and union.
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3 A Lower Bound for Palindromes of Even Length

For a nonnegative integer n, let Pn = { wwR | w ∈ {a, b}n } denote the set of palindromes
of length 2n. In this section, we give a tight bound on the required regular expression size
of Pn. For our toolbox, we need to investigate the concatenation of homogeneous languages.

▶ Lemma 1. Let L1 and L2 be homogeneous languages. Then awidth(L1 · L2) = awidth(L1) +
awidth(L2).

Inspired by the method recently used to exactly determine the alphabetic width of the
set of permutations [23], define ℓ(n, k) to be the minimum alphabetic width of a regular
expression describing a subset of Pn, where the subset has cardinality at least k. Note
that ℓ(n, k) is monotone in k by definition, that is, ℓ(n, k) ≤ ℓ(n, k′), for k ≤ k′.

▶ Lemma 2. Let n ≥ 0 and 1 ≤ k ≤ 2n. Then ℓ(n, k) obeys the following recurrence:

ℓ(n, k) ≥ min{ ℓ(n − 1, k) + 2, min
1≤i<k

{ℓ(n, i) + ℓ(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

ℓ(n, k) ≥ min
1≤i<k

{ℓ(n, i) + ℓ(n, k − i)}, for n ≥ 1 and k > 2n−1,

and
ℓ(n, 1) = 2n.

Proof. In the case k = 1, each regular expression describing a nonempty subset of {a, b}2n

must have alphabetic width at least 2n. For n ≥ 1, the expression a2n describes at least
one word in Pn. For n = 0, ϵ is an optimal regular expression describing the only nonempty
subset of {a, b}0 = {ϵ}. Thus we have ℓ(n, 1) = 2n for all n ≥ 0.

For n ≥ 1 and 2 ≤ k ≤ 2n, let E be a regular expression denoting a subset of Pn which
has cardinality at least k. The language Pn is homogeneous, so we may safely assume that
neither ϵ nor ∅ occur in E, and the same holds for the Kleene star, see, e.g., [14]. Thus, E

is of the form F + G or of the form F · G, and each of F and G have alphabetic width at
least 1.

If E = F +G, then both F and G denote subsets of Pn, say of sizes k1 and k2, respectively.
Then k1 + k2 ≥ k, and, by minimality, k1, k2 < k. We thus obtain the following recurrence
in the case of union:

ℓ(n, k) ≥ ℓ(n, k1) + ℓ(n, k2)
≥ ℓ(n, k1) + ℓ(n, k − k1)
≥ min

1≤i<k
{ℓ(n, i) + ℓ(n, k − i)},

where we used the monotonicity of ℓ(n, k) with respect to k for the second estimation.
The other case is that E = F ·G. We may assume that the words in F have length at most n

– otherwise, we apply the argument to ER = GR ·F R, and note that awidth(E) = awidth(ER).
Let n1 denote the length of the words in F . Then we have 1 ≤ n1 ≤ n. We claim that L(F )
must be a singleton language, that is, L(F ) = {w} for some word w. For the sake of
contradiction, assume L(F ) contains another word x with x ≠ w. Since E describes Pn

and L(E) = L(F ) · L(G), the language L(E) contains a word of the form wzwR, for some
infix z. Since there is only one way to write wzwR as product of words in L(F ) and L(G),
the word zwR must be in L(G). But then the non-palindromic word xzwR is a member
of L(E), which yields the desired contradiction to establish the claim.
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Further, we can assume that n1 = 1 without loss of generality. This can be seen as
follows. By Lemma 1, awidth(L(E)) = awidth(L(F )) + awidth(L(G)). For 1 ≤ i ≤ n1, let
ai denote the ith letter in w. Since L(F ) = {w}, we have awidth(L(F )) = n1. Thus, if we
replace the subexpression F of E with the expression f̃ = a1 · (a2 · · · an1), the expression Ẽ

thus obtained is again minimal. By applying the associative law for concatenation to Ẽ, we
obtain yet another minimal expression Ẽ′ = f̃ ′ · G′′ with f̃ ′ = a1 and G′′ = (a2 · · · an1 · G).

Since all words in Pn are palindromic, L(G′′) = S · a1, for some subset S of Pn−2. Also,
set S must be of the same cardinality as L(E). We thus obtain the following recurrence in
the case of concatenation:

ℓ(n, k) ≥ ℓ(n − 1, k) + 2.

Observe that k can be at most 2n−1 in this case, since there are no more than 2n−1 palindromes
of length 2(n − 1). Also, we must have n ≥ 2 in the case of concatenation, since both k ≥ 2
and k ≤ 2n−1 hold.

Either the case of union or of concatenation applies – because E has no Kleene star, and
we obtain the recurrence relation

ℓ(n, k) ≥ min{ ℓ(n − 1, k) + 2, min
1≤i<k

{ℓ(n, i) + ℓ(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

and
ℓ(n, k) ≥ min

1≤i<k
{ℓ(n, i) + ℓ(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

as desired. ◀

In the above proof, we derived a recursive lower bound on ℓ(n, k). Let f denote the
integer-valued function which is defined by that recurrence, that is,

f(n, k) = min{ f(n − 1, k) + 2, min
1≤i<k

{f(n, i) + f(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f(n, k) = min
1≤i<k

{f(n, i) + f(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f(n, 1) = 2n.

The recursive definition can be simplified with the aid of the following lemma.

▶ Lemma 3. f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1.

Proof. Recall the recursive definition of f in this parameter range is

f(n, k) = min{ f(n − 1, k) + 2, min
1≤i<k

{f(n, i) + f(n, k − i)} },

for n ≥ 2 and 2 ≤ k ≤ 2n−1, so the inequality f(n, k) ≤ f(n − 1, k) + 2 is immediate. For
the converse inequality, we claim that

min
1≤i<k

{f(n, i) + f(n, k − i)} ≥ f(n − 1, k) + 2.

We prove this by lexicographic induction on (n, k). To show the statement for n ≥ 2
and k ≥ 2, we assume that the statement holds for all pairs (n′, k′) with n′ < n, as well as
for all pairs with n′ = n and k′ < k. Observe, that by the induction hypothesis on (n, k) we
also can safely assume that f(n′, k′) ≥ f(n′ − 1, k′) + 2, which follows from the recursive
definition of f . The base case (2, 2) is easily verified with

min
1≤i<2

{f(2, i) + f(2, 2 − i)} = f(2, 1) + f(2, 1) = 4 + 4 ≥ 4 + 2 = f(1, 2) + 2,
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because f(1, 2) = min1≤i<2{f(1, i) + f(1, 2 − i)} = f(1, 1) + f(1, 1) = 2 + 2 = 4. For the
induction step, we apply the induction hypothesis and f(n, k) ≥ f(n − 1, k) + 2 twice to
obtain

min
1≤i<k

{f(n, i) + f(n, k − i)} ≥ min
1≤i<k

{(f(n − 1, i) + 2) + (f(n − 1, k − i) + 2)}

≥ min
1≤i<k

{f(n − 1, i) + f(n − 1, k − i)} + 4

≥ f(n − 1, k) + 6,

which means that min1≤i<k{f(n, i) + f(n, k − i)} ≥ f(n − 1, k) + 2 as desired.
Having established the claim, the equality of f(n, k) with f(n − 1, k) + 2 now follows

immediately. This completes the proof of the lemma. ◀

Still, the second recurrence equation entails the full history of the parameter k. One
might hope that f is convex in the parameter k, and that the minimum in the formula
min1≤i<k{f(n, i) + f(n, k − i)} is always attained in the middle, i.e., arg min i =

⌊
k
2
⌋
.

Compare, e.g., [21, p. 366] on convex recurrences. But this is, unfortunately, not the case: for
instance, we have f(3, 6) = min1≤i<6{f(3, i) + f(3, 6 − i)} = f(3, 2) + f(3, 4) = 8 + 14 = 22,
while 2 · f(3, 3) = 2 · (f(2, 3) + 2) = 2 · (10 + 2) = 24. In fact, computations for small ranges
of n and k suggest a nontrivial behavior of f – see Table 1.

Table 1 Some f(n, k) values for small n and k.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15 k = 16

n = 1 2 4

n = 2 4 6 10 12

n = 3 6 8 12 14 20 22 26 28

n = 4 8 10 14 16 22 24 28 30 38 40 44 46 52 54 58 60

At least, we are interested only in the value of f(n, 2n). Once we put forward a suitable
induction hypothesis (which admittedly is somewhat flabbergasting), we can establish a
simple closed form for f(n, 2n) with a laborious lexicographic induction.

▶ Lemma 4. f(n, 2n) = 2n+2 − 4.

Proof. For the upper bound, observe that f(n, 2n) ≤ 2 · f(n, 2n−1) easily follows from the
recurrence equations defining f and with the help of Lemma 3 we obtain

f(n, 2n) ≤ 2 · (f(n − 1, 2n−1) + 2).

With f(1, 2) = 4, this boils down to an inhomogeneous linear recurrence with variable n,
which can be solved as f(n, 2n) ≤ 4(2n − 1) = 2n+2 − 4.

The lower bound will follow immediately once we have established the following claim.

▷ Claim 5. Let n ≥ 1 and 1 ≤ k ≤ 2n. Then

f(n, k) ≥


4k if k < 2n−1,
4k − 2 if k is not a power of two and k > 2n−1, and
4k − 4 + 2n − 2 log k if k is a power of two.

The remaining part of the proof is a lexicographic induction on (n, k), which tedious details
are left to the reader. ◀

MFCS 2021



52:6 Optimal Regular Expressions for Palindromes of Given Length

4 Some Digit Theory

Now that our appetite is whetted, we want to solve the recurrence also in the general case
where k is not a power of two. In this section, we develop the necessary tools regarding “digit
theory,” that is, mathematical properties of digit sums, that we will need for the analysis.
Let S2(n) denotes the “digit sum to base 2” function. This function is often referred to as
the Hamming weight function and denotes the number of ones in the binary expansion of
the number n. Throughout the rest of this paper, for a nonnegative integer n, we refer to
the function λ(n) defined as

λ(n) =
{

0, if n = 0
⌊log2 n⌋, otherwise.

Here log2 n refers to the logarithm to base 2. For the digit sum to base 2 we find the following
equations useful whenever powers of 2 are involved somehow.

▶ Lemma 6. Let n be a nonnegative integer. Then
1. S2(2n − 1) = n and
2. S2(n − 2λ(n)) = S2(n) − 1.

Next we recall an alternative characterization of the digit sum to base 2 that proves
useful in the forthcoming calculations.

▶ Lemma 7. Let n be a nonnegative integer. Then

S2(n) = n −
∞∑

i=1

⌊ n

2i

⌋
.

Observe, that the sum contains only a finite number of non-zero summands.

More generally, for prime q the sum
∑∞

i=1

⌊
n
qi

⌋
is famously known to be equal to the

largest power of q that divides n! (Legendre’s formula [22]). For non-prime q, the latter
equality ceases to hold in general, because for n = 8 and q = 4 the largest integer power of 4
that divides 8! is 3, because 8! = (2 · 4) · 7 · (2 · 3) · 5 · 4 · 3 · 2 · 1 = 7 · 5 · 43 · 32 · 2, while the
sum evaluates to 2.

The study of the following maximization problem

max
0≤i≤n

{S2(i) + S2(n − i)}

is essential for our main result. Remarkably, the formula on the right-hand side of the
identity in Lemma 8 below is famously known as the number of multiplications to compute
the (n + 1)th power by the ancient Indian Chandah-sutra method. This appears as sequence
A014701 in the On-line Encyclopedia of Integer Sequences, and is referred to as the left-to-right
binary method 3 in [20, Chap. 4.6.3].

▶ Lemma 8. Let n be a nonnegative integer. Then

max
0≤i≤n

{S2(i) + S2(n − i)} = λ(n + 1) + S2(n + 1) − 1.

3 We note that the formula given in [20, p. 463] refers to the right-to-left binary method. As explained
there, the latter takes one more multiplication than the left-to-right binary method.

https://oeis.org/A014701
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Proof. Observe, that S2(n) denotes the Hamming weight of n, that is, the number of
ones in the binary expansion of the number n. We shall prove first the easier inequality,
namely max0≤i≤n{S2(i) + S2(n − i)} ≥ λ(n + 1) + S2(n + 1) − 1. It suffices to find a
suitable decomposition n = j + (n − j) for some j, which attains the bound. We choose
j = n+1−2λ(n+1). Then j is equal to n+1 modulo 2λ(n+1), and thus their binary expansions
differ only in the highest order bit. In other words, S2(j) = S2(n + 1) − 1 by Lemma 6.2.
Also, by the finite geometric series expansion,

n − j = n −
(

n + 1 − 2λ(n+1)
)

= 2λ(n+1) − 1 =
λ(n+1)−1∑

i=0
1 · 2i,

and thus S2(n − j) = λ(n + 1) – see Lemma 6.1.
The converse inequality requires more effort, namely to prove that

max
0≤i≤n

{S2(i) + S2(n − i)} ≤ λ(n + 1) + S2(n + 1) − 1.

Our strategy is as follows. Given any decomposition n = x + y with x, y ≥ 0, we write x

and y in binary positional notation xλ(x) · · · x1x0 and yλ(y) · · · y1y0. Then we shall apply a
certain set of rules to x and y such that

after each rule application, the sum of the two summands x′ and y′ thus obtained is n,
that is, x′ + y′ = n,
after each rule application, the sum of their Hamming weights is not decreased, that is,
S2(x′) + S2(y′) ≥ S2(x) + S2(y), and
after the last rule application, in the larger summand thus obtained, all bits are equal
to 1.

This will of course suffice to show that the decomposition into j and n − j, as described at
the beginning of the proof of this lemma, attains the maximum.

When looking at the bits of x and y, there are several constellations that need to be
addressed. The first rule concerns the case x0 = y0 = 0, that is, the lowest order bits are
both zero. Assume x is greater than or equal to y, otherwise we exchange the roles of x and y.
Let ℓ denote the lowest order nonzero bit position of x, that is xℓ = 1 and xk = 0, for all k

with 0 ≤ k < ℓ. Then decreasing the number x by 1 amounts to setting xℓ = 0 and xk = 1,
for all k with 0 ≤ k < ℓ. Also, increasing the number y by 1 amounts to setting y0 = 1, while
all other bits of y remain unchanged. Observe, that this maneuver increases the Hamming
weight of both summands. Also, the two summands thus obtained add up to n, and both
summands have their lowest order bit set to 1. For an illustration of this situation we refer
the reader to the left drawing of Figure 1.

We now generalize this to the case xi = yi = 0, for 0 ≤ i < λ(x). Here again, we assume
that x ≥ y; otherwise we exchange the roles of x and y. Here essentially the same mechanism
applies, but, roughly speaking, we need to “multiply everything” by 2i. In the same spirit
as above, let ℓ denote the lowest order nonzero bit position of x above i, that is xℓ = 1
and xk = 0, for all k with i ≤ k < ℓ. Note that ℓ is guaranteed to exist, since x ≥ y. Observe,
that decreasing the number x by 2i amounts to setting xℓ = 0 and xk = 1, for all k with
i ≤ k < ℓ. Also, increasing the number y by 2i amounts to setting yi = 1, while all other bits
of y remain unchanged. So this maneuver increases the Hamming weight of both summands.
Also, the obtained summands sum up to n, and both summands have their ith bit set to 1.
This completes the description of the first rule. For an illustration of this situation we refer
to the right drawing of Figure 1.
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λ(x) . . . ℓ ℓ − 1 . . . 0
x = ∗ 1 0 . . . 0
y = ∗ 0

is changed to

λ(x) . . . ℓ ℓ − 1 . . . 0
x = ∗ 0 1 . . . 1
y = ∗ 1

λ(x) . . . ℓ ℓ − 1 . . . i . . . 0
x = ∗ 1 0 . . . 0 ∗
y = ∗ 0 ∗

is changed to

λ(x) . . . ℓ ℓ − 1 . . . i . . . 0
x = ∗ 0 1 . . . 1 ∗
y = ∗ 1 ∗

Figure 1 First bit manipulation rule for the decomposition of n into x and y for the first situation
(left), i.e., x0 = y0 = 0, and the general situation (right), i.e., xi = yi = 0, for 0 ≤ i < λ(x).

We iteratively apply this rule to the resulting pair of summands from the previous round,
for each i in increasing order, requiring that x ≥ y at the beginning at every round; otherwise
the rôles of x and y are exchanged. After the (i + 1)th round, no constellations remain with
xr = yr = 0, for 0 ≤ r ≤ i. Finally, for every i with 0 ≤ i ≤ λ(x), no constellations remain
with xi = yi = 0.

When y denotes the smaller summand obtained by the above procedure, the constellations
where yi = 1 do not need to be fixed. The remaining constellations are those where yi = 0
and xi = 1, for some i ≤ λ(x). The second rule is to exchange the bit values, that is, we
set yi = 1 and xi = 0. It is clear that the two summands thus obtained add up to n. Also, the
sum of the Hamming weights is unaffected. We apply the second rule as often as needed, and
the number of these rule applications is of course bounded by λ(x) + 1. For an illustration of
the second rule we refer to Figure 2.

λ(x) . . . i . . . 0
x = ∗ 1 ∗
y = ∗ 0 ∗

is changed to

λ(x) . . . i . . . 0
x = ∗ 0 ∗
y = ∗ 1 ∗

Figure 2 Second bit manipulation rule for the decomposition of n into x and y that is applied as
often as needed.

After all applications of the second rule, we end up with the larger summand having all
bits set to 1. Since the other two conditions are invariant under application of both rules,
this completes the proof. ◀

5 Optimal Expressions for the first k Palindromes in Lexicographic
Order

Now that we have collected the necessary tools, we aim to solve the recurrence f(n, k) also
for the case where k is not a power of two. Recall that Lemma 3 allows us to write up the
recurrence in simplified form, as follows:

f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f(n, k) = min
1≤i<k

{f(n, i) + f(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f(n, 1) = 2n.
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We transform this recurrence into a recurrence on one unknown within two steps. In the
first step, we define another function in two unknowns in terms of f(n, k).

▶ Lemma 9. Let g(n, k) := 1
2 f(n, k) − n. Then g(n, k) satisfies the recurrence

g(n, k) = g(n − 1, k), for n ≥ 2 and 2 ≤ k ≤ 2n−1,

g(n, k) = n + min
1≤i<k

{g(n, i) + g(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
g(n, 1) = 0.

We shall apply the second transformation only for the “interesting” parameter range
of k, that is, when k is in the upper half of the admissible range. Namely, we observe, that
whenever 2n−1 < k ≤ 2n, then we can express n in terms of k as n = 1 + λ(k − 1). Recalling
that λ(0) = 0, we set

h(k) := g(1 + λ(k − 1), k), for k ≥ 1.

Then we find the following situation:

▶ Lemma 10. Let h(k) := g(1 + λ(k − 1), k), for k ≥ 1. Then h(k) satisfies the recurrence

h(1) = 0
h(k) = 1 + λ(k − 1) + min

1≤i<k
{h(i) + h(k − i)} for k ≥ 2,

and it has the solution h(k) = 2(k − 1) − S2(k − 1).

It is worth mentioning that the formula in Lemma 10 implies that the values of the
recurrence h, starting from h(1), coincide with the (zero-based) sequence A005187 in the
On-Line Encyclopedia of Integer Sequences – the numbers having a partition into distinct
Mersenne numbers greater than zero.

Now let’s undo both transformations. We first determine g(n, k) by using h(k) and its
explicit solution. Then, by elementary calculations we arrive at an alternative recurrence
for f(n, k).

▶ Lemma 11. The function f(n, k) satisfies the recurrence

f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f(n, k) = 2n + 4(k − 1) − 2S2(k − 1), for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f(n, 1) = 2n

and it has the solution f(n, k) = 2n + 4(k − 1) − 2S2(k − 1).

Proof. In order to undo both transformations, we first determine g(n, k) by using h(k) and
its explicit solution from Lemma 10. We find

g(n, k) = g(n − 1, k), for n ≥ 2 and 2 ≤ k ≤ 2n−1,

g(n, k) = 2(k − 1) − S2(k − 1), for n ≥ 1 and 2n−1 < k ≤ 2n,

and
g(n, 1) = 0,
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because, for k > 2n−1 we have

g(n, k) = g(1 + λ(k − 1), k)
= h(k)
= 2(k − 1) − S2(k − 1).

Finally, recall that f(n, k) = 2(g(n, k) + n), which results in

f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

and for k > 2n−1 we calculate

f(n, k) = 2(g(n, k) + n)
= 2 (2(k − 1) − S2(k − 1) + n)
= 2n + 4(k − 1) − 2S2(k − 1).

For the terminating cases of the recurrence, we simply recall those from the original recurrence
defining f(n, k):

f(n, 1) = 2n,

and this completes the proof.
It remains to solve the alternative recurrence, which is now done with ease. The statement

is proved by lexicographic induction on (k, n). Let k = 1, then 2n+4(k −1)−2S2(k −1) = 2n

is obviously an solution for any n. To show the statement for k ≥ 2 and n ≥ 1, we assume
that the statement holds for all pairs (k′, n′) with k′ < k, as well as for all pairs with k′ = k

and n′ < n. Then for the case k > 2n−1 we have nothing to prove and in case 2 ≤ k ≤ 2n−1,
we apply the induction hypothesis and get

f(n, k) = f(n − 1, k) + 2
= 2(n − 1) + 4(k − 1) − 2S2(k − 1) + 2
= 2n + 4(k − 1) − 2S2(k − 1)

as desired. ◀

With the lower bound in place, it remains to give an optimal regular expression matching
the lower bound. The expression En,k describes the lexicographically first k palindromes of
length 2n, and is defined recursively as follows:

En,k = a · En−1,k · a, for n ≥ 1 and 1 ≤ k ≤ 2n−1,

En,k = a · En−1,2n−1 · a + b · En−1,k−2n−1 · b, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
E0,1 = ϵ.

We can prove by induction that this recursive upper bound on the alphabetic width meets
the lower bound:

▶ Lemma 12. For n ≥ 0 and k ≥ 1, awidth(En,k) = f(n, k).

It remains to show that the definition of En,k is semantically correct, in the sense that it
describes exactly the set of the lexicographically first k palindromes.
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▶ Lemma 13. Let n, k be integers with n ≥ 0 and 1 ≤ k ≤ 2n. Then the regular expres-
sion En,k describes the lexicographically first k palindromes of length 2n.

Proof. We begin with a natural bijection between palindromes of length 2n, for n ≥ 1,
and the nonnegative integers in the range 0, 1, . . . , 2n − 1: for a nonnegative integer j

with 0 ≤ j < 2n, with binary expansion
∑∞

r=0 jr2r = k, let ρ : {0 7→ a, 1 7→ b}, and
let ρn(j) = ρ(jn−1)ρ(jn−2) · · · ρ(j0) denote the usual n-bit binary representation of j in
positional notation – with leading zeros if needed. Define the family of functions σn by
letting σn(j) = ρn(j)ρn(j)R. Whenever n is understood from the context, we shall drop the
subscript and write ρ(j) instead of ρn(j), and similarly for σ. Observe, that, among the
palindromes of length 2n, the word σ(j) is the (j + 1)th palindrome in lexicographic order.
Conversely, for a palindrome w of length 2n, the preimage σ−1(w) equals the (zero-based)
lexicographic index of w among the palindromes of length 2n. For convenience, we extend
the definition of σn to the case n = 0 by letting σ0(0) = ϵ.

We claim that, given n ≥ 1 and k with 1 ≤ k ≤ 2n, as well as a nonnegative integer j < k,
the word σ(j) is in L(En,k). This claim will be proven by induction on n. The base case is
n = 0. We thus have k = 1. Here, σ0(0) = ϵ, and E0,1 = ϵ. For the induction step, we now
assume n ≥ 1. We consider two cases:
Case 1. Consider first the case j < 2n−1. Then σn(j) = a · σn−1(j) · a. By the induc-

tion hypothesis, σn−1(j) ∈ L(En−1,k), and by the recursive definition of the regular
expression En,k, we have a · L(En−1,k) · a ⊆ L(En,k). Hence, σ(j) ∈ L(En,k) in this case.

Case 2. The other case is j ≥ 2n−1. Then σn(j) = b · σn−1(j − 2n−1) · b. Observe, that also
k > 2n−1 holds, since j < k. Let k′ = k −2n−1 and j′ = j −2n−1. Then k′ ≥ 1 and j′ ≥ 0,
as well as n − 1 ≥ 0. Using the induction hypothesis, we have σn−1(j′) ∈ L(En−1,k′). In
other words, σn−1(j − 2n−1) ∈ L(En−1,k−2n−1). Now, by the recursive definition of the
regular expression En,k, we obtain b ·L(En−1,k−2n−1) ·b ⊆ L(En,k). Hence, σ(j) ∈ L(En,k)
also in this case.

This completes the induction, and the claim is established.
It remains to show that no other words are described by En,k. To this end, we note

first that the recursive definition of En,k ensures that it describes no non-palindromic words,
and only words of length 2n. Now let w be any word that is described by En,k. Recall
that σ−1(w) is equal to the lexicographic index of w among all palindromes of length 2n.

We shall prove by induction on n that the lexicographic index of every w described
by En,k is at most k − 1. In the base case n = 0, we must have k = 1 and w = ϵ, and
σ−1(w) = 0 = k − 1 in this case. Now assume n ≥ 1. We distinguish two cases:
Case 1. Consider first the case that the word w is the form axa. We need to consider two

subcases. The first subcase is k ≤ 2n−1. Here, by definition of En,k, the word x is in
L(En−1,k). Bearing in mind that σ−1(x) = σ−1

n−1(x) and σ−1(w) = σ−1
n (w) denote two

different functions, we will again drop the subscripts for convenient reading. By the
induction assumption, σ−1(x) ≤ k − 1. Recalling the bijection between natural numbers
and palindromes, we have σ−1(axa) = σ−1(x). With axa = w, we obtain σ−1(w) =
σ−1(x) in this subcase. The second subcase is k > 2n−1. Here, by definition of En,k, the
word x is in L(En−1,2n−1). By the induction assumption, σ−1(x) ≤ 2n−1 ≤ k − 1, and
using again the bijection between natural numbers and palindromes, σ−1(w) = σ−1(x).

Case 2. Now consider the case that the word w is of the form bxb. By the recursive definition
of En,k, we can conclude that x ∈ L(En−1,k−2n−1) – and that k > 2n−1. By the induction
assumption, σ−1(x) ≤ k − 2n−1 − 1. Recalling the bijection between natural numbers
and palindromes, we have σ−1(bxb) = 2n−1 + σ−1(x). Taking these two facts together,
we obtain σ−1(w) = 2n−1 + σ−1(x) ≤ 2n−1 + k − 2n−1 − 1 ≤ k − 1, as desired.

This completes the proof of the second claim, and the proof of the lemma is completed. ◀

MFCS 2021



52:12 Optimal Regular Expressions for Palindromes of Given Length

We thus can summarize our findings about palindromes of even length in the last three
lemmata in the following statement.

▶ Theorem 14. Let k and n be integers, with n ≥ 0 and 1 ≤ k ≤ 2n. Then the set of
the lexicographically first k palindromes of length 2n over a binary alphabet requires regular
expressions of alphabetic width exactly 2n + 4(k − 1) − 2S2(k − 1).

6 Alphabetic Width of Palindromes of Odd Length

We turn to palindromes of odd length. The recurrences essentially differ only in the
terminating cases. But changing the starting conditions of a nonlinear system may, or may
not, change everything. We thus provide a careful writeup.

To this end, for positive integer n, let P̃n denote the set of palindromes of length 2n − 1
over a binary alphabet. Now define ℓ̃(n, k) to be the minimum alphabetic width of a regular
expression describing a subset of P̃n, where the subset has cardinality at least k. Again by
definition, ℓ̃(n, k) is monotone with respect to the parameter k.

▶ Lemma 15. Let n ≥ 1 and 1 ≤ k ≤ 2n. Then ℓ̃(n, k) obeys the following recurrence:

ℓ̃(n, k) ≥ min{ ℓ̃(n − 1, k) + 2, min
1≤i<k

{ℓ̃(n, i) + ℓ̃(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

ℓ̃(n, k) ≥ min
1≤i<k

{ℓ̃(n, i) + ℓ̃(n, k − i)}, for n ≥ 1 and k > 2n−1,

and
ℓ̃(n, 1) = 2n − 1.

In analogy to the definition of the function f , let f̃ denote the integer-valued function
which is defined by that recurrence, that is,

f̃(n, k) = min{ f̃(n − 1, k) + 2, min
1≤i<k

{f̃(n, i) + f̃(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f̃(n, k) = min
1≤i<k

{f̃(n, i) + f̃(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f̃(n, 1) = 2n − 1.

We estimate the values of the function f̃(n, k) as follows:

▶ Lemma 16. Let n ≥ 1 and 1 ≤ k ≤ 2n. Then f̃(n, k) = f(n, k) − k.

Thus, we immediately obtain:

▶ Lemma 17. f̃(n, 2n) = 3 · 2n − 4.

With the lower bound in place, it remains to give an optimal regular expression matching
the lower bound. The expression Ẽn,k is defined recursively as follows.

Ẽn,k = a · Ẽn−1,k · a, for n ≥ 2 and 1 ≤ k ≤ 2n−1,

Ẽn,k = a · Ẽn−1,2n−1 · a + b · Ẽn−1,k−2n−1 · b, for n ≥ 2 and 2n−1 < k ≤ 2n,

and
Ẽ1,1 = a as well as Ẽ1,2 = a + b.

The semantic correctness proof runs along the lines of the proof of Lemma 13.
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▶ Lemma 18. Let n, k be integers with n ≥ 1 and 1 ≤ k ≤ 2n. Then the regular expres-
sion Ẽn,k describes the lexicographically first k palindromes of length 2n − 1.

It remains to show that the alphabetic width of Ẽn,k meets the lower bound. An easy
induction reduces this to the case of even length palindromes, in a similar vein as we did it
in Lemma 16.

▶ Lemma 19. Let n, k be integers with n ≥ 1 and 1 ≤ k ≤ 2n. Then awidth(Ẽn,k) =
awidth(En,k) − k.

We thus can summarize our findings about palindromes of odd length in the following
theorem – compare with Theorem 14.

▶ Theorem 20. Let k and n be integers, with n ≥ 1 and 1 ≤ k ≤ 2n. Then the set of the
lexicographically first k palindromes of length 2n − 1 over a binary alphabet requires regular
expressions of alphabetic width exactly 2n + 3(k − 1) − 2S2(k − 1) − 1.

We conclude this section with a curious observation, which was contributed by an
anonymous reviewer. Recall that

ℓ̃(n, k) = min
|L|≥k

L⊆P̃n

{awidth(L)},

that is, ℓ̃(n, k) denotes the minimum alphabetic width of a regular expression describing a
subset of P̃n, where the subset has cardinality at least k. Then the analysis in the present
work establishes that the minimum is attained by the set of the lexicographically first k

palindromes, and a corresponding statement holds in the even length case. This observation
is summarized in the following theorem (which no longer needs to distinguish between even
and odd length):

▶ Theorem 21. For n ≥ 0 and 1 ≤ k ≤ 2⌈n/2⌉, let Paln denote the set of palindromes of
length n, and let Lexn,k denote the set of the lexicographically first k palindromes of length n.
Then

Lexn,k ∈ argmin
|L|≥k

L⊆Paln

awidth(L).

As the reviewer pointed out, this is reminiscent of the Kruskal-Katona Theorem from
extremal combinatorics, see, e.g., [19]. Among several equivalent formulations of that theorem,
one of them deals with minimization of the size of shadows in layers of the Boolean hypercube.
The Kruskal-Katona Theorem then states that initial segments with respect to a version of
the lexicographic ordering form sets with the smallest shadow possible.

7 Conclusion

Most lower bound proofs for regular expression size can be put into the following three
categories: proofs based on (arithmetic) circuit complexity, e.g., [4, 7, 14], proofs based
on the star height lemma, e.g., [9, 12, 13], and specialized proofs that are tailor-made for
a specific language family, e.g., [2, 6, 10, 23]. While the present work falls into the third
category, the lower bound method is quite similar to the one for permutations [23]. We
expect that the method can be expanded to further families of finite languages, where the
best known regular expressions have a divide-and-conquer flavor. A few examples from the
literature come to mind:
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First, the binomial language Bn,k = { w ∈ {0, 1}n : |w|1 = k }. A regular expression of
divide-and-conquer flavor having size nO(log k) for this language was proposed in [7], and
the question of optimality was posed as an open problem. In [4], methods from arithmetic
circuit complexity are utilized to derive a lower bound of nkΩ(log k).
Regarding larger alphabets, the less-than relation on an n-set is given as { ij | 1 ≤ i <

j ≤ n }. For this language, the minimum required regular expression size was determined
exactly in [2], which implies a lower bound on the complexity of rectifier networks. This
language naturally generalizes to the set of increasing sequences of length k over an n-set.
For this an arithmetic formula lower bound was derived in [17]. As pointed out in [4],
that result transfers to lower bounds on regular expression size.
For the set of permutations of an n-set, the exact bound was determined in [23], and an
asymptotic lower bound is given in [4] using a different method. Its natural generalization
is the set of k-permutations of an n-set. The nondeterministic state complexity of this
language is studied in [1]. Their motivation is that a lower bound on nondeterministic
state complexity gives lower bounds on the running time for parameterized algorithms
following the divide-and-conquer paradigm. We claim that, by the well-nested nature of
divide-and-conquer, a (potentially higher) lower bound on regular expression size would
serve this goal equally well.

The cited examples witness a lot of cross-fertilization between lower bound methods on
various models of computation, including arithmetic circuits, rectifier networks, families of
parameterized algorithms, and, of course, regular expressions.
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Abstract
We study the expressiveness and succinctness of good-for-games pushdown automata (GFG-PDA)
over finite words, that is, pushdown automata whose nondeterminism can be resolved based on the
run constructed so far, but independently of the remainder of the input word.

We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all
context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that
GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially
more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA),
which enjoy better closure properties than PDA, and for which we show GFGness to be ExpTime-
complete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can
be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight.

Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA
has a positional resolver, a function that resolves nondeterminism and that is only dependant on the
current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA,
but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable.
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1 Introduction

Nondeterminism adds both expressiveness and succinctness to deterministic pushdown
automata. Indeed, the class of context-free languages (CFL), recognised by nondeterministic
pushdown automata (PDA), is strictly larger than the class of deterministic context-free
languages (DCFL), recognised by deterministic pushdown automata (DPDA), both over
finite and infinite words. Even when restricted to languages in DCFL, there is no computable
bound on the relative succinctness of PDA [15, 38]. In other words, nondeterminism is
remarkably powerful, even for representing deterministic languages. The cost of such succinct
representations is algorithmic: problems such as universality and solving games with a CFL
winning condition are undecidable for PDA [11, 19], while they are decidable for DPDA [39].
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Intermediate forms of automata that lie between deterministic and nondeterministic models
have the potential to mitigate some of the disadvantages of fully nondeterministic automata
while retaining some of the benefits of the deterministic ones.

Unambiguity and bounded ambiguity, for example, restrict nondeterminism by requiring
words to have at most one or at most k, for some fixed k, accepting runs. Holzer and Kutrib
survey the noncomputable succinctness gaps between unambiguous PDA and both PDA
and DPDA [18], while Okhotin and Salomaa show that unambiguous visibly pushdown
automata are exponentially more succinct that DPDA [31]. Universality of unambiguous
PDA is decidable, as it is decidable for unambiguous context-free grammars [33], which are
effectively equivalent [17]. However, to the best of our knowledge, unambiguity is not known
to reduce the algorithmic complexity of solving games with a context-free winning condition.

Another important type of restricted nondeterminism that is known to reduce the com-
plexity of universality and solving games has been studied under the names of good-for-games
(GFG) nondeterminism [16] and history-determinism [10]. Intuitively, a nondeterministic
automaton is GFG if its nondeterminism can be resolved on-the-fly, i.e. without knowledge
of the remainder of the input word to be processed.

For finite automata on finite words, where nondeterminism adds succinctness, but not
expressiveness, GFG nondeterminism does not even add succinctness: every GFG-NFA
contains an equivalent DFA [6], which can be obtained by pruning transitions from the
GFG-NFA. Thus, GFG-NFA cannot be more succinct than DFA. But for finite automata on
infinite words, where nondeterminism again only adds succintness, but not expressiveness,
GFG coBüchi automata can be exponentially more succinct than deterministic automata [23].
Finally, for certain quantitative automata over infinite words, GFG nondeterminism adds as
much expressiveness as arbitrary nondeterminism [10].

Recently, pushdown automata on infinite words with GFG nondeterminism (ω-GFG-PDA)
were shown to be strictly more expressive than ω-DPDA, while universality and solving games
for ω-GFG-PDA are not harder than for ω-DPDA [25]. Thus, GFG nondeterminism adds
expressiveness without increasing the complexity of these problems, i.e. pushdown automata
with GFG nondeterminism induce a novel and intriguing class of context-free ω-languages.

Here, we continue this work by studying the expressiveness and succinctness of PDA over
finite words. While the decidability results for ω-GFG-PDA on infinite words also hold for
GFG-PDA on finite words, the separation argument between ω-GFG-PDA and ω-DPDA
depends crucially on combining GFG nondeterminism with the coBüchi acceptance condition.
Since this condition is only relevant for infinite words, the separation result does not transfer
to the setting of finite words.

Nevertheless, we prove that GFG-PDA are more expressive than DPDA, yielding the
first class of automata on finite words where GFG nondeterminism adds expressiveness. The
language witnessing the separation is remarkably simple, in contrast to the relatively subtle
argument for the infinitary result [25]: the language {ai$aj$bk$ | k ⩽ max(i, j)} is recognised
by a GFG-PDA but not by a DPDA. This yields a new class of languages, those recognised
by GFG-PDA over finite words, for which universality and solving games are decidable. We
also show that this class is incomparable with unambiguous context-free languages.

We then turn our attention to succinctness of GFG-PDA. We show that the succinctness
gap between DPDA and GFG-PDA is at least exponential, while the gap between GFG-PDA
and PDA is at least double-exponential. These results hold already for finite words.

To the best of our knowledge, both our expressiveness and our succinctness results are
the first examples of good-for-games nondeterminism being used effectively over finite, rather
than infinite, words (recall that all GFG-NFA are determinisable by pruning). Also, this
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is the first succinctness result for good-for-games automata that does not depend on the
infinitary coBüchi acceptance condition, which was used to show the exponential succinctness
of GFG coBüchi automata, as compared to deterministic ones [23].

We then study an important subclass of GFG-PDA, namely, GFG visibly pushdown
automata (VPA), in which the stack behaviour (push, pop, skip) is determined by the
input letter only. GFG-VPA enjoy the good closure properties of VPA (to which they are
expressively equivalent): they are closed under complement, union and intersection. We show
that there is an exponential succinctness gap between deterministic VPA (DVPA) and GFG-
VPA, as well as between GFG-VPA and VPA. Both of these are tight, as VPA, and therefore
GFG-VPA as well, admit an exponential determinisation procedure [2]. Furthermore, we
show that GFGness of VPA is decidable in ExpTime. This makes GFG-VPA a particularly
interesting class of PDA as they are recognisable, succinct, have good closure properties
and deciding universality and solving games are both in ExpTime. In contrast, solving
ω-VPA games is 2ExpTime-complete [27]. We also relate the problem of checking GFGness
with the good-enough synthesis [1] or uniformization problem [9], which we show to be
ExpTime-complete for DVPA and GFG-PDA.

Nondeterminism in GFG automata is resolved on-the-fly, i.e. the next transition to be
taken only depends on the run prefix constructed so far and the next letter to be processed.
Thus, the complexity of a resolver, mapping run prefixes and letters to transitions, is a
natural complexity measure for GFG automata. For example, finite GFG automata (on
finite and infinite words) have a finite-state resolver [16]. For pushdown automata with their
infinite configuration space, the situation is markedly different: On one hand, we show that
GFG-PDA admit positional resolvers, that is, resolvers that depend only on the current
configuration, rather than on the entire run prefix produced so far. Note that this result only
holds for GFG-PDA over finite words, but not for ω-GFG-PDA. Yet, positionality does not
imply that resolvers are simple to implement. We show that there are GFG-PDA that do
not admit a resolver implementable by a pushdown transducer. In contrast, all GFG-VPA
admit pushdown resolvers, again showing that GFG-VPA are better behaved than general
GFG-PDA. Finally, GFG-PDA with finite-state resolvers are determinisable.

All proofs omitted due to space restrictions can be found in the full version [14].

Related work

The notion of GFG nondeterminism has emerged independently several times, at least as
Colcombet’s history-determinism [10], in Piterman and Henzinger’s GFG automata [16],
and as Kupferman, Safra, and Vardi’s nondeterminism for recognising derived languages,
that is, the language of trees of which all branches are in a regular language [24]. Related
notions have also emerged in the context of XML document parsing. Indeed, preorder typed
visibly pushdown languages and 1-pass preorder typeable tree languages, considered by
Kumar, Madhusudan, and Viswanathan [21] and Martens, Neven, Schwentick, and Bex [28]
respectively, also consider nondeterminism which can be resolved on-the-fly. However, the
restrictions there are stronger than simple GFG nondeterminism, as they also require the
typing to be unique, roughly corresponding to unambiguity in automata models and grammars.
This motivates the further study of unambiguous GFG automata, although this remains
out of scope for the present paper. The XML extension AXML has also inspired Active
Context Free Games [29], in which one player, aiming to produce a word within a target
regular language, chooses positions on a word and the other player chooses a rewriting rule
from a context-free grammar. Restricting the strategies of the first player to moving from
left to right makes finding the winner decidable [29, 5]; however, since the player still knows
the future of the word, this restriction is not directly comparable to GFG nondeterminism.
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Unambiguity, or bounded ambiguity, is an orthogonal way of restricting nondeterminism
by limiting the number of permitted accepting runs per word. For regular languages, it
leads to polynomial equivalence and containment algorithms [37]. Minimization remains
NP-complete for both unambiguous automata [20, 4] and GFG automata [35] (at least when
acceptance is defined on states, see [32]). On pushdown automata, increasing the permitted
degree of ambiguity leads to both greater expressiveness and unbounded succinctness [17].
Finally, let us mention two more ways of measuring–and restricting–nondeterminism in
PDA: bounded nondeterminism, as studied by Herzog [17] counts the branching in the
run-tree of a word, while the minmax measure [34, 13] counts the number of nondeterministic
guesses required to accept a word. The natural generalisation of GFGness as the width of an
automaton [22] has not yet, to the best of our knowledge, been studied for PDA.

2 Preliminaries

An alphabet Σ is a finite nonempty set of letters. The empty word is denoted by ε, the
length of a word w is denoted by |w|, and the nth letter of w is denoted by w(n) (starting
with n = 0). The set of (finite) words over Σ is denoted by Σ∗, the set of nonempty (finite)
words over Σ by Σ+, and the set of finite words of length at most n by Σ⩽n. A language
over Σ is a subset of Σ∗.

For alphabets Σ1, Σ2, we extend functions f : Σ1 → Σ∗
2 homomorphically to words over

Σ1 via f(w) = f(w(0))f(w(1))f(w(2)) · · · .

2.1 Pushdown automata
A pushdown automaton (PDA for short) P = (Q, Σ, Γ, qI , ∆, F ) consists of a finite set Q of
states with the initial state qI ∈ Q, an input alphabet Σ, a stack alphabet Γ, a transition
relation ∆ to be specified, and a set F of final states. For notational convenience, we define
Σε = Σ∪{ε} and Γ⊥ = Γ∪{⊥}, where ⊥ /∈ Γ is a designated stack bottom symbol. Then, the
transition relation ∆ is a subset of Q×Γ⊥ ×Σε ×Q×Γ⩽2

⊥ that we require to neither write nor
delete the stack bottom symbol from the stack: If (q, ⊥, a, q′, γ) ∈ ∆, then γ ∈ ⊥ · (Γ ∪ {ε}),
and if (q, X, a, q′, γ) ∈ ∆ for X ∈ Γ, then γ ∈ Γ⩽2. Given a transition τ = (q, X, a, q′, γ) let
ℓ(τ) = a ∈ Σε. We say that τ is an ℓ(τ)-transition and that τ is a Σ-transition, if ℓ(τ) ∈ Σ.
For a finite sequence ρ over ∆, the word ℓ(ρ) ∈ Σ∗ is defined by applying ℓ homomorphically
to every transition. We take the size of P to be |Q| + |Γ|.1

A stack content is a finite word in ⊥Γ∗ (i.e. the top of the stack is at the end) and a
configuration c = (q, γ) of P consists of a state q ∈ Q and a stack content γ. The initial
configuration is (qI , ⊥).

The set of modes of P is Q × Γ⊥. A mode (q, X) enables all transitions of the
form (q, X, a, q′, γ′) for some a ∈ Σε, q′ ∈ Q, and γ′ ∈ Γ⩽2

⊥ . The mode of a configura-
tion c = (q, γX) is (q, X). A transition τ is enabled by c if it is enabled by c’s mode. In this
case, we write (q, γX) τ−→ (q′, γγ′), where τ = (q, X, a, q′, γ′).

A run of P is a finite sequence ρ = c0τ0c1τ1 · · · cn−1τn−1cn of configurations and transitions
with c0 being the initial configuration and cn′

τn′−−→ cn′+1 for every n′ < n. The run ρ is a run
of P on w ∈ Σ∗, if w = ℓ(ρ). We say that ρ is accepting if it ends in a configuration whose
state is final. The language L(P) recognized by P contains all w ∈ Σ∗ such that P has an
accepting run on w.

1 Note that we prove exponential succinctness gaps, so the exact definition of the size is irrelevant, as
long as it is polynomial in |Q| and |Γ|. Here, we pick the sum for the sake of simplicity.
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q

q1

q2

a, ⊥ | ⊥A

b, ⊥ | ⊥B
c, X | XN

d, N | ε

d, N | N

d, N | ε d, N | ε

d, N | N

b, B | ε

a, A | ε

Figure 1 The PDA P from Example 2. Grey states are final, and X is an arbitrary stack symbol.

▶ Remark 1. Let c0τ0c1τ1 · · · cn−1τn−1cn be a run of P. Then, the sequence c0c1 · · · cn−1cn

of configurations is uniquely determined by the sequence τ0τ1 · · · τn−1 of transitions. Hence,
whenever convenient, we treat a sequence of transitions as a run if it indeed induces one (not
every such sequence does induce a run, e.g. if a transition τn′ is not enabled in cn′).

We say that a PDA P is deterministic (DPDA) if
every mode of P enables at most one a-transition for every a ∈ Σ ∪ {ε}, and
for every mode of P, if it enables some ε-transition, then it does not enable any Σ-
transition.

Hence, for every input and for every run prefix on it there is at most one enabled transition
to continue the run. Still, due to the existence of ε-transitions, a DPDA can have more than
one run on a given input. However, these only differ by trailing ε-transitions.

The class of languages recognized by PDA is denoted by CFL, the class of languages
recognized by DPDA by DCFL.

▶ Example 2. The PDA P depicted in Figure 1 recognizes the language {acndna | n ⩾
1} ∪ {bcnd2nb | n ⩾ 1}. Note that while P is nondeterministic, L(P) is in DCFL.

2.2 Good-for-games Pushdown Automata
Here, we introduce good-for-games pushdown automata on finite words (GFG-PDA for short),
nondeterministic pushdown automata whose nondeterminism can be resolved based on the
run prefix constructed so far and on the next input letter to be processed, but independently
of the continuation of the input beyond the next letter.

As an example, consider the PDA P from Example 2. It is nondeterministic, but knowing
whether the first transition of the run processed an a or a b allows the nondeterminism to be
resolved in a configuration of the form (q, γN) when processing a d: in the former case, take
the transition to state q1, in the latter case the transition to state q2. Afterwards, there are
no nondeterministic choices to make and the resulting run is accepting whenever the input is
in the language. This automaton is therefore good-for-games.

Formally, a PDA P = (Q, Σ, Γ, qI , ∆, F ) is good-for-games if there is a (nondeterminism)
resolver for P , a function r : ∆∗ × Σ → ∆ such that for every w ∈ L(P), there is an accepting
run ρ = c0τ0 · · · τncn on w that has no trailing ε-transitions, i.e.
1. n = 0 if w = ε (which implies that c0 is accepting), and
2. ℓ(τ0 · · · τn−1) is a strict prefix of w, if w ̸= ε,
and τn′ = r(τ0 · · · τn′−1, w(|ℓ(τ0 · · · τn′−1)|)) for all 0 ⩽ n′ < n. If w is nonempty, then
w(|ℓ(τ0 · · · τn′−1)|) is defined for all 0 ⩽ n′ < n by the second requirement. Note that ρ is
unique if it exists.

Note that the prefix processed so far can be recovered from r’s input, i.e. it is ℓ(ρ).
However, the converse is not true due to the existence of ε-transitions. This is the reason
that the run prefix and not the input prefix is the argument for the resolver. We denote the
class of languages recognised by GFG-PDA by GFG-CFL.

MFCS 2021
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Intuitively, every DPDA should be good-for-games, as there is no nondeterminism to
resolve during a run. However, in order to reach a final state, a run of a DPDA on some
input w may traverse trailing ε-transitions after the last letter of w is processed. On the
other hand, the run of a GFG-PDA on w consistent with any resolver has to end with
the transition processing the last letter of w. Hence, not every DPDA recognises the same
language when viewed as a GFG-PDA. Nevertheless, we show, using standard pushdown
automata constructions, that every DPDA can be turned into an equivalent GFG-PDA. As
every GFG-PDA is a PDA by definition, we obtain a hierarchy of languages.

▶ Lemma 3. DCFL ⊆ GFG-CFL ⊆ CFL.

Instead of requiring that GFG-PDA end their run with the last letter processed, one
could add an end-of-word marker that allows traversing trailing ε-transitions after the last
letter has been processed. In Appendix A.1, we show that this alternative definition does
not increase expressiveness, which explains our (arguably simpler) definition.

Finally, let us remark that GFGness of PDA and context-free languages is undecidable.
These problems were shown to be undecidable for ω-GFG-PDA and ω-GFG-CFL by reductions
from the inclusion and universality problem for PDA on finite words [25]. The same reductions
also show that these problems are undecidable over PDA on finite words.

▶ Theorem 4. The following problems are undecidable:
1. Given a PDA P, is P a GFG-PDA?
2. Given a PDA P, is L(P) ∈ GFG-CFL?

2.3 Games and Universality
One of the motivations for GFG automata is that solving games with winning conditions
given by a GFG automaton is easier than for nondeterministic automata. This makes them
appealing for applications such as the synthesis of reactive systems, which can be modelled as
a game between an antagonistic environment and the system. Solving games is undecidable
for PDA in general [11], both over finite and infinite words, while for ω-GFG-PDA, it is
ExpTime-complete [25]. As a corollary, universality is also decidable for ω-GFG-PDA, while
it is undecidable for PDA, both over finite and infinite words [19].

Here, we consider Gale-Stewart games [12], abstract games induced by a language in
which two players alternately pick letters, thereby constructing an infinite word. One player
aims to construct a word that is in the language while the other aims to construct one that
is not in the language. Note that these games are different, but related, to games played on
configuration graphs of pushdown automata [39].

Formally, given a language L ⊆ (Σ1 × Σ2)∗ of sequences of letter pairs, the game G(L)
is played between Player 1 and Player 2 in rounds i = 0, 1, . . . as follows: At each round i,
Player 1 plays a letter ai ∈ Σ1 and Player 2 answers with a letter bi ∈ Σ2. A play of G(L) is
an infinite word

(
a0
b0

)(
a1
b1

)
· · · and Player 2 wins such a play if and only if each of its prefixes

is in the language L. A strategy for Player 2 is a mapping from Σ+
1 to Σ2 that gives for each

prefix played by Player 1 the next letter to play. A play agrees with a strategy σ if for each i,
bi = σ(a0a1 . . . ai). Player 2 wins G(L) if she has a strategy that only agrees with plays that
are winning for Player 2. Observe that Player 2 loses whenever the projection of L onto its
first component is not universal. Finally, universality reduces to solving these games: P is
universal if and only if Player 2 wins G(L) for L = {

(
w(0)

#
)

· · ·
(

w(n)
#

)
| w(0) · · · w(n) ∈ L(P)}.

We now argue that solving games for GFG-PDA easily reduces to the case of ω-GFG-PDA,
which are just GFG-PDA over infinite words, where acceptance is not determined by final
state, since runs are infinite, but rather by the states or transitions visited infinitely often.
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Here, we only need safety ω-GFG-PDA, in which every infinite run is accepting (i.e. rejection
is implemented via missing transitions). The infinite Gale-Stewart game over a language L

of infinite words, also denoted by G(L), is as above, except that victory is determined by
whether the infinite word built along the play is in L.

▶ Lemma 5. Given a GFG-PDA P, there is a safety ω-GFG-PDA P ′ no larger than P such
that Player 2 wins G(L(P)) if and only if she wins G(L(P ′)).

Proof. Let P ′ be the PDA obtained from P by removing all transitions (q, X, a, q′, γ) of P
with a ∈ Σ and with non-final q′.

With a safety condition, in which every infinite run is accepting, P ′ recognises exactly
those infinite words whose prefixes are all accepted by P. Hence, the games G(L(P)) and
G(L(P ′)) have the same winning player. Note that the correctness of this construction
crucially relies on our definition of GFG-PDA, which requires a run on a finite word to end
as soon as the last letter is processed. Then, the word is accepted if and only if the state
reached by processing this last letter is final.

Finally, since P is GFG, so is P ′. Consider an infinite input in L(P ′). Then, every
prefix w has an accepting run of P induced by its resolver, which implies that the last
transition of this run (which processes the last letter of w) is not one of those that are
removed to obtain P ′. Now, an induction shows that the same resolver works for P ′ as
well, relying on the fact that if w and w′ with |w| < |w′| are two such prefixes, then the
resolver-induced run of P on w is a prefix of the resolver-induced run of P on w′. ◀

Our main results of this section are now direct consequences of the corresponding results
on ω-words [25].

▶ Corollary 6. Given a GFG-PDA P, deciding whether L(P) = Σ∗ and whether Player 2
wins G(L(P)) are both in ExpTime.

2.4 Closure properties
Like ω-GFG-PDA, GFG-PDA have poor closure properties.

▶ Theorem 7. GFG-PDA are not closed under union, intersection, complementation, set
difference and homomorphism.

The proofs are similar to those used for ω-GFG-PDA and relegated to the full version [14].
There, we also study the closure properties under these operations with regular languages: If
L is in GFG-CFL and R is regular, then L ∪ R, L ∩ R and L\R are also in GFG-CFL, but
R\L is not necessarily in GFG-CFL.

3 Expressiveness

Here we show that GFG-PDA are more expressive than DPDA but less expressive than PDA.

▶ Theorem 8. DCFL ⊊ GFG-CFL ⊊ CFL.

To show that GFG-PDA are more expressive than deterministic ones, we consider the
language B2 = {ai$aj$bk$ | k ⩽ max(i, j)}. It is recognised by the PDA PB2 depicted in
Figure 2, hence B2 ∈ CFL. The first two states q1 and q2 deterministically push the input
onto the stack, until the occurrence of the second $. When the second $ is processed, there
is a nondeterministic choice to move to p1 or p2 and erase along ε-transitions 1 or 0 blocks

MFCS 2021



53:8 A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct

q1 q2 p1 p2 f

a, X | Xa

$, X | X$ $, X | X$

a, X | Xa

$, X | X

$, X | X

ε, a | ε b, a | ε

ε, $ | ε

Figure 2 A PDA PB2 recognising B2. Grey states are final, and X is an arbitrary stack symbol.

from the stack, so that the 1st or 2nd block of a’s respectively remains at the top of the
stack. Then, the automaton compares the length of the b-block in the input with the length
of the a-block at the top of the stack and accepts if the b-block is shorter, i.e. the third
$ is processed before the whole a-block is popped off the stack. If the input has not the
form ai$aj$bk$, then it is rejected.

We show that B2 ∈ GFG-CFL by proving that PB2 is good-for-games: the nondeter-
ministic choice between moving to p1 or to p2 can be made only based on the prefix ai$aj

processed so far. This is straightforward, as a resolver only needs to know which of i and j is
larger, which can be determined from the run prefix constructed thus far. Then, in order
to show that B2 is not in DCFL, we prove that its complement Bc

2 is not a context-free
language. Since DCFL is closed under complementation, this implies the desired result.

Finally, to show that PDA are more expressive than GFG-PDA, we consider the language
L = {anbn | n ⩾ 0} ∪ {anb2n | n ⩾ 0}. We note that L ∈ CFL while we show below L /∈
GFG-CFL.

Unambiguous context-free languages, i.e. those generated by grammars for which every
word in the language has a unique leftmost derivation, are another class sitting between
DCFL and CFL. Thus, it is natural to ask how unambiguity and GFGness are related: To
conclude this section, we show that both notions are independent.

▶ Theorem 9. There is an unambiguous context-free language that is not in GFG-CFL and
a language in GFG-CFL that is inherently ambiguous.

An unambiguous grammar for the language {anbn | n ⩾ 0}∪{anb2n | n ⩾ 0} /∈ GFG-CFL
is easy to construct and we show that the language B = {aibjck | i, j, k ⩾ 1, k ⩽ max(i, j)}
is inherently ambiguous. Its inclusion in GFG-CFL is easily established using a similar
argument as for the language B2 = {ai$aj$bk$ | k ⩽ max(i, j)} above. The dollars add
clarity to the GFG-PDA but are cumbersome in the proof of inherent ambiguity.

4 Succinctness

We show that GFG-PDA are not only more expressive than DPDA, but also more succinct.
Similarly, we show that PDA are more succinct than GFG-PDA.

▶ Theorem 10. GFG-PDA can be exponentially more succinct than DPDA, and PDA can
be double-exponentially more succinct than GFG-PDA.

We first show that GFG-PDA can be exponentially more succinct than DPDA. To this
end, we construct a family (Cn)n∈N of languages such that Cn is recognised by a GFG-DPDA
of size O(n), yet every DPDA regognising Cn has at least exponential size in n.

Let cn ∈ (${0, 1}n)∗ be the word describing an n-bit binary counter counting from 0 to
2n − 1. For example, c2 = $00$01$10$11. We consider the family of languages Cn =

{
w ∈

{0, 1, $, #}∗ | w ̸= cn#
}

⊆ {0, 1, $, #}∗ of bad counters.
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We show that the language Cn is recognised by a GFG-PDA of size O(n) and that every
DPDA D recognising Cn has exponential size in n. Observe that this result implies that even
GFG-PDA that are equivalent to DPDA are not determinisable by pruning. In contrast, for
NFA, GFGness implies determinisability by pruning [6].

We conclude this section by showing that PDA can be double-exponentially more succinct
than GFG-PDA. We show that there exists a family (Ln)n>0 of languages such that Ln is
recognised by a PDA of size O(log n) while every GFG-PDA recognising this language has
at least exponential size in n.

Formally, we set Ln = (0 + 1)∗1(0 + 1)n−1, that is, the nth bit from the end is a 1. We
count starting from 1, so that the last bit is the 1st bit from the end. Note that this is the
standard example for showing that NFA can be exponentially more succinct than DFA, and
has been used for many other succinctness results ever since.

5 Good-for-games Visibly Pushdown Automata

One downside of GFG-PDA is that, like ω-GFG-PDA, they have poor closure properties and
checking GFGness is undecidable. We therefore consider a well-behaved class of GFG-PDA,
namely GFG visibly pushdown automata, GFG-VPA for short, that is closed under union,
intersection, and complementation.

Let Σc, Σr and Σint be three disjoint sets of call symbols, return symbols and internal
symbols respectively. Let Σ = Σc ∪ Σr ∪ Σint. A visibly pushdown automaton [2] (VPA)
P = (Q, Σ, Γ, qI , ∆, F ) is a restricted PDA that pushes onto the stack only when it reads a
call symbol, it pops the stack only when a return symbol is read, and does not use the stack
when there is an internal symbol. Formally,

a letter a ∈ Σc is only processed by transitions of the form (q, X, a, q′, XY ) with X ∈ Γ⊥,
i.e. some stack symbol Y ∈ Γ is pushed onto the stack.
A letter a ∈ Σr is only processed by transitions of the form (q, X, a, q′, ε) with X ̸= ⊥ or
(q, ⊥, a, q′, ⊥), i.e. the topmost stack symbol is removed, or if the stack is empty, it is left
unchanged.
A letter a ∈ Σint is only processed by transitions of the form (q, X, a, q′, X) with X ∈ Γ⊥,
i.e. the stack is left unchanged.
There are no ε-transitions.

Intuitively, the stack height of the last configuration of a run processing some w ∈ (Σc ∪ Σr ∪
Σs)∗ only depends on w.

We denote by GFG-VPA the VPA that are good-for-games. Every VPA (and hence every
GFG-VPA) can be determinised, i.e. all three classes of automata recognise the same class
of languages, denoted by VPL, which is a strict subset of DCFL [2]. However, VPA can be
exponentially more succinct than deterministic VPA (DVPA) [2]. We show that there is an
exponential gap both between the succinctness of GFG-VPA and DVPA and between VPA
and GFG-VPA. The proof of the former gap again uses a language of bad counters, similar
to Cn used in Theorem 10, which we adapt for the VPA setting by adding a suffix allowing
the automaton to pop the stack. Furthermore, for the gap between VPA and GFG-VPA, we
similarly adapt the language Ln of words where the nth bit from the end is a 1, from the
proof of Theorem 10, by making sure that the stack height is always bounded by 1. Then, a
GFG-VPA is essentially a GFG-NFA, and therefore determinisable by pruning, which means
that it is as big as a deterministic automaton for the language.

▶ Theorem 11. GFG-VPA can be exponentially more succinct than DVPA and VPA can be
exponentially more succinct than GFG-VPA.
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We now turn to the question of deciding whether a given VPA is GFG. We show decidability
using the one-token game, introduced by Bagnol and Kuperberg [3]. It modifies the game-
based characterisation of GFGness of ω-regular automata by Henzinger and Piterman [16].
While the one-token game does not characterise the GFGness of Büchi automata, here we
show that it suffices for VPA. The matching lower bound follows from a reduction from the
inclusion problem for VPA, which is ExpTime-hard [2], to GFGness (see [25] for details of
the reduction in the context of ω-GFG-PDA).

▶ Theorem 12. The following problem is ExpTime-complete: Given a VPA P, is P GFG?

We first define the one-token game, introduced by Bagnol and Kuperberg [3] in the
context of regular languages, for VPA. Given a VPA P = (Q, Σ, Γ, qI , ∆, F ), the positions
of the one-token game consist of pairs of configurations (ci, c′

i), starting from the initial
configuration of P. At each round i:

Player 1 picks a letter ai ∈ Σ,
Player 2 picks an ai-transition τi ∈ ∆ enabled in ci, leading to a configuration ci+1,
Player 1 picks an ai-transition τ ′

i ∈ ∆ enabled in c′
i, leading to a configuration c′

i+1,
The game proceeds from the configuration (ci+1, c′

i+1).
A play consists of an infinite word a0a1 · · · ∈ Σω and two sequences of transitions τ0τ1 · · ·
and τ ′

0τ ′
1 · · · built by Players 2 and 1 respectively. Player 1 wins if for some n, τ ′

0 · · · τ ′
n

is an accepting run of P over a0 . . . an and τ0 · · · τn is not. Recall that VPA do not have
ε-transitions, so the two runs proceed in lockstep.

Observe that this game can be seen as a safety game on a visibly pushdown arena and
can therefore be encoded as a Gale-Stewart game with a DCFL winning condition. This in
turn is solvable in ExpTime [39]. To prove Theorem 12, it now suffices to argue that this
game characterises whether the VPA P is GFG.

Proof. We now argue that P is GFG if and only if Player 2 wins the one-token game on P .
One direction is immediate: if P is GFG, then the resolver is also a strategy for Player 2 in
the one-token game.

For the converse direction, consider the family of copycat strategies for Player 1 that
copy the transition chosen by Player 2 until she plays an a-transition from a configuration c

to a configuration c′ such that there is a word aw that is accepted from c but w is not
accepted from c′. We call such transitions non-residual. If Player 2 plays such a non-residual
transition, then the copycat strategies stop copying and instead play the letters of w and the
transitions of an accepting run over aw from c.

If Player 2 wins the one-token game with a strategy s, she wins, in particular, against
this family of copycat strategies for Player 1. Observe that copycat strategies win any play
along which Player 2 plays a non-residual transition. Therefore s must avoid ever playing a
non-residual transition. We can now use s to induce a resolver rs for P : rs maps a sequence
of transitions over a word w to the transition chosen by s in the one-token game where
Player 1 played w and a copycat strategy. Then, rs never produces a non-residual transition.
As a result, if a word w is in L(P), then the run induced by rs over every prefix v of w leads
to a configuration that accepts the remainder of w. This is in particular the case for w itself,
for which rs induces an accepting run. This concludes our argument that rs is indeed a
resolver, and P is therefore GFG.

Thus, to decide whether a VPA P is GFG it suffices to solve the one-token game on P,
which can be done in exponential time. ◀
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Finally, we relate the GFGness problem to the good-enough synthesis problem [1], also
known as the uniformization problem [9], which is similar to the Church synthesis problem,
except that the system is only required to satisfy the specification on inputs in the projection
of the specification on the first component.

Let w ∈ Σ1 and w′ ∈ Σ2 with |w| = |w′|. Then, for the sake of readability, we write
(

w
w′

)
for the word

(
w(0)
w′(0)

)
· · ·

(
w(|w|−1)
w′(|w|−1)

)
over Σ1 × Σ2.

▶ Definition 13 (ge-synthesis). Given a language L ⊆ (Σ1 × Σ2)∗, is there a function
f : Σ∗

1 → Σ2 such that for each w ∈ {w | ∃w′ ∈ Σ∗
2.

(
w
w′

)
) ∈ L} the word

(
w
w′

)
is in L, where

w′(n) = f(w(0) · · · w(n)) for each 0 ⩽ n < |w|.

We now prove that the ge-synthesis problem for GFG-VPA and DVPA is as hard as the
GFGness problem for VPA, giving us the following corollary of Theorem 12.

▶ Corollary 14. The ge-synthesis problem for inputs given by GFG-VPA, and in particular
for DVPA, is ExpTime-complete.

Proof. We first reduce the good-enough synthesis problem to the GFGness problem. Given a
GFG-VPA P = (Q, Σ1 × Σ2, Γ, qI , ∆, F ), with resolver r, let P ′ be P projected onto the first
component: P ′ = (Q, Σ1, Γ, qI , ∆′, F ) has the same states, stack alphabet and final states as
P , but has an a-transition for some a ∈ Σ1 whenever P has the same transition over

(
a
b

)
for

some b ∈ Σ2. Let each transition of P ′ be annotated with the Σ2-letter of the corresponding
P-transition. Thus P ′ recognises the projection of L(P) on the first component.

A resolver for P ′ induces a ge-synthesis function for P by reading the Σ2-annotation of
the chosen transitions in P ′. Indeed, the resolver produces an accepting run with annotation
w′ of P ′ for every word w in the projection of L(P) on the first component. The same run
is an accepting run in P over

(
w
w′

)
which is therefore in L(P). Conversely a ge-synthesis

function f for P , combined with r, induces a resolver r′ for P ′ by using f to choose output
letters and r to choose which transition of P to use; together these uniquely determine a
transition in P ′. Then, if w ∈ L(P ′), f guarantees that the annotation of the run induced by
r′ in P ′ is a witness w′ such that

(
w
w′

)
∈ P , and then r guarantees that the run is accepting,

since the corresponding run in P over
(

w
w′

)
must be accepting.

We now reduce the GFGness problem of a VPA P = (Q, Σ, Γ, qI , ∆, F ) to the ge-synthesis
problem of a DVPA P ′ = (Q, Σ × ∆, Γ, qI , ∆′, F ). The deterministic automaton P ′ is as
P except that each transition τ over a letter a in ∆ is replaced with the same transition
over

(
a
τ

)
in ∆′. In other words, P ′ recognises the accepting runs of P and its ge-synthesis

problem asks whether there is a function that constructs on-the-fly an accepting run for
every word in L(P), that is, whether P has a resolver. ◀

In contrast, for LTL specifications, the ge-synthesis problem is 2ExpTime-complete [1].

6 Resolvers

The definition of a resolver does not put any restrictions on its complexity. In this section
we study the complexity of the resolvers that GFG-PDA need. We consider two somewhat
orthogonal notions of complexity: memory and machinery. On one hand, we show that
resolvers can always be chosen to be positional, that is, dependent on the current state
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and stack configuration only. Note that this is not the case for ω-regular automata2, let
alone ω-GFG-PDA. On the other hand, we show that they are not always implementable by
pushdown transducers.

More formally, a resolver r is positional, if for any two sequences ρ and ρ′ of transitions
inducing runs ending in the same configuration, r(ρ, a) = r(ρ′, a) for all a ∈ Σ.

▶ Lemma 15. Every GFG-PDA has a positional resolver.

Proof. Let r′ be a (not necessarily positional) resolver for P. We define a resolver r such
that for each configuration and input letter, it makes a choice consistent with r′ for some
input leading to this configuration. In other words, for every reachable configuration c, let
ρc be an input to r′ inducing a run ending in c. Then, we define r(ρ, a) = r(ρc, a), where c is
the last configuration of the run induced by ρ.

We claim that r, which is positional by definition, is a resolver. Towards a contradiction,
assume that this is not the case, i.e. there is a word w ∈ L(P) such that the run ρ induced
by r is rejecting. Since this run is finite and w ∈ L(P), there is some last configuration c

along the run ρ from which the rest of the word, say u, is accepted3 (by some other run of P
having the same prefix as ρ up to configuration c). Let τ be the next transition along ρ from
c. Since r chose τ , the resolver r′ also chooses τ after some history leading to c, over some
word v. Since u is accepted from c, the word vu is in L(P); since r′ is a resolver, there is an
accepting run over u from c starting with τ , contradicting that c is the last position on ρ

from where the rest of the word could be accepted. ◀

Contrary to the case of finite and ω-regular automata, since GFG-PDA have an infinite
configuration space, the existence of positional resolvers does not imply determinisability.
On the other hand, if a GFG-PDA has a resolver which only depends on the mode of the
current configuration, then it is determinisable by pruning, as transitions that are not used
by the resolver can be removed to obtain a deterministic automaton. However, not all
GFG-PDA are determinisable by pruning, e.g. the GFG-PDA for the languages Cn used to
prove Theorem 10.

We now turn to how powerful resolvers for GFG-PDA need to be. First, we introduce
transducers as a way to implement a resolver. A transducer is an automaton with outputs
instead of acceptance, i.e., it computes a function from input sequences to outputs. A
pushdown resolver is a pushdown transducer that implements a resolver.

Note that a resolver has to pick enabled transitions in order to induce accepting runs for
all inputs in the language. To do so, it needs access to the mode of the last configuration.
However, to keep track of this information on its own, the pushdown resolver would need
to simulate the stack of the GFG-PDA it controls. This severely limits the ability of the
pushdown resolver to implement computations on its own stack. Thus, we give a pushdown
resolver access to the current mode of the GFG-PDA via its output function, thereby freeing
its own stack to implement further functionalities.

Formally, a pushdown transducer (PDT for short) T = (D, λ) consists of a DPDA D
augmented with an output function λ : QD → Θ mapping the states QD of D to an output
alphabet Θ. The input alphabet of T is the input alphabet of D.

2 A positional resolver for ω-regular automata implies determinisability by pruning, and we know that
this is not always possible [6].

3 Observe that this is no longer true over infinite words as an infinite run can stay within configurations
from where an accepting run exists without being itself accepting. In fact, the lemma does not even hold
for coBüchi automata [23] as the existence of positional resolvers implies determinisability by pruning.
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q1 q2 q3
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ε, $ | ε ε, $ | ε $, X | X$

Figure 3 The PDA PB3 for B3. Grey states are final, and X is an arbitrary stack symbol.

Then, given a PDA P = (Q, Σ, Γ, qI , ∆, F ), a pushdown resolver for P consists of a
pushdown transducer T = (D, λ) with input alphabet ∆ and output alphabet Q × Γ⊥ × Σ →
∆ such that the function rT , defined as follows, is a resolver for P: rT (τ0 . . . τk, a) =
λ(qT )(qP , X, a) where

qT is the state of the last configuration of the longest run of D on τ0 . . . τk (recall that
while D is deterministic, it may have several runs on an input which differ on trailing
ε-transitions);
(qP , X) is the mode of the last configuration of the run of P induced by τ0 . . . τk.

In other words, a transducer implements a resolver by processing the run so far, and then
uses the output of the state reached and the state and top stack symbol of the GFG-PDA to
determine the next transition in the GFG-PDA.

We now give an example of a GFG-PDA which does not have a pushdown resolver. The
language in question is the language B3 = {ai$aj$ak$bl$ | l ⩽ max(i, j, k)}. Compare this
to the language B2 in Section 3 which does have a pushdown resolver. Let PB3 be the
automaton in Figure 3, which works analogously to the automaton for B2 in Figure 2.

This automaton recognises B3: for a run to end in the final state, the stack, and therefore
the input, must have had an a-block longer than or equal to the final b-block; conversely, if
the b-block is shorter than or equal to some a-block, the automaton can nondeterministically
pop the blocks on top of the longest a-block off the stack before processing the b-block.
Furthermore, this automaton is GFG: the nondeterminism can be resolved by removing from
the stack all blocks until the longest a-block is at the top of the stack, and this choice can be
made once the third $ is processed.

We now argue that this GFG-PDA needs more than a pushdown resolver. The reason
is that a pushdown resolver needs to be able to determine which of the three blocks is the
longest while processing a prefix of the form a∗$a∗$a∗. However, at least one of the languages
induced by these three choices is not context-free, yielding the desired contradiction.

▶ Lemma 16. The GFG-PDA PB3 has no pushdown resolver.

Proof. Towards a contradiction, assume that there is a pushdown resolver r for PB3 , imple-
mented by a PDT T = (D, λ).

From T , for each i ∈ {1, 2, 3}, we can construct a PDA Di that recognises the language
of words w ∈ a∗$a∗$a∗ such that T chooses from q3 the transition of PB3 going to pi

when constructing a run on w$: this is simply the pushdown automaton D underlying T
where transitions of D processing non-ε transitions τ of PB3 are modified to now process
ℓ(τ) ∈ {a, b, $}, transitions of D processing ε-transitions of PB3 are removed, and states q of
D such that λ(q)(q3, X, $) = (q3, $, X, pi, X) are made final, intersected with a DFA checking
that the input is in a∗$a∗$a∗.
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Since T implements a resolver for P , each Di only accepts words of the form am1$am2$am3

such that max(m1, m2, m3) = mi. Furthermore, at least for one i ∈ {1, 2, 3}, Di accepts
am$am$am for infinitely many m.

To reach a contradiction, we now argue that this Di recognises a language that is not
context-free. Indeed, if it were, then by applying the pumping lemma for context-free
languages, there would be a large enough m such that the word am$am$am ∈ L(Di) could
be decomposed as uvwyz such that |vy| ⩾ 1 and uvnwynz is in the language of Di for all
n ⩾ 0. In this decomposition, v and y must be $-free. Then, if either v or y occurs in the ith

block and is non-empty, by setting n = 0 we obtain a contradiction as the ith block is no
longer the longest. Otherwise, we obtain a similar contradiction by setting n = 2. In either
case, this shows that T is not a pushdown resolver for P. ◀

Another restricted class of resolvers are finite-state resolvers, which can be seen as
pushdown resolvers that do not use their stack. Similarly to the case of ω-GFG-PDA [26],
the product of a GFG-PDA and a finite-state resolver yields a DPDA for the same language.

▶ Remark 17. Every GFG-PDA with a finite-state resolver is determinisable.

Note that the converse does not hold. For example, consider the regular, and therefore
deterministic context-free, language L10 of words w# with w ∈ {a, b}∗ with infix a10. A
GFG-PDA P10 recognising L10 can be constructed as follows: P10 pushes its input onto its
stack until processing the first #. Before processing this letter, P10 uses ε-transitions to
empty the stack again. While doing so, it can nondeterministically guess whether the next 10
letters removed from the stack are all a’s. If yes, it accepts; in all other cases (in particular
if the input word does not end with the first # or the infix a10 is not encountered on the
stack) it rejects. This automaton is good-for-games, as a resolver has access to the whole
prefix before the first # when searching for a10 while emptying the stack. This is sufficient
to resolve the nondeterminism. On the other hand, there is no finite-state resolver for P10,
as resolving the nondeterminism, intuitively, requires to keep track of the whole prefix before
the first # (recall that a finite-state resolver only has access to the topmost stack symbol).

In Appendix A.2 we consider another model of pushdown resolver, namely one that
does not only have access to the mode of the GFG-PDA, but can check the full stack for
regular properties. We show that this change does not increase the class of good-for-games
context-free languages that are recognised by a GFG-PDA with a pushdown resolver.

Finally, for GFG-VPA, the situation is again much better. The classical game-based
characterisation of GFGness of ω-regular automata by Henzinger and Piterman [16] can be
lifted to VPA. Then, using known results [27] about VPA games having VPA strategies, we
obtain our final theorem.

▶ Theorem 18. Every GFG-VPA has a (visibly) pushdown resolver.

Proof. Fix a VPA P = (Q, Σ, Γ, qI , ∆, F ) and consider the following two-player game G(P),
introduced by Henzinger and Piterman to decide GFGness of ω-automata [16]. In each
round, first Player 1 picks a letter from Σ or ends the play. If he has not ended the play,
then Player 2 picks a transition of P. Hence, once Player 1 has stopped the play, Player 1
has picked an input word w over Σ∗ and Player 2 has indicated a run ρ of P. A finite play
with outcome (w, ρ) is winning for Player 2 if either w /∈ L(P) or ρ induces an accepting
run of P on w. A strategy for Player 2 in this game is a mapping σ : Σ+ → ∆ and an
outcome (w(0) · · · w(k), ρ(0) · · · ρ(k)) is consistent with σ, if ρ(j) = σ(w(0) · · · w(j)) for every
0 ⩽ j ⩽ k. We say that σ is winning for Player 2, if every outcome of a finite play that is
consistent with σ is winning for her (note that we disregard infinite plays).
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Now, Player 2 wins G(P) if and only if P is a GFG-VPA. This follows as every winning
strategy for Player 2 can be turned into a resolver and vice versa.

Now, as the class of languages recognized by VPA, is closed under complementation
and union [2], one can encode G(P) as a Gale-Stewart game with a VPL winning condition.
Such games can be solved effectively [27] and the winner always has a winning strategy
implemented by a (visibly) PDT. Thus, if P is a GFG-VPA, i.e. Player 2 wins G(P), then
she has a winning strategy implemented by a (visibly) PDT, which can easily be turned into
a (visibly) pushdown resolver for P. ◀

7 Conclusion

We have continued the study of good-for-games pushdown automata, focusing on express-
iveness and succinctness. In particular, we have shown that GFG-PDA are not only more
expressive than DPDA (as had already been shown for the case of infinite words), but also
more succinct than DPDA: We have introduced the first techniques for using GFG nonde-
terminism to succinctly represent languages that do not depend on the coBüchi condition.
Similarly, for the case of VPA, for which deterministic and nondeterministic automata are
equally expressive, we proved a (tight) exponential gap in succinctness.

Solving games and universality are decidable for GFG-PDA, but GFGness is undecidable
and GFG-PDA have limited closure properties. On the other hand, GFGness for VPA
is decidable and they inherit the closure properties of VPA, e.g. union, intersection and
complementation, making GFG-VPA an exciting class of pushdown automata. Finally,
we have studied the complexity of resolvers for GFG-PDA, showing that positional ones
always suffice, but that they are not always implementable by pushdown transducers. Again,
GFG-VPA are better-behaved, as they always have a resolver implementable by a VPA.

Let us conclude by mentioning some open problems raised by our work.
It is known that the succinctness gap between PDA and DPDA is noncomputable [15, 38],
i.e. there is no computable function f such that any PDA of size n that has some
equivalent DPDA also has an equivalent DPDA of size f(n). Due to our hierarchy results,
at least one of the succinctness gaps between PDA and GFG-PDA and between GFG-PDA
and DPDA has to be uncomputable, possibly both.
We have shown that some GFG-PDA do not have pushdown resolvers. It is even open
whether every GFG-PDA has a computable resolver.
On the level of languages, it is open whether every language in GFG-CFL has a GFG-PDA
recognising it with a resolver implementable by a pushdown transducer.
We have shown that GFGness is undecidable, both for PDA and for context-free languages.
Is it decidable whether a given GFG-PDA has an equivalent DPDA?
Equivalence of DPDA is famously decidable [36] while it is undecidable for PDA [19]. Is
equivalence of GFG-PDA decidable?
Does every GFG-PDA that is equivalent to a DPDA have a finite-state resolver with
regular stack access (see Appendix A.2 for definitions)?
There is a plethora of fragments of context-free languages one can compare GFG-CFL to,
let us just mention a few interesting ones: Height-deterministic context-free languages [30],
context-free languages with bounded nondeterminism [17] and preorder typeable visibly
pushdown languages [21].
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A Appendix

A.1 Resolvers with End-of-word Markers
As mentioned in the main part, GFG-PDA are by definition required to end their run with
the last letter of the input word. Instead, one could also consider a model where they are
allowed to take some trailing ε-transitions after the last input letter has been processed. As a
resolver has access to the next input letter, which is undefined in this case, we need resolvers
with end-of-word markers to signal the resolver that the last letter has been processed. In the
following, we show that GFG-PDA with end-of-word resolvers are as expressive as standard
GFG-PDA, albeit exponentially more succinct.

Fix some distinguished end-of-word-marker #, which takes the role of the next input
letter to be processed, if there is none after the last letter of the input word is processed. Let
P = (Q, Σ, Γ, qI , ∆, F ) be a PDA with # /∈ Σ. An EoW-resolver for P is a function r : ∆∗ ×
(Σ ∪ {#}) → ∆ such that for every w ∈ L(P), there is an accepting run c0τ0 · · · τncn on w

such that τn′ = r(τ0 · · · τn′−1, w#(|ℓ(τ0 · · · τn′−1)|)) for all 0 ⩽ n′ < n. Note that the second
argument given to the resolver is a letter of w#, which is equal to # if the run prefix induced
by τ0 · · · τn′−1 has already processed the full input w.

▶ Lemma 19. GFG-PDA with EoW-resolvers are as expressive as GFG-PDA.

Proof. A (standard) resolver can be turned into an EoW-resolver that ignores the EoW-
marker. Hence, every GFG-PDA is a GFG-PDA with EoW-resolver recognizing the same
language. So, it only remains to consider the other inclusion.

To this end, let P = (Q, Σ, Γ, qI , ∆, F ) be a PDA with EoW-resolver. The language

Cacc = {γq | q ∈ F and γ ∈ ⊥Γ∗} ⊆ ⊥Γ∗Q

encoding final configurations of P is regular. Hence, the language

C = {γq ∈ ⊥Γ∗Q | there is a run infix (q, γ)τ0 · · · τn−1cn

with ℓ(τ0 · · · τn−1) = ε and cn ∈ Cacc}

can be shown to be regular as well by applying saturation techniques [7]4 to the restriction
of P to ε-transitions. If P reaches a configuration c ∈ C after processing an input w, then
w ∈ L, even if c’s state is not final.

Let A = (QA, Γ⊥ ∪ Q, qA
I , δA, FA) be a DFA recognizing C. We extend the stack alphabet

of P to Γ × QA × (QA ∪ {u}), where u is a fresh symbol. Then, we extend the transition
relation such that it keeps track of the unique run of A on the stack content: If P reaches a
stack content ⊥(X1, q1, q′

1)(X2, q2, q′
2) · · · (Xs, qs, q′

s), then we have

qj = δ∗
A(qA

I , ⊥X1 · · · Xj)

for every 1 ⩽ j ⩽ s as well as q′
j = qj−1 for every 2 ⩽ j ⩽ s and q′

1 = u. Here, δ∗
A is the

standard extension of δA to words. The adapted PDA is still good-for-games, as no new
nondeterminism has been introduced, and keeps track of the state of A reached by processing
the stack content as well as the shifted sequence of states of A, which is useful when popping
the top stack symbol: If the topmost stack symbol (X, q, q′) is popped of the stack then q′ is
the state of A reached when processing the remaining stack.

4 Also, see the survey by Carayol and Hague [8] for more details.
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Now, we double the state space of P, making one copy final, and adapt the transition
relation again so that a final state is reached whenever P would reach a configuration in
C. Whether a configuration in C is reached can be determined from the current state
of P being simulated, as well as the top stack symbol containing information on the run
of A on the current stack content. The resulting PDA P ′ recognizes L(P) and has on
every word w ∈ L(P) an accepting run without trailing ε-transitions. Furthermore, an
EoW-resolver for P can be turned into a (standard) resolver for P ′, as the tracking of stack
contents and the doubling of the state space does not introduce nondeterminism. ◀

As A has at most exponential size, P ′ is also exponential (both in the size of P). This
exponential blowup incurred by removing the end-of-word marker is in general unavoidable.
In Theorem 10, we show that the language Ln of bit strings whose nth bit from the end is a
1 requires exponentially-sized GFG-PDA. On the other hand, it is straightforward to devise
a polynomially-sized GFG-PDA PEoW with EoW-marker recognizing Ln: the underlying
PDA stores the input word on the stack, guesses nondeterministically that the word has
ended, uses n (trailing) ε-transitions to pop of the last n − 1 letters stored on the stack,
and then checks that the topmost stack symbol is a 1. With an EoW-resolver, the end of
the input does not have to be guessed, but is marked by the EoW-marker. Hence, PEoW is
good-for-games.

A.2 Pushdown Resolvers with Regular Stack Access
Recall that pushdown transducers implementing a resolver have access to the mode of the
GFG-PDA whose nondeterminism it resolves. Here, we consider a more general model
where the transducer can use information about the whole stack when determining the next
transition. More precisely, we consider a regular abstraction of the possible stack contents
by fixing a DFA running over the stack and allowing the transducer to base its decision on
the state reached by the DFA as well.

Then, given a PDA P = (Q, Σ, Γ, qI , ∆, F ), a pushdown resolver with regular stack access
T = (D, A, λ) consists a DPDA P with input alphabet ∆, a DFA A over Γ⊥ with state
set QA, and an output function λ with output alphabet Q × QA × Σ → ∆ such that the
function rT defined as follows, is a resolver for P:

rT (τ0 . . . τk, a) = λ(qT )(qP , qA, a)

where
qT is the state of the last configuration of the longest run of D on τ0 . . . τk (recall that
while D is deterministic, it may have several runs on an input which differ on trailing
ε-transitions).
Let c be the last configuration of the run of P induced by τ0 . . . τk. Then, qP is the state
of c and qA is the state of A reached when processing the stack content of c.

Every pushdown resolver with only access to the current mode is a special case of a
pushdown resolver with regular stack access. On the other hand, having regular access to
the stack is strictly stronger than having just access to the mode. However, by adapting
the underlying GFG-PDA, one can show that the languages recognised by GFG-PDA with
pushdown resolvers does not increase when allowing regular stack access.

▶ Lemma 20. Every GFG-PDA with a pushdown resolver with regular stack access can be
turned into an equivalent GFG-PDA with a pushdown resolver.
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Proof. Let P = (Q, Σ, Γ, qI , ∆, F ) be a GFG-PDA and let (D, A, λ) be a pushdown resolver
with stack access for P . We keep track of the state A reaches on the current stack as in the
proof of Lemma 19: If a stack content ⊥(X1, q1) · · · (Xs, qs) is reached, then qj is the unique
state of P reached when processing ⊥X1 · · · Xj . Now, it is straightforward to turn (D, A, λ)
into a pushdown resolver for P that has only access to the top stack symbol. ◀
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Abstract
Let G be a graph on n vertices. For i ∈ {0, 1} and a connected graph G, a spanning forest F of G

is called an i-perfect forest if every tree in F is an induced subgraph of G and exactly i vertices
of F have even degree (including zero). An i-perfect forest of G is proper if it has no vertices of
degree zero. Scott (2001) showed that every connected graph with even number of vertices contains
a (proper) 0-perfect forest. We prove that one can find a 0-perfect forest with minimum number of
edges in polynomial time, but it is NP-hard to obtain a 0-perfect forest with maximum number of
edges. We also prove that for a prescribed edge e of G, it is NP-hard to obtain a 0-perfect forest
containing e, but we can find a 0-perfect forest not containing e in polynomial time. It is easy to see
that every graph with odd number of vertices has a 1-perfect forest. It is not the case for proper
1-perfect forests. We give a characterization of when a connected graph has a proper 1-perfect forest.
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1 Introduction

In this paper all graphs are finite, undirected, have no parallel edges or loops. We use
standard terminology and notation, see e.g. [5]. The number of vertices (edges, respectively)
of a graph G is called its order (size, respectively). The degree of a vertex x in a graph G

is denoted by dG(x). A vertex x of a graph G is a cut-vertex if G − x has more connected
components than G. A maximal connected subgraph of a graph G without a cut-vertex
is called a block. Thus, every block of G is either a maximal 2-connected subgraph or a
bridge (including its vertices) or an isolated vertex, implying that a block of odd order in a
connected graph of order at least 3, must be a maximal 2-connected subgraph.

A spanning forest F of G is called a semiperfect forest if every tree of F is an induced
subgraph of G. Let G be a graph and let f : V (G) → {0, 1} be a function such that∑

v∈V (G) f(v) is even (we will call such a function even-sum). A subgraph H in G where
dH(x) ≡ f(x) (mod 2) for all x ∈ V (G), is called an f -parity subgraph. Note that the
requirement that f is even-sum is necessary as otherwise an f -parity subgraph does not exist.
An f -parity subgraph H of G is called an f -parity perfect forest if H is a semiperfect forest.

For i ∈ {0, 1} and a graph G, an f -parity perfect forest is called an i-perfect forest if
f(x) = 1 for all vertices of G for i = 0, and for all vertices of G apart from one for i = 1. An
i-perfect forest of G is proper if it has no vertices of degree zero. Note that every 0-perfect
forest (called a perfect forest in [3, 9] and a pseudo-matching in [18]) is proper. For examples
of 0-perfect and 1-perfect forests, see Figures 1 and 2.
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(a): G (b): A 0-perfect forest of G

Figure 1 A graph G is shown in (a) and a 0-perfect forest of G is shown in (b) (as all degrees are
odd and the trees are induced in G).

(a): H (b): A 1-perfect forest of H (c): A proper 1-perfect forest of H

Figure 2 The graph H is shown in (a), a (non-proper) 1-perfect forest of H is shown in (b), and
a proper 1-perfect forest of H is shown in (c).

Clearly, every connected graph with a 0-perfect forest is of even order. Scott [17] proved
that somewhat surprisingly the opposite implication is also true.

▶ Theorem 1. Every connected graph of even order contains a 0-perfect forest.

The proof of Theorem 1 in [17] is graph-theoretical and relatively long. A short proof using
basic linear algebra is obtained in [9] and two short graph-theoretical proofs are given in [3].
All the proofs of Theorem 1 are constructive and yield polynomial algorithms for finding
0-perfect forests. Intuitively, it is clear that a 0-perfect forest can provide a useful structure
in a graph and, in particular, this notion was used by Sharan and Wigderson [18] to prove
that the perfect matching problem for bipartite cubic graphs belongs to the complexity class
N C. Semiperfect forests were used in the proofs of three theorems in [7]. Gutin and Yeo [11]
studied extensions of a 0-perfect forest to directed graphs.

Since a 0-perfect forest is a generalization of a matching, it is natural to study the
following two problems for a connected graph G of even order n:
(1) Find a 0-perfect forest of G of minimum size. (Clearly, the minimum size is n/2 if and

only if G has a perfect matching.)
(2) Find a 0-perfect forest of G of maximum size. (This is of interest in matching-like

edge-decompositions of G.)

The following theorem solves the first problem.

▶ Theorem 2. In polynomial time, we can find a 0-perfect forest of minimum size.

Theorem 2 follows immediately from the next theorem by letting f(x) = 1 for all x ∈ V (G).
Theorem 3 shows usefulness of extending Problem 1 to f -parity perfect forests. Theorem 3
is proved in Section 2.

▶ Theorem 3. Let G be a connected graph and let f : V (G) → {0, 1} be an even-sum
function. We can in polynomial time find an f-parity perfect forest H in G, such that
dH(x) ≡ f(x) (mod 2) for all x ∈ V (G) and |E(H)| is minimized.

As the following theorem shows, the second problem cannot be solved in polynomial time
unless P=NP.
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▶ Theorem 4. It is NP-hard to find a 0-perfect forest of maximum size.

Let n = |V (G)|. Theorem 4 follows from the next result proved in Section 3. Theorem 5
is optimal in the following sense. The problem of finding a 0-perfect forest of size at least
n − 1 is polynomial-time solvable because G has a 0-perfect forest of size at least n − 1 if
and only if G is a tree in which every vertex is of odd degree.

▶ Theorem 5. It is NP-hard to decide whether a connected graph contains a 0-perfect forest
with at least n − 2 edges.

It is easy to show that Theorem 5 holds if we replace n − 2 by n − k for any integer k ≥ 2.

Indeed, add two new vertices x and y to a graph G as well as two edges xy and yu, where u

is any vertex in G. The resulting graph is denoted by G′. Observe that there is a 0-perfect
forest of size |V (G)| − k in G if and only if there is a 0-perfect forest of size |V (G′)| − (k + 1)
in G′.

Since the problem of finding a 0-perfect forest of maximum size is NP-hard, it is natural
to study its parameterized complexity using appropriate parameterizations e.g. the para-
meterization below the tight upper bound n − 1 and the parameterization above the tight
upper bound n/2. In other words, we can ask whether there is a 0-perfect forest of size at
least n − k (n/2 + k, respectively), where k is the parameter. (Above-tight-lower-bound
and below-tight-upper-bound parameterizations were studied for many graph-theoretical
and constraint satisfaction problems, see e.g. [1, 4, 10, 13, 14].) Theorem 5 shows that the
parameterization n − k is para-NP-complete (for an introduction to para-NP-completeness,
see e.g. [6]). We do not know the answer to the following question. Is the parameterization
n/2 + k fixed-parameter tractable?1

Here is another pair of natural problems on 0-perfect forests. They both are clearly
polynomial-time solvable when restricted to perfect matchings. For a graph G of even order
and an edge e in G,

(1′) find a 0-perfect forest containing e;
(2′) find a 0-perfect forest not containing e.

For Problem 1′, we prove the following result in Section 4.

▶ Theorem 6. The following problem is NP-hard. Given a connected graph G and an edge
e ∈ E(G), decide whether G has a 0-perfect forest containing e.

For Problem 2′, we have the next result, which follows immediately from Theorem 8, by
letting f(x) = 1 for all x in G. Theorem 8 again demonstrates usefulness of f -parity perfect
forests. It is proved in Section 5.

▶ Theorem 7. Given a graph G and an edge e ∈ E(G) we can in polynomial time decide
whether G has a 0-perfect forest not containing e.

▶ Theorem 8. The following problem is polynomial time solvable. Given a graph G, an edge
e ∈ E(G) and an even-sum function f : V (G) → {0, 1}, decide whether G has an f-parity
perfect forest not containing e.

1 While working on the final version of this paper, we obtained a proof that the parameterized problem is
W[1]-hard. We will include the proof in a journal version of the paper.
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Since an odd order connected graph cannot have a 0-perfect forest, it is natural to ask
whether every connected graph of odd order has a 1-perfect forest (recall that a 1-perfect
forest has only one vertex of even degree). The answer is positive and the proof is trivial. In
fact, it is not hard to show the following strengthening of this observation, which will be
useful in the proof of Theorem 10.

▶ Proposition 9. Let x be an arbitrary vertex of a connected graph G of odd order. Then G

has a 1-perfect forest F such that dF (x) is even.

Proof. Create a new graph H by adding a new vertex y to G and adding the edge xy. By
Theorem 1, H has a 0-perfect forest, FH . Deleting the vertex y from FH , results in the
desired 1-perfect forest of G where x is the only vertex of even degree. ◀

Note that not every connected graph of odd order has a proper 1-perfect forest. For
example, no complete graph of odd order has such a forest. Thus, a more interesting question
with a potentially more useful answer is when a connected graph of odd order has a proper
1-perfect forest? This question is answered in the following characterization proved in
Section 6.

▶ Theorem 10. Let B be the set of all connected graphs where every block is a complete
graph of odd order. If G is a connected graph of odd order n ≥ 3 then G contains a proper
1-perfect forest if and only if G ̸∈ B.

Using this theorem and a linear-time algorithm for computing biconnected components
in a graph [12], in polynomial time we can decide whether a connected graph G of odd order
contains a proper 1-perfect forest. If G ̸∈ B, the proof by induction of Theorem 2 yields a
polynomial-time recursive algorithm to construct a proper 1-perfect forest.

Our proof of Theorem 10 is graph-theoretical and so are the proofs of Theorem 1 in [17]
and [3]. Recall that Gutin [9] gave a linear-algebraic proof of Theorem 1. It would interesting
to see whether Theorem 10 can be proved using a linear-algebraic approach, too.

2 Proof of Theorem 3

▶ Lemma 11. Let G be a connected graph and let f : V (G) → {0, 1} be an even-sum function.
If H is an f -parity subgraph of G of minimum size, then H is an f -parity perfect forest.

Proof. Assume that H is an f -parity subgraph with minimum possible |E(H)|. Clearly
H contains no cycles, as removing the edges of a cycle would contradict the minimality of
|E(H)|. Assume that some tree T of H is not an induced tree in G. Let xy be an edge of G,
not belonging to T but with {x, y} ⊆ V (T ). Remove the unique (x, y)-path in T from H

and add the edge xy to H. This decreases the number of edges in H without changing the
parity of the degree of any vertex, contradicting the minimality of |E(H)|. Therefore H is
indeed an f -parity perfect forest. ◀

Lemma 11 implies the following:

▶ Theorem 12. Let G be a connected graph and let f : V (G) → {0, 1} be an even-sum
function. Then there exists an f -parity perfect forest F in G.

Proof. Let x1, x2, . . . , xk, y1, y2, . . . , yk be the vertices in G with f -value equal to one. Let
Pi be any (xi, yi)-path in G for all i = 1, 2, . . . , k, which exists as G is connected. Let H

be the spanning subgraph of G such that an edge e ∈ E(G) belongs to H if and only if e
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belongs to an odd number of paths in P1, P2, . . . , Pk. Let x ∈ V (G). Observe that dH(x) is
odd if and only if x is incident with an odd number of edges in ∪k

i=1E(Pi), which is if and
only if x is the endpoint of one of the paths i.e. f(x) = 1. Thus, H is an f -parity subgraph
of G. Lemma 11 now implies that if H is the f -parity subgraph of G of minimum size, then
H is an f -parity perfect forest. ◀

Note that Theorem 12 generalizes Theorem 1: set f(x) = 1 for all x ∈ V (G). Thus,
Theorem 12 provides an alternative proof of Theorem 1.

▶ Theorem 3. Let G be a connected graph and let f : V (G) → {0, 1} be an even-sum
function. We can in polynomial time find an f-parity perfect forest H in G, such that
dH(x) ≡ f(x) (mod 2) for all x ∈ V (G) and |E(H)| is minimized.

Proof. Let G be a connected graph and let f : V (G) → {0, 1} be an even-sum function. Let
V (G) = {v1, v2, . . . , vn}. We will construct a weigthed auxillary graph H as follows. Let
V (H) = ∪n

i=1Xi, where for every i ∈ [n], |Xi| ∈ {n − 1, n} and |Xi| ≡ f(vi) (mod 2). For
all 1 ≤ i < j ≤ n and all u ∈ Xi and v ∈ Xj , we let uv ∈ E(H) if and only if vivj ∈ E(G).
Finally add a matching Mi = {ei

1, ei
2, . . . , ei

⌊|Xi|/2⌋} to Xi for all i ∈ [n]. Let the weight of all
the edges within each Xi (i.e. the edges in Mi) be zero and let all edges between different
Xi’s have weight one.

We first show that H contains a perfect matching. As
∑

v∈V (G) f(v) is even we may
assume that {v1, v2, . . . , v2k} are the vertices of G with an f -value of one for some integer k

with 0 ≤ k ≤ n/2. Assume that yi ∈ Xi is the unique vertex in Xi that is not saturated by
Mi for all i ∈ [2k] and start of by letting M be the matching containing all Mi’s.

Let Pi = vivpi
1
vpi

2
· · · vpi

li−1
vi+k be any path in G from vi to vi+k where i ∈ [k]. It is

not difficult to see that there exists an M -augmenting path, Qi, in H starting in yi and
ending in yi+k and containing exactly the edges e

pi
1

i , e
pi

2
i , ..., e

pi
li−1

i from M . Also observe
that Q1, Q2, . . . , Qk are vertex disjoint, which implies that we can use all Qi to increase the
matching M thereby obtaining a perfect matching in H.

We will now show the following claim. The size of a multiset S is the total number of
elements in S, where if an element e ∈ S is of multiplicity r, then e is counted r times.

▷ Claim A.
(a) If there exists a perfect matching in H with weight w∗ then there exists a multiset of

edges E∗ in G of size w∗, such that dE∗(x) ≡ f(x) (mod 2) for all x ∈ V (G).
(b) Conversely if E∗ is a multiset of edges in G of size w∗, such that dE∗(x) ≡ f(x) (mod 2)

for all x ∈ V (G), then there exists a perfect matching in H with weight at most w∗.

Proof of Claim A. First assume that we have a multiset of edges E∗ in G of size w∗ ≤ Wmax,
such that dE∗(x) ≡ f(x) (mod 2) for all x ∈ V (G). Let M∗ = ∅. For every vivj ∈ E∗

we will add edges between Xi and Xj to M∗ as follows: if vivj is of multiplicity r in E∗,

then we add an edge between Xi and Xj to M∗ if and only if r is odd. Since we will add
2ki + f(vi) edges that are incident to Xi for each i ∈ [n] (where ki is some integer), we can
add these edges such that their endvertices are V (ei

1) ∪ V (ei
2) ∪ · · · ∪ V (ei

ki
) if f(vi) = 0

and {yi} ∪ V (ei
1) ∪ V (ei

2) ∪ · · · ∪ V (ei
ki

) if f(vi) = 1 for each i ∈ [n], where V (ei
j) denotes

the pair of endvertices of ei
j . We can now extend M∗ to a perfect matching by adding

Mi \ {ei
1, ei

2, . . . , ei
ki

} for each i ∈ [n]. This gives us a perfect matching in H with weight at
most |E∗| as desired.

Conversely assume that there exists a perfect matching M∗ in H with weight w∗. Initially
let E∗ = ∅. For every xy ∈ M∗ with weight one (i.e. x ∈ Xi and y ∈ Xj for some i ≠ j), add
vivj to E∗. This gives us the desired multiset E∗, thereby completing the proof of Claim A.

◁
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We have proved that H has a perfect matching. Let Mmin be a minimum weight perfect
matching in H which can be determined in polynomial time using Edmonds’ blossom
algorithm as a subroutine, see e.g. [15]. Let Wmin be the weight of Mmin. By Claim A(a),
using Mmin, in polynomial time we can find a multiset of edges E∗ in G of size Wmin , such
that dE∗(x) ≡ f(x) (mod 2) for all x ∈ V (G). By Claim A(b), since Wmin is the minimum
weight of a perfect matching in H, Wmin is minimum size of a multiset of edges E∗∗, such
that dE∗∗(x) ≡ f(x) (mod 2) for all x ∈ V (G).

Note that no edge is in E∗ more than once, since if some edge, e, appears twice, then we
can delete two copies of e from E∗, thereby contradicting the minimality of |E∗|. Let F be
the spanning subgraph of G with edge set E∗. By Lemma 11 we note that F is an f -parity
perfect forest, which completes the proof of the theorem. ◀

3 Proof of Theorem 5

We will reduce from the not-all-equal 3-SAT problem, abbreviated to NAE-3-SAT, which
is the problem of determining whether an instance of 3-SAT has a truth assignment to its
variables such that every clause contains both a true and a false literal. If this is the case we
say that the instance is NAE-satisfied. NAE-3-SAT is known to be NP-hard to solve [16].
Let I be an instance of NAE-3-SAT with clauses C1, C2, . . . , Cm and variables v1, v2, . . . , vn.
We will construct a graph G such that G contains a 0-perfect forest with at least n − 2 edges
if and only if I is NAE-satisfied.

We first create a gadget Hi for each i = 1, 2, . . . , n as follows. Let

V (Hi) = {xi
1, zi

1, yi
1, xi

2, zi
2, yi

2}

and add all possible edges to Hi, except xi
1yi

1 and xi
2yi

2. For all i = 1, 2, . . . , n − 1 we then
add all edges between {yi

1, yi
2} and {xi+1

1 , xi+1
2 }. Now add a pendent edge to each vertex in

V (Hi) \ {x1
1, x1

2, yn
1 , yn

2 } for all i = 1, 2, . . . , n. See Figure 3 for an illustration of this part of
G, which is denoted by Q. We will now complete our construction of G.

x1
1 z1

1 y1
1

x1
2 z1

2 y1
2

x2
1 z2

1 y2
1

x2
2 z2

2 y2
2

xn
1 zn

1 yn
1

xn
2 zn

2 yn
2

Figure 3 The gadgets H1, H2, . . . , Hn and the edges connecting these. The resulting graph is
denoted by Q.

Let V (G) = V (Q) ∪ {c1, c2, . . . , cm} ∪ {c′
1, c′

2, . . . , c′
m}. For each j = 1, 2, . . . , m we will add

an edge from both cj and c′
j to yi

2 if and only if vi is a literal in the clause Cj . We will
furthermore add an edge from both cj and c′

j to yi
1 if and only vi is a literal in the clause Cj .

This completes the construction of G. See Figure 4 depicting G for I = (v1, v2, v3).
We will now show that G contains a 0-perfect forest of size at least n − 2 if and only if I

is NAE-satisfied. First assume that I is NAE-satisfied and consider a truth assignment τ

NAE-satisfying I. We will construct two vertex-disjoint induced trees, T1 and T2, in G, such
that all degrees in the trees Ti are odd for i ∈ [2]. If vi is true in τ then add the vertices in
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x1
1 z1

1 y1
1

x1
2 z1

2 y1
2

x2
1 z2

1 y2
1

x2
2 z2

2 y2
2

x3
1 z3

1 y3
1

x3
2 z3

2 y3
2

c1

c′
1

Figure 4 The graph G if I = (v1, v2, v3).

{xi
1, zi

1, yi
1} to T1 and the vertices in {xi

2, zi
2, yi

2} to T2. Conversely, if vi is false in τ then add
the vertices in {xi

1, zi
1, yi

1} to T2 and the vertices in {xi
2, zi

2, yi
2} to T1. We furthermore add

all vertices of degree one to the same tree as their neighbour. Note that the vertices we have
added so far to Ti (for i ∈ [2]) induce a tree in G, where every vertex has odd degree in Ti.

Finally as I is NAE-satisfied we note for j ∈ [m], each of cj and c′
j has one edge into one

of the Ti’s and two edges into the other Ti. Add each of cj and c′
j to the Ti with which it is

only connected by one edge. We note that after this operation the vertices we have added
so far to Ti (for i ∈ [2]) still induces a tree in G where every vertex has odd degree in Ti.
After doing the above operation for all j ∈ [m] we have obtained the desired trees T1 and T2
whose union form a 0-perfect forest in G with |V (G)| − 2 edges. See Figure 5 for the found
T1 and T2 if the instance of NAE-3-SAT is I = (v1, v2, v3) and the truth assignment is to set
all variables equal to true.

x1
1 z1

1 y1
1

x1
2 z1

2 y1
2

x2
1 z2

1 y2
1

x2
2 z2

2 y2
2

x3
1 z3

1 y3
1

x3
2 z3

2 y3
2

c1

c′
1

Figure 5 The trees T1 and T2 if I = (v1, v2, v3) and v1 = v2 = v3 = true.

Conversely, assume that G contains a 0-perfect forest with at least |V (G)| − 2 edges. As
G is not a tree this implies that G contain two vertex-disjoint trees T1 and T2 such that each
Ti is an induced tree in G of order at least 2, all degrees in each Ti are odd, and V (T1) and
V (T2) partition V (G). We will now prove the following claims where Claim C completes the
proof of the theorem.

▷ Claim A. For each i ∈ [n] one of the following cases hold.
A.1: {xi

1, zi
1, yi

1} ∈ V (T1) and {xi
2, zi

2, yi
2} ∈ V (T2).

A.2: {xi
1, zi

2, yi
1} ∈ V (T1) and {xi

2, zi
1, yi

2} ∈ V (T2).
A.3: {xi

1, zi
1, yi

1} ∈ V (T2) and {xi
2, zi

2, yi
2} ∈ V (T1).

A.4: {xi
1, zi

2, yi
1} ∈ V (T2) and {xi

2, zi
1, yi

2} ∈ V (T1).

Proof of Claim A. As the only two non-edges in Hi are xi
1yi

1 and xi
2yi

2 we note that there
exist a 4-cycle on every set of 4 vertices in Hi. Therefore |V (Tj) ∩ V (Hi)| ≥ 4 is not possible
for any j ∈ [2] and i ∈ [n]. So |V (Tj) ∩ V (Hi)| = 3 for j ∈ [2] and i ∈ [n].
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As there is no 3-cycle in G[V (Tj)] for j ∈ [2] we note that xi
1 and yi

1 must belong to one
of the trees, say Tj , and xi

2 and yi
2 must belong to the other tree, T3−j . So if xi

1 ∈ V (T1)
then yi

1 ∈ V (T1) and {xi
2, yi

2} ⊆ V (T2) and we are in case A.1 or A.2. On the other hand
if xi

1 ∈ V (T2) then yi
1 ∈ V (T2) and {xi

2, yi
2} ⊆ V (T1) and we are in case A.3 or A.4. This

completes the proof of Claim A. ◁

▷ Claim B. For i = 1, 2, G[V (Q) ∩ V (Ti)] is a tree where all vertices have odd degree.

Proof of Claim B. Any vertex in G with degree one must belong to the same tree, Tj , as its
neighbour, as both T1 and T2 have order at least two. By Claim A, we therefore note that
G[V (Q) ∩ V (Ti)] is a path of length 3n with a pendent edge attached to each non-endpoint
of the path. This implies that G[V (Q) ∩ V (Ti)] is a tree where all vertices have odd degree
(as all degrees are either 1 or 3). This completes the proof of Claim B. ◁

▷ Claim C. The instance I is NAE-satisfiable.

Proof of Claim C. Assume that the vertex cj belongs to T1. First suppose that |NG(cj) ∩
V (T1)| = 0. In this case cj has no neighbours in T1, a contradiction, as T1 is a tree with
order at least two. So |NG(cj) ∩ V (T1)| ≥ 1. Assume that |NG(cj) ∩ V (T1)| ≥ 2. As T1 is an
induced tree in G, cj must have at least two neighbours, say x and y, in T1. However, by
Claim B, there exists a (x, y)-path in T1 using only vertices from V (Q), which implies that
there is a cycle in T1, a contradiction. Therefore |NG(cj) ∩ V (T1)| = 1.

Analogously, we can show that |NG(cj) ∩ V (T2)| = 1, whenever cj ∈ V (T2). So each
clause Cj (j ∈ [m]) has either exactly one literal that is false (if cj ∈ V (T1)) or exactly one
literal that is true (if cj ∈ V (T2)). This implies that I is NAE-satisfiable, which completes
the proof of Claim C and the theorem. ◁

4 Proof of Theorem 6

To prove Theorem 6, we will use the following result. The proof of Theorem 4 follows the
same approach as the proof that it is NP-hard to determine whether there is an induced
cycle of odd length through a prescribed vertex, given in [2] by Bienstock. The proof is not
given here but can be found in the appendix of [8].

▶ Theorem 4. It is NP-hard to determine whether a graph contains an induced cycle through
two given edges.

▶ Theorem 6. The following problem is NP-hard. Given a connected graph G and an edge
e ∈ E(G), decide whether G has a 0-perfect forest containing e.

Proof. Let G be a graph and let e1 = u1v1 and e2 = u2v2 be distinct edges of G. We will
construct an auxillary graph H with an edge e′

2 ∈ E(H), such that H contains a 0-perfect
forest containing e′

2 if and only if G contains an induced cycle, C, such that e1, e2 ∈ E(C).
This will complete the proof by Theorem 4.

Let H be obtained from G by adding a pendent edge to each vertex in V (G) \ {u1, v1}
and deleting the edge e1. Let EP denote the set of all the pendent edges we just added to G.
Let e′

2 = u2v2 and note that e′
2 ∈ E(H). This completes the construction of H.

Assume that there exists an induced cycle, C, in G such that e1, e2 ∈ E(C). Let
E′ = EP ∪ E(C) \ e1. Note that the edges in E′ induce a 0-perfect forest in H containing
the edge e′

2.
Conversely assume that there is a 0-perfect forest, F , in H containing e′

2. Clearly F

contains all edges in Ep as each pendent edge is incident with a vertex of degree one. Let Q

be the subgraph of H induced by the edges in E(F ) \ EP . Note that Q is a perfect forest
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where u1 and v1 have odd degree and all other vertices have even degree. As Q is a perfect
forest all components are induced trees, and as u1 and v1 are the only vertices of odd degree,
this implies that Q is an induced path between u1 and v1. Adding the edge e1 to Q gives us
an induced cycle in G containing both e1 and e2 (as e′

2 ∈ E(F )).
Therefore we have proven that H contains a 0-perfect forest containing e′

2 if and only if
G contains an induced cycle, C, such that e1, e2 ∈ E(C), as desired. ◀

5 Proof of Theorem 8

Let G be a graph and e = uv an edge of G. Let f : V (G) → {0, 1} be an even-sum function.
Our polynomial-time algorithm will follow from the four claims proved below. At the end of
the proof, we briefly discuss how the claims are used in the algorithm.

▷ Claim A. Suppose that G contains a cut-vertex x, which may or may not belong to {u, v}.

Let C be the component in G − x intersecting {u, v} (there is exactly one such component
as uv ∈ E(G)) and let G′ = G[V (C) ∪ {x}]. Let f ′(w) = f(w) for all w ∈ V (C) and define
f ′(x) ∈ {0, 1} such that

∑
z∈V (Gi) f ′(z) is even. Then G has an f -parity perfect forest not

containing e if and only if G′ has an f ′-parity perfect forest not containing e.

Proof of Claim A. Let G contain a cut-vertex x and let C1, C2, . . . , Ck be the components in
G − x. Without loss of generality, assume that C1 is the component intersecting {u, v}. Let
Gi = G[V (Ci) ∪ {x}] for all i ∈ [k].

For each i ∈ [k] we will let fi : V (Gi) → {0, 1} be defined such that fi(w) = f(w) for all
w ∈ V (Ci) and

∑
z∈V (Gi) fi(z) is even (this defines the value of fi(x)). We will show that

G has an f -parity perfect forest not containing e if and only if G1 has an f1-parity perfect
forest not containing e, which will complete the proof of Claim A.

First assume that G1 has an f1-parity perfect forest F1 not containing e. By Theorem 12
there exists an fi-parity perfect forest, Fi, in Gi for all i = 2, 3, . . . , k. Now F1 ∪ F2 ∪ · · · ∪ Fk

is an f -parity perfect forest of G not containing e, as desired.
Conversely assume that G has an f -parity perfect forest F not containing e. If we restrict

F to V (G1), then we obtain an f1-parity perfect forest of G1 not containing e. ◁

▷ Claim B. If G is 2-connected and f(u) = 0 or f(v) = 0 then G has an f -parity perfect
forest not containing e.

Proof of Claim B. Assume without loss of generality that f(u) = 0. As G is 2-connected
G − u is connected and

∑
z∈V (G−u) f(z) is even. Therefore, by Theorem 12, there exists an

f -parity perfect forest in G − u, which is also an f -parity perfect forest in G not containing
the edge e. ◁

▷ Claim C. If G is 2-connected and f(u) = f(v) = 1 then G has a f -parity perfect forest if
and only if

∑
z∈V (G) f(z) ≥ 4.

Proof of Claim C. Let S =
∑

z∈V (G) f(z). As f is even-sum, S is even. Since f(u) = f(v) = 1,
we have S ≥ 2. If S = 2 and F is an f -parity perfect forest in G, then u and v must be
leaves of the same tree in F (as they are the only vertices with an f -value of one). Therefore
e ∈ E(F ), as otherwise the tree containing u and v is not induced in G. So, if S = 2 then G

has no f -parity perfect forest F in G with e ̸∈ E(F ).
We may therefore assume that S ≥ 4 and let w ∈ V (G) \ {u, v} have f(w) = 1. As

G is 2-connected there exists a (u, v)-path, P , in G with w ∈ V (P ). (To see it, consider
two internally disjoint paths from w to w′ where w′ is a new vertex added to G such that
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N(w′) = {u, v}.) We now create a spanning tree T in G, such that E(P ) ⊆ E(T ) and
dT (w) = 2, as follows. Initially let T = P . While V (T ) ̸= V (G) let q ∈ V (G) \ V (T ) be
arbitrary such that q has an edge into V (T ) \ {w} (which exists as G is 2-connected). Add q

and an edge from q into V (T ) \ {w} to T . When V (T ) becomes equal to V (G) we have our
desired tree T .

Let T1 and T2 be the two trees in T − w (there are exactly two trees in T − w as
dT (w) = 2). Let S1 =

∑
z∈V (T1) f(z) and let S2 =

∑
z∈V (T2) f(z). As f(w) = 1 and

V (T1) ∪ V (T2) = V (G) \ {w}, we note that S1 + S2 is odd. If Si is odd then add w to Ti

(i ∈ [2]), using the edge from w to V (Ti) in T . This results in two trees, say T ′
1 and T ′

2,
where

∑
z∈V (T ′

i
) f(z) is even for i ∈ [2]. Furthermore, as w ∈ V (P ) and E(P ) ⊆ E(T ), we

note that u and v do not belong to the same tree T ′
i . By Theorem 12 there exists an f -parity

perfect forest, F ′
i , of G[V (T ′

i )] for i ∈ [2] (as T ′
i is a spanning tree in G[V (T ′

i )], G[V (T ′
i )] is

connected). Now F ′
1 ∪ F ′

2 is an f -parity perfect forest of G not containing e. This completes
the proof of Claim C. ◁

It is easy to see that the following algorithm is of polynomial time. Keep reducing
the graph (see Claim A) as long as there exists a cut-vertex and when there are no more
cut-vertices then the answer is “no” if the endpoints of e have an f -value of one and all other
vertices have an f -value of zero and “yes”, otherwise (see Claims B and C). See Figure 6 for
an illustration of the algorithm.

1 0

1

1

01

0
e

G

Reduction due
to Claim A

⇒

0

1

01

0
e

G′

Figure 6 An illustration of the algorithm given in Theorem 8, where the values on the nodes
indicate the f -values. As in the final graph the endpoints of e have an f -value of one and all other
vertices have an f -value of zero there is no f -parity perfect forest in G′ avoiding the edge e and
therefore not in G either.

6 Proof of Theorem 10

Theorem 10 follows from Theorem 2 and Lemma 3 proved in this section. To prove Theorem 2,
we will use the following:

▶ Lemma 4. Let G be a connected graph of even order and let xy ∈ E(G) such that G−{x, y}
is connected. If G − x ∈ B and G − y ∈ B then N [x] = N [y].

Proof. Let G be a connected graph of even order and let xy ∈ E(G) be chosen such that
G − {x, y} is connected. Let Gy = G − x and let Gx = G − y and assume that Gy ∈ B
and Gx ∈ B. Let Cx

1 , Cx
2 , . . . , Cx

lx
be the blocks of Gx and without loss of generality assume

that x ∈ V (Cx
1 ). Analogously, let Cy

1 , Cy
2 , . . . Cy

ly
be the blocks of Gy and without loss of

generality assume that y ∈ V (Cy
1 ).
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▷ Claim A. NGx [x] = V (Cx
1 ) and Cx

1 is a complete graph of odd order and Cx
1 − x is a block

in G − {x, y}. Analogously, NGx
[y] = V (Cy

1 ) and Cy
1 is a complete graph of odd order and

Cy
1 − y is a block in G − {x, y}.

Proof of Claim A. For the sake of contradiction assume that u1, u2 ∈ NGx(x) but u1 and u2
belong to different blocks of Gx. In this case there is a cut-vertex in Gx separating u1 and
u2, which must be x (as u1xu2 is a path in Gx). However x does not separate u1 and u2 as
G − {x, y} is connected. This contradiction implies that all vertices in NGx

(x) belong to the
same block of Gx.

Therefore, NGx
[x] ⊆ V (Cx

1 ) as x is not a cut-vertex in Gx (as G − {x, y} is connected)
and hence x only belongs to one block of Gx. As Gx ∈ B we note that Cx

1 is a complete
graph of odd order. As |V (Cx

1 )| ≥ 3 (as all blocks contain at least two vertices, and |V (Cx
1 )|

is odd) and x is not a cut-vertex in Gx we note that Cx
1 − x is a block in G − {x, y}. This

completes the proof of Claim A. ◁

We now return to the proof of the lemma. By Claim A we note that Cy
1 − y is a block in

G − {x, y} which furthermore is a complete graph of even order. If Cx
1 − x and Cy

1 − y are
different blocks in G − {x, y}, then Cy

1 − y is a block of even order in Gx, a contradiction to
Gx ∈ B. So, Cx

1 − x and Cy
1 − y are the same block in G − {x, y}. By Claim A, we have the

following chain of equalities, which completes the proof of the lemma.

NG[x] = V (Cx
1 − x) ∪ {x, y} = V (Cy

1 − y) ∪ {x, y} = NG[y] ◀

▶ Theorem 2. Every connected graph, G ̸∈ B, of odd order n ≥ 3 contains a proper 1-perfect
forest.

Proof. The proof is by induction over odd integers n ≥ 3. For n = 3, we have G ∼= P3, the
path of order 3, which is a proper 1-perfect forest. Now we assume that G is a connected
graph of odd order n ≥ 5 such that G ̸∈ B. Let us consider two cases.

Case 1: G is not 2-connected. Assume that G has a cut-vertex x such that G − x has a
component C1 of even order. Let G1 = G[V (C1) ∪ {x}] and let G2 = G − V (C1). Note that
both G1 and G2 are connected graphs of odd order. Furthermore the set of blocks of G is
exactly the union of the blocks in G1 and G2. As G ̸∈ B (and therefore some block in G is
not a complete graph of odd order) we note that either G1 ̸∈ B or G2 ̸∈ B (or both).

Let i ∈ {1, 2} be defined such that Gi ̸∈ B and let j = 3 − i. By induction hypothesis,
there exists a proper 1-perfect forest Fi in Gi. By Theorem 9 there also exists a (not
necessarily proper) 1-perfect forest, Fj , in Gj , where x is the vertex of even degree in Fj .
We now note that Fi ∪ Fj is a proper 1-perfect forest of G, where the only vertex of even
degree is the vertex of even degree in Fi. Thus, we may assume that G has no cut-vertex x

such that some component in G − x is of even order.
Now assume that G contains a cut-vertex x. By the previous assumption, all components

in G − x are of odd order, and let C1 be a component of G − x. Let G1 = G[V (C1) ∪ {x}]
and let G2 = G − V (C1). Note that both G1 and G2 are connected graphs of even order. By
Theorem 1 there exists a 0-perfect forest F1 in G1 and a 0-perfect forest F2 in G2. Note that
F1 ∪ F2 is now a proper 1-perfect forest of G, where the only vertex of even degree is x.
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Case 2: G is 2-connected.
▶ Definition A. As G ̸∈ B and G has odd order, we note that G is not a complete
graph. Therefore there exists an induced path p1p2p3 in G (that is, p1p2, p2p3 ∈ E(G) and
p1p3 ̸∈ E(G)). Let C1, C2, . . . , Cl be the components in G − {p2, p3}, such that p1 ∈ C1.

Assume first that |V (C1)| is odd. By Theorem 9 there exists a 1-perfect forest F1 in
C1, such that p1 (see Definition A) is the vertex of even degree in F1. Let G′ = G − V (C1)
and note that G′ is connected and of even order. Therefore, by Theorem 1, there exists a
0-perfect forest, F ′, in G′.

If dF1(p1) > 0 then F1 ∪ F ′ is a proper 1-perfect forest in G. Now consider the case when
dF1(p1) = 0. As N(p1) ∩ V (G′) = {p2} (as p1p2p3 is an induced path in G) we note that
adding the edge p1p2 to F1 ∪ F ′ gives us a proper 1-perfect forest in G (where p2 is the only
vertex of even degree). Thus, in the rest of the proof, we may assume that |V (C1)| is even.

Let G′ = G[V (C1)∪{p2, p3}] and note that G is connected and of even order. Furthermore
G′ − {p2, p3} is connected (as G′ − {p2, p3} = C1). As p1 is adjacent to p2 but not to p3 we
note that NG′ [p2] ̸= NG′ [p3]. By Lemma 4 we must therefore have G′ −p2 ̸∈ B or G′ −p3 ̸∈ B.
Let i ∈ {2, 3} be chosen such that G′ − pi ̸∈ B, which by induction hypothesis implies that
there is a proper 1-perfect forest F1 in G′ − pi.

As G is 2-connected, we note that p5−i is not a cut-vertex of G. Therefore every component
in G − {p2, p3} has an edge to pi, which implies that G − V (F1) is connected and of even
order (as both G and F1 are of odd order). By Theorem 1 there exists a 0-perfect forest, F2,
in G − V (F1). Now F1 ∪ F2 is a proper 1-perfect forest in G. This completes the proof. ◀

A semiperfect forest F of G is called a 2-perfect forest if exactly two vertices of F have
even degree.

▶ Lemma 3. If G is a connected graph of odd order and G ∈ B then G does not contain a
proper 1-perfect forest.

Proof. Let G be a connected graph of odd order and let G ∈ B. We will prove that G

contains no proper 1-perfect forest. We will prove this using induction on the number of
blocks in G.

If G contains only one block then G is a complete graph of odd order. In this case, any
forest where all trees are induced, can only contain trees of order 2 (and 1 if we allow isolated
vertices). This implies that G cannot contain a proper 1-perfect forest as G has odd order.
This completes the base case.

Now assume that G contains at least two blocks, which implies that G contains a cut-
vertex, x. Let C1, C2, . . . , Cl be the components in G − x and let Gi = G[V (Ci) ∪ {x}] for
i ∈ [l]. For the sake of contradiction suppose that G contains a proper 1-perfect forest F and
let Fi denote F restricted to Gi for i ∈ [l]. As F is a proper 1-perfect forest we note that
dF (x) ≥ 1. Without loss of generality, assume that dF1(x) ≥ 1. This implies that F1 is a
proper i-forest in G1 where i ∈ {0, 1, 2}. However as |V (G1)| is odd (as G ∈ B) this implies
that F1 is a proper 1-perfect forest in G1. This is a contradiction to G1 ∈ B (as G ∈ B). ◀
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Given an existential formula Φ of linear arithmetic over p-adic integers together with valuation
constraints, we study the p-universality problem which consists of deciding whether Φ is satisfiable
for all primes p, and the analogous problem for the closely related existential theory of Büchi
arithmetic. Our main result is a coNEXP upper bound for both problems, together with a matching
lower bound for existential Büchi arithmetic. On a technical level, our results are obtained from
analysing properties of a certain class of p-automata, finite-state automata whose languages encode
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1 Introduction

In the light of the undecidability of Hilbert’s tenth problem, the decidability of the Diophantine
problem for addition and divisibility established by Lipshitz [20] is a non-trivial and interesting
result. The latter problem consists of deciding whether a system of divisibility constraints
of the form p(x) | q(x), with p and q being linear polynomials, has a solution over the
integers. Lipshitz’ proof of decidability relies on a local-to-global principle. He showed that
every such system can be transformed into an equi-satisfiable one that has a solution if
and only if an associated restricted system of linear equations with simple p-adic valuation
constraints is satisfiable over the p-adic integers for every prime p. We call the latter problem
the p-universality problem. To decide p-universality for the restricted class he considered,
Lipshitz showed that it suffices to only check satisfiability for all primes p up to a certain
threshold that can be computed from the input. One main result of this paper is to show
that the latter result can be generalised: p-universality is decidable in coNEXP for arbitrary
systems of linear equations over p-adic integers together with general linear p-adic valuation
constraints. For linear equations with first-order variables ranging over the whole field of
the p-adic numbers and restricted valuation constraints that allow to impose a partial order
on the p-adic valuations of the first-order variables, a quantifier-elimination procedure was
given by Dolzmann and Sturm from which it is possible to derive a coNEXP upper bound
for p-universality in this setting [8]. Their result also shows that, in their setting, the set of
those primes for which a solution exists is either finite or co-finite.

Linear arithmetic over p-adic integers with valuation constraints is closely related to Büchi
arithmetic. Büchi arithmetic of base p ≥ 2, p not necessarily prime, is the first-order theory
of the structure (N,+,=, Vp), an extension of Presburger arithmetic with a unary Vp function
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such that Vp(a) = b if and only if b is the largest power of p dividing a without remainder,
i.e., there is some k ∈ N such that b = pk, b | a and p · b ∤ a. Büchi showed that this theory
is decidable using an automata-based approach, and conversely that Büchi arithmetic of
base p defines the sets of numbers recognisable by p-automata, finite-state automata defining
tuples of natural numbers encoded as words of tuples over the alphabet {0, . . . , p− 1} [5],
though the latter result was incorrectly stated by Büchi and later correctly stated and proved
by Bruyère [3]. One central line of research in Büchi arithmetic has been to understand
the properties of this theory when the base p is variable. For instance, the celebrated
Cobham-Semënov theorem states that if a set M ⊆ Nd is separately definable in Büchi
arithmetic of multiplicatively independent bases p and q, then M is definable in Presburger
arithmetic [7, 26]. Another main result of this paper is to show coNEXP-completeness of the
analogue of p-universality for existential Büchi arithmetic: given an existential formula Ψ of
Büchi arithmetic, decide whether Ψ is satisfiable in all bases p ≥ 2. Note that p-universality
does not imply definability in Presburger arithmetic as, for instance, the formula Vp(x) = y

is not definable in Presburger arithmetic, but it is p-universal.
Both coNEXP upper bounds are obtained by establishing doubly-exponential upper

bounds on the smallest p for which a given formula becomes unsatisfiable. As a structural
result, we obtain that for linear equations over p-adic integers with valuation constraints,
the set of those primes p for which a given instance is satisfiable is precisely contained in an
ultimately periodic set. On a technical level, our results are obtained by analysing properties
of p-automata. While the latter have been studied for decades, only recently have they been
instrumental in obtaining tight complexity bounds for long-standing open problems about
the complexity of the satisfiability problem of the existential theories of the two arithmetic
theories we consider in this paper [11]. A key observation we exploit for our approach is that
the set of states of a p-automaton accepting the solutions of a system of linear Diophantine
equations does not depend on p. Note that the quantifier-elimination approach employed by
Dolzmann and Sturm [8] does not seem applicable in our setting as it works over the whole
p-adic numbers and relies on them being a field. Moreover, Büchi arithmetic does not have a
quantifier-elimination procedure, even when extended with additional predicates definable in
existential Büchi arithmetic [13].

2 Preliminaries and main results

The symbols Z, N and Q denote the set of integers, natural and rational numbers, respectively.
We write P for the set of prime numbers, and Z to denote the set of integers extended with
the symbol ∞ such that n ≤ ∞ for all n ∈ Z. All numbers are assumed to be encoded in
binary, unless otherwise stated. For any object, we denote by ⟨·⟩ the size of its encoding.

Linear arithmetic constraints over p-adic integers. Let p ≥ 2 be a fixed prime number.
Given a non-zero rational number q ∈ Q, the p-adic valuation vp(q) is defined as the unique
integer k ∈ Z such that q = pk · ab for a, b ∈ Z not divisible by p, and vp(0) = ∞. The
valuation vp induces the p-adic absolute value |·|p defined as |q|p = p−vp(q). The field of p-adic
numbers Qp is obtained as the Cauchy completion of the field of the rational numbers under
|·|p. Any p-adic number different from 0 has a unique p-adic expansion as an infinite power
series

∑∞
i=k aip

i for some k ∈ Z, ak ̸= 0 and ai ∈ [0, p− 1] for all i ≥ k. The ring Zp of p-adic
integers consists of all p-adic numbers for which this k is non-negative. By linear arithmetic
constraints over p-adic integers, we refer to the first-order theory of the two-sorted structure
({Zp,Z}, 0, 1,+,=, <, vp). All constants, relational and functional symbols have their natural
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semantics, and vp is the p-adic valuation mapping p-adic integers to the valuation ring Z. For
simplicity, we view the constants 0 and 1 as well as binary addition + as being defined for
both sorts. However, addition is restricted between elements of the same sort. The equality
relation = is defined on both Z and Zp, whereas the less-than relation < is restricted to the
valuation ring Z. Usually, the letters u, v refer to first-order variables interpreted over Zp,
and x, y, z refer to variables over Z. We rely on the axiom system for integer arithmetic
enriched with infinity presented in [17] to treat linear terms over the valuation ring containing
the symbol ∞.

Note that we allow arbitrary Boolean combinations of linear inequalities to constraint
valuations of the variables from Zp, whereas Dolzmann and Sturm [8] as well as Lipshitz [20]
only allow restricted constraints of the form vp(u) ≤ vp(v).

Büchi arithmetic. Let p ≥ 2 be a fixed integer. Büchi arithmetic of base p is the first-order
theory of the structure (N, 0, 1,+,=, Vp), where the constants 0 and 1 and the relations +
and = are interpreted in their natural semantics, and Vp is the unary function mapping every
non-zero integer x to the largest power of p that divides x without remainder as defined
in the introduction. For the purpose of this paper, as in [4] we define Vp(0) = 1, though
other definitions such Vp(0) =∞ are possible, but they do not change the sets of numbers
definable in Büchi arithmetic. The decidability of Büchi arithmetic rests on the fact that
Büchi arithmetic is an automatic structure in the sense of [14, 16, 2]. While full Büchi
arithmetic is Tower-complete [25], its existential fragment is only NP-complete [11].

Main decision problems and results. Both Büchi arithmetic and linear arithmetic con-
straints over p-adic integers are defined with respect to a fixed base p ∈ N. In this paper,
we treat p as a parameter, and, for a given formula Φ of existential Büchi arithmetic or
existential linear arithmetic constraints over p-adic integers mentioning p, are interested in
the following two decision problems:

p-existence: Is Φ satisfiable for some p ≥ 2?
p-universality: Is Φ satisfiable for every p ≥ 2?

When Φ is a formula of linear arithmetic constraints over p-adic integers, p above is additionally
restricted to be a prime number. For the complexity of those decision problems, we stipulate
that the Vp and vp functions count as a single symbol in ⟨Φ⟩ for any formula Φ. Note that
p-universality and p-existence are not the complement of one and another: the formula
x ̸= 2 ∨ Vp(x) = 2 of Büchi arithmetic has a solution for p = 2, but its negation is not
p-universal. As the main results of this paper, we show:

▶ Theorem 1. For both Büchi arithmetic and linear arithmetic constraints over p-adic
integers, p-existence and p-universality are decidable in NEXP and coNEXP, respectively.

▶ Theorem 2. Deciding p-universality for Büchi arithmetic is coNEXP-hard.

Further general notation. For an arbitrary set A, we write #A for its cardinality. If A
is infinite, then #A =∞. For a, b ∈ Z, we write [a, b] for the set {a, a+ 1, . . . , b}. Given a
matrix A ∈ Zn×d with components ai,j ∈ Z (i ∈ [1, n] and j ∈ [1, d]), the ∞-norm of A is
defined as ∥A∥∞

def= maxn,di=1,j=1|ai,j |. We extend ∥.∥∞ to vectors in Zd by viewing them as
elements of Zd×1. The (1,∞)-norm of A is defined as ∥A∥1,∞

def= maxni=1
∑d
j=1|ai,j |. Given

a finite set A ⊆ Zn of d integer vectors, we write AM to denote the n × d matrix whose
columns are the vectors in A, ordered following a lexicographic ordering. When clear from
the context, we shall abbreviate AM simply as A. We write ∥A∥∞ for ∥A∥∞.

MFCS 2021



55:4 On Deciding Linear Arithmetic Constraints Over p-adic Integers for All Primes

Let S : A · x ≥ c be a system of linear inequalities with A ∈ Zn×d and c ∈ Zn. We
write JSK for the solution set of S, that is the set of all v ∈ Zd such that A · v ≥ c. We use
JSK≥0 as a shorthand for JSK ∩ Nd. Moreover, we define ∥S∥ def= max(∥A∥∞, ∥c∥∞). Finally,
given a formula Φ of either Büchi arithmetic or linear arithmetic constraints over p-adic
integers, we write ∥Φ∥ for the maximum absolute value of an integer appearing in Φ.

Deterministic p-automata and linear Diophantine equations. A central technical tool
underlying the results of Theorem 1 are p-automata, a class of finite-state automata whose
languages encode sets of natural numbers, see e.g. [4]. Given an integer p ≥ 2, a p-automaton
is a deterministic automaton over an alphabet Σdp := [0, p− 1]d for some positive integer d. A
finite word w = uk · · ·u0 ∈ (Σdp)∗ over Σdp can be seen as encoding a d-tuple of non-negative
integers in base p. We consider a msd-first encoding J·K∗, in which the most significant digit
is on the left. Formally, JwK∗ ∈ Nd is defined as

∑k
j=0 p

k · uj . Also note that for w = ε, the
empty word, we have JwK∗ = 0.

Following [29], we define a p-automaton whose language is the msd-first encoding of all
non-negative integer solutions of a system of linear equations.

▶ Definition 3. Let S : A ·x = c be a system of linear Diophantine equations with A ∈ Zn×d

and c ∈ Zn. We define a p-automaton corresponding to S as A∗
p(S) def= (Q,Σdp, δ, q0, F ) with

a set of states Q = Zn, transitions δ(q,u) = p · q + A · u for all q ∈ Q and u ∈ Σdp, initial
state q0 = 0, and final state F = {c}.

For states s, t ∈ Q and u ∈ Σdp, we write s
u−→A,p t whenever δ(s,u) = t. This notation

is extended to words in the usual way: for a word w ∈ (Σd
p)∗, s

w·u−−→A,p t whenever there
is q ∈ Q such that s

w−→A,p q
u−→A,p t. We write s −→A,p t if s

w−→A,p t holds for some
w ∈ (Σdp)∗, and omit the subscripts A or p from −→A,p when clear from the context.

As usual, under regular acceptance condition, a finite word w ∈ (Σdp)∗ is accepted by the
automaton A = A∗

p(S) whenever q0
w−→ f for some f ∈ F . The language L∗(A) of A is the

set of all words that are accepted by A. Even though the automaton A has infinitely many
states, L∗(A) is a regular language since only finitely many live states can reach an accepting
state.

▶ Proposition 4 ([11], Prop. 5). Given the automaton A∗
p(S), only states q ∈ Q such that

∥q∥∞ ≤ max(∥A∥1,∞, ∥c∥∞) can reach an accepting state.

Proposition 4 implies a bound on the cardinality of the set L of live states of the
p-automaton A∗

p(S) as defined in Definition 3:

#L ≤ 2n ·max(∥A∥1,∞, ∥c∥∞)n (1)

Observe that Proposition 4 also gives us a first key insight into deciding p-universality, as it
shows that the set of live states of a p-automaton A∗

p(S) does not depend on the base p, but
only on the system S. Deciding reachability in a p-automaton reduces to finding non-negative
solutions to a certain system of Diophantine equations, as shown by the following proposition.

▶ Proposition 5 ([11]). Given s, t ∈ Q, k ∈ N and w ∈ (Σdp)k, s
w−→ t iff t = pk ·s + A · JwK∗.

In view of the bounds on the set of live states given in (1), the length of the shortest word w
witnessing s −→ t is exponential in ⟨S⟩. Of course, when s = 0 and t = c, this bound is
non-optimal, as von zur Gathen and Sieveking [27] have shown that any feasible system of
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linear Diophantine equations S has a solution whose bit-size is polynomially bounded in ⟨S⟩.
However, in the context of the p-universality problem, this bound on w is sufficient for us to
establish the complexity upper bounds given by Theorem 1.

ω-regular acceptance condition and systems of equations over p-adic integers. A similar
connection as in the previous paragraph can be established for systems of equations over
p-adic integers [11]. In this setting, we consider infinite words w = u0u1 · · · ∈ (Σp

d)ω over
Σd
p and view them as lsd-first encodings of d-tuples of p-adic integers in which the least

significant digit is on the left. Formally, we define JwKω ∈ Zdp as
∑∞
j=0 p

j · uj .
Let S : A · x = c be a system of linear equations with A ∈ Zn×d and c ∈ Zn, and let

w = u0u1 · · · ∈ (Σpd)ω. We have A · JwKω = c if and only if A · JwKω = c mod pk for all k ∈ N.
It follows, and was also discussed in [11], that A ·JwKω = c if and only if for every k ∈ N there
is r ∈ Zn such that A · Juk−1uk−2 . . .u0K∗ + r ·pk = c. By Proposition 5, the right hand side
of this double implication expresses that the state r can reach c in the p-automaton A∗

p(S)
by reading the word uk−1uk−2 . . .u0. So, A · JwKω = c is satisfied whenever the Büchi
automaton obtained from A∗

p(S) by reversing every transition and making all states accepting
has a non-empty language for the initial state c. This ω-regular acceptance condition can
equivalently be formulated as follows:

▶ Proposition 6. For all w = u0u1 · · · ∈ (Σp
d)ω, A · JwKω = c iff there is r ∈ Zn and a

strictly ascending sequence (λi)i∈N such that r
uλ0−1···u0−−−−−−−→A,p c and r

uλj+1 ···uλj−−−−−−−−→A,p r for
all j ∈ N.

Semi-linear set and ultimately periodic sets. Together with p-automata, to prove Theorem 1
we rely on well-known connections between solutions of systems of linear Diophantine
equations and semi-linear sets. For b ∈ Zd and a finite set P ⊆ Zd consisting of n elements,
L(b, P ) defines the linear set {x ∈ Zd : x = b + P · λ for some λ ∈ Nn}. For a finite set
B ⊆ Zd, L(B,P ) defines the hybrid-linear set

⋃
b∈B L(b, P ). A semi-linear set is a finite

union of hybrid-linear sets.
We use the following bound on the magnitude of the bases B and periods P of the set of

solutions of a system of linear Diophantine equations, which is derived from [23].

▶ Proposition 7 ([6], Prop. 4). Let A ∈ Zn×d, c ∈ Zn and S : A · x = c. Then JSK≥0 =
L(B,P ) where ∥B∥∞ ≤ ((d+ 1) · ∥A∥∞ + ∥c∥∞ + 1)n and ∥P∥∞ ≤ (d · ∥A∥∞ + 1)n.

Eventually, deciding p-existence and p-universality reduces to characterising the set
of bases p for which an existential formula of Büchi arithmetic (or linear arithmetic constraints
over p-adic integers) is satisfiable. This leads us to consider semi-linear sets in N, which are
equivalent to ultimately periodic sets, i.e., sets of definable as F ∪L(T, q), where q ∈ N is the
period of the ultimately periodic set, F ⊆ N is a finite set such that maxF < min T , and
T ⊆ [t, t+ q − 1], where t ∈ N is the threshold of the ultimately periodic set.

Following [28], the essential building block leading to this change of representation, from
one-dimensional semi-linear sets to ultimately periodic sets, is given by the proposition below.

▶ Proposition 8. Let M = L(B,P ) ⊆ N. Then M is an ultimately periodic set with
period gcdP and threshold bounded by ∥B∥∞ + ∥P∥2

∞.

We recall bounds on union, intersection and set difference of ultimately periodic sets.

▶ Proposition 9. Let M and N be two ultimately periodic sets with periods and thresholds
respectively (p1, t1) and (p2, t2). Then, M ∪N , M ∩N and M \N are ultimately periodic
sets with period lcm(p1, p2) and threshold max(t1, t2).
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Since N = L(0, 1), Proposition 9 shows that the complement N \M of an ultimately periodic
set M is itself ultimately periodic, and has the same period and threshold as M .

For linear arithmetic constraints over p-adic integers, p-existence and p-universality
restrict p to be prime numbers. We handle this restriction by using a variant of Linnik’s
theorem [19] to guarantee the existence of small primes on arithmetic progressions.

▶ Proposition 10. There is a constant c > 0 such that for all co-prime b, q ∈ N there is
some p ∈ L(b, q) ∩ P such that p ≤ c · (b · r)5.

Proof. Under the assumption that b ∈ [1, q−1], Linnik’s theorem states that L(b, q) contains
a prime in [1, d · pL] for fixed d > 0 and L ∈ N. The best known bound for L is 5, as
shown by Xylouris in [30]. To get rid of this additional restriction on b, consider a prime
s ∈ [b+1, 2(b+1)], whose existence follows from Bertrand’s postulate [22]. From the primality
of s > b and the co-primality of b and q, we derive gcd(b, s · q) = 1 and b < s · r. We can now
safely apply Linnik’s theorem, and derive that L(b, s · r) ⊆ L(b, q) contains a prime bounded
by c · (b · r)5 for some constant c > 0. ◀

Observe that every element of L(b, q) is by definition divided by gcd(b, q). Hence, in the case
where b and q are not co-prime, the only possible prime number appearing in L(b, q) is b.

3 Exponential witnesses for p-existence and p-universality

For an existential formula Φ of either Büchi arithmetic or linear arithmetic constraints over
p-adic integers, parametric in their base p, we write B(Φ) for the set of bases p ≥ 2 for which Φ
is satisfiable. Note that, in defining B(Φ) for linear arithmetic constraints over p-adic integers,
we temporarily lift the primality condition on p. In this section, we establish the following
result, which represents a crucial step in showing that the p-existence and p-universality
problems are decidable in NEXP and coNEXP, respectively, proven in Section 4.

▶ Theorem 11. Let Φ be an existential formula from Büchi arithmetic (resp. from linear
arithmetic constraints over p-adic integers).

If it exists, the smallest base p ≥ 2 (resp. p prime) in B(Φ) is bounded by 22O(⟨Φ⟩2) ,
If it exists, the smallest base p ≥ 2 (resp. p prime) not in B(Φ) is bounded by 22O(⟨Φ⟩2) .

Whereas members of B(Φ) are certificates of p-existence, a certificate for the non-universality
of B(Φ) can be retrieved from the “bases complement” B(Φ) def= N \ (B(Φ) ∪ {0, 1}). Con-
sequently, a proof of Theorem 11 follows as soon as we show the following proposition.

▶ Proposition 12. B(Φ) is an ultimately periodic set with period and threshold in 22O(⟨Φ⟩2) .

By Proposition 9, this result implies that B(Φ) is an ultimately periodic set with the same
period and threshold as B(Φ). Notice that for linear arithmetic constraints over p-adic
integers the primality of the certificates can be obtained by an application of Linnik’s
theorem: consider the ultimately periodic representation F ∪ L(T, q) of B(Φ), and suppose
that it contains a prime. If F ∪T contains a prime, then it is bounded by 22O(⟨Φ⟩2) . Otherwise,
there is some t ∈ T such that L(t, q) contains a prime. So, t and q are co-prime (as t ̸∈ P),
and by Linnik’s theorem L(t, q) has a prime bounded by 22O(⟨Φ⟩2) . Analogously, if B(Φ)
avoids a prime, then B(Φ) has a prime in 22O(⟨Φ⟩2) .
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Proof of Proposition 12: Büchi arithmetic. Let Φ be a formula of existential Büchi
arithmetic with parametric base p. To show Proposition 12, we introduce an abstraction
of p-automata that we call support graphs. Support graphs are graphs that, while being
independent from the base p, may correspond to paths of a p-automaton for a linear system
S : A · x = c, and integrate auxiliary systems of inequalities that we use to enforce the
satisfaction of formulae of the form Vp(x) = y, again independently of the choice of p.

▶ Definition 13. Let n ∈ N, and consider a tuple of variables x. A support graph on (n,x)
is a finite directed graph (V,E) with vertices V ⊆ Zn and edges E of the form s→T t, where
s, t ∈ V and T is a system of linear inequalities with variables from x.

A support graph can have multiple edges over the same two vertices, labelled with different
systems of linear inequalities. We evaluate a support graph to the set of bases p for which it
can be embedded into a p-automaton. Given s, t ∈ V and a matrix A ∈ Zn×d, we define

Js→T tKA
def= {z ∈ N : t = s · z + A · x, z ≥ 2 and ∥x∥∞ < z, for some x ∈ JT K≥0}.

Notice that Js→⊤ tKA, where ⊤ is a (trivial) system of inequalities such that J⊤K≥0 = Nd,
corresponds to the set of bases p ≥ 2 for which the p-automaton A∗

p(S) has a one-step
transition from s to t. As we only look at non-negative values for z and x, we can introduce
slack variables to translate the inequalities z ≥ 2, ∥x∥∞ < z, as well as all the ones in T , into
equalities. This allows us to apply Proposition 7, followed by Proposition 8, to character-
ise Js→T tKA as an ultimately periodic set. Below, let ∥s→T t∥∞

def= max(∥s∥∞, ∥t∥∞, ∥T∥).

▶ Lemma 14. Let A ∈ Zn×d, s, t ∈ Zn and let T be a linear system of m inequalities. The
set Js→T tKA is an ultimately periodic set with period and threshold bounded by UO(k log k),
where k = n+ d+m and U = max(2, ∥A∥∞, ∥s→T t∥∞).

Given a support graph G with edges e1, . . . , eℓ, we write JGKA for
⋂
i∈[1,ℓ]JeiKA, i.e. the set

of p ≥ 2 such that, for every edge s →T t of G, the transition s
u−→p,A t holds for some

tuple u ∈ Σdp satisfying T . By Proposition 9 and Lemma 14, JGKA is ultimately periodic.
To prove Proposition 12, we first translate the formula Φ (possibly by introducing slack

variables to replace inequalities with equalities) in a disjunctive normal form with 2O(⟨Φ⟩)

disjuncts have the form A · x = c ∧
∧
i∈I Vp(xi) = yi, where A ∈ Zn×d, c ∈ Zn, and

all variables are among the ones in x. We further manipulate each of these disjuncts by
considering all linear orderings among the variables yi (i ∈ I). Variables that are set to be
equal in an ordering can be substituted accordingly, so that Φ is found to be equivalent to a
disjunction of 2O(⟨Φ⟩ log ⟨Φ⟩) formulae of size O(⟨Φ⟩) that have the form

A · x = c ∧
∧

(i,j)∈J Vp(xi) = yj ∧
∧
j∈[1,m] yj < yj−1 (2)

where J ⊆ I×[0,m] is a binary relation that is functional and surjective on its first component.
Let ψ be a formula of the form in (2). We aim at characterising B(ψ) as an ultimately

periodic set. Recall that, by Proposition 5, solutions of the system S : A · x = c are
values JwK∗ ∈ Nd for some w ∈ (Σdp)∗ such that 0 w−→A,p c. Moreover, a constraint Vp(x) = y

restricts the variables x and y to be such that, in their base-p msd representation, y ∈ {0}ℓ ·
{1}·{0}r and x ∈ [0, p−1]ℓ · [1, p−1] ·{0}r, for some ℓ, r ∈ N. Consequently, in order for JwK∗

to be a solution of (2), the word w must admit a decomposition w0 ·u0 ·w1 · · ·wm ·um ·wm+1
such that u0, . . . ,um ∈ Σdp,

0 = s0
w0−−→A,p t0

u0−−→A,p s1 · · · sm
wm−−→A,p tm

um−−→A,p sm+1
wm+1−−−−→A,p tm+1 = c, (3)
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where s1, . . . , sm+1, t0, tm are (intermediate) live states, and every uj and wj with j ∈ [0,m]
shall satisfy the constraints induced by the function Vp together with the ordering on the
variables yj . In particular, following the aforementioned decomposition for the variables
x and y appearing in a constraint Vp(x) = y, for every j ∈ [0,m] the values of uj for the
variables x1, . . . , x#I and y1, . . . , ym shall satisfy the system Uj :{
yj = 1,
yk = 0 : k ∈ [1,m] \ {j},

xi ≥ 1 : i ∈ I and Vp(xi) = yj occurs in (2),
xi = 0 : i ∈ I and Vp(xi) = yk occurs in (2) for some k < j.

whereas at each position of the word wj (j ∈ [0,m+ 1]) shall satisfy the system Wj :{
yk = 0 : k ∈ [1,m], xi = 0 : i ∈ I and Vp(xi) = yk occurs in (2), for some k < j.

Hence, paths as in (3) can be abstracted into support graphs with vertices from the set of
live states of A∗

p(S) and having the form

0 = s0 →j0
W0

t0 →U0 s1 . . . sm →jm

Wm
tm →Um

sm+1 →jm+1
Wm+1

tm+1 = c, (4)

where s→j
T t is short for a path of length j going from s to t, and with arrows labelled by

the system of inequalities T , and for every i ∈ [0,m+ 1], ji is the length of wi.

▶ Lemma 15. Let ψ be a formula as in (2).
For every support graph G of the form described in (4), JGKA ⊆ B(ψ).
For every p ∈ B(ψ) there is a support graph G as in (4) such that p ∈ JGKA.

Proof. Let G be the set of support graphs of the form in (4). The lemma equivalently states
that B(ψ) =

⋃
G∈GJGKA. Below, we refer to the first and second points in the lemma as the

two inclusions ⊇ and ⊆ of this equality.
(⊇): Let G be a support graph in G, and consider p ∈ JGKA. Notice that, by definition, this
means that for every edge s →T t of G there is u ∈ Σd

p such that s
u−→A,p t and u ∈ JT K.

From (4), there is a path

0 = s0
w0−−→A,p t0

u0−−→A,p s1 . . . sm
wm−−→A,p tm

um−−→A,p sm+1
wm+1−−−−→A,p tm+1 = c,

where w def= w0 · u0 ·w1 · . . . ·wm · um ·wm+1 ∈ (Σdp)∗, u0, . . . ,um ∈ Σdp, every uj satisfies Uj
and every symbol in wj satisfies Wj . Clearly, A · JwK = c. From the definition of the systems
U0, . . . , Um and W0, . . . ,Wm+1, we obtain that in w the value for the variable yj (j ∈ [0,m])
has a base-p msd representation of the form {0}ℓj · {1} · {0}rj , for some ℓj , rj ∈ N such that
ℓj+1+rj corresponds to the length of w. This means that every yj is a power of p. Moreover,
rj−1 > rj for every j ∈ [1,m], and therefore yj < yj−1. Lastly, consider (i, j) ∈ J , so that
Vp(xi) = yj appears in ψ. The systems U0, . . . , Um and W0, . . . ,Wm+1 force the base-p msd
encoding of xi to belong to the language [0, p− 1]ℓj · [1, p− 1] · {0}rj . We conclude that the
formula Vp(xi) = yj holds. So, ψ is satisfiable with respect to the base p, i.e., p ∈ B(ψ).
(⊆): Follows conversely to the other inclusion. Suppose ψ satisfiable with respect to the base p.
Consider a word w ∈ (Σd

p)∗ such that JwK∗ is a solution of ψ. From
∧

(i,j)∈J Vp(xi) = yj

we conclude that the base-p msd encodings of xi and yj belong to {0}ℓj · {1} · {0}rj and
[0, p− 1]ℓj · [1, p− 1] · {0}rj , respectively, for some ℓj and rj such that ℓj + 1 + rj corresponds
to the length of w. From yj < yj−1 (j ∈ [1,m]), rj−1 > rj . Hence, w admits a decomposition
w0 · u0 · w1 · . . . · wm · um · wm+1 such that u0, . . . ,um ∈ Σdp,

0 = s0
w0−−→A,p t0

u0−−→A,p s1 . . . sm
wm−−→A,p tm

um−−→A,p sm+1
wm+1−−−−→A,p tm+1 = c,
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where s1, . . . , sm+1, t0, tm are live states. Moreover, every uj is a solution of Uj and
every symbol in the word wj is a solution of Wj . Let G be the support graph with edges
t0 →U0 s1, . . . , tm →Uj

sm+1 together with i→Wj
i′, for every j ∈ [0,m+ 1] and every two

states i, i′ such that i→A,p i′ appears in the path going from sj to tj . The graph G is of
the form in (4), and p ∈ JGKA. ◀

Only finitely many support graphs have the form described in (4), as they all have vertices
from the finite set of live states of A∗

p(S), and edges with labels from a finite set of linear
systems. So, Lemma 15 implies that the set B(ψ) is equivalent to a finite union of JGKA,
for which we can obtain an ultimately periodic representation according to Proposition 9
and Lemma 14.

▶ Lemma 16. Let ψ be as in (2). Then B(ψ) is ultimately periodic with threshold in UO(k log k)

and period in UO(ℓ·k log k), where U = max(2, ∥A∥1,∞, ∥c∥∞), k = n+ 3d2 and ℓ = U4n.

Proof. Let G be the finite family of support graphs such that B(ψ) =
⋃

G∈GJGKA, according
to Lemma 15. Every edge s →T t of a support graph G ∈ G is such that ∥s∥∞, ∥t∥∞ ≤
max(∥A∥1,∞, ∥c∥∞) and T is a system among U0, . . . , Um,W0, . . . ,Wm+1. Hence, all the
graphs in

⋃
j∈J Gj are built from a set E of (2 ·max(∥A∥1,∞, ∥c∥∞))2n · (2m + 3) ≤ O(ℓ)

edges (note: m ≤ #I ≤ d2). Each possible linear system T labelling an edge in E has at
most 2d2 inequalities, with coefficients and constants in {0, 1}. By Lemma 14, each edge
e ∈ E is such that JeKA is an ultimately periodic set with period and threshold bounded
by UO(k log k). By Proposition 9, taking unions and intersections of sets JeKA with e ∈ E, as
for instance B(ψ) =

⋃
G∈GJGKA, always yields an ultimately periodic set with threshold in

UO(k log k) and period in UO(ℓ·k log k). ◀

The bounds U , k and ℓ established in Lemma 16 for the threshold and the period of
B(φ) can be restated in terms of the size of the initial formula Φ as follows: U ≤ 2O(⟨Φ⟩),
k ≤ O(⟨Φ⟩2) and ℓ ≤ 2O(⟨Φ⟩2). This is sufficient to conclude that Proposition 12 holds.
Indeed, the formula Φ is equivalent to a disjunction

∨
k∈K ψk of formulae ψk of the form

in (2), with #K ≤ 2O(⟨Φ⟩ log ⟨Φ⟩). This means that the set B(Φ) is the union of all B(ψk)
with k ∈ K. We apply Proposition 9 to obtain a representation of B(Φ) as an ultimately
periodic set with threshold bounded by 2O(⟨Φ⟩3 log ⟨Φ⟩) and period bounded by 22O(⟨Φ⟩2) .

Proof of Proposition 12: Linear arithmetic constraints over p-adic integers. We now
establish Proposition 12 for the case of Φ being an existential formula of linear arithmetic
constraints over p-adic integers with parametric base p. For brevity, all proofs in this section
are relegated to Appendix B. The crucial difference from the proof of Proposition 12 for
Büchi arithmetic is that, differently from the Vp function, the p-adic valuation vp induces
constraints related to the relative lengths of subwords of the infinite words accepted by the
p-automaton. For instance, to satisfy the formula vp(u) = 3 · vp(v) ∧ vp(v) ≥ 1, the base-p
lsd-first representation of u and v must obey the following constraints:

u ∈ {0}i

v ∈ {0}i
{0}
[1, p− 1]

{0}2i+1

(Σp)2i+1
[1, p− 1]
Σp

(Σp)ω,
(Σp)ω.

where i ≥ 1. In particular, we notice that the length of the maximal all-zeros prefix of v
fixes the length of the maximal all-zeros prefix of u, and vice versa. This reflects in the
proof of Proposition 12 where, instead of only considering support graphs that are linear
structures in the sense of (4), we must consider arbitrary graphs and establish ultimately
periodic representations of the lengths of their paths. To do so, we rely on the following
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result on the lengths of words accepted by a nondeterministic finite automaton (NFA) over
a unary alphabet. Recall that an NFA is a tuple A = (Q, δ, I, F ) where Q is a finite set of
states, δ ⊆ Q × Q is a transition relation, and I, F ⊆ Q are set of initial and final states,
respectively.

▶ Proposition 17 ([24]). Given an unary NFA A = (Q, δ, I, F ) with s = #Q, one can
construct in time O(s2(s+ #δ)) a set L =

⋃
k∈K L(bk, qk) characterising the lengths of the

words accepted by A, with #K ≤ O(s2), bk ≤ (2 · s+ 1) · s and qk ≤ s.

Of course, other modifications with respect to the treatment of Büchi arithmetic are required:
the support graphs must take into account the ω-regular acceptance condition defined
in Proposition 6, and we also have to deal with the two-sorted structure of the theory.

Moving to the proof of Proposition 12, similarly to the case of Büchi arithmetic we start
by manipulating the formula Φ and obtain a disjunctive normal form where each of the
2O(⟨Φ⟩ log ⟨Φ⟩) disjuncts are of size O(⟨Φ⟩) and have the following form:

A · u = c ∧B · x ≥ d ∧
∧

(i,j)∈J vp(ui) = xj ∧
∧
j∈[1,r] xj−1 < xj (5)

where A ∈ Zn×d, c ∈ Zn, B ∈ Zm×e, d ∈ Zm and J ⊆ I × [0, r] is a binary relation that is
functional and surjective on its first component. Each ui with i ∈ I is a variable among u

interpreted over Zp, and each xj with j ∈ [0, r] is a variable among x, interpreted over Z.
Notice that restricting the interpretation of x from Z to Z is without loss of generality: when
bringing the formula Φ in disjunctive normal form, we can introduce tautologies of the form
x <∞∨x =∞, for each of the variables x in x. Then, following the axiom system presented
in [17], disjuncts where x =∞ holds can be easily modified so that x is eliminated.

According to Proposition 6, solutions of the system S : A · u = c over the p-adic integers
are values JwKω ∈ Zdp for some infinite word w = u0u1 · · · ∈ (Σd

p)ω such that there is a live
state r ∈ Zn of the p-automaton A∗

p(S) and an infinite sequence λ0 < λ1 < . . . for which

r
uλ0−1...u0−−−−−−−→A,p c and r

uλj+1 ...uλj−−−−−−−−→A,p r for all j ∈ N. Moreover, a constraint vp(u) = x

restricts the variables u and x to be such that, in the base p lsd-first representation of u, we
have u ∈ {0}x · [1, p−1] · [0, p−1]ω. Consequently, in order for (JwKω,x) to be a solution of (5),
in addition to B ·x ≥ d, the word w must have a prefix of the form w0 ·v0 ·w1 · · ·wr ·vr ·wr+1
such that v0, . . . , vr ∈ Σdp, the word w0 ∈ (Σdp)∗ has length x0, each wi ∈ (Σdp)∗ with i ∈ [1, r]
has length xi − (xi−1 + 1) ≥ 0, and

r = sr+1
(wr+1)R

−−−−−→A,p tr+1
vr−→A,p sr . . . s1

(w1)R

−−−−→A,p t1
v0−→A,p s0

(w0)R

−−−−→A,p t0 = c (6)

where each (wi)R with i ∈ [0, r+1] is the reverse of the word wi, and r is a live state of A∗
p(S)

for which the ω-regular condition of Proposition 6 is satisfied. Following the decomposition
for the variable u appearing in a constraint vp(u) = x given above, for every j ∈ [0, r] the
values of vj for the variables u1, . . . , u#I shall satisfy the system Uj :{

ui ≥ 1 : i ∈ I and vp(ui) = xj occurs in (5),
ui = 0 : i ∈ I and vp(ui) = xk occurs in (5), for some k ∈ [j + 1, r].

whereas at each position of the word wj (j ∈ [0, r + 1]) shall satisfy the system Wj :{
ui = 0 : i ∈ I and vp(ui) = xk occurs in (5), for some k ∈ [j, r].
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Wr+1 Wr W1 W0

L(r) Gr+1(sr+1, tr+1) Gr(sr, tr) G1(s1, t1) G0(s0, t0)

r = sr+1 tr+1 srUr
tr sr−1

Ur−1
. . . s1 t1 s0U0

t0 = c

Figure 1 A support graphs for existential linear arithmetic constraints over p-adic integers.

Given a formula ψ of the form in (5), we abstract paths in the p-automaton A∗
p(S)

induced by infinite words such as the word w above, by introducing a family of support
graphs, denoted by G(ψ). Each support graph G ∈ G(ψ) has live states of A∗

p(S) as vertices,
and its set of edges can be partitioned in the following sets, for some intermediate live states
r, s0, . . . , sr+1, t0, . . . , tr+1 such that r = sr+1 and t0 = c:

C(r) : a set of edges of the form s →Wr+1 t that describes a connected graph with a
non-empty path from r to itself (as required by the ω-regular condition of Proposition 6),
Gj(sj , tj), with j ∈ [0, r + 1] : a set of edges of the form s →Wj t that describes a
connected graph with a (possibly empty) path going from sj to tj ,
{tj+1 →Uj sj}, for every j ∈ [0, r].

As the set of live states of A∗
p(S) and the set of all linear systems Uj and Wj considered

are finite, so is the set G(ψ). Figure 1 depicts a support graph from G(ψ). We say that G
generates the length values (v0, . . . , vr) ∈ Nr+1 if G has a path of the form

tr+1 →Ur
sr →vr−(vr−1+1)

Wr
tr →Ur−1 sr−1 . . . s1 →v1−(v0+1)

W1
t1 →U0 s0 →v0

W0
t0 = c (7)

Exactly as in the case of Büchi arithmetic, we aim at characterising B(ψ) as a union over
a subset B of {JGKA : G ∈ G(ψ)}. According to the definition of G ∈ G(ψ), the set JGKA
consists of some of the bases p ≥ 2 for which, if we disregard the constraints imposed by the
system of inequalities B · x ≥ d, the formula ψ is satisfiable. To account for this system,
we need to characterise the set of all length values that can be generated from G, and check
whether B · x ≥ d ∧

∧
j∈[0,r] xj = vj can be satisfied with respect to one of these length

values (v0, . . . , vr). This check, which we now formalise, does not depend on the base-p, so
that either JGKA ⊆ B(ψ) or G can be discarded when constructing the set B.

Consider G ∈ G(ψ), with intermediate live states s0, . . . , sr+1 = r, c = t0, . . . , tr+1. For
every j ∈ [0, r], we construct from the set of edges Gj(sj , tj) the unary NFA (Q, δ, I, F )
where Q is the set of live states appearing in some of the edges of Gj(sj , tj), I = {sj} and
F = {tj}, and δ = {(s, t) ∈ Q2 : s →Wj t ∈ Gj(sj , tj)}. By Proposition 17, the set Lj of
the lengths of the words accepted by this automaton is ultimately periodic. To obtain the
length values that can be generated by G, we combine the lengths of the sets L0, . . . , Lr, and
construct the following set ⊕(L0, . . . , Lr):

⊕(L0, . . . , Lr) def=




ℓ0
1 + ℓ0 + ℓ1

. . .

r +
∑r
i=0 ℓi

 ∈ Nr+1 : ℓj ∈ Lj for all j ∈ [0, r]

 (8)

Below, we set U def= max(2, ∥A∥1,∞, ∥c∥∞), so that the live states of S are at most U2n.

▶ Lemma 18. The set ⊕(L0, . . . , Lr) contains all length values generated by G. One can
construct in time O(r2) · UO(n·r) a representation of ⊕(L0, . . . , Lr) as a semi-linear set⋃
k∈K L(bk, Pk), where #K ≤ UO(n·r), #P ≤ r + 1, ∥P∥∞ ≤ U2n and ∥bk∥∞ ≤ O(r · U4n).
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As already stated, the set LG allows us to characterise B(ψ) as a union over some of
the sets in {JGKA : G ∈ G(ψ)}. This is formalised by the two following lemma, analogous
to Lemma 15 established for Büchi arithmetic. For brevity, we write G ⊢ B · x ≥ d whenever
there is a length value (v0, . . . , vr) ∈ LG such that B · x ≥ d ∧

∧
j∈[0,r] xi = vi is satisfiable.

▶ Lemma 19. Let ψ be a formula of the form given in (5).
Given G ∈ G(ψ), if G ⊢ B · x ≥ d then JGKA ⊆ B(ψ).
For every p ∈ B(ψ), there is G ∈ G(ψ) such that G ⊢ B · x ≥ d and p ∈ JGKA.

Following the case of Büchi arithmetic, we then express B(ψ) as an ultimately periodic set.

▶ Lemma 20. Let ψ be as in (5). The set B(ψ) is ultimately periodic, with threshold bounded
by UO(k log k) and period bounded by UO(ℓ·k log k), with k = n+ 3d and ℓ = (r + 2) · U4n+1.

Together, Proposition 9 and Lemma 20 yield Proposition 12, as we recall that Φ is equivalent
to a disjunction

∨
k∈K ψk of formulae ψk of the form in (5), with #K ≤ 2O(⟨Φ⟩ log ⟨Φ⟩).

4 Deciding satisfiability when the base p is large

In view of the magnitude of the bases p established in Theorem 11, in order to prove
Theorem 1, i.e., to show that the p-existence and p-universality problems are decidable in
NEXP and coNEXP, respectively, it is sufficient to show the following statement.

▶ Theorem 21. Let Φ be an existential formula of linear arithmetic constraints over p-adic
integers (resp. Büchi arithmetic) with parametric base p. Then satisfiability of Φ with respect
to a given value p ∈ P (resp. p ≥ 2) can be decided in time 2O(⟨Φ⟩3) · O(⟨p⟩).

This result cannot directly be obtained from [11], where it is shown that satisfiability of Φ
with the base p given in binary is decidable NP, as it only gives a coNEXPNP upper bound
for p-universality when ⟨p⟩ is of exponential size. For our purposes, we require a decision
procedure that runs in time polynomial in the size of the binary encoding of p provided as
input. This can be a achieved by appealing to a strongly polynomial-time algorithm for
the feasibility problem of a system of linear Diophantine inequalities in a fixed dimension
established in [9].

▶ Proposition 22 ([9]). Let S : A · x ≥ c be a system of linear Diophantine inequalities,
with A ∈ Zn×d and c ∈ Zn. Checking whether JSK ≠ ∅ can be decided using d2.5d+o(d) · ⟨S⟩
arithmetic operations, and space polynomial in ⟨S⟩.
With this proposition at hand, proving Theorem 21 for both existential formulas of linear
arithmetic constraints over p-adic integers and Büchi arithmetic, respectively, is not difficult.
Any such formula can be converted in time 2O(⟨Φ⟩ log ⟨Φ⟩) into a disjunctive normal form
with disjuncts of the form given in (2) and (5), respectively. For every disjunct, we iterate
in time 2O(⟨Φ⟩2) over all decompositions of the form describe in (4) and (7), respectively,
with each decomposition giving rise to family of systems of linear Diophantine equations
whose number of variables is bounded by O(⟨Φ⟩2) and whose coefficients are bounded by
O(p + 2⟨Φ⟩). Proposition 22 then enables to decide any of such system with the required
time bounds. Full details are deferred to Appendix C.



C. Haase and A. Mansutti 55:13

5 Büchi arithmetic: coNEXP lower bound for p-universality

Here, we prove Theorem 2 and show that the p-universality problem for existential Büchi
arithmetic is coNEXP-hard. The proof is by a reduction from a coNEXP-complete general-
isation of the quantified Boolean satisfiability problem, denoted by QOΠ1-Sat (where QO
stands for “quantified oracle”), that was introduced in [1] and later generalised in [21]. For
m ∈ N, let Fm denote the set of all m-ary Boolean functions.

The QOΠ1-Sat problem takes as input a tuple (m,n, φ) where m,n ∈ N are written
in unary, and φ is a Boolean combination of x1, . . . , xm, y1, . . . , yn and f(x1, . . . , xm). The
input is accepted if and only if for all f ∈ Fm there are x1, . . . , xm, y1, . . . , yn ∈ {0, 1} such
that φ is a valid.

Our reduction from QOΠ1-Sat to the p-universality problem of existential Büchi arith-
metic follows an approach for showing coNEXP hardness of the Π2-fragment of Presburger
arithmetic [10, 12]. The main challenge is to show how to universally quantify over and
suitably encode the doubly-exponential number of m-ary Boolean functions. Given f ∈ Fm,
we encode f via a number z ∈ N using a variant of Gödel encoding as follows:

f(b0, . . . , bm−1) = b ⇐⇒ z ≡ b mod q, for all q ∈ P ∩ [k3, (k + 1)3), k =
∑m−1
i=0 2i · bi . (9)

Note that Ingham’s theorem on prime gaps [15] guarantees that for sufficiently large k ∈ N,
there is at least one prime in the interval [k3, (k + 1)3). For technical convenience, to avoid
adding a constant offset throughout our constructions, and as done in e.g. [10, 12], we apply
Ingham’s theorem as if it was true for all k ∈ N.

▶ Lemma 23. For every f ∈ Fm there is some z ∈ N encoding f as specified in (9), and for
all i, j > 0, pi is a valid encoding if and only if pj is a valid encoding.

Proof. The first part immediately follows from the Chinese remainder theorem, and the
second part follows from b ∈ {0, 1} in (9). ◀

From [12] we can derive the existence of the following families of existential Presburger
formulas polynomial-time computable in m ∈ N given in unary:

Φprime
m (x) that evaluates to true if and only if x < 2m and x ∈ P;

Φpow3
m (x, y) that evaluates to true if and only if x < 2m and y = x3;

Φmod
m (x, y) that evaluates to true if and only if y < 2m and x ≡ 0 mod y; and

Φinvalid
m (x) that evaluates to true if and only if there are q1, q2 ∈ P ∩ [k3, (k + 1)3) for

some k < 2m such that (x mod q1) ̸= (x mod q2) or (x mod q1) ̸∈ {0, 1}.
We define a family of existential formulas of Presburger arithmetic Φfun

m (x, y, z) that hold if
and only if f(x0, . . . , xm−1) = y, under the assumptions that z is a valid encoding of some
f ∈ Fm as defined in Equation (9), x = (x0, . . . , xm−1) ∈ {0, 1}m and y ∈ {0, 1}:

Φfun
m (x, y, z) def= ∃x k k0 k1 : k =

∑m−1
i=0 2i · xi ∧ Φpow3

m (k, k0) ∧ Φpow3
m+1 (k + 1, k1)

∧ k0 ≤ x < k1 ∧ Φprime
3m+1(x) ∧ Φmod

3m+1(z − y, x) .

For the final step of our reduction, given an instance I = (m,n, φ) of QOΠ1-Sat,
denote by φ̃(x,y, y) the quantifier-free formula of Presburger arithmetic obtained from φ by
replacing xi and yi by xi = 1 and yi = 1, respectively; ¬xi and ¬yi by xi = 0 and yi = 0,
respectively; and f(x1, . . . , xn) by y = 1 and ¬f(x1, . . . , xn) by y = 0. We claim that I is a
positive instance if and only if the following formula Ψp of existential Büchi arithmetic, with
parametric base p and a single occurrence of a Vp function, is p-universal:
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Ψp
def= ∃x ∃y∃x ∃y ∃z : Vp(z) = z ∧ z > 1 ∧ 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 ∧

∧
i∈[1,m] 0 ≤ xi ≤ 1

∧
∧
i∈[1,n] 0 ≤ yi ≤ 1 ∧ Φfun

m (x, y, z) ∧
(
Φinvalid
m (z) ∨ φ̃(x,y, y)

)
,

where x = (x1, . . . , xm) and y = (y1, . . . , yn). Theorem 2 is now an immediate consequence
of the following proposition.

▶ Proposition 24. Let I = (m,n, φ) be an instance of QOΠ1-Sat. Then I is a positive
instance if and only if Ψp is p-universal.

Proof. (⇒): By Lemma 23, any f ∈ Fm is encoded by some p ∈ N. Choosing z = p in
Ψp and instantiating the xj and yj by those xj and yj making φ true for f , which exist by
assumption, it follows that Ψp is p-universal.

(⇐): Suppose that Ψp is p-universal. By Lemma 23, for every f ∈ Fm there is some valid
encoding p of f , and by assumption Ψp evaluates to true in base p for some choice z = pi. By
Lemma 23, p is a valid encoding of f as well, and hence the same xj and yj that make Ψp for
z = pi and a fortiori z = p true also make φ true for f . Hence I is a positive instance. ◀

6 Conclusion

There remains the open problems to what extend the coNEXP upper bound for p-universality
for the p-adic integers stated in Theorem 1 is tight. The coNEXP lower bound for p-
universality for existential Büchi arithmetic together with the bounds on the ultimately
periodic representation of the set of bases satisfying a given formula obtained in Proposition 12
gives strong evidence that, should it be possible to improve the coNEXP upper bound for
the p-adic integers, a different approach not based on p-automata will likely be required.
Likewise, we do not know whether the NEXP upper bounds for p-existence can be improved.

The coNEXP lower bound for p-universality for Büchi arithmetic crucially relies on the
presence of disjunction and conjunctive as Boolean connectives. It would be interesting to
better understand the complexity of the conjunctive fragments of the logics we consider, at
present we cannot obtain any better upper bounds. In particular, Lechner et al. have shown
that the restricted formulas obtained in Lipshitz’ decidability proof are p-universal if and
only if they are satisfied for all primes p singly exponentially bounded in the input [18].

Another interesting open problem is to settle the decidability status of p-universality for
full Büchi arithmetic. Given that Büchi arithmetic does not have quantifier elimination [13],
this problem will also likely require new approaches and techniques.
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A Missing proofs from Section 2

▶ Proposition 6. For all w = u0u1 · · · ∈ (Σp
d)ω, A · JwKω = c iff there is r ∈ Zn and a

strictly ascending sequence (λi)i∈N such that r
uλ0−1···u0−−−−−−−→A,p c and r

uλj+1 ···uλj−−−−−−−−→A,p r for
all j ∈ N.

Proof. Simple reformulation of the fact that A · JwKω = c holds if and only if for every k ∈ N
there is v ∈ Zn such that A · Juk−1uk−2 . . .u0K∗ + v · pk = c, where w = u0u1, . . . . Indeed,
as the set of live states of the p automaton for A · u = c is finite (by Proposition 4), in the
infinite sequence v0,v1,v2, . . . where A · Juk−1uk−2 . . .u0K∗ + vk · pk = c for every k ∈ N,
there must be a state r that appears infinitely often. ◀

B Missing proofs from Section 3

Below, given a semi-linear set M =
⋃
i∈I L(Bi, Pi), we define ∥M∥ def= maxi∈I(∥Bi∥∞, ∥Pi∥∞).

▶ Lemma 14. Let A ∈ Zn×d, s, t ∈ Zn and let T be a linear system of m inequalities. The
set Js→T tKA is an ultimately periodic set with period and threshold bounded by UO(k log k),
where k = n+ d+m and U = max(2, ∥A∥∞, ∥s→T t∥∞).

Proof. Recall that Js→T tKA is the set of z ∈ N for which there is x = (x1, . . . , xd) ∈ JT K≥0
satisfying the following system S of linear inequalities:

s · z + A · x = t

z ≥ 2
xi ≤ z − 1 for every i ∈ [1, d].

As usual, when restricting a system to its non-negative solutions, we can replace inequalities
with equalities by introducing slack variables, obtaining the system S′:

s · z + A · x = t

z − z′ = 2
xi + x′

i = z − 1 for every i ∈ [1, d].

where z′, x′
1, . . . , x

′
d are (d+ 1) variables that shall be interpreted with non-negative integers.

It is easy to verify that the set of solutions in JSK≥0 can be characterised by considering the
set JS′K≥0 and projecting away the dimensions relatives to the slack variables z′, x′

1, . . . , x
′
d.
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Notice that S′ has 2 · (d+ 1) variables and n+d+ 1 rows. A similar treatment can be applied
to the system of inequalities T : by introducing at most m new slack variables, we obtain a
system of equalities T ′ with m rows and d+m variables. We apply Proposition 7, on the
system made of S′ and T ′ and conclude that JS′K≥0 ∩ JT ′K≥0 = L(B,P ) where
∥B∥∞ ≤ ((2 · (d+ 1) + (d+m) + 2) · U + 1)(n+d+1)+(d+m),
∥P∥∞ ≤ ((2 · (d+ 1) + (d+m)) · U + 1)(n+d+1)+(d+m).

Hence, ∥L(B,P )∥ ≤ UO(k log k). Projecting L(B,P ) on the variable z yields Js→T tKA. So,
Js →T tKA = L(C,Q) ⊆ N with ∥L(C,Q)∥ ≤ UO(k log k). We now change representation:
by Proposition 8, we characterise Js →T tKA as an ultimately periodic set with period
p ≤ gcdQ ≤ UO(k log k) and threshold t ≤ ∥C∥∞ + ∥Q∥2

∞ ≤ UO(k log k). ◀

▶ Lemma 18. The set ⊕(L0, . . . , Lr) contains all length values generated by G. One can
construct in time O(r2) · UO(n·r) a representation of ⊕(L0, . . . , Lr) as a semi-linear set⋃
k∈K L(bk, Pk), where #K ≤ UO(n·r), #P ≤ r + 1, ∥P∥∞ ≤ U2n and ∥bk∥∞ ≤ O(r · U4n).

Proof. It is relatively straightforward to see that ⊕(L0, . . . , Lr) corresponds to the set of
length values generated by G. First, let (v0, . . . , vr) ∈ Nr+1 be a length value generated by G,
which by definition means that G has a path of the following form

tr+1 →Ur
sr →vr−(vr−1+1)

Wr
tr →Ur−1 sr−1 . . . s1 →v1−(v0+1)

W1
t1 →U0 s0 →v0

W0
t0 = c.

Directly by definition of Gj(sj , tj) and its related unary NFA, we have that v0 ∈ L0 and for
every j ∈ [1, r], vj − (vj + 1) ∈ Lj . By definition of ⊕(L1, . . . , Lr),

v0
1 + v0 + v1 − (v0 + 1)

. . .

i+ v0 +
∑
j∈[1,i](vj − (vj−1 + 1))

. . .

r + v0 +
∑
j∈[1,r](vj − (vj−1 + 1))


=



v0
v1
. . .

vi
. . .

vr


∈ ⊕(L1, . . . , Lr)

Conversely, suppose (v0, . . . , vr) ∈ ⊕(L1, . . . , Lr). This implies that there are ℓ0, . . . , ℓr such
that, for every j ∈ [0, r], ℓj ∈ Lj and vj = j +

∑
i∈[0,j] ℓj . By definition of Lj , we conclude

that G has a path of the following form

tr+1 →Ur
sr →ℓr

Wr
tr →Ur−1 sr−1 . . . s1 →ℓ1

W1
t1 →U0 s0 →ℓ0

W0
t0 = c.

We have ℓ0 = v0 and, given j ∈ [1, r], from vj = j +
∑
i∈[0,j] ℓj = 1 + vj−1 + ℓj we conclude

that ℓj = vj − (vj−1 + 1). Hence (v0, . . . , vr) is a length value generated by G.
Let us now show how to construct a semi-linear representation of ⊕(L0, . . . , Lr). Recall

that, by Proposition 17, for every i ∈ [0, r] we have Li =
⋃
j∈Ji

L(bj , pj) with #Ji ≤ O(U4n),
bj ≤ (2 · U2n + 1) · U2n and pj ≤ U2n. To compute ⊕(L0, . . . , Lr) we iterate over all
(j0, . . . , jr) ∈ J0 × · · · × Jr and construct a linear set representation for

⊕(L(bj0 , pj0), . . . , L(bjr
, pjr

)) def=




ℓ0
1 + ℓ0 + ℓ1

. . .

r +
∑r
i=0 ℓi

 ∈ Nr+1 : ∀i ∈ [0, r], ℓi ∈ L(bji
, pji

)

 .

The set ⊕(L0, . . . , Lr) is then the union over all such linear sets. Hence, consider (j0, . . . , jr) ∈
J0×· · ·×Jr and the linear sets L(bj0 , pj0), . . . , L(bjr

, pjr
). Given i ∈ [0, r], we write qi ∈ Nr+1

for the vector having zero in the first i−1 components, and pji in the last r+1−i components.
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Moreover, let b ∈ Nr+1 be the vector with ith component set to i+
∑i
k=0 bji . It is easy to see

that ⊕(L(bj0 , pj0), . . . , L(bjr
, pjr

)) = L(b, {q0, . . . , qr}). Due to the bound on each L(bji
, pji

),
one can compute L(b, {q0, . . . , qr}) in time O(r2 ·maxi∈[0,r](⟨bji

⟩, ⟨pji
⟩)) ≤ O(n · r2 · logU).

Moreover, ∥qi∥∞ ≤ U2n and ∥b∥∞ ≤ O(r ·U4n). When considering all UO(n·r) tuples, a semi-
linear representation of ⊕(L0, . . . , Lr) can then be constructed in time O(r2) · UO(n·r). ◀

▶ Lemma 19. Let ψ be a formula of the form given in (5).
Given G ∈ G(ψ), if G ⊢ B · x ≥ d then JGKA ⊆ B(ψ).
For every p ∈ B(ψ), there is G ∈ G(ψ) such that G ⊢ B · x ≥ d and p ∈ JGKA.

Proof. To show this result, we simply adapt the proof of Lemma 15. Let G be the set of
support graphs G in G(ψ) such that G ⊢ B · x ≥ d. The lemma equivalently states that
B(ψ) =

⋃
G∈GJGKA. Below, we refer to the first and second points in the lemma as the two

inclusions ⊇ and ⊆ of this equality.
(⊇): Let G be a support graph in G, and consider p ∈ JGKA. Moreover, let (v0, . . . , vr) ∈ Nr+1

be a length value generated by G such that B · c ≥ d ∧
∧
i∈[0,r] xi = vi is satisfiable. This

means that G has a path of the form

tr+1 →Ur
sr →vr−(vr−1+1)

Wr
tr →Ur−1 sr−1 . . . s1 →v1−(v0+1)

W1
t1 →U0 s0 →v0

W0
t0 = c

Moreover, as G ∈ G(ψ), there is r ∈ Zn such that G has a path from r to tr+1 as well as
a path from r to itself. We recall that, by definition, for every edge s →T t of G there
is u ∈ Σd

p such that s
u−→A,p t and u ∈ JT K. We conclude that there is an infinite word w

such that w = w0 · v0 · w1 · . . . · wr · vr · w, where
1. v0, . . . , vr ∈ Σdp, and for all j ∈ [0, r], the prefix w0 ·v0 · . . . ·wj ∈ (Σdp)∗ of w has length vj ,

2. tr+1
vr−→A,p sr . . . s1

(w1)R

−−−−→A,p t1
v0−→A,p s0

(w0)R

−−−−→A,p t0 = c,
3. w = u0u1 . . . is an infinite suffix of w for which there is an infinite sequence λ0 < λ1 < . . .

such that r
uλ0−1...u0−−−−−−−→A,p c and for all j ∈ N, r

uλj+1 ...uλj−−−−−−−−→A,p r,
4. By definition of U0, . . . , Um and W0, . . . ,Wm+1, given (i, j) ∈ J , so that vp(ui) = xj

appears in ψ, we have that w0 · v0 · . . . · wj projected on the encoding of ui is in {0}∗,
and vj projected on the encoding of ui is in [1, p− 1].

Therefore, ψ admits a solution (JwKω,x), where in x for every i ∈ [0, r] we have xi = vi.
Indeed, from points 2 and 3, and by Proposition 6, A · JwKω = c. From points 1 and 4,
given (i, j) ∈ J , the lsd encoding of ui is such that vp(ui) = vj , hence vp(ui) = xj .
Lastly, by definition of (v0, . . . , vr) we have x0 < x1 < · · · < xr, and we know that
B · c ≥ d ∧

∧
i∈[0,r] xi = vi is satisfiable. This means that ψ is satisfiable with respect

to the base p, i.e. p ∈ B(ψ).
(⊆): Follows conversely from the other inclusion. Briefly, suppose ψ satisfiable with respect
to the base p. Consider a word w ∈ (Σdp)ω and x ∈ Ze such that (JwKω,x) is a solution of ψ.
As already said in the body of the paper, this means that w must have a prefix of the form
w0 · v0 ·w1 · . . . ·wr · vr ·wr+1 such that v0, . . . , vr ∈ Σdp, the word w0 ∈ (Σdp)∗ has length x0,
each wi ∈ (Σdp)∗ with i ∈ [1, r] has length xi − (xi−1 + 1) ≥ 0,

r = sr+1
(wr+1)R

−−−−−→A,p tr+1
vr−→A,p sr . . . s1

(w1)R

−−−−→A,p t1
v0−→A,p s0

(w0)R

−−−−→A,p t0 = c

and r is a live state of A∗
p(S) for which the ω-regular condition of Proposition 6 is satisfied.

Moreover, for every j ∈ [0, r] the values of vj for the variables u1, . . . , u#I satisfy the
system Uj , whereas at each position of the word wj (j ∈ [0, r+1]) shall satisfy the system Wj .
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Algorithm 1 Procedure for deciding satisfiability of a formula ψ of the form in (5).
1: function sat(ψ)
2: Q← [−U,U ]n where U = max(∥A∥1,∞, ∥c∥∞)
3: for (s0, t0, . . . , sr+1, tr+1) ∈ Q2(r+1) with t0 = c do
4: L0, . . . , Lr ← ∅
5: for j ∈ [0, r + 1] do ▷ below, Wj and Uj defined as in Section 3
6: Aj ← (Q, δ, {sj}, {tj}) where δ = {(s, t) : p ∈ Js→Wj tKA, s, t ∈ Q}.
7: if j > 0 then check p ∈ Jtj →Uj

sj−1KA

8: check if Aj has a path form sj to tj (i.e. L(Aj) ̸= ∅)
9: if j = r + 1 then check if Aj has a non-empty path form sj to itself

10: if j ̸= r + 1 then Lj ← L where L defined as in Proposition 17 w.r.t. Aj
11: end for
12: if ⊕(L0, . . . , Lr) ∩ JB · x ≥ dK ̸= ∅ then return true ▷ ⊕(L0, . . . , Lr) as in (8)
13: end for
14: return false

Let G be the support graph with edges t1 →U0 s0, . . . , tr+1 →Uj
sr together with

i →Wj
i′, for every j ∈ [0, r + 1] and every two states i, i′ such that i →A,p i′ appears in

the path going from sj to tj , and i→Wr+1 i′, for every two states i, i′ such that i→A,p i′

appears in the path going from r to itself. By definition, G ∈ G(ψ) and p ∈ JGKA. Moreover,
(x0, . . . , xr) is a length value generated by G, which entails G ⊢ B · x ≥ d. ◀

▶ Lemma 20. Let ψ be as in (5). The set B(ψ) is ultimately periodic, with threshold bounded
by UO(k log k) and period bounded by UO(ℓ·k log k), with k = n+ 3d and ℓ = (r + 2) · U4n+1.

Proof. Analogous to the proof of Lemma 16. Consider the family of support graphs G(ψ).
Since G(ψ) is finite, according to Lemma 19 we have B(ψ) =

⋃
G∈GJGKA for some G ⊆ G(ψ).

Every edge s→T t of a support graph G ∈ G is such that ∥s∥∞, ∥t∥∞ ≤ max(∥A∥1,∞, ∥c∥∞)
and T is a system among U0, . . . , Ur,W0, . . . ,Wr+1. Hence, all the graphs in G are built
from a set E of (2 ·max(∥A∥1,∞, ∥c∥∞))2n · (2r + 3) ≤ ℓ edges. Each possible linear system
T labelling an edge in E has at most 2d inequalities, with coefficients and constants in {0, 1}.
By Lemma 14, each edge e ∈ E is such that JeKA is an ultimately periodic set with period and
threshold bounded by UO(k log k), where k = n+ 3d. By Proposition 9, B(ψ) =

⋃
G∈GJGKA is

an ultimately periodic set with threshold in UO(k log k) and period in UO(ℓ·k log k). ◀

C Missing proofs from Section 4

▶ Theorem 21. Let Φ be an existential formula of linear arithmetic constraints over p-adic
integers (resp. Büchi arithmetic) with parametric base p. Then satisfiability of Φ with respect
to a given value p ∈ P (resp. p ≥ 2) can be decided in time 2O(⟨Φ⟩3) · O(⟨p⟩).

Proof. Consider an existential formula Φ of linear arithmetic constraints over p-adic integers,
with parametric base q, and a concrete value p ∈ P for q. As done in Proposition 12, in time
exponential in ⟨Φ⟩ we manipulate Φ and obtain a disjunctive normal form where each of the
2O(⟨Φ⟩ log ⟨Φ⟩) disjuncts are of size O(⟨Φ⟩) and the form in (5). We then iterate through each
disjunct ψ of Φ, calling the procedure sat(ψ) described in Algorithm 1. If the procedure
returns true for some disjunct ψ, then Φ is satisfiable, otherwise it is unsatisfiable. Let us
fix a disjunct ψ of Φ. We argue that sat(ψ) is a decision procedure for the satisfiability
problem of ψ that runs in time 2O(⟨ψ⟩3) · O(⟨p⟩). As Φ has 2O(⟨Φ⟩ log ⟨Φ⟩) many disjuncts of
size O(⟨Φ⟩), this is sufficient to establish Theorem 21.
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Let us sketch the correctness of the algorithm, which essentially follows by replaying
some of the arguments that led to Proposition 12. Indeed, line 3 iterates through all possible
tuples of intermediate live states, as done when considering the set of automatic support
graphs G(ψ). Let (s0, t0, . . . , sr+1, tr+1) be one of these tuples. For every j ∈ [0, r + 1], the
algorithm considers the unary NFA Aj (line 6) whose arrows (s, t) corresponds to edges
s→Wj t of automatic support graphs for which p ∈ Js→Wj tKA. The fundamental relation
between Aj and the p-automaton A∗

p(S) for the system S : A · u = c is as follows:

(s, t) ∈ δ if and only if there is u ∈ [0, p− 1]n such that s
u−→A,p t and u ∈ JWjK.

Therefore, if the checks performed in lines 7 and 8 are satisfied for all j ∈ [0, r + 1] (else, a
new tuple in Q2(r+1) is considered), we conclude that A∗

p(S) contains a path of the form
in (6). According to Proposition 6, line 9 then tests for the existence of a non-empty
path in Ar+1 (equivalently, A∗

p(S)) going from sr+1 to itself. If such a path is found, then
there is an infinite word w ∈ (Σd

p)ω and x ∈ Ne such that (JwK∗,x) is a solution for the
subformula A · u = c ∧

∧
(i,j)∈J vp(ui) = xj ∧

∧
j∈[1,r] xj−1 < xj of ψ. Lines 10 and 12

provides further analysis needed to check for the satisfaction of the system B · x ≥ d. Again
following what done for Proposition 12, line 10 computes the set Lj of lengths of words
accepted by Aj , that are then combined in the set ⊕(L0, . . . , Lr). Note that ⊕(L0, . . . , Lr) is
empty if so is one set among L0, . . . , Lr. If one element of ⊕(L0, . . . , Lr) satisfies B · x ≥ d,
then ψ is satisfiable, and the procedure returns true (line 12).

Let us discuss the time complexity of sat(ψ). First of all, the running time of the
loop in line 5 is in 2O(⟨ψ⟩2) · O(⟨p⟩). Indeed, notice that given s, t ∈ Q and a system
T ∈ {Uj ,Wj ,Wr+1 : j ∈ [0, r]}, the membership problem p ∈ Js→T tKA correspond to the
non-emptiness problem JRK ̸= ∅ of the linear system R : t = s · p+ A ·x∧ ∥x∥ < p∧x ∈ JT K,
which by Proposition 22 can be decided in time ⟨ψ⟩O(⟨ψ⟩) · O(⟨p⟩). Hence, by iterating over
all pairs (s, t) ∈ Q2, one constructs the automaton Aj in time 2O(⟨ψ⟩2) · O(⟨p⟩) (line 6).
Line 7 runs in time ⟨ψ⟩O(⟨ψ⟩) · O(⟨p⟩). Lines 8 and 9, can be implemented with a depth-first
search on the automaton Aj , which takes time bounded by the cardinality of the transition
relation δ, that is bounded by 2O(ψ)2 . Directly from Proposition 17, line 10 can be performed
in time 2O(⟨ψ⟩2). Let us now look at line 12. By Lemma 18, computing ⊕(L0, . . . , Lr) as a
semi-linear set can be done in time 2O(⟨ψ⟩3). This set is of the form

⋃
k∈K L(bk, Pk) ⊆ Nr+1,

with #K ≤ 2O(⟨ψ⟩3), ∥bk∥∞, ∥Pk∥∞ ≤ 2O(⟨ψ⟩2) and #Pk ≤ r + 1. Hence, to check for the
non-emptiness of the intersection in line 12, it is sufficient to iterate over all k ∈ K and check
for the satisfiability of the system y = bk + P k · λ ∧B · x ≥ d, where y is a subset of the
variables appearing in x. By Proposition 22, this can be done in time ⟨ψ⟩O(⟨ψ⟩). Overall,
line 12 can be evaluated in 2O(⟨ψ⟩3), and hence the running time for the body of the for loop
of line 3 is bounded by 2O(⟨ψ⟩3) · O(⟨p⟩). As this loop iterates over (2U)2(r+1) ≤ 2O(⟨ψ⟩2)

tuples, the running time of sat(ψ) is in 2O(⟨ψ⟩3) · O(⟨p⟩). ◀

In order to establish Theorem 21 for the case of existential Büchi arithmetic, it is sufficient
to bring Φ into disjunctive normal form with disjuncts of the form in Equation (2), and call
on each disjunct ψ the procedure sat(ψ) subject to the following updates: (I) reflecting (3),
the iteration on line 3 is on tuples such that s0 = 0 and tr+1 = c, and the test in line 7
becomes j > 0 and p ̸∈ Jtj−1 →Uj

sjKA; (II) the systems Uj and Wj in lines 6 and 7 are
defined as introduced in Section 3 and (III) lines 4, 9, 10 and 12 are removed. The proof
of Theorem 21 can be easily updated accordingly.
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Abstract
Machine learning and data mining techniques are effective tools to classify large amounts of data.
But they tend to preserve any inherent bias in the data, for example, with regards to gender or race.
Removing such bias from data or the learned representations is quite challenging. In this paper we
study a geometric problem which models a possible approach for bias removal. Our input is a set
of points P in Euclidean space Rd and each point is labeled with k binary-valued properties. A
priori we assume that it is “easy” to classify the data according to each property. Our goal is to
obstruct the classification according to one property by a suitable projection to a lower-dimensional
Euclidean space Rm (m < d), while classification according to all other properties remains easy.

What it means for classification to be easy depends on the classification model used. We first
consider classification by linear separability as employed by support vector machines. We use
Kirchberger’s Theorem to show that, under certain conditions, a simple projection to Rd−1 suffices
to eliminate the linear separability of one of the properties whilst maintaining the linear separability
of the other properties. We also study the problem of maximizing the linear “inseparability” of the
chosen property. Second, we consider more complex forms of separability and prove a connection
between the number of projections required to obstruct classification and the Helly-type properties
of such separabilities.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Models of learning

Keywords and phrases Projection, classification, models of learning

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.56

Funding Jérôme Urhausen: Supported by the Dutch Research Council (NWO); 612.001.651.

Acknowledgements Research on the topic of this paper was initiated at the 5th Workshop on
Applied Geometric Algorithms (AGA 2020) in Langbroek, NL. The authors thank Jordi Vermeulen
for initial discussions on the topic of this paper.
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Classification is one of the most basic data analysis operators: given a (very) large set of
high-dimensional input data with a possibly large set of heterogeneous properties, we would
like to classify the data according to one or more of these properties to facilitate further
analysis and decision making. Machine learning and data mining techniques are frequently
employed in this setting, since they are effective tools to classify large datasets. However,
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for example, with regards to gender or race. Such bias arises from under-representation of
minority groups in the data or is caused by historical data, which reflect outdated societal
norms. Bias in the data might be inconsequential, for example in music recommendations,
but it can be harmful when classification algorithms are used to make life-changing decisions
on, for example, loans, recruitment, or parole [23].

Naturally, the identification and removal of bias receives a significant amount of attention,
although the problem is still far from solved. For example, Mehrabi et al. [19] provide a
taxonomy of fairness definitions and bias types. They list the biases caused by data and the
types of discrimination caused by machine learning techniques. Many approaches have been
considered to eliminate or reduce bias in machine learning models. Some researchers have
used a statistical approach to address this problem (e.g., [13]), while others focus on data
preprocessing or controlling the sampling to compensate for bias or under-representation
in the data (e.g., [2, 15]). Another approach is to use an additional (adversarial) machine
learning model to eliminate bias in the first model (e.g., [11, 18, 27]). One major problem
of attempting to eliminate bias (or increasing fairness) in machine learning is that it may
negatively affect the accuracy of the learned model. This trade-off has also been studied
extensively (e.g., [3, 25]).

We are particularly interested in data that is represented by vectors in high-dimensional
Euclidean space. Such data arises, for example, from word embeddings for textual data.
Several studies show that the bias present in the training corpora is also present in the
learned representation (e.g. [7, 8]). Abbasi et al. [1] recently introduced a geometric notion
of stereotyping. In this paper we follow the same premise that bias is in some form encoded
in the geometric or topological features of the high-dimensional vector representation and
that manipulating this geometry can remove the bias. This premise has been the basis for
many papers on algorithmic fairness (e.g., [11, 12, 26]).

Several papers investigate the theory that gender is captured in certain dimensions of
the data. Bolukbasi et al. [5] postulate that the bias manifests itself in specific “particularly
gendered” words and that equalizing distances to these special words removes bias. Zhao et
al. [28] devise a model which attempts to represent gender in one dimension which can be
removed after training to arrive at a (more) gender-neutral word representation. Bordia
and Bowman [6] remove bias by minimizing the projection of the embeddings on the gender
subspace (using a regularization term in the training process). Very recently, various
papers [9, 10, 14, 22] explored the direct use of projection to remove sensitive properties of
the data. In some cases the data is not projected completely, as removing sensitive properties
completely may negatively affect the quality of the model.

In this paper we take a slightly more general point of view. We say that a property is
present in the data representation if it is “easy” to classify the data according to that property.
That is, a property (such as gender) can be described by more complicated geometric relations
than a subspace. Given the premise that the geometry of word embeddings encodes important
relations between the data, then any bias removal technique needs to preserve as much as
possible of these relations. Hence we investigate the use of projection to eliminate bias
while maintaining as many other relations as possible. We say that the relation of data
points with respect to specific properties is maintained by a projection, if it is still easy
to classify according to these properties after projection. Our paper explores how well
projection can obstruct classification according to a specific property (such as gender) for
certain classification models.
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Problem statement. Our input is a set of n points P = {p1, . . . , pn} in general position
in Rd. For convenience we identify the points with their corresponding vector. We model the
various properties of the data (such as gender) as binary labels.1 Hence, for all points in P

we are also given k binary-valued properties, represented as functions ai : P → {−1, 1} for
1 ≤ i ≤ k. We denote the subset of points p ∈ P with ai(p) = 1 as P i

+, and the subset of
points p ∈ P with ai(p) = −1 as P i

− for 1 ≤ i ≤ k. For a point p ∈ P , we refer to the tuple
(a1(p), . . . , ak(p)) as the label of p. Note that there are 2k different possible labels. Generally
speaking, we do not know which specific properties a dataset has. However, to study the
influence of projection on all relevant properties of a dataset, we assume that these properties
are given.

We assume that it is “easy” to classify the points in P according to the properties by
using the point coordinates. Throughout the paper, we consider different definitions for
what is considered easy or difficult to classify. Our goal is to compute a projection P ′ of P

to lower dimensions such that the first property a1 becomes difficult to classify in P ′, and
the other properties a2, . . . , ak remain easy to classify in P ′. As a shorthand we use the
notation P− = P 1

− and P+ = P 1
+ for the point sets in which the special property a1 is set to

−1 and +1, respectively. Similarly, we use the notation P ′
− and P ′

+ for the point sets P− and
P+ after projection. In most cases we will consider a projection along a single unit vector
w (∥w∥ = 1), mapping points in Rd to points in Rd−1. For a point pi ∈ P , we denote its
projection as p′

i = pi − (pi · w)w, where (pi · w) denotes the dot product between the vectors
pi, w ∈ Rd. To assign coordinates to p′

i in Rd−1, we need to establish a basis for the projected
space. We therefore often consider p′

i to lie in the original space Rd, where the coordinates
of p′

i are restricted to the hyperplane that is orthogonal to w and passes through the origin.
Sometimes we will consider projections along multiple vectors w1, . . . , wr. In that case we
assume that {wj}r

j=1 form an orthonormal system, such that we can write the projection as
p′

i = pi −
∑r

j=1(pi · wj)wj . Again, we assume that p′
i still lies in Rd, but is restricted to the

(d − r)-dimensional flat that is orthogonal to w1, . . . , wr and passes through the origin.
We consider different models for defining what is easy or difficult to classify, resulting in

different computational problems. These models typically rely on a form of “separability”
between two point sets. For a specific definition of separability, using a slight abuse of
notation, we will often state that a property ai is separated in a point set P when we actually
mean that P i

− and P i
+ are separated (see Figure 1 for a simple example in R2). The specific

models, along with the relevant definitions, are described in detail in the respective sections.

1 Neither gender nor many other societally relevant properties are binary, however, we restrict ourselves
to binary properties to simplify our mathematical model.

Figure 1 Left: data points with two linearly-separable properties: shape and color. Middle: a
projection which keeps shape separated, but not color. Right: a projection with the opposite effect.
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Contributions and organization. In Section 2 we consider linear separability as the classifi-
cation model. We first show that, if even one possible label is missing from P , then there
may be no projection that eliminates the linear separability of a1 whilst keeping the linear
separability of the other properties. On the other hand, if all possible labels are present in
the point set, then we show that it is always possible to achieve this goal. In Appendix A we
discuss a related question: given a measure to quantify how far removed a labeled point set is
from linear separability, how can we optimize this measure for a1 after projection? We show
that the optimal projection can be computed efficiently under certain specific conditions, but
may be hard to compute efficiently in general. In Section 3 we introduce (b, c)-separability,
which is a generalization of linear separability. Although a single projection is no longer
sufficient to avoid (b, c)-separability of a1 after projection, we show that, in general, the
number of projections needed to achieve this is linked to the Helly number of the respective
separability predicate. We then establish bounds on the Helly numbers of (b, c)-separability
for specific values of b and c. Omitted proofs can be found in Appendix B.

2 Linear separability

In this section we consider linear separability for classification. For a point set P and property
ai : P → {−1, 1}, we say that ai is easy to classify on P if P i

− and P i
+ are (strictly) linearly

separable; we say that ai is difficult to classify otherwise. Two point sets P and Q (P, Q ⊂ Rd)
are linearly separable if there exists a hyperplane H separating P from Q. The point sets
are strictly linearly separable if we can additionally require that none of the points lie on
H. Equivalently, the point sets P and Q are linearly separable if there exists a unit vector
v ∈ Rd and constant c ∈ R such that (v · p) ≤ c for all p ∈ P and (v · q) ≥ c for all q ∈ Q

(v is the normal vector of the hyperplane H). We say that P and Q are linearly separable
along v. If the inequalities can be strict, then the point sets are strictly linearly separable.

One of the machine learning techniques that use linear separability for classification are
support vector machines (SVMs). SVMs compute the (optimal) hyperplane that separates
two classes in the training data (if linearly separable), and use that hyperplane for further
classifications. Linear separability is therefore a good first model to consider for classification.

Let CH(P ) denote the convex hull of a point set P . By definition, we have that x ∈ CH(P )
if and only if there exist coefficients λi ≥ 0 such that x =

∑n
i=1 λipi and

∑n
i=1 λi = 1. We

use the following basic results on convex geometry and linear algebra.

▶ Fact 1. Two point sets P and Q are linearly separable iff CH(P ) and CH(Q) are interior
disjoint. P and Q are strictly linearly separable iff CH(P ) ∩ CH(Q) = ∅.

▶ Observation 2. Let P ′ = {p′
1, . . . , p′

n} be the point set obtained from P = {p1, . . . , pn} by
projecting along a unit vector w. If x =

∑n
i=1 λipi (for λi ∈ R), then x′ = x − (w · x)w =∑n

i=1 λip
′
i. Specifically, if x ∈ CH(P ), then x′ ∈ CH(P ′).

▶ Lemma 3. Let P and Q be two point sets. If we project both P and Q along a unit vector
w to obtain P ′ and Q′, then P ′ and Q′ are not strictly linearly separable iff there exists a
line ℓ parallel to w that intersects both CH(P ) and CH(Q). If ℓ intersects the interior of
CH(P ) or CH(Q), then P ′ and Q′ are not linearly separable.

Proof. Assume that the line ℓ exists, and it contains xP ∈ CH(P ) and xQ ∈ CH(Q) (see
Figure 2). By construction, x′ = xP − (w · xP )w = xQ − (w · xQ)w. Hence, by Observation 2,
x′ ∈ CH(P ′) ∩ CH(Q′). Thus, by Fact 1, P ′ and Q′ are not strictly linearly separable.
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`
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Figure 2 Line ℓ intersects CH(P ) and CH(Q); after projection the convex hulls intersect.

For the other direction, choose x′ ∈ CH(P ′) ∩ CH(Q′). The line parallel to w and passing
through x′ must clearly intersect both CH(P ) and CH(Q). The extension to (non-strict)
linear separability is straightforward. ◀

Assume now that the properties a1, . . . , ak are strictly linearly separable in P . Can we
project P along a unit vector w so that a2, . . . , ak are still strictly linearly separable in
P ′, but a1 is not? We consider two variants: (1) separation preserving and (2) separability
preserving projections. The former preserves a fixed set of separating hyperplanes H2, . . . , Hk

for properties a2, . . . , ak, the latter preserves only linear separability of a2, . . . , ak.
Lemma 4 proves there exist point sets using only 2k − 1 possible labels for which every

separability preserving projection also keeps a1 strictly linearly separable after projection.
The idea is to use the properties a2, . . . , ak to sufficiently restrict the direction of a separa-
bility preserving projection to make it impossible for this projection to eliminate the linear
separability of a1. A simple example for d = k = 2 is shown in Figure 3.

(1, 0)

(0, 1)

ε

Figure 3 A point set with 5 points and 2 properties: a1 (color) and a2 (shape). To keep a2

linearly separable after projection, the projection vector w should be nearly vertical, but then a1

will also remain linearly separable.

▶ Lemma 4. For all k > 1 and d ≥ k, there exist point sets P in Rd with properties a1, . . . , ak

using 2k − 1 labels such that any separability preserving projection along a unit vector w also
keeps a1 strictly linearly separable after projection.

We now assume that all 2k labels are used in P . Note that this assumption directly
implies that d ≥ k: take any set of k separating hyperplanes H1, . . . , Hk for the k properties
and consider the arrangement formed by the hyperplanes in Rd. Clearly, all points in the
same cell of the arrangement must have the same label. However, it is well-known that it is
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56:6 Obstructing Classification via Projection

Figure 4 Theorem 5 in 2D: 4 points are needed to construct two intersecting convex hulls.

not possible to create 2k cells in Rd with only k hyperplanes if d < k. This has also interesting
implications for the case when d = k: if we apply a separation preserving projection to P ,
then a1 cannot be linearly separable in P ′, since P ′ is embedded in Rk−1.

We now show that, if d ≥ k, then there always exists a separation preserving projection
that eliminates the strict linear separability of a1 (see Figure 4). Our proof uses Kirchberger’s
theorem [16]. Below we restate this theorem in our own notation. We also include our own
proof, since the construction in the proof is necessary for efficient computation of our result.

▶ Theorem 5 ([16]). Let P and Q be two points sets in Rd such that CH(P ) ∩ CH(Q) ̸= ∅.
Then there exist subsets P ∗ ⊆ P and Q∗ ⊆ Q such that CH(P ∗) ∩ CH(Q∗) ̸= ∅ and
|P ∗| + |Q∗| = d + 2.

Proof. Let |P | = n and |Q| = m. We show that, if n + m ≥ d + 3, then we can remove one
of the points from either P or Q. Pick a point x ∈ CH(P ) ∩ CH(Q). By definition, we can
find coefficients λ1, . . . , λn ≥ 0 and µ1, . . . , µm ≥ 0 such that

∑n
i=1 λipi = x =

∑m
j=1 µjqj ,∑n

i=1 λi = 1, and
∑m

j=1 µj = 1. If any of these coefficients is zero, then we can remove the
corresponding point whilst keeping x in the intersection of the two convex hulls. Otherwise,
we find nonzero coefficients a1, . . . , an and b1, . . . , bm such that

∑n
i=1 aipi =

∑m
j=1 bjqj ,∑n

i=1 ai = 0, and
∑m

j=1 bj = 0. As this is a linear system with d + 2 constraints and
n + m ≥ d + 3 variables, there must exist a set of nonzero coefficients that satisfy these
constraints. Let ρλ = min{λi/ai | ai > 0}, ρµ = min{µj/bj | bj > 0}, and ρ = min(ρλ, ρµ).
Now consider the new coefficients λ′

i = λi − ρai and µ′
j = µj − ρbj . By construction

we have that λ′
i ≥ 0 for 1 ≤ i ≤ n, µ′

j ≥ 0 for 1 ≤ j ≤ m,
∑

i λ′
i =

∑
j µ′

j = 1, and∑
i λ′

ipi =
∑

j µ′
jqj = x′. Additionally, one of the new coefficients is zero, and we can remove

the corresponding point. We can repeat this process until n + m = d + 2. ◀

The following proof constructs a suitable projection vector using four main steps:
1. We project the points orthogonally onto the linear subspace A spanned by the normals of

the separating hyperplanes H2, . . . , Hk.
2. We argue that, since P uses all 2k labels, a1 is not linearly separable in A.
3. We find a small subset of points P ∗ for which a1 is not linearly separable in A.
4. We construct a separation preserving projection that maps all points in P ∗ to an affine

transformation of A. As a result, a1 is not strictly linearly separable after projection.
We assume that the points in P , along with the chosen separating hyperplanes, are in general
position. Specifically, we assume that any set of d vectors, where each vector is either a
distinct difference vector of two points in P or the normal vector of one of the separating
hyperplanes, is linearly independent. Note that, since all properties are initially strictly
linearly separable, it is always possible to perturb the separating hyperplanes to ensure
general position, assuming that P is also in general position.
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▶ Theorem 6. If P is a point set in Rd in general position with k ≤ d strictly linearly
separable properties a1, . . . , ak using all 2k labels, then there exists a separation preserving
projection along a unit vector w that eliminates the strict linear separability of a1.

Proof. We provide an explicit construction of the vector w. Let H2, . . . , Hk be any separating
hyperplanes (in general position with P ) for each of the properties a2, . . . , ak in P , respectively.
Let vi be the normal of hyperplane Hi for 2 ≤ i ≤ k, and let A ⊂ Rd be the (k−1)-dimensional
linear subspace spanned by v2, . . . , vk. Furthermore, let H∗ =

⋂k
i=2 Hi be the (d − k + 1)-

dimensional flat that is the intersection of the separating hyperplanes. Note that a projection
along a vector w is separation preserving if and only if w is parallel to H∗. Let T (p) be the
result of an orthogonal projection of a point p ∈ P onto A. For ease of argument, we also
directly apply an affine transformation that maps H∗ (which intersects A in one point by
construction) to the origin, and maps v2, . . . , vk to the standard basis vectors of Rk−1.

Now define Q− = {T (p) | p ∈ P−} and Q+ = {T (p) | p ∈ P+}. By construction, since all
labels are used by P , both Q− and Q+ must have a point in each orthant of Rk−1. If a point
set Q has a point in each orthant, then CH(Q) must contain the origin; because if it does
not, then there exists a vector v such that (v · q) > 0 for all q ∈ Q. But there must exist a
point q∗ ∈ Q whose sign for each coordinate is opposite from that of v (or zero), which means
that (v · q∗) ≤ 0, a contradiction. Thus, both CH(Q−) and CH(Q+) contain the origin, and
CH(Q−) ∩ CH(Q+) ̸= ∅. We now apply Theorem 5 to Q− and Q+ to obtain Q∗

− and Q∗
+

consisting of k + 1 points in total. Let P ∗ ⊆ P be the corresponding set of original points
that map to Q∗

− ∪ Q∗
+. We can now construct w as follows. Pick a point p∗ ∈ P ∗, and let F1

be the unique (k − 1)-dimensional flat that contains the remaining points in P ∗. Let F2 be
the flat obtained by translating H∗ to contain p∗. Since F1 is (k − 1)-dimensional and F2 is
(d − k + 1)-dimensional, F1 ∩ F2 consists of a single point r ∈ Rd (assuming general position).
The desired projection vector is now simply w = r − p∗ (normalized if necessary).

We finally show that the constructed vector w has the correct properties. First of all, w

is parallel to H∗ by construction, and hence the projection along w is separation preserving.
Second, since r ∈ F1 and p∗ is projected to coincide with r (as w = r − p∗), all points in P ∗

will lie on the same (k − 1)-dimensional flat F ′
1 after projection. Also, since w is orthogonal

to A, there exists an affine map from Q∗
− ∪ Q∗

+ to P ∗ (after projection). Thus, we obtain
that CH(P ′

−) ∩ CH(P ′
+) ̸= ∅; in particular, the convex hulls must intersect on F ′

1. By Fact 1
this implies that a1 is not strictly linearly separable after projection. ◀

The result of Theorem 6 has one shortcoming: the resulting projected point set P ′ is
degenerate by construction and property a1 may still be (non-strictly) linearly separable after
projection. This is simply an artifact of the proof and can be avoided by slightly perturbing
the projection vector w. The following lemma can be used to remedy this shortcoming. Here
we again assume that, before projection, the point set P and the separating hyperplanes are in
general position, and hence the only degeneracy in P ′ is the one introduced by construction.

▶ Lemma 7. Let P and Q be two point sets in Rd in general position and let P ′ and
Q′ be the point sets obtained by projecting P and Q along a vector w, respectively. If
CH(P ′) ∩ CH(Q′) ̸= ∅, then we can perturb w to obtain projections P ′′ and Q′′ such that P ′′

and Q′′ are not linearly separable and P ′′ ∪ Q′′ is in general position.

Proof. Let P = {p1, . . . , pn} and Q = {q1, . . . , qm}, and similarly P ′ = {p′
1, . . . , p′

n} and
Q′ = {q′

1, . . . , q′
m}. We may assume that m + n ≥ d + 1, for otherwise P and Q do not really

span Rd. Since CH(P ′) ∩ CH(Q′) ̸= ∅, there exist coefficients λi ≥ 0 (1 ≤ i ≤ n) and µj ≥ 0
(1 ≤ j ≤ m) such that

∑
i λi = 1,

∑
j µj = 1, and

∑
i λip

′
i =

∑
j µjq′

j . We can ignore some
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56:8 Obstructing Classification via Projection

points with a zero coefficient so that we have exactly d + 1 points left, and we assume in the
remainder of this proof that m + n = d + 1. Now assume w.l.o.g. that λ1 > 0. We use the
remaining points (P ′ ∪ Q′) \ {p′

1} to set up a barycentric coordinate system for the points in
P ′ ∪Q′. This has the advantage that only the coordinates of p1 are affected when changing the
projection vector w. Next, we slightly perturb the coefficients to obtain λ′

i > 0 (1 ≤ i ≤ n),
µ′

j > 0 (1 ≤ j ≤ m) with λ′
1 = λ1,

∑
i λ′

i = 1 and
∑

j µ′
j = 1 (this is clearly possible).

There then exist a vector v (in barycentric coordinates) and ϵ > 0 (ϵ can be arbitrarily
small by scaling the perturbation of the coefficients) such that ϵv +

∑
i λ′

ip
′
i =

∑
j µ′

jq′
j . Now

consider the point p⊥
1 which has the same barycentric coordinates as p′

1, but then with the
barycentric coordinate system defined by (P ∪ Q) \ {p1}. Then, by Observation 2, we must
have that p1 − p⊥

1 = αw for some constant α ̸= 0. Now we perturb p⊥
1 to p∗ such that p∗

has the same barycentric coordinates as p′
1 + (ϵ/λ1)v, but then again with the barycentric

coordinate system defined by (P ∪ Q) \ {p1}. Additionally, we perturb w to w′ = p1 − p∗.
Let P ′′ = {p′′

1 , . . . , p′′
n} and Q′′ = {q′′

1 , . . . , q′′
m} be the point sets obtained by projecting P

and Q along w′. We then have by construction that
∑

i λ′
ip

′′
i =

∑
j µ′

jq′′
j . Now assume for

the sake of contradiction that P ′′ and Q′′ are linearly separable by a hyperplane H. Then H

must contain CH(P ′′) ∩ CH(Q′′) and, consequently, all points that have a nonzero coefficient
for the convex combination of a point x ∈ CH(P ′′) ∩ CH(Q′′) (since all points of either P ′′

or Q′′ lie on the same side of H). By construction there are d + 1 of these points in P ′′ ∪ Q′′.
Since H is (d − 2)-dimensional and we performed only a single projection, this also implies
that there were d + 1 points on a (d − 1)-dimensional hyperplane in P ∪ Q. This contradicts
the assumption that P ∪ Q is in general position. Finally, since CH(P ′′) and CH(Q′′) are
not interior disjoint by Fact 1, this property cannot be broken by slightly perturbing the
projection vector w′. Thus, we can also ensure that P ′′ ∪ Q′′ is in general position. ◀

Computation. The proof of Theorem 6 is constructive and implies an efficient algorithm to
compute the desired projection. Most steps in the construction involve simple linear algebra
operations, like projections and intersecting flats (Gaussian elimination), which can easily
be computed in polynomial time. The only nontrivial computational step is the application
of Theorem 5, for which the proof is also constructive. If a point x ∈ CH(P ) ∩ CH(Q) is
given along with the coefficients for the convex combination, then we can simply obtain P ∗

and Q∗ by repeatedly solving a linear system of equations and eliminating a point. Note
that the linear system needs to involve only d + 3 points (arbitrarily chosen), so the linear
system of equations can be solved in O(d3) time, and we can eliminate a point and update
the coefficients in the same amount of time. Thus, we can compute P ∗ and Q∗ in O(nd3)
time, where n = |P | + |Q| (similar arguments were used in [20]). If we are not given a point
in x ∈ CH(P ) ∩ CH(Q) along with the coefficients for the convex combination, then this
must be computed first. This can be computed efficiently using linear programming.

The proof of Theorem 6 suggests how to check, if P does not use all 2k labels, if there
exists a separability preserving projection that eliminates the linear separability of a1: If we
can find a set of separating hyperplanes H2, . . . , Hk such that CH(P−) and CH(P+) intersect
after projecting them orthogonally onto the space spanned by the normals of H2, . . . , Hk,
then the remainder of the proof holds. However, finding such suitable separating hyperplanes
might be computationally hard in general.

3 Generalized separability

In this section we consider a generalization of linear separability for classification. One
approach to achieve more complicated classification boundaries is to use clustering: the
label of a point is determined by the label of the “nearest” cluster. If we use more than one
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Figure 5 Left: two point sets P (red) and Q (blue) that are (1, 2)-separable, but not linearly
separable. Right: two point sets that are (2, 2)-separable, but not (1, x)-separable for any value of x.

cluster per class, then the resulting classification is more expressive than classification by
linear separation. This approach is also strongly related to nearest-neighbor classification,
another common machine learning technique: the points decompose the space into convex
subsets, each of which is associated with exactly one point; given enough clusters, we can
thus exactly capture this behavior. But even with few clusters (convex sets), it may be
possible to reasonably approximate the decomposition by using a single cluster to capture the
same of many points with the same label. Hence, Our generalized definition of separability
is inspired by such clustering-based classifications, with convex sets modeling the clusters.

Let P and Q be two point sets in Rd. We say that P and Q are (b, c)-separable if there
exist b convex sets S1, . . . , Sb and c convex sets T1, . . . , Tc such that for every point p ∈ P

we have that p ∈ S =
⋃

i Si, for every point q ∈ Q we have that q ∈ T =
⋃

j Tj , and that
S ∩ T = ∅ (see Figure 5). We can assume that b ≤ c. Furthermore, we generally assume
w.l.o.g. that any convex set Si is the convex hull of its contained points. It is easy to see
that linear separability and (1, 1)-separability are equivalent.

Given a point set P along with k properties a1, . . . , ak, the goal is now to compute a
separation preserving projection to a point set P ′ such that a1 is not (b, c)-separable in P ′.
We again assume that all k properties are strictly linearly separable in P . To achieve this
goal, we may need to project along multiple vectors w1, . . . , wr. As mentioned in Section 1,
we assume that {wj}r

j=1 form an orthonormal system and that we can compute the projected
points as p′

i = pi −
∑r

j=1(wj · pi)wj .
To extend Theorem 6 to (b, c)-separability, recall the four main steps of the proof described

before Theorem 6. Step 3 is the most important. If a1 was not linearly separable in A, then
not even multiple separation preserving projections can eliminate the linear separability of
a1. In that sense, A is the “worst we can do” with separation preserving projections. Step 3
is actually exploiting a Helly-type property [24] for linear separability: If two sets of points
P and Q are not linearly separable, then there exist small subsets P ∗ ⊆ P and Q∗ ⊆ Q

such that P ∗ and Q∗ are not linearly separable (Theorem 5). Hence, if we use a different
type of separability that also has a Helly-type property, then we may be able to use the
same approach as for linear separability. Generally speaking, let F (P, Q) be a predicate
that determines if point sets P, Q ⊂ Rd are “separable” (for some arbitrary definition of
separable)2. If, in the case that F (P, Q) does not hold, there exist small (bounded by a
constant) subsets P ∗ ⊆ P and Q∗ ⊆ Q such that F (P ∗, Q∗) also does not hold, then F has
the Helly-type property. The worst-case size of |P ∗| + |Q∗| often depends on the number of
dimensions d of P and Q, and is referred to as the Helly number mF (d) of F . For technical
reasons, we will require the following three natural conditions on F :

2 We assume that F is defined independently from the dimensionality of P and Q (like (b, c)-separability).
We do require that P and Q are embedded in the same space.
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1. If F (P, Q) does not hold, then F (P ′, Q′) does not hold, where P ′ and Q′ are obtained by
projecting P and Q along a single unit vector, respectively.

2. If P ′ ⊆ P and Q′ ⊆ Q, then F (P, Q) implies F (P ′, Q′).
3. If A is an affine map, then F (P, Q) holds if and only if F (A(P ), A(Q)) holds.

We call a separation predicate F well-behaved if it satisfies these conditions. It is easy
to see that (b, c)-separability is well-behaved. For Condition 1, note that any collection of
convex sets for P ′ and Q′ can easily be extended along the projection vector for P and Q

without introducing an overlap between S and T . Condition 2 also holds, since we can simply
use the same covering sets. Finally, Condition 3 holds since affine transformations preserve
convexity. We summarize this generalization in the following generic theorem.

▶ Theorem 8. Let P be a point set in Rd with k (d ≥ k) properties a1, . . . , ak and let F be a
well-behaved separation predicate in Rd. Either we can use at most min(mF (k−1)−k, d−k+1)
separation preserving projections to eliminate F (P−, P+), or this cannot be achieved with
any number of separation preserving projections.

Proof. Following the proof of Theorem 6, we first orthogonally project the points in P

onto the (k − 1)-dimensional linear subspace A that is spanned by the normals v2, . . . , vk

of the separating hyperplanes H2, . . . , Hk of the properties a2, . . . , ak. Let T (p) be the
resulting projected point for a point p ∈ P . Now define Q− = {T (p) | p ∈ P−} and
Q+ = {T (p) | p ∈ P+}. If F (Q−, Q+) holds, then no sequence of separation preserving
projections can eliminate the separability (as defined by F ) of a1, due to Condition 1 of a
well-behaved separation predicate. Otherwise, we can find Q∗

− ⊆ Q− and Q∗
+ ⊆ Q+ such that

F (Q∗
−, Q∗

+) does not hold, and |Q∗
−| + |Q∗

+| ≤ mF (k − 1). Let P ∗ ⊆ P be the set of original
points that map to Q∗

− ∪ Q∗
+. The points in P ∗ span a linear subspace B. Next, we construct

an orthonormal basis {wj}r
j=1 for the set of vectors in B that are orthogonal to A (orthogonal

to v2, . . . , vk). Since B has at most mF (k − 1) − 1 dimensions, and A has k − 1 dimensions,
we conclude that the orthonormal basis contains r ≤ mF (k −1)−1− (k −1) = mF (k −1)−k

vectors. We then choose to project P along the vectors w1, . . . , wr. Since every wj for
1 ≤ j ≤ r is orthogonal to A, these projections are all separation preserving. Furthermore,
since we eliminate all vectors orthogonal to A from B, there exists an affine map from
Q∗

− ∪ Q∗
+ to P ∗ after projection. By using Condition 2 and Condition 3 of a well-behaved

separation predicate, we can then conclude that F (P ′
−, P ′

+) does not hold. Alternatively,
we can simply project P to A, which requires d − k + 1 separation preserving projections.
Hence, we need at most min(mF (k − 1) − k, d − k + 1) projections. ◀

We now focus on (b, c)-separability for different values of b and c. Unfortunately, not
every form of (b, c)-separability has the Helly-type property.

▶ Lemma 9. In d ≥ 2 dimensions, (1, 2)-separability does not have the Helly-type property.

Proof. We prove the statement for d = 2, which automatically implies it for d > 2. Consider
a set of n points P = {p1, . . . , pn} equally spaced on the unit circle, where n is odd. For
every point pi we can define a wedge Wi formed between the rays from pi to the two opposite
points on the circle (which are well defined, since n is odd). By the Central Angle Theorem,
the angle of this wedge is π

n . Furthermore, the distance of the rays to the origin is exactly
sin

(
π
n

)
. Now, for some ϵ > 0 and for each point pi, we add a point qi on the circle centered at

the origin with radius sin
(

π
n

)
+ϵ, such that qi lies outside of Wi to the left (counterclockwise).

By construction there will also be a point qj to the right of Wi, added by the point pj that
is the opposite point of pi on the right (clockwise) side. We choose ϵ small enough such that
any wedge Wi contains exactly n − 2 points from Q = {q1, . . . , qn}, having one point of Q

outside of Wi on each side (see Figure 6).
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pi

pj

Wi

pj+1

qi

qj

Figure 6 The construction for Lemma 9 with P in red and Q in blue.

Assume for the sake of contradiction that P and Q are (1, 2)-separable. Since Q ⊂ CH(P ),
we must cover Q with one set, and hence S1 = CH(Q). Now consider P1 = T1 ∩ P and
P2 = T2 ∩ P . Since the line segments between a point pi ∈ P1 and its opposite points pj

and pj+1 intersect CH(Q), we get that pj and pj+1 must both be in P2. We can repeat this
argument for all points pi to conclude that all pairs of consecutive points of P must be in
the same set (P1 or P2). Since not all points in P can belong to the same set (Q ⊂ CH(P )),
we obtain a contradiction. Thus, P and Q are not (1, 2)-separable.

Now consider removing a single point pi from P , and consider the line ℓ through the
origin and pi. The line ℓ splits P \ {pi} into two sets P1 and P2. It is easy to see that, if we
pick ϵ small enough, CH(P1) and CH(P2) do not intersect CH(Q). Hence, P \ {pi} and Q

are (1, 2)-separable. If we remove a single point qi from Q, then the line segment between pi

and one of its opposite points pj does not intersect CH(Q \ {qi}). We can again split P into
P1 and P2 using the line ℓ through pi and pj (and shifted slightly towards the origin). Then
it is again easy to see that, if we pick ϵ small enough, CH(P1) and CH(P2) do not intersect
CH(Q \ {qi}). Hence, P and Q \ {qi} are (1, 2)-separable.

As a result, there exist no subsets of P and Q that are not (1, 2)-separable. Thus,
we get that the Helly number for (1, 2)-separability is at least |P | + |Q| = 2n, and hence
(1, 2)-separability does not have the Helly-type property. ◀

Hence we cannot apply Theorem 8 to eliminate (1, 2)-separability of a1 in few separation
preserving projections, if possible at all. However, this does not mean that it is not possible
to provide this guarantee using different arguments. Nonetheless, we can use a similar
construction as in the proof of Lemma 9 (using many more dimensions) to show that many
separation preserving projections are needed to eliminate (1, 2)-separability for a1 (as many
projections as needed to reach the 2-dimensional construction in the proof of Lemma 9).

Next, we consider (1, ∞)-separability. This means that one of the point sets, say P , must
be covered with one convex set, but we can use arbitrarily many convex sets to cover Q.
Equivalently, P and Q are (1, ∞)-separable if CH(P ) ∩ Q = ∅ or P ∩ CH(Q) = ∅.

▶ Lemma 10. In d ≥ 1 dimensions, (1, ∞)-separability has the Helly-type property with
Helly number 2d + 2.
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q∗ p∗ q∗p∗

Figure 7 Lemma 10: constructing a small point set that is not (1, ∞)-separable.

Proof. Let P and Q be point sets in Rd such that P and Q are not (1, ∞)-separable. Then
there must be a point p∗ ∈ CH(Q) and a point q∗ ∈ CH(P ). We can construct a star
triangulation T (P ) of CH(P ) with p∗ as center (that is, all d-dimensional simplices have p∗

as a vertex) and a star triangulation T (Q) of CH(Q) with q∗ as center (see Figure 7). We
identify the unique simplex σP ∈ T (P ) that contains q∗, and similarly the unique simplex
σQ ∈ T (Q) that contains p∗. Now let P ∗ ⊆ P be the vertices of σP and let Q∗ ⊆ Q be the
vertices of σQ. Note that p∗ ∈ P ∗ and q∗ ∈ Q∗. Then P ∗ and Q∗ are not (1, ∞)-separable,
since q∗ ∈ CH(P ∗) ∩ Q∗ and p∗ ∈ CH(Q∗) ∩ P ∗. Finally, since a d-dimensional simplex
contains d + 1 vertices, we obtain Helly number 2d + 2. ◀

▶ Corollary 11. Let P be a point set in Rd with k (d ≥ k) properties a1, . . . , ak. Either we can
use at most min(k, d−k +1) separation preserving projections to eliminate (1, ∞)-separability
of a1, or this cannot be achieved with any number of separation preserving projections.

It may initially seem counter-intuitive that (1, ∞)-separability has the Helly-type property
(requiring only few projections to eliminate (1, ∞)-separability), while the strictly stronger
(1, 2)-separability does not have the Helly-type property (and may require many projections
to eliminate (1, 2)-separability). Note however that Theorem 8 includes the clause that it
simply may not be possible to eliminate separability of a1 via any number of separation
preserving projections. This case occurs more often with (1, ∞)-separability than with
(1, 2)-separability, which explains why we can provide better guarantees on the number of
projections for a strictly weaker separability condition.

We finally briefly consider (2, ∞)-separability in R2. Two point sets P and Q are not
(2, ∞)-separable in R2 if we need at least three convex sets disjoint from Q to cover P (and
vice versa). This implies that CH(P ) must contain at least 3 points of Q; if not, then we
can draw a single line through all points in Q ∩ CH(P ) to separate P into P1 and P2, and
CH(P1) and CH(P2) both cover P and are disjoint from Q. More generally, assume that we
can cover P with two sets CH(P1) and CH(P2) that are disjoint from Q, and let ℓ be a line
that separates CH(P1) and CH(P2) (Fact 1). Now consider the set of all triangles TP that
are formed by three points of P such that a point of Q is contained in the triangle. We must
have that ℓ transverses (intersects) all triangles in TP , otherwise the triangle is contained
in P1 or P2, and hence there is a point of Q in either CH(P1) or CH(P2). Furthermore, if
there is point q ∈ Q contained in, say, CH(P1), then there is also a triangle ∆ ∈ TP in P1
(Carathéodory’s theorem), and hence ℓ does not intersect all triangles in TP . Thus, P and Q

are (2, ∞)-separable (assuming we cover P with 2 convex sets) if and only if there exists a line
ℓ that transverses TP . As a result, if we can show a Helly-type property for line transversals
of triangles, then we also obtain a Helly-type property for (2, ∞)-separability. Unfortunately,
there is no Helly-type property for line transversals of general sets of triangles [17]. We leave
it as an open question to determine if there exists a Helly-type property for line transversals
of these special sets of triangles TP .
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4 Conclusion

We studied the use of projections for obstructing classification of high-dimensional Euclidean
point data. Our results show that, if not all possible labels are present in the data, then it
may not be possible to eliminate the linear separability of one property while preserving it
for the other properties. This is not surprising if a property that we aim to keep is strongly
correlated with the property we aim to hide. Nonetheless, one should be aware of this effect
when employing projections in practice. When going beyond linear separability, we see that
the number of projections required to hide a property increases significantly in theory, and
we expect a similar effect when using, for example, neural networks for classification in
practice. In other words, projecting a dataset once (or few times) may not be sufficient to
hide a property from a smart classifier. Projection, as a linear transformation, can however
be effective in eliminating certain linear relations in the data.

One potential direction of future work is to consider other separability predicates for
labeled point sets, beyond linear separability and (b, c)-separability. Are there other types of
separability that also have the Helly-type property used in Theorem 8? Or is there another
way to show that few projections suffice to eliminate the separability of one of the properties?
There are many other types of separability (for example, via boxes or spheres) for which this
can be evaluated.

In this paper we focused on eliminating bias based on one property (such as gender).
Intersectionality posits that discrimination due to multiple properties should be considered
in a holistic manner, instead of one property at a time. In fact, any one property might not
be a cause for discrimination, but their combination is. The following challenge arises: say
we used projection successfully to eliminate the linear separability of gender. However, if we
now restrict the data to one particular sub-class, for example black people, then the linear
separability of gender might still be preserved within this subclass and hence discrimination
against black women can still be possible. Under which conditions is it possible to eliminate
the linear separability of one property not only in the full data, but also in specific (or all)
subclasses? We leave this question as an open problem.
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A Maximizing inseparability

In this section we consider the problem of not only eliminating the linear separability of a1,
but additionally to maximize the “linear inseparability” (or overlap) of a1 after projection.
For that we need to define the overlap between two point sets P and Q. For a unit vector
v, consider the intervals IP (v) = CH({v · pi | pi ∈ P} and IQ(v) = CH({v · qi | qi ∈ Q}.
We can then define the overlap between P and Q along v as the length of IP (v) ∩ IQ(v).
Alternatively, we can define the overlap along v with the cost function used by soft-margin
SVMs, which is designed for data that is not linearly separable (see [4] for more details).
The overlap between two point sets P and Q is then defined as the minimum overlap over all
(unit) vectors v. More precisely, for a given (projected) point set P , along with (implicit)
property a1, we use the function g(P, v) to describe the overlap of a1 along the vector v, and
we refer to g as the overlap function. The overlap of a1 is then defined as minv g(P, v). Our
goal is to find the projection that maximizes this overlap after projection. More precisely, if
we use P ′ = πw(P ) to denote the projection of a point set P along the unit vector w, then the
goal is to maximize the function f(P, w) = minv g(πw(P ), v) over all separability/separation
preserving projection vectors w. We consider the following two overlap functions g(P, v)
(although other options are possible):

Interval. For a point set P and unit vector v, let I− = CH({v · pi | pi ∈ P−}) and
I+ = CH({v · pi | pi ∈ P+}). Then gint(P, v) = |I− ∩ I+|.

SVM. The goal of the soft-margin SVM optimization is to minimize gsvm(P, v) = λ∥v∥2 +
1
n

∑n
i=1 max(0, 1 − a1(pi)(v · pi − b)). Note that gsvm also requires a parameter b ∈ R, but

we will often omit that dependence (we can assume that the overlap function minimizes
over all b ∈ R). Furthermore, λ > 0 is a parameter that can be set for gsvm. Finally, note
that v does not need to be a unit vector.

We first consider the variant of the problem that aims to find the optimal separability
preserving projection. The vector v that minimizes g(P, v) for a given point set is typically
computed using convex programming (in particular for SVMs, see [21]). Note that convex
programming heavily relies on the fact that there exists only one local optimum (which
hence must be the global optimum). We show that, for the problem of finding the optimal
separability preserving projection, there may be multiple local optima for f(P, w). This
eliminates the hope of finding a convex programming formulation for this problem.

▶ Theorem 12. There exists a point set P in R3 with 2 properties a1, a2 such that f(P, w)
with g = gsvm has two local maxima when restricted to all separability preserving projection
vectors w.
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Figure 8 Illustration for Theorem 12: The domain for projections (x, y) with ϵ = 0.2. Higher
values in the overlap function are indicated with lighter colors. We can see two distinct local maxima.

Proof. The set P mostly consists of the vertices of a unit cube with side lengths 2 centered
at the origin. We also add an extra point p∗ = (1 − ϵ, 1 − ϵ, 1) for some ϵ > 0 (a point slightly
moved inward from the point p8 = (1, 1, 1)). Thus, P consists of nine points {p1, . . . , p8, p∗}.
For property a1 we choose that a1(p) = z(p) for all p = (x(p), y(p), z(p)) ∈ P . For property
a2 we have that a2(p) = a1(p) for all p ∈ P \ {p8}, and a2(p8) = −1. Now we limit and
encode the space of possible projection vectors w to R2 as follows. For w = (x(w), y(w), z(w))
with z(w) = 0 it is clear that a projection along w will keep a1 linearly separated, so we may
encode all possible projections as (x, y) = (x(w)/z(w), y(w)/z(w)). Now consider the effect
of using a projection (x, y) on P : we may assume that the x- and y-coordinates of points
p ∈ P with z(p) = 1 do not change and that for the other points we obtain a shifted square:
(x(p′), y(p′)) = (x(p) + 2x, y(p) + 2y) for all p ∈ P with z(p) = −1. Let p1 = (−1, −1, −1)
such that p′

1 = (−1 + 2x, −1 + 2y). Furthermore, let A consist of the projections of all points
p ∈ P with a1(p) = 1, and let B consist of the projections of all points p ∈ P with a2(p) = 1.
Note that A forms a square and B forms a square with one of the corners pushed inwards. By
Fact 1, a projection (x, y) can only be separability preserving if p′

1 /∈ CH(B). By the same
observation, a projection (x, y) with x ≥ 0 and y ≥ 0 preserves the linear separability of a1 if
p′

1 /∈ CH(A). Thus, we require that p′
1 = (−1 + 2x, −1 + 2y) ∈ CH(A) \ CH(B). Note that

CH(A) \ CH(B) is a thin and nonconvex shape. The same thus holds for the domain of the
projections (x, y) as shown in Figure 8, and hence the optimization problem is not convex.
Furthermore, by evaluating the overlap function gsvm (using λ = 10) on this domain, we can
see that there are two distinct local maxima: one close to (0, 1) and one close to (1, 0). ◀

Theorem 12 demonstrates that the constraint on projections to be separability preserving is
generally not convex. We now consider the special case that we have only one property a1
(hence no separability preserving constraint), and analyze if we can then efficiently maximize
f(P, w). For that, we first put a restriction on the overlap function g(P, v). We say that g(P, v)
is projectionable if there exists a function h : Rn × Rd → R such that g(P, v) = h(v · P, v),
where v · P = {v · pi | pi ∈ P}. In other words, g should only depend on P via the dot
products of points in P with v. Note that both the Interval and SVM overlap functions are
indeed projectionable. For projectionable overlap functions g we can redefine the optimization
function f . In the following, let v ⊥ w indicate that v and w are orthogonal.
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w∗
1

w∗
2

H1

H2H+(t)

H−(t)

Figure 9 Illustration for Theorem 14 with d = 2: H+(t) can only intersect R00 ∪ R11 (orange,
clipped to the unit disk) and H−(t) can only intersect R01 ∪ R10 (blue).

▶ Lemma 13. If g(P, v) is a projectionable overlap function, then maxw minv g(πw(P ), v) =
maxw minv⊥w g(P, v) for any point set P ⊂ Rd.

Proof. We will treat both w and v as a vector in Rd. Since g is projectionable, there exists
an equivalent function h that depends on v and the dot products between v and points in P .
Now assume that (v · w) = 0. Then we get

g(πw(P ), v) = h(v · πw(P ), v)
= h({v · (pi − (w · pi)w) | pi ∈ P}, v)
= h({v · pi | pi ∈ P}, v)
= g(P, v).

Since the vector v that minimizes g(πw(P ), v) must be perpendicular to w, we obtain the
desired equality. ◀

In the following we assume that the overlap function g is projectionable. Hence, by Lemma 13,
we can rewrite f as f(P, w) = minv⊥w g(P, v). This has the advantage that we can keep the
point set P fixed while optimizing for w. We now aim to link properties of g to properties of
f . As already discussed earlier, we can often find the vector v that minimizes g(P, v) using
convex programming. This implies that g has only one local minimum (for fixed P ). We
now use this fact to show that f has only one local maximum.

▶ Theorem 14. If a function g(P, v) has one local minimum for fixed P , then f(P, w) =
minv⊥w g(P, v) has one local maximum for fixed P .

Proof. Note that w ∈ Sd−1, where Sd−1 is the unit (d − 1)-sphere, and f(P, w) = f(P, −w),
so we will treat w and −w as equivalent. Similarly, if the local minimum of g(P, v) is at
v = v∗, then v = −v∗ may also be a local minimum, and together they will be counted
as a single local minimum. For the sake of contradiction, assume that f(P, w) has two
distinct local maxima, one at w = w∗

1 and one at w = w∗
2 (and also at w = −w∗

1 and
w = −w∗

2). We do not require that w∗
1 and w∗

2 are strict local maxima, but we do require
that there exists no path γ : [0, 1] → Sd−1 with γ(0) = w∗

1 and γ(1) = ±w∗
2 such that

f(P, γ(t)) ≥ min(f(P, γ(0)), f(P, γ(1))) for all 0 ≤ t ≤ 1. Now consider the hyperplanes
H1 = {v | (v·w∗

1) = 0} and H2 = {v | (v·w∗
2) = 0}. Furthermore, let γ+ : [0, 1] → Sd−1 denote
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the shortest (hyper)spherical interpolation from w∗
1 to w∗

2 , and let γ− : [0, 1] → Sd−1 denote
the shortest (hyper)spherical interpolation from w∗

1 to −w∗
2 . Note that γ− and γ+ are unique,

since both w∗
1 to w∗

2 lie on a great circle on Sd−1 and w∗
1 ̸= −w∗

2 . The hyperplanes H1 and
H2 split Rd into four parts (each hyperplane cuts Rd into two parts): R00, R01, R10, and R11.
Now let x∗ = min(f(P, w∗

1), f(P, w∗
2)) and consider the sublevel set S = {v | g(P, v) < x∗}.

By definition of f , H1 and H2 are disjoint from S. Now consider a vector γ+(t) for some
0 < t < 1, and let H+(t) = {v | (v · γ+(t)) = 0} be the corresponding hyperplane. Similarly
define H−(t) for γ−(t). It is easy to see that H+(t) intersects either R01 ∪ R10 or R00 ∪ R11,
but not both, and H−(t) intersects only the other region (see Figure 9). By assumption,
there exist values t∗

− and t∗
+ such that f(P, γ−(t∗

−)) < x∗ and f(P, γ+(t∗
+)) < x∗. Thus, by

the definition of f , there must be two non-opposite regions, say R00 and R01, that contain a
point in S. These points cannot be in the same connected component, as they are separated
by either H1 or H2. Thus, S has multiple (non-opposite) connected components, and hence
g(P, v) must have at least two local minima. This contradicts our assumption, and hence
f(P, w) can have at most one local maximum. ◀

Following Theorem 14, we can use a hill-climbing approach to find the optimal projection
vector w, if there is only one property a1. This same approach can be applied to find the
optimal separation preserving projection for k properties. In that case, the corresponding
separating hyperplanes H2, . . . , Hk each take away a degree of freedom, but otherwise do
not bound the domain of w. More precisely, if there is only one property a1, then w ∈ Sd−1,
where Sd is the unit d-sphere. If there are k properties, then w ∈ Sd−1 ∩H2 ∩ . . .∩Hk = Sd−k.
This reduction in dimensionality of the domain of w does not affect the proof of Theorem 14.

B Omitted proofs

▶ Lemma 4. For all k > 1 and d ≥ k, there exist point sets P in Rd with properties a1, . . . , ak

using 2k − 1 labels such that any separability preserving projection along a unit vector w also
keeps a1 strictly linearly separable after projection.

Proof. We first construct the point set P for arbitrary k and d = k. Consider the vertices of
a (k − 1)-dimensional hypercube Cϵ with side length ϵ > 0 centered at the origin, for which
all nonzero coordinates lie in the first k − 1 dimensions of Rd. For each vertex p of Cϵ, set

(0, 0, 0)

(0, 0, 1)

H

CH(Q2
−) CH(Q2

+)

w

Figure 10 Illustration for Lemma 4 with d = k = 3 and properties fill (a1), color (a2), and shape
(a3). Left: Q consisting of two copies of Cϵ. Middle: a separability preserving projection must be
nearly orthogonal to the (x, y)-plane. Right: the flat H separating property a1.
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the properties of p based on its coordinates (p1, . . . , pd): a1(p) = 1, and ai(p) = sgn(pi−1)
for 2 ≤ i ≤ k, where sgn(x) is the sign function. Next, create a copy of Cϵ (along with
the assigned properties) and place it around the coordinate (0, . . . , 0, 1) (see Figure 10 left).
Let the resulting point set be Q, and consider projecting Q along a unit vector w. Let
w = (w1, . . . , wd) and assume w.l.o.g. that |w1| ≥ |wi| for all 2 ≤ i < k. If |w1| > ϵ, then
there always exists a line ℓ parallel to w that intersects both CH(Q2

−) and CH(Q2
+). By

Lemma 3 this would imply that a2 is not strictly linearly separable after projection along w,
so we may assume that |w1| ≤ ϵ for any separability preserving projection (see Figure 10
middle).

Now consider a (k − 2)-dimensional flat H with the following properties: (1) it is not
parallel to one of the first k − 1 axes, (2) it lies in the first k − 1 dimensions of Rd (the
other coordinates are zero), and (3) the distance from the origin to H is 1 (see Figure 10
right). Consider the orthants of the (k − 1)-dimensional subspace A spanned by the first
k − 1 axes. Based on the labels of the vertices of Cϵ, each orthant is associated with a label
for the properties a2, . . . , ak. Due to Property (1), H intersects all the first k − 1 axes, either
at the positive or the negative half-axis. Since there is exactly one orthant bounded by only
the non-intersected half-axes, H intersects exactly 2k−1 − 1 orthants. We now construct P

by extending Q with an additional point in each of the intersected orthants, such that H

separates this point from the origin. The label of each such point p has a1(p) = −1 and is
otherwise determined by the orthant. As a result, P uses 2k − 1 different labels.

Let v be the normal of H in the (k − 1)-dimensional subspace A. The margin for P− and
P+ along v is at least 1 − kϵ (rough bound). For any separability preserving projection along
unit vector w, we have that |(w · v)| ≤ ϵ. Now consider any point p ∈ P and its projection
p′ = p − (w · p)w. We have that (p′ · v) = (p · v) − (w · p)(w · v) = (p · v) ± O(ϵ), where we use
the fact that (w · p) = O(1). Thus, the margin for property a1 can be reduced by at most
O(ϵ) by the projection, and hence the projection keeps a1 strictly linearly separable if we
choose ϵ small enough.

If d > k, then we can construct a simplex with side lengths 1 in the last d − k + 1
dimensions, and place a copy of Cϵ around each of its vertices (for d = k this simplex is
simply an edge, as used above). With this construction we can still enforce w.l.o.g. that
|w1| ≤ ϵ for any separability preserving projection along unit vector w, and the rest of the
argument follows. ◀
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Abstract
We study the dominating set problem in an online setting. An algorithm is required to guarantee
competitiveness against an adversary that reveals the input graph one node at a time. When a
node is revealed, the algorithm learns about the entire neighborhood of the node (including those
nodes that have not yet been revealed). Furthermore, the adversary is required to keep the revealed
portion of the graph connected at all times. We present an algorithm that achieves 2-competitiveness
on trees. We also present algorithms that achieve 2.5-competitiveness on cactus graphs, (t − 1)-
competitiveness on K1,t-free graphs, and Θ(

√
∆) for maximum degree ∆ graphs. We show that all

of those competitive ratios are tight. Then, we study several more general classes of graphs, such as
threshold, bipartite planar, and series-parallel graphs, and show that they do not admit competitive
algorithms (i.e., when competitive ratio is independent of the input size). Previously, the dominating
set problem was considered in a different input model (often together with the restriction of the input
graph being always connected), where a vertex is revealed alongside its restricted neighborhood:
those neighbors that are among already revealed vertices. Thus, conceptually, our results quantify
the value of knowing the entire neighborhood at the time a vertex is revealed as compared to the
restricted neighborhood. For instance, it was known in the restricted neighborhood model that
3-competitiveness is optimal for trees, whereas knowing the neighbors allows us to improve it to
2-competitiveness.
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1 Introduction

Given an undirected simple graph G = (V, E), a subset of vertices D ⊆ V is called dominating
if every vertex of V is either in D or is adjacent to some vertex in D. In the well-known
N P-hard dominating set problem, the goal is to find a dominating set of minimum cardinality.
We study this problem in the online setting, where a graph is revealed one node at a time.
When a node is revealed its entire neighborhood is revealed as well. An algorithm is required
to make an irrevocable decision on whether to include the newly revealed vertex into the
dominating set the algorithm is constructing or not. This decision must be made before the
next vertex is revealed. Performance of an online algorithm is measured against an optimal
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offline algorithm, i.e., an algorithm that knows the entire input in advance and has infinite
computational resources. This measure is captured by the notion of competitive ratio and
analysis, which is made precise below. For now, it suffices to note that competitive ratio is
analogous to approximation ratio in the offline setting.

The dominating set problem has important practical and theoretical applications, such as
establishing surveillance service ([1]), routing and transmission services in (wireless) networks
([5]), as well as broadcasting ([7, 8]). While the dominating set problem and its variants
(connected dominating set, independent dominating set, weighted dominating set, etc.) have
been extensively studied in the offline setting [1, 9, 11, 15, 16, 17], this problem has received
little attention in the online algorithms community. The current paper attempts to fill in this
gap, while making a quantitative comparison with another online model for dominating set.

Online dominating set problem has been studied in the vertex arrival model by Boyar
et al. [3]. In that model, when a vertex is revealed only restricted neighborhood of that
vertex is revealed as well, namely, those neighbors that appear among previously revealed
vertices. Moreover, in the model considered by Boyar et al. decisions are only partially
irrevocable, i.e., when a vertex arrives an algorithm may add this vertex together with any
of its neighbors from the restricted neighborhood to the dominating set. Thus, the decision to
include a vertex is irrevocable, while the decision not to include a vertex is only partially
irrevocable – an algorithm has a chance to reconsider when any yet unrevealed neighbors
arrive. The catch is that the algorithm does not know the input size and has to maintain a
dominating set at all times. In the model considered in this paper, all decisions (to include
or exclude a vertex from a dominating set) are irrevocable. Boyar et al. [3] considered the
online dominating set problem in two settings, namely, with the restriction of an adversary
being forced to maintain an always connected graph and without this restriction. For the
fairness of comparison, when we talk about Boyar et al. results we refer to their results for
the always-connected setting1. To summarize, on one hand, our model is stronger for the
adversary since it forces the algorithm to make an irrevocable decision at each step. On
another hand, our model is weaker for the adversary than the model of Boyar et al. in the
aspect of the adversary being forced to reveal all neighbors of a newly revealed vertex at
once. Thus, our results when compared to those of the vertex arrival model can be viewed as
quantifying the value of getting to know all neighbors of a vertex at the time of its revelation.

Perhaps somewhat surprisingly, we discover in several results that the benefit of knowing all
neighbors outweighs the drawbacks of fully irrevocable decisions. Our results are summarized
below, but in particular we show that in our model ∆-bounded degree graphs admit O(

√
∆)

online algorithms, while Boyar et al. show that Ω(∆) is necessary in their model. Similarly,
we analyze a 2-competitive algorithm for trees, while Kobayashi [13] shows a lower bound
of 3 in the vertex arrival model. Our degree upper bound implies that O(

√
n) competitive

ratio is tight for general graphs, whereas Boyar et al. showed the lower bound of Ω(n) in the
vertex arrival model. This paints a picture that knowing all the neighbors improves not only
precise constants, when graph classes allow for small competitive ratio algorithms, but also
give asymptotic improvements for more “challenging” graph classes for algorithms.

Prior to summarizing our results, we give a brief overview of competitive analysis
framework. For more details, an interested reader should consult excellent books [2, 14]
and references therein. Let ALG be an algorithm for the online dominating set problem.

1 In our model, two natural definitions of always-connected restriction are possible: (i) with respect to
all vertices that the algorithm is aware of at any particular moment (this includes vertices that have
arrived and their neighbors that have not yet arrived), and (ii) with respect to only those vertices that
have arrived. Our work is in setting (ii). This distinction is absent in the vertex arrival model.
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Let ALG(G, σ) denote the set of vertices that are selected by ALG on the input graph
G with its vertices revealed according to the order σ. We sometimes abuse the notation
and omit G or σ (or both) when they are clear from the context. Abusing notation even
more, we sometimes write ALG(G, σ) to mean |ALG(G, σ)|. Similar conventions apply to
an offline optimal solution denoted by OPT . We say that ALG has strict competitive ratio c

if ALG ≤ c · OPT on all inputs. We say that ALG has asymptotic competitive ratio c (or,
alternatively, that ALG is c-competitive) if lim supOP T →∞

ALG
OP T ≤ c. The competitive ratio

of ALG is the infimum over all c such that ALG is c-competitive. When we simply write
“competitive ratio” we typically mean “asymptotic competitive ratio” unless stated otherwise.

We shall consider performance of algorithms with respect to restricted inputs, specified by
various graph classes, such as trees, cactus graphs, series-parallel, etc. The above definitions
of competitive ratios can be modified by restricting them to inputs coming from certain
graph classes. We denote the competitive ratio of an algorithm ALG with respect to the
restricted graph class CLASS by ρ(ALG,CLASS).

The following is a summary of our contributions with the section numbers where the
results appear. Due to space considerations some of our results have been moved to appendix:

tight competitive ratio 2 on trees (Section 3.1);
tight competitive ratio 5

2 on cactus graphs (Section 3.2);
tight competitive ratio Θ(

√
∆) on maximum degree ∆ graphs (Section 3.3);

tight competitive ratio t − 1 on K1,t-free graphs (Section 3.4);
tight competitive ratio Θ(

√
n) for threshold graphs (Section B.1), planar bipartite graphs

(Section B.2), and series-parallel graphs (Section B.3).

We note that all our upper bounds are in terms of strict competitive ratios, and all our
lower bounds, with the exception of K1,t-free graphs, are in terms of asymptotic competitive
ratios.2 Most of our upper bounds are established by charging arguments. Our charging
schemes are natural and to analyze them we establish several combinatorial properties of
relevant graph classes. We suspect that these (or similar) techniques can be used to extend the
results to other graph classes, such as almost-tree(k). Our main contribution is conceptual:
we begin a systematic study of a well known N P-hard problem in an online setting that
hasn’t been extensively considered before and which allows quantifying how much extra
information about the neighborhood helps the competitive ratio.

2 Preliminaries

In this section we describe definitions and establish notations that will be used frequently
in the rest of the paper. Let G = (V, E) be a connected undirected graph on n = |V | ≥ 1
vertices. The closed neighborhood of a subset of vertices S ⊆ V , denoted by N [S], is defined
as S ∪ {v ∈ V | ∃u ∈ S, {u, v} ∈ E}.

The vertices V are revealed online in order (v1, ..., vn). Since we consider the online input
model where vertices are revealed alongside their neighbors, we distinguish between two
notions: those vertices that are revealed by a certain time and those that are visible. More
precisely, we have the following:

2 With the small caveat that the performance ratio for threshold graphs is measured as a function of
input size for reasons provided later.

MFCS 2021
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▶ Definition 1.
vi is revealed by time j if i ≤ j.
vj is visible at time i if it is either revealed by time i or it is adjacent to some vertex
revealed by time i.
Ri denotes the set of all vertices revealed by time i.
Vi denotes the vertices visible at time i (i.e. Vi = N [Ri]).

The adversary chooses the graph G as well as the revelation order of vertices; however, the
adversary is restricted to those revelation orders that guarantee that the induced subgraph
on Ri is connected for all i. Thus, we observe that the process of revelation of a graph by
the adversary is a natural generalization of the breadth-first search (BFS) and depth-first
search (DFS) explorations of the graph. Thus, we can define the revelation tree analogous to
BFS and DFS trees. We need the following observation first:

▶ Observation 2. If vj ∈ Vi \ Vi−1 with j > i ≥ 2 then vi is the unique neighbor of vj at
time i.

In the preceding observation, we say that vj is a child of vi and that vi is the parent of
vj . The edge {vi, vj} is called a tree edge. The subgraph induced on the tree edges is the
revelation tree. Any edge {u, v} where u is not the parent of v nor v the parent of u is called
a cross edge.

After the vertex vi is revealed together with its closed neighborhood N [vi], an online
algorithm ALG must make a decision di ∈ {0, 1}, which indicates whether the algorithm
takes this vertex to be in the dominating set or not. For a given online algorithm ALG we
define the following:

▶ Definition 3.
Si = {vk | dk = 1, 1 ≤ k ≤ i} is the set of revealed vertices selected by ALG after i

decisions where S0 = ∅.
Di = N [Si] is the set of visible vertices that are dominated after i decisions.
Ui = Vi \ Di−1 is the set of visible vertices undominated immediately before decision di

where U0 = ∅.

A series of figures are provided below which illustrate the preceding definitions. For these
figures, and all others in this paper, the convention is that vertices that are shaded in gray
are those selected by ALG, vertices with thicker boundaries belong to OPT , an edge that is
dashed is a cross edge, and all the solid edges are tree edges.

v1 v1

v2

v1

v2 v3

v4

v1

v2 v3

Figure 1 An example of vertices v1, v2, v3, v4 from some input graph being revealed in that order
(from left to right). Empty vertices in this figure are visible but not yet revealed. The adversary
must maintain the connectivity of revealed vertices (ignoring visible but not yet revealed vertices) at
all times. The process continues until all vertices are revealed. An edge that is dashed is a cross
edge and one that is solid is a tree edge.
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Since an algorithm makes irrevocable decisions and must produce a feasible solution, there
may be situations where an algorithm is forced to select a vertex vj to be in the dominating
set. This happens because vj is the “last chance” to dominate some other vertex vi. In this
case, we say that vj saves vi or that vj is the savior of vi. Note that it is possible for a vertex
vj to save itself. The following definition makes the notion of “saving” precise.

▶ Definition 4. A vertex vj saves a vertex vi if j = max{k | vk ∈ N [vi]} and N [vi] \ {vj}
contains no vertices from Sj−1. Let s(vj) denote the set of vertices that vj saves.

Observe that if a vertex is saved then it must be that every one of its neighbors (itself
included) had a chance to dominate the said vertex.

▶ Observation 5. If vi is saved then vi ∈ N [vj ] ∩ Uj for any vj ∈ N [vi].

All our upper bounds are established by either a GREEDY algorithm or a k-DOMINATE
algorithm for some fixed integer value of parameter k:

The algorithm GREEDY selects a newly revealed vertex if and only if the vertex is not
currently dominated. Using the notation introduced above, GREEDY selects vi, i ≥ 1 if
and only if vi ∈ Ui.
The algorithm k-DOMINATE (for some fixed integer parameter k) selects a newly revealed
vertex if and only if either (1) the vertex has at least k undominated neighbors, or (2)
the vertex saves at least one other vertex. Using the notation introduced before, vi is
selected if and only if either (1) |N(vi) ∩ Ui| ≥ k, or (2) |s(vi)| ≥ 1.

Both GREEDY and k-DOMINATE give rise to rather efficient offline algorithms so that any
of the positive results given in this paper may be realized as efficient offline approximation
algorithms.

3 Competitive Graph Classes

3.1 Trees
In this section we establish the tight bound of 2 on the best competitive ratio when the
input graph is restricted to be a tree. The upper bound is achieved by the 2-DOMINATE
algorithm and is proved in Theorem 7 below. The lower bound on all online algorithms is
established in Theorem 6. Within this section all of the formal statements implicitly assume
that the input is a tree. We begin the section by proving the lower bound.

▶ Theorem 6. ρ(ALG, TREE) ≥ 2 for any algorithm ALG.

Proof. Consider an arbitrary small ϵ > 0. We will give an adversarial input that guarantees
that ALG ≥ (2 − ϵ)OPT . Let k = ⌈ 3

ϵ ⌉ ≥ 4. At the start, the adversary reveals v1 with k

children {c1, . . . , ck}. Then we start the process described in the next paragraph at c1. The
process can terminate in two ways: (i) ALG stops selecting vertices to be in the dominating
set, or (ii) ALG selects k vertices revealed after c1 (inclusive). If the process terminates
because of (i), then the adversary restarts the process at child c2 of v1. The process again
terminates either with (i) or (ii) with respect to c2. If it is due to (i), then the adversary
restarts the process at c3, and so on. If the process terminates with (ii) with respect to ci

then we reveal cj for j > i as leaves of v1.
Next, we describe the process with respect to ci. The adversary reveals ci with 2 children

and if ALG selects ci then exactly one child of ci is revealed with two additional children.
If ALG selects the child then one of its children is revealed with two additional children,
and so on. Let ji be the number of these vertices that are selected by ALG. This process
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terminates only if ALG stops selecting these vertices with two children (ji < k) or when
ALG selects k of them (ji = k). At this point the subtree grown at ci has some revealed
vertices as well as visible, but not yet revealed vertices. To finish revealing the entire subtree,
the adversary proceeds as follows.

If ji < k then the two children on the (ji +1)’st vertex are revealed to be leaves. Moreover,
each of the ji selected vertices have exactly one visible child that is not yet revealed. Reveal
those ji children, called support vertices, with an additional leaf child (i.e. the child is
revealed to be a leaf after its parent is revealed). Including the 2 children of the (ji + 1)’st
vertex ALG must select at least ji + 2 additional vertices to dominate these leaves for a total
of ji + (ji + 2) = 2(ji + 1) selected vertices in this subtree. In this case, OPT can select the
support vertices together with the (ji + 1)’st vertex for a total ji + 1 vertices to dominate
the entire subtree.

If ji = k the procedure to finish revealing the entire subtree at ci is similar: the k’th
vertex children are both revealed to be leaves and each of the other k − 1 selected vertices
has the other child become a support vertex, i.e., revealed with an additional leaf child. The
performance is similar here but ALG is not forced to select the two children of the k’th
vertex so ALG selects at least k + (k − 1) = 2k − 1. In this case, OPT needs only select
the k’th vertex together with the support vertices for a total of k vertices to dominate the
subtree.

To finish the analysis, we consider the following two cases:
Case 1: for all i we have ji < k. Then ALG ≥ 2(ji+1) on each subtree whereas OPT ≤ ji+1

on each subtree. Summing over all subtrees and remarking that OPT might select v1 we
obtain that ALG/OPT ≥ (

∑
2(ji + 1)) / (1 +

∑
(ji + 1)) ≥ 2 − 2/k ≥ 2 − ϵ.

Case 2: there exists ℓ such that jℓ = k. Then OPT selects ji + 1 vertices for i < ℓ, k vertices
for i = ℓ, 0 vertices for i > ℓ per subtree, plus v1. Whereas ALG selects at least 2(ji + 1)
for i < ℓ, 2k − 1 for i = ℓ, and 0 for i > ℓ. By a similar calculation to Case 1, we obtain
that ALG/OPT ≥ 2 − 3/k ≥ 2 − ϵ. ◀

ci

ci,1

ci,2

ci,3

si,1

si,2

si,3

ci

ci,1

ci,2

ci,3

Figure 2 An example of the process described in Theorem 6 where ALG selects ji = 3 vertices
on the subtree rooted at ci. The top depicts the subtree immediately after revealing ci,3 whereas
the bottom shows the entirely revealed subtree.

Now that we have established an asymptotic lower bound of 2 for any algorithm we show
that 2-DOMINATE is 2-competitive.

▶ Theorem 7. ρ(2-DOMINATE, TREE) = 2.

High level overview of the proof. Consider an arbitrary input T = (V, E) on n ≥ 3 vertices
and let OPT denote a minimum dominating set of T which contains no vertices of degree 1
(i.e. any such vertex can be exchanged for its only neighbor). Recall that S is the set of
vertices selected by 2-DOMINATE. Initially, we assign charge 1 to each vertex v in S and
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charge 0 to each vertex v not in S. Thus, |S| =
∑

v∈S

chinit(v) where chinit(v) denotes the

initial charge of v. With a charging scheme described shortly, we spread the charge from the
vertices in S to the vertices of V . Let ch(v) denote the new charge associated with vertex
v. We extend the functions chinit and ch to subsets of vertices linearly, e.g., for W ⊆ V

we have ch(W ) =
∑

v∈W ch(v). We shall demonstrate that the procedure of spreading the
charge satisfies two properties:
1. conservation property:

∑
v chinit(v) =

∑
v ch(v) meaning that the total charge is pre-

served; and
2. OPT -concentration property: for each v ∈ OPT we have ch(N [v]) ≤ 2.
With these two properties it follows that 2-DOMINATE ≤

∑
v chinit(v) =

∑
v ch(v) ≤∑

v∈OP T ch(N [v]) ≤ 2OPT , so 2-DOMINATE is strictly 2-competitive.
Before we proceed with this plan, we make a couple of useful observations:

▶ Lemma 8. There are no cross edges incident on any vertex vi. In particular, any vertex
vi has at most one neighbor before it is revealed.

▶ Corollary 9. If deg(vi) ≥ 3 then vi ∈ S.

Now, we are ready to present formal details of the above plan. We spread the charges
according to the following rule:

Consider any vi ∈ S with Xi = N [vi] ∩ Ui. Remarking that Xi ̸= ∅ we then give each
vertex in Xi an equal charge of 1

|Xi| . That is, a vertex selected by 2-DOMINATE spreads its
charge evenly to all the newly dominated vertices in its closed neighborhood. We say that
each vertex in Xi is charged by vi.

▶ Observation 10. Every vertex is charged by exactly one vertex.

The preceding observation immediately implies that any vertex has charge at most 1.
This observation is tight in the sense that, on certain inputs, there are vertices with charge
equal to 1. A vertex with charge 1 is a rather special case though. Suppose that a vertex vi

receives charge 1 from a vertex vj where vi and vj are not necessarily distinct. Therefore we
have that |Xj | = |N [vj ] ∩ Uj | = 1 which implies that |N(vj) ∩ Uj | ≤ |N [vj ] ∩ Uj | = 1 < 2.
Therefore when vi receives charge it must be from a vertex vj ∈ S that was selected due
to the “saviour” rule of 2-DOMINATE. Hence, vj must have saved a vertex, and only one
vertex since |Xj | = 1. Ultimately we conclude that if vi has charge 1 then it must be saved
by some vertex vj where Xj = {vi} (this does not exclude the possibility that vi = vj). If vi

does not meet this condition then it must have charge at most 1
2 .

▶ Lemma 11. If vi and vj both have charge equal to 1 then they share no common neighbors.

Proof. Suppose for the sake of deriving a contradiction that vi′ were a common neighbor of
vi and vj . Since vi is saved, by Observation 5 it must be that vi ∈ N(v′

i) ∩ Ui′ . Similarly,
we have that vj ∈ N(v′

i) ∩ Ui′ . That is, |N(v′
i) ∩ Ui′ | ≥ 2 and thus v′

i ∈ S. Moreover,
Xi′ = N [vi′ ] ∩ Ui′ contains vi and vj . In particular, we have that |Xi′ | ≥ 2 with vi, vj ∈ Xi′

and therefore vi and vj receive charge no larger than 1
2 , a contradiction. ◀

▶ Lemma 12. If vi and vj both have charge equal to 1 then they are not adjacent.

Proof. It is easy to see that v1 cannot have charge 1 on any input with at least 2 vertices.
Therefore we safely assume that 1 < i < j such that both vi and vj have a parent. We
assume for the sake of deriving a contradiction that vi and vj are adjacent.
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Now, since both vi and vj have charge 1 it follows that they are both saved vertices.
First we show that both vi, vj /∈ S. Notice that any saved vertex vk has the property that
|N [vk] ∩ S| = 1. Therefore, if we assume by way of contradiction that vi ∈ S we obtain
that N [vi] ∩ S = N [vj ] ∩ S = {vi} and therefore vi saves itself and vj . This yields that
Xi = N [vi] ∩ Ui contains vi and vj . In particular, we have that |Xi| ≥ 2 with vi, vj ∈ Xi and
therefore vi and vj receive charge no larger than 1

2 , a contradiction. An identical argument
will yield that vj /∈ S.

Therefore it must be that vi is saved by some vertex vi′ with i′ /∈ {i, j}. Moreover, we
must have i < j < i′ since i < j by assumption and i′ = max{k | vk ∈ N [vi]}. This implies
that both vj , vi′ are children of vi by Observation 8 yielding that |N(vi) ∩ Ui| ≥ 2 but vi

cannot be in S. ◀

From the two preceding lemmas we have the immediate corollary.

▶ Corollary 13. For any vertex vi, at most one vertex in N [vi] has charge 1.

Now, we finish the proof of 2-competitiveness of 2-DOMINATE on trees.

Proof of Theorem 7. The lower bound follows from Theorem 6. Let vi ∈ OPT be an
arbitrary vertex in OPT . We consider two cases (1) deg(vi) = 2 or (2) deg(vi) ≥ 3.

Case 1: Suppose that deg(vi) = 2 and hence |N [vi]| = 3. By Corollary 13 it follows that
at most one vertex in N [vi] has charge 1. If no vertices in N [vi] have charge 1 then
ch(x) ≤ 1

2 for each x ∈ N [vi] and we obtain that
∑

x∈N [vi]
ch(x) ≤ 3

( 1
2
)

< 2. If there

is exactly one vertex x′ ∈ N [vi] with charge 1 we therefore obtain that
∑

x∈N [vi]
ch(x) =∑

x∈N [vi]\{x′}
ch(x) + ch(x′) ≤ 2

2 + 1 = 2.

Case 2: Suppose that deg(vi) ≥ 3. By Corollary 9 it follows that vi ∈ S with at least 2
children. Let Ci = Vi \ Vi−1 denote the children of vi and remark that Ci ⊆ Xi. That is,
each child of vi is charged by vi and only vi. Therefore the children of vi can receive at
most the full initial charge on vi and thus attribute a charge of at most 1.

Now we claim that any vertex in N [vi] \ Ci has a charge of at most 1
2 . Indeed, suppose a

vertex vi′ ∈ N [vi] \ Ci has charge 1 then it must be saved by vi since |N [vi′ ] ∩ S| = 1 for
any saved vertex vi′ . That is, there is exactly one vertex in its closed neighborhood that
is selected and since vi is selected it must be vi. Thus, we must have that vi′ ∈ Xi but
since Ci ⊆ Xi we know that |Xi| ≥ 2 and thus vi′ receives a charge of no more than 1

2 < 1,
contradicting our assumption that vi′ has charge 1.

Thus, by remarking that |N [vi] \ Ci| ≤ 2 we obtain that
∑

x∈N [vi]
ch(x) =

∑
vj∈Ci

ch(vj) +∑
vi′ ∈N [vi]\Ci

ch(vi′) ≤ 1 + 2
( 1

2
)

= 2 as desired. ◀

3.2 Cactus Graphs
A graph G is said to be a cactus graph if it is connected and every edge lies on at most
one cycle. Hedetniemi, Laskar, and Pfaff [10] provide an exact offline algorithm that runs
in linear time for finding a minimum dominating set of a cactus graph. Of course, an
efficient offline algorithm does not guarantee that an online algorithm can perform well but
fortunately, cactus graphs are a class of graphs for which an online algorithm can achieve
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constant competitive ratio. In this section, we show that 2-DOMINATE is 5
2 -competitive

when inputs are restricted to cactus graphs, and that this is as well as any algorithm can
perform. Within this section all of the formal statements implicitly assume that the input is
a cactus graph.

r

c c′

r

c c′

x

Figure 3 The cactus 2-gadget : The leftmost figure depicts the case where ALG does not select
the root r and rightmost depicts the case where ALG selects r.

Before presenting a lower bound of 5
2 on all online algorithms we describe a gadget that

is used in the proof. The gadget itself is a cactus graph on 3 ≤ n ≤ 4 vertices with the
property that OPT selects exactly 1 vertex and any algorithm ALG selects at least 2 vertices.
Consider revealing a root vertex r with 2 children c and c′. If ALG does not select r then
both c, c′ are revealed as only adjacent to r and ALG must select both whereas OPT selects
only r. If ALG does select r then c is revealed as adjacent to c′, and c′ is revealed with an
additional child x. The vertex x is adjacent only to c′ and thus ALG must select at least
one of c′, x whereas OPT selects only c′ (both cases are depicted in Figure 3). Given any
input cactus graph with a visible vertex r not yet revealed this gadget can be constructed
with r as the root. Within the proof of the lower bound we call this a 2-gadget.

c

c1,1

c

c1,1 c1,2 c1,3

22

Figure 4 The case described in Theorem 14 where ALG does not select c1,1.

▶ Theorem 14. ρ(ALG, CACTUS) ≥ 5
2 for any algorithm ALG.

Proof. Consider an arbitrary small ϵ > 0 and let k = ⌈ 4
ϵ ⌉ ≥ 5. We will give an adversarial

input that guarantees that OPT ≥ k and ALG ≥ ( 5
2 − ϵ)OPT . To begin the input, the

adversary reveals v1 with k children {c1, . . . , ck}. Then we run an adversarial process starting
with the child c1 of v1. The process consists of rounds, where each round increases OPT by
2 while increasing ALG by 5. The process might terminate for one of two reasons: either
(i) we guarantee strict competitive ratio at least 5/2 on the subcactus rooted at c1, or (ii)
k rounds starting at c1 elapse. If the process terminates because of (i), then the adversary
restarts the process at child c2 of v1. The process again terminates either with (i) or (ii)
with respect to c2. If it is due to (i), then the adversary restarts the process at c3, and so on.
If the process terminates with (ii) with respect to ci then we reveal cj for j > i as leaves.
Below we describe the process starting at a child of v1 although the first round of the process
differs from the others that follow.

MFCS 2021
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We now describe the first round starting at a child c of v1. Initially, we reveal c with 3
children. If ALG does not select c then each child of c is revealed as leaf and ALG must select
all 3 children whereas OPT selects c. Suppose then that ALG selects c and let c1,1, c1,2, c1,3
be the three children of c. Reveal c1,1 as adjacent to c1,2 along with 2 additional children.
If ALG does not select c1,1 then the children of c1,1 are revealed as leaves, forcing ALG to
select them and c1,3 is revealed as the root of a 2-gadget (c1,2 is revealed with no additional
neighbors). Thus, ALG

OP T ≥ 5
2 in this case (see Figure 4). If instead ALG selects c1,1 then c1,2

and c1,3 are revealed as the roots of two distinct 2-gadgets and since c is dominated by v1
(we assume that v1 ∈ OPT ) we have that ALG

OP T ≥ 5
2 on this subcactus (excluding c1,1) thus

far (see Figure 5a). At this point, c1,1 is selected by ALG and we start the second round
(which is described below) with c1,1 as the root. Every round that follows will be the same
as the second and requires a root selected by ALG which has two children.

The second round starts at a selected root c1,1 and we let c2,1, c2,2 be the 2 children of
c1,1. We reveal c2,1 as adjacent to c2,2 with 2 children c3,1, c3,2. If ALG does not select c2,1
then c3,1, c3,2 are revealed as leaves and ALG selects c1,1, c3,1, c3,2 and OPT can select c2,1
for a performance of 3 along with the running performance of 5

2 (see Figure 5b). If ALG does
select c2,1 then c3,1 is revealed as adjacent to c3,2 with two children c4,1, c4,2. If ALG does
not select c3,1 then c4,1, c4,2 are revealed as leaves and c2,2 is revealed with an additional
leaf neighbor l2,2 so that ALG must select at least one of c2,2, l2,2. Thus, ALG here selects
c1,1, c2,1, c4,1, c4,2 and at least one of c2,2, l2,2 whereas OPT can select c3,1 and c2,2 for a
performance of 5

2 (see Figure 6a). If instead ALG selects c3,1 (thus far c1,1, c2,1 and c3,1 are
all selected) then c2,2 is revealed with an additional leaf neighbor l2,2 so that ALG must
select at least one of c2,2, l2,2, and c3,2 is revealed as the root of a 2-gadget so that ALG

OP T ≥ 5
2

on the subcactus thus far (excluding c3,1) and we repeat the trap with c3,1 as the selected
root (see Figure 6b).

Let ji ≥ 1 denote the number of rounds that passed in the adversarial process starting at
the child ci. To finish the analysis, we consider the following two cases:

Case 1: For all i we have that ji < k. Then ALG ≥ 5ji on each subcactus whereas
OPT ≤ 2ji on each subcactus3. Summing over all subcacti and remarking that OPT

selects v1 we obtain that ALG/OPT ≥ (
∑

5ji) / (1 +
∑

2ji) ≥ 5
2 − 5

2k ≥ 5
2 − ϵ.

Case 2: There exists ℓ such that jℓ = k. In this case, there is an additional vertex cj,1 with
j = 3(k − 1) that was selected by ALG and must also be selected by OPT . (i.e. cj is
the root where a (k + 1)’st round could start). Therefore, OPT selects 2ji vertices for
each process on child ci with i < ℓ, 2k + 1 vertices for i = ℓ, 0 vertices for i > ℓ plus v1.
Whereas ALG selects at least 5ji for i < ℓ, 5k + 1 for i = ℓ, and 0 for i > ℓ. Ultimately,
we obtain that ALG/OPT ≥ (

∑
5ji + 5k + 1) / (

∑
2ji + 2k + 2) ≥ 5

2 − 4/k ≥ 5
2 − ϵ. ◀

▶ Theorem 15. ρ(2-DOMINATE, CACTUS) = 5
2 .

The proof can be viewed as an adaptation of our proof for trees to cactus graphs. We use
a charging argument similar to the one given in the section on trees. Initially, a charge of 1
is given for each v ∈ S, the charge on each vertex is then spread to certain neighbors, and
we then show that

∑
x∈N [vi]

ch(x) ≤ 5
2 for each vi ∈ OPT . We spread the charge according

3 We have omitted the cases where ALG does not select the root ci. These cases result in ALG selecting
3 vertices on the subcacti with OP T selecting only 1 and the result clearly still holds in this case.
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c

c1,1 c1,2 c1,3

222

(a) ALG does select c1,1. The enclosed region
contributes a performance of 5

2 . A trap is continued
in this case with the root c1,1.

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

(b) ALG does not select c2,1.

Figure 5 Two cases described in Theorem 14.

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

c4,1 c4,2

l2.2

(a) ALG does not select c3,1. The enclosed regions
each contribute a performance of 5

2 .

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

l2.2

2

(b) ALG does select c3,1. The enclosed regions
each contribute a performance of 5

2 . The trap that
was used on a selected root c1,1 is repeated with
c3,1 as the selected root.

Figure 6 Two more cases described in Theorem 14.

to the same rule given in the preceding section and recall that Observation 10 (each vertex
receives a new charge from one other vertex) still holds. In the analysis of how the charge
gets reallocated, the structure of the underlying graph is of paramount importance. We
begin with an analogue to Lemma 8.

▶ Lemma 16. There is at most one cross edge incident on any vi. In particular, vi has at
most 2 neighbors before it is revealed.

Proof. Suppose that vi ̸= v1 since the statement is clearly true for vi = v1. Suppose for the
sake of deriving a contradiction that, at time i − 1, vi has three neighbors vh, vi1 , vi2 where
vh is the parent of vi and {vi, vi1}, {vi, vi2} are cross edges. Notice that vi1 is visible at time
i − 1 as otherwise would imply that {vi, vi1} were a tree edge. Thus, at time i − 1, vi1 is
visible and there is only one tree edge incident on vi. In particular, this implies that there is
a path consisting entirely of tree edges from vi1 to vh where said path does not contain the
edge {vh, vi} since it does not pass through vi nor does it contain the edges {vi, vi1}, {vi, vi2}
since they are cross edges. Thus, by adding edges {vh, vi}, {vi, vi1} to this path we obtain a
cycle (in the completely revealed input graph) that contains the edge {vh, vi} but does not

MFCS 2021
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contain the edge {vi, vi2}. A similar argument yields that there is a path consisting of tree
edges from vi2 to vh that does not contain the edges {vh, vi}, {vi, vi1}, {vi, vi2} and hence
by adding edges {vh, vi}, {vi, vi2} we obtain a cycle which contains the edge {vh, vi} but
does not contain the edge {vi, vi1}. That is, two distinct cycles that share the common edge
{vh, vi}, a contradiction. ◀

Since vi has at most 2 neighbors before it is revealed then it has at least deg(vi) − 2
children. The following is analogous to Corollary 9 for trees.

▶ Corollary 17. If deg(vi) ≥ 4 then vi ∈ S.

▶ Lemma 18.
1. If vi and vj both have charge equal to 1 then they share no common neighbors.
2. If vi and vj both have charge equal to 1 then they are not adjacent.
3. For any vertex vi, at most one vertex in N [vi] has charge 1.

Proof.
1. Follows identically to the proof of Lemma 11.
2. First, note that v1 cannot have charge 1 on any input with at least 2 vertices. Therefore

we safely assume that 1 < i < j such that both vi and vj have a parent. We assume for
the sake of deriving a contradiction that vi and vj are adjacent.
Now, since both vi and vj have charge 1 it follows that they are both saved vertices. We
first argue that both vi, vj /∈ S. Notice that any saved vertex vk has the property that
|N [vk] ∩ S| = 1. Therefore, if we assume by way of contradiction that vi ∈ S we obtain
that N [vi] ∩ S = N [vj ] ∩ S = {vi} and therefore vi saves itself and vj . This yields that
Xi = N [vi] ∩ Ui contains vi and vj . In particular, we have that |Xi| ≥ 2 with vi, vj ∈ Xi

and therefore vi and vj receive charge no larger than 1
2 , a contradiction. An identical

argument will yield that vj /∈ S.
Thus, we assume that vi is saved by a neighbor vi′ and vj is saved by a neighbor vj′

where i′, j′ /∈ {i, j}. Moreover, i′ ≠ j′ since vi and vj can share no common neighbors by
part 1. Thus, we have that i, j, i′, j′ are all distinct with i < j < i′ and i < j < j′ since
i′ = max{k | vk ∈ N [vi]} and j′ = max{k | vk ∈ N [vj ]}. As mentioned above vi must
have a parent vh where h < i < j < i′. Therefore, deg(vi) ≥ 3 and since vi /∈ S it follows
by Corollary 17 that deg(vi) = 3.
We are now in the situation where vi, vj /∈ S and vi is incident on exactly 3 edges {vh, vi},
{vi, vj}, {vi, vi′} where exactly one of the edges {vi, vj}, {vi, vi′} is a tree edge (and the
other a cross edge). We finish the proof by examining the two cases where (1) : {vi, vi′}
is a tree edge or (2) : {vi, vj} is a tree edge.
Case 1: Suppose {vi, vi′} is a tree edge so that vi′ is a child of vi. Therefore, vi′ ∈ Ci ⊆

N(vi) ∩ Ui, that is, vi′ is an undominated neighbor of vi when vi is revealed. Since
vj is saved then by Observation 5 it follows that vj ∈ N(vi) ∩ Ui, that is, vj is also
an undominated neighbor of vi when vi is revealed. That is, both vi′ , vj ∈ N(vi) ∩ Ui

implying that |N(vi) ∩ Ui| ≥ 2 but vi /∈ S, a contradiction.
Case 2: Suppose {vi, vj} is a tree edge so that vj is a child of vi. First notice that {vi, vj}

is the only tree edge incident on vj . Indeed, if there were a tree edge {vj , vl} then vl

would be the child of vj . Since vi is saved we have vi ∈ N(vj) ∩ Uj by Observation
5 implying that |N(vj) ∩ Uj | ≥ 2 but vj /∈ S. Thus, we are in the situation depicted
in Figure 7a where {vi, vj} is the only tree edge incident on vj and by assumption
{vh, vi}, {vi, vj} are the only two tree edges incident on vi. Therefore we have a path
from vi′ to vh consisting of tree edges where said path does not contain the edges
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vh

vi vi′

vj vj′

(a) Case 2 of the second part of
Lemma 18.

vh

vi vi′

vj vj′

vh

vi vi′

vj′vj

vh

vi vi′

vh

vi

vj vj′

(b) Resolution of the preceding case in Figure 7a. Two cycles sharing
the common edge {vh, vi}.

Figure 7 Figures used in the proof of Lemma 18.

{vh, vi}, {vi, vi′}, {vi, vj}, {vj , vj′}. Thus, by adding edges {vh, vi}, {vi, v′
i} to this path

we obtain a cycle (in the completely revealed input) that contains the edge {vh, vi} but
does not contain the edge {vj , vj′}. Similarly, there is a path from vj′ to vh consisting of
tree edges where said path does not contain the edges {vh, vi}, {vi, vi′}, {vi, vj}, {vj , vj′}
and by adding edges {vh, vi}, {vi, vj}, {vj , vj′} we obtain a cycle (in the completely
revealed input) that contains the edge {vh, vi} but does not contain the edge {vi, vi′}.
That is, two distinct cycles that share the common edge {vh, vi}, a contradiction.

3. Follows immediately from the previous parts. ◀

Now, we are ready to prove the upper bound for Theorem 15.

Proof of Theorem 15. The lower bound follows from Theorem 14. Let vi ∈ OPT be an
arbitrary vertex in OPT . We consider two cases (1) deg(vi) ≤ 3 or (2) deg(vi) ≥ 4.
Case 1: Suppose that deg(vi) ≤ 3 and hence |N [vi]| ≤ 4. By Lemma 18 part 3 it follows

that at most one vertex in N [vi] has charge 1. If no vertices in N [vi] have charge 1 then
ch(x) ≤ 1

2 for each x ∈ N [vi] and we obtain that
∑

x∈N [vi]
ch(x) ≤ 4

( 1
2
)

= 2 < 5
2 . If there

is exactly one vertex x′ ∈ N [vi] with charge 1 we therefore obtain that
∑

x∈N [vi]
ch(x) =∑

x∈N [vi]\{x′}
ch(x) + ch(x′) ≤ 3

2 + 1 = 5
2 .

Case 2 : Suppose that deg(vi) ≥ 4. By Corollary 17 it follows that vi ∈ S with at least 2
children. Let Ci = Vi \ Vi−1 denote the children of vi and remark that Ci ⊆ Xi. That is,
each child of vi is charged by vi and only vi. Therefore the children of vi can receive at
most the full initial charge on vi and thus attribute a charge of at most 1.

Now we claim that any vertex in N [vi] \ Ci has a charge of at most 1
2 . Indeed, suppose a

vertex vi′ ∈ N [vi] \ Ci has charge 1 then it must be saved by vi since |N [vi′ ] ∩ S| = 1 for any
saved vertex vi′ . That is, there is exactly one vertex in its closed neighborhood that is selected
and since vi is selected it must be vi. Thus, we must have that vi′ ∈ Xi but since Ci ⊆ Xi

we know that |Xi| ≥ 2 and thus vi′ receives a charge of no more than 1
2 < 1, contradicting

our assumption that vi′ has charge 1. Thus, by remarking that |N [vi] \ Ci| ≤ 3 we obtain
that

∑
x∈N [vi]

ch(x) =
∑

vj∈Ci

ch(vj) +
∑

vi′ ∈N [vi]\Ci

ch(vi′) ≤ 1 + 3
( 1

2
)

= 5
2 as desired. ◀
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3.3 Graphs of Bounded Degree
We study the problem when the inputs are restricted to graphs of bounded degree. That
is, a positive integer ∆ ≥ 2 is provided to the algorithm beforehand and the adversary
is restricted to presenting graphs where every vertex has degree no larger than ∆. The
problem of bounded degree graphs was explored in [3] although within the vertex arrival
model described earlier. The authors show that a greedy strategy obtains a competitive ratio
no larger than ∆ and, when inputs are further restricted to be “always-connected” (i.e. each
prefix of the input is connected) they provide a lower bound of ∆ − 2 for any algorithm.

By definition, any input belonging to our setting is “always-connected” yet the lower
bound of ∆ − 2 does not apply. In particular, we show that

⌈√
∆

⌉
-DOMINATE is 3

√
∆-

competitive along with a lower bound of Ω(
√

∆) for any online algorithm, essentially closing
the problem in our setting. As previously mentioned, the authors in [12] consider a setting
similar to ours where their adversary is not required to reveal visible vertices and they assume
that an algorithm has additional knowledge of input size n. In this setting they provide
an algorithm that achieves competitive ratio of Θ(

√
n) for arbitrary graphs. For the upper

bound below we follow a proof nearly identical to theirs modulo some minor details and
definitions.

▶ Definition 19. A vertex vi ∈ S is said to be heavy if |N(vi)∩Ui| ≥
⌈√

∆
⌉

and light otherwise.
We let H and L denote the set of heavy and light vertices in S so that |S| = |H| + |L|.

To establish that
⌈√

∆
⌉
-DOMINATE is 3

√
∆-competitive we use a charging argument,

but it is quite different from the arguments in Sections 3.1 and 3.2. Initially, let ch(v) = 1
for each v ∈ S so that |S| =

∑
v∈S

ch(v). Then spread the charge from S strictly to vertices

in OPT so that
∑

v∈S

ch(v) =
∑

v∈OP T

ch∗(v) where ch∗(v) is the new charge on a vertex in

OPT . We then show that ch∗(v) ≤ 2
√

∆ for all v ∈ OPT and thus |S| =
∑

v∈S

ch(v) =∑
v∈OP T

ch∗(v) ≤ |OPT |2
√

∆ and the result then follows. We spread the charge from S to

OPT according to the following rules:
1. If vi ∈ S ∩ OPT then vi keeps its full initial charge.
2. If vi ∈ H \ OPT then its spread its initial charge evenly over all vertices in OPT . That

is, each v ∈ OPT obtains an additional charge of 1
|OP T | from vi.

3. For each vi ∈ L \ OPT , let s(vi) denote the set of vertices saved by vi. Given a vertex
vi′ ∈ s(vi) let opt be the mapping that maps vi′ to itself if it is in OPT or to its
earliest revealed neighbor in OPT otherwise. That is, opt(vi′) = vi′ if vi′ ∈ OPT and
opt(vi′) = vk where k = min{j | vj ∈ N(vi′) ∩ OPT} otherwise. For each vi′ ∈ s(vi), vi

spreads a charge of 1
|s(vi)| to opt(vi′).

▶ Lemma 20. If vi ∈ OPT then it receives charge from at most ⌈
√

∆⌉ light vertices.

Proof. We consider two cases; (1) vi ∈ S or (2) vi /∈ S.
Case 1: Assume that vi ∈ S, we show that vi receives no charge from a distinct light vertex

(therefore it receives charge from at most one light vertex, itself). Since vi ∈ S this implies
that it is not saved by any vj , j ̸= i. Thus, if vi were to receive charge from a light vertex
it must be that vi = opt(vi′) for some vi′ that is saved by some vk ∈ L different from vi.
More precisely, vi must be adjacent to some vi′ that is saved by some vk with k ̸= i. Yet,
if vi′ ∈ N(vi) is saved then N [vi′ ] ∩ S = {vi} so this cannot be the case.

Case 2: Assume that vi /∈ S and first remark that vi is saved by at most one vertex so
that it receives at most one charge from a light vertex in this way. If vi receives charge
from any other light vertex vk ∈ L, it must be that vi is adjacent to some vertex vi′
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that is saved by vk. By Observation 5 it must be that vi′ ∈ N(vi) ∩ Ui, that is, is
undominated when vi is revealed. All this to say, that any light vertex that charges vi

determines at least one neighbor of vi that is undominated at time i. Since vi /∈ S we
have |N(vi) ∩ Ui| ≤ ⌈

√
∆⌉ − 1 and thus accounting for possibly one light vertex that

charges vi there are at most ⌈
√

∆⌉ light vertices that charge vi. ◀

▶ Lemma 21. |H|
|OP T | ≤

√
∆ + 1√

∆
.

Proof. Since every vertex in H is selected because it dominated at least ⌈
√

∆⌉ undominated
vertices it follows that |H| ≤

⌊
n

⌈
√

∆⌉

⌋
. Moreover, by a standard result, first proved by

Berge [1], a lower bound on OPT is |OPT | ≥
⌈

n
∆+1

⌉
. Ultimately this yields that |H|

|OP T | ≤⌊
n

⌈
√

∆⌉

⌋⌈
n

∆+1

⌉ ≤
n

⌈
√

∆⌉
n

∆+1
≤

n√
∆

n
∆+1

= ∆+1√
∆

=
√

∆ + 1√
∆

. ◀

▶ Theorem 22. ρ(
⌈√

∆
⌉
-DOMINATE, ∆-BOUNDED) ≤ 3

√
∆.

Proof. Consider an arbitrary vertex vi ∈ OPT . In light of Lemma 20 we see that it receives
charge from at most ⌈

√
∆⌉ light vertices, where each charge is no larger than 1. Moreover,

by Lemma 21 the charge received by the heavy vertices is at most
√

∆ + 1√
∆

and vi possibly
receives charge from itself (it may be a heavy or light vertex). In particular we obtain that
ch(vi) ≤ |H|

|OP T | +
⌈√

∆
⌉

+ 1 ≤
(√

∆ + 1√
∆

)
+

⌈√
∆

⌉
+ 1 ≤ 3

√
∆. ◀

We now prove a lower bound Ω(
√

∆) for any online algorithm. We should note that the
adversarial input is bounded in size by a function of ∆. Although we have omitted the details,
it is straightforward to extend the input so that the lower bound is in fact an asymptotic one.

▶ Theorem 23. ρ(ALG, ∆-BOUNDED) = Ω(
√

∆).

Proof. For simplicity we assume that ∆ is a perfect square. Reveal v1 with ∆ children and
reveal each child of v1 with an additional

√
∆ children. Of the ∆ children of v1, suppose

that ALG selects exactly j where 0 ≤ j ≤ ∆. For the ∆ − j vertices not selected, their
√

∆
neighbors are revealed to have degree 1 and ALG is forced to select each of these (∆−j)(

√
∆)

vertices of degree 1.
Let Sj denote the set of the j selected vertices in N(v1) and X =

⋃
vi∈Sj

N(vi). Since
each vertex in Sj has

√
∆ children, it follows that |X| = j

√
∆. Partition the vertices of X

into ⌈ j
√

∆
∆ ⌉ = ⌈ j√

∆
⌉ parts of size ∆ (with at most one part having size < ∆). Letting the

parts be X1, X2, ..., X⌈ j√
∆

⌉ we reveal each vertex in a given part to a common vertex yi (see
figure 8 for an example). ALG must select at least one vertex for each part to dominate yi

and therefore at least an additional ⌈ j√
∆

⌉ vertices are selected.
In total, ALG selects at least j + (∆ − j)(

√
∆) + j√

∆
whereas OPT simply selects v1,

the ∆ − j vertices in N(v1) \ Sj and the j√
∆

vertices with labels yi. Ultimately we have
ALG
OP T ≥

j+(∆−j)(
√

∆)+ j√
∆

1+(∆−j)+ j√
∆

= j+j
√

∆+(∆−j)∆
j+

√
∆+(∆−j)

√
∆

=
√

∆(j/
√

∆+j+(∆−j)
√

∆)
2(j/2+

√
∆/2+(∆−j)

√
∆/2)

≥
√

∆
2 , where the last

inequality follows from the fact that j/2 +
√

∆/2 + (∆ − j)
√

∆/2 ≤ j/
√

∆ + j + (∆ − j)
√

∆,
since

√
∆/2 ≤ j/

√
∆ + j/2 + (∆ − j)

√
∆/2, which can be seen since when j < ∆ then the

last term on the right hand side already is at least as large as the left hand side and when
j = ∆ then the middle term on the right hand side is at least the left hand side. ◀
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v1

c1 c2 c3 c4

v1

c1 c2 c3 c4

y1 y2

Figure 8 An instance described in the proof of Theorem 23 with ∆ = 4. The left depicts the
graph after the children of v1 have been revealed. Assuming that ALG selects {c1, c3, c4} above, the
right depicts the completely revealed graph.

3.4 Graphs with Bounded Claws
In Appendix A we study K1,t-free graphs, which we also refer to as graphs with bounded
“claws” (for t = 3, this graph class is known as “claw-free graphs”). We show that the
competitive ratio t − 1 is both necessary and sufficient for this class of graphs. The upper
bounds that we have demonstrated so far were all based on the k-DOMINATE algorithm
for a suitable choice of parameter k. Interestingly, our upper bound on K1,t-free graphs is
based on a conceptually simpler GREEDY algorithm. The analysis is no longer based on a
charging scheme, but follows from combinatorial properties of graphs with bounded claws.
For the details, one should consult the appendix.

4 Conclusions

In this paper we studied the minimum dominating set problem in an online setting where
a vertex is revealed alongside all its neighbors. We also contrasted our results with those
obtained by Boyar et al. [3] and Kobayashi [13] in a related vertex-arrival model. Dominating
set is a difficult problem both offline and online. In our setting, the best achievable competitive
ratio on general graphs is O(

√
n). This observation prompted us to study this problem

with respect to more restrictive graph classes. Trees provide a natural graph class that
usually allows for non-trivial competitive ratios. Indeed, we showed that in our model trees
admit 2-competitive algorithms. There are several ways to try to extend this result to larger
graph classes. We considered cactus graphs and showed that the optimal competitive ratio is
2.5 on them. Another way of generalizing trees is to consider graphs of higher treewidth.
Unfortunately, once treewidth goes up to 2, competitive ratio jumps to Ω(

√
n) (which is

trivial in our setting due to O(
√

n) upper bound), as witnessed by series-parallel graphs. We
also established non-trivial upper bounds on graphs of bounded degree, as well as graphs
with bounded claws. When one moves to planar (even bipartite planar) graphs and threshold
graphs, the competitive ratio jumps to Ω(

√
n) again.

The above can be viewed as a larger program of developing a deeper understanding of the
dominating set problem in an online setting. What are the main structural obstacles in graphs
that prohibit online algorithms with small competitive ratios? Can one discover a family of
graphs parameterized by some parameter t, which include cactus graphs, claw-free graphs,
and bounded-degree graphs, such that the competitive ratio scales gracefully with t? Lastly,
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as another research direction, we mention that we have only considered the deterministic
setting, so it would be of interest to extend our results to the randomized setting, as well as
the setting of online algorithms with advice.
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A Tight Bound for Graphs with Bounded Claws

Let t ≥ 3, a graph G is said to be K1,t-free if it contains no induced subgraph isomorphic to
K1,t. When t = 3, this is the well-studied class of claw-free graphs. In this section we study
K1,t-free graphs, which we also refer to as graphs with bounded “claws”.

From the preceding sections one might notice that the existence of an induced subgraph
K1,t poses challenges for an algorithm. This section suggests that this intuition holds more
than just a grain of truth. We show that, when inputs are restricted to K1,t-free graphs, the
competitive ratio of every algorithm is bounded below by t − 1 and there is an algorithm that
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achieves competitive ratio t − 1. The upper bounds that we have demonstrated so far were all
based on the k-DOMINATE algorithm for a suitable choice of parameter k. Interestingly, our
upper bound on K1,t-free graphs is based on a conceptually simpler GREEDY algorithm. The
analysis is no longer based on a charging scheme, but follows from combinatorial properties
of graphs with bounded claws.

▶ Theorem 24. ρ(ALG, K1,t-FREE) ≥ t − 1.

Proof. Reveal v1 with t − 1 children. If ALG does not select v1 then the input terminates as
a star on t vertices (i.e. the t − 1 neighbors of v1 are revealed with no additional neighbors).
Any feasible algorithm must select the t − 1 neighbors of v1 whereas OPT selects v1 and the
statement then follows. Suppose that ALG selects v1 and let ci, 1 ≤ i ≤ t − 1 be the children
of v1. Reveal c1 as adjacent to each child of v1 and with an additional t − 2 children. If
ALG does not select c1 then the children of c1 are revealed as leaves whereas the rest of the
input is revealed to be a clique. That is, N [v1] is a clique and only c1 has children. ALG

selected v1 and is forced to select the t − 2 children of c1 whereas OPT selects only c1 as a
single dominating vertex. It is not hard to see that this input is K1,t-free and the result then
follows (see Figure 9 for an example).

Suppose that ALG selects c1, the input then continues in the following way; For each
2 ≤ j ≤ t − 2, (as long as ALG is accepting cj) we reveal cj as adjacent to every visible
vertex and with an additional t − 3 children. That is, cj is adjacent to each child ci, i ̸= j of
v1 and the grandchildren of v1 (i.e. the children of all the ci with 1 ≤ i ≤ j) so that cj is a
single dominating vertex of this prefix.
Case 1: If there is some 2 ≤ j ≤ t−2 such that ALG does not select cj then the t−3 children of

cj are revealed as leaves, N [vi] is revealed as a clique, and the (t−2)+
j∑

i=2
(t−3) = j(t−3)+1

grandchildren of v1 are revealed to form a clique. At this point, ALG has selected
{v1, c1, ..., cj−1} and is now forced to select the t − 3 children of cj for an output of at
least j + (t − 3) ≥ 2 + (t − 3) = t − 1 whereas OPT selects only cj so that ALG

OP T ≥ t−1
1 .

We now argue that this input is K1,t-free. Notice that for all v in this input we have
N(v) ⊆ N(cj) so that if there is a an induced K1,t with central vertex v then there is a
claw with central vertex cj . Therefore it is sufficient to show that is no claw with central
vertex cj to finish the claim. Suppose for contradiction’s sake that there were an induced
K1,t where cj is the central vertex and the t neighbors of cj are all pairwise non-adjacent.
Let G denote the grandchildren of v1 and remark that any neighbor of cj is either a child
of cj , a grandchild of v1, or a vertex from N [v1] \ {cj}. Since there are t vertices and cj

only has t − 3 children by the pigeonhole principle we must have at least two vertices
u, v that both are grandchildren of v1 or both belong N [v1] \ {cj}. Yet, both the set of
grandchildren of v1 and N [v1] \ {cj} are cliques. Therefore we have that u and v are
adjacent, contradicting our assumption.

Case 2: If ALG selects each ci, 1 ≤ i ≤ t − 2 then the (t − 2)(t − 3) + 1 grandchildren of v1
are then revealed to form a clique (N [v1] has already been revealed as a clique). ALG

has already selected {v1, c1, ..., ct−2} and therefore has an output of at least t − 1 whereas
OPT selects only ct−2. An argument similar to the one above will yield that this input
is K1,t-free and the result then follows. ◀

When inputs are restricted to K1,t-free graphs, we show that the online algorithm
GREEDY is (t − 1)-competitive. The crucial observation to make here is that the output
of GREEDY is an independent set. We provide a result below that is a straightforward
generalization of one given in [4]. The simplicity of the result suggests that it may have
appeared in earlier work.
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v1

c1

v1

c1 c2 c3 c4

Figure 9 An instance described in Theorem 24 with t = 5 where ALG does not select c1. The
left depicts the graph at the moment c1 was revealed and the right depicts the completely revealed
graph.

v1

c1 c2

v1

c1 c2 c3 c4

Figure 10 An instance described in Theorem 24 with t = 5 where ALG does not select c2. The
left depicts the graph at the moment c1 was revealed and the right depicts the completely revealed
graph.

▶ Lemma 25. Let t ≥ 3, G = (V, E) be a K1,t-free graph and I be any independent set in G.
Then |D| ≥ |I|

t−1 for any dominating set D in G.

Proof. Suppose for the sake of deriving a contradiction that there is some dominating set D

in G with |D| < |I|
t−1 . Remarking that the vertices of D dominate the vertices of I as D is a

dominating set we notice that there is some vertex v ∈ D that dominates at least t vertices
of I (i.e. if every vertex of D dominated at most t − 1 vertices then D would dominate at
most (t − 1)|D| < |I| vertices). Moreover, since v is adjacent to at least one of the t ≥ 3
vertices of I it dominates, it cannot belong to I as I is independent. Therefore, the vertices
of I dominated by v /∈ I are adjacent to v. In particular, at least t vertices of I, all pairwise
non-adjacent, are neighbors of v and this induces K1,t in G. ◀

The preceding lemma shows that for any independent set I in a K1,t-free graph G,
|I| ≤ (t − 1)γ(G). Given that GREEDY outputs an independent set we obtain the following
result which is of interest to us.

▶ Theorem 26. ρ(GREEDY, K1,t-FREE) = t − 1.

Proof. The upper bound is a consequence of Proposition 25 and the remarks that follow.
The lower bound follows from Theorem 24. ◀

B Noncompetitive Graph Classes

Recall that the setting defined in [12] is nearly identical to ours except that an algorithm
knows the input size n beforehand and the induced subgraph on the revealed vertices is not
necessarily connected. Within this setting the authors establish a lower bound of Ω(

√
n) for

arbitrary graphs. Their proof can be augmented to show a lower bound of Ω(
√

n) in our
model, which is tight by our upper bound of O(

√
∆) on degree at most ∆ graphs (applied
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v1

c1 c2

v1

c1 c2 c3 c4c3

Figure 11 An instance described in Theorem 24 with t = 5 where ALG does not select c3. The
left depicts the graph at the moment c3 was revealed and the right depicts the completely revealed
graph.

to ∆ = n − 1). Instead, we strengthen such a result in several ways by showing that the
lower bound of Ω(

√
n) applies to several restricted classes such as threshold graphs4, planar

bipartite graphs, and series-parallel graphs. Some of the proofs are omitted in this section
due to space limitations. These proofs can be found in the full version of the paper [6].

B.1 Threshold Graphs
The graph join operation applied to two graphs G1 and G2 takes the disjoint union of the
two graphs and adds all possible edges between the two graphs to the result (in addition to
retaining the edges of G1 and G2). The class of threshold graphs can be described recursively
as follows:
1. K1 (i.e. a single isolated vertex) is a threshold graph.
2. If G is a threshold graph then the disjoint union G ∪ K1 is a threshold graph.
3. If G is a threshold graph then the graph join G ⊕ K1 is a threshold graph.

It is not hard to see that any connected threshold graph has a dominating set of size 1.
Since our setting only allows for connected graphs we instead measure ALG as a function of
input size n since OPT ≤ 1 on every input. In particular, we show that for any algorithm
there is an infinite family of threshold graphs for which this algorithm selects Ω(

√
n) vertices

(where the input has n vertices). Although OPT does not tend towards infinity, we consider
this to be an asymptotic lower bound, but with input size n tending to infinity. In a sense,
this is a stronger lower bound since the algorithm is guaranteed an input graph with a single
dominating vertex, yet it still selects more than Ω(

√
n) vertices in the input.

▶ Theorem 27. For infinitely many values of n there is a threshold graph Gn such that
ALG(Gn) = Ω(

√
n).

B.2 Planar Bipartite Graphs
Below is a lower bound of Ω(

√
n) for planar bipartite graphs. We should mention that is

strikingly similar to the lower bound on general graphs given in [12]. We provide a simple
augmentation of their lower bound so that it not only consists of inputs that are revealed
according to our model but inputs that are also planar bipartite graphs.

▶ Theorem 28. ρ(ALG,PLANAR BIPARTITE) = Ω(
√

n).

4 With the caveat that, for threshold graphs, we instead consider the performance ratio as a function of
input size.
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B.3 Series-Parallel Graphs
In light of our 2-competitive algorithm for trees, it is natural to suppose that some class
of graphs generalizing trees might admit competitive algorithms, that is, algorithms with
bounded competitive ratio. One such generalization is graphs of bounded treewidth. Trees
have treewidth 1, so the next step is to consider graphs of treewidth 2. Unfortunately, in this
section we show that by increasing treewidth parameter from 1 to 2, the online dominating
set problem becomes extremely hard for online algorithms. More specifically, we show that
series-parallel graphs do not admit online algorithms with competitive ratio better than
Ω(

√
n). We remark that series-parallel graphs have treewidth at most 2.

We begin by recalling the definition of a series-parallel graph. It is defined with the help
of the notion of a two-terminal graph (G, s, t), which is a graph G with two distinguished
vertices s, called a source, and t, called a sink. For a pair of two-terminal graphs (G1, s1, t1)
and (G2, s2, t2), there are two composition operations:

Parallel composition: take a disjoint union of G1 with G2 and merge s1 with s2 to get
the new source, as well as t1 with t2 to get the new sink.
Series composition: take a disjoint union of G1 with G2 and merge t1 with s2, which now
becomes an inner vertex of the resulting two-terminal graph; s1 becomes the new source
and t2 becomes the new sink.

A two-terminal series-parallel graph is a two-terminal graph that can be obtained by starting
with several copies of the K2 graph and applying a sequence of parallel and series compos-
itions. Lastly, a graph is called series-parallel if it is a two-terminal series-parallel graph
for some choice of source and sink vertices. Observe that intermediate graphs resulting in
the construction of a series-parallel graph may have multiple parallel edges, so they are
multigraphs. This is permitted, as long as the resulting overall graph is a simple undirected
graph at the end.

Now, we are ready to prove the main result of this section.
▶ Theorem 29. ρ(ALG,SERIES-PARALLEL) = Ω(

√
n).

Proof. Let k ≥ 2 be an integer. The adversary reveals s with k neighbors c1, . . . , ck. Then
c1, . . . , ck are revealed in this order with k new neighbors each. Let neighbors of ci be
di1, . . . , dik. Let S ⊆ {c1, . . . , ck} be those vertices selected by ALG. For those i /∈ S we
reveal their new neighbors in order di1, . . . , dik. Each such dij is revealed with a single new
neighbor fij . For i ∈ S we reveal their new neighbors in order di1, . . . , dik. Each such dij is
revealed with a new neighbor t that is common to all these vertices. Then fij are revealed in
arbitrary order with t as a new neighbor. Lastly t is revealed without any new neighbors.

Let p = |S|. Observe that in addition to these p vertices ALG must select at least one
vertex from each of {dij , fij} pairs for those i /∈ S; otherwise, vertex dij would be undominated.
Thus, ALG ≥ p + k(k − p). Also, observe that {s, t} ∪ {ci | i /∈ S} is a dominating set, so
OPT ≤ k − p + 2. The bound on the competitive ratio is ALG

OP T ≥ p+k(k−p)
k−p+2 = k − 2k−p

k−p+2 ≥ k
2 ,

where the last inequality is obtained as follows. For k ≥ 2 we have k2 − kp ≥ 2k − 2p, which
implies k2 − kp + 2k ≥ 4k − 2p. This in turn implies that k(k − p + 2) ≥ 2(2k − p), hence
(2k − p)/(k − p + 2) ≤ k/2. The quantitative part of the statement of this theorem follows
from the fact that the total number of vertices is at most 2 + k + k2 + k(k − p) = Θ(k2).

Lastly, we note that the adversarial graph thus constructed is, indeed, series-parallel. For
each i /∈ S and j ∈ {1, . . . , k} the path ci → dij → fij → t is a series-composition of 3 copies
of K2. These paths can be merged by a parallel composition to obtain the subgraph induced
on {ci, t} ∪ {dij , fij | j ∈ {1, . . . , k}} for each i /∈ S. Each of these subgraphs is composed
at ci with another copy of K2 with the new vertex playing the role of s. Similar argument
holds to show that the subgraph induced on {s, ci, t} ∪ {dij | j ∈ {1, . . . , k}} for i ∈ S is a
two-terminal series-parallel graph. Lastly, all these subgraphs are merged by a sequence of
parallel compositions at s and t. ◀
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Abstract
Logics and automata models for languages over infinite alphabets, such as Freeze LTL and register
automata, serve the verification of processes or documents with data. They relate tightly to formalisms
over nominal sets, such as nondetermininistic orbit-finite automata (NOFAs), where names play the
role of data. Reasoning problems in such formalisms tend to be computationally hard. Name-binding
nominal automata models such as regular nondeterministic nominal automata (RNNAs) have been
shown to be computationally more tractable. In the present paper, we introduce a linear-time
fixpoint logic Bar-µTL for finite words over an infinite alphabet, which features full negation and
freeze quantification via name binding. We show by a nontrivial reduction to extended regular
nondeterministic nominal automata that even though Bar-µTL allows unrestricted nondeterminism
and unboundedly many registers, model checking Bar-µTL over RNNAs and satisfiability checking
both have elementary complexity. For example, model checking is in 2ExpSpace, more precisely in
parametrized ExpSpace, effectively with the number of registers as the parameter.
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1 Introduction

There has been longstanding interest in logics and automata models over infinite alphabets,
such as the classical register automaton model [24] and Freeze LTL (e.g. [11,31]), or automata
models over nominal sets [36] such as nondeterministic orbit-finite automata [2], in which
names play the role of letters. Infinite alphabets may be seen as representing data. For
example, nonces in cryptographic protocols [30], data values in XML documents [35], object
identities [18], or parameters of method calls [23] can all be usefully understood as letters in
infinite alphabets. A central challenge in dealing with infinite alphabets is that key decision
problems in many logics and automata models are either undecidable or of prohibitively
high complexity unless drastic restrictions are imposed (see the related work section). In a
nutshell, the contribution of the present work is the identification of a linear-time fixpoint
logic Bar-µTL for finite words over infinite alphabets that
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allows both safety and liveness constraints (via fixpoints, thus in particular going beyond
the expressiveness of LTL [17]) as well as full nondeterminism, and e.g. expresses the
language “some letter occurs twice” (which cannot be accepted by deterministic or
unambigous register automata [2, 37]);
imposes no restriction on the number of registers; and
is closed under complement;

and nevertheless allows model checking and satisfiability checking in elementary complexity:
Bar-µTL model checking over regular nondeterministic nominal automata [38] (in the sense
of checking that all words accepted by a given automaton satisfy a given formula) is in
2ExpSpace and more precisely in parametrized ExpSpace, with the maximal size of the
support of states as the parameter (in the translation of nominal automata to register
automata [2,38], this corresponds to the number of registers); and satisfiability checking is in
ExpSpace (and in parametrized PSpace).

The tradeoff that buys this comparatively low complexity is a mild recalibration of the
notion of freshness, which we base on explicit binding of names in strings in a nominal
language model; depending on the exact discipline of α-renaming of bound names, one
obtains either global freshness (w.r.t. all previous letters, as in session automata [3]) or
local freshness (w.r.t. currently stored letters, as in register automata). This principle has
been previously employed in the semantics of nominal Kleene algebra [16, 28] and in regular
non-deterministic nominal automata (RNNAs) [38]. It carries the limitation that in the local
freshness variant, letters can be required to be distinct only from such previous letters that
are expected to be seen again – a restriction that seems reasonable in applications; that is,
in many situations, one presumably would not need to insist on an object identifier, nonce,
or process name b to be distinct from a previous name a if a is never going to be used again.

We introduce a dedicated finite-word automaton model, extended regular nondeterministic
nominal automata (ERNNAs), which extend RNNAs by ⊤-states, i.e. deadlocked universal
states. We then base our results on mutual translations between Bar-µTL and ERNNAs; the
tableau-style logic-to-automata translation turns out to be quite nontrivial as it needs to
avoid the accumulation of renamed copies of subformulae in automata states. Since RNNAs
are, under global freshness, essentially equivalent to session automata [3], one consequence of
our results is that session automata (which as such are only closed under resource-bounded
complementation [3]) can be made closed under complement simply by allowing ⊤-states.

Proofs are mostly omitted or only sketched; full proofs are in the extended version [22].

Related work. Automata: Over infinite alphabets, the expressive power of automata models
generally increases with the power of control (deterministic/nondeterministic/alternating) [25].
In deterministic models, language inclusion can often be decided in reasonable complexity;
this remains true for unambiguous register automata [5,34]. For nondeterministic register
automata and the equivalent nondeterministic orbit-finite automata [2], emptiness is decidable
but inclusion is undecidable unless one restricts to at most two registers [24]. Similarly,
language inclusion (equivalently nonemptiness) of alternating register automata is undecidable
unless one restricts to at most one register, and even then is not primitive recursive [11].
Automata models for infinite words outside the register paradigm include data walking
automata [33], whose inclusion problem is decidable even under nondeterminism but at least
as hard as reachability in Petri nets (equivalently vector addition systems) [7], as well as the
highly expressive data automata [1], whose nonemptiness problem is decidable but, again, at
least as hard as Petri net reachability. Note that by recent results [9], Petri net reachability
is not elementary, and in fact Ackermann-complete [10,32].
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Logics: Bar-µTL is incomparable to Freeze LTL. Satisfiability checking of Freeze LTL is
by reduction to alternating register automata, and has the same high complexity even for
the one-register case [11]. Satisfiability in the safety fragment of Freeze LTL over infinite
words [31] is ExpSpace-complete if the number of registers is restricted to at most one, while
the refinement and model checking problems are decidable but not primitive recursive (all
three problems become undecidable in presence of more than one register). The µ-calculus
with atoms [26] is interpreted over Kripke models with atoms; its satisfiability problem is
undecidable while its model checking problem is decidable, with the complexity analysis
currently remaining open. It is related to the very expressive first-order µ-calculus [19,20],
for which model checking is only known to be semidecidable. The µ-calculus over data
words [6,8] works in the data walking paradigm. The satisfiability problem of the full calculus
is undecidable; that of its ν-fragment, which translates into data automata, is decidable but
elementarily equivalent to Petri net reachability. Variable LTL [21] extends LTL with a form
of first-order quantification over data domains. The full language is very expressive and
in particular contains full Freeze LTL [39]. Some fragments have decidable satisfiability or
model checking problems (typically not both) [21, 39], occasionally in elementary complexity;
these impose prenex normal form (reducing expressiveness) and restrict to quantifier prefixes
that fail to be stable under negation. Decidable fragments will, of course, no longer contain
full Freeze LTL; how their expressiveness compares to Bar-µTL needs to be left open at
present. Flat Freeze LTL [12] interdicts usage of the freeze quantifier in safety positions
(e.g. the freeze quantifier can occur under F but not under G); its existential model checking
problem over (infinite runs of) one-counter automata is NExpTime-complete, while the
universal model checking problem is undecidable [4].

2 Preliminaries: Nominal Sets

Nominal sets offer a convenient formalism for dealing with names and freshness; for our
present purposes, names play the role of data. We briefly recall basic notions and facts
(see [36] for more details).

Fix a countably infinite set A of names, and let G denote the group of finite permutations
on A, which is generated by the transpositions (a b) for a ̸= b ∈ A (recall that (a b) just
swaps a and b); we write 1 for the neutral element of G. A (left) action of G on a set X is
a map (−) · (−) : G × X → X such that 1 · x = x and π · (π′ · x) = (ππ′) · x for all x ∈ X,
π, π′ ∈ G. For instance, G acts on A by π · a = π(a). A set S ⊆ A is a support of x ∈ X if
π(x) = x for all π ∈ G such that π(a) = a for all a ∈ S. We say that x is finitely supported
if x has some finite support, and equivariant if the empty set is a support of x, i.e. π · x = x

for all π ∈ G. The orbit of x ∈ X is the set {π · x | π ∈ G}. The set of all orbits forms a
partition of X, and X is orbit-finite if there are finitely many orbits.

A nominal set is a set X equipped with an action of G such that every element of X is
finitely supported; e.g. A itself is a nominal set. An early motivating example of a nominal set
is the set of λ-terms with variable names taken from A, and with the action of π ∈ G given
by replacing every variable name a with π(a) as expected, e.g. (a b) · λa.ba = λb.ab. Every
element x of a nominal set has a least finite support, denoted supp(x), which one may roughly
think of as the set of names occurring (“freely”, see below) in x. A name a ∈ A is fresh for x
if a /∈ supp(x). On subsets A ⊆ X of a nominal set X, G acts by π · A = {π · x | x ∈ A}.
Thus, A ⊆ X is equivariant iff π · A ⊆ A for all π ∈ G. Similarly, A has support S iff
π · A ⊆ A whenever π(a) = a for all a ∈ S. We say that A is uniformly finitely supported
if

⋃
x∈A supp(x) is finite [40], in which case A is also finitely supported [14, Thm. 2.29].
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(The converse does not hold, e.g. the set A is finitely supported but not uniformly finitely
supported.) Uniformly finitely supported subsets of orbit-finite sets are always finite but
in general, uniformly finitely supported sets can be infinite; e.g. for finite B ⊆ A, the set
B∗ ⊆ A∗ is uniformly finitely supported.

The Cartesian product X × Y of nominal sets X,Y is a nominal set under the compo-
nentwise group action; then, supp(x, y) = supp(x)∪ supp(y). Given a nominal set X equipped
with an equivalence relation ∼ that is equivariant as a subset of X×X, the quotient X/∼ is a
nominal set under the group action π · [x]∼ = [π ·x]∼. A key role in the technical development
is played by abstraction sets, which provide a semantics for binding mechanisms [15]:

▶ Definition 2.1 (Abstraction set). Given a nominal set X, an equivariant equivalence relation
∼ on A ×X is defined by

(a, x) ∼ (b, y) iff (a c) · x = (b c) · y for some c ∈ A that is fresh for (a, x, b, y)

(equivalently for all such c). The abstraction set [A]X is the quotient set (A ×X)/∼. The
∼-equivalence class of (a, x) ∈ A ×X is denoted by ⟨a⟩x ∈ [A]X.

We may think of ∼ as an abstract notion of α-equivalence, and of ⟨a⟩ as binding the name a.
Indeed we have supp(⟨a⟩x) = supp(x) \ {a}, as expected in binding constructs.

3 Data Languages and Bar Languages

As indicated, we use the set A of names as the data domain, and capture freshness of data
values via α-equivalence, roughly as follows. We work with words over A where names may
be preceded by the bar symbol “ ”, which indicates that the next letter is bound until the
end of the word (cf. Remark 3.2); such words are called bar strings [38]. Bar strings may be
seen as patterns that govern how letters are read from the input word; broadly speaking, an
occurrence of a corresponds to reading a letter from the input word, and binding this letter
to the name a, while an undecorated occurrence of a means that the letter referred to by a
occurs in the input word. (We loosely speak of the input word as consisting of letters, and of
bar strings as consisting of names; formally, however, letters and names are the same, viz.,
elements of A.) Bound names can be renamed, giving rise to a notion of α-equivalence; as
usual, the new name needs to be sufficiently fresh, i.e. cannot already occur freely in the
scope of the binding. For instance, in a bab, the binds the letter b in bab. The bar string
a bab is α-equivalent to a cac but not, of course, to a aaa. That is, we can rename the bound
name b into c but not into a, as a already occurs freely in bab; we say that renaming b into a
is blocked.

We will see that bar strings modulo α-equivalence relate to formalisms for global freshness
(a name is globally fresh if it has never been seen before), such as session automata [3].
Contrastingly, if we regard a bar string as representing all words over A that arise by
performing some α-equivalent renaming and then removing the bars, we arrive at a notion
of local freshness, similar to freshness w.r.t. currently stored names as in register automata;
precise definitions are given later in this section. For instance, the bar string a ba represents
the set of words {cdc | c, d ∈ A, c ̸= d} ⊆ A∗ under both local and global freshness semantics
– in a ba, a and b cannot be renamed into the same letter, since a occurs freely in the scope
of b. Contrastingly, a b represents the set {cd | c ̸= d} ⊆ A∗ under global freshness semantics,
but under local freshness semantics it just represents the set A2 of all two-letter words, since
a b is α-equivalent to a a. The impossibility of expressing the language {cd | c ≠ d} under
local freshness is thus hardwired into our language model. We emphasize again that this
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restriction seems reasonable in practice, since one may expect that freshness of new letters is
often relevant only w.r.t. letters that are intended to be seen again later, e.g. in deallocation
statements or message acknowledgements. Formal definitions are as follows.

▶ Definition 3.1 (Bar strings). We put A = A∪{ a | a ∈ A}; we refer to elements a ∈ A as bar
names, and to elements a ∈ A as plain names. A bar string is a word w = σ1σ2 · · ·σn ∈ A∗,
with length |w| = n; we denote the empty string by ϵ. We turn A into a nominal set by
putting π · a = π(a) and π · a = π(a); then, A∗ is a nominal set under the pointwise action
of G. We define α-equivalence on bar strings to be the least equivalence ≡α such that

w av ≡α w bu whenever ⟨a⟩v = ⟨b⟩u in [A]A∗

(Definition 2.1) for w, v, u ∈ A∗, a ∈ A. Thus, a binds a, with scope extending to the end
of the word. Correspondingly, a name a is free in a bar string w if there is an occurrence
of a in w that is to the left of any occurrence of a. We write [w]α for the α-equivalence
class of w ∈ A∗ and FN(w) = {a ∈ A | a is free in w} (= supp([w]α)) for the set of free
names of w. If FN(w) = ∅, then w is closed. A bar string w is clean if all bar names a

in w are pairwise distinct and have a /∈ FN(w). For a set S ⊆ A of names, we write
bs(S) = {w ∈ A∗ | FN(w) ⊆ S}.

▶ Remark 3.2. Closed bar strings are essentially the same as the well-formed symbolic words
that appear in the analysis of session automata [3]. Indeed, symbolic words consist of
operations that read a letter into a register, corresponding to bar names, and operations
that require seeing the content of some register in the input, corresponding to plain names.
Symbolic words are normalized by a register allocation procedure similar to α-renaming.
Well-formedness of symbolic words corresponds to closedness of bar strings.

Moreover, modulo the respective equational laws, bar strings coincide with the ν-
strings [28, 29] that appear in the semantics of Nominal Kleene Algebra (NKA) [16]; cf. [38].
These are constructed from names in A, sequential composition, and a binding construct
νa.w, which binds the name a in the word w. In particular, the equational laws of ν-strings
allow extruding the scope of every ν to the end of the word after suitable α-renaming. We
note that Bar-µTL and its associated automata models are more expressive than NKA as
they express languages with unbounded nesting of binders [38].

We will work with three different types of languages:

▶ Definition 3.3.
1. Data languages are subsets of A∗.
2. Literal languages are subsets of A∗, i.e. sets of bar strings.
3. Bar languages are subsets of A∗

/≡α, i.e. sets of α-equivalence classes of bar strings.
A bar language L is closed if supp(L) = ∅.

Bar languages are the natural semantic domain of our formalims, and relate tightly to data
languages as discussed next. A key factor in the good computational properties of regular
nominal nondeterministic automata (RNNA) [38] is that the bar languages they accept
(cf. Section 5) are uniformly finitely supported, and we will design Bar-µTL to ensure the
same property. Note that a uniformly supported bar language is closed iff it consists of
(equivalence classes of) closed bar strings. For brevity, we will focus the exposition on target
formulae (in model checking) and automata that denote or accept, respectively, closed bar
languages, with free names appearing only in languages accepted by non-initial states or
denoted by proper subformulae of the target formula. (The treatment is easily extended to
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bar languages with free names; indeed, such globally free names are best seen as a separate
finite alphabet of constant symbols [29].) We will occasionally describe example bar languages
as regular expressions over A (i.e. as regular bar expressions [38]), meaning the set of all
α-equivalence classes of instances of the expression.

To convert bar strings into data words, we define ub(a) = ub( a) = a and extend ub to
bar strings letterwise; i.e. ub(w) is the data word obtained by erasing all bars “ ” from w.
We then define two ways to convert a bar language L into a data language:

N(L) = {ub(w) | [w]α ∈ L,w clean} and D(L) = {ub(w) | [w]α ∈ L}.

That is, N is a global freshness interpretation of , while D provides a local freshness
interpretation as exemplified above; e.g. as indicated above we have D( a ba) = N( a ba) =
{aba | a, b ∈ A, a ̸= b}, while N( a b) = {ab | a, b ∈ A, a ̸= b} but D( a b) = {ab | a, b ∈ A}.

▶ Remark 3.4. In fact, the operator N is injective on closed bar languages, because ub is
injective on closed clean bar strings [37,38]. This means that bar language semantics and
global freshness semantics are essentially the same, while local freshness semantics is a quotient
of the other semantics. It is immediate from [37, Lemma A.4] that N preserves intersection
and complement of closed bar languages, the latter in the sense that N(bs(∅)\L) = A∗ \N(L)
for closed bar languages L. Both properties fail for the local freshness interpretation D; the
semantics of formulae should therefore be understood first in terms of bar languages, with D

subsequently applied globally.

4 Syntax and Semantics of Bar-µTL

We proceed to introduce a variant Bar-µTL of linear temporal logic whose formulae define
bar languages. This logic relates, via its local freshness semantics, to Freeze LTL. It replaces
freeze quantification with name binding modalities, and features fixpoints, for increased
expressiveness in comparison to the temporal connectives of LTL [17]. Via global freshness
semantics, Bar-µTL may moreover be seen as a logic for session automata [3].

Syntax. We fix a countably infinite set V of (fixpoint) variables. The set Bar of bar formulae
ϕ, ψ, . . . (in negation normal form) is generated by the grammar

ϕ, ψ := ϵ | ¬ϵ | ϕ ∧ ψ | ϕ ∨ ψ | ♡σϕ | X | µX. ϕ,

where ♡ ∈ {♢,□}, σ ∈ A and X ∈ V. We define ⊤ = ϵ ∨ ¬ϵ and ⊥ = ϵ ∧ ¬ϵ. We refer
to ♢σ and □σ as σ-modalities. The meaning of the Boolean operators is standard; the
fixpoint construct µ denotes unique fixpoints, with uniqueness guaranteed by a guardedness
restriction to be made precise in a moment. The other constructs are informally described
as follows. The constant ϵ states that the input word is empty, and ¬ϵ that the input
word is nonempty. A formula ♢aϕ is read “the first letter is a, and the remaining word
satisfies ϕ”, and □aϕ is read dually as “if the first letter is a, then the remaining word
satisfies ϕ”. The reading of a-modalities is similar but involves α-renaming as detailed later
in this section; as indicated in Section 3, this means that a-modalities effectively read fresh
letters. They thus replace the freeze quantifier; one important difference with the latter is
that ♢ a consumes the letter it reads, i.e. advances by one step in the input word. A name a
is free in a formula ϕ if ϕ contains an a-modality at a position that is not in the scope of
any a-modality; that is, a-modalities bind the name a. We write FN(ϕ) for the set of free
names in ϕ, and BN(ϕ) for the set of bound names in ϕ, i.e. those names a such that ϕ
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mentions a; we put N(ϕ) = FN(ϕ) ∪ BN(ϕ), and (slightly generously) define the degree of ϕ
to be deg(ϕ) = |N(ϕ)|. We write FV(ϕ) for the set of free fixpoint variables in ϕ, defined in
the standard way by letting µX bind X; a formula ϕ is closed if FV(ϕ) = ∅. (We refrain from
introducing terminology for formulae without free names.) As indicated above we require
that all fixpoints µX. ϕ are guarded, that is, all free occurrences of X lie within the scope of
some σ-modality in ϕ. We denote by cl(ϕ) the closure of ϕ in the standard sense [27], i.e. the
least set of formulae that contains ϕ and is closed under taking immediate subformulae and
unfolding top-level fixpoints; this set is finite. We define the size of ϕ as |ϕ| = |cl(ϕ)|.

For purposes of making Bar a nominal set, we regard every fixpoint variable X with
enclosing fixpoint expression µX. ϕ as being annotated with the set A = FN(µX. ϕ); that is,
we identify X with the pair (X,A). We then let G act by replacing names in the obvious
way; i.e. π · ϕ is obtained from ϕ by replacing a with π(a), a with π(a), and (X,A) with
(X,π ·A) everywhere. Otherwise, the definition is as expected:

▶ Definition 4.1. α-Equivalence ≡α on formulae is the congruence relation generated by

♢ aϕ ≡α ♢ bψ and □ aϕ ≡α □ bψ whenever ⟨a⟩ϕ = ⟨b⟩ψ

(cf. Definition 2.1).

▶ Remark 4.2. The point of implicitly annotating fixpoint variables with the free names of the
enclosing µ-expression is to block unsound α-renamings: It ensures that, e.g., ♢ a(µX. (♢aϵ∨
♢ bX)) is not α-equivalent to ♢ a(µX. (♢aϵ∨♢ aX)) (as X is actually (X, {a})), and is required
to ensure stability of α-equivalence under fixpoint expansion, recorded next. We note that
fixpoint expansion does not avoid capture of names; e.g. the expansion of µX. (♢aϵ ∨ ♢ aX)
is ♢aϵ ∨ ♢ a(µX. (♢aϵ ∨ ♢ aX)).

▶ Lemma 4.3. Let µX. ϕ ≡α µX. ϕ
′. Then ϕ[µX. ϕ/X] ≡α ϕ

′[µX. ϕ′/X].

Proof. Immediate from the fact that by the convention that fixpoint variables are annotated
with the free names of their defining formulae, X, µX. ϕ, and µX. ϕ′ have the same free
names and hence allow the same α-renamings in the outer contexts ϕ and ϕ′, respectively. ◀

Semantics. We interpret each bar formula ϕ as denoting a uniformly finitely supported
bar language, depending on a context, i.e. a finite set S ⊆ A such that FN(ϕ) ⊆ S, which
specifies names that are allowed to occur freely; at the outermost level, S will be empty
(cf. Section 3). The context grows when we traverse modalities ♢ a or □ a. Correspondingly,
we define satisfaction S,w |= ϕ of a formula ϕ by a bar string w ∈ bs(S) recursively by the
usual clauses for the Boolean connectives, and

S,w |= ¬ϵ ⇔ w ̸= ϵ

S, w |= ϵ ⇔ w = ϵ

S, w |= µX. ϕ ⇔ S,w |= ϕ[µX. ϕ/X]
S,w |= ♢aϕ ⇔ ∃v. w = av and S, v |= ϕ

S,w |= □aϕ ⇔ ∀v. if w = av then S, v |= ϕ

S,w |= ♢ aϕ ⇔ ∃ψ ∈ Bar, v ∈ A∗
, b ∈ A.

w ≡α bv and ⟨a⟩ϕ = ⟨b⟩ψ and S ∪ {b}, v |= ψ

S,w |= □ aϕ ⇔ ∀ψ ∈ Bar, v ∈ A∗
, b ∈ A.

if w ≡α bv and ⟨a⟩ϕ = ⟨b⟩ψ then S ∪ {b}, v |= ψ.
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Guardedness of fixpoint variables guarantees that on the right hand side of the fixpoint
clause, µX. ϕ is evaluated only on words that are strictly shorter than w, so the given clause
uniquely defines the semantics. Notice that ♢ a and □ a allow α-renaming of both the input
word and the formula; we comment on this point in Remark 4.7. For a formula ϕ such that
FN(ϕ) = ∅, we briefly write

JϕK0 = {w ∈ bs(∅) | ∅, w |= ϕ} and JϕK = JϕK0/≡α,

referring to JϕK0 as the literal language and to JϕK as the bar language of ϕ (variants with
non-empty context and FN(ϕ) ̸= ∅ are technically unproblematic but require more notation).
In particular, JϕK is closed by construction. The global and local freshness semantics of ϕ are
N(JϕK) and D(JϕK), respectively, where N and D are the operations converting bar languages
into data languages described in Section 3.

▶ Remark 4.4. In Bar-µTL, fixpoints take on the role played by the temporal operators in
Freeze LTL. In bar language semantics, the overall mode of expression in Bar-µTL, illustrated
in Example 4.8, is slightly different from that of Freeze LTL, as in Bar-µTL the input is
traversed using modalities tied to specific letters rather than using a next operator #. In
local freshness semantics, the effect of # is included in the name binding modality ♢ a. For
instance, in local freshness semantics we can express LTL-style formulae ϕ U ψ (‘ϕ until ψ’)
as µX.ψ ∨ (ϕ∧ ♢ aX). In particular, µX. ϵ∨ ♢ aX defines the universal data language, so ⊤
is not actually needed in local freshness semantics. Overall, Freeze LTL and Bar-µTL (with
local freshness semantics) intersect as indicated but are incomparable: On the one hand,
Freeze LTL can express the language “the first two letters are different”, which as indicated
in Section 3 is not induced by a bar language. On the other hand, Bar-µTL features fixpoints,
which capture properties that generally fail to be expressible using LTL operators, e.g. the
language of all even-length words. The latter point relates to the fact that even over finite
alphabets, LTL on finite words is only as expressive as first-order logic, equivalently star-free
regular expressions (cf. [17]). Constrastingly, thanks to the fixpoint operators, Bar-µTL is as
expressive as its corresponding automata model (Theorem 6.6).

▶ Remark 4.5. As indicated previously, Bar-µTL is closed under complement: By taking
negation normal forms, we can define ¬ϕ so that S,w |= ¬ϕ iff S,w ̸|= ϕ.

We note next that literal languages of formulae are closed under α-equivalence, and that
α-equivalent renaming of formulae indeed does not affect the semantics (cf. Remark 4.2):

▶ Lemma 4.6. For ϕ, ψ ∈ Bar, a ∈ A, S ⊆ A, and w,w′ ∈ A∗, we have:
1. If S,w |= ψ and w ≡α w

′, then S,w′ |= ψ.
2. If S,w |= ψ and ϕ ≡α ϕ

′, then S,w′ |= ϕ′.
The proof is by induction along the recursive definition of the semantics; the case for fixpoints
in Claim 2 is by Lemma 4.3.

▶ Remark 4.7. We have noted above that the semantics allows α-renaming of both words
and formulae. Let us refer to an alternative semantics where the definition of S,w |= ♢ aϕ is
modified to require that there exists w ≡α av such that S ∪ {a}, v |= ϕ (without allowing
α-renaming of ♢ aϕ), similarly for □ a, as the rigid semantics, and to the semantics defined
above as the actual semantics. The rigid semantics is not equivalent to the actual semantics,
and has several flaws. First off, claim 2 of the above Lemma 4.6 fails under the rigid semantics,
in which, for example,

∅, b ab |= ♢ b♢ a⊤ but ∅, b ab ̸|= ♢ b♢ b⊤



D. Hausmann, S. Milius, and L. Schröder 58:9

(the latter because {b}, ab ̸|= ♢ b⊤, as α-renaming of a into b is blocked in ab). More
importantly, the rigid semantics has undesirable effects in connection with fixpoints. For
instance, in the actual semantics, the formula ϕ = µX. ((¬ϵ∧□ a⊥)∨♢ aX) has the intuitively
intended meaning: A bar string satisfies ϕ iff it contains some plain name. In the rigid
semantics, however, we unexpectedly have ∅, a bab ̸|= ϕ; to see this, note that {a}, bab ̸|= ϕ

in the rigid semantics, since α-renaming of b into a is blocked in bab.

▶ Example 4.8. We consider some Bar-µTL formulae and their respective semantics under
local and global freshness. (The local freshness versions are expressible in Freeze LTL in each
case; recall however Remark 4.4.)
1. The bar language J⊤K is the set of all closed bar strings (modulo α-equivalence, a

qualification that we omit henceforth). Under both global and local freshness semantics,
this becomes the set of all data words.

2. The bar language J♢ a□aϵK is the language of all closed bar strings that start with a bar
name a, and stop after the second letter if that letter exists and is the plain name a
(e.g. J♢ a□aϵK contains a, aa, a bab but not aaa). In both global and local freshness
semantics, this becomes the language of all words that stop after the second letter if that
letter exists and coincides with the first letter.

3. In context {a}, a bar string satisfies µY. ((♢ bY ) ∨ ♢a⊤) iff it contains a free occurrence
of a preceded only by bar names distinct from a. Thus, the bar language of

µX. (♢ a(X ∨ µY. ((♢ bY ) ∨ ♢a⊤)))

consists of all closed bar strings that start with a prefix of bar names and eventually
mention a plain name corresponding to one of these bar names. Under both local and
global freshness semantics, this becomes the data language of all words mentioning some
letter twice (which is not acceptable by deterministic or even unambiguous register
automata [2, 37]). Notice that during the evaluation of the formula, the context can
become unboundedly large, as it grows every time a bar name is read.

4. The bar language of the similar formula

µX. ((♢ aX) ∨ (♢ aµY. ((♢ bY ) ∨ ♢aϵ)))

consists of all closed bar strings where all names except the last one are bound names.
Under global freshness semantics, this becomes the data language where the last letter
occurs precisely twice in the word, and all other names only once. Under local freshness
semantics, the induced data language is that of all words where the last letter occurs at
least twice, with no restrictions on the other letters.

5. To illustrate both the mechanism of local freshness via α-equivalence and, once again,
the use of ⊤, we consider the bar language of

♢ a♢ bµX. ((♢ bX) ∨ ♢a♢b⊤),

which consists of all closed bar strings that start with a bar name a, at some later
point contain a substring bab, and have only bar names distinct from a in between.
Under global freshness semantics, this becomes the data language of all words where
the first name a occurs a second time at the third position or later, all letters are
mutually distinct until that second occurrence, and the letter preceding that occurrence
is repeated immediately after. The local freshness semantics is similar but only requires
the letters between the first and second occurrence of a to be distinct from a (rather than
mutually distinct), that is, the substring bab is required to contain precisely the second
occurrence of a.
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5 Extended Regular Nondeterministic Nominal Automata

We proceed to introduce the nominal automaton model we use in model checking, extended
regular nondeterministic nominal automata (ERNNAs), a generalized version of RNNAs [38]
that allow for limited alternation in the form of deadlocked universal states.

Nominal automata models [2] generally feature nominal sets of states; these are infinite
as sets but typically required to be orbit-finite. RNNAs are distinguished from other nominal
automata models (such as nondeterministic orbit-finite automata [2]) in that they impose
finite branching but feature name-binding transitions; that is, they have free transitions
q
a−→ q′ for a ∈ A as well as bound transitions q a−→ q′, both consuming the respective type

of letter in the input bar string w. Bound transitions may be understood as reading fresh
letters. RNNAs are a nondeterministic model, i.e. accept w if there exists a run on w ending
in an accepting state. ERNNAs additionally feature ⊤-states that accept the current word
even if it has not been read completely, and thus behave like the formula ⊤; these states may
be seen as universal states without outgoing transitions. Formal definitions are as follows.

▶ Definition 5.1. An extended regular nondeterministic nominal automaton (ERNNA) is a
four-tuple A = (Q,→, s, f) that consists of

an orbit-finite nominal set Q of states (whose orbits we also refer to as the orbits of A);
an initial state s ∈ Q such that supp(s) = ∅;
an equivariant transition relation → ⊆ Q× (A ∪ {ϵ}) ×Q, with (q, σ, q′) ∈ → denoted by
q
σ−→ q′; and

an equivariant acceptance function f : Q → {0, 1,⊤}
such that → is α-invariant (that is, q a−→ q′ and ⟨a⟩q′ = ⟨b⟩q′′ imply q

b−→ q′′) and finitely
branching up to α-equivalence (i.e. for each q, the sets {(a, q′) | q a→ q′}, {(ϵ, q′) | q ϵ→ q′},
and {⟨a⟩q′ | q a→ q′} are finite). Whenever f(q) = ⊤, we require supp(q) = ∅ and moreover
that q is a deadlock, i.e. there are no transitions of the form q

σ−→ q′. The degree deg(A) of A
is the maximal size of the support of a state in Q (in the translation of nominal automata
into register automata, the degree corresponds to the number of registers [2, 38]). A state q
is accepting if f(q) = 1, non-accepting if f(q) = 0, and a ⊤-state if f(q) = ⊤.

We extend the transition relation to words w over A, i.e. to bar strings, as usual; that
is, q w−→ q′ iff there exist states q = q0, q1, . . . , qk = q′ and transitions qi

σi+1−−−→ qi+1 for
i = 0, . . . , k−1 such that w is the concatenation σ1 · · ·σk, where σi is regarded as a one-letter
word if σi ∈ A, and as the empty word if σi = ϵ. We define Lpre(A) ⊆ A∗ × {1,⊤} (for
prelanguage) as

Lpre(A) = {(w, f(q)) | s w−→ q, f(q) ∈ {1,⊤}}.

The literal language L0(A) ⊆ A∗ accepted by an ERNNA A then is defined by

L0(A) = bs(∅) ∩
(
{w | (w, 1) ∈ Lpre(A)} ∪ {vu | (v,⊤) ∈ Lpre(A), u ∈ A∗}

)
;

that is, a closed bar string w is literally accepted if either w has a run ending in an accepting
state or a prefix of w has a run ending in a ⊤-state. (Again, extending the treatment to
bar strings with free names is technically unproblematic but heavier on notation.) The bar
language accepted by A is the quotient

Lα(A) = L0(A)/≡α.

We say that A is ϵ-free if A contains no ϵ-transitions. If A is ϵ-free and contains no ⊤-states,
then A is a regular nondeterministic nominal automaton (RNNA).
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▶ Remark 5.2. The presence of ⊤-states makes ERNNAs strictly more expressive than RNNAs
under bar language semantics (equivalently, under global freshness semantics). Indeed, the
ERNNA consisting of a single ⊤-state accepts the universal bar language, which is not
acceptable by an RNNA [38]. On the other hand, under local freshness semantics, an
accepting state with a a-self-loop accepts the universal data language (in analogy to the
expressibility of ⊤ by µX. ϵ∨♢ aX in Bar-µTL under local freshness semantics, cf. Remark 4.4),
so RNNAs are as expressive as ERNNAs under local freshness semantics.

Name dropping. Like for RNNAs, the literal language accepted by an ERNNA is not in
general closed under α-equivalence. However, one can adapt the notion of name dropping [38]
to ERNNA: Roughly speaking, an ERNNA is name-dropping if all its transitions may
nondeterministically lose any number of names from the support of states (which corresponds
to losing register contents in a register automaton). The literal language of a name-dropping
ERNNA is closed under α-equivalence, and every ERNNA A can be transformed into a
name-dropping ERNNA nd(A), preserving the bar language. This transformation is central
to the inclusion checking algorithm (see additional remarks in Section 7).

Representing ERNNAs. ERNNAs are, prima facie, infinite objects; we next discuss a finite
representation of ERNNAs as extended bar NFAs, generalizing the representation of RNNAs
as bar NFAs [38]. The intuition behind extended bar NFAs is similar to that of ERNNAs,
except that extended bar NFAs are not closed under name permutation. In particular,
extended bar NFAs feature deadlocked universal states:

▶ Definition 5.3. An extended bar NFA A = (Q,→, s, f) consists of
a finite set Q of states;
a transition relation → ⊆ (Q× A ×Q), with (q, σ, q′) ∈ → denoted by q σ−→ q′;
an initial state s ∈ Q; and
an acceptance function f : Q → {0, 1,⊤}

such that whenever f(q) = ⊤, then q is a deadlock, i.e. has no outgoing transitions. We
extend the transition relation to words over A (including the empty word) as usual. Similarly
as for ERNNAs, we define Lpre(A) ⊆ A∗ × {1,⊤} by

Lpre(A) = {(w, f(q)) | s w−→ q, f(q) ∈ {1,⊤}}.

The literal language L0(A) accepted by A is

L0(A) = {w | (w, 1) ∈ Lpre(A)} ∪ {vu | (v,⊤) ∈ Lpre(A), u ∈ A∗}.

The bar language of A is then defined as the quotient Lα(A) = L0(A)/≡α. For ease of
presentation, we only consider the case where Lα(A) is closed, which is easily checked
syntactically (no a may be reached in A without passing a). We generally write (A, q) for
the extended bar NFA that arises by making q ∈ Q the initial state of A, dropping however
the requirement that the bar language accepted by (A, q) is closed. The set FN(A, q) of free
names of q ∈ Q is then FN(A, q) =

⋃
(w,b)∈Lpre(A,q) FN(w). Slightly sharpening the original

definition [38], we take the degree of A to be deg(A) := maxq∈Q |FN(A, q)|.

▶ Theorem 5.4. ERNNAs and extended bar NFAs accept the same bar languages; that is:
1. For a given extended bar NFA with n states and degree k, there exists a name-dropping

ERNNA of degree k with n · 2k orbits that accepts the same bar language.
2. For a given ERNNA with n orbits and degree k, there exists an extended bar NFA of

degree k with n · k! states that accepts the same bar language.
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The key algorithmic task on ERNNAs is inclusion checking; we generalize the inclusion
algorithm for RNNAs [38] to obtain

▶ Theorem 5.5. Given a bar NFA A1 and an extended bar NFA A2, the inclusion Lα(A1) ⊆
Lα(A2) can be checked using space polynomial in the number of orbits of A1 and A2, and
exponential in deg(A1) and deg(A2). The same holds under local freshness semantics.

6 Equivalence of Bar-µTL and ERNNA

Our model checking algorithm will be based on translation of closed formulae into ERNNAs,
in what amounts to a tableau construction that follows a similar spirit as the standard
automata-theoretic translation of LTL, but requires a special treatment of □-formulae and ¬ϵ,
and moreover uses nondeterminism to bound the number of free names in automata states
(which may be thought of as the number of registers) by guessing certain names, as explained
in the following example.

▶ Example 6.1. Consider the formulae ϕ(b) = µY. (□b⊥ ∧ □ cY ) and ψ = µX. (□ aX ∧
□ bϕ(b)). The formula ϕ(b) states that the first plain name that occurs is not a free occurrence
of b, and ψ thus states that none of the bar names have a free occurrence later on. When
evaluating ψ over a bar string w = a1 a2 . . . anaiv consisting of n bar names ai followed by
the plain name ai (1 ≤ i ≤ n) and a remaining bar string v (so w does not satisfy ψ), one
eventually has to evaluate all the formulae ϕ(a1), . . . , ϕ(an) over the bar string aiv. Thus, the
number of copies of formulae that a naively constructed ERRNA for ψ needs to keep track
of can in principle grow indefinitely. At a first glance, this seems to prohibit a translation of
formulae into orbit-finite automata. However, we observe that when the letter ai is read, all
ϕ(aj) for i ̸= j immediately evaluate to ⊤ (since the conjuncts □aj

⊥ and □ cϕ(aj) of their
fixpoint unfolding both hold vacuously), and only the evaluation of ϕ(ai) becomes relevant
(since the argument of □ai⊥ is actually evaluated). In fact, it is possible to let the ERRNA
for ψ nondeterministically guess the first plain name ai that occurs in the input bar string.
Then it suffices to let the ERNNA keep track of ϕ(ai) since as discussed, all other copies of
ϕ(b) become irrelevant.

The idea from the previous example can be generalized to work for all formulae. To this
end we introduce a recursive manipulation of formulae that uses annotations to explicitly
restrict the support of formulae and to guess and enforce so-called distinguishing letters.
When constructing an ERNNA from a formula, we will use such manipulated formulae to
avoid the problem described in Example 6.1 by bounding the number of formulae that the
constructed ERNNA has to track.

▶ Definition 6.2. Fix a marker element ∗ /∈ A (indicating absence of a name). Let ϕ be a
formula, let B and C be sets of letters such that B ⊆ C, and let a ∈ (C \ B) ∪ {∗}. For
n ∈ N, we define ϕBC(a)n recursively (as termination measure of the recursive definition we
use tuples (|n|, u(ϕ), |ϕ|), ordered by lexicographic ordering, where u(ϕ) denotes the number
of unguarded fixpoint operators in ϕ) by putting ϕBC(a)0 = ⊤ and, for n > 0,

ϵBC(a)n = ϵ ¬ϵBC(a)n = ¬ϵ
(ψ ∧ χ)BC(a)n = ψBC (a)n ∧ χBC(a)n (ψ ∨ χ)BC(a)n = ψBC (a)n ∨ χBC(a)n
(♢ bψ)BC(a)n = ♢ b(ψB∪{b}

C∪{b}(a)n−1) (□ bψ)BC(a)n = □ b(ψB∪{b}
C∪{b}(a)n−1)

(µX.ψ)BC(a)n = (ψ[µX.ψ/X])BC(a)n
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and

(♢bψ)BC(a)n =


⊥ b /∈ C

♢b(ψBC (a)n−1) b ∈ C, b ∈ B

♢b(ψ∅
FN(ψ)(∗)n−1) b ∈ C, b /∈ B

(□bψ)BC(a)n =


⊤ b /∈ C

□b(ψBC (a)n−1) b ∈ C, b ∈ B

χ(b)BC(a)n−1 b ∈ C, b /∈ B

where

χ(b)BC(a)n−1 =


□b(ψ∅

FN(ψ)(∗)n−1) a = ∗
ϵ ∨ ♢ c⊤ ∨

∨
d∈B ♢d⊤ ∨ ♢a(ψ∅

FN(ψ)(∗)n−1) a = b

ϵ ∨ ♢ c⊤ ∨
∨
d∈B∪{a} ♢d⊤ ∗ ̸= a ̸= b.

During this process, fixpoint formulae are unfolded before replacing any free modalities
within their arguments; by guardedness of fixpoint variables, this happens at most n times.
(We intend the number n as as a strict upper bound on the length of bar strings over which
ϕBC(a)n is meant to be evaluated; cf. Lemma 6.3.) The process replaces just the first freely
occurring boxes whose index is in C but not in B; hence, modal operators whose index comes
from B are left unchanged. Intuitively, ϕBC(a)n is a formula that behaves like the restriction
of ϕ to the support C on bar strings w such that |w| < n and in which a is the first free name
that is not contained in B (if any such name occurs in w; in this case we refer to the letter a
as distinguishing letter). Hence ϕBC(a)n is like the restriction of ϕ to support C, assuming
that the distinguishing letter is a. Formally:

▶ Lemma 6.3. Let B and C be sets of names such that B ⊆ C, let a ∈ (C \B) ∪ {∗}, let ϕ
be a formula, and let S be a context. Let v be a bar string such that if a ̸= ∗, then each letter
that has a free occurrence in v before the first free occurrence of a in v is contained in B.
Also, suppose that if there is some freely occurring letter in v that is not contained in B and
the first such letter d is in FN(ϕ), then d ∈ C. Under these assumptions, we have

S, v |= ϕ ⇐⇒ S, v |= ϕBC(a)n for all n such that |v| < n.

Proof sketch. Induction along the recursive definition of ϕBC(a)n. ◀

Let ϕ be a formula, let B, C, and D be sets of names such that B ⊆ C, and let a ∈
(C \B) ∪D ∪ {∗}. We put

ϕBC(a)Dn =
{

⊥ if a ∈ D

ϕBC(a)n if a /∈ D,

the intuition being that ϕBC (a)Dn encodes ϕ (restricted to support C) together with the guess
that a is the distinguishing letter (and that all names freely occurring before a are from the
set B), where guessing a letter from the set D is not allowed. This rules out the situation
that a letter from D is used to satisfy a distinguishing box formula in ϕ. Using Lemma 6.3,
we obtain:
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▶ Lemma 6.4. Let π, π′ be permutations, let ϕ be a formula, let w be a bar string, let S be a
context, and put A := FN(π · ϕ), A′ := FN(π′ · ϕ) and B := A ∩ A′. Furthermore, let a be
either the first freely occuring letter in w that is not in B if that letter exists and is in A∪A′

(in which case we say that a is the distinguishing letter w.r.t B and w), and a = ∗ otherwise.
Then a /∈ B and we have

S,w |= (π · ϕ) ∧ (π′ · ϕ) ⇐⇒ S,w |= ((π · ϕ)BA(a)A
′

|w|+1 ∧ (π′ · ϕ)∅
B(∗)∅

|w|+1)∨

((π′ · ϕ)BA′(a)A|w|+1 ∧ (π · ϕ)∅
B(∗)∅

|w|+1).

Relying on name restriction as in Lemma 6.4, we are able to translate formulae to ERRNAs.

▶ Theorem 6.5. For every closed formula ϕ of size m and degree k, there is an ERNNA A(ϕ)
with degree bounded exponentially in k and polynomially in m, and with number of orbits
bounded doubly exponentially in k and singly exponentially in m, that accepts the bar language
of ϕ, i.e. Lα(A(ϕ)) = JϕK.

We sketch the construction of A(ϕ). Let cl(ϕ) denote the closure of ϕ, defined in the standard
way. We put

Cl = cl(ϕ) ∪ {♢σψ | □σψ ∈ cl(ϕ)} ∪ {ϵ,⊥} ∪ {♢b⊤ | b ∈ BN(ϕ)},

noting |Cl| ≤ 4m (recall that ⊥ and ⊤ abbreviate ϵ∧¬ϵ and ϵ∨¬ϵ, respectively). Furthermore,
we put

formulae = {ψBC (a) | ψ ∈ Cl, B ⊆ N(ϕ), C ⊆ FN(ψ), a ∈ C ∪ {∗}},

noting that the cardinality of formulae is linear in m and exponential in k; specifically,
|formulae| ≤ |Cl| · (|N(ϕ)| + 1) · 22|N(ϕ)| ≤ 22k · 4m(k + 1) ≤ 22m · 5m2 since we have
|FN(ψ)| ≤ |N(ϕ)| for all ψ ∈ Cl and since k ≤ m. The set formulae contains formulae ψ ∈ Cl
that are annotated with a single name a (or ∗) and two sets B and C of names. The
annotation with a is used to encode a guessed name (with ∗ denoting the situation that
no name has been guessed yet) which we call distinguishing letter, while the set C encodes
the restriction of the support of ψ to C and the set B denotes the names that are allowed
to occur freely before the distinguishing letter does. This data will be used to bound the
number of copies of subformulae that can occur in nodes of the constructed tableau. We
construct an ERRNA A(ϕ) = (Q,→, s, f) with carrier set

Q =
{

{({π1 · ϕ1, . . . , πn · ϕn}, a) |π1, . . . , πn ∈ G,

{ϕ1, . . . , ϕn} ⊆ formulae, a ∈ A ∪ {∗}
}
,

where the πi act on names as usual and we define πi(∗) = ∗. The bound on the number of
orbits follows since each combination of a subset Φ of formulae, a name a and an equivalence
relation on the set of free names of Φ and a gives rise to at most one orbit. We put
s = ({ϕ∅

FN(ϕ)(∗)}, ∗). Given a state (Γ, b) ∈ Q, formulae π · (ψBC (a)) ∈ Γ stand for instances of
ψ in which the distinguishing letter is fixed to be π · a, π ·B is the set of free names that are
allowed to occur before π · a does, and the support of ψ is restricted to π ·C. The shape of a
formula π · (ψBC (a)) is just the shape of ψ; for brevity, we omit the annotations with C, B, a
when they are not relevant. To deal with box operators and ¬ϵ, states also contain a separate
name component b (which may be ∗) that denotes a guess of the last relevant free name
after which the evaluation of formulae from Γ will stop. A state (Γ, b) ∈ Q is propositional
if Γ contains some formula of the shape ψ1 ∨ ψ2, ψ1 ∧ ψ2, or µX.ψ1; quasimodal if (Γ, b) is
not propositional but Γ contains some formula of the form ¬ϵ or □σϕ; and modal if (Γ, b) is
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neither propositional nor quasimodal, i.e. if all elements of Γ are either of the shape ϵ or ♢σϕ.
We define the acceptance function f : Q → {0, 1,⊤} by f(∅, b) = ⊤, f(Γ, b) = 1 if Γ ̸= ∅ and
all elements of Γ are of the shape ϵ, and f(Γ, b) = 0 for all other states.

Transitions work roughly as follows. The component Γ of a state (Γ, b) plays the usual role:
It records formulae that the automaton requires the remaining input word to satisfy. To bound
the number of free names that have to be tracked, formulae are annotated with guesses for
distinguishing letters. The transitions from propositional and modal states follow the standard
tableau rules; e.g. given a propositional state q = (Γ∪{ψ∧χ}, b), we have q ϵ−→ (Γ∪{ψ, χ}, b);
given a modal state q = ({♢aψ1, . . . ,♢aψn}, b), we have q a−→ ({ψ1, . . . , ψn}, b); and a modal
state containing ♢aψ and ♢bχ for a ̸= b is a deadlock (the treatment of ♢ a is more involved).
□-formulae and ¬ϵ are dealt with by ϵ-transitions from quasimodal states (Γ, b) to modal
states. This process is straightforward if Γ contains some formula ♢σψ. The critical case is
the remaining one: A formula □σψ in Γ can be satisfied by in fact satisfying ♢σψ, by ending
the word, or by reading either a plain name c other than σ or a bar name (if σ ∈ A), or by
reading any plain name (if σ ∈ A). This is where the second component b of states comes in:
The letter c must have previously appeared as a bar name; A(ϕ) guesses when this happens
(in bound transitions from modal states), and records its guess in b, with ∗ representing the
situation that no guess has yet been made.

When constructing transitions in A(ϕ) as explained above, the set of formulae to which a
naively constructed transition leads may contain two instances π · (ψBC (a)) and π′ · (ψBC (a)) of
an annotated formula ψ. In this situation, the rest of the word has to satisfy both formulae,
but the set Q can only contain one instance of ψBC (a). Here we use the above restriction
technique and repeated application of Lemma 6.4 to ensure that only a single copy needs to
be kept.

We also have a converse translation which goes via the equivalence of ERNNAs and
extended bar NFAs, and associates a fixpoint variable to each state.

▶ Theorem 6.6. For every ERNNA A there exists a formula ϕ such that JϕK = Lα(A).

Notably, by Remark 4.5, the results of this section imply

▶ Corollary 6.7. The class of closed bar languages definable by ERNNAs is closed under
complement: for each ERNNA A there exists an ERNNA Ā such that Lα(Ā) = bs(∅)\Lα(A).

As mentioned previously, RNNAs are essentially equivalent to session automata [38], which
are only closed under resource-bounded complement [3] for some resource bound k; in our
present terminology, this corresponds to complement within the set of closed bar strings,
modulo α-equivalence, that can be written with at most k different bound names. It is
maybe surprising that full complementation (of session automata or RNNAs) is enabled by
simply allowing ⊤-states.

7 Reasoning for Bar-µTL

Using Theorem 6.5, we reduce reasoning problems for Bar-µTL to ERNNAs:

▶ Definition 7.1 (Reasoning problems). A closed formula ϕ is satisfiable if JϕK ̸= ∅, and valid
if JϕK = bs(∅). A formula ψ refines ϕ if JψK ⊆ JϕK. An RNNA A satisfies ϕ (written A |= ϕ)
if Lα(A) ⊆ JϕK. The model checking problem is to decide whether A |= ϕ. We sometimes
emphasize that these problems refer to bar languages or, equivalently, global freshness. The
corresponding problems for local freshness arise by applying the D operator (Section 3) to
all bar languages involved; e.g. A satisfies ϕ under local freshness if D(Lα(A)) ⊆ D(JϕK).
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The complexity of Bar-µTL reasoning problems, obtained using in particular Theorem 6.5
and Theorem 5.5, is summed up as follows.

▶ Theorem 7.2.
1. Model checking Bar-µTL over RNNAs is in 2ExpSpace, more precisely in para-ExpSpace

with the degree of the formula as the parameter, under both bar language semantics
(equivalently global freshness) and under local freshness. The same holds for validity
under local freshness.

2. The satisfiability problem for Bar-µTL is in ExpSpace, more precisely in para-PSpace
with the degree of the formula as the parameter, under both bar language semantics /
global freshness and under local freshness. The same holds for validty and refinement
under bar language semantics / global freshness.

We leave the complexity (and in fact the decidability) of refinement checking under local
freshness semantics as an open problem.

8 Conclusions

We have defined a specification logic Bar-µTL for finite words over infinite alphabets, modelled
in the framework of nominal sets, which covers both local and global freshness. Bar-µTL
features freeze quantification in the shape of name-binding modalities, and as such relates to
Freeze LTL. It combines comparatively low complexity of the main reasoning problems with
reasonable expressiveness, in particular unboundedly many registers, full nondeterminism,
and closure under complement. Freshness is based on α-equivalence in nominal words; this
entails certain expressive limitations on local freshness, which however seem acceptable in
relation to the mentioned good computational properties.

An important issue for future work is the behaviour of Bar-µTL over infinite words; also,
we will investigate whether our methods extend to languages of data trees (e.g. [13]).
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Abstract
Recently Brakerski, Christiano, Mahadev, Vazirani and Vidick (FOCS 2018) have shown how to
construct a test of quantumness based on the learning with errors (LWE) assumption: a test that
can be solved efficiently by a quantum computer but cannot be solved by a classical polynomial-time
computer under the LWE assumption. This test has lead to several cryptographic applications. In
particular, it has been applied to producing certifiable randomness from a single untrusted quantum
device, self-testing a single quantum device and device-independent quantum key distribution.

In this paper, we show that this test of quantumness, and essentially all the above applications,
can actually be implemented by a very weak class of quantum circuits: constant-depth quantum
circuits combined with logarithmic-depth classical computation. This reveals novel complexity-
theoretic properties of this fundamental test of quantumness and gives new concrete evidence of the
superiority of small-depth quantum circuits over classical computation.
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1 Introduction

Background. A very active research area in quantum computing is proving the superiority of
“weak” models of quantum computation, such as small-depth quantum circuits, over classical
computation. The main motivation is that such models are expected to be much easier to
implement than universal quantum computation (e.g., polynomial-size quantum circuits)
– Indeed in the past years we have been witnessing the development of several small-scale
quantum computers (see, e.g., [1] for information about current quantum computers).

Under assumptions such as the non-collapse of the polynomial hierarchy or the hardness
of (appropriate versions of) the permanent, strong evidence of the superiority of weak classes
of quantum circuits has been obtained from the 2000s [2, 3, 4, 6, 12, 13, 14, 18, 19, 20, 33, 39].
A recent breakthrough by Bravyi, Gosset and König [10], further strengthened by subsequent
works [5, 11, 17, 21], showed an unconditional separation between the computational powers
of quantum and classical small-depth circuits by exhibiting a computational task that can
be solved by constant-depth quantum circuits but requires logarithmic depth for classical
circuits. A major shortcoming, however, is that logarithmic-depth classical computation is a
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relatively weak complexity class. Due to the notorious difficulty of proving superlogarithmic
lower bounds on the depth of classical circuits, showing significantly stronger unconditional
separations seems completely out of reach of current techniques.

Progress has nevertheless been achieved recently by modifying the concept of computa-
tional problem, and considering interactive problems (problems consisting of several rounds
of interaction between the computational device and a verifier). Grier and Schaeffer [23], in
particular, showed that there exists an interactive problem that can be solved by constant-
depth quantum circuits but such that any classical device solving it would solve ⊕L-problems.
This is a stronger evidence of the superiority of constant-depth quantum circuits since the
complexity class ⊕L is expected to be significantly larger than logarithmic-depth classical
computation. On the other hand, problems in ⊕L are still tractable classically since they
can be solved in polynomial time.1

Another significant development was achieved by Brakerski, Christiano, Mahadev, Vazirani
and Vidick [7] who proposed, using some techniques from [29], a test of quantumness
based on the Learning with Errors (LWE) assumption, which states that the learning with
error problem (informally, inverting a “noisy” system of equations) cannot be solved in
polynomial time. (See also [8, 27] for variants of this test.) They showed that this test
can be passed with high probability using a polynomial-time quantum device but cannot
be solved by any polynomial-time classical device under the LWE assumption, which is
a compelling evidence of the superiority of quantum computing.2 A crucial property of
this test is that checking if the computational device passes the test (which thus means
checking if the computational device is quantum) can be done efficiently – this property is
not known to be true for many other tests from prior works in quantum supremacy (e.g.,
[2, 3, 4, 6, 12, 13, 14, 18, 19, 20, 33, 39].) Finally, the test of quantumness from [7] has
another fundamental property: it can be shown that the only way for a computationally
bounded quantum prover to pass the test is to prepare precisely the expected quantum state.3
This property makes it possible to control a computationally bounded quantum prover, and
has already lead to many cryptographic applications: producing certifiable randomness from
a single untrusted (computationally bounded) quantum device [7], self-testing of a single
quantum device [31] and device-independent key distribution [30].

Our results. In this paper we investigate complexity-theoretic aspects of quantum protocols
passing the above test of quantumness based on LWE. While the quantum protocol from [7]
can clearly be implemented in polynomial time, and while prior works discussed its practical
realization and gave some promising numerical estimates on the number of qubits needed
for its implementation (for instance, Ref. [7] mentioned 2000 qubits for a protocol providing
50 bits of security), to our knowledge several theoretical aspects, and in particular depth
complexity, have not been investigated so far.

We first isolate the main computational task solved by a quantum protocol passing the
test. This computational problem, which we denote StateGeneration, is presented in Section 3.
Informally, it asks to prepare a quantum superposition of an arbitrary vector x and its shift
x− s, where s denotes the solution of the “noisy” system of linear equations used in the LWE
assumption. Our main technical contribution (the formal statement is in Section 3) shows
that this problem can be solved by a constant-depth quantum circuit combined with efficient
(low-complexity) classical computation:

1 More precisely, we have the inclusions NC1 ⊆ L ⊆ ⊕L ⊆ NC2 ⊆ P.
2 We stress that the quantum protocol that passes the test does not solve the learning with error problem.
3 The proof of this statement relies on the (standard) assumption that the learning with error problem is

hard for computationally bounded quantum computation as well.
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▶ Theorem 1 (Informal version). The computational task StateGeneration can be solved by a
constant-depth quantum circuit combined with logarithmic-depth classical computation.

The model of quantum circuits we consider in Theorem 1 is described formally in
Section 2.4 and is reminiscent of some models used in prior works on measurement-based
quantum computing (in particular Refs. [15, 16]). The primary motivation for considering this
model is as follows: compared with the practical cost of implementing quantum computation,
classical computation (and especially low-complexity computation such as logarithmic-depth
classical computation) can be considered as a free resource and thus may not be included in
the depth complexity. One possible criticism of our model is that the quantum states created
by our constant-depth quantum circuits need to be kept coherent while the logarithmic-depth
classical computation is performed, which may be an issue since in terms of decoherence
waiting is essentially as difficult as performing quantum computation. We can however argue
that classical logarithmic-depth classical computation should be implementable significantly
faster than logarithmic-depth quantum computation, thus limiting the impact of decoherence.

As mentioned above, StateGeneration is the main computational task used in the test of
quantumness based on LWE and its applications given in [7, 8, 30, 31] (the other quantum
steps indeed only consist in measuring the state generated in an appropriate basis). As a
consequence of Theorem 1, the whole test of quantumness and its applications to producing
certifiable randomness, self-testing and device-independent key distribution can thus immedi-
ately be implemented by constant-depth quantum circuits combined with logarithmic-depth
classical computation. For completeness, we describe in detail how to apply our construction
with the whole test of quantumness from [7], which was actually only sketched in prior works
(since those works focused on applications of the test), in Section 4.

Overview of our techniques. Our main technical contribution is Theorem 1, which shows
how to solve StateGeneration using constant-depth quantum circuits (in our model allowing
some low-complexity classical pre/processing). This is done by modifying the construction of
prior works in two major ways.

Our first contribution is to show how to construct in constant depth a quantum state
robust against small “noise”. In [7] the construction was done by considering a state with
amplitudes taken from a wide-enough Gaussian distribution, and creating this state using
the approach from the seminal paper by Regev [36], which itself relied on a technique by
Grover and Rudolph [24]. To our knowledge, the resulting construction, while definitely
implementable with quantum circuits of polynomial size, does not seem to be implementable
in constant depth. Instead, our main idea (see Theorem 9 in Section 3) is to use a quantum
state with amplitudes taken from a much simpler distribution (a wide-enough truncated
uniform distribution) that can be implemented in constant depth.

The second contribution (Theorem 6 in Section 3) is analyzing carefully how to implement
in the quantum setting the map used in the learning with error problem (note that in the
quantum setting the map needs to be applied in superposition, which requires a quantum
circuit). We observe that when given as input a state robust against small noise, the
remaining computational task involves only algebraic operations modulo q, for some large
integer q. We then show that prior works by Høyer and Spalek [25] and Takahashi and
Tani [38] imply that implementing arithmetic operations modulo q exactly and generating
a good approximation of the uniform superposition of all elements of {0, 1, . . . , q − 1} can
be done using constant-depth quantum circuits if unbounded fanout gates are allowed. We
finally show that unbounded fanout gates can be implemented in our model using a technique
called gate teleportation [22, 28, 34].

MFCS 2021
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2 Preliminaries

2.1 General notations

In this paper the notation log represents the logarithm in basis 2. For any integer q, we write
Zq = {0, 1 . . . , q − 1}. As usual in lattice-based cryptography, we will often identify Zq with
the set of integers {− ⌈q/2⌉+ 1, . . . , ⌊q/2⌋}. For any a ∈ Zq, we write J(a) ∈ {0, 1}⌈log q⌉ its
binary representation, as in [7]. Given a vector x ∈ Zm

q , we write ∥x∥ =
√∑m

i=1 |xi|2 and
∥x∥∞ = maxi∈{1,...,m} |xi|, and write J(x) = (J(x1), . . . , J(xm)) ∈ {0, 1}m⌈log q⌉ its binary
representation. Given a matrix A ∈ Zm×n

q , we define the distance of A as the minimum over
all the non-zero vectors x ∈ Zm

q , of the quantity ∥Ax∥.

2.2 Lattice-based cryptography

For a security parameter λ, let m,n, q be integer functions of λ. Let χ be a distribution
over Zq. The LWEm,n,q,χ problem is to distinguish between the distributions (A,As + e)
and (A, u), where A ∈ Zm×n

q , s ∈ Zn
q and u ∈ Zm

q are uniformly random and e← χm. The
corresponding hardness assumption is that no polynomial-time algorithm can solve this
problem with non-negligible advantage in λ. As in [7], we write LWEn,q,χ the task of solving
LWEm,n,q,χ for any function m that is at most a polynomial in n log q.

The most usual distribution χ used in lattice-based cryptography is the truncated discrete
Gaussian distribution, which we now introduce. For any positive integer q and any positive
real number B, the truncated discrete Gaussian distribution over Zq with parameter B, which
we denote Dq,B , is defined as Dq,B(x) = (e−π|x|2/B2)/γ if |x| ≤ B and Dq,B(x) = 0 otherwise,
for any x ∈ Zq, where γ is the normalization factor defined as γ =

∑
z∈Zq,|z|≤B e−π|z|2/B2 .

As in [7], we will use the following theorem to generate instances of the learning with
error problem.

▶ Theorem 2 (Theorem 2.6 in [7] and Theorem 5.1 in [32]). Let m,n ≥ 1 and q ≥ 2 be such that
m = Ω(n log q). There is an efficient randomized algorithm GENTRAP(1n, 1m, q) that returns
a matrix A ∈ Zm×n

q and a trapdoor tA such that the distribution of A is negligibly (in n)
close to the uniform distribution. Moreover, there is an efficient algorithm INVERT that, on
input A, tA and Ax+ e where x ∈ Zn

q is arbitrary, ∥e∥ ≤ q/(C
√
n log q) and C is a universal

constant, returns x with overwhelming probability over (A, tA)← GENTRAP(1n, 1m, q).

The matrix A generated by GENTRAP(1n, 1m, q) has distance at least 2q/(C
√
n log q)

with overwhelming probability. Also note that if ∥e∥∞ ≤ q/(C
√
mn log q), then the inequality

∥e∥ ≤ q/(C
√
n log q) holds. These two observations motivate the following definition: we

define K as the set of 5-tuples (m,n, q, A, u) such that m, n and q are positive integers,
A ∈ Zm×n

q is a matrix of distance at least 2q/(C
√
n log q), where C is the constant from

Theorem 2, and u ∈ Zm
q is a vector that can be written as u = As+ e for some s ∈ Zn

q and
some e ∈ Zm

q with ∥e∥∞ ≤ q/(C
√
mn log q). Informally, the set K represents the set of good

parameters for the version of LWE we will consider. For technical reasons, we also define
the following variant, which enables us to set a stronger upper bound on ∥e∥∞. For any
BV > 0, we define KBV

⊆ K as the set of 5-tuples (m,n, q, A, u) ∈ K such that the following
two conditions hold:

(i) q ≥ BV C
√
mn log q,

(ii) u can be written as u = As+ e for some s ∈ Zn
q and some e ∈ Zm

q with ∥e∥∞ ≤ BV .
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2.3 Quantum states: bounded and robust states
We assume that the reader is familiar with the basics of quantum computing and refer to,
e.g., [35] for a good reference.

For any positive integer q, we write Hq the complex Hilbert space of dimension q with
basis {|x⟩}x∈Zq

. Quantum states in Hq are (implicitly) implemented using ⌈log q⌉ qubits,
via the binary encoding of these basis vectors. For any integer m ≥ 1, we also consider the
Hilbert space H⊗m

q and associate to it the basis {|x⟩}x∈Zm
q

. A quantum state |φ⟩ in H⊗m
q can

thus be written as |φ⟩ =
∑

x∈Zm
q
αx|x⟩, for complex numbers αx such that

∑
x∈Zm

q
|αx|2 = 1.

We write its support supp(|φ⟩) = {x ∈ Zm
q | αx ̸= 0}. We say that |φ⟩ has real amplitudes if

αx ∈ R for each x ∈ Zm
q . For any vector e ∈ Zm

q , we write |φ+ e⟩ =
∑

x∈Zm
q
αx|x+ e⟩, where

the addition is performed modulo q.
We now introduce two crucial definitions on which our approach will be based.4

▶ Definition 3. Let B be a positive real number. A quantum state |φ⟩ ∈ H⊗m
q is B-bounded

if ∥x∥∞ < B for any element x ∈ supp(|φ⟩).

▶ Definition 4. Let B, ε be two positive real numbers. A quantum state |φ⟩ ∈ H⊗m
q is

(ε,B)-robust if |φ⟩ has real amplitudes and, for any vector e ∈ Zm
q such that ∥e∥∞ ≤ B, the

inequality ⟨φ|φ+ e⟩ ≥ 1− ε holds.

Finally, given two states |φ⟩ and |ψ⟩ in H⊗m
q , and any positive real number ε, we say

that |φ⟩ and |ψ⟩ are ε-close if ∥|φ⟩ − |ψ⟩∥2 ≤ ε. We also define the notion of ε-closeness to a
subspace as follows.

▶ Definition 5. Let H′ be a subspace of H⊗m
q and ε be a positive real number. We say

that a state |φ⟩ ∈ H⊗m
q is ε-close to H′ if there exists a quantum state |ψ⟩ ∈ H′ such that

∥|φ⟩ − |ψ⟩∥2 ≤ ε.

2.4 Quantum circuits
Universal sets of quantum gates. As in the standard model of quantum circuits (see,
e.g., [35]), in this paper we work with qubits. We consider two sets of elementary gates.
We first consider the set Br = {H,T,CNOT} where H = 1√

2

( 1 1
1 −1

)
is the Hadamard gate,

T =
( 1 0

0 eiπ/4

)
is the π/8-phase operation and CNOT =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
is the controlled-not gate.

This is an universal set consisting of a finite number of gates that can approximate any
quantum gate with good precision (see Section 4.5.3 of [35] for details). The second set
we consider, which we denote B, contains all the gates acting on 1 qubit and the CNOT
operator. Note that this set contains an infinite number of gates.

Our model. We now introduce the class of quantum circuits considered in this paper. Let
r1 and r2 be two positive integers, and S be a set of elementary quantum gates (e.g., S = Br
or S = B).

4 We stress that these two definitions (as well as several definitions of the previous paragraph) are
basis-dependent – we always refer to the canonical basis {|x⟩}x∈Zm

q
. Also note that while Definition 4

can easily be written without the requirement that the state has real amplitude (by replacing ⟨φ|φ + e⟩
by |⟨φ|φ + e⟩|, for instance), requiring that the state has real amplitudes will be enough for our purpose
and will simplify later calculations.
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A circuit in the class C(S, r1, r2) acts on r1 + r2 qubits. These qubits are initialized
to the state |0⟩⊗(r1+r2). The circuit consists of successive layers. Each layer consists of a
constant-depth quantum circuit over the basis S acting on these r1 + r2 qubits, which does
not contains any measurement, followed by measurements in the computational basis of all
the first r1 qubits. Consider the i-th layer. Let xi ∈ {0, 1}r1 denote the outcome of measuring
the first r1 qubits at the end of this layer. Then some classical function fi : {0, 1}r1 → {0, 1}r1

is applied to the xi, and the value fi(xi) is given as input to the first r1 qubits of the next
layer, i.e., the r1 qubits are reinitialized to the state |fi(xi)⟩. We refer to Figure 1 for an
illustration.

layer 1 layer 2 layer 3

|0⟩⊗r1 ...
...

...
...

...
...

|0⟩⊗r2 ...
...

...
...

...
...

|f1(x1)⟩ |f2(x2)⟩... x1
... x2

... x3

Figure 1 A quantum circuit of the class C consisting of three layers. Each rectangular box
represents a quantum circuit (without measurements) of constant depth with gates in the set S.

The complexity of a circuit in the class defined above depends on the number of qubits
r1 + r2, the number of layers and the classical complexity of computing function fi’s. We
are mainly interested in circuits that have a constant number of layers and such that all
functions can be computed efficiently classically. We formally define this class below.

We define the class C0(S) of families of circuits {Cn}n∈N such that the following conditions
hold:

for each n ∈ N, we have Cn ∈ C(S, r1, r2) for some integers r1, r2 such that r1 + r2 = n;
for each n ∈ N, the number of layers in Cn is constant (i.e., independent of n);
for each n ∈ N, all the functions fi’s of Cn can be computed by a O(log n)-depth classical
circuit.

We require that the family is logarithmic-space uniform, i.e., there exists a classical Turing
machine that on input 1n outputs a classical description of Cn (as well as descriptions of the
circuits computing the functions fi’s) in O(log n) space.

2.5 Clifford circuits and quantum arithmetic
Clifford circuits. Let us consider the Pauli gates X = ( 0 1

1 0 ) and Z =
( 1 0

0 −1
)

and the phase
gate S = ( 1 0

0 i ). A quantum circuit consisting only of gates from the set {X,Z, S,H,CNOT}
is called a Clifford circuit.5 Such a circuit can be implemented by a quantum circuit of class
C0(Br) acting on poly(s) qubits, where s is the number of gates in the original circuit, via a
technique called gate teleportation first introduced by Gottesman and Chuang [22] and then
developed into a computational model by Leung [28] and Nielsen [34] (see also, e.g., [9, 26]
for good presentations of this technique).

A concrete example, which we will actually heavily use, is the unbounded fanout gate over
H⊗m

2 . This unitary gate maps the basis state |x1, x2, . . . , xm−1, xm⟩ to |x1, x1⊕ x2, . . . , x1⊕
xm−1, x1 ⊕ xm⟩, for any x1, . . . , xm ∈ {0, 1}. This gate can easily be written as a circuit

5 Since X = S2 and Z = HS2H, the two Pauli gates can actually be removed from this gate set.
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consisting of m− 1 successive CNOT gates (the depth of such a circuit implementation is
thus linear in m). Using the above approach, this gate can be implemented by a quantum
circuit of class C0(Br) acting on poly(m) qubits. A concrete decomposition, which uses only
two layers, is presented in Section 6 of [15].

Modular arithmetics. Let us consider the following unitary operations (where the arithmetic
operations are performed modulo q and ω is a q-th root of unity):

the quantum Fourier transform Fq over Hq, such that Fq|i⟩ = 1√
q

∑q−1
j=0 ω

ij |j⟩ for any
i ∈ Zq;
the unitary operation ADDq over H⊗2

q that maps |i⟩|j⟩ to |i⟩|i+ j⟩ for any i, j ∈ Zq;
the unitary operation MULTq over H⊗3

q that maps |i⟩|j⟩|k⟩ to |i⟩|j⟩|k + ij⟩ for any
i, j, k ∈ Zq.

We now discuss how to obtain exact implementations for ADDq and MULTq, and also
for arbitrary linear maps over Zq (exact implementation of these gates will be crucial for
implementing our test of quantumness in constant depth). Takahashi and Tani [38] showed
how to implement exactly ADDq and MULTq in constant depth by circuits that use gates
in B and unbounded fanout gates acting on poly(log q) qubits, by showing that quantum
threshold gates, which are enough to implement all these operations (as first pointed out
by Høyer and Spalek [25], based on prior works on classical threshold gates [37]), can be
implemented in constant depth by such circuits. Since each unbounded fanout gate can be
implemented by a quantum circuit of class C0(Br) acting on poly(log q) qubits, as discussed
above, these arithmetic operations can be exactly implemented by quantum circuits of class
C0(B) acting on poly(log q) qubits. As discussed in [25, 38], the same approach can be applied
to implement iterated addition, and more generally any linear map f : Zn

q → Zq, since such
maps can be computed in constant depth using classical threshold gates as well. This can
easily be further generalized to give implementation of any linear map f : Zn

q → Zm
q by a

quantum circuit of class C0(B) acting on poly(m,n, log q) qubits.
Unfortunately, it is still unknown if the operator Fq can be implemented exactly in

constant depth with a circuit using only elementary gates in B and unbounded fanout
gates (see Section 6 of [38]). For the protocol constructed in this paper, however, we
will only need to apply Fq to the state |0⟩ ∈ Hq, i.e., we only need to prepare the state
Fq|0⟩ = 1√

q

∑
x∈Zq

|x⟩. Lemma 4.18 in [25] shows that this task can be implemented in
constant depth with exponential precision (which will be enough for our purpose): there
exists a constant-depth circuit of size poly(log q) using gates in B and unbounded fanout gates
that computes a state which is at distance at most 1/q2 of the state Fq|0⟩. By converting
each unbounded fanout gate, this circuit can immediately be converted into a circuit in the
class C0(B) acting on poly(log q) qubits.

3 Quantum State Generation using Small-Depth Circuits

In this section we describe the main computational task solved by a quantum prover in
the test of quantumness based on LWE we present in Section 4 (as well as in prior works
[7, 8, 30, 31]), and show how to solve it using a quantum circuit of small depth.

3.1 Statement of the problem
For any BV > 0 and any k = (m,n, q, A, u) ∈ KBV

, where KBV
is the set of parameters

defined in Section 2.2, let Λk ⊆ Zm
q denote the set of vectors y ∈ Zm

q such that there exists a
vector x ∈ Zn

q for which ∥Ax− y∥ ≤ q/(C
√
n log q). Note that such x is necessarily unique,
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59:8 Test of Quantumness with Small-Depth Quantum Circuits

since A has distance at least 2q/(C
√
n log q). Let us write this vector xy. Note that xu = s

using the notations of Section 2.2, i.e., defining s as the (unique) vector in Zn
q such that

u can be written as u = As + e for e ∈ Zm
q with ∥e∥∞ ≤ BV . For any y ∈ Λk, define the

quantum state

|Ψy⟩ = 1√
2

(|0⟩|xy⟩+ |1⟩|xy − xu⟩) .

Let Hk be the subspace of H2 ⊗Hn
q ⊗Hm

q generated by the states {|Ψy⟩|y⟩}y∈Λk
.

The computational problem we consider in this section, which we denote StateGeneration,
has two parameters ε,BV > 0, and is defined as follows. This is the main task solved by
the quantum protocols passing our test of quantumness, as well as in the tests used in prior
works [7, 8, 30, 31].

StateGeneration(ε,BV ).
Given k ∈ KBV

, create a quantum state ε-close to Hk.

Here is our main theorem, which shows that the problem can be solved by a small-depth
quantum circuit when q is large enough.

▶ Theorem 1 (Formal version). For any ε,BV > 0, the problem StateGeneration(ε,BV ) can
be solved, for all inputs k ∈ KBV

such that q ≥ (8mBV C
√
mn log q)/ε, by a quantum circuit

of class C0(B) acting on poly(m,n, log q) qubits.

Theorem 1 follows from Theorems 6 and 9 proved in Subsections 3.2 and 3.3.

3.2 Preparation procedure
In this subsection we present and analyze a quantum procedure that outputs a state close to
Hk when given as additional input an appropriate quantum state |φ⟩ ∈ H⊗m

q . This procedure
can be implemented by a small-depth quantum circuit. In subsection 3.3 we will show how
to create efficiently such an appropriate state |φ⟩.

The following theorem is the main contribution of this subsection.

▶ Theorem 6. Let ε and BV be any positive parameters. For any k ∈ KBV
with q ≥

√
2n/ε,

there exists a quantum circuit of class C0(B) acting on poly(m,n, log q) qubits that receives a
quantum state |φ⟩ ∈ H⊗m

q , outputs a quantum state |Φ⟩ ∈ H2 ⊗Hn
q ×Hm

q , and satisfies the
following condition: if |φ⟩ is q

C
√

mn log q
-bounded and (ε/2, BV )-robust, then |Φ⟩ is ε-close

to Hk.

Proof. We first describe the procedure. Let us write |φ⟩ =
∑

z∈Zm
q
αz|z⟩ the input state,

where αz ∈ R for all z ∈ Zm
q (remember that the definition of a robust state implies that the

amplitudes are real). The procedure first prepares the state |0⟩|0⟩|φ⟩ ∈ H2 ⊗H⊗n
q ⊗H⊗m

q

and applies the unitary operator H ⊗ F⊗n
q ⊗ I to this state to obtain

1√
2qn

∑
b∈{0,1}

∑
x∈Zn

q

|b⟩|x⟩|φ⟩ =
∑

b∈{0,1}

∑
x∈Zn

q

∑
z∈Zm

q

αz√
2qn
|b⟩|x⟩|z⟩.

Using the approach discussed in Section 2.5, this can be done by a quantum circuit of class
C0(B) acting on poly(m,n, log q) qubits with approximation error n

q2 ≤ ε/2. Below we assume
that this state has been done exactly – we will add the approximation error at the very end
of the calculation. The procedure then converts this state to the state

|Φ⟩ =
∑

b∈{0,1}

∑
x∈Zn

q

∑
z∈Zm

q

αz√
2qn
|b⟩|x⟩|z + fk(b, x)⟩,
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where fk : {0, 1} × Zn
q → Zm

q is the function defined as fk(b, x) = Ax + bu for any (b, x) ∈
{0, 1}×Zn

q (all the operations are performed modulo q). This operation can be implemented
by a quantum circuit of class C0(B) acting on poly(m,n, log q) qubits using the approach
of Section 2.5 since fk can be written as a linear map over Zq × Zn

q as follows: define the
matrix A′ ∈ Zm×(n+1)

q obtained by appending the vector u to the left of the matrix A and
write fk(b, x) = A′( b

x ).
We now analyze this procedure. Let us write the output state in the following form:

|Φ⟩ = 1√
2qn

∑
x∈Zn

q

(|0⟩|x⟩|Φ0,x⟩+ |1⟩|x⟩|Φ1,x⟩),

where

|Φ0,x⟩ =
∑

z∈Zm
q

αz|Ax+ z⟩ and |Φ1,x⟩ =
∑

z∈Zm
q

αz|Ax+u+ z⟩ =
∑

z∈Zm
q

αz|A(x+ s) + e+ z⟩.

Define the quantum state

|Φ′⟩ = 1√
2qn

∑
x∈Zn

q

(|0⟩|x⟩|Φ′
0,x⟩+ |1⟩|x⟩|Φ′

1,x⟩),

where |Φ′
0,x⟩ = |Φ0,x⟩ and |Φ′

1,x⟩ =
∑

z∈Zm
q
αz|A(x+ s) + z⟩. We first show that the states

|Φ⟩ and |Φ′⟩ are close.

▷ Claim 7. ⟨Φ|Φ′⟩ ≥ 1− ε/4.

Proof. We have u = As+ e for some s ∈ Zn
q and some vector e ∈ Zm

q such that ∥e∥∞ ≤ BV .
Since the state |φ⟩ is (ε/2, BV )-robust, we thus have ⟨Φ1,x|Φ′

1,x⟩ = ⟨φ|φ+ e⟩ ≥ 1− ε/2 for
any x ∈ Zn

q . We thus obtain ⟨Φ|Φ′⟩ = 1
2 + 1

2qn

∑
x∈Zn

q
⟨Φ1,x|Φ′

1,x⟩ ≥ 1− ε/4, as claimed. ◁

We now show that the state |Φ′⟩ is in Hk. The crucial property we will use is that the
equality |Φ′

0,x⟩ = |Φ′
1,x−s⟩ holds for any x ∈ Zs

q.
Let us decompose |Φ′⟩ as follows:

|Φ′⟩ =
∑

y∈Zm
q

γy|Φ′
y⟩|y⟩,

for quantum states |Φ′
y⟩ and amplitudes γy such that

∑
y∈Zm

q
|γy|2 = 1. We now show the

following claim.

▷ Claim 8. For any y ∈ Zm
q such that |γy| > 0, we have y ∈ Λk and |Φ′

y⟩ = |Ψy⟩.

Proof. Assume that |γy| > 0. Observe that in this case y ∈ supp(|Φ′
0,x0
⟩) for some x0 ∈ Zn

q .
Since the state |φ⟩ is q/(C

√
mn log q)-bounded, we have ∥y −Ax0∥ ≤

√
m · ∥y −Ax0∥∞ ≤

q/(C
√
n log q), and thus y ∈ Λk.

We show below that for any distinct x, x′ ∈ Zn
q we have supp(|Φ′

0,x⟩) ∩ supp(|Φ′
0,x′⟩) = ∅,

which implies that |Φ′
y⟩ = |Ψy⟩.

Indeed, assume that supp(|Φ′
0,x⟩) ∩ supp(|Φ′

0,x′⟩) ̸= ∅ and take an element r in the
intersection. Since the state |φ⟩ is BP -bounded, we have ∥r − Ax∥ ≤

√
m · ∥r − Ax∥∞ ≤

q/(C
√
n log q) and ∥r −Ax′∥ ≤

√
m · ∥r −Ax′∥∞ ≤ q/(C

√
n log q), and thus ∥A(x− x′)∥ ≤

2q/(C
√
n log q). This is impossible, since by construction the matrix A has distance at least

2q/(C
√
n log q). ◁

Claim 8 implies that the state |Φ′⟩ is in Hk. Since we have ∥|Φ⟩− |Φ′⟩∥2 = 2− 2⟨Φ|Φ′⟩ ≤ ε/2
from Claim 7, this concludes the proof of the theorem (the additional ε/2 term comes from
the approximation error in the application of F⊗n

q ). ◀
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3.3 Creating the initial state
Brakerski et al. [7] have shown how to construct a quantum state that is BP -bounded and
(ε,BV )-robust, for appropriate parameters BV ≪ BP , using Gaussian distributions. In this
subsection we present another quantum state that has similar properties, but can be created
by a small-depth quantum circuit.

▶ Theorem 9. For any ε,BV > 0, any integer m ≥ 1 and any q ≥ (8mBV C
√
mn log q)/ε,

there exists a quantum circuit of class C0(B) acting on poly(m, log q) qubits that generates a
quantum state |φ⟩ ∈ H⊗m

q that is q

C
√

mn log q
-bounded and (ε/2, BV )-robust.

Proof. Let us write r =
⌊

log2

(
q

C
√

mn log q

)⌋
and I = {−2r−1, . . . , 0, . . . , 2r−1 − 1}.

We describe the construction. Starting with the quantum state |0⟩⊗m ∈ H⊗m
q , apply (in

parallel) a Hadamard gate on the first r qubits of each copy of |0⟩, in order to get the state(
1√
2r

∑
x∈{0,...,2r−1}

|x⟩

)⊗m

.

Then apply on each of the m copies the unitary operator over Hq that maps |i⟩ to |i− 2r−1⟩
for any i ∈ Zq (the subtraction is done modulo q). As described in Section 2.5, these
arithmetic operations can be implemented by a quantum circuit of class C0(B) acting on
poly(m, log q) qubits. This gives the state(

1√
2r

∑
x∈I

|x⟩

)⊗m

= 1√
2mr

∑
(x1,...,xm)∈Im

|x1, . . . , xm⟩.

For any vector e = (e1, . . . , em) ∈ Zm
q , consider the state

|φ+ e⟩ = 1√
2mr

∑
(x1,...,xm)∈Im

|x1 + e1, . . . , xm + em⟩.

The inner product of |φ⟩ and |φ + e⟩ is ⟨φ|φ + e⟩ = |Se|
2mr , where Se is the set of vectors

(x1, . . . , xm) ∈ Im such that (x1 + e1, . . . , xm + em) ∈ Im. If ∥e∥∞ ≤ BV , then {−2r−1 +
BV , . . . , 2r+1 − 1−BV }m ⊂ Se and thus

⟨φ|φ+e⟩ ≥
(

2r − 2BV

2r

)m

=
(

1− BV

2r−1

)m

≥ 1−mBV

2r−1 ≥ 1−4mBV C
√
mn log q

q
≥ 1−ε/2,

as claimed. ◀

4 Application: Test of Quantumness

In this section we describe and analyze the test of quantumness based on the LWE assumption
that has been implicitly presented in [7], and show how to use the results from Section 3 to
pass this test with small-depth quantum circuits.

We first define some sets Gs,b,x ⊆ {0, 1}n⌈log q⌉ exactly as in [7]. The definition is
fairly technical and can actually be skipped on a first reading, since we will later only use
the property that these sets are dense enough. For any b ∈ {0, 1} and any x ∈ Zn

q , let
Ib,x : {0, 1}n⌈log q⌉ → {0, 1}n be the map such that for any d ∈ {0, 1}n⌈log q⌉, each coordinate
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of Ib,x(d) is obtained by taking the inner product modulo 2 of the corresponding block of
⌈log q⌉ coordinates of d and of J(x)⊕J(x− (−1)b1), where 1 denotes the vector in Zn

q where
each coordinate is 1 ∈ Zq. We define the set

Gb,x =
{
d ∈ {0, 1}n⌈log q⌉ | ∃i ∈

{
b
n

2 , . . . , b
n

2 + n

2

}
: (Ib,x(d))i ̸= 0}

}
.

For any s ∈ Zm
q , we then define Gs,0,x = G0,x ∩ G1,x−s and Gs,1,x = G0,x+s ∩ G1,x.

Note that these sets are dense: for any s, x ∈ Zn
q and any b ∈ {0, 1}, we have |Gs,b,x| ≥

(1− 2 · 2−n⌈log q⌉/4)2n⌈log q⌉.

Our test of quantumness is described in Figure 2. In Subsection 4.1 we explain how to
pass the test when q is large enough using a quantum prover that can be implemented in
constant depth. In Subsection 4.2 we then show that no classical computationally-bounded
prover can pass this test with high probability under the LWE assumption, for a large
range of parameters. A concrete test of quantumness can be obtained, for instance, by
fixing ε = 1/n, setting BL = Θ(n), m = Θ(n2), choosing BV superpolynomial in n and
taking q = Θ(BV n

9/2). Theorem 10 shows that a small-depth quantum prover can pass
the corresponding test of quantumness with probability close to 1− 1/n, while Theorem 11
shows that no polynomial-time classical prover can pass the test with probability significantly
larger than 3/4, under the LWE assumption (the gap between the success probabilities of
classical and quantum provers can easily be further amplified using parallel repetitions).

Input: three positive integers m, n, q such that q ≥ BV C
√
mn log q holds.

1. The verifier applies the procedure GENTRAP(1n, 1m, q) and gets a pair (A, tA). The
verifier then takes a vector s ∈ Zn

q uniformly at random, and a vector e ∈ Zm
q by

sampling each coordinate independently according to the distribution Dq,BV
. The

verifier sends the pair (A,As+ e) to the prover.
2. The prover sends a vector y ∈ Zm

q to the verifier.
3. The verifier chooses a random bit r uniformly at random and sends it to the prover.
4. If r = 0 then the prover sends a pair (b, x) ∈ {0, 1} × Zn

q to the verifier. If r = 1 then
the prover sends a pair (c, d) ∈ {0, 1} × {0, 1}n⌈log q⌉ to the verifier.

5. If r = 0 then the verifier accepts if and only if ∥Ax+ bu− y∥ ≤ 2q/(C
√
n log q).

If r = 1, then the verifier applies the procedure INVERT(A, tA, y) and get an output
that we denote x0 ∈ Zn

q . The verifier accepts if and only if the three conditions
∥Ax0 − y∥ ≤ 2q/(C

√
n log q), c = d · (J(x0)⊕ J(x0 − s)) and d ∈ Gs,0,x0 all hold.

Figure 2 Test of quantumness. Here BV > 0 is a parameter.

4.1 Quantum protocol
Here is the main result of this subsection.

▶ Theorem 10. Let ε and BV be any positive parameters. There exists a quantum prover,
which can be implemented by a circuit of class C0(B) acting on poly(m,n, log q) qubits, that
passes the test of Figure 2 with probability at least 1− 3

√
ε− δ for all values (m,n, q) such

that q ≥ (8mBV C
√
mn log q)/ε, where δ is some negligible function of the parameters.

Proof. The 5-tuple (m,n, q, A,As + e) is in KBV
with overwhelming probability (see the

discussion after Theorem 2 in Section 2.2). We describe the quantum protocol under
this assumption. After receiving the key at Step 1, the prover creates a state |φ⟩ that is
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q/(C
√
mn log q)-bounded and (ε/2, BV )-robust using Theorem 9. Then the prover applies

Theorem 6 using the state |φ⟩ as input, which gives a state |Φ⟩ that is ε-close to some state
in Hk.

Let us first describe and analyze the remaining of the protocol under the assumption that
|Φ⟩ is in Hk (instead of being only close to Hk). The prover measures the rightmost register
of |Φ⟩. Let y ∈ Zm

q denote the measurement outcome. The state after the measurement is

|Ψy⟩ = 1√
2

(|0⟩|x0⟩+ |1⟩|x0 − s⟩) |y⟩,

where x0 ∈ Zn
q is such that ∥Ax0 − y∥ ≤ q/(C

√
n log q). At Step 2, the prover sends this

value y. At Step 4, if the prover received r = 0, it measures the first two registers of the above
state in the computational basis and simply sends to the verifier the measurement outcome
(b, x). This passes the verifier’s check at Step 5 with certainty, since ∥Ax0−y∥ ≤ q/(C

√
n log q)

and A(x0 − s) + u = Ax0 + e, with

∥Ax0 + e− y∥ ≤ q/(C
√
n log q) + ∥e∥ ≤ q/(C

√
n log q) +BV

√
m ≤ 2q/(C

√
n log q).

If the prover received r = 1, it first applies an Hamadard gate on each qubit of the first
two registers, which gives the state 1

2
√

2n

∑
c∈{0,1}

∑
d∈{0,1}n

(
(−1)J(x0)·d + (−1)J(x0−s)·d+c

)
|c⟩|d⟩

 |y⟩.
The prover then measures the first two registers, and sends to the verifier the outcome
(c, d). Since (c, d) necessary satisfies the equality J(x0) · d ≡ J(x0 − s) · d+ c (mod 2), and
d ∈ Gs,0,x0 with overwhelming probability due to the density of Gs,0,x0 , the verifier’s check
succeeds at Step 5 with overwhelming probability, i.e., probability at least 1− δ for some
negligible function δ.

Since the actual state |Φ⟩ is only ε-close to Hk (instead of being in Hk as we assumed
so far), using the triangular inequality we can conclude that the success probability on the
actual state is at least 1− δ − ε− 2

√
ε ≥ 1− δ − 3

√
ε. ◀

4.2 Classical hardness
In this subsection we will use exactly the same parameters and hardness assumption as in [7].

Let λ be a security parameter. All the other parameters are functions of λ. Let q be
a prime. Let ℓ, n,m ≥ 1 be polynomially bounded functions of λ, and BL, BV be positive
integers such that the following conditions hold:

n = Ω(ℓ log q) and m = Ω(n log q),
2
√
n ≤ BL < BV ≤ q,

BV /BL is superpolynomial in λ.

Here is the main result of this subsection.

▶ Theorem 11. Assume a choice of parameters as above. Assume the hardness assumption
LWEℓ,q,Dq,BL

holds. No polynomial-time classical prover can pass the test of Figure 2 with
probability greater than 3/4 + µ, for some negligible function µ of the security parameter λ.

Proof. Consider a classical prover that passes the test with probability at least 3/4 + µ for
some function µ.
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Let us write w the contents of the prover’s memory and computation history at the end
of Step 2 (note that y can be recovered from w). Let A0(w) be the algorithm the prover
applies when it receives 0 at Step 3, and A1(w) be the algorithm the prover applies when it
receives 1. Let consider the following strategy: Apply A0(w) to get (b, x), then rewind the
computation and apply A1(w) to get (c, d), and finally output the 4-tuple (b, x, d, c).

Let p0(w) denote the probability that the output of A0(w) satisfies ∥Ax + bu − y∥ ≤
2q/(C

√
n log q), and p1(w) denote the probability that the output of A1(w) satisfies c =

d ·(J(x0)⊕J(x0−s)) and d ∈ Gs,0,x0 . Our assumption implies that Ew[p0(w)/2+p1(w)/2] ≥
3/4 + µ. Thus the overall probability that ∥Ax+ bu− y∥ ≤ 2q/(C

√
n log q), c = d · (J(x0)⊕

J(x0 − s)) and d ∈ Gs,0,x0 all hold is at least

Ew[1− (1− p0(w))− (1− p1(w))] = Ew[(p0(w) + p1(w))− 1] ≥ 1/2 + 2µ.

In this case we have x0 = x if b = 0 and x0 = x+s if b = 1, and thus c = d·(J(x)⊕J(x−(−1)bs)
holds in both cases. Lemma 4.7 in [7], which we state for completeness in Appendix A,
guarantees that µ must be negligible. ◀
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A The Adaptive Hardcore Bit Lemma

For completeness, we reproduce below the statement of the adaptive hardcore bit lemma
from [7] on which the proof of Theorem 11 is based.

▶ Lemma 12 (Lemma 4.7 in [7]). Assume a choice of parameters as in Section 4.2. Assume
the hardness assumption LWEℓ,q,Dq,BL

holds. Let s ∈ {0, 1}n. Write

Hs =
{

(b, x, d, d · (J(x)⊕ J(x− (−1)bs)) | b ∈ {0, 1}, x ∈ Zn
q , d ∈ Gs,b,x

}
Hs = {(b, x, d, c) | (b, x, d, c⊕ 1) ∈ Hs} .

Consider a pair (A,As + e) generated as follows: generate A using GENTRAP(1n, 1m, q),
then take s ∈ {0, 1}n uniformly at random and e by sampling each coordinate independently
according to the distribution DZq,BV

. Then for any polynomial-time algorithm A that receives
as input the pair (A,As+ e) there exists a negligible function µ(λ) such that∣∣∣Pr[A(A,As+ e) ∈ Hs]− Pr[A(A,As+ e) ∈ Hs]

∣∣∣ ≤ µ(λ).
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Abstract
In this work, we study the discrete logarithm problem in the context of TFNP – the complexity
class of search problems with a syntactically guaranteed existence of solutions for all instances. Our
main results establish that suitable variants of the discrete logarithm problem are complete for
the complexity class PPP, respectively PWPP, i.e., the subclasses of TFNP capturing total search
problems with a solution guaranteed by the pigeonhole principle, respectively the weak pigeonhole
principle. Besides answering an open problem from the recent work of Sotiraki, Zampetakis, and
Zirdelis (FOCS’18), our completeness results for PPP and PWPP have implications for the recent line
of work proving conditional lower bounds for problems in TFNP under cryptographic assumptions.
In particular, they highlight that any attempt at basing average-case hardness in subclasses of TFNP
(other than PWPP and PPP) on the average-case hardness of the discrete logarithm problem must
exploit its structural properties beyond what is necessary for constructions of collision-resistant hash
functions.

Additionally, our reductions provide new structural insights into the class PWPP by establishing
two new PWPP-complete problems. First, the problem Dove, a relaxation of the PPP-complete
problem Pigeon. Dove is the first PWPP-complete problem not defined in terms of an explicitly
shrinking function. Second, the problem Claw, a total search problem capturing the computational
complexity of breaking claw-free permutations. In the context of TFNP, the PWPP-completeness
of Claw matches the known intrinsic relationship between collision-resistant hash functions and
claw-free permutations established in the cryptographic literature.
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1 Introduction

The discrete logarithm problem (DLP) and, in particular, its conjectured average-case
hardness lies at the foundation of many practical schemes in modern cryptography. To day,
no significant progress towards a generic efficient algorithm solving DLP has been made (see,
e.g., the survey by Joux, Odlyzko, and Pierrot [17] and the references therein).

One of the distinctive properties of DLP is its totality, i.e., given a generator g of a cyclic
group (G, ⋆), we know that a solution x for DLP exists for any target element t = gx in the
group. Thus, the perceived hardness of DLP does not stem from the uncertainty whether a
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solution exists but pertains to the search problem itself. In this respect, DLP is not unique –
there are various total search problems with unresolved computational complexity in many
domains such as algorithmic game theory, computation number theory, and combinatorial
optimization, to name but a few. More generally, the complexity of all total search problems
is captured by the complexity class TFNP.

In order to improve our understanding of the seemingly disparate problems in TFNP,
Papadimitriou [20] suggested to classify total search problems based on syntactic arguments
ensuring the existence of a solution. His approach proved to be extremely fruitful and it gave
rise to various subclasses of TFNP that cluster many important total search problems. For
example,
PPAD: formalizes parity arguments on directed graphs and captures, e.g., the complexity of

computing Nash equilibria in bimatrix games [7, 3].
PPA: formalizes parity arguments on undirected graphs and captures, e.g., the complexity

of Necklace splitting [9].
PPP: formalizes the pigeonhole principle and captures, e.g., the complexity of solving

problems related to integer lattices [22].
PWPP: formalizes the weak pigeonhole principle and captures, e.g., the complexity of break-

ing collision-resistant hash functions and solving problems related to integer lattices [22].

DLP and TFNP

DLP seems to naturally fit the TFNP landscape. Though, a closer look reveals a subtle issue
regarding its totality stemming from the need to certify that the given element g is indeed
a generator of the considered group (G, ⋆) or, alternatively, that the target element t lies
in the subgroup of (G, ⋆) generated by g. If the order s = |G| of the group (G, ⋆) is known
then there are two natural approaches. The straightforward approach would be to simply
allow additional solutions in the form of distinct x, y ∈ [s] = {0, . . . , s− 1} such that gx = gy.
By the pigeonhole principle, either t = gx for some x ∈ [s] or there exists such a non-trivial
collision x, y ∈ [s]. The other approach would be to leverage the Lagrange theorem that
guarantees that the order of any subgroup must divide the order of the group itself. If we
make the factorization of the order s of the group a part of the instance then it can be
efficiently tested whether g is indeed a generator.

Despite being a prominent total search problem, DLP was not extensively studied in the
context of TFNP so far. Only recently, Sotiraki, Zampetakis, and Zirdelis [22] presented a
total search problem motivated by DLP. They showed that it lies in the complexity class
PPP and asked whether it is complete for the complexity class PPP.

1.1 Our Results
In this work, we study formalizations of DLP as a total search problem and prove new
completeness results for the classes PPP and PWPP.

Our starting point is the discrete logarithm problem in “general groups” suggested by
Sotiraki et al. [22]. Given the order s ∈ Z, s > 1, we denote by G = [s] = {0, . . . , s − 1}
the canonical representation of a set with s elements. Any efficiently computable binary
operation on G can be represented by a Boolean circuit f : {0, 1}l × {0, 1}l → {0, 1}l that
evaluates the operation on binary strings of length l = ⌈log(s)⌉ representing the elements of
G. Specifically, the corresponding binary operation ⋆ on G can be computed by first taking
the binary representation of the elements x, y ∈ G, evaluating f on the resulting strings, and
mapping the value back to G. Note that the binary operation ⋆ induced on G by f in this
way might not satisfy the group axioms and, thus, we refer to (G, ⋆) as the induced groupoid
adopting the terminology for a set with a binary operation common in universal algebra.
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Assuming that (G, ⋆) is a cyclic group, we might be provided with the representations
of the identity element id ∈ G and a generator g ∈ G, which, in particular, enable us to
efficiently access the group elements via an indexing function IG : [s]→ G computed as the
corresponding powers of g (e.g. via repeated squaring). An instance of a general DLP is then
given by a representation (s, f) inducing a groupoid (G, ⋆) together with the identity element
id ∈ G, a generator g ∈ G, and a target t ∈ G; a solution for the instance (s, f, id, g, t) is
either an index x ∈ [s] such that IG(x) = t or a pair of distinct indices x, y ∈ [s] such that
IG(x) = IG(y). Note that the solutions corresponding to non-trivial collisions in IG ensure
totality of the instance irrespective of whether the induced groupoid (G, ⋆) satisfies the group
axioms – the indexing function IG either has a collision or it is a bijection and must have a
preimage for any t.

The general DLP as defined above can clearly solve DLP in specific groups with efficient
representation such as any multiplicative group Z∗

p of integers modulo a prime p, which
are common in cryptographic applications. On the other hand, it allows for remarkably
unstructured instances and the connection to DLP is rather loose – as we noted above,
the general groupoid (G, ⋆) induced by the instance might not be a group, let alone cyclic.
Therefore, we refer to this search problem as Index (see Definition 15 in Section 4 for the
formal definition).

A priori, the exact computational complexity of Index is unclear. Sotiraki et al. [22]
showed that it lies in the class PPP by giving a reduction to the PPP-complete problem
Pigeon, where one is asked to find a preimage of the 0n string or a non-trivial collision for a
function from {0, 1}n to {0, 1}n computed by a Boolean circuit given as an input. No other
upper or lower bound on Index was shown in [22]. Given that DLP can be used to construct
collision-resistant hash functions [6], it seems natural to ask whether Index lies also in the
class PWPP, a subclass of PPP defined by the canonical problem Collision, where one is
asked to find a collision in a shrinking function computed by a Boolean circuit given as an
input.

However, a closer look at the known constructions of collision-resistant hash functions
from DLP reveals that they crucially rely on the homomorphic properties of the function
gx = IG(x). Given that (G, ⋆) induced by an arbitrary instance of Index does not necessarily
posses the structure of a cyclic group, the induced indexing function IG is not guaranteed
to have any homomorphic properties and it seems unlikely that Index could be reduced to
any PWPP-complete problem such as Collision. In Section 4, we establish that the above
intuition is indeed correct since our Theorem 1 shows that Index is PPP-complete:

▶ Theorem 1. Index is PPP-complete.

On the other hand, we show that, by introducing additional types of solutions in the
Index problem, we can enforce sufficient structure on the induced groupoid (G, ⋆) that
allows for a reduction to the PWPP-complete problem Collision. First, we add a solution
type witnessing that the coset of t is not the whole G, i.e., that {t ⋆ a | a ∈ G} ̸= G,
which cannot be the case in a group. Specifically, a solution is also any pair of distinct
x, y ∈ [s] such that t ⋆ IG(x) = t ⋆ IG(y). Second, we add a solution enforcing some form of
homomorphism in IG with respect to t. Specifically, a solution is also any pair of x, y ∈ [s]
such that IG(x) = t ⋆ IG(y) and IG(x − y mod s) ̸= t. The second type of a solution is
motivated by the classical construction of a collision-resistant hash function from DLP by
Damgård [6]. Notice that if there are no solutions of the second type then any pair x, y such
that IG(x) = t ⋆ IG(y) gives rise to the preimage of t under IG by simply computing x− y

mod s. We refer to the version of Index with the additional two types of solutions as DLog
(see Definition 5 in Section 3 for the formal definition), as it is in our opinion close enough to
the standard DLP in cyclic groups.
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Since DLog is a relaxation of Index obtained by allowing additional types of solutions,
it could be the case that we managed to reduce DLog to Collision simply because DLog
is trivial. Note that this is not the case since DLog is at least as hard as DLP in any cyclic
group with an efficient representation, where DLP would naturally give rise to an instance of
DLog with a unique solution corresponding to the solution for the DLP. In Section 3, we
establish that DLog is at least as hard as the problem of finding a non-trivial collision in a
shrinking function by proving Theorem 2 that shows that DLog is PWPP-complete:

▶ Theorem 2. DLog is PWPP-complete.

Implications for cryptographic lower bounds for subclasses of TFNP

It was shown already by Papadimitriou [20] that cryptographic hardness might serve as basis
for arguing the existence of average-case hardness in subclasses of TFNP. A recent line of work
attempts to show such cryptographic lower bounds for subclasses of TFNP under increasingly
more plausible cryptographic hardness assumptions [16, 2, 10, 13, 11, 18, 4, 5, 8, 1, 19, 15].
However, it remains an open problem whether DLP can give rise to average-case hardness
in subclasses of TFNP other than PWPP and PPP. Our results highlight that any attempt
at basing average-case hardness in subclasses of TFNP (other than PWPP and PPP) on the
average-case hardness of the discrete logarithm problem must exploit its structural properties
beyond what is necessary for constructions of collision-resistant hash functions.

Witnessing totality of number theoretic problems

In the full version [12], we discuss some of the issues that arise when defining total search
problems corresponding to actual problems in computational number theory. First, we
highlight some crucial distinctions between the general DLog as defined in Definition 5 and
the discrete logarithm problem in multiplicative groups Z∗

p. In particular, we argue that the
latter is unlikely to be PWPP-complete.

Second, we clarify the extent to which our reductions exploit the expressiveness allowed by
the representations of instances of DLog and Index. In particular, both the reduction from
Collision to DLog and from Pigeon to Index output instances that induce groupoids
unlikely to satisfy group axioms and, therefore, do not really correspond to DLP. Additionally,
we revisit the problem Blichfeldt introduced in [22] and show that it also exhibits a similar
phenomenon in the context of computational problems on integer lattices.

Alternative characterizations of PWPP

Our PWPP-completeness result for DLog is established via a series of reductions between
multiple intermediate problems, which are thus also PWPP-complete. We believe this
characterization will prove useful in establishing further PWPP-completeness results. These
new PWPP-complete problems are defined in Section 3 and an additional discussion is
provided in Section 5.

2 Preliminaries

We denote by [m] the set {0, 1, . . . , m− 1}, by Z+ the set {1, 2, 3, . . . } of positive integers,
and by Z+

0 the set {0, 1, 2, . . . } of non-negative integers. For two strings u, v ∈ {0, 1}∗, u || v
stands for the concatenation of u and v. When it is clear from the context, we omit the
operator ||, e.g., we write 0x instead of 0 ||x. The standard XOR function on binary strings
of equal lengths is denoted by ⊕.
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Bit composition and decomposition

Throughout the paper, we often make use of the bit composition and bit decomposition
functions between binary strings of length k and the set [2k] of non-negative integers less
then 2k. We denote these functions bck and bdk. Concretely, bck : {0, 1}k → [2k] and bdk :
[2k] → {0, 1}k. Formally, for x = x1x2 . . . xk ∈ {0, 1}k, we define bck(x) =

∑k−1
i=0 xk−i2i.

The function bck is bijective and we define the function bdk as its inverse, i.e., for a ∈ [2k],
bdk(a) computes the unique binary representation of a with leading zeroes such that its
length is k. When clear from the context, we omit k and write simply bc and bd to improve
readability. At places, we work with the output of bdk without the leading zeroes. We denote
by bd0 : Z+

0 → {0, 1}∗ the standard function which computes the binary representation
without the leading zeroes.

TFNP and some of its subclasses

A total NP search problem is a relation S ⊆ {0, 1}∗ × {0, 1}∗ such that: 1) the decision
problem whether (x, y) ∈ S is computable in polynomial-time in |x|+ |y|, and 2) there exists
a polynomial q such that for all x ∈ {0, 1}∗, there exists a y ∈ {0, 1}∗ such that (x, y) ∈ S

and |y| ≤ q(|x|). The class of all total NP search problems is denoted by TFNP.
Let S, T ⊆ {0, 1}∗×{0, 1}∗ be total search problems. A reduction from S to T is a pair of

polynomial-time computable functions f, g : {0, 1}∗ → {0, 1}∗ such that, for all x, y ∈ {0, 1}∗

if (f(x), y) ∈ T then (x, g(y)) ∈ S. In case there exists a reduction from S to T , we say that
S is reducible to T . The above corresponds to so-called polynomial-time many-one (or Karp)
reductions among decision problems in the context of search problems. In the rest of the
paper, we consider only such reductions.

▶ Definition 3 (Pigeon problem and PPP [20]).
Instance: A Boolean circuit C with n inputs and n outputs.
Solution: One of the following:

1. a string u ∈ {0, 1}n such that C(u) = 0n,
2. distinct strings u, v ∈ {0, 1}n such that C(u) = C(v).

The class of all total search problems reducible to Pigeon is called PPP.

▶ Definition 4 (Collision problem and PWPP [16]).
Instance: A Boolean circuit C with n inputs and m outputs with m < n.
Solution: Distinct strings u, v ∈ {0, 1}n such that C(u) = C(v).

The class of all total search problems reducible to Collision is called PWPP.

3 DLog is PWPP-complete

In this section, we define DLog, a total search problem associated to DLP and show that it
is PWPP-complete. Our reductions give rise to additional new PWPP-complete problems
Dove and Claw, which we discuss further in Section 5.

Similarly to Sotiraki et al. [22], we represent a binary operation on G = [s] = {0, . . . , s−
1} by a Boolean circuit f : {0, 1}l × {0, 1}l → {0, 1}l, where l = ⌈log(s)⌉. Given such a
representation (s, f), we define a binary operator fG : [s] × [s] → [2l] for all x, y ∈ [s] as
fG(x, y) = bc(f(bd(x), bd(y))). We denote by (G, ⋆) the groupoid induced by f , where
⋆ : [s]× [s]→ [s] is the binary operation closed on [s] obtained by extending the operator fG
in some fixed way, e.g., by defining x ⋆ y = 1 for all x, y ∈ [s] such that fG(x, y) ̸∈ [s].
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Algorithm 1 Computation of the x-th power of the generator g ∈ [s] of a groupoid (G, ⋆) of size
s ∈ Z+

0 induced by f : {0, 1}2⌈log(s)⌉ → {0, 1}⌈log(s)⌉ with identity id ∈ [s].

1: procedure IG(x)
2: (xm, . . . , x1)← bd0(x)
3: r ← bd(id)
4: g ← bd(g)
5: for i from m to 1 do
6: r ← f(r, r)
7: if xi = 1 then
8: r ← f(g, r)
9: end if

10: end for
11: return bc(r)
12: end procedure

If the induced groupoid (G, ⋆) was a cyclic group then we could find the indices of
the identity element id ∈ [s] and a generator g ∈ [s]. Moreover, we could use g to index
the elements of the group (G, ⋆), e.g., in the order of increasing powers of g, and the
corresponding indexing function IG : [s] → [2l] would on input x return simply the x-th
power of the generator g. We fix a canonical way of computing the x-th power using
the standard square-and-multiply method as defined in Algorithm 1. The algorithm first
computes (xm, xm−1, . . . , x1) = bd0(x), i.e., the binary representation of the exponent x

without the leading zeroes for some m ≤ l, and it then proceeds with the square-and-multiply
method using the circuit f . As explained above, f implements the binary group operation.
Hence, f(r, r) corresponds to squaring the intermediate value r and f(g, r) corresponds to
multiplication of the intermediate value r by the generator g.

With the above notation in place, we can give the formal definition of DLog.

▶ Definition 5 (DLog problem).
Instance: A size parameter s ∈ Z+ such that s ≥ 2 and a Boolean circuit

f : {0, 1}2⌈log(s)⌉ → {0, 1}⌈log(s)⌉ representing a groupoid (G, ⋆), and indices id, g, t ∈ [s].
Solution: One of the following:

1. x ∈ [s] such that IG(x) = t,
2. x, y ∈ [s] such that fG(x, y) ≥ s,
3. x, y ∈ [s] such that x ̸= y and IG(x) = IG(y),
4. x, y ∈ [s] such that x ̸= y and fG(t, IG(x)) = fG(t, IG(y)),
5. x, y ∈ [s] such that IG(x) = fG(t, IG(y)) and IG(x− y mod s) ̸= t.

The first type of a solution in DLog corresponds to the discrete logarithm of t. Since
we cannot efficiently verify that the input instance represents a group with the purported
generator g, additional types of a solution had to be added in order to guarantee that DLog
is total. Note that any solution of these additional types witnesses that the instance does
not induce a group, since for a valid group these types cannot happen. Nevertheless, the
first three types of a solution are sufficient to guarantee the totality of DLog. The last two
types of a solution make DLog to lie in the class PWPP and are crucial for correctness of
our reduction from DLog to Collision presented in Section 3.2. In Section 5, we provide
further discussion of DLog and some possible alternative definitions.

In Section 3.1, we show that DLog is PWPP-hard. In Section 3.2, we show that DLog
lies in PWPP. Therefore, we prove Theorem 2.



P. Hubáček and J. Václavek 60:7

▶ Theorem 2. DLog is PWPP-complete.

3.1 DLog is PWPP-hard
To show that DLog is PWPP-hard, we reduce to it from the PWPP-complete problem
Collision (see Definition 4). Given an instance C : {0, 1}n → {0, 1}n−1 of Collision, our
reduction to DLog defines a representation (s, f) of a groupoid (G, ⋆) and the elements id, g,
and t such that we are able to extract some useful information about C from any non-trivial
collision IG(x) = IG(y) in the indexing function IG computed by Algorithm 1. The main
obstacle that we need to circumvent is that, even though the computation performed by
IG employs the circuit f representing the binary operation in the groupoid, it has a very
restricted form. In particular, we need to somehow define f using C so that there are no
collisions in IG unrelated to solutions of the instance of Collision. To sidestep some of
the potential issues when handling an arbitrary instance of Collision, we reduce to DLog
from an intermediate problem we call Dove.

▶ Definition 6 (Dove problem).
Instance: A Boolean circuit C with n inputs and n outputs.
Solution: One of the following:

1. a string u ∈ {0, 1}n such that C(u) = 0n,
2. a string u ∈ {0, 1}n such that C(u) = 0n−11,

3. distinct strings u, v ∈ {0, 1}n such that C(u) = C(v),
4. distinct strings u, v ∈ {0, 1}n such that C(u) = C(v)⊕ 0n−11.

It is immediate that Dove is a relaxation of Pigeon (cf. Definition 3) with two additional
new types of a solution – the cases 2 and 4 in the above definition. Similarly to case 1, case
2 corresponds to a preimage of a fixed element in the range. Case 4 corresponds to a pair of
strings such that their images under C differ only on the last bit. Permutations for which it
is computationally infeasible to find inputs with evaluations differing only on a prescribed
index appeared in the work of Zheng, Matsumoto, and Imai [23] under the term distinction-
intractable permutations. Zheng et al. showed that distinction-intractability is sufficient
for collision-resistant hashing. Note that we employ distinction-intractability in a different
way than [23]. In particular, their construction of collision-resistant hash from distinction-
intractable permutations could be leveraged towards a reduction from Dove to Collision
(proving Dove is contained in PWPP) – we use Dove as an intermediate problem when
reducing from Collision to DLog (proving PWPP-hardness of DLog). In the overview of
the reduction from Dove to DLog below, we explain why distinction-intractability seems
as a natural choice for our definition of Dove.

Reducing Dove to DLog

Let C : {0, 1}n → {0, 1}n be an arbitrary instance of Dove. Our goal is to construct an
instance G = (s, f, id, g, t) of DLog such that any solution to G provides a solution to the
original instance C of Dove. The key step in the construction of G is a suitable choice of the
circuit f since it defines both IG and fG. Our initial observation is that, by the definition
of IG (Algorithm 1), the circuit f is only applied on specific types of inputs during the
computation of IG(x). Specifically:

In each loop, f(r, r) is computed for some r ∈ {0, 1}∗. We denote f restricted to this
type of inputs by f0, i.e., f0(r) = f(r, r).
If the corresponding bit of x is one then f(g, r) is computed with fixed g ∈ {0, 1}∗ and
some r ∈ {0, 1}∗. We denote f restricted to this type of inputs by f1, i.e., f1(r) = f(g, r).
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Hence, using the above notation, the computation of IG(x) simply corresponds to an iterated
composition of the functions f0 and f1 depending on the binary representation of x evaluated
on id (e.g., IG(bc(101)) = f1 ◦ f0 ◦ f0 ◦ f1 ◦ f0(bd(id))). Exploiting the observed structure
of the computation of IG, our approach is to define f0 and f1 (i.e., the corresponding part
of f) using the circuit C so that we can extract some useful information about C from any
non-trivial collision IG(x) = IG(y) (i.e., from a solution to DLog, case 3).

The straightforward option is to set f0(r) = f1(r) = C(r) for all r ∈ {0, 1}n. Unfortunately,
such an approach fails since for all distinct u, v ∈ {0, 1}n with Hamming weight l, there
would be an easy to find non-trivial collision x = bc(u) and y = bc(v) of the form IG(x) =
bc(Cn+l(id)) = IG(y), which might not provide any useful information about the circuit C.
Hence, we define f0 and f1 such that f0 ̸= f1.

On a high level, we set f0(r) = C(r) and f1(r) = C(h(r)) for some function h : {0, 1}n →
{0, 1}n that is not the identity as in the flawed attempt above. Then, except for some special
case, a non-trivial collision IG(x) = IG(y) corresponds to the identity C(C(u)) = C(h(C(v)))
for some u, v ∈ {0, 1}n, which are not necessarily distinct. In particular, if C(u) ̸= h(C(v))
then the pair of strings C(u), h(C(v)) forms a non-trivial collision for C. Otherwise, we found
a pair u, v such that C(u) = h(C(v)) that, for the choice h(y) = y ⊕ 0n−11, translates into
C(u) = C(v) ⊕ 0n−11, i.e., a pair of inputs breaking distinction-intractability of C, and
corresponds to the fourth type of a solution in Dove. Finally, the second type of a solution
in Dove captures the special case when there is no pair u, v such that C(C(u)) = C(h(C(v))).
The formal reduction from Dove to DLog establishing Lemma 7 below is given in the full
version [12].

▶ Lemma 7. Dove is reducible to DLog.

PWPP-hardness of Dove. Next, we show that, by introducing additional types of solutions
into the definition of Pigeon, we do not make the corresponding search problem too easy –
Dove is at least as hard as any problem in PWPP. Our reduction from Collision to Dove
is rather syntactic and natural. In particular, it results in instances of Dove with only one
type of solutions corresponding to collisions of the original instance of Collision. For the
formal proof, see the full version [12].

▶ Lemma 8. Collision is reducible to Dove.

Lemma 7 and Lemma 8 imply PWPP-hardness of DLog as stated in the corollary below.

▶ Corollary 9. DLog is PWPP-hard.

3.2 DLog Lies in PWPP
In order to establish that DLog lies in PWPP, we build on the existing cryptographic
literature on constructions of collision-resistant hash functions from the discrete logarithm
problem. Specifically, we mimic the classical approach by Damgård [6] to first construct a
family of claw-free permutations based on DLP and then define a collision-resistant hash
using the family of claw-free permutations.1 Recall that a family of claw-free permutations
is an efficiently sampleable family of pairs of permutations such that given a “random” pair

1 In principle, it might be possible to adapt any alternative known construction of collision-resistant
hash from DLP such as the one of Ishai, Kushilevitz, and Ostrovsky [14], which goes through the
intermediate object of homomorphic one-way commitments. However, this would necessitate not only
the corresponding changes in the definition of DLog but also an alternative proof of its PWPP-hardness.
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h0 and h1 of permutations from the family, it is computationally infeasible to find a claw
for the two permutations, i.e., inputs u and v such that h0(u) = h1(v). We formalize the
corresponding total search problem, which we call Claw, below.

▶ Definition 10 (Claw problem).
Instance: Two Boolean circuits h0, h1 with n inputs and n outputs.
Solution: One of the following:

1. two strings u, v ∈ {0, 1}n such that h0(u) = h1(v),
2. two distinct strings u, v ∈ {0, 1}n such that h0(u) = h0(v),
3. two distinct strings u, v ∈ {0, 1}n such that h1(u) = h1(v).

The first type of a solution in Claw corresponds to finding a claw for the pair of functions
h0 and h1. As we cannot efficiently certify that both h0 and h1 are permutations, we
introduce the second and third type of solutions which witness that one of the functions is
not bijective. In other words, the second and third type of solution ensure the totality of
Claw.

Similarly to [6], our high-level approach when reducing from DLog to Collision is to
first reduce from DLog to Claw and then from Claw to Collision. Although, we cannot
simply employ his analysis since we have no guarantee that 1) the groupoid induced by
an arbitrary DLog instance is a cyclic group and 2) that an arbitrary instance of Claw
corresponds to a pair of permutations. It turns out that the second issue is not crucial. It
was observed by Russell [21] that the notion of claw-free pseudopermutations is sufficient for
collision-resistant hashing. Our definition of Claw corresponds exactly to the worst-case
version of breaking claw-free pseudopermutations as defined by [21]. As for the first issue, we
manage to provide a formal reduction from DLog to General-Claw, a variant of Claw
defined below.

▶ Definition 11 (General-Claw problem).
Instance: Two Boolean circuits h0, h1 with n inputs and n outputs and s ∈ Z+ such that

1 ≤ s < 2n.
Solution: One of the following:

1. two strings u, v ∈ {0, 1}n such that bc(u) < s, bc(v) < s

and h0(u) = h1(v),
2. two distinct strings u, v ∈ {0, 1}n such that h0(u) = h0(v),
3. two distinct strings u, v ∈ {0, 1}n such that h1(u) = h1(v),
4. a string u ∈ {0, 1}n such that bc(u) < s and bc(h0(u)) ≥ s,

5. a string u ∈ {0, 1}n such that bc(u) < s and bc(h1(u)) ≥ s.

The main issue that necessitates the introduction of additional types of a solution in
the definition of General-Claw (compared to Claw) is that the possible solutions to an
instance of DLog are not from the whole domain [2n] but they must lie in [s].

The formal reductions proving Lemma 12 and Lemma 13 below are presented in the
full version [12]. The two lemmata establish Corollary 14, which concludes the proof of
Theorem 2.

▶ Lemma 12. DLog is reducible to General-Claw.

▶ Lemma 13. General-Claw is reducible to Collision.

▶ Corollary 14. DLog is contained in PWPP.
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4 Index is PPP-complete

In this section, we study the complexity of a more restricted version of DLog that we call
Index. In the definition of Index, we use the notation from Section 3 introduced for the
definition of DLog. In particular, the function IG is the same as defined in Algorithm 1.

▶ Definition 15 (Index problem).
Instance: A size parameter s ∈ Z+ such that s ≥ 2 and a Boolean circuit

f : {0, 1}2⌈log(s)⌉ → {0, 1}⌈log(s)⌉ representing a groupoid (G, ⋆) and indices g, id, t ∈ [s].
Solution: One of the following:

1. x ∈ [s], such that IG(x) = t,
2. x, y ∈ [s], such that x ̸= y and fG(x, y) ≥ s,
3. x, y ∈ [s], such that x ̸= y and IG(x) = IG(y).

It is immediate that DLog is a relaxation of Index due to the additional types of
solutions. In Section 4.1, we show that Index is PPP-hard. In Section 4.2, we show that
Index lies in PPP. Therefore, we prove PPP-completeness of Index.

▶ Theorem 1. Index is PPP-complete.

4.1 Index is PPP-hard
The formal reduction from the PPP-complete problem Pigeon to Index is arguably the
most technical. Given an instance C : {0, 1}n → {0, 1}n of Pigeon, the main idea is to define
an instance G = (s, f, id, g, t) of Index such that the induced indexing function IG carefully
“emulates” the computation of the circuit C – so that any solution to G provides a solution
to the original instance C of Pigeon. In order to achieve this, we exploit the structure of
the computation induced by IG in terms of evaluations of the circuit f representing the
binary operation in the groupoid (G, ⋆). Specifically, the computation of IG gives rise to a
tree labeled by the values output by IG and structured by the two special types of calls to
f (i.e., squaring the intermediate value or multiplying it by the generator). Our reduction
constructs f inducing IG with the computation corresponding to a sufficiently large such
tree so that its leaves can represent all the possible inputs for the instance C of Pigeon and
the induced indexing function IG outputs the corresponding evaluation of C at each leaf.
Moreover, for the remaining nodes in the tree, IG results in a bijection to ensure there are
no additional solutions of the constructed instance of Index that would be unrelated to the
original instance of Pigeon. Below, we provide additional details of the ideas behind the
formal reduction given in the full version [12].

Similarly to the reduction from Dove to DLog, the key step in our construction of
G is a suitable choice of the circuit f since it determines the function IG. Recall the
notation for f0 and f1 introduced in the reduction from Dove to DLog, i.e., f0(r) = f(r, r)
and f1(r) = f(g, r). We start by describing a construction of an induced groupoid (G, ⋆)
independent of the instance C of Pigeon but which serves as a natural step towards our
reduction.

Constructing bijective IG

Our initial goal in the first construction is to define f0 and f1 and the elements id, g ∈ [s]
such that IG is the identity function, i.e., such that IG(a) = a for all a ∈ [s]. To this end, our
key observation is that, for many pairs of inputs a, b ∈ [s], the computation of IG(b) includes
the whole computation of IG(a) as a prefix (see Algorithm 1), e.g., for all a, b ∈ [s] such that
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(b) C incorporated.

Figure 1 Trees induced by the computation of IG.

either bd0(a) is a prefix of bd0(b)
or bd0(a) = y||0 and bd0(b) = y||1 for some y ∈ {0, 1}∗.

Specifically, if bd0(a) = y||0 then IG(a) = bc(f0(bd(IG(bc(y))))), and if bd0(a) = y||1 then
IG(a) = bc(f1(bd(IG(bc(y||0))))).

Thus, we can capture the whole computation of IG on all the possible inputs from G

via a tree representing the successive calls to f0 and f1 based on the bit decomposition
bd0(a) of the input a without the leading zeroes. In Figure 1a, we give a tree induced by the
computation of IG in a groupoid of order s = 16 with id = 0. Solid lines correspond to the
application of f0 and dotted lines to application of f1. Except for the root labeled by the
identity element id, each node of the tree corresponds to the point at which IG terminates on
the corresponding input a ∈ [s], where the second value in the label of the node is the input
a and the first value is bd(a), i.e., the binary representation of a with the leading zeroes.

Note that Figure 1a actually suggests which functions f0 and f1 induce IG such that
IG(a) = a for all a ∈ [s]. In particular, Algorithm 1 initializes the computation of IG with
r = bd(id) = bd(0) = 0n and, thus, the desired traversal of the computation tree is achieved
for all inputs a ∈ [s] by 1) f0 that performs a cyclic shift of the input r to the left and 2) f1
that flips the last bit of the input r.

Similarly, the above observation allows to construct f ′
0 and f ′

1 such that for all a ∈ [s]
that IG(a) = a + b mod s for some fixed b ∈ [s], which can be performed simply by setting
id = b and consistently “shifting” the intermediate value r by the bit decomposition of the
fixed value b before and after application of the above functions f0 and f1.

Incorporating the Pigeon instance

The issue which makes it non-trivial to reduce from Pigeon to Index is that the functions f0
and f1 inducing the groupoid (G, ⋆) are oblivious to the actual progress of the computation
performed by IG. The above discussion shows that we have some level of control over the
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computation of IG. However, it is a priori unclear how to meaningfully incorporate the
Pigeon instance C into the above construction achieving that IG(a) = a for all a ∈ [s]. For
example, we cannot simply allow f0 or f1 to output C(r) while at some internal node in the
computation tree of IG as this would completely break the global structure of IG on the
node and all its children and, in particular, could induce collisions in IG unrelated to the
collisions in C. However, we can postpone the application of C to the leaves of the tree since,
for all inputs a corresponding to a leaf in the tree, the computation of IG(a) is not a part of
the computation for IG(b) for another input b.

Given that we are restricted to the leaves of the computation tree when embedding the
computation of C into IG, we must work with a big enough tree in order to have as many
leaves as the 2n possible inputs of the circuit C : {0, 1}n → {0, 1}n. In other words, the
instance of Index must correspond to a groupoid of order s strictly larger than n. Note that
for s = 2k, the leaves of the tree correspond exactly to the inputs for IG from the set

Ao = {a ∈ [2k] | ∃y ∈ {0, 1}k−2 : bd(a) = 1||y||1},

i.e., the set of odd integers between 2k−1 and 2k, which has size 2k−2. Thus, in our
construction, we set s = 2n+2 to ensure that there are 2n leaves that can represent the
domain of C.

Our goal is to define IG so that its restriction to the internal nodes of the tree (non-leaves)
is a bijection between [2n+2] \Ao and [2n+2] \ [2n]. In other words, when evaluated on any
internal node of the tree, IG avoids the values in [2n] corresponding to bit composition
of the elements in the range of C. If we manage to induce such IG then there are no
non-trivial collisions in IG involving the internal nodes – the restrictions of IG to Ao and
to its complement [2n+2] \Ao would have disjoint images and, by the bijective property of
the restriction to the internal nodes of the tree, any collision in IG would be induced by
a collision in C. Our construction achieves this goal by starting with f0 and f1 inducing
IG such that, for all a ∈ [2n+2], it holds that IG(a) = a + 2n mod 2n+2, which we already
explained above.

Note that the image of the restriction of IG to the set

Ae = {a ∈ [2n+2] | ∃y ∈ {0, 1}n : bd(a) = 1||y||0},

i.e., the set of even integers between 2n+1 and 2n+2, has non-empty intersection with integers
in [2n] corresponding to the range of C. Nevertheless, it is possible to locally alter the
behaviour of f0 andf1 on Ae so that IG does not map to [2n] when evaluated on Ae. Then,
we adjust the definition of f0 and f1 such that for all inputs a ∈ Ao corresponding to a leaf of
the tree, IG(a) = bc(C(h(a))) for some bijection h between Ao and {0, 1}n (a natural choice
is simply the function that drops the first and the last bit from the binary decomposition
bd(a) of a). Finally, we set the target in the resulting instance of Index to t = 0 to ensure
that the preimage of t under IG corresponds exactly to a preimage of 0n under C.

In Figure 1b, we illustrate the computation tree of IG corresponding to an instance of
Index produced by our reduction on input C : {0, 1}n → {0, 1}n for n = 2. Accordingly, G
is of size s = 2n+2 = 16 and its elements are represented by the nodes of the tree. When
compared with the tree in Figure 1a, the label of each node in Figure 1b equals the value
IG(a), where a is the second value in the label of the node at the same position in the tree in
Figure 1a. Nodes belonging to [2s] \Ae ∪Ao, Ae, and Ao are highlighted by differing styles
of edges. Specifically, the labels of nodes with a solid edge correspond to evaluations of the
inputs from [2n+1] = [8], the labels of nodes with a dashed edge correspond to evaluations of
the inputs from Ae, and the labels of nodes with a dotted edge correspond to the evaluations
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of the inputs from Ao. Since the image of bc ◦ C is [2n] = [4], it is straightforward to verify
that any collision in IG depicted in Figure 1b must correspond to a collision in C and that
any preimage of t = 0 under IG corresponds directly to a preimage of 0n under C.

The formal reduction establishing Lemma 16 is given in the full version [12].

▶ Lemma 16. Pigeon is reducible to Index.

4.2 Index Lies in PPP
The main idea of our reduction from Index to Pigeon is analogous to the reduction in [22]
from their discrete logarithm problem in “general groups” to Pigeon. Although, we need
to handle the additional second type of a solution for Index, which corresponds to fG
outputting an element outside G. The formal reduction proving Lemma 17 is given in the
full version [12]. Together, Lemma 16 and Lemma 17 establish Theorem 1.

▶ Lemma 17. Index is reducible to Pigeon.

5 New Characterizations of PWPP

Our results in Section 3.1 and Section 3.2 establish new PWPP-complete problems DLog,
Dove, and Claw. Below, we provide additional discussion of these new PWPP-complete
problems.

DLog

Alternative types of violations. Since the last type of a solution in DLog implies that
the associative property does not hold for the elements t, IG(x), and IG(y), one could think
about changing the last type of a solution to finding x, y, z ∈ [s] such that fG(x, fG(y, z)) ̸=
fG(fG(x, y), z) to capture violations of the associative property directly. However, our proof
of PWPP-hardness would fail for such alternative version of DLog and we do not see an
alternative way of reducing to it from the PWPP-complete problem Collision. In more
detail, any reduction from Collision to DLog must somehow embed the instance C of
Collision in the circuit f in the constructed instance of DLog. However, a refutation of
the associative property of the form f(x, f(y, z)) ̸= f(f(x, y), z) for some x, y, and z might
simply correspond to a trivial statement C(u) ̸= C(v) for some u ̸= v, which is unrelated to
any non-trivial collision in C.

Explicit IG. A natural question about our definition of DLog is whether its computational
complexity changes if the instance additionally contains an explicit circuit computing the
indexing function IG. First, the indexing function IG could then be independent of the
group operation f and, thus, the reduction from Collision to such variant of DLog would
become trivial by defining the indexing function IG directly via the Collision instance
C. On the other hand, the core ideas of the reduction from DLog to Collision would
remain mostly unchanged as it would have to capture also IG computed by Algorithm 1.
Nevertheless, we believe that our version of DLog with an implicit IG computed by the
standard square-and-multiply algorithm strikes the right balance in terms of modeling an
interesting problem. The fact that it is more structured than the alternative with an explicit
IG makes it significantly less artificial and relevant to the discrete logarithm problem, which
is manifested especially in the non-trivial reduction from DLog to Collision in Section 3.2.

MFCS 2021
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Dove

The chain of reductions in Section 3 shows, in particular, that Dove (Definition 6) is PWPP-
complete. The most significant property of Dove compared to the known PWPP-complete
problems (Pigeon or the weak constrained-SIS problem defined by Sotiraki et al. [22]) is that
it is not defined in terms of an explicitly shrinking function. Nevertheless, it is equivalent to
Collision and, thus, it inherently captures some notion of compression. Given its different
structure than Collision, we were able to leverage it in our proof of PWPP-hardness of
DLog, and it might prove useful in other attempt at proving PWPP-hardness of other
problems. We emphasize that all four types of a solution in Dove are exploited towards our
reduction from Dove to DLog and we are not aware of a more direct approach of reducing
Collision to DLog that avoids Dove as an intermediate problem.

Claw

Russel [21] showed that a weakening of claw-free permutations is sufficient for collision-
resistant hashing. Specifically, he leveraged claw-free pseudopermutations, i.e., functions for
which it is also computationally infeasible to find a witness refuting their bijectivity. Our
definition of Claw ensures totality by an identical existential argument – a pair of functions
with identical domain and range either has a claw or we can efficiently witness that one of
the functions is not surjective.

Claw trivially reduces to the PWPP-complete problem General-Claw and, thus, it
is contained in PWPP. Below, we provide also a reduction from Collision to Claw
establishing that it is PWPP-hard.

▶ Lemma 18. Collision is reducible to Claw.

Proof of Lemma 18. We start with an arbitrary instance C : {0, 1}n → {0, 1}m of
Collision with m < n. Without loss of generality, we can suppose that m = n − 1
since otherwise we can pad the output with zeroes, which preserves the collisions. We
construct an instance of Claw as follows:

h0(x) = C(x)0

and

h1(x) = C(x)1.

We show that any solution to this instance (h0, h1) of Claw gives a solution to the original
instance C of Collision. Three cases can occur:
1. u, v ∈ {0, 1}n such that h0(u) = h1(v). Since the last bit of h0(u) is zero and the last bit

of h1(v) is one, this case cannot happen.
2. u, v ∈ {0, 1}n such that u ̸= v and h0(u) = h0(v). From the definition of h0, we get that

C(u)0 = h0(u) = h0(v) = C(v)0, which implies that C(u) = C(v). Hence, the pair u, v

forms a solution to the original instance C of Collision.
3. u, v ∈ {0, 1}n such that u ̸= v and h1(u) = h1(v). We can proceed analogously as in the

previous case to show that the pair u, v forms a solution to the original instance C of
Collision. ◀
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Abstract

Equational unification is the problem of solving an equation modulo equational axioms. In this paper,
we provide a relationship between equational unification and homological algebra for equational
theories. We will construct a functor from the category of sets of equational axioms to the category
of abelian groups. Then, our main theorem gives a necessary condition of equational unifiability
that is described in terms of abelian groups associated with equational axioms and homomorphisms
between them. To construct our functor, we use a ringoid (a category enriched over the category of
abelian groups) obtained from the equational axioms and a free resolution of a “good” module over
the ringoid, which was developed by Malbos and Mimram.
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1 Introduction

Equational unification is the problem of solving a given equation modulo an equational
theory. For example, if we consider the axioms of commutative rings with a multiplicative
unit, the equational unification problem asks whether given a polynomial equation with
integer coefficients has a solution in integers. The decidability of this problem was posed by
David Hilbert (Hilbert’s tenth problem) and it was shown to be undecidable [12, 5]. There
are specific theories such as the theory of abelian groups or the theory of boolean rings
such that the equational unification is decidable (see [2, §3.4]). The problem is generally
semi-decidable, but not generally decidable. Narrowing [6, 7] is a procedure that finds all
solutions of the equation, but it may not terminate in general.

Our purpose is to provide a necessary condition of solvability of an equation. The
condition is obtained from a homological invariant of equational theories. More precisely, we
will define an abelian group H(E) for a set E of equations (or equational axioms) and an
abelian group homomorphism H(E → E′) : H(E)→ H(E′) for two sets E,E′ of equations
satisfying E∗ ⊂ E′∗. Here, E∗, E′∗ are the equational theories of E,E′, i.e., the sets of all
equations that can be derived by E,E′. Then, we will prove the following theorem.

▶ Theorem 1. Let Σ be a signature, E be a set of equations of Term(Σ) and t, s ∈ Term(Σ)
be two terms. If t, s are E-unifiable, then H(E → E ∪ {t ≈ s}) is surjective.

Although H(E) and H(E → E′) are defined using abstract algebra, Theorem 1 is restated
in terms of rewriting and matrices if a complete TRS of E ∪ {t ≈ s} is given. In that
case, we can compute a matrix associated with E and E ∪ {t ≈ s} and the surjectivity of
H(E → E ∪ {t ≈ s}) can be checked by matrix operations. (Theorem 5). Therefore, we have
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a sound procedure for non-E-unifiability; if we compute the matrix and if it does not have
full rank, then we can conclude that t, s are not E-unifiable. We will see how this procedure
works on some simple examples in Section 3.

Our contribution is not only presenting a new procedure for non-E-unifiability. Our
abelian group H(E) and homomorphism H(E → E′) can provide an algebraic consideration
of equational unification, equational logic, or rewriting. The abelian group H(E) is invariant
under equivalence of E, that is, if two sets E,E′ of equations are equivalent, then H(E) and
H(E′) are isomorphic. We define H(E) using homological algebra of equational theories.
The homological algebra of equational theories we use in this paper is based on [10, 11, 8].
Also, we will prove that H is a functor from the category of sets of equations over a fixed
signature to the category of abelian groups.

The paper is organized as follows. In Section 2, we explain basic concepts of unifiability
and rewriting. In Section 3, as mentioned earlier, we rephrase Theorem 1 under a certain
case so that our condition is checkable by matrix computations. Then, we see some examples
and consider equational unification problems on them. In Section 4, we define H(E) and
H(E → E′) which appear in Theorem 1 and prove Theorem 1 and 5. In Section 5, we
see how homological algebra has been applied to rewriting in other contexts and then we
conclude in Section 6.

2 Preliminaries

A signature Σ is a set associated with a function α : Σ→ Z≥0. For f ∈ Σ, we say that f is
of arity n if n = α(f). Let V be a countably infinite set distinct from Σ. A term over Σ and
V is a formal object defined inductively as follows:

1. Any element in V , called a variable, is a term.
2. For f ∈ Σ of arity n, if t1, . . . , tn are terms, then f(t1, . . . , tn) is also a term.

Here, f(t1, . . . , tn) is a formal expression and not a function application, though its semantics
is often treated as a function application. If c ∈ Σ is of arity 0, we write just c for c(). For a
signature Σ, let Term(Σ, V ) denote the set of terms over Σ and V . Also, in this paper, the
variables we use are x1, x2, . . . , so we just write Term(Σ) for Term(Σ, {x1, x2, . . . }). If f is a
symbol of arity 2 that is usually written in infix notation (e.g., +, ×), we write t1ft2 instead
of f(t1, t2). We write Var(t) for the set of variables that occur in t.

A substitution is a function V → Term(Σ, V ). For a term t and a substitution σ, tσ
denotes the term obtained by replacing all variables v in t with σ(v). If a substitution σ

satisfies σ(v1) = t1, . . . , σ(vn) = tn and σ(v) = v for any v ̸= v1, . . . , vn, σ is written as
{v1 7→ t1, . . . , vn 7→ tn}. Two terms t, s are unifiable if there exists a substitution σ such that
tσ = sσ. Such σ is called a unifier. A most general unifier (mgu) of unifiable terms t, s is a
unifier σ of t, s satisfying that for any other unifier σ′ of t, s, there exists a substitution τ

such that σ′ = στ .

A context is a term in Term(Σ, V ∪ {□}) that has just one □ in it. For a context
C ∈ Term(Σ, V ∪ {□}) and a term t ∈ Term(Σ, V ), C[t] denotes the term C{□ 7→ t}.

An equation is a pair of terms. Equations are written as l ≈ r. A rewrite rule is an
equation l ≈ r satisfying Var(l) ⊃ Var(r). For rewrite rules, we write l → r instead of
l ≈ r. A term-rewriting system (TRS) is a set of rewrite rules. For an equation l ≈ r and
a term t, we say that t is rewritten to s by l ≈ r, denoted t −−→

l≈r
s, if there is a context
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C and a substitution σ such that t = C[lσ] and s = C[rσ]. For a set of equations E and
two terms t, s, we say that t is rewritten to s by E, denoted t −→E s, if t −−→

l≈r
s holds for

some l ≈ r ∈ E. The reflexive transitive closure of the relation −→E is written as ∗−→E , and
the reflexive symmetric transitive closure of −→E is written as ∗←→E or ≈E . Two sets E,E′

of equations are equivalent if ≈E = ≈E′ . Two terms t, s are said to be E-unifiable if there
exists a substitution σ such that tσ ≈E sσ. Such a σ is called an E-unifier. If we consider
the problem of finding an E-unifier of two terms t, s, we write t ≈?

E s for the problem.

A TRS R is terminating if there is no infinite path t1 →R t2 →R t3 →R . . . .

Two terms t1, t2 are joinable by R if there exists a term s such that t1
∗−→R s

∗←−R t2.
A TRS R is confluent if, for any terms t, t1, t2, t1

∗←−R t
∗−→R t2 implies that t1 and t2 are

joinable.

A TRS R is complete if R is terminating and confluent.

Let R be a TRS and l1 ≈ r1, l2 ≈ r2 ∈ R be two rewrite rules. Suppose that the variables
of l2 ≈ r2 are renamed so that Var(l1) ∩Var(l2) = ∅. For some context C and nonvariable
term t, if t and l2 are unifiable with mgu σ and if C[t] = l1, then the pair (r1σ,C[r2σ]) is
called a critical pair of R. For example, suppose that we have two rules

A : f(f(x1, x2), x3) ≈ f(x1, f(x2, x3))
B : f(i(x4), x4) ≈ e.

The subterm f(x1, x2) of the left-hand side of A and f(i(x4), x4), the right-hand side of B,
can be unified with the mgu σ = {x1 7→ i(x4), x2 7→ x4, x4 7→ x4}. Then, the corresponding
critical pair is (f(i(x4), f(x4, x3)), e), as the following diagram shows.

f(f(i(x4), x4), x3)

f(i(x4), f(x4, x3)) e

A
B

3 A Computable Necessary Condition

Let Σ be a signature. For a set E of equations and two terms t, s, if there exists a complete
TRS R of E ∪ {t ≈ s}, Theorem 1 can be described more explicitly. To state the explicit
version of the theorem, we need some definitions.

▶ Definition 2. Let E be a set of equations. The degree of E, denoted by deg(E), is defined
by deg(E) = gcd{#il−#ir | l ≈ r ∈ E, i = 1, 2, . . . } where #it is the number of occurrences
of xi in t for t ∈ T (Σ) and gcd{0} is defined to be 0.

For example, deg({f(x1, x2, x2) ≈ x1, g(x1, x1, x1) ≈ e}) = gcd{0, 2, 3} = 1.

Let R = {l1 → r1, . . . , ln → rn} be a TRS and CP(R) = {(t1, s1), . . . , (tm, sm)} be
the set of the critical pairs of R. For any j ∈ {1, . . . ,m}, let aR

j , b
R
j be the numbers in

{1, . . . , n} such that the critical pair (tj , sj) is obtained by laR
j
→ raR

j
and lbR

j
→ rbR

j
, that is,

tj = raR
j
σ ← laR

j
σ = C[lbR

j
σ]→ C[rbR

j
σ] = sj for some substitution σ and single-hole context

C after suitably renaming variables in laR
j
→ raR

j
and lbR

j
→ rbR

j
. Suppose R is complete.

We fix an arbitrary rewriting strategy and for a term t, let nrR
i (t) be the number of times

li → ri is used to reduce t into its R-normal form with respect to the strategy.
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For a natural number d, we write Zd for Z/dZ, the integers modulo d.

▶ Definition 3. Let d = deg(R). The matrix D(R) is a n×m matrix over Zd whose (i, j)-th
entry D(R)ij (1 ≤ i ≤ n, 1 ≤ j ≤ m) is [nrR

i (sj)− nrR
i (tj) + δ(bR

j , i)− δ(aR
j , i)] ∈ Zd where

δ(x, y) is the Kronecker delta. (That is, δ(x, y) = 1 if x = y and 0 if x ̸= y.)

In other words, the (i, j)-th entry of D(R) is the difference between (1) the number of li → ri

in the upper path from t to t̂ in the diagram below, and (2) that in the lower path.

tj . . .

t t̂

sj . . .

The degree deg(E) and the matrix D(R) are introduced in [8] to give a lower bound of
number of equational axioms that is needed to present a given equational theory.

▶ Definition 4. Let E = {l′1 ≈ r′
1, . . . , l

′
n′ ≈ r′

n′} be a set of equations and R = {l1 →
r1, . . . , ln → rn} be a complete TRS. Suppose E∗ ⊂ R∗. Then, U(E,R) is the n× n′ matrix
over Zd whose (i, j)-th entry is [nrR

i (l′j)− nrR
i (r′

j)] ∈ Zd where d = deg(R).

For a commutative ring A, two n×m matrices M,N over A are said to be equivalent if
N = PMQ for some invertible n× n matrix P and m×m matrix Q over R. We write In,m

for the n×m diagonal matrix whose diagonal elements are all 1.

Here is the explicit version of Theorem 1.

▶ Theorem 5. Let E = {u1 ≈ v1, . . . , uk ≈ vk} be a set of equations and t, s be two terms.
Suppose that there is a complete TRS R = {l1 → r1, . . . , ln → rn} of E ∪ {t ≈ s} and
deg(R) ̸= 1. If t, s are E-unifiable, then the augmented matrix (D(R)|U(E,R)) is equivalent
to In,m and n ≤ m where m is the number of columns of (D(R)|U(E,R)).

We will prove Theorem 1 and how it implies Theorem 5 in Section 4 after introducing more
algebraic tools.
▶ Remark 6. Although the matrices D(R) and U(E,R) depend on the choice of rewriting
strategy, the necessary condition stated in Theorem 5 does not depend on the choice. We
will prove this fact in Section 4.
▶ Remark 7. It is algorithmically checkable whether a matrix over Zd is equivalent to In,m

in polynomial time by computing the Smith normal form [4, Chapter 15]. Note that if the
degree d is prime, since Zd is a field, it suffices to get a diagonal matrix by elementary
row/column operations and see all diagonal elements are nonzero.

We shall see some examples.

▶ Example 8. Let E1 be the set of equations

B1 : 0 + x1 ≈ x1, B2 : s(x1) + x2 ≈ s(x1 + x2).

Consider the E1-unification problem x1 +x1 ≈?
E2

s(0). By applying Knuth-Bendix completion
to E1 ∪ {x1 + x1 → s(0)}, we obtain a complete TRS R1:

B1 : 0 + x1 → x1, C1 : x1 + x1 → 0, C2 : s(x1)→ x1.
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The degree of R1 is 2 and R1 has one critical pair Π′ : 0 ←−−
B1

0 + 0 −−→
C1

0 and the matrix
(D(R1)|U(E1, R1)) is given as


Π′ B1 B2

B1 1 1 0
C1 1 0 0
C2 0 0 0

.
Here, each entry of D(R1|U(E1, R1)) is thought of as an element in Z2. Since it does not
have full rank, x1 + x1 and s(0) are not E1-unifiable.

We can also consider the E1-unification problem x1 +x1 ≈?
E2

0. It has an obvious solution
x1 7→ 0, so the matrix corresponding to this problem must be equivalent to In,m for some
n,m. We give a complete TRS for E1 ∪ {x1 + x1}, its critical pairs, and the corresponding
matrix in the appendix.

More generally, consider the E1-unification problem x1 + x1 ≈?
E1

sn(0) where sn(0) =
s(. . . s︸ ︷︷ ︸

n

(0) . . . ). In fact, we can see that if n is odd, E′ = E1 ∪ {x1 + x1 ≈ sn(0)} is equivalent

to E1 ∪ {x1 + x1 ≈ s(0)} and if n is even, E′ is equivalent to E1 ∪ {x1 + x1 ≈ 0}.

▶ Example 9. Let E2 = {a(b(b(a(x1)))) ≈ x1}. It is known that E2 does not have a
complete TRS with a finite number of rewrite rules [9]. Consider the E2-unification problem
a(b(x1)) ≈?

E2
x1. Then, E2 ∪ {a(b(x1)) ≈ x1} has a complete TRS R2 = {a(b(x1)) →

x1, b(a(x1))→ x1}. Then, there are two critical pairs

a(x1) a(b(x1))→x1←−−−−−−−− a(b(a(x1))) b(a(x1))→x1−−−−−−−−→ a(x1),

b(x1) a(b(x1))→x1←−−−−−−−− b(a(b(x1))) b(a(x1))→x1−−−−−−−−→ b(x1).

It is easy to check that (D(R2)|U(E2, R2)) is the 2× 3 matrix whose entries are all 1 and so
it is not equivalent to I2,3. Therefore, a(b(x1)) and x1 are not E2-unifiable.

▶ Remark 10. As Example 9 indicates, it can be the case that it is difficult or impossible
to find a complete TRS of the given set E of equations but a complete TRS of E ∪ {t ≈ s}
is easy to find. The basic version of narrowing, the main existing tool for E-unification for
unspecified E, is applicable only when a complete TRS of E is given. So, it is notable that
Theorem 5 does not require us to find a complete TRS of E.

4 Homological Algebra on Equational Theories

The aim of this section is to define H(E) and H(E → E′), and to prove Theorem 1 and
Theorem 5. For that, we will construct some algebraic structures associated with E and
applies homological algebra to them. First, let us see the notion of resolution, which is often
used to define invariants of mathematical objects in many branches of mathematics. See [15]
as an introductory text.

Let R be a ring. We say that the sequence

. . .
fi+1−−−→Mi+1

fi−→Mi
fi−1−−−→Mi−1

fi−2−−−→ . . .

of left R-modules Mi and R-linear maps fi is exact if ker fi = im fi+1 holds. For a left
R-module M , a free resolution of M is an exact sequence

. . .
∂2−→ F2

∂1−→ F1
∂0−→ F0

ϵ−→M → 0
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61:6 A Homological Condition on Equational Unifiability

where each Fi is free. It is known that for any left R-module M , free resolutions of M exist.
A partial free resolution of M is a exact sequence of finite length

Fn
∂n−→ . . .

∂2−→ F2
∂1−→ F1

∂0−→ F0
ϵ−→M → 0

with free Fis.

The notion of resolution is defined not only for modules over a ring but also for modules
over a ringoid. In [11], Malbos and Mimram constructed a ringoid associated with a given
equational theory and defined invariants called homology groups using a free resolution over
that ringoid. We will also use the free resolution to define H(E) in Theorem 1. We shall see
their construction in the subsections from 4.1 to 4.3, then provide the definitions of H(E),
H(E → E′) and prove our main theorems.

4.1 Category of Bicontexts

We fix a signature Σ. Let t = ⟨t1, . . . , tn⟩ be an n-tuple of terms whose variables are in
{x1, . . . , xm} and s = ⟨s1, . . . , sm⟩ be an m-tuple of terms. We define their composition t ◦ s
by ⟨t1[s1/x1, . . . , sm/xm], . . . , tn[s1/x1, . . . , sm/xm]⟩ where ti[s1/x1, . . . , sm/xm] is the term
obtained by substituting sj for xj in ti for each j = 1, . . . ,m in parallel.

▶ Definition 11. A bicontext is a pair (C, t) of a context C and n-tuple of terms t =
⟨t1, . . . , tn⟩.

For two bicontexts (C, t) and (D, s), we define their composition (C, t)◦(D, s) by (C[D◦t], s◦t)
where D ◦ t = D[t1/x1, . . . , tn/xn] for t = ⟨t1, . . . , tn⟩.

▶ Definition 12. The category of bicontexts K consists of

Objects: natural numbers 0, 1, . . . ,
Morphisms K(n1, n2): bicontexts (C, t) where t is an n1-tuple of terms such that the
elements of t and C have variables in {x1, . . . , xn2} (except □ in C),
Identity: (□, ⟨x1, . . . , xn⟩)

and the composition is defined above.

4.2 Ringods

We consider an algebraic structure called ringoid.

▶ Definition 13. A ringoid R is a small Ab-enriched category. That is, each hom-set is
equipped with abelian group structure (homR(a, b),+, 0) and satisfies the following rules.

0 ◦ x = 0, x ◦ 0 = 0, z ◦ (x+ y) = z ◦ x+ z ◦ y, (z + w) ◦ x = z ◦ x+ w ◦ x

where x, y ∈ homR(a, b), z, w ∈ homR(b, c).

A ringoid can be thought of as a “many-sorted” ring. If a ringoid has just a single object,
its morphisms form a ring with addition + and multiplication ◦. If a ringoid has multiple
objects, each object can be thought of as a sort. We can add two morphisms x : a1 → b1,
y : a2 → b2 only if a1 = a2 and b1 = b2. Also, we can multiply them as composition y ◦ x
only if b1 = a2.
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For any small category C, there exists a ringoid Z⟨C⟩ called the ringoid freely generated by
C. The ringoid Z⟨C⟩ has the same objects as C and the hom-set Z⟨C⟩(a, b) between objects
a, b is the free abelian group generated by C(a, b). The composition of Z⟨C⟩ is given by
linearly extending the composition of C as (w + z) ◦ (x+ y) = w ◦ x+ w ◦ y + z ◦ x+ z ◦ y.

We can define an ideal of a ringoid and a module over a ringoid.

▶ Definition 14. Let R be a ringoid. An ideal of R is a subfunctor of the hom-bifunctor
R(−,−) : R×R → Ab. If I is an ideal of R, then we can define the category R/I whose
objects are those of R, morphisms are (R/I)(a, b) = R(a, b)/I(a, b), and the composition is
induced by that of R. Also, a structure of ringoid of R/I is induced by that of R.

▶ Definition 15. Let R be a ringoid.

A left R-module is a functor M : R → Ab satisfying M(x+y) = M(x)+M(y), M(0) = 0
for any x, y ∈ R(a, b), a, b ∈ Obj (R)). We define the scalar multiplication · : R(a, b)×
M(a)→M(b) as a ·m = M(a)(m).
A right R-module is a left Rop-module.
For two left R-modules M1, M2, an R-linear map f : M1 →M2 is a natural transforma-
tion. (We can define an R-linear map between right R-modules in the same manner.)

▶ Definition 16. Let M1 be a left R-module. A submodule of M1 is a left R-module M2 such
that there exists a monomorphism ϕ : M2 →M1 and ϕa : M2(a)→M1(a) is an inclusion of
sets for each object a of R.

We define left free R-modules over ringoids.

▶ Definition 17. Let P be a family of sets Pa (a ∈ Obj (R)). The left free R-module
generated by P , denoted by RP , is defined as follows. For each a ∈ Obj (R), (RP )(a) is the
abelian group consisting of formal finite sums

∑
x∈Pb,b∈Obj(R) λxx, (λx ∈ R(b, a)). Here,

the underline for x above is added to emphasize the difference between λx and x. The scalar
multiplication is given as r · (

∑
x λxx) =

∑
x(r ◦ λx)x (r ∈ R(a, c)).

For a ringoid R, let ModR denote the category of left R-modules and R-linear maps.
The following proposition tells us that ModR has good properties so that we can apply
homological algebra to it.

▶ Proposition 18 ([13]). ModR is an abelian category and any left R-module has a free
resolution.

We do not give the details of this proposition, but one of the important consequences of being
abelian is that we have the notions of kernel and image of an R-linear map in the category.

▶ Definition 19. Let M1,M2 be two left R-modules and f : M1 →M2 be an R-linear map.
Then, the kernel and the image of f are defined as (ker f)(a) = ker fa, (im f)(a) = im fa for
each object a. Here, fa is an abelian group homomorphism, so ker and im in the right-hand
sides are the kernel and the image for group homomorphisms.

Many other notions for modules over a ring can be generalized.

▶ Definition 20. Let M1 be a left R-module and M2 be a submodule of M1. The quotient
module M1/M2 is the left R-module given as (M1/M2)(a) = M1(a)/M2(a).

▶ Definition 21. Let M be a left R-module. For an index set I, for each i ∈ I, let ai be an
object of R and xi be an element of M(ai). The submodule generated by {xi}i∈I is the left
R-module N such that for each a ∈ Obj (R), N(a) is the abelian group consisting of finite
sums

∑
i∈I λi · xi (λi ∈ R(a, ai)).

MFCS 2021



61:8 A Homological Condition on Equational Unifiability

▶ Definition 22. Let M1 be a right R-module and M2 be a left R-module. The tensor product
M1 ⊗R M2 of M1 and M2 is defined as the coend M1 ⊗R M2 =

∫ a
M1(a) ⊗ M2(a). That

is, an abelian group M1 ⊗R M2 is the tensor product of M1, M2 if there is an extranatural
transformation ζ : M1(−)⊗M2(−)→M1 ⊗R M2 such that for any abelian group A and any
extranatural transformation γ : M1(−) ⊗M2(−) → A, there exists a unique abelian group
homomorphism ϕ : M1 ⊗R M2 → A with γa = ϕ ◦ ζa for any a ∈ Obj (R).

Explicitly, M1 ⊗R M2 is the abelian group
(⊕

a∈Obj(R) M1(a)⊗M2(a)
)
/R where R is

the abelian group generated by M1(fop)(x)⊗y−x⊗M2(f)(y) for any f : a→ a′, x ∈M1(a′),
y ∈M2(a), a, a′ ∈ Obj (R).

Let M1,M2 be two left R-modules and N1, N2 be two right R-modules. For linear maps
f : M1 →M2 and g : N1 → N2, we define g ⊗ f : N1 ⊗R M1 → N2 ⊗R M2 to be the abelian
group homomorphism (f ⊗ g)(n⊗m) = g(n)⊗ f(m). If N1 = N2 and g is the identity map,
we write N1 ⊗ f instead of g ⊗ f .

The tensor product of modules over a ringoid satisfies many properties of tensor product
of modules over a ring. In particular, we have

▶ Lemma 23. Let N be a right R-module and M1, M2, M3 be left R-modules. If the
sequence M1

f−→M2
g−→M3 → 0 is exact, then the sequence N ⊗R M1

N⊗f−−−→ N ⊗R M2
N⊗g−−−→

N ⊗R M3 → 0 is also exact.

4.3 Partial Free Resolutions

For the category of bicontexts K, consider the ringoid Z⟨K⟩. Then, we will define a ringoid
RE such that any two equivalent sets E,E′ of equations give rise to isomorphic ringoids
RE ≃ RE′ .

For a term t and a positive integer i, let κi(t) be the linear combination of contexts given
inductively by

κi(xi) = □, κi(xj) = 0 (i ̸= j), κi(f(t1, . . . , tk)) =
k∑

j=1
f(t1, . . . , □︸︷︷︸

jth

, . . . , tn)[κi(tj)].

Application of linear combination of contexts to a context which appears in the last rule is
defined by C[D1 + · · · + Dn] = C[D1] + · · · + C[Dn]. Also, for a term t, symbol f ∈ Σ(n),
and n-uple of terms u = ⟨s1, . . . , sn⟩, let φf,u(t) be the linear combination of all contexts C
satisfying C[f(s1, . . . , sn)] = t.

We define the ideal IE of Z⟨K⟩. Let IE(m,n) be the subgroup of Z⟨K⟩(m,n) generated
by elements of the form

(κi(s)−κi(t), w), (φf,vu(t◦v)−φf,vu(s◦v)−φf,u(t)◦v+φf,u(s)◦v, w), (□, w1)−(□, w2)

for any s ≈E t, w1 ≈E w2. Then, define RE to be Z⟨K⟩/IE .1 For a morphism x of
Z⟨K⟩, we write [x]E or just [x] for the equivalence class of x in RE . If we consider the
free module REP for a family P of sets P0, P1, . . . , we write C1pu1 + · · · + Ckpuk for
[(C1, u1) + · · · + (Ck, uk)]p ∈ REP (i). By definition, for any E′ equivalent to E, RE′ is
isomorphic to RE .

1 For the original definition of RE in [11], the generators φf,vu(t◦v)−φf,vu(s◦v)−φf,u(t)◦v +φf,u(s)◦v

of IE(m, n) was not given. However, we need these generators to prove ∂1(ˆ̂t) = φ(t̂) − φ(t) which is
used to show ∂1 ◦ ∂2 = 0 in Appendix A of [11]. We do not need to change the other parts of the proof.
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Let d = deg(E). Consider the right RE-module that maps any object n to Zd and whose
scalar multiplication · : Zd×RE(m,n)→ Zd is given by [1] · [(C1, t1)+ · · ·+(Ck, tk)] = [k]. We
write Zd also for this right RE-module. We show that the scalar multiplication is well-defined.
If C1 + · · ·+Ck = κi(s) and D1 + · · ·+Dk′ = κi(t) for some s ≈ t, then k − k′ = #is−#it

is divided by d by the definition of deg(E). Thus, [1] · [
∑k

i=1(Ci, t) −
∑k′

i=1(Di, t)] = [0].
Also, since the number of bicontexts in φf,u(t) is the number of subterm f(u) in t, for any
l ≈ r ∈ E, f ∈ Σ, t ∈ T (Σ), the linear combination φf,u(r ◦ t)−φf,u(l ◦ t)−φf,u(r) +φf,u(l)
consists of da contexts for some nonnegative integer a. Therefore, [1] · [φf,u(r ◦ t)− φf (l ◦
t)− φf,u(r) + φf,u(l)] = [0], so the scalar multiplication for Zd is well-defined.

Let X1 be a singleton set {⋆}, Xi be the empty set for i = 0 or i = 2, 3, . . . , and X be
the family consisting of Xis. We define a left RE-module ZE to be the quotient REX/N

where N is the submodule of REX generated by
∑m

i=1 κi(u) ◦ t⋆ti−□⋆⟨u ◦ t⟩ for every term
u with Var(u) ⊂ {x1, . . . , xm} and m-uple t = ⟨t1, . . . , tm⟩ of terms. Then, we construct a
partial free resolution of ZE

REPE
2

∂E
1−−→ REP1

∂E
0−−→ REP0

ϵE

−→ ZE → 0 (1)

as follows. First, P0,P1, PE
2 are families of sets (P0)j , (P1)j , (PE

2 )j given as

(P0)j =
{
{1} (j = 1)
∅ (j ̸= 1)

, (P1)j = Σ(j) = {f ∈ Σ | f has arity j}

(PE
2 )j = {l ≈ r ∈ E | Var(l) ∪Var(r) ⊂ {x1, . . . , xj}}.

Then, we define RE-linear maps ϵE , ∂E
0 , ∂E

1 as

ϵE(1) = ⋆, ∂E
0 (f) =

n∑
i=1

f(x1, . . . , □︸︷︷︸
ith

, . . . , xn)1⟨xi⟩ − 1⟨f(x1, . . . , xn)⟩,

∂E
1 (l ≈ r) = φ(r)− φ(l)

where φ : Term(Σ)→ REP1 is defined inductively as

φ(xi) = 0, φ(f(t1, . . . , tn)) = f⟨t1, . . . , tn⟩+
n∑

i=1
f(t1, . . . , □︸︷︷︸

ith

, . . . , tn)φ(ti).

If there is a complete TRS R of E, we can extend the sequence (1) to

RPR
3

∂R
2−−→ RPR

2
∂R

1−−→ RP1
∂R

0−−→ RP0
ϵR

−→ ZR → 0. (2)

Here, PR
3 is the family of sets (PR

3 )j where each (PR
3 )j consists of 5-uple (l→ r, t, C, l′ → r′, t′)

such that

l ◦ t = C[l′ ◦ t′] and r ◦ t← l ◦ t = C[l′ ◦ t′]→ C[r′ ◦ t′] is a critical peak, and
either l→ r or l′ → r′ is in (PR

2 )j and the other is in (PR
2 )k for some k ≤ j.

For such a 5-uple α = (l→ r, t, C, l′ → r′, t′), ∂R
2 (α) is defined as

∂R
2 (α) = l′ → r′t′ − Cl→ rt+ r′ ◦ t′

∧∧

− C[r ◦ t]
∧∧

where ˆ̂s is defined for any term s as follows. Suppose s is rewritten to its normal form ŝ by
rewrite rules p1 → q1, . . . , pk → qk ∈ R as

s = C1[p1◦u1], C1[q1◦u1] = C2[p2◦u2], . . . , Ck−1[qk−1◦uk−1] = Ck[pk◦uk], Ck[qk◦uk] = ŝ

for some Cis and uis. Then, ˆ̂s =
∑k

i=1 Cipi → qiui.
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▶ Theorem 24 ([11]). If R is a complete TRS, the sequence (2) is exact.

The following lemma is useful for the next subsection.

▶ Lemma 25. Let E be a set of equations with degree d. For any family P of sets P0, P1, . . . ,
we have an abelian group isomorphism Zd ⊗RE REP ≃ Zd

⊎
P where

⊎
P is the disjoint

union of Pis and the right-hand side is the free module generated by
⊎
P over Zd as a ring.

Proof. Consider the abelian group homomorphism ψ : Zd

⊎
P → Zd⊗RE REP , p 7→ 1⊗ p.

Then, ψ is surjective since 1⊗Cpu = 1·[(C, u)]⊗p = 1⊗p for any 1⊗Cpu ∈ Zd⊗REREP . Let
γi : Zd⊗(REP (i))→ Zd

⋃
P be the abelian group homomorphism 1⊗Cpu 7→ p. We can check

that γis form an extranatural transformation γ, so we have ϕ : Zd ⊗RE REP → Zd

⊎
P with

γi = ϕ◦ζi for ζi : Zd⊗(REP (i))→ Zd⊗⊗REP . Then, ϕ(ψ(p)) = ϕ(ζi(1⊗p)) = γi(1⊗p) = p.
Thus, ψ is an isomorphism. ◀

4.4 Invariant H(E)

We are ready to define H(E).

▶ Definition 26. For a set E of equations, we define the abelian group H(E) by

H(E) = Zd ⊗RE ker ∂E
0 = Zd ⊗RE im ∂E

1 (d = deg(E)).

If two sets E,E′ of equations are equivalent, since RE and RE′ are isomorphic and ∂E
0 = ∂E′

0 ,
we have H(E) ≃ H(E′). That is, we can see that H(E) is invariant under the equivalence of
E. (This holds especially since we are fixing a signature Σ.)

Let E,E′ be sets of equations with E∗ ⊂ E′∗. Then, the functor πE,E′ : RE → RE′ given
as [(C1, u1) + · · ·+ (Ck, uk)]E 7→ [(C1, u1) + · · ·+ (Ck, uk)]E′ is well-defined. For a family of
sets P , πE,E′ extends to πE,E′

P : REP → RE′
P . Then, we can see that the diagram

REP1 REP0

RE′P1 RE′P0

∂E
0

πE,E′
P1

πE,E′
P0

∂E′
0

commutes. Therefore, if we restrict πE,E′

P1
to ker ∂E

0 , we get πE,E′

P1
|ker ∂E

0
: ker ∂E

0 → ker ∂E′

0 .
Let d = deg(E) and d′ = deg(E′). Since E∗ ⊂ E′∗, d′ divides d and we can define a group
homomorphism qd,d′ : Zd → Zd′ as qd,d′(n + dZ) = n + d′Z. Consider the composition of
abelian group homomorphisms

Zd ⊗ (ker ∂E
0 (k)) fk−→ Zd′ ⊗ (ker ∂E′

0 (k)) ζk−→ Zd′ ⊗RE′ ker ∂E′

0

where fk = qd,d′ ⊗ (πE,E′

P1
|ker ∂E

0
(k)) and ζk is the extranatural transformation given in the

definition of tensor product. Since ζk ◦ fk (k = 0, 1, . . . ) form an extranatural transformation,
we get an abelian group homomorphism Zd ⊗RE ker ∂E

0 → Zd′ ⊗RE′ ker ∂E′

0 by naturality
and let H(E → E′) denote it. That is, H(E → E′) makes the following diagram commute.

Zd ⊗ (ker ∂E
0 (k)) Zd ⊗RE ker ∂E

0

Zd′ ⊗ (ker ∂E′

0 (k)) Zd ⊗RE′ ker ∂E′

0

ζk

fk H(E→E′)

ζk

(3)
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Thus, we have obtained an abelian group homomorphism H(E → E′) : H(E)→ H(E′).

Now, we can prove Theorem 1.

Proof of Theorem 1. Let F = E ∪ {t ≈ s}. If tσ ≈E sσ for some σ, then E is equivalent to
E′ = E ∪ {tσ ≈ sσ} and F is equivalent to F ′ = F ∪ {tσ ≈ sσ}. Since Zd ⊗RF ′ RF ′PF ′

2 is
freely generated by 1⊗ l ≈ r for l ≈ r ∈ F ′ (Lemma 25), H(F ′) = Zd⊗RF ′ im ∂F ′

1 is generated
by 1 ⊗ ∂F ′

1 (l ≈ r) for l ≈ r ∈ F ′. For l ≈ r ∈ E′, since H(E′ → F ′)(1 ⊗ ∂E′

1 (l ≈ r)) =
1⊗∂F ′

1 (l ≈ r), to show the surjectivity of H(E′ → F ′), it suffices to check that 1⊗∂F ′

1 (t ≈ s)
is in imH(E′ → F ′). We have 1⊗ ∂F ′

1 (t ≈ s− tσ ≈ sσ) = 0 ∈ Zd ⊗ im ∂F ′

1 since

1⊗ ∂F ′

1 (t ≈ s− tσ ≈ sσ) = 1⊗ (φ(s)− φ(t)− φ(sσ) + φ(tσ))
= 1⊗ (φ(s)− φ(t))− 1⊗ (φ(sσ)− φ(tσ))
= 1⊗ (φ(s)σ − φ(t)σ)− 1⊗ (φ(sσ)− φ(tσ)) = 0.

Therefore, 1⊗∂F ′

1 (t ≈ s) = 1⊗∂F ′

1 (tσ ≈ sσ) in Zd⊗RF im ∂F ′

1 . Also, since tσ ≈ sσ ∈ E′, we
have 1⊗ ∂F ′

1 (tσ ≈ sσ) = H(E′ → F ′)(1⊗ ∂E′

1 (tσ ≈ sσ)). Thus, 1⊗ ∂F ′

1 (t ≈ s) ∈ imH(E′ →
F ′). ◀

We show that Theorem 1 implies Theorem 5. Suppose R is a complete TRS with degree d.
First, notice that if d = 1, then Zd is a trivial group and so is H(R). Hence Theorem 1 is not
interesting in that case. We write ∂̃R

2 for the map Zd⊗∂R
2 : Zd⊗RRRRPR

3 → Zd⊗RRRRPR
2

and write ∂̌R
1 for the map Zd ⊗ (∂R

1 : RRPR
2 → im ∂R

1 ). Since the sequence

Zd ⊗RR RRPR
3

∂̃R
2−−→ Zd ⊗RR RRPR

2
∂̌R

1−−→ Zd ⊗RR im ∂R
1 → 0

is exact, H(E) = Zd ⊗RR im ∂R
1 is isomorphic to coker ∂̃R

2 = Zd ⊗RR RRPR
2 / im ∂̃R

2 .

Let E be a set of equations with degree d′ and R be a complete TRS with degree d such
that E∗ ⊂ R∗. We define h : Zd′ ⊗RE REPE

2 → Zd⊗RRRRPR
2 by h(1⊗ t ≈ s) = 1⊗ (ˆ̂t− ˆ̂s).

▶ Lemma 27. ∂̌R
1 ◦ h = H(E → R) ◦ ∂̌E

1 . That is, the following diagram commutes:

Zd′ ⊗RE REPE
2 Zd′ ⊗RE im ∂E

1

Zd ⊗RR RRPR
2 Zd ⊗RR im ∂R

1 .

∂̌E
1

h H(E→R)

∂̌R
1

Proof. First, we show, by induction, ∂̌R
1 (1 ⊗ ˆ̂t) = 1 ⊗ (φ(t̂) − φ(t)) ∈ Zd ⊗RR im ∂R

1 for
any term t. If ˆ̂t = 0, or equivalently, t is normal, then the equality trivially holds. If
ˆ̂t = Cl ≈ ru + ˆ̂t′ (C[l ◦ u] = t, C[r ◦ u] = t′) and ∂̌R

1 (1 ⊗ ˆ̂t′) = 1 ⊗ (φ(t̂) − φ(t′)), then
∂̌R

1 (1⊗ ˆ̂t) = 1⊗(φ(t̂)−φ(t′)+φ(r)−φ(l)). Since 1⊗(φ(r)−φ(l)) = 1⊗(Cφ(r)u−Cφ(l)u) =
1⊗ (φ(t′)− φ(t)), we have ∂̌R′

1 (ˆ̂t) = 1⊗ (φ(t̂)− φ(t)).

Now, we have ∂̌R
1 (h(1 ⊗ t ≈ s)) = ∂̌R

1 (1 ⊗ ˆ̂t) − ∂̌R
1 (1 ⊗ ˆ̂s) = 1 ⊗ (φ(s) − φ(t)) and thus

H(E → R)(∂̌E
1 (1⊗ t ≈ s)) = 1⊗ (φ(s)− φ(t)). ◀
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The above lemma implies that the map

h : Zd′ ⊗RE REPE
2 / ker ∂̌E

1 → Zd ⊗RR RRPR
2 / ker ∂̌R

1 , [x] 7→ [h(x)]

is well-defined since if x ∈ ker ∂̌E
1 , then ∂̌R

1 (h(x)) = H(E → R)(∂̌E
1 (x)) = 0. Also, H(E → R)

is surjective iff h is surjective since we have the diagram

Zd′ ⊗RE REPE
2 / ker ∂̌E

1 Zd′ ⊗RE im ∂E
1

Zd ⊗RR RRPR
2 / ker ∂̌R

1 Zd ⊗RR im ∂R
1 .

≃

h H(E→R)

≃

Theorem 5 follows from Theorem 1 and the lemma below.

▶ Lemma 28. The map H(E → R) is surjective iff the matrix (D(E)|U(E,R)) is equivalent to
In,m and n ≤ m where n (resp. m) is the number of rows (resp. columns) in (D(R)|U(E,R)).

Proof. We can see that U(E,R) is a matrix representation of h and D(R) is a matrix
representation of ∂̃R

2 . So, (D(E)|U(E,R)) is equivalent to In,m and n ≤ m iff the map

(Zd ⊗RR RRPR
3 )× (Zd ⊗RE REPE

2 )→ Zd ⊗RR RRPR
2 , (x, y) 7→ ∂̃R

2 (x) + h(y)

is surjective.

Suppose H(E → R) is surjective. Then, h is surjective and so for any z ∈ Zd⊗RR RRPR
2 ,

we have y ∈ Zd′ ⊗RE REPE
2 and z′ ∈ ker ∂̌R

1 satisfying z = h(y) + z′. Since ker ∂̌R
1 = im ∂̃R

2 ,
there exists x such that ∂̃R

2 (x) = z′. Therefore, the map (x, y) 7→ ∂̃2(x) + h(y) is surjective.
The converse can be shown in a similar way. ◀

The above lemma implies that the necessary condition stated in Theorem 5 is independent
of the choice of rewriting strategy. (∵ The map H(E → R) is defined independently from
rewriting strategies.)

4.5 Functoriality

For a signature Σ, consider the category EΣ such that its objects are sets of equations over
Σ and for each pair of objects E,E′ with E∗ ⊂ E′∗, there exists exactly one morphism
E → E′. Then, we shall see that H : EΣ → Ab is a functor. It is straightforward to show
that H(E → E) is an identity map, so we show

H(E′ → E′′) ◦ H(E → E′) = H(E → E′′) (4)

for any E,E′, E′′ with E∗ ⊂ E′∗ ⊂ E′′∗. Recall that H(E → E′) is defined using the functor

πE,E′
: RE → RE′

, [(C1, u1) + · · ·+ (Ck, uk)]E 7→ [(C1, u1) + · · ·+ (Ck, uk)]E
′
.

For a set E′′ of equations with E′∗ ⊂ E′′∗, we can see πE′,E′′ ◦ πE,E′ = πE,E′′ and so

qd′,d′′
⊗ πE′,E′′

P1
◦ qd,d′

⊗ πE,E′

P1
= qd,d′′

⊗ πE,E′′

P1
. (5)



M. Ikebuchi 61:13

As we saw that the diagram (3) commutes, we have the commutative diagram

Zd ⊗ (ker ∂E
0 (k)) Zd ⊗RE ker ∂E

0

Zd′ ⊗ (ker ∂E′

0 (k)) Zd′ ⊗RE′ ker ∂E′

0

Zd′′ ⊗ (ker ∂E′′

0 (k)) Zd′′ ⊗RE′′ ker ∂E′′

0

ζk

qd,d′
⊗πE,E′

P1
qd,d′′

⊗πE,E′′
P1

H(E→E′)
H(E→E′′)ζk

qd′,d′′
⊗πE′,E′′

P1
H(E′→E′′)

ζk

where d = deg(E), d′ = deg(E′), and d′′ = deg(E′′). By (5) and by the uniqueness of
H(E → E′′), we obtain the equality (4).

5 Related Work

5.1 Free Resolutions in Rewriting

The partial free resolution (2) was given by Malbos and Mimram in [11] to compute invariants
called homology groups of an equational theory. For a signature Σ and set E of equational
theory over Σ, if we have a free resolution . . . δ3−→ F3

δ2−→ F2
δ1−→ F1

δ0−→ F0
η−→ ZE → 0 of ZE ,

the i-th homology group Hi(Σ, E) is defined as the abelian group ker(Zd⊗ δi−1)/ im(Zd⊗ δi).
As a general fact of homological algebra, it is shown that the homology groups do not depend
on the choice of free resolution. Also, if E′ is a set of equations over Σ′ and (Σ′, E′) is Tietze
equivalent (see [11] for the definition) to (Σ, E), H(Σ′, E′) is isomorphic to H(Σ, E). The
partial free resolution (2) is useful to compute the homology groups since each generating
set Pi is finite. Also, it is shown that for any signature Σ′ and set E′ of equations over Σ′,
if (Σ′, E′) is Tietze equivalent to (Σ, E), E′ has at least s(H2(Σ, E)) elements where s(A)
is the minimum number of generators of A. In [8], the author showed that for a set E′ of
equations over Σ which E is also over, if E′ is equivalent to E (in the sense E∗ = E′∗), E′

has at least s(H2(Σ, E)) + s(im(Zd ⊗ ∂1)) elements.

Homology groups are defined for many mathematical objects. Homology groups of a
group, also called group homologies, have a close relationship with homology groups of an
equational theory. For a group G, its homology Hi(G) is defined as follows. Consider the
group ring Z⟨G⟩ and a free resolution of Z as a left Z⟨G⟩-module

. . .
δ3−→ F3

δ2−→ F2
δ1−→ F1

δ0−→ F0
η−→ Z→ 0,

then Hi(G) = ker(Z ⊗ δi−1)/ im(Z ⊗ δi). If a group G is presented by some generators
S = {g1, g2, . . . } and relations T = {r1 = 1, r2 = 1, . . . }, it is known that there is a partial
free resolution

Z⟨G⟩T → Z⟨G⟩S → Z⟨G⟩ → Z→ 0.

(See [3, Exercise 3 in §II.5] for example.)

In [14], Squier considered free resolutions of Z as a module over the monoid ring Z⟨M⟩
for a monoid M . Also in this case, if M is presented by generators S = {g1, g1, . . . } and
relations T = {l1 = r1, l2 = r2, . . . }, we have a partial free resolution

Z⟨M⟩T → Z⟨M⟩S → Z⟨M⟩ → Z→ 0.

Moreover, he showed that if the relations form a complete string rewriting system, the partial
free resolution is extended to
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Z⟨M⟩U → Z⟨M⟩T → Z⟨M⟩S → Z⟨M⟩ → Z→ 0.

where U is the set of critical pairs. This resolution inspired our free resolution (2) for an
equational theory.

5.2 Narrowing

For a TRS R, a term s is said to be narrowable into a term t if there exist a rule l→ r ∈ R, a
context C, and non-variable term s′ such that s = C[s′], s′ and l are unifiable with the mgu
σ, and t = C[r]σ. (We rename variables in l so that Var(l) ∪Var(s) = ∅.) In that case, we
write s⇝σ,R t. The sequence t0 ⇝σ1,R t1 ⇝σ2,R · · ·⇝σn,R tn is abbreviated to t0 ⇝∗

σ,R tn
for σ = σ0σ1 . . . σn. For two substitutions σ, θ and a set X of variables, σ is more general
modulo R on X than θ, denoted σ ≤X

R θ, if there exists a substitution τ such that xθ ≈R xστ

for any x ∈ X. Then, it is known that narrowing is a complete procedure for R-unification:

▶ Theorem 29 ([7]). Suppose that R is complete and eq be a new symbol with arity 2.

If eq(s, t)⇝∗
σ,R eq(s′, t′) and s′, t′ are unifiable with the mgu τ , s, t are R-unifiable with

the unifier στ .
If s, t are R-unifiable with a unifier θ, then there exist a narrowing sequence eq(s, t)⇝∗

σ,R

eq(s′, t′) and an mgu τ of s′, t′ such that στ ≤Var(eq(s,t))
R θ.

Consider Example 1 again. We can say x1 + a and x1 + b are not E1-unifiable since
eq(x1 + a, x1 + b) is not narrowable by any rules in E1.

For Example 2, however, we have an infinite narrowing sequence from eq(x1 + x1, s(0)):

eq(x1 + x1, s(0))⇝x1 7→s(x1),E2 eq(s(x1 + s(x1)), s(0))
⇝x1 7→s(x1),E2 eq(s(s(x1 + s(s(x1)))), s(0))
⇝x1 7→s(x1),E2 . . .

so we can see that narrowing is a semi-decision procedure of the problem of equational
unification. It has been studied that what kind of restriction on a TRS ensures termination
of narrowing [1].

6 Conclusion

We have obtained a functor H : EΣ → Ab where EΣ is the category of sets of equations and
proved that E-unifiability of two terms t, s implies the surjectivity of the homomorphism
H(E → E ∪ {t ≈ s}). In case where E ∪ {t ≈ s} has a complete TRS, the surjectivity of
H(E → E ∪ {t ≈ s}) is equivalent to the condition that the matrix (D(R)|U(E,R)) has full
rank. Therefore, our theorem gives a sound procedure for checking non-E-unifiability.
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A The matrix for E1 ∪ {x1 + x1 ≈ 0}

The TRS E1 ∪ {x1 + x1 ≈ 0} has the following complete TRS R3:

B1 : 0 + x1 → x1 B2 : s(x1) + x2 → s(x1 + x2) D1 : x1 + x1 → 0
D2 : s(s(x1))→ x1 D3 : x1 + s(x1)→ s(0) D4 : s(x1) + x1 → s(0).

The critical pairs are listed in Fig. 1 and the matrix (D(R3)|U(E1, R3)) is given as follows.



Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 B1 B2

B1 1 1 0 0 0 0 0 0 0 1 0
B2 0 0 0 1 1 0 0 1 0 0 1
D1 1 0 0 1 1 0 0 1 0 0 0
D2 0 0 0 1 0 1 1 1 0 0 0
D3 0 1 0 1 0 1 1 1 0 0 0
D4 0 0 0 0 1 1 1 0 0 0 0


It is not too hard to check that it has full rank.
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0 + 0

0

B1

D1

Π1 0 + s(0)

s(0)

B1

D3

Π2 s(s(x1)) + x2

s(s(x1) + x2) x1 + x2

s(s(x1 + x2))

D2
B2

B2 D2

Π3

s(x1) + s(s(x1))

s(x1 + s(s(x1))) s(0)

s(x1 + x1)

B2

D3

D2 D1

Π4
s(x1) + x1

s(x1 + x1)

s(0)

D4
B2

D1

Π5

s(x1) + s(s(x1))

s(x1) + x1

s(0)

D3
D2

D4

Π6 s(s(x1)) + s(x1)

x1 + s(x1)

s(0)

D4
D2

D3

Π7

s(x1) + s(x1)

s(x1 + s(x1)) 0

s(s(0))

D1
B2

D3
D2

Π8

Figure 1 Critical pairs of R3 in Example 3.
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Using a recently introduced algebraic framework for classifying fragments of first-order logic, we
study the complexity of the satisfiability problem for several ordered fragments of first-order logic,
which are obtained from the ordered logic and the fluted logic by modifying some of their syntactical
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1 Introduction

The study of computational properties of fragments of first-order logic is an active research
area, which has been motivated by the general observation that most of the logics used
in computer science applications, such as the description logics, can be translated into
first-order logic [5]. The main goal of this area is to discover expressive fragments which have
nice computational properties; in particular, their satisfiability problem – the problem of
determining whether a given sentence of the fragment is satisfiable – should be decidable.
Perhaps the most widely studied decidable fragments of first-order logic are the two-variable
logic FO2 and the guarded fragment GF, and their various extensions, see for example
[2, 3, 11, 17]. Recently there has been an increasing interest on studying fragments that we
refer to in this paper collectively as the ordered fragments [1, 12, 13, 14].

Informally speaking, we define a fragment of first-order logic to be ordered, if the syntax
of the fragment restricts permutations of variables (with respect to some ordering of the
variables) and the order in which the variables are to be quantified. To illustrate these
restrictions, consider the sentence

∀v1(P (v1) → ∃v2(R(v1, v2) ∧ ∀v3S(v1, v2, v3))).

This sentence is ordered in the sense that variables occur in the right order in the atomic
formulas, and they are quantified in the correct order. This particular sentence belongs to
the most well-known member of this family of logics, namely the so-called fluted logic, which
was proved to have a Tower-complete satisfiability problem in [13].

Another important ordered fragment, which is also relevant for the present work, is the
so-called ordered logic, which on the level of sentences is a fragment of fluted logic (for a
formal definition of this logic we refer the reader to section 3). In [4] it was proved that the
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complexity of the satisfiability problem of this logic is in Pspace, by reducing this problem to
the satisfiability problem of modal logic over serial frames. It turns out that the satisfiability
problem of this fragment is also Pspace-complete, and the proof for Pspace-hardness can
be found in the full version of this paper.

Thus the aforementioned syntactical restrictions, which guarantee that the formulas of
the fragment are ordered, seem to guarantee that the underlying fragments are decidable.
Another aspect that makes the ordered fragments of first-order logic interesting is that they
are orthogonal in expressive power with respect to other well-known fragments of first-order
logic, such as the guarded fragments. For instance, the formula ∀v1∀v2∀v3R(v1, v2, v3) is
clearly ordered, but it expresses a property that is, for example, neither expressible in GF
nor in FO2. Thus they form a genuinely new family of decidable fragments of first-order
logic, and hence they provide us with a fresh perspective on the question of what makes a
fragment of first-order logic decidable.

Ordered fragments can also be used to tame the complexity of decidable fragments. To
give an example of what we mean by this, we mention the recent work conducted in [1] where
the author showed, among other results, that even though the complexity of the satisfiability
problem of GF is 2ExpTime-complete, it becomes ExpTime-complete if we restrict attention
to the set of formulas that also belong to the fluted logic. More precisely the author introduced
a new ordered fragment, namely the forward guarded fragment which contains as a proper
subset the aforementioned intersection of GF and the fluted logic, and then proceeded to
prove that the satisfiability problem of this stronger logic is ExpTime-complete.

Since the syntax of ordered logics restricts heavily the permutations of variables and the
order in which the variables are quantified, their syntax can often be presented naturally in a
variable-free way. Indeed, the fluted logic was originally discovered by Quine as a by-product
of his attempts to present the full syntax of first-order logic in a variable-free way by using
the predicate functor logic [15, 16]. Interestingly, this approach was also adopted in the
recent papers [12, 14], where the fluted logic was presented using its variable-free syntax.

Recently a research program was introduced in [6, 7, 10] for classifying fragments of
first-order logic within an algebraic framework that is closely related to the aforementioned
predicate functor logic. In a nutshell, the basic idea is to identify fragments of first-order
logic with finite algebraic signatures (for more details, see the next section). The algebraic
framework naturally suggests the idea of defining logics with limited permutations, and hence
it is well suited for defining various logics that belong to the family of ordered fragments.

The main purpose of the present work is to apply the aforementioned algebraic framework
to study how the complexities of ordered and fluted logic change, if we modify their syntax
in various ways. The first question that we study in this paper is whether one could extend
the syntax of ordered logic while maintaining the requirement that the complexity of the
satisfiability problem remains relatively low. We will formalize different minimal extension
of the ordered logic using additional algebraic operators and study the complexities of the
resulting logics. The picture that emerges from our results seems to suggest that even if one
modifies the syntax of the ordered logic in a very minimal way, the resulting logics will most
likely have much higher complexity. For instance, if we relax even slightly the order in which
the variables can be quantified, the resulting logic will have NExpTime-hard satisfiability
problem. However, there are also exceptions to this rule, since the complexity of ordered
logic with equality turns out to be the same as the complexity of the regular ordered logic.

Motivated by the recent study of one-dimensional guarded fragments conducted in [8], we
will also study the one-dimensional fragments of fluted logic and ordered logic. Intuitively a
logic is called one-dimensional if quantification is limited to applications of blocks of existential
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(universal) quantifiers such that at most one variable remains free in the quantified formula.
Imposing the restriction of one-dimensionality to fluted logic and ordered logic decreases quite
considerably the complexity of the underlying logics: the complexity of the one-dimensional
fluted logic is NExpTime-complete while the complexity of the one-dimensional ordered logic
(even with equality) is NP-complete. In the case of one-dimensional fluted logic we are able
to add some further algebraic operators into its syntax without increasing its complexity.

We will also prove that several natural extensions of the ordered logic and the fluted logic
are undecidable. First, for the ordered logic we are able to show that if we allow variables
to be quantified in an arbitrary order, then the resulting logic is undecidable. Secondly, we
are able to show that if we lift the restrictions on how the variables in the atomic formulas
can be permuted in the one-dimensional fluted logic, then the resulting logic is undecidable.
Finally, in the case of the full fluted logic, we can show that if we relax only slightly the
way variables can be permuted and the order in which variables can be quantified, then the
resulting logic is undecidable.

2 Algebraic way of presenting logics

The purpose of this section is to present the algebraic framework introduced in [6, 7, 10] for
defining logics in an algebraic way. We will be working with purely relational vocabularies
with no constants and function symbols. In addition we will not consider vocabularies with
0-ary relation symbols. Throughout this paper we will use the convention where the domain
of a model A will be denoted by the set A.

Let A be an arbitrary set. As usual, a k-tuple over A is an element of Ak. We will use
ϵ to denote the 0-ary tuple. Given a non-negative integer k, a k-ary AD-relation over A
is a pair T = (X, k), where X ⊆ Ak. Here ’AD’ stands for arity-definite. Given a k-ary
AD-relation T = (X, k) over A, we will use (a1, ..., ak) ∈ T to denote (a1, ..., ak) ∈ X. Given
an AD-relation T , we will use ar(T ) to denote its arity.

Given a set A, we will use AD(A) to denote the set of all AD-relations over A. If T1, ..., Tk ∈
AD(A), then the tuple (A, T1, ..., Tk) will be called an AD-structure over A. A bijection
g : A → B is an isomorphism between AD-structures (A, T1, ..., Tk) and (B,S1, ..., Sk), if
for every 1 ≤ ℓ ≤ k we have that ar(Tℓ) = ar(Sℓ), and g is an ordinary isomorphism between
the relational structures (A, rel(T1), ..., rel(Tk)) and (B, rel(S1), ..., rel(Sk)), where rel(T )
denotes the underlying relation of an AD-relation.

The following definition was introduced in [7], where it was called arity-regular relation
operator.

▶ Definition 1. A k-ary relation operator F is a mapping which associates to each set A
a function FA : AD(A)k → AD(A) and which satisfies the following requirements.
1. The operator F is isomorphism invariant in the sense that whenever two AD-structures

(A, T1, ..., Tk) and (B,S1, ..., Sk) are isomorphic via g, the same mapping is also an
isomorphism between the AD-structures (A,FA(T1, ..., Tk)) and (B,FB(S1, ..., Sk)).

2. There exists a function ♯ : Nk → N so that for every AD-structure (A, T1, ..., Tk) we have
that the arity of the AD-relation FA(T1, ..., Tk) is ♯(ar(T1), ..., ar(Tk)). In other words
the arity of the output AD-relation is always determined fully by the sequence of arities
of the input AD-relations.

Given a set of relation operators F and a vocabulary τ , we can define a language
GRA(F)[τ ] as follows, where R ∈ τ and F ∈ F :

T ::= ⊥ | ⊤ | R | F (T , ..., T )︸ ︷︷ ︸
ar(F) times

.
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Here “GRA” stands for general relational algebra. We sometimes use the infix notation
instead of the prefix notation, if the infix notation is more conventional. Furthermore we will
drop the brackets in the case where F is unary operator.

If the underlying vocabulary τ is clear from context or irrelevant, we will write GRA(F)
instead of GRA(F)[τ ]. The members of GRA(F) will be referred to as terms. In the case
where F is a finite set {F1, .., Fn}, we will use GRA(F1, ..., Fn) to denote GRA({F1, ..., Fn}).

Given a model A of vocabulary τ and T ∈ GRA(F)[τ ], we define its interpretation
JT KA recursively as follows:

1. If T = ⊥, then we define JT KA := (∅, 0), and if T = ⊤, then we define JT KA := ({ϵ}, 0).
2. If T = R ∈ τ , then we define JRKA = (RA, ar(R)).
3. If T = F(T1, ..., Tk), then we define JT KA = FA(JT1KA, ..., JTkKA).

Note that the interpretation of a term over A is an AD-relation over A. The arity of this
AD-relation (over some fixed model) is called the arity of the term T and we will denote
it by ar(T ). Note that by definition the arity of the output relation is independent of the
underlying model, which guarantees that ar(T ) is well-defined.

Given two k-ary terms T and P over the same vocabulary, we say that T is contained in
P , if for every model A over τ and for every (a1, ..., ak) ∈ Ak we have that if (a1, ..., ak) ∈ JT KA
then (a1, ..., ak) ∈ JPKA. We will denote this by T |= P. If T is a 0-ary term and A is a
model so that JT KA = ({ϵ}, 0), then we denote this by A |= T . Given a 0-ary term T , we say
that T is satisfiable if there exists a model A so that A |= T .

We will conclude this section by briefly indicating how we can compare the expressive
power of algebras with fragments of FO. Let k ≥ 0 and consider an FO-formula φ(vi1 , ..., vik

),
where (vi1 , ..., vik

) lists all the free variables of φ, and i1 < ... < ik. If A is a suitable model,
then φ defines the AD-relation JφKA := ({(a1, ..., ak) | A |= φ(a1, ..., ak)}, k) over A. Given
a k-ary term T and FO-formula φ(vi1 , ..., vik

) over the same vocabulary, we say that T is
equivalent with φ if for every model A we have that JT KA = JφKA.

If F is a set of relation operators and L ⊆ FO, then we say that GRA(F) and L are
equivalent, if for every T ∈ GRA(F) there exists an equivalent formula φ ∈ L, and conversely
for every formula φ ∈ L there exists an equivalent term T ∈ GRA(F). Similarly, we say that
GRA(F) and L are sententially equivalent, if for every 0-ary term T ∈ GRA(F) there
exists an equivalent sentence φ ∈ L, and conversely for every sentence φ ∈ L there exists an
equivalent 0-ary term T ∈ GRA(F).

3 Relevant fragments and complexity results

The purpose of this section is to present the relevant FO-fragments that we are going to
study and to present the main complexity results that we are able to obtain. Through out
this section (X, k) and (Y, ℓ) are AD-relations over some set A.

We are going to start by defining formally the ordered logic OL, which will form the
backbone for the rest of fragments studied in this paper.

▶ Definition 2. Let vω = (v1, v2, ...) and let τ be a vocabulary. For every k ∈ N we define
the set OLk[τ ] as follows.
1. Let R ∈ τ be an ℓ-ary relation symbol and consider the prefix (v1, ..., vℓ) of vω containing

precisely ℓ-variables. If k ≥ ℓ, then R(v1, ..., vℓ) ∈ OLk[τ ].
2. Let ℓ ≤ ℓ′ ≤ k and suppose that φ ∈ OLℓ[τ ] and ψ ∈ OLℓ′

[τ ]. Then ¬φ, (φ∧ψ) ∈ OLk[τ ].
3. If φ ∈ OLk+1[τ ], then ∃vk+1φ ∈ OLk[τ ].
Finally we define OL[τ ] :=

⋃
k OLk[τ ].
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▶ Remark 3. The way we have presented the syntax of OL here is slightly different from the
way it is often presented in the literature. The two logics are nevertheless equivalent on the
level of sentences.

The syntax of this logic is somewhat involved, but it can be given a very nice algebraic
characterization using just three relation operators {¬,∩, ∃}, which we are going to define
next. Recalling that if F is a relation operator, then FA denotes the function to which F

maps the set A, we can define the relation operators as follows.

¬) We define ¬A(X, k) = (Ak\X, k). We call ¬ the complementation operator.
∩) If k ̸= ℓ, then we define ∩A((X, k), (Y, ℓ)) = (∅, 0). Otherwise we define

∩A((X, k), (Y, ℓ)) = (X ∩ Y, k).

We call ∩ the intersection operator.
∃) If k = 0, then we define ∃A(X, k) = (X, k). Otherwise we define

∃A(X, k) = ({(a1, ..., ak) | (a1, ..., ak, b) ∈ X, for some b ∈ A}, k − 1).

We call ∃ the projection operator.

The following proposition establishes the promised characterization result.

▶ Proposition 4. OL and GRA(¬,∩, ∃) are sententially equiexpressive.

The complexity of OL is rather low and thus it is natural to ask how it changes if we
add additional operators to the syntax of the logic. The first operator that is studied in this
paper is the operator E, which we define as follows.

E) If k < 2, then we define EA(X, k) = (X, k). Otherwise we define

EA(X, k) = ({(a1, ..., ak) ∈ X | ak−1 = ak}, k).

We call E the equality operator.

It turns out that the addition of equality does not increase the complexity of ordered
logic. In our proof for the Pspace upper bound, it will be convenient to extend the ordered
logic with an additional operator I, which we define as follows.

I) If k ≤ 1, then we define IA(X, k) = (X, k), and otherwise we define

IA(X, k) = ({(a1, ..., ak−1) ∈ Ak−1 | (a1, ..., ak−1, ak−1) ∈ X}, k − 1).

We call I the substitution operator.

In contrast with the equality operator, adding either of the following two operators to
OL will result in a logic with NExpTime-hard satisfiability problem.

s) If k < 2, then we define sA(X, k) = (X, k). Otherwise we define

sA(X, k) = ({(a1, ..., ak−2, ak, ak−1) | (a1, ..., ak) ∈ X}, k).

We call s the swap operator.
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C) If k ̸= 1 and ℓ ≤ 1, then we define CA((X, k), (Y, ℓ)) = (∅, 0). In the case where
1 = k ≤ ℓ (the case 1 = ℓ ≤ k is defined similarly) we will define

CA((Y, ℓ), (X, k)) = ({(a1, ..., aℓ) ∈ Y | aℓ ∈ X}, ℓ).

We call C the one-dimensional intersection.

The intuition behind the swap operator is clear: it lifts in a minimal way the ordering
restriction on the syntax of ordered logic. The one-dimensional intersection may appear to
be somewhat unnatural, but the underlying intuition is that we want to lift the uniformity
imposed by ∩ in a minimal way.

The other ordered fragment investigated in this paper is the fluted logic FL. We will not
give a formal definition for this fragment here, but instead we will introduce its algebraic
characterization using the operators {¬, ∩̇, ∃}, where ∩̇ is defined as follows.

∩̇) If m := max{k, ℓ}, then we define

∩̇A((X, k), (Y, ℓ)) =
(
{(a1, . . . , am) | (am−k+1, . . . , am) ∈ X

and (am−ℓ+1, . . . , am) ∈ Y }, m
)
,

We call ∩̇ the suffix intersection.

The following result was proved in [7].

▶ Proposition 5. FL and GRA(¬, ∩̇, ∃) are equiexpressive.

It was proved in [13] that the satisfiability problem for FL is Tower-complete. The
natural follow-up question is then to study what fragments of FL have more feasible complexity.
In this paper we approach this question by studying the so-called one-dimensional fragment
of fluted logic. To give this logic an algebraic characterization, we will need to introduce two
additional operators, ∃1 and ∃0, which we define as follows.

∃1) If k < 2, then we define ∃A
1 (X, k) = (X, k). Otherwise we define

∃A
1 (X, k) = ({a ∈ A | There exists b ∈ Ak−1 such that ab ∈ X}, 1)

∃0) If k = 0, then we define ∃A
0 (X, k) = (X, k). Otherwise we define ∃A

0 (X, k) to be ({ϵ}, 0),
if X is non-empty, and (∅, 0), if X is empty.

We call collectively the operators ∃1 and ∃0 one-dimensional projection operators.
These operators correspond to quantification which leaves at most one free-variable free.
Now we define the algebra GRA(¬, ∩̇, ∃1, ∃0) to be the one-dimensional fluted logic.

As one might expect, imposing the one-dimensionality requirement to formulas of FL
will result in a logic with much lower complexity. The exact complexity of one-dimensional
FL turns out to be NExpTime-complete, even for its extension with the swap and equality
operators GRA(s, E,¬, ∩̇, ∃1, ∃0). In this paper we also study the one-dimensional fragment
of ordered logic with equality operator GRA(E,¬,∩, ∃), for which the satisfiability problem
turns out to be just NP-complete.

Besides just decidability results, we will also prove several undecidability results. To state
some of these results, we will first define the following operator p.

p) If k < 2, then we define pA(X, k) = (X, k). Otherwise we define

pA(X, k) = ({(a1, ..., ak) | (ak, a1, ..., ak−1) ∈ X}, k).

We call p the cyclic permutation operator.
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Table 1 Complexities of the fragments. For each of the fragments the satisfiability problem is
complete for the corresponding complexity class listed in the second column, excluding the case
{s, E, ¬, C, ∩, ∃} where the complexity is not known. All the results listed here are new.

E, ¬, ∩, ∃1, ∃0 NP
E, ¬, ∩, ∃ Pspace

s, ¬, C, ∩, ∃ NExpTime
E, ¬, C, ∩, ∃ NExpTime

s, E, ¬, C, ∩, ∃ ?
s, E, ¬, ∩̇, ∃1, ∃0 NExpTime

p, ¬, ∩, ∃ Π0
1

p, ¬, ∩̇, ∃1, ∃0 Π0
1

s, ¬, ∩̇, ∃ Π0
1

Adding p to an ordered fragments correspondence essentially to the removal of the
syntactical restriction that variables should be quantified in a specific order. The following
theorem collects our undecidability results.

▶ Theorem 6. Suppose that F is a set of relation operators that contains {p,¬,∩, ∃},
{p,¬, ∩̇, ∃1, ∃0} or {s,¬, ∩̇, ∃}. Now the satisfiability problem for GRA(F) is Π0

1-hard.

Let us conclude this section by mentioning briefly two complexity results that follow
immediately from the literature and which complement the picture emerging from the results
listed in Table 1. First, it is easy to verify that GRA(p, s, E,¬, C,∩, ∃1, ∃0) is essentially
equivalent with one-dimensional uniform fragment UF1, which was proved to be NExpTime-
complete in [9]. The second result that we should mention is that the satisfiability problem
for GRA(E,¬, ∩̇, ∃) is Tower-complete, since it contains FL and it can be translated to
FL with equality, for which the satisfiability problem was recently proved in [14] to be
Tower-complete.

4 Tables and normal forms

In this paper we are going to perform several model constructions and hence it is useful to
start by collecting some definitions and tools that we are going to need in the later sections.

▶ Definition 7. Let k ∈ Z+ and F ⊆ {I, s}. A k-table with respect to F is a maximally
consistent set of k-ary terms of the form T or ¬T , where T ∈ GRA(F). Given a model A
and a ∈ Ak, we will use tpA(a) to denote the k-table realized by a.

We will identify k-tables ρ with the terms
⋂

α∈ρ α, which makes sense since all of the
algebraic signatures that we are going to consider always include the operator ∩. This allows
us to use notation such as ρ |= ρ′, where ρ and ρ′ are k-tables. Furthermore, we will refer to
1-tables also as 1-types. We say that a ∈ A is king, if there is no other element in the model
that realizes the same 1-type.

Notice that there is almost no “overlapping” between tables. For instance, if we consider
tables for ∅, then the table realized by a tuple (a1, ..., ak) will not imply anything about the
table realized by any non-identity permutation of the tuple (a1, ..., ak) or any sub-tuple of
(a1, ..., ak). And even if we are considering tables for {s}, the table realized by (a1, ..., ak)
will only imply something about the table realized by (a1, ..., ak, ak−1).
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▶ Definition 8. Let A and B be models over the same vocabulary, and let F be a subset of
{I, s, E,¬, C,∩, ∩̇}. Let a ∈ Ak and b ∈ Bk, where k ∈ Z+. We say that a and b are similar
with respect F , if for every k-ary term T ∈ GRA(F) we have that a ∈ JT KA if, and only if,
b ∈ JT KB.

In what follows we will not mention the set F explicitly, since it will always be clear from
the context. For different subsets of {I, s, E,¬, C,∩, ∩̇} one can find explicit characterizations
for when two tuples are similar using the notions of 1-types and tables. For example, if
F = {s, C,¬,∩}, then two tuples a and b are similar with respect to F if and only if
tpA(a) = tpB(b), tpA(ak−1) = tpB(bk−1) and tpA(ak) = tpB(bk).

We will next introduce two Scott-normal forms for our logics. In the normal forms we
will use the operator ∪ which can be defined in a standard way in terms of ¬ and ∩.

▶ Definition 9. Let F ⊆ {I, s, E,C}.
We say that a term T ∈ GRA(F ∪ {¬,∩, ∃}) is in normal form, if it has the following
form ⋂

1≤i≤m1
∃

∃κi ∩
⋂

1≤j≤m1
∀

∀λj ∩
⋂

1≤i≤m∃

∀ni(¬α∃
i ∪ ∃β∃

i ) ∩
⋂

1≤j≤m∀

∀nj (¬α∀
j ∪ ∀β∀

j ),

where κi, λj , α
∃
i , β

∃
i , αj and β∀

j are terms of GRA(F ∪ {¬,∩}), and the terms κi and λj

are unary. Here ∀ is short-hand notation for ¬∃¬ and ∀n stands for a sequence of ∀ of
length n.
We say that a term T ∈ GRA(F ∪ {¬,∩, ∩̇, ∃1, ∃0}) is in normal form, if it has the
following form⋂

1≤i≤m1
∃

∃0κi ∩
⋂

1≤j≤m1
∀

∀0λj ∩
⋂

1≤i≤m∃

∀0(¬α∃
i ∪ ∃1β

∃
i ) ∩

⋂
1≤j≤m∀

∀0(¬α∀
j ∪ ∀1β

∀
j ),

where κi, λj , α
∃
i , β

∃
i , αj and β∀

j are terms of GRA(F ∪ {¬,∩, ∩̇}), and the terms κi and
λj are unary. Here ∀0 and ∀1 are short-hand notations for ¬∃0¬ and ¬∃1¬ respectively.

In a rather standard fashion one can prove the following lemma.

▶ Lemma 10. Let F ⊆ {I, s, E,C}.
1. There is a polynomial time nondeterministic procedure, taking as its input a term T ∈

GRA(F ∪ {¬,∩, ∃}) and producing a term T ′ in normal form (over extended signature),
such that

if A |= T , for some structure A, then there exists a run of the procedure which produces
a term T ′ in normal form so that A′ |= T for some expansion A′ of A.
if the procedure has a run producing T ′ and A |= T ′, for some A, then A |= T .

2. There is a polynomial time nondeterministic procedure, which operates similarly as the
above procedure with the exception that it takes as its input a term in T ∈ GRA(F ∪
{¬,∩, ∩̇, ∃1, ∃0}), and which satisfies the additional requirement that if T does not contain
the operator ∩̇, then neither does any of the terms that this procedure produces.

To conclude this section, we will introduce some further notation and terminology
which will be useful in the later sections of this paper. Consider a term T in normal
form. Subterms of T that are of the form ∀ni(¬α∃

i ∪ ∃β∃
i ) or ∀0(¬α∃

i ∪ ∃1β
∃
i ) are called

existential requirements and we will denote them with T ∃
i . Similarly subterms of the

form ∀nj (¬α∀
j ∪ ∀β∀

j ) or of the form ∀0(¬α∀
j ∪ ∀1β

∀
j ) will be called universal requirements

and we will denote them with T ∀
j . Consider a model A and an existential requirement T ∃

i . If
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T ∃
i is of the form ∀ni(¬α∃

i ∪ ∃β∃
i ) and a ∈ Jα∃

i KA, then an element c ∈ A so that ac ∈ Jβ∃
i KA

will be called a witness for a and T ∃
i . Similarly, if T ∃

i is of the form ∀0(¬α∃
i ∪ ∃1β

∃
i ) and

a ∈ Jα∃
i KA, then a tuple c ∈ Ak, where k = ar(β∃

i ) − 1, is called a witness for a and T ∃
i .

5 Ordered logic with equality

In this section we will study the complexity of GRA(E,¬,∩, ∃), i.e. ordered logic with
equality. We will start by proving that this logic has a polynomially bounded model property,
which means that each satisfiable term has a model of size at most polynomial with respect
to the size of the term.

Before proceeding with the proof, we will first note that w.l.o.g. we can assume that if
an element c is a witness for some existential requirement T ∃

i and a tuple (a1, ..., ak), then
ak ̸= c. This follows from the observation that if T ∃

i is of the form ∀ni(¬α∃
i ∪ ∃β∃

i ) then it is
equivalent with the following term ∀ni(¬(α∃

i ∩ ¬∃Eβ∃
i ) ∪ ∃β∃

i ), where we can replace ∃Eβ∃
i

with Iβ∃
i .

▶ Theorem 11. Let T ∈ GRA(I, E,¬,∩, ∃) and suppose that T is satisfiable. Then T has a
model of size bounded polynomially in |T |.

Proof. Let T ∈ GRA(I, E,¬,∩, ∃) be a term in normal form. Let A be a model of T .
Without loss of generality we will assume that A contains at least two distinct elements.
Our goal is to construct a bounded model B |= T . As the domain of our model we will take
the set

B = {1, ...,m} × {0, 1},

where m = max{m1
∃,m∃}. To define the model, we just need to specify the tables for all

the k-tuples of elements from B. This will be done inductively, and in such a way that the
following condition is maintained: for every b ∈ Bk there exists a ∈ Ak so that b is similar
with a. Maintaining this requirement will make sure that our model B will not violate any
universal requirements.

We will start by defining the 1-types for all the elements of B. Since A |=
⋂

1≤i≤m1
∃

∃κi,
for every 1 ≤ i ≤ m1

∃ there exists ai ∈ A so that tpA(ai) |= κi. We will define that for every
(i, j) ∈ B, tpB((i, j)) = tpA(ai). Suppose then that we have defined the tables for k-tuples
and we wish to define the tables for (k + 1)-tuples. We will start by making sure that all the
existential requirements are full-filled. So, let 1 ≤ i ≤ m∃ and b ∈ Bk so that we have not
assigned a witness for b and T ∃

i . By construction we know that there exists a ∈ Ak which is
similar to b. Now there exists ak ̸= c ∈ A so that ac ∈ Jβ∃

i K. If bk = (i′, j), then we will use
the element d = (i, j+ 1 mod 2) as a witness for b by defining that tpB(bd) = tpA(ac). Since
we have reserved for every element m∃ ≤ m distinct witnesses for the existential requirements,
the process of providing witnesses can be done without conflicts.

Having provided witnesses for k-tuples, we will still need to do define the (k+1)-tables for
the remaining k-tables. So, let b ∈ Bk and d ∈ B be elements so that the table of bd has not
been defined. If bk = d, then the table for bd is determined by the table for b. Suppose then
that bk ̸= d. Let a ∈ Ak be a k-tuple which is similar with b. Pick an arbitrary ak ̸= c ∈ A

and define tpB(bd) = tpA(ac). ◀

The above theorem can be used to show that if we assume that the underlying vocabulary
to be bounded, i.e., there is a fixed constant bound on the maximum arity of relation symbols,
then the complexity of the ordered logic is NP-complete.
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▶ Theorem 12. The satisfiability problem for GRA(E,¬,∩, ∃) over bounded vocabularies is
NP-complete.

In the case where the vocabulary is not assumed to be bounded, the complexity of the
ordered logic turns out to be Pspace-complete. The complete proof can be found in the
full version of this paper, but we will sketch the basic idea here. The Pspace-hardness can
be proved by reducing the satisfiability problem of modal logic over serial frames to that of
GRA(¬,∩, ∃). For the upper bound one can adapt the well-known algorithm of Ladner. The
idea is to non-deterministically construct a model in a depth-first fashion by first guessing a
set of 1-types of polynomial size (the domain of the model) and then guess tables for longer
and longer tuples of elements.

▶ Theorem 13. The satisfiability problem for GRA(E,¬,∩, ∃) is Pspace-complete.

6 Further extensions of ordered logic

In this section we will study extensions of ordered logic which are obtained by adding either
the swap or the one-dimensional intersection (or both) into its syntax. It turns out that we
can deduce easily from the literature sharp lower bounds for the relevant fragments.

▶ Proposition 14. Let F be a set of of relation operators that contains either {¬, C,∩, ∃} or
{s,¬,∩, ∃}. Now the satisfiability problem for GRA(F) is NExpTime-hard.

▶ Remark 15. We remark that the proof of the above proposition shows that the proposition
holds even if we restrict attention to vocabularies which contain at most binary relation sym-
bols. In particular, the satisfiability problems of GRA(¬, C,∩, ∃1, ∃0) and GRA(s,¬,∩, ∃1, ∃0)
are also NExpTime-hard.

Now we will focus on proving the corresponding upper bounds on the complexities
of GRA(¬, C,∩, ∃) and GRA(s,¬,∩, ∃) by showing that their least common extension
GRA(s,¬, C,∩, ∃) has the exponentially bounded model property. The core of the argument
is the same as the proof of the exponential model property for FO2 given in [3].

▶ Theorem 16. Let T ∈ GRA(s,¬, C,∩, ∃) and suppose that T is satisfiable. Then T has a
model of size bounded exponentially in |T |.

Proof. Let T ∈ GRA(s,¬, C,∩, ∃) be a term in normal form and let A be a model of T .
Our goal is to construct a bounded model B so that B |= T . As the domain of the model B
we will take the set

B := {tpA(a) | a ∈ A} × {1, ...,m} × {0, 1, 2},

where m = max{m1
∃,m∃}. Clearly |B| ≤ 2O(|T |). Again, to construct the model, we will

need to specify the tables for all the k-tuples of elements from B. We will follow the same
strategy as in the proof of theorem 11, i.e. the tables will be specified inductively while
maintaining the condition that for every b ∈ Bk for which tpB(b) has been specified, there
exists a ∈ Ak which is similar to b.

We will start with the 1-types. For every b = (tpA(a), i, j) ∈ B we define that tpB(b) :=
tpA(a). Suppose then that we have defined the tables for k-tuples. We start defining the tables
for (k+ 1)-tuples by providing witnesses for all the relevant tuples. So, consider an existential
requirement T ∃

i and a tuple b ∈ Bk so that b ∈ JαiKB. Suppose that bk = (tpA(a), i′, j). By
construction there exists a tuple a ∈ Ak so that b and a are similar. Thus a ∈ JαiKA. Since
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A |= T ∃
i , there exists an element c ∈ A which is a witness for a and T ∃

i . We will use the
element d = (tpA(c), i, j+1 mod 3) ∈ B as a witness for b by defining that tpB(bd) := tpA(ac)
and tpB((b1, ..., bk−1, d, bk)) := tpA((a1, ..., ak−1, c, ak)).

Before moving forward, let us argue that our method of assigning witnesses does not
produce conflicts. Consider a tuple b = (b1, ..., bk) ∈ Bk and d ∈ B so that we used d as a
witness for b and some existential requirement T ∃

i . We will argue that the table for the tuple
(b, d) was not defined in two different ways. First we note that we have reserved distinct
elements for each of the existential requirements, and thus we used d as a witness for b only
for the existential requirement T ∃

i . We then note that since we are assigning witnesses for
tuples in a “cyclic” manner, we will not use bk as a witness for the tuple (b1, ..., bk−1, d).
Since these cases are the only possible ways that we might have defined the table of the tuple
bd in two different ways, we conclude that it is only defined once.

We will now assign tables for the remaining (k + 1)-tuples. So, consider a tuple b ∈ Bk

and d = (tpA(c), i, j) ∈ B so that we have not defined the table for the tuple bd. By
construction there exists a tuple a ∈ Ak which is similar to b. Let c ∈ A be an element that
realizes the 1-type of d (and which is not necessarily distinct from ak). Now we define that
tpB(bd) := tpA(ac) and that tpB((b1, ..., bk−1, d, bk)) = tpA((a1, ..., ak−1, c, ak)). ◀

▶ Corollary 17. The satisfiability problem for GRA(s,¬, C,∩, ∃) is NExpTime-complete.

We will conclude this section by considering GRA(E,¬, C,∩, ∃) and GRA(s, E,¬, C,∩, ∃).
An easy modification in the argument of theorem 11 yields a bounded model property for
the first logic.

▶ Theorem 18. Let T ∈ GRA(E,¬, C,∩, ∃) and suppose that T is satisfiable. Then T has
a model of size bounded exponentially in |T |.

Proof. Let T be a term in normal form and assume that A is a model of T . If K = {tpA(a) |
a is a king}, then one can take as the domain of the bounded model B the set

B := K ∪ ({tpA(a) | a is not a king} × {1, ...,m} × {0, 1}),

where m = max{m1
∃,m∃}. One can now adapt the proof of theorem 11 to obtain a model B

of T with domain B. ◀

▶ Corollary 19. The satisfiability problem for GRA(E,¬, C,∩, ∃) is NExpTime-complete.

The logic GRA(s, E,¬, C,∩, ∃) turns out to be more tricky. We have not been able to
verify whether this logic is undecidable, but we can show that it does not have the finite
model property, see the full version of this paper.

7 One-dimensional ordered logics

In this section we consider logics that are obtained from the ordered logic and the fluted logic
by imposing the restriction of one-dimensionality. We will first show that the satisfiability
problem of the one-dimensional fluted logic, which has been extended with the operators s
and E, is NExpTime-complete. As usual, we will prove this by showing that the logic has
the bounded model property. The proof is heavily influenced by similar model constructions
performed in [9] and [8], which were based on the classical construction of [3].

▶ Theorem 20. Let T ∈ GRA(s, E,¬, ∩̇, ∃1, ∃0) and suppose that T is satisfiable. Then T
has a model of size bounded exponentially in |T |.

MFCS 2021
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Proof. Let T ∈ GRA(s, E,¬, ∩̇, ∃1, ∃0) be a term in normal form and suppose that T is
satisfiable. Let us fix an arbitrary model A of T , which we will use to construct a bounded
model B for T . Let K ⊆ A denote the set of kings of A. For each existential requirement T ∃

i

of T and k ∈ Jα∃
i KA ∩K, we will pick some witness c. Let C denote the resulting set. Next,

we let P denote the set of non-royal 1-types realized by elements of A. Fix some function
f : P → A with the property that tpA(f(π)) = π, for every π ∈ P . For every existential
requirement T ∃

i and π ∈ P so that π |= α∃
i , we will pick some witness cπ,i. Let Wπ,i denote

the set of elements occurring in cπ,i that are not kings.
As the domain of the bounded model B we will then take the following set

B = C ∪
⋃

π,i,j

Wπ,i,j ,

where π ranges over P , i ranges over {1, ...,m}, where m = max{m1
∃,m∃}, and j ranges over

{0, 1, 2}. The sets Wπ,i,j are pairwise disjoint copies of the sets Wπ,i. Clearly |B| ≤ 2O(|T |).
We will make B ↾ C isomorphic with A ↾ C. Furthermore, we will make each of the structures
B ↾ (K ∪Wπ,i,j) isomorphic with the corresponding structures A ↾ (K ∪Wπ,i).

We will then provide witnesses for elements of B. Since we have already provided witnesses
for kings, we need to only provide witnesses for non-royal elements of the court and for
elements in (B\C). We will start with the non-royal elements of the court. Consider an
existential requirement T ∃

i and let b ∈ (C\K) ∩ Jα∃
i KA. If there exists a witness for b and T ∃

i

in C, then nothing needs to be done. So suppose that there does not exists a witness for b
and T ∃

i in C. If π is the 1-type of b in B, then we know that there exists a witness c for
f(π) and T ∃

i . We have now two cases.
Suppose first that the length of c is one, i.e. c = c, for some c ∈ A. If c = a, then

b is already a witness for itself in B. If c ̸= a, then we define tpB(b, d) = tpB(a, c) and
tpB(d, b) = tpB(c, a), where d denotes the single element of Wπ,i,0 (note that d can’t be
a king, since otherwise b and T ∃

i would have had a witness in C). Suppose then that the
length of c is k > 1. If d ∈ (Wπ,i,0 ∪K)k denotes the corresponding witness, then we define
tpB(bd) = tpA(ac) and tpB(bd1, ..., dk, dk−1) = tpB(ac1, ..., ck, ck−1). Note that since b does
not occur in d and d contains at least one non-royal element, the above definitions do not
lead into any conflicts with the structure that we have assigned for B ↾ C.

Thus we have managed to provide witnesses for elements in C\K. To provide witnesses
for elements of (B\C), we can do roughly the same as above with the exception that instead
of Wπ,i,0, we will use - assuming that b ∈ Wπ′,i′,j - the set Wπ,i,j+1 mod 3. Let us then briefly
argue that the above procedure for producing witnesses can be executed without conflicts.
First we note that we do not face any conflicts when assigning witnesses for some b and T ∃

i

and then for b and T ∃
i , where i ̸= i′, since for every j the sets Wπ,i,j and Wπ,i′,j are disjoint.

Secondly we note that we do not face any conflicts when assigning witnesses for some b and
T ∃

i and then for b ̸= b′ and T ∃
i , since in the first case we assign a table for the tuple bd and

in the second case for b′d, and neither of these tables imply anything about the other table.
Finally we note that since we are assigning witnesses in a cyclic manner, if we use d as a
witness for b ̸∈ C and T ∃

i , then we we are never using any tuple containing b as a witnesses
for any of the elements in d.

To complete the structure, for every k we need to define the tables for tuples b ∈ Bk. We
can do this inductively with respect to k as follows. Suppose first that there exists distinct
elements b, b′ ∈ B so that we have not assigned table for the pair (b, b′). Now we choose
a pair of distinct elements a, a′ ∈ A with the same 1-types as b and b′, and then define
tpB(b, b′) = tpA(a, a′) and tpB(b′, b) = tpA(a′, a). Note that such elements a, a′ exists even
if the elements b, b′ would have the same 1-types, since at least one of them is not a king.
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Suppose then that we have defined the tables for every d ∈ Bk. Let b ∈ B and d ∈ Bk be so
that we have not defined the table for the tuple (b, d). By construction there exists c ∈ Ak

which is similar with d. Let a ∈ A be an arbitrary element which has the same 1-type as
b. We then define tpB(b, d) = tpA(a, c) and tpB(b, d1, ..., dk, dk−1) = tpA(a, c1, ..., ck, ck−1).
Continuing this way it is clear that we can define tables for all the tuples of Bk in such a
way that we do not violate any of the universal requirements. ◀

▶ Corollary 21. The satisfiability problem for GRA(s, E,¬, ∩̇, ∃1, ∃0) is NExpTime-complete.

We will conclude this section by considering the one-dimensional ordered logic with
equality, which is the logic GRA(E,¬,∩, ∃1, ∃0). Perhaps unsurprisingly, the satisfiability
problem for this logic is NP-complete.

▶ Theorem 22. The satisfiability problem for GRA(E,¬,∩, ∃1, ∃0) is NP-complete.

8 Conclusions

In this paper we have studied systematically how the complexities of various ordered fragments
of first-order logic change if we modify slightly the underlying syntax. The general picture
that emerges is that even if we relax only slightly the restrictions on the syntax, the complexity
of the logic can increase drastically. On the other hand, we have seen that adding the further
restriction of one-dimensionality on the logics can greatly decrease the complexity of the
logic.

There are several directions in which the work conducted in this paper can be continued.
Perhaps the most immediate technical problem is whether the logic GRA(s, E,¬, C,∩, ∃) is
decidable. As we have seen, this logic does not have the finite model property, and thus
we don’t expect that traditional model building techniques can be used to prove that it is
decidable. On the other hand, we have not been able to prove that this logic is undecidable
using standard tiling arguments.
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1 Introduction

We introduce a new notion of C-simple problems for a class C of decision problems (i.e.
languages). A problem is C-simple if it can be reduced to each problem in C; if this problem
is, moreover, in C, it can be viewed as a simplest problem in C. The C-simple problems are
thus a conceptual counterpart to the common C-hard problems (like, e.g., NP-hard problems)
to which conversely any problem in C reduces. These definitions (of C-simple and C-hard
problems) are parametrized by a chosen reduction that does not have a higher computational
complexity than the class C itself. Therefore, it may be said that if a C-hard problem has a
(computationally) “easy” solution, then each problem in C has an “easy” solution. On the
other hand, if we prove that a C-simple problem is not “easy”, in particular that it cannot
be solved by machines of a type M that can implement the respective reduction, then all
problems in C are not “easy”, that is, are not solvable by M; this extends a lower-bound
result for one problem to the whole class of problems.
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In this paper, we consider C to be the class of non-regular deterministic context-free
languages, which we denote by DCFL′; we thus have DCFL′ = DCFL∖REG (where REG
denotes the class of regular languages). We use a truth-table reduction by Mealy machines
(which is motivated below). Hence a DCFL′-simple problem is a language L0 ⊆ Σ∗ (over
an alphabet Σ) that can be reduced to each DCFL′ language L ⊆ ∆∗ by a Mealy machine
A with an oracle L, denoted AL. More precisely, we have a finite-state transducer A that
transforms a given input word w ∈ Σ∗ to a word A(w) ∈ ∆∗ (a query prefix), and each state
q of A is associated with a finite tuple σq = (sq,1, sq,2, . . . , sq,rq ) of rq words from ∆∗ (query
suffixes), and with a truth table fq : {0, 1}rq → {0, 1}. The oracle-machine AL behaves like
A, hence it reads an input word w (translating it to A(w)) by which it enters a state q, and
then submits rq queries, i.e. the words A(w) · sq,i for all i ∈ {1, 2, . . . , rq}, to the oracle that
for each i ∈ {1, 2, . . . , rq} decides whether or not A(w) · sq,i is in L (or, equivalently, whether
or not A(w) belongs to the quotient L/sq,i = {v ∈ ∆∗ | v · sq,i ∈ L}); the oracle-answers are
then aggregated by the truth table fq, which decides whether or not w ∈ L0.

This truth-table reduction by Mealy machines induces a preorder on the class of languages;
we denote this preorder by ≤A

tt, using the superscript “A” to stress that our truth-table
reduction is realized by simple automata, not by general Turing machines. The main technical
result of this paper is that the DCFL′ language L# = {0n1n | n ≥ 1} (over the binary
alphabet {0, 1}) is DCFL′-simple, since L# ≤A

tt L for each language L in DCFL′. The class
DCFLS of DCFL′-simple languages comprises REG and is a strict subclass of DCFL; e.g.,
the DCFL′ language LR =

{
wcwR | w ∈ {a, b}∗}

over the alphabet {a, b, c} proves to be not
DCFL′-simple. The closure properties of DCFLS are similar to that of DCFL as the class
DCFLS is closed under complement and intersection with regular languages, while being not
closed under concatenation, intersection, and union.

The above definition of DCFL′-simple problems has originally been motivated by the
analysis of the computational power of neural network (NN) models which is known to depend
on the (descriptive) complexity of their weight parameters [9, 12]. The so-called analog
neuron hierarchy [10] of binary-state NNs with increasing number of α extra analog-state
neurons, denoted as αANN for α ≥ 0, has been introduced for studying NNs with realistic
weights between integers (finite automata) and rational numbers (Turing machines). We use
the notation αANN also for the class of languages accepted by αANNs, which can clearly
be distinguished by the context. The separation 1ANN ⊊ 2ANN has been witnessed by the
DCFL′ language L# ∈ 2ANN \ 1ANN. The proof of L# /∈ 1ANN is rather technical (based
on the Bolzano-Weierstrass theorem) which could hardly be generalized to other DCFL′

languages, while it was conjectured that L /∈ 1ANN for all DCFL′ languages L, that is,
DCFL′ ⊆ (2ANN \ 1ANN) (implying 1ANN ∩ DCFL = 0ANN = REG). An idea how to
prove this conjecture is to show that L# is in some sense the simplest problem in the class
DCFL′, namely, to reduce L# to any DCFL′ language L by using a reduction that can be
carried out by 1ANNs, which are at least as powerful as finite automata. If the composition
of a 1ANN that carries out the reduction of L# to L with a hypothetical 1ANN accepting
L can be realized by another 1ANN, which would thus accept L#, we get that no 1ANN
accepting L can exist, since L# has been proven not to be accepted by 1ANNs.

The idea why L# should serve as the simplest language in the class DCFL′ comes from
the fact that any reduced context-free grammar G generating a non-regular language L ⊆ ∆∗

is self-embedding [4, Theorem 4.10]. This means that there is a so-called self-embedding
nonterminal A admitting the derivation A ⇒∗ xAy for some non-empty strings x, y ∈ ∆+.
Since G is reduced, there are strings v, w, z ∈ ∆∗ such that S ⇒∗ vAz and A ⇒∗ w where S

is the start nonterminal in G, which implies S ⇒∗ vxmwymz ∈ L for every m ≥ 0. It is thus
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straightforward to suggest to reduce an input word 0m1n ∈ {0, 1}∗ where m, n ≥ 1, to the
string vxmwynz ∈ ∆∗ (while the inputs outside 0+1+ are mapped onto some fixed string
outside L) since 0m1n ∈ L# entails vxmwynz ∈ L.

However, the suggested (one-one) reduction from L# to L is not consistent because
vxmwynz ∈ L does not necessarily imply 0m1n ∈ L#. For example, consider the DCFL′

language L1 = {0m1n | 1 ≤ m ≤ n} over the binary alphabet ∆ = {0, 1} for which there are
no words v, x, w, y, z ∈ ∆∗ such that vxmwynz ∈ L1 would ensure m = n. Nevertheless, we
can pick two inputs 0m1n−1 and 0m1n instead of one, that is, x = 0, y = 1, and v = w = z = ε

(ε denoting the empty string), which satisfy 0m1n ∈ L# iff m = n iff vxmwyn−1z /∈ L1 and
vxmwynz ∈ L1.

It turns out that this can be generalized to any DCFL′ language. Namely, we prove
in this paper that for each DCFL′ language L ⊆ ∆∗, over an alphabet ∆, there are words
v, x, w, y, z ∈ ∆+ and a language L′ ∈ {L, L}, where L = ∆∗ ∖ L is the complement of
L, such that 0m1n ∈ L# iff vxmwyn−1z /∈ L′ and vxmwynz ∈ L′. In fact, we even show
that either for all m, n ≥ 0 we have vxmwynz ∈ L′ iff m = n, or for all m, n ≥ 0 we have
vxmwynz ∈ L′ iff m ≤ n. We note that this technical result seems interesting on its own since
in the class DCFL it substantially strengthens the known result for context-free languages
(CFL) [2, Theorem 2.10] that for any CFL′ language L ⊆ ∆∗ (where CFL′ = CFL∖REG)
there is a so-called non-degenerated iterative pair (v, x, w, y, z) ∈ (∆∗)5 with non-empty xy,
satisfying vxmwymz ∈ L for all m ≥ 0 and vxmwynz /∈ L for some m ̸= n.

Hence the inconsistent many-one (in fact, one-one) reduction from L# with one query to
the oracle L is replaced by a truth-table reduction, that is, by a special Turing reduction in
which all its finitely many (in our case two) oracle queries are presented at the same time
and there is a Boolean function (a truth table) which, when given the answers to the queries,
produces the final answer of the reduction. This truth-table reduction from L# to L can
be implemented by a deterministic finite-state transducer (a Mealy machine) A with the
oracle L: It transforms the input 0m1n where m, n ≥ 1 (the inputs outside 0+1+ are rejected),
to the output vxmwyn−1 ∈ ∆+ and carries out two queries to L that arise by concatenation
of this output with two fixed suffixes z and yz; hence the queries are vxmwyn−1z

?
∈ L and

vxmwynz
?
∈ L. The truth table is defined so that the input 0m1n is accepted by AL iff the

two answers to these queries are distinct and at same time, the first answer is negative in
the case L′ = L, and positive in the case L′ = L, which is equivalent to 0m1n ∈ L#.

It follows that the DCFL′ language L# is DCFL′-simple under the truth-table reduction by
Mealy machines. Since this reduction can be implemented by 1ANNs, we achieve the desired
stronger separation DCFL′ ⊆ (2ANN \ 1ANN) in the analog neuron hierarchy [10, 11]. This
result constitutes a non-trivial application of the proposed concept of DCFL′-simple problem.
Moreover, if we could generalize the result to (nondeterministic) CFL, e.g. by proving that
some DCFL′ language is CFL′-simple, which would imply that L# is CFL′-simple by the
transitivity of reduction, then we would achieve that even the intersection of CFL′ and 1ANN
is empty. We note the interesting fact that L# cannot be CSL′-simple (under our reduction),
since 1ANN accepts some context-sensitive languages outside CFL [10].

In general, if we show that some C-simple problem under a given reduction cannot be
computed by a computational model M that implements this reduction, then all problems in
the class C are not solvable by M either. The notion of C-simple problems can thus be useful
for expanding known (e.g. technical) lower-bound results for individual problems to the whole
classes of problems at once, as it was the case of the DCFL′-simple problem L# /∈ 1ANN,
expanding to DCFL′ ∩ 1ANN = ∅. It seems worthwhile to explore if looking for C-simple
problems in other complexity classes C could provide effective tools for strengthening known
lower bounds.
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We remark that the hardest context-free language by Greibach [3] can be viewed as
CFL-hard under a special type of our reduction ≤A

tt. Related line of study concerns the
types of reductions used in finite or pushdown automata with oracle. For example, non-
deterministic finite automata with oracle complying with many-one restriction have been
applied to establishing oracle hierarchies over the context-free languages [8]. For the same
purpose, oracle pushdown automata have been used for many-one, truth-table, and Turing
reducibilities, respectively, inducing the underlying definitions also to oracle nondeterministic
finite automata [14]. In addition, nondeterministic finite automata whose oracle queries are
completed by the prefix of an input word that has been read so far and the remaining suffix,
have been employed in defining a polynomial-size oracle hierarchy [1].

In the preliminary study [13], some considerations about the simplest DCFL′ language
have appeared, yet without formal definitions of DCFL′-simple problems, that included only
sketches of incomplete proofs of weaker results based on the representation of DCFL by
so-called deterministic monotonic restarting automata [6], which have initiated investigations
of non-regularity degrees in DCFL [7].

In this paper we achieve a complete argument for L# to be a DCFL′-simple problem,
within the framework of deterministic pushdown automata (DPDA) by using some ideas on
regularity of pushdown processes from [5]. We now give an informal overview of the proof.
Given a DPDA M recognizing a non-regular language L ⊆ ∆∗, it is easy to realize that some
computations of M (from the initial configuration) must be reaching configurations where
the stack is arbitrarily large while it can be (almost) erased afterwards. Hence the existence
of words v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 0 is obvious. However, we
aim to guarantee that for all m, n the equality m = n holds if, and only if, vxmwyn−1z /∈ L′

and vxmwynz ∈ L′, where L′ is either the language L or its complement. This is not
so straightforward but it is confirmed by our detailed analysis (in Section 3). We study
the computation of M on an infinite word a1a2a3 · · · that visits infinitely many pairwise
non-equivalent configurations. We use a natural congruence property of language equivalence
on the set of configurations, and avoid some tedious technical details by a particular use of
Ramsey’s theorem. This allows us to extract the required tuple v, x, w, y, z ∈ ∆+ from the
mentioned infinite computation. We note that determinism of M is essential in the presented
proof; we leave open if it can be relaxed to show that L# is even CFL′-simple.

The rest of the paper is organized as follows. In Section 2 we recall basic definitions and
notation regarding DPDA and Mealy machines, introduce the novel concept of DCFL′-simple
problems under truth-table reduction by Mealy machines and show some simple properties of
the class DCFLS of DCFL′-simple problems. In Section 3 we present the proof of the main
technical result which shows that L# is DCFL′-simple. Finally, we summarize the results
and list some open problems in Section 4.

2 DCFL′-Simple Problem Under Truth-Table Mealy Reduction

In this section we define the truth-table reduction by Mealy machines, introduce the notion
of DCFL′-simple problems, show their basic properties, and formulate the main technical
result (Theorem 1). But first we recall standard definitions of pushdown automata.

A pushdown automaton (PDA) is a tuple M = (Q, Σ, Γ, R, q0, X0, F ) where Q is a finite
set of states including the start state q0 ∈ Q and the set F ⊆ Q of accepting states, while the
finite sets Σ ̸= ∅ and Γ ̸= ∅ represent the input and stack alphabets, respectively, with the
initial stack symbol X0 ∈ Γ. In addition, the set R contains finitely many transition rules
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pX
a−→ qγ with the meaning that M in state p ∈ Q, on the input a ∈ Σε = Σ ∪ {ε} (recall

that ε denotes the empty string), and with X ∈ Γ as the topmost stack symbol may read a,
change the state to q ∈ Q, and pop X, replacing it by pushing γ ∈ Γ∗.

By a configuration of M we mean pα ∈ Q × Γ∗, and we define relations a−→ for a ∈ Σε

on Q × Γ∗: each rule pX
a−→ qγ in R induces pXα

a−→ qγα for all α ∈ Γ∗; these relations are
naturally extended to w−→ for w ∈ Σ∗. For a configuration pα we define L(pα) = {w ∈ Σ∗ |
pα

w−→ qβ for some q ∈ F and β ∈ Γ∗}, and L(M) = L(q0X0) is the language accepted by
M. A PDA M is deterministic (a DPDA) if there is at most one rule pX

a−→ .. for each tuple
p ∈ Q, X ∈ Γ, a ∈ Σε; moreover, if there is a rule pX

ε−→ .., then there is no rule pX
a−→ .. for

a ∈ Σ. We also use the standard assumption that all ε-steps are popping, that is, in each
rule pX

ε−→ qγ in R we have γ = ε.
The languages accepted by (deterministic) pushdown automata constitute the class of

(deterministic) context-free languages; the classes are denoted by DCFL and CFL, respectively,
whereas DCFL′ = DCFL∖REG.

In the following theorem we formulate the main technical result: any language in DCFL′

includes a certain “projection” of the language L# = {0n1n | n ≥ 1}, which means that L#
is in some sense the simplest language in the class DCFL′. The theorem, whose proof will be
presented in Section 3, thus provides an interesting property of DCFL′.

▶ Theorem 1. Let L ⊆ ∆∗ be a non-regular deterministic context-free language over an
alphabet ∆. There exist non-empty words v, x, w, y, z ∈ ∆+ and a language L′ ∈ {L, L}
(where L = ∆∗ ∖ L is the complement of L) such that

either for all m, n ≥ 0 we have vxmwynz ∈ L′ iff m = n,
or for all m, n ≥ 0 we have vxmwynz ∈ L′ iff m ≤ n;

this entails that for all m ≥ 0 and n > 0 we have(
vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n . (1)

In order to formalize the DCFL′-simple problems, we now define a Mealy machine A with
an oracle: it is a tuple A = (Q, Σ, ∆, δ, λ, q0, {(σq, fq) | q ∈ Q}) where Q is a finite set of states
including the start state q0 ∈ Q, and the finite sets Σ ̸= ∅ and ∆ ̸= ∅ represent the input and
output (oracle) alphabets, respectively. Moreover, δ : Q×Σ → Q is a (partial) state-transition
function which extends to input strings as δ : Q × Σ∗ → Q where δ(q, ε) = q for every q ∈ Q,
while δ(q, wa) = δ(δ(q, w), a) for all q ∈ Q, w ∈ Σ∗, a ∈ Σ. Similarly, λ : Q × Σ → ∆∗ is an
output function which extends to input strings as λ : Q × Σ∗ → ∆∗ where λ(q, ε) = ε for all
q ∈ Q, and λ(q, wa) = λ(q, w)·λ(δ(q, w), a) for all q ∈ Q, w ∈ Σ∗, a ∈ Σ. In addition, for each
q ∈ Q, the tuple σq = (sq,1, sq,2, . . . , sq,rq ) of strings in ∆∗ contains rq query suffixes, while
fq : {0, 1}rq → {0, 1} is a truth table that aggregates the answers to the rq oracle queries.

The above Mealy machine A starts in the start state q0 and operates as a deterministic
finite-state transducer that transforms an input word w ∈ Σ∗ to the output string A(w) =
λ(q0, w) ∈ ∆∗ written to a so-called oracle tape. The oracle tape is a semi-infinite, write-only
tape which is empty at the beginning and its contents are only extended in the course of
computation by appending the strings to the right. Namely, given a current state q ∈ Q

and an input symbol a ∈ Σ, the machine A moves to the next state δ(q, a) ∈ Q and writes
the string λ(q, a) ∈ ∆∗ to the oracle tape, if δ(q, a) is defined; otherwise A rejects the input.
After reading the whole input word w ∈ Σ∗, the machine A is in the state p = δ(q0, w) ∈ Q,
while the oracle tape contains the output A(w) = λ(q0, w) ∈ ∆∗.

Finally, the Mealy machine A, equipped with an oracle L ⊆ ∆∗, in this case denoted AL,
queries the oracle whether A(w) belongs to the (right) quotient L/sp,i = {u ∈ ∆∗ | u·sp,i ∈ L},
for each suffix sp,i in σp, and the answers are aggregated by the truth table fp. Thus, the
oracle Mealy machine AL accepts the input word w ∈ Σ∗ iff
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fp

(
χL/sp,1(A(w)), χL/sp,2(A(w)), . . . , χL/sp,rp

(A(w))
)

= 1

where p = δ(q0, w) and χL/sp,i
: ∆∗ → {0, 1} is the characteristic function of L/sp,i, that is,

χL/sp,i
(u) = 1 if u · sp,i ∈ L, and χL/sp,i

(u) = 0 if u · sp,i /∈ L. The language accepted by the
machine AL is defined as L(AL) = {w ∈ Σ∗ | w is accepted by AL}.1

We say that L1 ⊆ Σ∗ is truth-table reducible to L2 ⊆ ∆∗ by a Mealy machine, which is
denoted as L1 ≤A

tt L2, if L1 = L(AL2) for some Mealy machine A running with the oracle L2.
The following lemma shows that we can chain these reductions together since the relation
≤A

tt is a preorder.

▶ Lemma 2. The relation ≤A
tt is reflexive and transitive.

Proof. The relation ≤A
tt is reflexive since L = L(AL) ⊆ Σ∗ for the oracle Mealy machine

AL = ({q}, Σ, Σ, δ, λ, q, {(σq, fq)}) where δ(q, a) = q and λ(q, a) = a for every a ∈ Σ, σq = (ε),
and fq is the identity.

Now we show that the relation ≤A
tt is transitive. Let L1 ≤A

tt L2 and L2 ≤A
tt L3 which

means L1 = L(AL2
1 ) ⊆ Σ∗ and L2 = L(AL3

2 ) ⊆ ∆∗ for some oracle Mealy machines AL2
1 =

(Q1, Σ, ∆, δ1, λ1, q1
0 , {(πq, gq) | q ∈ Q1}) and AL3

2 = (Q2, ∆, Θ, δ2, λ2, q2
0 , {(ϱq, hq) | q ∈ Q2}),

respectively. We will construct the oracle Mealy machine AL3 = (Q, Σ, Θ, δ, λ, q0, {(σq, fq) |
q ∈ Q}) such that L1 = L(AL3) ⊆ Σ∗ which implies the transitivity L1 ≤A

tt L3. We
define Q = Q1 × Q2 with q0 = (q1

0 , q2
0), δ((q1, q2), a) = (δ1(q1, a), δ2(q2, λ1(q1, a))) and

λ((q1, q2), a) = λ2(q2, λ1(q1, a)) for every (q1, q2) ∈ Q and a ∈ Σ, which ensures A(w) =
λ(q0, w) = λ2(q2

0 , λ1(q1
0 , w)) = A2(A1(w)) ∈ Θ∗ for every w ∈ Σ∗. For each state p =

(p1, p2) ∈ Q in A, we define the tuple of query suffixes from Θ∗,

σp =
(
λ2(p2, sp1,i) · sp2(i),j

∣∣ i = 1, . . . , rp1 , j = 1, . . . , rp2(i)
)

where πp1 = (sp1,1, sp1,2 . . . , sp1,rp1
) ∈ ∆rp1 and ϱp2(i) = (sp2(i),1, sp2(i),2 . . . , sp2(i),rp2(i)) ∈

Θrp2(i) are the query suffixes associated with p1 ∈ Q1 and p2(i) = δ2(p2, sp1,i) ∈ Q2 for
i ∈ {1, . . . , rp1}, respectively, and the truth table fp = gp1(hp2(1), . . . , hp2(rp1 )) aggregates
the answers to the corresponding oracle queries, which ensures L1 = L(AL3) ⊆ Σ∗. ◀

We say that L0 ⊆ Σ∗ is DCFL′-simple if L0 ≤A
tt L for every non-regular deterministic

context-free language L ⊆ ∆∗. We show that Theorem 1 entails that the DCFL′ language
L# is DCFL′-simple. In addition, we denote by DCFLS the class of DCFL′-simple problems
and formulate its basic properties.

▶ Corollary 3 (of Theorem 1). The non-regular deterministic context-free language L# =
{0n1n | n ≥ 1} is DCFL′-simple.

Proof. Let L ⊆ ∆∗ be any DCFL′ language. According to Theorem 1, there are v, x, w, y, z ∈
∆+ and L′ ∈ {L, L} such that condition (1) holds for L′. We define the Mealy machine AL =
({q0, q1, q2}, {0, 1}, ∆, δ, λ, q0, {(σq, fq) | q ∈ Q}) with the oracle L, as δ(q0, 0) = δ(q1, 0) = q1,
δ(q1, 1) = δ(q2, 1) = q2, λ(q0, 0) = vx, λ(q1, 0) = x, λ(q1, 1) = w, λ(q2, 1) = y, σq0 = σq1 = ()

1 Note that the described protocol works also for non-prefix-free languages since for any input prefix
that has been read so far, the output value from the truth table determines whether the oracle Mealy
machine is in an “accepting” state, deciding about this prefix analogously as a deterministic finite
automaton. The truth-table reduction only requires that the given oracle answers do not influence
further computation when subsequent input symbols are read.
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(rq0 = rq1 = 0), σq2 = (z, yz) (rq2 = 2), fq0 = fq1 = 0, fq2(0, 0) = fq2(1, 1) = 0, and
fq2(1, 0) = 1 − fq2(0, 1) where fq2(0, 1) = 1 iff L′ = L. It is easy to verify that L# = L(AL),
which implies L# ≤A

tt L. Hence, L# is DCFL′-simple. ◀

▶ Proposition 4.
1. REG ⊊ DCFLS.
2. DCFLS ⊊ DCFL, and LR = {wcwR | w ∈ {a, b}∗} ∈ DCFL ∖ DCFLS.
3. The class DCFLS is closed under complement and intersection with regular languages.
4. The class DCFLS is not closed under concatenation, intersection and union.

Proof (Sketch).
1. For any regular language L, consider a Mealy machine AL# with the DCFL′-simple oracle

L#, that simulates a deterministic finite automaton recognizing L, while its constant
truth tables produce 1 iff associated with the accept states. Hence, L ≤A

tt L# which
means L is DCFL′-simple according to Lemma 2 and Corollary 3 which also implies
REG ̸= DCFLS.

2. We first observe that DCFLS ⊆ DCFL. Let L ∈ DCFLS be any DCFL′-simple language
which ensures L ≤A

tt L# by an oracle Mealy machine AL# . The machine AL# can be
simulated by a DPDA M which extends a suitable DPDA M# (e.g. with no ε-transitions)
accepting L# = L(M#), so that the finite control of M implements the finite-state
transducer A whose output is presented online as an input to M#. Moreover, for each
state q of A, the finite control of M evaluates the truth table fq which aggregates the
answers to the queries with rq suffixes associated with q, by inspecting at most constant
number of topmost stack symbols. Hence L = L(M) ∈ DCFL.
In order to show that DCFLS ≠ DCFL, we prove that the DCFL LR = {wcwR | w ∈
{a, b}∗} over the alphabet {a, b, c} is not DCFL′-simple. For the sake of contradiction,
suppose that LR ≤A

tt L# by a Mealy machine AL# = (Q, {a, b, c}, {0, 1}, δ, λ, q0, {(σq, fq) |
q ∈ Q}) with the oracle L# = {0n1n | n ≥ 1}, which means LR = L(AL#). Consider
all the 2k possible prefixes w ∈ {a, b}k of inputs presented to AL# that have the length
|w| = k. These strings can bring AL# into a finite number |{δ(q0, w) | w ∈ {a, b}k}| ≤ |Q|
of distinct states while the length |λ(q0, w)| of outputs written to the oracle tape is bounded
by O(k). For λ(q0, w) outside 0∗1∗, the acceptance of words wu where u ∈ {a, b, c}∗,
depends only on the truth values fq(0, . . . , 0) associated with the states q from the
finite set Q, due to λ(q0, wu) /∈ L#/s for any s ∈ {0, 1}∗. On the other hand, the
number of distinct outputs λ(q0, w) in 0∗1∗ is bounded by O(k). This means that for a
sufficiently large k ≥ 1, there must be two distinct prefixes w1, w2 ∈ {a, b}k such that
δ(q0, w1) = δ(q0, w2) and λ(q0, w1) = λ(q0, w2) in 0∗1∗, which results in the contradiction
w1cwR

2 ∈ L(AL#) ∖ LR.
3. The class DCFLS is closed under complement since the truth tables can be negated.

Furthermore, any oracle Mealy machine be can modified so that it simulates another
given finite automaton in parallel and is forced to reject if this automaton rejects, which
shows DCFLS to be closed under intersection with regular languages.

4. Observe that R = {1}∗, L1 = {0m1m0n | m, n ≥ 1}, L2 = {0m1n0n | m, n ≥ 1}, and
L3 = L1 ∪ ({1} · L2) are DCFL′-simple while R · L3 /∈ DCFL, L1 ∩ L2 /∈ CFL, and
L1 ∪ L2 /∈ DCFL are not DCFL′-simple according to 2. ◀
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3 Proof of the Main Result (Theorem 1)

Theorem 1 follows from the (more specific) next lemma that we prove in this section.
(See Appendix for an informal overview with figures.)

By N we denote the set {0, 1, 2, . . . }, and by [i, j] the set {i, i+1, . . . , j} (for i, j ∈ N).

▶ Lemma 5. Let M = (Q, Σ, Γ, R, p0, X0, F ) be a DPDA where L = L(M) = L(p0X0) is
non-regular (hence L belongs to DCFL′). There are v ∈ Σ∗, x, w, y, z ∈ Σ+, p, q ∈ Q, X ∈ Γ,
γ ∈ Γ+, δ ∈ Γ∗ such that the following four conditions hold:
1. p0X0

v−→ pXδ and pX
x−→ pXγ, which entails the infinite (stack increasing) computation

p0X0
v−→ pXδ

x−→ pXγδ
x−→ pXγγδ

x−→ pXγγγδ
x−→ · · · ; (2)

2. pX
w−→ q;

3. qγ
y−→ q, hence qγℓδ′ yℓ

−→ qδ′ for all ℓ ∈ N and δ′ ∈ Γ∗;
4. one of the following cases is valid (depending on whether z ∈ L(qδ) or z ̸∈ L(qδ)):

a. L(qγkδ) ∋ yℓz iff k = ℓ (for all k, ℓ ∈ N), or L(qγkδ) ∋ yℓz iff k ≤ ℓ (for all k, ℓ ∈ N);
b. L(qγkδ) ∋ yℓz iff k ̸= ℓ (for all k, ℓ ∈ N), or L(qγkδ) ∋ yℓz iff k > ℓ (for all k, ℓ ∈ N).

We note that p0X0
v−→ pXδ

xm

−−→ pXγmδ
w−→ qγmδ

ym

−−→ qδ (for each m ∈ N); hence
vxmwymz ∈ L iff z ∈ L(qδ) (since z is nonempty). Theorem 1 indeed follows from the
lemma: there is L′ ∈ {L, L} such that either vxmwynz ∈ L′ iff m = n (for all m, n ∈ N), or
vxmwynz ∈ L′ iff m ≤ n (for all m, n ∈ N). (In Theorem 1 we also stated that v is nonempty.
If v = ε here, then we simply take vx and yz as the new v, z, respectively.)

Proof of Lemma 5

In the rest of this section we provide a proof of Lemma 5, assuming a fixed DPDA M =
(Q, Σ, Γ, R, p0, X0, F ) where L = L(p0X0) is non-regular. The proof structure is visible from
the auxiliary claims that we state and prove on the way.

Convention. W.l.o.g. we assume that M always reads the whole input u ∈ Σ∗ from
p0X0. This can be accomplished in the standard way, by adding a special bottom-of-stack
symbol ⊥ and a (non-accepting) fail-state. (Each empty-stack configuration qε becomes q⊥,
and each originally stuck computation enters the fail-state where it loops. We also recall
that all ε-steps are popping, and thus infinite ε-sequences are impossible.) Hence for any
infinite word a1a2a3 · · · in Σω there is a unique infinite computation of M starting in p0X0;
it stepwise reads the whole infinite word a1a2a3 · · · .

The left quotient of L by u ∈ Σ∗ is the set u\L = {v ∈ Σ∗ | uv ∈ L}; concatenation has
priority over \, hence u1u2\L = (u1u2)\L. (The next claim is valid for any non-regular L.)

▷ Claim 6. We can fix an infinite word a1a2a3 · · · in Σω (ai ∈ Σ) such that a1a2 · · · ai\L ̸=
a1a2 · · · aj\L for all i ̸= j.

Proof. Let us consider the labelled transition system T = (LQ(L), Σ, ( a−→)a∈Σ) where
LQ(L) = {u\L | u ∈ Σ∗} and a−→ = {(L′, a\L′) | L′ ∈ LQ(L)}. (We recall that L′ = u\L

entails a\L′ = ua\L.) Since L is non-regular, the set of states reachable from L = ε\L in
T is infinite. The out-degree of states in T is finite (in fact, bounded by |Σ|), hence an
application of König’s lemma yields an infinite acyclic path L

a1−→ L1
a2−→ L2

a3−→ · · · . ◁

We call a configuration pα of M unstable if α = Y β and R contains a rule pY
ε−→ q (we

recall that ε-steps are only popping); otherwise pα is stable. Since M is a deterministic PDA,
for each unstable pα we can soundly define the stable successor of pα as the unique stable
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configuration p′α′ where pα
ε−→ p′α′ (α′ being a suffix of α). If the path pα

ε−→ p′α′ does not go
via an accepting state (in F ), then L(pα) = L(p′α′); otherwise L(pα) = {ε} ∪ L(p′α′). (We
note that the configurations in the computation (2) that start with pX are necessarily stable:
since we have pX

x−→ pXγ for x ∈ Σ+, we cannot have pX
ε−→ p′.)

▷ Claim 7. Each configuration is visited at most twice by

the computation of M from p0X0 on a1a2a3 · · · that is fixed by Claim 6. (3)

Proof. The computation (3) is infinite, stepwise reading the whole word a1a2a3 · · · , and it
can be presented as

r0γ0
a1−→ r1γ1

a2−→ r2γ2
a3−→ · · · (for r0γ0 = p0X0)

where each riγi is stable; each segment riγi
ai+1−−−→ ri+1γi+1 starts with a (visible) ai+1-step

that is followed by a (maybe empty) sequence of (popping) ε-steps via unstable configurations.
Since such an ε-sequence might go through an accepting state, we can have riγi = rjγj for
i ̸= j though a1a2 · · · ai\L ̸= a1a2 · · · aj\L; in this case L contains precisely one of the words
a1a2 · · · ai and a1a2 · · · aj , and the languages a1a2 · · · ai\L and a1a2 · · · aj\L differ just on
ε. Nevertheless, this reasoning entails that we cannot have riγi = rjγj = rℓγℓ for pairwise
different i, j, ℓ.

Since each segment riγi
ai+1−−−→ ri+1γi+1 visits any unstable configuration at most once and

ri+1γi+1 is the stable successor for all unstable configurations in the segment, we deduce that
also each unstable configuration can be visited at most twice in the computation (3). ◁

▷ Claim 8. The computation (3) on a1a2a3 · · · can be “stair-factorized”, that is, written

p0X0
v0−→ p1X1α1

v1−→ p2X2α2α1
v2−→ p3X3α3α2α1

v3−→ · · · (4)

so that for each i ∈ N we have vi ∈ Σ+ and piXi
vi−→ pi+1Xi+1αi+1 where αi+1 is a nonempty

suffix of the right-hand side of a rule in R (i.e., a nonempty suffix of γ in a rule pX
a−→ qγ).

Proof. We consider the computation (3), and call a stable configuration pXβ a level, with
position i ∈ N, if p0X0

a1···ai−−−−→ pXβ and all configurations visited by the computation
pXβ

ai+1ai+2···−−−−−−−→ after pXβ have the stack longer than |Xβ|; each level pXβ has thus a
unique position which we denote pos(pXβ). Since each configuration is visited at most twice
in (3), and the set of configurations with a fixed length is finite, we get that the set of levels is
infinite, with elements p′

0X ′
0, p1X1β1, p2X2β2, . . . where 0 ≤ pos(p′

0X ′
0) < pos(p1X1β1) <

pos(p2X2β2) < · · · . The computation (3) can be thus presented as

p0X0
v′

0−→ p′
0X ′

0
v′′

0−→ p1X1β1
v1−→ p2X2β2

v2−→ p3X3β3
v3−→ · · ·

where |v′
0| = pos(p′

0X ′
0), and |v0v1 · · · vj−1| = pos(pjXjβj) for j ≥ 1, putting v0 = v′

0v′′
0 .

Each segment pXβ
v−→ p′X ′β′ between two neighbouring levels can be obviously written as

pXβ
a−→ qγ1γ2β

v′

−→ p′X ′γ2β where pX
a−→ qγ1γ2 is a rule in R, both γ1 and γ2 are nonempty,

v = av′, and qγ1
v′

−→ p′X ′. Hence the validity of the claim is clear. ◁

We define the natural equivalence relation ∼ on the set of configurations of M: we put
pα ∼ qβ if L(pα) = L(qβ).

We fix the presentation (4), calling piXiαiαi−1 · · · α1 the level-configurations (for all
i ∈ N). Since we have L(piXiαiαi−1 · · · α1) ∖ {ε} = (v0v1 · · · vi−1\L) ∖ {ε}, there cannot be
three level-configurations in the same ∼-class (i.e., in the same equivalence class w.r.t. ∼).
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Hence any infinite set of level-configurations represents infinitely many ∼-classes. Now we
show a congruence-property that might enable to shorten a level-configuration while its
∼-class is preserved. We use the notation DS(pα) (the “down-states” of pα), putting

DS(pα) = {q | pα
u−→ q for some u ∈ Σ∗}.

▷ Claim 9. If qγ ∼ qγ′ for each q ∈ DS(pβ), then pβγ ∼ pβγ′.

Proof. Let us consider u ∈ Σ∗. If u ∈ L(pβ), then u ∈ L(pβµ) for all µ ∈ Γ∗. If u ̸∈ L(pβ)
and there is no prefix u′ of u such that pβ

u′

−→ q, then u ̸∈ L(pβµ) for all µ ∈ Γ∗. If u ̸∈ L(pβ)
and u = u′u′′ where pXβ

u′

−→ q (necessarily for some q ∈ DS(pXβ)), then u ∈ L(pβµ) iff
u′′ ∈ L(qµ). Hence the claim is clear. ◁

The next claim is an immediate corollary.

▷ Claim 10. Any computation p0X0
w1−−→ pXβ1

w2−−→ pXβ2β1
w3−−→ p′X ′β3β2β1 where

pX
w2−−→ pXβ2 (w2 ∈ Σ+), pX

w3−−→ p′X ′β3, and qβ2β1 ∼ qβ1 for each q ∈ DS(p′X ′β3) can be
shortened to p0X0

w1−−→ pXβ1
w3−−→ p′X ′β3β1 where p′X ′β3β1 ∼ p′X ′β3β2β1.

The i-th level-configuration in (4) is reached by the computation p0X0
v0v1···vi−1−−−−−−−→

piXiαiαi−1 · · · α1. It can happen that there are j1, j2, 0 ≤ j1 < j2 ≤ i such that pj1Xj1 =
pj2Xj2 and qαj2αj2−1 · · · α1 ∼ qαj1αj1−1 · · · α1 for all q ∈ DS(piXiαiαi−1 · · · αj2+1). In this
case we can shorten the computation as in Claim 10, where vj1vj1+1 · · · vj2−1 corresponds
to the omitted w2. The resulting shorter computation might be possible to be repeatedly
shortened further (if it can be presented so that the conditions of Claim 10 are satisfied).
Now for each i ≥ 1 we fix a (stair-factorized) computation

pi,0Xi,0
vi,0−−→ pi,1Xi,1αi,1

vi,1−−→ pi,2Xi,2αi,2αi,1 · · ·
vi,ni−1−−−−−→ pi,niXi,niαi,niαi,ni−1 · · · αi,1 (5)

that has arisen by a maximal sequence of the above shortenings of the prefix

p0X0
v0v1···vi−1−−−−−−−→ piXiαiαi−1 · · · α1 of (4).

Hence pi,0Xi,0 = p0X0, pi,ni
Xi,ni

= piXi, αi,ni
, αi,ni−1, . . . , αi,1 is a subsequence of

αi, αi−1, . . . , α1, and pi,niXi,niαi,niαi,ni−1 · · · αi,1 ∼ piXiαiαi−1 · · · α1.

▷ Claim 11. For each ℓ ∈ N there is i such that ni > ℓ (where ni is from (5)).

Proof. As already discussed, the set of level-configurations represents infinitely many ∼-
classes. The last configurations of computations (5) represent the same infinite set of ∼-classes,
and their lengths thus cannot be bounded; since the lengths of all αi,j are bounded (they are
shorter than the longest right-hand sides of the rules in R), the claim is clear. ◁

Now we come to a crucial claim in our proof of Lemma 5. Besides the notation DS(pα)
we also introduce ES(pα) (the by-ε-reached down-states of pα), by putting

ES(pα) = {q | pα
ε−→ q}.

Hence ES(pα) ⊆ DS(pα), and |ES(pα)| ≤ 1 (due to the determinism of the DPDA M).
We recall that pα ∼ qβ means L(pα) = L(qβ). To handle the special case of the empty

word ε, we also define a (much) coarser equivalence ∼0: we put pα ∼0 qβ if ε either belongs
to both L(pα) and L(qβ), or belongs to none of them.
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The next claim is rather technical but it captures some straightforward combinatorial
observations that are handled by a simple use of Ramsey’s theorem. Informally speaking, if
ni in the final configuration in (5) is sufficiently large, then we can find a convenient pumping
segment in this configuration. (All this should be easily understandable after reading the
informal overview with figures in Appendix.)

▷ Claim 12. There is a constant B ∈ N determined by the DPDA M such that for all i ∈ N
where ni > B the final configuration in (5) can be written as

pi,ni
Xi,ni

αi,ni
αi,ni−1 · · · αi,1 = p̄X̄βγδ

where the following conditions hold:
1. γ = αi,jαi,j−1 · · · αi,j′+1 where ni ≥ j > j′ ≥ ni−B and pi,jXi,j = pi,j′Xi,j′

(and β = αi,ni
αi,ni−1 · · · αi,j+1, δ = αi,j′αi,j′−1 · · · αi,1);

2. the sets DS(p̄X̄β) and DS(p̄X̄βγ) are equal, further being denoted by Q̄;
3. for each q ∈ Q̄, if ES(qγ) = {q′}, then ES(q′γ) = {q′} (and q′ ∈ Q̄);
4. each q′ ∈ Q̄ belongs to DS(qγ) for some self-containing q ∈ Q̄, where q ∈ Q̄ is self-

containing if q ∈ DS(qγ);
5. there is a state q′ ∈ Q̄ for which q′γδ ̸∼ q′δ and q′γδ ∼0 q′δ.

Proof. We fix some i with ni larger than a constant B determined by M as described below
(there are such i by Claim 11). For convenience we put pi,ni

Xi,ni
= p̄X̄, ni = n, and αi,j = ᾱj ,

hence the final configuration in (5) is pi,ni
Xi,ni

αi,ni
αi,ni−1 · · · αi,1 = p̄X̄ᾱnᾱn−1 · · · ᾱ1. We

view the n+1 prefixes

p̄X̄, p̄X̄ᾱn, p̄X̄ᾱnᾱn−1, p̄X̄ᾱnᾱn−1ᾱn−2, . . . , p̄X̄ᾱnᾱn−1 · · · ᾱ1

as the vertices of a complete graph with coloured edges.
For p̄X̄ᾱnᾱn−1 · · · ᾱ1 = p̄X̄µνρ, where µ = ᾱnᾱn−1 · · · ᾱj+1, ν = ᾱjᾱj−1 · · · ᾱj′+1, and

ρ = ᾱj′ ᾱj′−1 · · · ᾱ1, n ≥ j > j′ ≥ 0, the edge between the vertices p̄X̄µ and p̄X̄µν has the
following tuple as its colour :(

pi,jXi,j , pi,j′Xi,j′ , DS(p̄X̄µ), DS(p̄X̄µν), (DS(qν), ES(qν))q∈DS(p̄X̄µ), Q ̸∼, Q0

)
where Q ̸∼ = {q′ ∈ DS(p̄X̄µ) | q′νρ ̸∼ q′ρ} and Q0 = {q′ ∈ Q ̸∼ | q′νρ ∼0 q′ρ} (and
pi,jXi,j , pi,j′Xi,j′ are taken from (5)).

Since the set of colours is bounded (by a constant determined by M), Ramsey’s theorem
yields a bound B guaranteeing that there is a monochromatic clique of size 3 among the
vertices p̄X̄, p̄X̄ᾱn, p̄X̄ᾱnᾱn−1, . . . , p̄X̄ᾱnᾱn−1 · · · ᾱn−B. (We have soundly chosen i so that
n = ni is bigger than B.) We fix such a monochromatic clique MC, denoting its 3 vertices as

p̄X̄β, p̄X̄βγ, p̄X̄βγγ̄, and its colour as C = (p′X ′, p′X ′, Q̄, Q̄, (Dq, Eq)q∈Q̄, Q′, Q′
0).

This is sound, since the fact that both edges {p̄X̄β, p̄X̄βγ} and {p̄X̄βγ, p̄X̄βγγ̄} have
the same colour entails that the first component in this colour is the same as the second
component, and the third component is the same as the fourth component.

We now show that the conditions 1–5 are satisfied for the presentation of p̄X̄ᾱnᾱn−1 · · · ᾱ1
as p̄X̄βγδ, where δ = γ̄ᾱkᾱk−1 · · · ᾱ1 for the respective k.

Conditions 1 and 2 are trivial (due to the colour C).
Condition 3: Let q ∈ Q̄ and ES(qγ) = {q′} (hence also q′ ∈ Q̄). Then Eq = ES(qγ) =

ES(qγγ̄) = {q′} (since MC is monochromatic). This entails ES(q′γ̄) = {q′}, hence Eq′ = {q′},
which in turn entails ES(q′γ) = {q′}.

Condition 4: We first note a general fact: DS(pµν) =
⋃

q∈DS(pµ) DS(qν). Since Q̄ =
DS(p̄X̄β) = DS(p̄X̄βγ) = DS(p̄X̄βγγ̄), for each q′ ∈ Q̄ there is thus q ∈ Q̄ such that
q′ ∈ Dq. We also have the following “transitivity”: if q1, q2, q3 ∈ Q̄, q1 ∈ Dq2 , and q2 ∈ Dq3 ,
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then q1 ∈ Dq3 (since MC is monochromatic). For any q′ ∈ Q̄ there is clearly a “chain”
q′ = q1, q2, q3, . . . , qℓ where ℓ > 1, qj ∈ Dqj+1 for all j ∈ [1, ℓ−1], and qj = qℓ for some j < ℓ.
By the above transitivity, qℓ is self-containing (qℓ ∈ Dqℓ

and thus qℓ ∈ DS(qℓγ)) and q′ ∈ Dqℓ

(hence q′ ∈ DS(qℓγ)).
Condition 5: For any three configurations at least two belong to the same ∼0-class. Since

the edges among the vertices p̄X̄β, p̄X̄βγ, p̄X̄βγγ̄ have the same Q′
0 in their colour C, we

get that Q′
0 = Q′, and thus also q′γδ ∼0 q′δ for all q′ ∈ Q̄ such that q′γδ ̸∼ q′δ. Now if for all

q′ ∈ Q̄ we had q′γδ ∼ q′δ (which includes the case Q̄ = ∅), then we would get a contradiction
with our choice of (5) since it could have been shortened as in Claim 10. ◁

Now we state a weaker version of Lemma 5:

▷ Claim 13. There are v ∈ Σ∗, x, w, y, z ∈ Σ+, p, q ∈ Q, X ∈ Γ, γ ∈ Γ+, δ ∈ Γ∗ such that
p0X0

v−→ pXδ, pX
x−→ pXγ, pX

w−→ q, qγ
y−→ q, and

either z ∈ L(qδ) and z ̸∈ L(qγℓδ) for all ℓ > 0,
or z ̸∈ L(qδ) and z ∈ L(qγℓδ) for all ℓ > 0.

Proof. We fix one p̄X̄βγδ guaranteed by Claim 12 (satisfying the respective conditions 1–5).
There are v ∈ Σ∗, x, w, y, z̄ ∈ Σ+, p, q ∈ Q, X ∈ Γ, γ ∈ Γ+, δ ∈ Γ∗, q′ ∈ DS(qγ) such that

p0X0
v−→ pXδ, pX

x−→ pXγ, pX
w−→ q, qγ

y−→ q, and L(q′γδ) and L(q′δ) differ on z̄

(i.e., z̄ ∈ (L(q′γδ) ∖ L(q′δ)) ∪ (L(q′δ) ∖ L(q′γδ)).
Indeed: The respective computation (5) can be written p0X0

v−→ pXδ
x−→ pXγδ

w′

−→ p̄X̄βγδ

where x and γ are nonempty. The claimed q′ and [nonempty] z̄ are guaranteed by 5 in
Claim 12, and q is a respective self-containing state from 4. Since q ∈ DS(p̄X̄β) and
q ∈ DS(qγ), we get pXγδ

w′w′′

−−−→ qγδ
y−→ qδ, where w′′ ̸= ε. We also have y ̸= ε, since

otherwise DS(qγ) = ES(qγ) = {q}, q′ = q, and we could not have qγδ ̸∼ qδ and qγδ ∼0 qδ.
Since q′ ∈ DS(qγ), we can fix z′ such that qγ

z′

−→ q′. Hence the languages L(qγγδ) and
L(qγδ) differ on z = z′z̄; more generally, L(qγℓ+1γδ) and L(qγℓγδ) differ on yℓz for all ℓ ≥ 0.
Now we aim to find out for which ℓ we have z ∈ L(qγℓδ).

We recall that Q̄ = DS(p̄X̄β) = DS(p̄X̄βγ); hence
⋃

q̄∈Q̄ DS(q̄γ) = Q̄. Since q ∈ Q̄, we
get that DS(qγd) ⊆ Q̄ for all d ∈ N (by induction). We now distinguish two cases:
1. For each prefix z1 of z and each d ≤ |z| we have: if qγd z1−→ q̄, then ES(q̄γ) = ∅.
2. There are a prefix z1 of z, d ≤ |z|, and q̄, q′′ ∈ Q̄ such that qγd z1−→ q̄ and ES(q̄γ) = {q′′}.
In the case 1 we clearly have either ∀ℓ > |z| : z ∈ L(qγℓδ) or ∀ℓ > |z| : z ̸∈ L(qγℓδ) (here δ

plays no role). In the case 2 we recall that q̄γ
ε−→ q′′ entails that q̄γkδ

ε−→ q′′δ for all k ≥ 1
(since ES(q′′γ) = {q′′} by 3 in Claim 12). Hence we have either ∀ℓ > |z| + 1 : z ∈ L(qγℓδ) or
∀ℓ > |z| + 1 : z ̸∈ L(qγℓδ).

Since L(qγ2δ) and L(qγ1δ) differ on z, we deduce that there is ℓ0 ≥ 1 such that either
z ∈ L(qγℓ0δ) and z ̸∈ L(qγℓδ) for all ℓ > ℓ0, or z ̸∈ L(qγℓ0δ) and z ∈ L(qγℓδ) for all ℓ > ℓ0.
Hence for δ̄ = γℓ0δ we have either z ∈ L(qδ̄) and z ̸∈ L(qγℓδ̄) for all ℓ > 0, or z ̸∈ L(qδ̄) and
z ∈ L(qγℓδ̄) for all ℓ > 0. Since for v̄ = vxℓ0 we have p0X0

v̄−→ pXδ̄, the claim is proven. ◁

Claim 13 shows that there is L′ ∈ {L, L} such that vxmwymz ∈ L′ and vxmwynz ̸∈ L′

for m > n, which is a weaker version of Lemma 5. To handle the case m < n, we have to
find out for which ℓ we have yℓz ∈ L(qδ). We thus look at the computation from qδ on the
infinite word yω (recalling our convention that this computation is infinite, stepwise reading
the word yyy · · · ), and use the obvious fact that after a prefix this computation becomes
“periodic” (either cycling among finitely many configurations, or increasing the stack forever).
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▷ Claim 14. For any configuration qδ and words y, z there are numbers s ≥ 0 (“shift”) and
p > 0 (“period”) such that for all ℓ ≥ s the remainder (ℓ mod p) determines whether or not
L(qδ) ∋ yℓz.

Proof. We assume y ̸= ε (otherwise the claim is trivial). For the infinite computation from
qδ on yyy · · · there are obviously k1 ≥ 0, k2 > 0, q̄ ∈ Q, and ρ, µ, ν ∈ Γ∗ such that the
computation can be written qδ

yk1
−−→ q̄ρν

yk2
−−→ q̄ρµν

yk2
−−→ q̄ρµµν

yk2
−−→ q̄ρµµµν

yk2
−−→ · · · where

q̄ρ
yk2
−−→ q̄ρµ. (We have µ = ε if the computation visits only finitely many configurations, and

otherwise we consider the stair-factorization of the computation.)

For each j ∈ [0, k2−1] we put q̄ρ
yj

−→ q̄jρj , and we have two possible cases:
1. There is d0 ≥ 0 such that for all d ≥ d0 performing z from q̄jρjµdν does not reach ν at

the bottom.
2. There are d0 ≥ 0, a prefix z′ of z, q′ ∈ Q, and d̄ ∈ [1, |Q|] such that q̄jρjµd0 z′

−→ q′ and
q′µd̄ ε−→ q′.

In the case 1 either L(qδ) ∋ yd·k2+jz for all d ≥ d0, or L(qδ) ̸∋ yd·k2+jz for all d ≥ d0.
In the case 2, for each d ≥ 0 we have q′µd ε−→ qd where qd1 = qd2 if d1 ≡ d2 (mod d̄). Hence
for each d ≥ d0, the (non)membership of yd·k2+jz in L(qδ) is determined by (d mod d̄).

The claim is thus clear. ◁

Now we finish the proof of Lemma 5. We take the notation from Claim 13; for the
respective qδ, y, z we add s, p from Claim 14. Let k0 be a multiple of p that is bigger than
s. We now view xk0 , yk0 , γk0 as new x, y, γ, respectively. Claims 13 and 14 now yield the
statement of Lemma 5.

4 Conclusion and Open Problems

In this paper, we have introduced a new notion of the C-simple problem that reduces to each
problem in C, being thus a conceptual counterpart to the C-hard problem to which each
problem in C reduces. We have illustrated this concept on the definition of the DCFL′-simple
problem that reduces to each DCFL′ language under the truth-table reduction by Mealy
machines. We have proven that the DCFL′ language L# = {0n1n | n ≥ 1} is DCFL′-
simple, and thus represents the simplest languages in the class DCFL′. This result finds
its application in expanding the known lower bound for L#, namely that L# cannot be
recognized by the neural network model 1ANN, to all DCFL′ languages. Moreover, the class
DCFLS of DCFL′-simple problems containing the regular languages is a strict subclass of
DCFL and has similar closure properties as DCFL.

We note that the hardest context-free language L0 by Greibach [3], where each L in
CFL is an inverse homomorphic image of L0 or L0 ∖ {ε}, can be viewed as CFL-hard w.r.t.
a many-one reduction based on Mealy machines realizing the respective homomorphisms.
Our aims in the definition of DCFL′-simple problems cannot be achieved by such a many-one
reduction, hence we have generalized it to a truth-table reduction. We can alternatively
consider a general Turing reduction that is implemented by a Mealy machine which queries
the oracle at special query states, each associated with a corresponding query suffix, while its
next transition from the query state depends on the given oracle answer. The oracle Mealy
machine then accepts an input word if it reaches an accept state after reading the input.
The language L# proves to be DCFL′-simple under this Turing reduction allowing for an
unbounded number of online oracle queries; this can be shown by Claim 13 (a weaker version
of Lemma 5).
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It is natural to try extending our result to non-regular nondeterministic (or at least
unambiguous) context-free languages, by possibly showing that L# is CFL′-simple. Another
important challenge for further research is looking for C-simple problems for other complexity
classes C and suitable reductions. This could provide an effective tool for strengthening
lower-bounds results known for single problems to the whole classes of problems, which
deserves a deeper study.
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Figure 1 DPDA computation scheme where either vxmwynz is (or is not) accepted iff m = n, or
vxmwynz is (or is not) accepted iff m ≤ n.

1. (the pumping condition)
p0X0

v−→ pXδ
xm

−−→ pXγmδ
w−→ qγmδ

ym

−−→ qδ for all m ≥ 0 (since pX
x−→ pXγ and qγ

y−→ q);
hence z ∈ L(qδ) entails vxmwymz ∈ L for all m ≥ 0, and z ̸∈ L(qδ) entails vxmwymz ̸∈ L

for all m ≥ 0;
2. (the prefix condition)

the prefix differs from qδ on z in the sense that the languages of all configurations reachable
by vxmwyn where m > n differ from L(qδ) on z; referring to Figure 1, z ∈ L(qγkδ) △ L(qδ)
for all k > 0, where A △ B denotes (A ∖ B) ∪ (B ∖ A);

3. (the suffix condition)
the suffix (all configurations reachable by vxmwyn where m < n) either differs from, or
coincides with, qδ on z; referring to Figure 1, either z ∈ L(qδ) △ L(p′ξ(γ′)kδ′) for all
k ≥ 0, or z ∈ L(qδ) ∩ L(p′ξ(γ′)kδ′) for all k ≥ 0.

The prefix condition 2 implies that the stack segment γ is nonempty (while γ′ might be
empty). The conditions also imply that q ∈ DS(qγ) and ES(qγ) = ∅, when we use the
following definitions: DS(rα) = {r′ | rα

u−→ r′ for some u ∈ Σ∗} (the “down-states” of rα)
and ES(rα) = {r′ | rα

ε−→ r′} (which is either the empty set or a singleton containing the
down-state reached by a sequence of ε-poppings from rα). Hence ES(rα) ⊆ DS(rα), and
ES(rα) ̸= ∅ entails ES(rα) = DS(rα) = {r′} for some r′. Figure 2 depicts an example of
DS(pXγ5), using the obvious compositional approach based on DS(pX) and DS(qiγ) and
ES(qiγ) where i ∈ {1, 2, 3, 4, 5}, assuming that the state set of M is Q = {q1, q2, q3, q4, q5}
and p = q2. (Here the stack is presented horizontally.)

Figure 2 Each directed path from the leftmost black point to the rightmost upper point shows that
q1 ∈ DS(q2Xγ5). The completely-dashed paths correspond to ε-sequences; e.g. ES(q5γγ) = {q5}.

Getting tuples (v, x, w, y, z) satisfying the pumping condition 1

Since L = L(p0X0) is not regular, it is clear that from p0X0 the computations of M can reach
configurations with arbitrary stack-heights, more precisely configurations with arbitrarily
long erasable stack-tops. (The stack-top α in a configuration pαβ is erasable if DS(pα) ̸= ∅.)
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Figure 3 Stair-factorization.

Moreover, such long stack-tops must be also erasable by using many “solid-line” segments
that use visible (i.e. non-ε) steps. Indeed: if all possible stack-erasings would in principle
go along the dashed lines, i.e. by ε-popping, like from q1γk in Figure 2, then this would
also entail regularity of L, since even long (erasable) stacks could be replaced with their
equivalents of bounded lengths in such cases.

Using the above observations, it is standard to derive the existence of various tuples
(v, x, w, y, z) satisfying the pumping condition 1. A crucial fact is that any computation
p0X0

u−→ rα where the stack-content α is long can be stair-factorized into a long sequence
of “stairs”, as depicted on the left in Figure 3: here piXi

vi−→ pi+1Xi+1αi+1 and αi+1 is a
nonempty suffix of the right-hand side of a rewriting rule of M (for i = 0, 1, 2, . . . ). If a
(long) stack αkαk−1 · · · α1 is first built and then its (long) top αkαk−1 · · · αj+1 gets erased,
we let p′

i denote the state in which αiαi−1 · · · αjαj−1 · · · α1 is exposed during this erasing
(for i = k, k−1, . . . , j); such p′

i are depicted on the right in Figure 3, assuming j = 1. By
the pigeonhole principle, a triple (p, X, p′) repeats in a sufficiently long sequence (pj , Xj , p′

j),
(pj+1, Xj+1, p′

j+1), . . . , (pk, Xk, p′
k), which naturally yields a “pumping tuple” (v, x, w, y, z).

Pumping-operation on (v, x, w, y, z) (preserving the conditions 1, 2, 3 that hold)

Looking at Figure 1, we observe that if the pumping condition 1 holds for a tuple (v, x, w, y, z),
then it is preserved by the pumping-operation on (v, x, w, y, z) that consists in replacing
x and y with their “multiples” xk0 and yk0 , for any k0 ≥ 1. Moreover, if (v, x, w, y, z)
also happens to satisfy the prefix condition 2, then also this condition is preserved by the
pumping-operation (for any k0 ≥ 1). The same is true for the suffix condition 3.

Establishing the suffix condition 3 (by the pumping-operation for suitable k0)

Given (v, x, w, y, z) that satisfies the pumping condition 1, we now show that the pumping-
operation (for an appropriate number k0) establishes the suffix condition 3. First we observe
that if M starts in qδ and processes yω = yyy · · · , then the respective infinite computation
necessarily enters a “cycle” after a “prelude”. This is depicted in Figure 1, but there both the
prelude and the cycle process the word y. Generally, we would get a prelude qδ

yk1
−−→ p′ξδ′

and a cycle p′ξδ′ yk2
−−→ p′ξγ′δ′ (where p′ξ

yk2
−−→ p′ξγ′ and γ′ might be empty) for some numbers

k1, k2 (where k2 > 0). We now show that the set

A = {ℓ ∈ N | z ∈ L(cℓ)} where cℓ are the configurations satisfying qδ
yℓ

−→ cℓ (6)
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is ultimately periodic; i.e., for a shift s ≥ 0 and a period p > 0 we have that for all ℓ ≥ s
the remainder (ℓ mod p) determines whether or not ℓ ∈ A. Generally we cannot simply
take p = k2 as a suitable period, since z might “embark” on popping the γ′-segments along
“dashed paths”: processing a prefix z1 of z from p′ξγ′γ′ · · · γ′δ′ might reach a configuration
q′γ′γ′ · · · γ′δ′ like q1γγγ · · · in Figure 2, in which case we have q′γ′γ′ · · · γ′δ′ ε−→ rδ′, and it is
the state r in which the bottom δ′ is reached that determines whether z is accepted or not
(i.e., whether z2 ∈ L(rδ′) when z = z1z2). We thus might need to choose p as a multiple of
k2, guaranteeing that the above mentioned state r (in which δ′ is reached) is also repeating
with the period p.

Having a shift s and a period p characterizing the ultimate periodicity of the set A defined
by (6), we choose k0 ≥ s that is a multiple of p. Then replacing x and y with xk0 and yk0

indeed guarantees the suffix condition 3; an important point is that the “suffix” might differ
from, or coincide with, qδ on z.

Establishing the prefix condition 2

Given a tuple (v, x, w, y, z) satisfying the pumping condition 1, if we aim to establish the prefix
condition 2 by the pumping-operation, then it is natural to consider the “prefix-counterpart”
of (6), namely the set

A′ = {ℓ ∈ N | z ∈ L(qγℓδ)} (7)

(recall Figure 1). It is again clear that A′ is ultimately periodic, but a problem is that we
have to guarantee that the “prefix” has to differ from qδ on z (unlike the “suffix” that can
also coincide).

We now show that if A′ is nontrivial (∅ ⊊ A′ ⊊ N), then we can establish the prefix
condition 2 easily. Let s be the shift and p the period of a presentation of A′ as an ultimately
periodic set, and let i0 ∈ A′ and i1 ̸∈ A′. Let k0 ≥ max{i0, i1, s} be a multiple of p, and let
j ∈ {0, 1} be such that ij differs from k0 on the membership in A′. Instead of (v, x, w, y, z)
we now take (v′, x′, w, y′, z) where v′ = vxij , x′ = xk0 , y′ = yk0 . Referring to Figure 1,
by this change δ is replaced with δ = γij δ, and γ is replaced with γ = γk0 . We have
z ∈ L(qδ) △ L(q(γ)kδ) for all k > 0; hence the prefix condition 2 is indeed established.

It remains to explore if we can have the case that for each tuple (v, x, w, y, z) satisfying
the pumping condition 1 the “prefix” set A′ defined by (7) (when referring to the notation
of Figure 1) is trivial. Since we can choose z freely, this case would, in fact, entail that
qδ ∼ qγδ ∼ qγγδ ∼ · · · , where c ∼ c′ stands for L(c) = L(c′) for any configurations c, c’.
We now show that this case cannot happen since the language L = L(q0X0) is non-regular.

First, it is straightforward to derive that we can fix a crucial infinite computation of
M from p0X0, processing some word a1a2a3 · · · , whose stair-factorization has infinitely
many stairs and each stair represents its own equivalence class of ∼. We can view the left
part of Figure 3 as a prefix of this crucial computation; we thus have piXiαiαi−1 · · · α1 ̸∼
pjXjαjαj−1 · · · α1 for all i ̸= j. (The existence of such an infinite computation follows by
the fact that the set of left quotients {u\L | u ∈ Σ∗}, where u\L = {u′ ∈ Σ∗ | uu′ ∈ L}, is
infinite since L is non-regular, and by König’s lemma since the tree of all computations of
M from p0X0 is finitely branching.)

We are not done, since even in this crucial infinite computation (with pairwise non-
equivalent stairs) a “pumping” tuple (v, x, w, y, z) derived by the above-mentioned pigeonhole
principle might not guarantee that qδ ̸∼ qγδ (and we might have qδ ∼ qγδ ∼ qγγδ ∼ · · · ).
For instance, let us assume that in Figure 3 we have p1X1 = p3X3, and that Q = {q1, q2, q3}
as depicted in Figure 4. We can have q2α1 ∼ q2α3α2α1 (as denoted by the rectangles in
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Figure 4 Shortening of configurations (here p1X1 = p3X3).

Figure 4) and q3α1 ∼ q3α3α2α1 (as denoted by the circles), but q1α1 ̸∼ q1α3α2α1 (which
causes that p1X1α1 ̸∼ p3X3α3α2α1). By putting pX = p1X1 = p3X3, δ = α1, x = v1v2
(referring to Figure 3), and γ = α3α2, we get a “pumping” p0X0

v0−→ pXδ
x−→ pXγδ

x−→ pXγγδ

where pXγγδ is depicted as the third configuration in Figure 4. (We have omitted unreachable
“black points”.) Here we indeed have qδ ∼ qγδ ∼ qγγδ ∼ · · · , as is highlighted by the fourth
configuration in Figure 4.

In our example we can also note that some configurations in the crucial infinite com-
putation might be safely shortened while their equivalence classes are preserved. This is
depicted on the right in Figure 4: we have p0X0

v0v1v2v3−−−−−−→ p4X4α4α3α2α1, but we obvi-
ously have p4X4α4α3α2α1 ∼ p4X4α4α1; this shorter representant of the equivalence class of
p4X4α4α3α2α1 is reachable by omitting v1v2, i.e., p0X0

v0v3−−−→ p4X4α4α1.
Nevertheless, the crucial computation visits infinitely many equivalence classes, so the

sizes of the stair-configurations piXiαiαi−1 · · · α1 must grow above any bound even when
we first shorten them maximally in the (repeated) described way. Let us now fix a stair-
configuration that has been maximally shortened in the above way and is still sufficiently
long. By straightforward combinatorial arguments (that can presented as an application
of Ramsey’s theorem to avoid tedious technicalities) we can derive that this (shortened)
configuration can be written as p̄X̄βγδ where γ is nonempty, and

γ can be pumped (having the same “lower” pjXj and “upper” pj′Xj′ , like γ = α3α2 in
Figure 4);
the sets DS(p̄X̄β) and DS(p̄X̄βγ) are equal, further being denoted by Q̄ (e.g., in Figure 4
p4X4α4α3α2α1 = p̄X̄βγδ where Q̄ = {q2, q3});
there is q′ ∈ Q̄ for which L(q′γδ) and L(q′δ) differ on a nonempty word z̄ (e.g., now let
the circled q3γδ and q3δ in Figure 4 differ in this way, hence we can choose q′ = q3);
moreover, this q′ ∈ Q̄ belongs to DS(qγ) for some self-containing q ∈ Q̄, where q ∈ Q̄ is
self-containing if q ∈ DS(qγ) (let q = q2 in our example, though here also q3 is possible).

It is then clear that qγ
y−→ q and qγ

z′

−→ q′ for some nonempty y, z′; this entails qγγδ ̸∼ qγδ

since they differ on z = z′z̄. (This is sufficient for us even if we cannot deduce that qγδ ̸∼ qδ.)
A formal proof is given in the main part of the paper.
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1 Introduction
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solved in polynomial time (detecting a triangle), while the general problem is NP-complete
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alternatively, to find a subgraph whose total weight matches a prescribed value.

Incorporating weights in the problem definition can have a significant effect on com-
putational complexity. For example, determining whether an unweighted n-vertex graph
has a triangle can be done in time O(nω) (where ω < 2.373 is the exponent of matrix
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multiplication) [14], while for the analogous weighted problem of finding a triangle of min-
imum edge-weight, no algorithm of running time O(n3−ε) is known for any ε > 0. Some
popular conjectures in fine-grained complexity theory even postulate that no such algorithms
exist [27]. Weights also have an effect on the best-possible exponential running times of
algorithms solving NP-hard problems: the current-fastest algorithm for the NP-complete
Hamiltonian Cycle problem in undirected graphs runs in time O(1.66n) [3], while for its
weighted analogue, Traveling Salesperson, no algorithm with running time O((2 − ε)n)
is known for general undirected graphs (cf. [23]).

In this work we investigate how the presence of weights in a problem formulation affects
the compressibility and kernelization complexity of NP-hard problems. Kernelization is
a subfield of parameterized complexity [6, 9] that investigates how much a polynomial-time
preprocessing algorithm can compress an instance of an NP-hard problem, without changing
its answer, in terms of a chosen complexity parameter.

For a motivating example of kernelization, we consider the Vertex Cover problem.
For the unweighted variant, a kernelization algorithm based on the Nemhauser-Trotter theo-
rem [25] can efficiently reduce an instance (G, k) of the decision problem, asking whether G

has a vertex cover of size at most k, to an equivalent one (G′, k′) consisting of at most 2k ver-
tices, which can therefore be encoded in O(k2) bits via its adjacency matrix. In the language
of parameterized complexity, the unweighted Vertex Cover problem parameterized by
the solution size k admits a kernelization (self-reduction) to an equivalent instance on O(k2)
bits. For the weighted variant of the problem, where an input additionally specifies a weight
threshold t ∈ N+ and a weight function w : V (G) → N+ on the vertices, and the question
is whether there is a vertex cover of size at most k and weight at most t, the guarantee on
the encoding size of the reduced instance is weaker. Etscheid et al. [10, Thm. 5] applied a
powerful theorem of Frank and Tardös [12] to develop a polynomial-time algorithm to reduce
any instance (G, w, k, t) of Weighted Vertex Cover to an equivalent one with O(k2)
edges, which nevertheless needs O(k8) bits to encode due to potentially large numbers
occurring as vertex weights. The Weighted Vertex Cover problem, parameterized by
solution size k, therefore has a kernel of O(k8) bits.

The overhead in the kernel size for the weighted problem is purely due to potentially large
weights. This led Etscheid et al. [10] to ask in their conclusion whether this overhead in the
kernelization sizes of weighted problems is necessary, or whether it can be avoided. As one of
the main results of this paper, we will prove a lower bound showing that the kernelization
complexity of some weighted problems is strictly larger than their unweighted counterparts.

Our results. We consider an edge-weighted variation of the Clique problem, parameterized
by the number of vertices n:

Exact-Edge-Weight Clique (EEWC)
Input: An undirected graph G, a weight function w : E(G) → N0, and a target t ∈ N0.
Question: Does G have a clique of total edge-weight exactly t, i.e., a vertex set S ⊆ V (G)
such that {x, y} ∈ E(G) for all distinct x, y ∈ S and such that

∑
{x,y}⊆S w({x, y}) = t?

Our formulation of EEWC does not constrain the cardinality of the clique. This
formulation will be convenient for our purposes, but we remark that by adjusting the weight
function it is possible to enforce that any solution clique S has a prescribed cardinality.
Through such a cardinality restriction we can obtain a simple reduction from the problem
with potentially negative weights to equivalent instances with weights from N0, by increasing
all weights by a suitably large value and adjusting t according to the prescribed cardinality.



B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:3

Note that an instance of EEWC can be reduced to an equivalent one where G has all possible
edges, by simply inserting each non-edge with a weight of t + 1. Hence the difficulty of the
problem stems from achieving the given target weight t as the total weight of the edges
spanned by S, not from the requirement that G[S] must be a clique.

EEWC is a natural extension of Zero-Weight Triangle [1], which has been studied
because it inherits fine-grained hardness from both 3-Sum [29] and All Pairs Shortest
Paths [28, Footnote 3]. EEWC has previously been considered by Abboud et al. [2] as
an intermediate problem in their W[1]-membership reduction from k-Sum to k-Clique.
Vassilevska-Williams and Williams [29] considered a variation of this problem with weights
drawn from a finite field. The related problem of detecting a triangle of negative edge weight
is central in the field of fine-grained complexity for its subcubic equivalence [30] to All
Pairs Shortest Paths. Another example of an edge-weighted subgraph detection problem
with an exact requirement on the weight of the target subgraph is Exact-Edge-Weight
Perfect Matching, which can be solved using algebraic techniques [22, §6] and has been
used as a subroutine in subgraph isomorphism algorithms [21, Proposition 3.1].

The unweighted version of EEWC, obtained by setting all edge weights to 1, is NP-
complete because it is equivalent to the Clique problem. When using the number of vertices n

as the complexity parameter, the problem admits a kernelization of size O(n2) obtained by
simply encoding the instance via its adjacency matrix. We prove the following lower bound,
showing that the kernelization complexity of the edge-weighted version is a factor n larger.
The lower bound even holds against generalized kernelizations (Definition 4).

▶ Theorem 1. The Exact-Edge-Weight Clique problem parameterized by the number
of vertices n does not admit a generalized kernelization of O(n3−ε) bits for any ε > 0, unless
NP ⊆ coNP/poly.

Intuitively, the lower bound exploits the fact that the weight value of each of the Θ(n2)
edges in the instance may be a large integer requiring Ω(n) bits to encode. We also provide
a randomized kernelization which matches this lower bound.

▶ Theorem 2. There is a randomized polynomial-time algorithm that, given an n-vertex
instance (G, w, t) of Exact-Edge-Weight Clique, outputs an instance (G′, w′, t′) of
bitsize O(n3), in which each number is bounded by 2O(n), that is equivalent to (G, w, t) with
probability at least 1 − 2−n. Moreover, if the input is a YES-instance, then the output is
always a YES-instance.

The proof is based on the idea that taking the weight function modulo a random prime
preserves the answer to the instance with high probability. We adapt the argument by Harnik
and Naor [13] that it suffices to pick a prime of magnitude 2O(n). As a result, each weight
can be encoded with just O(n) bits.

It is noteworthy that the algorithm above can produce only false positives, therefore
instead of using randomization we can turn it into a co-nondeterministic algorithm which
guesses the correct values of the random bits. The framework of cross-composition excludes
not only deterministic kernelization, but also co-nondeterministic [8], thus the lower bound
from Theorem 1 indeed makes the presented algorithm tight.

Together, Theorems 1 and 2 pin down the kernelization complexity of Exact-Edge-
Weight Clique, and prove it to be a factor n larger than for the unit-weight case.
For Clique, the kernelization of O(n2) bits due to adjacency-matrix encoding cannot
be improved to O(n2−ε) for any ε > 0, as was shown by Dell and van Melkebeek [8].

We extend our results to the hypergraph setting, which is defined as follows: given
a d-regular hypergraph (d ≥ 3) with non-negative integer weights on the hyperedges, and
a target value t, test if there is a vertex set S for which each size-d subset is a hyperedge (so
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that S is a hyperclique) such that the sum of the weights of the hyperedges contained in S

is exactly t. By a bootstrapping reduction using Theorem 1, we prove that Exact-Edge-
Weight d-Uniform Hyperclique does not admit a generalized kernel of size O(nd+1−ε)
for any ε > 0 unless NP ⊆ coNP/poly, while the randomized hashing technique yields
a randomized kernelization of size O(nd+1).

We can view the edge-weighted (d-hyper)clique problem on (G, k, w, t) as a weighted
constraint satisfaction problem (CSP) with weights from Z, by introducing a binary variable
for each vertex, and a weighted constraint for each subset S′ of d vertices, which is satisfied
precisely when all variables for S′ are set to true. If S′ is a (hyper)edge e ∈ E(G) then
the weight of the constraint on S′ equals the weight of e; if S′ is not a hyperedge of G,
then the weight of the constraint on S′ is set to −∞ to prevent all its vertices from being
simultaneously chosen. Under this definition, G has a (hyper)clique of edge-weight t if
and only if there is an assignment to the variables for which the total weight of satisfied
constraints is t. Via this interpretation, the lower bounds for EEWC yield lower bounds on
the kernelization complexity of weighted variants of CSP. We employ a recently introduced
framework [17] of reductions among different CSPs whose constraint languages have the same
maximum degree d of their characteristic polynomials, to transfer these lower bounds to other
CSPs (see Section 3.3 for definitions). We obtain tight kernel bounds when parameterizing
the exact-satisfaction-weight version of CSP by the number of variables, again using random
prime numbers to obtain upper bounds. Our lower bounds for Exact-Edge-Weight
d-Uniform Hyperclique transfer to all CSPs with degree d ≥ 2. In degree-1 CSP each
constraint depends on exactly one variable, therefore its exact-weighted variant is equivalent
to the Subset Sum problem, for which we also provide a tight lower bound.

▶ Theorem 3. Subset Sum parameterized by the number of items n does not admit
a generalized kernelization of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Theorem 3 tightens a result of Etscheid et al. [10, Theorem 14], who ruled out (standard)
kernelizations for Subset Sum of size O(n2−ε) assuming the Exponential Time Hypothesis.
Our reduction, conditioned on the incomparable assumption NP ̸⊆ coNP/poly, additionally
rules out generalized kernelizations that compress into an instance of a potentially different
problem. Note that the new lower bound implies that the input data in Subset Sum cannot
be efficiently encoded in a more compact way, whereas the previous lower bound relies on
the particular way the input is encoded in the natural formulation of the problem. On the
other hand, a randomized kernel of size O(n2) is known [13].

The results described so far characterize the kernelization complexity of broad classes of
weighted constraint satisfaction problems in which the goal is to find a solution for which the
total weight of satisfied constraints is exactly equal to a prescribed value. We also broaden
our scope and investigate the maximization or minimization setting, in which the question is
whether there is a solution whose cost is at least, or at most, a prescribed value. Some of
our upper-bound techniques can be adapted to this setting: using a procedure by Nederlof,
van Leeuwen and de Zwaan [24] a maximization problem can be reduced to a polynomial
number of exact queries. This leads, for example, to a Turing kernelization (cf. [11]) for
the weight-maximization version of d-Uniform Hyperclique which decides an instance
in randomized polynomial time using queries of size O(nd+1) to an oracle for an auxiliary
problem. We do not have lower bounds in the maximization regime.

In an attempt to understand the relative difficulty of obtaining an exact target weight
versus maximizing the target weight, we finally investigate different models of weight reduction
for the Weighted Vertex Cover problem studied extensively in earlier works [5, 10, 24].
We consider the problem on bipartite graphs, where an optimal solution can be found in
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polynomial time, but we investigate whether a weight function can be efficiently compressed
while either preserving (a) the collection of minimum-weight vertex covers, or (b) the relative
ordering of total weight for all inclusion-minimal vertex covers. We give a polynomial-time
algorithm for case (a) which reduces to a weight function with range {1, . . . , n} using a relation
to b-matchings, but show that in general it is impossible to achieve (b) with a weight function
with range {1, . . . , 2o(n)}, by utilizing lower bounds on the number of different threshold
functions.

Organization. We begin with short preliminaries with the crucial definitions. We prove
our main Theorem 1 in Section 3 by presenting a cross-composition of degree 3 into Exact-
Edge-Weight Clique and employing it to obtain kernelization lower bounds for d-uniform
hypergraphs for d ≥ 2. This section also contains the kernelization lower bound for Subset
Sum as well as the generalization of these results to Boolean CSPs. Next, in Section 4 we
focus on bipartite Weighted Vertex Cover and the difficulty of compressing weight
functions. The proofs of statements marked with (⋆) are located in the appendix. The proofs
of statements marked with (♠) can be found in the full version [16]. The proof of Theorem 2,
together with Turing kernelization for maximization problems, is given in Appendix B. The
kernel upper bounds for Boolean CSPs can be found in the full version [16].

2 Preliminaries

We denote the set of natural numbers including zero by N0, and the set of positive natural
numbers by N+. For positive integers n we define [n] := {1, . . . , n}. For a set U and
integer d ≥ 1 we denote by

(
U
d

)
the collection of all size-d subsets of U . All logarithms we

employ have base 2. Given a set U and a weight function w : U → N0, for a subset S ⊆ U

we denote w(S) :=
∑

v∈S w(v).
A graph G has a vertex set V (G) and an edge set E(G) ⊆

(
V (G)

2
)
. For d ≥ 2, a d-uniform

hypergraph G consists of a vertex set V (G) and a set of hyperedges E(G) ⊆
(

V (G)
d

)
, that is,

each hyperedge is a set of exactly d vertices. Hence a 2-uniform hypergraph is equivalent to a
standard graph. A clique in a d-uniform hypergraph G is a vertex set S ⊆ V (G) such that for
each X ∈

(
S
d

)
we have X ∈ E(G): each possible hyperedge among the vertices of S is present.

A vertex cover for a graph G is a vertex set S ⊆ V (G) containing at least one endpoint of
each edge. A vertex cover is inclusion-minimal if no proper subset is a vertex cover.

Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N+, where Σ is
a finite alphabet.

▶ Definition 4. Let Q, Q′ ⊆ Σ∗ × N+ be parameterized problems and let h : N+ → N+ be a
computable function. A generalized kernel for Q into Q′ of size h(k) is an algorithm that,
on input (x, k) ∈ Σ∗ × N+, takes time polynomial in |x| + k and outputs an instance (x′, k′)
such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k) is
a polynomial.

▶ Definition 5 (Linear-parameter transformations). Let P and Q be parameterized problems.
We say that P is linear-parameter transformable to Q, if there exists a polynomial-time
computable function f : Σ∗ × N+ → Σ∗ × N+, such that for all (x, k) ∈ Σ∗ × N+, (a)
(x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q and (b) k′ ≤ O(k). The function f is called a
linear-parameter transformation.
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We employ a linear-parameter transformation for proving the lower bound for Subset
Sum. For other lower bounds we use the framework of cross-composition [4] directly.

▶ Definition 6 (Polynomial equivalence relation, [4, Def. 3.1]). Given an alphabet Σ, an
equivalence relation R on Σ⋆ is called a polynomial equivalence relation if the following
conditions hold.

(i) There is an algorithm that, given two strings x, y ∈ Σ⋆, decides whether x and y belong
to the same equivalence class in time polynomial in |x| + |y|.

(ii) For any finite set S ⊆ Σ⋆ the equivalence relation R partitions the elements of S into a
number of classes that is polynomially bounded in the size of the largest element of S.

▶ Definition 7 (Degree-d cross-composition). Let L ⊆ Σ⋆ be a language, let R be a polynomial
equivalence relation on Σ⋆, and let Q ⊆ Σ⋆ × N+ be a parameterized problem. A degree-d
OR-cross-composition of L into Q with respect to R is an algorithm that, given z instances
x1, x2, . . . , xz ∈ Σ⋆ of L belonging to the same equivalence class of R, takes time polynomial
in

∑z
i=1 |xi| and outputs an instance (x′, k′) ∈ Σ⋆ × N+ such that:

(i) the parameter k′ is bounded by O(z1/d · (maxi |xi|)c), where c is some constant inde-
pendent of z, and

(ii) (x′, k′) ∈ Q if and only if there is an i ∈ [z] such that xi ∈ L.

▶ Theorem 8 ([4, Theorem 3.8]). Let L ⊆ Σ⋆ be a language that is NP-hard under Karp
reductions, let Q ⊆ Σ⋆ × N+ be a parameterized problem, and let ε > 0 be a real number.
If L has a degree-d OR-cross-composition into Q and Q parameterized by k has a polynomial
(generalized) kernelization of bitsize O(kd−ε), then NP ⊆ coNP/poly.

3 Kernel lower bounds

3.1 Exact-Edge-Weight Clique
In this section we show that Exact-Edge-Weight Clique parameterized by the number
of vertices in the given graph n does not admit a generalized kernel of size O(n3−ε), unless
NP ⊆ coNP/poly. We use the framework of cross-composition to establish a kernelization
lower bound [4]. We will use the NP-hard Red-Blue Dominating Set (RBDS) as a
starting problem for the cross-composition. Observe that RBDS is NP-hard because it is
equivalent to Set Cover and Hitting Set [19].

Red-Blue Dominating Set (RBDS)
Input: A bipartite graph G with a bipartition of V (G) into sets R (red vertices) and B

(blue vertices), and a positive integer d ≤ |R|.
Question: Does there exist a set D ⊆ R with |D| ≤ d such that every vertex in B has
at least one neighbor in D?

The following lemma forms the heart of the lower bound. It shows that an instance of
EEWC on z · NO(1) vertices can encode the logical OR of a sequence of z3 instances of
size N each. Roughly speaking, this should be interpreted as follows: when z ≫ N , each of
the roughly z2 edge weights of the constructed graph encodes z useful bits of information, in
order to allow the instance on ≈ z2 edges to represent all z3 inputs.

▶ Lemma 9. There is a polynomial-time algorithm that, given integers z, d, n, m and a
set of z3 instances {(Gi,j,k, Ri,j,k, Bi,j,k, d) | i, j, k ∈ [z])} of RBDS such that |Ri,j,k| = m

and |Bi,j,k| = n for each i, j, k ∈ [z], constructs an undirected graph G′, integer t > 0, and
weight function w : E(G′) → N0 such that:
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1. the graph G′ contains a clique of total edge-weight exactly t if and only if there ex-
ist i∗, j∗, k∗ ∈ [z] such that Gi∗,j∗,k∗ has a red-blue dominating set of size at most d,

2. the number of vertices in G′ is O(z(m + nd)), and
3. the values of t and |V (G′)| depend only on z, d, n, and m.

Proof. We describe the construction of (G′, w, t); it will be easy to see that it can be carried
out in polynomial time. Label the vertices in each set Ri,j,k arbitrarily as r1, . . . , rm, and
similarly label the vertices in each set Bi,j,k as b1, . . . , bn. We construct a graph G′ with
edge-weight function w and integer t such that G′ has a clique of total edge weight exactly
t if and only if some Gi,j,k is a YES-instance of RBDS. In the following construction we
interpret edge weights as vectors of length nz + 1 written in base (m + d + 2), which will be
converted to integers later. Starting from an empty graph, we construct G′ as follows; see
Figure 1.

1. For each i ∈ [z], create a vertex bi. The vertices bi form an independent set, so that any
clique in G′ contains at most one vertex bi.

2. For each j ∈ [z], create a vertex set Rj = {rj
1, rj

2, · · · , rj
m} and insert edges of weight 0⃗

between all possible pairs of Rj .
3. For each k ∈ [z], create a vertex sk. The vertices sk form an independent set, so that any

clique in G′ contains at most one vertex sk.
4. For each j, k ∈ [z], for each x ∈ [m], insert an edge between sk and rj

x of weight 0⃗.

The next step is to ensure that the neighborhood of a vertex rx in Gi,j,k is captured in
the weights of the edges which are incident on rj

x in G′.

5. For each i, j ∈ [z], for each x ∈ [m], insert an edge between bi and rj
x.

6. The weight of each edge {bi, rj
x} is a vector of length nz + 1, out of which the least

significant nz positions are divided into z blocks of length n each, and the most significant
position is 1. The numbering of blocks as well as positions within a given block start
with the least significant position.
For each i, j ∈ [z], for each x ∈ [m], the weight of edge {bi, rj

x} is defined as follows. For
each k ∈ [z], for each q ∈ [n], the value vk,q(bi, rj

x) represents the value of the qth position
of the kth block of the weight of {bi, rj

x}. The value is defined based on the neighborhood
of vertex rx in Gi,j,k as follows:

vk,q(bi, rj
x) =

{
1 if {bq, rx} ∈ E(Gi,j,k)
0 otherwise.

(1)

Intuitively, the vector representing the weight of edge {bi, rj
x} is formed by a 1 followed

by the concatenation of z blocks of length n, such that the kth block is the 0/1-incidence
vector describing which of the n blue vertices of instance Gi,j,k are adjacent to rx.

Note that the n blue vertices of an input instance Gi,j,k are represented by a single blue
vertex bi in G′. The difference between distinct blue vertices is encoded via different positions
of the weight vectors. The most significant position of the weight vectors, which is always set
to 1 for edges of the form {bi, rj

x}, will be used to keep track of the number of red vertices in
a solution to RBDS.

The graph constructed so far has a mechanism to select the first index i of an instance Gi,j,k

(by choosing a vertex bi), to select the second index j (by choosing vertices rj
x), and to select

the third index k (by choosing a vertex sk). The next step in the construction adds weighted
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w(e1) = ︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 1 Top-left: An instance (G2,1,3, R2,1,3, B2,1,3, 2) of RBDS with m = 4, n = 5, and d = 4.
Right: Illustration of the EEWC instance created for a sequence of 33 inputs including the one on
the left. For readability, only a subset of the edges is drawn. Bottom-left: For each type edge with
non-zero weight, an example weight is shown in vector form.

edges {bi, sk}, of which a solution clique in G′ will contain exactly one. The weight vector
for this edge is chosen so that the domination requirements from all RBDS instances whose
third index differs from k (and which are therefore not selected) can be satisfied “for free”.

7. For each i, k ∈ [z], insert an edge between bi and sk.
8. As in Step 6, the weight of the edge {bi, sk} is a (1 + nz)-tuple consisting of the most

significant position followed by z blocks of length n. There is a 0 at the most significant
position, block k consists of n zeros, and the other blocks are filled with ones. Hence the
weight of the edge {bi, sk} is independent of i.

To be able to ensure that G′ has a clique of exactly weight t if some input instance Gi,j,k

has a solution, we need to introduce padding numbers which may be used as part of the
solution to EEWC.

9. For each position v ∈ [nz + 1] of a weight vector, add a vertex set Pv = {pv
1, pv

2, · · · , pv
d−1}

to G′. Recall that d is the upper bound on the solution size for RBDS.
10. For each i ∈ [z], for each v ∈ [nz + 1], for each y ∈ [d − 1], add an edge {bi, pv

y}. The
weight of edge {bi, pv

y} has value 1 at the vth position and zeros elsewhere.
11. For each v ∈ [nz + 1], for each y ∈ [d − 1], add an edge {pv

y, u} of weight 0⃗ for all
u ∈ V (G′) \ ({bi | i ∈ [z]} ∪ {pv

y}), i.e., for all vertices u ̸= pv
y which were not already

adjacent to pv
y.

We define the target weight t to be the (nz + 1)-length vector with value d at each
position, which satisfies Condition 3. Observe that G′ has O(z(m + nd)) vertices: Steps 1
and 3 contribute O(z) vertices, Step 2 contributes O(zm), and Step 9 contributes O(d(nz)).
Hence Condition 2 is satisfied. It remains to verify that G′ has a clique of total edge weight
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exactly t if and only if some input instance Gi,j,k has a solution of Red-Blue Dominating
Set of size at most d. Before proving this property, we show the following claim which
implies that no carries occur when summing up the weights of the edges of a clique in G′.

▷ Claim 10. For any clique S ⊆ V (G′), for any position v ∈ [nz +1] of a weight vector, there
are at most d + m + 1 edges of the clique G′[S] whose weight vector has a 1 at position v,
and all other weight vectors are 0 at position v.

Proof. By construction, the entries of the vector encoding an edge weight are either 0 or 1.
By Steps 1 and 3, a clique S in G′ contains at most one vertex bi and one vertex sk.

Since G′ does not have edges between vertices in distinct sets Rj and Rj′ by Step 2, any
clique in G′ consists of at most one vertex bi, one vertex sk, a subset of one set Rj , and a
subset of

⋃
v∈[nz+1] Pv. For any fixed position v ∈ [nz + 1], the only edge-weight vectors

which can have a 1 at position v are the d − 1 edges from Pv to bi, the edge {bi, sk}, and
the m edges between Rj and bi. As this yields (d − 1) + 1 + m edges that possibly have a 1
at position v, the claim follows. ◁

The preceding claim shows that when we convert each edge-weight vector to an integer
by interpreting the vector as its base-(m + d + 2)-representation, then no carries occur when
computing the sum of the edge-weights of a clique. Hence the integer edge-weights of a
clique S ⊆ V (G′) sum to the integer represented by vector t, if and only if the edge-weight
vectors of the edges in S sum to the vector t. In the remainder, it therefore suffices to prove
that there is a YES-instance Gi∗,j∗,k∗ of RBDS among the inputs if and only if G′ has a
clique whose edge-weight vectors sum to the vector t. We prove these two implications.

▷ Claim 11. If some input graph Gi∗,j∗,k∗ has a red-blue dominating set of size at most d,
then G′ has a clique of edge-weight exactly t.

Proof. Let S ⊆ Ri∗,j∗,k∗ of size at most d be a dominating set of Bi∗,j∗,k∗ . We define a
vertex set S′ ⊆ V (G′) as follows. Initialize S′ := {bi∗ , sk∗}, and for each vertex rx ∈ S, add
the corresponding vertex rj∗

x ∈ Rj∗ to S′.
We claim that S′ is a clique in G′. To see this, note that Rj∗ is a clique by Step 2.

Vertex sk∗ is adjacent to all vertices of Rj∗ by Step 4. Vertex bi∗ is adjacent to all vertices
of Rj∗ by Step 5. By Step 8 there is an edge between bi∗ and sk∗ .

Let us consider the weight of clique S′. Since S is a dominating set of Bi∗,j∗,k∗ , if we
sum up the weight vectors of the edges {bi∗ , rj∗

x } for rx ∈ S, then by Step 6 we get a value
of at least one at each position of block k∗. The most significant position of the resulting
sum vector has value |S| ≤ d. By Step 8 the weight vector of the edge {bi∗ , sk∗} consists
of all ones, except for block k∗ and the most significant position, where the value is zero.
Thus adding the edge weight of {bi∗ , sk∗} to the previous sum ensures that each block has
value at least 1 everywhere, whereas the most significant position has value |S|. All other
edges spanned by S have weight 0⃗. Letting t′ denote the vector obtained by summing the
weights of the edges of clique S′, we therefore find that t′ has value |S| as its most significant
position and value at least 1 everywhere else.

Next we add some additional vertices to the set S′ to get a clique of weight exactly t. By
Step 11, vertices from the sets Pv for v ∈ [nz + 1] are adjacent to all other vertices in the
graph and can be added to any clique. All edges incident on a vertex pv

y ∈ Pv have weight 0⃗,
except the edges to vertices of the form bi whose weight vector has a 1 at the vth position
and 0 elsewhere. Since S′ contains exactly one such vertex bi∗ , for any v ∈ [nz + 1] we can
add up to d − 1 vertices from Pv to increase the weight sum at position v from its value of at
least 1 in t′, to a value of exactly d. Hence G′ has a clique of edge-weight exactly t. ◁
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▷ Claim 12. If G′ has a clique of edge-weight exactly t, then some input graph Gi∗,j∗,k∗ has
a red-blue dominating set of size at most d.

Proof. Suppose G′[S′] is a clique whose total edge weight is exactly t. Note that only edges
for which one of the endpoints is of the form bi for i ∈ [z] have positive edge weights. The
remaining edges all have weight 0⃗. Also, by Step 1 there is at most one b-vertex in S′. Hence
since t ̸= 0⃗ there is exactly one vertex bi∗ in S′. By Step 9 and 10, the edges of type {bi∗ , pv

y}
for pv

y ∈ Pv contribute at most d − 1 to the value of each position v ∈ [nz + 1] of the sum.
Hence for each position v ∈ [nz + 1] there is an edge in clique S′ of the form {bi∗ , rj

x} or
{bi∗ , sk} which has a 1 at position v. We use this to show there is an input instance with a
red-blue dominating set of size at most d.

By Step 3, there is at most one s-vertex in S′. Let k∗ := 1 if S ∩ {s1, . . . , sz} = ∅, and
otherwise let sk∗ be the unique s-vertex in S′. Since the weight of the edge {bi∗ , sk∗} has
zeros in block k∗ by Step 8, our previous argument implies that for each of the n positions
of block k∗, there is an edge in clique S′ of the form {bi∗ , rj

x} whose weight has a 1 at that
position. Hence S′ contains at least one r-vertex, and by Step 2 all r-vertices in the clique S′

are contained in a single set Rj∗ . We show that Gi∗,j∗,k∗ has a red-blue dominating set of
size at most d. Let S := {rx | rj∗

x ∈ S′}. Since for each of the n positions of block k∗ there
is an edge {bi∗ , rj

x} in S′ with a 1 at that position, by Step 5 each blue vertex of Bi∗,j∗,k∗

has a neighbor in S. Hence S is a red-blue dominating set. By Step 5, the most significant
position of each edge between bi∗ and Rj∗ has value 1. As the most significant position of
the target t is set to d, it follows that |S| ≤ d, which proves that Gi∗,j∗,k∗ has a red-blue
dominating set of size at most d. ◁

This completes the proof of Lemma 9. ◀

Lemma 9 forms the main ingredient in a cross-composition that proves kernelization
lower bounds for Exact-Edge-Weight Clique and its generalization to hypergraphs. For
completeness, we formally define the hypergraph version as follows.

Exact-Edge-Weight d-Uniform Hyperclique (EEW-d-HC)
Input: A d-uniform hypergraph G, weight function w : E(G) → N0, and a positive
integer t.
Question: Does G have a hyperclique of total edge-weight exactly t?

The following theorem generalizes Theorem 1. The case d = 2 of the theorem follows
almost directly from Lemma 9 and Theorem 8, as the construction in the lemma gives the
crucial ingredient for a degree-3 cross-composition. For larger d, we essentially exploit the
fact that increasing the size of hyperedges by one allows one additional dimension of freedom,
as has previously been exploited for other kernelization lower bounds for d-Hitting Set
and d-Set Cover [7, 8]. The proof is given in Appendix A.1.

▶ Theorem 13. (⋆) For each fixed d ≥ 2, Exact-Edge-Weight d-Uniform Hyper-
clique parameterized by the number of vertices n does not admit a generalized kernel of
size O(nd+1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

3.2 Subset Sum
We show that Subset Sum parameterized by the number of items n does not have generalized
kernel of bitsize O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. We prove the lower bound
by giving a linear-parameter transformation from Exact Red-Blue Dominating Set. We
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use Exact Red-Blue Dominating Set rather than Red-Blue Dominating Set as our
starting problem for this lower bound because it will simplify the construction: it will avoid
the need for “padding” to cope with the fact that vertices are dominated multiple times.

The Subset Sum problem is formally defined as follows.

Subset Sum (SS) Parameter: n

Input: A multiset X of n positive integers and a positive integer t.
Question: Does there exist a subset S ⊆ X with

∑
x∈S x = t?

We use the following problem as the starting point of the reduction.

Exact Red-Blue Dominating Set (ERBDS) Parameter: n := |V (G)|
Input: A bipartite graph G with a bipartition of V (G) into sets R (red vertices) and B

(blue vertices), and a positive integer d ≤ |R|.
Question: Does there exist a set D ⊆ R of size exactly d such that every vertex in B

has exactly one neighbor in D?

Jansen and Pieterse proved the following lower bound for ERBDS.

▶ Theorem 14 ([15, Thm. 4.9]). Exact Red-Blue Dominating Set parameterized
by the number of vertices n does not admit a generalized kernel of size O(n2−ε) unless
NP ⊆ coNP/poly.

Actually, the lower bound they proved is for a slightly different variant of ERBDS where
the solution D is required to have size at most d, instead of exactly d. Observe that the
variant where we demand a solution of size exactly d is at least as hard as the at most d

version: the latter reduces to the former by inserting d isolated red vertices. Therefore
the lower bound by Jansen and Pieterse also works for the version we use here, which will
simplify the presentation.

▶ Theorem 3. Subset Sum parameterized by the number of items n does not admit
a generalized kernelization of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Given a graph G with a bipartition of V (G) into R and B with R = {r1, r2, . . . , rnR
},

B = {b1, b2, . . . , bnB
}, and target value d for ERBDS, we transform it to an equivalent

instance (X, t) of SS such that |X| = nR. We start by defining nR numbers N1, N2, . . . , NnR

in base (nR + 1). For each i ∈ [nR], the number Ni consists of (nB + 1) digits. We denote
the digits of the number Ni by Ni[1], . . . , Ni[nB + 1], where Ni[1] is the least significant and
Ni[nB + 1] is the most significant digit. Intuitively, the number Ni corresponds to the red
vertex ri. See Figure 2 for an illustration.

For each i ∈ [nR], for each j ∈ [nB + 1], digit Ni[j] of number Ni is defined as follows:

Ni[j] =


1 if j = nB + 1
1 if j ∈ [nB ] and {ri, bj} ∈ E(G)
0 otherwise.

(2)

Hence the most significant digit of each number is 1, and the remaining digits of number Ni

form the 0/1-vector indicating to which of the nB blue vertices ri is adjacent in G.
To complete the construction we set X = {N1, N2, . . . , NnR

} and we define t as follows:

t = d 11 . . . 1︸ ︷︷ ︸
nB times

(3)
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r1 r2 r3 r4

b1 b2 b3 b4 b5
ct B5 B4 B3 B2 B1

N1 1 0 0 0 1 1
N2 1 0 1 1 1 0
N3 1 1 1 1 0 0
N4 1 1 0 0 0 1
t 2 1 1 1 1 1

Figure 2 Left: An instance of ERBDS with nR = 4, nB = 5, and d = 2. Right: Illustration of
the SS instance created for the given input. Note that {r2, r4} and the numbers {N2, N4} form a
solution for ERBDS and SS, respectively. The leftmost column corresponds to the total count (ct)
of the number of elements; the remaining columns correspond to blue vertices.

Observe that under these definitions, there are no carries when adding up a subset of the
numbers in X, as each digit of each of the nR numbers is either 0 or 1 and we work in
base nR + 1.

The number of items |X| in the constructed instance of SS is nR, upper bounded by the
parameter |V (G)| of ERBDS. It is easy to see that the construction can be carried out in
polynomial time. To complete the linear-parameter transformation from ERBDS to SS, it
remains to prove that G has a set D ⊆ R of size exactly d such that every vertex in B has
exactly one neighbor in D, if and only if there exist a set S ⊆ X with

∑
x∈S x = t.

In the forward direction, suppose that there exists a set D ⊆ R of size exactly d such that
every vertex in B has exactly one neighbor in D. We claim that {Ni | ri ∈ D} is a solution
to SS. The resulting sum has value d at the most significant digit since |D| = d. All other
digits correspond to vertices in B. Since each blue vertex is adjacent to exactly one vertex
from D it is easy to verify that all remaining digits of the sum are exactly one, implying
that the numbers sum to exactly t.

For the reverse direction, suppose there is a set S ⊆ X with
∑

x∈S x = t. Since the most
significant digit of t is set to d and each number in X has a 1 as most significant digit, we
have |S| = d since there are no carries during addition. Define D := {ri | Ni ∈ S} as the
set of the red vertices corresponding to the numbers in S. As

∑
x∈S x = t and no carries

occur in the summation, we have
∑

x∈S x[j] = t[j] = 1 for each j ∈ [nB ]. As the j-th digit of
all numbers is either 0 or 1 by definition, there is a unique Ni ∈ S with Ni[j] = 1, so that
ri ∈ D is the unique neighbor of bj in D. This shows that D is an exact red-blue dominating
set of size d, concluding the linear-parameter transformation.

If there was a generalized kernelization for SS of size O(n2−ε), then we would obtain
a generalized kernelization for ERBDS of size O(n2−ε) by first transforming it to SS, and
then applying the generalized kernelization for the latter. Hence by contraposition and
Theorem 14, the claim follows. ◀

3.3 Constraint Satisfaction Problems

In this section we extend our lower bounds to cover Boolean Constraint Satisfaction Problems
(CSPs). We employ the recently introduced framework [17] of reductions among different
CSPs to make a connection with EEW-d-HC. We start with introducing terminology
necessary to identify crucial properties of CSPs.
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Preliminaries on CSPs. A k-ary constraint is a function f : {0, 1}k → {0, 1}. We refer to k

as the arity of f , denoted ar(f). We always assume that the domain is Boolean. A constraint
f is satisfied by an input s ∈ {0, 1}k if f(s) = 1. A constraint language Γ is a finite collection
of constraints {f1, f2, . . . , fℓ}, potentially with different arities. A constraint application,
of a k-ary constraint f to a set of n Boolean variables, is a triple ⟨f, (i1, i2, . . . ik), w⟩, where
the indices ij ∈ [n] select k of the n Boolean variables to whom the constraint is applied,
and w is an integer weight. The variables can repeat in a single application.

A formula Φ of CSP(Γ) is a set of constraint applications from Γ over a common set
of variables. For an assignment x, that is, a mapping from the set of variables to {0, 1},
the integer Φ(x) is the sum of weights of the constraint applications satisfied by x. The
considered decision problems are defined as follows.

Exact-Weight CSP(Γ) Parameter: n

Input: A formula Φ of CSP(Γ) over n variables, an integer t ∈ Z.
Question: Is there an assignment x for which Φ(x) = t?

Max-Weight CSP(Γ) Parameter: n

Input: A formula Φ of CSP(Γ) over n variables, an integer t ∈ Z.
Question: Is there an assignment x for which Φ(x) ≥ t?

The compressibility of Max-Weight CSP(Γ) has been studied by Jansen and Wło-
darczyk [17], who obtained essentially optimal kernel sizes for every Γ in the case where
the weights are polynomial with respect to n. Even though the upper and lower bounds
in [17] are formulated for Max-Weight CSP(Γ), they could be adapted to work with
Exact-Weight CSP(Γ). The crucial idea which allows to determine compressibility of Γ is
the representation of constraints via multilinear polynomials.

▶ Definition 15. For a k-ary constraint f : {0, 1}k → {0, 1} its characteristic polynomial Pf

is the unique k-ary multilinear polynomial over R satisfying f(x) = Pf (x) for any x ∈ {0, 1}k.

It is known that such a polynomial always exists and it is unique [26].

▶ Definition 16. The degree of constraint language Γ, denoted deg(Γ), is the maximal degree
of a characteristic polynomial Pf over all f ∈ Γ.

The main result of Jansen and Włodarczyk [17] states that Max-Weight CSP(Γ) with
polynomial weights admits a kernel of O(ndeg(Γ) log n) bits and, as long as the problem is NP-
hard, it does not admit a kernel of size O(ndeg(Γ)−ε), for any ε > 0, unless NP ⊆ coNP/poly.
It turns out that in the variant when we allow both positive and negative weights the problem
is NP-hard whenever deg(Γ) ≥ 2 [18]. The lower bounds are obtained via linear-parameter
transformations, where the parameter is the number of variables n. We shall take advantage
of the fact that these transformations still work for an unbounded range of weights.

▶ Lemma 17 ([17], Lemma 5.4). For constraint languages Γ1, Γ2 such that 2 ≤ deg(Γ1) ≤
deg(Γ2), there is a polynomial-time algorithm that, given a formula Φ1 ∈ CSP(Γ1) on n1
variables and integer t1, returns a formula Φ2 ∈ CSP(Γ2) on n2 variables and integer t2,
such that
1. n2 = O(n1),
2. ∃xΦ1(x) = t1 ⇐⇒ ∃yΦ2(y) = t2,
3. ∃xΦ1(x) ≥ t1 ⇐⇒ ∃yΦ2(y) ≥ t2.
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Kernel lower bounds for CSP. The lower bound of Ω(ndeg(Γ)−ε) has been obtained via a
reduction from d-SAT (with d = deg(Γ)) to Max-Weight CSP(Γ), combined with the fact
that Max d-SAT does not admit a kernel of size O(nd−ε) for d ≥ 2 [8, 17]. We are going
to show that when the weights are arbitrarily large, then the optimal compression size for
Exact-Weight CSP(Γ) becomes essentially O(ndeg(Γ)+1), so the exponent is always larger
by one compared to the case with polynomial weights. To this end, we are going to combine
the aforementioned reduction framework with our lower bound for Exact-Edge-Weight
d-Uniform Hyperclique.

Consider a constraint language Γd
and consisting of a single d-ary constraint ANDd, which

is satisfied only if all the arguments equal 1. The characteristic polynomial of ANDd is
simply P (x1, . . . , xd) = x1x2 · · · xd, hence the degree of Γd

and equals d. We first translate
our lower bounds for the hyperclique problems into a lower bound for Exact-Weight
CSP(Γd

and) for all d ≥ 2, and then extend it to other CSPs.

▶ Lemma 18. For all d ≥ 2, Exact-Weight CSP(Γd
and) does not admit a generalized

kernel of size O(nd+1−ε), for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Consider an instance (G, w, t) of Exact-Edge-Weight d-Uniform Hyperclique.
Let W be the sum of all weights, which are by the definition non-negative. We can assume
t ∈ [0, W ], as otherwise there is clearly no solution. We create an instance Φ of Exact-
Weight CSP(Γd

and) with the variable set V (G) as follows. For each potential hyperedge
e = {v1, . . . , vd}, if e ∈ E(G) we create a constraint application ⟨ANDd, (v1, . . . , vd), w(e)⟩
and if e ̸∈ E(G), we create a constraint application ⟨ANDd, (v1, . . . , vd), W + 1⟩.

If X ⊆ V (G) is a hyperclique with total weight t, then for the assignment x(v) = [v ∈ X]
it holds that Φ(x) = t. In the other direction, if Φ(x) = t then x cannot satisfy any constraint
application with weight W + 1. Hence, each size-d subset of 1-valued variables corresponds
to a hyperedge in G and X = {v ∈ V (G) | x(v) = 1} forms a hyperclique of total weight t.

We have constructed a linear-parameter transformation from EEW-d-HC to Exact-
Weight CSP(Γd

and). Therefore, any generalized kernel of size O(nd+1−ε) for the latter
would entail the same bound for EEW-d-HC. The claim follows from Theorem 13. ◀

The lower bound for Exact-Weight CSP(Γd
and) given by Lemma 18 yields a lower

bound for general Exact-Weight CSP(Γ) using the reduction framework described above.

▶ Theorem 19. For any Γ with deg(Γ) ≥ 2, Exact-Weight CSP(Γ) does not admit a
generalized kernel of size O(ndeg(Γ)+1−ε), for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Consider an n-variable instance (Φ1, t1) of Exact-Weight CSP(Γd
and), where

d = deg(Γ). It holds that deg(Γd
and) = d. By Lemma 17, there is a linear-parameter

transformation that translates (Φ1, t1) into an equivalent instance (Φ2, t2) of Exact-Weight
CSP(Γ). If we could compress (Φ2, t2) into O(nd+1−ε) bits, this would entail the same
compression for (Φ1, t1). The claim follows from Lemma 18. ◀

This concludes the discussion of kernelization lower bounds. The kernelization upper
bounds discussed in the introduction can be found in Appendix B (for hyperclique problems)
and in the full version [16] (for CSPs).

4 Node-weighted Vertex Cover in bipartite graphs

Preserving all minimum solutions. For a graph G with node-weight function w : V (G) →
N+, we denote by C(G, w) the collection of subsets of V (G) which are minimum-weight vertex
covers of G. For n-vertex bipartite graphs there exists a weight function with range [n] that
preserves the set of minimum-weight vertex covers, which can be computed efficiently.
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▶ Theorem 20. (♠) There is an algorithm that, given an n-vertex bipartite graph G and
node-weight function w : V (G) → N+, outputs a weight function w∗ : V (G) → [n] such that
C(G, w) = C(G, w∗). The running time of the algorithm is polynomial in |V (G)| and the
binary encoding size of w.

The proof of the theorem is given in the full version [16]. It relies on the fact that a
maximum b-matching (the linear-programming dual to Vertex Cover) can be computed in
strongly polynomial time in bipartite graphs by a reduction to Max Flow. The structure of
a maximum b-matching allows two weight-reduction rules to be formulated whose exhaustive
application yields the desired weight function. We also prove that the bound of n on the
largest weight in Theorem 20 is best-possible.

Preserving the relative weight of solutions. For a graph G, we say that two node-weight
functions w, w′ are vertex-cover equivalent if the ordering of inclusion-minimal vertex covers
by total weight is identical under the two weight functions, i.e., for all pairs of inclusion-
minimal vertex covers S1, S2 ⊆ V (G) we have w(S1) ≤ w(S2) ⇔ w′(S1) ≤ w′(S2). While
a minimum-weight vertex cover of a bipartite graph can be found efficiently, the following
theorem shows that nevertheless weight functions with exponentially large coefficients may
be needed to preserve the ordering of minimal vertex covers by weight.

▶ Theorem 21. (♠) For each n ≥ 1, there exists a node-weighted bipartite graph Gn on 2(n+1)
vertices with weight function w : V (Gn) → N+ such that for all weight functions w′ : V (G) →
N+ which are vertex-cover equivalent to w, we have: max

v∈V (Gn)
w′(v) ≥ 2Ω(n).

5 Conclusions

We have established kernelization lower bounds for Subset Sum, Exact-Edge-Weight
d-Uniform Hyperclique, and a family of Exact-Weight CSP problems, which make it
unlikely that there exists an efficient algorithm to compress a single weight into o(n) bits.
This gives a clear separation between the setting involving arbitrarily large weights and
the case with polynomially-bounded weights, which can be encoded with O(log n) bits each.
The matching kernel upper bounds are randomized and we leave it as an open question to
derandomize them. For Subset Sum parameterized by the number of items n, a deterministic
kernel of size O(n4) is known [10].

Kernelization of weighted minimization/maximization problems is so far less understood.
We are able to match the same kernel size as for the exact-weight problems, but only
through Turing kernels. Using techniques from [10] one can obtain, e.g., a kernel of size
O(n8) for Max-Edge-Weight Clique. Improving upon this bound possibly requires
a better understanding of the threshold functions. Our study of weighted Vertex Cover
on bipartite graphs indicates that preserving the order between all the solutions might be
overly demanding and it could be easier to keep track only of the structure of the optimal
solutions. Can we extend the theory of threshold functions so that better bounds are feasible
when we just want to maintain a separation between optimal and non-optimal solutions?
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A Kernel lower bounds

A.1 Omitted proof for Exact-Edge-Weight Clique
▶ Theorem 13. (⋆) For each fixed d ≥ 2, Exact-Edge-Weight d-Uniform Hyper-
clique parameterized by the number of vertices n does not admit a generalized kernel of
size O(nd+1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. We give a degree-(d + 1) OR-cross-composition (Definition 7) from RBDS to the
weighted hyperclique problem using Lemma 9. We start by giving a polynomial equivalence
relation R on inputs of RBDS. Let two instances of RBDS be equivalent under R if they
have the same number of red vertices, the same number of blue vertices, and the same target
value d. It is easy to check that R is a polynomial equivalence relation.

Consider Z inputs of RBDS from the same equivalence class of R. If Z is not a (d + 1)th

power of an integer, then we duplicate one of the input instances until we reach the first
number of the form 2(d+1)i, which is trivially such a power. This increases the number
of instances by at most the constant factor 2d+1 and does not change whether there is a
YES-instance among the instances. As all requirements on a cross-composition are oblivious
to constant factors, from now on we may assume without loss of generality that Z = zd+1

for some integer z. By definition of R, all instances have the same number m of red vertices,
the same number n of blue vertices, and have the same maximum size d of a solution.
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For d = 2, we can simply invoke Lemma 9 for the zd+1 = z3 instances of RBDS and output
the resulting instance (G′, w, t) of EEWC, which acts as the logical OR. Since the encoding
size N of an instance of RBDS with m red vertices, n blue vertices, and target value d

satisfies N ∈ Ω(n + m + d), Lemma 9 guarantees that G′ has O(z(m + nd)) ∈ O( 3
√

Z · N2)
vertices, which is suitably bounded for a degree-3 cross-composition for the parameterization
by the number of vertices. Hence the claimed lower bound for generalized kernelization then
follows from Theorem 8.

In the remainder of the proof, we assume d ≥ 3. Partition the zd+1 inputs in zd−2 groups
{Xi1,...,id−2 | i1, . . . , id−2 ∈ [z]} of size z3 each. Apply Lemma 9 to each group Xi1,...,id−2 .
This results in zd−2 instances (Gi1,...,id−2 , wi1,...,wd−2 , t) of EEWC on a simple graph. Note
that all instances share the same value of t > 0, as Lemma 9 ensures that t only depends
on (z, d, n, m) which are identical for all groups. Similarly, all resulting instances have
the same number of vertices. Hence we can re-label the vertices in each graph so that all
graphs Gi1,...,id−2 have the same vertex set V of size O(z(m + nd)). The YES/NO-answer
to each composed instance is the disjunction of the answers to the RBDS instances in its
corresponding group.

Build a d-uniform hypergraph G∗ with weight function w∗ : E(G∗) → N0 and target
value t∗ as follows:
1. V (G∗) = V ∪ Y1 ∪ · · · ∪ Yd−2, where Yℓ = {yℓ,j | j ∈ [z]} for ℓ ∈ [d − 2].
2. A set S ⊆ V (G∗) of exactly d vertices is a hyperedge of G∗ if there is no ℓ ∈ [d − 2] for

which |S ∩ Yℓ| > 1.
3. The weight of a hyperedge S is equal to 0 if there exists ℓ ∈ [d − 2] with S ∩ Yℓ = ∅.

Otherwise, for each ℓ ∈ [d − 2] let iℓ be the unique index j such that yℓ,j ∈ S.
If eS := S ∩ V is an edge in graph Gi1,...,id−2 then define w∗(S) := wi1,...,id−2(eS).
Otherwise, let w∗(S) := t + 1.

4. Set t∗ = t.

Since d ∈ O(1), hypergraph G∗ has O(z · (m + nd)) + O(z · d) ∈ O(Z1/(d+1) · (m + n)O(1))
vertices. (We use here that d ≤ m.) Hence the parameter value of the constructed Exact-
Edge-Weight d-Uniform Hyperclique instance is indeed bounded by the (d + 1)-th
root of the number of input instances times a polynomial in the maximum size of an input
instance, satisfying the parameter bound of a degree-(d + 1) cross-composition.

It remains to verify that G∗ has a hyperclique of weight t∗ if and only if one of the
input instances has a RBDS of size at most d. By the guarantee of Lemma 9, it suffices
to show that G∗ has a hyperclique of weight t∗ if and only if one of the weighted standard
graphs (Gi1,...,id−2 , wi1,...,id−2) obtained by applying that lemma to some group of z3 inputs,
has a clique of weight t.

First suppose there exists a weighted graph (Gi∗
1 ,··· ,i∗

d−2
, wi∗

1 ,...,i∗
d−2

) that contains a clique S

of total edge weight t. Let I := {yℓ,i∗
ℓ

| ℓ ∈ [d − 2]}. Let S′ := S ∪ I. By Step 2, the set S′

is a hyperclique in G∗. It remains to verify that its weight is t∗ = t. By Step 3, for each
edge e of the clique S the set e ∪ I is a hyperedge in G∗ of the same weight. Additionally,
each subset of S′ that does not contain I has weight 0. Hence the weight of hyperclique S′ is
equal to the weight of clique S and is therefore t∗ = t.

For the other direction, suppose G∗ has a clique G∗[S∗] of weight t∗ = t. Since t > 0 and
all hyperedges in G∗ of nonzero weight contain exactly one vertex of each set Yℓ for ℓ ∈ [d−2],
there exist i∗

1, . . . , i∗
d−2 such that S∗∩Yℓ = {i∗

ℓ } for each ℓ ∈ [d−2]. Let I := {yℓ,i∗
ℓ

| ℓ ∈ [d−2]}.
We will show that S∗ ∩ V is a clique of weight t in Gi∗

1 ,...,i∗
d−2

. Since t∗ = t > 0 and edge-
weights are non-negative, it follows that no hyperedge in S∗ has weight t + 1. By Step 3, this
implies each subset of S∗ ∩ V of size two is an edge of Gi∗

1 ,...,i∗
d−2

, and hence S∗ ∩ V is a clique.
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For each set e ⊆ V of size two, the weight of the hyperedge e ∪ I is equal to wi∗
1 ,...,i∗

d−2
(e).

As all other hyperedges in S∗ have weight 0, it follows that the weight of the clique S∗ ∩ V
equals that of hyperclique S∗, and is therefore equal to t∗ = t. This implies Gi∗

1 ,··· ,i∗
d−2

has a
clique of total edge weight t = t∗, which concludes the proof. ◀

B Kernel upper bounds

In this section, we present randomized kernel upper bounds for EEW-d-HC, which match the
obtained lower bounds. For the maximization variant of EEW-d-HC, we present a Turing
kernel with the same bounds. The results in this section follow from combining known
arguments from Harnik and Naor [13] and Nederlof et al. [23] with gadgets that allow us
to produce an instance of the same problem that is being compressed (so we obtain a true
kernelization, not a generalized one).

Consider a family F of subsets of a universe U and a weight function w : F → [−N, N ].
For a subset X ⊆ U , we denote wsum(X) =

∑
Y ∈F , Y ⊆X w(Y ). The following fact has been

observed by Harnik and Naor [13, Claim 2.7] and for the sake of completeness we provide
a proof for the formulation which is the most convenient for us.

▶ Lemma 22. Let U be a set of size n, F ⊆ 2U be a family of subsets, w : F → [−N, N ] be
a weight function, and t ∈ [−N, N ]. There exists a randomized polynomial-time algorithm
that, given a real ε > 0, returns a prime number p ≤ 2n · poly(n, log N, ε−1), such that if
there is no X ⊆ U satisfying wsum(X) = t, then

P
(

there is X ⊆ U satisfying wsum(X) ≡ t (mod p)
)

≤ ε.

Proof. For a fixed function w, we say that p is bad if for some X ⊆ U it holds that wsum(X) ≡ t

(mod p) but wsum(X) ̸= t. This implies that p divides |wsum(X) − t|. We argue that the
number of bad primes is bounded by 2n · (n + 1 + log(N)). Since |wsum(X) − t| ≤ 2n+1 · N ,
this number can have at most log(2n+1 · N) = n + 1 + log N different prime divisors. There
are at most 2n choices of X, which proves the bound.

We sample a random prime p among the set of the first M = 2n · (n + 1 + log(N)) · ε−1

primes. It is known that the first M primes lie in the interval [2, O(M log M)] and we can
uniformly sample a prime number from this interval in time (log M)O(1) = (n + log log(N) +
log(ε−1))O(1) [20]. By the argument above, the probability of choosing a bad prime is
bounded by ε. ◀

▶ Theorem 23. There is a randomized polynomial-time algorithm that, given an n-vertex
instance (G, w, t) of Exact-Edge-Weight d-Uniform Hyperclique, outputs an instance
(G′, w′, t′) of bitsize O(nd+1), such that:
1. if (G, w, t) is a yes-instance, then (G′, w′, t′) is always a yes-instance,
2. if (G, w, t) is a no-instance, then (G′, w′, t′) is a no-instance with probability at least

1 − 2−n.
Furthermore, each number in (G′, w′, t′) is bounded by 2O(n).

Proof. Let us define N = max(t, maxe∈E(G) we). We can assume log N ≤ 2n, because
otherwise the input length is lower bounded by 2n and the brute-force algorithm for EEW-
d-HC becomes polynomial.

We apply Lemma 22 to the weight function w, target t, and ε = 2−n, to compute the
desired prime p ≤ 2n · poly(n, log N, ε−1) = 2O(n). If there exists a hyperclique X ⊆ V (G)
satisfying wsum(X) = t with respect to the weighted set family E(G) ⊆

(
V (G)

d

)
, then clearly

wsum(X) ≡ t (mod p). Furthermore, with probability 1 − 2−n, the implication in the other
direction holds as well. In particular, in this case p does not divide t.
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Let us construct a new instance (G′, w′, t′) of Exact-Edge-Weight d-Uniform Hy-
perclique with weights bounded by p · nd, which is bounded by 2O(n) for constant d. We
set w′(v) = w(v) (mod p) and tp = t (mod p). The condition wsum(X) ≡ t (mod p) is
equivalent to the existence of i ∈ [0, nd) for which w′

sum(X) = tp + ip, because the sum
w′

sum(X) comprises of at most nd summands from the range [0, p).
We introduce a set UZ of d − 1 new vertices and for each j ∈ [0, d − 1] we introduce a set

Uj of n new vertices. Intuitively, the sets Uj can be used to represent any number i ∈ [0, nd)
in base n. For every j and every v ∈ Uj we create a hyperedge e = UZ ∪ {v} with weight
w′

e = nj · p. For every other size-d subset containing at least one new vertex, we create
a hyperedge with weight 0. Observe that for every integer i ∈ [0, nd], we can find a set
Y ⊆ UZ ∪ U0 ∪ · · · ∪ Ud−1 such that w′

sum(Y ) = ip. Let G′ be the graph with the set of
vertices V (G) ∪ UZ ∪ U0 ∪ · · · ∪ Ud−1 and hyperedges inherited from G plus these defined
above. We set t′ = tp + nd · p.

Suppose now that X ⊆ V (G) forms a hyperclique of total weight t in G. Then w′
sum(X) =

tp +ip for some i ∈ [0, nd). By the argument above, we can find a set Y ⊆ UZ ∪U0 ∪· · ·∪Ud−1
such that w′

sum(X ∪ Y ) = t′ and X ∪ Y is a hyperclique in G′.
In the other direction, suppose we have successfully applied Lemma 22 and there is

a hyperclique X ′ ⊆ V (G′) with total weight t′. Then p divides w′
sum(X ′ \ V (G)), so since all

hyperedges intersecting both V (G) and X ′\V (G) have weight 0, we have w′
sum(X ′∩V (G)) ≡ t

(mod p) and wsum(X ′ ∩ V (G)) = t, which gives a desired hyperclique in G.
The new instance has O(n) vertices and O(nd) edges. The weight range is [0, nd · p] and,

since p = 2O(n), each weight can be encoded with O(n) bits. The claim follows. ◀

We obtain Theorem 2 as a corollary by taking d = 2.

B.1 Turing kernel for Max Weighted Hyperclique
We turn our attention to the maximization variant of the weighted hyperclique problem.
We consider the problem Max-Edge-Weight d-Uniform Hyperclique, which takes the
same input as Exact-Edge-Weight d-Uniform Hyperclique, but the goal is to detect
a hyperclique of total weight greater or equal to the target value t. Even though we are not
able to compress the weight function as in Theorem 23, we present a Turing kernelization
with the same size. We rely on a generic technique of reducing interval queries to exact
queries.

▶ Theorem 24 ([24], Theorem 1). Let U be a set of cardinality n, let w : U → N0 be a weight
function, and let l < u be non-negative integers with u − l > 1. There is a polynomial-time
algorithm that returns a set of pairs Ω = (w1, t1), . . . , (wK , tK) with wi : U → N0 and integers
t1, t2, . . . , tK , such that:
1. K is at most (5n + 2) · log(u − l),
2. for every set X ⊆ U it holds that w(X) ∈ [l, u] if and only if there exist i ∈ [1, K] such

that wi(X) = ti.

A polynomial Turing kernel (cf. [11]) for a parameterized problem P is a polynomial-time
algorithm that decides any instance of P with access to an oracle that answers instances of
size polynomial with respect to the parameter. The size of a Turing kernel is the maximal
size of the instances queried to the oracle. Note that if the classic problem underlying P
is NP-hard, then any query for a potentially different problem Q can be translated into a
query for P whose size is only polynomially larger. Hence in many settings, including ours,
it does not make a difference for the existence of polynomial-size Turing kernels whether the
queries are for the same problem or for another problem contained in NP.
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Observe that the number of calls to the oracle is not restricted, although it is polynomial
in the input size since the overall procedure runs in polynomial time. The following theorem
gives a one-sided error randomized Turing kernel of size O(nd+1) for Max-Edge-Weight
d-Uniform Hyperclique parameterized by the number of vertices n.

▶ Theorem 25. There is a randomized polynomial-time algorithm that, given an n-vertex
instance (G, w, t) of Max-Edge-Weight d-Uniform Hyperclique, returns a family of K

instances (Gi, wi, ti), i ∈ [K], of Exact-Edge-Weight d-Uniform Hyperclique, each
of bitsize O(nd+1), such that:
1. K is polynomial with respect to the input size,
2. if (G, w, t) is a yes-instance, then at least one instance (Gi, wi, ti) is a yes-instance,
3. if (G, w, t) is a no-instance, then with probability 1 − 2−Ω(n) all the instances (Gi, wi, ti)

are no-instances.

Proof. We apply Theorem 24 with U being the set of hyperedges in G, l = t, and u =
nd · maxe∈E(G) we. We can assume that l ≤ u, as otherwise there can be no solution. We
obtain K = log(u − l) · O(nd) many weight functions wi and integers ti, so that for each
X ⊆ U it holds wsum(X) ≥ t if and only if wi

sum(X) = ti for some i ∈ [K]. Observe that
log(u − l) is upper bounded by the input size, so the condition (1) is satisfied.

The original problem thus reduces to a disjunction of polynomially many instances
of Exact-Edge-Weight d-Uniform Hyperclique. We use Theorem 23 to compress
each of them to O(nd+1) bits. The probability that a single instance would be incorrectly
compressed is bounded by 2−n. By the union bound, the probability that any instance would
be incorrectly compressed is nO(1) · 2−n = 2−Ω(n). ◀
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Abstract
We study the complexity of the decision problem known as Permutation Pattern Matching, or PPM.
The input of PPM consists of a pair of permutations τ (the “text”) and π (the “pattern”), and the
goal is to decide whether τ contains π as a subpermutation. On general inputs, PPM is known to
be NP-complete by a result of Bose, Buss and Lubiw. In this paper, we focus on restricted instances
of PPM where the text is assumed to avoid a fixed (small) pattern σ; this restriction is known as
Av(σ)-PPM. It has been previously shown that Av(σ)-PPM is polynomial for any σ of size at most
3, while it is NP-hard for any σ containing a monotone subsequence of length four.

In this paper, we present a new hardness reduction which allows us to show, in a uniform way,
that Av(σ)-PPM is hard for every σ of size at least 6, for every σ of size 5 except the symmetry class
of 41352, as well as for every σ symmetric to one of the three permutations 4321, 4312 and 4231.
Moreover, assuming the exponential time hypothesis, none of these hard cases of Av(σ)-PPM can
be solved in time 2o(n/ log n). Previously, such conditional lower bound was not known even for the
unconstrained PPM problem.

On the tractability side, we combine the CSP approach of Guillemot and Marx with the structural
results of Huczynska and Vatter to show that for any monotone-griddable permutation class C, PPM
is polynomial when the text is restricted to a permutation from C.
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1 Introduction

Permutation Pattern Matching, or PPM, is one of the most fundamental decision problems
related to permutations. In PPM, the input consists of two permutations: τ , referred to
as the “text”, and π, referred to as the “pattern”. The two permutations are represented
as sequences of distinct integers. The goal is to determine whether the text τ contains the
pattern σ, that is, whether τ has a subsequence order-isomorphic to σ (see Section 2 for
precise definitions).

Bose, Buss and Lubiw [7] have shown that the PPM problem is NP-complete. Thus, most
recent research into the complexity of PPM focuses either on parametrized or superpolynomial
algorithms, or on restricted instances of the problem.
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For a pattern π of size k and a text τ of size n, a straightforward brute-force approach can
solve PPM in time O(nk+1). This was improved by Ahal and Rabinovich [1] to O(n0.47k+o(k)),
and then by Berendsohn, Kozma and Marx [6] to O(nk/4).

When k is large in terms of n, a brute-force approach solves PPM in time O(2n+o(n)).
The first improvement upon this bound was obtained by Bruner and Lackner [8], whose
algorithm achieves the running time O(1.79n), which was in turn improved by Berendsohn,
Kozma and Marx [6] to O(1.6181n).

Guillemot and Marx [11] have shown, perhaps surprisingly, that PPM is fixed-parameter
tractable with parameter k, via an algorithm with running time n · 2O(k2 log k), later improved
to n · 2O(k2) by Fox [10].

Restricted instances

Given that PPM is NP-hard on general inputs, various authors have sought to identify
restrictions on the input permutations that would allow for an efficient pattern matching
algorithm. These restrictions usually take the form of specifying that the pattern must
belong to a prescribed set C of permutations (the so-called C-Pattern PPM problem), or
that both the pattern and the text must belong to a set C (known as C-PPM problem). The
most commonly considered choices for C are sets of the form Av(σ) of all the permutations
that do not contain a fixed pattern σ.

Note that for the class Av(21), consisting of all the increasing permutations, Av(21)-
Pattern PPM corresponds to the problem of finding the longest increasing subsequence
in the given text, a well-known polynomially solvable problem [17]. Another polynomially
solvable case is Av(132)-Pattern PPM, which follows from more general results of Bose et
al. [7].

In contrast, for the class Av(321) of permutations avoiding a decreasing subsequence
of length 3 (or equivalently, the class of permutations formed by merging two increasing
sequences), Av(321)-Pattern PPM is already NP-complete, as shown by Jelínek and
Kynčl [15]. In fact, Jelínek and Kynčl show that Av(σ)-Pattern PPM is polynomial for
σ ∈ {1, 12, 21, 132, 231, 312, 213} and NP-complete otherwise.

For the more restricted Av(σ)-PPM problem, a polynomial algorithm for σ = 321 was
found by Guillemot and Vialette [12] (see also Albert et al. [2]), and it follows that Av(σ)-
PPM is polynomial for any σ of length at most 3. In contrast, the case σ = 4321 (and by
symmetry also σ = 1234) is NP-complete [15]. It follows that Av(σ)-PPM is NP-complete
whenever σ contains 1234 or 4321 as subpermutation, and in particular, it is NP-complete
for any σ of length 10 or more.

In this paper, our main motivation is to close the gap between the polynomial and
the NP-complete cases of Av(σ)-PPM. We develop a general type of hardness reduction,
applicable to any permutation class that contains a suitable grid-like substructure. We
then verify that for most choices of σ large enough, the class Av(σ) contains the required
substructure. Specifically, we can prove that Av(σ)-PPM is NP-complete in the following
cases:

Any σ of size at least 6.
Any σ of size 5, except the symmetry type of 41352 (i.e., the two symmetric permutations
41352 and 25314).
Any σ symmetric to one of 4321, 4312 or 4231.

Note that the list above includes the previously known case σ = 4321. Our hardness
reduction, apart from being more general than previous results, has also the advantage of
being more efficient: we reduce an instance of 3-SAT of size m to an instance of PPM of
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size O(m log m). This implies, assuming the exponential time hypothesis (ETH), that none
of these NP-complete cases of Av(σ)-PPM can be solved in time 2o(n/ log n). Previously, this
lower bound was not known to hold even for the unconstrained PPM problem.

Grid classes

The sets of permutations of the form Av(σ), i.e., the sets determined by a single forbidden
pattern, are the most common type of permutation sets considered; however, such sets
are not necessarily the most convenient tools to understand the precise boundary between
polynomial and NP-complete cases of PPM. We will instead work with the more general
concept of permutation class, which is a set C of permutations with the property that for any
π ∈ C, all the subpermutations of π are in C as well.

A particularly useful family of permutation classes are the so-called grid classes. When
dealing with grid classes, it is useful to represent a permutation π = π1π2 · · · πn by its
diagram, which is the set of points {(i, πi) | i = 1, . . . , n}. A grid class is defined in terms of
a gridding matrix M, whose entries are (possibly empty) permutation classes. We say that
a permutation π has an M-gridding, if its diagram can be partitioned, by horizontal and
vertical cuts, into an array of rectangles, where each rectangle induces in π a subpermutation
from the permutation class in the corresponding cell of M. The permutation class Grid(M)
then consists of all the permutations that have an M-gridding.

To a gridding matrix M we associate a cell graph, which is the graph whose vertices are
the entries in M that correspond to infinite classes, with two vertices being adjacent if they
belong to the same row or column of M and there is no other infinite entry of M between
them.

In the griddings we consider in this paper, a prominent role is played by four specific
classes, forming two symmetry pairs: one pair are the monotone classes Av(21) and Av(12),
containing all the increasing and all the decreasing permutations, respectively. Note that
any infinite class of permutations contains at least one of Av(12) and Av(12) as a subclass,
by the Erdős–Szekeres theorem [9].

The other relevant pair of classes involves the so-called Fibonacci class, denoted ⊕21,
and its mirror image ⊖12. The Fibonacci class can be defined as the class of permutations
avoiding the three patterns 321, 312 and 231, or equivalently, it is the class of permutations
π = π1π2 · · · πn satisfying |πi − i| ≤ 1 for every i.

Griddings have been previously used, sometimes implicitly, in the analysis of special cases
of PPM, where they were applied both in the design of polynomial algorithms [2, 12], and in
NP-hardness proofs [15, 16]. In fact, all the known NP-hardness arguments for special cases
of C-Pattern PPM are based on the existence of suitable grid subclasses of the class C. In
particular, previous results of the authors [16] imply that for any gridding matrix M that
only involves monotone or Fibonacci cells, Grid(M)-Pattern PPM is polynomial when the
cell graph of M is a forest, and it is NP-complete otherwise. Of course, if Grid(M)-Pattern
PPM is polynomial then Grid(M)-PPM is polynomial as well. However, the results in
this paper identify a broad family of examples where Grid(M)-PPM is polynomial, while
Grid(M)-Pattern PPM is known to be NP-complete.

Our main hardness result, Theorem 2, can be informally rephrased as a claim that C-PPM
is hard for a class C whenever C contains, for each n and a fixed ε > 0, a grid subclass whose
cell graph is a path of length n, and at least εn of its cells are Fibonacci classes. A somewhat
less technical consequence, Corollary 4, says that Grid(M)-PPM is NP-hard whenever the
cell graph of M is a cycle with no three vertices in the same row or column and with at least
one Fibonacci cell.

MFCS 2021



65:4 Griddings of Permutations and Hardness of Pattern Matching

Corollary 4 is, in a certain sense, best possible, since our main tractability result,
Theorem 10, states that C-PPM is polynomial whenever C is monotone-griddable, that is,
C ⊆ Grid(M), where M contains only monotone (or empty) cells. Moreover, by a result of
Huczynska and Vatter [13], every class C that does not contain ⊕21 or ⊖12 is monotone
griddable. Taken together, these results show that Grid(M)-PPM is polynomial whenever
no cell of M contains ⊕21 or ⊖12 as a subclass.

2 Preliminaries

A permutation of length n is a sequence π1, . . . , πn in which each element of the set [n] =
{1, 2, . . . , n} appears exactly once. When writing out short permutations explicitly, we shall
omit all punctuation and write, e.g., 15342 for the permutation 1, 5, 3, 4, 2. The permutation
diagram of π is the set of points Sπ = {(i, πi) | i ∈ [n]} in the plane. Observe that no two
points from Sπ share the same x- or y-coordinate. We say that such a set is in general
position. Note that we blur the distinction between permutations and their permutation
diagrams, e.g., we shall refer to “the point of π”.

For a point p in the plane, we let p.x denote its horizontal coordinate and p.y its vertical
coordinate. Two finite sets S, R ⊆ R2 in general position are order-isomorphic, or just
isomorphic for short, if there is a bijection f : S → R such that for any pair of points p ̸= q

of R we have f(p).x < f(q).x if and only if p.x < q.x, and f(p).y < f(p).y if and only if
p.y < q.y; in such case, the function f is the isomorphism from S to R. The reduction of a
finite set S ⊆ R2 in general position is the unique permutation π such that S is isomorphic
to Sπ.

A permutation τ contains a permutation π, denoted by π ⪯ τ , if there is a subset P ⊆ Sτ

that is isomorphic to Sπ. Such a subset is then called an occurrence of π in τ , and the
isomorphism from S to P is an embedding of π into τ . If τ does not contain π, we say that τ

avoids π.
A permutation class is any down-set C of permutations, i.e., a set C such that if π ∈ C and

σ ⪯ π then also σ ∈ C. For a permutation σ, we let Av(σ) denote the class of all σ-avoiding
permutations. We shall throughout use the symbols and as short-hands for the class
of increasing permutations Av(21) and the class of decreasing permutations Av(12).

Observe that for every permutation π of length at most m, the permutation diagram Sπ

is a subset of the set {p | 1
2 < p.x < m + 1

2 ∧ 1
2 < p.y < m + 1

2 }, called m-box. This fact
motivates us to extend the usual permutation symmetries to bijections of the whole m-box.
In particular, there are eight symmetries generated by:
reversal which reflects the m-box through its vertical axis, i.e., the image of a point p is the

point (m + 1 − p.x, p.y),
complement which reflects the m-box through its horizontal axis, i.e., the image of a point

p is the point (p.x, m + 1 − p.y),
inverse which reflects the m-box through its ascending diagonal axis, i.e., the image of a

point p is the point (p.y, p.x).

We say that a permutation π is symmetric to a permutation σ if π can be transformed
into σ by any of the eight symmetries generated by reversal, complement and inverse. The
symmetry type1 of a permutation σ is the set of all the permutations symmetric to σ.

1 We chose the term “symmetry type” over the more customary “symmetry class”, to avoid possible
confusion with the notion of permutation class.
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The symmetries generated by reversal, complement and inverse can be applied not only to
individual permutations but also to their classes. Formally, if Ψ is one of the eight symmetries
and C is a permutation class, then Ψ(C) refers to the set {Ψ(σ)| σ ∈ C}. We may easily see
that Ψ(C) is again a permutation class.

Consider a pair of permutations π of length n and σ of length m. The inflation of a point
p of π by σ is the reduction of the point set

Sπ \ {p} ∪
{(

p.x + q.x

m + 1 , p.y + q.y

m + 1

) ∣∣∣∣ q ∈ Sσ

}
.

Informally, we replace the point p with a tiny copy of σ.
The direct sum of π and σ, denoted by π ⊕ σ, is the result of inflating the “1” in 12

with π and then inflating the “2” with σ. Similarly, the skew sum of π and σ, denoted
by π ⊖ σ, is the result of inflating the “2” in 21 with π and then inflating the “1” with σ.
If a permutation τ cannot be obtained as direct sum of two shorter permutations, we say
that τ is sum-indecomposable and if it cannot be obtained as a skew sum of two shorter
permutations, we say that it is skew-indecomposable. Moreover, we say that a permutation
class C is sum-closed if for any π, σ ∈ C we have π ⊕σ ∈ C. We define skew-closed analogously.

We define the sum completion of a permutation π to be the permutation class

⊕π = {σ1 ⊕ σ2 ⊕ · · · ⊕ σk | σi ⪯ π for all i ≤ k ∈ N}.

Analogously, we define the skew completion ⊖π of π. The class ⊕21 is known as the Fibonacci
class.

2.1 Grid classes
When we deal with matrices, we number their rows from bottom to top to be consistent with
the Cartesian coordinates we use for permutation diagrams. For the same reason, we let the
column coordinates precede the row coordinates; in particular, a k × ℓ matrix is a matrix
with k columns and ℓ rows, and for a matrix M, we let Mi,j denote its entry in column i

and row j.
A matrix M whose entries are permutation classes is called a gridding matrix. Moreover,

if the entries of M belong to the set { , , ∅} then we say that M is a monotone gridding
matrix.

A k × ℓ-gridding of a permutation π of length n are two weakly increasing sequences
1 = c1 ≤ · · · ≤ ck+1 = n + 1 and 1 = r1 ≤ · · · ≤ rℓ+1 = n + 1. For each i ∈ [k] and j ∈ [ℓ],
we call the set of points p ∈ Sπ such that ci ≤ p.x < ci+1 and rj ≤ p.y < rj+1 the (i, j)-cell
of π. An M-gridding of a permutation π is a k × ℓ-gridding such that the reduction of the
(i, j)-cell of π belongs to the class Mi,j for every i ∈ [k] and j ∈ [ℓ]. If π has an M-gridding,
then π is said to be M-griddable, and the grid class of M, denoted by Grid(M), is the class
of all M-griddable permutations.

The cell graph of the gridding matrix M, denoted GM, is the graph whose vertices are
pairs (i, j) such that Mi,j is an infinite class, with two vertices being adjacent if they share
a row or a column of M and all the entries between them are finite or empty. See Figure 1.
We slightly abuse the notation and use the vertices of GM for indexing M, i.e., for a vertex
v of GM, we write Mv to denote the corresponding entry.

A proper-turning path in GM is a path P such that no three vertices of P share the same
row or column. Similarly, a proper-turning cycle in GM is a cycle C such that no three
vertices of C share the same row or column.
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M =

⊕21 Av(21)

	12 Av(12)


Figure 1 A gridding matrix M on the left and a permutation equipped with an M-gridding on

the right. Empty entries of M are omitted and the edges of GM are displayed inside M.

Let π be a permutation, and let (c, r) be its k × ℓ-gridding, where c = (c1, . . . , ck+1)
and r = (r1, . . . , rℓ+1). A permutation π together with a gridding (c, r) form a gridded
permutation. When dealing with gridded permutations, it is often convenient to apply
symmetry transforms to individual columns or rows of the gridding. Specifically, the reversal
of the i-th column of π is the operation which generates a new (c, r)-gridded permutation
π′ by taking the diagram of π, and then reflecting the rectangle [ci, ci+1 − 1] × [1, n] in the
diagram through its vertical axis, producing the diagram of the new permutation π′. Note
that π′ differs from π by having all the entries at positions ci, ci + 1, . . . , ci+1 − 1 in reverse
order. If ci+1 ≤ ci + 1, then π′ = π.

Similarly, the complementation of the j-th row of the (c, r)-gridded permutation π is
obtained by taking the rectangle [1, n] × [rj , rj+1 − 1] and turning it upside down, obtaining
a permutation diagram of a new permutation.

Column reversals and row complementations can also be applied to gridding matrices: a
reversal of a column i in a gridding matrix M simply replaces all the classes appearing in the
entries of the i-th column by their reverses; a row complementation is defined analogously.

We often need to perform several column reversals and row complementations at once.
To describe such operations succinctly, we introduce the concept of k × ℓ-orientation. A k × ℓ-
orientation is a pair of functions F = (fc, fr) with fc : [k] → {−1, 1} and fr : [ℓ] → {−1, 1}.
To apply the orientation F to a k×ℓ-gridded permutation π means to create a new permutation
F(π) by reversing in π each column i for which fc(i) = −1 and complementing each row
j for which fr(j) = −1. Note that the order in which we perform the reversals and
complementations does not affect the final outcome. Note also that F is an involution, that
is, F(F(π)) = π for any k × ℓ-gridded permutation π.

We may again also apply F to a gridding matrix M. By performing, in some order, the
row reversals and column complementations prescribed by F on the matrix M, we obtain a
new gridding matrix F(M). For instance, taking the gridding matrix

( )
and applying

reversal to its first column yields the gridding matrix
( )

. Observe that if (c, r) is an
M-gridding of a permutation π, then the same gridding (c, r) is also an F(M)-gridding of
the permutation F(π).

Let M be a monotone gridding matrix. An orientation F of M is consistent if all
the nonempty entries of F(M) are equal to . For instance, the matrix

( )
has

a consistent orientation acting by reversing the first column and complementing the first
row, while the matrix

( )
has no consistent orientation. We remark that Vatter and

Waton [18] have shown that any monotone gridding matrix whose cell graph is acyclic has a
consistent orientation.

A vital role in our arguments is played by the concept of monotone griddability. We
say that a class C is monotone-griddable if there exists a monotone gridding matrix M such
that C is contained in Grid(M). Huczynska and Vatter [13] provided a neat and useful
characterization of monotone-griddable classes.
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▶ Theorem 1 (Huczynska and Vatter [13]). A permutation class C is monotone-griddable if
and only if it contains neither the Fibonacci class ⊕21 nor its symmetry ⊖12.

Finally, a monotone grid class Grid(C D) where both C and D are non-empty is called
a horizontal monotone juxtaposition. Analogously, a vertical monotone juxtaposition is a
monotone grid class Grid ( C

D ) with both C and D non-empty. A monotone juxtaposition is
simply a class that is either a horizontal or a vertical monotone juxtaposition.

2.2 Pattern matching complexity
In this paper, we deal with the complexity of the decision problem known as C-PPM. For a
permutation class C, the input of C-PPM is a pair of permutations (π, τ) with both π and τ

belonging to C. An instance of C-PPM is then accepted if τ contains π, and rejected if τ

avoids π. In the context of pattern-matching, π is referred to as the pattern, while τ is the
text.

Note that an algorithm for C-PPM does not need to verify that the two input permutations
belong to the class C, and the algorithm may answer arbitrarily on inputs that fail to fulfill
this constraint. Decision problems that place this sort of validity restrictions on their inputs
are commonly known as promise problems.

Our NP-hardness results for C-PPM are based on a general reduction scheme from the
classical 3-SAT problem. Given that C-PPM is a promise problem, the reduction must map
instances of 3-SAT to valid instances of C-PPM, i.e., the instances where both π and τ

belong to C.
On top of NP-hardness arguments, we also provide time-complexity lower bounds for the

hard cases of C-PPM. These lower bounds are conditioned on the exponential-time hypothesis
(ETH), a classical hardness assumption which states that there is a constant ε > 0 such that
3-SAT cannot be solved in time O(2εn), where n is the number of variables of the 3-SAT
instance. In particular, ETH implies that 3-SAT cannot be solved in time 2o(n).

Given an instance (π, τ) of C-PPM, we always use n to denote the length of the text τ .
We also freely assume that π has length at most n since otherwise the instance can be
straightforwardly rejected. Following established practice, we express our complexity bounds
for C-PPM in terms of n. Note that inputs of C-PPM of size n actually require Θ(n log n)
bits to encode.

3 Hardness of PPM

In this section, we present the main technical hardness result and then derive its several
corollaries. However, we first need to introduce one more definition.

We say that a permutation class C has the D-rich path property for a class D if there is
a positive constant ε such that for every k, the class C contains a grid subclass whose cell
graph is a proper-turning path of length k with at least ε · k entries equal to D. Moreover,
we say that C has the computable D-rich path property, if C has the D-rich path property
and there is an algorithm that, for a given k, outputs a witnessing proper-turning path of
length k with at least ε · k copies of D in time polynomial in k.

▶ Theorem 2. Let C be a permutation class with the computable D-rich path property for a
non-monotone-griddable class D. Then C-PPM is NP-complete, and unless ETH fails, there
can be no algorithm that solves C-PPM

in time 2o(n/ log n) if D moreover contains any monotone juxtaposition,
in time 2o(

√
n) otherwise.
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P1 P2

P3 P4

P5

PL

T1 T2

T3 T4

T5

TL

π τ

D
D

M
Figure 2 The gridding matrix M, the gridded permutation π (the pattern) and the gridded

permutation τ (the text), used in the simplified overview of the proof of Theorem 2.

We remark, without going into detail, that the two lower bounds we obtained under ETH
are close to optimal. It is clear that the bound of 2o(n/ log n) matches, up to the log n term in
the exponent, the trivial 2O(n) brute-force algorithm for PPM. Moreover, the lower bound of
2o(

√
n) for C-PPM also cannot be substantially improved without adding assumptions about

the class C. Consider for instance the class C =
(

⊕21

)
. As we shall see in Proposition 3,

this class has the computable ⊕21-rich path property, and therefore the 2o(
√

n) conditional
lower bound applies to it. However, by using the technique of Ahal and Rabinovich [1], which
is based on the concept of treewidth of permutations, we can solve C-PPM (even C-Pattern
PPM) in time nO(

√
n). This is because we can show that a permutation π ∈ C of size n has

treewidth at most O(
√

n). We omit the details of the argument here.

3.1 Overview of the proof of Theorem 2
The proof of Theorem 2 is based on a reduction from the well-known 3-SAT problem. The
individual steps of the construction are rather technical and in view of the space constraints,
we only present here a high-level overview of the construction, while some of the more
technical aspects are described in the appendix.

Suppose that C is a class with the computable D-rich path property, where D is not
monotone griddable. This means that D contains the Fibonacci class ⊕21 or its reversal ⊖12
as subclass. Suppose then, without loss of generality, that D contains ⊕21.

To reduce 3-SAT to C-PPM, consider a 3-SAT formula Φ, with n variables x1, . . . , xn

and m clauses. We may assume that each clause of Φ has exactly 3 literals.
Let L = L(m, n) be an integer whose value will be specified later. By the D-rich path

property, C contains a grid subclass Grid(M) where the cell graph of M is a path of length
L, in which a constant fraction of cells is equal to D.

To simplify our notation in this high-level overview, we will assume that the cell graph
of M corresponds to an increasing staircase. More precisely, the cells of M representing
infinite classes can be arranged into a sequence C1, C2, . . . , CL, where C1 is the bottom-left
cell M1,1 of M, each odd-numbered cell C2i−1 corresponds to the diagonal cell Mi,i, and
each even numbered cell C2i,2i corresponds to Mi+1,i. All the remaining cells of M are
empty. To simplify the exposition even further, we will assume that each odd-numbered cell
of the path is equal to and each even-numbered cell is equal to D. See Figure 2.

With the gridding matrix M specified above, we will construct two M-gridded permu-
tations, the pattern π and the text τ , such that π can be embedded into τ if and only
if the formula Φ is satisfiable. We will describe π and τ geometrically, as permutation
diagrams, which are partitioned into blocks by the M-gridding. We let Pi denote the part of
π corresponding to the cell Ci of M, and similarly we let Ti be the part of τ corresponding
to Ci.
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A B

The copy gadget

A B1

B2

The choose gadget

A B

The pick gadget

A B1
B2

The multiply gadget

B

A2

A1

The merge gadget

A B

The follow gadget

Figure 3 The constructions of simple gadgets. The tile Qi is always on the left and the tile Qi+1

is on the right. The dotted lines show the relative vertical order of points.

To get an intuitive understanding of the reduction, it is convenient to first restrict our
attention to grid-preserving embeddings of π into τ , that is, to embeddings which map the
elements of Pi to elements of Ti for each i.

The basic building blocks in the description of π and τ are the atomic pairs, which
are specific pairs of points appearing inside a single block Pi or Ti. It is a feature of the
construction that in any grid preserving embedding of π into τ , an atomic pair inside a pattern
block Pi is mapped to an atomic pair inside the corresponding text block Ti. Moreover,
each atomic pair in π or τ is associated with one of the variables x1, . . . , xn of Φ, and any
grid-preserving embedding will maintain the association, that is, atomic pairs associated to a
variable xj inside π will map to atomic pairs associated to xj in τ .

To describe π and τ , we need to specify the relative positions of the atomic pairs in two
adjacent blocks Pi and Pi+1 (or Ti and Ti+1). These relative positions are given by several
typical configurations, which we call gadgets. Several examples of gadgets are depicted in
Figure 3. In the figure, the pairs of points enclosed by an ellipse are atomic pairs. The choose,
multiply and merge gadgets are used in the construction of τ , while the pick and follow
gadgets are used in π. The copy gadget will be used in both. We also need more complicated
gadgets, namely the flip gadgets of Figure 4, which span more than two consecutive blocks.
In all cases, the atomic pairs participating in a single gadget are all associated to the same
variable of Φ.

The sequence of pattern blocks P1, P2, . . . , PL, as well as their corresponding text blocks
T1, . . . , TL, is divided into several contiguous parts, which we call phases. We now describe
the individual phases in the order in which they appear.

The initial phase and the assignment phase. The initial phase involves a single pattern
block P1 and the corresponding text block T1. Both P1 and T1 consist of an increasing
sequence of 2n points, divided into n consecutive atomic pairs X1

1 , X1
2 , . . . , X1

n ⊆ P1 and
Y 1

1 , Y 1
2 , . . . , Y 1

n ⊆ T1, numbered in increasing order. The pairs X1
j and Y 1

j are both associated
to the variable xj . Clearly any embedding of P1 into T1 will map the pair X1

j to the pair
Y 1

j , for each j ∈ [n].
The initial phase is followed by the assignment phase, which also involves only one pattern

block P2 and the corresponding text block T2. P2 will consist of an increasing sequence of n

atomic pairs X2
1 , X2

2 , . . . , X2
n, where each X2

j is a decreasing pair, i.e., a copy of 21. Moreover,
X1

j ∪ X2
j forms the pick gadget, so the first two pattern blocks can be viewed as a sequence

of n pick gadgets stacked on top of each other.
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A1

A2 si+1
2

si+1
1

Bi+2
1

Bi+2
2

Bj
1

Bj
2

A si+1

Bi+2

Bj

Figure 4 A flip text gadget on the left and a flip pattern gadget on the right. The first tile
pictured is Qi and the last tile is Qj where j = i + 3. As before, the dotted lines show the relative
order of points.

The block T2 then consists of 2n atomic pairs {Y 2
j , Z2

j ; j ∈ [n]}, positioned in such a
way that Y 1

j ∪ Y 2
j ∪ Z2

j is a choose gadget. Thus, T1 ∪ T2 is a sequence of n choose gadgets
stacked on top of each other, each associated with one of the variables of Φ.

In a grid-preserving embedding of π into τ , each pick gadget X1
j ∪ X2

j must be mapped
to the corresponding choose gadget Y 1

j ∪ Y 2
j ∪ Z2

j , with X1
j mapped to Y 1

j , and X2
j mapped

either to Y 2
j or to Z2

j . There are thus 2n grid-preserving embeddings of P1 ∪ P2 into T1 ∪ T2,
and these embeddings encode in a natural way to the 2n assignments of truth values to the
variables of Φ. Specifically, if X2

j is mapped to Y 2
j , we will say that xj is false, while if X2

j

maps to Z2
j , we say that xj is true. The aim is to ensure that an embedding of P1 ∪ P2 into

T1 ∪ T2 can be extended to an embedding of π into τ if and only if the assignment encoded
by the embedding satisfies Φ.

Each atomic pair that appears in one of the text blocks T2, T3, . . . , TL is not only associated
with a variable of Φ, but also with its truth value; that is, there are “true” and “false” atomic
pairs associated with each variable xj . The construction of π and τ ensures that in an
embedding of π into τ in which X2

j is mapped to Y 2
j (corresponding to setting xj to false),

all the atomic pairs associated to xj in the subsequent stages of π will map to false atomic
pairs associated to xj in τ , and conversely, if X2

j is mapped to Z2
j , then the atomic pairs of

π associated to xj will only map to the true atomic pairs associated to xj in τ .

The multiplication phase. The purpose of the multiplication phase is to “duplicate” the
information encoded in the assignment phase. Without delving into the technical details, we
describe the end result of the multiplication phase and its intended behaviour with respect
to embeddings. Let dj be the number of occurrences (positive or negative) of the variable xj

in Φ. Note that d1 + d2 + · · · + dn = 3m, since Φ has m clauses, each of them with three
literals. Let Pk and Tk are the final pattern block and text block of the multiplication phase.
Then Pk is an increasing sequence of 3m increasing atomic pairs, among which there are dj

atomic pairs associated to xj . Moreover, the pairs are ordered in such a way that the d1
pairs associated to x1 are at the bottom, followed by the d2 pairs associated to x2 and so
on. The structure of Tk is similar to Pk, except that Tk has 6m atomic pairs. In fact, we
may obtain Tk from Pk by replacing each atomic pair Xk

i ⊆ Pk associated to a variable xj

by two adjacent atomic pairs Y k
i , Zk

i , associated to the same variable, where Y k
i is false and

Zk
i is true.

It is useful to identify each pair Xk
i ⊆ Pk as well as the corresponding two pairs

Y k
i , Zk

i ⊆ Tk with a specific occurrence of xj in Φ. Thus, each literal in Φ is represented by
one atomic pair in Pk and two adjacent atomic pairs of opposite truth values in Tk.
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The blocks P3, . . . , Pk and T3, . . . , Tk are constructed in such a way that any embedding
of π into τ that encodes an assignment in which xj is false has the property that all the
atomic pairs in Pk associated to xj are mapped to the false atomic pairs of Tk associated
to xj , and similarly, when xj is encoded as true in the assignment phase, the pairs of Pk

associated to xj are only mapped to the true atomic pairs of Tk. Thus, the mapping of any
atomic pair of Pk encodes the information on the truth assignment of the associated variable.

The multiplication phase is implemented by a combination of multiply gadgets and flip
text gadgets in τ , and copy gadgets and flip pattern gadgets in π. It requires no more than
O(log m) blocks in π and τ , i.e., k = O(log m).

The sorting phase. The purpose of the sorting phase is to rearrange the relative positions
of the atomic pairs. While at the end of the multiplication phase, the pairs representing
occurrences of the same variable appear consecutively, after the sorting phase, the pairs
representing literals belonging to the same clause will appear consecutively. More precisely,
letting Pℓ and Tℓ denote the last pattern block and the last text block of the sorting phase,
Pℓ has the same number of atomic pairs associated to a given variable xj as Pk, and similarly
for Tℓ and Tk. If K1, . . . , Km are the clauses of Φ, then for each clause Kj , Pℓ contains
three consecutive atomic pairs corresponding to the three literals in Kj , and Tℓ contains the
corresponding six atomic pairs, again appearing consecutively. Similarly as in Pk and Tk,
each atomic pair in Pℓ must map to an atomic pair in Tℓ representing the same literal and
having the correct truth value encoded in the assignment phase.

To prove Theorem 2, we need two different ways to implement the sorting phase, depending
on whether the class D contains a monotone juxtaposition or not. The first construction,
which we call sorting by gadgets, does not put any extra assumptions on D. However, it may
require up to Θ(m) blocks to perform the sorting, that is ℓ = Θ(m).

The other implementation of the sorting phase, which we call sorting by juxtapositions is
only applicable when D contains a monotone juxtaposition, and it can be performed with
only O(log m) blocks. The difference between the lengths of the two versions of sorting is
the reason for the two different lower bounds in Theorem 2.

The evaluation phase. The final phase of the construction is the evaluation phase. The
purpose of this phase is to ensure that for any embedding of π into τ , the truth assignment
encoded by the embedding satisfies all the clauses of Φ. For each clause Kj , we attach
suitable gadgets to the atomic pairs in Pℓ and Tℓ representing the literals of Kj . Using the
fact that the atomic pairs representing the literals of a given clause are consecutive in Pj

and Tj , this can be done for all the clauses simultaneously, with only O(1) blocks in π and τ .
This completes an overview of the hardness reduction proving Theorem 2.

When the reduction is performed with sorting by gadgets, it produces permutations π

and τ of size O(m2), since we have L = O(m) blocks and each block has size O(m). When
sorting is done by juxtapositions, the number of blocks drops to L = O(log m), hence π and
τ have size O(m log m). ETH implies that 3-SAT with n variables and m clauses cannot be
solved in time 2o(m+n) [14]. From this, the lower bounds from Theorem 2 follow.

Further details of the reduction, as well as the correctness proof, are presented in the
appendix A.

3.2 Consequences
In the rest of this section, we focus on presenting examples of classes that satisfy the technical
“rich path” property, which is the backbone of all our hardness arguments.
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Figure 5 Illustration of the proof of Proposition 3. Left: a gridding matrix M whose cell graph
is a cycle with a single entry equal to D. The numbers along the bottom and the left edge form an
orientation that maps each entry to a sum-closed class. Right: a gridding matrix whose grid class is
contained in Grid(M) and whose cell graph is a path. The endvertices of the path are highlighted
in gray, and the first and last few steps of the path are shown as dashed lines. The numbers along
the edges are the labels forming the characteristic of each entry.

▶ Proposition 3. Let D be a non-monotone-griddable class that is sum-closed or skew-closed.
If M is a gridding matrix whose cell graph GM contains a proper-turning cycle with at least
one entry equal to D, then Grid(M) has the computable D-rich path property.

Proof. We note that the proof closely follows a proof of a similar claim for monotone grid
classes by Jelínek et al. [16, Lemma 3.5].

We may assume, without loss of generality, that the cell graph of M consists of a single
cycle, that it contains a unique entry equal to D, and that all the remaining nonempty entries
are equal to or to . This is because each infinite permutation class contains either
or as a subclass, and replacing an entry of M by its infinite subclass can only change
Grid(M) into its subclass. If we can establish the D-rich path property for the subclass,
then it also holds for the class Grid(M) itself.

We may also assume that D is sum-closed, since the skew-closed case is symmetric. In
particular, D contains ⊕21 as a subclass.

Let L be a given integer. We show how to obtain a grid subclass of Grid(M) whose
cell graph is a proper-turning path of length at least L that contains a constant fraction of
D-entries. Refer to Figure 5. Suppose N is a k × ℓ gridding matrix whose every entry is
either sum-closed or skew-closed. The refinement N ×q of N is the qk × qℓ matrix obtained
from N by replacing the entry Ni,j with

a q × q diagonal matrix with all the non-empty entries equal to Ni,j if Ni,j is sum-closed,
a q × q anti-diagonal matrix with all the non-empty entries equal to Ni,j if Ni,j is
skew-closed.

It is easy to see that Grid(N ×q) is a subclass of Grid(N ). We call the submatrix of N ×q

formed by the entries N ×q
a,b for q · i < a ≤ (q + 1) · i and q · j < b ≤ (q + 1) · j the (i, j)-block

of N ×q.
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Importantly, it follows from the work of Albert et al. [3, Proposition 4.1] that for every
monotone gridding matrix N , there exists a consistent orientation of the refinement N ×2.
Translating it to our setting, we can assume that there is a k × ℓ orientation F such that the
image of Mi,j under F is sum-closed for every i ∈ [k] and j ∈ [ℓ]. If that is not the case for
M, we simply start with M×2 instead.

Given such an orientation F = (fc, fr), we label the rows and columns of the refinement
M×L using the set [L]. The L-tuple of columns created from the i-th column of M is
labeled in the increasing order from left to right if fc(i) is positive and right to left otherwise.
Similarly, the L-tuple of rows created from the j-th row of M is labeled in the increasing
order from bottom to top if fr(j) is positive and top to bottom otherwise. The characteristic
of an entry in M×L is the pair of labels given to its column and row. Observe that each
non-empty entry in M×L has a characteristic of the form (s, s) for some s ∈ [L] by the
choice of orientation. Therefore, GM×L consists exactly of L connected components, each
corresponding to a copy of M.

We pick an arbitrary non-empty monotone entry Mi,j of M and obtain a matrix ML by
replacing the (i, j)-block in M×q with the q × q matrix whose only non-empty entries are the
ones with characteristic (s, s + 1) for all s ∈ [L− 1] and they are all equal to Mi,j . Grid(ML)
is a subclass of Grid(M) since the modified (i, j)-block corresponds to shifting the original
(anti-)diagonal matrix by one row either up or down, depending on the orientation of the
j-th row of M.

Observe that we connected all the L copies of M into a single long path. Moreover, the
path contains L − 1 entries in the (i, j)-block and L entries in every other non-empty block.
Therefore, a constant fraction of its entries belong to the (a, b)-block such that Ma,b = D
and thus are equal to D. It is easy to see that the described procedure is constructive and
can easily be implemented to run in polynomial time. Therefore, Grid(M) indeed has the
computable D-rich path property. ◀

Combining Proposition 3 with Theorem 2, we get the following corollary. Note that in
the corollary, if D fails to be sum-closed or skew-closed, we may simply replace it with ⊕21
or ⊖12, since at least one of these two classes is its subclass by Theorem 1.

▶ Corollary 4. Let D be a non-monotone-griddable class. If M is a gridding matrix whose
cell graph contains a proper-turning cycle with one entry equal to D, then Grid(M)-PPM
is NP-complete. Moreover, unless ETH fails, there can be no algorithm for Grid(M)-PPM
running

in time 2o(n/ log n) if D additionally contains any monotone juxtaposition and is either
sum-closed or skew-closed,
in time 2o(

√
n) otherwise.

Three symmetry types of patterns of length 4 can be tackled with a special type of grid
classes. The k-step increasing (C, D)-staircase, denoted by Stk(C, D) is a grid class Grid(M)
of a k × (k + 1) gridding matrix M such that the only non-empty entries in M are Mi,i = C
and Mi,i+1 = D for every i ∈ [k]. In other words, the entries on the main diagonal are
equal to C and the entries of the adjacent lower diagonal are equal to D. The increasing
(C, D)-staircase, denoted by St(C, D), is the union of Stk(C, D) over all k ∈ N.

Observe that if C and D are two infinite classes and one of them contains ⊕21 or ⊖12
then Theorem 2 applies and St(C, D)-PPM is NP-complete. Furthermore, if it also contains
a monotone juxtaposition as a subclass, then the almost linear lower bound under ETH
follows. We proceed to show that three symmetry types of classes avoiding a pattern of
length 4 actually contain such a staircase subclass.
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▶ Proposition 5. For any sum-indecomposable permutation σ, the class St( , Av(σ)) is
contained in the class Av(1 ⊖ σ).

Proof. Suppose for a contradiction that σ′ = 1 ⊖ σ belongs to St( , Av(σ)). In particular it
belongs to Stk( , Av(σ)) for some k and there is a witnessing gridding. If the first element
is not mapped to one of the -entries on the upper diagonal, then the whole σ′ must lie
in a single Av(σ)-entry on the lower diagonal, which is clearly not possible. Therefore, the
first element must be mapped to one of the -entries. Notice that the rest of σ′ cannot be
mapped to any of the -entries as it lies below and to the right of the first element. However,
it cannot lie in more than one Av(σ)-entry; otherwise, we could express σ as a direct sum of
two shorter permutations. Hence, there must be an occurrence of σ in an Av(σ)-entry which
is clearly a contradiction. ◀

A direct consequence of Proposition 5 is that taking σ to be 321, 312 or 231, we see that
St( , Av(321)) ⊆ Av(4321), St( , Av(231)) ⊆ Av(4231) and St( , Av(312)) ⊆ Av(4312).
Note that the first inclusion is rather trivial and the latter two have been previously observed
by Berendsohn [5].

We may easily observe that for any pattern σ of size 3, the class Av(σ) contains the
Fibonacci class or its reversal, as well as a monotone juxtaposition. Combining Proposition 5
with Theorem 2 yields the following consequence.

▶ Corollary 6. For any permutation σ that contains a pattern symmetric to 4321, to 4231,
or to 4312, the problem Av(σ)-PPM is NP-complete, and unless ETH fails, it cannot be
solved in time 2o(n/ log n).

We verified by computer that there are only five symmetry types of patterns of length
5 that do not contain any of 4321, 4213, 4312 or their symmetries – represented by 14523,
24513, 32154, 42513 and 41352. Of these five, four can be handled by Corollary 4 since they
contain a specific type of cyclic grid classes, as we now show.

▶ Proposition 7. The class Av(σ) contains the class Grid(M) for the gridding matrix
M =

(
Av(π)

)
whenever

π = 132 and σ = 14523, or
π = 231 and σ = 24513, or
π = 321 and σ ∈ {32154, 42513}.

Proof. Suppose that σ and π are one of the listed cases. Observe that Grid(M) is a subclass
of Av(σ) if and only if σ is not in Grid(M). For contradiction, suppose that the class
Grid(M) contains σ. Therefore, there exists a witnessing M-gridding 1 = c1 ≤ c2 ≤ c3 = 6
and 1 = r1 ≤ r2 ≤ r3 = 6 of σ.

Let us consider the four choices of σ separately, starting with σ = 14523: if c2 ≤ 3 and
r2 ≤ 3, the cell (2, 2) of the gridding contains the pattern 21, if c2 ≤ 4 and r2 ≥ 4, the cell
(2, 1) contains 12, if c2 ≥ 4 and r2 ≤ 4, the cell (1, 2) contains 12, and if c2 ≥ 5 and r2 ≥ 5,
the cell (1, 1) contains 132. In all cases we get a contradiction with the properties of the
M-gridding. The same argument applies to σ = 14513, except in the last case we use the
pattern 231 instead of 132.

For σ = 32154, the four cases to consider are c2 ≤ 4 ∧ r2 ≤ 4, c2 ≥ 5 ∧ r2 ≤ 3,
c2 ≤ 3 ∧ r2 ≥ 5, and c2 ≥ 4 ∧ r2 ≥ 4, in each case getting contradiction in a different cell of
the gridding. For σ = 42513, the analogous argument distinguishes the cases c2 ≤ 3 ∧ r2 ≤ 3,
c2 ≥ 4 ∧ r2 ≤ 4, c2 ≤ 4 ∧ r2 ≥ 4, and c2 ≥ 5 ∧ r2 ≥ 5. ◀
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It is easy to see that every σ of length at least 6 contains a pattern of size 5 which is not
symmetric to 41352. Therefore, Av(σ)-PPM is NP-complete for all permutations σ of length
at least 4 except for one symmetry type of length 5 and for four out of seven symmetry types
of length 4. As Av(σ)-PPM is polynomial-time solvable for any σ of length at most 3, these
are, in fact, the only cases left unsolved.

▶ Corollary 8. If σ is a permutation of length at least 4 that is not in symmetric to any of
3412, 3142, 4213, 4123 or 41352, then Av(σ)-PPM is NP-complete, and unless ETH fails, it
cannot be solved in time 2o(n/ log n).

To conclude this section, we remark that the suitable grid subclasses were discovered via
computer experiments facilitated by the Permuta library [4].

4 Polynomial-time algorithm

We say that a permutation π is t-monotone if there is a partition Π = (S1, . . . , St) of Sπ

such that Si is a monotone point set for each i ∈ [t]. The partition Π is called a t-monotone
partition.

Given a t-monotone partition Π = (S1, . . . , St) of a permutation π and a t-monotone
partition Σ = (S′

1, . . . , S′
t) of τ , an embedding ϕ of π into τ is a (Π, Σ)-embedding if ϕ(Si) ⊆ S′

i

for every i ∈ [t]. Guillemot and Marx [11] showed that if we fix a t-monotone partitions of
both π and τ , the problem of finding a (Π, Σ)-embedding is polynomial-time solvable.

▶ Proposition 9 (Guillemot and Marx [11]). Given a permutation π of length m with a
t-monotone partition Π and a permutation τ of length n with a t-monotone partition Σ, we
can decide if there is a (Π, Σ)-embedding of π into τ in time O(m2n2).

We can combine this result with the fact that there is only a bounded number of ways
how to grid a permutation, and obtain the following counterpart to Corollary 4.

▶ Theorem 10. C-PPM is polynomial-time solvable for any monotone-griddable class C.

Proof. Let M be a k × ℓ monotone gridding matrix such that Grid(M) contains the class C.
We have to decide whether π is contained in τ for two given permutations π of length m and
τ of length n, both belonging to the class C.

First, we find an M-gridding of τ . We enumerate all possible k × ℓ griddings and for each,
we test if it is a valid M-gridding. Observe that there are in total O(nk+ℓ−2) such griddings
since they are determined by two sequences of values from the set [n], one of length k − 1
and the other of length ℓ − 1. Moreover, it is straightforward to test in time O(n2) whether
a given k × ℓ gridding is in fact an M-gridding. Note that we are guaranteed to find an
M-gridding as τ belongs to C ⊆ Grid(M). We set Σ to be the (k · ℓ)-monotone partition of
τ into the monotone sequences given by the individual cells of the gridding.

In the second step, we enumerate all possible M-griddings of π. As with τ , we enumerate
all possible O(mk+ℓ−2) k × ℓ griddings of π and check for each gridding whether it is actually
an M-gridding in time O(m2). For each M-gridding found, we let Π be the (k · ℓ)-monotone
partition of π given by the gridding, and we apply Proposition 9 to test whether there is a
(Π, Σ)-embedding in time O(m2n2).

If there is an embedding ϕ of π into τ , there is a (k · ℓ)-monotone partition Σ′ of π such
that ϕ is a (Π, Σ′)-embedding. Therefore, the algorithm correctly solves C-PPM in time
O(nk+ℓ + mk+ℓn2) – polynomial in n, m. ◀
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Notice that if M is a gridding matrix whose every entry is monotone griddable, or
equivalently no entry contains the Fibonacci class or its reverse as a subclass, then the
class Grid(M) is monotone griddable as well. It follows that for such M, the Grid(M)-
PPM problem is polynomial-time solvable. We also note that recent results on C-Pattern
PPM [16] imply that if a gridding matrix M has an acyclic cell graph, and if every nonempty
cell is either monotone or symmetric to a Fibonacci class, then Grid(M)-Pattern PPM,
and therefore also Grid(M)-PPM, is polynomial-time solvable as well. These two tractability
results contrast with our Corollary 4, which shows that for any gridding matrix M whose
cell graph is a cycle, and whose nonempty cells are all monotone except for one Fibonacci
cell, Grid(M)-PPM is already NP-hard.

5 Open problems

We have presented a hardness reduction which allowed us to show that the Av(σ)-PPM
problem is NP-complete for every permutation σ of size at least 6, as well as for most shorter
choices of σ. Nevertheless, for several symmetry types of σ, the complexity of Av(σ)-PPM
remains open. We collect all the remaining unresolved cases as our first open problem.

▶ Open problem 1. What is the complexity of Av(σ)-PPM, when σ is a permutation from
the set {3412, 3142, 4213, 4123, 41352}?

Our hardness results are accompanied by time complexity lower bounds based on the
ETH. Specifically, for our NP-hard cases, we show that under ETH, no algorithm may solve
C-PPM in time 2o(

√
n). The lower bound can be improved to 2o(n/ log n) under additional

assumptions about C. This opens the possibility of a more refined complexity hierarchy
within the NP-hard cases of C-PPM. In particular, we may ask for which C can C-PPM be
solved in subexponential time.

▶ Open problem 2. Which cases of C-PPM can be solved in time 2O(n1−ε)? Can the general
PPM problem be solved in time 2o(n)?
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A The proof of Theorem 2

Our job is to construct a pair of permutations π and τ , both having a gridding corresponding
to a D-rich path, with the property that the embeddings of π into τ will simulate satisfying
assignments of a given 3-SAT formula. First, we introduce the concept of F -assembly which
enables us to describe constructions of gridded permutations from a grid class Grid(M)
somewhat independently from the actual shape of M.

A.1 F-assembly
A finite subset P of the m-box in general position is called an m-tile and a k × ℓ family of
m-tiles is a set P = {Pi,j | i ∈ [k], j ∈ [ℓ]} where each Pi,j is an m-tile. Let F = (fc, fr) be a
k × ℓ orientation and let P be a family of m-tiles Pi,j for i ∈ [k], j ∈ [ℓ]. The F-assembly of
P is the point set S defined as follows.

We define for every i ∈ [k], j ∈ [ℓ] the point set P ′
i,j = {p+(i ·m, j ·m) | p ∈ Φi(Ψj(Pi,j))}

where Φi is an identity if fc(i) = 1 and reversal otherwise, while Ψj is an identity if fr(j) = 1
and complement otherwise. We set S =

⋃
P ′

i,j to be the F-assembly of P. If S is not in
general position, we rotate it clockwise by a tiny angle to a general position without changing
the order of any points that originally did not share a common coordinate.

MFCS 2021

https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.1007/s00453-015-0013-y
https://doi.org/10.1007/s00453-015-0013-y
http://www.numdam.org/item?id=CM_1935__2__463_0
https://arxiv.org/abs/1310.8378v1
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1007/978-3-642-10631-6_107
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r54.html
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r54.html
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/1.9781611974782.24
https://doi.org/10.4230/LIPIcs.MFCS.2020.52
https://doi.org/10.4153/CJM-1961-015-3
https://doi.org/10.1007/s11083-010-9165-1


65:18 Griddings of Permutations and Hardness of Pattern Matching

Let M be a k × ℓ gridding matrix. We say that the image of Mi,j under F is the class
Φi(Ψj(Mi,j)). The F-image of M, denoted by F(M), is then the k × ℓ gridding matrix
defined as F(M)i,j = Φi(Ψj(Mi,j)).

▶ Observation 11. Let M be a k × l gridding matrix, let F be a k × ℓ orientation and P a
k × ℓ family of m-tiles. If for every i ∈ [k] and j ∈ [ℓ] the reduction of Pi,j belongs to the
class F(M)i,j then the reduction of the F-assembly of P belongs to Grid(M).

Furthermore, if the cell graph GM of a monotone gridding matrix M is acyclic, we can
always find an orientation F such that the image F(M)i,j of every non-empty entry Mi,j is
the class . We say that such F is a consistent orientation for the gridding matrix M. The
existence of consistent orientations is guaranteed for matrices with acyclic cell graphs.

▶ Lemma 12 (Vatter and Waton [18]). There exists a consistent k × ℓ orientation F for any
monotone k × ℓ gridding matrix M whose cell graph GM is acyclic.

A.2 The reduction
Let Φ be a given 3-CNF formula with n variables x1, x2, . . . , xn and m clauses K1, K2, . . . , Km

each containing exactly three literals. Let M be a g × h gridding matrix such that Grid(M)
is a subclass of C, the cell graph GM is a proper-turning path of sufficient length to be
determined later with a constant fraction of its entries is equal to D.

First, we label the vertices of the path as p1, p2, p3, . . . choosing the direction such that
at least half of the D-entries share a row with their predecessor. By application of Lemma 12,
there is a g × h orientation F such that the class F(M)i,j is equal to for every monotone
entry Mi,j and the class F(M)i,j contains ⊕21 for every D-entry Mi,j . Our plan is to
simultaneously construct two g × h families of tiles P and T and then set π and τ to be the
F-assemblies of P and T , respectively. We abuse the notation and for any g × h family of
tiles Q (in particular for P and T ), we use Qi instead of Qpi

to denote the tile corresponding
to the i-th cell of the path.

For now, we will only consider restricted embeddings. We say that an embedding of π into
τ where π is an F -assembly of P and τ is an F -assembly of T , is grid-preserving if the image
of tile Pi,j is mapped to the image of Ti,j for every i and j. We slightly abuse the notation
in the case of grid-preserving embeddings and say that a point q in the tile Pi,j is mapped
to a point r in the tile Ti,j instead of saying that the image of q under the F-assembly is
mapped to the image of r under the F -assembly. We say that a pair of points r, q in the tile
Qi sandwiches a set of points A in the tile Qi+1 if for every point t ∈ A r.y < t.y < q.y in
case pi and pi+1 occupy a common row or otherwise, if the same holds for the x-coordinates.

A.2.1 Gadgets
We construct the tiles from gadgets consisting of pairs of points that we call atomic pairs.
We assume that the tiles are formed as direct sums of the individual gadgets. Consequently,
if A, B ⊆ Qi are point sets of two different gadgets, then either whole A lies to the right
and above B or vice versa. We describe the gadgets in the case when pi and pi+1 share a
common row and pi is to the left of pi+1, as the other cases are symmetric. The gadgets
are fully described by the relative positions of their points, therefore we refer the reader to
Figure 3 for their definitions.

We say that the copy, pick and follow gadgets connect the pair A to the pair B and the
multiply gadget multiplies the pair A to B1 and B2. The choose gadget is said to branch the
pair A to B1 and B2 and the merge gadget merges the pairs A1 and A2 into the pair B. We
follow with two observations about the behavior of these gadgets.
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▶ Observation 13. Suppose there is a choose gadget branching an atomic pair AT in the tile
Ti to two atomic pairs BT

1 and BT
2 in the tile Ti+1, and a pick gadget in P connecting an

atomic pair AP in the tile Pi to an atomic pair BP in the tile Pi+1. In any grid-preserving
embedding of π into τ , if AP is mapped to AT then BP is mapped either to BT

1 or to BT
2 .

▶ Observation 14. Suppose there is a merge gadget merging atomic pairs AT
1 and AT

2 in the
tile Ti into an atomic pair BT in the tile Ti+1, and a follow gadget connecting an atomic pair
AP in the tile Pi to an atomic pair BP in the tile Pi+1. In any grid-preserving embedding of
π into τ , if AP is mapped to AT

α for some α ∈ {1, 2} then BP is mapped to BT .

The flip gadget

We proceed to define two gadgets – a flip text gadget and a flip pattern gadget. It is insufficient
to consider just two neighboring tiles as we need two D-entries for the construction. To that
end, let i and j be indices such that both pi+1 and pj are D-entries and there is no other
D-entry between them.

As before, suppose that A1 and A2 are two atomic pairs in Qi. The flip text gadget
attached to the atomic pairs A1 and A2 consists of two points si+1

1 , si+1
2 in the tile Qi+1 and

two atomic pairs Bk
1 and Bk

2 in each tile Qk for every k ∈ [i + 2, j] = {i + 2, i + 3, . . . , j}. The
points si+1

1 , si+1
2 form an occurrence of 21 and si+1

α is sandwiched by Aα for each α ∈ {1, 2}.
The atomic pairs Bk

1 , Bk
2 for k ∈ [i + 2, j − 1] are set such that Bk

2 lies to the left and
below of Bk

1 , and together, they form an occurrence of 1234. The only difference in the case
of atomic pairs Bj

1, Bj
2 is that they form an occurrence of 2143. For every k ∈ [i + 3, j] and

α ∈ {1, 2}, the pair Bk
α sandwiches the pair Bk−1

α and moreover, the pair Bi+2
α sandwiches

the point si+1
α . We say that the flip text gadget flips the pairs A1, A2 in Qi to the pairs

Bj
2, Bj

1 in Qj . See the left part of Figure 4.
We define the flip pattern gadget as a set of points isomorphic to the pairs Bk

1 for all k

together with the point si+2
1 . See the right part of Figure 4.

Observe that flip gadget propagates the mapping properties while switching the order of
the pairs. However, it can also be used to test if only one of its initial atomic pairs is used in
the embedding. We omit proofs of the following lemmas due to space constraints.

▶ Lemma 15. Suppose there is a flip pattern gadget connecting an atomic pair A in Pi with
an atomic pair B in Pj . Furthermore, suppose that there is a flip text gadget flipping atomic
pairs A1 and A2 in Ti to atomic pairs B2 and B1 in Tj. In any grid-preserving embedding
of π into τ , if A is mapped to Aα for some α ∈ {1, 2} then B is mapped to Bα.

▶ Lemma 16. Suppose that there are two flip pattern gadgets connecting an atomic pair AP
α

in Pi to an atomic pair BP
α in Pj for α ∈ {1, 2}. Suppose that there is a flip text gadget in

T that flips atomic pairs AT
1 and AT

2 in Ti to atomic pairs BT
2 and BT

1 in Tj . There cannot
exist a grid-preserving embedding ϕ of π into τ that maps AP

α to AT
α for each α ∈ {1, 2}.

Note that all the gadgets except for the copy and multiply ones require a non-monotone
entry and thus, we need to somehow bridge the segments of the path consisting only of
monotone entries. By attaching a gadget to the pair A, we mean connecting to A a chain
of copy gadgets leading all the way to its first non-monotone entry and then attaching the
desired gadget at the end of this chain.
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A.2.2 Constructing the C-PPM instance
We define the initial tile P1 to contain atomic pairs X0

k for k ∈ [n] and the initial tile T1 to
contain atomic pairs Y 0

k for k ∈ [n] where each X0
k and Y 0

k form an occurrence of 12 and X0
i

(Y 0
j ) lies to the left and below of X0

j (Y 0
i ) for every i < j. Any grid-preserving embedding

of π into τ must obviously map X0
k to Y 0

k for every k ∈ [n]. We describe the rest of the
construction in four distinct phases.

Assignment phase. In the first phase, we simulate the assignment of truth values to the
variables. To that end, we attach to each pair Y 0

k for k ∈ [n] a choose gadget that branches
Y 0

k to two atomic pairs Y 1
k,1 and Z1

k,1 and we attach to each pair X0
k for k ∈ [n] a pick gadget

that connects X0
k to an atomic pair X1

k,1. The properties of choose and pick gadgets imply
that in any grid-preserving embedding, X1

k,1 is either mapped to Y 1
k,1 or to Z1

k,1.

Multiplication phase. Our next goal is to multiply the atomic pairs corresponding to a
single variable into as many pairs as there are occurrences of this variable in the clauses. We
describe the gadgets dealing with each variable individually.

Fix k ∈ [n] and let mk for k ∈ [n] denote the total number of occurrences of xk and ¬xk

in Φ. We are going to describe the construction inductively in ⌈log mk⌉ steps. Fix i ≥ 1.
We add for each j ∈ [2i] three multiply gadgets, one that multiplies the atomic pair Xi

k,j to
atomic pairs X̃i+1

k,2j−1 and X̃i+1
k,2j , one that multiplies the pair Y i

k,j to Ỹ i+1
k,2j−1 and Ỹ i+1

k,2j , and
finally one that multiplies Zi

k,j to Z̃i+1
k,2j−1 and Z̃i+1

k,2j . Observe that the properties of gadgets
imply that for arbitrary j ∈ [2i+1], X̃i+1

k,j maps either to Ỹ i+1
k,j or to Z̃i+1

k,j . However in the
text, we have the quadruple Ỹ i+1

k,2j−1, Ỹ i+1
k,2j , Z̃i+1

k,2j−1, Z̃i+1
k,2j in this specific order.

To solve this, we add for each j ∈ [2i] a flip text gadget that flips Ỹ i+1
k,2j , Z̃i+1

k,2j−1 to atomic
pairs Zi+1

k,2j−1, Y i+1
k,2j . The properties of flip gadgets (Lemma 15) guarantee that for every

j ∈ [2i+1], the pair Xi+1
k,j is mapped either to Y i+1

k,j or to Zi+1
k,j . Moreover, the order of atomic

pairs in the text now alternates between Y and Z as desired. It follows that we need in total
O(log m) D-entries for the multiplication phase.

Sorting phase. The multiplication phase ended with atomic pairs Xi
k,j in the pattern

ordered lexicographically by (k, j), i.e., bundled in blocks by the variables. The goal of the
sorting phase is to rearrange them such that they become bundled by clauses.

First, we remark that it is possible to flip the order of any two neighboring pairs in the
pattern using only a O(1) layers of gadgets. Unfortunately, the space constraints make it
impossible to include the description here as it is quite involved and technical. Using this
approach, we can flip an arbitrary set of neighboring pairs in O(1) layers of gadgets and thus,
we can arbitrarily reshuffle the atomic pairs of the pattern in O(m) layers.

On the other hand, we describe how we can do the sorting phase using significantly fewer
fewer tiles if the class D contains a monotone juxtaposition. We shall discuss here only the
case when D contains the juxtaposition B = Grid( ) as the other cases can be solved
using the same technique. Let pi be an entry such that F(M)pi

contains B and recall that we
assumed that pi shares a common row with pi−1. We construct a tile Qi from two increasing
sets Q1

i and Q2
i placed next to each other. In particular, we can attach to any atomic pair A

in Qi−1 a copy gadget connecting A to an atomic pair B and choose arbitrarily whether B

lies in Q1
i or Q2

i .
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Figure 6 Example of one sorting step using Grid( ) and a partition {1, 2, 3} = {1, 3} ∪ {2}.

Let J1 and J2 be a partition of the set [3m]. We attach a copy gadget ending in Qα
i to

each Xj , Yj and Zj with j ∈ Jα for each α ∈ {1, 2}. In this way, we rearranged the atomic
pairs in P such that first we have all pairs Xj such that j ∈ J1 followed by all pairs Xj for
j ∈ J2. Similarly in T , we have Yj , Zj for j ∈ J1 followed by Yj , Zj for j ∈ J2. See Figure 6.

Notice that the described operation simulates a stable bucket sort with two buckets.
Therefore, we can simulate radix sort and rearrange the atomic pairs into arbitrary order
given by σ by iterating this operation O(log m) times. In this way, the whole sorting phase
uses only O(log m) entries equal to D.

Evaluation phase. In the evaluation phase, we test whether each clause Kj = (xa ∨ xb ∨ xc)
is satisfied. We consider the case when Kj contains only positive literals as clauses with
negative literals can be handled with minor modifications of the argument. Suppose Xa, Xb

and Xc are the three neighboring atomic pairs in P that correspond to the three literals in
Kj . In T , there are six neighboring atomic pairs Ya, Za, Yb, Zb, Yc, Zc such that in any
grid-preserving embedding, the pair Xα is mapped to either Yα or Zα for every α ∈ {a, b, c}.

We abuse the notation and use the same letters to denote atomic pairs in different tiles so
that the gadgets carry the names through. First, we add (i) a choose gadget that branches
Zb to Zb and Z̃b, and (ii) pick gadgets to Ya, Za, Yb, Yc, Zc, Xa, Xb and Xc. We continue with
adding two layers of flip gadgets, modifying the order of atomic pairs in the text as follows

YaZa

↶↷
YbZbZ̃b

↶↷
YcZc → Ya

↶↷
ZaZbYb

↶↷
Z̃bZcYc → YaZbZaYbZcZ̃bYc.

Observe that either Xb is mapped to Yb and thus Kj is satisfied, or Xb is mapped to one of
Zb and Z̃b. Subsequently, the order of pairs in the final tile guarantees by Lemma 16 that
simultaneously, Xa cannot map to Za and Xc to Zc and thus, Kj must be satisfied.

That concludes the construction of P and T . Observe that each tile in both P and T
contains O(m) points. If D contains a monotone juxtaposition, then |π|, |τ | ∈ O(m log m)
and otherwise, |π|, |τ | ∈ O(m2). This gives rise to the two different conditional lower bounds.

Beyond grid-preserving embeddings. First, we modify both π and τ such that any embed-
ding that maps the image of P1 to the image of T1 must already be grid-preserving. To that
end, we add atomic pairs A1, A2 to the initial tile P1 such that A1 is to the left and below
everything else and A2 is to the right and above everything else. We then attach to both A1,
A2 a chain of copy gadgets going all the way to the last tile of the path. We modify T , in the
same way, using chains of copy gadgets originating in the atomic pairs B1 and B2. Observe
that in any embedding that sends P1 to T1, the image of Aα is mapped to the image of Bα

for each α ∈ {1, 2}. The chain of copy gadgets attached to Aα then must map to the chain
of gadgets attached to Bα and these chains force the embedding to be grid-preserving.

MFCS 2021
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Finally, we modify π and τ to obtain permutations π′ and τ ′ such that any embedding
of π′ into τ ′ can be translated to an embedding of π into τ that maps P1 to T1 and vice
versa. Let r and q be the lowest and topmost points in P1 and similarly, let s and t be the
lowest and topmost points of T1. The family of tiles P ′ is obtained from P by inflating both
r and q with an increasing sequence of length |τ | + 1 and similarly, the family T ′ is obtained
from T by inflating both s and t. We call the points obtained by inflating r and q lower
anchors and the ones obtained by inflating s and t upper anchors. We let π′ and τ ′ be the
F -assemblies of P ′ and T ′. Observe that these modifications did not change the asymptotic
size of the input as |π′| = O(|τ |) and |τ ′| = O(|τ ′|) = O(|τ |).

A.3 Correctness
The “only if” part. Let Φ be a satisfiable formula and fix arbitrary satisfying assignment.
We map the image of P1 to the image of T1. In the assignment phase, we map the pair X1

k,1
to Y 1

k,1 if xk is set to true, otherwise we map it to Z1
k,1. The embedding of the multiplication

and sorting phase is uniquely determined by the gadgets. It is easy to check that for each
satisfied clause Kj there is a way to extend the mapping to the evaluation phase.

The “if” part. Let ϕ be an embedding of π′ into τ ′. The total length of the anchors in
both π′ and τ ′ is 2|τ | + 2. Therefore, at least |τ | + 2 points of the anchors in π′ must be
mapped to the anchors in τ ′ and in particular, there is at least one point in each anchor
of π′ that maps to corresponding anchor in τ ′. The chains of copy gadgets attached to A1
and A2 force the rest of the embedding to be grid-preserving, and thus it straightforwardly
translates to a grid-preserving embedding of π into τ .

Using the grid-preserving embedding, we define a satisfying assignment ρ : [n] → {T, F}.
We set ρ(k) = T if the pair X1

k,1 is mapped to Y 1
k,1 and we set ρ(k) = F if it is mapped to

Z1
k,1. This property is clearly maintained throughout the multiplication and sorting phases

due to the properties of the gadgets. Finally, we already argued that our construction of
evaluation phase guarantees that all three literals in a given clause cannot be negative.
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1 Introduction

Evaluating a set of a linear forms is a natural computation task that frequently appears in
both theory and applications. For a matrix

∆ =


δ1,1 δ1,2 · · · δ1,n

δ2,1 δ2,2 · · · δ2,n

...
...

...
δm,1 δm,2 · · · δm,n

 (1)

and a column vector

x = (x1, . . . , xn)T (2)

linear forms are presented as a matrix-vector product

∆ x = (δj,1x1 + . . . δj,nxn)m
j=1 (3)

in which the matrix entries δs,t are fixed values and the vector entries xs are varying inputs
and computations are by means of linear algorithms. As expected, the complexity of a linear
algorithm is its number of additions and we are interested in sets of linear forms of high
complexity.

Obviously, the set of linear forms (3) can be computed in m(n− 1) additions. However,
in finite fields, this trivial upper bound is not the best possible. Namely, over a finite field
of q elements, it can be computed in O(mn/ logq m) additions, see [10, Theorem 1], where
the implied constants are absolute. On the other hand (in finite fields), when m = O(n),
there exist δs,t, s = 1, . . . , m and t = 1, . . . , n, for which any computation of (3) requires
Ω(mn/ logq m) additions, cf. [10, Section 5]. In fact, this lower bound holds for almost all
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m× n matrices with m = O(n), see Appendix B.2 for the precise statement and the proof by
a counting argument. Thus, for each pair of positive integers m and n such that m = O(n),
the entries of such a matrix can be effectively computed, but to describe them uniformly (in
m and n) is a very difficult open problem. Even no example of a non-linear complexity is
known from the literature.

The situation is quite different when the underlying field is infinite. By a transcendence
degree argument, it is easy to see that, over the field of real numbers R, say, when the
coefficients of the linear forms are algebraically independent, the computation of (3) requires
m(n− 1) additions (cf. [4, Section 5.2]). This leads to a natural question: what about the
field of rational numbers Q? Refining the transcendence degree argument we establish the
existence of sets of linear forms (3) over Q whose computation requires m(n− 1) additions.
Moreover, as it is shown in Appendix B.3, almost all sets of linear forms (3) are of such
complexity. The main result of our paper is a uniform description of such a set.

Namely, we show that, if the entries of a matrix ∆ are algebraically independent and Γ
is “sufficiently close” to ∆, then computing Γx also requires m(n− 1) additions. However,
an estimate of the above “sufficiently close” and, as a corollary, uniform description of
such matrices are based on very non-trivial number-theoretic tools [11] and also involves
lengthy and somewhat tedious calculations. Furthermore, we believe that some of our results,
such as bounds on the height of the annihilating polynomials in the Perron theorem, are of
independent interest and may find further applications.

This paper is organized as follows. In Section 2 we present the definition of a linear
algorithm and its associated graph and in Section 3, we normalize linear algorithms and state
some simple basic complexity results. In Section 4, we prove the existence of a set of linear
forms of the maximal complexity over Q. Then, in Section 5, we present an alternative proof
of the existence of such a set and outline an example. In Section 6 we estimate the height of
the polynomial1 appearing in the alternative proof and in Section 7 we recall an effective
version of the Lindemann-Weierstrass theorem of Sert [11], which makes the existence proof
constructive.2 Finally, in Section 8, we present an example of a set of m linear forms in n

variables over Q whose computation requires m(n− 1) additions.
To shorten the calculations and to simplify the final result, we use very crude estimates

routinely applying inequalities of the form NN + N ⩽ 2NN , eNN

< NNN2

and similar.
Nevertheless these estimation are still sufficient to make the point and to illustrate the
approach.

Throughout the paper we adhere the convention that our main results are called “Theor-
ems” , our auxiliary results are “Propositions”, while all previously known results (regardless
of their depth and importance) are called “Lemmas”.

2 Linear algorithms and their associated graphs

A linear algorithm over a field F in indeterminates x1, x2, . . . , xn consists of a sequence of
operations ui ← αiuji

+ βiuki
, i = 1, . . . , C, where

αi, βi ∈ F∗ are the algorithm coefficients;
ui is the algorithm variable that does not appear in a previous step;

1 That is, the maximum of the absolute values of the polynomial coefficients.
2 The Lindemann–Weierstrass theorem states that if algebraic numbers α1, . . . , αN are linearly independent

over Q, then eα1 , . . . , eαN are algebraically independent.
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uji and uki are either indeterminates or the algorithm variables appearing in a previous
step (that is, if uji

and uki
are the algorithm variables appearing at step i, then ji, ki < i).

With each algorithm variable u in a linear algorithm we associate the following linear
form ℓ(u):

if u is an indeterminate xt, then ℓ(u) is xt;
if u is the left-hand side of an operation u ← αv + βw, then ℓ(u) is the linear form
αℓ(v) + βℓ(w).

A linear algorithm computes a linear form ℓ(x1, . . . , xn), if there is a variable, or an
indeterminate, u of the algorithm and a constant γ ∈ F such that ℓ(x1, . . . , xn) = γℓ(u) (thus,
linear algorithms compute linear forms up to scaling by a constant) and a linear algorithm
computes a set linear forms

L(x1, . . . , xn) = {ℓs(x1, . . . , xn) : s = 1, . . . , m}

if it computes each form ℓs(x1, . . . , xn) ∈ L(x1, . . . , xn).
The number n of the variables and the number m of linear forms are fixed throughout

this paper.

▶ Definition 1. The complexity |A| of a linear algorithm A is the length C of its sequence
of operations.

▶ Definition 2. The (additive) complexity of a set of linear forms is the minimal complexity
of a linear algorithm that computes the set and algorithms of that minimal complexity are
called optimal.

It is known from [13] that if a set of linear forms over an infinite field can be computed in
C additions by a straight-line algorithm (see [1, Section 12.2]), then it also can be computed
in C additions by a linear algorithm. In other words, multiplications and divisions “cannot
replace additions”.

With a linear algorithm A we associate a labelled directed acyclic graph GA(VA, EA),
whose set of vertices is the union of {x1, . . . , xn} and the set of the variables of A and there
is an edge from vertex v to vertex u, if there is an operation of the form u← αv + βw or the
form u← αw + βv. In the former case, the edge is labelled α and, in the latter case, it is
labelled β. We denote the label of edge e by λ(e).

By definition, |VA| = n + |A| and the number of vertices of GA of the in-degree 2 is |A|.
Let π = e1, . . . , ek be a path of edges in GA. The weight w(π) of π is defined, recursively,

as follows.
If π is of length zero, then w(π) = 1;
w(π, e) = w(π)λ(e), where π, e is the path π extended with edge e.

The following correspondence between linear algorithms and their associated graphs is
well-known from the literature.

▶ Lemma 3 (See, e.g., [4, Remark 13.19].). Let

A = {ui ← αiuji + βiuki : i = 1, . . . , C}

be a linear algorithm and let ΠA (xt, ui) denote the set of all paths of edges from the inde-
terminate xt to the algorithm variable ui in GA. Then

ℓ(ui) =
n∑

t=1

 ∑
π∈ΠA(xt,ui)

w(π)

xt, i = 1, . . . , C. (4)
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3 Normalized linear algorithms

In this section we introduce a subclass of linear algorithms called normalized linear algorithms.
These algorithms have the same computation power, but are more convenient for dealing
with complexity issues.
▶ Definition 4. A linear algorithm is normalized if in each its operation

ui ← αiuji
+ βiuki

the coefficient αi of uji
is 1. The coefficient βi of ujk

is called a proper coefficient.
We say that a label is proper if it is a proper coefficient of the algorithm.
The result below immediately follows from Definition 4 and the definition of the associated

graph GA of an algorithm A.
▶ Proposition 5. The additive complexity of a normalized linear algorithm A equals to the
number of proper labels of its associated graph GA.

Furthermore, we also have the following results.
▶ Proposition 6. For each linear algorithm there is a normalized linear algorithm of the
same complexity that computes the same set of linear forms.
Proof. Let

A = {ui ← αiuji
+ βiuki

: i = 1, . . . , C}

be a linear algorithm. It suffices to show that there exists a normalized linear algorithm

Ã = {ũi ← ũji + β̃iũki : i = 1, . . . , C}

and constants γi ∈ F, i = 1, . . . , C, such that ℓ(ui) = γiℓ(ũi), i = 1, . . . , C.
We convert A to Ã and define the constants γi by recursion on i = 1, . . . , C.
The first addition of A is u1 ← α1xs + β1xt, implying ℓ(u1) = α1xs + β1xt. We put

β̃1 = β1

α1
and γ1 = α1.

Then

ℓ(u1) = α1xs + β1xt = α1

(
xs + β1

α1
xt

)
= γ1(xs + β̃1xt) = γ1ℓ(ũ1).

The (i + 1)-st addition of A is ui+1 ← αi+1uji+1 + βi+1uki+1 , implying

ℓ(ui+1) = αi+1ℓ(uji+1) + βi+1ℓ(uki+1).

We put

β̃i+1 =
βi+1γki+1

αi+1γji+1

and γi+1 = αi+1γji+1 .

Then

ℓ(ui+1) = αi+1ℓ(uji+1) + βi+1ℓ(uki+1)
= αi+1γji+1ℓ(ũji+1) + βi+1γki+1ℓ(ũki+1)

= αi+1γji+1ℓ(ũji+1 +
βi+1γki+1

αi+1γji+1

ũki+1)

= γi+1ℓ(ũji+1 + β̃i+1ũki+1)
= γi+1ℓ(ũi+1),

which concludes the proof. ◀
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From now on, we assume that all linear algorithms under consideration are over R and
by Proposition 6, we assume that they are normalized.

We represent a linear from ℓ(x1, . . . , xn) =
∑n

t=1 δtxt by the product (δ1, . . . , δn)x, where
x is the (column) vector of the indeterminates x1, . . . , xn as in (2). Similarly, we represent a
set of linear forms

ℓs(x1, . . . , xn) =
n∑

t=1
δs,txt , s = 1, . . . , m,

by a matrix-vector product ∆x, where the sth row of the matrix ∆ is the row vector
(δs,1, . . . , δs,n) of the coefficients of ℓs(x1, . . . , xn), see (3).

4 Computation of linear forms over R and Q

In this section we prove the existence of a matrix ∆ ∈ Qm×n such that computing the set of
linear forms ∆x requires m(n− 1) additions. As a preliminary step, we consider matrices
with entries from R.

▶ Theorem 7 (Cf. [4, Theorem 13.10]). If all the coefficients of the linear forms (3) are
algebraically independent, then the additive complexity of (3) is m(n− 1).3

Proof. Let A be a linear algorithm that computes (3) and let GA = (VA, EA) be its associated
labelled graph.

Let uis
and γs, s = 1, . . . , m, be the algorithm variables and the respective constants

such that

ℓs(x1, . . . , xn) =
n∑

t=1
δs,txt = γsℓ(uis

).

Then, by Lemma 3,

δs,t = γs

∑
π∈ΠA(xt,uis )

w(π) = Ps,t

(
γs, β1, . . . , β|A|

)
for some polynomials Ps,t

(
Ys, X1, . . . , X|A|

)
, s = 1, . . . , m and t = 1, . . . , n.

If the number |A| of the proper labels is less than m(n− 1), then the total number of
β and γ variables is less than mn, implying that these mn polynomials are algebraically
dependent, see Proposition 5.

Let P (Z1,1, . . . , Zm,n) be a polynomial over Q such that

P
(
P1,1

(
Y1, X1, . . . , X|A|

)
, . . . , Pm,n

(
Ym, X1, . . . , X|A|

))
= 0. (5)

Then

P
(
P1,1

(
γ1, β1, . . . , β|A|

)
, . . . , Pm,n

(
γm, β1, . . . , β|A|

))
= 0,

implying

P (δ1,1, . . . , δm,n) = 0. (6)

That is, the matrix entries δs,t are algebraically dependent, in contradiction with the condition
of the theorem. ◀

3 In [4] this result is attributed to [16], but the proof in [16] is very implicit.
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Recall that we aim to find an m× n matrix over Q that defines the set of linear forms of
complexity m(n− 1). The existence of such a matrix is shown below (see Theorem 15), but
to describe its entries is not straightforward at all and we do this in Section 8.

To proceed with our proof of existence we first need to introduce a number of definitions
and auxiliary results.

▶ Definition 8. We say that P (Z1, . . . , ZN ) ∈ Z[Z1, . . . , ZN ] is an annihilating polynomial
of Pk (X1, . . . , XN−1) ∈ Z[X1, . . . , XN−1], k = 1, . . . , N , if P is a non-zero polynomial and

P (P1 (X1, . . . , XN−1) , . . . , PN (X1, . . . , XN−1)) = 0.

▶ Definition 9. We say that the polynomial Ps,t

(
Ys, X1, . . . , X|A|

)
, s = 1, . . . , m and t =

1, . . . , n, defined in the proof of Theorem 7 is associated with the (s, t)-th entry of ∆ via A.

▶ Definition 10. We say that a polynomial P is (m, n)-associated if for some m× n matrix
∆, some s = 1, . . . , m, some t = 1, . . . , n and some algorithm A with |A| < m(n − 1) that
computes (3), P is associated with the (s, t)-th entry of ∆ via A.

▶ Proposition 11. The set of (m, n)-associated polynomials is finite.

Proof. By (4), the coefficients of Ps,t

(
Ys, X1, . . . , X|A|

)
are zero or one and, by definition,

|A| < m(n− 1). Therefore

deg Ps,t

(
Ys, X1, . . . , X|A|

)
< m(n− 1),

where s = 1, . . . , m and t = 1, . . . , n, and the result follows. ◀

▶ Definition 12. The polynomial P (Z1,1, . . . , Zm,n) ∈ Q[Z1,1, . . . , Zm,n] satisfying (5), that
is, an annihilating polynomial of

P1,1
(
Y1, X1, . . . , X|A|

)
, . . . , Pm,n

(
Ym, X1, . . . , X|A|

)
,

is called an A-∆-annihilating polynomial.

▶ Definition 13. We say that a set of polynomials Q is (m, n)-complete if for each m× n

matrix ∆ and each algorithm A with |A| < m(n − 1) that computes (3), Q contains an
A-∆-annihilating polynomial.

For our specific example we shall look for a common non-zero of all polynomials in an
(m, n)-complete set. This resembles the approach in [14], see also [4, Section 9.4].

▶ Proposition 14. Let Q be a minimal with respect to inclusion (m, n)-complete set of
polynomials. Then Q is finite.

Proof. This is because number of polynomials in Q does not exceed the number of all
k-tuples, k < m(n− 1) of (m, n)-associated polynomials and by Proposition 11 the number
of such tuples is finite. ◀

In what follows, for a matrix A we denote by |A| its Frobenius norm, that is, the square
root of the sum of squares of its entries. Similarly, for a vector α we use |α| to denote its
Euclidean norm.

▶ Theorem 15. There exists an m× n matrix over Q that defines the set of linear forms of
complexity m(n− 1).
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Proof. Let ∆1, ∆2, . . ., be a sequence of m×n matrices over Q that converges (in the Frobenius
norm) to the matrix ∆ = (δs,t) from the proof of Theorem 7. That is, limi→∞ |∆i −∆| = 0.

Let ∆i = (δs,t,i), i = 1, 2, . . .. Then

lim
i→∞

δs,t,i = δs,t s = 1, . . . , m and n = 1, . . . , n. (7)

Assume to the contrary that for each i = 1, 2, . . ., there is an algorithm Ai, |Ai| < m(n−1),
that computes ∆ix. Let Q be a finite (m, n)-complete set provided by Proposition 14. Then,
like in the proof of Theorem 7, it can be shown that for each i = 1, 2, . . ., there is an
Ai-∆i-annihilating polynomial Pi(Z1,1, . . . , Zm,n) ∈ Q such that Pi (δ1,1,i, . . . , δm,n,i) = 0.

Thus, there is a subsequence ∆̃1, ∆̃2, . . . of ∆1, ∆2, . . . with the same annihilating poly-
nomial P (Z1,1, . . . , Zm,n), implying P

(
δ̃1,1,i, . . . , δ̃m,n,i

)
= 0, i = 1, 2, . . ., which, by (7),

implies (6). However, the latter contradicts the algebraic independence of the entries of ∆. ◀

5 An alternative proof of Theorem 15 and an outline of an example

Here we present an alternative and more constructive approach of the existence of a set
of m linear forms in n variables over Q of complexity m(n− 1) and outline our example. To
simplify the calculations, we look for a matrix Γ defining such a set in the ball of radius 1
centered at ∆. We show in Section 7 that this condition is redundant.

Theorem 16 below is in the background of our example of linear forms which are hard to
compute.

▶ Theorem 16. Let Q be an (m, n)-complete set of polynomials. Let Γ = (γs,t) and ∆ = (δs,t)
be m× n matrices, where δs,t, s = 1, . . . , m and t = 1, . . . , n, are algebraically independent
and |∆− Γ| < 1. Let γ = (γ1,1, . . . , γm,n) and let δ = (δ1,1, . . . , δm,n). If

|δ − γ| < min
Q∈Q

min
|µ|<1

{
|Q(δ)|

|∇Q(δ + µ)|

}
, (8)

then computing Γx requires m(n− 1) additions.

The proof of Theorem 16 is based on the following lemma.

▶ Lemma 17 (The mean value theorem for several variables, see, e.g., [2, Chapter 12, Example 1].).
Let F : RN → R be a differentiable function and α1, α2 ∈ RN . Then, for some ϑ ∈ [0, 1],

F (α2)− F (α1) = ∇F (α1 + ϑ(α2 −α1)) · (α2 −α1),

where ∇F denotes the gradient of F .

Proof of Theorem 16. Assume to the contrary that the set of linear forms Γx can be
computed in less than m(n − 1) additions by an algorithm A. Then, since Q is (m, n)-
complete, there is an A-Γ-annihilating polynomial Q ∈ Q such that Q(γ) = 0.

By Lemma 17, for some ϑ ∈ [0, 1]

Q(δ)−Q(γ) = ∇Q(γ + ϑ(δ − γ)) · (δ − γ). (9)

Since

γ + ϑ(δ − γ) = ϑδ + (1− ϑ)γ = ϑδ + (1− ϑ)(δ + γ − δ) = δ + (1− ϑ)(γ − δ)
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and |(1− ϑ)(γ − δ)| < 1, by (9), for µ = (1− ϑ)(γ − δ), we have

Q(δ) = ∇Q(δ + µ) · (δ − γ) (10)

because Q(γ) = 0. It follows from (10), by the Cauchy–Schwarz inequality, that

|Q(δ)| ≤ |∇Q(δ + µ)| |δ − γ| ,

which contradicts (8). ◀

Note that, since the components of δ are algebraically independent, Q(δ) ̸= 0. Thus, for
a finite (m, n)-complete set of polynomials Q, the right-hand side of (8) is positive.

Using the trivial inequality

|δ − γ| ≤
√

mn max{|δs,t − γs,t| : s = 1, . . . , m, t = 1, . . . , n}

we see that Theorem 16 yields the corollary below.

▶ Corollary 18. Let Q be an (m, n)-complete set of polynomials. Let Γ = (γs,t) and ∆ = (δs,t)
be m× n matrices, where δs,t, s = 1, . . . , m and t = 1, . . . , n, are algebraically independent
and |∆− Γ| < 1. Let γ = (γ1,1, . . . , γm,n) and δ = (δ1,1, . . . , δm,n). If

max{|δs,t − γs,t| : s = 1, . . . , m and t = 1, . . . , n} <
1√
mn

min
Q∈Q

min
|µ|<1

{
|Q(δ)|

|∇Q(δ + µ)|

}
,

then computing Γx requires m(n− 1) additions.

Following the above existence proof, for an example of a rational m× n matrix defining a
set of linear forms of complexity m(n−1) we need a set of algebraically independent numbers
δs,t, s = 1, . . . , m and t = 1, . . . , n, for which the right-hand side of (8) can be effectively
estimated. Such a set is provided by an effective version of the Lindemann-Weierstrass
theorem due to Sert [11], see Lemma 26 in Section 7.

6 The degree and the height of annihilating polynomials

In this section we estimate the denominator of the right-hand side of (8). For this we need
to estimate the degree and the height of (m, n)-polynomials which are defined as follows.

▶ Definition 19. A polynomial P is called an (m, n)-polynomial if for some m× n matrix ∆
and some algorithm A, |A| < m(n− 1), that computes (3), P is A-∆-annihilating.

Recall that these polynomials arise from linear algorithms of the complexity less than
m(n− 1) and satisfy (5).

We start with the following result, that is essentially due to Perron.

▶ Lemma 20 ( [8], see also [9, Theorem 1.1] for a self-contained proof.). Let

Pk(X1, . . . , XN−1) ∈ Z[X1, . . . , XN−1]

with deg Pk(X1, . . . , XN−1) = dk, k = 1, . . . , N . Then there exists an annihilating polynomial
P (Z1, . . . , ZN ) ∈ Z[Z1, . . . , ZN ] of P1, . . . , PN such that

deg P ≤ d1 × · · · × dN

min{d1, . . . , dN}
.
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Actually, in [8], the polynomial P (Z1, . . . , ZN ) has rational coefficients, but, multiplying
them by their common denominator, we obtain a polynomial over Z.

In the case of (m, n)-polynomials, N = mn and ds ≤ m(n− 1), i = 1, . . . , N . Therefore,
by Lemma 20, we may assume that the degree of (m, n)-polynomials under consideration
does not exceed NN−1.

Next, we are going to estimate the minimum height h(P ) of the polynomial P (Z1, . . . , ZN )
provided by Lemma 20. This can be done by solving a system of linear homogeneous equations,
see [14, Lemma2.2], [4, Lemma 9.28] or [9, Property 1.2].

We need some auxiliary results first. We start with recalling the following well-known
upper bound on the height of a polynomial product.

▶ Lemma 21 (See, e.g., [5, Lemma 1.2(1)(b)], where the logarithmic height ln h(P ) is used.).
Let Pk ∈ Z[X1, . . . , XN−1], k = 1, . . . , ℓ. Then

h

(
ℓ∏

k=1
Pk

)
≤ N

ℓ∑
k=1

deg Pk ℓ∏
k=1

h(Pk).

We also recall the classical Siegel lemma.

▶ Lemma 22 ([12, Page 213, Hilfssatz], see also [3,15] for further improvements and generaliza-
tions.). If a system of J linear homogeneous equations in I > J variables

I∑
i=1

bi,jzi = 0, j = 1, . . . , J,

with B = (bi,j)I,J
i,j=1 ∈ ZI×J , has a nonzero solution, then it has a nonzero integer solution

v = (v1, . . . , vI) with

h(v) ⩽ 1 + (Ih(B))J/(I−J)
,

where

h(B) = max{|bi,j | : i = 1, . . . , I, j = 1, . . . , J}

and

h(v) = max{|vi| : i = 1, . . . , I}. (11)

We are now ready to estimate the height of an annihilating polynomial. More precisely
we establish the following result.

▶ Proposition 23. Let P (Z1, . . . , ZN ) ∈ Z[Z1, . . . , ZN ] be an annihilating polynomial of

Pk(X1, . . . , XN−1) ∈ Z[X1, . . . , XN−1], k = 1, . . . , N.

There exists another annihilating polynomial Q(Z1, . . . , ZN ) ∈ Z[Z1, . . . , ZN ] of P1, . . . , PN

of degree and height

deg Q ⩽ deg P,

h(Q) ⩽ 1 +
((

deg P + N

N

)
Ndmax deg P hdeg P

max

)(deg P +N
N )−1

,

respectively, where

dmax = max{deg Pk : k = 1, . . . , N},
hmax = max{h(Pk) : k = 1, . . . , N}.
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Proof. We employ the following notation:
X = (X1, . . . , XN−1) and Z = (Z1, . . . , ZN ) are vectors of variables;
i = (i1, . . . , iN ) and j = (j1, . . . , jN−1) are vectors of non-negative integers;
Xj =

∏N−1
s=1 Xjs

s and Zi =
∏N

k=1 Zik

k are multivariate monomials.

We search for a polynomial Q in the form

Q(Z1, . . . , ZN ) =
∑

i: i1+...+iN ≤deg P

viZ
i, (12)

with unknown coefficients vi to be determined.
To find the coefficients vi of Q(Z1, . . . , ZN ), we substitute the polynomials Pk(X1, . . .,

XN−1) for Zk, k = 1, . . . , N , in (12), obtaining

Q (P1(X1, . . . , XN−1), . . . , PN (X1, . . . , XN−1))

=
∑

i: i1+...+iN ≤deg P

vi

N∏
k=1

P ik

k (X1, . . . , XN−1) = 0. (13)

Let
N∏

k=1
P ik

k (X1, . . . , XN−1) =
∑

j: j1+...+jN−1⩽dmax deg P

ci,jXj .

Then, it follows from (13) that∑
i: i1+...+iN ≤deg P

vi

∑
j: j1+...+jN−1⩽dmax deg P

ci,jXj

=
∑

j: j1+...+jN−1⩽dmax deg P

Xj

 ∑
i: i1+...+iN ≤deg P

ci,jvi

 = 0.

That is, we have a system of linear homogeneous equations∑
i: i1+...+iN ≤deg P

ci,j vi = 0, j : j1 + . . . + jN−1 ⩽ dmax deg P (14)

in

I =
(

deg P + N

N

)
(15)

unknowns vi (the coefficients of P (Z1, . . . , ZN )).
We also note that for the coefficients ci,j of the system of linear equations (14) we have

max
i,j
|ci,j | ⩽ max

i1+...+iN ≤deg P
h

(
N∏

k=1
P ik

k

)
,

where i and j run through the vectors with i1 + . . . + iN ≤ deg P and j1 + . . . + jN−1 ⩽
dmax deg P , respectively

Hence, by Lemma 21 with ℓ = deg P ,

max
i,j
|ci,j | ≤ Ndmax deg P hdeg P

max . (16)
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Since, by our assumption on the polynomial Q, this system has a non-zero solution,
we can select at most J ⩽ I − 1 linear equations forming a system of linear homogeneous
equations, which is equivalent to (14). Hence combining the bound (16) with Lemma 22, we
derive that (14) has a solution with

max{vi : i = (i1, . . . , iN ) with i1 + . . . + iN ≤ deg P} ⩽ 1 +
(
INdmax deg P hdeg P

max
)I−1

,

where I is given by (15), which concludes the proof. ◀

In what follows we renumber the (m, n)-associated polynomials Ps,t, s = 1, . . . , m and
t = 1, . . . , n, in (5) as P1, . . . , PN , that is, we write

{P1, . . . , PN} = {Ps,t : s = 1, . . . , m, t = 1, . . . , n}. (17)

We remark that by Lemma 20, we can assume deg P ⩽ dN−1
max in the notation of Proposi-

tion 23. Furthermore, as we have noticed in the proof of Proposition 11, in the special case
of (m, n)-associated polynomials we have

dmax = N and hmax = 1. (18)

Thus, by Lemma 20, we can assume

deg P ≤ NN−1. (19)

▶ Corollary 24. For any N = mn ⩾ 4 and polynomials (17), there exists an (m, n)-polynomial
Q(Z1, . . . , ZN ) of degree and height satisfying

deg Q ⩽ NN−1 and h(Q) ⩽ N2NN2

, (20)

respectively.

Proof. The bound on the degree follows directly from (19). Using the well known estimate(
q

r

)
⩽

qr

r! ⩽ (eq/r)r
,

which holds for arbitrary integers integers q ⩾ r ⩾ 1, we derive(
NN−1 + N

N

)
⩽
(
e
(
NN−2 + 1

))N = eN NN(N−2) (1 + 1/NN−2)N
⩽ eN+1NN2−2N .

Since for N ⩾ 4 we have eN+1 < NN , we now obtain(
NN−1 + N

N

)
< NN2−N .

Substituting (18) and (19) in Proposition 23 and using the above estimate, we see that

h(Q) ⩽ 1 +
(

NNN +N2−N
)NN2−N

= 1 + N(NN +N2−N)NN2−N

.

We now use the crude estimate NN + N2 −N < 2NN and obtain

h(Q) < 1 + N2NN2

.

Since h(Q) is an integer, this concludes the proof. ◀
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Let Qm,n denote the class of annihilating (m, n)-polynomials Q with the degree and height
satisfying 20, where N = mn. By Corollary 24, we see that for N = mn ⩾ 4, Qm.n ̸= ∅.
Clearly, Qm,n is (m, n)-complete and, therefore, Corollary 18 can be applied with Q = Qm,n.

We remark that the case of N = mn ⩽ 3 is trivial, as then m = 1 or n = 1. Hence the
condition N ⩾ 4, which stems from Corollary 24, is not restrictive.

We also recall the definition of the naive height in (11).

▶ Corollary 25. For any N = mn ⩾ 4 and δ ∈ RN , we have

max
Q∈Qm,n

max
|µ|<1

|∇Q(δ + µ)| < N3NN2

(h(δ) + 1)NN−1
.

Proof. First we estimate
∂Q

∂Zk
(δ + µ), k = 1, . . . , N.

The polynomial ∂Q/∂Zk is of degree

deg ∂Q/∂Zk < deg Q ⩽ NN−1

and thus, by Corollary 24, of height

h (∂Q/∂Zk) ⩽ NN−1h(Q) ⩽ N2NN2
+N−1.

The number of monomials in N variables of degree less than NN−1 is less than NN2−N .
Thus, for |µ| ⩽ 1 we have∣∣∣∣ ∂Q

∂Zk
(δ + µ)

∣∣∣∣ ⩽ NN2−N h (∂Q/∂Zk) (h(δ) + 1)NN−1

⩽ N2NN2
+N2−1(h(δ) + 1)NN−1

< N3NN2

(h(δ) + 1)NN−1
,

and the result follows. ◀

7 Effective Lindemann–Weierstrass theorem

In this section we estimate the numerator of the right-hand side of (8). This, together with
the estimation of the denominator of the right-hand side of (8) in the previous section, would
make Theorem 16 constructive. The estimation of the numerator is based on an effective
version of the Lindemann-Weierstrass theorem due to Sert [11] stated below. We precede the
statement of the theorem with the necessary definitions and notations.

K is a number field of degree D.
MK is the set of normalized absolute values of K, that is, the extensions onto K all the
values on Q (Archimedean and p-adic).
The absolute height ha(α) of an s-tuple α = (α1, . . . , αs) ∈ Ks is defined by

ha(α) =
∏

ν∈MK

max
1≤k≤s

{1, |αk|ν}Dν /D,

where Dν is the local degree of Kν , that is, the dimension of the ν-completion of K over
R, if ν is Archimedean, or the ν-completion of K over Qp, if ν is p-adic.
Let {β1, . . . , βL} be the set of all coefficients of a polynomial P (x1, . . . , xN ) over K. We
denote by ∆P the discriminant of Q(β1, . . . , βL).
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The absolute height of a multi-variate polynomial P is the absolute height of the tuple of
the polynomial coefficients.

Our main technical tool is the following result of Sert.

▶ Lemma 26 ([11, Theorem 3]). Let P ∈ K[Z1, . . . , ZN ] be of degree d ≥ 1 and of absolute
height H and let α = (α1, . . . , αN ) ∈ KN be linearly independent over Q. Then

ln |P (eα1 , . . . , eαN )|

≥ −c0dN

(
ln H + 39

328D
ln |∆P |+ exp

(
c1dN + c2dN ln d + 72 max{1, ha(α)}

))
,

where

c0 = 41× 32N 2−N+1DN+1NN ,

c1 = 22−N 32N+1DN+1NN + (1 + 6D)24−N 32N DN NN ln(9DN)
+ 24−N 32N DN+1NN (1 + 6N) ln ha(α),

c2 = (1 + 6D)24−N 32N DN NN .

▶ Remark 27. As noticed by Sert [11, Page 100], if the coefficients of P (Z1, . . . , ZN ) are
rational integers, then, in Lemma 26, we replace H with the ordinary height h(P ) of P and
replace ln |∆P | with zero.

The result below follows from Lemma 26 and Remark 27 by a straightforward substitution.

▶ Corollary 28. Let Q(Z1, . . . , ZN ) ∈ Qm,n and let α1, . . . , αN be algebraic numbers linearly
independent over Q. Then, for N ⩾ 4,

|Q(eα1 , . . . , eαN )| > exp
(
−N25N DN+1NN2+2(D+max{1,ha(α)})

)
where D is the degree of the number field Q(α1, . . . , αN ).

The proof of this corollary is presented in Appendix A.1.
Now, the substitution of the bound of Corollaries 28 and 25 for the numerator and the

denominator of the right-hand side of (8), respectively, makes Theorem 16 constructive.
Finally, for the uniform example of a set of m linear forms in n variables over Q of

complexity m(n− 1) in the next section we need the estimation below.

▶ Proposition 29. Let α be a positive integer such that [Q(α1/N ) : Q] = N , where N =
mn ⩾ 4 and N > α > 1, and let γs,t, s = 1, . . . , m and t = 1, . . . , n, be such that∣∣∣eα((s−1)n+t)/N

− γs,t

∣∣∣ < exp
(
−NN3N2)

. (21)

Then, for Γ = (γs,t), computing Γx requires m(n− 1) additions.

The proof of this proposition is presented in Appendix A.2.

8 An example

An example of an integer matrix Ω ∈ Zm×n such that computing Ωx requires m(n − 1)
additions is based on Proposition 29 with α = 2. We precede the example with a series of
auxiliary calculations for which we need the propositions below.

Throughout we assume that N ⩾ 4.
We recall the definition of binomial coefficients for real arguments:(

r

i

)
= r(r − 1) · · · (r − i + 1)

i! .
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▶ Proposition 30. For r ∈ (0, 1) and a non-negative integer j,∣∣∣∣∣2r −
j∑

i=0

(
r

i

)∣∣∣∣∣ <
1

j + 1

Proof. For x > 0, the Taylor expansion (with the Lagrange remainder) of (1 + x)r is

(1 + x)r =
j∑

i=0

(
r

i

)
xi +

(
r

j + 1

)
Θj+1 (22)

for some Θ ∈ (0, x). Substituting 1 for both x and Θ in (22), we obtain∣∣∣∣∣2r −
j∑

i=0

(
r

i

)∣∣∣∣∣ <

∣∣∣∣( r

j + 1

)∣∣∣∣ = |r(r − 1)(r − 2) · · · (r − j)|
(j + 1)! <

j!
(j + 1)! <

1
j + 1 ,

and the result follows. ◀

By Proposition 30, we approximate 2((s−1)n+t)/N by

rs,t =
j∑

i=0

(
((s− 1)n + t)/N

i

)
s = 1, . . . , m, t = 1, . . . , n,

for an appropriate j, to be chosen later.

▶ Proposition 31. For x ∈ (1, 2) and k ⩾ 6,

ex −
k∑

i=0

xi

i! <
1

k + 1 .

Proof. For x > 0, the Taylor expansion (with the Lagrange remainder) of ex is

ex =
k∑

i=0

xi

i! + Θk+1

(k + 1)!

for some Θ ∈ (0, x). Thus, using k! ⩾ 2k+1 for k ⩾ 6, we obtain

ex −
k∑

i=0

xi

i! = Θk+1

(k + 1)! <
2k+1

(k + 1)! <
1

k + 1 ,

which concludes the proof. ◀

By Proposition 31, we approximate ers,t by

γs,t =
k∑

i=0

ri
s,t

i! , s = 1, . . . , m, t = 1, . . . , n,

for an appropriate k, to be chosen later.
Our last auxiliary estimation is as follows.

▶ Proposition 32. Let x ≤ 2 and ε ∈ (−1, 1). Then∣∣ex − ex+ε
∣∣ < 42ε.
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Proof. By Lemma 17,∣∣ex − ex+ε
∣∣ <

∣∣∣ex−|ε| − ex+|ε|
∣∣∣ = 2εex+Θ

for some Θ ∈ (−ε, ε). Thus, |ex − ex+ε| < 2e3ε < 42ε. ◀

To simplify the expressions in our example, recalling the bound of Proposition 29 it is
now convenient to denote

E = exp
(

NN3N2)
. (23)

We contend that for

j ≥ 126E and k ≥ 3E (24)

we have the inequality∣∣∣e2((s−1)n+t)/N

− γs,t

∣∣∣ <
2

3E
. (25)

Indeed, first we note that, by Propositions 31 and 32, we have

∣∣∣e2((s−1)n+t)/N

− γs,t

∣∣∣ =

∣∣∣∣∣e2((s−1)n+t)/N

−
k∑

i=0

ri
s,t

i!

∣∣∣∣∣
≤

∣∣∣∣∣ers,t −
k∑

i=0

ri
s,t

i!

∣∣∣∣∣+
∣∣∣e2((s−1)n+t)/N

− ers,t

∣∣∣
<

1
k + 1 + 42

∣∣∣2((s−1)n+t)/N − rs,t

∣∣∣ .
Now using Proposition 30 and recalling the choice of j and k in (24), we derive

42
∣∣∣2((s−1)n+t)/N − rs,t

∣∣∣ ⩽ 42
j + 1 ⩽

1
3E

and 1
k + 1 ⩽

1
3E

and (25) follows.
Thus, by (25) and Proposition 29, computing ΓxT , where

Γ = (γs,t) ∈ Qm×n

requires m(n− 1) additions.
Of course, all of the above also holds for computations over C and unbounded algorithm

coefficients, whereas in [7] the algorithm coefficients are bounded by 1.
Even though,

γs,t ⩽ e2((s−1)n+t)/N

+ 2
3E
≤ e2 + 1/6 < 8 (26)

the numerator and the denominator of γs,t are very large. The matrix

Γ̃ = (γ̃s,t) ∈ Qm×n (27)

with “smaller” entries such that computing Γ̃xT requires m(n− 1) additions is defined by

γ̃s,t = ⌊3⌊E + 1⌋γs,t⌋
3⌊E + 1⌋ , s = 1, . . . , m, t = 1, . . . , n. (28)
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For the proof, by Proposition 29, it suffices to show that∣∣∣e2((s−1)n+t)/N

− γ̃s,t

∣∣∣ <
1
E

,

which is indeed so, because∣∣∣e2((s−1)n+t)/N

− γ̃s,t

∣∣∣ =
∣∣∣∣e2((s−1)n+t)/N

− ⌊3⌊E + 1⌋γs,t⌋
3⌊E + 1⌋

∣∣∣∣
=
∣∣∣∣e2((s−1)n+t)/N

− γs,t −
{3⌊E + 1⌋γs,t}

3⌊E + 1⌋

∣∣∣∣
≤
∣∣∣e2((s−1)n+t)/N

− γs,t

∣∣∣+ {3⌊E + 1⌋γs,t}
3⌊E + 1⌋

≤ 2
3E

+ 1
3⌊E + 1⌋ ≤

1
E

.

By definition, the matrix

Ω = 3⌊E + 1⌋Γ̃ ∈ Zm×n, (29)

where Γ̃ is defined by (28), has integer entries and computing ΩxT also requires m(n− 1)
additions. Thus we have the following.

▶ Theorem 33. Let N = mn ⩾ 4. The matrix

Ω = (ωs,t) ∈ Zm×n,

given by (29) defines the set of linear forms of complexity m(n− 1) and has elements of size

0 ⩽ ωs,t ⩽ 25 exp
(

NN3N2)
.

Proof. From the above discussion it only remains to estimate the size of elements of Ω.
From (26) we conclude that

0 ⩽ ωs,t ⩽ 8(3E + 1) ⩽ 25E,

where E is defined by (23). As one easily verifies that under our assumption we have
E ⩾ 24. ◀

It seems to be of interest to find an integer matrix with smaller entries, that defines the
set of linear forms of the same complexity.
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A Proofs of Corollary 28 and Proposition 29

A.1 Proof of Corollary 28

We just substitute the upper bounds

d ⩽ NN−1 and h(P ) ⩽ N2NN2

from Corollary 24 on d and H, respectively, in the parameters of Lemma 26 and also recall
Remark 27. We note that we use some crude inequalities to simplify the bound.

More precisely, one verifies that for N ⩾ 4 we have

41× 32N 2−N+1N−1 ⩽ 25N .

Hence, in Lemma 26 we can now take

c0 ⩽ 41× 32N 2−N+1DN+1N2N−1 ⩽ 25N DN+1N2N . (30)

Furthermore, simple calculus shows that ln(9x) ⩽ x for x ⩾ 4, hence

ln(9DN) ⩽ DN.

Using this and the trivial bounds

1 + 6D ⩽ 23D and 1 + 6N ⩽ 23N,
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we now obtain

c1 = 22−N 32N+1DN+1NN + (1 + 6D)24−N 32N DN NN ln(9ND)
+ 24−N 32N DN+1NN (1 + 6N) ln ha(α),

⩽ 22−N 32N+1DN+1NN + 27−N 32N DN+2NN+1

+ 27−N 32N DN+1NN+1 ln ha(α),
⩽
(
22−N 32N+1D−1N−1 + 27−N 32N

)
DN+2NN+1

+ 27−N 32N DN+1NN+1 ln ha(α)
⩽
(
2−N 32N+1 + 27−N 32N

)
DN+2NN+1

+ 27−N 32N DN+1NN+1 ln ha(α).

Since, for N ⩾ 4, we have

2−N 32N+1 + 27−N 32N = (3 + 128) 2−N 32N = 131× 2−N 32N ⩽ 24N

and certainly the same bound for just the second term 27−N 32N , we derive

c1 ⩽ 24N DN+1NN+1 (D + ln ha(α)) . (31)

Finally, for c2, using 1 + 6D ⩽ 8D we have

c2 = 27−N 32N DN+1NN ⩽ 24N DN+1NN . (32)

We now collect (30), (31) and (32) and obtain

c0dN ⩽ 25N N2N DN+1NN(N−1) = 25N DN+1NN2+N ,

c1dN ⩽ 24N NN+1DN+1 (D + ln ha(α)) NN(N−1)

= 24N DN+2NN2+1 + 24N DN+1NN2+1 ln ha(α),

c2dN ln d ⩽ 24N NN DN+1NN(N−1)(N − 1) ln N ⩽ 24N DN+1NN2+1 ln N.

Therefore, we have the inequality

c1dN + c2dN ln d + 72 max{1, ha(α)}

⩽ 24N DN+2NN2+1 + 24N DN+1NN2+1 ln N

+
(

24N DN+1NN2+1 + 72
)

max{1, ha(α)}. (33)

We now observe that

24N DN+2NN2+1 + 24N DN+1NN2+1 ln N ⩽ 24N+1DN+2NN2+2 ln N

and

24N DN+1NN2+1 + 72 ⩽ 24N+1DN+1NN2+1 ⩽ 24N+1DN+1NN2+1 ln N.

Hence, the inequality (33) simplifies as follows:

c1dN + c2dN ln d + 72 max{1, ha(α)}

⩽ 24N+1DN+1NN2+2 (D + max{1, ha(α)}) ln N,
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and thus,

exp
(
c1dN + c2dN ln d + 72 max{1, ha(α)}

)
⩽ N24N+1DN+1NN2+2(D+max{1,ha(α)}).

Finally

ln H = ln h(P ) ⩽ 2NN2
ln N

and we conclude

ln H + exp
(
c1dN + c2dN ln d + 72 max{1, ha(α)}

)
⩽ 2N24N+1DN+1NN2+2(D+max{1,ha(α)}).

Therefore, combining this bound with the above bound on c0dN , by Lemma 26 we have

ln |Q(eα1 , . . . , eαN )| ⩾ −25N+1DN+1NN2+N N24N+1DN+1NN2+2(D+max{1,ha(α)}).

Elementary calculus shows that for N ⩾ 4 we have

25N+1DN+1NN2+N ⩽ N24N+1DN+1NN2+1
.

Hence

ln |Q(eα1 . . . , eαN )| ⩾ −N24N+2DN+1NN2+2(D+max{1,ha(α)})

⩾ −N25N DN+1NN2+2(D+max{1,ha(α)}),

and the result follows.

A.2 Proof of Proposition 29
Since [Q(α1/N ) : Q] = N , we see that αk = αk/N , k = 1, . . . , N , are linearly independent
over Q and Q(α1, . . . , αN ) = Q(αN ). Thus, for D in Corollary 28 we have D = N .

Let α = (α1, . . . , αN ). By definition, h(α) = α. We contend that ha(α) = α as well.
Since all αk, k = 1, . . . , N , are algebraic integers, their p-adic norms are less than 1.

Therefore,

ha(α) =
∏
ν|∞

max
1≤k≤N

{1, |αk|ν}Dν /N ,

where (in this context) ∞ denotes the Archimedean value on Q.
Since for all ν | ∞ and all k = 1, . . . , N ,

max{1, |αk|ν} = αk = αk/N

and by [6, Corollary 1, Section II.1]∑
ν|∞

Dν = N,

we derive

ha(α) =
∏
ν|∞

αDν /N = α.
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Now, the result follows from Corollary 18 with Q = Qm,n, Corollary 25 and Corollary 28
by simple calculations.

Indeed, let

δs,t = eα((s−1)n+t)/N

, s = 1, . . . , m, t = 1, . . . , n.

be the components of the vector δ ∈ RN (indexed by (s− 1)n + t).
For any Q ∈ Q and µ ∈ RN with |µ| < 1, by Corollary 25 (in which we interpret δ and

µ as N -dimensional vectors), we have

|∇Q(δ + µ)| < N3NN2

(ea + 1)NN−1
⩽ N3NN2

(eN−1 + 1)NN−1
⩽ N3NN2

eNN

⩽ N4NN2

.

On the other hand, recalling that D = N and h(α) = α, by Corollary 28 we have

|Q(δ)| > exp
(
−N25N NN2+N+3(N+α)

)
⩾ exp

(
−N25N NN2+N+3(2N−1)

)
⩾ exp

(
−N25N+1NN2+N+4

)
.

Hence
|Q(δ)|

|∇Q(δ + µ)| ⩾ N−4NN2

exp
(
−N25N+1NN2+N+4

)
⩾ exp

(
−2N25N+1NN2+N+4

)
.

Furthermore, since N ⩾ 4, we have

2N25N+1NN2+N+4
⩽ N25N+2NN2+N+4

⩽ N26N NN2+N+4
⩽ NNN2+4N+4

⩽ NN3N2

.

Note that, by (21), the condition |∆− Γ| < 1 of Corollary 18 is redundant.

B Density of matrices defining sets of linear forms of maximal additive
complexity

B.1 Complexity of matrices
For a matrix ∆ and a vector x = (x1, . . . , xn)T of n indeterminates as in (1) and (2),
respectively, we denote the additive complexity of the set of linear forms ∆x by C(∆) and
call it the complexity of ∆.

B.2 The case of finite fields
Let F be a finite field of q elements. In this section we show that “almost all” m×n matrices
over F, are of high complexity.

We may assume that m ≤ qn−1
q−1 , because the number of non-zero linear forms in n

indeterminates over F is qn − 1 and each form can be scaled by q − 1 non-zero elements of F.
The proof is by the counting argument similar to that of [10, Lemma, Section 5]. For the

sake of completeness, we reproduce it below.
For a positive integers C, m and n we denote by S(C, m, n) the set of all m× n matrices

over F of complexity not exceeding C:

SF(C, m, n) = {∆ ∈ Fm×n : C(∆) ≤ C}.

First we need a bound on the cardinality #SF(C, m, n) of this set.
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▶ Proposition 34. We have

#SF(C, m, n) < (C + n)2C+mqC+m.

Proof. For a positive integer m a linear algorithm in n indeterminates of length C defines at
most

LF(C, m) =
(

C

m

)
sets of m linear forms, each of which is associated with

MF(m) = (q − 1)mm!

matrices of the size m × n. Namely, we have (q − 1)m scalar multiplications and m!
permutations, respectively, of the matrix rows.

Next we are going to count the number of linear algorithms over F in n indeterminates of
length C, denoted by AF(C, n).

By definition,
AF(1, n) ≤ n2(q − 1) and
AF(C + 1, n) ≤ AF(C, n)(C + n)2(q − 1),

where the factors (C + n)2 and (q − 1) come from the last addition uC+1 = v + αw of the
algorithm,

v, w ∈ {x1, . . . , xn} ∪ {u1, . . . , uC}

and α ̸= 0. Recall that all algorithms under consideration are normalized.
Solving the above recursion, we obtain

AF(C, n) ≤
(

(C + n− 1)!
(n− 1)!

)2
(q − 1)C .

Thus,

#SF(C, m, n) ⩽ AF(C, n)LF(C, m)MF(m)

<

(
(C + n− 1)!

(n− 1)!

)2
(q − 1)C

(
C

m

)
(q − 1)mm!

< (C + n)2C+m(q − 1)C+m < (C + n)2C+mqC+m,

which concludes the proof. ◀

▶ Theorem 35. Let ε, κ > 0 be such that 2κ + ε < 1 and let

Cκ,m,n = κmn

logq(mn) − n.

Then

lim
n→∞

qεn≥m

#SF(Cκ,m,n, m, n)
qmn

= 0.

Proof. It suffices to show that

lim
n→∞

qεn≥m

(
logq #SF(Cκ,m,n, m, n)−mn

)
= −∞. (34)

MFCS 2021



66:22 Sets of Linear Forms Which Are Hard to Compute

By Proposition 34 we have

logq #SF(Cκ,m,n, m, n)−mn < (2Cκ,m,n + m) logq(Cκ,m,n + n) + Cκ,m,n + m−mn.

Recalling the definition of Cκ,m,n and that κ ⩽ 1, we obtain

logq#SF(Cκ,m,n, m, n)−mn

<

(
2κmn

logq(mn) − 2n + m

)
logq

(
κmn

logq(mn)

)
+ κmn

logq(mn) − n + m−mn

⩽

(
2κmn

logq(mn) + m

)
logq(mn) + mn

logq(mn) + m−mn

= 2κmn + m logq m + m logq n + mn

logq(mn) + m−mn.

Under the condition qεn ≥ m, we now obtain

logq #SF(Cκ,m,n, m, n)−mn < 2κmn + εmn + m logq n + mn

logq(mn) + m−mn

= (2κ + ε− 1 + o(1)) mn,

and since 2κ + ε < 1, we have (34). ◀

B.3 The case of rationals
In this case matrices with rational entries, since the set of polynomials Qm,n, defined by (20),
is (m, n)-complete, for for each matrix (1) such that C(∆) < m(n− 1),

Qm,n(δ1,1, . . . , δm,n) = 0,

where Qm,n =
∏

Q∈Qm,n
Q.

Hence the entries of m× n rational matrices of complexity C(∆) < m(n− 1) form a very
sparse set in Qmn (after we represent them as mn-dimensional vector). Namely, this set is a
hypersurface of dimension mn− 1. In particular, almost all rational matrices (in terms on
natural density) are of the maximal complexity m(n− 1).
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1 Introduction

Holonomic sequences (also known as P-recursive or P-finite sequences) are infinite sequences
of real (or complex) numbers that satisfy a linear recurrence relation with polynomial
coefficients. Holonomic sequences play a critical role in many areas of mathematics and
computer science – particularly combinatorics, analysis of algorithms, and number theory;
see, for instance [31, 6, 7] or the seminal paper [40]. A spectacular application can be found in
groundbreaking work by Apéry in the 1970s, who used certain holonomic sequences satisfying
the second-order recurrence relation

n3un = (34n3 − 51n2 + 27n − 5)un−1 − (n − 1)3un−2

to prove that ζ(3) :=
∑∞

n=1 n−3 is irrational [1].
Formally, a holonomic sequence satisfies a recurrence relation of the form:

pk+1(n)un = pk(n)un−1 + · · · + p1(n)un−k

where pk+1, . . . , p1 ∈ Q[n] are polynomials with rational coefficients and p1 ̸= 0. We define
the order of the recurrence to be k. Assuming that pk+1(n) ̸= 0 for each non-negative
integer n, the above recurrence uniquely defines an infinite sequence once the initial values
u−k+1, . . . , u0 are specified. By extension, if a holonomic sequence satisifes a recurrence
of order k, but no recurrence of smaller order, then we say that the sequence has order k.
The class of holonomic sequences who satisfy recurrence relations with constant (rather
than polynomial) coefficients are known as C-finite sequences. Furthermore, every algebraic
sequence of real numbers (i.e., whose ordinary generating function is algebraic) is also
holonomic.

The study of identities for holonomic sequences appears frequently in the literature.
However, as noted by Kauers and Pillwein, “in contrast,. . . almost no algorithms are available
for inequalities” [17]. For example, the Positivity Problem (i.e., whether every term of a
given sequence is non-negative) for C-finite sequences is only known to be decidable at
low orders, and there is strong evidence that the problem is mathematically intractable in
general [28, 30]; see also [12, 20, 29]. For holonomic sequences that are not C-finite, very
few decision procedures currently exist for Positivity, although several partial results and
heuristics are known (see, for example [17, 21, 26, 27, 32, 33, 39]). In particular, in [27], the
authors exhibit semi-decision procedures for determining positivity of second-order holonomic
sequences for which the degrees of the polynomial coefficients satisfy certain constraints.

Another extremely important property of holonomic sequences is minimality; a sequence
⟨un⟩n is a minimal solution if, given any other linearly independent sequence ⟨vn⟩n satisfying
the same recurrence relation, the ratio un/vn converges to 0. Minimal holonomic sequences
play a crucial rôle, among others, in numerical calculations and asymptotics, as noted for
example in [11, 4, 5, 8, 9, 10] – see also the references therein. Unfortunately, there is also
ample evidence that determining algorithmically whether a given holonomic sequence is
minimal is a very challenging task, for which no satisfactory solution is at present known
to exist.

One of our main results concerns the relationship between positivity and minimality of
sequences ⟨un⟩∞

n=−1 satisfying second-order polynomial recurrences:1

p3(n)un = p2(n)un−1 + p1(n)un−2 . (1)

1 Indexing the sequence from −1 (rather than the more usual 0) makes no significant mathematical
difference, but provides notational expediency in the sequel.
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We shall assume throughout that neither p1 nor p2 is identically zero. Indeed, if p1 ≡ 0 then
⟨un⟩∞

n=−1 satisfies a first-order recurrence, while if p2 ≡ 0 then ⟨un⟩∞
n=−1 is the interleaving of

two sequences that satisfy first-order recurrences. But it is trivial to determine the positivity
of first-order holonomic sequences.2 Moreover, by working with a tail of the sequence
⟨un⟩∞

n=−1 (equivalently, shifting the index n) we can assume that p1(n), p2(n), p3(n) ̸= 0 for
all n ≥ −1.

Our main contributions are as follows: we characterise the positivity of the sequence
⟨un⟩∞

n=−1 in (1) in terms of its inital ratio u0/u−1. Specifically, from the recurrence we
obtain a single closed subinterval P ⊆ R such that the sequence is positive if and only if
u0/u−1 ∈ P . We moreover show that the endpoints of P can be represented as polynomial
continued fractions, allowing them to be computed to arbitrary precision. By approximating
the endpoints of P to sufficient accuracy we can decide positivity in all cases except when
the initial ratio happens to coincide with an endpoint of P . However, we show that such
exceptional cases can be handled using an oracle for deciding minimality. Thus we obtain
one of our main results, Theorem 3.1: for second-order holonomic sequences, the Positivity
Problem Turing-reduces to the Minimality Problem.

2 Preliminaries

2.1 continued fractions
An (infinite) continued fraction

∞

K
n=1

an

bn
:=

a1

b1 +
a2

b2 +
a3

b3 + . . .

is defined by an ordered pair of sequences ⟨an⟩n and ⟨bn⟩n of complex numbers where
an ̸= 0 for each n ∈ N. Herein we shall always assume that ⟨an⟩n and ⟨bn⟩n are real-valued
rational functions. A continued fraction converges to a value f = K(an/bn) if its sequence
of approximants ⟨fn⟩∞

n=1 converges to f in R̂ = R ∪ {∞}. The sequence ⟨fn⟩n is recursively
defined so that

fn =
n

K
m=1

am

bm
:=

a1

b1 +
a2

b2 + . . .
+

an

bn

.

We respectively call ⟨an⟩n and ⟨bn⟩n the sequences of partial numerators and partial
denominators (together the partial quotients) of the continued fraction K(an/bn). Let
⟨An⟩∞

n=−1 and ⟨Bn⟩∞
n=−1 satisfy the recurrence relation un = bnun−1 + anun−2 with initial

2 The ratio of consecutive terms of a first-order holonomic sequence is a rational function, which has an
ultimately constant sign.
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values A−1 = 1, A0 = 0, B−1 = 0, and B0 = 1. As a pair, ⟨An⟩∞
n=−1 and ⟨Bn⟩∞

n=−1 form a
basis for the solution space of the recurrence. We call ⟨An⟩n and ⟨Bn⟩n the sequences of
canonical numerators and canonical denominators of K(an/bn) because fn = An/Bn for
each n ∈ N.

The following determinant formula is well-known (see, for example, [23, Lemma 4, §IV]).

▶ Lemma 2.1. Suppose that ⟨un⟩n and ⟨vn⟩n are both solutions to the recurrence relation
un = bnun−1 + anun−2. Then

unvn−1 − un−1vn = (u0v−1 − u−1v0)
n∏

k=1
(−ak).

Two continued fractions are equivalent if they have the same sequence of approximants.
The following theorem is attributed to Seidel in [23, §II.2.2].

▶ Theorem 2.2. The continued fractions K(an/bn) and K(cn/dn) are equivalent if and
only if there exists a sequence ⟨rn⟩∞

n=0 with r0 = 1 and rn ̸= 0 for each n ∈ N such that
cn = rnrn−1an and dn = rnbn for each n ∈ N.

2.2 Śleszyński–Pringsheim continued fractions
A continued fraction K∞

n=1(an/bn) is a Śleszyński–Pringsheim continued fraction if |bn| ≥
|an| + 1 for each n ∈ N. As before, let ⟨fn⟩n be the sequence of approximants associated
with such a continued fraction. The following properties are well-known [23, §I.4]. For the
open unit interval (−1, 1) ⊂ R, an/(bn + (−1, 1)) ⊆ (−1, 1) and we have that fn ∈ (−1, 1)
for each n ∈ N. Further, it can be shown that ⟨fn⟩n converges to a finite value f with
0 < |f | ≤ 1. We will use the following convergence result, which can be derived from the
Śleszyński–Pringsheim Theorem (we reproduce the proof in [24, §3.2.4] below).

▶ Theorem 2.3. Let ⟨fn⟩n and ⟨Bn⟩n be the respective sequences of approximants and
canonical denominators for a Śleszyński–Pringsheim continued fraction K∞

n=1(an/bn) with
an < 0 and bn ≥ 1 − an for each n ∈ N. Then

Bn+1 > Bn ≥
n∑

k=0

k∏
m=1

(bm − 1) ≥
n∑

k=0

k∏
m=1

|am|,

⟨fn⟩n is strictly decreasing, and −1 < fn < fn−1 < 0.

Proof. We prove by induction that ⟨Bn⟩n is a strictly increasing sequence. First, B0 −B−1 =
1. Second, for our induction hypothesis, let us assume that Bn−1 − Bn−2 > 0 and Bn−2 ≥ 0.
Then, using the recurrence relation and our additional assumptions on the coefficients, we
have

Bn − Bn−1 = (bn − 1)Bn−1 − (−an)Bn−2 ≥ (bn − 1)(Bn−1 − Bn−2).

Repeated application of this technique gives

Bn − Bn−1 ≥ (Bn−1 − Bn−2)(bn − 1) ≥ (B0 − B−1)
n∏

m=1
(bm − 1) ≥

n∏
m=1

|am| > 0,

from which the desired inequalities follow. We apply the determinant formula to the sequences
⟨An⟩n and ⟨Bn⟩n (see Lemma 2.1) to obtain

fn − fn−1 = −
∏n

k=1 −ak

BnBn−1
< 0.

Thus ⟨fn⟩n is a strictly decreasing sequence with f1 = a1/b1 < 0. The bounds follow from
the aforementioned convergence properties of Śleszyński–Pringsheim continued fractions. ◀
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2.3 Second-order linear recurrences and continued fractions

Recall that a non-trivial solution ⟨un⟩∞
n=−1 of the recurrence un = bnun−1 + anun−2 is

minimal provided that, for all other linearly independent solutions ⟨vn⟩∞
n=−1 of the same

recurrence, we have limn→∞ un/vn = 0. Since the vector space of solutions has dimension
two, it is equivalent for a sequence ⟨un⟩∞

n=−1 to be minimal for there to exist a linearly
independent sequence ⟨vn⟩∞

n=−1 satisfying the above property. In such cases the solution
⟨vn⟩n is called dominant.

Note that if ⟨un⟩n and ⟨vn⟩n are linearly independent solutions of the above recurrence
such that un/vn converges in R̂ then the recurrence relation has a minimal solution [23,
§IV]. If, in addition, ⟨un⟩n is minimal then all solutions of the form ⟨cun⟩n where c ̸= 0 are
also minimal. If ⟨un⟩n and ⟨vn⟩n are respectively minimal and dominant solutions of the
recurrence, then together they form a basis of the solution space.

▶ Remark 2.4. When a second-order recurrence relation admits minimal solutions, it is often
beneficial (from a numerical standpoint) to provide a basis of solutions where one of the
elements is a minimal solution. Such a basis is used to approximate any element of the vector
space of solutions: taking ⟨un⟩n and ⟨vn⟩n as above, a general solution ⟨zn⟩n is given by
zn = α1un + α2vn.

Let ⟨un⟩∞
n=−1 be a non-trivial solution of the recurrence relation un = bnun−1 + anun−2,

where an ̸= 0 for all n. If un−1 ̸= 0 then we can rearrange the relation to obtain

−un−1

un−2
=

an

bn −
un

un−1

(2)

for each n ∈ N. In the event that un−2 = 0 we take the usual interpretation in R̂. Since
⟨un⟩n is non-trivial and an ̸= 0 for each n ∈ N, the sequence ⟨un⟩n does not vanish at two
consecutive indices. Thus if un−1 = 0 then un−2, un ≠ 0 and so both the left-hand and the
right-hand sides of the last equation are well-defined in R̂ and are equal to 0. Thus the
sequence with terms −un/un−1 is well-defined in R̂ for each n ∈ N. A sequence ⟨tn⟩∞

n=0
where tn := −un/un−1 for each n ∈ N and ⟨un⟩n non-trivial is called a tail sequence. A tail
sequence for K(an/bn) is wholly determined by its initial value t0.

Given a convergent continued fraction K∞
n=1(an/bn) it is easily shown that the sequence

⟨f (m)⟩∞
m=0 with terms f (m) := K∞

n=m+1(an/bn) is a tail sequence. In the literature the
sequence ⟨f (m)⟩∞

m=0 is the sequence of tails of K∞
n=1(an/bn) [23, §2.1].

The next theorem due to Pincherle [34] connects the existence of minimal solutions
for a second-order recurrence to the convergence of the associated continued fraction (see
also [8, 23, 3]).

▶ Theorem 2.5 (Pincherle). Let ⟨an⟩∞
n=1 and ⟨bn⟩∞

n=1 be real-valued sequences such that each
of the terms an is non-zero. First, the recurrence un = bnun−1 + anun−2 has a minimal
solution if and only if the continued fraction K(an/bn) converges in R̂. Second, if ⟨un⟩n is a
minimal solution of this recurrence then the limit of K(an/bn) is −u0/u−1. As a consequence,
the sequence of canonical denominators ⟨Bn⟩∞

n=−1 is a minimal solution if and only if the
value of K(an/bn) is ∞ ∈ R̂.
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▶ Remark 2.6. The convergence properties of continued fractions whose partial quotients
are polynomials has long fascinated researchers. It is notable that the sequence of partial
denominators in the continued fraction expansion of π = 3 + K∞

n=1(1/bn) beginning ⟨bn⟩n =
⟨7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . .⟩ behaves erratically. In contrast, Lord Brouncker (as reported
by Wallis in [37]3) gave a continued fraction expansion for 4/π as follows:

4
π

= 1 +
∞

K
n=1

(2n − 1)2

2 .

Likewise, Apéry’s constant ζ(3) has a continued fraction expansion (see [35])

ζ(3) = 6
5 + K∞

n=1(−n6/(34n3 + 51n2 + 27n + 5))
whose partial quotients are ultimately polynomials. Motivated by such constructions, Bowman
and Mc Laughlin [2] (see also [25]) coined the term polynomial continued fraction (PCF).
A polynomial continued fraction K(an/bn) has algebraic partial quotients such that for
sufficiently large n ∈ N, an and bn are determined by polynomials in Q[n].

We call the problem of determining whether a given convergent polynomial continued
fraction is equal to a particular algebraic number the PCF Equality Problem. The proof of
the following corollary is a straightforward application of Theorem 2.5.

▶ Corollary 2.7. The PCF Equality Problem and the Minimality Problem for second-order
holonomic sequences are interreducible.

Proof. A minimality-preserving transformation takes as input a solution ⟨un⟩n of recurrence
p3(n)un = p2(n)un−1 + p1(n)un−2 and outputs a solution ⟨vn⟩n, with vn = un

∏n
j=0 p3(j),

of recurrence vn = p2(n)vn−1 + p1(n)p3(n − 1)vn−2. Clearly, ⟨un⟩n is a minimal solution if
and only if ⟨vn⟩n is a minimal solution.

The latter of the two recurrence relations is associated with the polynomial continued
fraction K(an/bn) with partial quotients bn = p2(n) and an = p1(n)p3(n − 1) for each n ∈ N.
Note that by our assumption that p1(n), p3(n) ̸= 0 for all n ≥ −1 (see the Introduction) we
have that an ≠ 0, as required in our definition of a continued fraction. By Theorem 2.5,
⟨vn⟩n is a minimal solution if and only if K(an/bn) converges to the limit −v0/v−1. Thus if
one has an oracle that can determine the value of a polynomial continued fraction, then one
can determine whether ⟨vn⟩n is a minimal solution. Since minimality is preserved by this
transformation, one can determine whether ⟨un⟩n is a minimal solution.

Conversely, given a polynomial continued fraction K(an/bn) and an algebraic number
ξ ∈ R, let us construct the holonomic sequence ⟨vn⟩∞

n=−1 as follows. For each n ∈ N, let
vn = bnvn−1 + anvn−2 with initial conditions v−1 = 1 and v0 = −ξ. By Theorem 2.5, the
sequence ⟨vn⟩n is a minimal solution of the recurrence relation if and only if the continued
fraction K(an/bn) converges to the value −u0/u−1 = ξ. Hence if one has an oracle that can
determine whether a given holonomic sequence is a minimal solution, then one can test the
value of a polynomial continued fraction. ◀

Determining whether a given continued fraction converges has attracted much attention
(historical accounts are given in [23, 24]). The following theorem collects together results
from the literature; the first statement follows as a consequence of Worpitzky’s Theorem (see
[24, Theorem 3.29]) and the convergence results in [15], whilst the second statement follows
from the Lane–Wall characterisation of convergence [24, Theorem 3.3].

3 See the translation by Stedall [38].
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▶ Theorem 2.8. Let K(κn/1) be a continued fraction with ⟨κn⟩n a function in Q(n). If
κn < 0 for all sufficiently large n ∈ N, then K(κn/1) converges to a value in R̂ if and only
if, either

limn→∞ κn exists and is strictly above −1/4, or
limn→∞ κn = −1/4 and moreover κn ≥ −1/4 − 1/(4n)2 − 1/(4n log n)2 for all sufficiently
large n.

▶ Remark 2.9. Note that since κn is assumed to be a rational function in the above, the
eventual inequality κn ≥ −1/4 − 1/(4n)2 − 1/(4n log n)2 can be effectively decided, whence
convergence of the continued fraction can be ascertained.

The fact that the coefficients −1/16 in Theorem 2.8 are best possible is discussed
in [14, 13, 23, 24]. For example, if κn = −1/4 − ε/n2 + O(1/n3) where ε > 1/16, or
κn = −1/4 − ε1/n + O(1/n2) where ε1 > 0, then the continued fraction K(κn/1) diverges.
We note that later independent work by Kooman and Tijdeman [19, 18] establishes the same
results (as a consequence of their results for linear recurrence sequences).

3 Positivity reduces to Minimality

The goal of this section is to show that, for second-order holonomic sequences, the Positivity
Problem Turing-reduces to the Minimality Problem; in other words, given an oracle for the
Minimality Problem, one can decide the Positivity Problem.

▶ Theorem 3.1. For the class of recurrence relations

un = bnun−1 + anun−2 (3)

whose coefficients are rational functions in Q(n), the Positivity Problem Turing-reduces to
the Minimality Problem.

3.1 reduction argument
Let ⟨un⟩n be a sequence satisfying the second-order relation (1). Recall from the Introduction
that we can assume without loss of generality that none of the polynomial coefficients in
this recurrence relation has a root n ≥ −1. Additionally we can assume that sign(p3) = +
on N. (Herein we denote the sign of a non-zero number by an element of {+, −} with the
obvious interpretation.) Thus we define the signature of a recurrence relation (1) (or its
normalisation (3)) as the ordered pair (sign(p2), sign(p1)). It is useful to consider subcases
determined by the signature of the recurrence relation un = bnun−1 + anun−2. The Positivity
Problem is trivial when the signature of the recurrence is either (+, +) or (−, −). It remains
to consider the cases (−, +) and (+, −).

Let ⟨un⟩n satisfy a recurrence with signature (−, +). Then a simple substitution argument
gives

u2n = (b2nb2n−1 + a2n + a2n−1b2n/b2n−2)u2n−2 − (a2n−1a2n−2b2n/b2n−2)u2n−4.

The sequence of odd terms ⟨u2n−1⟩n satisfies a similar recurrence relation with signature
(+, −). Thus the Positivity Problem for the (−, +) case reduces to determining the Positivity
Problem for two recurrences with signature (+, −).
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We come to the final case: recurrences with signature (+, −). Let ⟨An⟩∞
n=−1 and ⟨Bn⟩∞

n=−1
be the canonical solutions as above. In this case A1 = a1 < 0 and so one can assume that
u0 > 0.4 It is useful to normalise recurrence (3). Let κn := an/(bnbn−1), and consider

wn = wn−1 + κnwn−2. (4)

Then ⟨wn⟩n with w−1 = u−1 and wn := un/(
∏n

k=0 bk) is a solution to (4) if and only if ⟨un⟩n

is a solution to (3). We note minimality, positivity, and signature (+, −) are invariant under
this transformation. Such properties follow from our assumption that each bn > 0 and the
equivalence transformations for continued fractions in Theorem 2.2.

In light of this reduction, the next result is an immediate corollary of Theorem 2.5 and
Remark 2.9.

▶ Corollary 3.2. Given a recurrence relation of the form (3), it is decidable whether the
recurrence admits a minimal solution.

In the work that follows we split the (+, −) case into subcases depending on whether the
limit limn→∞ κn exists and, if it exists, its value κ. It turns out that such a recurrence
relation admits a non-trivial positive solution if and only if the associated continued fraction
converges (see Theorem 2.8).

▶ Lemma 3.3. Suppose that the continued fraction K(κn/1) diverges in R̂. Then there are
no non-trivial positive solutions to recurrence (4).

Proof. Suppose, for a contradiction, that ⟨wn⟩n is a positive sequence and non-trivial solution
of recurrence (4). Notice that two consecutive terms in ⟨wn⟩n cannot both vanish since
⟨wn⟩n is non-trivial. Furthermore, wn > 0 for all n ≥ 0 since otherwise wn = 0 and
wn+1 = κn+1wn−1 < 0. We first show that the sequence ⟨Bn⟩n is also positive.

If w−1 = 0 then ⟨wn⟩n is a constant multiple of ⟨Bn⟩n and we have nothing to show.
Otherwise, w−1 > 0 and let ⟨w̆n⟩n be a solution sequence of recurrence (4) such that
w̆−1 = w−1 and w̆0 > w0. We then have w̆n > wn for all n ∈ N. Indeed, proceeding by
induction on n, by Lemma 2.1,

w̆nwn−1 − w̆n−1wn = (w̆0w−1 − w̆−1w0)
n∏

k=1
(−κk) = (w̆0 − w0)w−1

n∏
k=1

(−κk) > 0

implying that w̆nwn−1 > w̆n−1wn. The induction hypothesis w̆n−1 > wn−1 (with n ≥ 1)
implies that w̆n−1wn > wn−1wn as wn > 0 by assumption. It follows that w̆nwn−1 > wn−1wn,
and thus w̆n > wn.

Notice now that ⟨w̆n − wn⟩n is a positive sequence and non-trivial solution of recurrence
(4). For each n ∈ {−1, 0, . . .} we have w̆n − wn = (w̆0 − w0)Bn and so conclude that Bn > 0
for each n ∈ N.

Let ⟨fn⟩n be the sequence of approximants associated with K(κn/1). We now apply
Lemma 2.1 to the sequences ⟨An⟩n and ⟨Bn⟩n, and our conclusion that Bn > 0 for each
n ∈ N, to obtain

fn − fn−1 = −
∏n

k=1 −κk

BnBn−1
< 0.

Thus ⟨fn⟩n is monotonic and therefore convergent in R̂, a contradiction to the divergence of
K(κn/1). ◀

4 Indeed, if u0 < 0 then the sequence is not positive; whereas if u0 = 0, then in turn the sequence is either
identically zero, or u1 < 0.
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In what follows, “eventually” statements shall always assume that a property holds for
each n + N where N ∈ N is a fixed computable constant. Our assumption on the signature
means that an+N < 0 and bn+N > 0 for each n ∈ N. Without loss of generality, we can take
N = 0 in the upcoming statements and results by considering tails of continued fractions as
appropriate.

From Theorem 2.8 and Lemma 3.4 (below) we characterise the boundary for a recurrence
relation of the form (4) to admit positive solutions. The proof of Lemma 3.4 uses standard
analytic tools for continued fractions of limit parabolic type with a particular choice of
parameter sequence ⟨gn⟩n. More general discussions are given in [16, 22, 23].

▶ Lemma 3.4. Suppose that eventually

κn ≥ −1/4 − 1/(4n)2 − 1/(4n log n)2. (5)

Then the sequence of approximants of the continued fraction K∞
n=1(κn/1) is strictly decreasing

and converges to a finite value.

Proof. Without loss of generality we assume that (5) holds for each n ∈ N. Let g0 = g1 =
g2 = 1 and gn := 1/2 + 1/(4n) + 1/(4n log n) for each n ≥ 3. The continued fractions
K∞

n=1(κn/1) and

g0

∞

K
n=1

(
κn/(gn−1gn)

1/gn

)
(6)

are equivalent; one can prove this assertion by applying Theorem 2.2 with the transformation
choice rn = 1/(bngn) for each n ∈ N. Then, by assumption, |κn| ≤ gn−1(1 − gn) for each
n ∈ N. Thus

1 − κn

gn−1gn
= gn−1gn − κn

gn−1gn
≤ 1

gn
.

We deduce that the partial numerators and denominators in (6) satisfy the assumptions
in Theorem 2.3. Thus the sequence of approximants ⟨fn⟩∞

n=1 associated with (6) is strictly
decreasing and converges to a finite value. The desired result follows. ◀

▶ Lemma 3.5. Suppose that ⟨wn⟩∞
n=−1 is a solution to (4) with signature (+, −) such that (5)

holds for each n ∈ N. Let ⟨fn⟩n be the sequence of approximants for the associated continued
fraction K(κn/1). Assume that w−1 > 0. Given m ∈ N, we have that −w0/w−1 < fm if and
only if wm > 0.

Proof. Let ⟨An⟩n and ⟨Bn⟩n be the sequences of canonical numerators and denominators
associated with K(κn/1). The continued fractions K(κn/1) and (6) are equivalent; in
addition, the latter is a Śleszyński–Pringsheim continued fraction whose associated sequence
of canonical denominators is non-negative (by Theorem 2.3). The transformation between
these two continued fractions preserves the positivity property and so we deduce that each
term in ⟨Bn⟩n is also non-negative.

For each n ∈ N, wn = w−1An + w0Bn. Since Bn > 0, −w0/w−1 < An/Bn = fn if and
only if wn > 0, as desired. ◀

We are now in a position to characterise positive solutions to recurrence (4).

▶ Proposition 3.6. Suppose that ⟨wn⟩∞
n=−1 is a solution of recurrence (4) with signature

(+, −) such that (5) holds for all n ∈ N. First, the continued fraction K∞
n=1(κn/1) converges

to a finite limit f < 0. Second, the sequence ⟨wn⟩∞
n=−1 with w−1, w0 > 0 is positive if and

only if −w0/w−1 ≤ f .
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Proof. As observed in the proof of Lemma 3.4, K(κn/1) and (6) are equivalent continued
fractions. The former converges to a negative value f ∈ R because the latter is a Śleszyński–
Pringsheim continued fraction that satisfies the assumptions in Theorem 2.3.

Let ⟨wn⟩∞
n=−1 be a solution to recurrence (4). By Lemma 3.5, we have that, for all n ∈ N,

wn > 0 if and only if −w0/w−1 < fn. Moreover, by Theorem 2.3, the sequence ⟨fn⟩n is
strictly decreasing; it follows that wn > 0 for all n ∈ N if and only if −w0/w−1 ≤ f . ◀

The difficulty one encounters when determining positivity arises when −w0/w−1 is equal
to the value f . In other words, we can decide positivity of dominant sequences. Indeed,
one can always detect if a non-trivial solution ⟨wn⟩n is not positive, i.e., −w0/w−1 > f

by computing a sufficient number of terms until one finds an N ∈ N such that wN < 0.
The dominant positive sequences are considered in the following proposition whose proof is
delayed to Section 4.

▶ Proposition 3.7. Let ⟨wn⟩∞
n=−1 be a non-trivial solution of (4) with signature (+, −) and

suppose that (5) holds for each n ∈ N. Then one can detect if −w0/w−1 < f .

We deduce that if one can decide whether a holonomic sequence ⟨un⟩n that solves
recurrence (3) is minimal, then one can decide whether ⟨un⟩n is a positive solution.

Proof of Theorem 3.1. Assume that one has an oracle for the Minimality Problem for
solutions ⟨un⟩∞

n=−1 to recurrences of the form (3). Note that if ⟨un⟩∞
n=−1 is not positive, this

can be substantiated in finite time by simple enumeration. It thus remain to show how one
can ascertain positivity. We can assume without loss of generality that the recurrence has
signature (+, −). As previously mentioned, the problem of determining the positivity of
solutions ⟨un⟩n of (3) is equivalent to the problem of determining the positivity of solutions
⟨wn⟩n of (4).

Consider a recurrence relation of the form (4) with signature (+, −). By Theorem 2.8,
we can decide whether or not K(κn/1) converges. If K(κn/1) diverges, then by Lemma 3.3,
the recurrence has no non-trivial positive solutions. Suppose now that K(κn/1) converges
to f ∈ R̂. Then, by Remark 2.9, inequality (5) holds; by Proposition 3.6, it follows that f

is finite and a given solution ⟨wn⟩n is positive if and only if −w0/w−1 ≤ f . The condition
−w0/w−1 < f is recursively enumerable by Proposition 3.7. Finally, by Theorem 2.5,
−w0/w−1 = f if and only if the sequence is minimal, and hence equality of −w0/w−1 and f

can be checked by an oracle for Minimality. ◀

3.2 A characterisation of positivity
We end this section by characterising positive solutions to recurrence (3) in terms of the
ratio of the initial terms belonging to a certain closed interval. Here we understand a closed
interval to be empty, a single point, an interval with finite endpoints, or a half-line (including
∞).

▶ Proposition 3.8. Consider a recurrence of the form (3) for which the coefficients ⟨an⟩n

and ⟨bn⟩n have constant sign on N. There exists a closed interval P such that a non-trivial
solution ⟨un⟩n, with u−1, u0 ≥ 0, to the recurrence is positive if and only if u0/u−1 ∈ P .
Moreover, the endpoints of the interval can be expressed using polynomial continued fractions.

Proof. In the cases where the recurrence has signature (+, +) or (−, −), we can set P =
[0, ∞) ∪ {∞} ([0, ∞] for short) and P = ∅, respectively.
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Consider now a recurrence with signature (+, −). If it is of the form (4), then we have
the following: if the associated continued fraction K (κn/1) diverges, then there are no
non-trivial positive solutions by Lemma 3.3, and we set P = ∅. If it converges to f (in
particular (5) holds), we may set P = [−f, ∞] as is immediate from Proposition 3.6.

Assume then that the recurrence is not of the form (4). The transformation from ⟨un⟩n to
a solution ⟨wn⟩n to a recurrence of the form (4) preserves minimality and positivity. Hence, if
the associated continued fraction K (an/bn) does not converge, then there are no non-trivial
positive solutions and we may set P = ∅. If it converges, then so does the continued fraction
K (κn/1); say it converges to f . Then a non-trivial solution to the recurrence is positive if
and only if u0/u−1 = w0/(b0w−1) ∈ [−f/b0, ∞].

We are left with recurrences (3) with signature (−, +). Let ⟨fn⟩n denote the sequence
of approximants of the associated continued fraction. One can show by straightforward
induction that the sequence ⟨Bn⟩n is alternating in sign for n ∈ N: the even terms are
positive and the odd terms are negative. Let us write a solution ⟨un⟩n, with u−1, u0 ≥ 0, as
un = u−1An + u0Bn. We have un ≥ 0 if and only if u0/u−1 ≥ −An/Bn = −fn when n is
even and u0/u−1 ≤ −An/Bn = −fn when n is odd. Now the continued fraction K (an/bn) is
equivalent to − K (an/−bn). By [23, Theorem 2, §III], ⟨−f2n⟩n is strictly increasing and has
finite limit −f ′, while ⟨−f2n−1⟩n is strictly decreasing and has finite limit −f ′′. Moreover,
−f ′ ≤ −f ′′. It follows that ⟨un⟩n is positive if and only if u0/u−1 ∈ [−f ′, −f ′′].

That the (finite) endpoints of the above intervals can be described using polynomial
continued fractions follows from similar minimality-preserving transformations as performed
in the proof of Corollary 2.7 and, in the case of the points f ′, f ′′, from results in [23,
§II.2.4]. ◀

4 Detecting positive and dominant solutions

The goal of this section is to prove Proposition 3.7, as such, we will suppose that (5) holds
for each n ∈ N in the following. The proof follows from the results in Corollary 4.2 and
Corollary 4.6.

Broadly speaking, we describe a semi-algorithm with inputs ⟨wn⟩n. This semi-algorithm
terminates in finite time for sequences that are dominant with output “input is a positive
sequence” or “input is not a positive sequence,” as appropriate. The semi-algorithm is
non-terminating when given a minimal solution as an input. In terminating instances, the
running time depends upon the distance between −w0/w−1 and K∞

n=1(κn/1).
The sequence of approximants ⟨fn⟩∞

n=1 associated with K∞
n=1(κn/1) is recursively defined

by a composition of linear fractional transformations fn := s1 ◦ · · · ◦ sn(0) where sn(w) =
κn/(1 + w) for each n ∈ {1, 2, . . .} and w ∈ R̂. The tail sequences of K(κn/1) are also
recursively defined by linear fractional transformations: given such a tail sequence ⟨tn⟩n,
s−1

n (tn−1) = tn for each n ∈ N (by (2)).
For each n, the linear fractional transformation sn above has two fixed points ω±

n :=
1
2 (−1 ±

√
1 + 4κn). By (5), ⟨

√
1 + 4κn⟩n converges to a real value. We split our analysis into

two cases depending on whether κn converges to −1/4. These subcases are common in the
literature (cf. [23, §5]) as some of the convergence properties of the continued fraction K(κ/1)
(with κ := limn→∞ κn) hold for the continued fraction K(κn/1). In fact, the subcases of
limit hyperbolic- and parabolic type are named for the classification of the limiting linear
fractional transformation s(w) = κ/(1 + w).
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4.1 limit hyperbolic type
A continued fraction K(κn/1) is of limit hyperbolic type if the finite value κ := limn→∞ κn

satisfies κ > −1/4. In this case the sequences ⟨ω+
n ⟩n and ⟨ω−

n ⟩n converge to distinct limits
ω+ and ω−, respectively. We shall assume, without loss of generality, that aforementioned
eventually statements hold for each n ∈ N.

The next result is given in the literature. A more general result for asymptotic properties
of tail sequences associated with a continued fraction of limit hyperbolic type is given in [24,
Theorem 4.13].

▶ Theorem 4.1. Suppose that K(κn/1) is of limit hyperbolic type. The sequence of tails
⟨f (n)⟩n converges to ω+. A tail sequence ⟨tn⟩n with t0 ̸= f (0) converges to ω−.

▶ Corollary 4.2. Suppose that K(κn/1) is of limit hyperbolic type. One can detect if a
solution sequence ⟨wn⟩n of recurrence (4) is positive and dominant.

Proof. Let ⟨tn⟩n be the tail sequence associated with a non-trivial solution ⟨wn⟩n. By
Theorem 4.1, a tail sequence ⟨tn⟩n associated with a dominant solution converges to ω− in
the limit, whilst the tail sequence ⟨f (n)⟩n associated with a minimal solution converges to
ω+ in the limit.

There is a computable N ∈ N such that for all n ≥ N , the two fixed points of s−1
n

are separated: ω−
n < (ω− + ω+)/2 = −1/2 < ω+

n . If m > N and tm < −1/2 then
⟨tn+m⟩n is bounded from above by −1/2. This is established by induction. The base case is
ensured by the assumption tm < −1/2. Now let n ≥ m such that tn < −1/2, we have that
tn+1 = s−1

n+1(tn) = κn+1
tn

−1. Assume first that ω−
n+1 < tn, then tn+1 = s−1

n+1(tn) ≤ tn < −1/2
as tn lies between the two fixed points of sn+1. Otherwise, if ω−

n+1 ≥ tn, then

tn+1 = s−1
n+1(tn) = κn+1

tn
− 1 ≤ κn+1

ω−
n+1

− 1 = s−1
n+1(ω−

n+1) = ω−
n+1 < −1/2

which completes the induction step.
Thus we can detect if a tail sequence is associated with a dominant solution. Moreover,

this observation allows us to detect whether a dominant solution is positive in finite time. ◀

4.2 limit parabolic type
A continued fraction K(κn/1) is of limit parabolic type if limn→∞ κn = −1/4. In this case
both ⟨ω+

n ⟩n and ⟨ω−
n ⟩n converge to −1/2.

The limit parabolic case is subtler than the limit hyperbolic case; this is best illustrated
by the following result: all tail sequences converge to the same limit (see the general case [24,
Theorem 4.17]).

▶ Theorem 4.3. Let K(κn/1) be a continued fraction of limit parabolic type such that (5)
holds for each n ∈ N. Each tail sequence ⟨tn⟩n associated with K(κn/1) converges to −1/2.

From our assumption that (5) holds for each n ∈ N, we have bounds on the sequence of
tails f (n−1) := K∞

m=n(κm/1) by the following generalisation of Worpitzky’s Theorem (see,
for example, [24, Theorem 3.30]).

▶ Theorem 4.4. Let ⟨κn⟩n be a sequence such that (5) holds for n ∈ N. Then K(κn/1)
converges to a finite value f with 0 < |f | ≤ 1 and |f (n)| ≤ gn for each n where g0 = 1 and
gn := 1/2 + 1/(4n) + 1/(4n log n) for each n ∈ N.
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The inequalities given in the proof of the next lemma follow from the observation that
s−1

n : (−∞, 0) → (−1, ∞) given by s−1
n (w) = −1 + κn/w is a monotonic bijection.

▶ Lemma 4.5. Suppose that K(κn/1) is of limit parabolic type such that (5) holds for each
n ∈ N. Let ⟨tn⟩n be a tail sequence such that f (0) − t0 > 0. Then there exists an N ∈ N such
that tN < −gN < f (N).

Proof. First, note that one can deduce from Theorem 4.4 that −gn < f (n) < 0 for each
n ∈ N (otherwise there is an m such that f (m+1) < −gm+1). Now let ⟨tn⟩n be a tail sequence
associated with the continued fraction K∞

n=1(κn/1) such that f (0) − t0 > 0. Suppose,
for a contradiction, that −gn < tn for each n ∈ N. Thus

∑∞
n=1

∏n
k=1

(
− 1+tn

tn

)
diverges

to ∞ by comparison with
∑∞

n=1
∏n

k=1
( 1−gn

gn

)
; the latter series is known to diverge as

K∞
n=1

( −gn−1(1−gn)
1

)
is a convergent continued fraction (the full argument, which is beyond

the scope of this paper, is given in [36]). However, by Waadeland’s Tail Theorem [36,
Theorem 1], divergence of

∑∞
n=1

∏n
k=1

(
− 1+tn

tn

)
implies that t0 = K∞

n=1(κn/1) = f (0), which
contradicts our assumption that f (0) − t0 > 0. ◀

▶ Corollary 4.6. Suppose that K(κn/1) is of limit parabolic type such that (5) holds for
each n ∈ N. One can detect if a solution sequence ⟨wn⟩n of recurrence (4) is positive and
dominant.

Proof. Let ⟨tn⟩n be the tail sequence associated with a non-trivial solution ⟨wn⟩n. If ⟨wn⟩n

is dominant and positive, one has f (0) − t0 > 0 by Proposition 3.6. Moreover, by Lemma 4.5,
there exists an N ∈ N such that for tN < −gN < f (N). Hence one can use the threshold of
−gN to detect whether a solution sequence is dominant and positive. ◀
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Improved Upper Bounds for the Rigidity of
Kronecker Products
Bohdan Kivva # Ñ

University of Chicago, IL, USA

Abstract
The rigidity of a matrix A for target rank r is the minimum number of entries of A that need
to be changed in order to obtain a matrix of rank at most r. At MFCS’77, Valiant introduced
matrix rigidity as a tool to prove circuit lower bounds for linear functions and since then this notion
received much attention and found applications in other areas of complexity theory. The problem
of constructing an explicit family of matrices that are sufficiently rigid for Valiant’s reduction
(Valiant-rigid) still remains open. Moreover, since 2017 most of the long-studied candidates have
been shown not to be Valiant-rigid.

Some of those former candidates for rigidity are Kronecker products of small matrices. In a
recent paper (STOC’21), Alman gave a general non-rigidity result for such matrices: he showed
that if an n × n matrix A (over any field) is a Kronecker product of d × d matrices M1, . . . , Mk (so
n = dk) (d ≥ 2) then changing only n1+ε entries of A one can reduce its rank to ≤ n1−γ , where 1/γ

is roughly 2d/ε2.
In this note we improve this result in two directions. First, we do not require the matrices Mi to

have equal size. Second, we reduce 1/γ from exponential in d to roughly d3/2/ε2 (where d is the
maximum size of the matrices Mi), and to nearly linear (roughly d/ε2) for matrices Mi of sizes
within a constant factor of each other.

As an application of our results we significantly expand the class of Hadamard matrices that
are known not to be Valiant-rigid; these now include the Kronecker products of Paley-Hadamard
matrices and Hadamard matrices of bounded size.
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1 Introduction

1.1 Recent upper bounds on rigidity

In his celebrated MFCS’77 paper [13], Leslie Valiant introduced the notion of matrix rigidity
as a tool to prove lower bounds for arithmetic circuits. Since then, several other important
problems in complexity theory have been reduced to proving rigidity lower bounds for explicit
families of matrices (see, e.g., [12, 7] and the survey [10]).
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▶ Definition 1. Let F be a field. For a matrix A ∈ Fn×m and a target rank 0 ≤ r ≤ min(n,m)
let RF(A, r) denote the minimum number of non-zero entries in a matrix Z ∈ Fn×m such
that rank(A− Z) ≤ r. The function RF(A, ·) is called the rigidity of A over F.

Valiant [13] proved that if for some ε > 0 the sequence of matrices An ∈ Fn×n satisfies

RF(An, n/ log log n) ≥ n1+ε, (1)

then the linear functions x 7→ Anx cannot be computed by arithmetic circuits of size O(n)
and depth O(log n). Following [5], we say that a family of matrices An is Valiant-rigid if
it satisfies Eq. (1) for some ε > 0 and all sufficiently large n. By saying that a family F of
matrices in not Valiant-rigid we mean that none of the subsequences of matrices of F of
increasing order is Valiant-rigid.

The problem of constructing explicit Valiant-rigid matrices has been attacked for more
than four decades, but still remains open (see the survey [10]). Over this time a few
candidates of Valiant-rigid families were proposed that included Hadamard matrices [11, 12],
circulants [4], Discrete Fourier Transorm (DFT) matrices [13], incidence matrices of projective
planes over a finite field [13].

In 2017, Alman and Williams [2] proved, that, contrary to expectations, the Walsh–
Hadamard matrices are not Valiant-rigid over Q. Subsequently, most of other long-studied
candidates for rigidity were shown not to be Valiant-rigid. Dvir and Edelman [5] proved that
G-circulants1 are not Valiant-rigid over Fp for G the additive group of Fnp . Dvir and Liu [6]
proved that DFT matrices, circulant matrices, and more generally, G-circulant matrices for
any abelian group G, are not Valiant-rigid over C. Moreover, as observed in [3], the results
of Dvir and Liu imply that the Paley-Hadamard matrices and the Vandemonde matrices
with a geometric progression as generators are not Valiant-rigid over C, and the incidence
matrices of projective planes over finite fields are not Valiant-rigid either over F2 (contrary
to Valiant’s suggestion [13]) or over C.

Upper bounds on the rigidity of the Kronecker powers of a fixed matrix play an important
role in these results. Indeed, the Walsh–Hadamard matrices are just the Kronecker powers

of H2 =
(

1 1
1 −1

)
. Furthermore, in order to show that DFT and circulant matrices are not

Valiant-rigid, as the first step, Dvir and Liu [6] prove that generalized Walsh–Hadamard
matrices (Kronecker powers of a DFT matrix) are not Valiant-rigid.

Hence, one may expect that strong upper bounds on the rigidity of Kronecker products
of small matrices may lead to upper bounds on the rigidity of interesting new families of
matrices, and so will further contribute to our intuition of where not to look for Valiant-rigid
matrices.

Recently, Josh Alman [1] proved that Kronecker products of square matrices of any fixed
size are not Valiant-rigid. More precisely, he proved the following result.

▶ Theorem 2 (Alman). Given d ≥ 2 and ε > 0, there exists γ = Ω
(
d log d

2d · ε2

log2(1/ε)

)
such that the following holds for any sequence of matrices M1,M2, . . . ,Mk ∈ Fd×d. Let

M =
k⊗
i=1

Mi and n = dk. Then RF(M,n1−γ) ≤ n1+ε.

1 For a finite abelian group G, a G-circulant is a |G| × |G| matrix of the form M(f) with entries
M(f)xy = f(x − y) (x, y ∈ G) where f is any function with domain G.
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1.2 Our results: improved bounds, non-uniform sizes
In this note we improve Alman’s result in two directions. First, we do not require the
matrices Mi to have equal size. Second, we reduce 1/γ from exponential in d to roughly
d3/2/ε2 (where d is the maximum size of the matrices), and to nearly linear (roughly d/ε)
for matrices Mi of sizes within a constant factor of each other.

This means that for matrices of equal size we get a meaningful reduction of the rank
already for k = Õε(d), in contrast to Alman’s result that kicks in when k reaches about 2d.

▶ Theorem 3. Given d ≥ 2 and ε > 0, there exists γ = Ω
(

1
d3/2 log3(d)

· ε2

log2(1/ε)

)
such

that the following holds for any sequence of matrices M1,M2, . . . ,Mk where Mi ∈ Fdi×di for

some di ≤ d. Let M =
k⊗
i=1

Mi and n =
k∏
i=1

di. If n ≥ d1/γ , then RF(M,n1−γ) ≤ n1+ε.

If the di are within a constant factor of each other, we obtain the following stronger
result.

▶ Theorem 4. Given d ≥ 2, ε > 0, and a constant c > 0, there exists γ =

Ωc

(
1

d log d · ε2

log2(1/ε)

)
such that the following holds for any sequence of matrices

M1,M2, . . . ,Mk where Mi ∈ Fdi×di and cd ≤ di ≤ d. Let M =
k⊗
i=1

Mi and n =
k∏
i=1

di.

If n ≥ d1/γ , then RF(M,n1−γ) ≤ n1+ε.

In the above theorem, the dependence of γ on c is nearly linear and the explicit formula
can be found in Corollary 22.

The key strength of our results is that we do not need to assume uniform size of the
matrices participating in the Kronecker product. Previous approaches depended on uniform
size because of their reliance either on a polynomial method, or on an induction on the size
of the matrix. As an applications of the bound for matrices of non-uniform size we show
that our results significantly expand the class of Hadamard matrices that are known not to
be Valiant-rigid. We show that the Kronecker products of Paley-Hadamard matrices and
Hadamard matrices of bounded size are not Valiant-rigid (see Sec. 1.4).

Another strength of our improvement is that our bounds are sufficiently strong to be
fed into the machinery developed by Dvir and Liu [6] for matrices of “well-factorable” size.
Hence, we expect that this improvement might lead to further applications.

We note, that our bound on γ in Theorem 4 matches the Dvir–Liu bounds for Kronecker
powers of specific classes of matrices, such as the generalized Walsh–Hadamard matrices and
DFT matrices2 of direct products of small abelian groups.

We also note that our upper bounds, similarly to upper bounds in recent work [2, 5, 6, 1],
apply to a stronger notion of rigidity, called row-column rigidity.

▶ Definition 5 (Row-column rigidity). For a matrix A ∈ Fn×n and a target rank 0 ≤ r ≤ n,
let RrcF (A, r) be the minimal t for which there exists Z ∈ Fn×n such that rank(A− Z) ≤ r

and every row and column of Z has at most t non-zero entries.

In Theorems 2, 3, and 4 the conclusion can be replaced by RrcF (M,n1−γ) ≤ nε. Clearly,
the latter statement is stronger, as for any A ∈ Fn×n the inequality RF(A, r) ≤ n ·RrcF (A, r)
holds. The row-column versions of Theorems 3, and 4 are stated and proved as Theorem 24
and Corollary 23.

2 The DFT (Discrete Fourier Transform) matrix of a finite abelian group G is the character table of G.
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1.3 The field

We should point out that Theorems 2-4 make no assumption about the field F, and they use
elements of F for the rank reduction. This is in contrast to the results of Dvir and Liu who
require a field extension to achieve their rank reduction.

If the field F is the field of definition of the matrix A, in [3] we call the corresponding
rigidity function RF(A, .) the strict rigidity of A. If F denotes the algebraic closure of F
then we call RF(A, .) the absolute rigidity of A because, as shown in [3], this gives the
smallest possible rigidity among all extension fields. A gap between these two quantities is
demonstrated in [3]. Note that an upper bound on strict rigidity is a stronger statement
than the same upper bound on absolute rigidity.

In this terminology, Dvir and Liu give upper bounds on absolute rigidity, whereas Alman’s
result and our results give upper bounds on strict rigidity.

1.4 Application of our results: rigidity upper bounds for Hadamard
matrices

We recall that an Hadamard matrix is a square matrix whose entries are +1 and −1 and
whose rows are mutually orthogonal. In addition to many other interesting properties, it was
long believed that one can find a family of Valiant-rigid matrices among Hadamard matrices.

Contrary to expectations, two of the most well-studied families of Hadamard matrices
were recently shown to be not Valiant-rigid. In 2017, Alman and Williams [2] proved that
Walsh-Hadamard matrices are not strictly Valiant-rigid. As a corollary to [6], in [3] it was
shown that Paley-Hadamard matrices are not absolutely Valiant-rigid. These results inspired
the following conjecture.

▶ Conjecture 6 (Babai). The family of known Hadamard matrices is not strictly Valiant-rigid.

We mention that in addition to infinite families, new classes of Hadamard matrices arise
as Kronecker products of a steadily growing starter set of small Hadamard matrices with
other known Hadamard matrices (see, e.g., surveys [8, 9]). Indeed, note that if H1 and H2
are Hadamard matrices, then H1 ⊗H2 is an Hadamard matrix as well.

As an application of our results for Kronecker products of matrices of non-uniform size
we further expand the family of Hadamard matrices that are known not to be Valiant-rigid.

▶ Theorem 7. Let F0 be the family of Paley-Hadamard matrices and Hadamard matrices of
bounded size. Let F be the family of all matrices that can be obtained as Kronecker products
of some matrices from F0. Then F is not absolutely Valiant-rigid.

▶ Remark 8. We note that Hadamard matrices are naturally defined over Q, while the
theorem above shows that matrices in F are not sufficiently rigid when we make changes from
C. It is still open whether Paley-Hadamard matrices are strictly Valiant-rigid. If one proves
that Paley-Hadamard matrices satisfy the inequality from Eq. (2), our proof will immediately
yield the stronger version of the theorem above, that F is not strictly Valiant-rigid.

▶ Remark 9. We note that Theorem 7 does not follow from Alman’s original upper bound
for rigidity of Kronecker products (Theorem 2).

A more general version of Theorem 7 can be stated for Kronecker products of matrices of
bounded size and matrices that are sufficiently not rigid.
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▶ Theorem 10. Let 0 < ε < 1/2 and b ≥ 2. Let F be a family of matrices over F, such that
for every d× d matrix A ∈ F either d ≤ b, or

RrcF
(
A, d1−γ) ≤ dε for γ = 12(log log d)2

ε3 log d . (2)

Then, for every sequence of matrices M1,M2, . . .Mk ∈ F , the n × n matrix M =
⊗
i∈[k]

Mi

either satisfies RrcF (M,n/log n) ≤ n6ε, or n is bounded above by a function of b and ε.

▶ Corollary 11. Let F be a family of square matrices over F. If for every 0 < ε < 1/2
there exists b ≥ 2 such that F satisfies the assumptions of Theorem 10, then the family of
Kronecker products of matrices from F is not Valiant-rigid over F.

We prove Theorems 7 and 10 in Section 5.

1.5 Our approach

In order to prove Theorem 2, Alman [1] first uses a beautiful trick to deduce the claim for
Kronecker products of 2 × 2 matrices. He observes that it is sufficient to prove the claim for

R =
(

1 1
1 0

)
. The Kronecker powers of R have low rigidity since they are very sparse. After

that, he applies induction on the size d of the matrices involved in the Kronecker product.
The technically involved induction argument leads to the factor 2−d in γ.

Our proof is simpler and omits induction. Instead, we observe that an idea, somewhat
similar to Alman’s proof of the base case d = 2, can be applied for any d.

Our key observation is that any d× d matrix can be written as a product of at most 2d
very sparse matrices and 2d permutation matrices.

Specifically, for a vector x ∈ Fd define a d× d matrix

Gd(x) =
(
Id−1

0 x

)
=


1 0 0 . . . 0 x1
0 1 0 . . . 0 x2
. . .

0 0 0 . . . 1 xd−1
0 0 0 . . . 0 xd

 . (3)

We are going to call the matrices of this form the V-matrices for the pattern of their non-zero
entries. Next, it is not hard to verify that any d× d matrix can be written as

A = P1 ·Gd(y)T ·
(
B 0
0 λ

)
·Gd(x) · P2,

where λ ∈ {0, 1} ⊆ F, B ∈ F(d−1)×(d−1) and P1, P2 are permutation matrices. By repeating
this procedure for B at most d− 2 times one ends up with a product of 2d− 2 V-matrices, a
diagonal matrix, and permutation matrices (see Section 2.1).

As was observed in [6], the row-column rigidity of the product can be controlled by the
row-column rigidity of each component.

▶ Lemma 12. For arbitrary d× d matrices A and B over a field F

RrcF (A ·B, r + s) ≤ RrcF (A, r) ·RrcF (B, s) . (4)
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Recall that a monomial matrix is a matrix where each row and each column has at most
one non-zero element. A matrix is monomial exactly if it is the product of a diagonal matrix
and a permutation matrix. A Kronecker product of monomial matrices is itself a monomial
matrix. Moreover, if P is a monomial matrix then RrcF (P, 0) = 1. Thus, in order to prove
Theorem 4 one only needs to show strong upper bounds on row-column rigidity for Kronecker
products of V-matrices.

To bound the row-column rigidity of a matrix M that is a Kronecker product of V-matrices
one needs to observe that most of the non-zero entries are concentrated in just a few columns
and rows, and so these entries form a low-rank matrix.

We discuss our strategy for upper bounds on rigidity of Kronecker products in Section 2.
We prove Theorem 4 for the case of matrices of equal size in Section 3. We discuss rigidity
bounds for matrices of unequal sizes in Section 4. Some standard tail bounds for binomial
distributions are reviewed in Appendix A. We expand the family of Hadamard matrices
known not to be Valiant rigid in Section 5. The proof of Obs. 14 omitted in Section 2 is
provided in Appendix B.

1.6 Notation
We use [n] to denote the set {1, 2, . . . , n}. F denotes a field. Throughout the paper we use d⃗
to denote the vector (d1, d2, . . . dk), where each di ≥ 2. We define [d⃗] = [d1] × [d2] × . . .× [dk].
We say that X ∈ Fd⃗ if X = (X1, X2, . . . , Xk), where Xi ∈ Fdi .

We use standard asymptotic notation. Let f(n), g(n) be non-negative functions. We say
that f(n) = O(g(n)) if there exists a constant C such that f(n) ≤ Cg(n) for all sufficiently
large n. We say that f(n) = Ω(g(n)) if g(n) = O(f(n)). Finally, f(n) = Θ(g(n)) if
f(n) = O(g(n)) and f(n) = Ω(g(n)).

2 A strategy for upper bounds on the rigidity of Kronecker products

2.1 Expressing a matrix as a product of V-matrices
Recall that for a vector x ∈ Fd we define a d× d V-matrix

Gd(x) =
(
Id−1

0 x

)
=


1 0 0 . . . 0 x1
0 1 0 . . . 0 x2
. . .

0 0 0 . . . 1 xd−1
0 0 0 . . . 0 xd

 . (5)

Let d⃗ = (d1, d2, . . . , dk). For X = (X1, X2, . . . Xk) with Xi ∈ Fdi for i ∈ [k], define

Gd⃗ (X) =
k⊗
i=1

Gdi
(Xi). (6)

In the case when d⃗ consists of k equal coordinates di = d, we use notation Gd,k(X) := Gd⃗ (X).

▶ Definition 13. A square matrix P is called a permutation matrix, if every row and every
column of P has precisely one non-zero entry, which is equal to 1.

Recall, that arbitrary permutation of columns (rows) of a matrix can be represented by
right (left, respectively) multiplication by a permutation matrix.
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The multiplication of an m× d matrix A by Gd(x) from the right corresponds to keeping
the first d − 1 columns of A unchanged and replacing the last column of A with a linear
combination of the columns of A with the coefficients given by x. We make the following
observation.

▶ Observation 14. For any matrix A ∈ Fd×d there exist B ∈ F(d−1)×(d−1), vectors x, y ∈ Fd,
λ ∈ {0, 1} ⊆ F and permutation matrices P1, P2 ∈ Fd×d such that

A = P1 ·Gd(y)T ·
(
B 0
0 λ

)
·Gd(x) · P2. (7)

Proof. See Appendix B. ◀

▶ Corollary 15. For any matrix A ∈ Fd×d there exist a diagonal matrix W , 2(d− 1) vectors
Xi, Yi for i ∈ [d− 1], and 2(d− 1) permutation matrices Pi, Qi for i ∈ [d− 1] such that

A = Q1 ·Gd(Y1)T ·Q2 · . . . ·Gd(Yd−1)T ·W ·Gd(Xd−1) · Pd−1 · . . . ·Gd(X1) · P1. (8)

Proof. Let t ∈ [d − 1]. Observe that for x ∈ Ft and the vector y ∈ Fd, whose first d − t

coordinates are 0, and last t coordinates are equal to the corresponding coordinates of x,(
Gd−t(x) 0

0 It

)
= P1Gd(y)P2, (9)

where It is the t× t identity matrix and P1, P2 are the permutation matrices that exchange
the first d− t and the last t rows and columns, respectively.

Then, the claim of the corollary follows from Observation 14 by applying it recursively
d− 1 times to the remaining top-left block B, until we are left with a diagonal matrix. ◀

By combining the above corollary with Lemma 12 we obtain the following inequality.

▶ Lemma 16. Let d ≥ 2, r ≤ dk and M1,M2, . . . ,Mk ∈ Fd×d. Then

RrcF

(
k⊗
i=1

Mi, (2d− 2)r
)

≤
(

max
X∈Fd×k

RrcF (Gd,k(X), r)
)2d−2

. (10)

Proof. By Corollary 15, for each i ∈ [k] there exist 2(d− 1) vectors X(j)
i , Y

(j)
i ∈ Fd, 2(d− 1)

permutation matrices P (j)
i , Q

(j)
i and a diagonal matrix Wi such that

Mi =
d−1∏
j=1

(
Q

(j)
i ·Gd(Y (j)

i )T
)

·Wi ·
d−1∏
j=1

(
Gd(X(d−j)

i ) · P (d−j)
i

)
.

Then, using that (A1 ⊗B1) · (A2 ⊗B2) = (A1A2) ⊗ (B1B2) holds for any matrices, we get

k⊗
i=1

Mi =
d−1∏
j=1

(
k⊗
i=1

Q
(j)
i

k⊗
i=1

Gd(Y (j)
i )T

)
·

(
k⊗
i=1

Wi

)
·
d−1∏
j=1

(
k⊗
i=1

Gd(X(d−j)
i )

k⊗
i=1

P
(d−j)
i

)
.

Let X(j) ∈ Fd×k be a matrix whose i-th column is X(j)
i . Define Y (j) ∈ Fd×k similarly. Let

Q(j) =
k⊗
i=1

Q
(j)
i , P (j) =

k⊗
i=1

P
(j)
i , W =

k⊗
i=1

Wi. (11)

MFCS 2021
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Then, Q(j) and P (j) are permutation matrices, and W is a diagonal matrix, and

M =
k⊗
i=1

Mi =
d−1∏
j=1

(
Q(j) ·Gd,k(Y (j))T

)
·W ·

d−1∏
j=1

(
Gd,k(X(d−j)) · P (d−j)

)
. (12)

Thus, by Lemma 12,

RrcF (M, (2d− 2)r) ≤
d−1∏
j=1

RrcF

(
Gd,k(Y (j)), r

)
·
d−1∏
j=1

RrcF

(
Gd,k(X(j)), r

)
≤

≤
(

max
X∈Fd×k

RrcF (Gd,k(X), r)
)2d−2

. (13)

◀

Furthermore, we note that a similar statement holds for Kronecker products of matrices
of not necessarily equal size.

▶ Lemma 17. Let di ≥ 2 and Mi ∈ Fdi×di for i ∈ [k]. Assume dk ≥ di for i ∈ [k]. Then

RrcF

(
k⊗
i=1

Mi, (2dk − 2)r
)

≤
(

max
X∈Fd⃗

RrcF
(
Gd⃗ (X), r

))2dk−2
. (14)

Proof. For Mi with di < dk we multiply the decomposition given by Corollary 15, by
2(dk − di) identity matrices from the left and from the right, so that every Mi is decomposed
into the product of precisely 4dk − 3 matrices. After this, the proof is identical to the proof
of the previous lemma. ◀

2.2 General approach to upper bounds for the rigidity of Gd⃗ (X)

As we see from Lemmas 16 and 17, in order to prove Theorems 3 and 4 it is sufficient to
bound the row-column rigidity of Kronecker products of V-matrices. We describe a general
approach to such bounds.

The key observation is that most of the non-zero entries of Gd⃗ (X) are concentrated in
just a few columns and a few rows. Hence, after deleting these columns and rows we expect
to get a matrix with very sparse rows and columns.

Recall, that for d⃗ = (d1, d2, . . . , dk) we define [d⃗] = [d1] × [d2] × . . .× [dk]. The rows and
the columns of Gd⃗ (X) are indexed by tuples in [d⃗].

For a di × di V-matrix, all rows, except the di-th row, have up to two non-zero entries,
while the di-th row has only one non-zero entry. For V-matrices, all columns, except the
last one, have one non-zero entry and the last column may have up to di non-zero entries.
Therefore, the densest rows are indexed by tuples with a small number of i-th coordinates
being equal di and the densest columns are indexed by tuples with a large number of i-th
coordinates being equal di, for i ∈ [k].

Let w : R → (0,∞) be a function. Define a score of a string x ∈ [d⃗] as

s(x) =
k∑
i=1

w(di)1[xi = di]. (15)
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Consider the uniform distribution on [d⃗]. Then χ(i) = w(di)1[xi = di] are independent

random variables, and s(x) =
k∑
i=1

χ(i) with

Ex[s(x)] =
k∑
i=1

w(di)
di

and Var[s(x)] =
k∑
i=1

w(di)2
(
di − 1
d2
i

)
. (16)

For δ > 0 we define a pair of sets of strings of high and low scores, respectively

C(δ) = {x ∈ [d⃗] | s(x) ≥ Ey[s(y)] + δ} and R(δ) = {x ∈ [d⃗] | s(x) ≤ Ey[s(y)] − δ}. (17)

These sets correspond to indices of the most dense columns and rows, respectively. Note, that
one may use concentration inequalities to bound the sizes of these sets (see Appendix A).
The matrix E defined by the union of the rows of Gd⃗(X) in R(δ) and the columns of Gd⃗(X)
in C(δ) has low rank. Now we want to count the number of non-zero entries in rows and
columns of Gd⃗(X) − E. Define

Tc(δ, y) = {x ∈ [d⃗] \ R(δ) | ∀i : yi ∈ {xi, di}} and Mc(δ) = max
y∈[d⃗]\C(δ)

|Tc(δ, y)|; (18)

Tr(δ, x) = {y ∈ [d⃗] \ C(δ) | ∀i : yi ∈ {xi, di}} and Mr(δ) = max
x∈[d⃗]\R(δ)

|Tr(δ, x)|. (19)

With this notation, we have the following inequality.

▶ Lemma 18. Let δ > 0. Then, for any X ∈ Fd⃗,

RrcF (Gd⃗ (X), |C(δ)| + |R(δ)|) ≤ max(Mc(δ),Mr(δ)).

Proof. Let E be the matrix obtained from Gd⃗ (X) by changing to 0 every entry that is not
in a column with index in C(δ) and is not in a row with index in R(δ). Then

rank(E) ≤ |C(δ)| + |R(δ)|. (20)

Let Z = Gd⃗ (X) −E and x, y ∈ [d⃗]. Observe that the entry of Gd⃗ (X) with coordinates (x, y)
is non-zero only if for every i ∈ [k] either xi = yi or yi = di. Therefore, every row of Z has at
most Mr(δ) non-zero entries, and every column of Z has at most Mc(δ) non-zero entries. ◀

Hence, in order to prove an upper bound on the rigidity of Gd⃗ (X), one just may come up
with a good choice of weights w and a threshold δ > 0 which make all the quantities |C(δ)|,
|R(δ)|, Mc(δ) and Mr(δ) small.

3 Rigidity of Kronecker products of matrices of uniform size

Now, we show how the approach, described above, provides a strong upper bound on the
rigidity of Kronecker products of matrices of uniform size. We follow the notation introduced
earlier.

▶ Theorem 19. Given d ≥ 2 and 0 < ε < 1, there exists γ = Θ
(

1
d log d · ε2

log2(1/ε)

)
such

that for all k ≥ 1 and X ∈ Fd×k we have RrcF (Gd,k(X), n1−γ) ≤ nε/d, where n = dk.

MFCS 2021
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Proof. We use the approach described in the previous section. We take w(x) = 1, then s(x)
given by Eq. (15) counts the number of coordinates equal to d. A simple computation gives

E[s(x)] = k/d and Var[s(x)] = k(d− 1)/d2. (21)

Then, by the Bernstein inequality (see Corollary 32), for δ < 1/d,

|C(δk)| = dk · P [s(x) ≥ k/d+ δk] ≤ exp
((

ln d− δ2d

3

)
k

)
. (22)

|R(δk)| = dk · P [s(x) ≤ k/d− δk] ≤ exp
((

ln d− δ2d

3

)
k

)
. (23)

Therefore, for δ = Θ
(

ε

log(1/ε)d

)
,

|R(δk)| + |C(δk)| ≤ d(1−γ)k = n1−γ , for some γ = Θ
(

ε2

d log d log2(1/ε)

)
. (24)

For a string x ∈ [d]k define the set Sx = {i | xi = d}. Recall, that for every y ∈ [d]k \C(δk)
we have |Sy| ≤ k(1/d+ δ) and for every x ∈ [d]k \ R(δk) we have |Sx| ≥ k(1/d− δ).

For each y ∈ [d]k \ C(δk), a vector x ∈ Tc(δk, y) can be described by picking a subset U
of Sy of the size at most 2δk such that U = Sy \ Sx and by picking xj ∈ [d − 1] for every
j ∈ U . So, by Lemma 33,

|Tc(δk, y)| ≤
∑
i≤2δk

(
|Sy|
i

)
(d− 1)i ≤

(
e|Sy|(d− 1)

2δk

)2δk
≤ exp(2δ ln(3/δ)k). (25)

Similarly, for every row index x ∈ [d]k \ R(δk), a column y ∈ Tr(δk, x) can be described by
picking a subset U ⊆ [k] \Sx of size at most 2δk and by setting yj = d for j ∈ U and yj = xj
for j /∈ U . Hence, by Lemma 33,

|Tr(δk, x)| ≤
∑
i≤2δk

(
k − |Sx|

i

)
≤
(

ek
2δk

)2δk
≤ exp(2δ ln(2/δ)k). (26)

Therefore,

max(Mc(δk),Mr(δk)) ≤ exp (2δ ln(3/δ)k) ≤ dεk/d, for some δ = Θ
(

ε

log(1/ε)d

)
. (27)

Hence, the conclusion of the theorem follows from Lemma 18. ◀

Finally, we can deduce our improved bound for the rigidity of Kronecker products of
matrices of uniform size.

▶ Theorem 20. Given d ≥ 2 and 0 < ε < 1, there exists γ = Ω
(

1
d log d · ε2

log2(1/ε)

)
such

that the following holds for any M1,M2, . . . ,Mk ∈ Fd×d with k > 1/γ. Let M =
k⊗
i=1

Mi and

n = dk. Then

RrcF
(
M,n1−γ) ≤ nε, and so RF

(
M,n1−γ) ≤ n1+ε.

Proof. By Theorem 19 and Lemma 16, for ε′ = ε/2 we have

RrcF

(
M, 2d · d(1−γ′)k

)
≤ d2ε′k for some γ′ = Θ

(
ε2

log2(1/ε)d log d

)
.

Pick γ = γ′/3 and note that for k > 1/γ we have 2d · d−2γk ≤ 2d · d−2 ≤ 1. ◀
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4 Rigidity bounds for matrices of unequal sizes

In this section we show how a similar approach may be used to show upper bounds on the
rigidity of Kronecker products of matrices of not necessarily equal sizes.

▶ Theorem 21. Let 0 < ε < 1 and let w(x) ≥ 1 be a non-decreasing function. There exists
an absolute constant c > 0 such that the following is true. Let 2 ≤ d1 ≤ d2 ≤ . . . ≤ dk be
integers. Let L > 0 and K > 0 be such that

(i)
k∑
i=1

w(di)/di ≤ K

(
k∑
i=1

log di/ log dk
)

· (w(d1)/dk), and

(ii)
k∑
i=1

w(di)/di ≥ L

(
k∑
i=1

log di/ log dk
)

· (w(dk)/dk).

Let n =
k∏
i=1

di. Consider arbitrary matrices Mi ∈ Fdi×di and let M =
k⊗
i=1

Mi. Then

RrcF (M, 2dk · n1−γ) ≤ nε where γ = cLε2

dk log dk ·K2 log2(K/ε)
.

Proof. We follow the notation of Section 2.2. Recall that

m := E[s(x)] =
k∑
i=1

w(di)/di and Var[s(x)] =
k∑
i=1

w(di)2
(
di − 1
d2
i

)
≤ w(dk)m. (28)

Then, by the Bernstein inequality, for 0 < δ < 1,

|C(δm)| = n · P [s(x) ≥ m+ δm] ≤ n · exp
(

− δ2m2/2
Var[s(x)] + δw(dk)m/3

)
≤

≤ n · exp
(

− δ2m

3w(dk)

)
. (29)

and similarly,

|R(δm)| = n · P [s(x) ≤ m− δm] ≤ n · exp
(

− δ2m

3w(dk)

)
. (30)

Now we want to bound the number of entries in Tc(δm, y) and Tr(δm, x). For x ∈ [d⃗] define
Sx = {i ∈ [n] | xi = di}.

Let x ∈ [d⃗] \ R(δm) and y ∈ Tr(δm, x), by definition, Sx ⊆ Sy and∑
i∈Sy\Sx

w(di) ≤ 2δm. (31)

Thus, t := |Sy \ Sx| ≤ 2δm/w(d1) =: tmax. Assumption (i) implies that

tmax ≤ 2δK ln(n)/(dk ln dk).

At the same time, tmax ≥ 2δ · (kw(d1)/dk)/w(d1) = 2δk/dk. Note that y ∈ Tr(δm, x) is
uniquely defined by Sy \ Sx. Thus, by Lemma 33,

Tr(δm, x) ≤
tmax∑
i=0

(
k

i

)
≤ exp

(
tmax ln

(
ek
tmax

))
≤

≤ exp(lnn · 2δK ln(2dk/δ)/(dk ln dk)).

(32)

MFCS 2021



68:12 Improved Upper Bounds for the Rigidity of Kronecker Products

Similarly, for y ∈ [d⃗] \ C(δm) we have x ∈ Tc(δm, y) only if Sx ⊆ Sy and Eq. (31) is satisfied.
Clearly, |Sy| ≤ m(1 + δ)/w(d1) ≤ 2m/w(d1), and t = |Sy \ Sx| satisfies t ≤ tmax. Hence, by
Lemma 33,

Tc(δm, y) ≤
tmax∑
i=0

(
|Sy|
tmax

)
dik ≤ dtmax

k

tmax∑
i=0

(
2m/w(d1)
tmax

)
≤

≤ exp(tmax ln(3δ−1) + tmax ln dk) ≤ exp(lnn · 2δK ln(3δ−1)/dk). (33)

Therefore, there exists δ = Θ ((ε/K)/ log(K/ε)) such that

max(Mr(δm),Mc(δm)) ≤ nε/(2dk) .

Moreover, for such choice of δ, by assumption (ii) and Eq. (29)-(30), we obtain

|C(δm)| + |R(δm)| ≤ n exp(−δ2L ln(n)/(3dk ln dk)) ≤ n1−γ . (34)

Thus, the claim follows from Lemma 18 and Lemma 17. ◀

Observe that Theorem 20 is a special case of Theorem 21 with K = L = 1. More generally,
we can get the same bound on γ for the case when all the di are within a constant factor of
each other.

▶ Corollary 22. Given 0 < ε, c ≤ 1, and d ≥ 2, there exists γ =

Ω
(

cε2

d log(d) log(1/c) log2(1/(cε))

)
such that the following holds for any sequence of matrices

M1,M2, . . . ,Mk where Mi ∈ Fdi×di and cd ≤ di ≤ d. Let M =
k⊗
i=1

Mi and n =
k∏
i=1

di. If

n ≥ d1/γ , then RrcF (M,n1−γ) ≤ nε.

Proof. Observe that the assumptions of Theorem 21 are satisfied for w(x) = 1 with K =
L ≤ (1/c) log(1/c). Let γ′ be the constant provided by Theorem 21. We take γ = γ′/3 and
note that n2γ ≥ 2d. Hence, RrcF (M,n1−γ) ≤ nε. ◀

Next, we eliminate the lower bound constraint on the di, at the cost of a slightly worse
dependence of γ on d. (Theorem 24 below). In preparation for proving Theorem 24, we state
its special case where all but at most one of the di are restricted to the interval [

√
d, d].

▶ Corollary 23. Given d ≥ 2 and 0 < ε < 1, there exists γ = Ω
(

ε2

d3/2 log(d) log2(d/ε)

)
such

that the following holds. Consider any di ≤ d and Mi ∈ Fdi×di for i ∈ [k]. Let M =
k⊗
i=1

Mi

and n =
k∏
i=1

di. Assume that di ≥
√
d for all i ≥ 2. If n ≥ d1/γ . Then RrcF (M,n1−γ) ≤ nε.

Proof. Define w(di) = 1. Then, the assumptions of Theorem 21 are satisfied for K = L ≤
4
√
d. Indeed, for dk ≤ d and d2 ≥

√
d and k > d, we have the following trivial bounds

k∑
i=1

log(di)/ log(dk) ≥ (k − 1)/2 and
k∑
i=1

1/di ≤ (k − 1)/
√
d+ 1 ≤ 2(k − 1)/

√
d. (35)
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Hence, by Theorem 21, there exists γ′ = Ω
(

ε2

d3/2 log(d) log2(d/ε)

)
such that

RrcF (M, 2dn1−γ′
) ≤ nε.

Take γ = γ′/3. Finally, note that the assumption n ≥ d1/γ implies that n2γ ≥ 2d and k ≥ d.
Hence, RrcF (M,n1−γ) ≤ nε. ◀

Finally, we prove our main result by eliminating di ≥
√
d constraint using a bin packing

argument.

▶ Theorem 24. Given d ≥ 2 and 0 < ε < 1, there exists γ = Ω
(

ε2

d3/2 log(d) log2(d/ε)

)
such

that the following holds for any sequence of matrices M1,M2, . . . ,Mk where Mi ∈ Fdi×di and

2 ≤ di ≤ d. Let M =
k⊗
i=1

Mi and n =
k∏
i=1

di. If n ≥ d1/γ , then RrcF (M,n1−γ) ≤ nε.

Proof. Let us split the di into the smallest possible number k′ of bins, such that the product
of numbers in each bin is at most d. Let aj be the product of the numbers in bin j ∈ [k′]
and let Aj be the Kronecker product of the corresponding matrices. Then at most one ai is
≤

√
d. Hence, the theorem follows from Corollary 23. ◀

5 Application to rigidity upper bounds for Hadamard matrices

As an application of our improved bounds, we show that the family of Kronecker products of
sufficiently not rigid matrices and matrices of bounded size is not Valiant-rigid.

▶ Theorem 25. Let 0 < ε < 1/2 and b ≥ 2. Let F be a family of matrices over F, such that
for every d× d matrix A ∈ F either d ≤ b, or

RrcF
(
A, d1−γ) ≤ dε for γ = 12(log log d)2

ε3 log d . (36)

Then, for every sequence of matrices M1,M2, . . .Mk ∈ F , the n × n matrix M =
⊗
i∈[k]

Mi

either satisfies RrcF (M,n/log n) ≤ n6ε, or n is bounded above by a function of b and ε.

As an immediate application of Theorem 25, we significantly expand the family of
Hadamard matrices known to be not Valiant rigid (Theorem 7). We rely on the rigidity
upper bound for Paley-Hadamard matrices established in [6, 3].

▶ Theorem 26 ([6, 3]). There exist constants c1 > 0 and c2 > 0 such that for all ε > 0 and

an arbitrary d× d Paley-Hadamard matrix A we have RrcC
(
A,

d

exp(εc1(log d)c2)

)
≤ dε.

We restate Theorem 7 for convenience.

▶ Theorem 27. Let F0 be the family of Paley-Hadamard matrices and Hadamard matrices of
bounded size. Let F be the family of all matrices that can be obtained as Kronecker products
of some matrices from F0. Then F is not absolutely Valiant-rigid.

Proof. Fix ε > 0. By Theorem 26, the inequality

γ = εc1

(log d)1−c2
≥ 12(log log d)2

ε3 log d ⇔ (log d)c2

(log log d)2 ≥ 12ε−3−c1

holds for all sufficiently large d. Thus, the claim of the theorem follows from Theorem 25. ◀
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In order to prove Theorem 25, we use the following inequality that relates the row-column
rigidity of the Kronecker product of a pair of matrices to the row-column rigidities of each of
the matrices participating in the product.

▶ Lemma 28 (Dvir, Liu [6, Lemma 4.9]). Let A be an n × n matrix and B be an m × m

matrix. Then

RrcF (A⊗B, ram+ rbn) ≤ RrcF (A, ra) ·RrcF (B, rb)

In the pair of lemmas below we show that the Kronecker product of arbitrary many
sufficiently large and sufficiently not rigid matrices is sufficiently not rigid itself. These
lemmas are essentially the proof content of Lemma 4.10 in [6], which was stated and proved
for more specific needs.

▶ Lemma 29. Let 2 ≤ b ≤ d1 ≤ . . . ≤ dk ≤ b2 be integers. Let 0 < ε < 1 and γ > 0 such
that γ log(b) ≥ 2 log(3/ε) and b ≥ 3/ε. Assume that for every i ∈ [k], Mi is a di × di matrix
over F that satisfies

RrcF (Mi, d
1−γ
i ) ≤ dεi .

Define M =
⊗
i∈[k]

Mi and n =
∏
i∈[k]

di. Then,

RrcF

(
M,n1−εγ/4

)
≤ n4ε.

Proof. By the assumptions of the lemma, we can write Mi = Ai +Ei, where Ai, Ei ∈ Fdi×di ,
rank(Ai) ≤ d1−γ

i , and Ei has at most dεi non-zero entries in every row and column. Then⊗
i∈[k]

Mi =
⊗
i∈[k]

(Ai + Ei) =
∑
S⊆[k]

⊗
i∈S

Ai
⊗

j∈[k]\S

Ej (37)

Now all the summands can be split into two groups: when |S| ≥ εk and when |S| < εk. We
are going to bound the rank of the sum of the first group and the number of non-zero entries
of the sum of the second group.

rank

 ∑
S⊆[k],|S|≥εk

⊗
i∈S

Ai
⊗

j∈[k]\S

Ej

 ≤
∑

S⊆[k],|S|=εk

rank
(⊗
i∈S

Ai

) ∏
j∈[k]\S

dj ≤

≤
(
k

εk

)
max

S⊆[k],|S|=εk

∏
i∈S

d1−γ
i

∏
j∈[k]\S

dj ≤
(

3
ε

)εk
· n · b−εkγ (38)

Since bγ ≥ (3/ε)2 and n ≤ b2k, we have

rank

 ∑
S⊆[k],|S|≥εk

⊗
i∈S

Ai
⊗

j∈[k]\S

Ej

 ≤ n · b−εkγ/2 ≤ n1−εγ/4 (39)

Next, consider the remaining terms

E =
∑

S⊆[k],|S|<εk

⊗
i∈S

Ai
⊗

j∈[k]\S

Ej . (40)

Using Lemma 33, every column and every row of E has at most(
εk∑
i=0

(
k

i

))
(b2)εk

∏
i∈[k]

dεi ≤
(

3
ε

)εk
n2εnε ≤ bεkn3ε ≤ n4ε (41)

non-zero entries. ◀
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▶ Lemma 30. Let 2 ≤ b ≤ d1 ≤ . . . ≤ dk be integers. Let 0 < ε < 1 and γ1, γ2, . . . , γk > 0 be
such that b ≥ 3/ε and for all i ∈ [k] we have γi · log di ≥ 4 log(3/ε). Assume that for every
i ∈ [k], Mi is a di × di matrix over F, that satisfies RrcF (Mi, d

1−γi

i ) ≤ dεi .
Define M =

⊗
i∈[k]

Mi and n =
∏
i∈[k]

di. Then,

RrcF
(
M,n1−ψ) ≤ n5ε for ψ = ε2 mini γi

4 log log dk
− log log log dk

log n

Proof. Let It = {i | di ∈ (b2t

, b2t+1 ]} for t = 1, . . . , L = log log dk. Let At =
⊗
i∈It

Mi and

nt =
∏
i∈It

di. Let γ = mini γi. By Lemma 29,

RrcF (At, n1−εγ/4
t ) ≤ n4ε

t (42)

Let S = {t | nt ≥ nε/L} and NS =
∏
t∈S

nt. Then, by Lemma 28,

RrcF

(⊗
t∈S

At, NS

(∑
t∈S

n
−εγ/4
t

))
≤ N4ε

S . (43)

Hence,

RrcF

(⊗
t∈S

At, L ·NSn−ε2γ/(4L)

)
≤ N4ε

S (44)

Observe that, n/NS ≤
(
nε/L

)L ≤ nε. Thus, RrcF

( ⊗
t∈[L]\S

At, 0
)

≤ nε. Hence, by Lemma 28,

RrcF
(
M,n1−ψ) ≤ n5ε, (45)

as n−ψ = log log dk · n−ε2γ/(4 log log dk) = Ln−ε2γ/(4L).
◀

Finally, we are ready to prove Theorem 25.

Proof of Theorem 25. Define bε = 3/ε and b∗ = max(b, bε). Let γb = c0
1

b
3/2
∗ log3(b∗)

·

ε2

log2(1/ε)
, where c0 > 0 is the constant given by Theorem 24. We may assume c0 < 1. Define

Nb = b
24/(εγb)
∗ .

Denote the size of Mi by di for i ∈ [k] and let S = {i ∈ [k] | di ≤ b∗}. Let

F =
⊗
i∈S

Mi and H =
⊗

j∈[k]\S

Mj . (46)

Denote by NF and NH be the orders of F and H, respectively. Then NF · NH = n. Let
dmax = maxi di. By Lemma 30,

RrcF

(
M,N1−ψH

H

)
≤ N5ε

H , (47)

where

ψH ≥ ε2

4 log log dmax
· 12(log log dmax)2

ε3 log dmax
− log log log dmax

logNH
≥ 2 log log n

ε log n . (48)
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At the same time, by Theorem 24, if NF ≥ Nb, then

RrcF

(
F,N1−γb

F

)
≤ Nε

F . (49)

Note, since b∗ ≥ 3/ε, we have

log logNb ≤ log(1/γb) + 2 log(b∗) ≤ 12 log(b∗) ≤ γbε logNb/2. (50)

So, in the case n ≥ NF ≥ Nb we have γb ≥ 2 log log n
ε log n .

If min(NH , NF ) ≥ nε and NF ≥ Nb, then, by Lemma 28,

RrcF (M,n/ log n) ≤ RrcF
(
M,n(n−εψH + n−εγb)

)
≤

≤ RrcF

(
H · F, n(N−ψH

H +N−γb

F )
)

≤ RrcF

(
H,N1−ψH

H

)
·RrcF

(
F,N1−γb

F

)
≤ n5ε. (51)

If NF ≤ nε, then NH ≥ nε, and by Lemma 28,

RrcF (M,n/ log n) ≤ RrcF

(
M,NFN

1−ψH

H

)
≤ N5ε

H ·RrcF (F, 0) ≤ N5ε
H ·NF ≤ n6ε. (52)

Similarly, if NH ≤ nε and NF ≥ Nb, then RrcF (M,n/ log n) ≤ n6ε.
Finally, if Nb > NF ≥ nε, then the size of M is bounded by a function of b and ε. ◀
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A Tail bounds

In this appendix we review a classical concentration inequality which we apply to the binomial
distribution.

▶ Theorem 31 (Bernstein inequality). Let L ≥ 0 and δ > 0. Let X1, . . . , Xn be independent
random variables satisfying |Xi − E(Xi)| ≤ L for i ∈ [n]. Let X =

n∑
i=1

Xi. Then we have

P(X ≥ E(X) + δ) ≤ exp

− δ2/2
n∑
i=1

Var(Xi) + Lδ/3

 .

▶ Corollary 32. Let d > 1. Let Xi be i. i. d. {0, 1}-valued random variables such that
P(Xi = 1) = 1 − P(Xi = 0) = 1/d for i ∈ [n]. Let X =

n∑
i=1

Xi. Let δ < 1/d. Then

P
[
X ≥

(
1
d

+ δ

)
n

]
≤ exp

(
−δ2n

3d

)
and P

[
X ≤

(
1
d

− δ

)
n

]
≤ exp

(
−δ2n

3d

)
.

Proof. Note that E(Xi) = 1/d and Var(Xi) = (d − 1)/d2. The first bound follows from
Theorem 31 with L = (d−1)/d. The second bound follows from Theorem 31 with L = (d−1)/d
by applying it to Yi = E(Xi) −Xi. ◀

We also use the following elementary bound.

▶ Lemma 33. Let 0 ≤ k ≤ n. Then
k∑
i=0

(
n
i

)
≤
(en
k

)k
.

B Proof of Observation 14

In this appendix we prove Observation 14.

▶ Observation 34. For any matrix A ∈ Fd×d there exists B ∈ F(d−1)×(d−1), vectors x, y ∈ Fd,
λ ∈ {0, 1} ⊆ F and permutation matrices P1, P2 ∈ Fd×d such that

A = P1 ·Gd(y)T ·
(
B 0
0 λ

)
·Gd(x) · P2. (53)

Proof. We consider two cases. First, assume that A has rank d. In this case, the basis vector
ed can be written as a linear combination of the columns Ai of A. Moreover, by changing the
order of columns (by some permutation matrix, say Q1) we may assume that the coefficient
in front of the last column is non-zero. In other words, there exist coefficients µ1, . . . , µd,
with µd ̸= 0 such that

ed = µ1(AQ1)1 + µ2(AQ1)2 + . . .+ µd(AQ1)d.

Define xi = −µi/µd for i ∈ [d− 1] and xd = 1
µd

. Denote by A′ the matrix consisting of the
first d− 1 columns of AQ1. Then

AQ1 =
(
A′ 0d−1

1

)
Gd(x). (54)
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Since A has full rank, the first d − 1 rows of A′ span Fd−1. So the last row of A′ can be
written as a linear combination of the first d− 1 rows. Hence, for some vector y ∈ Fd with
yd = 1,

(A′)T = (B 0d−1)Gd(y) ⇒ AQ1 = Gd(y)T ·
(
B 0
0 1

)
·Gd(x). (55)

If A has rank less than d, there exists a column and a row of A that can be expressed as a
linear combination of all other columns and rows of A, respectively. By changing the order of
rows and columns we may assume that these are d-th column and d-th row. Then, similarly
as above, we see that A can be written in the form (53) with λ = 0. ◀
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Abstract
We study quantum communication protocols, in which the players’ storage starts out in a state
where one qubit is in a pure state, and all other qubits are totally mixed (i.e. in a random state),
and no other storage is available (for messages or internal computations). This restriction on the
available quantum memory has been studied extensively in the model of quantum circuits, and it
is known that classically simulating quantum circuits operating on such memory is hard when the
additive error of the simulation is exponentially small (in the input length), under the assumption
that the polynomial hierarchy does not collapse.

We study this setting in communication complexity. The goal is to consider larger additive error
for simulation-hardness results, and to not use unproven assumptions.

We define a complexity measure for this model that takes into account that standard error
reduction techniques do not work here. We define a clocked and a semi-unclocked model, and
describe efficient simulations between those.

We characterize a one-way communication version of the model in terms of weakly unbounded
error communication complexity.

Our main result is that there is a quantum protocol using one clean qubit only and using Oplog nq

qubits of communication, such that any classical protocol simulating the acceptance behaviour of
the quantum protocol within additive error 1{polypnq needs communication Ωpnq.

We also describe a candidate problem, for which an exponential gap between the one-clean-qubit
communication complexity and the randomized communication complexity is likely to hold, and
hence a classical simulation of the one-clean-qubit model within constant additive error might be
hard in communication complexity. We describe a geometrical conjecture that implies the lower
bound.
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memory for the computation [2, 20, 16, 3]. The underlying idea in these topics is to study
the power of models of quantum computing in which the quantum memory is weak, but
the control of this memory is good. This is in contrast to the study of models of quantum
computation, where the underlying memory is good, but the control is weak, or restricted,
such as the Boson-Sampling model [1]. Both are a step towards understanding the power
of quantum computing models that are closer to being implementable than the standard
circuit model, and eventually to demonstrate quantum supremacy (i.e., to show that for
some problem (of possibly small practical interest) quantum computers that can be built
outperform classical computers demonstrably).

This paper explores the potential of a model of quantum communication that uses memory
containing only a small number of qubits that start in a known pure state, in particular the
power of a having only a single clean qubit (plus many qubits that start in the totally mixed
state, i.e., start in a random state).

The one-clean-qubit model proposed by Knill and Laflamme [21] is a model of quantum
computing where the memory starts in the tensor product of a single qubit in a pure state
|0y with the other m qubits that are in the completely-mixed state, with no further storage
allowed. This initial state is described by the density matrix ρ “ |0y x0| b I

2m .
The model was originally motivated by the nuclear magnetic resonance (NMR) approach to

quantum computing, where the initial state may be highly mixed. Quantum circuits operating
on such memory are able to perform tasks that look hard classically, such as estimating
Jones polynomials, computing Schatten p-norms, spectral density approximation, testing
integrability, computation of fidelity decay [21, 34, 9, 30, 31], just to name a few. [12] showed
that quantum circuits under the one-clean-qubit restriction cannot be efficiently classically
simulated unless the polynomial hierarchy collapses to the second level. In other words,
assuming that the polynomial hierarchy does not collapse, polynomial size quantum circuit
operating under the one-clean qubits restriction can have acceptance/rejection probabilities
such that any classical randomized circuit that has the same acceptance/rejection probabilities
up to additive error 1{exppnq must have superpolynomial size. We note here that we will not
consider simulations with multiplicative error in this paper, since those pose a much stronger
requirement on the simulation, for instance the simulating algorithm must replicate events of
tiny probability with approximately the same probability, and hence such simulations are
much less interesting.

In this paper, we study the hardness of simulating the one-clean-qubit model classically in
the model of communication complexity. We will consider simulations of the one-clean-qubit
model with different amounts of additive errors, namely 1

polypnq
and Op1q.

Organization

After some preliminaries in Section 2, in Section 3 we discuss related work. In Section 4,
we sketch our results. In Section 5 we develop our model of quantum communication with
one clean qubit. We motivate the main complexity measure and introduce the concepts of
clocked and semi-unclocked protocols. Section 6 is about our characterization of one-way
communication complexity in our model. Section 8 discusses our main result, which concerns
the hardness of classically simulating the one-clean-qubit model with additive error.
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2 Preliminaries

Communication Complexity
Yao’s [38] model of communication complexity consists of two players, Alice and Bob, who
are each given private inputs x P X and y P Y respectively. In addition, they both know the
function f and agree to a certain communication protocol beforehand. The task they wish
to perform is to compute z “ fpx, yq. Having no knowledge of each others’ inputs, they have
to communicate with each other in order to obtain the result z. Communication complexity
asks the question “how much communication is needed to compute fpx, yq?”, and assumes
that the players have unlimited computational power.

For formal definitions regarding standard types of communication protocols see [24],
regarding quantum communication complexity see [11]. We will use the following notations:

▶ Definition 1. Qpfq, Rpfq denote the quantum (without entanglement) and randomized
(with public coin) communication complexities of a function f with error 1{3. A subscript
like Qϵpfq denotes other errors ϵ.

3 Related Work

There has been a lot of research focusing on the hardness of classical simulations of restricted
models of quantum computing under certain assumptions [5, 1, 37, 29, 14, 26, 36, 6, 35].
That is to say, a reasonable assumption in complexity theory leads to the impossibility of
efficient sampling by a classical computer according to an output probability distribution
that can be generated by a quantum computation model. For instance, it is proven that
classical simulation with multiplicative error of the IQP model [5] and Boson sampling [1] is
hard, unless the polynomial-time hierarchy collapses.

It is interesting to ask if such a result holds for the one-clean-qubit model as well. Over
the past few years, the one-clean-qubit model has be shown to be capable of efficiently solving
problems where no efficient classical algorithm is known, such as estimating Jones polynomials,
computing Schatten p-norms, spectral density approximation, testing integrability and
computation of fidelity decay [21, 34, 9, 30, 31]. It has been conjectured that the one-clean-
qubit model can be more powerful than classical computing for some problems. However, there
has been no proof for such a conjecture. In [27], it is showed that if the output probability
distribution of the one-clean-qubit model can be classically efficiently approximated (with
at most an exponentially small additive error) then BQP Ď BPP . Although the belief
that BQP ‰ BPP is equivalent to that of P ‰ NP or that the polynomial hierarchy does
not collapse, there is still a good case for it and the assumption is necessary for simulation
hardness anyway. Therefore the results in [27] suggest that the one-clean-qubit model is
unlikely to be classically efficiently simulatable with exponentially small additive error.

[26] introduced DQC1k, a modified version of the one-clean-qubit model where the
workspace starts with one clean qubit and k qubits are measured at the end of the computation.
They showed that the DQC1k model cannot be efficiently classically simulated for k ě 3
(within constant multiplicative error) unless the polynomial hierarchy collapses.

Later on, [26] showed via circuit complexity that the one-clean-qubit model cannot be
efficiently classically simulated with 1

exppnq
additive error unless the polynomial hierarchy

collapses to the second level.
All existing results regarding the efficient classical simulation of the one-clean-qubit model

are conditional (e.g. rely on non-collapse of the polynomial hierarchy) and require simulations
to have exponentially small additive error.

We also mention work on classical memory-restricted communication complexity (e.g. [7])
in which some similar issues appear as in this work.
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4 Overview of Results

Definition of a complexity measure for the one-clean-qubit model in communication
complexity:
The complexity measure (cost) of a one-clean-qubit protocol is given by c ¨

` 1
ϵ2

˘

, where c

is the communication and ϵ is the bias. We define a clocked and a semi-unclocked version.
Simulation of a clocked k-clean-qubit models using only one-clean qubit is inexpensive:
Such simulations cost pc ` 1q ¨

` 2k

ϵ

˘2, where c is the communication and ϵ is the bias.
The clocked k-clean-qubit model can be simulated by the semi-unclocked one-clean-qubit
model:
Such simulations incur a cost of Opc log cq ¨

` 2k

ϵ

˘2, where c is the communication and ϵ is
the bias.
Upper and lower bounds on the complexity measure of the one-way one-clean-qubit
communication complexity model:
The complexity measure of the one-way one-clean-qubit communication complexity model
denoted as QAÑB

r1s
pfq is bounded by 2ΩpP P pfqq´Oplog nq ď QAÑB

r1s
pfq ď 2OpP P pfqq. See [17]

for the definition of PP pfq.
Classically simulating the one-clean-qubit model with 1

polypnq
additive error requires an

exponential increase in communication:
We consider the MIDDLE problem and give a quantum protocol with one-clean qubit
that requires Oplog nq communication while any classical simulation with 1

polypnq
additive

error requires Ωpnq communication.
We stress that in previous results about the hardness of simulating the one-clean-qubit
model (in circuit complexity) the additive error must be of size at most 1{exppnq for
the simulation to be hard, which stems from low probability events being considered
that one would never observe realistically. That means that running the one-clean-qubit
circuit as an experiment, and observing an outcome that contradicts classicality is an
event that happens only with exponentially small probability, and the classical simulation
is only hard because of such extremely low probability events. Our result also uses low
probability events, but 1{polypnq is much more reasonable, and the events are observable
when repeating such a protocol polypnq times.
Simulating the one-clean-qubit model with constant additive error:
We consider a problem ABC as a candidate to show that simulating the one-clean-qubit
model with constant additive error is hard, and construct a quantum protocol that
requires Oplog nq communication using one clean qubit for ABC. We conjecture that any
classical simulation with constant additive error requires Ωp

?
nq communication and give

a matching upper bound.
Disclaimer: All I’s used in this paper are identity matrices whose dimensions
are clear from the context.

5 Communication Complexity of the One-Clean-Qubit Model

5.1 The One-Clean-Qubit Model
▶ Definition 2 (k-Clean-Qubit Model). In a k-clean-qubit protocol, all storage initially
consists of only k qubits in a clean state |0y, while the rest (m qubits) are in the totally mixed
state. The players communicate as in a standard quantum protocol. Only at the end of the
computation, a single, arbitrary projective measurement (not depending on the inputs) is
performed.
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By this definition, all storage in the one-clean-qubit model consists of only one qubit
in a clean state |0y, while the rest (m qubits) are in the totally mixed state. This can be
described by the density matrix

ρ “ |0y x0| b
I

2m
. (1)

A protocol in this model for a function f communicates c qubits. Assume the protocol
has a bias of ϵ and hence an error of 1

2 ´ ϵ. In general, it is not possible to improve the
error to, say, 1

3 . Analogous to allowing the computation to be repeated Op 1
ϵ2 q times until

a correctness probability of at least 2
3 is achieved, we define the cost of the (unrepeated)

protocol to be c ¨ p 1
ϵ q2 qubits.

▶ Definition 3 (Qr1spfq). Let P denote a one-clean-qubit clocked (explained later) protocol
for a function f : X ˆ Y Ñ t0, 1u, such that 0-inputs are accepted with probability at most
p ´ ϵ and 1-inputs are accepted with probability at least p ` ϵ for some constant p ą 0 and
that uses communication c at most on all inputs. The cost of P is then c{ϵ2.

We denote the complexity measure of the clocked one-clean-qubit model by Qr1spfq “

infP
communicationpPq

biaspPq2 , where the infimum is over all protocols P for f .

The motivation behind Definition 3 is that it seems unlikely that the success probability
can always be amplified arbitrarily. Therefore, we allow the protocol to run with an
arbitrarily bad bias but include the cost that it would take to bring this bias up by a
standard amplification (repeat the computation O

` 1
bias2

˘

times): in the situation described
in Definition 3 by a standard Chernoff bound repeating t “ 4{ϵ2 times (and accepting if at
least pt runs accepted) would lead to error at most 1{3.

There is no prior entanglement allowed in this model because the EPR-pairs could be
used to create more pure qubits, simply by sending one qubit from one communicating
party to another, who can then make the state |00y. It is also essential that measurements
are performed only at the end of the computation, or a pure state could be obtained by
measuring the state (1).

In our paper, we allow arbitrary projective measurements in the one-clean-qubit model.
There are papers such as [34] and [27] defining the one-clean-qubit model in a way such
that it measures only one qubit at the end of the computation. However, in Theorem 8,
we show that there is only negligible difference between these definitions in communication
complexity.

5.2 Clocked and Semi-unclocked Models
We consider two types of models: the clocked model and the semi-unclocked model.

▶ Definition 4 (Clocked model). In the clocked model, the message in round i is computed
by a unitary that can depend on i. In other words, the protocol knows i without having to
store i anywhere. The communication channel of a clocked model is ghosted, i.e. different
qubits can be communicated in different rounds.

Protocols in the clocked model implicitly use a counter to tell the protocol which round it
is in. This counter could be considered as extra classical storage, so we define another model
that does not allow this. In that model, however, protocols still need to know when to stop,
and that in a sense is a counter, just one that cannot be used “inside” the protocol. Since no
intermediate measurements are allowed, we simply switch the protocol off after the correct
number of rounds, and measure.

MFCS 2021
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Figure 1 Clocked model.

▶ Definition 5 (Semi-unclocked model). In the semi-unclocked model, the same unitary must
be applied in every round. The protocol terminates after a fixed number of rounds. The
communication channel of a semi-unclocked model is fixed, i.e., the same qubits have to be
communicated in every round.

Figure 2 Semi-unclocked model.

▶ Example 6. The inner product modulo 2 problem is defined as IP2px, yq “
ř

i xiyi

mod 2, where x, y P t0, 1un. Under the clocked model P̂ shown in Figure 3, let U i
x be Alice’s

unitary and let V i
y be Bob’s for i “ 1 ¨ ¨ ¨ n. We start with two clean qubits. The first qubit is

meant to store Alice’s xi while the second stores
ř

i xiyi mod 2. The protocol (informally)
goes as follows:

In the first round, Alice stores x1 in the first qubit and sends the two qubits to Bob, who
multiplies x1 in the first qubit with his y1 and stores the product in the second qubit. He
then sends the first qubit back to Alice. For every round i “ 2, ¨ ¨ ¨ , n,
1. U i

x first XORs |xi´1y on the first qubit with xi´1, thereby restoring the qubit to |0y,
before storing the value xi in it.

2. Alice sends the first qubit to Bob.
3. V i

y multiplies yi with xi (stored in the first qubit) and adds the product to the sum stored
in the second qubit modulo 2.

4. Bob sends the first qubit back to Alice.

The communication terminates after a total number of 2n ´ 1 rounds and the bias is 1
2

(i.e. zero error). Bob does the measurement, the total communication is 2n.

Figure 3 Clocked two-clean-qubit model for computation of inner product modulo 2.

P̂ can be simulated with a clocked one-clean-qubit protocol that uses 1 clean qubit and 2
mixed qubits.The unitary M does the following:

M :
#

|0y b |0y b |0y ÞÑ |1y b |0y b |0y

|0y b |z1y b |z2y ÞÑ |0y b |z1y b |z2y
,

where |z1y or |z2y ‰ |0y. Extend to a unitary arbitrarily. In other words, M flips the first
qubit if the next two qubits are both in the |0y state (this happens with probability 1

4 ). After
applying M, the protocol is carried out as per P̂ . The measurement is done as follows:
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If the first qubit is |0y, a “coin toss” is being performed for the output (e.g. measure yet
another mixed qubit).
If the first qubit is |1y, the measurement is done as per P̂ .

Note that the two measurements can be combined into one.
Therefore, we get an error probability of 3

4 ¨ 1
2 “ 3

8 , and a bias of 1
8 . The total communic-

ation is 2n ` 1 and hence the cost is 64p2n ` 1q “ Opnq.

We now compare the k-clean-qubit model with the one-clean-qubit model and also the
clocked model with the semi-unclocked model. We prove the following theorems:

▶ Theorem 7. Given a clocked k-clean-qubit protocol P for a function f that has com-
munication c and a bias of ϵ, there exists a clocked one-clean-qubit protocol P̃ for f that
has communication c (or c ` 1 depending on which player does the measurement), and a
bias of ϵ

2k .

Proof. The clocked k-clean-qubit protocol P illustrated in Figure 4 has communication c

and a bias of ϵ. Hence, it has an error probability of 1
2 ´ ϵ and cost c

ϵ2 . Denote by U i
x Alice’s

unitaries and by V i
y Bob’s unitaries for i “ 1, ¨ ¨ ¨ , r. Note that U i

x is defined as a unitary on
all qubits, but acts only on Alice’s qubits.

Figure 4 Clocked k-clean-qubits protocol P.

P can be modified into a clocked one-clean-qubit protocol P̃ as in Figure 5 with about
the same amount of communication.

Figure 5 Clocked one-clean-qubit model P̃.

In P̃, the unitary A does a bit flip on the first qubit if the next k qubits are in the |0y

state, and does nothing otherwise. All the k ` m mixed qubits undergo the same series of
unitary transformation as in P. The measurement in P̃ is done as follows:

If the first qubit is |0y, a “coin toss” is being done.
If the first qubit is |1y, the measurement is carried out as per P.

Note that the two measurements can be combined into one.
The communication in P̃ is c or c ` 1, depending on which player does the measurement.

If the measurement is done by the player who begins the communication, the communication
is c. Otherwise, the first qubit has to be sent to the other player for the measurement to be
done, causing the communication to be increased to c ` 1.

The error probability of P̃ can be computed to be

p1 ´
1
2k

q ¨
1
2 `

1
2k

¨ p
1
2 ´ ϵq “

1
2 ´

ϵ

2k
.

Hence, the bias decreases from ϵ to ϵ
2k .

The cost of P̃ is given by c ¨ p 2k

ϵ q2 or pc ` 1q ¨ p 2k

ϵ q2. ◀
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▶ Theorem 8. Given a clocked k-clean-qubit protocol P̃ for a function f : X ˆY Ñ t0, 1u with
a ghosted communication channel, that does an arbitrary projective measurement with two
outcomes, has communication c and a bias of ϵ, there exists a semi-unclocked one-clean-qubit
protocol Pf for f with a fixed communication channel, that does a measurement on one qubit,
has communication Opc log cq and a bias of Ωp ϵ

2k q.

Proof. From Theorem 7, a clocked k-clean qubit protocol P̃ with a ghosted communication
channel that does an arbitrary projective measurement and has communication c and a bias
of ϵ, can be modified into a clocked one-clean-qubit protocol P with a ghosted communication
channel, that does an arbitrary projective measurement, has communication c ` 1 and bias
ϵ

2k . The total number of qubits is m ` k ` 1, with 1 clean qubit.
We would like to turn P into a protocol P 1 that measures only one qubit in the computa-

tional basis. This can be done by adding an extra clean qubit and replacing the measurement
in P with a unitary operator US and a measurement that measures the newly added qubit
in the standard basis. US does the following:

US :
#

|ay |biy ÞÑ |ay |biy , for bi P B

|ay |biy ÞÑ |a ‘ 1y |biy , for bi R B
,

where a P t0, 1u and B “ tb1, ¨ ¨ ¨ , blu is the basis of the subspace S Ď Cm`k`1, which is a
constituent of the observable used to measure the quantum state in P.

In other words, US flips the first qubit on any basis vector bi R B, and does nothing
otherwise. The resulting protocol P 1 is as follows:

Figure 6 Clocked two-clean-qubit protocol that measures one qubit P 1.

▶ Remark 9. A clocked protocol with a ghosted communication channel can be easily
converted to one with fixed channel in which Alice and Bob take turns to send one qubit
each. This at most doubles the communication.

In the new protocol, the communication channel is fixed, the total communication is
increased to at most 2pc ` 1q, and the bias remains unchanged.

According to [34], the probability of measuring 0 (which corresponds to acceptance) can
be made to depend only on the trace of a unitary operator as shown below.

Consider the following trace estimation protocol Pmain illustrated in Figure 7,

Figure 7 Trace estimation protocol Pmain.



H. Klauck and D. Lim 69:9

which contains the unitary operator P2 shown in Figure 8. Pmain accepts with probability

1
2 `

RepTrpP2qq

2d`1 ,

where d “ m ` k ` 5 is the number of qubits in P2 and Repxq is the real part of x.

Figure 8 P2.

Let Iℓ denote the 2ℓ-dimensional identity matrix. We have that

Trrp|0y x0| b Im`k`1qP 1p|0y
2

x0|
2

b Im`kqP 1:s “
1
8TrrP2s,

because TrrP2s “
ř

xPt0,1um`k`5 xx| P2 |xy, and so for instance basis vectors |xy that have
a 1 in qubit 1 contribute nothing to the sum due to the rightmost CNOT. Similarly, the
other CNOTs correspond to the other projection one the left hand side. This equation also
shows that the right-hand-side trace is real: up to scaling the left hand side corresponds to a
probability of measuring 0 when running P 1 on the two-clean-qubit state.

The acceptance probability of Pmain is given by

p0 “
1
2 `

TrrP2s

2k`m`6

“
1
2 `

8 ¨ Trrp|0y x0| b Im`k`1qP 1p|0y
2

x0|
2

b Im`kqP 1:s

2k`m`6

“
1
2 `

8 ¨ 2k`m ¨ p 1
2 ` ϵ

2k q

2k`m`6

“
1
2 `

1
16 `

ϵ

2k`3

▶ Remark 10. The factor of 8 instead of 4 as in [34] is due to the presence of three CNOT
gates/extra qubits instead of two.

The communication of Pmain is four times the communication of P 1, since P2 runs P 1

backwards and forwards, and because the clean control qubit in Pmain must be communicated
in every round (every round communicates only one qubit in P 1), i.e. the communication
becomes 8pc ` 1q. The bias decreases to ϵ

2k`3 and is around 1
2 ` 1

16 instead of 1
2 .

Lastly, we turn Pmain into a semi-unclocked protocol Pf by adding log r mixed qubits to
act as a counter, where r is the number of rounds. The resulting protocol looks as follows:

In Pf , Ûx “ pH b Iq ¨ Ux ¨ pH b Iq, where

Ux : |zy |iy ÞÑ pU i
x |zyq |iy

MFCS 2021
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Figure 9 Semi-unclocked one-clean-qubit protocol that measure one qubit Pf .

and V̂y “ pH b Iq ¨ Vy ¨ pH b Iq, where

Vy : |zy |iy ÞÑ pV i
y |zyq |i ` 1 mod ry ,

for all z P t0, 1uk`m`6, for all i P t0, 1ulog r and where U i
x and V i

y are the unitaries from P2.
This means that, starting from a random j on the counter, the unitaries V̂y and Ûx apply

V i
y and U i

x in the correct, but shifted order. Also note that the Hadamard operators cancel
out in between consecutive unitaries, and only the first and last have an effect.

▶ Fact 11 (Cyclic property of matrix trace). The trace of a product of three or more square
matrices is invariant under cyclic permutations of the order of multiplication of the matrices.

Since the acceptance probability of Pmain depends only on the trace of the product of
the sequence of unitary operators in P2, it follows from Fact 11 that the counter can start
from any arbitrary j mod r without affecting the acceptance probability of Pf .

The protocol terminates after r rounds of communication. Note that r “ Θpcq, the total
communication is now 8pc ` 1q ` Opc log cq “ Opc log cq. The bias is remains unchanged from
Pmain, i.e. Ωp ϵ

2k q. ◀

Applying Theorem 8 to Example 6 gives the following.

▶ Corollary 12. The semi-unclocked one-clean-qubit quantum communication complexity of
IP2 is Opn log nq.

6 One-way Complexity with One Clean Qubit

6.1 The Upper Bound on QAÑB
r1s

pfq

Let QAÑB
r1s

pfq denote the complexity measure of a one-way two-player one-clean-qubit
protocol. We define a one-way two-player one-clean-qubit protocol as follows:

▶ Definition 13 (One-way two-player one-clean-qubit protocol). The computation in the one-
way version of one-clean-qubit protocols starts with a single qubit in the clean state and
the rest of the qubits in the totally mixed state. The first player applies her unitary on an
arbitrary number of qubits, sends some of the qubits to the next player who also applies his
unitary on an arbitrary number of qubits, and does a measurement. The cost is defined as
for general one-clean qubit protocols. This can be described by the figure below:

Figure 10 One-round one-clean-qubit protocol.

Note that this type of protocol is semi-unclocked by definition.
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We show an upper bound in terms of the weakly unbounded-error communication
complexity.

▶ Definition 14 (Weakly unbounded-error protocol, PP ). In a weakly unbounded-error
(randomized) protocol (PP protocol), the function f is computed correctly with probability
greater than 1

2 by a classical private coin protocol. The cost of the protocol with a maximum
error (over all inputs) of 1

2 ´ ϵ and a maximum communication of c, is given by PP pfq “

c ´ tlog ϵu. [17]

We show the following theorem for the upper bound on the communication complexity of
the one-clean-qubit one-way protocols (in the appendix):

▶ Theorem 15. QAÑB
r1s

pfq ď 2OpP P pfqq.

6.2 The Lower Bound on QAÑB
r1s

pfq

▶ Theorem 16. For all f : t0, 1un ˆ t0, 1un Ñ t0, 1u we have QAÑB
r1s

pfq ě 2ΩpP P pfqq´Oplog nq.

The proof relies only on the fact that an efficient one-way one-clean-qubit protocol needs
to achieve a large enough bias. The communication needed to do so is immaterial for our
lower bound, which is quite interesting. In other words, there is a threshold to the bias which
simply cannot be passed even if we allow more qubits to be sent. This is in sharp contrast to
many common modes of communication with error.

The bound on the achievable bias comes from margin complexity, an important concept
in learning theory [25].

Before we delve into the proof we need a few definitions.We define the notion of rectangles
and two complexity measures: discrepancy and margin complexity.

▶ Definition 17 (Rectangle [24]). A rectangle in X ˆ Y is a subset R Ď X ˆ Y such that
R “ A ˆ B for some A Ď X and B Ď Y .

▶ Definition 18 (Communication matrix [24]). The communication matrix Mf of a function
f : X ˆ Y Ñ t0, 1u is an p|X| ˆ |Y |q-dimensional matrix, whose rows are indexed by the
elements of X and the columns by the elements of Y .The px, yq entry of Mf is simply defined
as fpx, yq.

▶ Definition 19 (Discrepancy [24]). Let f : X ˆ Y Ñ t0, 1u be a function, R be any rectangle
in the communication matrix, and µ be a probability distribution on X ˆ Y . The discrepancy
of f according to µ is

discµpfq “ max
R

| Pr
µ

rfpx, yq “ 0 and px, yq P Rs ´ Pr
µ

rfpx, yq “ 1 and px, yq P Rs|.

Denote discpfq “ minµ discµpfq as the discrepancy of f over all distributions µ on X ˆ Y .

It is known that PP pfq ě Ωplogp 1
discpfq

qq from Fact 2.8 in [17], and from Theorem 8.1 in [17]
we get PP pfq ď Oplogp 1

discpfq
qq ` log nq.

▶ Definition 20 (Margin [25]). For a function f : X ˆ Y Ñ t0, 1u, let Mf denote the sign
matrix where all entries are Mf px, yq “ p´1qfpx,yq. The margin of Mf is given by:

mpMf q “ sup
taxu,tbyu

min
x,y

| xax|byy |

||ax||2||by||2
,

where the supremum is over all systems of vectors (of any length) taxuxPX , tbyuyPY such that
signpxax|byyq “ Mf px, yq for all x, y.
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The notion of margin complexity determines the extent to which a given class of functions
can be learned by large margin classifiers, which is an important class of machine learning
algorithms [25].

The proof of Theorem 16 is in the appendix.

7 The Trivial Lower Bound on Qr1spfq

The lower bound on the two-way one-clean-qubit communication complexity Qr1spfq ě

ΩpQpfqq is trivial since one-clean-qubit protocols can be turned into standard quantum
protocols at their cost. In Appendix C we discuss this lower bound for some well-known
functions.

8 Hardness of Classically Simulating the One-Clean-Qubit Model

We now turn to simulations of quantum protocols with the one-clean-qubit restriction by
randomized protocols. The most demanding definition of simulating a quantum protocol
by a randomized protocol is that the randomized protocol must replicate the acceptance
probabilities of a given quantum protocol on all inputs, up to some additive error1.

Our weaker (one-sided) definition of an ϵ-error simulation is:

▶ Definition 21 (ϵ-error simulation of a quantum protocol). Given a quantum protocol P for a
function f : X ˆ Y Ñ t0, 1u such that for all inputs px, yq P X ˆ Y , P accepts 1-inputs with
probability at least α and accepts 0-inputs with probability at most β. A classical simulation
of P with additive error of ϵ is one that accepts 1-inputs with probability at least α ´ ϵ and
accepts 0-inputs with probability at most β ` ϵ.

▶ Remark 22. The above definition is nontrivial only if α ´ ϵ ą β ` ϵ.

8.1 Simulating the One-Clean-Qubit Model with Polynomially Small
Additive Error

We show the following lemma (see the appendix):

▶ Lemma 23. Given any two-round (Alice Ñ Bob Ñ Alice) k-clean-qubit quantum protocol
(with communication 2k and where both messages contain only the k clean qubits) for a
function f that accepts 0-inputs with probability at most q and accepts 1-inputs with probability
at least p, there exists a two-round one-clean qubit protocol (with communication 2k) for the
same function that accepts 0-inputs with probability at most q

2k and accepts 1-inputs with
probability at least p

2k .

▶ Theorem 24. In communication complexity, there exists a function f : t0, 1un ˆ t0, 1un Ñ

t0, 1u and a one-clean-qubit quantum protocol P with communication Oplog nq such that
simulating P classically with an allowance of 1

n4 additive error requires Θpnq communication.

Proof. Consider the function below:

MIDDLEpx, yq “ 0 ô
ÿ

i

xiyi “
n

2 , MIDDLEpx, yq “ 1 ô
ÿ

i

xiyi ‰
n

2 ,

1 We only consider additive error.
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where x, y P t0, 1un. With Lemma 23 in mind, we design a standard quantum protocol first.
We would like to compute the state 1?

n

řn
i“1p´1qxiyi |iy. This can be done by executing the

following quantum protocol P:
1. Alice prepares the state 1?

n

řn
i“1 |iy |xiy and sends it to Bob.

2. Bob applies his unitary, which maps the state he received from Alice to
1?
n

řn
i“1p´1qxiyi |iy |xiy and sends the result to Alice.

3. Alice XORs the last qubit with xi and then traces out that qubit to obtain
1?
n

řn
i“1p´1qxiyi |iy, applies a Hadamard transformation and does a complete meas-

urement in the computational basis. The protocol outputs 1 if it measures the all-zero
string and outputs 0 otherwise.

This protocol requires 2 log n ` 2 communication and uses log n ` 1 clean qubits. Finally, we
transform the above protocol into a one-clean-qubit protocol according to Lemma 23.

Now we compute the acceptance probabilities of the standard quantum protocol above.
Note that x¨|¨y denotes the inner product.

xHp
1

?
n

n
ÿ

i“1
|iy p´1qxiyi q| |00 ¨ ¨ ¨ 0yy “ x

1
?

n

n
ÿ

i“1
|iy p´1qxiyi |Hp|00 ¨ ¨ ¨ 0yqy

“ x
1

?
n

n
ÿ

i“1
|iy p´1qxiyi |

1
?

n

n
ÿ

i“1
|iyy . (2)

For the case where xx, yy “
řn

i“1 xiyi “ n
2 , we have n

2 0’s and n
2 1’s among the xiyi and

hence, (2) for this case equals to zero, which implies that the protocol rejects 0-inputs with
certainty.

For the case where xx, yy “
řn

i“1 xiyi “ n
2 ` t, we have n

2 ´ t 0’s and n
2 ` t 1’s and

hence, the amplitude from (2) is 1?
n

¨
`

n
2 ` t ´ p n

2 ´ tq
˘ 1?

n
“ 2t

n , which implies an acceptance
probability of p 2t

n q2 “ 4t2

n2 .
Notice that the gap between 0- and 1-inputs is 4t2

n2 . Now, simulating P using only one
clean qubit does not change the communication but reduces the acceptance probability of
1-inputs from 4t2

n2 to 2t2

n3 and does not change the acceptance probability of 0-inputs. The
gap between the acceptance probability of 0-inputs and 1-inputs is now 2t2

n3 ´ 0 “ 2t2

n3 .
We will focus on the 1-inputs with t “ ´1.
We then show that classically simulating the one-clean-qubit protocol with 1

n4 additive
error for the function MIDDLEpx, yq requires Ωpnq communication. For this, we use
Razborov’s analysis of the rectangle bound for the Disjointness problem[32] together with a
reduction and the fact that the rectangle bound is not sensitive to acceptance probabilities
being small. This shows that any classical protocol that simulates the above quantum protocol
within additive error 1{n4 needs communication Ωpnq. Details are in Appendix E. ◀

8.2 Simulating the One-Clean-Qubit Model with Constant Additive
Error

Previous results about the hardness of simulating the one-clean-qubit model (in circuit
complexity) require the additive simulation error to be exponentially small. In the previous
subsection we have shown that in communication complexity additive error 1{polypnq is
already enough to give a separation (which is also not based on unproven assumptions). Here
we consider pushing this even further: can the one-clean-qubit model be simulated classically
with constant additive error?
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Showing hardness of a classical simulation with constant additive error is equivalent
to showing a separation between Qr1spfq and Rpfq: regarding both complexity measures
efficient error reduction is possible2. And showing hardness of a simulation of a quantum
protocol for f within a small constant error means showing Rpfq is large.

The strength of the one-clean-qubit model is trace-estimation. Any communication-like
unitary can have its trace estimated by a quantum protocol with only one clean qubit
(compare the proof of Theorem 8). So we look for a hard problem along those lines. A
two-party one-way quantum protocol is not a good choice, since the trace of the product of
unitaries applied by Alice and Bob is a vector inner product and can be estimated well by
known randomized protocols with small error, if the gap of acceptance between one-inputs
and zero-inputs is large [23].

For technical reasons (cyclic property of matrix trace), looking for the simplest problem
that should exhibit a separation we consider the three-player number-in-hand model3.

We conjecture the following:

▶ Conjecture 25. There exists a function f and a one-clean-qubit quantum protocol P that
computes f exactly with communication Oplog nq such that simulating P classically with an
allowance of constant additive error requires Ωp

?
nq communication.

Consider the number-in-hand ABC (promise) problem involving three parties: Alice, Bob
and Charlie, who are each given nˆn matrices A, B and C respectively, where A, B, C P SOn,
where SOn is the special orthogonal group. The ABC problem is described by the following
function:

ABCpA, B, Cq “ 1 ðñ ABC “ I, ABCpA, B, Cq “ 0 ðñ ABC “ ´I.

▶ Lemma 26. There exists a three-player number-in-hand one-clean-qubit protocol that solves
ABC exactly with communication Oplog nq.

Proof. The initial state starts off with one qubit in a pure state |0y and log n totally mixed
qubits. The protocol goes as follows:
1. Alice applies a Hadamard transformation to the clean qubit and obtains σ “ H |0y “

1?
2 p|0y ` |1yq. She then tensors it with an arbitrary state ρ on log n qubits (for example

I
n ) and we denote the resulting state as ζ. She then applies her controlled-A unitary to ζ

and gets ζ 1. Alice send ζ 1 to Bob.
2. Bob applies his controlled-B unitary to ζ 1 and gets ζ2. Bob sends ζ2 to Charlie.
3. Charlie applies his controlled-C unitary to ζ2 and gets ζ3. He then applies a Hadamard

transformation to the first qubit in ζ3 and does a measurement.

The protocol is illustrated in Figure 11.

Figure 11 One-clean-qubit protocol for ABC.

2 We defined Qr1s so.
3 In the three-player number-in-hand model, each player sees only their own input.
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If ABC “ I, the composite of controlled A, B and C is the same as that of a controlled-
identity unitary, which does nothing to σ. When σ undergoes a Hadamard transformation
before being measured, it becomes the |0y state. The protocol outputs 1 if it measures |0y .
If ABC “ ´I, the composite of controlled A, B and C is similar to that of a controlled-Z
unitary, which does a phase flip on |1y in σ, changing it into 1?

2 p|0y ´ |1yq. We denote
the phase-flipped σ as σ1. When σ1 undergoes a Hadamard transformation before being
measured, it becomes the |1y state. The protocol outputs 0 if it measures |1y. ◀

Note that the quantum protocol uses the arbitrary state ρ (here ρ “ I{n) as a catalyst
as in [8]. Regarding the randomized complexity of ABC, we prove the following theorem:

▶ Theorem 27. RpABCq ď Op
?

nq.

See the full version [18] for the proof.
Let us note here that with minor modifications, both the quantum and classical protocols

for ABC are one-way and can be run in any order among the players, e.g. Charlie to Alice to
Bob or Alice to Charlie to Bob.

It remains an open problem to derive a matching lower bound for the randomized
communication complexity of ABC.

▶ Conjecture 28. RpABCq ě Ωp
?

nq as long as n is even.

We now consider a geometric conjecture that implies Conjecture 28. This conjecture says
that if we take two sufficiently large subsets of SOn (the special orthogonal group), choose
two operators independently from them, and multiply them, we get something similar to the
uniform distribution on all of SOn.

▶ Conjecture 29. There are constants δ ą 0, γ ą 1 such that the following is true:
Let M, R Ď SOn and, for the Haar measure µ on SOn, let µpMq, µpRq ě 2´δ

?
n. Denote

by τ the density function of the probability distribution that arises, when B P M and C P R

are chosen uniformly from these sets independently, and the matrix product BC is formed.
Then ProbAPSOn pτpAq R r1{γ, γsq ď 2´δ

?
n.

Conjecture 28 follows from Conjecture 29 by an application of the rectangle bound from
communication complexity: A large rectangle/box L ˆ M ˆ R, where L, M, R Ď SOn leads
to a τ that is similar to the uniform distribution. Only an exponentially small subset of
matrices A P SOn has τpAq not constant. This also implies that EAPLτpAq “ Θp1q, if we
throw out the small subset of A P L where τpAq is too large (this does not affect size or error
much.) Denote by βC the density function of the distribution where a random B P M is
multiplied to a fixed C. τpAq “ ECPRβCpA˚q.

Define H “ tpA, B, Cq : A, B, C P SOn and ABC “ Iu and G “ tpA, B, Cq : A, B, C P

SOn and ABC “ ´Iu. It is easy to show that EAPLECPRrβCpAqs “
µpLˆMˆR|Hq

µpLˆMˆRq
. That

means that µpL ˆ M ˆ R|Hq and µpL ˆ M ˆ R|Gq differ by at most a constant factor and
L ˆ M ˆ R has constant error under the distribution that puts weight 1/2 on each of G, H.
Hence the rectangle/box L ˆ M ˆ R has large error. We use that n is even because otherwise
´I R SOn. Furthermore in the case of odd n Alice, Bob, and Charlie can simply compute
detpABCq “ detpAqdetpBqdetpCq in order to determine whether ABC “ I or ABC “ ´I.
This does not work in the case of even n of course.

We also note that the corresponding conjecture is wrong for On, since SOn is a subgroup
of measure 1/2 that serves as a counterexample. Note that SOn does not have any proper
subgroups of size larger than 0.
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As weaker conjecture, in which the stated probability is upper bounded by a small
constant would be sufficient to give a lower bound on one-way protocols and might be much
easier to achieve. We note that in [19] we have recently shown a lower bound for the related
aBc problem, in which Alice and Charlie receive vectors from the sphere instead of matrices
in a generalized one-way setting. Note that the protocol for Theorem 27 really solves the
aBc problem.

9 Conclusion

We investigate a communication complexity model in which all storage consist initially of
only one clean qubit plus other qubits that start in the totally mixed state, and where only
one projective measurement can be done in the end. Since error reduction is not possible
efficiently in this model we define an appropriate complexity measure depending on the bias.

We introduce the notions of clocked protocols with ghosted communication channel
and semi-unclocked protocols with fixed communication channel for this model. Efficient
simulations of clocked k-clean-qubits protocols by clocked one-clean-qubit protocols as well
as simulations of clocked k-clean-qubit protocols by semi-unclocked one-clean-qubit protocols
are described. Remarkably, the semi-unclocked model is only less efficient by a logarithmic
factor compared to the clocked model.

We study one-way protocols in the model and are able to almost pinpoint their complexity
in terms of PP-communication complexity: 2ΩpP P pfqq´Oplog nq ď QAÑB

r1s
pfq ď 2OpP P pfqq,

implying that functions when computed using the one-clean-qubit model have a cost of at
most 2Opmq, where m is the input length, and that this is tight for some functions (one-way).

Classically simulating a certain one-clean-qubit protocol for the MIDDLEpx, yq problem
with 1

polypnq
additive error is hard, as a classical simulation with such error requires Θpnq

communication, compared to the Oplog nq communication of the one-clean-qubit protocol.
We conjecture that classically simulating the one-clean-qubit protocol we give for the

three-player number-in-hand ABC problem with constant additive error requires Ωp
?

nq

communication, compare to the Oplog nq communication in the one-clean-qubit protocol. We
show the corresponding upper bound on RpABCq.

References
1 S. Aaronson and A. Arkhipov. The computational complexity of linear optics. Theory of

Computing, 9:143–252, 2013.
2 A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing,

37(1):210–239, 2007.
3 A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower bound method, with

applications to direct product theorems and time-space tradeoffs. In Proceedings of 38th ACM
STOC, pages 618–633, 2006. quant-ph/0511200.

4 L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory.pdf.
In Proceedings FOCS, 1986.

5 M. J. Bremner, R. Jozsa, and D. J. Shepherd. Classical simulation of commuting quantum
computations implies collapse of the polynomial hierarchy. In Proceedings of the Royal Society
A, volume 467, pages 459–472, 2011.

6 D. J. Brod. The complexity of simulating constant-depth boson sampling. Physical Review A,
91(4), 2015.

7 J. Brody, S. Chen, P. A. Papakonstantinou, H. Song, and X. Sun. Space-bounded communica-
tion complexity. In Proceedings of the 4th conference on Innovations in Theoretical Computer
Science, ITCS ’13, pages 159–172, 2013.



H. Klauck and D. Lim 69:17

8 H. Buhrman, R. Cleve, M. Koucký, B. Loff, and F. Speelman. Computing with a full memory:
Catalytic space. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of
Computing, STOC ’14, pages 857–866. ACM, 2014.

9 C. Cade and A. Montanaro. The quantum complexity of computing schatten p-norms, 2017.
arXiv:1706.09279v1.

10 R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entanglement and the com-
munication complexity of the inner product function. In Proceedings of 1st NASA QCQC
conference, volume 1509 of Lecture Notes in Computer Science, pages 61–74. Springer, 1998.
arXiv:quant-ph/9708019.

11 R. de Wolf. Quantum communication and complexity. Theoretical Computer Science, 287:337–
353, 2002.

12 K. Fujii, H. Kobayashi, T. Morimae, H. Nishimura, S. Tamate, and S. Tani. Power of quantum
computation with few clean qubits. Proceedings of 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), pages 13:1–13:14, 2016.

13 R. Jain and H. Klauck. The partition bound for classical communication complexity and query
complexity. In 25th Annual Conference on Computational Complexity, pages 247–258, 2010.
arXiv:0910.4266v2.

14 R. Jozsa and M. V. den Nest. Classical simulation complexity of extended clifford circuits.
Quantum Information and Computation, 14(7-8):0633–0648„ 2014.

15 B. Klartag and O. Regev. Quantum one-way communication is exponentially stronger than
classical communication. In Proceedings of 43rd ACM STOC, 2011.

16 H. Klauck. Quantum and classical communication-space tradeoffs from rectangle bounds. In
FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science, 24th
International Conference, pages 384–395, 2004.

17 H. Klauck. Lower bounds for quantum communication complexity. SIAM Journal on Comput-
ing, 37(1):20–46, 2007. Earlier version in FOCS’01. quant-ph/0106160.

18 H. Klauck and D. Lim. The power of one clean qubit in communication complexity. arXiv,
2018. arXiv:1807.07762.

19 H. Klauck and D. Lim. The abc problem and equator sampling renyi divergences. arXiv, 2019.
arXiv:1912.11275.

20 H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product theorems
and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–1493, 2007. Earlier
version in FOCS’04. quant-ph/0402123.

21 E. Knill and R. Laflamme. On the power of one bit of quantum information. Phys.Rev.Lett.,
81:5672–5675, 1998. arXiv:quant-ph/9802037v1.

22 I. Kremer. Quantum communication. Master’s Thesis, 1995.
23 I. Kremer, N. Nisan, and D. Ron. On randomized one-round communication complexity.

Computational Complexity, 8(1):21–49, 1999. Earlier version in STOC’95. Correction at
http://www.eng.tau.ac.il/˜danar/Public/KNR-fix.ps.

24 E. Kushilevitz and N. Nisan. Communication Complexity. CUP, 1997.
25 N. Linial and A. Shraibman. Learning complexity vs communication complexity. Combinatorics,

Probability and Computing, 18:227–245, 2009.
26 T. Morimae, K. Fujii, and J. F. Fitzsimons. On the hardness of classically simulating the one

clean qubit model. Phys. Rev. Lett., 112, 130502, 2014.
27 T. Morimae and T. Koshiba. Classical simulatability of the one clean qubit model, 2014.

arXiv:1405.6840v2.
28 A. Nayak. Optimal lower bounds for quantum automata and random access codes. In In

Proceedings of 40th IEEE FOCS, 1999.
29 X. Ni and M. V. den Nest. Commuting quantum circuits: Efficient classical simulations versus

hardness results. Quantum Information and Computation, 13(1-2):0054–0072, 2013.

MFCS 2021

http://arxiv.org/abs/1706.09279v1
http://arxiv.org/abs/quant-ph/9708019
http://arxiv.org/abs/0910.4266v2
http://arxiv.org/abs/1807.07762
http://arxiv.org/abs/1912.11275
http://arxiv.org/abs/quant-ph/9802037v1
http://arxiv.org/abs/1405.6840v2


69:18 Communication Complexity with One Clean Qubit

30 D. Poulin, R. Blume-Kohout, R. Laflamme, and H. Ollivier. Exponential speed-up with a
single bit of quantum information: Testing the quantum butterfly effect. Phys. Rev. Lett., 92,
177906, 2004.

31 D. Poulin, R. Laflamme, G. J. Milburn, and J. P. Paz. Testing integrability with a single bit
of quantum information. Phys. Rev. A, 68(2):022302–1–022302–6, 2003.

32 A. A. Razborov. On the distributional complexity of disjointness. Theoret. Comput. Sci.,
106:385–390, 1992.

33 A. A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya:
Mathematics, 67(1):145, 2003.

34 P. W. Shor and S. P. Jordan. Estimating jones polynomials is a complete problem for one
clean qubit. Quantum Information and Computation, 8:681, 2008. arXiv:0707.2831v3.

35 Y. Takahashi, S. Tani, T. Yamazaki, and K. Tanaka. Commuting quantum circuits with
few outputs are unlikely to be classically simulatable. Computing and Combinatorics, 21st
International Conference, COCOON 2015, 9198 of Lecture Notes in Computer Science:223–234,
2015.

36 Y. Takahashi, T. Yamazaki, and K. Tanaka. Hardness of classically simulating quantum
circuits with unbounded toffoli and fan-out gates. Quantum Information and Computation,
14(13-14):1149–1164, 2014.

37 B. M. Terhal and D. P. DiVincenzo. Adaptive quantum computation, constant depth quantum
circuits and arthur-merlin games. Quantum Information and Computation, 4(2):134–145, 2004.

38 A. C. Yao. Some complexity questions related to distributive computing(preliminary report).
In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79,
pages 209–213. ACM, 1979.

A Open Problems

Prove Conjecture 28 or the weaker version mentioned above that establishes a lower
bound for one-way protocols.
What are some nontrivial lower bounds on Qr1spfq, for instance what are Qr1spDISJq

and Qr1spV iSq (Vector in Subspace [15])? We conjecture that Qr1spDISJq “ Ωpnq based
on the difficulty of trying to compute the function in the one-clean-qubit model. Suppose
that V iS can computed in the one-clean-qubit communication model efficiently (say with
polyplogq communication), then arbitrary one-way quantum protocols can be simulated
with low communication in the one-clean-qubit model. However, we assume that such a
supposition seems unlikely and hence we conjecture that Qr1spV iSq is fairly large, possibly
even Qr1spV iSq “ Ωpnq.
Is Qr1spfq ą n for any function? A candidate for this problem would be a random function
chosen from all functions f : t0, 1un ˆ t0, 1un Ñ t0, 1u. It would be interesting if the
one-clean-qubit model can compute all or most f : t0, 1un ˆ t0, 1un Ñ t0, 1u with linear
cost.
What are some examples of functions in which Qr1spfq ąą Rpfq or Qr1spfq ăă Rpfq?
For instance, for the two-player ABC problem, ABC2, described as follows:

ABC2pA1, A2, B1, B2q “ 1 ô A1B1A2B2 “ I,

ABC2pA1, A2, B1, B2q “ 0 ô A1B1A2B2 “ ´I,

where A1, A2 are Alice’s unitaries and B1, B2 are Bob’s unitaries, Qr1spABC2q “ Oplog nq.
What is RpABC2q?
Are there any specific lower bound methods for the semi-unclocked one-clean-qubit
protocol?

http://arxiv.org/abs/0707.2831v3
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B Proofs Concerning One-Way Protocols

B.1 Proof of Theorem 15
Consider a c-bit PP -communication protocol P with bias ϵ where Alice sends a message
T pxq of length c to Bob4.
1. We define Alice’s unitary Ux

A such that
If z “ T pxq, then Ux

A : |0y |z1 ¨ ¨ ¨ zcy ÞÑ |1y |z1 ¨ ¨ ¨ zcy

If z ‰ T pxq, then Ux
A : |0y |z1 ¨ ¨ ¨ zcy ÞÑ |0y |z1 ¨ ¨ ¨ zcy

and extend to a unitary in any possible way, for all z P t0, 1uc. Alice applies Ux
A to the

initial state, and computes Ux
Ap|0y x0| b I

2c qUx:

A .
2. Alice then sends the result σ to Bob. This requires c ` 1 qubits of communication.
3. Upon receiving σ from Alice, Bob tensors it with I

2 and obtains the state σ b I
2 . Bob

then applies the unitary V y
B to the state σ b I

2 , in particular, V y
Bpσ b I

2 qV y˚

B , as follows

V y
B :

#

|0y |z1 ¨ ¨ ¨ zc`1y ÞÑ |0y |zc`1y |z1 ¨ ¨ ¨ zcy

|1y |z1 ¨ ¨ ¨ zc`1y ÞÑ |1y Uy
B b I |z1 ¨ ¨ ¨ zc`1y ,

for all z P t0, 1uc`1. That is to say, if the first qubit of σ b I
2 is 1, V y

B will apply the
protocol unitary Uy

B . Otherwise, a “coin toss” is done by flipping the last qubit over to
the second position.

4. Lastly, he does the measurement on the second qubit.

The probability of the correct message is 1
2c . With a protocol of bias ϵ (and hence and

error of 1
2 ´ ϵ), the acceptance probability of the message is 1

2c p 1
2 ` ϵq. On the other hand,

the acceptance probability of the message in the “coin toss” is given by 1
2 p1 ´ 1

2c q. Therefore,
we have the total acceptance probability:

p1 ´
1
2c

q
1
2 `

1
2c

p
1
2 ` ϵq “

1
2 ´

1
2c`1 `

1
2c`1 `

ϵ

2c

“
1
2 `

ϵ

2c (3)

The total cost of the protocol is bounded as follows:

QAÑB
r1s pfq ď pc ` 1q ¨

1
ϵ12 “ pc ` 1q ¨ 22c ¨

1
ϵ2 ď 22P P pfq ¨ pPP pfq ` 1q ď 2OpP P pfqq, (4)

where ϵ1 “ ϵ
2c from (3).

B.2 Proof of Theorem 16
Proof. Assume that the protocol measures the first qubit in the computational basis (if not,
then a similar construction as in Theorem 8 can be used to make this true). The probability
of measuring zero is given by 1

2 `
trpIAbUy

B
¨Ux

AbIBq

2m`1 [34], where m is the total number of qubits
involved and the bias is the term trpIAbUy

B
¨Ux

AbIBq

2m`1 . Note that IA and IB act on the private
qubits of Alice and Bob respectively. Let Ux

A b IB “ Ax and IA b Uy
B “ By, and it follows

that
trpIA b Uy

B ¨ Ux
A b IBq

2m`1 “
trpByAxq

2m`1 “
xby|aT

x y

2m`1 “
xby|aT

x y

2||ax||2||by||2
,

4 P P -protocols can be assumed to be one-way without loss of generality [4]

MFCS 2021



69:20 Communication Complexity with One Clean Qubit

where ax and by are the matrices Ax and By viewed as vectors, since Ax and By are unitary
and hence ||ax||2 “ ||by||2 “ 2 m

2 . If the protocol has bias ϵ, then xby |aT
x y

2m`1 ě ϵ for fpx, yq “ 1
and xby |aT

x y

2m`1 ď ´ϵ for fpx, yq “ 0.

▶ Remark 30. The size of the unitary matrices does not matter, which is good, since there
can be an arbitrarily number of private qubits used by the players but never communicated.

We know from the above that the best possible bias satisfies 2ϵ ď mpfq. From Theorem
3.1 in [25] which states that discpAq “ ΘpmpAqq, and from Theorem 8.1 in [17], which states
that PP pfq ď Op´ log discpfq ` log nq we have

QAÑB
r1s pfq ě

4
m2pfq

ě 2ΩpP P pfqq´Oplog nq. ◀

▶ Remark 31. This lower bound holds regardless of how much communication is involved: it
follows from the fact that one-way one-clean qubit protocols cannot achieve a better bias.

C The Trivial Lower Bound

Qpfq for some functions is given as below [22, 33, 10, 11, 28]:
The equality function (EQ) defined as

EQpx, yq “ 1 ðñ x “ y , EQpx, yq “ 0 ðñ x ‰ y,

where x, y P t0, 1un, has QpEQq “ Θplog nq.
Note: No public coin or entanglement.
The disjointness function (DISJ) defined as

DISJpx, yq “ 1 ðñ x X y “ H , DISJpx, yq “ 0 ðñ x X y ‰ H,

where x, y P t0, 1un, has QpDISJq “ Θp
?

nq.
Note: Ωp

?
nq ď Qr1spDISJq ď Opnq.

The inner product modulo two function (IP2) defined as

IP2px, yq “
ÿ

i

xiyi mod 2,

where x, y P t0, 1un, has QpIP2q “ Θpnq.
Note: QAÑB

r1s
pIP2q “ 2Θpnq while Qr1spIP2q “ Θpnq.

The vector in subspace function (ViS) defined as

V iSpv, H0q “ 1 ðñ v P H0 , V iSpv, H0q “ 0 ðñ v P HK
0 ,

where v P Rn and H0 Ď Rn is a subspace with dimension n
2 , has QpV iSq “ Θplog nq.

The index function (INDEX) defined as

INDEXpx, iq “ xi,

where x P t0, 1un and 1 ď i ď n has QpINDEXq “ Θplog nq.
Qr1spEQq, Qr1spV iSq and Qr1spINDEXq are basically unknown: the lower bounds we know
are Ωplog nq, but the upper bounds we have are Opnq for INDEX and EQ, while Theorem
7 implies Qr1spV iSq “ Opn2 log nq.
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D Proof of Lemma 23

In the quantum protocol, Alice prepares the first message |ϕxy by applying a protocol unitary
W

p1q
x to the all-zero state on the k clean qubits, and sends it to Bob. Bob then applies

the protocol unitary V
1p1q

y to the message sent by Alice and sends the result back to her.
Alice then applies her second unitary W

1p2q
x and does a measurement. This protocol has

communication 2k and accepts 0-inputs with probability at most q and accepts 1-inputs with
probability at least p, where p ą q.

Given any state |ϕxy, we can find an orthonormal basis βx “ t|β1y ¨ ¨ ¨ |β2k yu that includes
|ϕxy so that |ϕxy is a member of the basis and

ř2k

i“1
|βiyxβi|

2k “ I
2k , such that the state I{2k is

the uniform distribution on the elements in the basis. Consider a one-clean-qubit protocol
that simulates the above quantum protocol and goes as follows:
1. We define Alice’s unitary W

1p1q
x such that

If |βiy “ |ϕxy, then W
1p1q
x : |0y |βiy ÞÑ |1y |βiy

If |βiy ‰ |ϕxy, then W
1p1q
x : |0y |βiy ÞÑ |0y |βiy

and extend to a unitary in any possible way.
where |βiy P βx. Alice applies W

1p1q
x to the initial state, in particular, computes σx “

W
1p1q
x p|0y x0| b I

2c qW
1p1q:
x .

2. Alice then sends the last k qubits to Bob.
3. Bob applies the unitary V

1p1q
y to the qubits he received from Alice, in particular computes

σy “ I b V
1p1q

y pσxqI b V
1p1q:

y , where dim(I)=2. Bob sends the qubits back to Alice.
4. Alice applies her unitary W

1p2q
x (tensored with identity on the first qubit) to σy and

measures the first qubit. She outputs 0 if she obtains a measurement result of |0y. On the
other hand, if she obtains a measurement of |1y, she proceeds to execute the measurement
of the original quantum protocol. In this case, the acceptance probability of 0-inputs is
at most q

2k and the acceptance probability for 1-inputs is at least p
2k . Note that the two

measurements can be combined into one.
The simulation of a k-clean-qubit quantum protocol by a one-clean-qubit protocol is shown
in Figure 12:

(a) Original Quantum Protocol. (b) One-Clean-Qubit Protocol.

Figure 12 Simulation by a one-clean-qubit protocol.

E The Simulation Lower Bound

First, we insert dummies into the first n
2 ´ 1 entries of each string (set all to 1) and the

remaining entries are drawn according to a distribution defined in [32].
Consider the linear program (LP) for the rectangle bound (see [13]) as follows, where we

set the acceptance probability for 1-inputs to be at least α “ 1
n3 . We consider an additive

error of 1
n4 and the simulation is required to accept 0-inputs with probability at most 1

n4

and accept 1-inputs with probability at least 2
n3 ´ 1

n4 ě 1
n3 “ α. Recall that we consider

as 1-inputs only those x, y with
ř

i xiyi “ n
2 ´ 1, and as 0-inputs those with

ř

i xiyi “ n
2 .
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Denote by R the set of all rectangles in the communication matrix.
Primal

minimize
ÿ

RPR
WR

subject to
ÿ

tRPR|x,yPRu

WR ě α, for all x, y :
ř

i xiyi “ n
2 ´ 1

ÿ

tRPR|x,yPRu

´WR ě ´ 1
n4 , for all x, y :

ř

i xiyi “ n
2

WR ě 0

Dual

maximize
ÿ

tx,y|
ř

i xiyi“ n
2 ´1u

αγxy ´
ÿ

tx,y|
ř

i xiyi“ n
2 u

1
n4 σxy

subject to
ÿ

tx,yPR|
ř

i xiyi“ n
2 ´1u

γxy ´
ÿ

tx,yPR|
ř

i xiyi“ n
2 u

σxy ď 1 for all R P R

σxy, γx,yě 0

A protocol P that accepts 1-inputs with probability at least 1
n3 and accepts 0-inputs with

probability at most 1
n4 can be viewed as a probability distribution on deterministic protocols.

Each deterministic protocol (in a randomized public-coin protocol) can be represented by a
protocol tree. The probabilities of decision trees are given as p1, p2, . . . , pt. Every leaf in each
decision tree has an attached rectangle, and a decision: accept or reject. We consider only the
rectangles which lead to acceptance, and we assign weight 0 to those rectangles that do not
appear in any protocol tree at an accepting leaf and weight WR “

ÿ

ti|R accepted in tree iu

pi

for rectangles appearing in protocol trees i.

▷ Claim 32. The constraints in the primal LP hold.

Proof.
Let px, yq be a 1-input. Summing up all the probabilities of the decision trees where
px, yq is in a 1-rectangle, we get the LHS of the first inequality constraint, which also
corresponds to the acceptance probability, which must exceed α on the RHS.
Let px, yq be a 0-input. Adding up the probabilities of decision trees where px, yq appears
in a 1-rectangle will give the LHS of the second inequality constraints, which is at most
1{n4 because that is the maximum additive error allowed.
The nonnegativity constraint is automatically fulfilled since WR’s are sums of probabilities
which must be at least zero. ◁

▷ Claim 33. If there is a classical protocol that accepts 1-inputs with probability ě α and
0-inputs with probability ď 1{n4 and communication c then there exists a solution of cost 2c

for the primal LP.

Proof. The contribution of each decision tree to WR is at most 2c ¨ pi, since there are at most
2c leaves in each decision tree. Therefore,

ÿ

RPR
WR ď

t
ÿ

i“1
2c ¨ pi “ 2c. ◁
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Therefore, in a 1
n4 -error simulation of a quantum protocol (that accepts 1-inputs with

probability at least 2
n3 and accepts 0-inputs with probability 0), the simulating randomized

protocol (with communication c) must accept 1-inputs with probability at least 2
n3 ´ 1

n4 ě 1
n3

and accept 0-inputs with probability at most 1
n4 , and hence yield a solution to the primal

LP of cost at most 2c. By LP duality the primal and its dual have the same cost, and we
want to show the lower bound for the cost. Hence, we work with the dual.

▷ Claim 34. The cost of the LP is 2Ωpnq.

See the full version [18] for the proof.
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1 Introduction

The use of ordinals is a powerful tool when proving that processes terminate, when justifying
induction and recursion [20, 24], or in (meta)mathematics generally. Unfortunately, the
standard definition of ordinals is not very well-behaved constructively, meaning that additional
work is required before this tool can be deployed in constructive mathematics or program
verification tools based on constructive type theory such as Agda [33], Coq [15] or Lean [18].
Constructively, the classical notion of ordinal fragments into a number of inequivalent
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definitions, each with pros and cons. For example, “syntactic” ordinal notation systems [10,
36, 38] are popular with proof theorists, as their concrete character typically mean that
equality and the order relation on ordinals are decidable. However, truly infinitary operations
such as taking the limit of a countable sequence of ordinals are usually not constructible. We
will consider a simple ordinal notation system based on Cantor normal forms [32], designed
in such a way that there are no “junk” terms not denoting real ordinals.

Another alternative (based on notation systems by Church [14] and Kleene [28]), popular in
the functional programming community, is to consider “Brouwer ordinal trees” O inductively
generated by zero, successor and a “supremum” constructor

sup : (N → O) → O

which forms a new tree for every countable sequence of trees [8, 16, 26]. By the inductive
nature of the definition, constructions on trees can be carried out by giving one case for zero,
one for successors, and one for suprema, just as in the classical theorem of transfinite induction.
However calling the constructor sup is wishful thinking; sup(s) does not faithfully represent the
suprema of the sequence s, since we do not have that e.g. sup(s0, s1, s2, . . .) = sup(s1, s0, s2, . . .)
– each sequence gives rise to a new tree, rather than identifying trees representing the same
suprema. We use the notion of higher inductive types [17, 30] from homotopy type theory [40]
to remedy the situation and make a type of Brouwer trees which faithfully represents ordinals.
Since our ordinals now can be infinitary, we lose decidability of equality and order relations,
but we retain the possibility of classifying an ordinal as a zero, a successor or a limit.

One can also consider extensional wellfounded orders, a variation on the classical set-
theoretical axioms more suitable for a constructive treatment [39], which was transferred to
the setting of homotopy type theory in the HoTT book [40, Chapter 10], and significantly
extended by Escardó [23]. One is then forced to give up most notions of decidability – it is
not even possible to decide if a given ordinal is zero, a successor or a limit. However many
operations can still be defined on such ordinals, and properties such as wellfoundedness can
still be proven. This is also the notion of ordinal most closely related to the traditional
notion, and thus the most obviously “correct” notion in a classical setting.

All in all, each of these approaches gives quite a different feel to the ordinals they represent:
Cantor normal forms emphasise syntactic manipulations, Brouwer trees how every ordinal
can be classified as a zero, successor or limit, and extensional wellfounded orders the set
theoretic properties of ordinals. As a consequence, each notion of ordinals is typically used
in isolation, with no interaction or opportunities to transfer constructions and ideas from
one setting to another – e.g., do the arithmetic operations defined on Cantor normal forms
obey the same rules as the arithmetic operations defined on Brouwer trees? The goal of this
paper is to answer such questions by connecting together the different notions. We do this
firstly by introducing an abstract axiomatic framework of what we expect of any notion of
ordinal, and explore to what extent the notions above satisfy these axioms, and secondly by
constructing faithful embeddings between the notions, which shows that they all represent a
correct notion of ordinal from the point of view of classical set theory.

Contributions

We identify an axiomatic framework for ordinals and ordinal arithmetic that we use to
compare the situations above in the setting of homotopy type theory.
We define arithmetic operations on Cantor normal forms [32] and prove them uniquely
correct with respect to our abstract axiomatisation. This notion of correctness has not
been verified for Cantor normal forms previously, as far as we know.
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We construct a higher inductive-inductive type of Brouwer trees, and prove that their
order is both wellfounded and extensional – properties which do not hold simultaneously
for previous definitions of ordinals based on Brouwer trees. Further, we define arithmetic
operations, and show that they are uniquely correct.
We prove that the “set-theoretic” notion of ordinals [40, Section 10.3] satisfies our
axiomatisation of addition and multiplication, and give constructive “taboos”, showing
that many operations on these ordinals are not possible constructively.
We relate and connect these different notions of ordinals by constructing order preserving
embeddings from more decidable notions into less decidable ones.

Formalisation and Full Proofs

We have formalised the material on Cantor normal forms and Brouwer trees in cubical
Agda [43] at https://cj-xu.github.io/agda/constructive-ordinals-in-hott/; see
also Escardó’s formalisation [23] of many results on “set-theoretic” ordinals in HoTT. We
have marked theorems with formalised and partly formalised proofs using the QED symbols
◀Ô and ◀Ó respectively; they are also clickable links to the corresponding machine-checked
statement. Moreover, pen-and-paper proofs for all our results can be found in the the arXiv
version of the paper.

Our formalisation uses the {-# TERMINATING #-} pragma to work around one known bug
(issue #4725) and one limitation of the termination checker of Agda: recursive calls hidden
under a propositional truncation are not seen to be structurally smaller. Such recursive calls
when proving a proposition are justified by the eliminator presentation of [21] (although it
would be non-trivial to reduce our mutual definitions to eliminators).

2 Underlying Theory and Notation

We work in and assume basic familarity with homotopy type theory (HoTT), i.e. Martin-Löf
type theory extended with higher inductive types and the univalence axiom [40]. The central
concept of HoTT is the Martin-Löf identity type, which we write as a = b – we write a ≡ b

for definitional equality. We use Agda notation (x : A) → B(x) for the type of dependent
functions, and write simply A → B if B does not depend on x : A. If the type in the domain
can be inferred from context, we may simply write ∀x.B(x) for (x : A) → B(x). Freely
occurring variables are assumed to be ∀-quantified.

We denote the type of dependent pairs by Σ(x : A).B(x), and its projections by fst and
snd. We write A × B if B does not depend on x : A. We write U for a universe of types; we
assume that we have a cumulative hierarchy Ui : Ui+1 of such universes closed under all type
formers, but we will leave universe levels typically ambiguous.

We call a type A a proposition if all elements of A are equal, i.e. if (x : A) → (y : A) →
x = y is provable. We write hProp = Σ(A : U).isProp(A) for the type of propositions, and we
implicitly insert a first projection if necessary, e.g. for A : hProp, we may write x : A rather
than x : fst(A). A type A is a set, A : hSet, if (x = y) : hProp for every x, y : A.

By ∃(x : A).B(x), we mean the propositional truncation of Σ(x : A).B(x), and if
(a, b) : Σ(x : A).B(x) then |(a, b)| : ∃(x : A).B(x). The elimination rule of ∃(x : A).B(x)
only allows to define functions into propositions. By convention, we write ∃k.P (k) for
∃(k : N).P (k). Finally, we write A ⊎ B for the sum type, 0 for the empty type, 1 for the type
with exactly one element ∗, 2 for the type with two elements ff and tt, and ¬A for A → 0.
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The law of excluded middle (LEM) says that, for every proposition P , we have P ⊎ ¬P .
Since we explicitly work with constructive notions of ordinals, we do not assume LEM, but
rather use it as a taboo: a statement is not provable constructively if it implies LEM. Another,
weaker, constructive taboo is the weak limited principle of omniscience WLPO: It says that
any sequence s : N → 2 is either constantly ff, or it is not constantly ff.

3 Three Constructions of Types of Ordinals

We consider three concrete notions of ordinals in this paper, together with their order
relations < and ≤. The first notion is the one of Cantor normal forms, written Cnf, whose
order is decidable. The second, written Brw, are Brouwer Trees, implemented as a higher
inductive-inductive type. Finally, we consider the type Ord of ordinals that were studied
in the HoTT book [40], whose order is undecidable, in general. In the current section, we
briefly give the three definitions and leave the discussion of results for afterwards.

3.1 Cantor Normal Forms as a Subset of Binary Trees
In classical set theory, every ordinal α can be written uniquely in Cantor normal form

α = ωβ1 + ωβ2 + · · · + ωβn with β1 ≥ β2 ≥ · · · ≥ βn (1)

for some natural number n and ordinals βi. If α < ε0, then βi < α, and we can represent α

as a finite binary tree (with a condition) as follows [10, 12, 25, 32]. Let T be the type of
unlabeled binary trees, i.e. the inductive type with suggestively named constructors 0 : T
and ω− − : T × T → T . Let the relation < be the lexicographical order, i.e. generated by
the following clauses:

0 < ωa b

a < c → ωa b < ωc d

b < d → ωa b < ωa d.

We have the map left : T → T defined by left(0) :≡ 0 and left(ωa b) :≡ a which gives us the
left subtree (if it exists) of a tree. A tree is a Cantor normal form (CNF) if, for every ωs t

that the tree contains, we have left(t) ≤ s, where s ≤ t :≡ (s < t) ⊎(s = t); this enforces the
condition in (1). For instance, both trees 1 :≡ ω0 0 and ω :≡ ω1 0 are CNFs. Formally,
the predicate isCNF is defined inductively by the two clauses

isCNF(0)
isCNF(s) → isCNF(t) → left(t) ≤ s → isCNF(ωs t).

We write Cnf :≡ Σ(t : T ).isCNF(t) for the type of Cantor normal forms. We often omit the
proof of isCNF(t) and call the tree t a CNF if no confusion is caused.

3.2 Brouwer Trees as a Quotient Inductive-Inductive Type
As discussed in the introduction, Brouwer ordinal trees (or simply Brouwer trees) are in
functional programming often inductively generated by the usual constructors of natural
numbers (zero and successor) and a constructor that gives a Brouwer tree for every sequence
of Brouwer trees. To state a refined (correct in a sense that we will make precise and prove)
version, we need the following notions:
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Let A be a type and ≺ : A → A → hProp be a binary relation. If f and g are two sequences
N → A, we say that f is simulated by g, written f ≾ g, if f ≾ g :≡ ∀k.∃n.f(k) ≺ g(n). We
say that f and g are bisimilar with respect to ≺, written f ≈≺ g, if we have both f ≾ g and
g ≾ f . A sequence f : N → A is increasing with respect to ≺ if we have ∀k.f(k) ≺ f(k + 1).
We write N ≺−→ A for the type of ≺-increasing sequences. Thus an increasing sequence f

is a pair f ≡ (f, p) with p witnessing that f is increasing, but we keep the first projection
implicit and write f(k) instead of f(k).

Our type of Brouwer trees is a quotient inductive-inductive type [2], where we simultan-
eously construct the type Brw : hSet together with a relation ≤ : Brw → Brw → hProp. The
constructors for Brw are

zero : Brw
succ : Brw → Brw

limit : (N <−→ Brw) → Brw

bisim: (f g : N <−→ Brw) → f ≈≤ g → limit f = limit g,

where we write x < y for succ x ≤ y in the type of limit. Simulations thus use ≤ and the
increasing predicate uses <, as one would expect. The truncation constructor, ensuring that
Brw is a set, is kept implicit in the paper (but is explicit in the Agda formalisation).

The constructors for ≤ are the following, where each constructor is implicitly quantified
over the variables x, y, z : Brw and f : N <−→ Brw that it contains:

≤-zero : zero ≤ x

≤-trans : x ≤ y → y ≤ z → x ≤ z

≤-succ-mono: x ≤ y → succ x ≤ succ y

≤-cocone : (k : N) → x ≤ f(k) → x ≤ limit f

≤-limiting : (∀k.f(k) ≤ x) → limit f ≤ x

The truncation constructor, which ensures that x ≤ y is a proposition, is again kept implicit.
We hope that the constructors of Brw and ≤ are self-explanatory. ≤-cocone ensures that

limit f is indeed an upper bound of f , and ≤-limiting witnesses that it is the least upper
bound or, from a categorical point of view, the (co)limit of f .

By restricting to limits of increasing sequences, we can avoid multiple representations of
the same ordinal (as otherwise e.g. a = limit (λ_.a)). It is possible to drop this restriction, if
one also strengthens the bisim constructor to witness antisymmetry – however we found this
version of Brw significantly harder to work with.

3.3 Extensional Wellfounded Orders

The third notion of ordinals that we consider is the one studied in the HoTT book [40].
This is the notion which is closest to the classical definition of an ordinal as a set with a
trichotomous, wellfounded, and transitive order, without a concrete representation. Requiring
trichotomy leads to a notion that makes many constructions impossible in a setting where
the law of excluded middle is not assumed. Therefore, when working constructively, it is
better to replace the axiom of trichotomy by extensionality.

MFCS 2021



70:6 Connecting Constructive Notions of Ordinals

Concretely, an ordinal in the sense of [40, Def 10.3.17] is a type1 X together with a
relation ≺ : X → X → hProp which is transitive, extensional (any two elements of X with the
same predecessors are equal), and wellfounded (every element is accessible, where accessibility
is the least relation such that x is accessible if every predecessor of x is accessible.) – we
will recall the precise definitions in Section 4. We write Ord for the type of ordinals in this
sense. Note the shift of universes that happens here: the type Ordi of ordinals with X : Ui is
itself in Ui+1. We are mostly interested in Ord0, but note that Ord0 lives in U1, while Cnf
and Brw both live in U0.

We also have a relation on Ord itself. Following [40, Def 10.3.11 and Cor 10.3.13], a
simulation between ordinals (X, ≺X) and (Y, ≺Y ) is a function f : X → Y such that:
(a) f is monotone: (x1 ≺X x2) → (f x1 ≺Y f x2); and
(b) for all x : X and y : Y , if y ≺Y f x, then we have an x0 ≺X x such that f x0 = y.
We write X ≤ Y for the type of simulations between (X, ≺X) and (Y, ≺Y ). Given an ordinal
(X, ≺) and x : X, the initial segment of elements below x is given as X/x :≡ Σ(y : X).y ≺ x.
Following [40, Def 10.3.19], a simulation f : X ≤ Y is bounded if we have y : Y such that
f induces an equivalence X ≃ Y/y. We write X < Y for the type of bounded simulations.
This completes the definition of Ord together with type families ≤ and <.

4 An Abstract Axiomatic Framework for Ordinals

Which properties do we expect a type of ordinals to have? In this section, we go up one level
of abstraction. We consider a type A with type families < and ≤ : A → A → U , and discuss
the properties that A with < and ≤ can have. In Section 3, we introduced each of the types
Cnf, Brw, and Ord together with its relations < and ≤. Note that ≤ is the reflexive closure
of < in the case of Cnf, but for Brw and Ord, this is not constructively provable. In this
section, we consider which properties they satisfy.

4.1 General Notions
A is a set if it satisfies the principle of unique identity proofs, i.e. if every identity type a = b

with a, b : A is a proposition. Similarly, < and ≤ are valued in propositions if every a < b

and a ≤ b is a proposition. A relation < is reflexive if we have a < a, irreflexive if it is
pointwise not reflexive ¬(a < a), transitive if a < b → b < c → a < c, and antisymmetric
if a < b → b < a → a = b. Further, the relation < is connex if (a < b) ⊎(b < a) and
trichotomous if (a < b) ⊎(a = b) ⊎(b < a).

▶ Theorem 1. Each of Cnf, Brw, and Ord is a set, and their relations < and ≤ are all
valued in propositions. In each case, both < and ≤ are transitive, < is irreflexive, and ≤ is
reflexive and antisymmetric. For Cnf, the relation < is trichotomous and ≤ connex; for Ord,
these statements are equivalent to the law of excluded middle. ◀Ó

Proving that ≤ for Brw is antisymmetric is challenging because of the path constructors
in the inductive-inductive definition of Brouwer trees. Antisymmetry and other technical
properties discussed below require us to characterise the relation ≤ more explicitly, using
an encode-decode argument [29]. By induction on x and y, we define the family Code such
that (Code x y) ↔ (x ≤ y). The cases for point constructors are unsurprising; for example,
we define

1 Note that [40, Def 10.3.17] asks for X to be a set, but this follows from the rest of the definition and we
therefore drop this requirement.

https://cj-xu.github.io/agda/constructive-ordinals-in-hott/index.html#1521
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Code (limit f) (succ y) :≡ ∀k.Code (f k) (succ y)
Code (limit f) (limit g) :≡ ∀k.∃n.Code (f k) (g n) .

The difficult part is defining Code for the path constructor bisim. If for example we have
g ≈ h, we need to show that Code (limit f) (limit g) = Code (limit f) (limit h). The core
argument is easy; using the bisimulation g ≈ h, one can translate between indices for g and
h with the appropriate properties. However, this example already shows why this becomes
tricky: The bisimulation gives us inequalities (≤), but the translation requires instances of
Code, which means that toCode : (x ≤ y) → (Code x y) has to be defined mutually with Code.
This is still not sufficient: In total, the mutual higher inductive-inductive construction needs
to simultaneously prove and construct Code, toCode, versions of transitivity and reflexivity
of Code as well several auxiliary lemmas. The complete definition is presented in the Agda
formalisation (file BrouwerTree.Code). Once the definition of Code is shown correct, many
technical properties are simple consequences.

From now on, we will assume that A is a set and that < and ≤ are valued in propositions.

4.2 Extensionality and Wellfoundedness

Following [40, Def 10.3.9], we call a relation < extensional if, for all a, b : A, we have
(∀c.c < a ↔ c < b) → b = a, where ↔ denotes “if and only if” (functions in both directions).
Extensionality of < for Brw is true, but non-trivial – note that it fails for the “naive” version
of Brw, where the path constructor bisim is missing.

▶ Theorem 2. For each of Cnf, Brw, Ord, both < and ≤ are extensional. ◀Ó

We use the inductive definition of accessibility and wellfoundedness (with respect to <) by
Aczel [1]. Concretely, the type family acc : A → U is inductively defined by the constructor

access : (a : A) → ((b : A) → b < a → acc(b)) → acc(a).

An element a : A is called accessible if acc(a), and < is wellfounded if all elements of A are
accessible. It is well known that the following induction principle can be derived from the
inductive presentation [40]:

▶ Lemma 3 (Transfinite Induction). Let < be wellfounded and P : A → U be a type family
such that ∀a.(∀b < a.P (b)) → P (a). Then, it follows that ∀a.P (a). ◀Ô

In turn, transfinite induction can be used to prove that there is no infinite decreasing
sequence if < is wellfounded: ¬ (Σ(f : N → A).(i : N) → f(i + 1) < f(i)). A direct corollary
is that if < is wellfounded and valued in propositions, then its reflexive closure (x < y) ⊎(x = y)
is also valued in propositions, as b < a and b = a are mutually exclusive propositions.

▶ Theorem 4. For each of Cnf, Brw, Ord, the relation < is wellfounded. ◀Ó

The proof for Brw again makes crucial use of our encode-decode characterisation of ≤.
Whenever x < limit f , we can use the characterisation to find an n : N such that x < f(n),
which allows us to proceed with an inductive proof of wellfoundedness. Note that the results
stated so far in particular mean that Cnf and Brw can be seen as elements of Ord themselves.

MFCS 2021

https://cj-xu.github.io/agda/constructive-ordinals-in-hott/BrouwerTree.Code.html
https://cj-xu.github.io/agda/constructive-ordinals-in-hott/index.html#2511
https://cj-xu.github.io/agda/constructive-ordinals-in-hott/index.html#2828
https://cj-xu.github.io/agda/constructive-ordinals-in-hott/index.html#2993


70:8 Connecting Constructive Notions of Ordinals

4.3 Classification as Zero, a Successor, or a Limit
All standard formulations of ordinals allow us to determine a minimal ordinal zero and
(constructively) calculate the successor of an ordinal, but only some allows us to also calculate
the supremum or limit of a collection of ordinals.

4.3.1 Assumptions
We have so far not required a relationship between < and ≤, but we now need to do so in
order for the concepts we define to be meaningful. We assume:
(A1) < is transitive and irreflexive;
(A2) ≤ is reflexive, transitive, and antisymmetric;
(A3) we have (<) ⊆ (≤) and (< ◦ ≤) ⊆ (<).
The third condition 3 means that (b < a) → (b ≤ a) and (c < b) → (b ≤ a) → (c < a). The
“symmetric” variation

(≤ ◦ <) ⊆ (<)

is true for Cnf and Brw, but for Ord, it is equivalent to the law of excluded middle – hence,
we do not assume it. This constructive failure is known, and can be seen as motivation for
plump ordinals [39, 37]. Of course, the above assumptions are satisfied if ≤ is the reflexive
closure of <, but we again emphasise that this is not necessarily the case.

▶ Theorem 5. For each of Cnf, Brw, Ord, assumptions 1 to 3 are satisfied. ◀Ó

For the remaining concepts, we assume that < and ≤ satisfy the discussed assumptions.

4.3.2 Zero and (Strong) Successors
Let a be an element of A. It is zero, or bottom, if it is at least as small as any other element

is-zero(a) :≡ ∀b.a ≤ b, (2)

and we say that the triple (A, <, ≤) has a zero if we have an inhabitant of the type
Σ(z : A).is-zero(z). Both the types “being a zero” and “having a zero” are propositions.

▶ Theorem 6. Cnf, Brw, Ord each have a zero. ◀Ó

We say that a is a successor of b if it is the least element strictly greater2 than b:

(a is-suc-of b) :≡ (b < a) × ∀x > b.x ≥ a.

We say that (A, <, ≤) has successors if there is a function s : A → A which calculates
successors, i.e. such that ∀b.s(b) is-suc-of b. “Calculating successors” and “having successors”
are propositional properties, i.e. if a function that calculates successors exists, then it is
unique. The following statement is simple but useful. Its proof uses assumption 3.

▶ Lemma 7. Let s : A → A be given. The function s calculates successors if and only if
∀bx.(b < x) ↔ (s b ≤ x). ◀Ô

2 Note that > and ≥ are the obvious symmetric notations for <, ≤; they are not newly assumed relations.
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Dual to “a is the least element strictly greater than b” is the statement that “b is the
greatest element strictly below a”, in which case it is natural to call b the predecessor of a.
If a is the successor of b and b the predecessor of a, then we call a the strong successor of b:

a is-str-suc-of b :≡ a is-suc-of b × ∀x < a.x ≤ b.

We say that A has strong successors if there is s : A → A which calculates strong successors,
i.e. such that ∀b.s(b) is-str-suc-of b. The additional information contained in a strong successor
play an important role in our technical development. A function f : A → A is <-monotone
or ≤-monotone if it preserves the respective relation.

▶ Theorem 8. Each of the three types Cnf, Brw, Ord has strong successors. The successor
functions of Cnf and Brw are both <- and ≤-monotone. For the successor function of Ord,
either monotonicity property is equivalent to the law of excluded middle. ◀Ó

For Cnf, the successor function is given by adding a leaf, for Brw by the constructor with
the same name, and for Ord, one forms the coproduct with the unit type.

4.3.3 Suprema and Limits
Finally, we consider suprema/least upper bounds of N-indexed sequences. We say that a is a
supremum or the least upper bound of f : N → A, if a is at least as large as every fi, and if
any other x with this property is at least as large as a:

(a is-sup-of f) :≡ (∀i.fi ≤ a) × (∀x.(∀i.fi ≤ x) → a ≤ x).

We say that (A, <, ≤) has suprema if there is a function ⊔ : (N → A) → A which calculates
suprema, i.e. such that (f : N → A) → (⊔f) is-sup-of f . The supremum of a sequence is
unique if it exists, i.e. the type of suprema is propositional for a given sequence f . Both the
properties “calculating suprema” and “having suprema” are propositions.

Every a : A is trivially the supremum of the sequence constantly a, and therefore, “being
a supremum” does not describe the usual notion of limit ordinals. One might consider a a
proper supremum of f if a is pointwise strictly above f , i.e. ∀i.fi < a. This is automatically
guaranteed if f is increasing with respect to <, and in this case, we call a the limit of f :

_ is-lim-of _ : A → (N <−→ A) → U
a is-lim-of (f, q) :≡ a is-sup-of f.

We say that A has limits if there is a function limit : (N <−→ A) → A that calculates limits.
Note that Cnf cannot have limits since one can construct a sequence (see Theorem 22)

which comes arbitrarily close to ε0. This motivates the restriction to bounded sequences, i.e.
a sequence f with a b : Cnf such that fi < b for all i.

▶ Theorem 9. Cnf does not have suprema or limits. Brw has limits of increasing sequences
by construction. Ord also has limits of increasing sequences, and moreover limits of weakly
increasing sequences (i.e. sequences increasing with respect to ≤).

Assuming the law of exclude middle, Cnf has suprema (and thus limits) of arbitrary
bounded sequences. If Cnf has limits of bounded increasing sequences, then the weak limited
principle of omniscience (WLPO) is derivable. ◀Ó

We expect that it is not constructively possible to calculate suprema (or even binary joins)
in Brw, as it seems this would make it possible to decide if a limit reaches past ω + 1 or not,
which is a constructive taboo.
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4.3.4 Classifiability
For classical set-theoretic ordinals, every ordinal is either zero, a successor, or a limit. We
say that a notion of ordinals which allows this is has classification. This is very useful, as
many theorems that start with “for every ordinal” have proofs that consider the three cases
separately. In the same way as not all definitions of ordinals make it possible to calculate
limits, only some formulations make it possible to constructively classify any given ordinal.
We already defined what it means to be a zero in (2). We now also define what it means for
a : A to be a strong successor or a limit:

is-str-suc(a) :≡ Σ(b : A).(a is-str-suc-of b) is-lim(a) :≡ ∃f : N → A.a is-lim-of f.

All of is-zero(a), is-str-suc(a) and is-lim(a) are propositions; note that this is true even though
is-str-suc(a) is defined without a propositional truncation.

▶ Lemma 10. Any a : A can be at most one out of {zero, strong successor, limit}, and in
a unique way. In other words, the type is-zero(a) ⊎ is-str-suc(a) ⊎ is-limit(a) is a proposition.

◀Ô

We say that an element of A is classifiable if it is zero or a strong successor or a limit. We
say (A, <, ≤) has classification if every element of A is classifiable. By Lemma 10, (A, <, ≤)
has classification exactly if the type is-zero(a) ⊎ is-str-suc(a) ⊎ is-limit(a) is contractible.

▶ Theorem 11. Cnf and Brw have classification. Ord having classification would imply the
law of excluded middle. ◀Ó

Classifiability corresponds to a case distinction, but the useful principle from classical
ordinal theory is the related induction principle:

▶ Definition 12 (classifiability induction). We say that (A, <, ≤) satisfies the principle of
classifiability induction if the following holds: For every family P : A → hProp such that

is-zero(a) → P (a)
(a is-str-suc-of b) → P (b) → P (a)
(a is-lim-of f) → (∀i.P (fi)) → P (a),

we have ∀a.P (a).

Note that classifiability induction does not ask for successors or limits to be computable.
Using Lemma 10, we get that classifiability induction implies classification. For the reverse,
we need a further assumption:

▶ Theorem 13. Assume (A, <, ≤) has classification and satisfies the principle of transfinite
induction. Then (A, <, ≤) satisfies the principle of classifiability induction. ◀Ô

It is also standard in classical set theory that classifiability induction implies transfinite
induction: showing P by transfinite induction corresponds to showing ∀x < a.P (x) by
classifiability induction. In our setting, this would require strong additional assumptions,
including the assumption that (x ≤ a) is equivalent to (x < a) ⊎(x = a), i.e. that ≤ is the
reflexive closure of <. The standard proof works with several strong assumptions of this
form, but we do not consider this interesting or useful, and concentrate on the results which
work for the weaker assumptions that are satisfied for Brw and Ord (see Section 4.3.1).

▶ Theorem 14. Cnf and Brw satisfy classifiability induction, while Ord satisfying it again
implies excluded middle. ◀Ó
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4.4 Arithmetic

Using the predicates is-zero(a), a is-suc-of b, and a is-sup-of f , we can define what it means
for (A, <, ≤) to have the standard arithmetic operations. We still work under the assumptions
declared in Section 4.3.1 – in particular, we do not assume that e.g. limits can be calculated,
which is important to make the theory applicable to Cnf.

▶ Definition 15 (having addition). We say that (A, <, ≤) has addition if there is a function
+ : A → A → A which satisfies the following properties:

is-zero(a) → c + a = c

a is-suc-of b → d is-suc-of (c + b) → c + a = d

a is-lim-of f → b is-sup-of (λi.c + fi) → c + a = b (3)

We say that A has unique addition if there is exactly one function + with these properties.

Note that (3) makes an assumption only for (strictly) increasing sequences f ; this suffices
to define a well-behaved notion of addition, and it is not necessary to include a similar
requirement for arbitrary sequences. Since (λi.c + fi) is a priori not necessarily increasing,
the middle term of (3) has to talk about the supremum, not the limit.

Completely analogously to addition, we can formulate multiplication and exponentation,
again without assuming that successors or limits can be calculated:

▶ Definition 16 (having multiplication). Assuming that A has addition, we say that it has
multiplication if we have a function · : A → A → A that satisfies the following properties:

is-zero(a) → c · a = a

a is-suc-of b → c · a = c · b + c

a is-lim-of f → b is-sup-of (λi.c · fi) → c · a = b

A has unique multiplication if it has unique addition and there is exactly one function · with
the above properties.

▶ Definition 17 (having exponentation). Assume A has addition and multiplication. We say
that A has exponentation with base c if we have a function exp(c, −) : A → A that satisfies
the following properties:

is-zero(b) → a is-suc-of b → exp(c, b) = a

a is-suc-of b → exp(c, a) = exp(c, b) · c

a is-lim-of f → ¬is-zero(c) → b is-sup-of (exp(c, fi)) → exp(c, a) = b

a is-lim-of f → is-zero(c) → exp(c, a) = c

A has unique exponentation with base c if it has unique addition and multiplication, and if
exp(c, −) is unique.

▶ Theorem 18. Cnf has addition, multiplication, and exponentiation with base ω (all unique),
Brw has addition, multiplication and exponentiation with every base (all unique), and Ord
has addition and multiplication. ◀Ó
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For Cnf, arithmetic is defined by pattern matching on the trees. Addition3 is given as

0 + b :≡ b

a + 0 :≡ a

(ωa c) + (ωb d) :≡
{
ωb d if a < b

ωa (c + (ωb d)) otherwise,

multiplication as

0 · b :≡ 0
a · 0 :≡ 0

a · (ω0 d) :≡ a + a · d

(ωa c) · (ωb d) :≡ (ωa+b 0) + (ωa c) · d if b ̸= 0,

and exponentiation with base ω by ωa :≡ ωa 0. These definitions are standard. Novel is
our proof of correctness in the sense of Definitions 15–17, which we achieve by defining the
inverse operations of subtraction and division.

Arithmetic on Brw is defined by recursion on the second argument, following the clauses
of the specifications in Definitions 15–17. Since the constructor limit only accepts an
increasing sequence, it is necessary to prove mutually with the definition that the operations
are monotone and preserve increasing sequences. However, the case c = 0 needs to be
treated separately since neither pointwise multiplication nor exponentiation with 0 preserves
increasingness. This makes it crucial to use classification (Theorem 11) and, in particular,
that it is decidable whether c : Brw is zero.

Addition on Ord is given by disjoint union A ⊎ B (with inl(a) ≺A ⊎ B inr(b)), and multi-
plication by Cartesian product A × B with the reverse lexicographical order. We expect that
exponentation cannot be defined constructively: the “obvious” definition via function spaces
gives a wellfounded order assuming the law of excluded middle [27], but it seems unlikely
that it can be avoided.

5 Interpretations Between the Notions

In this section, we show how our three notions of ordinals can be connected via structure
preserving embeddings.

5.1 From Cantor Normal Forms to Brouwer Trees
The arithmetic operations of Brw allow the construction of a function CtoB : Cnf → Brw in a
canonical way. We define CtoB : Cnf → Brw by:

CtoB(0) :≡ zero
CtoB(ωa b) :≡ ωCtoB(a) + CtoB(b)

▶ Theorem 19. The function CtoB preserves and reflects < and ≤, i.e., a < b ↔ CtoB(a) <

CtoB(b), and a ≤ b ↔ CtoB(a) ≤ CtoB(b). ◀Ô

3 Caveat: is a notation for the tree constructor, while + is an operation that we define. We use
parenthesis so that all operations can be read with the usual operator precedence.
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To show that CtoB preserves <, we first prove that Brouwer trees of the form ωx are
additive principal: if a < ωx then a + ωx = ωx – a property not true for the “naive” version
of Brouwer trees without path constructors. By reflecting ≤ and antisymmetry, we have:

▶ Corollary 20. The function CtoB is injective. ◀Ô

We note that CtoB also preserves all arithmetic operations on Cnf. For multiplication,
this relies on ι(n) · ωx = ωx for Brw, where ι : N → Brw embeds the natural numbers as
Brouwer trees, and ω :≡ limit ι – see our formalisation for details.

▶ Theorem 21. CtoB commutes with addition, multiplication, and exponentiation with
base ω. ◀Ô

Lastly, as expected, Brouwer trees define bigger ordinals than Cantor normal forms:
when embedded into Brw, all Cantor normal forms are below ε0, the limit of the increasing
sequence ω, ωω, ωωω , . . .

▶ Theorem 22. For all a : Cnf, we have CtoB(a) < limit (λk.ω ↑↑ k), where ω ↑↑ 0 :≡ ω and
ω ↑↑ (k + 1) :≡ ωω↑↑k. ◀Ô

5.2 From Brouwer Trees to Extensional Wellfounded Orders
As Brw comes with an order that is extensional, wellfounded, and transitive, it can itself
be seen as an element of Ord. Every “subtype” of Brw (constructed by restricting to trees
smaller than a given tree) inherits this property, giving a canonical function from Brouwer
trees to extensional, wellfounded orders. We define

BtoO(a) = Σ(y : Brw).(y < a).

with order relation (y, p) ≺ (y′, p′) if y < y′. This extends to a function BtoO : Brw → Ord.
The first projection gives a simulation BtoO(a) ≤ Brw. Using extensionality of Brw, this
implies that BtoO is an embedding from Brw into Ord. Using that < on Brw is propositional,
and that carriers of orders are sets, it is also not hard to see that BtoO is order-preserving:

▶ Lemma 23. The function BtoO : Brw → Ord is injective, and preserves < and ≤. ◀Ó

A natural question is whether the above result can be strengthened further, i.e. whether
BtoO is a simulation. Using LEM to find a minimal simulation witness, this is possible:

▶ Theorem 24. Under the assumption of the law of excluded middle, the function BtoO :
Brw → Ord is a simulation. ◀

We do not know whether the reverse of Theorem 24 is provable, but from the assumption
that BtoO is a simulation, we can derive another constructive taboo:

▶ Theorem 25. If the map BtoO : Brw → Ord is a simulation, then WLPO holds. ◀

We trivially have BtoO(zero) = 0. One can further prove that BtoO commutes with limits,
i.e. BtoO(limit(f)) = lim(BtoO ◦ f). However, BtoO does not commute with successors; it
is easy to see that BtoO x ⊎ 1 ≤ BtoO(succ x), but the other direction implies WLPO. This
also means that BtoO does not preserve the arithmetic operations but “over-approximates”
them, i.e. we have BtoO(x + y) ≥ BtoO x ⊎ BtoO y and BtoO(x · y) ≥ BtoO x × BtoO y.
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6 Conclusions and Future Directions

We have demonstrated that three very different implementations of ordinal numbers, namely
Cantor normal forms (Cnf), Brouwer ordinal trees (Brw), and extensional wellfounded orders
(Ord), can be studied in a single abstract setting in the context of homotopy type theory. We
hope that our development may shed light on other constructive or formalised approaches to
ordinals also in other settings [31, 7, 6, 34].

Cantor normal forms are a formulation where most properties are decidable, while the
opposite is the case for extensional wellfounded orders. Brouwer ordinal trees sit in the
middle, with some of its properties being decidable. This aspect is not discussed in full in this
paper; we only have included Theorem 14. It is easy to see that, for x : Brw, it is decidable
whether x is finite; in other words, the predicate (ω ≤ _) : Brw → hProp is decidable, while
(ω < _) is decidable if and only if WLPO holds.

If x is finite, then the predicates (x = _), (x ≤ _), and (x < _) are also decidable. We
have a further proof that, if c : Cnf is smaller than ω2, then the families (CtoB c ≤ _) and
(CtoB c < _) are semidecidable, where semidecidability can be defined using the Sierpinski
space [3, 13, 42].

Thus, each of the canonical maps CtoB : Cnf → Brw and BtoO : Brw → Ord embeds the
“more decidable” formulation of ordinals into the “less decidable” one. Naturally, they both
also include a “smaller” type of ordinals into a “larger” one: While every element of Cnf
represents an ordinal below ϵ0, Brw can go much further. It would be interesting to consider
more powerful ordinal notation systems such as those based on the Veblen functions [41, 35]
or collapsing functions[4, 9], and see how these compare to Brouwer trees. Another avenue
for potentially extending Cantor normal forms would be using superleaves [19]; we do not
know how such a “bigger” version of Cnf would compare to Brw.

Since Brw can be viewed as an element of Ord, the latter can clearly reach larger ordinals
than the former. This is of course not surprising; the Burali-Forti argument [5, 11] shows
that lower universes cannot reach the same ordinals as higher universes. Another obstruction
for Brw to reach the full power of Ord is the fact that Brw only includes limits of N-indexed
sequences. To overcome this problem, one can similarly construct higher number classes
as quotient inductive-inductive types, e.g. a type Brw3 closed under limits of Brw-indexed
sequences, and then more generally types Brwn+1 closed under limits of Brwn-indexed
sequences, and so on.

Finally, there are interesting connections between the ordinals we can represent and the
proof-theoretic strength of the ambient type theory: each proof of wellfoundedness for a
system of ordinals is also a lower bound for the strength of the type theory it is constructed
in. It is well known that definitional principles such as simultaneous inductive-recursive
definitions [22] and higher inductive types [30] can increase the proof-theoretical strength,
and so, we hope that they can also be used to faithfully represent even larger ordinals.
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Abstract
In recent work, Gourvès, Lesca, and Wilczynski (IJCAI 17) propose a variant of the classic housing
markets model in which the matching between agents and objects evolves through Pareto-improving
swaps between pairs of agents who are adjacent in a social network. To explore the swap dynamics
of their model, they pose several basic questions concerning the set of reachable matchings, and
investigate the computational complexity of these questions when the graph structure of the social
network is a star, path, or tree, or is unrestricted.

We are interested in how to direct the agents to swap objects with each other in order to arrive
at a reachable matching that is both efficient and most agreeable. In particular, we study the
computational complexity of reaching a Pareto-efficient matching that maximizes the number of
agents who prefer their match to their initial endowments. We consider various graph structures of
the social network: path, star, tree, or being unrestricted. Additionally, we consider two assumptions
regarding preference relations of agents: strict (ties among objects not allowed) or weak (ties among
objects allowed). By designing two polynomial-time algorithms and two NP-hardness reductions, we
resolve the complexity of all cases not yet known. Our main contributions include a polynomial-time
algorithm for path networks with strict preferences and an NP-hardness result in a star network
with weak preferences.
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1 Introduction

Model. Matching indivisible objects to agents is a fundamental problem in both computer
science and economics. In a seminal work, Shapley and Scarf [22] introduced the notion of a
housing market, which corresponds to the special case of one-sided matching in which there
are an equal number of agents and objects, each agent is initially endowed with a distinct
object, and each agent is required to be matched to exactly one object. Fruitful applications
have arisen from the housing market problem: assigning virtual machines to servers in cloud
computers, and allocating graduates to trainee positions. There are two different assumptions
regarding preference relations of agents. One is strict, which is a full ordinal list of all objects,
and the other one is weak, where agents are allowed to be indifferent between objects. Both
preference relations have been widely studied.

However, in practice, assuming that any agent is able to trade with any other agent is a
quite strong assumption. Agents tend to trade with agents that they know and trust, and it
is hard to let two agents who do not trust each other exchange their objects even if they
can mutually get benefits. So Gourvès et al. [13] initiated the line of research on the house
market problem where the agents are embedded in a social network. A pair of agents are
allowed to swap objects with each other only if (1) both of them will be better off after the
swap and (2) they are directly connected (socially tied) via the network. The underlying
social network is modeled as an undirected graph. They investigate the swap dynamics of
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the housing market problem in this model by considering the following three computational
problems. The first problem, Reachable Object (RO), asks whether there is a sequence of
swaps that results in matching a given agent to a given target object. The second problem,
Reachable Matching (RM), asks whether there is a sequence of swaps that results in a given
target matching. The third problem, Pareto Efficiency (PE), asks how to find a sequence
of swaps that results in a Pareto-efficient matching with respect to the set of reachable
matchings. Of particular relevance to the present paper is the last problem. We remark that
like Gourvès et al., our focus is on Pareto-efficient matchings among reachable matchings
(to be formally defined in Section 2). In particular, we focus on reachable matchings that
are not Pareto-dominated by a reachable matching, rather than by an arbitrary matching
as in the standard meaning. Specifically, we are interested in finding a sequence of swaps
that yields a Pareto-efficient matching that maximizes the number of agents who prefer their
match to their initial endowments.

Maximum Votes Pareto-Efficient Matching. In housing markets, we typically seek a
matching between houses and agents that optimizes some social objects. Pareto efficiency
has been widely considered in the context of housing allocation [2, 4, 22], which appears
to be the minimal requirement for an allocation to be socially acceptable. However, in the
context of social network, Pareto efficiency among reachable matchings is not sufficient to
be socially acceptable. In the example of Fig. 1, there is a Pareto-efficient matching that
improves only two agents, while there is another Pareto-efficient matching that improves
everyone, as shown in Fig. 1.

a1 a2 a3 a4 a5 a6

a1 : b2 > b3 > b1 a2 :b1 > b3 > b2

a3 : b4 > b2 > b3 a4 :b5 > b2 > b4

a5 : b6 > b2 > b5 a6 :b2 > b6

Figure 1 Consider an instance with six agents in {a1, a2, a3, a4, a5, a6} and six objects in
{b1, b2, b3, b4, b5, b6}. The boxed objects represent the initial endowments. Initially, only the swaps
between agents a1 and a2, and a2 and a3 are possible. If we let agents a1 and a2 swap their objects
first, then we obtain a Pareto-efficient matching in which a1, a2 get their best objects. If we let a2

and a3 swap their objects first, then additional swaps between pairs (a1, a2) and (a3, a4) become
possible. Indeed, the sequence of swaps, {a2, a3}, {a1, a2}, {a3, a4}, {a4, a5}, and {a5, a6}, yields a
different Pareto-efficient matching that improves all agents.

There is a vast literature on refining Pareto-efficiency in object allocation with endowments.
Various refining directions are considered, such as fairness ([6, 12]), welfare-maximization
([1, 10]), and stability ([22]). In this work, we propose to refine Pareto-efficiency in the
direction of popularity. The notion of popularity was introduced by Abraham et al. [5] for
object allocation without endowments. Popularity has gained a lot of attention in the recent
past (we refer to the survey by Cseh [11] on this topic). Popular matchings are defined based
on comparisons of two matchings with respect to the votes of the agents. Consider an election
between two matchings M and M ′ where vertices are voters. In this M versus M ′ election,
each agent a votes for the matching in {M, M ′} that agent a prefers, i.e., where agent a gets
a better assignment. We say a matching is popular if it never loses a head-to-head election
against any matching in the voting instance where matchings are candidates and vertices
are voters. However, popular matchings do not always exist: Abraham et al. construct an
instance with three agents for which there is no popular matching.
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To adapt the popularity notion to housing markets, we introduce the notion of maximum
votes matching. We consider the same voting scheme, but focus on the comparison with the
initial endowments. Given a reachable matching µ, an agent a votes for the matching if it
prefers the object assigned by this matching to its initial object. We refer to the number of
agents that prefer µ to the initial matching as the voting number of µ. We define a maximum
votes matching to be a reachable matching with the maximum voting number. We remark
that maximum votes matchings always exist.

Clearly, not all Pareto efficient matchings have the same voting number. Also, a maximum
votes matching is not necessarily a Pareto-efficient matching. Consider the example shown in
Fig. 2. Part (a) shows a sequence of swaps that gives a Pareto-efficient matching improving
all agents. Part (b) shows a sequence of swaps that also yields a matching that improves all
agents, but is not Pareto-efficient. Thus, it is natural to consider the problem of finding a
Pareto-efficient matching that has the largest voting number. We refer to this problem as the
maximum votes Pareto-efficient (MVPE) matching problem. In particular, the set of MVPE
matchings is precisely the intersection of the following two sets: (1) the set of matchings that
are Pareto efficient among reachable matchings; (2) the set of reachable matchings with the
maximum voting number.

a1 a2 x y a3 a4

(a) A sequence of swaps that results in each
agent getting its favorite object.

a1 a2 x y a3 a4

(b) A sequence of swaps that yields a non-Pareto-
efficient matching improving all agents. Agent a2
obtains object bx by swapping with agent x. Then
agent a1 gets object bx by swapping with a2. Simil-
arly, agent a4 gets object by by the following two
swaps: (y, a3), (a3, a4). Clearly, this matching is
Pareto-dominated by the matching obtained in part
(a).

Figure 2 An example in which a non-Pareto-efficient matching improves the most agents.
Consider an instance with six agents in {a1, a2, x, y, a3, a4} and six objects in {b1, b2, bx, by, b3, b4}.
The preferences of the agents and the initial endowments (represented as boxed objects) are given
below. The arrows in the figures show where the initial object of each agent goes.

a1 : b2 > bx > b1 x : by > b2 > bx a3 : b4 > by > b3

a2 : b1 > bx > b2 y : bx > b3 > by a4 : b3 > by > b4

Related work. Gourvès et al. [13] study these three problems, RO, RM and PE, in four
different graph classes, paths, stars, trees, and general graphs. They only consider strict
preferences, and thus they consider twelve problems in total. They study these twelve
problems with the goal of either exhibiting a polynomial-time algorithm or establishing
NP-completeness. For some of these problems, it is a relatively straightforward exercise to
design a polynomial-time algorithm (even for the search version). In particular, this is the
case for all three problems on stars, for PE on paths, and for RM on trees (which subsumes
RM on paths). Gourvès et al. [13] present an elegant reduction from 2P1N-SAT [23] to
establish the NP-completeness of RO on trees. They leverage this result to establish the
NP-completeness of RM on general graphs via a reduction from RO on trees. Then, they
make use of the latter reduction to establish the NP-hardness of PE on general graphs. The
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work of Gourvès et al. [13] left two of the twelve problems open: RO on paths and PE on
trees. Subsequently, two sets of authors independently presented polynomial-time algorithms
for RO on paths [14, 7]. To the best of our knowledge, PE on trees remains open.

Huang and Xiao [15] study RO and PE with weak preferences. They establish NP-
hardness for RO on paths with weak preferences and give a polynomial-time algorithm for
RO on stars with weak preferences. Then, they establish NP-hardness for PE on paths with
weak preferences via a reduction from RO on paths with weak preferences. They left PE on
stars with weak preferences open. Furthermore, they show that finding a reachable matching
maximizing total social welfare is NP-hard for a star or a path with weak preferences.

Bentert et al. [7] consider the case where the preference lists have bounded length.
Saffidine and Wilczynski [21] propose an alternative version of RO where an agent can be
guaranteed a certain level of satisfaction regardless of the actual exchanges. Müller and
Bentert [20] study RM on cliques and cycles. Aspects related to social connectivity are also
addressed in recent work on envy-free allocations [8, 9] and on a trade-off between efficiency
and fairness [16].

There are several works on ensuring popularity. For settings where a popular matching
does not exist, Kavitha et al. [18] study how to minimally augment the preferences to
guarantee the existence of a popular matching. This problem has been shown to be NP-
hard. Another way to ensure popularity is to consider mixed matchings, i.e., lotteries over
matchings; and the popularity property is straightforward to carry over; Kavitha et al. [17]
show that a popular mixed matching always exists and propose an efficient algorithm to
find one. McCutchen [19] proposes a least-unpopularity criterion to find the “most” popular
matching; finding this least-unpopular matching is NP-hard.

Our results. Our main contributions are summarized in Table 1. Our main positive result
is a polynomial-time algorithm for finding a maximum votes Pareto-efficient matching in a
path network with strict preferences. To achieve this result, we first present an algorithm for
finding a maximum votes matching by studying the structure of a reachable matching in a
path network. Specifically, we show that the improved agents in any reachable matching can
be decomposed into a set of agent intervals, where each agent interval is a set of consecutive
agents in the path and all agents in this interval can improve their allocation by swapping
objects within the interval. Moreover, given a disjoint union of such agent intervals, we can
recover a sequence of swaps improving agents in this disjoint union. Thus, we reduce the
problem of computing the maximum votes number to the problem of finding the disjoint
union of such agent intervals that covers the most agents; polynomial-time algorithms are
known for the latter problem.

To find a maximum votes Pareto-efficient matching, observe that there is a maximum
votes matching that is also Pareto-efficient. Thus, to find a maximum votes Pareto-efficient
matching, it is enough to find a Pareto-efficient matching among maximum votes matchings.
To achieve that, we carefully adapt the serial dictatorship algorithm [3] to ensure that each
time a dictator agent a is assigned to an object b, where the current partial assignment
remains consistent with a maximum votes matching. In particular, we present a subroutine
to find the most favorite object b that can be assigned to agent a such that there is a sequence
of swaps letting a get b and improving the most agents. In Section 3.4, we use a delicate
induction argument to prove the correctness of this subroutine.

In Section 4, we present a simple polynomial-time algorithm for finding a maximum votes
Pareto-efficient matching on stars with strict preferences shown
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Table 1 Our results and related work. Results in parentheses are implied by other table entries.

Strict Weak
Path poly-time [Section 3] NP-hard ([15])
Star poly-time [Section 4] NP-hard [Section 4]
Tree NP-hard [Section 5] (NP-hard)

General (NP-hard) (NP-hard)

In terms of negative results, in Section 4, we show that the MVPE problem in star networks
with weak preferences is NP-hard by designing a novel reduction from the 3-SAT problem.
In Section 5, we prove that the MVPE problem in tree networks with strict preferences is
NP-hard by reducing from the RO problem in tree networks with strict preferences, which is
known to be NP-complete [13].

Due to space restrictions, some of the proofs are omitted, or are merely sketched. Complete
proofs will be provided in the full version of this paper.

2 Preliminaries

We define an object allocation framework (OAF) on a social network as a triple F = (A, B,

≥, E) where A is a set of agents, B is a set of objects such that |A| = |B|, ≥ is a collection
of linear orderings {≥a}a∈A over B such that ≥a specifies the preferences (including ties) of
agent a over B, and E is the edge set of a social network between agents in A, i.e., the social
network is the undirected graph (A, E).

We define a matching µ of a given OAF F = (A, B,≥, E) as a subset of A×B such that
no agent or object belongs to more than one pair in µ. (Put differently, µ is a matching in
the complete bipartite graph of agents and objects.) We say that such a matching is perfect
if |µ| = |A|. For any matching µ, we define agents(µ) (resp., objects(µ)) as the set of all
matched agents (resp., objects) with respect to µ. For any matching µ and any agent a that
is matched in µ, we use the shorthand notation µ(a) to refer to the object matched to agent
a. For any matching µ and any object b that is matched in µ, we use the notation µ−1(b) to
refer to the agent matched to object b.

For any OAF F = (A, B,≥, E), any perfect matching µ of F , and any edge e = (a, a′)
in E, we define an exchange operation on edge e as µ′ = µ \ {(a, µ(a)), (a′, µ(a′))} ∪
{(a, µ(a′)), (a′, µ(a))}, where µ′ is the new matching obtained by applying the exchange
operation on edge e. We say the exchange is rational if µ(a′) ≥a µ(a) and µ(a) ≥a′ µ(a′),
denoted as µ →F,e µ′. We call a rational exchange a swap. We use µ →F µ′ to denote
that µ→F,e µ′ for some edge e. We write µ⇝F µ′ if there exists a sequence of matchings
µ = µ0, . . . , µk = µ′ of matchings of F such that µi−1 →F µi for 1 ≤ i ≤ k.

We define a configuration as a pair χ = (F, µ) where F is an OAF and µ is a perfect
matching of F . We say that χ is a path or star or tree configuration if the social network in
F is a path or star or tree. For any configuration χ = (F, µ), we define reach(χ) as the set of
all perfect matchings µ′ of F such that µ⇝F µ′.

A matching µ Pareto-dominates a matching µ′ if µ(a) ≥a µ′(a) for all agents a in A, and
there is at least one agent b in B such that µ(b) >b µ′(b). A matching is Pareto-efficient if it is
not Pareto-dominated by another matching. Throughout this paper, we restrict the definition
of Pareto-efficiency to the set of reachable matchings. A matching µ is Pareto-efficient with
respect to a configuration χ if µ belongs to reach(χ) and µ is not Pareto-dominated by
another matching in reach(χ).
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Maximum Votes Pareto-Efficient Matching Problem. Given a configuration χ = (F, µ)
and a matching µ′, we use votesF (µ′, µ) to denote the number of agents who prefer µ′

to µ. We say votesF (µ′, µ) is the voting number of matching µ′. The maximum votes
Pareto-efficient matching problem is equivalent to the following optimization problem:

argmax
τ ∈ reach(χ) ∧ τ is Pareto-efficient

votesF (τ, µ).

For a given configuration χ, we use mv(χ) to denote the largest voting number of a matching
in reach(χ). We refer to mv(χ) as the voting number of χ.

3 Path Network

In this section, we study the maximum votes Pareto-efficient matching problem in a path
configuration. We begin by introducing some notations. For any nonnegative integer n, we
define [n] as {1, . . . , n}. Without loss of generality, in this subsection we restrict attention
to OAFs of the form F = ([n], [n],≥, {(b, b + 1) | 1 ≤ b < n}) for some positive integer
n. We use [i, j] to denote the set of agents between agent i and agent j (inclusive). Let
Π = µ0, µ1, ..., µk denote a sequence of matchings where µi →F µi+1 for 0 ≤ i ≤ k − 1, i.e.,
µi+1 is obtained from µi by a swap. We have the following observations.

▶ Observation 1. Each object only moves in one direction or stays at its initial position
in Π.

We say an object is right-moving (left-moving) in Π if it moves to the right (left). The
following observation says that while implementing the sequence of swaps Π, the relative
location of any two objects moving in the same direction on the path does not change, i.e., if
an object b is located to the left (right) of another object b′, then object b will always be to
the left (right) of object b′.

▶ Observation 2. Let Π = µ0, µ1, ..., µk denote a sequence of matchings. For any two
objects b and b′ where µ−1

0 (b) < µ−1
0 (b′) that move along the same direction in Π, we have

µ−1(b) < µ−1(b′) for all µ in Π.

Let κ(j, k) denote a canonical sequence of exchanges that assigns object j to agent
k by directly moving it along the dipath from j to k. Formally, if j < k, κ(j, k) =
(j, j + 1), (j + 1, j + 2), ..., (k − 1, k). If j ≥ k, κ(j, k) = (j, j − 1), (j − 1, j − 2), ..., (k + 1, k).
A sequence of exchanges Π is said to be a sequence of swaps if all its exchanges are rational,
denoted as rational(Π). We remark that κ(j, k) was defined, and some associated properties
were proved, by Gourvès et. al [13]. The following lemma presents a useful structural property.

▶ Lemma 3. Let χ = (F, µ) denote a path configuration, let a denote a leaf agent in χ, and let
a′ denote an agent in χ. If there is a matching µ′′ in reach(χ) such that µ′′(a) = µ(a′), then
(1) rational(κ(a′, a)) holds, and (2) µ′′ belongs to reach((F, µ′)), where µ′ is the matching
reached from µ via κ(a′, a).

3.1 Maximum Votes Pareto-Efficient Matching
In this section, we present a polynomial-time algorithm for finding a maximum votes Pareto-
efficient matching given a path configuration. In order to find an MVPE matching, we first
present an algorithm for computing the maximum voting number of a given configuration
χ = (F, µ), i.e., for computing mv(χ). We then compute an MVPE matching by combining
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this algorithm with the serial dictatorship algorithm [3]. In the serial dictatorship algorithm,
we let agents pick whatever best object they are left with in an arbitrary sequential order.
In our case, agents pick objects according to the order of their IDs, i.e., the smallest agent
picks first and the largest agent picks last. Assuming that agent a picks object b, we need to
meet three additional requirements. First, object b can be assigned to agent a via a sequence
of swaps. Second, after object b is assigned to agent a via a sequence of swaps, we obtain a
new matching µ′ and a new configuration χ′ = (F, µ′). We need to maintain the invariant
that there exists a matching τ in reach(χ′) such that votesF (τ, µ) = mv(χ). Third, object b

is the most preferred object of agent a subjects to the first two constraints.
The above three constraints along with the property of serial dictatorship are sufficient

for us to prove that the eventual matching we obtain is an MVPE matching. Now, let us
first present our algorithm for computing the maximum votes matching of reach(χ).

3.2 Maximum Number of Votes
Throughout this section, let χ = (F, µ) denote a path configuration. Below we present
Algorithm 1, which computes the largest voting number of matching in reach(χ).

▶ Definition 4 (Directional sequence). A directional sequence is a sequence of R, L, or S
symbols. For any agent i, the ith symbol represents the final moving state of its initial object.
Symbol R indicates that it moves to the right. Symbol L indicates that it moves to the left.
Symbol S indicates that it does not move.

For any matching ν in reach(χ), we define an associated directional sequence as follows.
For agent i, if its initial object µ(i) moves to the left in ν (i.e., the position ν−1(µ) of object
µi is smaller than the initial position i in µ), then the ith symbol in the directional sequence
is L, i.e., the object is left-moving. If it is moved to the right, then the ith symbol is R, i.e.,
the object is right-moving. If it is stationary, then the ith symbol is S. We use DS(ν) to
denote the directional sequence of ν and DS(ν([i, j])) to denote the subsequence DS(ν)[i, j]
with respect to agents in [i, j] only.

▶ Definition 5 (RL-block). We define an RL-block as a directional sequence of the form
RmLn = RRR...RLLL....L where m, n are positive.

Remark: Any agent with symbol S in DS(ν) does not get a better allocation in ν; any
agent with symbol R or L gets improved by ν due to the definition of swaps. Therefore,
given a matching ν in reach(χ), we can decompose [n] into a set of maximal intervals such
that all agents in each interval get moved or improved. Let Decompose(ν) denote the set of
maximal intervals decomposed from [n] according to ν.

▶ Observation 6. Given a matching ν in reach(χ), DS(ν) can be uniquely decomposed into
a disjoint union of RL-blocks and S symbols.

Given a matching ν in reach(χ), by applying Observation 6 on the directional sequence
DS(ν), we observe that for any interval [i, j] in Decompose(ν), the interval [i, j] can be
uniquely partitioned as a set of sub-intervals such that for each sub-interval [i′, j′], DS(ν)[i′, j′]
is an RL-block. We refer to this partition as the RL-decomposition of interval [i, j].

Given a maximal interval [i, j] in Decompose(ν), let RLD([i, j]) denote the set {[i′, j′] ⊆
[i, j] | DS(ν)[i′, j′] is an RL-block} that contains those subintervals of [i, j] that are also
RL-blocks. Let RLD(ν) denote the set

⋃
[i,j]∈Decompose(ν) RLD([i, j]).
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▶ Definition 7 (RL-interval). We say that an interval [i, j] is an RL-interval if at least one
of the following condition holds: (1) rational(κ(j, i)); (2) rational(κ(i, j)); (3) there exists
an integer k such that i < k < j, rational(κ(k + 1, i)), and rational(κ(k, j)).

From the above definition, we can obtain the following observation.

▶ Observation 8. For any RL-interval [i, j], there exists a sequence of swaps between agents
in [i, j] that improves all agents in the interval.

▶ Lemma 9. Let ν be a matching in reach(χ) and let [i, j] be in RLD(ν), interval [i, j] is an
RL-interval.

Proof. Let RmLj−i+1−m denote the RL-block DS(ν)[i, j]. Let b1 and b2 denote the initial
endowment of agent i + m− 1 and agent i + m in χ, respectively. Then, b1 is the rightmost
right-moving object and b2 is the leftmost left-moving object. Then, from Observations 1
and 2, we have ν−1(b1) = j and ν−1(b2) = i; otherwise the initial endowments of agent i

and agent j are stationary. Thus, we have a reachable matching ν mapping b1 to leaf agent
j, and mapping b2 to leaf agent i. By Lemma 3, κ(i + m − 1, j) and κ(i + m, i) are both
rational. ◀

Let I denote the set of all RL-intervals in χ. Let Ψ(I) denote the set {X ⊆ I |
all intervals in X are disjoint}.

▶ Lemma 10. For any matching ν in reach(χ), the set of intervals RLD(ν) is an element
in Ψ(I).

Proof. Since I contains all RL-intervals in χ and each interval in RLD(ν) is an RL-interval
(Lemma 9), the set of intervals RLD(ν) is a subset of I. Also, all intervals in RLD(ν) are
clearly disjoint. ◀

▶ Lemma 11. For any set of intervals D in Ψ(I), there exists a matching ν in reach(χ)
such that RLD(ν) = D.

Proof. We explicitly construct such a matching as follows. For each RL-interval [i, j] in D,
from Observation 8, we know there exists a sequence of swaps that improves all agents in
[i, j]. Thus, matching ν can be constructed by applying such a sequence of swaps for each
interval [i, j] in D on the initial matching µ. ◀

Let MCDI(I) denote the maximum coverage of some disjoint intervals in I, i.e., the
maximum size of the union of disjoint intervals in I.

▶ Lemma 12. mv(χ) = MCDI(I).

Proof. Lemma 10 implies that mv(χ) ≤ MCDI(I). Assume by contradiction that mv(χ) <

MCDI(I). Then, there exists a set D in Ψ(I) such that mv(χ) <
∑

[i,j]∈D

j− i + 1. By Lemma

11, there exists a matching ν in reach(χ) such that RLD(ν) = D. For matching ν, we have
votesF (ν, µ) =

∑
[i,j]∈RLD(ν)

j − i + 1 =
∑

[i,j]∈D

j − i + 1 > mv(χ), a contradiction. ◀

Using the above lemma, to compute the maximum votes of a configuration, we only need
to compute the maximum coverage of disjoint intervals in I. Algorithm 1 has two steps. The
nested for loops compute all the RL-intervals I for a given χ. The second step invokes the
maximum disjoint interval algorithm on I.
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Algorithm 1 MV(χ).

Input: A configuration χ = (F, µ0)
Output: The maximum votes number of χ

I ← ∅
for i← 1 to n− 1 do

for j ← i + 1 to n do
if ∃k ∈ [i, j] s.t. rational(κ(k, j)) ∧ rational(κ(k + 1, i)) then
I ← I ∪ {[i, j]}

end
end

end
Return MCDI(I)

3.3 Weighted Version of Maximum Votes Matching
We remark that there is a polynomial-time algorithm solving a weighted version of finding
a maximum votes matching. Formally, let W : [n]→ R denote a weight function assigning
each agent a in [n] a real value W (i). For any matchings µ′, µ of F , let votesF (µ′, µ, W ) =∑

a∈[n]:µ′(a)>aµ(a) W (a), i.e., the total weight of the agents that prefer µ′ to µ. In addition,
let mv(χ, W ) = maxµ′∈reach(χ) votesW (µ′, µ).

To allow for the weight function W , we reduce the problem of computing mv(χ, W ) to
compute the maximal sum of weights of disjoint intervals in I, where each interval [i, j] in I
has weight

∑
k∈[i,j] W (k). To compute the maximum weighted coverage of disjoint intervals

in I, we construct a directed graph G = (I, E) as follows. Each node in G is a interval [i, j]
in I. For every two nodes [i, j] and [i′, j′], there is a directed edge from node [i, j] to node
[i′, j′] if j < i′. Moreover, each node has a cost equal to the weight of the corresponding
interval. Note that this graph is acyclic, and it takes O(n2) time to find a most weighted
path in an acyclic graph.

3.4 MVPE algorithm
In this section, we present Algorithm 3 for finding an MVPE matching given a path
configuration. Our main idea is to apply a serial dictatorship procedure. To simplify the
presentation, we focus on the leftmost agent a in any path configuration χ = (F, µ) on agents
[a, n]. We seek the best possible object b for the leftmost agent a such that there exists a
maximum votes matching τ in reach(χ) with τ(a) = b. Note that Lemma 3 implies that
rational(κ(µ−1(b), a)) holds. We then apply κ(µ−1(b), a) in χ to let agent a match object b.
Hence, we get a new configuration χ′ on agents [a + 1, n] by truncating the leftmost agent a

along with its assigned object b. We then recurse on the leftmost agent a + 1 in χ′.
However, when we recurse on χ′, the situation is a bit different than in χ. The applied

sequence of swaps κ(µ−1(b), a) has improved agents between agent a and µ−1(b) in χ, and
also in χ′. These agents will vote when this serial dictatorship procedure ends. Thus, when
we recurse on χ′, in order to ensure that the resulting matching is a maximum vote matching,
we need to find a matching maximizing votes among agents on the right side of µ−1(b) in χ′,
rather than all agents.

Formally, we introduce some notations. For any agent interval [i, j] that is a subset of [n],
let χ[i, j] and µ[i, j] denote the truncated configuration and truncated matching induced by
agents in [i, j], respectively. Let mv(χ, [i, j]) denote the maximum number of agents in [i, j]
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that can be improved by any reachable matching in reach(χ), votesF (µ′, µ, [i, j]) denote the
number of agents in [i, j] that prefer µ′ to µ, and MVM(χ, [i, j]) denote the set of reachable
matchings achieving mv(χ, [i, j]).

We are prepared to introduce our recursive subroutine called BOLA (best object for the
leftmost agent), shown as Algorithm 2. Given a configuration χ = (F, µ) on agents [a, n]
and an agent a′ ≥ a, Algorithm 2 finds the leftmost agent a’s most preferred object b∗ such
that there exists a µ′ in MVM(χ, [a′, n]) with µ′(a) = b∗. In Algorithm 2, agent a′ is used to
limit the objects that agent a can be possibly matched with. Specifically, Algorithm 2 only
considers objects that are initially owned by agents in [a′, n]. In Algorithm 2, we need to
compute mv(χ, [a, n]) for a given χ on the agents in [a, n]. This can be done by applying the
weighted version of Algorithm 1 as discussed in Section 3.3.

Fig. 4 shows a possible execution of Algorithm 2. Here, Algorithm 2 runs with a
configuration χ on the agents in [a, n] and an agent a′ in [a, n], and it finds an object b∗

initially owned by agent i that satisfies the two if conditions.

a a′ i

b∗

a′′ n

Figure 4 A demo example for Algorithm 2.

Algorithm 2 BOLA(χ, a′).

Input: A configuration χ = (F, µ) with agents [a, n], an agent a′ ∈ [a, n]
Output: The most preferred object b∗ of the leftmost agent, where there is a

matching µ′ in MVM(χ, [a′, n]) assigning b∗ to a

// Remark: a is the leftmost agent in χ

b∗, V ← µ(a), mv(χ, [a′, n])
for i← a to n do

if µ(i) ≥a b∗ ∧ rational(κ(i, a)) then
// Remark: i denotes an agent
µ∗ ← the matching that results from applying κ(i, a) to µ

χ∗ ← (F, µ∗)
a′′ ← max(i + 1, a′)
if votes(µ∗, µ, [a′, a′′ − 1]) + mv(χ∗, [a′′, n]) = V then

b∗ ← µ(i)
end

end
end
return b∗

Lemma 13 characterizes all possible maximum votes matchings in terms of the two if
conditions used in Algorithm 2. Next we use Lemma 13 to prove Lemma 14, which is our
main correctness lemma. It implies that to find the leftmost agent a’s most preferred object
b∗ such that ∃µ′ ∈ MVM(χ, [a′, n]) : µ′(a) = b∗, we can iterate through all objects that
satisfy the two if conditions and find the best one for agent a.

▶ Lemma 13. Let χ = (F, µ) denote an configuration, let [a, n] denote the set of agents in
χ, and let a′ denote an agent in [a, n]. Let τ denote a matching in reach(χ). Let b = τ(a),
and a′′ = max(µ−1(b) + 1, a′). Then, the matching τ belongs to MVM(χ, [a′, n]) if and only
if the following two conditions hold:
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(1) rational(κ(µ−1(b), a));
(2) votes(µ′, µ, [a′, a′′ − 1]) + mv(χ′[a + 1, n], [a′′, n]) = mv(χ, [a′, n]), where µ′ is obtained

from applying κ(µ−1(b), a) to µ and χ′ = (F, µ′).

▶ Lemma 14. Algorithm 2 with an input χ on agents [a, n] and an agent a′ in [a, n] returns
the most preferred object b∗ of agent a’s such that there exists a matching µ′ in MVM(χ, [a′, n])
with µ′(a) = b∗.

Proof. It straightforward to verify that the returned b∗ satisfies two conditions (1) and (2) in
Lemma 13. Therefore, Lemma 13 implies that there exists a matching µ′ in MVM(χ, [a′, n])
with µ′(a) = b∗.

Then we prove that b∗ is the agent a’s most preferred object. Assume by contradiction
that there is another b is more most preferred to agent a than b∗ and ∃µ′ ∈ MVM(χ, [a′, n]) :
µ′(a) = b. By Lemma 13, two conditions (1) and (2) in Lemma 13 holds and thus the
algorithm will return b instead, a contradiction. ◀

We now present Algorithm 3 that uses Algorithm 2 as a building block to find an MVPE
matching. In Algorithm 3, we maintain a partial matching τi, which is a matching involving
only agents in [1, i]. At the ith iteration, we invoke the BOLA subroutine to find the agent
i’s most preferred object b∗ that satisfies the condition in Lemma 14. Then we apply κ(b∗, i)
to assign object b∗ to agent i and remove agent i from the configuration afterwards.

Let P (i) denote the predicate: there exists ν in MVM(χ, [1, n]) such that τi is a subset
of ν. Algorithm 3 maintains the invariant: P (i) holds for all i in [n]. This invariant ensures
that the final matching τn returned by Algorithm 3 is a matching in MVM(χ, [1, n]). The
serial dictatorship mechanism ensures that τn is also a Pareto-efficient matching.

Algorithm 3 MVPEM(χ).

Input: A configuration χ = (F, µ)
Output: An MVPE matching of χ

µ1, a1, χ1, τ0 ← µ, 1, χ, ∅
for i← 1 to n do

/* i is the index of an agent */
bi ← BOLA(χi, ai)
a′

i ← µ−1
i (bi)

ai+1 ← max(a′
i + 1, ai)

µ′ ← the matching that results from applying κ(a′
i, i) to µi

/* Assign bi to agent i and truncate it from χ */
τi, µi+1, χi+1 ← τi−1 + (i, bi), µ′[i + 1, n], (F, µi+1)

end
return τn

▶ Theorem 15. The matching τn returned by Algorithm 3 is an MVPE matching.

4 Star Network

In this section, we consider the case when the social network is a star. Our results are
twofold. We first present a polynomial-time algorithm for finding an MVPE matching in a
star network when preferences are strict. We then show that finding an MVPE matching in
a star network with weak preferences is NP-hard.
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For the case of strict preferences, we present a simple polynomial-time algorithm for
finding an MVPE matching. The main idea of the algorithm is to use the fact that any swap
involves a center agent and a non-center agent to reduce the MVPE problem to the problem
of finding a longest path in a directed acyclic graph.

▶ Theorem 16. There is a polynomial-time algorithm finding an MVPE matching in a star
network with strict preferences.

Proof. Let O denote the center agent, and let [n] denote the set of leaf agents. Let µ denote
the initial matching. Note that every swap in a star network always involves the center agent.
Moreover, notice that any leaf agent can change its object at most once in any valid sequence
of swaps. To see this, observe that once an object moves from the center to a leaf, it can
never return to the center. Thus, any sequence of swaps can be represented as an ordered
list of leaf agents. Let L = (i1, i2, . . . , ik) denote such an list, where k belongs to [n]. Note
that µ(ij) <O µ(ij+1) for all j in [k − 1], where O is the center agent.

We first show how to find a maximum votes matching, and then prove that any maximum
votes matching is also Pareto-efficient.

To find a maximum votes matching in star networks, it is equivalent to find a longest
ordered list of leaves corresponding to a sequence of swaps, since a leaf agent gets improved
if and only if it is included in the list. This problem reduces to the search of a longest path
in a directed acyclic graph G = ({O} ∪ [n], E′). The edge set E′ contains a directed edge
from a to a′ if and only if agent a′ belongs to [n], µ(a′) >O µ(a), and µ(a) >a′ µ(a′). There
is a path from O to a′ in the digraph if and only if the center can get the initial endowment
of agent a′. It is straightforward to see that there exists a polynomial-time algorithm solving
this longest path problem in G.

Next we prove that any maximum votes matching ν is Pareto-efficient. Assume for the
sake of contradiction that reachable matching ν′ Pareto-dominates ν. Consider the ordered
lists of agents L and L′ corresponding to the sequences of swaps for reaching ν and ν′,
respectively. Since ν′ Pareto-dominates ν, any agent in L that gets a better allocation in ν

also gets a better allocation in ν′, i.e., belongs to L′. Furthermore, since ν is a maximum
votes matching, the ordered list L is the longest ordered list of agents. Therefore, the list
L′ is contained in L. (Otherwise, L′ contains all agents in L and is longer than L, which
contradicts the assumption that L is the longest ordered list of agents.) That is, L′ has the
same agents as in L, and hence L′ = L as all agents in the ordered lists are sorted by the
preferences of center agent O. Therefore, we have ν′ = ν, a contradiction. ◀

4.1 Weak Preference
IN this section, we show that finding an MVPE matching is NP-hard in a star network with
weak preferences. We first introduce the notion of a center object sequence. For all sequences
of matchings Π = µ0, . . . , µk, we define the corresponding center object sequence π as the list
of objects owned by the center agent O, i.e., π = [µ0(O), . . . , µk(O)]. We use π[i] to denote
µi(O), and for any object b, we use π(b) to denote the index of first occurrence of b in π,
and π(b) = −1 if b does not belong to π. We have the following observations for the center
object sequence.

▶ Observation 17. Let X be a non-center agent with initial endowment x such that x belongs
to π. Then, π[π(x)− 1] ≥X x.

Notice that π[π(x)− 1] is the object used by center agent O to swap x from agent X.
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▶ Observation 18. Let X be an agent with initial object x. Then, agent X is improved by Π
if and only if x belongs to π.

We now establish NP-hardness by proving that it is NP-hard to find a maximum votes
matching.

Construction. We use a reduction from the 3-SAT. In an instance of 3-SAT, we are given a
propositional formula ϕ that is the conjunction of m clauses C1, . . . , Cm. Each clause Ci is
the disjunction of three literals, where each literal is either a variable or the negation of a
variable. The set of variables is x1, . . . , xn. Given a formula ϕ, we construct a corresponding
star configuration χϕ = (F, µ) with 3n + 3m + 1 agents such that for any 3-SAT formula ϕ

with n variables and m clauses, ϕ is satisfiable if and only if χϕ has largest voting number
2n + 3m.

We begin by creating the set of agents A. For each variable index i, there are three agents
in A: Si, Ti, Fi. For each clause Cj = lj,0 ∪ lj,1 ∪ lj,2, there are three agents Pj,0, Pj,1, Pj,2 in
A. There is also a center agent O. Thus there are a total of 3m + 3n + 1 agents in A.

For each agent in A, we use the corresponding lower case letter to denote its initial
object. For example, agent P1,2 initially holds object p1,2. For agents Ti and Fi in a variable
gadget with i ∈ [n], their initial objects are ti and fi, representing whether the corresponding
variable xi is true or false. Furthermore, for each literal lj,k of variable xw, we associate
instance an object aj,k defined as follows. If lj,k = xw, then aj,k = tw; otherwise, aj,k = fw.
For example, if lj,k = x15, then aj,k = t15, and if lj,k = x̄7, then aj,k = f7.

For agent preferences, we only consider the objects that each agent prefers at least as its
initial object; other objects can be put behind its initial endowment in any order. The center
agent O is indifferent to all objects. We use boxed objects to indicate the initial endowments,
and objects in a bracket are indifferent to an agent. For agents Si, Ti, Fi, their preferences
from most preferred to least preferred are Si : (ti, fi), (o, si ), Ti : si, ti , Fi : si, fi . For
each k in {0, 1, 2}, Pj,k : pj,k−1, aj,k, pj,k , where pj,−1 = pj,2.

We now present some properties of our gadgets.

▶ Lemma 19. Let Si, Ti, Fi be the three agents in the variable gadget corresponding to a
variable xi, Π = µ0, . . . , µk be a sequence of matchings, and π denote the corresponding
center object sequence of Π. Then at most two agents in {Si, Ti, Fi} are improved by Π. If
exactly two agents of {Si, Ti, Fi} are improved, then exactly one of {ti, fi} belongs to π.

Proof. Notice that if agent Ti or Fi is improved, then either Ti or Fi gets object si by the
preferences of Ti and Fi. However, in a matching, si can be matched to one agent. Therefore,
Π cannot improve Ti and Fi. That is, at most two agents in {Si, Ti, Fi} are improved by
Π. If exactly two agents of {Si, Ti, Fi} get improved, then exactly one agent in {Ti, Fi} is
improved, and hence exactly one of {ti, fi} belongs to π by Observation 18. ◀

▶ Lemma 20. Let Cj = lj,0 ∪ lj,1 ∪ lj,2 denote a clause. For each k in {0, 1, 2}, let Pj,k

denote the agent corresponding to literal lj,k, let pj,k denote the initial object of Pj,k, and let
aj,k in {ti, fi | i ∈ [n]} denote the object associated with literal lj,k. Let Π = µ0, . . . , µk be a
sequence of matchings, and π denote the corresponding center object sequence of Π. If none
of aj,0, aj,1, aj,2 is in π, then none of pj,0, pj,1, pj,2 is π.

Proof. We prove the contrapositive. Assume that there is an object in {pj,0, pj,1, pj,2} that
belongs to π. Let pj,k denote the object with minimum π(pj,k) where k belongs to {0, 1, 2}.
By Observation 17, π[π(pj,k)−1] ≥Pj,k

pj,k. By the preferences of Pj,k, π[π(pj,k)−1] belongs
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to {aj,k, pj,k−1} with pj,−1 = pj,2. Moreover, by the assumption pj,k is the object with
minimum π(pj,k), π[π(pj,k)− 1] does not belong to {pj,0, pj,1, pj,2}. Therefore, π[π(pj,k)− 1]
is aj,k, and hence π contains object aj,k. ◀

Using the above properties of our gadgets, it is not hard to verify the correctness of our
reduction. Formally, we prove following two lemmas, one for each reduction direction.

▶ Lemma 21. If mv(χϕ) = 2n + 3m, then ϕ is satisfiable.

Proof. By Lemma 19, there are at least n agents that are not improved. Moreover, the
center agent O initially holds one of most preferred objects, and hence cannot be improved.
Therefore, there are at most 2n + 3m agents that are improved. If χϕ achieves the largest
voting number 2n + 3m, then there are exactly two agents that are improved in each variable
gadget and all three agents that are improved in each clause gadget.

By Lemma 19, for all i in [n], there is exactly one object in {ti, fi} in π. If ti is in
π, then let variable xi be true, otherwise let xi be false. Therefore, we get an assignment
Aπ from π. We then show that Aπ is a satisfiable assignment, i.e., each clause Cj in ϕ

is true with respect to assignment Aπ. For the sake of contradiction, assume that there
exists a clause Cj that is false. Hence, all of the literals lj,0, lj,1, lj,2 in Cj are false under
assignment Aϕ. Let aj,0, aj,1, aj,2 ∈ {ti, fi | i ∈ [n]} be the objects associated with literals
lj,0, lj,1, lj,2, respectively. We deduce that none of aj,0, aj,1, aj,2 is in π. By Lemma 20, π

does not contain {pj,0, pj,1, pj,2}. That is, agents Pj,0, Pj,1, Pj,2 is not improved by π due to
Observation 18. ◀

▶ Lemma 22. If there is a satisfiable assignment for ϕ, then mv(χϕ) = 2n + 3m.

Proof. Let Aϕ be a satisfiable assignment for ϕ. For each i in [n], if xi is true in assignment
Aϕ, then let bi denote object ti; otherwise, let bi denote object fi.

Now we show how to obtain a sequence of swaps according to objects (b1, . . . , bn). Let
C denote a temporary set, which is initialized to be the set of all clauses {C1, C2, . . . , Cm}.
For each i in [n], let Bi denote the initial owner of bi, i.e., Bi = Ti if bi = ti and Bi = Fi

otherwise. We construct the sequence of swaps as follows. For each object bi, we do the
following swaps:
1. Perform two swaps (O, Si), (O, Bi) to let center agent O get bi and Si get object o.
2. If there are a clause Cj in C and a literal lj,k in Cj such that object bi is the associated

object aj,k, then we preform the following steps:
Perform these swaps in sequence: (O, Pj,k), (O, Pj,k⊕1), (O, Pj,k⊕2), (O, Pj,k), where ⊕
denotes the addition module 3. Remark that by doing so, agent Pj,k gets its most
preferred object for all k in {0, 1, 2} and center agent O still holds bi.
Remove the clause Cj from C.

3. In the end, perform the swap (O, Si). Remark: After this swap, agent O gets object o

and Si get one of its most preferred object bi. We then proceed to consider object bi+1.

We now show that the sequence of swaps constructed above improves 2n+3m agents. First of
all, by applying the above sequence of swaps, for all i in [n], agent Si is matched to object bi

and agent Bi is matched to object si. Thus, the above sequence of swaps improves 2n agents
in variable gadgets. Then, we consider agents in clause gadgets. Since Aϕ is a satisfiable
assignment for ϕ, for all clause Cj there exists some literal lj,k of variable xi such that lj,k is
true under assignment Aϕ. Therefore, by the definition of object aj,k, we deduce that aj,k is
bi. Thus, all agents associated with clause Cj are improved. That is, the above sequence of
swaps improves all agents in clause gadgets. There are 3m agents in clause gadgets. To sum
up, there are 2n + 3m agents that are improved in total. ◀

▶ Theorem 23. Finding an MVPE matching on stars with weak preferences is NP-hard.
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5 Tree Network

▶ Theorem 24. Finding an MVPE matching on trees with strict preferences is NP-hard.

We establish Theorem 24 by proving that it is NP-hard to find a maximum votes matching.
The latter result is obtained via a reduction to reachable object problem on trees, which was
shown to be NP-complete by Gourvès et al. [13].

6 Conclusion

To refine Pareto-efficiency, we study the complexity of finding a maximum votes Pareto-
efficient matching when a group of agents exchange their objects along a social network.
By presenting two polynomial-time algorithms and two NP-hardness results, we shed light
on the frontiers between tractable and intractable cases in terms of the structures of the
social network and whether ties in preference are allowed. A challenging open question is to
completely characterize the social network structures for which case the MVPE problem is
polynomial-time solvable.
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This paper analyses models of a spatial logic with path operators based on the class of neighbourhood
spaces, also called pretopological or closure spaces, a generalisation of topological spaces. For this
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1 Introduction

The safe and correct operation of systems in a wide range of application domains is increasingly
dependent on spatial reasoning to evaluate the structure of space and how space might evolve
over time. Examples include target counting in wireless sensor networks [19, 2], cyber-
physical systems [22], transport systems [9], structural analysis [17], and medical imaging [6].
Neighbourood spaces, also known as closure or pretopological spaces [23, 14], have emerged as
a popular formalism in these scenarios due to their ability to natively represent topological
spaces but also simple graphs and simple directed graphs. In this paper, we focus on SLCS,
a modal logic introduced by Ciancia et al. [11] for the specification and verification of spatial
properties over neighbourhood spaces. This logic features a closure modality N (near) and
path modalities R (reachable from) and P (propagates to). While model checking algorithms
and software support have been developed, the model theory of this logic is still not well
understood. In particular, it is not known what kind of spaces can be expressed by various
classes of formulas. Answering this question is complicated by how the near modality interacts
with the path modalities which is substantially different from the modality interactions in
discrete modal logic.
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We make the following research contributions:
1. we show that SLCS does not admit finite models on general neighbourhood spaces;
2. we prove that there are formulas that are only satisfiable on infinite models even when re-

stricting to either quasi-discrete paths (similar to paths on graphs) or standard topological
paths;

3. we define a finite model construction using filtration arguments for models with quasi-
discrete underlying spaces and quasi-discrete or topological paths.

Related Work

The analysis of SLCS is increasingly gaining traction both in Theoretical Computer Science
and Topology.

In recent work [18], we presented bisimulations for SLCS formulas using path operators
that show the equivalence of formulas between bisimilar models. Ciancia et al. [12] used co-
algebraic methods to present bisimulations over quasi-discrete models that are well-matched
(i.e., they characterise the class of quasi-discrete models), but did not extend this result to
arbitrary spaces. Importantly, the authors restricted the set of SLCS formulas to omit path
operators. Castelnovo and Miculan [7] defined a categorical semantics for various fragments
of SLCS using hyperdoctrines with paths and investigated how to extend the logic to other
spaces with closure operators, such as probabilistic automata.

Rieser [20] used the unit interval to define and analyse a homotopy theory for closure
spaces, that is, how paths can be transformed into one another. Bubenik and Milićević [5]
further investigated how different generalisations of the unit interval yield different path
objects. None of these definitions is immediately applicable to SLCS paths, which are much
more concrete.

2 Neighbourhood Spaces

In this section we recall the notions of neighbourhood spaces and some related results from
general topology we will use in this paper. Our main reference is [23]. For additional general
results on these topics and for the proofs of the results reported here, we refer the reader to
this source.

▶ Definition 1 (Filter). Given a set X, a filter F on X is a subset of P(X), such that F is
closed under intersections, whenever Y ∈ F and Y ⊆ Z, then also Z ∈ F , and finally ∅ ̸∈ F .

▶ Definition 2 (Neighbourhood Space). Let X be a set, and let η : X → P(P(X)) be a function
from X to the set of filters on it, where every η(x) is such that x ∈

⋂
N∈η(x) N . We call η a

neighbourhood system on X, and X = (X, η) a neighbourhood space. For every set A ⊆ X,
we have the (unique) interior and closure operators defined as follows.

Iη(A) = {x ∈ A | A ∈ η(x)} Cη(A) = {x ∈ X | ∀N ∈ η(x) : A ∩N ̸= ∅}

An element x ∈ X has a minimal neighbourhood if there exists N ∈ η(x) such that N ⊆ N ′

for any neighbourhood N ′ ∈ η(x). We use Nmin(x) to refer to the minimal neighbourhood
of x. If each element x ∈ X has a minimal neighbourhood, then we call X quasi-discrete.
Finally, if for every element x ∈ X and any neighbourhood N ∈ η(x), there is a neighbourhood
M ∈ η(x), such that for every y ∈ M , we have also that N ∈ η(y), then X is topological.
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Neighbourhood spaces as we introduced them are exactly the pretopological spaces as
defined by Choquet [8] and the closure spaces introduced by Čech [23], as shown by Kent
and Min [16].1 Furthermore, a topological neighbourhood space is just a topological space as
usual.

▶ Definition 3 (Connectedness ([23] 20.B.1)). Let X = (X, η) be a neighbourhood space. Two
subsets U and V of X are semi-separated, if C(U) ∩ V = U ∩ C(V ) = ∅. A subset U of X
is connected, if it is not the union of two non-empty, semi-separated sets. The space X is
connected, if X is connected.

We also introduce a special kind of connected neighbourhood space, endowed with a
linear order.

▶ Definition 4 (Index Space). If (I, η) is a connected neighbourhood space and ≤ ⊆ I × I a
linear order on I with the bottom element 0 ∈ I, then we call I = (I, η,≤, 0) an index space.

In the following sections, we will often use the concept of continuous functions. Generally,
we will use the notation f [A] for the image of a set A ⊆ X under a function f : X → Y .

▶ Definition 5 (Continuous Function ([23] 16 A.4)). Let Xi = (Xi, ηi) for i ∈ {1, 2} be
two neighbourhood spaces. A function f : X1 → X2 is continuous at x1, if for every N2 ∈
η2(f(x1)), there is an N1 ∈ η1(x1) such that f [N1] ⊆ N2. Equivalently, for every Y ⊆ X1, if
x1 ∈ C1(Y ), then f(x1) ∈ C2(f [Y ]). If f is continuous at every x1 ∈ X1, we simply say that
f is continuous. We will also write f : X1 → X2.

Observe that this coincides with the well-known definition of continuous functions on
topological spaces.

▶ Definition 6 (Path). For an index space I and a neighbourhood space X , a continuous
function p : I → X is an I-path on X . If p(0) = x, we will also write p : x⇝∞ to denote a
path starting in x.

Two typical index spaces are IR = ([0, 1], ηR,≤, 0), the unit interval with the standard
topology based on open intervals, and IN = (N, ηN,≤, 0), where ηN is given by the quasi-
discrete neighbourhood system induced by the successor relation. That is, the minimal
neighbourhood of each point n is given by {n, n+ 1}. We call IR-paths topological paths and
IN-paths quasi-discrete paths.

▶ Definition 7 (Separation and Distinguishability). Let X = (X, η) be a neighbourhood
space and x, y ∈ X be two distinct points of X . If η(x) ̸= η(y), we say that x and y are
distinguishable in X . If there is both an N ∈ η(x) such that y ̸∈ N and an M ∈ η(y) such
that x ̸∈ M , then we call x and y T1-separated. Equivalently, in terms of closures, two distinct
points x and y are distinguishable, if x ̸∈ C({y}) or y ̸∈ C({x}). They are T1-separated, if
({x} ∩ C({y})) ∪ (C({x}) ∩ {y}) = ∅.

The space X is a symmetric space (or R0-space), if every two distinguishable points are
T1-separated.

The following lemma implies that quasi-discrete paths that visit a non-quasi discrete
point on a symmetric space cannot get back into “quasi-discrete territory”.

1 To be exact, Kent and Min’s definition of neighbourhood spaces is more general than ours, as they do
not require the neighbourhood systems to be filters. In fact, they show that a neighbourhood space
where each neighbourhood system is a filter constitutes a pretopological space.
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x y z

(a) Quasi-discrete space X .

p(i) =


x i < 1

2

y i = 1
2

z i > 1
2

(b) A valid topological path over X .

Figure 1 Example of a topological path on a quasi-discrete space.

▶ Lemma 8. Let Q = (Q, ηQ) be a quasi-discrete space and X = (X, η) be a non-quasi-
discrete, but symmetric space. Furthermore let x ∈ X be a point that does not have a minimal
neighbourhood. Any continuous function f : Q → X that visits x at some point q can only
visit points that are indistinguishable from x at any q′ ∈ Nmin(q). In terms of closures, this
is equivalent to the following condition: if q ∈ C({q′}), then f(q′) is indistinguishable from x.

Proof. Let f : Q → X be a continuous function with f(q) = x and for some q′ ∈ Nmin(q),
we have f(q′) = y where x and y are distinguishable. Hence, there is an N ∈ η(x) such that
y ̸∈ N . However, for any M ∈ ηQ(q), we have that Nmin(q) ⊆ M , which of course means
also q′ ∈ M . But f(q′) ̸∈ N , so f [M ] ̸⊆ N . So f is not continuous at q, which contradicts
the assumption on f . ◀

We will often refer to the fact that quasi-discrete spaces closely resemble graphs: we can
consider the points in the minimal neighbourhood of a point x to be connected to x by an
edge. The following example provides a better understanding of the difference in behaviour
of topological and quasi-discrete paths over quasi-discrete neighbourhood spaces.

▶ Example 9. Consider the quasi-discrete neighbourhood space X in Fig. 1a. Any path p

defined over IN is such that for any i ∈ IN, if p(i) = x or p(i) = z, then p(j) = p(i) for any
j ≥ i. However, path p defined in Fig. 1b is a valid path when considering topological paths.

3 Spatial Logic for Neighbourhood Spaces

In this section, we briefly recall SLCS on general neighbourhood spaces. To that end, we
first present spatial models based on neighbourhood spaces and then present the syntax and
semantics of SLCS.

▶ Definition 10 (Neighbourhood Model). Let X = (X, η) be a neighbourhood space, I an index
space, AP a countable set of propositional atoms, and let ν : X → P(AP) be a valuation. Then
M = (X , I, ν) is a neighbourhood model over I-paths. We will also write M = (X, η, ν) to
denote neighbourhood models, if the index space is clear from the context.

We lift all suitable definitions from Sect. 2 to neighbourhood models in the obvious ways.
For example, we will speak of continuous functions between the underlying spaces of two
models as continuous functions between the models.

We will often use the special case of models with quasi-discrete spaces over quasi-discrete
paths, since such models are graph-like models with standard paths on graphs.

▶ Definition 11 (Purely Quasi-Discrete Models). Let X be a quasi-discrete neighbourhood space.
A model M = (X , IN, ν) over quasi-discrete paths is a purely quasi-discrete neighbourhood
model.
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▶ Definition 12 (Syntax of SLCS).

φ,ψ : : = p | ¬φ | φ ∧ ψ | N φ | φRψ | φP ψ

N is read as near, R is read as reachable from, and P is read as propagates to.

The intuition behind the modalities is as follows. A point satisfies N φ, if it is contained in
the closure of the set of points satisfying φ. Hence, even if it does not satisfy φ itself, it is
close to a point that does. A point x satisfies φRψ if there is a point y satisfying ψ such
that x is reachable from y via a path where every point on this path between x and y satisfies
φ. Propagation is in a sense the converse modality, i.e., if there is a point y satisfying ψ such
that there is a path starting in x and reaching y at some index, and all points in between
satisfy φ, then x satisfies φP ψ. This intuition is formalised in the following semantics.

▶ Definition 13 (Path Semantics of SLCS). Let M = ((X, η), I, ν) be a neighbourhood model
and x ∈ X. The path semantics of SLCS with respect to M are defined inductively as follows.

M, x |= p iff p ∈ ν(x)
M, x |= ¬φ iff not M, x |= φ

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= N φ iff x ∈ C({y | M, y |= φ})
M, x |= φRψ iff there is p : y ⇝∞ and n such that p(n) = x and M, y |= ψ

and for all 0 < i < n : M, p(i) |= φ

M, x |= φP ψ iff there is p : x⇝∞ and n such that M, p(n) |= ψ

and ∀i : 0 < i < n =⇒ M, p(i) |= φ

In addition to the defined Boolean operators, we also allow for the other common derivable
connectives. Specifically, φ ∨ ψ = ¬(¬φ ∧ ¬ψ), ⊤ = φ ∨ ¬φ, ⊥ = ¬⊤, φ → ψ = ¬φ ∨ ψ, and
φ ↔ ψ = (φ → ψ) ∧ (ψ → φ). For a class of models M, we say that φ is valid in M if, and
only if, M, x |= φ for every M = ((X, η), I, ν) ∈ M and x ∈ X.

▶ Definition 14 (Relative Equivalence). Let Σ be a subformula closed set of SLCS formulas,
M a neighbourhood model, and x, y ∈ M be two points of M. Then x and y are equivalent
relative to Σ iff they satisfy the same formulas in Σ, i.e., x ≏Σ y iff {φ ∈ Σ | M, x |= φ} =
{φ ∈ Σ | M, y |= φ}. This is an equivalence relation, and we will denote the equivalence
classes of x by [x]Σ and [x], if Σ is clear from the context.

The following lemmas present properties of formulas on different classes of models. We
start with the most familiar class: purely quasi-discrete models. On these models, we have a
clear connection between the near modality and the propagate path operator.

▶ Lemma 15. On all purely quasi-discrete neighbourhood models M = (X , IN, ν) we have
that M, x |= N φ iff M, x |= φ ∨ ⊥ P φ.

Proof. If M, x |= φ, the equivalence is clear. Otherwise, assume M, x |= ⊥ P φ. This means
that there is a point y and a path p : x ⇝ ∞ such that p(1) = y and M, y |= φ. Since p
is continuous, this means that there is a neighbourhood N of 0 such that p[N ] ⊆ Nmin(x).
Since every neighbourhood of 0 contains 1, this means y ∈ Nmin(x), and so M, x |= N φ.
The other direction is similar. ◀
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If we consider quasi-discrete models over topological paths, this connection is less clear.
The main reason for this is that over topological graphs, ⊥ P φ is equivalent to φ, which
is easy to prove. However, we can still establish a bit less obvious connection between the
modalities.

▶ Lemma 16. On quasi-discrete models over topological paths, (a ∧ N (b ∧ ¬a)) → N (¬a ∧
(bP a)) is valid.

Proof. Let M = (X , IR, ν) with X = (X, η) be a quasi-discrete model and let x ∈ X such
that M, x |= a ∧ N (b ∧ ¬a). That is, x |= a and x ∈ C({y | M, y |= b ∧ ¬a}). Since X is
quasi-discrete, this means that there is a y ∈ Nmin(x) such that M, y |= b ∧ ¬a. Then, the
path p : IR → X with p(i) = y for i < 1 and p(i) = x for i = 1 is a witness for M, y |= bP a.
This function is indeed continuous: Consider N ∈ η(p(i)). If i < 1, we can always choose an
Ni ∈ ηI(i) such that ∀j ∈ Ni we have j < 1, since I has arbitrarily small neighbourhoods,
which means p[Ni] = {y} ⊆ N . If i = 1, we have for any neighbourhood Ni ∈ ηI(i), that is
p[Ni] ⊆ {x, y} ⊆ Nmin(x) ⊆ N . Furthermore, p(0) = y, and for n = 1, we have p(n) = x, and
for all 0 < i < n, M, p(i) |= b. Since y ∈ Nmin(x), we have that M, x |= N (¬a∧ (bP a)). ◀

Furthermore, on any kind of model over topological paths, we get that the reachable and
propagate modalities are equivalent. Intuitively, this is clear, since for topological paths,
there is no inherent direction on the index space, in contrast to the quasi-discrete index
space, where the successor relation is directed.

▶ Lemma 17. On any neighbourhood model over topological paths M = (X , IR, ν) we have
that M, x |= φP ψ iff M, x |= φRψ.

Proof. Let M = ((X, η), IR, ν) be a neighbourhood model over topological paths, and x ∈ X

a point of M such that M, x |= φP ψ. So there is a path p : IR → M and n ∈ [0, 1], such
that p(0) = x, p(n) = y and M, y |= ψ, and ∀k : 0 < k < n, we have M, p(k) |= φ. Since p is
topological, we can assume without loss of generality that n = 1. Now the path p′ defined by
p′(i) = p(1 − i) is a witness for M, x |= φRψ. Indeed, let N ∈ η(p′(i)) be a neighbourhood
of p′(i). By definition of p′, we have p′(i) = p(1 − i). We know that p is continuous at
1 − i, so there is a neighbourhood N ′ ∈ ηi(1 − i) such that p[N ′] ⊆ N . But, we also have
that N i = {j | 1 − j ∈ N ′} is a neighbourhood of i and, since p′(j) = p(1 − j), we have
that p′[N i] ⊆ N as well. So, p′ is continuous. Furthermore, p′(0) = p(1), so M, p′(0) |= ψ,
p′(1) = x, and for all k with 0 < k < 1, we have M, p′(k) |= φ, by definition of p′. The other
direction is similar. ◀

4 No Finite Model Property for Arbitrary Neighbourhood Spaces

In this section, we prove that SLCS does not have the finite model property if we consider the
class of all neighbourhood models. That is, we show that there exist SLCS formulas that are
satisfiable only over models M = ((X, η), I, ν) where X is not finite. Our first observation is
that there are satisfiable formulas that are not satisfiable on purely quasi-discrete models.

▶ Lemma 18. There exist SLCS satisfiable formulas that are not satisfiable on any finite
model over quasi-discrete paths.

Proof. Consider model M = ((R, ηR), IR, ν) in Fig. 2. It follows that M, 1 |= N a ∧ ¬a ∧
¬(⊥ P a). By Lemma 15, this formula is a contradiction on purely quasi-discrete models.
Finally, since every finite space is quasi-discrete, the lemma holds. ◀
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(
−1

)
1

R
¬a ¬aa

Figure 2 Model M = ((R, ηR), IR, ν) such that M, 1 |= N a ∧ ¬a ∧ ¬(⊥ P a).

There are two key differences between the model in Fig. 2 and purely quasi-discrete
models: the type of underlying space, and the type of paths allowed. So, we now restrict
both of these dimensions one after the other. First, we show that SLCS does not admit
finite models over topological paths, if we consider the full set of neighbourhood spaces, by
constructing a counterexample based on the result of Lemma 16.

▶ Lemma 19. There exist SLCS formulas that are satisfiable on models with topological
paths, but not on any finite model with topological paths.

Proof. We construct a topological model M = (X , IR, ν) that contains a point satisfying
a∧N (b∧¬a)∧¬ N (¬a∧ (bP a)). For the topological space, we use the topologists sine curve.
For that purpose, let S = {(r, sin 1

r ) | 0 < r ≤ 1}. The space is then defined by X = (X, η),
where X = {(0, 0)} ∪ S, and η is the neighbourhood system induced by treating this set as a
subset of the Euclidean plane R2. That is, N ∈ η(x) if there is an open ball of some radius r
around x, i.e., some Br = {y | ∥x− y∥ < r}, where ∥ · ∥ is the Euclidean distance, such that
N ⊇ Br ∩X. We set the valuation ν by ν((0, 0)) = {a} and ν(x) = {b} for x ̸= (0, 0).

Now, every neighbourhood of (0, 0) contains a value from S, and thus M, (0, 0) |=
a ∧ N (b ∧ ¬a). Furthermore, it is well known [21] that in this space, (0, 0) is not path-
connected to S, which means that no path starting in any point s ∈ S can reach (0, 0). This
implies, that no point s ∈ S satisfies bP a, since there is no path that ever reaches a point
that satisfies a. So, no point on the model satisfies ¬a∧ (bP a). In particular, this means that
M, (0, 0) |= ¬ N (¬a∧(bP a)). So, we have M, (0, 0) |= a∧N (b∧¬a)∧¬ N (¬a∧(bP a)). But
this formula is not satisfiable on any quasi-discrete model with topological paths, according
to Lemma 16. Since finite models are quasi-discrete, SLCS does not generally admit finite
models over topological paths. ◀

Finally, even when considering only quasi-discrete paths, there are SLCS formulas which
are not satisfiable on finite models.

▶ Lemma 20. There exist SLCS formulas that are satisfiable on models with quasi-discrete
paths, but not on any finite model with quasi-discrete paths.

Proof. Let X be an infinite, uncountable set and let X = (X ′, η) be the double pointed
countable complement topology over X (see [21]). For this definition, let Y be the set of all
subsets of X, such that for every Y ∈ Y , either Y = ∅, or the complement of Y is countable.
X ′ is constructed from X by “doubling” all points, i.e., X ′ = {x′ | x ∈ X} ∪X, where each
x′ is a new, distinct, element to the x it is constructed from. Then, let Y ′ be the doubling of
every set in Y in a similar way, and η be defined by η(x) = {N | ∃Y ∈ Y ′ : Y ⊆ N ∧ x ∈ Y }.
Note that this definition implies that for any y and its doubled point y′, we have η(y) = η(y′).
Define M = (X , IN, ν) by letting x, x′ ∈ X ′ be a designated pair of points in X ′ and ν be
given by ν(y) = {a}, if y ∈ {x, x′} and ν(y) = {b} otherwise.

Now consider any neighbourhood N ∈ η(x). There is always some y ∈ N that is different
from x and x′, since otherwise the complement of N would be uncountable. Hence, every
neighbourhood N contains some element y with M, y |= b, which implies M, x |= N b.
However, since the underlying space of M is symmetric, by Lemma 8, any quasi-discrete
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path starting in x may only visit x or x′, which both do not satisfy b. Hence M, x ̸|= ⊥ P b.
So, N b ∧ ¬(⊥ P b) is satisfiable on this model. But no finite model can satisfy this formula,
since it is necessarily purely quasi-discrete. ◀

5 Finite Model Property for Quasi-Discrete Spaces

In this section, we prove that SLCS admits finite models if we restrict the class of models
to quasi-discrete models. That is, the models correspond to directed graphs. Our approach
is similar to standard approaches in modal logic [4]. In particular, we use filtrations with
respect to a subformula closed set Σ for both types of models. Since topological paths and
quasi-discrete paths behave very differently, we further distinguish the class into models over
quasi-discrete paths and over topological paths.

5.1 Quasi-Discrete Spaces with Quasi-Discrete Paths
In this subsection, we prove that SLCS has the finite model property on purely quasi-discrete
neighbourhood models. That is, the paths are similar to typical paths on graph structures.

The following lemma allow us to transfer information about the satisfaction of the path
operators to other points.

▶ Lemma 21. Let M be a purely quasi-discrete neighbourhood model and x, y ∈ M two
points such that y ∈ Nmin(x). Then the following hold.
1. If M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.
2. If M, x |= φRψ and M, x |= φ, then also M, y |= φRψ.

Proof. We only prove the first statement as the second is similar.
From M, y |= φP ψ we know that there is a path p : I → M with p(0) = y and an index

n ∈ I such that M, p(n) |= ψ and for all 0 < i < n, we have M, p(i) |= φ. Now consider the
continuous function px : I → M given by px(0) = x and px(i+ 1) = p(i). Then px is indeed
a path, since M is quasi-discrete and y ∈ Nmin(x). Also, we have M, px(n+ 1) |= ψ and,
since M, y |= φ, for all 0 < i < n+ 1, we have M, px(i) |= φ. Hence M, x |= φP ψ. ◀

We now define filtrations for purely quasi-discrete models. Most parts of this definition
are standard, when we consider N similar to an existential modality. For the two path
operators, we added additional properties that allow us to transfer information about the
existence of paths from the filtration back to the original model.

▶ Definition 22 (Filtration). Let Σ be a subformula closed set of SLCS formulas, and
M = (X, η, ν) a purely quasi-discrete neighbourhood model. We call a purely quasi-discrete
neighbourhood model Mf = (Xf , ηf , νf ) a filtration of M through Σ, if it satisfies the
following conditions:
1. Xf = {[x]Σ | x ∈ X}
2. if y ∈ Nmin(x), then [y] ∈ Nmin([x])
3. if [y] ∈ Nmin([x]), then for each N φ ∈ Σ, we have that if M, y |= φ, then M, x |= N φ

4. if there is a sequence [x0] . . . [xn] with [xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, then for
every φP ψ ∈ Σ, we have that whenever M, xi |= φ for each 0 < i < n and M, xn |= ψ,
then also M, x0 |= φP ψ

5. if there is a sequence [x0] . . . [xn] with [xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, then for
every φRψ ∈ Σ, we have that whenever M, xi |= φ for each 0 < i < n and M, x0 |= ψ,
then also M, xn |= φRψ

6. νf ([x]) = {p ∈ AP | M, x |= p}
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As usual, satisfiability of formulas in Σ is preserved between a model and its filtration
through Σ. So our filtration is properly defined.

▶ Lemma 23. Let Mf be a filtration of M through Σ. Then for all φ ∈ Σ, we have M, x |= φ

iff Mf , [x] |= φ.

Proof. We proceed by induction on the structure of formulas. The base case for atomic
propositions is immediate by Def. 22. The cases for the boolean operators are standard.

The case for φ = N ψ is similar to standard modal logic [4]: we have M, x |= N ψ

iff x ∈ C({y | M, y |= ψ}) which by definition of the closure is equivalent to ∀N ∈
η(x) : N ∩ {y | M, y |= ψ} ≠ ∅. On quasi-discrete models, this is equivalent to ∃y ∈
Nmin(x) : M, y |= ψ. By property 2 of filtrations and the induction hypothesis, this implies
∃[y] ∈ Nmin([x]) : Mf , [y] |= ψ. Applying similar equivalences as before, we get that
Mf , [x] |= N ψ. Conversely, assume we have Mf , [x] |= N ψ. With the same reasoning as
above, this is equivalent to ∃[y] ∈ Nmin([x]) : Mf , [y] |= ψ. By the induction hypothesis, we
get M, y |= ψ, and from property 3 of filtrations, we have M, x |= N ψ.

Now consider φ = ψP χ. If M, x |= ψP χ, this is equivalent to the existence of a path
p : x⇝∞ and a n and M, p(n) |= χ as well as ∀i : 0 < i < n, we have M, p(i) |= ψ. That
is, there is a sequence x0, . . . , xn such that x0 = x and xi+1 ∈ Nmin(xi) for all i < n. By
property 2, we have [xi+1] ∈ Nmin([xi]) for all i < n, and by the induction hypothesis,
Mf , [xn] |= χ and for all 0 < i < n, we get Mf , [xi] |= ψ, That is, Mf , [x] |= ψP χ.
Conversely, assume Mf , [x] |= ψP χ. Then there is a sequence [x0], . . . , [xn] such that
[xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, and Mf , [xn] |= χ, as well as for all 0 < i < n, we get
Mf , [xi] |= ψ. By the induction hypothesis, we get M, xn |= χ and M, xi |= ψ for every
0 < i < n. Hence, by property 4, and since x0 ≏ x, we have M, x |= ψP χ.

The case for ψRχ is similar, by using property 5. ◀

Finally, we prove that there is always a filtration through Σ for any given purely quasi-
discrete model. This definition corresponds to the usual definition of smallest filtration [4].

▶ Lemma 24. Let Σ be a subformula closed set of formulas and M a purely quasi-discrete
model. Furthermore, let XΣ be the set of equivalence classes of ≏Σ, νΣ be defined as in
Def. 22 (6), and ηs([x]) = ⟨{[y] | ∃y′, x′ : y′ ∈ [y] ∧x′ ∈ [x] ∧y ∈ Nmin(x)}⟩ for each [x] ∈ XΣ.
Then the model (XΣ, ηs, νΣ) is a filtration of M through Σ.

Proof. Properties 1, 2 and 6 are immediate. So now assume that [y] ∈ Nmin([x]) and let
N φ ∈ Σ such that M, y |= φ. Then by definition of ηs, there are x′ ∈ [x] and y′ ∈ [y]
such that y′ ∈ Nmin(x′). Since y ≏Σ y′, we have M, y′ |= φ, and due to y′ ∈ Nmin(x′), this
implies x′ ∈ C({y | M, y |= φ}), which means M, x′ |= N φ. Since x ≏Σ x′, this implies
M, x |= N φ. Hence property 3 holds.

For proving property 4, we proceed by induction on the length of sequence [x0] . . . [xn].
For the base case, we have M, x0 |= ψ, which implies M, x0 |= φP ψ. So, assuming the
property holds for suited sequences of length up to n, consider a sequence [x0] . . . [xn] such
that the conditions of the property are satisfied. In particular, [x1] . . . [xn] is a sequence,
where [xi+1] ∈ Nmin([xi]), and for all 1 < i < n we have M, xi |= φ and M, xn |= ψ.
Hence, by the induction hypothesis, M, x1 |= φP ψ. Furthermore, by assumption on the
sequence, we get M, x1 |= φ. Now, by the definition of ηs, we know that there are x′

0 ∈ [x0]
and x′

1 ∈ [x1] such that x′
1 ∈ Nmin(x′

0), and since x1 ≏ x′
1, both M, x′

1 |= φ as well as
M, x′

1 |= φP ψ hold. Hence, by Lemma 21 (1), we have M, x′
0 |= φP ψ, and since x0 ≏ x′

0,
also M, x0 |= φP ψ.

Property 5 can be proven similarly to the previous case, but using Lemma 21 (2). ◀
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w x

y z

(a) Quasi-discrete model M.

p(i) =


w i ≤ 1

2

x 1
2 < i < 1 ∧ i ∈ Q

y 1
2 < i < 1 ∧ i ∈ R \ Q

z i = 1

(b) Path with uncountably many changes.

p′(i) =


w i ≤ 1

2

x 1
2 < i < 1

z i = 1

(c) Simplified path.

Figure 3 Example of path simplification.

From the definition of filtration and Lemmas 23 and 24, where XΣ is finite as the set of
subformulas of a formula is finite, we obtain our first finite model property result.

▶ Theorem 25. If φ is a SLCS formula that is satisfiable on a purely quasi-discrete neigh-
bourhood model, then φ is satisifiable on a finite purely quasi-discrete neighbourhood model.

5.2 Quasi-Discrete Spaces with Topological Paths
In this section, we prove that SLCS also admits finite models for the class of quasi-discrete
models over topological paths. This case is interesting, since topological paths behave very
differently from quasi-discrete paths. For example, topological paths are not required to
comply with the direction of the edges of the underlying graph.

▶ Example 26. Consider the model in Fig. 3a. We can define a topological path p as in
Fig. 3b. This function is indeed continuous. For i < 1

2 , the function is continuous, since it is
constant. At i = 1

2 , we have that for the minimal neighbourhood Nmin(w) = {w, x, y}, we
can always find a neighbourhood N ′ of 1

2 that does not contain 1, and so p[N ′] ⊆ Nmin(w).
If 1

2 < i < 1, then Nmin(p(i)) = {x, y}, and we can choose any neighbourhood N ′ ∈ η(i) that
does not contain values less than 1

2 and greater or equal to 1 to show continuity. At 1, the
function is continuous for similar reasons as at 1

2 . So the function is a path.
However, path p contains many “superfluous detours” in the set {x, y}. A simpler path

would be path p′ in Fig. 3c, or a variation in which p′ maps to y instead of x. This path
only visits points that were visited by p as well, but omits these detours.

The following Lemma formalises the intuition explained in Example 26. We will use it to
normalise the paths used as witnesses for the satisfaction of the propagate modality when we
prove the existence of filtrations.
▶ Remark 27. From this point onward, we will use the following slight abuse of notation. For
two indices r, s ∈ [0, 1], we write p[r, s] = {p(i) | r < i < s} to denote the values of a path
p on the open interval between r and s. If p[r, s] is a singleton (i.e., p is constant on the
interval (r, s)), we will also treat p[r, s] as a single value, to avoid unnecessary parentheses.

▶ Lemma 28 (Path Simplification). Let M = ((X, η), IR, ν) a neighbourhood model, where
(X, η) is a quasi-discrete space, and let p : [0, 1] → X be a path on M such that p has a finite
image. Then there is a path p′ and a sequence of indices i0, . . . , in with i0 = 0, in = 1 and
ir < ir+1 for all r < n, such that
1. p′(i) = p(i) for all the indices in the sequence,
2. p′ is constant on each open interval (ir, ir+1),
3. p′[ir, ir+1] ̸= p′[is, is+1] for r ̸= s,
4. if p′(ir+1) ̸= p′[ir, ir+1], then p′[ir, ir+1] ∈ Nmin(p′(ir+1)),
5. if p′(ir) ̸= p′[ir, ir+1], then p′[ir, ir+1] ∈ Nmin(p′(ir)),
6. if p(i) ̸= p′(i), then there are r, s ∈ [0, 1] and y ∈ X with r < i < s such that p(r) =

p(s) = y and p′(r) = p′(s) = y.
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Proof. Let M and p be as required, let x ∈ X be a point in the space, and 0 ≤ s ≤ 1 an
index. We indicate by sI(p, x, s) the smallest subinterval I of [s, 1] such that ∀i ∈ [s, 1] \ I it
holds that p(i) ̸= x. Let a be the infimum (resp., supremum) of sI(p, x, s), then it follows
that ∀N ∈ η(a) there exists an i ∈ N ∩ sI(p, x, s) such that p(i) = x.

We now construct the sequence of indices i0, . . . , in and the path p′. We set i0 = 0,
p′(0) = p(0), and then proceed as follows starting from sI(p, p(0), i0).

Consider an index ik, a point x ∈ X, and let a be the supremum of sI(p, x, ik). We set
p′(i) = x for all ik < i < a, we set p′(a) = p(a), and
1. if a ̸∈ sI(p, x, ik), we set ik+1 = a, and then proceed with sI(p, p(a), ik+1);
2. otherwise (i.e., a ∈ sI(p, x, ik)), we need to find a possible way to proceed with the path

following the index a. That is, we need to find the right point and index for the function
sI. Let S = {y ∈ Nmin(p(a)) | ∀N ∈ η(a) : y ∈ p[N ∩ [a, 1]]} \ {p(a)}. Observe that
S ̸= ∅ as p is a continuous function on X, and any point in S is a good candidate for the
continuation of the construction. Now we need to understand whether or not to move
from the index ik to the index ik+1. If ik = a, then we proceed by choosing any of the
y ∈ S and considering sI(p, y, ik). Otherwise, we proceed by choosing any of the y ∈ S,
setting ik+1 = a, and considering sI(p, y, ik+1).

Since p has a finite image, the process above terminates when ik = 1.
Now let p′ be the path constructed as above. Properties 1, 2 and 3 are immediate results

of the construction of p′. Let us show that property 4 holds, and consider the case where
p′(ir+1) ̸= p′[ir, ir+1]. By construction we know that ir+1 is the supremum of sI(p, x, ir),
which means that ∀N ∈ η(ir+1)∃i ∈ N ∩ (ir, ir+1) with p(i) = x = p′[ir, ir+1]. By continuity
of p it must hold that ∃N ′ ∈ η(ir+1) such that p[N ′] ⊆ Nmin(p(ir+1)). As p′[ir, ir+1] ∈ p[N ′],
then p′[ir, ir+1] ∈ Nmin(p′(ir+1)). Property 5 follows immediately from point 2 above since
we select y among the elements in the minimal neighbourhood. Finally we consider property
6. Let i be an index such that p(i) ̸= p′(i). By property 1, we know that i cannot be any
of the indices in the resulting sequence. Let ik and ik+1 be the two indices in the resulting
sequence such that ik < i < ik+1. By definition of sI(p, p′(i), ik), there must exist two
indices r and s such that p(r) = p(s) = p′(i), and ik ≤ r < i < s ≤ ik+1. By property 2
p′[ik, ik+1] = p′(i), and the property holds. ◀

Similarly to the case with quasi-discrete paths, the following lemma allow us to transfer
information about the satisfaction of the path operator to neighbouring points.

▶ Lemma 29. Let M be a quasi-discrete neighbourhood model over topological paths and
x, y ∈ M two points. Then the following hold.
1. If y ∈ Nmin(x), M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.
2. If x ∈ Nmin(y), M, x |= φ, M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.

Proof. Case (1): Let p and n be witnesses for M, y |= φP ψ. There are two cases to consider.
In the first case, p stays on y for an infinite number of indices. That is, the initial segment
of p is not a singleton. Then we can define p′ by p′(0) = x and p′(i) = p(i) for i > 0. Since p
is continuous p′ is continuous for every i > 0. For i = 0, we can take any neighbourhood
N ∈ ηR(0) that only extends into the initial segment of p, where p(j) = y for any i ∈ N

with i ̸= 0. Then p′[N ] ⊆ Nmin(x). So p′ is also continuous at 0, and since M, y |= φ, it
is a witness for M, x |= φP ψ. In the other case, p stays on y for the single index 0, and
then moves to some point z. Then we define p′ by p′(0) = x, p′(i) = y for 0 < i ≤ 1

2 and
p′(i) = p(2i−1) for i > 1

2 . Similar to the case above, p′ is continuous at 0. Since the constant
path is continuous, p′ is continuous at 0 < i < 1

2 . And since p is continuous at 2i− 1, p′ is
continuous at i for i ≥ 1

2 . Furthermore, with n′ = 1
2 (n+ 1), p′ is a witness for M, x |= φP ψ.
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Case (2): By assumption on y, there is a path p : R → M and a value n, such that
p(0) = y, M, p(n) |= ψ and for all i with 0 < i < n, we have M, p(i) |= φ. Using this path,
we can construct the path p′ by setting p′(i) = x if i < 1

2 and p′(i) = p(2i − 1) for i ≥ 1
2 .

This function is continuous, and thus a path. Furthermore, we have M, p′(n+ 1) |= ψ, and
of course for all i with 0 < i < 1

2 (n+ 1) we have M, p′(i) |= φ. So this path is a witness for
M, x |= φP ψ. ◀

We now proceed with the definition of filtrations for quasi-discrete models over topological
paths. As can be expected, the definition differs from Def. 22 only in the treatment of paths.
Instead of explicitly enumerating the equivalence classes on a path, we only assume the
existence of a path on the filtration, and then transfer the satisfaction back to the original
model. Furthermore, we do not need to consider the reachability path operator, since it is
equivalent to the propagate modality, by Lemma 17.

▶ Definition 30 (Filtration with Topological Paths). Let Σ be a subformula closed set of SLCS
formulas, and M = ((X, η), IR, ν) a neighbourhood model, where (X, η) is a quasi-discrete
space. We call the neighbourhood model Mf = ((Xf , ηf ), IR, νf ) a filtration of M over
topological paths through Σ, if it satisfies the following conditions:
1. Xf = {[x]Σ | x ∈ X}
2. if y ∈ Nmin(x), then [y] ∈ Nmin([x])
3. if [y] ∈ Nmin([x]), then for each N φ ∈ Σ, we have that if M, y |= φ, then M, x |= N φ

4. if π : [0, 1] → Xf is a path on Mf where π(i) = [xi], then for every φP ψ ∈ Σ, we have
that whenever M, xi |= φ for each 0 < i < n and M, xn |= ψ, then also M, x0 |= φP ψ

5. νf ([x]) = {p ∈ AP | M, x |= p}

As in the purely quasi-discrete case, satisfaction of all formulas in the subformula closed
set Σ is preserved on filtrations through Σ.

▶ Lemma 31. Let Mf be a filtration of the quasi-discrete model M over topological paths
through Σ. Then for all φ ∈ Σ, we have M, x |= φ iff Mf , [x] |= φ.

Proof. We proceed by induction on the structure of formulas. The base case for atomic
propositions is immediate by Def. 30. The cases for the boolean operators are standard and
the case for φ = N ψ is exactly as for Lemma 23.

Now consider φ = ψP χ. If M, x |= ψP χ, this is equivalent to the existence of a path
p : x⇝∞ and a n and M, p(n) |= χ as well as ∀i : 0 < i < n, we have M, p(i) |= ψ. Observe
that for any j and k such that p(k) ∈ Nmin(p(j)), we have [p(k)] ∈ Nmin([p(j)]) by property 2.
Furthermore, for any j, we know that there is a N ∈ η(j) such that p[N ] ⊆ Nmin(p(j)) by
continuity of p. So, these two facts together imply that ∀k ∈ N , we have [p(k)] ∈ Nmin([p(j)]).
Hence we can define π : [0, 1] → Xf by π(i) = [p(i)] and then have that π is a path on Mf

such that π(0) = [x]. Furthermore, by the induction hypothesis, for all i with 0 < i < n, we
have Mf , π(i) |= ψ and Mf , π(n) |= χ. This of course means Mf , [x] |= ψP χ.

Conversely, assume Mf , [x] |= ψP χ. Then there is a path π : [0, 1] → Xf such that
π(0) = [x], for all i with 0 < i < n we have Mf , π(i) |= ψ and Mf , π(n) |= χ. Let
π(i) = [xi], then we get by the induction hypothesis that M, xi |= ψ for all i with 0 < i < n

and M, xn |= χ. By property 4 we get M, x0 |= ψP χ and by x ≏ x0, we get M, x |= ψP χ.
The case for φ = ψRχ is immediate by Lemma 17 and the previous case. ◀

The main part left in this section is to show that filtrations exist. This is more complicated
than in the purely quasi-discrete case, due to the different behaviour of topological paths.
However, if we restrict ourselves to finite sets Σ, then we can normalise the paths on the
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filtration according to Lemma 28, and use these simpler paths to establish satisfaction of the
path modalities on the original model. Since we are only interested in filtrations through the
set of subformulas induced by a single formula, this suffices for our purpose.

▶ Lemma 32. Let Σ be a finite subformula closed set of formulas and M a quasi-discrete
model over topological paths. Furthermore, let XΣ be the set of equivalence classes of ≏Σ, νΣ
be defined as in Def. 30 (5), and ηs([x]) = ⟨{[y] | ∃y′, x′ : y′ ∈ [y] ∧ x′ ∈ [x] ∧ y ∈ Nmin(x)}⟩
for each [x] ∈ XΣ. Then the model MΣ = ((XΣ, ηs), IR, νΣ) is a filtration of M over
topological paths through Σ.

Proof. First observe that MΣ is indeed a quasi-discrete neighbourhood model over topological
paths, since the underlying space of MΣ is finite, and any finite neighbourhood space is
quasi-discrete. We focus only on proving property 4 as all the others are already proved in
Lemma 24.

Let π : [0, 1] → Xf be a path as required. If n = 0 so that M, xn |= ψ, this means
M, x0 |= ψ, and so trivially M, x0 |= φP ψ. So, without loss of generality, we assume
n = 1. With π(i) = [xi], we have M, xi |= φ for 0 < i < 1 and M, x1 |= ψ. Since the set
of equivalence classes is finite, we can use Lemma 28 to get a path σ : [0, 1] → Xf , with
x0 ∈ σ(0) and x1 ∈ σ(1). Furthermore, the properties of σ in Lemma 28 ensure that for all
0 < i < 1, if σ(i) = [x′

i], then M, x′
i |= φ.

Now, let S = {[z] | ∃i : σ(i) = [z]} be the image of σ. Since S is finite, we define an
order on S by setting [zi] < [zj ] iff there exist s and t with s < t such that σ(s) = [zi]
and σ(t) = [zj ]. By Lemma 28 and since the index space is totally ordered, this order is
well-defined. So, in the following we will denote S by the sequence [z0], [z1], . . . , [zr].

We proceed to prove that M, x0 |= φP ψ by induction on then length r of this sequence.
If r = 0, then [z0] = [x1]. Since z0 ≏ x0 ≏ x1 and M, x1 |= ψ, we get M, x0 |= ψ, and thus
M, x0 |= φP ψ.

Assume that the property holds for all such sequences for a length up to r, and con-
sider [z0], [z1], [z2], . . . , [zr], [zr+1]. First, we can see that since σ is a path, the sequence
[z1], [z2], . . . , [zr], [zr+1] also induces a path that satisfies the precondition of the property.
So, we get by the induction hypothesis M, z1 |= φP ψ. We now need to examine the
relation between [z0] and [z1]. To that end, we first consider the preimages of both classes:
I0 = {i | σ(i) = [z0]} and I1 = {i | σ(i) = [z1]}. Furthermore, let j be the supremum of I0.
Recall that by Lemma 28, we have a sequence of indices i0, i1, . . . that partitions the interval
[0, 1] according to the values of σ. Now there are two possibilities for the relation between
[z0] and [z1] according to σ.

1. If i ∈ I0, then either i = i0 = 0, or i = i1. In the first case, [z0] = σ(i0) ̸= σ[i0, i1] = [z1],
and so [z1] ∈ Nmin([z0]) by Lemma 28 (5). In the other case, we have [z1] = σ[i1, i2], and
so [z0] = σ(i1) ̸= σ[i1, i2] = [z1]. Again, by Lemma 28 (5), we have [z1] ∈ Nmin([z0]).
By construction of Mf there are y0, y1 ∈ M such that y1 ∈ Nmin(y0) and y0 ∈ [z0]
and y1 ∈ [z1]. By assumption, we have M, x0 |= φ as well, so by x0 ≏ z0 ≏ y0, we get
M, y0 |= φ and M, y1 |= φP ψ. Then we have M, y0 |= φP ψ from Lemma 29 (1) and
thus M, x0 |= φP ψ.

2. Otherwise, we have i ̸∈ I0, and thus i ∈ I1. Then certainly i = i1, and so [z1] = σ(i1) ̸=
σ[i0, i1] = [z0]. By Lemma 28 (4), we get [z0] ∈ Nmin([z1]). By construction of Mf there
are y0, y1 ∈ M such that y0 ∈ Nmin(y1) and y0 ∈ [z0] and y1 ∈ [z1].
However, in this case we also have that i1 > 0, since otherwise [z0] = [z1], which
contradicts Property 3 of Lemma 28. So there is an x ∈ [z0], such that M, x |= φ by
the properties of σ. Since x ≏ y0, this means M, y0 |= φ. By assumption on σ, we have
M, y1 |= φ and since y1 ≏ z1, we also have M, y1 |= φP ψ. So, Lemma 29 (2) gives us
M, y0 |= φP ψ, and with x0 ≏ z0 ≏ y0 we can conclude the proof. ◀
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The definition of filtrations together with Lemmas 31 and 32 yield the finite model
property. Note that we can apply Lemma 32, as the set of subformulas of a formula is finite.

▶ Theorem 33. If φ is a SLCS formula that is satisfiable on a quasi-discrete neighbourhood
model over topological paths, then φ is satisifiable on a finite quasi-discrete neighbourhood
model over topological paths.

6 Conclusion

We have shown that SLCS does not have the finite model property over arbitrary neighbour-
hood models. Furthermore, we have proven that even when restricting to only quasi-discrete
paths, there are still formulas that can only be satisfied on infinite models. Finally, we have
shown that SLCS has the finite model property over models with underlying quasi-discrete
neighbourhood spaces and quasi-discrete or topological paths. These results highlight that
the types of spaces allowed have a much stronger impact on the existence of finite models
than the types of paths allowed.

Our results are specific to the two types of paths we analysed. While these are the
most common ones, it is possible to consider other definitions. Bubenik and Milićević [5]
introduced other types of paths over neighbourhood spaces and analysed their properties.
For example, they defined an index space based on a finite set J = {1, . . . ,m}, which is close
to the idea of a quasi-discrete space. However, the neighbourhood system on this index space
is very different from our setting, since it includes both the predecessor and the successor in
the minimal neighbourhood of a point. Several of their other index spaces are even more
different. An interesting research direction for future work is to study how these types of
paths interact with the operators of SLCS.

A more applied strand of research is to analyse some of the extensions of SLCS. A natural
first step would be to consider the temporal extension of SLCS with operators from CTL [10]
and prove whether it has the finite model property. This would build upon previous results
stating that CTL has the finite model property [15] and the combinations of logics that
admit finite models typically also admit finite models [13]. Similarly, interesting future work
would be to analyse the extension of SLCS with set-based operators introduced by Ciancia
et al. [11], and the metric extensions by Bartocci et al. [1]. Finally, a model-theoretic study
of a variant of SLCS presented by Bezhanishvili et al. would be interesting [3]. This variant
is defined with a semantics based on polyhedra in continuous spaces, which is in some sense
“in between” the class of quasi-discrete, graph-like models, and the class of general, arbitrary
neighbourhood spaces.

Our results are a further step towards a comprehensive model theory for SLCS. Under-
standing how the models of SLCS behave can guide how and where we may apply this logic,
as well as its extensions.
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Abstract
A strong backdoor in a formula φ of propositional logic to a tractable class C of formulas is a set B

of variables of φ such that every assignment of the variables in B results in a formula from C . Strong
backdoors of small size or with a good structure, e.g. with small backdoor treewidth, lead to efficient
solutions for the propositional satisfiability problem SAT.

In this paper we propose the new notion of recursive backdoors, which is inspired by the
observation that in order to solve SAT we can independently recurse into the components that are
created by partial assignments of variables. The quality of a recursive backdoor is measured by
its recursive backdoor depth. Similar to the concept of backdoor treewidth, recursive backdoors of
bounded depth include backdoors of unbounded size that have a certain treelike structure. However,
the two concepts are incomparable and our results yield new tractability results for SAT.
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1 Introduction

The problem of checking whether a formula of propositional logic in conjunctive normal
form (CNF) is satisfiable (SAT) is one of the most central problems in computer science. The
problem is often seen as the canonical NP-complete problem [1] and conjectured to be not
solvable in sub-exponential time [10]. Despite this theoretical hardness result, state-of-the-art
SAT solvers are able to efficiently solve multi-million variable instances arising from real-world
applications. We refer to the recent survey of Ganesh and Vardi [4], who try to explain
this “unreasonable effectiveness of SAT solvers”. SAT is known to be solvable in polynomial
time on several restricted classes of formulas, e.g. on Horn and 2CNF formulas. However,
this classification falls short of explaining the practical efficiency of SAT solvers, as many
efficiently solvable instances do not belong to any of these classes.

Parameterized complexity theory offers a refined view on the complexity of problems.
Instead of measuring complexity only with respect to the input size n, one or more parameters
are taken into account. Optimally, one can establish fixed-parameter tractability with respect
to a parameter k, that is, a running time of fpkq ¨ nc for some computable function f and
a constant c. In case the parameter k is small on a given class of instances, this may lead
to efficient algorithms even if the inputs are large. Even though SAT solvers may not be
explicitly tailored to use these parameters, it is conceivable that they implicitly exploit the
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structure that is imposed by them. This poses the question of parametric characterizations of
real-world application instances that can be solved efficiently. One very important parameter
to explain tractability is treewidth, which intuitively measures how tree-like an instance is,
and which can be used to obtain fixed-parameter tractability for SAT [15].

A second very successful parametric approach was introduced by Williams et al. [17]. For
a formula φ, a strong backdoor to a given class C of formulas is a set of variables of φ such
that for every assignment of these variables one obtains a formula in C . Similarly, a weak
backdoor to C for a satisfiable formula is a set of variables of φ such that some assignment
of these variables leads to a formula in C . These notions elegantly allow to lift tractability
results from classes C to classes that are close to C . Given a formula and a strong backdoor
of size k to a tractable class, one can decide satisfiability by checking 2k tractable instances.
For small k this yields efficient algorithms as noted by Nishimura et al. [11], who first studied
the parameterized complexity of backdoor detection.

A lot of effort has been invested to develop fpt algorithms for backdoor detection to various
tractable base classes C , for example to classes of bounded treewidth [9] or heterogeneous
classes [7]. Treewidth is a width measure for graphs that can however be applied to measure
the complexity of formulas by considering the incidence graphs of formulas. The incidence
graph of a formula has one vertex for each variable and one vertex for each clause. A variable
vertex is connected with a clause vertex when the variable is contained positively or negatively
in the clause. In the following, we will often use graph theoretic terminology for formulas,
and this always refers to the incidence graph of the formula.

Apart from various base classes, alternative measures of quality of backdoors have
been proposed. Backdoor trees generalize backdoor sets into decision trees, whose quality is
measured by their number of leafs [14]. Recently backdoor trees have been further generalized
to backdoor DNFs [12]. Ganian et al. [5] introduced the notion of backdoor treewidth, which
permits fpt backdoor detection for backdoors of unbounded size. Even though backdoors
of bounded treewidth can be arbitrarily large, they showed that SAT is fixed-parameter
tractable when parameterized by the backdoor treewidth with respect to the classes C of
Horn, Anti-Horn and 2CNF formulas. They also consider backdoors that split an input
constraint satisfaction problem into components that may belong to different tractable
classes [6]. Other recent notions of backdoors can be found in the literature such as the
notions of learning-sensitive backdoors [3] and learning-sensitive backdoors with restarts [18].
For a an overview of additional works we refer to the survey by Gaspers and Szeider [8] as
well as to the upcoming book chapter by Samer and Szeider [16].

In this paper we introduce the new notions of strong and weak recursive backdoors as
generalizations of backdoor sets and backdoor trees. Strong recursive backdoors extend
backdoor trees by not only branching on truth values but also recursively branching into
the independent components of the formula that may arise after the partial assignment of
variables. We measure the quality of recursive backdoors by the depth of their branching
trees. The splitting into components allows recursive backdoors of bounded depth to contain
an unbounded number of variables. Our definition, together with the observation that after
the assignment of a variable one can independently solve the sub-instances in the arising
components, reveals a new potential of backdoors for SAT.

The main power of recursive backdoors, but also the difficulty in their study, is that by
assigning a variable we do not recurse into the components that are created by deleting that
variable, but into the components that are created by deleting parts of the neighborhood
of the variable. We show that detecting weak recursive backdoors even to the class C0 of
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edgeless incidence graphs is W[2]-hard. Our main technical contribution is an fpt algorithm
that, given a formula φ and a parameter k, either decides satisfiability of φ or correctly
concludes that φ has no strong recursive backdoor to C0 of depth at most k. Even for the
class C0 this yields tractability results that cannot be achieved by backdoor treewidth.

We provide background in Section 2. We define recursive backdoors in Section 3 and
Section 4 is devoted to a sketch of the fpt algorithm. The rest of the paper is devoted to the
formal presentation and correctness proof of that algorithm. Due to space constraints we
present the hardness proof only in the appended full version of the paper. Also some proofs
of the main result are deferred to the appendix.

2 Preliminaries

Propositional Logic. We consider formulas of propositional logic in conjunctive normal form
(CNF), represented by finite sets of clauses, and in the following when we speak of a formula
we will always mean a CNF formula. We write x, y, z . . . for variables and ‹, ˛ P t`,´u for
polarities. A literal is a variable with an assigned polarity. We write x` for the positive
literal x, x´ for the negative literal x̄, and x‹ for a literal with arbitrary polarity. Every
clause is a finite set of literals. We assume that no clause contains a complementary pair
x`, x´. For a formula φ, we write varpφq and clapφq to refer to the sets of variables and
clauses of φ, respectively. We say that a variable x is positive (resp. negative) in a clause c if
x` P c (resp. x´ P c), and we write varpcq for the set of variables x with x‹ P c and litpcq for
the set of literals in c. For a formula φ we let varpφq “

Ť

cPφ varpcq.
The width of c is |varpcq| and the length of φ is

ř

cPφ |varpcq|, denoted |c| and |φ|,
respectively. We call a clause a d-clause if it has width exactly d. We say that a formula has
maximal clause degree d if each of its clauses has width at most d. We write Cd to refer to
the class of CNF formulas with maximal clause degree d. Especially C0 denotes the class of
empty formulas, that either contain only empty clauses or no clauses at all.

A truth assignment τ is a mapping from a set of variables, denoted by varpτq, to t`,´u.
A truth assignment τ satisfies a clause c if c contains at least one literal x‹ with τpxq “ ‹. A
truth assignment τ of varpφq satisfies the formula φ if it satisfies all clauses of φ.

Given a formula φ and a truth assignment τ , φrτ s denotes the formula obtained from φ

by removing all clauses that are satisfied by τ and by removing from the remaining clauses
all literals x‹ with τpxq ‰ ‹. Note that for every formula φ and assignment τ we have
varpφrτ sq X varpτq “ H. If τ and τ 1 are assignments with varpτq X varpτ 1q “ H, then we
write τ Y τ 1 for the unique assignment extending both τ and τ 1.

Graphs. We will only consider graphs that arise as incidence graphs of formulas. The
incidence graph Gφ of a formula φ is a bipartite graph with vertices varpφqY clapφq. Slightly
abusing notation we usually do not distinguish between a formula and its incidence graph.
E.g. we speak of the variables and clauses of Gφ, which we denote by varpGφq and clapGφq

respectively. Vice versa, we speak e.g. of components of φ with implicit reference to the
incidence graph Gφ. We drop the subscript φ if it is clear from the context. The edges
of G are partitioned into two parts E` (positive edges) and E´ (negative edges), where a
variable x is connected to a clause c by an edge E‹ if x‹ P litpcq. For an assignment τ we
naturally define Grτ s as the incidence graph of φrτ s. If τ assigns only a single variable x ÞÑ ‹

we write Grx‹s for Grτ s. Note that for every assignment τ , Grτ s is an induced subgraph
of G. For a vertex v the closed ‹-neighborhood of v is defined as N‹rvs :“ tw : tv, wu P E‹u.
For W Ď V we write GrW s for the subgraph induced by W and G´W for GrV zW s.

MFCS 2021
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We refrain from formally defining treewidth and refer to the literature for background.
A graph H is a minor of a graph G if H can be obtained from G by deleting edges and
vertices and by contracting edges. To compare our new definition of recursive backdoors
with backdoor treewidth, we mention that if a graph contains a k ˆ k grid as a minor, then
it has treewidth at least k [13].

Parameterized Complexity. A parameterized problem is called fixed-parameter tractable
(fpt) if there exists an algorithm deciding the problem in time fpkq ¨ nc, where n is the input
size, k is the parameter, f is a computable function and c is a constant. An algorithm
witnessing fixed-parameter tractability of a problem is called an fpt-algorithm for the problem.

To show that a problem is likely to not be fpt one can show that it is W[i]-hard for
some i ě 1. For this, it is sufficient to give a parameterized reduction from a known W[i]-hard
problem. We refer to the book [2] for extensive background on parameterized complexity
theory.

Backdoors. Let C be a class of formulas and let φ be a formula. A set B Ď varpφq is a
strong backdoor of φ to C if for every assignment τ : B Ñ t`,´u the formula φrτ s belongs
to C . Note that for some assignments τ the formula φrτ s may not be satisfiable, even
though φ is satisfiable. Hence, in the following definition of a weak backdoor we require
that φ is satisfiable. If φ is satisfiable, then a set B Ď varpφq is a weak backdoor of φ to the
class C if there exists an assignment τ : B Ñ t`,´u such that φrτ s is a satisfiable formula
in C . The classical measure for the complexity or quality of a backdoor is its size.

An important recent approach to measure the complexity of a backdoor is to take its
structure into account. The treewidth of a backdoor B is defined as the treewidth of the
graph with vertex set B where two variables x and y are connected by an edge if there exists
a path from a neighbor of x to a neighbor of y in G´B [5]. Ganian et al. [5] also consider
backdoors that split the input CNF formula into components that each may belong to a
different tractable class C .

Permissive Backdoor Detection. In their survey Gaspers and Szeider [8] differ between
a strict and a permissive version of the backdoor detection problem. Given a backdoor
definition B and a corresponding quality measure µ (e.g. strong backdoors to 2CNF measured
by their size) as well as a formula φ and a parameter k. The strict backdoor detection
problem, denoted as B-Detection, asks whether or not µpφq ď k holds. The permissive
backdoor detection problem, denoted as SATpµq, asks to either decide the satisfiability of φ

or conclude that µpφq ą k holds. The permissive version of the problem grants more freedom
in algorithm design, as trivial instances can be solved without calculating the backdoor
measure. However as Gaspers and Szeider point out, hardness proofs seem to be much harder
for the permissive version.

3 Recursive Backdoors

Strong Recursive Backdoors. Our new concept of recursive backdoors is based on the
observation that we can handle the components of Grx‹s independently whenever a variable x

has been assigned. A strong recursive backdoor (SRB) of an incidence graph G to a class C

is a rooted labeled tree, where every node is either labeled with a subgraph of G or with
a variable in varpGq. The root of the tree is labeled with G. Whenever an inner node is
labeled with a connected graph H, then it has one child labeled with a variable. Whenever
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it is labeled with a disconnected graph, then it has one child for each of its components,
labeled with the graph induced by that component. Whenever an inner node is labeled with
a variable x, then its parent is labeled with a graph H, and its two children are labeled with
Hrx`s and Hrx´s, respectively. Every leaf node is labeled with a graph from C . We call
the nodes of the tree variable nodes or component nodes, according to to their labeling.

The depth of a strong recursive backdoor is the maximal number of variable nodes from
its root to one of its leafs. The strong recursive backdoor depth to a class C (srbdC ) of an
incidence graph G is the minimal depth of a strong recursive backdoor of G to C . We give
the following equivalent definition:

▶ Definition 3.1 (Strong Recursive Backdoor Depth).

srbdC pGq “

$

’

’

’

&

’

’

’

%

0 if G P C

1`minxPvarpGq max‹Pt`,´u srbdC pGrx‹sq
if G R C and G
is connected

max t srbdC pHq : H connected component of G u otherwise

To get a better understanding of strong recursive backdoor depth we give an example
of a family of incidence graphs with unbounded backdoor treewidth to 2CNF but constant
strong recursive backdoor depth to C0, the class of edgeless graphs. For any k ě 0, define
the graph Gk as follows. We start with a k ˆ k grid of clause vertices tc1,1, ..., ck,ku,
depicted in yellow in Figure 1. We connect a private variable vertex to each of the corners
c1,1, c1,k, ck,1, ck,k of the grid. We now replace each edge of the grid by a path of length 6
(containing 5 vertices). Every second vertex on a new path is a clause vertex, connected to
the two adjacent variable vertices. Furthermore, we add a special variable vertex x that is
connected alternatingly with positive and negative polarity (depicted in green and blue in
the figure) to the clause vertices on the new paths. Variable vertices are depicted as white
vertices in the figure.

Since every clause ci,j is connected to at least 3 variables, every backdoor set B to 2CNF
will have to contain at least one variable of every ci,j . This implies that the B-torso of G

will always contain a k ˆ k grid as a minor, hence, will have treewidth at least k. We refer
to [5, Definition 1] for the precise notions of B-torso and backdoor treewidth.

A strong recursive backdoor to C0 with x as its root splits every grid clause into a separate
component of constant size and and therefore has constant depth.

c1,1 c3,1c2,1

c1,2

c1,3

c2,2

c2,3 c3,3

c3,2 x

c1,1 c3,1c2,1

c1,2

c1,3

c2,2

c2,3 c3,3

c3,2

c1,1 c3,1c2,1

c1,2

c1,3

c2,2

c2,3 c3,3

c3,2

Figure 1 From left to right: G3, G3rx`s, and G3rx´s.
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Conversely, for the base class C0, formulas whose incidence graph is a long path, e.g.
px1 ^ x2q _ px2 ^ x3q _ ..._ pxn ^ xn`1q, have constant backdoor treewidth, but unbounded
strong recursive backdoor depth, as we will see in Lemma 5.2. We conclude that recursive
backdoors and backdoor treewidth are incomparable.

SAT Solving and SAT Counting using Strong Recursive Backdoors. Similar to regular
strong backdoor sets, strong recursive backdoors allow for polynomial time SAT Solving and
SAT Counting if the backdoor is given as part of the input. First, we observe that even
though it may have an unbounded branching degree, the size of a recursive backdoor is still
linear in the size of its formula.

▶ Lemma 3.2. Let T be a strong recursive backdoor with depth k of a formula φ to a class C .
The number of leaf nodes in T , as well as the sum of number of vertices contained in leaf
nodes is bound by 2k ¨ |φ|.

Proof. Proof by induction on k and |φ|. The bound trivially holds when k “ 0 or |φ| “ 1
and the backdoor consists of a single leaf node.

In the inductive step, a variable node increases the backdoor depth and at most doubles the
number of leaves and their contained vertices, as it branches on both polarities. A component
node does not increase the backdoor depth, but branches over disjoint components of strictly
smaller size. As the sum of the vertices contained in the components is equal to |φ|, the
number of leaves and contained vertices is again bounded by 2k ¨ |φ|. ◀

We can use this observation to construct a straight-forward bottom-up algorithm:

▶ Proposition 3.3. For every class C where satisfiability checking (resp. counting the number
of satisfying assignments) can be done in polynomial time, for every formula φ and integer k,
given a strong recursive backdoor with depth k of φ to C , we can test the satisfiability (resp.
count the number of satisfying assignments) of φ in time 2k ¨ polyp|φ|q.

Proof. By Lemma 3.2, we know that we have at most 2k ¨ |φ| instances labeling leaves, which
can be solved in polynomial time. For variable nodes, the instance labeling the node is
satisfiable if and only if at least one of its two children is labeled with a satisfiable instance.
The number of satisfiable assignments is the sum of the satisfiable assignments for its children.
For component nodes, the instance labeling the node is satisfiable if and only if all of its
children are labeled with satisfiable instances. The number of satisfiable assignments is the
product of the satisfiable assignments for its children. ◀

Weak Recursive Backdoors. Recall that in the definition of weak backdoors we consider
only satisfiable formulas and aim to find an assignment τ that leads to a satisfiable formula
φrτ s P C . This is also the case in the following definition of weak recursive backdoor depth:

▶ Definition 3.4 (Weak Recursive Backdoor Depth).

wrbdC pGq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if G P C and G
is satisfiable

8
if G P C and G
is unsatisfiable

1`minxPvarpGq min‹Pt`,´u wrbdC pGrx‹sq
if G R C and G
is connected

max twrbdC pHq : H connected component of G u otherwise
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SAT Solving using Weak Recursive Backdoors. We can use the notion of weak recursive
backdoors for SAT as follows. As the existence of a weak recursive backdoor for some formula
φ implies that φ is satisfiable, we do not assume that the backdoor is given with the input
this time.

▶ Proposition 3.5. For every class C for which we can test membership and satisfiability in
polynomial time, for every formula φ and integer k, we can test whether φ has weak recursive
backdoor depth at most k in time p2 ¨ |φ|qk ¨ polyp|φ|q.

Proof. Branch over all 2 ¨ |φ| possible truth assignments of a single variable in φ. Recurse
into the components arising through the assignment, until branching depth k or a formula
from C is reached. The leaves of the branching tree are labeled as satisfiable, if they are
satisfiable members of C , which can be tested in time polyp|φ|q. Component (resp. variable)
branching nodes are labeled as satisfiable, if all (resp. any) of their children are labeled
as satisfiable. It is now easy to see that wrbdC pφq ď k if and only if the root node of
the branching tree is labeled as satisfiable. By the same argument as in Lemma 3.2, the
branching tree has at most p2 ¨ |φ|qk ¨ |φ| leaves. Therefore the presented algorithm runs in
time p2 ¨ |φ|qk ¨ polyp|φ|q. ◀

Note that when k is small, even this running time is a major improvement over the worst
case running time of 2cn implied by the exponential time hypothesis (ETH).
We will now continue with a sketch of the fpt algorithm for strong recursive backdoor
detection to the class of empty formulas.

4 Proof Sketch

Our goal is to show that the permissive backdoor detection problem SATpsrbdC0q is fixed-
parameter tractable. That is, we aim to decide for a given formula φ and parameter k

whether φ is satisfiable or does not have a strong recursive backdoor of depth k to the class C0
of empty formulas i.e. srbdC0pφq ą k. Our approach is based on two main observations:
Formulas with strong recursive backdoor depth k to C0 have both a maximal clause degree k

(see Lemma 5.1) and a diameter bounded by λk :“ 4 ¨ 2k in each connected component (see
Lemma 5.2).

We are going to design a recursive algorithm that in every step finds a bounded depth SRB
that reduces the maximal clause degree of φ by one, or proves that the strong recursive
backdoor depth of φ is larger than k. We extend the SRB by recursively branching on its
leaves until we reach C0. Since φ has maximal clause degree k this yields a bounded depth
SRB to C0 in fpt running time.

First, take a look at the special case where G :“ Gφ contains a clause c of width k, i.e. a
k-clause. By our first observation, the existence of c implies that srbdC0pGq ě k. Note that
the degree of c can only be reduced by assigning a variable in its neighborhood.

Next, consider the case where G contains two disjoint pk ´ 1q-clauses c1, c2 in the same
connected component. Since G has limited diameter, there exists a path P of length ď λk

between them. Since c1 and c2 are part of the same component we are only allowed to assign
one variable to reduce the backdoor depth of that component to k ´ 1. No matter which
variable we choose, since c1 and c2 are disjoint, one of them will continue to exist in the
reduced graph, which will then have backdoor depth at least k ´ 1 and again, the existence
of c1, c2, and P implies that srbdC0pGq ě k.
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Given a maximal clause degree d, we generalize this strategy for arbitrary depths k “ d`j

by searching for so called obstruction-trees. An obstruction-tree for depth k is a structured
set of vertices, whose existence in G will guarantee that G has a strong recursive backdoor
depth of at least k. We start by searching for d-clauses as obstruction-trees for depth d. We
search for obstruction-trees for depth d ` j ` 1 by searching for two obstruction-trees of
depth d` j that have disjoint neighborhoods and are connected by a path of bounded length.
A schematic depiction of obstruction-trees for maximal clause degree d and backdoor depths
d, d` 1, and d` 2 is shown in Figure 2. Since the obstruction-trees are based on d-clauses
we can construct an fpt algorithm that either finds an obstruction-tree or a small backdoor
which reduces the maximal clause degree of G to d´ 1.

The algorithm to find obstruction-trees, described in Proposition 5.9, is at the heart of
our proof. We use this algorithm to solve G by recursively searching for obstruction-trees
for depth k ` 1. In each round we either abort and conclude that G has strong recursive
backdoor depth at least k ` 1 or reduce d and recurse until we arrive at C0, where we can
trivially check satisfiability. If the graph splits into multiple components we can handle the
components separately and aggregate the results.

d

otd,d

d

otd,d

ď λk

otd`1,d

ď λk otd`2,d

d

otd,d

d

otd,d

ď λk

otd`1,d

Figure 2 Schematic depiction of an obstruction-tree for maximal clause degree d and strong
recursive backdoor depth d`2. Here, the notation “oti,d” stands for the notion of pi, d, kq-obstruction-
tree, as formally defined in Definition 5.3.

5 Permissive Strong Recursive Backdoor Detection to C0 Is FPT

We start by formalizing and proving the observations made in Section 4.

▶ Lemma 5.1 (Limited Clause Degree). For every incidence graph G and integer d, if
srbdC0pGq ď d, then G has maximal clause degree at most d, i.e. G P Cd.

Proof. Proof by induction on d.
Base Case: d “ 0. If srbdC0pGq ď 0, then G P C0.

Induction Step: Let d be an integer and G an incidence graph with srbdC0pGq ď d ` 1.
Let c be any clause in G. Let H be the connected component of c in G. By assumption,
srbdC0pHq ď d` 1, and there must be a variable vertex x such that for every literal x‹ we
have srbdC0pHrx‹sq ď d. By induction, we also have that Hrx‹s P Cd.
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Case 1: x is not connected to c. Then c is still intact in Hrx‹s and by induction contains at
most d variables.

Case 2: x is connected to c by an edge with polarity `. Then c still exists in Hrx´s and by
induction has degree at most d in Hrx´s. Therefore c contains at most d` 1 variables in G.

Case 3: The case that x is connected to c by an edge with polarity ´ is analogous to Case 2.
In all cases, c contains at most d` 1 variables in G, and therefore G P Cd`1. ◀

▶ Lemma 5.2 (Low Diameter). Let G be a incidence graph. If either srbdC0pGq ď k or
wrbdC0pGq ď k, then every connected component of G has a diameter of at most 4 ¨ 2k ´ 4.

Proof. Proof by induction on k. For brevity we write bdpGq ď k for the fact that either
wrbdC0pGq ď k or srbdC0pGq ď k.

Base Case: k “ 0. In this case, G is edgeless, and the statement holds.

Induction Step: Assume towards a contradiction that bdpGq ď k ` 1 and that G has a
connected component H of diameter at least 4 ¨ 2k`1 ´ 3. Hence H contains two vertices
connected by a shortest path P “ pv1, . . . , vmq with m “ 4 ¨ 2k`1 ´ 2 (such that if vi is a
clause vertex, then vi`1 is a variable vertex, and if vi is a variable vertex, then vi`1 is a
clause vertex). Also there exists a literal y‹ such that y is a variable vertex in H witnessing
that bdpGq ď k ` 1. Since P is a shortest path from v1 to vm, y can only be connected to
at most 2 clauses in P at distance 2 from each other. Let vi´1 and vi`1 be the two clauses
connected to y (the reasoning also works with only one or zero such vj). Now assigning y‹

can split P by deleting vi´1 and vi`1. We then have that Gry‹s still contains pv1, ..., vi´2q

and pvi`2, ..., vmq as shortest paths. One of those two paths will include at least
R

m´ 3
2

V

“

R

4 ¨ 2k`1 ´ 2´ 3
2

V

“

R

4 ¨ 2k ´
5
2

V

“ 4 ¨ 2k ´ 2

vertices. One component of Hry‹s therefore has a diameter of at least 4¨2k´3. This contradicts
the fact that, by induction, bdpHry‹sq ď k. Therefore we have bdpGq ď k ` 1. ◀

In the rest of the paper, we use λk “ 4 ¨ 2k for brevity.

5.1 Obstruction-Trees
We now turn to the concept of obstruction-trees. We first define them and then prove some of
their properties. The main property, proved in Proposition 5.6, is that the existence of such
trees witnesses a lower bound for the depth of a strong recursive backdoor to the class C0.

▶ Definition 5.3 (Obstruction-Trees and Destroy Neighborhoods). For all integers k, d and
incidence graphs G in Cd, we inductively for i ě d define the notion of an pi, d, kq-obstruction-
tree T of G with elements V pT q and destroy-neighborhood N :

GrT s. We use clapT q and varpT q
to denote the clauses and variables of V pT q.
For a set T “ tc, x1, ..., xdu, where c is a d-clause of G with varpcq “ tx1, . . . , xdu, we have:

1. T is a pd, d, kq-obstruction-tree.
2. V pT q are the elements of T .
3. N :

GrT s :“ varpT q “ tx1, . . . , xdu.
Inductively, for a triple T “ pT1, P, T2q where T1 and T2 are pi, d, kq-obstruction-trees of G

such that N :

GrT1s XN :

GrT2s “ H, and P is a path of length at most λk connecting T1 and T2,
we have:
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1. T is an pi` 1, d, kq-obstruction-tree.
2. V pT q :“ V pT1q Y V pP q Y V pT2q.
3. N :

GrT s :“ varpT q Y tx : there exist c1, c2 P clapT qwith tx, c1u P E` and tx, c2u P E´u.

Observe that V pT q is a connected subset of G. We now show, that our definition of a destroy
neighborhood is a small set of variables, that shields the obstruction-tree from the rest of
the graph. Remember that λk “ 4 ¨ 2k.

▶ Proposition 5.4 (N : Is Small). For all integers i, d, k with d ď k, for every incidence
graph G in Cd, and every pi, d, kq-obstruction-tree T of G, we have |V pT q| ď 3i´d ¨ λk and
|N :

GrT s| ď 3i´d ¨ λk ¨ d.

▶ Proposition 5.5 (N : Is a Destroy Neighborhood). For all integers i, d, k, every incidence
graph G in Cd, every pi, d, kq-obstruction-tree T of G, and every variable x of G, if x R N :

GrT s,
then T is also an pi, d, kq-obstruction-tree in at least one of Grx`s and Grx´s.

Due to space constraints, both proofs were moved to Appendix A.1 and Appendix A.2. We
now turn to the main property of obstruction-trees, which explains why this notion is relevant
in this context.

▶ Proposition 5.6 (Obstruction-Trees Obstruct). For all integers i, d, k and every incidence
graph G in Cd, if there is an pi, d, kq-obstruction-tree T of G, then srbdC0pGq ě i.

Proof. Proof by induction on i.
Base Case: i “ d. Follows immediately from Lemma 5.1.

Induction Step: Let T be an pi ` 1, d, kq-obstruction-tree of G, and assume towards a
contradiction that srbdC0pGq ă i ` 1. By Definition 5.3 we get T1 and T2, two pi, d, kq-
obstruction-trees connected by a path P . Additionally in every connected component H of G,
srbdC0pHq ă i ` 1 holds as well. Since V pT q is connected, there exists one component H

containing T . Then, there must exists a variable x in H such that srbdC0pHrx`sq ă i and
srbdC0pHrx´sq ă i. Assume x R N :

H rT1s. Then by Proposition 5.5 we get that T1 remains
an pi, d, kq-obstruction-tree in either Hrx`s or Hrx´s. We use the induction hypothesis to
conclude that one of the graphs has strong recursive backdoor depth at least i and we get a
contradiction. Assume x P N :

H rT1s. Then x R N :

H rT2s by Definition 5.3 and we can make
the same argument. ◀

Finally, and for technical reasons, we need to show that if we assign a variable, we do
not increase the strong recursive backdoor depth. Also if we find an obstruction-tree after
assigning some variables, then it is also an obstruction-tree in the original graph with the
same destroy neighborhood.

▶ Lemma 5.7 (srbdC0 Is Closed Under Assignments). For every integer k, every incidence
graph G, and every literal x‹ in G, if srbdC0pGq ď k, then srbdC0pGrx‹sq ď k.

▶ Proposition 5.8 (Obstruction-Trees Can Be Lifted). For all integers i, d, k with d ď i and
d ď k, every incidence graph G in Cd, every obstruction-tree T and every literal x‹ of G,
if T is an pi, d, kq-obstruction-tree of H :“ Grx‹s, then it is also an pi, d, kq-obstruction-tree
of G and we have N :

GrT s “ N :

H rT s.

The proofs of these statements can be found in Appendix A.3 and Appendix A.4.
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5.2 Algorithms

We finally turn to the algorithm. We first show that we can efficiently compute an obstruction-
tree, or make progress towards computing a strong recursive backdoor to C0. Making progress
here means decreasing the clause degree of the graph. At every step, the algorithm may stop
if it concludes that srbdC0pGq ą k.

▶ Proposition 5.9 (Obstruction-Trees Are Easy to Compute). There is an algorithm that,
given three integers i, d, k, with d ď i ď k ` 1, and an incidence graph G in Cd, in time
22O

pkq ¨ |G| either
1. returns an pi, d, kq-obstruction-tree T , or
2. returns a strong recursive backdoor B to Cd´1 of depth at most gpi, d, kq :“ 3i´d ¨λk ¨d, or
3. concludes that srbdC0pGq ą k.

Proof. We fix d, k and prove the claims by induction on i and |G|.
Base Case: When i “ d, we search for a clause c connected to d variables. If we find c,
then c is a pd, d, kq-obstruction-tree and we return it. If there is no such clause, then G is
also in Cd´1, and the leaf node labeled G is a strong recursive backdoor to Cd´1.

Induction Step on i: We now fix i and assume that have a working algorithm with parameters
pi, d, kq for any incidence graph G P Cd. We now explain by induction on |G| how to build
an algorithm with parameters pi` 1, d, kq.
Base Case: In the base case |G| “ 1, then G P C0, and there is nothing to do.

Induction Step on |G| when G is not connected: All connected components of G have size
strictly smaller than G, and we can run the algorithm with parameters pi` 1, d, kq on each.
If in one connected component H, we find an pi` 1, d, kq-obstruction-tree T , then T is also
an pi` 1, d, kq-obstruction-tree of G and we are done. If for one connected component H we
have srbdC0pHq ą k, then it also holds that srbdC0pGq ą k. Finally, if for every connected
component H we find a strong recursive backdoor BH to Cd´1 of depth at most gpi` 1, d, kq,
we can merge them to build a recursive backdoor B to Cd´1 for G. In order to do this, we
insert a root node labeled G, whose children are all the BH . Since we do not insert a variable
node, B has still depth at most gpi` 1, d, kq.

Induction Step on |G| when G is connected: In this case, we use the induction hypothesis
on G with parameters pi, d, kq. If the algorithm provides a strong recursive backdoor or
concludes that srbdC0pGq ą k, we are done. We focus on the case where the algorithm returns
an pi, d, kq-obstruction-tree T1 for G and N :

GrT1s. We define T as the set of all possible
truth assignments to the variables of N :

GrT1s. For every τ in T , we define Hτ :“ Grτ s. On
every Hτ we run the algorithm given by induction with parameters pi, d, kq.

Case 1: For at least one Hτ we have that srbdC0pHτ q ą k. By Lemma 5.7, srbdC0pGq ą k

follows.

Case 2: For at least one Hτ we find an pi, d, kq-obstruction-tree T2. By Proposition 5.8, T2
is also an pi, d, kq-obstruction-tree in G and N :

Hτ
rT2s “ N :

GrT2s. Since none of the variables
in N :

GrT1s appear in Hτ , we have that N :

GrT1s XN :

GrT2s “ H. We run a BFS algorithm to
find a shortest path P between a vertex of T1 and T2 in G. If P has length greater than λk,
we can conclude that srbdC0pGq ą k by Lemma 5.2. If P has length at most λk, we have
that T “ pT1, P, T2q is an pi` 1, d, kq-obstruction-tree in G.
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The process of constructing T is depicted in Figure 3. In the first panel we see that we
have found T2 in the graph Hτ . Hτ is an induced subgraph of G in which the variables of
τ have been assigned and which therefore does not contain T1 (see hatched area). In the
second panel we lift T2 into G, which also contains T1. In the third panel, all thats left to do
is to combine T1 and T2 into T , which then is an obstruction-tree for G.

T2

Hτ

T2

T1

G

T2

T1

T G

1. 2. 3.

Figure 3 Searching an obstruction-tree.

Case 3: For every Hτ we find a strong recursive backdoor Bτ to C0 of depth at most gpi, d, kq.
In this case, we can combine them and build a strong recursive backdoor B of G to Cd´1.
To do so, we start with the complete binary tree, where at each step we branch over one
variable in N :

GrT1s. At depth |N :

GrT1s|, each node corresponds to an assignment τ of T . We
then finish the tree by plugging Bτ in the branch corresponding to τ . B is a strong recursive
backdoor of G to Cd´1, and its depth is bounded by: |N :

GrT1s| ` gpi, d, kq ď gpi` 1, d, kq.
The process of merging backdoors is depicted in Figure 4. The backdoors Bτ are depicted

as trees, whose root nodes are merged by and form the leaves of a full binary tree over the
variables of N :

GrT1s.

G

Hτ1 Hτ2
...Hτ3 Hτ4

Bτ1 Bτ2

x1

x2 x2

-`

` - ` -

Bτ3 Bτ4

|N :

GrT1s|

depth:

ď gpi, d, kq

depth:

...

Figure 4 Merging backdoors.

Time Complexity: The proof for the time complexity can be found in Appendix A.5. ◀
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We now use the result of Proposition 5.9 sufficiently many times so that the degree of the
input graph reaches 0. Again, at any point, the algorithm may stop and conclude that
srbdC0pGq ą k. Remember that λk “ 4 ¨ 2k.

▶ Theorem 5.10. There is an algorithm that, given as input an integer k and an incidence
graph G, in time 22Opkq

¨ |G| either:
1. returns a strong recursive backdoor of G to C0 of depth at most 3k ¨ λk ¨ k

2, or
2. concludes that srbdC0pGq ą k.

Proof. Let d be the maximal degree of a clause in G. If d ą k conclude that srbdC0pGq ą k

by Lemma 5.1. Otherwise handle G using induction on d to search for a SRB to C0 of depth
at most 3k ¨ λk ¨ d

2:
Base Case: G P C0 and the node labeled G is a SRB to C0 of depth 0.

Induction Step: G P Cd`1. Run the algorithm presented in Proposition 5.9 with parameters
pk ` 1, d` 1, kq on G. If it concludes that srbdC0pGq ą k, or returns a pk ` 1, d ` 1, kq-
obstruction-tree, conclude that srbdC0pGq ą k by Proposition 5.6. If a SRB B is returned,
then B will have depth at most 3k`1´pd`1q ¨ λk ¨ pd` 1q ď 3k ¨ λk ¨ pd` 1q and every leaf of B

will be labeled with a graph H in Cd.
We then apply the algorithm given by the induction hypothesis to every H. If for one H

we get that srbdC0pHq ą k, conclude that srbdC0pGq ą k by Lemma 5.7. If for every H we
get a SRB BH to C0 of depth at most 3k ¨ λk ¨ d

2, we use the results to build a SRB to C0
for G. To do so, we replace the leaf labeled H in B with BH for every H. As a result, B

will be extended to be a SRB for G to C0 with depth at most 3k ¨ λk ¨ pd` 1q2.

Time Complexity: The proof for the time complexity can be found in Appendix A.6. ◀

▶ Corollary 5.11. Given a formula φ and a parameter k there is an algorithm that solves
SATpsrbdC0q in time 22Opkq

¨ |φ|.

Proof. We compute the satisfiability of φ in two steps. First run the algorithm given in
Theorem 5.10 with parameters φ and k in time 22Opkq

¨ |φ|. If the algorithm concludes that
srbdC0pφq ą k we are finished. Otherwise a SRB with depth at most 3k ¨ λk ¨ k

2 of φ to C0
is returned.

Second, we make use of the calculated SRB by running the algorithm described in
Proposition 3.3, to determine the satisfiability of φ. The satisfiability of a formula in C0 can
be checked in constant time: If it contains no clause, then all clauses are trivially satisfied. If
it contains at least one clause, then that clause is empty and unsatisfiable. Therefore the
second step runs in time Op23k

¨λk¨k2
¨ |φ|q. Adding up the running times, we get a total time

complexity of 22Opkq

¨ |φ|. ◀

6 Weak Recursive Backdoor Detection to C0 Is W r2s-Hard

In this section, we show that the parametrized problem of detecting a weak recursive backdoor
of depth k to the class of edgeless graphs is W r2s-hard when parametrized by k.

▶ Theorem 6.1. Weak-Recursive-C0-Backdoor-Detection is W[2]-hard.

Due to space constraints, the proof was moved to Appendix A.7.
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7 Conclusion

We have proposed the new notions of strong and weak recursive backdoors, which exploit
the structure of formulas that can be recursively split into independent parts by partial
assignments. Recursive backdoors are measured by their depth and can contain, even at
bounded depth, an unbounded number of variables. In our work we have focused on the
tractable base class of empty formulas C0. We have shown, that detecting weak recursive
backdoors to C0 is W[2]-hard. Our main technical contribution is an fpt algorithm that
detects strong recursive backdoors of bounded depth to C0. Even for C0 this extends tractable
SAT Solving to a new class of formulas.

Our result raises the question of whether the detection of strong recursive backdoors can
be expanded to larger base classes such as 2CNF or Horn. Especially 2CNF seems to be in
reach, as similar to C0, incidence graphs of formulas with bounded recursive backdoor depth
to 2CNF have a bounded clause degree. This is the first ingredient for our algorithm to C0.
However our algorithm is limited to finding backdoors to C0, as the second ingredient, which
is bounded incidence graph diameter, is not given when searching for backdoors to 2CNF.
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A Omitted Proofs

A.1 Proof of Proposition 5.4

Proof. The second claim easily follows the first one. The set N :

T rGs contains varpT q and
at most the variables connected to a clause from clapT q. Since G P Cd, we get that
|N :

GrT s| ď |V pT q| ¨ d. Now we prove that |V pT q| ď 3i´d ¨ λk by induction on i.
Base Case: T is an pd, d, kq-obstruction-tree. By definition, |V pT q| “ |T | “ d` 1 ď 3d´d ¨ λk.

Induction Step: T is an pi ` 1, d, kq-obstruction-tree. Then T “ pT1, P, T2q such that T1
and T2 are pi, d, kq-obstruction-trees of G and |V pT q| ď |V pT1q|`|V pP q|`|V pT2q|. We apply
our induction hypothesis to conclude that both V pT1q and V pT2q have at most 3i´d ¨ λk

elements. P has at most λk elements by definition. We conclude that |V pT q| ď 3 ¨ 3i´d ¨λk “

3i`1´d ¨ λk. ◀

A.2 Proof of Proposition 5.5

In order to prove Proposition 5.5, we first prove an intermediate result:

▶ Proposition A.1 (Obstruction-Trees Are only Influenced by Adjacent Variables). For all
integers i, d, k, every incidence graph G in Cd, every pi, d, kq-obstruction-tree T of G, every
variable x in G, and every polarity ‹, if x R varpT q and for all c P clapT q we have tx, cu R E‹,
then T is still an pi, d, kq-obstruction-tree in Grx‹s.

Proof. Proof by induction on i.
Base Case: i “ d. Then T contains a d-clause c and its adjacent variables varpT q. If x R

varpT q, then T remains untouched and continues to be a pd, d, kq-obstruction-tree of Grx‹s.

Induction Step: i ą d. Then T “ pT1, P, T2q, where T1 and T2 are pi, d, kq-obstruction-trees
of G. Assume x R varpT q and for all c P clapT q we have tx, cu R E‹. Since clapT1q and clapT2q

are both subsets of clapT q we can apply our induction hypothesis and conclude that T1 andT2
are still pi, d, kq-obstruction-trees of Grx‹s. Since Grx‹s is a subgraph of G we know that
N :

Grx‹s
rT1s XN :

Grx‹s
rT2s is still empty. Since x is not contained in varpP q Ď varpT q and is

also not connected to a clause of clapP q Ď clapT q by polarity ‹, we conclude that P still is
a path of the same length in Grx‹s. It follows that T must be pi` 1, d, kq-obstruction-tree
in Grx‹s. ◀
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We now continue with the proof of Proposition 5.5:

Proof. Assume towards a contradiction that x R N :

GrT s and T is no pi, d, kq-obstruction-tree
of Grx`s and Grx´s. If T is no pi, d, kq-obstruction-tree in Grx`s, then by Proposition A.1,
either x P varpT q or there exists a clause c1 connected to x by a positive edge. Since the
former contradicts with x R N :

GrT s, we have that c1 exists. Now assume that T is also
no pi, d, kq-obstruction-tree in Grx´s. By the same reasoning conclude that there exists a
clause c2 connected to x by a negative edge. From the existence of both c1 and c2 connected
with different polarities to x we conclude that x P N :

GrT s and get a contradiction. ◀

A.3 Proof of Lemma 5.7

Proof. Proof by induction on k.
Base Case: k “ 0. Then G is edgeless and remains edgeless when a variable is assigned.

Induction Step: Let G be an incidence graph such that srbdC0pGq ď k ` 1, and let x‹

be any literal of G. If G is connected, then by Definition 3.1 there exists a variable y

such that srbdC0pGry‹sq ď k. If x “ y, then srbdC0pGrx‹sq ď k ` 1 holds trivially. If
x ‰ y then we apply our induction hypothesis and because srbdC0pGry‹sq ď k get that
srbdC0pGry‹, x‹sq ď k. This leads to srbdC0pGrx‹, y‹sq ď k, which again implies that
srbdC0pGrx‹sq ď k ` 1 holds. If G contains multiple components, then the same argument
applies for the component that contains x and the other components remain unchanged. ◀

A.4 Proof of Proposition 5.8

Proof. Proof by induction on i.
Base Case: i “ d. Then T contains a d-clause c and its variables x1, . . . , xd in H and N :

H rT s

contains all xi. Since G has maximal clause degree d, c must also be a d-clause in G with
the same neighborhood.

Induction Step: Assume T is an pi` 1, d, kq obstruction-tree of H . Then T “ pT1, P, T2q such
that T1 and T2 are pi, d, kq-obstruction-trees of H , and P is a path of length at most λk. By
applying the induction hypothesis, we get that T1 and T2 are also pi, d, kq-obstruction-trees
of G and that N :

GrT1s “ N :

H rT1s and N :

GrT2s “ N :

H rT2s are disjoint. P obviously still is a
path of length at most λk in G, so T is indeed an pi` 1, d, kq-obstruction-tree of G.

We now show that N :

H rT s “ N :

GrT s. Since H is an induced subgraph of G, we get that
N :

H rT s Ď N :

GrT s. To show N :

H rT s Ě N :

GrT s, pick any variable y from N :

GrT s. If y P varpT q
we get that y P N :

H rT s by definition. If y is positively connected to c1 and negatively
connected to c2 for two clauses c1, c2 P clapT q, then y ‰ x, since otherwise the assignment
of y in H would delete a clause from T , which contradicts the fact that T is an pi` 1, d, kq-
obstruction-tree in H. Since y is not equal to x, its edges to c1 and c2 are not affected by
the assignment of x in H and again y P N :

H rT s holds. It follows that N :

GrT s “ N :

H rT s. ◀

A.5 Time Complexity of Proposition 5.9

Proof. Let us prove by induction that the time complexity of the algorithm presented in
Proposition 5.9 is 22Opkq

¨ |G|. This clearly holds when |G| “ 1, or when i “ d. We now move
on to the induction and analyze the run of the algorithm with parameters pi` 1, d, kq on a
graph G.
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First, note that when we split among several connected components these components
are disjoints. The sum of the sizes of these components is the size of the G. Unifying the
recursive backdoor, given by the components, by adding a common root node takes at most
linear time, which is consistent with our hypothesis.

Second, when the graph is connected we first run the algorithm with parameters pi, d, kq.
If the run does not stop there, we have an pi, d, kq-obstruction-tree T . We then consider a
number of truth assignments that is bounded by 2N:

G
rT s. For each of these assignment, we

run again our algorithm with parameters pi, d, kq, on graphs smaller than G.
If we find a second pi, d, kq-obstruction-tree we then only need to compute shortest path,

which can be performed in linear time. If every truth assignment provides a backdoor-tree,
plugging them together only takes time linear in the number of possible truth assignments.

All together the procedure stays linear and the constant factor gets multiplied by a factor
of the form O

´

2N:

G
rT s

¯

each time i decreases by one. By Proposition 5.4, this is bounded

by O
´

23i´d
¨λk¨d

¯

. Using that both d ď k and i ď k ` 1, this is of the form 22Opkq . As i can
decrease by one at most i´d many times (and therefore at most i many times) until we get to
a base case, we get that the final constant factor is of the form

´

22Opkq
¯i

“ 2i2Opkq

“ 22Opkq .
We finally have that the overall complexity of a run with parameters pi, d, kq on a graph G

is bounded by 22Opkq

¨ |G|. ◀

A.6 Time Complexity of Theorem 5.10

Proof. Let fpkq ¨ |G| be the time complexity of Proposition 5.9 and gpk, dq be 3k ¨ λk ¨ d. We
prove the time complexity of 2gpk,dq¨d ¨ fpkq ¨ |G| by induction on d. If d “ 0 then we only
have to construct a single node, which can be done in constant time. For graphs in Cd`1,
running the algorithm of Proposition 5.9 can be done in time fpkq ¨ |G|. If we do not find
a SRB, we can abort. Otherwise we find a SRB of depth at most gpk, d` 1q such that all
its leaves are members of Cd. We can apply our induction hypothesis and assume that for
a single leaf H, we can finish in time 2gpk,dq¨d ¨ fpkq ¨ |H|. Since the sum of the number of
vertices in all leafs of the backdoor is at most 2gpk,d`1q ¨ |G|, we get that full algorithm has a
running time in

fpkq ¨ |G| ` 2gpk,dq¨d ¨ fpkq ¨ 2gpk,d`1q ¨ |G| ď 2gpk,d`1q¨pd`1q ¨ fpkq ¨ |G|.

Since both 2gpk,dq¨d and fpkq are in 22Opkq , the overall time complexity of the algorithm is in
22Opkq

¨ |G|. ◀

A.7 Proof of Theorem 6.1

Proof. We are going to show the W[2]-hardness of Weak-Recursive-C0-Backdoor-
Detection pWR-C0-BDq by reduction from the W[2]-complete Set Cover problem
[2, Theorem 13.28]. An instance I of the Set Cover problem is composed of a universe U ,
an integer k, and a set S Ď P pUq. I is a yes-instance if there exists a subset L of S with size
at most k, such that the union of all sets in L is equal to U .

We reduce I “ pS, U, kq to the WR-C0-BD instance pφ, k`1q, where φ is a CNF formula
over the variables tb1, ..., bk`2, s1, ..., snu, where n “ |S|. This formula is constructed in the
following way:
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For each element of the universe u P U a corresponding clause σu is created, which we
call element-clauses. For each set Si a corresponding variable vertex si is created, which we
call set-variables. Then si and σu are connected by a positive edge when u P Si. Therefore in
the incidence graph, si dominates all the clauses whose corresponding elements are contained
in Si.

In addition, we create k ` 2 fresh variables bi. Each are individually and positively
connected to a fresh clause βi. Furthermore, all bi are negatively connected to all σu, creating
a Kk`2,|U | bi-clique. More formally, we have:

βi :“bi

σu :“
k`2
ł

i“1
␣bi _

ł

tiďn : uPSiu

si

φ :“
k`2
ľ

i“1
βi ^

ľ

uPU

σu

We will now prove that this is in fact a valid reduction.

ñ: If I “ ptS1, ..., Snu, U, kq is a yes-instance, there exists a set of indices J Ď t1, ..., nu of at
most size k such that

Ť

jPJ Sj “ U . We construct the weak recursive backdoor tsj`|j P Ju

of size and depth at most k that dominates all element clauses. Once every variable sj has
been assigned, every element-clause σu has been satisfied. Only the k ` 2 clauses βi remain.
These clauses are disjoint. We can therefore complete the backdoor by adding at depth k` 1
every literal bi simultaneously.

ð: Let I “ pS, U, kq be an instance for the Set Cover, and assume that I 1 “ pφ, kq is
a yes-instance. Then there must exist a weak recursive backdoor of depth at most k that
reduces φ to an edgeless graph. In order to satisfy every βi clause, each of the bi literals
must be contained in the backdoor. Therefore the size of the backdoor is at least k` 2. Since
the backdoor can have depth at most k ` 1, at least two of the βi clauses have to be split
into disconnected components and satisfied separately at some point.

Since every variable bi is connected to every element-clause σu, the graph only contains
one connected component, as long as a clause σu is not satisfied. Since the literals ␣bi cannot
be part of the backdoor, there must be a set of only set-variables that when assigned satisfy
every element-clause. In order to not exceed the recursion depth of k ` 1, that set must be
of size at most k. Having a set of at most k set variables satisfying every element-clause
implies the existence of a set cover of U of at most k elements. So I is a yes-instance. ◀
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non-elementarily compressed integers supporting the arithmetic operations addition and (x, y) 7→ x·2y.
The same authors applied power circuits to give a polynomial-time solution to the word problem of
the Baumslag group, which has a non-elementary Dehn function.

In this work, we examine power circuits and the word problem of the Baumslag group under
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group can be solved in NC – even though one of the essential steps is to compare two integers given
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1 Introduction

The word problem of a finitely generated group G is as follows: does a given word over the
generators of G represent the identity of G? It was first studied by Dehn as one of the
basic algorithmic problems in group theory [8]. Already in the 1950s, Novikov and Boone
succeeded to construct finitely presented groups with an undecidable word problem [5, 33].
Nevertheless, many natural classes of groups have an (efficiently) decidable word problem –
most prominently the class of linear groups (groups embeddable into a matrix group over
some field): their word problem is in LOGSPACE [22, 38] – hence, in particular, in NC, i.e.,
decidable by Boolean circuits of polynomial size and polylogarithmic depth.

There are various other results on word problems of groups in small parallel complexity
classes defined by circuits. For example the word problems of solvable linear groups are even
in TC0 (constant depth with threshold gates) [19] and the word problems of Baumslag-Solitar
groups and of right-angled Artin groups are AC0-Turing-reducible to the word problem of
a non-abelian free group [42, 18]. Moreover, Thompson’s groups are co-context-free [21]
and hyperbolic groups have word problem in LOGCFL [23]. All these classes are contained
within NC. On the other hand, there are also finitely presented groups with a decidable word
problem but with arbitrarily high complexity [36].

A mysterious class of groups under this point of view are one-relator groups, i.e. groups
that can be written as a free group modulo a normal subgroup generated by a single element
(relator). Magnus [26] showed that one-relator groups have a decidable word problem; his
algorithm is called the Magnus breakdown procedure (see also [25, 27]). Nevertheless, the
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complexity remains an open problem – although it is not even clear whether the word
problems of one-relator groups are solvable in elementary time, in [3] the question is raised
whether they are actually decidable in polynomial time.

In 1969 Gilbert Baumslag defined the group G1,2 =
〈
a, b | bab−1a = a2bab−1〉

as an
example of a one-relator group which enjoys certain remarkable properties. It is infinite
and non-abelian, but all its finite quotients are cyclic and, thus, it is not residually finite
[4]. Moreover, Gersten showed that the Dehn function of G1,2 is non-elementary [15] and
Platonov [34] made this more precise by proving that it is (roughly) τ(log n) where τ(0) = 1
and τ(i+ 1) = 2τ(i) for i ≥ 0 is the tower function (note that he calls the group Baumslag-
Gersten group). Since the Dehn function gives an upper bound on the complexity of the
word problem, the Baumslag group was a candidate for a group with a very difficult word
problem. Indeed, when applying the Magnus breakdown procedure to an input word of length
n, one obtains as intermediate results words of the form vx1

1 · · · vxm
m where vi ∈ {a, b, bab−1},

xi ∈ Z, and m ≤ n. The issue is that the xi might grow up to τ(log n); hence, this algorithm
has non-elementary running time. However, as foreseen by the above-mentioned conjecture,
Myasnikov, Ushakov and Won succeeded to show that the word problem of G1,2 is, indeed,
decidable in polynomial time [30]. Their crucial contribution was to introduce so-called
power circuits in [31] for compressing the xi in the description above.

Roughly speaking, a power circuit is a directed acyclic graph (a dag) where the edges
are labelled by ±1. One can define an evaluation of a vertex P as two raised to the power
of the (signed) sum of the successors of P . Note that this way the value τ(n) of the tower
function can be represented by an n-vertex power circuit – thus, power circuits allow for a
non-elementary compression. The crucial feature for the application to the Baumslag group
is that power circuits not only efficiently support the operations +, −, and (x, y) 7→ x · 2y,
but also the test whether x = y or x < y for two integers represented by power circuits can
be done in polynomial time. The main technical part of the comparison algorithm is the
so-called reduction process, which computes a certain normal form for power circuits.

Based on these striking results, Diekert, Laun and Ushakov [10, 9] improved the algorithm
for power circuit reduction and managed to decrease the running time for the word problem
of the Baumslag group from O(n7) down to O(n3). They also describe a polynomial-time
algorithm for the word problem of the famous Higman group H4 [16]. In [32] these algorithms
have been implemented in C++. Subsequently, more applications of power circuits to these
groups emerged: in [20] a polynomial time solution to the word problem in generalized
Baumslag and Higman groups is given, in [12, 11] the conjugacy problem of the Baumslag
group is shown to be strongly generically in P and in [2] the same is done for the conjugacy
problem of the Higman group. Here “generically” roughly means that the algorithm works
for most inputs (for details on the concept of generic complexity, see [17]).

Other examples where compression techniques lead to efficient algorithms in group theory
can be found e.g. in [13, 14] or [24, Theorems 4.6, 4.8 and 4.9]. Finally, notice that in [29]
the word search problem for the Baumslag group has been examined using parametrized
complexity.

Contribution. The aim of this work is to analyze power circuits and the word problem
of the Baumslag group under the view of parallel (circuit) complexity. For doing so, we
first examine so-called compact representations of integers and show that ordinary binary
representations can be converted into compact representations by constant depth circuits
(i.e., in AC0 – see Section 3). We apply this result in the power circuit reduction process,
which is the main technical contribution of this paper. While [31, 10] give only polynomial
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time algorithms, we present a more refined method and analyze it in terms of parametrized
circuit complexity. The parameter here is the depth D of the power circuit. More precisely,
we present threshold circuits of depth O(D) for power circuit reduction – implying our first
main result:

▶ Proposition A. The problem of comparing two integers given by power circuits of logarithmic
depth is in TC1 (decidable by logarithmic-depth, polynomial-size threshold circuits).

We then analyze the word problem of the Baumslag group carefully. A crucial step is to show
that all appearing power circuits have logarithmic depth. Using Proposition A we succeed to
describe a TC1 algorithm for computing the Britton reduction of uv if u and v are already
Britton-reduced (Britton reductions are the basic step in the Magnus breakdown procedure –
see Section 5 for a definition). This leads to the following result:

▶ Theorem B. The word problem of the Baumslag group G1,2 is in TC2.

In the final part of the paper we prove lower bounds on comparison in power circuits, and
thus, on power circuit reduction. In particular, this emphasizes the relevance of Proposition
A and shows that our parametrized analysis of power circuit reduction is essentially the best
one can hope for. Moreover, Theorem C highlights the importance of the logarithmic depth
bound for the power circuits appearing during the proof of Theorem B.

▶ Theorem C. The problem of comparing two integers given by power circuits is P-complete.

Power circuits can be seen in the broader context of arithmetic circuits and arithmetic
complexity. Thus, results on power circuits also give further insight into these arithmetic
circuits. Notice that the corresponding logic over natural numbers with addition and 2x has
been shown to be decidable by Semënov [37]. In the full version [28] we show that, indeed,
for every power circuit with a marking M there is an arithmetic circuit of polynomial size
with +-, −-, and 2x-gates evaluating to the same number and vice-versa.

Due to space constraints we present only short outlines of the proofs for our main theorems;
the full proofs as well as further details can be found in the full version on arXiv [28]. Details
of the reduction process also can be found in the appendix.

2 Notation and preliminaries

General notions. We use standard O-notation for functions from N to non-negative reals
R≥0, see e.g. [7]. Throughout, the logarithm log is with respect to base two. The tower
function τ : N → N is defined by τ(0) = 1 and τ(i+1) = 2τ(i) for i ≥ 0. It is primitive recursive,
but τ(6) written in binary cannot be stored in the memory of any conceivable real-world
computer. We denote the support of a function f : X → R by σ(f) = {x ∈ X | f(x) ̸= 0}.
Furthermore, the interval of integers {i, . . . , j} ⊆ Z is denoted by [i .. j] and we define
[n] = [0 .. n− 1]. We write Z[1/2] = {p/2q ∈ Q | p, q ∈ Z} for the set of dyadic fractions.

Let Σ be a set. The set of all words over Σ is denoted by Σ∗ =
⋃

n∈N Σn. The length of
a word w ∈ Σ∗ is denoted by |w|. A dag is a directed acyclic graph. For a dag Γ we write
depth(Γ) for its depth, which is the length (number of edges) of a longest path in Γ.

Complexity. We assume the reader to be familiar with the complexity classes LOGSPACE
and P (polynomial time); see e.g. [1] for details. Most of the time, however, we use circuit
complexity within NC.

Throughout, we assume that languages L (resp. inputs to functions f) are encoded over
the binary alphabet {0, 1}. A Boolean circuit is a dag where the vertices are either input
gates x1, . . . , xn, or Not, And, or Or gates. There are one or more designated output gates
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and there is an order given on the output gates. All gates may have unbounded fan-in (i.e.,
there is no bound on the number of incoming wires). Let k ∈ N. A language L ⊆ {0, 1}∗

belongs to ACk if there exists a family (Cn)n∈N of Boolean circuits such that x ∈ L ∩ {0, 1}n

if and only if the (unique) output gate of Cn evaluates to 1 when assigning x = x1 · · ·xn to
the input gates. Moreover, Cn may contain at most nO(1) gates and have depth O(logk n).
Likewise ACk-computable functions are defined.

The class TCk is defined analogously with the difference that also Majority gates are
allowed (a Majority gate outputs 1 if its input contains more 1s than 0s). Moreover,
NC =

⋃
k≥0 TCk =

⋃
k≥0 ACk. For more details on circuits we refer to [40]. Our algorithms

(or circuits) rely on two basic building blocks which can be done in TC0:

▶ Example 1. Iterated addition is the following problem: on input of n binary numbers
A1, . . . , An each having n bits, compute

∑n
i=1 Ai. This is well-known to be in TC0 – see e.g.

[40, Theorem 1.37] for a proof.

▶ Example 2. Let (k1, v1), . . . , (kn, vn) be a list of n key-value pairs (ki, vi) equipped with
a total order on the keys ki such that it can be decided in TC0 whether ki < kj . Then
the problem of sorting the list according to the keys is in TC0: the desired output is a list
(kπ(1), vπ(1)), . . . , (kπ(n), vπ(n)) for some permutation π such that kπ(i) ≤ kπ(j) for all i < j.

We briefly describe a circuit family to do so: The first layer compares all pairs of keys
ki, kj in parallel. For all i and j the next layer computes a Boolean value P (i, j) which is
true if and only if |{ℓ | kℓ < ki}| = j. The latter is computed by iterated addition. As a final
step the j-th output pair is set to (ki, vi) if and only if P (i, j) is true.

▶ Remark 3. The class NC is contained in P if we consider uniform circuits. Roughly speaking,
a circuit family is called uniform if the n-input circuit can be computed efficiently from the
string 1n. In order not to overload the presentation, throughout, we state all our results in
the non-uniform case – all uniformity considerations are left to the reader.

Parametrized circuit complexity. In our work we also need some parametrized version
of the classes TCk, which we call depth-parametrized TCk. Let par : {0, 1}∗ → N (called
the parameter). Consider a family of circuits (Cn,D)n,D∈N such that Cn,D contains at most
nO(1) gates (independently of D)1 and has depth O(D · logk n). A language L is said to be
accepted by this circuit family if for all n and D and all x ∈ {0, 1}n with par(x) ≤ D we
have x ∈ L if and only if Cn,D evaluates to 1 on input x. Similarly, f : {0, 1}∗ → {0, 1}∗ is
computed by (Cn,D)n,D∈N if for all n and D and all x ∈ {0, 1}n with par(x) ≤ D the circuit
Cn,D evaluates to f(x) on input x. We define DepParaTCk as the class of languages (resp.
functions) for which there are such parametrizations par : {0, 1}∗ → N and families of circuits
(Cn,D)n,D≥0. Note that this is not a standard definition – but it perfectly fits our purposes.

▶ Lemma 4. Let C > 0, k, ℓ ∈ N and par : {0, 1}∗ → N such that
{
w ∈ {0, 1}∗

∣∣
par(w) ≤ C · ⌊log |w|⌋ℓ} ∈ TCk+ℓ and L ∈ DepParaTCk (parametrized by par). Then
L̃ =

{
w ∈ L

∣∣∣ par(w) ≤ C · ⌊log |w|⌋ℓ
}

is in TCk+ℓ.

Power circuits. Consider a pair (Γ, δ) where Γ is a set of n vertices and δ is a mapping
δ : Γ × Γ → {−1, 0,+1}. Notice that (Γ, σ(δ)) is a directed graph. Throughout we require
that (Γ, σ(δ)) is acyclic – i.e., it is a dag. In particular, δ(P, P ) = 0 for all vertices P . A

1 Here and in most other natural applications the parameter D is bounded by the input size n. In this
case, we could let the size of Cn,D be a polynomial in both n and D – without changing the actual class.
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marking is a mapping M : Γ → {−1, 0,+1}. Each node P ∈ Γ is associated in a natural way
with a marking ΛP : Γ → {−1, 0,+1} , Q 7→ δ(P,Q) called its successor marking. We define
the evaluation ε(P ) ∈ R>0 of a node (ε(M) ∈ R of a marking resp.) bottom-up in the dag
by induction: leaves (nodes of out-degree 0) evaluate to 1 and, in general,

ε(P ) = 2ε(ΛP ) for a node P , ε(M) =
∑

P

M(P )ε(P ) for a marking M.

▶ Definition 5. A power circuit is a pair (Γ, δ) with δ : Γ×Γ → {−1, 0,+1} such that (Γ, σ(δ))
is a dag and all nodes evaluate to some positive natural number in 2N.

The size of a power circuit is the number of nodes |Γ|. By abuse of language, we also simply
call Γ a power circuit and suppress δ whenever it is clear. If M is a marking on Γ and
S ⊆ Γ, we write M |S for the restriction of M to S. Let (Γ′, δ′) be a power circuit, Γ ⊆ Γ′,
δ = δ′|Γ×Γ, and δ′|Γ×(Γ′\Γ) = 0. Then (Γ, δ) itself is a power circuit. We call it a sub-power
circuit and denote this by (Γ, δ) ≤ (Γ′, δ′) or, if δ is clear, by Γ ≤ Γ′.

If M is a marking on S ⊆ Γ, we extend M to Γ by setting M(P ) = 0 for P ∈ Γ \S. With
this convention, every marking on Γ also can be seen as a marking on Γ′ if Γ ≤ Γ′.

▶ Example 6. A power circuit of size n can realize τ(n) since a directed path of n nodes
represents τ(n) as the evaluation of the last node. The following power circuit realizes τ(6)
using 6 nodes:

1 2 4 16 65536 265536ε(P )

+ + + + +

▶ Example 7. We can represent every integer in the range [−2n − 1, 2n − 1] as the evaluation
of some marking in a power circuit with node set {P0, . . . , Pn−1} with ε(Pi) = 2i for i ∈ [n].
Thus, we can convert the binary notation of an n-bit integer into a power circuit with n

vertices and O(n log n) edges (each successor marking requires at most ⌊log n⌋ + 1 edges).
For an example of a marking representing the integer 23, see Figure 1.

− + +

1 2 4 8 16 32

+ +

++

+
+

+

Figure 1 Each integer z ∈ [−63 .. 63] can be represented by a marking in the following power
circuit. The marking given in blue is representing the number 23.

▶ Definition 8. We call a marking M compact if for all P,Q ∈ σ(M) with P ̸= Q we have
|ε(ΛP ) − ε(ΛQ)| ≥ 2. A reduced power circuit of size n is a power circuit (Γ, δ) with Γ
given as a sorted list Γ = (P0, . . . , Pn−1) such that all successor markings are compact and
ε(Pi) < ε(Pj) whenever i < j. In particular, all nodes have pairwise distinct evaluations.

It turns out to be crucial that the nodes in Γ are sorted by their values. Still, sometimes it is
convenient to treat Γ as a set – we write P ∈ Γ or S ⊆ Γ with the obvious meaning. For
more details on power circuits see [10, 31].
▶ Remark 9. If (Γ, δ) is a reduced power circuit with Γ = (P0, . . . , Pn−1), we have δ(Pi, Pj) = 0
for j ≥ i. Thus, the order on Γ by evaluations is also a topological order on the dag (Γ, σ(δ)).
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3 Compact signed-digit representations

▶ Definition 10.
(i) A sequence B = (b0, . . . , bm−1) with bi ∈ {−1, 0,+1} for i ∈ [m] is called a signed-digit

representation of val(B) =
∑m−1

i=0 bi · 2i ∈ Z.
(ii) The digit-length of B = (b0, . . . , bm−1) is the maximal i with bi−1 ̸= 0.
(iii) The sequence B = (b0, . . . , bm−1) is called compact if bibi−1 = 0 for all i ∈ [1 ..m− 1]

(i.e., no two successive digits are non-zero).
Henceforth, we abbreviate “compact signed-digit representation” with csdr. A non-negative
binary number is the special case of a signed-digit representation where all bi are 0 or 1 (note
that, in general, they are not compact). In particular, every integer k can be represented
as a signed-digit representation. However, in general, a signed-digit representation for an
integer k is not unique. In [31, Section 2.1] a linear-time algorithm for calculating csdrs has
been given; here we aim for optimizing the parallel complexity.

▶ Theorem 11. The following is in AC0:
Input: A binary number A = (a0, . . . , am−1).
Output: A compact signed-digit representation of A.

Proof sketch. Computation of the csdr is in the spirit of a carry-lookahead adder: On input
of the binary number A = (a0, . . . , am−1) we define

ci =
∨

1≤j≤i

(
aj ∧ aj−1 ∧

∧
j<k≤i

(ak ∨ ak−1)
)
, and bi = (ai ⊕ ci) · (−1)ai+1 .

Here ⊕ denotes the exclusive or and we treat the Boolean values 0, 1 as a subset of the integers.
Then B = (b0, . . . , bm−1, bm) can be calculated in AC0 using the above formulas. The main
part of the proof consists in showing that B, indeed, is compact and that val(B) = val(A).
This is done by induction using the recurrence c0 = 0 and ci = (ai ∧ai−1)∨

(
ci−1 ∧(ai ∨ai−1)

)
for i ≥ 1. ◀

▶ Lemma 12 ([31, Lemma 4]). Let A = (a0, . . . , am−1), B = (b0, . . . , bm−1) be csdrs. Then:
(i) val(A) = val(B) if and only if ai = bi for all i ∈ [m].
(ii) Assume there is some i with ai ̸= bi and let i0 = max {i ∈ [m] | ai ̸= bi}. Then

val(A) < val(B) if and only if ai0 < bi0 .

From this lemma together with Theorem 11 it follows that each k ∈ Z can be uniquely
represented by a compact signed digit representation CR(k). Likewise for a signed digit
representation A, we write CR(A) for its compact signed digit representation.

If A and B are signed digit representations, it follows from Theorem 11 and Lemma 12
that we can calculate CR(A) and CR(A+B) and decide whether val(A) < val(B) in AC0.

4 Operations on power circuits

Basic operations. Before we consider the computation of reduced power circuits, which is
our main result in this section, let us introduce some more notation on power circuits and
recall the basic operations from [31, 10] under circuit complexity aspects.

▶ Definition 13. Let (Γ, δ) be a reduced power circuit with Γ = (P0, . . . , Pn−1).
(i) A chain C of length ℓ = |C| in Γ starting at Pi = start(C) is a sequence (Pi, . . . , Pi+ℓ−1)

such that ε(Pi+j+1) = 2 · ε(Pi+j) for all j ∈ [ℓ− 1].
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(ii) We call a chain C maximal if it cannot be extended in either direction. We denote the
set of all maximal chains by CΓ.

(iii) There is a unique maximal chain C0 containing the node P0 of value 1. We call C0 the
initial maximal chain of Γ and denote it by C0 = C0(Γ).

For an example of a power circuit with three maximal chains, see Figure 2.

1 2 4 8 28 29 229

+ + +

−
+

+

+

+

Figure 2 This power circuit is an example for a reduced power circuit with three maximal chains:
The first one consists of the nodes of values 1, 2, 4, 8, the next one is formed by the nodes of values
28 and 29 and the node of value 229

is a maximal chain of length 1.

▶ Proposition 14. Let △ ∈ {=, ̸=, <,≤, >,≥}. The following problem is in AC0:

Input: A reduced power circuit (Γ, δ) with compact markings L, M and k ∈
[
0 ..

⌊
2|C0|+1

3

⌋]
given in binary.

Question: Is ε(L) △ ε(M) + k?

▶ Lemma 15. The following problems are all in TC0:

(a) Input: A power circuit (Π, δΠ) together with markings K and L.
Output: A power circuit (Π′, δΠ′ ) with a marking M such that ε(M) = ε(K) + ε(L) and

(Π, δΠ) ≤ (Π′, δΠ′ ), |Π′| ≤ 2 · |Π| and depth(Π′) = depth(Π).

(b) Input: A power circuit (Π, δΠ) together with a marking L.
Output: A marking M in the power circuit (Π, δΠ) such that ε(M) = −ε(L).

(c) Input: A power circuit (Π, δΠ) together with markings K and L such that ε(L) ≥ 0.
Output: A power circuit (Π′, δΠ′ ) with a marking M such that ε(M) = ε(K) · 2ε(L) and

(Π, δΠ) ≤ (Π′, δΠ′ ), |Π′| ≤ 3 · |Π| and depth(Π′) ≤ depth(Π) + 1.

Lemma 15 applies the constructions from [31, Section 7] and [10, Section 2]. For (c) it can be
summarized as follows: Add L to the successor marking of every node in σ(K). To prevent
other nodes from changing their value, first create disjoint copies of σ(K) and σ(L).

▶ Remark 16. Since membership in AC0 often highly depends on the encoding of the input,
we assume that power circuits are given in a suitable way, e.g. as an n×n matrix representing
δ where each entry from {0,±1} is encoded using two bits, similarly for markings. If the
power circuit is reduced, the nodes appear sorted according to their values.

We need these assumptions for proving the AC0-bound in Proposition 14. However, in the
following, we do not consider these encoding issues because, as soon as we are dealing with
TC0 circuits, there is a lot of freedom how to encode inputs. Also note that in Lemma 15 we
only state membership in TC0, although, with some proper work (and suitable encodings),
one could also show AC0.

MFCS 2021
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Power circuit reduction

While compact markings on a reduced power circuit yield unique representations of integers,
in an arbitrary power circuit (Π, δΠ) we can have two markings L and M such that L ̸= M

but ε(L) = ε(M). Therefore, given an arbitrary power circuit, we wish to produce a reduced
power circuit for comparing markings. This is done by the following theorem, which is our
main technical result on power circuits.

▶ Theorem 17. The following is in DepParaTC0 parametrized by depth(Π):
Input: A power circuit (Π, δΠ) together with a marking M on Π.
Output: A reduced power circuit (Γ, δ) together with a compact marking M̃ on Γ such that

ε(M̃) = ε(M).

For a power circuit (Π, δΠ) with a marking M we call the power circuit (Γ, δ) together with
the marking M̃ obtained by Theorem 17 the reduced form of Π.

The proof of Theorem 17 consists of several steps, which we introduce on the next pages.
The high-level idea is as follows: Like in [31, 10], we keep the invariant that there is an
already reduced part and a non-reduced part (initially the non-reduced part is Π). The main
difference is that in one iteration we insert all the nodes of the non-reduced part that have
only successors in the reduced part into the reduced part. Each iteration can be done in TC0;
after depth(Π) + 1 iterations we obtain a reduced power circuit.

Insertion of new nodes. The following procedure is a basic tool for the reduction process.
Let (Γ, δ) be a reduced power circuit and I be a set of nodes with Γ ∩ I = ∅. Assume that
for every P ∈ I there exists a marking ΛP : Γ → {−1, 0, 1} such that ΛP is compact and
ε(ΛP ) ≥ 0 for all P ∈ I, and ε(ΛP ) ̸= ε(ΛQ) for all P,Q ∈ I ∪ Γ with P ̸= Q.

We wish to add I to the reduced power circuit (Γ, δ). For this, we set Γ′ = Γ∪I and define
δ′ : Γ′ × Γ′ → {−1, 0, 1} in the obvious way: δ′|Γ×Γ = δ, δ′|Γ′×I = 0 and δ′(P,Q) = ΛP (Q) for
(P,Q) ∈ I × Γ. Now, (Γ′, δ′) is a power circuit with (Γ, δ) ≤ (Γ′, δ′) and for every P ∈ I the
map ΛP is the successor marking of P . Moreover, each node of Γ′ has a unique value. Since
for every node P ∈ Γ′ the marking ΛP is a compact marking on the reduced power circuit
Γ, by Proposition 14, for P,Q ∈ Γ′ we are able to decide in AC0 whether ε(ΛQ) ≤ ε(ΛP ).
Therefore, by Example 2 we can sort Γ′ according to the values of the nodes in TC0 and,
hence, assume that Γ′ = (P0, . . . , P|Γ′|−1) is in increasing order. This yields the following:

▶ Lemma 18 (InsertNodes). The following problem is in TC0:
Input: A power circuit (Γ, δ) and a set I with the properties described above.
Output: A reduced power circuit (Γ′, δ′) such that (Γ, δ) ≤ (Γ′, δ′) and such that for every

P ∈ I there is a node Q in Γ′ with ΛQ = ΛP . In addition, |Γ′| = |Γ| + |I|, and
|CΓ′ | ≤ |CΓ| + |I|.

The three steps of the reduction process. The reduction process for a power circuit
(Π, δΠ) with a marking M consists of several iterations. Each iteration starts with a power
circuit (Γi ∪ Ξi, δi) such that Γi is a reduced sub-power circuit and a marking Mi with
ε(Mi) = ε(M). The aim of one iteration is to integrate the vertices Min(Ξi) ⊆ Ξi into Γi

where Min(Ξi) is defined by Min(Ξi) = {P ∈ Ξi | σ(ΛP ) ⊆ Γi} and to update the marking
Mi accordingly. Each iteration consists of the three steps UpdateNodes, ExtendChains,
and UpdateMarkings, which can be done in TC0. We have Ξi+1 = Ξi \ Min(Ξi). Thus,
the full reduction process consists of depth(Π) + 1 many TC0 computations. Let us now
describe these three steps. The proofs of these Lemmas can be found in the appendix.
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We write (Γ∪Ξ, δ) = (Γi ∪Ξi, δi) for the power circuit at the start of one iteration. Let us
fix its precise properties: Γ∩Ξ = ∅, (Γ, δ|Γ×Γ) ≤ (Γ∪Ξ, δ) is a reduced power circuit and ΛP |Γ
is a compact marking for every P ∈ Ξ. Moreover, we assume that |C0(Γ)| ≥ ⌈log(|Ξ|)⌉ + 1.

▶ Lemma 19 (UpdateNodes). The following problem is in TC0:
Input: A power circuit (Γ ∪ Ξ, δ) as above.
Output: A reduced power circuit (Γ′, δ′) such that (Γ, δ|Γ×Γ) ≤ (Γ′, δ′) and such that for

every node Q ∈ Min(Ξ) there exists a node P ∈ Γ′ with ε(P ) = ε(Q). In addition,
|Γ′| ≤ |Γ| + |Min(Ξ)|, and |CΓ′ | ≤ |CΓ| + |Min(Ξ)|.

▶ Lemma 20 (ExtendChains). The following problem is in TC0:

Input: A reduced power circuit (Γ′, δ′) and µ ∈ N such that µ ≤
⌊

2|C0(Γ′)|+1

3

⌋
.

Output: A reduced power circuit (Γ′′, δ′′) such that (Γ′, δ′) ≤ (Γ′′, δ′′) and such that for
each P ∈ Γ′ and each i ∈ [0 .. µ] there is a node Q ∈ Γ′′ with ε(ΛQ) = ε(ΛP ) + i.
In addition, |Γ′′| ≤ |Γ′| + |CΓ′ | · µ, and |CΓ′′ | ≤ |CΓ′ |.

In the following, (Γ′, δ′) denotes the power circuit obtained by UpdateNodes when
starting with (Γ ∪ Ξ, δ), and (Γ′′, δ′′) denotes the power circuit obtained by ExtendChains
with µ = ⌈log(|Min(Ξ)|)⌉ + 1 on input of the power circuit (Γ′, δ′) (observe that, by the
assumption |C0(Γ)| ≥ ⌈log(|Ξ|)⌉ + 1, the condition on µ in Lemma 20 is satisfied). The value
of µ is chosen to make sure that in the following lemma one can make the markings compact.
Indeed, if Min(Ξ) = {P1, . . . , Pk} and all Pi have the same evaluation and are marked with 1
by M , then we might need a node of value 2µ · ε(P1) in order to make M compact.

▶ Lemma 21 (UpdateMarkings). The following problem is in TC0:
Input: The power circuit (Γ′′, δ′′) as a result of ExtendChains with µ = ⌈log(|Min(Ξ)|)⌉+

1 and a marking M on Γ ∪ Ξ.
Output: A marking M̃ on Γ′′ ∪ (Ξ \ Min(Ξ)) such that ε(M̃) = ε(M) and M̃ |Γ′′ is compact.

Proof sketch of Theorem 17. We start with an initial reduced power circuit (Γ0, δ0) (a
chain of length ⌈log(|Π|)⌉ + 1) and a non-reduced part Ξ0 = Π and successively apply the
three steps (Lemma 19, 20, and 21) to obtain a sequence of power circuits (Γi ∪ Ξi, δi)
and markings Mi for i = 0, 1 . . . with Ξi+1 = Ξi \ Min(Ξi) while keeping the invariants
(Γi, δi|Γi×Γi

) ≤ (Γi ∪ Ξi, δi), Γi is reduced, Γi−1 ≤ Γi, Ξi ⊆ Ξi−1, and ε(Mi) = ε(M). After
depth(Π) + 1 iterations we reach Ξd+1 = Ξd \ Min(Ξd) = ∅ where d = depth(Π). Thus,
(Γ, δ) = (Γd+1, δd+1) is a reduced power circuit and Md+1 is a compact marking on Γd+1
with ε(Md+1) = ε(M).

▷ Claim 22. Let d = depth(Π) and Γ0, . . . ,Γd+1 be as constructed above. Then for all i we
have |CΓi

| ≤ |Π| + 1 and |Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2).

Let D ∈ N and assume that depth(Π) ≤ D. By Lemma 19, 20, and 21, each iteration can
be done in TC0. The construction of the markings M̃ i and Λ̃P during UpdateMarkings
can be done in parallel – so it is in TC0, although Lemma 21 is stated only for a single
marking. Now, the crucial observation is that, due to Claim 22, the input size for each
iteration is polynomial in the original input size of (Π, δΠ). Therefore, we can compose the
individual iterations and obtain a circuit of polynomial size and depth bounded by O(D). ◀

▶ Remark 23.
(1) While Theorem 17 is only stated for one input marking, the construction works within

the same complexity bounds for any number of markings on (Π, δΠ) since during
UpdateMarkings these all can be updated in parallel.
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c) After ExtendChains.
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d) After UpdateMarkings

Figure 3 The three steps of power circuit reduction. The already reduced part consist of blue
nodes and Min(Ξi) is colored in cyan. The red signs indicate a marking. Three dots · · · in between
two nodes mean that we omitted some nodes. A dashed edge - - means that we actually omitted the
outgoing edges of the right node.

(2) Moreover, note that for every maximal chain C ∈ CΓ there exists a node Q ∈ Π (i.e., in
the original power circuit) such that ε(Q) = ε(start(C)). This is because new chains are
only created during UpdateNodes, the other steps only extend already existing chains.

(3) Further observe that |σ(M̃)| ≤ |σ(M)|. Looking at the construction of M̃ we see that
we first make sure that M does not mark two nodes of the same value, then we make the
marking compact. Both operations do not increase the number of nodes in the support
of the marking.

▶ Example 24. In Figure 3 we illustrate what happens in the steps UpdateNodes,
ExtendChains and UpdateMarkings during the reduction process. Picture a) shows our
starting situation. In b) we already inserted the nodes of value 23 and 232 into the reduced
part. Now the reduced part consists of three chains: one starting at the node of value 1 and
the nodes 25 and 232 as chains of length 1. Because |Min(Ξ)| = 3, we have to extend each
chain by three nodes or until two chains merge. So in c) we obtain two chains, one from 1 to
28 and the one from 232 to 235. In d) we then updated the markings and deleted the nodes
from Min(Ξ).

▶ Example 25. In Section 4 we give an example of the complete power circuit reduction
process by showing the result after each iteration. We start with a non-reduced power circuit
of depth 2 in a). This power circuit has size 5, so we first construct the starting chain of
length 4 in b). Part c) and d) show the result after inserting layer 0 and layer 1, respectively.
In e) we finally inserted all layers and thus have constructed the reduced power circuit.

For comparing two markings L and M on an arbitrary power circuit, we can proceed as
follows: first compute the difference (Lemma 15), then reduce the power circuit (Theorem 17)
and, finally, compare the resulting compact marking with zero (Proposition 14). This shows
the next corollary and, together with Lemma 4, also proves Proposition A.
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Figure 4 The complete process of power circuit reduction – inserting layer after layer. For the
meaning of the colors, see Figure 3.

▶ Corollary 26. The following is in DepParaTC0 parametrized by depth(Π):
Input: A power circuit (Π, δΠ) together with markings L, M on Π.
Question: Is ε(L) ≤ ε(M)?

Operations with floating point numbers. In the following, we want to represent a number
r ∈ Z[1/2] using markings in a power circuit. For this, we use a floating point representation.
Observe that for each such r ∈ Z[1/2] \ {0} there exist unique u, e ∈ Z with u odd such that
r = u · 2e.

▶ Definition 27. A power circuit representation of r ∈ Z[1/2] consists of a power circuit
(Π, δΠ) together with a pair of markings (U,E) on Π such that ε(U) is either zero or odd and
r = ε(U) · 2ε(E).

▶ Lemma 28. The following problems are in DepParaTC0 parametrized by depth(Π):
Input: A power circuit representation for r, s ∈ Z[1/2] over a power circuit (Π, δΠ) and

a marking M on Π.
Output A: A power circuit representation of ε(M) ∈ Z[1/2] over a power circuit (Π̃, δΠ̃).
Output B: A power circuit representation of r · 2ε(M) over a power circuit (Π̃, δΠ̃).
Output C: A power circuit representation of −r over (Π, δΠ).
Output D: If r

s
is a power of two, a marking L in a power circuit (Π̃, δΠ̃) such that ε(L) =

log( r
s
) (otherwise the output is undefined).

Output E: A power circuit representation of r + s over a power circuit (Π̃, δΠ̃).
Output F: Is r ∈ Z? If yes, a marking L in a power circuit (Π̃, δΠ̃) such that ε(L) = r.
Question G: Is r △ 0 for △ ∈ {=, ̸=, <, ≤, >, ≥}?

In all cases we have (Π, δΠ) ≤ (Π̃, δΠ̃), |Π̃| ∈ O(|Π|), and depth(Π̃) = depth(Π) + O(1).

Proof sketch. We only outline the proof for the first point, which is the most difficult one.
The other points follow rather easily using Corollary 26 and Lemma 15. Given a marking M ,
we wish to compute markings U,E such that ε(M) = ε(U) · 2ε(E) and ε(U) is zero or odd.
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First, we construct the reduced form (Γ, δ) of Π to obtain a compact marking M̃ on
Γ such that ε(M) = ε(M̃) =

∑k
i=1 M̃(Qi) · 2ε(ΛQi

) where σ(M̃) = {Q1, . . . , Qk} ⊆ Γ and
the Qi are ordered according to their value. This is possible in DepParaTC0 according to
Theorem 17. It is easy to see that |σ(M̃)| ≤ |σ(M)|.

Our aim is ε(E) = ε(ΛQ1) and ε(U) =
∑k

i=1 M̃(Qi) · 2ε(ΛQi
)−ε(E). For this, we add nodes

Si to Π with ε(ΛSi) = ε(ΛQi)−ε(E) for i ∈ [1 .. k] as follows: Looking closely at the reduction
process, we can find nodes Ri ∈ Π and integers mi ∈ [0 .. |Γ|] such that ε(ΛQi

) = ε(ΛRi
) +mi.

To define markings Mi that evaluate to mi, we construct nodes of depth 1 and values 2j for
j ∈ [0 .. ⌊log(|Γ|)⌋] in Π. Then ΛSi

= ΛRi
+Mi − E. So U(Si) = M̃(Qi) for i ∈ [1 .. k] and

E = ΛR1 +M1 satisfies ε(M) = ε(U) · 2ε(E). ◀

5 The word problem of the Baumslag group

Before we start solving the word problem of the Baumslag group, let us fix our notation
from group theory. Let G be a group and η : Σ∗ → G a surjective monoid homomorphism.
We treat words over Σ both as words and as their images under η. We write v =G w with
the meaning that η(v) = η(w). The word problem of G is as follows: given a word w ∈ Σ∗,
is w =G 1? For further background on group theory, we refer to [25].

The Baumslag-Solitar group and the Baumslag group. The Baumslag-Solitar group is
defined by BS1,2 =

〈
a, t | tat−1 = a2〉

. We have BS1,2 ∼= Z[1/2] ⋊ Z via the isomorphism
a 7→ (1, 0) and t 7→ (0, 1). The multiplication in Z[1/2] ⋊ Z isdefined by (r,m) · (s, n) =
(r + 2ms,m+ n). In the following we use BS1,2 and Z[1/2] ⋊ Z as synonyms.

A convenient way to understand the Baumslag group G1,2 is as an HNN extension2 of
the Baumslag-Solitar group:

G1,2 =
〈
BS1,2, b | bab−1 = t

〉
=

〈
a, t, b | tat−1 = a2, bab−1 = t

〉
.

Note that the letter t can be seen as an abbreviation for bab−1; by removing it, we obtain
exactly the presentation

〈
a, b | bab−1a = a2bab−1〉

. Moreover, BS1,2 is a subgroup of G1,2
via the canonical embedding. We have b(q, 0)b−1 = (0, q), so a conjugation by b “flips” the
two components of the semi-direct product (if possible). Henceforth, we will use the alphabet
Σ = {1, a, a−1, t, t−1, b, b−1} to represent elements of G1,2 (the letter 1 represents the group
identity; it is there for padding reasons).

Britton reductions. Britton reductions are a standard way to solve the word problem in
HNN extensions. Let ∆ = BS1,2 ∪

{
b, b−1}

be an infinite alphabet (note that Σ ⊆ ∆). A
word w ∈ ∆∗ is called Britton-reduced if it is of the form w = (s0, n0)β1(s1, n1) · · ·βℓ(sℓ, nℓ)
with βi ∈

{
b, b−1}

and (si, ni) ∈ BS1,2 for all i (i.e., w does not have two successive letters
from BS1,2) and there is no factor of the form b(q, 0)b−1 or b−1(0, k)b with q, k ∈ Z. If
w is not Britton-reduced, one can apply one of the rules (r,m)(s, n) → (r + 2ms,m + n),
b(q, 0)b−1 → (0, q), or b−1(0, k)b → (k, 0) in order to obtain a shorter word representing the
same group element. The following lemma is well-known (see also [25, Section IV.2]).

▶ Lemma 29 (Britton’s Lemma for G1,2 [6]). Let w ∈ ∆∗ be Britton-reduced. Then w ∈ BS1,2
as a group element if and only if w does not contain any letter b or b−1. In particular,
w =G1,2 1 if and only if w = (0, 0) or w = 1 as a word.

2 Named after Graham Higman, Bernhard H. Neumann and Hanna Neumann. For a precise definition,
we refer to [25]. This is also the way how the Magnus breakdown procedure works.
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▶ Example 30. Define words w0 = t and wn+1 = bwn aw
−1
n b−1 for n ≥ 0. Then we have

|wn| = 2n+2 − 3 but wn =G1,2 t
τ(n). While the length of the word wn is only exponential in

n, the length of its Britton-reduced form is τ(n).

Conditions for Britton reductions. The idea to obtain a parallel algorithm for the word
problem is to compute a Britton reduction of uv given that both u and v are Britton-reduced.
For this, we have to find a maximal suffix of u which cancels with a prefix of v. The following
lemma is our main tool for finding the longest canceling suffix.

▶ Lemma 31. Let w = β1(r,m)β2 xβ
−1
2 (s, n)β−1

1 ∈ ∆∗ with β1, β2 ∈
{
b, b−1}

such that
β1(r,m)β2 and β−1

2 (s, n)β−1
1 both are Britton-reduced and β2xβ

−1
2 =G1,2 (q, k) ∈ BS1,2 (in

particular, k = 0 and q ∈ Z, or q = 0).
Then w ∈ BS1,2 if and only if the respective condition in the following table is satisfied.

Moreover, if w ∈ BS1,2, then w =G1,2 ŵ according to the last column of the table.

β1 β2 Condition ŵ

b b r + 2m+ks ∈ Z, m + n + k = 0
(
0, r + 2−ns

)
b b−1 r + 2m(q + s) ∈ Z, m + n = 0 (0, r + 2m(q + s))

b−1 b r + 2m+ks = 0
(
n + log( −r

s
), 0

)
b−1 b−1 r + 2m(q + s) = 0 (m + n, 0)

Notice that in the case β1 = b−1 and β2 = b, we have r ̸= 0 and s ̸= 0.

▶ Example 32. Let us illustrate how to read Lemma 31 by giving an example. Let
w = β1(r1,m1)β2 xβ

−1
2 (s1, n1)β−1

1 ∈ ∆∗ with the same properties as in Lemma 31, in
particular, β2 xβ

−1
2 =G1,2 (q, k) ∈ BS1,2. Further assume that β1 = β2 = b. Then, according

to Lemma 31, w ∈ BS1,2 if and only if m1 + n1 = −k and r1 + 2m1+k · s1 ∈ Z. So we need
to compute k.

Assume that (q, k) =G1,2 β2xβ
−1
2 = β2(r2,m2)β3 x

′ β−1
3 (s2, n2)β−1

2 for some r2,m2, s2, n2.
Moreover, consider the case that β3 = b. By applying Lemma 31 again we obtain that
(q, k) = (0, r2 + 2−n2 · s2). Hence, w ∈ BS1,2 if and only if m1 +n1 + (r2 + 2−n2 · s2) = 0 and
r1 + 2m1+r2+2−n2 ·s2 · s1 ∈ Z. If both conditions are satisfied, then w =G1,2 (0, r1 + 2−n1s1).

Proof sketch of Lemma 31. Consider the case that β1 = b and β2 = b: Since β2xβ
−1
2 ∈

BS1,2, we have β2xβ
−1
2 =G1,2 (0, k) for some k ∈ Z. Therefore, we obtain

(r,m)β2 xβ
−1
2 (s, n) =G1,2 (r,m)(0, k)(s, n) =G1,2 (r + 2m+ks, m+ k + n).

Thus, since β1 = b, we have w ∈ BS1,2 if and only if r + 2m+ks ∈ Z and m + n + k = 0.
Moreover, if the latter conditions are satisfied, we have w =G1,2 b(r + 2m+ks, 0)b−1 =
b(r + 2−ns, 0)b−1 =G1,2 (0, r + 2−ns). This shows the first row of the table in Lemma 31.
The other rows follow with a similar calculation. ◀

Let us fix the following notation for elements v, w ∈ G1,2 written as words over ∆:

u = (rh,mh)βh · · · (r1,m1)β1(r0,m0), v = (s0, n0)β̃1(s1, n1) · · · β̃ℓ(sℓ, nℓ) (1)

with (rj ,mj), (sj , nj) ∈ Z[1/2] ⋊ Z and βj , β̃j ∈
{
b, b−1}

. We define

uv[i, j] = βi(ri−1,mi−1) · · ·β1(r0,m0) (s0, n0)β̃1 · · · (sj−1, nj−1)β̃j .

MFCS 2021
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Notice that as an immediate consequence of Britton’s Lemma we obtain that, if u and v as
in (1) are Britton-reduced and uv[i, i] ∈ BS1,2 for some i, then also uv[j, j] ∈ BS1,2 for all
j ≤ i. Moreover, uv is Britton-reduced if and only if β1(r0,m0)(s0, n0)β̃1 ̸∈ BS1,2.

For ℓ ∈ N let Xℓ denote some set of ℓ variables. Denote by PowExp(Xℓ) the set of
expressions which can be made up from the variables Xℓ using the operations +, −, (r, s) 7→
r · 2s if s ∈ Z (and undefined otherwise), and (r, s) 7→ log(r/s) if log(r/s) ∈ Z (and undefined
otherwise).

▶ Lemma 33. For every β⃗ ∈ {b, b−1,⊥}4 there are expressions θβ⃗ , ξβ⃗ , φβ⃗ , ψβ⃗ ∈ PowExp(X12)
such that the following holds: Let u, v ∈ G1,2 as in (1) be Britton-reduced and assume that
uv[i− 1, i− 1] ∈ BS1,2 and βi = β̃−1

i and let Vi = {rj , sj ,mj , nj | j ∈ {i− 1, i− 2, i− 3}}.
If β⃗ = (βi, βi−1, βi−2, βi−3) (where βj = ⊥ for j ≤ 0), then
1. uv[i, i] ∈ BS1,2 if and only if θβ⃗(Vi) ∈ Z and ξβ⃗(Vi) = 0,

2. if uv[i, i] ∈ BS1,2, then uv[i, i] =G1,2

(
φβ⃗(Vi), ψβ⃗(Vi)

)
.

Be aware that here we have to read the set Vi of cardinality (at most) 12 as assignment
to the variables X12. In particular, given that uv[i − 1, i − 1] ∈ BS1,2, one can decide
whether uv[i, i] ∈ BS1,2 by looking at only constantly many letters of uv – this is the crucial
observation we shall be using for describing an NC algorithm for the word problem of G1,2
(see Lemma 34 below).

Proof. W. l. o. g. i ≥ 4. We follow the approach of Example 32. By assumption we know that
there exist q, k ∈ Z such that uv[i−1, i−1] =G1,2 (q, k) ∈ BS1,2. According to the conditions
in Lemma 31, to show Lemma 33 it suffices to find expressions φβ⃗(Vi), ψβ⃗(Vi) for q and k

respectively. If (βi−1, βi−2) ̸= (b, b−1), this follows directly from the rightmost column in
Lemma 31. Otherwise, we know that (βi−2, βi−3) ̸= (b, b−1) and so we obtain the expressions
for q and k by applying Lemma 31 to uv[i − 2, i − 2] (note that uv[i − 2, i − 2] ∈ BS1,2
because uv[i− 1, i− 1] ∈ BS1,2). This proves the lemma. ◀

The algorithm. A power circuit representation of u ∈ G1,2 written as in (1) consists of
the sequence (βh, . . . , β1) and a power circuit (Π, δΠ) with markings Ui, Ei,Mi for i ∈ [0 .. h]
such that (Ui, Ei) is a power circuit representation of ri (see Definition 27) and mi = ε(Mi).

▶ Lemma 34. The following problem is in DepParaTC0 parametrized by maxi depth(Πi):
Input: Britton-reduced power circuit representations of u, v ∈ G1,2 over power circuits

Π1, Π2.
Output: A Britton-reduced power circuit representation of w ∈ G1,2 over a power circuit

Π′ such that w =G1,2 uv and depth(Π′) = maxi depth(Πi) + O(1) and |Π′| ∈
O(|Π1| + |Π2|).

Proof. Let Π be the disjoint union of Π1 and Π2. We need to find the maximal i such that
uv[i, i] ∈ BS1,2. This can be done as follows: By Lemma 28 one can evaluate the expressions
θβ⃗(Vi) and ξβ⃗(Vi) of Lemma 33 and test the conditions θβ⃗(Vi) ∈ Z and ξβ⃗(Vi) = 0 in
DepParaTC0. For every i this can be done independently in parallel giving us Boolean values
indicating whether uv[i− 1, i− 1] ∈ BS1,2 implies uv[i, i] ∈ BS1,2. Now, we have to find only
the maximal i0 such that for all j ≤ i0 this implication is true. Since uv[0, 0] = 1 ∈ BS1,2,
it follows inductively that uv[i, i] ∈ BS1,2 for all i ≤ i0. Moreover, as the implication
uv[i0, i0] ∈ BS1,2 =⇒ uv[i0 + 1, i0 + 1] ∈ BS1,2 fails, we have uv[j, j] /∈ BS1,2 for j ≥ i0 + 1.
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Now, using the expressions φβ⃗ , ψβ⃗ from Lemma 33 one can compute again using Lemma 28
(q, k) = (φβ⃗(Vi0), ψβ⃗(Vi0)) =G1,2 uv[i0, i0] in DepParaTC0. Again using Lemma 28, we can
compute in DepParaTC0 (s,m) = (ri0 ,mi0)(q, k)(si0 , ni0) as a power circuit representation
over a power circuit (Π′, δΠ′) with (Π, δΠ) ≤ (Π′, δΠ′), |Π′| ∈ O(Π) and depth(Π′) ∈
depth(Π) + O(1). Now, the output is

(rh,mh)βh · · · (ri0+1,mi0+1)βi0+1 (s,m) β̃i0+1(si0+1, ni0+1) · · · β̃ℓ(sℓ, nℓ). ◀

Instead of Theorem B, we prove the following slightly more general result. Theorem B
then easily follows by Britton’s Lemma. Recall that Σ = {1, a, a−1, t, t−1, b, b−1}.

▶ Theorem 35. The following problem is in TC2:
Input: A word w ∈ Σ∗.
Output: A power circuit representation for a Britton-reduced word wred ∈ ∆∗ such that

w =G1,2 wred and the underlying power circuit has depth O(log |w|).

Proof sketch. Let w = w1 · · ·wn with wj ∈ Σ be the input. First, we transform each letter
wj into a power circuit representation. Then, the first layer computes the Britton reduction
of two-letter words using Lemma 34, the next layer takes always two of these Britton-reduced
words and joins them to a new Britton-reduced word and so on. After log n layers a single
Britton-reduced word remains. The crucial observation is that, due to Lemma 34, the size of
the power circuits stays polynomial in n and their depth in O(log n). Thus, by Lemma 4
each application of Lemma 34 is in TC1 and the whole computation in TC2. ◀

6 P-hardness of power circuit comparison

Finally, we prove some hardness results on comparison in power circuits. In particular, they
imply that Theorem 17 is optimal in a certain sense. Here, we use LOGSPACE-reductions.

▶ Proposition 36. The following problem is NL-hard:
Input: Given a power circuit and markings M, K.
Question: Is ε(M) = ε(K)?

The proof of Proposition 36 is a straightforward reduction from s-t-connectivity. For
comparison with ≤, we obtain a more interesting hardness result:

▶ Theorem 37. The following problem is P-complete:
Input: A power circuit (Π, δΠ) and nodes R, S ∈ Π such that for all P ∈ Π the marking

ΛP is compact and for all P ̸= Q, ε(P ) ̸= ε(Q).
Question: Is ε(R) ≤ ε(S)?

A weaker form of this result already has been stated in the second author’s dissertation [41],
but it never appeared in a refereed journal or conference proceedings. Notice that the only
feature the power circuit in Theorem 37 lacks for being reduced is the sorting of the nodes.
In particular, under the assumption NC ̸= P, it is not possible to sort the nodes of a given
power circuit in NC.
▶ Remark 38.
(a) It is an immediate consequence of Theorem 37 that the comparison problem of two

markings in a power circuit is P-complete. This is because for two nodes R and S in a
power circuit (Π, δΠ) we have ε(R) ≤ ε(S) if and only if ε(ΛR) ≤ ε(ΛS).

MFCS 2021
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Figure 5 Power circuit for an Or gate gi.
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Figure 6 Power circuit for a Not gate gi

on level k.

(b) If the input is given as in Theorem 37, we can check in AC0 whether ε(R) = ε(S) because
this is the case if and only if ΛR(P ) = ΛS(P ) for all P ∈ Γ (see Lemma 12). This can
be viewed as a hint that also in an arbitrary power circuit testing for equality might be
easier than comparing for less than.

▶ Corollary 39. The following problem is P-complete:
Input: A power circuit representation of w ∈ G1,2.
Question: Is w ∈ BS1,2?

Proof sketch of Theorem 37. By [31, Proposition 49], we only need to show the hardness
part. We give a reduction from the CircuitValueProblem which is P-complete (see [39,
Thm. 10.44]). We start with a circuit C of size L and depth D consisting of input gates,
Not gates, Or gates (of fan-in two) and one output gate. W. l. o. g. the circuit is layered:
input gates are on level 0, and gates on level k only receive inputs from level k − 1. After
fixing an evaluation eval(x) ∈ {0, 1} for all input gates x, each gate g evaluates to a truth
value eval(g) ∈ {0, 1} in a natural way. The task is to compute eval(output). We construct
a power circuit (Γ, δ) such that for every gate g on level k in C there exists a node Pg in Γ
satisfying

τ(L− 1) < ε(ΛPg
) ≤ τ(2k + L) − 2 if eval(g) = 0,

τ(2k + L) ≤ ε(ΛPg ) ≤ τ(2k + L+ 1) − 2 if eval(g) = 1.
(2)

For this, we first create nodes Xk, Rk and Sk such that ε(Xk) = 2k, ε(Rk) = τ(2k + L),
ε(Sk) = τ(2k + L− 1)/2. For an input gate gi we set ε(ΛPgi

) = τ(L− 1) + i if eval(gi) = 0
and ε(ΛPgi

) = τ(L) + i otherwise. For the output gate with incoming edge from gate u, we
define ε(ΛPoutput) = ε(Pu). Figure 5 and 6 illustrate the construction for Or and Not gates.
Now all nodes of Γ have pairwise different evaluations in 2N (this is essentially because we
always add i to the successor marking) and compact successor markings. A rather tedious
but straightforward induction shows Equation (2). Let us consider an Or gate as in Figure 5
as example: if both ε(ΛPu

), ε(ΛPv
) ≤ τ(2(k − 1) + L) − 2, then ε(ΛPg

) ≤ 22ε(ΛPu
)+2ε(ΛPv

)
≤

22·2τ(2(k−1)+L)−2 ≤ τ(2k + L) − 2. On the other hand, if ε(ΛPu
) ≥ τ(2(k − 1) + L), then also

ε(ΛPg ) ≥ 22ε(ΛPu
)

≥ τ(2k + L). The other cases of the induction follow similarly.
Thus, we have that ε(Poutput) ≥ ε(RD) if and only if eval(output) = 1. ◀

Conclusion. We showed that the word problem of the Baumslag group can be solved in
TC2. The proof relies on the fact that all power circuits used during the execution of the
algorithm have logarithmic depth. The-23 comparison problem for such power circuits is in
TC1, although for arbitrary power circuits it is P-complete. We conclude with some open
problems:
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Is it possible to reduce the complexity of the word problem of the Baumslag group any
further – e.g. to find a LOGSPACE algorithm? Can we prove some non-trivial lower
bounds (the word problem is NC1-hard as G1,2 contains a non-abelian free group [35])?
The problem of comparing two markings on a power circuit for equality is NL-hard – is it
also P-complete like comparison with less than?
Is the word problem of the Baumslag group with power circuit representations as input
P-complete? (By Corollary 39 this holds for the subgroup membership problem for BS1,2
in G1,2. Moreover, as a consequence of Proposition 36, the word problem is NL-hard.)
By Corollary 26 for every k the comparison problem for power circuits of depth logk n is in
TCk. Moreover, the proof of Theorem 37 can be modified to show that the same problem
is hard for ACk under AC0-Turing-reductions. Thus, the question remains whether, indeed,
this problem is complete for TCk under AC0-Turing-reductions.
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A Details on power circuit reduction

In the following we present more details concerning the reduction process for power circuits.
We give the proofs of the three steps UpdateNodes, ExtendChains, UpdateMarkings
and of Theorem 17. We need the following definition and lemmas. Their proofs can be found
in the full version on arXiv [28].

▶ Lemma 40. Let A be a csdr and let B = (b0, . . . , bn−1) be a csdr of digit-length n such
that bi = n− i mod 2 (i.e., bn−1 = 1 and then B alternates between 0 and 1). Then we have

(i) val(B) =
⌊

2n+1

3

⌋
,

(ii) val(A) ≤ val(B) if and only if the digit-length of A is at most n or val(A) ≤ 0.

▶ Definition 41. Let M be a marking in the reduced power circuit (Γ, δ) and let C =
(Pi, . . . , Pi+ℓ−1) ∈ CΓ and define aj = M(Pi+j) for i ∈ [ℓ]. Then we write digitC(M) =
(a0, . . . , aℓ−1).

▶ Lemma 42. Let (Γ, δ) be a reduced power circuit. Let L and M be compact markings in
Γ such that ε(L) > ε(M) and let 0 ≤ k ≤

⌊
2|C0|+1

3

⌋
. Then ε(L) ≤ ε(M) + k if and only if

ε(M |Γ\C0) = ε(L|Γ\C0) and ε(L|C0) ≤ ε(M |C0) + k.

For the proof of Lemma 19, we define the following equivalence relation ∼ε on Γ∪Min(Ξ):
P ∼ε Q if and only if ε(P ) = ε(Q). For P ∈ Γ ∪ Min(Ξ) we write [P ]ε for the equivalence
class containing P .

Proof of Lemma 19. Define I ⊆ Min(Ξ) by taking one representative of each ∼ε-class not
containing a node of Γ. Such a set I can be computed in TC0: Clearly, Min(Ξ) can be
computed in TC0. The ∼ε-classes can be computed in AC0 by Proposition 14. Finally, for
defining I one has to pick representatives, which can be done in TC0. Now, we can apply
Lemma 18 to insert I into Γ in TC0. This yields our power circuit (Γ′, δ′). The size bounds
follow now immediately from those in Lemma 18. ◀

Proof of Lemma 20. First assume that |C0| = 1. Then |Γ′| = 1 and µ ≤ 1. If µ = 1, then
just one node has to be created, namely the one of value 2 and we are done. Thus, in
the following we can assume that |C0| ≥ 2. Now, the proof of Lemma 20 consists of two
steps: first, we extend only the chain C0 to some longer (and long enough) chain in order
to make sure that the values of the (compact) successor markings of the nodes we wish to
introduce can be represented within the power circuit; only afterwards we add the new nodes
as described in the lemma.
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Step 1: We first want to extend the chain C0 to the chain C̃0 of minimal length such that
C̃0 is a maximal chain, C0 ⊆ C̃0, and the last node of C̃0 is not already present in Γ′. The
resulting power circuit will be denoted by Γ̃. We define

i0 = min
{
i ∈ [|Γ′|]

∣∣ ε(ΛPi+1) − ε(ΛPi) > 2
}
.

We use the convention that P|Γ′| has value infinity, so i0 indeed exists. Furthermore, we
define

I =
{
i ∈ [0 .. i0]

∣∣ ε(ΛPi+1) − ε(ΛPi) ≥ 2
}
.

Thus, in order to obtain Γ̃, we need to insert a new node between Pi and Pi+1 into Γ′ for
each i ∈ I (resp. one node above Pi0). Since the successor markings of these new nodes might
point to some of the other new nodes, we cannot apply Lemma 18 as a black-box. Instead,
we need to take some more care: the rough idea is that, first, we compute all positions I
where new nodes need to be introduced (I is as defined above), then we compute csdrs for
the respective successor markings, and, finally, we introduce these new nodes all at once
knowing that all nodes where the successor markings point to are also introduced at the same
time. In order to map the positions of nodes in Γ′ to positions of nodes in Γ̃, we introduce a
function λ : [|Γ′|] → N with λ(i) = i+ |I ∩ [0 .. i− 1]| .

Observe that λ(i) = i for i ∈ [|C0|], and λ(i+ 1) = λ(i) + 2 for i ∈ I, and λ(j) = j + |I|
for j ≥ i0 + 1.

For each i ∈ I we introduce a node Qi whose successor marking we will specify later such
that ε(Qi) = 2ε(Pi). We define the new power circuit Γ̃ = (P̃0, . . . , P̃|Γ′|+|I|−1) by

P̃j =
{
Pi if j = λ(i)
Qi if j = λ(i) + 1 and i ∈ I.

Notice that, if j = λ(i) + 1 for some i ∈ I, then j ̸= λ(i) for any i – hence, P̃j is well-defined
in any case.

The nodes P̃0, . . . , P̃λ(i0)+1 will form the chain C̃0 as claimed above. Moreover, we have
Γ′ ⊆ Γ̃ and Γ̃ is sorted increasingly. The successor markings of nodes from Γ′ remain
unchanged (i.e., ΛP̃λ(i)

(P̃λ(j)) = ΛPi
(Pj) for i, j ∈ [|Γ′|] and ΛP̃λ(i)

(Qj) = 0 for j ∈ I).
For every i ∈ I we define the successor marking of the node Qi by

digitC̃0
(ΛQi

) = CR (ε(ΛPi
) + 1) and ΛQi

|Γ̃\C̃0
= 0.

Be aware that, since Qi ∈ C̃0, also the successor marking of Qi (of value ε(ΛPi) + 1) can be
represented using only the nodes from C̃0 (see Remark 9), so this is, indeed, a meaningful
definition (be aware that to represent ε(ΛPi) + 1, we might need some of the additional nodes
Qi, but never a node that is not part of the chain C̃0). Clearly, this yields ε(ΛQi

) = ε(ΛPi
)+1

as desired.
We obtain a reduced power circuit (Γ̃, δ̃) with (Γ′, δ′) ≤ (Γ̃, δ̃) where the map δ̃ : Γ̃ →

{−1, 0, 1} is defined by the successor markings. Moreover, C̃0 ⊆ Γ̃ has the required properties.
It remains to show that Γ̃ can be computed in TC0: As |C0| ≥ 2, according to Pro-

position 14, we are able to decide in AC0 whether the markings ΛPi
and ΛPi+1 differ by

1, 2, or more than 2 – for all i ∈ [|Γ′|] in parallel. Now, i0 can be determined in TC0 via
its definition as above. Likewise I and the function λ can be computed in TC0. Using
Theorem 11, CR (ε(ΛPi) + 1) for i ∈ I can be computed in AC0 (since |C̃0| ≤ 2 · |Γ′|) showing
that altogether Γ̃ can be computed in TC0.
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Step 2: The second step is to add nodes above each chain of Γ̃ as required in the Lemma.
The outcome will be denoted by (Γ′′, δ′′). We start by defining

di = min{ε(ΛP̃i+1
) − ε(ΛP̃i

) − 1, µ} for i ∈ [|Γ̃|] \
{

|C̃0| − 1
}

and

di = min{ε(ΛP̃i+1
) − ε(ΛP̃i

) − 1, µ− 1} for i = |C̃0| − 1.

In order to obtain (Γ′′, δ′′) from (Γ̃, δ̃), for every i ∈ [|Γ̃|] and every h ∈ [1 .. di] we have to
insert a node R(i,h) such that ε(ΛR(i,h)) = ε(ΛP̃i

) + h. Observe that the numbers di can be
computed in TC0: since

µ+ 1 ≤
⌊

2|C0|+1

3

⌋
+ 1 ≤

⌊
2|C̃0|

3

⌋
+ 1 ≤

⌊
2|C̃0|+1

3

⌋
,

by Proposition 14, we can check in AC0 whether ε(ΛP̃i+1
) ≤ ε(ΛP̃i

) + k with k ≤ µ+ 1. If
i = |C̃0| − 1 we choose k = µ, otherwise k = µ + 1. If the respective inequality holds, we
obtain by Lemma 42 that ε(ΛP̃i+1

) − ε(ΛP̃i
) − 1 = ε(ΛP̃i+1

|C̃0
) − ε(ΛP̃i

|C̃0
) − 1. For the latter

we have signed-digit representations of digit-length at most |C̃0|. Hence, this difference can
be computed in TC0.

Since P̃|C̃0|−1 ̸∈ Γ′ and in Step 1 we have not introduced any vertex above P̃|C̃0|−1, we
know that P̃|C̃0|−1 is not marked by ΛP̃ for any P̃ ∈ Γ̃. Therefore, for all i ∈ [|Γ̃|] we have
ε(ΛP̃i

|C̃0
) + µ ≤

⌊
2|C̃0|

3

⌋
+

⌊
2|C0|+1

3

⌋
≤ 2

⌊
2|C̃0|

3

⌋
and, hence, by Lemma 40, ε(ΛP̃i

|C̃0
) + h can

be represented as a compact marking using only nodes from C̃0 for every h ∈ [1 .. di]. Thus,
for every di ̸= 0 and every h ∈ [1 .. di] we define a successor marking of R(i,h) by

digitC̃0
(ΛR(i,h)) = CR(ε(ΛP̃i

|C̃0
) + h) and ΛR(i,h) |Γ̃\C̃0

= ΛP̃i
|Γ̃\C̃0

.

Again, we know that |C̃0| ≤ 2 |Γ′|. With Theorem 11 we are able to calculate CR(ε(ΛP̃i
|C̃0

)+h)
in AC0.

Now we set I =
{
R(i,h)

∣∣ di ̸= 0, h ∈ [1 .. di]
}

. According to Lemma 18 we are able to
construct in TC0 a reduced power circuit (Γ′′, δ′′) such that (Γ̃, δ̃) ≤ (Γ′′, δ′′) and such that
for each R ∈ I there exists a node Q ∈ Γ′′ with ε(Q) = ε(R).

Considering the size of Γ′′, observe that during the whole construction, for every node
Pi ∈ Γ′ we create at most µ new nodes between Pi and Pi+1. Moreover, we only create new
nodes between Pi and Pi+1 if Pi is the last node of a maximal chain of Γ′. Furthermore,
notice that the only node of Γ′ above which we have introduced new nodes in both Step 1
and Step 2 is the second largest node of C̃0: in Step 1 we have created one new node and in
Step 2 we have created at most µ− 1 new nodes above it. Thus, for every chain of Γ′ we
have introduced at most µ new nodes. Thus, |Γ′′| ≤ |Γ′| + |CΓ′ | · µ. Finally, the new nodes
we create only prolongate the already existing chains, so we do not create any new chains.
This finishes the proof of the lemma. ◀

Proof of Lemma 21. Consider again the equivalence relation ∼ε as defined above on Γ′′ ∪
Min(Ξ). For the equivalence class of a node P ∈ Γ′′ ∪ Min(Ξ) we write [P ]ε. We will define
the marking M̃ on Γ′′ by defining it on each maximal chain. Recall that we can view M as a
marking on Γ′′ ∪ Ξ by defining M(P ) = 0 if P ̸∈ Γ ∪ Ξ.

Let C = (Pi, . . . , Pi+h−1) ∈ CΓ′′ be a maximal chain of length h and let

S =
⋃

P ∈C

[P ]ε =
⋃

P ∈C

{Q ∈ Γ′′ ∪ Min(Ξ) | ε(Q) = ε(P )} ⊆ Γ′′ ∪ Min(Ξ).
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We wish to find a compact marking M̃C with support contained in C ⊆ Γ′′ and evaluation
ε(M̃C) = ε(M |S). First define the integer

ZM,C =
h−1∑
r=0

 ∑
Q∈[Pi+r]ε

M(Q)

 2r.

Then we have

ZM,C · ε(start(C)) =
h−1∑
r=0

∑
Q∈[Pi+r]ε

M(Q)2r · ε(start(C))

=
∑
Q∈S

M(Q)ε(Q) = ε(M |S).

Thus, defining M̃C by digitC(M̃C) = CR(ZM,C) gives our desired marking.
However, be aware that, for this, we have to show that the digit-length of CR(ZM,C)

is at most |C| = h. Let k be maximal such that Pi+k ∈ Γ′. Then, in particular, no node
in S with higher evaluation than Pi+k is marked by M . Moreover, by the properties of
ExtendChains(⌈log(|Min(Ξ)|)⌉ + 1), we have h− 1 − k ≥ ⌈log(|Min(Ξ)|)⌉ + 1. Therefore,

ZM,C ≤ val(digitC(M)) + |Min(Ξ)| · 2k

≤ 1
3 · 2k+2 + 2k+log(|Min(Ξ)|) (by Lemma 40)

≤ 4
3 ·

(
2k + 2k+log(|Min(Ξ)|)

)
≤ 2

3 · 2k+⌈log(|Min(Ξ)|)⌉+2.

Thus, by Lemma 40, the digit-length of CR(ZM,C) is at most k + ⌈log(|Min(Ξ)|)⌉ + 2 ≤ h.
As an easy consequence of Proposition 14, the maximal chains can be determined in TC0.
Now, for every maximal chain C the (binary) number ZM,C can be computed in TC0 using
iterated addition and made be compact in AC0 using Theorem 11. Thus, the marking M̃C

can be computed in TC0. The marking M̃ as desired in the lemma is simply defined by
M̃ |Ξ\Min(Ξ) = M |Ξ\Min(Ξ) and M̃ |C = M̃C |C for C ∈ CΓ′′ – all the markings M̃C can be
computed in parallel. ◀

Proof of Theorem 17. Now we are ready to describe the full reduction process based on the
three steps described above. We aim for a DepParaTC0 circuit where the input is parametrized
by the depth of the power circuit. The input is some arbitrary power circuit (Π, δΠ) together
with a marking M on Π. We start with some initial reduced power circuit (Γ0, δ0) and some
non-reduced part Ξ0 = Π and successively apply the three steps to obtain power circuits
(Γi ∪ Ξi, δi) and markings Mi for i = 0, 1 . . . while keeping the following invariants:

(Γi, δi|Γi×Γi) ≤ (Γi ∪ Ξi, δi) (i.e., there are no edges from Γi to Ξi),
Γi is reduced,
Γi−1 ≤ Γi and Ξi ⊆ Ξi−1,
ε(Mi) = ε(M).

Moreover, as long as Ξi−1 ̸= ∅ we assure that depth(Ξi) < depth(Ξi−1).
We first construct the initial reduced power circuit (Γ0, δ̃0) which consists exactly of a

chain of length ℓ = ⌈log(|Π|)⌉ + 1. This can be done as follows: Let Γ0 = (P0, . . . , Pℓ−1) = C0
and define successor markings by digitC0(ΛPi) = CR(i) for i ∈ [ℓ]. This defines δ̃0. Now
we set Ξ0 = Π and we define δ0 : (Γ0 ∪ Ξ0) × (Γ0 ∪ Ξ0) → {−1, 0, 1} by δ0|Γ0×Γ0 = δ̃0,
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δ0|Ξ0×Ξ0 = δΠ and δ = 0 otherwise. We extend the marking M to Γ0 by setting M(P ) = 0
for all P ∈ Γ0. So we obtain a power circuit of the form (Γ0 ∪ Ξ0, δ0) with the properties
described above.

Now let the power circuit (Γi ∪ Ξi, δi) together with the marking Mi be the input for the
i+ 1-th iteration meeting the above described invariants. We write δ̃i = δi|Γi×Γi . Now we
apply the three steps from above:
1. Using UpdateNodes (Lemma 19) we compute a reduced power circuit (Γ′

i, δ
′
i) with

(Γi, δ̃i) ≤ (Γ′
i, δ

′
i) such that for every P ∈ Min(Ξi) there is some Q ∈ Γ′

i with ε(Q) = ε(P ).
2. Using ExtendChains (Lemma 20) with µ = ⌈log(|Min(Ξi)|)⌉+1 we extend each maximal

chain in (Γ′
i, δ

′
i) by at most ⌈log(|Min(Ξi)|)⌉+1 nodes. Notice that ⌈log(|Min(Ξi)|)⌉+1 ≤

⌈log(|Π|)⌉ + 1 and so, as Γ0 ≤ Γ′
i, the condition µ ≤

⌊
2|C0(Γ′

i
)|+1

3

⌋
in Lemma 20 is satisfied.

The result of this step is denoted by (Γ′′
i , δ

′′
i ).

3. We apply UpdateMarkings (Lemma 21) to obtain markings M̃ i and Λ̃P for P ∈
Ξi \ Min(Ξi) on Γ′′

i ∪ (Ξi \ Min(Ξi)) such that ε(M̃ i) = ε(Mi) and ε(Λ̃P ) = ε(ΛP ).
Observe that these markings restricted to Γ′′

i are compact.
4. Each iteration ends by setting Γi+1 = Γ′′

i and Ξi+1 = Ξi \ Min(Ξi) and Mi+1 = M̃ i.
Finally, δi+1 is defined as δ′′

i on Γi+1 and via the successor markings Λ̃P for P ∈ Ξi+1.

After exactly depth(Π) + 1 iterations we reach Ξd+1 = Ξd \ Min(Ξd) = ∅ where d =
depth(Π). In this case we do not change the resulting power circuit any further. It is clear
from Lemma 19, Lemma 20 and Lemma 21 that throughout the above-mentioned invariants
are maintained. Thus, (Γ, δ) = (Γd+1, δd+1) is a reduced power circuit and for every node
P ∈ Π there exists a node Q ∈ Γd+1 such that ε(Q) = ε(P ) and Md+1 is a compact marking
on Γd+1 with ε(Md+1) = ε(M).

▷ Claim 43 (see Claim 22). Let d = depth(Π) and Γ0, . . . ,Γd+1 be as constructed above.
Then for all i we have |CΓi | ≤ |Π| + 1 and |Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2).

Proof. According to Lemma 19 and Lemma 20 we have
∣∣CΓi+1

∣∣ ≤ |CΓi
| + |Min(Ξi)|. Further

observe that Π is the disjoint union of the Min(Ξj) for j ∈ [0 .. d]. Since |CΓ0 | = 1, we obtain
for all i ∈ [0 .. d] that∣∣CΓi+1

∣∣ ≤ |CΓi
| + |Min(Ξi)| ≤ 1 +

∑
0≤j≤i

|Min(Ξj)| ≤ |Π| + 1. (3)

Again by Lemma 19 and Lemma 20 we have

|Γi+1| ≤ |Γ′
i| +

∣∣CΓ′
i

∣∣ · (⌈log(|Min(Ξi)|)⌉ + 1) (by Lemma 20)

≤ |Γi| + |Min(Ξi)| + (|CΓi
| + |Min(Ξi)|) · (⌈log(|Min(Ξi)|)⌉ + 1) (by Lemma 19)

≤ |Γi| + |Min(Ξi)| + (|Π| + 1) · (⌈log(|Π|)⌉ + 1) . (by (3))

Since |Γ0| = ⌈log(|Π|)⌉ + 1, we obtain by induction that

|Γi| ≤ |Γ0| +
∑

0≤j≤i−1
|Min(Ξj)| + i · (|Π| + 1) · (log(|Π|) + 2)

≤ (⌈log(|Π|)⌉ + 1) + |Π| + i · (|Π| + 1) · (log(|Π|) + 2)
≤ (i+ 1) · (|Π| + 1) · (log(|Π|) + 2)

for all i ∈ [1 .. d+ 1]. The last inequality is due to the fact that |Π|+1 ≥ 2 and log(|Π|)+2 ≥ 2.
Since d+ 1 ≤ |Π|, we obtain |Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2). ◁
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Let D ∈ N and assume that depth(Π) ≤ D. By Lemma 19, Lemma 20 and Lemma 21
each iteration of the three steps above can be done in TC0. Notice here that the construction
of the markings M̃ i and Λ̃P during UpdateMarkings can be done in parallel – so it is in
TC0, although Lemma 21 is stated only for a single marking. Now, the crucial observation is
that, due to Claim 43, the input size for each iteration is polynomial in the original input
size of (Π, δΠ). Therefore, we can compose the individual iterations and obtain a circuit of
polynomial size and depth bounded by O(D). Thus, we have described a DepParaTC0 circuit
(parametrized by depth(Π)) for the problem of computing a reduced form for (Π, δΠ). This
completes the proof of Theorem 17. ◀
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1 Introduction

A temporal (or dynamic) network is, roughly speaking, a network whose underlying topology
changes over time. This notion concerns a great variety of both modern and traditional
networks; information and communication networks, social networks, and several physical
systems are only few examples of networks which change over time [26,38,41]. Due to its vast
applicability in many areas, the notion of temporal graphs has been studied from different
perspectives under several different names such as time-varying, evolving, dynamic, and
graphs over time (see [13–15] and the references therein). In this paper we adopt a simple
and natural model for temporal networks which is given with discrete time-labels on the
edges of a graph, while the vertex set remains unchanged. This formalism originates in the
foundational work of Kempe et al. [27].

▶ Definition 1 (Temporal Graph [27]). A temporal graph is a pair G = (G, λ), where
G = (V, E) is an underlying (static) graph and λ : E → N is a time-labeling function which
assigns to every edge of G a discrete-time label.

Mainly motivated by the fact that, due to causality, entities and information in temporal
graphs can only “flow” along sequences of edges whose time-labels are non-decreasing
(resp. increasing), Kempe et al. introduced the notion of a (strict) temporal path, or (strict)
time-respecting path, in a temporal graph (G, λ) as a path in G with edges e1, e2, . . . , ek

such that λ(e1) ≤ . . . ≤ λ(ek) (resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path
naturally resembles the notion of a directed path in the classical static graphs, where the
direction is from smaller to larger time-labels along the path. Nevertheless, in temporal paths
the individual time-labeled edges remain undirected: an edge e = {u, v} with time-label
λ(e) = t can be abstractly interpreted as “u communicates with v at time t”. Here the
relation “communicates” is symmetric between u and v, i.e. it can be interpreted that the
information can flow in either direction.

In this paper we make a first attempt to understand how the direction of information flow
on one edge can impact the direction of information flow on other edges. More specifically,
naturally extending the classical notion of a transitive orientation in static graphs [23], we
introduce the fundamental notion of a temporal transitive orientation and we thoroughly
investigate its algorithmic behavior in various situations. Imagine that v receives information
from u at time t1, while w receives information from v at time t2 ≥ t1. Then w indirectly
receives information from u through the intermediate vertex v. Now, if the temporal graph
correctly records the transitive closure of information passing, the directed edge from u to w

must exist and must have a time label t3 ≥ t2. In such a transitively oriented temporal graph,
whenever an edge is oriented from a vertex u to a vertex w with time-label t, we have that
every temporal path from u to w arrives no later than t, and that there is no temporal path
from w to u. Different notions of temporal transitivity have also been used for automated
temporal data mining [40] in medical applications [39], text processing [45]. Furthermore, in
behavioral ecology, researchers have used a notion of orderly (transitive) triads A-B-C to
quantify dominance among species. In particular, animal groups usually form dominance
hierarchies in which dominance relations are transitive and can also change with time [32].
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One natural motivation for our temporal transitivity notion may come from applications
where confirmation and verification of information is vital, where vertices may represent
entities such as investigative journalists or police detectives who gather sensitive information.
Suppose that v queried some important information from u (the information source) at
time t1, and afterwards, at time t2 ≥ t1, w queried the important information from v (the
intermediary). Then, in order to ensure the validity of the information received, w might
want to verify it by subsequently querying the information directly from u at some time
t3 ≥ t2. Note that w might first receive the important information from u through various
other intermediaries, and using several channels of different lengths. Then, to maximize
confidence about the information, w should query u for verification only after receiving the
information from the latest of these indirect channels.

It is worth noting here that the model of temporal graphs given in Definition 1 has been
also used in its extended form, in which the temporal graph may contain multiple time-labels
per edge [34]. This extended temporal graph model has been used to investigate temporal
paths [3, 9, 11,16, 34,47] and other temporal path-related notions such as temporal analogues
of distance and diameter [1], reachability [2] and exploration [1,3,20,21], separation [22,27,48],
and path-based centrality measures [12,28], as well as recently non-path problems too such as
temporal variations of coloring [37], vertex cover [4], matching [35], cluster editing [18], and
maximal cliques [8,25,46]. However, in order to better investigate and illustrate the inherent
combinatorial structure of temporal transitivity orientations, in this paper we mostly follow
the original definition of temporal graphs given by Kempe et al. [27] with one time-label per
edge [7,17,19]. Throughout the paper, whenever we assume multiple time-labels per edge we
will state it explicitly; in all other cases we consider a single label per edge.

In static graphs, the transitive orientation problem has received extensive attention which
resulted in numerous efficient algorithms. A graph is called transitively orientable (or a
comparability graph) if it is possible to orient its edges such that, whenever we orient u

towards v and v towards w, then the edge between u and w exists and is oriented towards w.
The first polynomial-time algorithms for recognizing whether a given (static) graph G on n

vertices and m edges is comparability (i.e. transitively orientable) were based on the notion
of forcing an orientation and had running time O(n3) (see Golumbic [23] and the references
therein). Faster algorithms for computing a transitive orientation of a given comparability
graph have been later developed, having running times O(n2) [43] and O(n + m log n) [29],
while the currently fastest algorithms run in linear O(n + m) time and are based on efficiently
computing a modular decomposition of G [30, 31]; see also Spinrad [44]. It is fascinating
that, although all the latter algorithms compute a valid transitive orientation if G is a
comparability graph, they fail to recognize whether the input graph is a comparability graph;
instead they produce an orientation which is non-transitive if G is not a comparability graph.
The fastest known algorithm for determining whether a given orientation is transitive requires
matrix multiplication, currently achieved in O(n2.37286) time [5].

Our contribution. In this paper we introduce the notion of temporal transitive orientation
and we thoroughly investigate its algorithmic behavior in various situations. An orientation
of a temporal graph G = (G, λ) is called temporally transitive if, whenever u has a directed
edge towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1,
then u also has a directed edge towards w with some time-label t3 ≥ t2. If we just demand
that this implication holds whenever t2 > t1, the orientation is called strictly temporally
transitive, as it is based on the fact that there is a strict directed temporal path from u to w.
Similarly, if we demand that the transitive directed edge from u to w has time-label t3 > t2,
the orientation is called strongly (resp. strongly strictly) temporally transitive.
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Although these four natural variations of a temporally transitive orientation seem super-
ficially similar to each other, it turns out that their computational complexity (and their
underlying combinatorial structure) varies massively. Indeed we obtain a surprising result
in Section 3: deciding whether a temporal graph G admits a temporally transitive orientation
is solvable in polynomial time (Section 3.2), while it is NP-hard to decide whether it admits
a strictly temporally transitive orientation (Section 3.1). On the other hand, it turns out that,
deciding whether G admits a strongly or a strongly strictly temporal transitive orientation is
(easily) solvable in polynomial time as they can both be reduced to 2SAT satisfiability.

Our main result is that, given a temporal graph G = (G, λ), we can decide in polynomial
time whether G is transitively orientable, and at the same time we can output a temporal
transitive orientation if it exists. Although the analysis and correctness proof of our algorithm
is technically quite involved, our algorithm is simple and easy to implement, as it is based on
the notion of forcing an orientation.1 Our algorithm extends and generalizes the classical
polynomial-time algorithm for computing a transitive orientation in static graphs described
by Golumbic [23]. The main technical difficulty in extending the algorithm from the static to
the temporal setting is that, in temporal graphs we cannot simply use orientation forcings to
eliminate the condition that a triangle is not allowed to be cyclically oriented. To resolve this
issue, we first express the recognition problem of temporally transitively orientable graphs as
a Boolean satisfiability problem of a mixed Boolean formula ϕ3NAE ∧ ϕ2SAT. Here ϕ3NAE is
a 3NAE (i.e. 3-Not-All-Equal) formula and ϕ2SAT is a 2SAT formula. Note that every
clause NAE(ℓ1, ℓ2, ℓ3) of ϕ3NAE corresponds to the condition that a specific triangle in the
temporal graph cannot be cyclically oriented. However, although deciding whether ϕ2SAT is
satisfiable can be done in linear time with respect to the size of the formula [6], the problem
Not-All-Equal-3-SAT is NP-complete [42].

Our algorithm iteratively produces at iteration j a formula ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT, which is

computed from the previous formula ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT by (almost) simulating the classical

greedy algorithm that solves 2SAT [6]. The 2SAT-algorithm proceeds greedily as follows. For
every variable xi, if setting xi = 1 (resp. xi = 0) leads to an immediate contradiction, the
algorithm is forced to set xi = 0 (resp. xi = 1). Otherwise, if each of the truth assignments
xi = 1 and xi = 0 does not lead to an immediate contradiction, the algorithm arbitrarily
chooses to set xi = 1 or xi = 0, and thus some clauses are removed from the formula as
they were satisfied. The argument for the correctness of the 2SAT-algorithm is that new
clauses are never added to the formula at any step. The main technical difference between
the 2SAT-algorithm and our algorithm is that, in our case, the formula ϕ

(j)
3NAE ∧ ϕ

(j)
2SAT is not

necessarily a sub-formula of ϕ
(j−1)
3NAE∧ϕ

(j−1)
2SAT , as in some cases we need to also add clauses. Our

main technical result is that, nevertheless, at every iteration j the formula ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is

satisfiable if and only if ϕ
(j−1)
3NAE ∧ϕ

(j−1)
2SAT is satisfiable. The proof of this result (see Theorem 9)

relies on a sequence of structural properties of temporal transitive orientations which we
establish. This phenomenon of deducing a polynomial-time algorithm for an algorithmic
graph problem by deciding satisfiability of a mixed Boolean formula (i.e. with both clauses of
two and three literals) occurs rarely; this approach has been successfully used for the efficient
recognition of simple-triangle (known also as “PI”) graphs [33].

In the second part of our paper (Section 4) we consider a natural extension of the temporal
orientability problem, namely the temporal transitive completion problem. In this problem we
are given a (partially oriented) temporal graph G and a natural number k, and the question

1 That is, orienting an edge from u to v forces us to orient another edge from a to b.
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is whether it is possible to add at most k new edges (with the corresponding time-labels) to
G such that the resulting temporal graph is (strongly/strictly/strongly strictly) transitively
orientable. We prove that all four versions of temporal transitive completion are NP-complete,
even when the input temporal graph is completely unoriented. In contrast we show that, if
the input temporal graph G is directed (i.e. if every time-labeled edge has a fixed orientation)
then all versions of temporal transitive completion are solvable in polynomial time. As a
corollary of our results it follows that all four versions of temporal transitive completion are
fixed-parameter-tractable (FPT) with respect to the number q of unoriented time-labeled
edges in G.

In the third and last part of our paper (Section 5) we consider the multilayer transitive
orientation problem. In this problem we are given an undirected temporal graph G = (G, λ),
where G = (V, E), and we ask whether there exists an orientation F of its edges (i.e. with
exactly one orientation for each edge of G) such that, for every “time-layer” t ≥ 1, the
(static) oriented graph induced by the edges having time-label t is transitively oriented in
F . Problem definitions of this type are commonly referred to as multilayer problems [10].
Observe that this problem trivially reduces to the static case if we assume that each edge has
a single time-label, as then each layer can be treated independently of all others. However, if
we allow G to have multiple time-labels on every edge of G, then we show that the problem
becomes NP-complete, even when every edge has at most two labels.

Due to space constraints, some of our results are deferred to a full version [36].

2 Preliminaries and Notation

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V is
denoted by the unordered pair {u, v} ∈ E, and in this case the vertices u, v are said to
be adjacent. If the graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to
denote the oriented edge from u to v (resp. from v to u). For simplicity of the notation, we
will usually drop the parentheses and the comma when denoting an oriented edge, i.e. we
will denote (u, v) just by uv. Furthermore, ûv = {uv, vu} is used to denote the set of both
oriented edges uv and vu between the vertices u and v.

Let S ⊆ E be a subset of the edges of an undirected (static) graph G = (V, E), and let
Ŝ = {uv, vu : {u, v} ∈ S} be the set of both possible orientations uv and vu of every edge
{u, v} ∈ S. Let F ⊆ Ŝ. If F contains at least one of the two possible orientations uv and
vu of each edge {u, v} ∈ S, then F is called an orientation of the edges of S. F is called
a proper orientation if it contains exactly one of the orientations uv and vu of every edge
{u, v} ∈ S. Note here that, in order to simplify some technical proofs, the above definition
of an orientation allows F to be not proper, i.e. to contain both uv and vu for a specific edge
{u, v}. However, whenever F is not proper, this means that F can be discarded as it cannot
be used as a part of a (temporal) transitive orientation. For every orientation F denote by
F −1 = {vu : uv ∈ F} the reversal of F . Note that F ∩ F −1 = ∅ if and only if F is proper.

In a temporal graph G = (G, λ), where G = (V, E), whenever λ({v, w}) = t (or simply
λ(v, w) = t), we refer to the tuple ({v, w}, t) as a time-edge of G. A triangle of (G, λ) on
the vertices u, v, w is a synchronous triangle if λ(u, v) = λ(v, w) = λ(w, u). Let G = (V, E)
and let F be a proper orientation of the whole edge set E. Then (G, F ), or (G, λ, F ), is a
proper orientation of the temporal graph G. A partial proper orientation F of G = (G, λ) is
an orientation of a subset of E. To indicate that the edge {u, v} of a time-edge ({u, v}, t) is
oriented from u to v (that is, uv ∈ F in a (partial) proper orientation F ), we use the term
((u, v), t), or simply (uv, t). For simplicity we may refer to a (partial) proper orientation just
as a (partial) orientation, whenever the term “proper” is clear from the context.
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A static graph G = (V, E) is a comparability graph if there exists a proper orientation F

of E which is transitive, that is, if F ∩ F −1 = ∅ and F 2 ⊆ F , where F 2 = {uw : uv, vw ∈ F

for some vertex v} [23]. Analogously, in a temporal graph G = (G, λ), where G = (V, E), we
define a proper orientation F of E to be temporally transitive, if:

whenever (uv, t1) and (vw, t2) are oriented time-edges in (G, F ) such that t2 ≥ t1, there
exists an oriented time-edge (wu, t3) in (G, F ), for some t3 ≥ t2.

In the above definition of a temporally transitive orientation, if we replace the condition
“t3 ≥ t2” with “t3 > t2”, then F is called strongly temporally transitive. If we instead replace
the condition “t2 ≥ t1” with “t2 > t1”, then F is called strictly temporally transitive. If we
do both of these replacements, then F is called strongly strictly temporally transitive. Note
that strong (strict) temporal transitivity implies (strict) temporal transitivity, while (strong)
temporal transitivity implies (strong) strict temporal transitivity. Furthermore, similarly to
the established terminology for static graphs, we define a temporal graph G = (G, λ), where
G = (V, E), to be a (strongly/strictly) temporal comparability graph if there exists a proper
orientation F of E which is (strongly/strictly) temporally transitive.

We are now ready to formally introduce the following decision problem of recognizing
whether a given temporal graph is temporally transitively orientable or not.

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G, λ), where G = (V, E).
Question: Does G admit a temporally transitive orientation F of E?

In the above problem definition of TTO, if we ask for the existence of a strictly
(resp. strongly, or strongly strictly) temporally transitive orientation F , we obtain the
decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive
Orientation (TTO).

Let G = (G, λ) be a temporal graph, where G = (V, E). Let G′ = (V, E′) be a graph such
that E ⊆ E′, and let λ′ : E′ → N be a time-labeling function such that λ′(u, v) = λ(u, v) for
every {u, v} ∈ E. Then the temporal graph G′ = (G′, λ′) is called a temporal supergraph of G.
We can now define our next problem definition regarding computing temporally orientable
supergraphs of G.

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G, λ), where G = (V, E), a (partial) orientation F of G,
and an integer k.

Question: Does there exist a temporal supergraph G′ = (G′, λ′) of (G, λ), where G′ = (V, E′),
and a transitive orientation F ′ ⊇ F of G′ such that |E′ \ E| ≤ k?

Similarly to TTO, if we ask in the problem definition of TTC for the existence of a
strictly (resp. strongly, or strongly strictly) temporally transitive orientation F ′, we obtain
the decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive
Completion (TTC).

Now we define our final problem which asks for an orientation F of a temporal graph
G = (G, λ) (i.e. with exactly one orientation for each edge of G) such that, for every
“time-layer” t ≥ 1, the (static) oriented graph defined by the edges having time-label t is
transitively oriented in F . This problem does not make much sense if every edge has exactly
one time-label in G, as in this case it can be easily solved by just repeatedly applying any
known static transitive orientation algorithm. Therefore, in the next problem definition, we
assume that in the input temporal graph G = (G, λ) every edge of G potentially has multiple
time-labels, i.e. the time-labeling function is λ : E → 2N.
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Table 1 Orientation conditions imposed by a triangle (left) and an induced path of length two
(right) in the underlying graph G for the decision problems (Strict/Strong/Strong Strict)
TTO. Here, ⊤ means that no restriction is imposed, ⊥ means that the graph is not orientable, and
in the case of triangles, “non-cyclic” means that all orientations except the ones that orient the
triangle cyclicly are allowed.

u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strong TTO ⊥ wu ∧ wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strict TTO ⊤ non-cyclic vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Str. Str. TTO ⊤ vu =⇒ wu

uv =⇒ wv

vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G, λ), where G = (V, E) and λ : E → 2N.
Question: Is there an orientation F of the edges of G such that, for every t ≥ 1, the (static)

oriented graph induced by the edges having time-label t is transitively oriented?

3 The recognition of temporally transitively orientable graphs

In this section we investigate the computational complexity of all variants of TTO. We
show that TTO as well as the two variants Strong TTO and Strong Strict TTO, are
solvable in polynomial time, whereas Strict TTO turns out to be NP-complete.

The main idea of our approach to solve TTO and its variants is to create Boolean
variables for each edge of the underlying graph G and interpret setting a variable to 1 or 0
with the two possible ways of directing the corresponding edge.

More formally, for every edge {u, v} we introduce a variable xuv and setting this variable
to 1 corresponds to the orientation uv while setting this variable to 0 corresponds to the
orientation vu. Now consider the example of Figure 1(a), i.e. an induced path of length
two in the underlying graph G on three vertices u, v, w, and let λ(u, v) = 1 and λ(v, w) = 2.
Then the orientation uv “forces” the orientation wv. Indeed, if we otherwise orient {v, w}
as vw, then the edge {u, w} must exist and be oriented as uw in any temporal transitive
orientation, which is a contradiction as there is no edge between u and w. We can express
this “forcing” with the implication xuv =⇒ xwv. In this way we can deduce the constraints
that all triangles or induced paths on three vertices impose on any (strong/strict/strong
strict) temporal transitive orientation. We collect all these constraints in Table 1.
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When looking at the conditions imposed on temporal transitive orientations collected
in Table 1, we can observe that all conditions except “non-cyclic” are expressible in 2SAT.
Since 2SAT is solvable in linear time [6], it immediately follows that the strong variants of
temporal transitivity are solvable in polynomial time, as the next theorem states.

▶ Theorem 2. Strong TTO and Strong Strict TTO are solvable in polynomial time.

In the variants TTO and Strict TTO, however, we can have triangles which impose
a “non-cyclic” orientation of three edges (Table 1). This can be naturally modeled by a
not-all-equal (NAE) clause.2 However, if we now naïvely model the conditions with a Boolean
formula, we obtain a formula with 2SAT clauses and 3NAE clauses. Deciding whether such
a formula is satisfiable is NP-complete in general [42]. Hence, we have to investigate these
two variants more thoroughly.

The only difference between the triangles that impose these “non-cyclic” orientations in
these two problem variants is that, in TTO, the triangle is synchronous (i.e. all its three
edges have the same time-label), while in Strict TTO two of the edges are synchronous
and the third one has a smaller time-label than the other two. As it turns out, this difference
of the two problem variants has important implications on their computational complexity.
In fact, we obtain a surprising result: TTO is solvable in polynomial time while Strict
TTO is NP-complete.

3.1 Strict TTO is NP-Complete
In this section we show that in contrast to the other variants, Strict TTO is NP-complete.

▶ Theorem 3. Strict TTO is NP-complete even if the temporal input graph has only four
different time labels.

3.2 A polynomial-time algorithm for TTO
Let G = (V, E) be a static undirected graph. There are various polynomial-time algorithms
for deciding whether G admits a transitive orientation F . However our results in this section
are inspired by the transitive orientation algorithm described by Golumbic [23], which is
based on the crucial notion of forcing an orientation. The notion of forcing in static graphs
is illustrated in Figure 1 (a): if we orient the edge {u, v} as uv (i.e., from u to v) then we
are forced to orient the edge {v, w} as wv (i.e., from w to v) in any transitive orientation F

of G. Indeed, if we otherwise orient {v, w} as vw (i.e. from v to w), then the edge {u, w}
must exist and it must be oriented as uw in any transitive orientation F of G, which is a
contradiction as {u, w} is not an edge of G. Similarly, if we orient the edge {u, v} as vu then
we are forced to orient the edge {v, w} as vw. That is, in any transitive orientation F of
G we have that uv ∈ F ⇔ wv ∈ F . This forcing operation can be captured by the binary
forcing relation Γ which is defined on the edges of a static graph G as follows [23].

uv Γ u′v′ if and only if
{

either u = u′ and {v, v′} /∈ E

or v = v′ and {u, u′} /∈ E
. (1)

We now extend the definition of Γ in a natural way to the binary relation Λ on the edges
of a temporal graph (G, λ), see Equation (2). For this, observe from Table 1 that the only
cases, where we have uv ∈ F ⇔ wv ∈ F in any temporal transitive orientation of (G, λ), are

2 A not all equal clause is a set of literals and it evaluates to true if and only if at least two literals in the
set evaluate to different truth values.
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u w

v

(a)

u w

v

(b)
3

55

Figure 1 The orientation uv forces the orientation wu and vice-versa in the examples of (a) a
static graph G where {u, v}, {v, w} ∈ E(G) and {u, w} /∈ E(G), and of (b) a temporal graph (G, λ)
where λ(u, w) = 3 < 5 = λ(u, v) = λ(v, w).

when (i) the vertices u, v, w induce a path of length 2 (see Figure 1 (a)) and λ(u, v) = λ(v, w),
as well as when (ii) u, v, w induce a triangle and λ(u, w) < λ(u, v) = λ(v, w). The latter
situation is illustrated in the example of Figure 1 (b). The binary forcing relation Λ is only
defined on pairs of edges {u, v} and {u′, v′} where λ(u, v) = λ(u′, v′), as follows.

uv Λ u′v′ if and only if λ(u, v) = λ(u′, v′) = t and


u = u′ and {v, v′} /∈ E, or
v = v′ and {u, u′} /∈ E, or
u = u′ and λ(v, v′) < t, or
v = v′ and λ(u, u′) < t.

(2)

Note that, for every edge {u, v} ∈ E we have that uv Λ uv. The forcing relation Λ for temporal
graphs shares some properties with the forcing relation Γ for static graphs. In particular,
the reflexive transitive closure Λ∗ of Λ is an equivalence relation, which partitions the edges
of each set Et = {{u, v} ∈ E : λ(u, v) = t} into its Λ-implication classes (or simply, into its
implication classes). Two edges {a, b} and {c, d} are in the same Λ-implication class if and
only ab Λ∗ cd, i.e. there exists a sequence ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd, with k ≥ 0.
Note that, for this to happen, we must have λ(a0, b0) = λ(a1, b1) = . . . = λ(ak, bk) = t for
some t ≥ 1. Such a sequence is called a Λ-chain from ab to cd, and we say that ab (eventually)
Λ-forces cd. Furthermore note that ab Λ∗ cd if and only if ba Λ∗ dc. For the next lemma, we
use the notation Â = {uv, vu : uv ∈ A}.

▶ Lemma 4. Let A be a Λ-implication class of a temporal graph (G, λ). Then either
A = A−1 = Â or A ∩A−1 = ∅.

▶ Definition 5. Let F be a proper orientation and A be a Λ-implication class of a temporal
graph (G, λ). If A ⊆ F , we say that F respects A.

▶ Lemma 6. Let F be a proper orientation and A be a Λ-implication class of a temporal
graph (G, λ). Then F respects either A or A−1 (i.e. either A ⊆ F or A−1 ⊆ F ), and in
either case A ∩A−1 = ∅.

The next lemma, which is crucial for proving the correctness of our algorithm, extends
an important known property of the forcing relation Γ for static graphs [23, Lemma 5.3] to
the temporal case.

▶ Lemma 7 (Temporal Triangle Lemma). Let (G, λ) be a temporal graph and with a syn-
chronous triangle on the vertices a, b, c, where λ(a, b) = λ(b, c) = λ(c, a) = t. Let A, B, C be
three Λ-implication classes of (G, λ), where ab ∈ C, bc ∈ A, and ca ∈ B, where A ≠ B−1

and A ̸= C−1.
1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.
2. If some b′c′ ∈ A and a′b′ ∈ C, then c′a′ ∈ B.
3. No edge of A touches vertex a.
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Deciding temporal transitivity using Booleansatisfiability. Starting with any undirected
edge {u, v} of the underlying graph G, we can clearly enumerate in polynomial time the
whole Λ-implication class A to which the oriented edge uv belongs (cf. Equation (2)). If
the reversely directed edge vu ∈ A then Lemma 4 implies that A = A−1 = Â. Otherwise, if
vu /∈ A then vu ∈ A−1 and Lemma 4 implies that A ∩A−1 = ∅. Thus, we can also decide in
polynomial time whether A ∩ A−1 = ∅. If we encounter a Λ-implication class A such that
A∩A−1 ̸= ∅, then it follows by Lemma 6 that (G, λ) is not temporally transitively orientable.

In the remainder of the section we will assume that A ∩A−1 = ∅ for every Λ-implication
class A of (G, λ), which is a necessary condition for (G, λ) to be temporally transitive
orientable. Moreover it follows by Lemma 6 that, if (G, λ) admits a temporally transitively
orientation F , then either A ⊆ F or A−1 ⊆ F . This allows us to define a Boolean variable
xA for every Λ-implication class A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means
that A ⊆ F (resp. A−1 ⊆ F ), where F is the temporally transitive orientation which we are
looking for. Let {A1, A2, . . . , As} be a set of Λ-implication classes such that {Â1, Â2, . . . , Âs}
is a partition of the edges of the underlying graph G.3 Then any truth assignment τ of the
variables x1, x2, . . . , xs (where xi = xAi

for every i = 1, 2, . . . , s) corresponds bijectively to
one possible orientation of the temporal graph (G, λ), in which every Λ-implication class is
oriented consistently.

Now we define two Boolean formulas ϕ3NAE and ϕ2SAT such that (G, λ) admits a temporal
transitive orientation if and only if there is a truth assignment τ of the variables x1, x2, . . . , xs

such that both ϕ3NAE and ϕ2SAT are simultaneously satisfied. Intuitively, ϕ3NAE captures
the “non-cyclic” condition from Table 1 while ϕ2SAT captures the remaining conditions. Here
ϕ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where
every clause NAE(ℓ1, ℓ2, ℓ3) is satisfied if and only if at least one of the literals {ℓ1, ℓ2, ℓ3} is
equal to 1 and at least one of them is equal to 0. Furthermore ϕ2SAT is a 2SAT formula,
i.e., the disjunction of 2CNF clauses with two literals each, where every clause (ℓ1 ∨ ℓ2) is
satisfied if and only if at least one of the literals {ℓ1, ℓ2} is equal to 1.

For simplicity of the presentation we also define a variable xuv for every directed edge uv.
More specifically, if uv ∈ Ai (resp. uv ∈ A−1

i ) then we set xuv = xi (resp. xuv = xi). That is,
xuv = xvu for every undirected edge {u, v} ∈ E. Note that, although {xuv, xvu : {u, v} ∈ E}
are defined as variables, they can equivalently be seen as literals in a Boolean formula over
the variables x1, x2, . . . , xs. The process of building all Λ-implication classes and all variables
{xuv, xvu : {u, v} ∈ E} is given by Algorithm 1.

Description of the 3NAE formula ϕ3NAE. The formula ϕ3NAE captures the “non-cyclic”
condition of the problem variant TTO (presented in Table 1). The formal description of
ϕ3NAE is as follows. Consider a synchronous triangle of (G, λ) on the vertices u, v, w. Assume
that xuv = xwv, i.e., xuv is the same variable as xwv. Then the pair {uv, wv} of oriented
edges belongs to the same Λ-implication class Ai. This implies that the triangle on the
vertices u, v, w is never cyclically oriented in any proper orientation F that respects Ai

or A−1
i . Note that, by symmetry, the same happens if xvw = xuw or if xwu = xvu. Assume,

on the contrary, that xuv ̸= xwv, xvw ̸= xuw, and xwu ̸= xvu. In this case we add to ϕ3NAE
the clause NAE(xuv, xvw, xwu). Note that the triangle on u, v, w is transitively oriented if
and only if NAE(xuv, xvw, xwu) is satisfied, i.e., at least one of the variables {xuv, xvw, xwu}
receives the value 1 and at least one of them receives the value 0.

3 Here we slightly abuse the notation by identifying the undirected edge {u, v} with the set of both its
orientations {uv, vu}.



G. B. Mertzios, H. Molter, M. Renken, P. G. Spirakis, and P. Zschoche 75:11

Algorithm 1 Building the Λ-implication classes and the edge-variables.

Input: A temporal graph (G, λ), where G = (V, E).
Output: The variables {xuv, xvu : {u, v} ∈ E}, or the announcement that (G, λ) is tempor-

ally not transitively orientable.

1: s← 0; E0 ← E

2: while E0 ̸= ∅ do
3: s← s + 1; Let {p, q} ∈ E0 be arbitrary
4: Build the Λ-implication class As of the oriented edge pq (by Equation (2))
5: if qp ∈ As then {As ∩A−1

s ̸= ∅}
6: return “NO”
7: else
8: xs is the variable corresponding to the directed edges of As

9: for every uv ∈ As do
10: xuv ← xs; xvu ← xs {xuv and xvu become aliases of xs and xs}
11: E0 ← E0 \ Âs

12: return Λ-implication classes {A1, A2, . . . , As} and variables {xuv, xvu : {u, v} ∈ E}

Description of the 2SAT formula ϕ2SAT. The formula ϕ2SAT captures all conditions apart
from the “non-cyclic” condition of the problem variant TTO (presented in Table 1). The
formal description of ϕ2SAT is as follows. Consider a triangle of (G, λ) on the vertices u, v, w,
where λ(u, v) = t1, λ(v, w) = t2, λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then we add
to ϕ2SAT the clauses (xuw ∨ xwv) ∧ (xvw ∨ xwu); note that these clauses are equivalent to
xwu = xwv. If t1 ≤ t2 < t3 then we add to ϕ2SAT the clauses (xwv ∨ xuw) ∧ (xuv ∨ xwu);
note that these clauses are equivalent to (xvw ⇒ xuw) ∧ (xvu ⇒ xwu). Now consider a path
of length 2 that is induced by the vertices u, v, w, where λ(u, v) = t1, λ(v, w) = t2, and
t1 ≤ t2. If t1 = t2 then we add to ϕ2SAT the clauses (xvu ∨ xwv) ∧ (xvw ∨ xuv); note that
these clauses are equivalent to (xuv = xwv). Finally, if t1 < t2 then we add to ϕ2SAT the
clause (xvu ∨ xwv); note that this clause is equivalent to (xuv ⇒ xwv).

Brief outline of the algorithm. In the initialization phase, we exhaustively check which
truth values are forced in ϕ3NAE ∧ ϕ2SAT by using the subroutine Initial-Forcing. During
the execution of Initial-Forcing, we either replace the formulas ϕ3NAE and ϕ2SAT by the
equivalent formulas ϕ

(0)
3NAE and ϕ

(0)
2SAT, respectively, or we reach a contradiction by showing

that ϕ3NAE ∧ ϕ2SAT is unsatisfiable.

▶ Observation 8. The temporal graph (G, λ) is transitively orientable if and only if ϕ
(0)
3NAE ∧

ϕ
(0)
2SAT is satisfiable.

The main phase of the algorithm starts once the formulas ϕ
(0)
3NAE and ϕ

(0)
2SAT have been

computed. Then we iteratively try assigning to each variable xi the truth value 1 or 0.
Once we have set xi = 1 (resp. xi = 0) during the iteration j ≥ 1 of the algorithm, we call
algorithm Boolean-Forcing (see Algorithm 3) as a subroutine to check which implications
this value of xi has on the current formulas ϕ

(j−1)
3NAE and ϕ

(j−1)
2SAT and which other truth values

of variables are forced. The correctness of Boolean-Forcing can be easily verified by
checking all subcases of Boolean-Forcing. During the execution of Boolean-Forcing,
we either replace the current formulas by ϕ

(j)
3NAE and ϕ

(j)
2SAT, or we reach a contradiction by

showing that, setting xi = 1 (resp. xi = 0) makes ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT unsatisfiable. If each of

the truth assignments {xi = 1, xi = 0} leads to such a contradiction, we return that (G, λ)
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Algorithm 2 Initial-Forcing.

Input: A 2-SAT formula ϕ2SAT and a 3-NAE formula ϕ3NAE

Output: A 2-SAT formula ϕ
(0)
2SAT and a 3-NAE formula ϕ

(0)
3NAE such that ϕ

(0)
2SAT ∧ ϕ

(0)
3NAE

is satisfiable if and only if ϕ2SAT ∧ ϕ3NAE is satisfiable, or the announcement that
ϕ2SAT ∧ ϕ3NAE is not satisfiable.

1: ϕ
(0)
3NAE ← ϕ3NAE; ϕ

(0)
2SAT ← ϕ2SAT {initialization}

2: for every variable xi appearing in ϕ
(0)
3NAE ∧ ϕ

(0)
2SAT do

3: if Boolean-Forcing
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT, xi, 1

)
= “NO” then

4: if Boolean-Forcing
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
= “NO” then

5: return “NO” {both xi = 1 and xi = 0 invalidate the formulas}
6: else
7:

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT

)
← Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
8: else
9: if Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
= “NO” then

10:
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)
← Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 1

)
11: for every clause NAE(xuv, xvw, xwu) of ϕ

(0)
3NAE do

12: for every variable xab do
13: if xab

∗⇒
ϕ

(0)
2SAT

xuv and xab
∗⇒

ϕ
(0)
2SAT

xvw then {add (xab ⇒ xuw) to ϕ
(0)
2SAT}

14: ϕ
(0)
2SAT ← ϕ

(0)
2SAT ∧ (xba ∨ xuw)

15: Repeat lines 2 and 11 until no changes occur on ϕ
(0)
2SAT and ϕ

(0)
3NAE

16: return
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)

is a no-instance. Otherwise, if at least one of the truth assignments {xi = 1, xi = 0} does
not lead to such a contradiction, we follow this truth assignment and proceed with the next
variable.

As we prove in our main technical result of this section (Theorem 9), ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT is

satisfiable if and only if ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable. Note that, during the execution of the

algorithm, we can both add and remove clauses from ϕ
(j)
2SAT. On the other hand, we can only

remove clauses from ϕ
(j)
3NAE. Thus, at some iteration j, we obtain ϕ

(j)
3NAE = ∅, and after that

iteration we only need to decide satisfiability of ϕ
(j)
2SAT which can be done efficiently [6].

We are now ready to present in the next theorem our main technical result of this section.

▶ Theorem 9. For every iteration j ≥ 1 of the algorithm, ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable if

and only if ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT is satisfiable.

Using Theorem 9, we can now conclude this section with the next theorem.

▶ Theorem 10. TTO can be solved in polynomial time.

Proof sketch. First recall by Observation 8 that the input temporal graph (G, λ) is transit-
ively orientable if and only if ϕ

(0)
3NAE ∧ ϕ

(0)
2SAT is satisfiable.
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Algorithm 3 Boolean-Forcing.

Input: A 2-SAT formula ϕ2, a 3-NAE formula ϕ3, and a variable xi of ϕ2 ∧ ϕ3, and a truth
value Value ∈ {0, 1}

Output: A 2-SAT formula ϕ′
2 and a 3-NAE formula ϕ′

3, obtained from ϕ2 and ϕ3 by setting
xi = Value, or the announcement that xi = Value does not satisfy ϕ2 ∧ ϕ3.

1: ϕ′
2 ← ϕ2; ϕ′

3 ← ϕ3

2: while ϕ′
2 has a clause (xuv ∨ xpq) and xuv = 1 do

3: Remove the clause (xuv ∨ xpq) from ϕ′
2

4: while ϕ′
2 has a clause (xuv ∨ xpq) and xuv = 0 do

5: if xpq = 0 then return “NO”
6: Remove the clause (xuv ∨ xpq) from ϕ′

2; xpq ← 1

7: for every variable xuv that does not yet have a truth value do
8: if xuv

∗⇒ϕ′′
2

xvu, where ϕ′′
2 = ϕ′

2 \ ϕ2 then xuv ← 0

9: for every clause NAE(xuv, xvw, xwu) of ϕ′
3 do {synchronous triangle on vertices u, v, w}

10: if xuv
∗⇒ϕ′

2
xvw then {add (xuv ⇒ xuw) ∧ (xuw ⇒ xvw) to ϕ′

2}
11: ϕ′

2 ← ϕ′
2 ∧ (xvu ∨ xuw) ∧ (xwu ∨ xvw)

12: Remove the clause NAE(xuv, xvw, xwu) from ϕ′
3

13: if xuv already got the value 1 or 0 then
14: Remove the clause NAE(xuv, xvw, xwu) from ϕ′

3

15: if xvw and xwu do not have yet a truth value then
16: if xuv = 1 then {add (xvw ⇒ xuw) to ϕ′

2}
17: ϕ′

2 ← ϕ′
2 ∧ (xwv ∨ xuw)

18: else {xuv = 0; in this case add (xuw ⇒ xvw) to ϕ′
2}

19: ϕ′
2 ← ϕ′

2 ∧ (xwu ∨ xvw)
20: if xvw = xuv and xwu does not have yet a truth value then
21: xwu ← 1− xuv

22: if xvw = xwu = xuv then return “NO”

23: Repeat lines 2, 4, 7, and 9 until no changes occur on ϕ′
2 and ϕ′

3

24: if both xuv = 0 and xuv = 1 for some variable xuv then return “NO”

25: return (ϕ′
2, ϕ′

3)

Let (G, λ) be a yes-instance. Then, by iteratively applying Theorem 9 it follows that
ϕ

(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable, for every iteration j of the algorithm. Recall that, at the end of

the last iteration k of the algorithm, ϕ
(k)
3NAE ∧ ϕ

(k)
2SAT is empty. Then the algorithm gives the

arbitrary truth value xi = 1 to every variable xi which did not yet get any truth value yet.
This is a correct decision as all these variables are not involved in any Boolean constraint
of ϕ

(k)
3NAE ∧ ϕ

(k)
2SAT (which is empty). Finally, the algorithm orients all edges of G according

to the corresponding truth assignment. The returned orientation F of (G, λ) is temporally
transitive as every variable was assigned a truth value according to the Boolean constraints
throughout the execution of the algorithm.

Now let (G, λ) be a no-instance. We will prove that, at some iteration j ≤ 0, the
algorithm will “NO”. Suppose otherwise that the algorithm instead returns an orientation
F of (G, λ) after performing k iterations. Then clearly ϕ

(k)
3NAE ∧ ϕ

(k)
2SAT is empty, and thus
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Algorithm 4 Temporal transitive orientation.

Input: A temporal graph (G, λ), where G = (V, E).
Output: A temporal transitive orientation F of (G, λ), or the announcement that (G, λ) is

temporally not transitively orientable.

1: Execute Algorithm 1 to build the Λ-implication classes {A1, A2, . . . , As} and the Boolean
variables {xuv, xvu : {u, v} ∈ E}

2: if Algorithm 1 returns “NO” then return “NO”
3: Build the 3NAE formula ϕ3NAE and the 2SAT formula ϕ2SAT

4: if Initial-Forcing (ϕ3NAE, ϕ2SAT) ̸= “NO” then {Initialization phase}

5:
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)
← Initial-Forcing (ϕ3NAE, ϕ2SAT)

6: else {ϕ3NAE ∧ ϕ2SAT leads to a contradiction}
7: return “NO”
8: j ← 1; F ← ∅ {Main phase}
9: while a variable xi appearing in ϕ

(j−1)
3NAE ∧ ϕ

(j−1)
2SAT did not yet receive a truth value do

10: if Boolean-Forcing
(

ϕ
(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 1

)
̸= “NO” then

11:
(

ϕ
(j)
3NAE, ϕ

(j)
2SAT

)
← Boolean-Forcing

(
ϕ

(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 1

)
12: else {xi = 1 leads to a contradiction}

13: if Boolean-Forcing
(

ϕ
(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 0

)
̸= “NO” then

14:
(

ϕ
(j)
3NAE, ϕ

(j)
2SAT

)
← Boolean-Forcing

(
ϕ

(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 0

)
15: else
16: return “NO”
17: j ← j + 1
18: for i = 1 to s do
19: if xi did not yet receive a truth value then xi ← 1
20: if xi = 1 then F ← F ∪Ai else F ← F ∪Ai

21: return the temporally transitive orientation F of (G, λ)

clearly satisfiable. Therefore, iteratively applying Theorem 9 implies that ϕ
(0)
3NAE ∧ ϕ

(0)
2SAT is

also satisfiable, and thus (G, λ) is temporally transitively orientable by Observation 8, which
is a contradiction to the assumption that (G, λ) be a no-instance.

Lastly, we prove that our algorithm runs in polynomial time. The Λ-implication classes
of (G, λ) can be clearly computed in polynomial time. Our algorithm calls a subroutine
Boolean-Forcing at most four times for every variable in ϕ

(0)
3NAE ∧ ϕ

(0)
2SAT. Boolean-

Forcing iteratively adds and removes clauses from the 2SAT part of the formula, while it
can only remove clauses from the 3NAE part. Whenever a clause is added to the 2SAT part,
a clause of the 3NAE part is removed. Therefore, as the initial 3NAE formula has at most
polynomially-many clauses, we can add clauses to the 2SAT part only polynomially-many
times. Hence, we have an overall polynomial running time. ◀
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4 Temporal Transitive Completion

We now study the computational complexity of Temporal Transitive Completion
(TTC). In the static case, the so-called minimum comparability completion problem,
i.e. adding the smallest number of edges to a static graph to turn it into a comparabil-
ity graph, is known to be NP-hard [24]. Note that minimum comparability completion
on static graphs is a special case of TTC and thus it follows that TTC is NP-hard too.
Our other variants, however, do not generalize static comparability completion in such a
straightforward way. Note that for Strict TTC we have that the corresponding recognition
problem Strict TTO is NP-complete (Theorem 3), hence it follows directly that Strict
TTC is NP-hard. For the remaining two variants of our problem, we show in the following
that they are also NP-hard, giving the result that all four variants of TTC are NP-hard.
Furthermore, we present a polynomial-time algorithm for all four problem variants for the
case that all edges of underlying graph are oriented, see Theorem 12. This allows directly to
derive an FPT algorithm for the number of unoriented edges as a parameter.

▶ Theorem 11. All four variants of TTC are NP-hard, even when the input temporal graph
is completely unoriented.

We now show that TTC can be solved in polynomial time, if all edges are already oriented,
as the next theorem states.

▶ Theorem 12. An instance (G, F, k) of TTC where G = (G, λ) and G = (V, E), can be
solved in O(m2) time if F is an orientation of E, where m = |E|.

Using Theorem 12 we can now prove that TTC is fixed-parameter tractable (FPT) with
respect to the number of unoriented edges in the input temporal graph G.

▶ Corollary 13. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E). Then
I can be solved in O(2q ·m2), where q = |E| − |F | and m the number of time edges.

5 Deciding Multilayer Transitive Orientation

In this section we prove that Multilayer Transitive Orientation (MTO) is NP-
complete, even if every edge of the given temporal graph has at most two labels. Recall that
this problem asks for an orientation F of a temporal graph G = (G, λ) (i.e. with exactly one
orientation for each edge of G) such that, for every “time-layer” t ≥ 1, the (static) oriented
graph defined by the edges having time-label t is transitively oriented in F . As we discussed
in Section 2, this problem makes more sense when every edge of G potentially has multiple
time-labels, therefore we assume here that the time-labeling function is λ : E → 2N.

▶ Theorem 14. MTO is NP-complete, even on temporal graphs with at most two labels per
edge.
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1 Introduction

Reachability is a fundamental problem in graph theory and algorithmics [38, 39, 33, 17] and
quite well-understood. With the emergence of temporal graphs,1 the concept of reachability
was extended to the dimension of time using temporal paths [34, 6]. For a vertex s to reach
another vertex z in a temporal graph, there must not only be a path between them but the
edges of this path have to appear in chronological order. This requirement makes temporal
reachability non-symmetric and non-transitive, which stands in contrast to reachability
in normal (static) graphs. Reachability is arguably one of the most central concepts in
temporal graph algorithmics and has been studied under various aspects, such as path
finding [40, 5, 9, 11], vertex separation [34, 28, 41], finding spanning subgraphs [12, 4],
temporal graph exploration [25, 23, 26, 7, 24, 3], and others [35, 2, 10, 32].

1 Temporal graphs are graphs whose edge set changes over discrete time.
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Perhaps the most prominent application of temporal graph reachability is currently
epidemiology, dealing with effective prevention or containment of disease spreading [1].
Here, minimizing the reachability of vertices in a temporal graph by manipulating the
temporal graph corresponds to minimizing the spread of an infection in various networks
by some countermeasures. Application instances for this scenario may be drawn from
physical contacts [27, 19] or airline flights [8, 13], but also social networks [31, 14], cattle
movements [36], or computer networks [37].

Enright et al. [21] studied the problem of deleting k time-edges2 such that no single
vertex can reach more than r other vertices and showed its NP-hardness and W[1]-hardness
for the parameter k, even in very restricted settings. Here, we shift the focus to a set of
multiple given sources, thus studying the following problem, which has not been considered
for computational complexity analysis yet (to the best of our knowledge).

Minimizing Temporal Reachablity by Deleting (MinReachDelete)
Input: A temporal graph G, a set of sources vertices S, and integers k, r.
Question: Can we delete at most k time-edges s.t. at most r vertices are reachable from S?

Imaginably, removing edges or vertices is not the most infrastructure friendly approach to
restrict reachability. To address this, other operations have been studied. Enright et al. [22]
considered restricting the reachability by just changing the relative order in which edges
are active. Deligkas and Potapov [15] considered restricting the reachability by a merging
operation of consecutive edge sets of the temporal graph and by a delay operation of time-
edges by δ time steps, i.e., moving a time-edge from time t to t + δ. In particular, they
introduced a delay variant of MinReachDelete.

Minimizing Temporal Reachablity by Delaying (MinReachDelay)
Input: A temporal graph G, a set of sources vertices S ⊆ V , and integers k, r, δ.
Question: Can we delay at most k time-edges by δ s.t. at most r vertices are reachable from S?

This is the central problem studied in this paper. Throughout the whole paper we assume
for all instances of MinReachDelete and MinReachDelay that 0 < |S| ≤ r. We remark
that technically Deligkas and Potapov [15] formulate the problem slightly differently, allowing
delays of up to δ to appear. However, a simple argument can be given to see that this
distinction is not significant: Clearly, delaying a time-edge reduces the number of reachable
vertices only if the undelayed time-edge could be reached from some source s ∈ S. But
when this is the case, increasing the delay of that time-edge can never increase the set of
vertices reachable from S. The reason is that, while increasing the delay might enable some
source s′ ∈ S \ {s} to reach a vertex v, that vertex v would be reached from s in any case.

Deligkas and Potapov [15] showed that MinReachDelay is NP-hard and W[1]-hard
when parameterized by k, even if underlying graph has lifetime τ = 2. A close look into the
proof reveals that this also holds for MinReachDelete.

Our contribution. We study how MinReachDelete and MinReachDelay relate to each
other. We show that both problems are polynomial-time solvable on trees. Moreover, there
is an intermediate reduction from MinReachDelete to MinReachDelay indicating that
MinReachDelay seems generally harder than MinReachDelete. However, surprisingly,
this is no longer true when we parameterize the problems by the number r of reachable
vertices. Here, we develop a max-flow-based branching strategy and obtain fixed-parameter

2 That is, an edge at a point in time.
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tractability for MinReachDelay while MinReachDelete remains W[1]-hard. This makes
MinReachDelay particularly interesting for applications where the number of reachable
vertices should be very small, e.g. when trying to contain the spread of dangerous diseases.

2 Preliminaries

We define N as the positive natural numbers, [a, b] := {i ∈ Z | a ≤ i ≤ b}, and [n] := [1, n].
For a function f : V → Z and subset X ⊆ V we denote by f(X) the sum

∑
x∈V f(x).

We use standard notation from graph theory [16]. We say for a (directed) graph G that
G − X := G[V (G) \ X] is the induced subgraph of G when the vertices in X are removed,
and G \ Y := (V (G), E(G) \ Y ) is the subgraph when the edges in Y are removed, where X

is a vertex set and Y is an edge set. For any predicate P , the Iverson bracket [P ] is 1 if P is
true and 0 otherwise.

Parameterized complexity. Let Σ denote a finite alphabet. A parameterized problem L ⊆
{(x, k) ∈ Σ∗ ×N∪ {0}} is a subset of all instances (x, k) from Σ∗ ×N∪ {0}, where k denotes
the parameter. A parameterized problem L is in FPT (is fixed-parameter tractable) if there
is an algorithm that decides every instance (x, k) for L in f(k) · |x|O(1) time, where f is any
computable function only depending on the parameter. If a parameterized problem L is
W[1]-hard, then it is presumably not fixed-parameter tractable. We refer to Downey and
Fellows [18] for details.

Temporal graphs. A temporal graph G consists of a set of vertices V (or V (G)), and a
sequence of edge sets (Ei)i∈[τ ] where each Ei is a set of unordered pairs from V . The
number τ is called the lifetime of G. The elements of E(G) :=

⋃
i∈[τ ] Ei × {i} are called

the time-edges of G. Furthermore G has a traversal time function γ : E(G) → N specifying
the time it takes to traverse each time-edge. The temporal graph G is then written as
the tuple (V, (Ei)i∈[τ ], γ). Often we assume γ to be the constant function γ ≡ 1 and
then simply write G = (V, (Ei)i∈[τ ]). The underlying graph of G is the graph (V,

⋃τ
i=1 Ei).

For a time-edge set Y and temporal graph G, we denote by G \ Y the temporal graph
where V (G \ Y ) = V (G) and E(G \ Y ) = E(G) \ Y . A temporal s-z-path in G is a sequence of
time-edges P = (ei = ({vi−1, vi}, ti))m

i=1 where
1. v0 = s and vm = z,
2. the sequence of edges ({vi−1, vi})m

i=1 forms an s-z-path in the underlying graph of G, and
3. ti+1 ≥ ti + γ(ei) for all i ∈ [m − 1].
The arrival time of P is tm + γ(em). The set of vertices of P is denoted by V (P ) = {vi | 0 ≤
i ≤ m}. A vertex w is reachable from v in G (at time t) if there exists a temporal v-w-path
in G (with arrival time at most t). In particular, every vertex reaches itself via a trivial path.
Furthermore, w is reachable from S ⊆ V if there is a temporal s-w-path for some s ∈ S, and
the set of all vertices reachable from S is denoted the reachable set RG(S). We drop the index
G if it is clear form the context. Delaying a time-edge ({v, w}, t) by δ refers to replacing it
with the time-edge ({v, w}, t + δ). For a temporal graph G and a time-edge set X ⊆ E(G) we
denote by G ↗δ X the temporal graph G where the time-edges in X are delayed by δ.

Preliminary observations. We present an intermediate polynomial-time reduction from the
MinReachDelete to MinReachDelay.
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▶ Lemma 1. Given an instance I = (G = (V, (Ei)i∈[τ ]), S, k, r) of MinReachDelete,
we can compute in linear time, an instance J = (G′ = (V ′, (E′

i)6τ+1
i=1 ), S′, k, r′, δ = 3τ) of

MinReachDelay such that the feedback vertex number3 of the underlying graph of G and G′

is the same, and I is a yes-instance if and only if J is a yes-instance.

Proof. We construct G′ = (V ′, (E′
i)3τ+δ+1

i=1 ) in the following way. Set

Ve := {euv, evu | ({v, u}, t) ∈ E(G)}}, Vs := {svu | evu ∈ Ve},

V ′ := V ∪ Ve ∪ Vs, and S′ := S ∪ Vs .

Begin with E′
i = ∅ for all i ∈ [3τ ]. Then, add for each time-edge ({v, u}, t) ∈ E(G), the time-

edges ({v, evu}, 3t − 2), ({v, evu}, 3t), ({evu, euv}, 3t − 1), ({u, euv}, 3t − 2), and ({u, euv}, 3t)
to G′. Afterwards, add the time-edge ({svu, evu}, 6τ + 1 = 3τ + δ + 1) for each evu ∈ Ve.
Finally we set r′ := r + |V ′ \ V |. Since we add for each time-edge of G a constant number of
vertices and time-edges to G′, we have that |G′| ∈ O(|G|) and G′ can be computed in linear
time. Moreover, the underlying graph G′ of G′ is obtained from the underlying graph G of
G by subdividing edges and adding leaves, thus G and G′ have the same feedback vertex
number. It remains to prove that the two instances are equivalent.

(⇒): Let X be a solution for I. Then, set X ′ := {({evu, euv}, 3t − 1) | ({v, u}, t) ∈ X}.
Pick s ∈ S and v ∈ V arbitrary. Note that for each temporal s-v-path P ′ in G′, we can
construct a temporal s-v-path P in G which uses a time-edge ({u, w}, t) if and only if P ′ uses
the time-edge ({euw, ewu}, 3t − 1). Furthermore, any temporal s-v-path in G′ ↗δ X ′ cannot
use any delayed time-edge. As s and v are arbitrary, this proves RG′↗δX′(S′)∩V ⊆ RG\X(S).
Thus, at most r + |V ′ \ V | = r′ vertices are reachable from S′ in G′ ↗δ X ′, thus J is a
yes-instance.

(⇐): Let X ′ be a solution for J . Begin by observing that delaying any time-edges between
Vs and Ve has no effect. Consequently, RG′↗δX′(Vs) = Vs ∪ Ve for every possible choice of
X ′. Therefore X ′ is a valid solution if and only if |RG′↗δX′(S) ∩ V | ≤ r′ − |Vs ∪ Ve| = r,
i.e., we only need to study the reachability between vertices in V . Because of this, delaying
a time-edge connecting two vertices of Ve has the same effect as deleting that time-edge.
Next, observe that instead of delaying some time-edge ({v, evu}, t) which connects vertices
of V and Ve, the same or better reduction of reachability is achieved by instead delaying
({evu, euv}, t′), with t′ ∈ {t − 1, t + 1} chosen appropriately. Due to this, we may assume
without loss of generality that X ′ ⊆ {({evu, euv}, 3t − 1) | ({v, u}, t) ∈ E(G)}.

Set X := {({v, u}, t) | ({euv, evu}, 3t − 1) ∈ X ′}. Let s ∈ S and v ∈ V be arbitrary. Note
that for each temporal s-v-path P in G, we can construct a temporal s-v-path P ′ in G′ as above.
Thus RG\X(S) ⊆ RG′↗δX′(S) ∩ V . Since we already observed that |RG′↗δX′(S′) ∩ V | ≤ r,
we conclude that I is a yes-instance. ◀

Note that the reduction in Lemma 1 preserves the size k of the solution and the feedback
vertex number of the underlying graph. We remark that, in exchange for dropping the
latter property, one can modify the reduction to instead have |S′| = |S|, by simply adding
time-edges from S to Vs before all other time-edges. However, in any case the size r′ of
the reachable set in J is unbounded in terms of the size r of the reachable set in I. Unless
FPT = W[1], this is unavoidable as we learn in the next section.

3 That is, the minimum number of vertices needed to hit all cycles in an undirected graph.
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3 Parameterized by the Reachable Set Size

In this section the study MinReachDelay and MinReachDelete parameterized by the
reachable set size r. In particular, our main result in this section is the fixed-parameter
tractability of MinReachDelay parameterized by r. This is in stark contrast to the
W[1]-hardness of MinReachDelete parameterized by r which we show first.

▶ Theorem 2. MinReachDelete parameterized by r is W[1]-hard, even if τ = 2.

Proof. We present a parameterized reduction from the W[1]-hard [18] Clique problem
parameterized by ℓ, where given a graph H = (U, F ) we are asked whether H contains a
clique of size ℓ.

Let H = (U, F ) be a graph, where |F | = m. We construct an instance I = (G, {s}, k =
m −

(
ℓ
2
)
, r = 1 + ℓ +

(
ℓ
2
)
) of MinReachDelete, where G := (V, (Ei)i∈[2]) is the temporal

graph given by

V := U ∪ {s} ∪ {ef | f ∈ F} ,

E1 := {{s, ef } | f ∈ F} , and E2 :=
{

{e{u,v}, u}, {e{u,v}, v}
∣∣ {u, v} ∈ F

}
.

Note that I can be constructed in polynomial time.
(⇒): Let C = (V ′, F ′) be a clique of size ℓ in H . We set X := {({s, ef }, 1) | f ∈ F \ F ′}.

Note that |X| ≤ k and that for each edge f ∈ F we can reach ef from s if and only if f ∈ F ′.
Hence, by the construction of G, a vertex u ∈ U is reachable from s in G \ X if and only
if u ∈ V ′. Hence, we can reach 1 +

(
ℓ
2
)

+ ℓ many vertices from s in G \ X. Thus, I is a
yes-instance.

(⇐): Let X ⊆ E(G) be a solution for I. Without loss of generality, we can assume
that X does not contain a time-edge ({ef , u}, 2), because it can be replaced by ({ef , s}, 1).
Observe that at least

(
ℓ
2
)

vertices from {ef | f ∈ F} are reachable from s in G \ X. Since
r = 1 +

(
ℓ
2
)

+ ℓ, we can reach from s at most ℓ vertices from U . Hence, U ∩ RG\X({s}) must
form a clique of size ℓ in H. ◀

Due to Theorem 2, we know that there is presumably no f(r) · |G|O(1)-time algorithm to
decide whether we can keep the reachable set of a vertex s of G small (at most r vertices),
by deleting at most k time-edges. However, this changes when we delay (instead of deleting)
at most k edges. Formally, we show the following.

▶ Theorem 3. MinReachDelay is solvable in O(r! · k · |G|) time.

The proof of Theorem 3 is structured as follows.

Step 1 (reduction to slowing): We reduce MinReachDelay to an auxiliary problem which
we call MinReachSlow. Here, instead of delaying a time-edge (moving it δ layers forward
in time) we slow it, i. e., increase the time required to traverse it by δ.

Step 2 (flow-based techniques): Our new target now is a fixed-parameter algorithm for
MinReachSlow. Since we do not aim to preserve a specific temporal graph class,
we simplify the input by replacing S with a single-source s. Then we transform the
temporal graph G into a (non-temporal) directed graph D in which the deletion of an
edge corresponds to slowing a temporal edge in G. Using this, we derive a max-flow-based
polynomial-time algorithm which checks whether the source s can be prevented from
reaching any vertices outside of a given set R by slowing at most k time-edges in G.
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Step 3 (resulting search-tree): We are aiming for a search-tree algorithm for MinReach-
Slow. Let R be a set of vertices and suppose that our max-flow-based algorithm failed
to prevent s from reaching any vertices outside of R. Now, if there exists a solution for
the given instance of MinReachSlow, then we can identify less than |R| vertices such
that at least one of them will be always reached from s. We can then try adding each of
them to R, gradually building a search-tree to find the solution.

Henceforth the details follow. Instead of solving MinReachDelay directly, we reduce it
to an auxiliary problem introduced next. Let G = (V, (Ei)i∈[τ ], γ) be a temporal graph.
Slowing a time-edge ({v, w}, t) by δ refers to increasing γ(({v, w}, t)) by δ. We define
G ↑δ X := (V, (Ei)i∈[τ ], γ′) where γ′(e) := γ(e) + δ · [e ∈ X]. Our auxiliary problem is the
following.

Minimizing Temporal Reachablity by Slowing (MinReachSlow)
Input: A temporal graph G = (V, (Ei)i∈[τ ], γ), a set of sources S ⊆ V , and integers k, r, δ.
Question: Is there a time-edge set X ⊆ E(G) of size at most k such that |RG↑δX(S)| ≤ r?

By the following, solving an instance of MinReachSlow also solves MinReachDelay.

▶ Lemma 4. An instance I = (G = (V, (Ei)i∈[τ ], γ), S, k, r, δ) of MinReachDelay is a
yes-instance if and only if J = (G, S, k, r, δ) is a yes-instance of MinReachSlow.

Proof.
(⇒): Let X ⊆ E(G) be a solution for I. Note that for every temporal v-w-path P in
G ↑δ X, we can construct a temporal v-w-path P ′ in G ↗δ X by replacing a time-edge
(e, t) ∈ P with (e, t + δ) whenever (e, t) ∈ X. Hence, the reachable set of s ∈ S in G ↗δ X is
a superset of the reachable set of s in G ↑δ X. Thus, J is a yes-instance.

(⇐): Let X ⊆ E(G) be an inclusion-minimal solution for J . We claim that every vertex
reachable from S in G ↗δ X by some time t is also reachable from S in G ↑δ X until time t.
Suppose for contradiction that the claim does not hold true for some vertex z and let t be
the time S reaches z in G ↗δ X. We may assume z to be chosen to minimize t. Clearly
t > 0, i. e., z /∈ S. Let P be a temporal s-z-path in G ↗δ X with arrival time t and s ∈ S.
Let u be the penultimate vertex of P and ({u, z}, t′) the last time-edge of P . By minimality
of t, u must be reachable from S by time t′ also in G ↑δ X. Since all time-edges of E(G) \ X

appear in G ↗δ X and G ↑δ X with identical traversal times, the last time-edge ({u, z}, t′)
of P must be in E(G ↗δ X) \ (E(G) \ X). Thus ({u, z}, t′ − δ) ∈ X. By minimality of X,
there must be a source s′ ∈ S and a temporal s′-u-path P ′ in G ↑δ X reaching either u or z

at time t′ − δ. If P ′ reaches z, then this is clearly a contradiction. But if P ′ reaches u, then
appending ({u, z}, t − δ) to P ′ produces a temporal s′-z-path in G ↑δ X arriving at time t,
thus also a contradiction. ◀

In the reminder of this section, we show that MinReachSlow is fixed-parameter tractable,
when parameterized by r. Formally, we aim for the following theorem, which in turn clearly
implies Theorem 3 by the means of Lemma 4.

▶ Theorem 5. MinReachSlow can be solved in O(r! · k · |G|) time.

The remainder of this section is dedicated to proving Theorem 5. The advantage of considering
MinReachSlow instead of MinReachDelay is that we do not have to deal with new
time-edges appearing due to the delay operation. This allows us to translate the reachability
of a temporal graph to a (non-temporal) directed graph specially tailored to MinReachSlow.
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In particular, the removal of some edges in the directed graph corresponds to slowing the
corresponding time-edges by δ in the temporal graph. Before giving the details of the
construction, we first reduce to the case where S is a singleton.

▶ Lemma 6. Given an instance I = (G = (V, (Ei)i∈[τ ]), S, k, r, δ) of MinReachSlow, we
can construct in linear time a instance J = (G′, {s}, k, r + 1, δ) of MinReachSlow such
that I is a yes-instance if and only if J is a yes-instance.

Proof. We set G′ := (V ∪{s}, (E′
i)i∈[τ+δ+1]) where s is a new vertex, E′

1 := {{s, s′} | s′ ∈ S},
E′

i := ∅ for all i ∈ [δ + 1] \ {1}, and E′
i+δ+1 := Ei for all i ∈ [τ ]. Observe that slowing an

edge in E′
1 has no effect. Thus, I is a yes-instance if and only if J is a yes-instance. Clearly,

J can be computed in linear time. ◀

A network (D, c) consists of a directed graph D = (V, A) and edge capacities c : A →
N0 ∪ {∞}. A function f : A → N ∪ {0} is an s-z-flow for two distinct vertices s, z ∈ V if

∀e ∈ A : f(e) ≤ c(e) and
∀v ∈ V \ {s, z} :

∑
(u,v)∈A f((u, v)) =

∑
(v,u)∈A f((v, u)).

The value of f is denoted by |f | :=
∑

(s,v)∈A f((s, v)). An arc set C ⊆ A is an s-z-cut of a
network ((V, A), c) if s, z ∈ V and there is no s-z-path in (V, A \ C). The capacity of the
s-z-cut C is c(C) :=

∑
e∈C c(e).

Let G = (V, (Ei)i∈[τ ], γ) be a temporal graph. We define the temporal neighborhood of
a vertex v ∈ V at time point t ∈ [τ ] as the set NG(v, t) :=

⋃τ
i=t N(V,Ei)(v) containing all

neighbors of v in the layers t through τ .
For any s ∈ R ⊆ V and δ ∈ N, we define the flow network F(G, s, R, δ) := (D, c) where

D = (V ′, A) is the directed graph defined by

V ′ := {s0, z} ∪
{

e1, e2, vt, wt, vt+γ(e), wt+γ(e),

vt+γ(e)+δ, wt+γ(e)+δ

∣∣∣∣ v, w ∈ R and e = ({v, w}, t) ∈ E(G)
}

and

A :=
{

(vt, vt′
)

∣∣∣ vt ∈ V ′, t′ = min{i | i > t and vi ∈ V ′} ̸= ∞
}

(1)

∪


(vt, e1), (wt, e1), (e1, e2),
(e2, vt+γ(e)), (e2, wt+γ(e)),
(vt, wt+γ(e)+δ), (wt, vt+γ(e)+δ)

∣∣∣∣∣∣ v, w ∈ R and e = ({v, w}, t) ∈ E(G)

 (2)

∪
{

(vt, z)
∣∣ v ∈ R, t = max {i | NG(v, i) ⊈ R} ̸= −∞

}
. (3)

and we set c((e1, e2)) = 1 for all e ∈ E(G) and c(a) = ∞ for all other a ∈ A. Consider
Figure 1 for an illustration.

v w
3

v3

v4

v5

w3

w4

w5

e1

e2

Figure 1 Left: An excerpt of a temporal graph G containing the time-edge e = ({v, w}, 3) and
γ(e) = 1. Right: An excerpt of the flow network F(G, s, R, δ = 1) showing the corresponding part
for e, where solid arc have capacity ∞ and the dashed arc has capacity 1.
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▶ Lemma 7. For any given G = (V, (Ei)i∈[τ ], γ), s ∈ R ⊆ V , and k, δ ∈ N, one can test in
O(k · |G|) time whether F(G, s, R, δ) has a s0-z-flow of value at least k + 1 and compute such
a flow or a maximum flow otherwise.

Proof. Note, that the flow network F(G, s, R, δ) can be computed in O(|G|) time by iterating
over E(G) first forward and then backwards once. Then we can compute a flow of value k+1 or
of maximum value, whichever is smaller, by running at most k+1 rounds of the Ford-Fulkerson
algorithm [29]. This gives a overall running time of O(k · |G|) time. ◀

▶ Lemma 8. Let G = (V, (Ei)i∈[τ ], γ), s ∈ R ⊆ V , δ ∈ N, and ((V ′, A), c) := F(G, s, R, δ).
Let X ⊆ E(G) and C := {(e1, e2) ∈ A | e ∈ X}. For any xt ∈ V ′, there is a s0-xt-path in
(V ′, A \ C) if and only if G ↑δ X contains a temporal s-x-path with arrival time at most t.

Proof. Let γ′ be the traversal time function of G ↑δ X, i. e., γ′(e) := γ(e) + δ · [e ∈ X].

(⇐): Let P be a temporal s-x-path in G ↑δ X for some vertex x ∈ V and let t be the arrival
time of P . Then we construct a s0-xt-path P̂ in (V ′, A \ C) as follows. Start with P̂ being
just the vertex s0 and perform the following two steps for every time-edge e = ({v, w}, b)
of P in order.
1. Note that the currently last vertex of P̂ is vc for some c ≤ b. As long as c < b, append

to P̂ the arc (vc, vd) where d > c is chosen minimal (cf. (1)). Afterwards, the currently
last vertex of P̂ is vb.

2. If e /∈ X, i. e., (e1, e2) /∈ C, then append to P̂ the arcs (vb, e1), (e1, e2), and (e2, wb+γ(e)) (cf.
(2)). Otherwise, if e ∈ X, i. e., γ′(e) = γ(e) + δ, then append to P̂ the arc (vb, wb+γ(e)+δ).
Note that in both cases the new last vertex of P̂ is wb+γ′(e).

(⇒): Let P be a s0-xt-path in (V ′, A \ C). Then we construct a s-x-path P ′ with arrival
time at most t in G ↑δ X as follows. Start with P ′ being just the vertex s (with arrival time
0) and repeat the following steps until all arcs of P have been processed.
1. Let b be the arrival time of P ′ and v the last vertex. Note that the last vertex of P is vc

for some c ≥ b. Ignore all arcs of P up to the last arc containing vc for some c ≥ b.
2. If the next three arcs in P are (vc, e1), (e1, e2), (e2, wc+γ(e)) for some time-edge e =

({v, w}, c) ∈ E(G), then append to P ′ that time-edge e. Note that, by assumption,
(e1, e2) /∈ C, thus e /∈ X, and thus the arrival time of e is c + γ′(e) = c + γ(e).

3. Otherwise the next arc in P must be (vc, wc+γ(e)+δ) for some time-edge e = ({v, w}, c) ∈
E(G). Then append to P ′ that time-edge e. Note that the arrival time of e is c + γ′(e) ≤
c + γ(e) + δ. ◀

We now show that we can use Lemma 7 to check whether s can be prevented from
reaching any vertices outside of R by slowing at most k time-edges by δ each.

▶ Lemma 9. For any given G = (V, (Ei)i∈[τ ], γ), s ∈ R ⊆ V , δ ∈ N, and k ∈ N ∪ {0}, the
maximum s0-z-flow in F(G, s, R, δ) has value at most k if and only if there is a set X of at
most k time-edges such that s can not reach any vertices outside of R in G ↑δ X.

Proof. Write ((V ′, A), c) := F := F(G, s, R, δ).

(⇒): Let the maximum s0-z-flow f in F have value at most k. Moreover, let C be a s0-z-cut
of minimum capacity. From the max-flow min-cut theorem [30], we know that c(C) ≤ k.
Note that C ⊆ {(e1, e2) ∈ A | e ∈ E(G)}, since all other edges have infinite capacity. Hence,
|C| ≤ k. Now set X := {e ∈ E(G) | (e1, e2) ∈ C}. Assume towards a contradiction that there
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is a temporal s-x-path P in G ↑δ X for some x ∈ V \ R. We may take P to be minimal, thus
the penultimate vertex y of P is contained in R. By Lemma 8 there is a s0-yt-path P̂ in
(V ′, A \ C) where t is the time P reaches y. The fact that P afterwards proceeds to x and (3)
in the definition of F imply that (V ′, A \ C) contains a path from yt to z. This contradicts
C being a s0-z-cut in (V ′, A).

(⇐): Let X be a time-edge set as assumed. By assumption RG↑δX({s}) ⊆ R. We claim
that C = {(e1, e2) | e ∈ X} ⊆ A is a s0-z-cut in (V ′, A), which implies that the maximum
value of an s0-z-flow in F is at most c(C) ≤ k [30]. So suppose towards a contradiction that
there is a s0-z-path P in (V ′, A \ C). Let xt ∈ V be the penultimate vertex of P . Then there
is a s-x-path P ′ in G ↑δ X with arrival time at most t by Lemma 8. The final arc of P is
(xt, z). Hence, (xt, z) must be contained in (3), i. e., we can extend P ′ by some time-edge to
end at a vertex in V \ R. This contradicts our assumption RG↑δX({s}) ⊆ R. ◀

If F(G, s, R, δ) contains a s0-z-flow of value k + 1, then we want to find a small set Y ⊆
V (G) \ R of vertices such that Y ∩ RG↑δX(s) ̸= ∅ for every X ⊆ E(G) with |X| ≤ k and
|RG↑δX(s)| ≤ r.

▶ Lemma 10. Let G = (V, (Ei)i∈[τ ], γ), s ∈ R ⊆ V , δ, r ∈ N, and k ∈ N ∪ {0}. Assume
that F(G, s, R, δ) has a s0-z-flow of value k + 1. We can compute in O(k · |A|) time a set
Y ⊆ V \ R of size at most |R| such that Y ∩ RG↑δX(s) ̸= ∅ holds for every X ⊆ E(G) with
|X| ≤ k and |RG↑δX(s)| ≤ r.

Proof. Let f be a s0-z-flow of value k + 1 in ((V ′, A), c) := F(G, s, R, δ). We may assume f

to never use an arc (vt, wt′) whenever A contains some arc (vb, z) with b ≥ t, as we could
otherwise redirect f to use that latter arc (of infinite capacity) instead. Note that performing
this modification can be done in O(k · |A|) time. Now set

H :=
{

(v, t)
∣∣ vt ∈ V ′ and (vt, z) ∈ A, f((vt, z)) > 0

}
By (3), we have |H| ≤ |R| and NG(v, t) \ R ̸= ∅ for all (v, t) ∈ H . Construct the vertex set Y

by picking for each (v, t) ∈ H one arbitrary vertex from NG(v, t) \ R. Hence |Y | ≤ |H| ≤ |R|
and Y ∩ R = ∅.

It remains to prove that RG↑δX(s) ∩ Y ≠ ∅, with X ⊆ E(G) being an arbitrary solution
for the MinReachSlow-instance (G, {s}, k, r, δ). Define C := {(e1, e2) ∈ A | e ∈ X}. Since
f has value k + 1 > c(C), there is a s0-vt-path P in (V ′, A \ C) where each edge e ∈ E(P )
has f(e) > 0 and (v, t) ∈ H. By Lemma 8, there is a temporal s-v-path P ′ in G ↑δ X

with arrival time at most t. Note that through P ′, vertex s can reach v as well as all
vertices of NG↑δX(v, t) = NG(v, t). Hence, the vertex u ∈ Y which we picked for (v, t) ∈ H

from NG(v, t) \ R is in RG↑δX(s) – thus the claim is proven. ◀

Now we are ready to prove of Theorem 5. The corresponding search-tree algorithm is
listed as Algorithm 11.

Proof of Theorem 5. Let I = (G, S, k, r, δ) be the given instance of MinReachSlow. By
Lemma 6, we can assume S = {s} after linear time preprocessing. We now prove that
Algorithm 11 solves (G, {s}, k, r, δ) in O(r! · k · |G|) time.

Let I be a no-instance. Observe that line 5 ensures that at all times |R| ≤ r. Then, by
Lemma 9, F(G, s, R, δ) will for all s ∈ R ⊆ V have a s0-z-flow of value k + 1. Hence, line 4,
and thus Algorithm 11 will never return yes.
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Algorithm 11 Pseudocode of the algorithm behind Theorem 5.

Input: An instance I = (G, {s}, k, r, δ) of MinReachSlow.
Output: yes if I is a yes-instance and otherwise no.

1 return g({s}), where
2 function g(R) is
3 Compute a s0-z-flow f in F(G, s, R, δ) by Lemma 7
4 if f is of value at most k then return yes
5 if |R| ≥ r then return no
6 Compute a set Y ⊆ V \ R by Lemma 10
7 foreach v ∈ Y do
8 if g(R ∪ {v}) = yes then return yes
9 return no

Let I be a yes-instance. Thus there is a set X of at most k time-edges such that
|RG↑δX(s)| ≤ r. We claim that g(R′) returns yes for all R′ with s ∈ R′ ⊆ RG↑δX(s). We
prove this by reverse induction on |R′|. In the base case where R = RG↑δX(s), g(R) returns
yes by Lemma 9. Now assume the claim to hold whenever |R| = q and let R be of size
q − 1 with s ∈ R ⊆ RG↑δX(s). Assume that F(G, s, R, k, δ) has a s0-z-flow of value k + 1,
otherwise we are done (by line 4). By Lemma 10, the set Y computed in line 6 contains a
vertex u ∈ RG↑δX(s) \ R. Thus, g(R ∪ {u}) returns yes by induction hypothesis. Hence, by
line 8, g(R) return yes, completing the induction. In particular, g({s}) returns yes, therefore
Algorithm 11 is correct.

To bound the running time, note that each call g(R) makes at most |Y | ≤ |R| recursive
calls by Lemma 10. In each of these recursive calls the cardinality of R increases by one
until |R| = r, so the recursion depth is at most r by line 5. Hence, we can observe by an
inductive argument that the search tree has d! many nodes at depth d, where the root is at
depth 1. Hence, the search tree has at most r! many leaves and thus O(r!) many nodes in
total. By Lemma 7 and Lemma 10, lines 3 and 6 take at most O(k · |G|) time. Hence, the
overall running time is bounded by O(r! · k · |G|). ◀

4 A Polynomial-Time Algorithm for Forests

In this section we present an algorithm that solves MinReachDelete and MinReachDelay
in polynomial time on temporal graphs where the underlying graph is a tree or a forest. This
is a quite severe yet well-motivated restriction of the input [20, 22, 21], since it could serve
as the starting point for FPT-algorithms for “distance-to-forest”-parameterizations.

▶ Theorem 12. MinReachDelete and MinReachDelay are polynomial-time solvable if
the underlying graph is a forest.

Actually we even provide an polynomial-time algorithm for a generalized version of Min-
ReachDelay. Then, polynomial-time solvability of MinReachDelete follows from
Lemma 1, since it is forest preserving. We define the generalized problem as follows:
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Weighted MinReachDelay on Forests
Input: A temporal graph G = (V, (Ei)i∈[τ ], γ) whose underlying graph is a forest, a weight

function w : V → N ∪ {0, ∞}, a set F ⊆ E(G) of undelayable time-edges, a set of
sources S ⊆ V , and integers k, r, δ.

Question: Does there exists a time-edge set X ⊆ E(G) \ F of size at most k such
that w(RG↗δX(S)) ≤ r?

In the remainder of this section, we show how to solve this problem using dynamic
programming in polynomial time. Informally speaking, our dynamic program works as
follows. As a preprocessing step we unfold vertices of large degree, reducing to an equivalent
instance of maximum degree 3. Then we root each underlying tree at an arbitrary vertex
and build a dynamic programming table, starting at the leaves. More precisely, we compute
a table entry for each combination of a vertex v, a budget k, a time step t, and a flag
indicating whether v is first reached from a child or from its parent. This table entry then
contains a minimum reachable subset of the subtree rooted at v that can be achieved by
applying k delay operations to that subtree.

▶ Theorem 13. Weighted MinReachDelay on Forests is polynomial-time solvable if
the underlying graph is a forest.

Proof. Assume for now that the underlying graph of G is a tree, rooted at an arbitrary leaf.
We denote by Tv the subtree with root v ∈ V . We use the reaching time ∞ to denote “never”.
By convention, a vertex can reach itself at time 0. Define N∗ := N ∪ {0, ∞}.

We first show how to transform the underlying graph into a binary tree. This will highly
simplify the description of the dynamic programming table. Replace each vertex v of degree
deg(v) > 3 by a path on deg(v) − 2 new vertices, where each edge of that path is undelayable,
appears at each time step and always has traversal time 0. Distribute the edges formerly
incident to v among the new vertices such that each of them has degree 3. Set the weight of
the path’s first vertex to the weight of v, and the weight of all other path vertices to 0. Note
that this modification produces an equivalent instance of maximum degree at most 3, while
increasing the number of vertices only by a constant factor.

We extend the notion of reachability to vertex-time pairs (s, t) ∈ S × [τ ] by saying
that (s, t) reaches v ∈ V in G if there exists a temporal s-v-path starting at time t or later.
For a set A ⊆ V × [τ ], RG(A) is the set of all vertices, reachable from any member of A in G.
We say a vertex v is reached through another vertex w if there is a temporal path from a
source s ∈ S to v that uses w.

Let v ∈ V , k ∈ N. Define Tv,k as the set of temporal graphs obtained from Tv by applying
up to k delay operations. Partition Tv,k into {Tv,k,t | t ∈ N∗}, where Tv,k,t contains those
graphs in which v is reached from S ∩ V (Tv) exactly at time t. Finally, we set for each t ∈ N∗

D[v, k, t, false] = min
{

w
(
RT (S ∩ V (Tv))

) ∣∣ T ∈ Tv,k,t

}
and

D[v, k, t, true] = min

w
(
RT (S ∩ V (Tv)) ∪ RT ({(v, t)})

) ∣∣∣∣∣∣ T ∈
⋃
t′≥t

Tv,k,t′

 .

where the minimum of an empty set is ∞ by convention. It is convenient to also define these
entries as ∞ whenever k < 0. Roughly speaking, D[v, k, t, ι] contains the minimal weight
reached in Tv under the assumption that up to k delay operations are applied to Tv, that v

is first reached at time t, and that
v is reached by a source in S ∩ V (Tv) at time t if ι = false,
v is reached by a source in S \ V (Tv) at time t if ι = true.

Note that v might be reached simultaneously from S ∩ V (Tv) and S \ V (Tv).
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We next show how to compute D[v, k, t, ι] recursively, starting at the leaf vertices. Observe
that D[v, k, t, ι] = ∞ whenever v ∈ S is a source and t > 0. Thus, this case shall be excluded
in the following.

If v has no children. If ι = false and v /∈ S and t < ∞, then D[v, k, t, false] = ∞ as
there is no way that v can be reached from a source in S ∩ V (Tv) = ∅. Otherwise,

D[v, k, t, ι] = w(v) · [t < ∞] .

If v has exactly one child v′. If ι = false and v /∈ S, then v must be reached through v′

at time t. In this case the minimal total weight reached in Tv′ is

D1 := min
t′≤t

D[v′, k − κ(t′, t), t′, false],

where κ(t′, t) is the minimal number of delays that need to occur on the edge {v, v′} to
ensure that (v′, t′) reaches v at time t but not earlier. (Set κ(t′, t) = ∞ if this is impossible.)
Consequently, if v /∈ S, then

D[v, k, t, false] = w(v) · [t < ∞] + D1 .

If ι = true or v ∈ S, then there are two possibilities. If v′ is reached through v at time t′,
with t′ being the first time v′ is reached from S, then the minimal total weight reached in
Tv′ is

D2 := min
t′≥t

D[v′, k − κ(t, t′), t′, true] .

Otherwise, v′ must be reached from a source in S ∩ V (Tv′) at time t′, thus the minimal total
weight reached in T ′

v is

D3 := min
t′

D[v′, k − κ̂(t′, t), t′, false],

where κ̂(t′, t) is the minimal number of delays that need to occur on {v, v′} to ensure that
(v, t) cannot reach v′ before time t′ and (v′, t′) cannot reach v before time t. (Again, set
κ̂(t′, t) = ∞ if this is impossible.) Thus we obtain for the case that ι = true or v ∈ S that

D[v, k, t, ι] = w(v) · [t < ∞] + min{D2, D3} .

If v has two children v′, v′′. The situation is similar to that of only one child vertex,
although more possible cases have to be distinguished. We omit the tedious details. How-
ever, it is clear that D[v, k, t, ι] can be computed by simply trying all possible tuples
(t′, t′′, k′, k′′, i′, i′′, ι′, ι′′) where t′, t′′ are the times at which v′, v′′ are reached; k′, k′′ are the
number of delays occurring in Tv′ , Tv′′ ; i′, i′′ are the number of delays occurring on the edges
{v, v′}, {v, v′′}; and ι′, ι′′ describe whether v′, v′′ are reached from a source in their respective
subtrees at time t′ and t′′, respectively. The number of such tuples and the time required to
process each of them is clearly polynomial in t + k + |G|.

After having computed all entries D[v, k, t, ι], the solution of the MinReachDelay
instance (G, k) can be found as the value of

R[v̂, k] := min
t

D[v̂, k, t, false],

where v̂ is the root vertex of G.
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It remains to consider the case that the underlying graph of G is a disconnected forest.
In this case simply apply the above algorithm to each connected component. Afterwards,
determining the optimal way to split the overall budget between the connected components
can be computed by a simple dynamic program. Define X[i, k] as the minimum weight
reached in the first i trees if up to k time-edges are delayed and use the fact that

X[1, k] = min
k′≤k

(R[v̂1, k′])

and for all i > 1

X[i, k] = min
k′≤k

(R[v̂i, k′] + X[i − 1, k − k′]) ,

where v̂j is the root of the jth tree. ◀

5 Conclusion

While both problem variants, MinReachDelete and MinReachDelay, are polynomial-
time solvable on forests and W[1]-hard when parameterized by k, even if the lifetime is τ = 2,
their complexities diverge when we parameterize by the number r of reachable vertices. Here,
MinReachDelete is W[1]-hard while for MinReachDelay we found a fixed-parameter
tractable algorithm. This makes MinReachDelay particularly interesting for applications
where the number of reachable vertices should be very small, e.g. when trying to contain the
spread of dangerous diseases.

On the practical side we want to point out that our algorithm for MinReachDelay
parameterized by r uses only linear space, and its search-tree-based approach makes it fit
for optimization techniques like further data reduction rules or pruning using lower bounds.
Furthermore, our max-flow-based branching technique can be turned into a r-approximation
for for minimizing the number r of reachable vertices by delaying k time-edges. To do
so, instead of branching into all choices of v ∈ Y in line 8 of Algorithm 11, simply invoke
g(R ∪ Y ). Refining the presented technique towards better approximation guarantees seems
to be a promising research direction. Moreover, when focusing on specific applications, it is
natural to exploit application-dependent graph properties towards designing more efficient
algorithms. In particular: which well-motivated temporal graph classes beyond trees allow
e.g. polynomial-time solvability of MinReachDelete or MinReachDelay? Finally, from
the viewpoint of parameterized complexity the parameters k and r are settled, but the
landscape of structural parameters is still waiting to be explored.
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Abstract
We consider the cops and robbers game variant consisting of one cop and one robber on time-varying
graphs (TVG). The considered TVGs are edge periodic graphs, i.e., for each edge, a binary string
se determines in which time step the edge is present, namely the edge e is present in time step
t if and only if the string se contains a 1 at position t mod |se|. This periodicity allows for a
compact representation of an infinite TVG. We prove that even for very simple underlying graphs,
i.e., directed and undirected cycles the problem whether a cop-winning strategy exists is NP-hard
and W[1]-hard parameterized by the number of vertices. Our second main result are matching lower
bounds for the ratio between the length of the underlying cycle and the least common multiple (lcm)
of the lengths of binary strings describing edge-periodicies over which the graph is robber-winning.
Our third main result improves the previously known EXPTIME upper bound for Periodic Cop
& Robber on general edge periodic graphs to PSPACE-membership.
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1 Introduction

In general, a time-varying graph (TVG) describes a graph that varies over time. For most
applications, this variation is limited to the availability or weight of edges meaning that
edges are only present at certain time-steps or the time needed to cross an edge changes
over time. TVGs are of great interest in the area of dynamic networks [4, 9, 10, 11] such
as mobile ad hoc networks [19] and vehicular networks modeling traffic load factors on a
road network [7]. In those networks, the topology naturally changes over time and TVGs
are used to reflect this dynamic behavior. Quite recently, TVGs became of interest in the
context of graph games such as competitive diffusion games and Voronoi games [2]. There
are plenty of representations for TVGs in the literature which are not equivalent in general.
For instance, in [4] a TVG is defined as a tuple G = (V, E, T , ρ, ζ) where V is a set of vertices,
E ⊆ V × V × L is a set of labeled edges (with labels from a set L), T ⊆ T is the lifetime of
the graph, T is the temporal domain and assumed to be N for discrete systems and R+ for
continuous systems, ρ : E × T → {0, 1} is the presence function indicating whether an edge
e is present in time step t, and ζ : E × T → T is the latency function indicating the time
needed to cross edge e in time step t. We call the graph G = (V, E) the underlying graph of G.
The literature has not yet agreed on how the function ρ (and ζ) are given in the input. This
is of significant importance, if ρ exhibits periodicy with respect to single edges in the context
of computational complexity. We say that a TVG belongs to the class of TVGs featuring
periodicity of edges, defined as class 8 in [4], if ∀e ∈ E, ∀t ∈ T , ∀k ∈ N, ρ(e, t) = ρ(e, t + kpe)

© Nils Morawietz and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 77; pp. 77:1–77:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:morawietz@informatik.uni-marburg.de
mailto:wolfp@informatik.uni-trier.de
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.MFCS.2021.77
https://arxiv.org/abs/2104.08616
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


77:2 A Timecop’s Chase Around the Table

for some pe ∈ T, depending on e, and the underlying graph G is connected. For these
TVGs, the function ρ can be represented for each edge e ∈ E as a binary string of size pe

concatenating the values of ρ(e, t) for 0 ≤ t < pe. Note that the period of the whole graph G
is then the least common multiple (lcm for short) of all string lengths pe describing edge
periods. Therefore, the underlying graph G of G can have exponentially many different
sub-graphs Gt representing a snapshot of G at time t. This exponential blow-up is a huge
challenge in determining the precise complexity of problems for TVGs featuring periodicity of
edges as discussed in more detail in Section 5 and 6. Often, for general TVGs a representation
containing all sub-graphs representing snapshots over the whole lifetime of the graph is
chosen when the complexity of decision problems over TVGs are considered [1, 13]. An
approach to unify the representation of TVGs is given in [18], also including the existence
of vertices being effected over time. This approach represents ρ(e, t) by enhancing an edge
e = (u, v) with the departure time td at u and the arrival time ta at v, where ta might be
smaller than td in order to model periodicity. As for TVGs with periodicity of edges where
ρ is represented as a binary string for each edge the periodicity of the TVG G might be
exponential in its representation using the approach in [18] would also cause an exponential
blow-up in the representation of G, as a decrement of the time value could only be used after
a whole period of the graph, rather than after the period of one edge. An other class of TVGs
based on periodicity was considered in the field of robotics to model motion planning tasks if
time dependent obstacles are present [17]. There, the availability of the vertices in the graph
changes periodically and each edge needs a constant number of time steps to be crossed. An
edge e = {u, v} is only present if in the time span needed to cross e both endpoints are u

and v are still present. In [17] the periodic function describing the availability of a vertex
and the function describing the time needed to cross an edge is represented by an on-line
program and can hence handle values exponential in their representation. This is crucial in
the PSPACE-hardness proof of the reachability problem for graphs in this class presented
in [17]. There, the hardness is obtained by a reduction from the halting problem for linear
space-bounded deterministic Turing machines where a configuration of the Turing machine
is encoded in the time step. In the reduction, the periodicity of a single vertex as well as the
time needed to cross an edge is of value exponential in the tape length-bound. Note that
this representation of periodicity is exponentially more compact than in our setting and thus
the result of [17] does not translate to our setting.

We will stick in the following to the model describing TVG featuring periodicity of edges
where the function ρ(e, t) is represented as a binary string. For this representation, Erlebach
and Spooner [8] introduced recently a variant of the famous cops and robber problem which
is intensively studied for static graphs [3]. In the static setting, the game is played on a given
graph and includes a single robber and a set of k-cops. The cops and robber occupy vertices
and the cops choose their vertices first. Then, in each round the players alternate turns and
the cops move first. Thereby, each cop can move to an adjacent vertex or pass and stay on her
vertex. The same holds for the robber. We say that a graph is k-cop-winning, if there exists
a strategy for the k cops in which they finally catch the robber, i.e., a cop occupies the same
vertex as the robber. If the context is clear, we call a 1-cop-winning graph a cop-winning
graph. If a graph is not cop-winning, we call it robber-winning. A special interest on the
game of cops and robbers lied in characterizing graphs which are k-cop-winning. While for
one cop, the cop-winning graphs where understood in 1978 and independently 1983 [16, 15]
as those featuring a special kind of ordering on the vertex set, called a cop-win or eliminating
order, the case for k cops was long open and solved in 2009 by exploiting a linear structure
of a certain power of the graph [5].
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In 2020 Erlebach and Spooner [8] connected the two discussed graph-theoretical topics of
great interest by introducing a cops and robber game for edge periodic graphs. These are TVGs
featuring periodicity of edges as discussed above. They gave an algorithm which determines if
the given edge periodic graph is k-cop-winning, which runs in time O(lcm ·k · |G|k+2), where
lcm is the least common multiple of all length of binary strings describing ρ(e, t) and G is the
underlying graph. As lcm can be exponentially in the input size, they proposed the question
of whether this problem is NP-hard. This question was answered positively for a one-cop
version, also in 2020, by Morawietz, Rehs, and Weller [14] for TVGs of which the underlying
graph has a constant size vertex cover or where two edges have to be removed to obtain a
cycle. Moreover, they showed that the problem is W[1]-hard when parameterized by the size
of the underlying graph G even in these restricted cases, that is, they showed that there
is presumably no algorithm solving the problem in time f(|G|) · nO(1) for any computable
function f . In other words, the exponential growth of the running time of every algorithm
solving the problem has to depend on the length of binary strings describing ρ(e, t).

Our contribution. In this work, we show, that the NP-hardness holds for even simpler
classes of edge periodic graphs, namely for directed and undirected cycles. Moreover, we
show that the W[1]-hardness when parameterized by |G| even holds for these restricted
instances (Section 3). The quite restricted class of undirected cycles was also studied in [8]
where an upper bound on the length of the cycle with respect to the lcm was given for which
each edge periodic cycle is robber winning. To be more precise, for an edge periodic cycle
on n vertices it holds that if n ≥ 2 · ℓ · lcm, then the graph is robber winning. Here, ℓ = 1
if lcm is at least two times the longest size of a binary string describing ρ(e, t) and ℓ = 2,
otherwise. For these upper bounds only non-matching lower bounds where given, i.e., a
family of cop-winning edge periodic cycles with length 3 · lcm for ℓ = 2 and 1.5 · lcm for
ℓ = 1 are given. These lower bounds left a gap of size 0.5 · ℓ · lcm. In this work, we show that
the given upper bounds are tight by closing this gap by giving families of cop-winning edge
periodic cycles of length 2 · ℓ · lcm −1 (Section 4). Finally, we improve the currently best
EXPTIME upper bound shown in [8] for the problem, whether a given edge periodic graph
is cop-winning to PSPACE (Section 5). We conclude with a discussion on the restricted class
of directed edge periodic cycles indicating that due to the compact representation of the
edge periodic graphs, which does not introduce additional amounts of freedom, the standard
complexity classes, such as NP and PSPACE might not be suitable to precisely characterize
the complexity of this problem (Section 6).

2 Preliminaries

For a string w = w0w1 . . . wn with wi ∈ {0, 1}, for 0 ≤ i ≤ n, we denote with w[i] the symbol
wi at position i in w. We write the concatenation of strings u and v as u ·v. For non-negative
integers i ≤ j we denote with [i, j] the interval of natural numbers n with i ≤ n ≤ j.

An edge periodic (temporal) graph G = (V, E, τ) (see also [8]) consists of a graph G =
(V, E) (called the underlying graph) and a function τ : E → {0, 1}∗ where τ maps each
edge e to a sequence τ(e) ∈ {0, 1}∗ such that e exists in a time step t ≥ 0 if and only if
τ(e)[t]◦ = 1, where τ(e)[t]◦ := τ(e)[t mod |τ(e)|]. For an edge e and non-negative integers
i ≤ j we inductively define τ(e)[[i, j]]◦ = τ(e)[i]◦ · τ(e)[[i + 1, j]]◦ and τ(e)[[j, j]]◦ = τ(e)[j]◦.
If τ(e) = 1, we call e a 1-edge. Every edge e exists in at least one time step, that is, for each
edge e there is some te ∈ [0, |τ(e)| − 1] with τ(e)[te] = 1. We might abbreviate i repetitions
of the same symbol σ in τ(e) as σi. Let LG = {|τ(e)| | e ∈ E} be the set of all edge periods
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Figure 1 Edge periodic cycle G (left) together with snapshots G(t) for 0 ≤ t ≤ 4.

of some edge periodic graph G = (V, E, τ) and let lcm(LG) be the least common multiple
of all periods in LG . We call an edge periodic graph G with an underlying graph consisting
of a single cycle an edge periodic cycle. We denote with G(t) the sub-graph of G present
in time step t. We do not assume that G is connected in any time step. We will discuss
directed and undirected edge periodic graphs. If not stated otherwise, we assume an edge
periodic graph to be undirected. We illustrate the notion of edge periodic cycles in Figure 1
showing an edge periodic cycle G together with G(t) for the first 5 time steps. We now define
the considered cops and robbers variant on edge periodic graphs with one single cop. Here,
first the cop chooses her start vertex in G(0), then the robber chooses his start vertex in
G(0). Then, in each time step t, the cop and robber move to an adjacent vertex over an
edge which is present in G(t) or pass and stay on their vertex. Thereby, the cop moves first,
followed by the robber. We say that the cop catches the robber, if there is some time step t

for which the cop and the robber are on the same vertex after the cop moved. If the cop has
a strategy to catch the robber regardless which start vertex the robber chooses, we say that
G is cop-winning and call the strategy implemented by the cop a cop-winning strategy. If
for all cop start vertices, there exists a start vertex and strategy for the robber to elude the
cop indefinitely, we call G robber-winning. The described game is a zero-sum game, i.e., G is
either cop-winning or robber-winning.

Periodic Cop & Robber
Input: An edge periodic graph G = (V, E, τ).
Question: Is G cop-winning?

3 It’s hard to run around a table

In this section, we show that the NP-hardness of Periodic Cop & Robber already holds if
the input graphs are very restricted. More precisely, we show that Periodic Cop & Robber
is NP-hard and W[1]-hard when parameterized by |G|, even for directed and undirected edge
periodic cycles G.

▶ Theorem 1. Periodic Cop & Robber on directed or undirected edge periodic cycles
is NP-hard, and W[1]-hard parameterized by the size of the underlying graph G.

Both, the undirected and directed case of Theorem 1 is shown by a reduction of the Periodic
Character Alignment problem which was shown to be both NP-hard and W[1]-hard
when parameterized by |X| in [14].

Periodic Character Alignment
Input: A finite set X ⊆ {0, 1}∗ of binary strings.
Question: Is there a position i, such that x[i]◦ = 1 for all x ∈ X,
where x[i]◦ := x[i mod |x|]?
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Figure 2 Periodic Cop & Robber instance constructed from a Periodic Character Align-
ment instance with set of strings X = {x1, . . . , xm} in the proof of Lemma 2. For xj ∈ X the
edge labels are defined as ξ(xj) := ξ(xj [0]) · ξ(xj [1]) · . . . · ξ(xj [|xj | − 1]), with ξ(c) := 0cm01m for
c ∈ {0, 1}. The upper chain corresponds to the vertices rj and the lower chain to the vertices ℓj .

We begin with considering the case of undirected edge periodic cycles and then proceed by
adapting the obtained construction for directed edge periodic cycles.

▶ Lemma 2. Periodic Cop & Robber on undirected edge periodic cycles is NP-hard and
W[1]-hard parameterized by the size of the underlying graph G.

Proof. We first sketch the idea of the construction. It is helpful to consider Figure 2 in
the following. We represent each string in X by an edge label. The constructed cycle will
consist of two chains connected by two special edges. In the first chain, the elements in
X are increasingly listed in some fixed order as individual edge labels each. In the second
chain the same edge labels are listed decreasingly in the same order. This will allow the
cop and the robber to occupy antipolar vertices with the same edge labels on incident edges.
Hence, while the cop is on one chain and the robber on the other chain, the robber can mimic
the movements of the cop. The two chains are connected by two special edges for which
their edge labels are complementary in one position of the labels and identical in all other
positions. This will allow the cop to switch between the chains in a certain time step while
the robber is trapped on his chain. In this situation, the cop will be able to catch the robber
if and only if there is a position i, such that x[i]◦ = 1 for all x ∈ X, in which case all edges
of the chains will be present for some period.

We now proceed with the formal proof. Let X be an instance of Periodic Character
Alignment. We describe how to construct in polynomial time an instance G = (V, E, τ)
of Periodic Cop & Robber, where G is an undirected edge periodic cycle such that X

is a yes-instance of Periodic Character Alignment if and only if G is a yes-instance
of Periodic Cop & Robber.

Let |X| = m and {x1, . . . , xm} be the elements of X. We set V := {ℓj , rj | 0 ≤
j ≤ m} and E := {{ℓj−1, ℓj}, {rj−1, rj} | 1 ≤ j ≤ m} ∪ {{ℓ0, rm}, {ℓm, r0}}. Next, we
set τ({ℓ0, rm}) := 10m10m and τ({ℓm, r0}) := 00m10m. Let ξ(c) := 0cm01m for all c ∈
{0, 1}. Finally, we set τ({ℓj−1, ℓj}) := τ({rj−1, rj}) := ξ(xj [0]) · ξ(xj [1]) · . . . · ξ(xj [|xj | − 1])
for each xj ∈ X. Note that the length of each edge label is divisible by q := 2m + 2.
For i ≥ 0, let Ti := [q · i, q · (i + 1) − 1] denote the i-th time block, that is, the q consecutive
time steps starting from q · i. Note that the j-th edge label limited to the i-th time
block τ({ℓj−1, ℓj})[Ti]◦ = τ({rj−1, rj})[Ti]◦ is exactly ξ(xj [i]◦).

Next, we show that X is a yes-instance of Periodic Character Alignment if and
only if G is a yes-instance of Periodic Cop & Robber.

(⇒) Let i be a position such that x[i]◦ = 1 for all x ∈ X. We describe the winning strategy
for the cop. She should choose the vertex ℓ0 as her start vertex and should never move until
the beginning t of the i-th time block Ti. Since x[i]◦ = 1 for all x ∈ X, τ({ℓj−1, ℓj})[Ti]◦ =
τ({rj−1, rj})[Ti]◦ = ξ(1) = 01m01m. Consequently, in time step t only the edge {ℓ0, rm}
exists and in the following m time steps, all edges except {ℓ0, rm} and {ℓm, r0} exist.
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If the robber is currently on some vertex rj , then the cop should move to rm in time step t.
Otherwise, the cop should stay on ℓ0 in this time step. By the fact that the edge {ℓm, r0}
does not exist in time step t, we obtain that, at the beginning of time step t + 1, both
players are either on vertices labeled with r or labeled with ℓ. Since all edges of the two
paths (ℓ0, . . . , ℓm) and (r0, . . . , rm) exist in the time steps [t + 1, t + m], the cop can catch
the robber in at most m time steps, since neither {ℓ0, rm} nor {ℓm, r0} exists in any of the
time steps [t + 1, t + m]. Consequently, G is a yes-instance of Periodic Cop & Robber.

(⇐) Suppose that X is a no-instance of Periodic Character Alignment. We describe
a winning strategy for the robber. In the following, we say that the vertex ℓj is the mirror
vertex of rj and vice versa. Moreover, we say that the robber mirrors the move of the cop at
some time step t, if the cop is on the mirror vertex of the robber at the beginning of time
step t and the robber moves to the mirror vertex of the vertex the cop ends on in time step t.

The start vertex of the robber should be the mirror vertex of the start vertex of the cop.
If it is possible, then the robber should always mirror the moves of the cop.

Note that the only move the robber cannot mirror is if the cop traverses the edge {ℓm, r0}
at the beginning of some i-th time block.

We show that the robber has a strategy to end on the mirror vertex during the i-th time
block and evade the cop until then.

Assume w.l.o.g., that the cop moves from ℓm to r0 and, thus, the robber is currently
on rm. Since X is a no-instance of Periodic Character Alignment, there is at least
one xj ∈ X with xj [i]◦ = 0. Hence, τ({ℓj−1, ℓj})[Ti]◦ = τ({rj−1, rj})[Ti]◦ = ξ(0) = 00m01m.
Consequently, the cop cannot catch the robber in the first m + 1 time steps of the i-th time
block. Hence, the robber should stay on this vertex until the beginning of time step q ·i+m+1.

If the cop moves from r0 to ℓm in time step q · i + m + 1, the robber is again on the
mirror vertex of the cop and is able to mirror all of the cops moves in the remaining time
steps of this time block. Otherwise, the cop stays on some vertex rp. In this case, the robber
should move to ℓ0. Since the edges {ℓ0, rm} and {ℓm, r0} do not exist in the remaining time
steps of this time block, the cop cannot catch the robber in this time block. Moreover, since
all edges of the path (ℓ0, . . . , ℓm) exist in the last m time steps of the i-th time block, the
robber can move along the path (ℓ0, . . . , ℓm) and reach the mirror vertex of the cop in at
most m time steps. Consequently, we can show via induction, that the robber has an infinite
evasive strategy and, thus, G is a no-instance of Periodic Cop & Robber. Since Periodic
Character Alignment is W[1]-hard when parameterized by |X| and |V | = |E| = 2 · |X|+2,
we obtain that Periodic Cop & Robber is W[1]-hard when parameterized by the size of
the underlying graph of G even on undirected edge periodic cycles. ◀

Next, we adapt the previous construction for directed edge periodic cycles. It is helpful
to consider Figure 3 in the following. In the adaption, we only have one chain listing the
elements of X. The end vertex of this chain is connected to a new vertex s which is again
connected to the start vertex of the chain. The edges incident with s will act as the two
edges connecting the two chains in the previous construction by delaying the robber, such
that the cop can catch him if all edges corresponding to X are present in some time period.

▶ Lemma 3. Periodic Cop & Robber on directed edge periodic cycles is NP-hard, and
W[1]-hard parameterized by the size of the underlying graph.

Proof. Again, we reduce from Periodic Character Alignment. Let X be an in-
stance of Periodic Character Alignment. We describe how to construct an in-
stance G = (V, E, τ) of Periodic Cop & Robber, where G is a directed edge peri-
odic cycle. Let |X| = m and {x1, . . . , xm} be the elements of X. We set V := {vj |
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Figure 3 Periodic Cop & Robber instance constructed from a Periodic Character Align-
ment instance with set of strings X = {x1, . . . , xm} in the proof of Lemma 3. For xj ∈ X the
edge labels are defined by the homomorphism ξ(xj) := ξ(xj [0]) · ξ(xj [1]) · . . . · ξ(xj [|xj | − 1]), with
ξ(c) := cm01m1 for c ∈ {0, 1}.

0 ≤ j ≤ m} ∪ {s} and E := {(vj−1, vj) | 1 ≤ j ≤ m} ∪ {(vm, s), (s, v0)}. Next, we
set τ((vm, s)) := 0m10m0 and τ((s, v0)) := 0m00m1. Let ξ(c) := cm01m1 for all c ∈ {0, 1}.
Finally, we set τ((vj−1, vj)) := ξ(xj [0]) · ξ(xj [1]) · . . . · ξ(xj [|xj | − 1]) for each xj ∈ X.

Note that the length of each edge label is divisible by q := 2m + 2. For t ≥ 0, let Tt :=
[q · t, q · (t + 1) − 1] denote the t-th time block, that is, the q consecutive time steps starting
from q · t. Note that the j-th edge label limited to the t-th time block τ((vj−1, vj})[Tt]◦

is exactly ξ(xj [t]◦). Next, we show that X is a yes-instance of Periodic Character
Alignment if and only if G is a yes-instance of Periodic Cop & Robber.

(⇒) Let t be a position such that x[t]◦ = 1 for all x ∈ X. We describe the winning
strategy for the cop. The cop should choose the vertex v0 as her start vertex and should
never move until the beginning t∗ := q · t of the t-th time block. By construction and the
fact that xi[t]◦ = 1 for each xi ∈ X, τ((vi−1, vi))[Tt]◦ = ξ(1) = 1m01m1. Hence, the cop can
move from vertex vi to vertex vi+1 in time step t∗ + i for each i ∈ [0, m − 1] and, thus, reach
the vertex vm in time step t∗ + m − 1. Moreover, the cop can then move to the vertex s in
time step t∗ + m. By construction, τ((s, v0))[t∗ + j]◦ = 0 for each j ∈ [0, m]. Hence, the cop
has a winning strategy since she started at vertex v0 and moved over every vertex of V while
the robber was not able to traverse the edge (s, v0).

(⇐) Suppose that for every position t, there is some xj ∈ X with xj [t]◦ = 0. We show
that the robber has a winning strategy. For some time step, let wC and wR denote the vertex
of the cop, respectively robber in this time step. We call the vertex v0 safe for all vertices
of V \ {v0, s}, we call vm safe for v0 and s, and we call s safe for v0. Let uC be the start
vertex of the cop, then the robber should choose a vertex which is safe for uC as his start
vertex.

▷ Claim 4. Let t∗ = t · q be the beginning of the t-th time block for some t ≥ 0, let uC

be the vertex of the cop at time step t∗ and uR be the vertex of the robber at time step t∗.
If uR is safe for uC , then the robber has a strategy such that the cop cannot catch him in
the t-th time block and the robber ends on a vertex that is safe for the vertex of the cop at
the end of the t-th time block.

Proof.
Case 1: uC ∈ V \ {s, v0} and uR = v0. The robber should wait on vertex v0 until the

beginning of time step t∗ + m. Since the edge (s, v0) only exists in the last time step
of the t-th time block, the cop cannot catch the robber in any of these time steps. If
the cop does not traverse the edge (vm, s) in time step t∗ + m, then the robber should
stay on vertex v0 until the beginning of the next time block. Since the edge (vm, s) only
exists in time steps t′ with t′ mod q = m, it follows that the cop ends on some vertex
of V \ {s, v0} at the end of the t-th time block. Thus, at the beginning of the (t + 1)-th
time block, the vertex of the robber is safe for the vertex of the cop.
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Otherwise, the cop traverses the edge (vm, s) in time step t∗ + m. Then, the robber
should traverse the edge (vi−1, vi) in time step t∗ + m + i for each i ∈ [1, m], while the
cop has to wait on s. Hence, the robber reaches vm in time step t∗ + q − 2. In time
step t∗ + q − 1, the cop can either stay on s or move to v0. In both cases the robber
should stay on vm which is safe for both s and v0.

Case 2: uC = s and uR = vm. Since the edge (s, v0) only exists in the last time step of
the t-th time block, the cop has to stay on s until the beginning of time step t∗ + q − 1.
In time step t∗ + q − 1, the cop can either stay on s or move to v0. In both cases the
robber stays on vm which is safe for both s and v0.

Case 3: uC = v0 and uR ∈ {vm, s}. Let j ∈ [1, m] such that xj [t]◦ = 0, recall that by
definition of τ it follows that τ((vj−1, vj))[Tt]◦ = 0m01m1. Thus, the cop cannot reach
the vertex vm in the first m + 1 time steps of the t-th time block. In time step t∗ + m, the
robber should stay on s if s is his current vertex or traverse the edge (vm, s), otherwise.
Since this is the only time step in which this edge exists in the t-th time block, the cop
cannot catch the robber in this time block. Until the beginning of time step t∗ + q − 1,
the robber should stay on s. If the cop ends her turn on vertex v0, then the robber should
stay on s. Otherwise, the robber should traverse the edge (s, v0) in time step t∗ + q − 1.
In both cases, the vertex of the robber is safe for the vertex of the cop at the beginning
of the (t + 1)-th time block. ◁

By using Claim 4, one can show via induction, that the robber has an infinite evasive
strategy and, thus, G is a no-instance of Periodic Cop & Robber. ◀

For the next section, we will stick to edge periodic cycles and consider families of
cop-winning undirected edge periodic cycles.

4 Sharp bounds on the length required to ensure robber-winning edge
periodic cycles

In [8], an upper bound on the cycle length of an edge periodic cycle in dependence of lcm(LG),
required to ensure an robber winning strategy, was given. Namely, for |V | = n, the graph G
is robber winning if n ≥ 2 · ℓ · lcm(LG), where ℓ = 1 if lcm(LG) ≥ 2 · max(LG), and ℓ = 2,
otherwise ([8, Theorem 3]). So far, these bounds where not sharp, as for instance, in [8],
the only lower bounds are given by cop winning strategies for families of edge periodic
cycles with n = 1.5 · lcm(LG) for ℓ = 1 ([8, Theorem 5]), and n = 3 · lcm(LG) for ℓ = 2 and
max(LG) = lcm(LG) ([8, Theorem 4]). We show that both upper bounds ensuring a robber
winning strategy are sharp by presenting infinite families of cop-winning edge periodic cycles
with n = 2 · ℓ · lcm(LG) − 1 vertices.

▶ Theorem 5. For every k ≥ 3 and ℓ ∈ {1, 2}, there exists a cop-winning edge periodic cycle
G = (V, E, τ) with max(LG) = k and n = 2 · ℓ · lcm(LG) − 1 vertices, where lcm(LG) ≥ 2k

if ℓ = 1, and lcm(LG) = k, otherwise.

In order to prove Theorem 5, we give families of edge periodic cycles for ℓ = 1 and ℓ = 2,
each, beginning with ℓ = 2, i.e., the case that lcm(LG) < 2 · max(LG).

▶ Lemma 6. For every k ≥ 2 there exists an edge periodic cycle G = (V, E, τ) with
lcm(LG) = k = max(LG), and n = 4k − 1 vertices that is cop-winning.

Proof. Consider the edge periodic cycle Gk = (V, E, τ ) depicted in Figure 4 with |V | = 4k−1.
This graph admits a cop winning strategy if the cop picks the highlighted vertex with
index 0 as her start vertex. The vertices are indexed by positive numbers indicating their
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C
0 +1

-(4k-2)
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+(2k-1)
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+(3k-1)
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+(3k-2)
-(k+1)

10k−1

0k−11
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Figure 4 Cycle with 4 · k − 1 vertices and lcm(LG) = k with a cop winning strategy from the
start vertex marked in red. Edges not drawn (depicted by dots) are 1-edges; for all other edges, τ(e)
is explicitly noted (with gray background). The clockwise [counterclockwise] distance of each vertex
to the start vertex of the cop is given as a positive [negative] number.

Table 1 Time steps with corresponding positions of cop and robber in the edge periodic cycle
depicted in Figure 4. All positions are after moving in this time step. The time step s denotes the
start configuration. Recall that the cop moves first.

time step pos. cop pos. robber
s 0 2k − 1
0 1 2k − 1

k − 1 k 2k

2k − 3 2k − 2 3k − 2
2k − 2 2k − 1 3k − 2
2k − 1 2k 3k − 2

2k 2k + 1 3k − 1
3k − 3 3k − 2 4k − 4

3k 3k − 1 0
3k + 1 3k 0
4k − 1 4k − 2 0

4k 0 A

time step pos. cop pos. robber
s 0 −(2k − 1)

k − 1 −(k) −(2k)
k −(k + 1) −(2k + 1)

2k − 2 −(2k − 1) −(3k − 1)
2k − 1 −(2k) −(3k)
3k − 3 −(3k − 2) −(4k − 2)

3k −(3k + 1) 0
4k − 3 −(4k − 2) −(k − 3)

4k 0 −(k)
5k − 1 −(k − 1) −(k)

5k −(k) A

clockwise distance to the start vertex of the cop, and with negative numbers indicating their
counterclockwise distance. Let the cop pick vertex 0. We consider the antipolar vertices
+(2k − 1) and −(2k − 1) as potential start vertices of the robber. We show that if the
robber picks vertex +(2k − 1), then the cop has a winning strategy by continuously running
clockwise, starting in time step zero, and if the robber picks vertex −(2k − 1), the same
applies running counterclockwise. Note that these two positions represent extrema and being
able to catch the robber at these vertices implies being able to catch him at all vertices
in the graph. Table 1 shows the positions of the cop and robber for these strategies for
k ≥ 4. For each time step, the position after both players moved are depicted; s is the
start configuration. We abbreviate consecutive 1-edges and only depict the time steps and
positions when one of the players reaches a non-trivial edge. For the cases of k = 2 and k = 3
the cop catches the robber earlier than depicted in Table 1, namely in step t = 6 clockwise
and t = 8 counterclockwise for k = 2 and in step t = 6 clockwise and t = 9 counterclockwise
for k = 3 if the robber chooses the corresponding antipolar start vertices. Details on case
k = 2 and k = 3, and a concrete example for k = 4, can be found in the appendix. ◀
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k
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2 · k
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2 · k
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3k − 4 3k − 3

3k + 3 3k + 2

3k − 1
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Figure 5 Cycle with 6 · k − 1 vertices and lcm(LG) = 3k with a cop winning strategy from the
start vertex 0 where k = 2m and m ≥ 2. Edges not drawn (depicted by dots) or edges without an
explicit label are 1-edges; for all other edges, τ(e) is explicitly noted (with gray background).

For the case that ℓ = 1, i.e., when lcm(LG) ≥ 2 · max(LG), we slightly adapt the family of
graphs depicted in Figure 4. Note that for max(LG) = 2 there is no edge periodic cycle
G = (V, E, τ) with lcm(LG) > max(LG) = 2.

▶ Lemma 7. For every k ≥ 3 with k ̸= 2m for all m ∈ N, there exists an edge periodic
cycle G = (V, E, τ) with lcm(LG) = 2 · max(LG) = 2 · k, and n = 2 · 2k − 1 vertices that is
cop-winning.

Proof. For the case ℓ = 1 we introduce an artificial edge label in the edge periodic cycle
in Figure 4, such that the lcm(LG) is exactly 2k. This edge will not affect the run of the
cop. Its purpose is to introduce a factor 2 in the number of vertices compensating the
missing factor 2 from the variable ℓ. Therefore, note that the edge e1,2 connecting vertex
+1 and +2 is taken by the cop only once, in the clockwise run in time step 1 and in the
counterclockwise run in time step 4k − 3. Hence, the cop only crosses the edge in an odd
time step. We can write k as k = 2i · j where j is an odd number with j > 1 since k ̸= 2m.
Then, introducing a string τ(e1,2) = 012i+1−1 of length 2i+1 yields a least common multiple
of lcm(LG) = 2i+1 · j = 2 · k. ◀

In the case of max(LG) = k = 2m for some m ∈ N, it holds that for the smallest possible
value of lcm(LG) with lcm(LG) > max(LG), we have lcm(LG) ≥ 3 · max(LG). Hence, in these
cases we need a separate family of graphs.

▶ Lemma 8. For every k = 2m with m ≥ 2, there exists an edge periodic cycle G = (V, E, τ )
with lcm(LG) = 3 · max(LG) = 3 · k, and n = 6 · k − 1 vertices that is cop-winning.

Proof. Consider the edge periodic cycle Gk = (V, E, τ ) depicted in Figure 5 with |V | = 6k−1.
This graph admits a cop winning strategy if the cop picks the highlighted vertex with index 0
as her start vertex. The vertices are indexed by positive numbers indicating their clockwise
distance to the start vertex of the cop. Let the cop pick vertex 0. We show that if the robber
picks vertex 3k − 1, then the cop has a winning strategy by continuously running clockwise,
starting in time step zero. Since for each j, starting from vertex 0, the label of the j-th edge
clockwise is equal to the label of the j-th edge counterclockwise, the same applies running
counterclockwise if the robber picks vertex 3k. Note that these two positions represent
extrema and being able to catch the robber at these vertices implies being able to catch him
at all vertices in the graph. Suppose that the robber picks vertex 3k − 1. Since k = 2m

for some m ≥ 2, 3
2 · k and 9

2 · k are divisible by 3. Hence for each j ∈ [1, 6k − 3], the cop
can traverse the edge {j, j + 1} in time step j and, thus, reach the vertex 5k − 1 in time
step 5k − 2. We show that, starting from vertex 3k − 1 and running clockwise, the robber
cannot reach vertex 5k prior than time step 5k − 1. This then implies, that the cop catches
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the robber after at most 5k − 2 time steps. Note that the first time the robber can traverse
the edge {3k − 1, 3k} is at time step k − 1. Hence, the robber reaches the vertex 3k + 2
not prior than time step k + 1. Since k is not divisible by 3, the robber cannot traverse the
edge {3k + 2, 3k + 3} in time step k + 2. Thus, the robber cannot reach the vertex 4k − 1
prior than time step 2k and consequently, he cannot traverse the edge {4k − 1, 4k} prior
than time step 3k − 1. Hence, the robber reaches the vertex 9

2 k − 1 not prior than time
step 7

2 k − 2. Since k is not divisible by 3, the robber cannot traverse the edge { 9
2 k − 1, 9

2 k}
in time step 7

2 k − 1. Thus, the robber cannot reach the vertex 5k − 1 prior than time step 4k

and consequently, he cannot traverse the edge {5k −1, 5k} prior than time step 5k −1. Hence,
the statement holds. A concrete example for k = 4 can be found in the appendix. ◀

5 Complexity upper bounds

The main result of this section is that the Periodic Cop & Robber problem for general
edge periodic graphs can be solved in polynomial space. Note that two-player games may
take exponentially many turns and hence containment in PSPACE is not obvious. In our
case, already the period of graphs on which the game is played is exponential in general. This
prohibits a standard incremental PSPACE algorithm approach. We show that despite the
potentially exponential period of the sequence of graphs G(t) we show that we can determine
whether the cop has a winning strategy by sweeping through the configuration space in a
way that we only consider polynomially many vertices in each step. The fact that we only
consider one cop and one robber is here crucial for the polynomial bound.

▶ Theorem 9. Periodic Cop & Robber for edge periodic graphs is contained in PSPACE.

For general edge periodic graphs, the Periodic Cop & Robber problem was reduced in [8]
to a variant of the And-Or Graph Reachability problem [6] via an exponential time
reduction. The And-Or Graph Reachability problem is a two player game where players
move a token in an And-Or graph from a source to a target. An And-Or graph is a graph
G = (V∧ ∪ V∨, E) where the set of vertices is partitioned into a set of And vertices V∧ and
a set of Or vertices V∨. If the token is on an Or vertex, then player 0 moves the token,
otherwise player 1 moves the token. Player 0 wins if the token finally reaches the target.
The And-Or Graph Reachability problem is known to be PTIME-complete [12]. The
reduction in [8] unrolls the edge periodic graph into its configuration graph. Considering the
Periodic Cop & Robber problem, we define for an edge periodic graph G = (V, E, τ ), the
configuration graph CG = (VCG , ECG ) of G with node set V × V × {c, r} × [lcm(LG)]. Here,
a node (uc, ur, s, t) denotes in the temporal snapshot graph G(t), that the cop is on vertex
uc, the robber on vertex ur, and the cop moves next if s = c, otherwise the robber moves
next. A node (uc, ur, s, t) is connected with a directed edge to some node (u′

c, u′
r, s′, (t + 1)

mod lcm(LG)), if s = c, s′ = r, u′
r = ur, and u′

c = uc or uc and u′
c are connected by an edge

which is present in time step t. If s = r the same holds for c and r interchanged. Hence, the
configuration graph CG is of size O(|V |2 · lcm(LG)).

The configuration graph CG is then turned into an And-Or graph by declaring nodes
(uc, ur, s, t) with s = c as Or vertices and nodes with s = r as And vertices. As lcm(LG) can
be of size exponential in |LG |, it follows from [8] that Periodic Cop & Robber is contained
in EXPTIME. Note that the exponential blow-up comes from the very deterministic process
of unrolling the edge periodic graph into a TVG with global periodicity lcm(LG). Representing
this TVG in a framework which only allows for global periodicity, such as the setting in [18],
would require a representation of the TVG in size O(lcm(LG)) and allow for a polynomial
time reduction to the And-Or Graph Reachability problem yielding membership in
PTIME for Periodic Cop & Robber in this setting.
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In the following, we show how use the structural properties of the configuration graph CG
to solve the And-Or Graph Reachability for CG in polynomial space. We begin with
giving an upper bound on the length of a shortest chase in G.

▶ Lemma 10. Let G = (V, E, τ) be an edge periodic graph. If G is cop-winning, then the
robber can be caught within n2 · lcm(LG) rounds.

Proof. Consider the configuration graph CG = (VCG , ECG ) of G. Note that two configurations
of a Periodic Cop & Robber game on the same temporal snapshot graph with identical
positions of the cop and robber in different time steps t and t′ which differ by a multiple of
lcm(LG) are indistinguishable as configurations of the game. Hence, the size of CG is bounded
by 2n2 · lcm(LG).

Now let π be a shortest sequence of configurations for the start vertices vc and vr such
that π ends with a cop-winning configuration. If |π| > 2n2 · lcm(LG), then π contains two
indistinguishable configurations πi1 and πi2 . Clearly, the cop made no progress towards
capturing the robber in the sequence πi1 , . . . , πi2−1. As πi1 and πi2 are indistinguishable,
removing the sequence πi1 , . . . , πi2−1 from π yields a shorter sequence of configurations
ending in a cop-winning configurations violating the assumed minimality of π. ◀

Proof of Theorem 9. We will follow the ideas from [8] of reducing the Periodic Cop &
Robber problem to a variant of the And-Or Graph Reachability problem. Therefore,
we will need the notion of attractors in an And-Or graph. Let G = (V, E) be an And-Or
graph with V = V∧ ∪ V∨. Instead of considering a single target, we consider a set T of targets
and say that player 0 wins if the token finally reaches any state in T . Let s ∈ V be the start
vertex. Intuitively, the set of attractors of G is the set of vertices from which player 0 can
win the game. More formally, we inductively define the set of attractors Attr of T as:

Attr0 = T,

Attri+1 = Attri ∪{v ∈ V∧ | ∀{u, v} ∈ E : u ∈ Attri} ∪
{v ∈ V∨ | ∃{u, v} ∈ E : u ∈ Attri},

Attr =
⋃
i≥0

Attri .

Let G = (V, E, τ) be the input edge periodic graph and let CG = (VCG , ECG ) be the
configuration graph of G. We will also identify CG as an And-Or graph by declaring nodes
(uc, ur, s, t) of CG with s = c as Or vertices and nodes with s = r as And vertices. We
define the set of nodes T = {(uc, ur, s, t) ∈ VCG | uc = ur} as the target set of the And-Or
graph CG . We will now prove that the ideas from [8] of solving the Periodic Cop & Robber
game by checking if (i) there is some vertex uc such that for all vertices ur ∈ V , the node
(uc, ur, c, 0) ∈ VCG is an attractor in the And-Or graph CG , can be implemented in polynomial
space. Note that the set of attractors in CG corresponds to the set of configurations from
which the cop has a winning strategy. We use Lemma 10 to unroll the configuration graph
in order to obtain a leveled directed acyclic graph (DAG) which has width n2 in each level
and through which we can sweep level by level in order to verify property (i).

By Lemma 10 we know that in order to verify property (i) it is sufficient to consider
paths of length at most 2n2 · lcm(LG) in CG (the factor 2 is due to the alternation of players).
As the configuration graph is cyclic (due to modulo counting by lcm(LG)) we unroll the
graph n2 times to allow for different time steps up to n2 · lcm(LG). The obtain DAG is big
enough to contain any shortest chase starting in any time step t ≤ lcm(LG). The so obtained
graph C′

G consists of the node set VC′
G

= V × V × {c, r} × [n2 · lcm(LG)] and the edge set EC′
G
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extending ECG as ((uc, ur, s, t), (u′
c, u′

r, s′, t′)) ∈ EC′
G

if and only if t′ ∈ {t, t + 1}, ((uc, ur, s, t

mod lcm(LG)), (u′
c, u′

r, s′, t′ mod lcm(LG)) ∈ ECG and t, t′ ≤ n2 · lcm(LG) − 1. Verifying
property (i) then corresponds to a reachability game in the And-Or graph associated with
C′

G with target set T = {(uc, ur, s, t) ∈ VC′
G

| uc = ur} which can be solved using the notion of
attractors. Note that in C′

G only nodes with identical time steps or t and t + 1 are connected.
Hence, in order to compute which nodes with time step t belong to the set of attractors, we
need to only know which nodes with time step t + 1 are attractors. Since C′

G is a DAG we
can start in the level with t = n2 · lcm(LG) − 1 of C′

G .

Attrn2·lcm(LG)−1
r := {(uc, ur, r, n2 · lcm(LG) − 1) | uc = ur},

Attr t
r :={(uc, ur, r, t) | ∀((uc, ur, r, t), (uc, u′

r, c, t + 1)) ∈ EC′
G

: (uc, u′
r, c, t + 1)

∈ Attr t+1
c } ∪ {(uc, ur, r, t) | uc = ur}, for n2 · lcm(LG) − 2 ≥ t ≥ 0,

Attr t
c :={(uc, ur, c, t) | ∃((uc, ur, c, t), (u′

c, ur, r, t)) ∈ EC′
G

: (u′
c, ur, r, t) ∈ Attr t

r}

∪ {(uc, ur, c, t) | uc = ur}, for n2 · lcm(LG) − 1 ≥ t ≥ 0.

For each level n2 · lcm(LG) − 1 ≥ t ≥ 0 we only need to keep the last level (t + 1 if existent)1

of C′
G in memory in order to compute the sets Attr t

c and Attr t
r of nodes (uc, ur, s, t) in

C′
G from which the cop has a winning strategy where s equals the sub-script. Note that⋃
0≤t≤n2·lcm(LG)−1 Attr t

c ∪ Attr t
r = Attr . In order to verify property (i) we only need to keep

the current and latest sets Attr t
c, Attr t

r, Attr t+1
c , Attr t+1

r in memory yielding a polynomial
space algorithm. ◀

6 Discussion

While we improved the currently known upper bound for the Periodic Cop & Robber
problem on edge periodic graphs from EXPTIME to PSPACE and improved the lower bounds,
of being NP-hard, to include also the very restrictive classes of directed and undirected
edge periodic cycles, a gap in the complexity of Periodic Cop & Robber remains. It is
worth noticing that on one side the chosen representation of edge periodic graphs is quite
compact, as a natural proof for a cop-winning strategy might be of exponential length in
the input size, since the periodicity of the whole graph is the least common multiple of the
periodicity of each edge, which prevents the use of a simple guess & check approach for
NP-membership. On the other side, the chosen representation is still exponentially larger
than the representation by on-line programs used in [17] where PSPACE-completeness for
the reachability problem on a related but different class of periodic TVGs was obtained.

If we consider directed edge periodic cycles, then determining whether the given cycle is
cop-winning boils down to deterministically simulating the chase starting from a (guessed)
cop vertex and time step, as the optimal strategies for the cop and robber are both to keep
running whenever possible (without bumping into the cop). For the robber the optimal start
vertex is directly behind the cop. Since lcm(LG) can be exponentially large in the size of G
the only known upper bound on the number of steps in the simulation of the chase starting
in time step t is exponential in the size of G, while the chase does not reveal any complexity.
The simulation could even be performed by a log-space Turing-Machine being equipped with

1 Note that we can easily compute the snapshot G(n2 · lcm(LG)) = G(0) by drawing all edges with
τ(e)[0]◦ = 1; and from G(t) for some time step t, the snapshot G(t − 1) by shifting the pointer in each
τ(e) one step to the left. Therefore, we can compute from each level t + 1 of C′

G the level t in polynomial
time and space.
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a clock which allows for modulo queries of logarithmic size. To better understand the precise
complexity of Periodic Cop & Robber on directed edge periodic cycles, the theoretical
analysis of potential families of cycles with shortest cop-winning strategies of exponential
size would be of great interest and might indicate the necessity for a new complexity class
consisting of simple simulation problems with exponential duration time.
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A Details on Lemma 6

We explicitly give the edge periodic cycles for k = 2, k = 3, and k = 4 in the proof of Lemma 6.
For k = 2 and k = 3 the chase of the cop will be shorter than described in Table 1 and for
k ≥ 4 the chase will be exactly as described in general in Table 1. The edge periodic cycle
for k = 2 is depicted in Figure 6 and the chase is described in Table 2. For k = 3 the edge
periodic cycle is depicted in Figure 7 and the chase is described in Table 3. Finally, for k = 4,
the edge periodic cycle is depicted in Figure 8 and the explicit chase is described in Table 4.
Note that Table 4 is identical to Table 1 if we set k = 4 in Table 1.

0 1

2
34

5

6 10

0110

Figure 6 Edge periodic cycle for the case k = 2 in Lemma 6 with 4 · k − 1 = 7 vertices and
lcm(LG) = 2 with a cop winning strategy from the start vertex marked in red. Edges without edge
label are 1-edges; for all other edges, τ(e) is explicitly noted (with gray background).

Table 2 Time steps with corresponding positions of cop and robber in the edge periodic cycle
depicted in Figure 6. All positions are after moving in this time step. The time step s denotes the
start configuration. Recall that the cop moves first.

time step pos. cop pos. robber
s 0 3
0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 0
6 0 A

time step pos. cop pos. robber
s 0 4
0 6 4
1 5 3
2 4 2
3 3 1
4 2 0
5 1 6
6 0 5
7 6 5
8 5 A
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0 1 2

3

45678

9 10 100

001100

Figure 7 Edge periodic cycle for the case k = 3 in Lemma 6 with 4 · k − 1 = 11 vertices and
lcm(LG) = 3 with a cop winning strategy from the start vertex marked in red. Edges without edge
label are 1-edges; for all other edges, τ(e) is explicitly noted (with gray background).

Table 3 Time steps with corresponding positions of cop and robber in the edge periodic cycle
depicted in Figure 7. All positions are after moving in this time step. The time step s denotes the
start configuration. Recall that the cop moves first.

time step pos. cop pos. robber
s 0 5
0 1 5
1 2 5
2 3 6
3 4 7
4 5 7
5 6 7
6 7 A

time step pos. cop pos. robber
s 0 6
0 10 6
1 9 6
2 8 5
3 7 4
4 6 3
5 5 2
6 4 1
7 3 1
8 2 1
9 1 A

0 1 2 3

4

5678910

11

12 13 14 1000

0001
1000

Figure 8 Edge periodic cycle for the case k = 4 in Lemma 6 with 4 · k − 1 = 15 vertices and
lcm(LG) = 4 with a cop winning strategy from the start vertex marked in red. Edges without edge
label are constant 1-edges; for all other edges, τ(e) is explicitly noted (with gray background).
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Table 4 Time steps with corresponding positions of cop and robber in the edge periodic cycle
depicted in Figure 8. Note that the position of the cop and robber are as described in Table 1 for
the general case of k ≥ 4. All positions are after moving in this time step. The time step s denotes
the start configuration. Recall that the cop moves first.

time step pos. cop pos. robber
s 0 7
0 1 7
1 2 7
2 3 7
3 4 8
4 5 9
5 6 10
6 7 10
7 8 10
8 9 11
9 10 12

10 10 13
11 10 14
12 11 0
13 12 0
14 13 0
15 14 0
16 0 A

time step pos. cop pos. robber
s 0 8
0 14 8
1 13 8
2 12 8
3 11 7
4 10 6
5 9 5
6 8 4
7 7 3
8 6 2
9 5 1

10 4 1
11 3 1
12 2 0
13 1 14
14 1 13
15 1 12
16 0 11
17 14 11
18 13 11
19 12 11
20 11 A

B Details on Lemma 8

We explicitly give the edge periodic cycle for k = 4 in the proof of Lemma 8. The edge
periodic cycle is depicted in Figure 9 and the explicit chase is described in Table 5.
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Figure 9 Cycle with 23 = 6k − 1 vertices and lcm(LG) = 12 = 3k with a cop winning strategy
from the start vertex 0 where k = 4. Edges without an explicit label are 1-edges.
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Table 5 Time steps with corresponding positions of cop and robber in the edge periodic cycle
depicted in Figure 9. All positions are after moving in this time step. The time step s denotes the
start configuration. Recall that the cop moves first.

time step pos. cop pos. robber
s 0 11
0 1 11
1 2 11
2 3 11
3 4 12
4 5 13
5 6 14
6 7 14
7 8 14
8 9 15
9 10 15

10 11 15
11 12 16
12 13 17
13 14 17
14 15 18
15 16 19
16 17 19
17 18 19
18 19 A

time step pos. cop pos. robber
s 0 12
0 22 12
1 21 12
2 20 12
3 19 11
4 18 10
5 17 9
6 16 9
7 15 9
8 14 8
9 13 8

10 12 8
11 11 7
12 10 6
13 9 6
14 8 5
15 7 4
16 6 4
17 5 4
18 4 A
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Abstract
Nondeterministic automata may be viewed as succinct programs implementing deterministic auto-
mata, i.e. complete specifications. Converting a given deterministic automaton into a small non-
deterministic one is known to be computationally very hard; in fact, the ensuing decision problem is
PSPACE-complete. This paper stands in stark contrast to the status quo. We restrict attention to
subatomic nondeterministic automata, whose individual states accept unions of syntactic congruence
classes. They are general enough to cover almost all structural results concerning nondeterministic
state-minimality. We prove that converting a monoid recognizing a regular language into a small
subatomic acceptor corresponds to an NP-complete problem. The NP certificates are solutions of
simple equations involving relations over the syntactic monoid. We also consider the subclass of
atomic nondeterministic automata introduced by Brzozowski and Tamm. Given a deterministic
automaton and another one for the reversed language, computing small atomic acceptors is shown to
be NP-complete with analogous certificates. Our complexity results emerge from an algebraic char-
acterization of (sub)atomic acceptors in terms of deterministic automata with semilattice structure,
combined with an equivalence of categories leading to succinct representations.
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1 Introduction

Regular languages arise from a multitude of different perspectives: operationally via finite-
state machines, model-theoretically via monadic second-order logic, and algebraically via
finite monoids. In practice, deterministic finite automata (dfas) and nondeterministic finite
automata (nfas) are two of the most common representations. Although the former may be
exponentially larger than the latter, there is no known efficient procedure for converting dfas
into small nfas, e.g. state-minimal ones. Jiang and Ravikumar proved the corresponding
decision problem (does an equivalent nfa with a given number of states exist?) to be PSPACE-
complete [14, 15], suggesting that exhaustively enumerating candidates is necessary. One
possible strategy towards tractability is to restrict the target automata to suitable subclasses
of nfas. The challenge is to identify subclasses permitting more efficient computation (e.g.
lowering the PSPACE bound to an NP bound, enabling the use of SAT solvers), while still
being general enough to cover succinct acceptors of regular languages.

In our present paper we will show that the class of subatomic nfas naturally meets the above
requirements. An nfa accepting the language L is subatomic if each individual state accepts
a union of syntactic congruence classes of L. In recent work [26] we observed that almost
all known results on the structure of small nfas, e.g. for unary [6, 13], bideterministic [30],
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topological [1] and biRFSA languages [19], implicitly construct small subatomic nfas. This
firmly indicates that the latter form a rich class of acceptors despite their seemingly restrictive
definition, i.e. in many settings computing small nfas amounts to computing small subatomic
ones. Restricting to subatomic nfas yields useful additional structure; in fact, their theory is
tightly linked to the algebraic theory of regular languages and the representation theory of
monoids. This suggests an algebraic counterpart of the dfa to nfa conversion problem: given
a finite monoid recognizing some regular language, compute an equivalent small subatomic
nfa. Denoting its decision version (does an equivalent subatomic nfa with a given number of
states exist?) by MON→ NFAsyn, our main result is:

▶ Theorem. The problem MON→ NFAsyn is NP-complete.

In addition we also investigate atomic nfas, a subclass of subatomic nfas earlier introduced by
Brzozowski and Tamm [4]. Similar to the subatomic case, their specific structure naturally
invokes the problem of converting a pair of dfas accepting mutually reversed languages into
a small atomic nfa. Denoting its decision version by DFA + DFAr → NFAatm, we get:

▶ Theorem. The problem DFA + DFAr → NFAatm is NP-complete.

The short certificates witnessing that both problems are in NP are solutions of equations
involving relations over the syntactic congruence or the Nerode left congruence, respectively.

The above two theorems sharply contrast the PSPACE-completeness of the general dfa to
nfa conversion problem, but also previous results on its sub-PSPACE variants. The latter are
either concerned with particular regular languages such as finite or unary ones [11,13], or
with target nfas admitting only very weak forms of nondeterminism, such as unambiguous
automata [15] or dfas with multiple initial states [22]. In contrast, our present work applies
to all regular languages and the restriction to (sub)atomic nfas is a purely semantic one.

Our results are fundamentally based upon a category-theoretic perspective on atomic
and subatomic acceptors. At its heart are two equivalences of categories as indicated below:

JSLop
f

≃←−−−−−−−−−−→
Structure theory

JSLf
≃←−−−−−−−−−−−→

Complexity theory
Dep.

As shown in [26], the structure theory of (sub)atomic nfas emerges by interpreting them as
dfas endowed with semilattice structure, and relating them to their dual automata under
the familiar self-duality of the category JSLf of finite semilattices. Similarly, the complexity
theory of (sub)atomic nfas developed in the present paper rests on the equivalence between
JSLf and a category Dep (see Definition 3.1) that yields succinct relational representations
of finite semilattices by their irreducible elements. To derive the NP-completeness theorems,
we reinterpret semilattice automata associated to (sub)atomic nfas inside Dep. We regard
this conceptually simple and natural categorical approach as a key contribution of our paper.

2 Atomic and Subatomic NFAs

We start by setting up the notation and terminology used in the rest of the paper, including
the key concept of a (sub)atomic nfa that underlies our complexity results. Readers are
assumed to be familiar with basic category [21].

Semilattices. A (join-)semilattice is a poset (S,≤S) in which every finite subset X ⊆ S has
a least upper bound (a.k.a. join)

∨
X. A morphism between semilattices is a map preserving

finite joins. If S is finite as we often assume, every subset X ⊆ S also has a greatest lower



R. S. R. Myers and H. Urbat 78:3

bound (a.k.a. meet)
∧

X, given by the join of its lower bounds. In particular, S has a least
element ⊥S =

∨
∅ and a greatest element ⊤S =

∧
∅. An element j ∈ S is join-irreducible

if j =
∨

X implies j ∈ X for every subset X ⊆ S. Dually, m ∈ S is meet-irreducible if
m =

∧
X implies m ∈ X. We put

J(S) = { j ∈ S : j is join-irreducible } and M(S) = {m ∈ S : m is meet-irreducible }.

Note ⊥S ̸∈ J(S) and ⊤S ̸∈M(S). The join-irreducibles form the least set of join-generators
of S, i.e. every element of S is a join of elements from J(S), and every other subset J ⊆ S

with that property contains J(S). Dually, M(S) is the least set of meet-generators of S.
Let 2 = {0, 1} be the two-element semilattice with 0 ≤ 1. Morphisms i : 2 → S

correspond to elements of S via i 7→ i(1). Morphisms f : S → 2 correspond to prime filters
via f 7→ f−1[1]. If S is finite, these are precisely the subsets Fs0 = {s ∈ S : s ̸≤S s0} for any
s0 ∈ S.

We denote by JSL the category of join-semilattices and their morphisms. Its full
subcategory JSLf of finite semilattices is self-dual [17]: there is an equivalence functor

JSLop
f

≃−→ JSLf

mapping (S,≤S) to the opposite semilattice Sop = (S,≥S) obtained by reversing the order,
and a morphism f : S → T to the morphism f∗ : T op → Sop sending t ∈ T to the ≤S-greatest
element s ∈ S with f(s) ≤T t. Thus, f and f∗ satisfy the adjoint relationship

f(s) ≤T t iff s ≤S f∗(t)

for all s ∈ S and t ∈ T . The morphism f is injective (equivalently a JSLf -monomorphism)
iff f∗ is surjective (equivalently a JSLf -epimorphism).

Relations. A relation between sets X and Y is a subset R ⊆ X × Y . We write R(x, y) if
(x, y) ∈ R. For x ∈ X and A ⊆ X we put

R[x] = { y ∈ Y : R(x, y) } and R[A] =
⋃

x∈A

R[x].

The converse of R is the relation R̆ ⊆ Y ×X (alternatively R̆ ) where R̆(y, x) iff R(x, y) for
x ∈ X and y ∈ Y . The composite of R ⊆ X×Y and S ⊆ Y ×Z is the relation R;S ⊆ X×Z

where R(x, z) iff there exists y ∈ Y with R(x, y) and S(y, z). Let Rel denote the category
whose objects are sets and whose morphisms are relations with the above composition. The
identity morphism on X is the identity relation idX ⊆ X ×X with idX(x, y) iff x = y.

A biclique of a relation R ⊆ X × Y is subset of the form B1 ×B2 ⊆ R, where B1 ⊆ X

and B2 ⊆ Y . A set C of bicliques forms a biclique cover if R =
⋃
C. The bipartite dimension

of R, denoted dim(R), is the minimum cardinality of any biclique cover.

Languages. Let Σ∗ be the set of finite words over an alphabet Σ including the empty
word ε. A language is a subset L of Σ∗. We let L = Σ∗ \ L denote the complement and
Lr = {wr : w ∈ L} the reverse of L, where εr = ε and wr = an . . . a1 for w = a1 . . . an. The
left derivatives and two-sided derivatives of L are, respectively, given by u−1L = {w ∈ Σ∗ :
uw ∈ L} and u−1Lv−1 = {w ∈ Σ∗ : uwv ∈ L} for u, v ∈ Σ∗; moreover for U ⊆ Σ∗ put
U−1L =

⋃
u∈U u−1L. For each fixed L ⊆ Σ∗, the following sets of languages will play a

prominent role:

LD(L) ⊆ SLD(L) ⊆ BLD(L) ⊆ BLRD(L)
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where LD(L) = {u−1L : u ∈ Σ∗} is the set of left derivatives, and SLD(L), BLD(L), BLRD(L)
denote its closure under finite unions, all set-theoretic boolean operations, and all set-
theoretic boolean operations and two-sided derivatives, respectively. The final three form
∪-semilattices, and the final two are boolean algebras w.r.t. the set-theoretic operations.

A language L is regular if LD(L) is a finite set; then the other three sets are finite too.
The finite semilattices SLD(L) and SLD(Lr) are related by the fundamental isomorphism

drL : [SLD(Lr)]op ∼=−→ SLD(L), K 7→ (Kr)−1L, (2.1)

see [26, Proposition 3.13]. Equivalently, the map drL sends V −1Lr ∈ SLD(Lr) to the largest
element of SLD(L) disjoint from V r. It is closely connected to the dependency relation of L,

DRL ⊆ LD(L)× LD(Lr), DRL(u−1L, v−1Lr) :⇐⇒ uvr ∈ L for u, v ∈ Σ∗. (2.2)

In fact, by [26, Theorem 3.15] we have

DRL(u−1L, v−1Lr) ⇐⇒ u−1L ̸⊆ drL(v−1Lr) for u, v ∈ Σ∗. (2.3)

Since the boolean algebra BLD(L) is generated by the left derivatives of L, its atoms (=
join-irreducibles) are the congruence classes of the Nerode left congruence ∼L ⊆ Σ∗ × Σ∗,

u ∼L v iff ∀x ∈ Σ∗ : u ∈ x−1L⇔ v ∈ x−1L iff (ur)−1Lr = (vr)−1Lr. (2.4)

Note that this relation is left-invariant, i.e. u ∼L v implies wu ∼L wv for all w ∈ Σ∗.
Similarly, the atoms of BLRD(L) are the congruence classes of the syntactic congruence

≡L ⊆ Σ∗ × Σ∗, i.e. the monoid congruence on the free monoid Σ∗ defined by

u ≡L v iff ∀x, y ∈ Σ∗ : u ∈ x−1Ly−1 ⇔ v ∈ x−1Ly−1. (2.5)

The quotient monoid syn(L) = Σ∗/≡L is called the syntactic monoid of L, and the canonical
map µL : Σ∗ ↠ syn(L) sending u ∈ Σ∗ to its congruence class [u]≡L

is the syntactic morphism.

Automata. Fix a finite alphabet Σ. A nondeterministic finite automaton (a.k.a. nfa)
N = (Q, δ, I, F ) consists of a finite set Q (the states), relations δ = (δa ⊆ Q×Q)a∈Σ (the
transitions), and sets I, F ⊆ Q (the initial states and final states). We write q1

a−→ q2 whenever
q2 ∈ δa[q1]. The language L(N, q) accepted by a state q ∈ Q consists of all words w ∈ Σ∗

such that δw[q] ∩ F ̸= ∅, where δw ⊆ Q×Q is the extended transition relation δa1 ; . . . ; δan

for w = a1 . . . an and δε = idQ. The language accepted by N is defined L(N) =
⋃

i∈I L(N, i).
An nfa N is a deterministic finite automaton (a.k.a. dfa) if I = {q0} is a singleton set

and each transition relation is a function δa : Q → Q. A dfa is a JSL-dfa if Q is a finite
semilattice, each δa : Q→ Q is a semilattice morphism, and F ⊆ Q forms a prime filter. It is
often useful to represent a JSL-dfa in terms of morphisms

2
i−→ Q

δa−→ Q
f−→ 2

where i is the unique morphism with i(1) = q0 and f is given by f(q) = 1 iff q ∈ F . A JSL-
dfa morphism from A = (Q, δ, i, f) to A′ = (Q′, δ′, i′, f ′) is a JSLf -morphism h : Q → Q′

preserving transitions via h ◦ δa = δ′
a ◦ h, preserving the initial state via i′ = h ◦ i, and both

preserving and reflecting the final states via f = f ′ ◦ h. Equivalently, h is a dfa morphism
that is also a semilattice morphism, so in particular L(A) = L(A′). If Q is a subsemilattice
of Q′ and h : Q ↣ Q′ is the inclusion map, then A is called a sub JSL-dfa of A′.
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Fix a regular language L. Viewed as a ∪-semilattice, BLRD(L) carries the structure of a
JSL-dfa with transitions K

a−→ a−1K, initial state L, and finals {K : ε ∈ K}. This restricts
to sub JSL-dfas BLD(L) and SLD(L). Moreover LD(L) forms a sub-dfa of SLD(L), well-
known [5] to be the state-minimal dfa for L, so we denote it by dfa(L). The syntactic monoid
syn(L) is isomorphic to the transition monoid of dfa(L), i.e. the monoid of all extended
transition maps δw : LD(L)→ LD(L) (w ∈ Σ∗) with multiplication given by composition [27].

Analogously SLD(L) is the state-minimal JSL-dfa for L. Up to isomorphism, it is the
unique JSL-dfa for L that is JSL-reachable (i.e. every state is a join of states reachable from
the initial state via transitions) and simple (i.e. distinct states accept distinct languages).

Nfas, dfas and JSL-dfas are expressively equivalent and accept precisely the regular
languages. In particular, to every JSL-dfa A = (Q, δ, q0, F ) one can associate an equivalent
nfa J(A), the nfa of join-irreducibles [1, 2, 25]. Its states are given by the set J(Q) of
join-irreducibles of Q; for any q1, q2 ∈ J(Q) and a ∈ Σ there is a transition q1

a−→ q2 in J(A)
iff q2 ≤Q δa(q1); a state q ∈ J(Q) is initial iff q ≤S q0, and final iff q ∈ F . For any q ∈ J(Q),
we have L(A, q) = L(J(A), q). The canonical residual finite state automaton [7] for a regular
language L is given by NL = J(SLD(L)), the nfa of join-irreducibles of its minimal JSL-dfa.

Atomic and subatomic nfas. An nfa accepting the language L ⊆ Σ∗ is called atomic [4]
if each state accepts a language from BLD(L), and subatomic [26] if each state accepts a
language from BLRD(L). The nondeterministic atomic complexity natm(L) of a regular
language L is the least number of states of any atomic nfa accepting L. The nondeterministic
syntactic complexity nsyn(L) is the least number of states of any subatomic nfa accepting
L. Subatomic nfas are intimately connected to syntactic monoids: the atoms of BLRD(L)
are the elements of syn(L), so an nfa accepting L is subatomic iff its individual states
accept unions of syntactic congruence classes. Additionally nsyn(L) can be characterized via
boolean representations of syn(L), i.e. monoid morphisms ϱ : syn(L)→ JSLf (S, S) into the
endomorphisms of a finite semilattice [26]. For a detailed exposition we refer to op. cit.

These complexity measures are related to the nondeterministic state complexity ns(L),
i.e. the least number of states of any (unrestricted) nfa accepting L. In particular,

dim(DRL) ≤ ns(L) ≤ nsyn(L) ≤ natm(L). (2.6)

The first inequality is due to Gruber and Holzer [10] (see also [26, Theorem 4.8] for a purely
algebraic proof), while the others arise by restricting admissible nondeterministic acceptors.

Importantly, small atomic and subatomic nfas can be characterized in terms of JSL-dfas.
The following theorem involves two commuting diagrams of semilattice morphisms, whose
lower and upper paths are the canonical JSL-dfas described earlier.

▶ Theorem 2.1. Let L ⊆ Σ∗ be a regular language.

1. natm(L) is the least number k such that there exists a finite semilattice S with |J(S)| ≤ k

and JSLf -morphisms p, q and τa (a ∈ Σ) making the left-hand diagram below commute.

2. nsyn(L) is the least number k such that there exists a finite semilattice S with |J(S)| ≤ k

and JSLf -morphisms p, q and τa (a ∈ Σ) making the right-hand diagram below commute.

MFCS 2021



78:6 Syntactic Minimization of Nondeterministic Finite Automata

BLD(L)
δ′

a // BLD(L)
f ′

##
2

i′
;;

i
##

S

q

OO

τa // S

q

OO

2

SLD(L)

p

OO

δa

// SLD(L)

p

OO

f

;;

BLRD(L)
δ′′

a // BLRD(L)
f ′′

##
2

i′′
;;

i
##

S

q

OO

τa // S

q

OO

2

SLD(L)

p

OO

δa

// SLD(L)

p

OO

f

;;

Proof. We only prove part (1), the proof of (2) being completely analogous.

Suppose there exists a finite semilattice S with |J(S)| = k and JSLf -morphisms p, q and
(τa)a∈Σ making the left diagram commute. Then A = (S, τ, p ◦ i, f ′ ◦ q) is a JSL-dfa and
p : SLD(L) → A and q : A → BLD(L) are JSL-dfa morphisms. Since JSL-dfa morphisms
preserve the accepted language, and every state K ∈ BLD(L) accepts the language K, it
follows that A accepts L and every state of A accepts a language from BLD(L). Thus the
nfa J(A) of join-irreducibles corresponding to A is an atomic nfa for L with k states.

Conversely, assume N = (Q, δ, I, F ) is a k-state atomic nfa accepting L. Form the ∪-
semilattice S = langs(N) of all languages L(N, X) accepted by subsets X ⊆ Q. Note that
SLD(L) ⊆ S ⊆ BLD(L): the first inclusion holds because u−1L = L(N, δw[I]) ∈ S for every
u ∈ Σ∗, and the second one because N is atomic. We define the semilattice endomorphisms

τa : S → S by τa(K) = a−1K for K ∈ S,

Letting p : SLD(L) ↣ S and q : S ↣ BLD(L) denote the inclusions, the left diagram
commutes. Moreover |J(S)| ≤ k since S is join-generated by the elements L(N, q) for
q ∈ Q. ◀

3 Representing Finite Semilattices as Finite Relations

We have seen that atomic and subatomic nfas amount to certain dfas with semilattice structure.
To obtain our NP-completeness results concerning the computation of small (sub)atomic
acceptors we will study succinct representations of the corresponding JSLf -diagrams from
Theorem 2.1. For this purpose, we start with the following key observation:

Any finite semilattice S is completely determined by its poset of irreducibles [23], i.e.
the relation ̸≤S ⊆ J(S)×M(S) between join-irreducibles and meet-irreducibles.

We now prove that this extends to an equivalence between the category JSLf of finite
semilattices and another category called Dep. Its objects are the relations between finite sets
and its morphisms represent semilattice morphisms as relations. The equivalence is inspired
by Moshier’s categories of contexts [16,24] and will serve as the conceptual basis of our work.

▶ Definition 3.1 (The category of dependency relations). The objects of the category Dep
are the relations R ⊆ Rs ×Rt between finite sets. Far less obviously,

a morphism P : R → S is a relation P ⊆ Rs ×St that factorizes through R and S, i.e.
the left Rel-diagram below commutes for some Pl ⊆ Rs × Ss and Pu ⊆ St ×Rt.

The identity morphism for R is idR = R, see the central diagram below. The composite
P#Q : R → T of P : R → S andQ : S → T is any of the five equivalent relational compositions
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starting from the bottom left corner and ending at the top right corner of the rightmost
diagram below; that is, P #Q := Pl;Ql; T = Pl;Q = Pl;S; Q̆u = P; Q̆u = R;Pŭ; Q̆u. (Note
that we use the symbol # for composition in Dep and ; for composition in Rel, and recall
that (−)̆ denotes the converse relation.)

Rt
Pŭ // St

Rs

R

OO

P
88

Pl

// Ss

S

OO
Rt

id̆ // Rt

Rs

R

OO

R
88

id
// Rs

R

OO
Rt

Pŭ // St
Q̆u // Tt

Rs

R

OO

P
88

Pl

// Ss

S

OO
Q

88

Ql

// Ts

T

OO

One readily verifies that Dep is a well-defined category; in particular, the composition is
independent of the choice of the lower and upper witnesses (−)l and (−)u.

▶ Remark 3.2.
1. Using the converse upper witness may seem strange. Although technically unnecessary,

it fits the self-duality of Dep taking the converse on objects and morphisms. Moreover
f ;≰T = ≰S ; f∗̆ for any JSLf -morphism f : S → T via the adjoint relationship; that is, f

induces a Dep-morphism from ̸≤S to ̸≤T with lower witness f and upper witness f∗.
2. The witnesses of a Dep-morphism P : R → S are closed under unions. The maximal

lower witness P− ⊆ Rs × Ss is given by

P−(x, y) :⇐⇒ S[y] ⊆ P [x] for x ∈ Rs, y ∈ Ss,

and the maximal upper witness P+ ⊆ St ×Rt by

P+(y, x) :⇐⇒ R̆[x] ⊆ P̆[y] for x ∈ Rt, y ∈ St.

▶ Theorem 3.3 (Fundamental equivalence). The categories JSLf and Dep are equivalent.

1. The equivalence functor Pirr : JSLf → Dep maps a finite semilattice S to the Dep-object

Pirr(S) := ̸≤S ⊆ J(S)×M(S),

and a JSLf -morphism f : S → T to the Dep-morphism

Pirr(f) : Pirr(S)→ Pirr(T ), Pirr(f)(j, m) :⇔ f(j) ̸≤T m for j ∈ J(S), m ∈M(T ).

2. The inverse Open : Dep→ JSLf maps a Dep-object R to its semilattice of open sets

Open(R) := ({R[X] : X ⊆ Rs},⊆),

and a Dep-morphism P : R → S to the JSLf -morphism

Open(P) : Open(R)→ Open(S), Open(P)(O) := P+̆[O] for O ∈ Open(R),

where P+ ⊆ St ×Rt is the maximal upper witness of P.

▶ Remark 3.4. In the definition of Pirr(S) one may replace J(S) and M(S) by any two
sets J, M ⊆ S of join- and meet-generators modulo Dep-isomorphism. Indeed, since the
equivalence functor Open reflects isomorphisms, this follows immediately from the JSLf -
isomorphism Open( ̸≤S ∩ J ×M) ∼= Open( ̸≤S ∩ J(S)×M(S)) given by O 7→ O ∩M(S).

▶ Remark 3.5. Bijectively relabeling the domain and codomain of a relation defines a
Dep-isomorphism, the witnesses being the relabelings.
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We now show that for every regular language L, the semilattices SLD(L), BLD(L) and
BLRD(L) equipped with their canonical JSL-dfa structure (see Section 2) translate under
the equivalence functor Pirr into familiar concepts from automata theory. The translations
are summarized in Table 1 and explained in Examples 3.6–3.8 below.

Table 1 Canonical JSL-dfas and their corresponding Dep-structures.

JSLf Dep

2
i−→ SLD(L) δa−→ SLD(L) f−→ 2 id1

I−→ DRL

DRL,a−−−−→ DRL
F−→ id1

2
i′
−→ BLD(L)

δ′
a−→ BLD(L) f ′

−→ 2 id1
I′
−→ idΣ∗/∼L

D′
a−−→ idΣ∗/∼L

F′
−−→ id1

2
i′′
−→ BLRD(L)

δ′′
a−−→ BLRD(L) f ′′

−−→ 2 id1
I′′
−−→ idsyn(L)

D′′
a−−→ idsyn(L)

F′′
−−→ id1

▶ Example 3.6 (State-minimal JSL-dfa vs. dependency relation DRL). Let us start with
the observation that SLD(L) is join-generated by LD(L) and meet-generated by drL[LD(Lr)].
The latter follows via the fundamental isomorphism (2.1). Then

Pirr(SLD(L))(u−1L, drL(v−1Lr)) def.⇐⇒ u−1L ⊈ drL(v−1Lr) (2.3)⇐⇒ DRL(u−1L, v−1Lr)

for every u−1L ∈ J(SLD(L)) and v−1Lr ∈ J(SLD(Lr)). Thus,

Pirr(SLD(L)) is a bijective relabeling of DRL restricted to J(SLD(L))× J(SLD(Lr)).

By Remark 3.4 we know Pirr(SLD(L)) is isomorphic to the domain-codomain extension
⊈ ⊆ LD(L) × drL[LD(Lr)] and thus also to the dependency relation DRL by Remark
3.5. Then the JSL-dfa structure of the semilattice SLD(L) translates into the category of
dependency relations as shown in Table 1, where id1 is the identity relation on 1 = {∗} and

I ⊆ 1× LD(Lr), DRL,a ⊆ LD(L)× LD(Lr), F ⊆ LD(L)× 1,

I(∗, v−1Lr)⇔ v ∈ Lr, DRL,a(u−1L, v−1Lr)⇔ uavr ∈ L, F(u−1L, ∗)⇔ u ∈ L.

▶ Example 3.7 (BLD(L) vs. the Nerode left congruence ∼L). In Section 2 we observed that
the atoms of the boolean algebra BLD(L) are the congruence classes of the Nerode left
congruence. Then the co-atoms are their relative complements, and

Pirr(BLD(L))([u]∼L
, [v]∼L

) def.⇐==⇒ [u]∼L
̸⊆ [v]∼L

⇐⇒ [u]∼L
= [v]∼L

.

By Remark 3.5, we see that BLD(L) corresponds to the Dep-object idΣ∗/∼L
, and its JSL-dfa

structure translates into the category of dependency relations as indicated in Table 1, where

I ′ ⊆ 1× Σ∗/∼L, D′
a ⊆ Σ∗/∼L × Σ∗/∼L, F ′ ⊆ Σ∗/∼L × 1,

I ′(∗, [u]∼L
)⇔ u ∈ L, D′

a([u]∼L
, [v]∼L

)⇔ [v]∼L
⊆ a−1[u]∼L

, F ′([u]∼L
, ∗)⇔ u ∼L ε.

We note that the above relations induce an nfa

(Σ∗/∼L, (D′
a)a∈Σ, I ′[∗], F̆ ′[∗]) known as the átomaton for the language L [4].

▶ Example 3.8 (BLRD(L) vs. the syntactic monoid syn(L)). Analogously, the boolean algebra
BLRD(L) corresponds to the Dep-object idsyn(L). Its semilattice dfa structure translates into
the category of dependency relations as shown in Table 1, where

I ′′ ⊆ 1× syn(L), D′′
a ⊆ syn(L)× syn(L), F ′′ ⊆ syn(L)× 1,

I ′′(∗, [u]≡L
)⇔ u ∈ L, D′′

a([u]≡L
, [v]≡L

)⇔ [v]≡L
⊆ a−1[u]≡L

, F ′′([u]≡L
, ∗)⇔ u ≡L ε.
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We conclude this section with two lemmas establishing important properties of the
equivalence. The first concerns the bipartite dimension of relations (see Section 2):

▶ Lemma 3.9. Let R be a relation between finite sets.
1. dim(R) is the least |J(S)| of any injective JSLf -morphism m : Open(R) ↣ S.
2. dim(R) is invariant under isomorphism, i.e. R ∼= S in Dep implies dim(R) = dim(S).
The second explicitly describes the join- and meet-irreducibles of the semilattice Open(R).

▶ Notation 3.10. For R ⊆ Rs ×Rt we define the following operator on the power set of Rt:

inR : P(Rt)→ P(Rt), Y 7→
⋃
{R[X] : X ⊆ Rs and R[X] ⊆ Y }.

Thus, inR(Y ) is the largest open set of R contained in Y ⊆ Rt.

▶ Lemma 3.11. Let R ⊆ Rs ×Rt be a relation between finite sets.
1. J(Open(R)) consists of all sets R[x] (x ∈ Rs) that cannot be expressed as a union of

smaller such sets, i.e. R[x] =
⋃

i∈I R[xi] implies R[x] = R[xi] for some i ∈ I.
2. M(Open(R)) consists of all sets inR(Rt \ {y}) such that R̆[y] lies in J(Open(R̆)).

4 Nuclear Languages and Lattice Languages

As a further technical tool, we now introduce two classes of regular languages. They are
well-behaved w.r.t. their small nfas and will emerge at the heart of our NP-completeness
proofs in Section 5. Their definition rests on the notion of a nuclear morphism in JSLf ,
originating from the theory of symmetric monoidal closed categories [12,28]. Recall that a
finite semilattice is a distributive lattice if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all elements
x, y, z.

▶ Definition 4.1 (Nuclear language). A JSLf -morphism f : S → T is nuclear if it factorizes
through a finite distributive lattice, i.e. f = (S g−→ D

h−→ T ) for some finite distributive
lattice D and JSLf -morphisms g, h. A regular language L ⊆ Σ∗ is nuclear if the transition
morphisms δa = a−1(−) : SLD(L)→ SLD(L) (a ∈ Σ) of its minimal JSL-dfa are nuclear.

▶ Example 4.2 (BiRFSA languages). A regular language L is biRFSA [19] if (NL)r ∼= NLr ,
that is, the canonical residual finite state automata for L and Lr (see Section 2) are reverse-
isomorphic. In [26, Example 5.7] we proved that the biRFSA languages are precisely those
whose semilattice SLD(L) is distributive. Thus biRFSA languages are nuclear.

There is a natural subclass of nuclear languages which need not be biRFSA:

▶ Definition 4.3 (Lattice language). For any S ∈ JSLf we define the language L(S) ⊆ Σ∗,

Σ := {⟨j| : j ∈ J(S)} ∪ {|m⟩ : m ∈M(S)} and L(S) :=
⋂

j≤Sm

Σ∗⟨j| |m⟩Σ∗.

Then Σ is the disjoint union of J(S) and M(S) (with the notation ⟨j| and |m⟩ used to
distinguish between elements of the two summands), and L(S) consists of all words over Σ
not containing any factor ⟨j| |m⟩ with j ≤S m.

▶ Lemma 4.4. For any S ∈ JSLf , the language L(S) is nuclear and S ∼= SLD(L(S)).

Crucially, for nuclear and lattice languages some of the relations (2.6) hold with equality:

▶ Proposition 4.5.
1. If L is a nuclear language then ns(L) = dim(DRL).
2. If L = L(S) is a lattice language then natm(L) = nsyn(L) = ns(L) = dim(DRL).
These equalities are the key fact making our reductions in the next section work.
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5 Complexity of Computing Small (Sub)Atomic Acceptors

We are ready to present our main complexity results on small (sub)atomic nfas. First we
consider the slightly simpler atomic case, phrased as the following decision problem:

DFA + DFAr → NFAatm
Input: Two dfas A and B such that L(A) = L(B)r and a natural number k.
Task: Decide whether there exists a k-state atomic nfa equivalent to A, i.e. natm(L(A)) ≤ k.

▶ Remark 5.1. Taking mutually reverse dfas (A, B) as input permits an efficient computation
of the dependency relation DRL ⊆ LD(L)× LD(Lr) of L = L(A). One may assume A and
B are minimal dfas, so that their state sets QA and QB are in bijective correspondence
with LD(L) and LD(Lr). For p ∈ QA choose some wA(p) ∈ Σ∗ sending the initial state to p;
analogously choose wB(q) ∈ Σ∗ for q ∈ QB . Then DRL is a bijective relabeling of

D̃RL ⊆ QA ×QB where D̃RL(p, q) :⇐⇒ A accepts wA(p)wB(q)r
,

so it is computable in polynomial time from A and B. A completely analogous argument
applies to the relations I, DRL,a and F from Example 3.6.

▶ Theorem 5.2. The problem DFA + DFAr → NFAatm is NP-complete.

We establish the upper and lower bound separately in the next two propositions. Both their
proofs are based on the fundamental equivalence between JSLf and Dep.

▶ Proposition 5.3. The problem DFA + DFAr → NFAatm is in NP.

Proof.
1. One can check in polynomial time whether a given pair (A, B) of dfas forms a valid

input, i.e. satisfies L(A) = L(B)r. In fact, this condition is equivalent to L(A) ∩ L(B)r =
L(B) ∩ L(A)r = ∅. Using the standard methods for complementing dfas and reversing
and intersecting nfas, one can construct nfas for L(A) ∩ L(B)r and L(B) ∩ L(A)r of size
polynomial in |A| and |B|, the number of states of A and B, and check for emptyness by
verifying that no final state is reachable from the initial states.

2. Let A and B be dfas accepting the languages L and Lr, respectively, and let k be a
natural number. We claim the following three statements to be equivalent:
a. There exists an atomic nfa accepting L with at most k states.
b. There exists a finite semilattice S with |J(S)| ≤ k and JSLf -morphisms p, q and τa

(a ∈ Σ) making the left diagram below commute.
c. There exists a Dep-object S ⊆ Ss×St with |Ss| ≤ k and |St| ≤ |B| and Dep-morphisms
P , Q and Ta (a ∈ Σ) making the right diagram below commute (cf. Example 3.6/3.7).

BLD(L)
δ′

a // BLD(L)
f ′

!!
2

i′
==

i
!!

S

q

OO

τa // S

q

OO

2

SLD(L)

p

OO

δa

// SLD(L)

p

OO

f

==

idΣ∗/∼L

D′
a // idΣ∗/∼L

F ′

""

id1

I′
<<

I
""

S

Q

OO

Ta // S

Q

OO

id1

DRL

P

OO

DRL,a

// DRL

P

OO

F

<<
(5.1)
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In fact, (a)⇔(b) was shown in Theorem 2.1(1), and (b)⇔(c) follows from the equivalence
between JSLf and Dep. To see this, note that in the left diagram we may assume q to
be injective; otherwise, factorize q as q = q′ ◦ e′ with e surjective and q′ injective and
work with q′ instead of q. By the self-duality of JSLf , dualizing q yields a surjective
morphism from BLD(L) ∼= BLD(L)op to Sop. Thus,

|M(S)| = |J(Sop)| ≤ |J(BLD(L))| = |Σ∗/∼L| = |LD(Lr)| ≤ |B|.

In the two last steps, we use that the congruence classes of ∼L correspond bijectively to
left derivatives of Lr by (2.4), and that LD(Lr) is the set of states of the minimal dfa for
Lr.
By Example 3.6 and 3.7 the upper and lower path of the left diagram in JSLf correspond
under the equivalence functor Pirr to the upper and lower path of the right diagram in
Dep. Therefore, Theorem 3.3 shows the two diagrams to be equivalent.

3. From (a)⇔(c) we deduce that the relations S, P, Q and Ta (a ∈ Σ) constitute a short
certificate for the existence of an atomic nfa for L with at most k states. Commutativity
of the right diagram can be checked in polynomial time because all the relations appearing
in the upper and lower path can be efficiently computed from the given dfas A and B.
Indeed, for the lower path we have already noted this in Remark 5.1, and the upper path
emerges from the minimal dfa for Lr, using that Σ∗/∼L

∼= LD(Lr). ◀

▶ Remark 5.4. An alternative proof that DFA + DFAr → NFAatm is in NP uses the
following characterization of atomic nfas. Given an nfa N , let rsc(N r) denote the dfa
obtained by determinizing the reverse nfa N r via the subset construction and restricting to
its reachable part. Then N is atomic iff rsc(N r) is a minimal dfa [4, Corollary 2]. Thus, given
a pair (A, B) of mutually reversed dfas, to decide whether natm(L(A)) ≤ k one may guess a
k-state nfa N and verify that rsc(N r) is a minimal dfa equivalent to B. One advantage of our
above categorical argument is that it yields simple certificates in the form of Dep-morphisms
subject to certain commutative diagrams, which amount to solutions of equations in Rel.
The latter may be directly computed using a SAT solver, leading to a practical approach
to finding small atomic acceptors (cf. [9]). To this effect, let us note that the proof of
Proposition 5.3 actually shows how to construct small atomic nfas rather than just deciding
their existence: every certificate S,P,Q, Ta (a ∈ Σ) yields an atomic nfa with states Ss,
transitions given by (Ta)− ⊆ Ss × Ss for a ∈ Σ, initial states (I # P)−[∗] ⊆ Ss and final
states (Q # F ′)̆−[∗] ⊆ Ss. (Recall that # denotes composition in Dep and (−)− denotes the
maximum lower witness of a Dep-morphism, see Remark 3.2.) In fact, this is precisely the
nfa of join-irreducibles of the JSL-dfa (S, τ, p ◦ i, f ′ ◦ q) induced by the left diagram in (5.1).
Analogous reasoning also applies to the computation of small subatomic nfas treated in
Theorem 5.7 below.

▶ Proposition 5.5. The problem DFA + DFAr → NFAatm is NP-hard.

Proof. We devise a polynomial-time reduction from the NP-complete problem BICLIQUE
COVER [8]: given a pair (R, k) of a relation R ⊆ Rs×Rt between finite sets and a natural
number k, decide whether R has a biclique cover of size at most k, i.e. dim(R) ≤ k.

For any (R,k), let S = Open(R) be the finite semilattice of open sets corresponding to
the Dep-object R, cf. Theorem 3.3, and let L = L(S) be its lattice language. We claim that
the desired reduction is given by

(R, k) 7−→ (dfa(L), dfa(Lr), k),
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where dfa(L) and dfa(Lr) are the minimal dfas for L and Lr. Thus, we need to prove that
(a) dim(R) = natm(L), and (b) the two dfas can be computed in polynomial time from R.

Ad (a). We have the following sequence of Dep-isomorphisms:

R
∼=←−−−−→

Thm 3.3
Pirr(Open(R)) = Pirr(S)

∼=←−−−→
Lem 4.4

Pirr(SLD(L(S))) = Pirr(SLD(L))
∼=←−−→

Ex 3.6
DRL.

Lemma 3.9(2) and Proposition 4.5 then imply dim(R) = dim(DRL) = natm(L).

Ad (b). Let J(Open(R)) = {j1, . . . , jn} and M(Open(R)) = {m1, . . . , mp}. Then dfa(L) and
dfa(Lr) are the automata depicted below, where L and Lr are their respective initial states.

L

|m⟩ : m∈M(S)

��

⟨j1|
ww

⟨jn|
''

⟨j1|−1L

⟨j1|

		

|m⟩:j1⊆m ((

|m⟩:j1⊈m 77

⟨jn| ,,
. . . ⟨jn|−1L

|m⟩:jn⊆mvv

|m⟩:jn⊈mgg

⟨jn|

		

⟨j1|
kk

∅

Σ

DD

Lr

⟨j| : j∈J(S)

��

|m1⟩
ww

|mp⟩
''

|m1⟩−1Lr

|m1⟩

		

⟨j|:j⊆m1 ((

⟨j|:j⊈m1 77

|mp⟩ --
. . . |mp⟩−1Lr

⟨j|:j⊆mpvv

⟨j|:j⊈mp
gg

|mp⟩

		

|m1⟩
ll

∅

Σ

DD

Both automata can be computed in polynomial time from R using Lemma 3.11. ◀

Next, we turn to the computation of small subatomic nfas. While in the atomic case the
input language was specified by a pair of dfas, we now assume an algebraic representation:

▶ Definition 5.6. A monoid recognizer is a triple (M, h, F ) of a finite monoid M , a map
h : Σ → M and a subset F ⊆ M . The language recognized by (M, h, F ) is given by
L(M, h, f) = h

−1[F ], where h : Σ∗ →M is the unique extension of h to a monoid morphism.

It is well-known [27] that a language L is regular iff it has a monoid recognizer. In this case,
a minimal monoid recognizer for L is given by (syn(L), µL, FL) where µL : Σ → syn(L) is
the domain restriction of the syntactic morphism and FL = {[w]≡L

: w ∈ L}. It satisfies
|syn(L)| ≤ |M | for every recognizer (M, h, F ) of L. Consider the following decision problem:

MON→ NFAsyn
Input: A monoid recognizer (M, h, F ) and a natural number k.
Task: Decide whether there exists a k-state subatomic nfa accepting L(M, h, F ).

Here we assume that the monoid M is explicitly given by its multiplication table.

▶ Theorem 5.7. The problem MON→ NFAsyn is NP-complete.

Proof sketch. The proof is conceptually similar to the one of Theorem 5.2. To show the
problem to be in NP, one uses the algebraic characterization of nsyn(L) in Theorem 2.1(2)
and translates the ensuing JSLf -diagram into Dep. To show NP-hardness, one reduces from
BICLIQUE COVER via

(R, k) 7→ ((syn(L), µL, FL), k),

where again L = L(Open(R)). ◀

Our complexity results indicate a trade-off, i.e. computing small subatomic nfas requires
a less succinct representation of the input language. Generally, |dfa(L)|, |dfa(Lr)| ≤ |syn(L)|
and the syntactic monoid can be far larger – even for nuclear languages.
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▶ Example 5.8. For any natural number n consider the dfa An = ({0, . . . , n− 1}, δ, 1, {1})
over the alphabet Σ = {π, τ} with δπ(i) = i + 1 mod n for i = 0, · · ·n− 1, and δτ (0) = 1,
δτ (1) = 0, δτ (i) = i otherwise. Let Ln = L(An) denote its accepted language. Then:
1. Both An and its reverse nfa are minimal dfas; in particular, |dfa(Ln)| = |dfa(Lr

n)| = n.
2. We have |syn(Ln)| = n!. To see this, recall that syn(Ln) is the transition monoid of

An
∼= dfa(Ln). It is generated by the n-cycle δπ = (0 1 · · · n− 1) and the transposition

δτ = (0 1); then it equals the symmetric group Sn on n letters.
3. By part (1) the language Ln is bideterministic [30], i.e. accepted by a dfa whose reverse

nfa is deterministic. This implies that the left derivatives of Ln are pairwise disjoint, so
SLD(Ln) is a boolean algebra. In particular, Ln is a nuclear language.

We finally further justify the inputs of DFA + DFAr → NFAatm and MON→ NFAsyn:
the two modified problems DFA → NFAatm and DFA → NFAsyn where only a (single)
dfa is given are computationally much harder.

▶ Theorem 5.9. DFA→ NFAatm and DFA→ NFAsyn are PSPACE-complete.

Proof. This follows by inspecting Jiang and Ravikumar’s [15] argument that DFA→ NFA
is PSPACE-complete. These authors give a polynomial-time reduction from the PSPACE-
complete problem UNIVERSALITY OF MULTIPLE DFAS, which asks whether a
given list A1, . . . , An of dfas over the same alphabet Σ satisfies

⋃
i L(Ai) = Σ∗. For any

A1, . . . , An they construct a dfa A over some alphabet Γ and a natural number k such that:
1. If

⋃
i L(Ai) ̸= Σ∗, then every nfa accepting L(A) requires at least k + 1 states.

2. If
⋃

i L(Ai) = Σ∗, then there exists an nfa accepting L(A) with k states.
In the proof of (2), an explicit k-state nfa N = (Q, δ, {q0}, F ) with L(N) = L(A) is given,
see [15, Fig. 1]. It has the property that, after ε-elimination, for every state q there
exists w ∈ Γ∗ with δw[q0] = {q}. This implies that every state q accepts a left derivative
w−1L(N), i.e. N is a residual nfa [7]. In particular, N is both atomic and subatomic.
Consequently, (A1, . . . , An) 7→ (A, k) is also a reduction to both DFA → NFAatm and
DFA→ NFAsyn. ◀

6 Applications

We conclude this paper by outlining some useful consequences of our NP-completeness results
concerning the computation of small nfas for specific classes of regular languages.

6.1 Nuclear Languages
As shown above, nuclear languages form a natural common generalization of bideterministic,
biRFSA, and lattice languages. Let DFA+DFAr → NFA be the variant of DFA+DFAr →
NFAatm where the target nfas are arbitrary, i.e. the task is to decide ns(L(A)) ≤ k. Then:

▶ Theorem 6.1. For nuclear languages, the problem DFA + DFAr → NFA is NP-complete.

In fact, by Proposition 4.5(1) we have ns(L) = dim(DRL) for nuclear languages, so NP
certificates are given by biclique covers. The NP-hardness proof is identical to the one of
Theorem 5.2: the reduction involves a lattice language, which is nuclear by Lemma 4.4.

6.2 Unary languages
For unary regular languages L ⊆ {a}∗, every two-sided derivative (ai)−1L(aj)−1 is equal to
the left derivative (ai+j)−1L. Therefore, we have natm(L) = nsyn(L) and the minimal dfa
for L is the dfa structure of the syntactic monoid. From Theorem 5.7 we thus derive
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▶ Theorem 6.2. For unary languages, the problem DFA→ NFAsyn is in NP.

This theorem generalizes the best-known complexity result for unary nfas, which asserts
that the problem DFA→ NFA is in NP for unary cyclic languages [13], i.e. unary regular
languages whose minimal dfa is a cycle. In fact, for any such language L we have shown in [26,
Example 5.1] that nsyn(L) = ns(L), hence DFA→ NFA coincides with DFA→ NFAsyn.

6.3 Group languages
A regular language is called a group language if its syntactic monoid forms a group. Several
equivalent characterizations of group languages are known; for instance, they are precisely
the languages accepted by measure-once quantum finite automata [3]. Concerning their
state-minimal (sub)atomic acceptors, we have the following result:

▶ Proposition 6.3. For any group language L, we have nsyn(L) = natm(L).

Therefore, Theorem 5.2 implies

▶ Theorem 6.4. For group languages, DFA + DFAr → NFAsyn is in NP.

The complexity of the general DFA + DFAr → NFAsyn problem is left as an open problem.

7 Conclusion and Future Work

Approaching from an algebraic and category-theoretic angle we have studied the complexity
of computing small (sub)atomic nondeterministic machines. We proved this to be much
more tractable than the general case, viz. NP-complete as opposed to PSPACE-complete,
provided that one works with a representation of the input language by a pair of dfas or a
finite monoid, respectively. There are several interesting directions for future work.

The particular form of our main two NP-complete problems suggests an investigation of
their variants DFA + DFAr → NFA and MON→ NFA computing unrestricted nfas. The
reductions used in the proof of Theorem 5.2 and 5.7 show both problems to be NP-hard, and
we have seen in Theorem 6.1 that they are in NP for nuclear languages. The complexity of
the general case is left as an open problem.

The classical algorithm for state minimization of nfas is the Kameda-Weiner method [18],
recently given a fresh perspective based on atoms of regular languages [29]. The algorithm
involves an enumeration of biclique covers of the dependency relation DRL. Since our base
equivalence JSLf ≃ Dep reveals a close relationship between biclique covers and semilattice
morphisms (e.g. Lemma 3.9), we envision a purely algebraic account of the Kameda-Weiner
method. We should also compare our canonical machines to the Universal Automaton [20],
a language-theoretic presentation of the Kameda-Weiner algorithm. For example, our
morphisms preserve the language whereas the Universal Automaton uses simulations.

Finally, the classes of nuclear and lattice languages – introduced as technical tools for our
NP-completeness proofs – deserve to be studied in their own right. For instance, we expect
to uncover connections between lattice languages and the characterization of finite simple
non-unital semirings which are not rings [31, Theorem 1.7].
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A function f is said to be idempotent if f(f(x)) = f(x) holds whenever f(x) is defined. This paper
presents a computation model for idempotent functions, called an idempotent Turing machine. The
computation model is necessarily and sufficiently expressive in the sense that not only does it always
compute an idempotent function but also every idempotent computable function can be computed
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1 Introduction

A function f whose domain and codomain are equal is said to be idempotent if f(f(x)) = f(x)
holds whenever f(x) is defined. The idempotence of functions plays an essential role in a wide
area of computer science. For example, some program optimization and parallelization do
work only when core functions are idempotent; bidirectional transformation is well-behaved
only when backward (putback) functions must be idempotent [4,5,15]. Moreover, a string
sanitizer that removes or escapes potentially dangerous characters to prevent cross-site
scripting attacks must be idempotent. Non-idempotent sanitizers are known to make the
server vulnerable against double encoding attacks [16]. In such situations, we need to decide
if a given function is idempotent or not. However, the idempotence of computable functions
is undecidable in general.

To solve the problem, we may design a domain-specific language so that every function
defined in the language either is always idempotent as far as it follows the syntax of the
language or can be statically verified to be idempotent. Hooimeijer et al. [8] developed
the BEK language for describing string sanitizers, which can be checked to perform their
appropriate behaviour including idempotence. In this linguistic approach, programmers can
define only idempotent functions. However, the restriction may be too strong to exclude
idempotent functions that they want to define.

This paper gives a solution to this problem by a computation model, called an idempotent
Turing machine, which exactly characterizes all idempotent computable functions. More
specifically, the computation model is expressive enough for idempotent functions in the
sense that every idempotent Turing machine computes an idempotent function and every
idempotent computable function can be computed by an idempotent Turing machine. Because
of the latter statement, we can claim that a language is sufficiently expressive for idempotent
functions if it is capable of simulating any other idempotent Turing machines.
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The present work follows along the lines of prior work of Axelsen and Glück [2] on
reversible Turing machines, which are (locally) forward and backward deterministic Turing
machines. They have shown that a reversible Turing machine is expressive enough for
computing injective functions under function semantics under which the meaning of a Turing
machine is specified by a function whose input and output correspond to strings on the tape
at the initial and final configuration, respectively. We will adopt the function semantics to
show the expressiveness of idempotent Turing machines in the present paper. In addition,
two more desirable properties of idempotent Turing machines are shown under the function
semantics, which have been shown for reversible Turing machines by Axelsen and Glück: the
robustness under tape reduction and the existence of a universal machine. The author [14]
has also followed along this line to introduce involutory Turing machines as a computation
model for involution which is its own inverse.

Our contribution of the present paper is summarized as follows:
An idempotent Turing machine is proposed as a particular form of a multitape Turing
machine. Every idempotent Turing machine computes an idempotent function.
An idempotent Turing machine is shown to be expressive enough to specify idempotent
functions, i.e., every idempotent function is computed by an idempotent Turing machine.
An idempotent Turing machine is shown to be robust under tape reduction, i.e., every
multitape idempotent Turing machine can be simulated by a single-tape Turing machine.
A universal idempotent Turing machine is shown to exist in terms of an appropriate
redefinition of universality [2] i.e., there is an idempotent Turing machine which simulates
any other idempotent Turing machine from the description of that machine.

After all of the above are presented, this paper concludes with the related work and a
discussion on future work. Some proofs are provided in Appendix A.

2 Preliminaries

An alphabet is a finite set of symbols. The set of all strings over an alphabet Σ is denoted by
Σ∗. For convenience, we regard a nested tuple of strings as a flattened one, e.g., ((w1, w2), w3)
and (w1, (w2, w3)) may be identified with (w1, w2, w3) for w1, w2, w3 ∈ Σ∗.

For a (binary) relation R ⊆ A × B, a R b stands for (a, b) ∈ R. The identity relation
IdA ⊆ A×A is {(a, a) | a ∈ A}. The composition of two relations R ⊆ A×B and S ⊆ B×C,
denoted by S ◦ R, is given as {(a, c) | ∃b ∈ B, a R b ∧ b S c}. For a relation R ⊆ A × B
over two sets A and B, the inverse relation R−1 ⊆ B × A is defined by {(b, a) | a R b}. A
relation R ⊆ A×A is said to be symmetric if R−1 = R. A relation R ⊆ A×B is said to be
functional if a R b1 and a R b2 imply b1 = b2 for any a ∈ A and b1, b2 ∈ B. A functional
relation R ⊆ A× B, written by R : A→ B, is simply called a (partial) function and R(a)
with a ∈ A stands for b ∈ B such that a R b if exists. We may write a 7→ b for an element
(a, b) in a functional relation. A function R : A→ B is said to be total if R(a) ∈ B is defined
for any a ∈ A. A function R : A → B is said to be injective if R−1 is functional. For any
injective function R : A→ B it is easy to see that R−1 ◦R ⊆ IdA and R ◦R−1 ⊆ IdB hold.
A function R : A→ A is called idempotent if R ◦R = R holds.

3 Turing Machines

The notion of Turing machines is one of the best-known computation model which can
implement any computable functions. Many variants of Turing machines have been proposed
in the literature in which a single tape or multiple tapes are used, tapes are one-ended or
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doubly-infinite, and a head peeks only single cell or multiple adjacent cells. Since they are
known to be equi-expressive [17], we basically follow the definition given by Axelsen and
Glück [2]. In this section, we define a Turing machine and show its basic properties. We also
present a reversible Turing machine, which plays an important role for our main results.

3.1 Syntax and Semantics of Turing machines
A Turing machine manipulates symbols on a doubly-infinite tape of cells according to an
internal state and a fixed transition relation.

▶ Definition 1 (k-tape Turing machine). A k-tape Turing machine T is a tuple
(Q,Σ, qini, qfin,∆) where Q is a finite set of states, Σ is a tape alphabet not containing
the special blank symbol ⊔, qini ∈ Q is the initial state, qfin ∈ Q is the final state, and
∆ = ∆sym ⊎∆↔ is a ternary relation defining a set of transition rules where

∆sym ⊆ (Q \ {qfin}) × (Σ⊔ × Σ⊔)k × (Q \ {qini})
∆↔ ⊆ (Q \ {qfin}) × {�, ♦,�}k × (Q \ {qini})

in which Σ⊔ stands for Σ⊎{⊔}. A symbol rule in ∆sym has the form (q, (s1⇒s′
1, . . . , sk⇒s′

k), q′)
with s1, . . . , sk, s

′
1, . . . , s

′
k ∈ Σ⊔. A move rule in ∆↔ has the form (q, (d1, . . . , dk), q′) with

d1, . . . , dk ∈ {�, ♦,�}. The second component of a transition rule is called an action. In
particular, an action in {(s, s) | s ∈ Σ⊔}k ∪ {♦}k is called a null action.

As presented in [2], transition rules are separated into symbol rules and move rules
for our convenience of further discussion, in particular, about the inversion of Turing
machines. Although these two kinds of actions are caused by a single rule in ordinary Turing
machines [17], the separation of rules does not change the expressiveness of functions. It is
easy to simulate a transition rule in an ordinary Turing machine by two transition rules and
extra states in the present model.

A configuration of a k-tape Turing machine is specified by the current internal state and k
tapes with their tape head. Each configuration can be characterized by ⟨l, s, r⟩ ∈ Σω

⊔
×Σ⊔×Σω

⊔

where s is the symbol at its head position and l and r are the left and right tapes of the head.
Note that Σω

⊔
is a set of infinite strings over Σ⊔ going infinitely to the right. Accordingly l is

“mirrored” where its first symbol is the immediate left one of the head.

▶ Definition 2 (Configuration). A configuration of a k-tape Turing machine T = (Q,Σ, qini, qfin,

∆) is a tuple (q, ⟨l1, s1, r1⟩, . . . , ⟨lk, sk, rk⟩) where q ∈ Q is an internal state, li, ri ∈ Σω
⊔

for
each i = 1, . . . , k are the left and right of the i-th tape head, and si ∈ Σ⊔ for each i = 1, . . . , k
is the symbol at the i-th tape head. The set of all configurations of T is written by CT .

▶ Definition 3 (Configuration step). Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing machine.
Then a single configuration step is defined as a relation ⊢T over CT such that

(q, τ1, . . . , τk) ⊢T (q′, τ ′
1, . . . , τ

′
k)

holds for each transition rule (q, a, q′) ∈ ∆ where
when a = (s1⇒s′

1, . . . , sk⇒s′
k), (τi, τ

′
i) = (⟨l, si, r⟩, ⟨l, s′

i, r⟩) holds with some l, r ∈ Σω
⊔

for
all i = 1, . . . , k;
when a = (d1, . . . , dk) with di ∈ {�, ♦,�},

(τi, τ
′
i) = (⟨s′l, s, r⟩, ⟨l, s′, sr⟩) holds with some l, r ∈ Σω

⊔
and s, s′ ∈ Σ⊔ if di = �

(τi, τ
′
i) = (⟨l, s, r⟩, ⟨l, s, r⟩) holds with some l, r ∈ Σω

⊔
and s, s′ ∈ Σ⊔ if di = ♦

(τi, τ
′
i) = (⟨l, s, s′r⟩, ⟨sl, s′, r⟩) holds with some l, r ∈ Σω

⊔
and s, s′ ∈ Σ⊔ if di = �

for all i = 1, . . . , k.
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79:4 Idempotent Turing Machines

The subscript T may be omitted if clear from the context.

The semantics of a k-tape Turing machine T is given by a relation over k strings based
on ⊢∗

T as follows. In the rest of the paper, a finite string w ∈ Σ∗ is used to represent an
infinite string w⊔ω ∈ Σω

⊔
; thereby, ε denotes ⊔ω.

▶ Definition 4 (Semantics of Turing machines). Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing
machine. The semantics of T , denoted by JT K, is given by the relation

JT K = {((w1, . . . , wk), (w′
1, . . . , w

′
k)) ∈ (Σ∗)k × (Σ∗)k

| (qini, ⟨ε,⊔, w1⟩, . . . , ⟨ε,⊔, wk⟩) ⊢∗
T (qfin, ⟨ε,⊔, w′

1⟩, . . . , ⟨ε,⊔, w′
k⟩)}.

Recall that we may write JT K(w1, . . . , wk) = (w′
1, . . . , w

′
k) if JT K is functional.

Following [14], we define the notion of tidiness of Turing machines, which is required
for further discussion in particular, on the concatenation of Turing machines defined later.
Roughly speaking, the tidiness of a Turing machine indicates that the initial configuration is
valid if and only if so is the final one. The validity has been called a standard configuration
in [1, 2].

▶ Definition 5 (Tidiness of Turing machine). A k-tape Turing machine T = (Q,Σ, qini, qfin,∆)
is said to be tidy if for any sequence (qini, ⟨l1, s1, r1⟩, . . . , ⟨lk, sk, rk⟩) ⊢∗

T (qfin, ⟨l′1, s′
1, r

′
1⟩, . . . ,

⟨l′k, s′
k, r

′
k⟩) of computation steps, the following two conditions

(li, si, ri) ∈ {ε} × {⊔} × Σ∗ for each i = 1, . . . , k
(l′i, s′

i, r
′
i) ∈ {ε} × {⊔} × Σ∗ for each i = 1, . . . , k

are equivalent.

In the rest of the paper, every k-tape Turing machine is assumed to be tidy. We may call it
the tidiness assumption.

We shall show two examples of Turing machines whose semantics are both idempotent.
As we will see later, due to the form of their transition rules, the second example is an
idempotent Turing machine but the first example is not. The main theorem of the present
paper claims that any non-idempotent Turing machine has an equivalent idempotent Turing
machine whenever its semantics is idempotent, though.

▶ Example 6. The 1-tape Turing machine Tralz = (Q, {0, 1}, qini, qfin,∆) where

Q = {qini, qmove, qralz, qback, qfin}
∆ = {(qini,⊔⇒⊔, qmove), (qmove,�, qralz), (qralz, 0⇒⊔, qmove),

(qralz, 1⇒1, qback), (qralz,⊔⇒⊔, qback), (qback,�, qfin)}

computes the function that removes all leading zeros, i.e., we have JTralzK(0 . . . 0w) = w for
w ∈ {ε} ∪ {1v | v ∈ {0, 1}∗}.

▶ Example 7. The 2-tape Turing machine Tcopy = (Q,Σ, qini, qfin,∆) where

Q = {qini, qmove, qcopy, qdefer, qtrail, qerase, qreturn, qback, qcheck, qfin}
∆ = {(qini, (⊔⇒⊔,⊔⇒⊔), qmove), (qmove, (�,�), qcopy)}∪

{(qcopy, (s1⇒s2, s2⇒s2), qmove) | s1 ∈ Σ⊔, s2 ∈ Σ}∪
{(qcopy, (s⇒s,⊔⇒⊔), qtrail) | s ∈ Σ}∪
{(qcopy, (⊔⇒⊔,⊔⇒⊔), qback), (qtrail, (�,�), qdefer)}∪
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{(qdefer, (s⇒s,⊔⇒⊔), qtrail) | s ∈ Σ}∪
{(qdefer, (⊔⇒⊔,⊔⇒⊔), qreturn), (qreturn, (�,�), qerase)}∪
{(qerase, (s⇒⊔,⊔⇒⊔), qreturn) | s ∈ Σ} ∪ {(qerase, (s⇒s, s⇒s), qback) | s ∈ Σ⊔}∪
{(qcheck, (s⇒s, s⇒s), qback) | s ∈ Σ} ∪ {(qback, (�,�), qcheck), (qcheck, (⊔⇒⊔,⊔⇒⊔), qfin)}

computes the function that copies the second string to the first, i.e., we have JTcopy K(w1, w2) =
(w2, w2) for w1, w2 ∈ Σ∗. The 2-tape Turing machine Tcopy can be straightforwardly gen-
eralized into 2k-tape Turing machine Tcopy(k) so that JTcopy(k)K(w1, . . . , wk, v1, . . . , vk) =
(v1, . . . , vk, v1, . . . , vk) holds for w1, . . . , wk, v1, . . . , vk ∈ Σ∗. In particular, Tcopy(1) = Tcopy .

The second example could be given with fewer states and transition rules by merging qdefer with
qcopy, qtrail with qmove, qerase with qcheck, and qreturn with qback, and removing some redundant
rules. However, the smaller alternative is against the condition to be an idempotent Turing
machine which will be presented in the next section. The Turing machine Tcopy of the
present form will play an important role in the proof of expressiveness of idempotent Turing
machines.

Definition 4 implies that the semantics of a Turing machine returns a tuple that consists of
the same number of strings as a given input. However, when the function either only accepts
or always returns the empty string on some tapes, we may regard it as a function whose input
or output tuple consists of fewer strings following the formalization by Axelsen and Glück [2].
For example, let T be a 3-tape Turing machine over Σ such that JT K(w1, w2, w3) = (w′

1, w
′
2, w

′
3)

implies w2 = w3 = w′
2 = ε. Then we may say that T computes a function f : Σ∗ → Σ∗ × Σ∗

defined by f(w) = (v1, v2) where JT K(w, ε, ε) = (v1, ε, v2) holds. We may simply write
JT K = f by ignoring empty input/output strings.

▶ Definition 8 (Forward/backward determinism). Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing
machine. Then T is forward deterministic if, for any distinct pair (q, a1, q1), (q, a2, q2) ∈ ∆ of
transition rules with the common source state q ∈ Q, their actions a1 and a1 have the form of
(s1,1⇒s′

1,1, . . . , s1,k⇒s′
1,k) and (s2,1⇒s′

2,1, . . . , s2,k⇒s′
2,k), respectively, such that s1,i ≠ s2,i holds

for some i = 1, . . . , k. The Turing machine T is backward deterministic if, for any distinct
pair (q1, a1, q), (q2, a2, q) ∈ ∆ of transition rules with the common target state q ∈ Q, their
actions a1 and a1 have the form of (s1,1⇒s′

1,1, . . . , s1,k⇒s′
1,k) and (s2,1⇒s′

2,1, . . . , s2,k⇒s′
2,k),

respectively, such that s′
1,i ̸= s′

2,i holds for some i = 1, . . . , k.

Example 6 and Example 7 are both forward deterministic but not backward deterministic.
It is easy to see that every configuration step induced by a forward deterministic Turing
machine is functional. In the rest of the paper, we deal with only forward deterministic
Turing machines, and hence their semantics are all functional. We may simply say Turing
machines even for forward deterministic ones.

Turing machines can be concatenated to synthesize a single one which computes the
composition of their semantics.

▶ Definition 9 (Concatenation of Turing machines). Let {Ti = (Qi,Σ, qini,i, qfin,i,∆i)}i=1,...,n

be a family of k-tape Turing machines where Q1, . . . , Qn are disjoint without loss of generality.
Their concatenation, denoted by Tn ◦ · · · ◦ T1, is a k-tape Turing machine T = (Q1 ⊎ · · · ⊎
Qn,Σ, qini,1, qfin,n,∆) where ∆ = ∆1 ⊎ · · · ⊎ ∆n ⊎ {(qfin,i−1, (♦, . . . , ♦︸ ︷︷ ︸

k

), qini,i) | i = 2, . . . , n}.

When Q1, . . . , Qn are not disjoint, every state in either should be renamed before the
concatenation.

MFCS 2021
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▶ Proposition 10 (Semantics of concatenation of Turing machines). For k-tape reversible
Turing machines T1, . . . , Tn, we have JTn ◦ · · · ◦ T1K = JTnK ◦ · · · ◦ JT1K.

Proof. It can be shown straightforwardly with taking notice of the tidiness assumption. ◀

3.2 Reversible Turing Machines
We define a reversible Turing machine, which can be used for the proof of expressiveness of
idempotent Turing machines.

▶ Definition 11 (Reversible Turing machine). A k-tape Turing machine T is reversible if T is
forward and backward deterministic.

▶ Example 12. The 2-tape reversible Turing machine Tdup = ({qini, qmove, qcopy, qback, qcheck,

qfin},Σ, qini, qfin,∆) where

∆ = {(qini, (⊔⇒⊔,⊔⇒⊔), qmove), (qmove, (�,�), qcopy)}∪
{(qcopy, (s⇒s,⊔⇒s), qmove) | s ∈ Σ} ∪ {(qcopy, (⊔⇒⊔,⊔⇒⊔), qback)}∪
{(qcheck, (s⇒s, s⇒s), qback) | s ∈ Σ} ∪ {(qback, (�,�), qcheck), (qcheck, (⊔⇒⊔,⊔⇒⊔), qfin)}

computes the function JTdupK, which satisfies JTdupK(w, ε) = (w,w) for w ∈ Σ∗. The 2-tape
reversible Turing machine Tdup can be straightforwardly generalized into 2k-tape reversible
Turing machine Tdup(k) so that JTdup(k)K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k

) = (w1, . . . , wk, w1, . . . , wk) holds

for w1, . . . , wk ∈ Σ∗. In particular, we have Tdup(1) = Tdup .

Although the Turing machines Tdup and Tcopy are similar in a sense that they both output
pairs of the same string, Tdup differs in that the second component of its input is restricted
to the empty string. Because of this difference, JTdupK is not idempotent while so is JTcopy K.

As seen from the definition, a Turing machine obtained by inverting all transition rules of
a reversible Turing machine is also reversible. Its semantics is naturally the inverse function
of the semantics of the original reversible Turing machine as formally stated below.

▶ Definition 13 (Inversion of reversible Turing machines). Let T = (Q,Σ, qini, qfin,∆) be
a k-tape reversible Turing machine. We define T−1 = (Q,Σ, qfin, qini,∆−1) with ∆−1 =
{(p, a−1, q) | (q, a, p) ∈ ∆} where (a1, . . . , ak)−1 = (a1

−1, . . . , ak
−1), (s⇒s′)−1 = (s′⇒s),

(�)−1 = (�), (♦)−1 = (♦), and (�)−1 = (�).

▶ Proposition 14 (Bennet [3]). Let T = (Q,Σ, qini, qfin,∆) be a k-tape reversible Turing
machine. Then, T−1 forms a k-tape reversible Turing machine such that JT−1K = JT K−1.

In reversible Turing machines, by definition, there is no distinct pair of configurations
that have the same successive configuration. This implies that the semantics of a reversible
Turing machine is always injective.

Axelsen and Glück [2] have shown its converse, i.e., every injective computable function can
be defined by a reversible Turing machine. Their proof is constructive so that an equivalent
reversible Turing machine can be constructed effectively from a given non-reversible Turing
machine whose semantics is injetive.

▶ Theorem 15 (Expressiveness of reversible Turing machines [2]). The reversible Turing
machines can compute exactly all injective computable functions. That is, given a k-tape
Turing machine T such that JT K is injective, there is a k-tape reversible Turing machine T ′

such that JT ′K = JT K.



K. Nakano 79:7

4 Idempotent Turing Machines

We introduce an idempotent Turing machine and its properties, expressiveness, robustness,
and universality.

4.1 Definition and Expressiveness
An idempotent Turing machine is defined by imposing a restriction upon the form of transition
rules of a standard Turing machine. Informally, the key of the restriction forces every valid
run to include an internal configuration C such that the sequence of configuration steps
from C to the final configuration can also become a valid run by concatenating its reversed
sequence at the front. Note that in the obtained run, the initial and final tapes contain the
same string. This indicates that JT K(y) = y holds for any x and y such that JT K(x) = y

for the Turing machine T , which concludes that JT K is idempotent. Formally, idempotent
Turing machines are defined as below.

▶ Definition 16 (Idempotent Turing machine). Let T = (Q,Σ, qini, qfin,∆) be a k-tape forward
deterministic Turing machine. Then T is said to be idempotent if there exist a set Q′ ⊂ Q of
states and a total function ψ : Q′ → Q \Q′ that satisfy the following conditions:
(I-1) qini ̸∈ Q′, qfin ∈ Q′, and ψ(qfin) = qini;
(I-2) there is no transition rule (q′, a, q) ∈ ∆ with q′ ∈ Q′ and q ∈ Q \Q′;
(I-3) there is a transition rule (ψ(p′), a−1, ψ(q′)) ∈ ∆ for each (q′, a, p′) ∈ ∆ with p′, q′ ∈ Q′;

and
(I-4) there is a transition rule (ψ(q′), a0, q

′) ∈ ∆ with a null action a0 for each (q, a, q′) ∈ ∆
with q ∈ Q \Q′ and q′ ∈ Q′.

Each state q′ ∈ Q′ is called a rear state and the function ψ is called a rear state map.

Definition 16 implies that every valid sequence of configuration steps of an idempotent
Turing machine can be split into two parts of non-rear and rear states because of the (I-1)
and (I-2) conditions. Moreover, with the (I-3) and (I-4) conditions, we can conclude that
the semantics of an idempotent Turing machine is idempotent.

▶ Theorem 17 (Semantics of idempotent Turing machine). Let T = (Q,Σ, qini, qfin,∆) be a
k-tape idempotent Turing machine. Then JT K is idempotent.

Proof. For simplicity of the proof, only the case of k = 1 is shown. The proof can be
easily generalized to the other cases. Let T = (Q,Σ, qini, qfin,∆) be a 1-tape idempotent
Turing machine with a set Q′ of rear states and a rear state map ψ. It suffices to show
that JT K(v) = v holds for any v = JT K(w) with w ∈ Σ∗. Suppose that v = JT K(w) for some
v, w ∈ Σ∗. Because of the definition of idempotent Turing machines, there must exist a valid
sequence of configuration steps of the form

(qini, ⟨ε,⊔, w⟩) ⊢ (q1, ⟨l1, s1, r1⟩) ⊢ . . . ⊢ (qm, ⟨lm, sm, rm⟩) ⊢
(q′

1, ⟨l′1, s′
1, r

′
1⟩) ⊢ . . . ⊢ (q′

n, ⟨l′n, s′
n, r

′
n⟩) ⊢ (qfin, ⟨ε,⊔, v⟩)

with q1, . . . , qm ∈ Q \Q′ and q′
1, . . . , q

′
n ∈ Q′ from the (I-1) and (I-2) conditions. Because of

the (I-4) condition, there is a transition rule (ψ(q′
1), a0, q

′
1) ∈ ∆ with a null action a0. Then

we have a valid sequence

(qini, ⟨ε,⊔, v⟩) ⊢ (ψ(q′
n), ⟨l′n, s′

n, r
′
n⟩) ⊢ . . . ⊢ (ψ(q′

1), ⟨l′1, s′
1, r

′
1⟩) ⊢

(q′
1, ⟨l′1, s′

1, r
′
1⟩) ⊢ . . . ⊢ (q′

n, ⟨l′n, s′
n, r

′
n⟩) ⊢ (qfin, ⟨ε,⊔, v⟩)

due to the (I-1) and (I-3) conditions, which demonstrates JT K(v) = v. ◀
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The Turing machine Tcopy introduced in Example 7 can be shown to be idempotent
accompanied by a set Q′ of rear states and a rear state map ψ specified by

Q′ = {qfin, qcheck, qback} ψ = {qfin 7→ qini, qcheck 7→ qmove, qback 7→ qcopy}.

The conditions (I-1) and (I-2) obviously hold. The condition (I-3) can be confirmed by the
correspondence of the pairs of transition rules,

(qcheck, (⊔⇒⊔,⊔⇒⊔), qfin) (qini, (⊔⇒⊔,⊔⇒⊔), qmove)
(qback, (�,�), qcheck) (qmove, (�,�), qcopy)
(qcheck, (s⇒s, s⇒s), qback) (qcopy, (s⇒s, s⇒s), qmove)

with s ∈ Σ. The condition (I-4) holds because of the transition rule (qcopy, (⊔⇒⊔,⊔⇒⊔), qback).
The general Turing machine Tcopy(k) can be checked to be idempotent as well.

In contrast, the 1-tape Turing machine Tralz introduced in Example 6 and the smaller
alternative of Tcopy mentioned after Example 7 are not idempotent even though their semantics
is idempotent. As for Tralz , we can check it as follows. In order to satisfy the conditions
(I-1) and (I-3), the qback state cannot be a rear state. Then it is impossible to satisfy the
condition (I-4). In general we can decide whether a given Turing machine is idempotent.

▶ Proposition 18 (Decidability of idempotence of Turing machines). Let T be a k-tape Turing
machine. It is decidable whether T is idempotent.

Proof. The proof depends on the finiteness of the set of states and accordingly the finiteness
of the choice of the set of rear states and the rear state map, which is required to be
idempotent. ◀

The proof above indicates just the existence an extremely naive procedure for the decision
problem. The complexity of the decision procedure is beyond double exponential to the
number of states. We leave for future work a more efficient algorithm.

Note that the decision problem is only to decide if a Turing machine is idempotent but
not to decide if the Turing machine computes an idempotent function. The latter problem
is obviously undecidable. However, we will prove that an equivalent idempotent Turing
machine can be constructed whenever the Turing machine computes an idempotent function.

Idempotent functions are closed under conjugation with injective functions, i.e., for any
idempotent function f and injective function g, the conjugate g−1 ◦ f ◦ g is idempotent. The
following lemma shows that the idempotent Turing machines have a similar property which
will be used to prove the main theorem. The proof of this lemma is given in Appendix A.

▶ Lemma 19 (Closed under conjugation). Let T be a k-tape idempotent Turing machine. For
any k-tape reversible Turing machine Tr, the k-tape reversible Turing machine Tr

−1 ◦ T ◦ Tr

is idempotent.

Now we are ready to prove expressiveness of the idempotent Turing machines which is
one of the main theorems in the present paper.

▶ Theorem 20 (Expressiveness of idempotent Turing machines). The idempotent Turing
machines can compute any idempotent computable function. More specifically, given a k-tape
Turing machine T such that JT K is idempotent, there is a 2k-tape idempotent Turing machine
T ′ such that JT ′K = JT K.
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Proof sketch. Let T be a k-tape Turing machine such that JT K : Σk → Σk is idempotent.
Consider a (partial) function f : Σ2k → Σ2k such that f(w1, . . . , wk, wk+1, . . . , w2k) =
(w1, . . . , wk, JT K(w1, . . . , wk)) holds only if JT K(w1, . . . , wk) is defined and wk+1 = · · · =
w2k = ε holds. Since the function f is injective and computable, we can construct a 2k-tape
reversible Turing machine Tf such that JTf K = f by Theorem 15. Then, define a 2k-tape
Turing machine T ′ = Tf

−1 ◦ Tcopy(k) ◦ Tf where Tcopy(k) is a 2k-tape idempotent Turing
machine introduced in Example 7. The Turing machine T ′ is idempotent due to Lemma 19
and a simple calculation can verify JT ′K = JT K as shown in Appendix A. ◀

4.2 Robustness under Tape Reduction
Single-tape Turing machines are as expressive as multitape Turing machines [17]. This
property is known as one of the robustness of Turing machines. We will see the property
for idempotent Turing machines, i.e., every multitape idempotent Turing machine has an
equivalent single-tape idempotent Turing machine. To this end, we simulate a k-tuple of
strings with a single string by an encoding function enc : (Σ∗)k → (Σ ⊎ {$})∗ using a special
symbol $ not in Σ. The encoding function is defined as

enc(s1,1s1,2 . . . s1,n, . . . , sk,1sk,2 . . . sk,n) = s1,1 . . . sk,1s1,2 . . . sk,2s1,n . . . sk,n

with the maximum length n of the input strings where the symbol $ is filled at the end
of the shorter strings as necessary, e.g., enc(ab, cdef, ghi) = acgbdh$ei$f$. The encoding
function is injective and computable where k is fixed. We will write Σ$ for Σ ⊎ {$} and enc
may be used even for encoded strings, i.e., enc : (Σ∗

$)k → Σ∗
$ .

We first show how to construct a 2-tape idempotent Turing machine equivalent to a
given multitape idempotent Turing machine. This is easily shown by the expressiveness of
idempotent Turing machines.

▶ Theorem 21 (Reduction to 2-tape idempotent Turing machine). Let T be a k-tape idem-
potent Turing machine. Then there exists a 2-tape idempotent Turing machine T ′ that
simulates T , that is, JT K(w1, . . . , wk) = (v1, . . . , vk) if and only if JT ′K(enc(w1, . . . , wk), ε) =
(enc(v1, . . . , vk), ε).

Proof. Let T be a k-tape idempotent Turing machine. Consider a function f : Σ∗
$ →

Σ∗
$ satisfying f(enc(w1, . . . , wk)) = enc(JT K(w1, . . . , wk)) for any w1, . . . , wk ∈ Σ∗ only if

JT K(w1, . . . , wk) is defined. Since f is computable, we have a 1-tape Turing machine that
computes f . Note that f is idempotent because of the idempotence of JT K. Therefore, there
exists a 2-tape idempotent Turing machine that computes f by Theorem 20 with k = 1. ◀

The theorem above is not satisfactory because it still requires at least two tapes to
simulate arbitrary multitape idempotent Turing machines. We need a further idea to show
the robustness under the tape reduction down to a single tape. The idea is similar to that of
the proof for expressiveness. We employ a 1-tape idempotent Turing machine Tblur , which
behaves like Tcopy as shown by the following lemma. Its proof is given in Appendix A.

▶ Lemma 22. There exists a 1-tape idempotent Turing machine Tblur computing the idem-
potent function fblur : Σ∗

$ → Σ∗
$, which satisfies fblur (ε) = ε and fblur (s1s2w) = s1s1fblur (w)

for any s1, s2 ∈ Σ$ and w ∈ Σ∗
$.

Now we are ready to prove the robustness under tape reduction for idempotent Turing
machines. In the proof of the robustness theorem, the idempotent Turing machine Tblur plays
a similar role to Tcopy(k) in the proof of Theorem 20.

MFCS 2021



79:10 Idempotent Turing Machines

▶ Theorem 23 (Robustness of idempotent Turing machines). Let T = (Q,Σ, qini, qfin,∆)
be a k-tape idempotent Turing machine. Then there exists a 1-tape idempotent Turing
machine T ′ such that JT K(w1, . . . , wk) = (v1, . . . , vk) if and only if JT ′K(enc(w1, . . . , wk)) =
enc(v1, . . . , vk).

Proof sketch. Let T = (Q,Σ, qini, qfin,∆) be a k-tape idempotent Turing machine. Consider a
function f : Σ∗

$ → Σ∗
$ satisfying f(enc(w1, . . . , wk)) = enc(enc(JT K(w1, . . . , wk)), enc(w1, . . . ,

wk)) for any w1, . . . , wn ∈ Σ∗ only if JT K(w1, . . . , wk) is defined. Since the function f is
injective and computable, we can construct a 1-tape Turing machine Tf such that JTf K = f

by Theorem 15. Then, define a 1-tape Turing machine T ′ = Tf
−1 ◦ Tblur ◦ Tf where Tblur is

an idempotent Turing machine given in Lemma 22. The Turing machine T ′ is idempotent
because of Lemma 19 and a simple calculation can verify JT ′K ◦ enc = enc ◦ JT K as shown in
Appendix A. ◀

4.3 Universality
A standard Turing machine is called universal if it is capable of simulating an arbitrary
Turing machine on arbitrary input. A universal Turing machine takes a pair of strings: one
is the description of the given Turing machine T , which is typically provided as the Gödel
number ⌈T ⌉ as a string; another is an input w of T . Then it is expected to return the output
string JT K(w). In essence, a universal Turing machine U must satisfy JUK(⌈T ⌉, x) = JT K(w)
for any Turing machine T and its input string w.

With regard to idempotent Turing machines, there is no universal machines in the sense
above, i.e., no idempotent Turing machine simulate arbitrary idempotent Turing machines.
Since the domain and codomain of idempotent functions must be equal, the universal machine
cannot be idempotent. Therefore, we relax the definition of universality as Axelsen and
Glück have done to introduce the universality of reversible Turing machines [2] where the
universal machine returns not only the expected output string but also the given Turing
machine itself. Under this relaxed definition, the universal machine computes an idempotent
function as far as the given Turing machine is idempotent.

▶ Definition 24 (Universality). A k-tape idempotent Turing machine U is said to be IdTM-
universal if JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) holds for any idempotent Turing machine T and
its input string w.

In the present paper, a universal model of ordinary Turing machines is called a classically
universal Turing machine to distinguish from our IdTM-universal machines.

It is not difficult to show the existence of an IdTM-universal machine because of the
expressiveness of idempotent Turing machines.

▶ Theorem 25. There exists an IdTM-universal idempotent Turing machine.

Proof. Let f be a function satisfying f(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for any idempotent Turing
machine T and its input string w. Note that f is idempotent because f(f(⌈T ⌉, w)) =
f(⌈T ⌉, JT K(w)) = (⌈T ⌉, JT K(JT K(w))) = (⌈T ⌉, JT K(w)) where the last equality comes from
the idempotence of JT K. By Theorem 20, we obtain an idempotent Turing machine U that
computes f . ◀

The theorem above just shows the existence of an universal machine, which is considered
impractical as noticed in the prior work [1, 2, 14] because its proof relies on Theorem 15 (via
Theorem 20), which is the expressive theorem of reversible Turing machine. As mentioned
in [2], the proof of Theorem 15 is based on very inefficient generate-and-test method by
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McCarthy [12]. To avoid this problem, we shall show the construction of an universal
Turing machine without Theorem 15 where we construct a universal idempotent Turing
machine from a classically universal Turing machine. Following the existing work [1,2,14],
we employ Bennett’s trick with Landauer’s trace embedding to construct a special type
of reversible Turing machines that computes the function λx.(x, f(x)) for an arbitrary
computable function f . We present a multitape version of the theorem as below. Its proof is
provided in Appendix A.

▶ Proposition 26 (Bennett’s trick [3]). Let T be a k-tape Turing machine. There exists a
(2k + 1)-tape reversible Turing machine Benk(T ) such that JBenk(T )K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k+1

) =

(w1, . . . , wk, JT K(w1, . . . , wk), ε) for any input w1, . . . , wk of T .

With the Bennett’s trick, we can construct a universal idempotent Turing machine from
a classically universal Turing machine.

▶ Theorem 27 (IdTM-universal Turing machine constructed with Bennett’s trick). Let U
be a (2-tape) classically universal Turing machine, i.e., JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for
any Turing machine T and its input w. Then a 5-tape idempotent Turing machine U ′ =
Ben2(U)−1◦T ′

copy(2)◦Ben2(U) is IdTM-universal where T ′
copy(2) is obtained by adding one extra

tape as the fifth tape to Tcopy(2), i.e., JT ′
copy(2)K(w1, w2, w3, w4, w5) = (w3, w4, w3, w4, w5).

Proof sketch. Let U be a 2-tape classically universal Turing machine such that
JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for any Turing machine T and its input w. Note that the
Turing machine U ′ = Ben2(U)−1 ◦T ′

copy(2) ◦Ben2(U) is idempotent due to the idempotence of
T ′

copy(2) and Lemma 19. In addition, we can show the 5-tape idempotent Turing machine U ′

is IdTM-universal, that is, JU ′K(⌈T ⌉, w, ε, ε, ε) = (⌈T ⌉, JT K(w), ε, ε, ε) holds for any Turing
machine T and its input w as shown in Appendix A. ◀

The author [14] has constructed a universal machine for involutory Turing machines using
Bennett’s trick in a way similar to Theorem 27. The difference is that he uses the Turing
machine permuting some of tapes for the center one of the composition instead of T ′

copy(2).

5 Related work

This work proposes idempotent Turing machines, which can compute exactly all idempotent
computable functions. The present work has followed along the lines of prior work on
special Turing machines for particular classes of computable functions [1,2,14] under function
semantics, in which the meaning of a Turing machine is specified by a function whose
input and output correspond to strings on the tape at the initial and final configuration,
respectively.

Axelsen and Glück [1,2] have investigated several properties of reversible Turing machines
under function semantics. Even though the notion of reversible Turing machines had been
already introduced and studied before the work [3, 11], Axelsen and Glück gave much clearer
semantics to reversible Turing machines to observe what they compute. They showed that
reversible Turing machines can compute exactly all injective computable functions. They
also proved the robustness under tape and symbol reduction: 1-tape 3-symbol reversible
Turing machines can simulate arbitrary multitape reversible Turing machines. Furthermore,
they showed the existence of universal reversible Turing machines under an appropriate
redefinition of universality and gave an efficient construction of a universal machine. The
present work has followed their approach and utilized their results even though idempotent
functions are not necessarily injective.
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The author [14] introduced involutory Turing machines and showed that they can compute
exactly all involutory computable functions, which are own inverse, i.e., a function f such
that f(f(x)) = x holds whenever f(x) is defined. He naturally followed Axelsen and Glück’s
work since every involutory function is injective. He defined an involutory Turing machine as
a Turing machine whose transition rules are related each other under an involutory map over
states. The idea is found in discrete time-symmetric systems [6, 9]. In the present work, we
refer to the idea to define an idempotent Turing machine with the rear state map.

Besides Turing machines, there are many other model of computable functions, e.g.,
untyped lambda calculus, combinatory logic, and term/string rewriting systems. We could
consider a restricted model of them for idempotent functions. We have selected Turing
machines because there is a well-studied subclass of the model, namely reversible Turing
machine, for injective functions that can be invertible. A candidate of other such models
would be Mu et al’s injective language Inv [13] in which every function is defined by a few
primitives including the fixed-point operator. They have shown that the Inv language is
expressive enough to simulate reversible Turing machines. However, it is not simple to utilize
the injective language for a computational model of idempotent functions. We need to add
more primitives to describe non-injective functions and impose some syntactic restrictions to
define only idempotent functions. It would be interesting if such a programming language
can be defined, though.

6 Conclusion

We have introduced a computation model for idempotent functions, called an idempotent
Turing machine. This model is necessarily and sufficiently expressive: every idempotent
Turing machine computes an idempotent function and every idempotent function can be
computed by an idempotent Turing machine. The class of Turing machines has been shown to
be robust under tape reduction. We have also shown the existence of an universal idempotent
Turing machine and its construction.

Our computation model is expected to be a basis of special-purpose (or domain-specific)
programming languages in which only but all idempotent computable functions can be defined.
A computation model is said to be Turing-complete if it can simulate any Turing machine.
The notion of Turing-completeness is often used to show the expressiveness of not only a
computation model but also a programming language or a set of machine instructions. For
reversible computation, the notion of r-Turing completeness has been proposed [1,2,19]. There
have been reversible programming languages, e.g., Janus with dynamic storage [18], reversible
flowchart language [19], and R-WHILE [7], that have been shown to be r-Turing complete.
Similarly, the notion of idempotent-Turing-completeness can be defined and applied to a
special-purpose (or domain-specific) programming languages in which only but all idempotent
computable functions can be defined. Such a special programming language will be required
for string sanitizers, automated program optimizers, and bidirectional transformation.

In addition, it is interesting to consider computational models that exactly cover all
computable functions with some constraints in the general case. Axelsen and Glück [1] have
shown that reversible Turing machines can exactly cover injective computable functions. The
author [14] has shown a computational model that exactly covers involutory computable
functions, and he shows such a result for idempotent functions in the present paper. It
is a natural question to ask what kind of semantic constraints on computable functions
corresponds to syntactically constrained Turing machines in general, which is left for future
work.
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A Proofs of Lemmas, Theorems and Proposition

This Appendix provides proofs that are omitted or condensed in the main text.

▶ Lemma 19 (Closed under conjugation). Let T be a k-tape idempotent Turing machine. For
any k-tape reversible Turing machine Tr, the k-tape reversible Turing machine Tr

−1 ◦ T ◦ Tr

is idempotent.

Proof. Let T = (Q,Σ, qini, qfin,∆) be a k-tape idempotent Turing machine with a set Q′ ⊂ Q
of rear states and a rear state map ψ. Let Tr = (Qr,Σr, qini,r, qfin,r,∆r) be a k-tape
reversible Turing machine where Q and Qr are disjoint without loss of generality. In order
to concatenate Tr, T , and Tr

−1 following Definition 9, we rename every state q ∈ Qr of Tr
−1

with q̂. Let Q̂r be a set of states of Tr
−1, i.e., Q̂r = {q̂ | q ∈ Qr} and ∆r

−1 = {(p̂, a−1, q̂) |
(q, a, p) ∈ ∆r}. Then we can define Tc = Tr

−1 ◦ T ◦ Tr, which is to be shown idempotent, as
Tc = (Qc,Σ, qini,r, q̂ini,r,∆c) where

Qc = Qr ⊎ Q ⊎ Q̂r

∆c = ∆r ⊎ ∆ ⊎ {(p̂, a−1, q̂) | (q, a, p) ∈ ∆r} ⊎ {(qfin,r, (♦, . . . , ♦︸ ︷︷ ︸
k

), qini), (qfin, (♦, . . . , ♦︸ ︷︷ ︸
k

), q̂fin,r)}.

Let Q′
c be a subset of Qc defined by Q′ ⊎ Q̂r. We define a function ψc : Q′

c → Qc \Q′
c as

ψc(q) =
{
ψ(q) (q ∈ Q′)
qr (q = q̂r ∈ Q̂r)

where the codomain of ψc is (Q \Q′) ⊎Qr that is equal to Qc \Q′
c.

We shall check the four conditions of Q′
c and ψc for Tc to be idempotent.

The (I-1) condition holds since qini,r ∈ Qr ⊂ Qc \Q′
c, q̂ini,r ∈ Q̂r ⊂ Q′

c, and ψc(q̂ini,r) =
qini,r.
The (I-2) condition holds because of the definition of concatenation and the (I-2) condition
for T .
Concerning the (I-3) condition, suppose that we have (q′, a, p′) ∈ ∆c with p′, q′ ∈ Q′

c =
Q′ ⊎ Q̂r. Since it is impossible to have p′ ∈ Q′ ⊂ Q and q′ ∈ Q̂r due to the construction
of ∆c, we divide it into three cases:

When p′, q′ ∈ Q′, we have (ψc(p′), a−1, ψc(q′)) ∈ ∆c because of the (I-3) condition of
T with ψc(p′) = ψ(p′), ψc(q′) = ψ(p′), and ∆ ⊂ ∆c;
When p′ ∈ Q̂r and q′ ∈ Q′, we must have p′ = q̂fin,r and q′ = qfin according to the
construction of ∆c. Hence, we have (ψc(p′), a−1, ψc(q′)) ∈ ∆c because of ψc(p′) = qfin,r,
ψc(q′) = ψ(qfin) = qini, and the construction of ∆c; and
When p′, q′ ∈ Q̂r, there exist pr, qr ∈ Qr such that p′ = p̂r and q′ = q̂r. Hence, we have
(ψc(p′), a−1, ψc(q′)) ∈ ∆c because of ψc(p′) = pr, ψc(q′) = qr, and the construction of
∆c with ∆r.

Thus, the condition (I-3) holds.

https://doi.org/10.1007/978-3-540-70583-3_22
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Concerning (I-4) condition, suppose that we have (q, a, q′) ∈ ∆c with q ∈ (Qc \ Q′) =
(Q \ Q′ ⊎ Qr) and q′ ∈ Q′

c = Q′ ⊎ Q̂r. From the construction of ∆c, we must have
q ∈ Q \Q′ and q′ ∈ Q′. Thus, we obtain q = ψ(q′) = ψc(q′) and a = a−1 because of the
condition (I-4) of T .

Therefore we conclude that Tc is idempotent with the set Qc of rear states and the rear state
map ψc. ◀

▶ Theorem 20 (Expressiveness of idempotent Turing machines). The idempotent Turing
machines can compute any idempotent computable function. More specifically, given a k-tape
Turing machine T such that JT K is idempotent, there is a 2k-tape idempotent Turing machine
T ′ such that JT ′K = JT K.

Proof. Let T be a k-tape Turing machine such that JT K : Σk → Σk is idempotent.
Consider a (partial) function f : Σ2k → Σ2k such that f(w1, . . . , wk, wk+1, . . . , w2k) =
(w1, . . . , wk, JT K(w1, . . . , wk)) holds only if JT K(w1, . . . , wk) is defined and wk+1 = · · · =
w2k = ε holds. Since the function f is injective and computable, we can construct a 2k-tape
reversible Turing machine Tf such that JTf K = f by Theorem 15.

Let us define a 2k-tape Turing machine T ′ = Tf
−1 ◦ Tcopy(k) ◦ Tf where Tcopy(k) is a

2k-tape idempotent Turing machine introduced in Example 7. Since T ′ is idempotent
because of Lemma 19, it suffices to show JT ′K = JT K, i.e., JT ′K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k

) =

(JT K(w1, . . . , wk), ε, . . . , ε︸ ︷︷ ︸
k

). This can be shown by

JT ′K(w1, . . . , wk, ε, . . . , ε) = { by the definition of T ′ and Proposition 10 }
JTf

−1K(JTcopy(k)K(JTf K(w1, . . . , wk, ε, . . . , ε)))
= { by the definition of Tf and Proposition 14 }

JTf K−1(JTcopy(k)K(w1, . . . , wk, JT K(w1, . . . , wk)))
= { by the definition of Tcopy(k) }

JTf K−1(JT K(w1, . . . , wk), JT K(w1, . . . , wk))
= { by the idempotence of JT K }

JTf K−1(JT K(w1, . . . , wk), JT K(JT K(w1, . . . , wk)))
= { by the semantics of Tf and its injectivity }

(JT K(w1, . . . , wk), ε, . . . , ε). ◀

▶ Lemma 22. There exists a 1-tape idempotent Turing machine Tblur computing the idem-
potent function fblur : Σ∗

$ → Σ∗
$, which satisfies fblur (ε) = ε and fblur (s1s2w) = s1s1fblur (w)

for any s1, s2 ∈ Σ$ and w ∈ Σ∗
$.

Proof. Let T = (Q,Σ$, qini, qfin,∆) be a 1-tape Turing machine where

Q = {qini, qmov, qread, qback, qpick, qfin} ∪
⋃

s∈Σ$

{qmem(s), qwrite(s), qkeep(s), qcheck(s)}

∆ = {(qini, ⊔⇒⊔, qmov), (qmov, �, qread), (qpick, ⊔⇒⊔, qfin), (qback, �, qpick), (qread, ⊔⇒⊔, qback)} ∪
{(qread, s⇒s, qmem(s)) | s ∈ Σ$} ∪ {(qmem(s), �, qwrite(s)) | s ∈ Σ$} ∪
{(qwrite(s), s′⇒s, qmov) | s, s′ ∈ Σ$} ∪ {(qpick, s⇒s, qkeep(s)) | s ∈ Σ$} ∪
{(qkeep(s), �, qcheck(s)) | s ∈ Σ$} ∪ {(qcheck(s), s⇒s, qback) | s ∈ Σ$}.
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Then T is found to be idempotent by the set Q′ ⊂ Q of rear states and the rear state map
ψ defined as

Q′ = {qfin, qpick, qback} ∪
⋃

s∈Σ$

{qcheck(s), qkeep(s)}

ψ = {qfin 7→ qini, qpick 7→ qmov, qback 7→ qread}∪⋃
s∈Σ$

{qcheck(s) 7→ qmem(s), qkeep(s) 7→ qwrite(s)}

since the four conditions obviously hold. We can check that T computes the function fblur in
the statement as follows. Firstly the relation

(qread, ⟨ε, s, ws′w′⟩) ⊢∗ (qread, ⟨
←−−−−−−
fblur (sw), s′, w′⟩)

holds for any s, s′ ∈ Σ$ and w,w′ ∈ Σ∗
$ where the length of w is odd and ←−x denotes the

reversed string of x, which can be proved by induction on the length of w. Moreover the
relation

(qback, ⟨←−sw, s′, w′⟩) ⊢∗ (qback, ⟨ε, s, ws′w′⟩)

holds for any s, s′ ∈ Σ$ and w,w′ ∈ Σ∗
$ where the length of w and w′ are odd and the strings

sw and s′w′ are in the domain of fblur , i.e., every even-numbered symbol in them is the same
as the previous symbol. This can also be proved by induction on the length of w. Then, we
have the relation

(qini, ⟨ε,⊔, w⟩) ⊢∗ (qfin, ⟨ε,⊔, fblur (w)⟩)

whenever the length of w is even, which indicates that T computes fblur . ◀

▶ Theorem 23 (Robustness of idempotent Turing machines). Let T = (Q,Σ, qini, qfin,∆)
be a k-tape idempotent Turing machine. Then there exists a 1-tape idempotent Turing
machine T ′ such that JT K(w1, . . . , wk) = (v1, . . . , vk) if and only if JT ′K(enc(w1, . . . , wk)) =
enc(v1, . . . , vk).

Proof. Let T = (Q,Σ, qini, qfin,∆) be a k-tape idempotent Turing machine. Consider a
function f : Σ∗

$ → Σ∗
$ satisfying

f(enc(w1, . . . , wk)) = enc(enc(JT K(w1, . . . , wk)), enc(w1, . . . , wk))

for any w1, . . . , wn ∈ Σ∗ only if JT K(w1, . . . , wk) is defined. Since the function f is injective
and computable, we can construct a 1-tape Turing machine Tf such that JTf K = f by
Theorem 15.

Let us define a 1-tape Turing machine T ′ = Tf
−1 ◦Tblur ◦Tf where the idempotent Turing

machine Tblur is given by Lemma 22. Note that

fblur (enc(x, y)) = enc(x, x) (1)

holds for any x, y ∈ Σ∗
$ . Since T ′ is idempotent because of Lemma 19, it suffices to show T ′

simulates T under encoding with enc . This can be shown by

JT ′K(enc(w1, . . . , wk)) = { by the definition of T ′ and Proposition 10 }
JTf

−1K(JTblur K(JTf K(enc(w1, . . . , wk))))
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= { by the semantics of Tf and Proposition 14 }

JTf K−1(JTblur K(enc(enc(JT K(w1, . . . , wk))), enc(w1, . . . , wk)))
= { by the semantics of Tblur with Equation (1) }

JTf K−1(enc(enc(JT K(w1, . . . , wk))), enc(JT K(w1, . . . , wk)))
= { by the idempotence of T and Theorem 17 }

JTf K−1(enc(enc(JT K(JT K(w1, . . . , wk)))), enc(JT K(w1, . . . , wk)))
= { by the injectivity of f and the semantics of f−1 }

enc(JT K(w1, . . . , wk)).

◀

▶ Proposition 26 (Bennett’s trick [3]). Let T be a k-tape Turing machine. There exists a
(2k + 1)-tape reversible Turing machine Benk(T ) such that JBenk(T )K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k+1

) =

(w1, . . . , wk, JT K(w1, . . . , wk), ε) for any input w1, . . . , wk of T .

Proof. Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing machine. Firstly, by Landauer embed-
ding [10], we can construct a (k + 1)-tape Turing machine TL such that

JTLK(w1, . . . , wk, ε) = (JT K(w1, . . . , wk), trace(T,w1, . . . , wk))

where the function trace encodes the history of applied transition rules on the run into
Σ∗. Since the history tells the previous configuration for each step, the Turing machine
TL is backward deterministic, that is, reversible. We extend TL with k extra tapes in
between working tapes and the history tape where the extra tapes are never touched during
computation. Let T ′

L be the (2k + 1)-reversible Turing machine obtained by the extension.
Then we have

JT ′
LK(w1, . . . , wk, v1, . . . , vk, ε) = (JT K(w1, . . . , wk), v1, . . . , vk, trace(T,w1, . . . , wk))

for w1, . . . , wk, v1, . . . , vk ∈ Σ∗. In addition, we similarly extend the 2k-tape Turing machine
Tdup(k) with one extra tape to obtain (2k + 1)-tape Turing machine T ′

dup(k) such that

JT ′
dup(k)K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k

, v) = (w1, . . . , wk, w1, . . . , wk, v)

holds for w1, . . . , wk, v ∈ Σ∗.
Let us define the (2k + 1)-tape Turing machine Benk(T ) = T ′

L
−1 ◦ T ′

dup(k) ◦ T
′
L which is

reversible because so are all constituents. Because of the domain of Tdup(k) and the semantics
of T ′

L, the input of the Turing machine Benk(T ) is restricted to (2k + 1)-tuples of strings
whose (k + 1)-th through 2k + 1-th strings are the empty string. Therefore the equation in
the statement can be checked by

JBenk(T )K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸
k

, ε)

= { by the definition of Benk(T ) and Proposition 10 }

JT ′
L

−1K(JT ′
dup(k)K(JT ′

LK(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸
k

, ε)))

= { by the semantics of T ′
L and Proposition 14 }

JT ′
LK−1(JT ′

dup(k)K(JT K(w1, . . . , wk), ε, . . . , ε︸ ︷︷ ︸
k

, trace(T,w1, . . . , wk)))
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= { by the semantics of T ′
dup(k) }

JT ′
LK−1(JT K(w1, . . . , wk), JT K(w1, . . . , wk), trace(T,w1, . . . , wk))

= { by the inverse of the semantics of T ′
L }

(w1, . . . , wk, JT K(w1, . . . , wk), ε). ◀

▶ Theorem 27 (IdTM-universal Turing machine constructed with Bennett’s trick). Let U
be a (2-tape) classically universal Turing machine, i.e., JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for
any Turing machine T and its input w. Then a 5-tape idempotent Turing machine U ′ =
Ben2(U)−1◦T ′

copy(2)◦Ben2(U) is IdTM-universal where T ′
copy(2) is obtained by adding one extra

tape as the fifth tape to Tcopy(2), i.e., JT ′
copy(2)K(w1, w2, w3, w4, w5) = (w3, w4, w3, w4, w5).

Proof. Let U be a 2-tape classically universal Turing machine such that JUK(⌈T ⌉, w) =
(⌈T ⌉, JT K(w)) for any Turing machine T and its input w. Note that the Turing machine
U ′ = Ben2(U)−1 ◦ T ′

copy(2) ◦ Ben2(U) is idempotent due to Lemma 19. We shall show the
5-tape idempotent Turing machine U ′ is IdTM-universal, that is, JU ′K(⌈T ⌉, w, ε, ε, ε) =
(⌈T ⌉, JT K, ε, ε, ε) holds for any Turing machine T and its input w. Because of the domain of
Ben2(U), the input of the Turing machine U ′ is restricted to 5-tuples whose third through
fifth are the empty string. Therefore, the statement can be verified by

JU ′K(⌈T ⌉, w, ε, ε, ε) = { by the definition of U ′ and Proposition 10 }

JBen2(U)−1K(JT ′
copy(2)K(JBen2(U)K(⌈T ⌉, w, ε, ε, ε)))

= { by the semantics of Ben2(U) and U }

JBen2(U)−1K(JT ′
copy(2)K(⌈T ⌉, w, ⌈T ⌉, JT K(w), ε))

= { by the semantics of T ′
copy(2) }

JBen2(U)−1K(⌈T ⌉, JT K(w), ⌈T ⌉, JT K(w), ε)
= { by the idempotence of T and Theorem 17 }

JBen2(U)−1K(⌈T ⌉, JT K(w), ⌈T ⌉, JT K(JT K(w)), ε)
= { by the inverse of the semantics of Ben2(U) }

(⌈T ⌉, JT K(w), ε, ε, ε). ◀
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We initiate the study of effective pointwise ergodic theorems in resource-bounded settings. Classically,
the convergence of the ergodic averages for integrable functions can be arbitrarily slow [14]. In
contrast, we show that for a class of PSPACE L1 functions, and a class of PSPACE computable
measure-preserving ergodic transformations, the ergodic average exists and is equal to the space
average on every EXP random. We establish a partial converse that PSPACE non-randomness can
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1 Introduction

In Kolmogorov’s program to found information theory on the theory of algorithms, we
investigate whether individual “random” objects obey probabilistic laws, i.e., properties
which hold in sample spaces with probability 1. Indeed, a vast and growing literature
establishes that every Martin-Löf random sequence (see for example, [4] or [19]) obeys the
Strong Law of Large Numbers [24], the Law of Iterated Logarithm [25], and surprisingly,
the Birkhoff Ergodic Theorem [26, 17, 10, 1] and the Shannon-McMillan-Breiman theorem
[8, 9, 21]. In effective settings, the theorem for Martin-Löf random points implies the classical
theorem since the set of Martin-Löf randoms has Lebesgue measure 1, and hence is stronger.

In this work, we initiate the study of ergodic theorems in resource-bounded settings. This
is a difficult problem, since classically, the convergence speed in ergodic theorems is known to
be arbitrarily slow (e.g. see Bishop [3], Krengel [14], and V’yugin [26]). However, we establish
ergodic theorems in resource-bounded settings which hold on every resource-bounded random
object of a particular class. The main technical hurdle we overcome is the lack of sharp tail
bounds. The only general tail bound in ergodic settings is the maximal ergodic inequality.
This yields only an inverse linear bound in the error bound, in contrast to the inverse
exponential bounds in the Chernoff and the Azuma-Hoeffding inequalities.
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We first establish an unconditional result. – For the entire class of PSPACE L1 functions
on Bernoulli systems, the ergodic average exists and is equal to the space average on all
EXP randoms. We utilize a non-trivial connection with the theory of uniform distribution of
sequences modulo 1 [15, 16, 20, 18] to prove this result.

In the general case, rapid L1 convergence of subsequences of ergodic averages suffices
to establish the same consequence that the ergodic average exists and is equal to the
space average on all EXP randoms. In general, such assumptions are unavoidable since
an adaptation of V’yugin’s counterexample [26] shows that there are PSPACE computable
ergodic Markov systems where the convergence rate to the ergodic average is not even
computable.

Conversely, we ask whether we can characterize non-randomness using the failure of the
PSPACE ergodic theorem. Franklin and Towsner [5] show that for every non-Martin-Löf
random x, there is an effective ergodic system where the ergodic average at x does not
converge to the space average. We first show that our PSPACE effective ergodic theorem
admits a partial converse of this form. PSPACE non-randoms can be characterized as points
where the PSPACE ergodic theorem fails.

We know that the set of EXP randoms is a subset of the set of PSPACE randoms. Since
the forward direction holds on the smaller set of randoms, it is important to know whether
there is a class of resource-bounded randoms on which an effective ergodic theorem holds
with an exact converse. We show that the class of SUBEXP-space randoms is one such. We
summarize our results in Table 1.

The proofs of these results are adapted from the techniques of Rute [21], Ko [13], Galatolo,
Hoyrup & Rojas [7, 11], and Huang & Stull [12].1 Our proofs involve several new quantitative
estimates, which may of general interest.

Table 1 Summary of the results involving PSPACE/SUBEXP-space systems.

Class of functions Convergence of ergodic averages (Theorems)
∀f(Af

n →
∫

fdµ) ∃f(Af
n ̸→

∫
fdµ)

PSPACE L1 EXP randoms (6.2) PSPACE nonrandoms (7.1)
SUBEXP-space L1 SUBEXP-space randoms (8.11) SUBEXP-space nonrandoms (8.12)

2 Preliminaries

Let Σ = {0, 1} be the binary alphabet. Denote the set of all finite binary strings by Σ∗

and the set of infinite binary strings by Σ∞. For σ ∈ Σ∗ and y ∈ Σ∗ ∪ Σ∞, we write
σ ⊑ y if σ is a prefix of y. For any infinite string y and any finite string σ, σ[n] and y[n]
denotes the character at the nth position in y and σ respectively. For any infinite string y

and any finite string σ, σ[n, m] and y[n, m] represents the strings σ[n]σ[n + 1] . . . σ[m] and
y[n]y[n + 1] . . . y[m] respectively. We denote finite strings using small Greek letters like σ, α

etc. The length of a finite binary string σ is denoted by |σ|.

1 There are alternative approaches to the proof in Martin-Löf settings, like that of V’yugin [26]. However,
the tool he uses for establishing the result is a lower semicomputable test defined on infinite sequences -
this is difficult to adapt to resource-bounded settings requiring the output value within bounded time
or space. Moreover, the functions in V’yugin’s approach are continuous. We consider the larger class of
L1 functions, which can be discontinuous in general.
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For σ ∈ Σ∗, the cylinder [σ] is the set of all infinite sequences with σ as a prefix. χσ

denotes the characteristic function of [σ]. For any set of strings S ⊆ Σ∗, [S] is the union
of [σ] over all σ ∈ S. Extending the notation, χS denotes the characteristic function of [S].
The Borel σ-algebra generated by the set of all cylinders is denoted by B(Σ∞).

Unless specified otherwise, any n ∈ N is represented in the binary alphabet. As is typical
in resource-bounded settings, some integer parameters are represented in unary. The set of
unary strings is represented as 1∗, and the representation of n ∈ N in unary is 1n, a string
consisting of n ones. For any n1, n2 ∈ N, [n1, n2] represents the set {n ∈ N : n1 ≤ n ≤ n2}.

Throughout the paper we take into account the number of cells used in the output tape
and the working tape when calculating the space complexity of functions. We assume a finite
representation for the set of rational numbers Q satisfying the following: there exists a c ∈ N
such that if r ∈ Q has a representation of length l then r ≤ 2lc . Following the works of
Hoyrup, and Rojas [11], we introduce the notion of a PSPACE-probability Cantor space by
endowing the Cantor space with a PSPACE-computable probability measure.

▶ Definition 2.1. Consider the Cantor space (Σ∞, B(Σ∞)). A Borel probability measure
µ : B(Σ∞) → [0, 1], is a PSPACE-probability measure if there is a PSPACE machine M :
Σ∗ × 1∗ → Q such that for every σ ∈ Σ∗, and n ∈ N, we have that |M(σ, 1n) − µ([σ])| ≤ 2−n.

In order to define PSPACE (EXP) randomness using PSPACE (EXP) tests we require
the following method for approximating sequences of open sets in Σ∞ in polynomial space
(exponential time).

▶ Definition 2.2 (PSPACE/EXP sequence of open sets [12]). A sequence of open sets
⟨Un⟩∞

n=1 is a PSPACE sequence of open sets if there exists a sequence of sets
〈
Sk

n

〉
k,n∈N,

where Sk
n ⊆ Σ∗ such that

1. Un = ∪∞
k=1[Sk

n], where for any m > 0, µ
(
Un − ∪m

k=1[Sk
n]
)

≤ 2−m.
2. There exists a controlling polynomial p such that max{|σ| : σ ∈ ∪m

k=1Sk
n)} ≤ p(n + m).

3. The function g : Σ∗ × 1∗ × 1∗ → {0, 1} such that g(σ, 1n, 1m) = 1 if σ ∈ Sm
n , and 0

otherwise, is decidable by a PSPACE machine.
The definition of EXP sequence of open sets is similar but the bound in condition 2 is replaced
with 2p(n+m) and the machine in condition 3 is an EXP-time machine.

Henceforth, we study the notion of resource bounded randomness on (Σ∞, µ).

▶ Definition 2.3 (PSPACE/EXP randomness [23]). A sequence of open sets ⟨Un⟩∞
n=1 is a

PSPACE test if it is a PSPACE sequence of open sets and for all n ∈ N, µ(Un) ≤ 2−n.
A set A ⊆ Σ∞ is PSPACE null or PSPACE non-random if there is a PSPACE test

⟨Un⟩∞
n=1 such that A ⊆ ∩∞

n=1Un, and is PSPACE random otherwise. The EXP analogues of
the above concepts are defined similarly except that ⟨Un⟩∞

n=1 is an EXP sequence of open sets.

By considering the sequence
〈
∪k

i=1Si
n

〉
k,n∈N instead of

〈
Sk

n

〉
k,n∈N, without loss of general-

ity, we can assume that for each n,
〈
Sk

n

〉∞
k=1 is an increasing sequence of sets. Since every

PSPACE test is an EXP test, every EXP random is PSPACE random.
In order to establish our ergodic theorem, it is convenient to define a PSPACE version of

Solovay tests, where the relaxation is that the measures of the sets Un can be any sufficiently
fast convergent sequence. We later show that this captures the same set of randoms as
PSPACE tests.
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▶ Definition 2.4 (PSPACE Solovay test). A sequence of open sets ⟨Un⟩∞
n=1 is a PSPACE

Solovay test if it is a PSPACE sequence of open sets and there is a polynomial p such that∑∞
n=p(m)+1 µ(Un) ≤ 2−m for all m ∈ N \ {0} 2. A set A ⊆ Σ∞ is PSPACE Solovay null

or PSPACE Solovay non-random if there exists a PSPACE Solovay test ⟨Un⟩∞
n=1 such that

A ⊆ ∩∞
i=1 ∪∞

n=i Un, and is PSPACE Solovay random otherwise.

▶ Theorem 2.5. A set A ⊆ Σ∞ is PSPACE null if and only if A is PSPACE Solovay null.

The set of PSPACE Solovay randoms and PSPACE randoms are equal, hence to prove
PSPACE randomness results, it suffices to form Solovay tests.

3 PSPACE L1 computability

The resource-bounded ergodic theorems in our work hold for PSPACE-L1 functions, the
PSPACE analogue of integrable functions. In this section, we briefly recall standard defini-
tions for PSPACE computable L1 functions and measure-preserving transformations. The
justifications and proofs of equivalences of various notions are present in Stull’s thesis [22]
and [23]. We initially define PSPACE sequence of simple functions, and define PSPACE
integrable functions based on approximations using these functions.

▶ Definition 3.1 (PSPACE sequence of simple functions [23]). A sequence of simple functions
⟨fn⟩∞

n=1, where each fn : Σ∞ → Q, is a PSPACE sequence of simple functions if
1. There is a controlling polynomial p such that for each n, there exists k(n) ∈ N,

{d1, d2, . . . , dk(n)} ⊆ Q and {σ1, σ2, . . . , σk(n)} ⊆ Σp(n) satisfying fn =
∑k(n)

i=1 diχσi
.

2. There is a PSPACE machine M such that for each n ∈ N, and σ ∈ Σ∗, M(1n, σ) outputs
fn(σ0∞) if |σ| ≥ p(n) and ? otherwise.

Note that since M is a PSPACE machine, {d1, d2 . . . dk(n)} is a set of PSPACE repre-
sentable numbers. Now, we define PSPACE L1-computable functions in terms of limits of
convergent PSPACE sequence of simple functions.

▶ Definition 3.2 (PSPACE L1-computable functions [23]). A function f ∈ L1(Σ∞, µ) is
PSPACE L1-computable if there exists a PSPACE sequence of simple functions ⟨fn⟩∞

n=1
such that for every n ∈ N, ∥f − fn∥ ≤ 2−n. The sequence ⟨fn⟩∞

n=1 is called a PSPACE
L1-approximation of f .

A sequence of L1 functions ⟨fn⟩∞
n=1 converging to f in the L1-norm need not have

pointwise limits. Hence the following concept ([21]) is important in studying the pointwise
ergodic theorem in the setting of L1-computability

▶ Definition 3.3 (f̃ for PSPACE L1-computable f). Let f ∈ L1(Σ∞, µ) be PSPACE L1-
computable and with a PSPACE L1 approximation ⟨fn⟩∞

n=1. Define f̃ : Σ∞ → R∪{undefined}
by f̃(x) = limn→∞ fn(x) if this limit exists, and is undefined otherwise.3

To define ergodic averages, we restrict ourselves to the following class of transformations.

2 This implies that
∞∑

n=1
µ(Un) < ∞.

3 The definition of f̃ is dependent on the choice of the approximating sequence ⟨fn⟩∞
n=1. However, due to

Lemma 4.3, we use f̃ in a sequence independent manner.
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▶ Definition 3.4 (PSPACE simple transformation). A measurable function T : (Σ∞, µ) →
(Σ∞, µ) is a PSPACE simple transformation if there is a controlling constant c and a
PSPACE machine M such that such that for any σ ∈ Σ∗, T −1([σ]) = ∪k(σ)

i=1 [σi] where the
following properties hold.
1. {σi}k(σ)

i=1 is a prefix free set and for all 1 ≤ i ≤ k(σ), |σi| ≤ |σ| + c

2. For each σ, α ∈ Σ∗,

M(σ, α) =


1 if |α| ≥ |σ| + c and α0∞ ∈ T −1([σ])
0 if |α| ≥ |σ| + c and α0∞ ̸∈ T −1([σ])
? otherwise

PSPACE computability as defined above, relates naturally to convergence of L1 norms.
But the pointwise ergodic theorem deals with almost everywhere convergence, and its resource-
bounded versions deal with convergence on every random point. We introduce the modes of
convergence we deal with in the present work.

▶ Definition 3.5 (PSPACE-rapid limit point). A real number a is a PSPACE-rapid limit
point of the real number sequence ⟨an⟩∞

n=1 if there exists a polynomial p such that for all
m ∈ N, ∃k ≤ 2p(m) such that |ak − a| ≤ 2−m.

Note that this requires rapid convergence only on a subsequence, which may not be a
computable subsequence of the full sequence. The following definition is the L1 version of
the above.

▶ Definition 3.6 (PSPACE-rapid L1-limit point). A function f ∈ L1(Σ∞, µ) is a PSPACE-
rapid L1-limit point of a sequence ⟨fn⟩∞

n=1 of functions in L1(Σ∞, µ) if 0 is a PSPACE-rapid
limit point of ∥fn − f∥1.

Now we define PSPACE analogue of almost everywhere convergence ([21]).

▶ Definition 3.7 (PSPACE-rapid almost everywhere convergence). A sequence of measurable
functions ⟨fn⟩∞

n=1 is PSPACE-rapid almost everywhere convergent to a measurable function
f if there exists a polynomial p such that for all m1 and m2,

µ

({
x : sup

n≥2p(m1+m2)
|fn(x) − f(x)| ≥ 2−m1

})
≤ 2−m2 .

Notation. Let Af,T
n = f+f◦T +f◦T 2+...f◦T n−1

n denote the nth Birkhoff average for any func-
tion f and transformation T . We prove the ergodic theorem in measure preserving systems
where

∫
fdµ is a PSPACE-rapid L1-limit point of Af,T

n . In the rest of the paper we denote
Af,T

n simply by Af
n. The transformation T involved in the Birkhoff sum is implicit.

PSPACE rapidity of Af
n is a stronger version of ln2-ergodicity introduced in [6].

▶ Lemma 3.8. Let T : Σ∞ → Σ∞ be any measurable transformation and f ∈ L∞(Σ∞, µ).∫
fdµ is a PSPACE-rapid L1-limit point of Af

n if and only if there exists c > 0 and k ∈ N
such that for all n > 0,∣∣∣∣∣ 1n

n−1∑
i=0

∫
f ◦ T i.f −

(∫
f

)2
dµ

∣∣∣∣∣ ≤ c

2(ln n)
1
k

.
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4 PSPACE-rapid almost everywhere convergence of ergodic averages

We present PSPACE versions of Theorem 2 and Proposition 5 from [7], relating the L1

convergence of Af
n to

∫
f to its almost everywhere convergence. The main estimate which

we require in this section is the maximal ergodic inequality, which we now recall.

▶ Lemma 4.1 (Maximal ergodic inequality [2]). If f ∈ L1(Σ∞, µ) and δ > 0 then
µ
({

x : supn≥1 |Af
n(x)| > δ

})
≤ (∥f∥1)δ−1.

Using this lemma, we now prove the almost everywhere convergence of ergodic averages.

▶ Theorem 4.2. Let f be any function in L1(Σ∞, µ) and let T be a measure preserving
transformation. If

∫
fdµ is a PSPACE-rapid L1-limit point of Af

n then Af
n is PSPACE-rapid

almost everywhere convergent to
∫

fdµ.

If f ∈ L∞, the converse of Theorem 4.2 can be easily obtained by expanding ∥Af
n−
∫

fdµ∥1.
Now, we prove some auxiliary results that are useful in the proof of the PSPACE ergodic

theorem. The following fact was shown in [12]. However, for our ergodic theorem we require
an alternate proof of this fact using techniques from [21].

▶ Lemma 4.3. Let ⟨fn⟩∞
n=1, ⟨gn⟩∞

n=1 be PSPACE sequence of simple functions which con-
verges PSPACE-rapid almost everywhere to f ∈ L1(Σ∞, µ). Then, for all EXP random x,
limn→∞ fn(x) and limn→∞ gn(x) exist, and are equal.

The following immediately follows from the above lemma.

▶ Corollary 4.4. Let f ∈ L1(Σ∞, µ) be a PSPACE L1-computable function with L1 approx-
imating PSPACE sequences of simple functions ⟨fn⟩∞

n=1 and ⟨gn⟩∞
n=1. Then, for all EXP

random x limn→∞ fn(x) and limn→∞ gn(x) exist, and are equal.

The following properties satisfied by PSPACE simple transformations and PSPACE
L1-computable functions are useful in our proof of the PSPACE ergodic theorem.

▶ Lemma 4.5. Let f be a PSPACE L1-computable function over the Bernoulli space. Let
If : Σ∞ → Σ∞ be the constant function taking the value

∫
fdµ over all x ∈ Σ∞. Then, If is

PSPACE L1-computable and Ĩf (x) =
∫

fdµ for all EXP random x.

▶ Lemma 4.6. Let f be a PSPACE L1-computable function with an L1 approximating
PSPACE sequence of simple functions ⟨fn⟩∞

n=1. Let T be a PSPACE simple transformation
and p be a polynomial. Then,

〈
A

fp(n)
n

〉∞

n=1
is a PSPACE sequence of simple functions.

5 Unconditional PSPACE ergodic theorem for the Bernoulli space

We now prove an unconditional version of our main result, namely, that for PSPACE L1

computable functions, the ergodic average exists, and is equal to the space average, on
every EXP random in the canonical setting of the Bernoulli space. We utilize the almost
everywhere convergence results proved in the previous section, to prove the convergence on
every PSPACE/EXP random. We first show that in the Bernoulli space, every PSPACE
L1 function exhibits PSPACE rapidity of Af

n. The proof of this theorem is a non-trivial
application of techniques from uniform distribution of sequences modulo 1 [15, 20, 16, 18].
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▶ Theorem 5.1. Let f ∈ L1(Σ∞, B(Σ∞), µ) where µ is the Bernoulli measure µ(σ) = 1
2|σ|

and let T be the left shift transformation. If f is PSPACE L1-computable, then there exists a
polynomial q satisfying the following: given any m ∈ N, for all n ≥ 2q(m), ∥Af

n −
∫

fdµ∥1 ≤
2−m.

An equivalent statement is the following: The left-shift transformation on the Bernoulli
probability measure is PSPACE ergodic4. Theorem 5.1 gives an explicit bound on the
speed of convergence in the L1 ergodic theorem for an interesting class of functions over
the Bernoulli space. Such bounds do not exist in general for the L1 ergodic theorem as
demonstrated by Krengel in [14].

The above theorem can be obtained from the following assertion regarding PSPACE-rapid
convergence of characteristic functions of long enough cylinders.

▶ Lemma 5.2. Let T be the left shift transformation T : (Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ)
where µ is the Bernoulli measure µ(σ) = 2−|σ|. There exist polynomials q1, q2 such that for
any m ∈ N and σ ∈ Σ∗ with |σ| ≥ q1(m) we get ∥Aχσ

n − µ(σ)∥1 ≤ 2−m for all n ≥ |σ|32q2(m).

Proof sketch. The major difficulty in directly approximating ∥Aχσ
n − µ(σ)∥1 is that for

any n, m ∈ N, Aχσ
n and Aχσ

m may not be independent. In order to overcome this, we use
constructions similar to those used in proving Pillai’s theorem (see [20], [16] for normal
numbers, [18] for continued fractions) in order to approximate each Aχσ

n with sums of disjoint
averages as follows.

Aχσ
n (x) =

⌊ n
k ⌋∑

i=1
X1,1

i (x)

n
+

⌊log2( n
k )⌋∑

p=2

k−1∑
j=1

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

n
+ (k − 1).O(log n)

n
, where

X1,1
i (x) =

{
1 if x[ik + 1, (i + 1)k] = σ

0 otherwise,
and

Xp,j
i (x) =

{
1 if x[2p−2k − j + 1, 2p−2k − j + k] = σ

0 otherwise

The first two terms on the right of the equation turns out to be averages of independent
Bernoulli random variables. Hence, elementary results from probability theory regarding
independent Bernoulli random variables can be used to show that Aχσ

n converges to
∫

fdµ

sufficiently fast. ◀

We remark that since Lemma 5.2 is true with the L1-norm replaced by the L2-norm,
Theorem 5.1 is also true in the L2 setting. i.e, if a function f is PSPACE L2-computable
(replacing L1 norms with L2 norms in definition 3.2) then there exists a polynomial q

satisfying the following: given any m ∈ N, for all n ≥ 2q(m), ∥Af
n −

∫
fdµ∥2 ≤ 2−m. Hence,

for PSPACE L2-computable functions and the left shift transformation T , we get bounds on
the convergence speed in the von-Neumann’s ergodic theorem.

It is easy to verify that if T is a PSPACE simple transformation then for any n ≥ 2, T n

is also a PSPACE simple transformation. We need the following stronger assertion in the
proof of the ergodic theorem.

4 Equivalently, there exists a constant c such that for all n > 0, ∥Af
n −
∫

fdµ∥1 ≤ 2−⌊log(n)
1
c ⌋.

MFCS 2021



80:8 Ergodic Theorems and Converses for PSPACE Functions

▶ Lemma 5.3. Let T : (Σ∞, µ) → (Σ∞, µ) be a PSPACE simple transformation with
controlling constant c. There exists a PSPACE machine N such that for each n ∈ N and
σ, α ∈ Σ∗,

N(1n, σ, α) =


1 if |α| ≥ |σ| + cn and α0∞ ∈ T −n([σ])
0 if |α| ≥ |σ| + cn and α0∞ ̸∈ T −n([σ])
? otherwise

Proof of Lemma 5.3. Let M be the machine witnessing the fact that T is a PSPACE simple
transformation with the polynomial space complexity bound p(n). Let the machine N do
the following on input (1n, σ, α):
1. If α < |σ| + cn, then output ?.
2. If n = 1 then, run M(σ, α) and output the result of this simulation.
3. Else:

a. For all strings α′ of length |σ| + c(n − 1) do the following:
i. If N(1n−1, σ, α′) = 1 then, output 1 if M(α′, α) = 1.

4. If no output is produced in the above steps, output 0.

When n = 1, N uses at most p(|σ|+ |α|+cn)+O(1) space. Inductively, assume that for n = k,
N uses at most (2k −1)p(|σ|+ |α|+cn)+O(1) space. For n = k +1, the storage of α′ and the
two simulations inside step 3a can be done in 2p(|σ|+|α|+cn)+(2k−1)p(|σ|+|α|+cn)+O(1) =
(2(k + 1) − 1)p(|σ| + |α| + cn) + O(1) space. Hence, N is a PSPACE machine. ◀

Now, we prove the unconditional ergodic theorem for PSPACE L1 functions over the
Bernoulli space. The proof involves adaptations of techniques from Rute [21], together with
new quantitative bounds which yield the result within prescribed resource bounds.

▶ Theorem 5.4. Let T be the left shift transformation T : (Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ)
where µ is the Bernoulli measure µ(σ) = 2−|σ|. Then, for any PSPACE L1-computable f ,
lim

n→∞
Ãf

n =
∫

fdµ on EXP randoms.

Proof of Theorem 5.4. Let ⟨fm⟩∞
m=1 be any PSPACE sequence of simple functions L1

approximating f . We initially approximate Af
n with a PSPACE sequence of simple functions

⟨gn⟩∞
n=1 which converges to

∫
fdµ on EXP randoms. Then we show that Ãf

n has the same
limit as gn on PSPACE randoms and hence on EXP randoms.

For each n, it is easy to verify that
〈
Afm

n

〉∞
m=1 is a PSPACE sequence of simple functions

L1 approximating Af
n with the same rate of convergence. Using techniques similar to those

in Lemma 4.3 and Corollary 4.4, we can obtain a polynomial p such that

µ

({
x : sup

m≥p(n+i)
|Afm

n (x) − A
fp(n+i)
n (x)| ≥ 1

2n+i+1

})
≤ 1

2n+i+1 .

For every n > 0, let gn = A
fp(n)
n . We initially show that ⟨gn⟩∞

n=1 converges to
∫

fdµ on EXP
randoms. Let m1, m2 ≥ 0. From Theorem 4.2, Af

n is PSPACE-rapid almost everywhere
convergent to

∫
fdµ. Hence there is a polynomial q such that

µ

({
x : sup

n≥2q(m1+m2)
|Af

n(x) −
∫

fdµ| ≥ 1
2m1+1

})
≤ 1

2m2+1 .
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Let N(m1, m2) = max{2m1, 2m2, 2q(m1+m2)}. Then,

∑
n≥N(m1,m2)

1
2k+1 = 1

2N(m1,m2) ≤ min
{

1
2m1+1 ,

1
2m2+1

}
.

Let

Gn =
{

x : sup
n≥N(m1,m2)

|gn −
∫

fdµ| >
1

2m1

}
.

Now, we have

µ (Gn) ≤
∑

n≥N(m1,m2)

µ

({
x : |gn − Af

n(x)| >
1

2m1+1

})

+ µ

({
x : sup

n≥2q(m1+m2)
|Af

n(x) −
∫

fdµ| ≥ 1
2m1+1

})

≤
∑

n≥N(m1,m2)

1
2n+1 + 1

2m2+1

≤ 1
2m2

.

Note that N(m1, m2) is bounded by 2(m1+m2)c for some c ∈ N. Hence, gn is PSPACE-
rapid almost everywhere convergent to

∫
fdµ. From Lemma 4.6 it follows that ⟨gn⟩∞

n=1 =〈
A

fp(n)
n

〉∞

n=1
is a PSPACE sequence of simple functions (in parameter n). Let If : Σ∞ → Σ∞

be the constant function taking the value
∫

fdµ over all x ∈ Σ∞. From the above observations
and Lemma 4.3 we get that lim

n→∞
gn(x) = Ĩf (x) for any x which is EXP random. From

Lemma 4.5, we get that lim
n→∞

gn(x) =
∫

fdµ for any x which is EXP random.

We now show that lim
n→∞

Ãf
n = lim

n→∞
gn on PSPACE randoms. Define

Un,i =
{

x : max
p(n+i)≤m≤p(n+i+1)

|Afm
n (x) − A

fp(n+i)
n (x)| ≥ 1

2n+i+1

}
.

We already know µ(Un,i) ≤ 1
2n+i+1 . Un,i can be shown to be polynomial space approximable

in parameters n and i in the following sense. There exists a sequence of sets of strings
⟨Sn,i⟩i,n∈N and polynomial p satisfying the following conditions:
1. Un,i = [Sn,i].
2. There exists a controlling polynomial r such that max{|σ| : σ ∈ Sn,i)} ≤ r(n + i).
3. The function g : Σ∗ × 1∗ × 1∗ → {0, 1} such that

g(σ, 1n, 1i) =
{

1 if σ ∈ Sn,i

0 otherwise,

is decidable by a PSPACE machine.
The above claims can be established by using techniques similar to those in Lemma 4.6 and
Lemma 4.3. We show the construction of a machine N computing the function g above. Let
Mf be a computing machine and let q be a controlling polynomial for ⟨fn⟩∞

n=1. Let c be a
controlling constant for T . Let M ′ be the machine from Lemma 5.3. Machine N on input
(σ, 1n, 1i) does the following:

MFCS 2021
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1. If |σ| > q(p(n + i + 1)) + cn, then output 0.
2. Compute A

fp(n+i)
n (σ0∞) as in Lemma 4.6 by using Mf and M ′ and store the result.

3. For each m ∈ [p(n + i), p(n + i + 1)] do the following:
a. Compute Afm

n (σ0∞) as in Lemma 4.6 by using Mf and M ′ and store the result.
b. Check if |Afm

n (σ0∞) − A
fp(n+i)
n (σ0∞)| ≥ 1

2n+i+1 . If so, output 1.
4. Output 0.

It can be easily verified that N is a PSPACE machine. r(n + i) = q(p(n + i + 1)) + cn is a
controlling polynomial for ⟨Un,i⟩n,i∈N. Define

Vm =
⋃

n,i≥0
n+i=m

Un,i.

Note that

µ(Vm) ≤ m

2m
.

It can be shown that for any j,∑
n>j

m

2m
= 1

2j−1 + j

2j
.

Given any k ≥ 0, let p(k) = 3(k + 1). Hence, we have
∞∑

n=p(k)+1

m

2m
= 1

23(k+1) + 3(k + 1)
23(k+1) <

1
2k+1 + 1

2k+1
3(k + 1)
22(k+1) <

2
2k+1 = 1

2k
.

The last inequality holds since 3(k + 1) < 22(k+1) for all k ≥ 0. Since each Vm is a finite
union of sets from ⟨Un,i⟩n,i∈N, the machine computing ⟨Un,i⟩n,i∈N can be easily modified
to construct a machine witnessing that ⟨Vm⟩∞

m=1 is a PSPACE approximable sequence of
sets. From these observations, it follows that ⟨Vm⟩∞

m=1 is a PSPACE Solovay test. Let x

be a PSPACE random. x is in at most finitely many Vm and hence in at most finitely
many Un,i. Hence for some large enough N for all n ≥ N , i ≥ 0 and for all m such that
p(n + i) ≤ m ≤ p(n + i + 1), we have |Afm

n (x) − A
fp(n+i)
n (x)| < 1

2n+i+1 . It follows that for all
n ≥ N and for all m ≥ p(n) that

|Afm
n (x) − gn(x)| = |Afm

n (x) − A
fp(n)
n (x)| ≤

∞∑
i=0

1
2n+i+1 ≤ 2−n.

Therefore, lim
n→∞

Ãf
n(x) = lim

n→∞
gn(x) on all PSPACE random x and hence on all x which is

EXP random.
Hence, we have shown that lim

n→∞
Ãf

n =
∫

fdµ on EXP randoms which completes the proof
of the theorem. ◀

6 General PSPACE ergodic theorem

We now extend Theorem 5.4 into the setting of PSPACE-probability Cantor spaces.
V’yugin [26] shows that the speed of a.e. convergence to ergodic averages in computable
ergodic systems is not computable in general. This leads us to consider some assumption
on the rapidity of convergence in resource-bounded settings. We show that the requirement
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on L1 rapidity of convergence of Af
n is sufficient to derive our result. Several probabilistic

laws like the Law of Large Numbers, Law of Iterated Logarithm satisfy this criterion, hence
the assumption is sufficiently general. Moreover, Theorem 5.1 shows that in the canoni-
cal example of Bernoulli systems with the left-shift, every PSPACE L1 function exhibits
PSPACE rapidity of Af

n, showing that the latter property is not artificial. We prove the
general PSPACE ergodic theorem for transformations which satisfy PSPACE ergodicity.

▶ Definition 6.1 (PSPACE ergodic transformations). A measurable function T : (Σ∞, µ) →
(Σ∞, µ) is PSPACE ergodic if T is a PSPACE simple measure preserving transformation
such that for any PSPACE L1-computable f ∈ L1(Σ∞, µ),

∫
fdµ is a PSPACE-rapid L1

limit point of Af
n.

Now, we prove the main result of our work.

▶ Theorem 6.2. Let (Σ∞, B(Σ∞), µ) be a PSPACE-probability Cantor space. Let T :
(Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ) be a PSPACE ergodic measure preserving transformation.
Then, for any PSPACE L1-computable f , lim

n→∞
Ãf

n =
∫

fdµ on EXP randoms.

Proof. Observe that Lemma 4.3, Corollary 4.4 and Lemma 4.6 are true in the setting of
PSPACE-probability Cantor spaces. The proof of Lemma 4.5 can be extended to the setting
of PSPACE-probability Cantor spaces in a straightforward manner. Since T is PSPACE
ergodic, we get that we get that

∫
fdµ is a PSPACE-rapid L1-limit point of Af

n. Now,
the theorem follows from these observations and the same techniques as in the proof of
Theorem 5.4. ◀

The convergence notions involved in proving the PSPACE/SUBEXP-space ergodic theo-
rems and their interrelationships are summarized in Figure 1.

PSPACE ergodic theorem(6.2)

Af
n 99K

∫
fdµ Af

n
PSPACE−−−−−→

a.e

∫
fdµ

SUBEXP ergodic theorem(8.11)

Theorem 4.2

f∈L∞

f∈PSPACE L
1

f∈SUBEXP L 1

Figure 1 Relationships between the major convergence notions involving PSPACE simple measure
preserving transformations. Af

n 99K
∫

fdµ denotes that
∫

fdµ is a PSPACE-rapid L1-limit point of
Af

n. PSPACE/SUBEXP-space ergodicity is required only for obtaining the ergodic theorems from
PSPACE a.e convergence.

7 A partial converse to the PSPACE Ergodic Theorem

In this section we give a partial converse to the PSPACE ergodic theorem (Theorem 6.2). We
show that for any PSPACE null x, there exists a function f and transformation T satisfying
all the conditions in Theorem 6.2 such that Ãf

n(x) does not converge to
∫

fdµ.
Let us first observe that due to Corollary 4.4, Theorem 6.2 is equivalent to the following:

▶ Theorem. Let T be a PSPACE ergodic measure preserving transformation such that
for any PSPACE L1-computable f ,

∫
fdµ is an PSPACE-rapid L1-limit point of Af

n. Let
{gn,i} be any collection of simple functions such that for each n, ⟨gn,i⟩∞

i=1 is a PSPACE
L1-approximation of Ãf

n. Then, lim
n→∞

lim
i→∞

gn,i(x) =
∫

fdµ for any EXP random x.
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Hence, the ideal converse to Theorem 6.2 is the following:

▶ Theorem. Given any EXP null x, there exists a PSPACE ergodic measure preserving trans-
formation T and PSPACE L1-computable f ∈ L1(Σ∞, µ) such that the following conditions
are true:
1.
∫

fdµ is an PSPACE-rapid limit point of Af
n.

2. There exists a collection of simple functions {gn,i} such that for each n, ⟨gn,i⟩∞
i=1 is a

PSPACE L1-approximation of Af
n but lim

n→∞
lim

i→∞
gn,i(x) ̸=

∫
fdµ.

But, we show the following partial converse to Theorem 6.2.

▶ Theorem 7.1. Given any PSPACE null x, there exists a PSPACE L1-computable f ∈
L1(Σ∞, µ) such that for any PSPACE simple measure preserving transformation, the following
conditions are true:
1. For all n ∈ N, ∥Af

n −
∫

fdµ∥1 = 0. Hence,
∫

fdµ is an PSPACE-rapid L1-limit point of
Af

n.
2. There exists a collection of simple functions {gn,i} such that for each n, ⟨gn,i⟩∞

i=1 is a
PSPACE L1-approximation of Af

n but lim
n→∞

lim
i→∞

gn,i(x) ̸=
∫

fdµ.
A proof of the above theorem requires the construction in the following lemma.

▶ Lemma 7.2. Let ⟨Un⟩∞
n=1 be a PSPACE test. Then there exists a sequences of sets〈

Ŝn

〉∞

n=1
such that for each n ∈ N, Ŝn ⊆ Σ∗ satisfying the following conditions:

1. µ([Ŝn]) ≤ 2−n.
2. ∩∞

m=1 ∪∞
n=m [Ŝn] ⊇ ∩∞

n=1Un.
3. There exists c ∈ N such that for all n, σ ∈ Ŝn implies |σ| ≤ nc.
4. There exists a PSPACE machine N such that N(σ, 1n) = 1 if σ ∈ Ŝn and 0 otherwise.

Proof of Theorem 7.1. Let ⟨Vn⟩∞
n=1 be any PSPACE test such that x ∈ ∩∞

n=1Vn. From
Lemma 7.2, there exists a collection of sets

〈
Ŝn

〉∞

n=1
such that ∩∞

m=1 ∪∞
n=m [Ŝn] ⊇ ∩∞

n=1Vn.
Let,

Un = {σ : [σ] ∈ Ŝi for some i such that 2n + 1 ≤ i ≤ 2(n + 1) + 1}

Let fn = nχUn
. Since

µ(Un) ≤
2(n+1)+1∑
i=2n+1

1
2i

≤ 1
22n

,

it follows that

∥fn∥1 ≤ n

2n+n
≤ 1

2n
.

Using the properties of
〈

Ŝn

〉∞

n=1
, it can be shown that ⟨fn⟩∞

n=1 is a PSPACE L1-
approximation of f = 0. We construct a machine M computing ⟨fn⟩∞

n=1. The other
conditions are easily verified. Let N be the machine from Lemma 7.2. On input (1n, σ), M

does the following:
1. If |σ| < (2(n + 1) + 1)c then, output ?.
2. Else, for each i ∈ [2n + 1, 2(n + 1) + 1] do the following:

a. For each α ⊆ σ, do the following:
i. If N(1i, α) = 1 then, output n.

3. Output 0.
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M uses at most polynomial space and computes ⟨fn⟩∞
n=1. Define

gn,i = fi + fi ◦ T + · · · + fi ◦ T n−1

n

For any fixed n ∈ N, since T is a PSPACE simple transformation, as in Lemma 4.6 it can
be shown that ⟨gn,i⟩∞

i=1 is a PSPACE L1-approximation of Af
n. We know that there exist

infinitely many m such that x ∈ [Ŝm]. For any such m, let i be the unique number such
that 2i + 1 ≤ m ≤ 2(i + 1) + 1. For this i, fi(x) = i. This shows that there exist infinitely
many i such that fi(x) = i. Since each fi is a non-negative function, it follows that there are
infinitely many i with gn,i ≥ i/n. Hence, if lim

i→∞
gn,i(x) exists, then it is equal to ∞. It may

be the case that lim
i→∞

gn,i(x) does not exist. In either case, lim
n→∞

lim
i→∞

gn,i(x) cannot be equal
to
∫

fdµ = 0. Hence, our construction satisfies all the desired conditions. ◀

8 An ergodic theorem for SUBEXP-space randoms and its converse

In the previous sections, we demonstrated that for PSPACE L1-computable functions and
PSPACE simple transformations, the Birkhoff averages converge to the desired value over
EXP randoms. However, the converse holds only over PSPACE non-randoms. The two major
reasons for this gap are the following: PSPACE-rapid convergence necessitates exponential
length cylinders while constructing the randomness tests, and PSPACE L1-computable
functions are not strong enough to capture all PSPACE randoms. In this section, we
demonstrate that for a different notion of randomness - SUBEXP-space randoms and a
larger class of L1-computable functions (SUBEXP-space L1-computable), we can prove the
ergodic theorem on the randoms and obtain its converse on the non-randoms. Analogous
to Towsner and Franklin [5], we demonstrate that the ergodic theorem for PSPACE simple
transformations and SUBEXP-space L1-computable functions satisfying PSPACE rapidity,
fails for exactly this class of non-random points. We first introduce SUBEXP-space tests
and SUBEXP-space randomness.

▶ Definition 8.1 (SUBEXP-space sequence of open sets). A sequence of open sets ⟨Un⟩∞
n=1

is a SUBEXP-space sequence of open sets if there exists a sequence of sets
〈
Sk

n

〉
k,n∈N, where

Sk
n ⊆ Σ∗ such that

1. Un = ∪∞
k=1[Sk

n], where for any m > 0, µ
(
Un − ∪m

k=1[Sk
n]
)

≤ m− log(m).
2. There exists a controlling polynomial p such that max{|σ| : σ ∈ ∪m

k=1Sk
n)} ≤

2p(log(n)+log(m)).
3. The function g : Σ∗ × 1∗ × 1∗ → {0, 1} such that g(σ, 1n, 1m) = 1 if σ ∈ Sm

n , and 0
otherwise, is decidable by a PSPACE machine.

▶ Definition 8.2 (SUBEXP-space randomness). A sequence of open sets ⟨Un⟩∞
n=1 is a

SUBEXP-space test if it is a SUBEXP-space sequence of open sets and for all n ∈ N,
µ(Un) ≤ n− log(n).

A set A ⊆ Σ∞ is SUBEXP-space null if there is a SUBEXP-space test ⟨Un⟩∞
n=1 such that

A ⊆ ∩∞
n=1Un and is SUBEXP-space random otherwise.5

The slower decay rate of n− log(n) = 2− log(n)2 enables us to obtain an ergodic theorem and
an exact converse in the SUBEXP-space setting .The following result is useful in manipulating
sums involving terms of the form 2−(log(n))k for k ≥ 2.

5 It is easy to see that the set of SUBEXP-space randoms is smaller than the set of PSPACE randoms.
But, we do not know if any inclusion holds between SUBEXP-space randoms and EXP-randoms.

MFCS 2021
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▶ Lemma 8.3. For any m ∈ N,
∑∞

n=2(2m2+1)
n

nlog(n) ≤ 1
mlog(m) .

A similar inequality holds on replacing n/nlog(n) with 1/nlog(n). Now, we introduce the
Solovay analogue of SUBEXP-space randomness and prove that these notions are analogous.

▶ Definition 8.4 (SUBEXP-space Solovay test). A sequence of open sets ⟨Un⟩∞
n=1 is a

SUBEXP-space Solovay test if it is a SUBEXP-space sequence of open sets and there exists
a polynomial p such that ∀m ≥ 0,

∑∞
n=p(m)+1 µ(Un) ≤ m− log(m). A set A ⊆ Σ∞ is

SUBEXP-space Solovay null if there exists a SUBEXP-space Solovay test ⟨Un⟩∞
n=1 such that

A ⊆ ∩∞
i=1 ∪∞

n=i Un, and is SUBEXP-space Solovay random otherwise.

▶ Lemma 8.5. A set A ⊆ Σ∞ is SUBEXP-space null if and only if A is SUBEXP-space
Solovay null.

Now, we define SUBEXP-space analogues of concepts from Section 3.

▶ Definition 8.6 (SUBEXP-space sequence of simple functions). A sequence of simple functions
⟨fn⟩∞

n=1 where each fn : Σ∞ → Q is a SUBEXP-space sequence of simple functions if
1. There is a controlling polynomial p such that for each n, there exists k(n) ∈ N,

{d1, d2 . . . , dk(n)} ⊆ Q and {σ1, σ2 . . . σk(n)} ⊆ Σ2p(log(n)) such that fn =
∑k(n)

i=1 diχσi
,

where χσi is the characteristic function of the cylinder [σi].
2. There is a PSPACE machine M such that for each n ∈ N, σ ∈ Σ∗, M(1n, σ) outputs

fn(σ0∞) if |σ| ≥ 2p(log(n)) and ? otherwise.

▶ Definition 8.7 (SUBEXP-space L1-computable functions). A function f ∈ L1(Σ∞, µ) is
SUBEXP-space L1-computable if there exists a SUBEXP-space sequence of simple functions
⟨fn⟩∞

n=1 such that for every n ∈ N, ∥f − fn∥ ≤ n− log(n). The sequence ⟨fn⟩∞
n=1 is called a

SUBEXP-space L1-approximation of f .

We require the following equivalent definitions of PSPACE-rapid convergence notions for
working in the setting of SUBEXP-space randomness.

▶ Lemma 8.8. A real number a is a PSPACE-rapid limit point of the real number se-
quence ⟨an⟩∞

n=1 if and only if there exists a polynomial p such that for all m ∈ N,
∃k ≤ 2p(log(m)) such that |ak − a| ≤ m− log(m).

▶ Lemma 8.9. A sequence of measurable functions ⟨fn⟩∞
n=1 is PSPACE-rapid almost every-

where convergent to a measurable function f if and only if there exists a polynomial p such
that for all m1 and m2,

µ

({
x : sup

n≥2p(log(m1)+log(m2))
|fn(x) − f(x)| ≥ 1

m
log(m1)
1

})
≤ 1

m
log(m2)
2

.

The same technique used in the proof of Lemma 8.8 can be used to prove this claim.
Before addressing the main result, let us define SUBEXP-space ergodicity.

▶ Definition 8.10 (SUBEXP-space ergodic transformations). A measurable function T :
(Σ∞, µ) → (Σ∞, µ) is SUBEXP-space ergodic if T is a PSPACE simple transformation such
that for any SUBEXP-space L1-computable f ∈ L1(Σ∞, µ),

∫
fdµ is a PSPACE-rapid L1

limit point of Af,T
n .

Lemma 4.3, Corollary 4.4 and Lemma 4.6 have analogous results in the SUBEXP-space
setting. We prove the SUBEXP-space ergodic theorem below.
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▶ Theorem 8.11. Let T : (Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ) be a SUBEXP-space er-
godic measure preserving transformation. Then, for any SUBEXP-space L1-computable f ,
lim

n→∞
Ãf

n =
∫

fdµ on SUBEXP-space randoms.

An important reason for investigating SUBEXP-space randomness is that the SUBEXP-space
ergodic theorem has an exact converse unlike the PSPACE ergodic theorem which only seems
to have a partial converse (Theorem 7.1).

▶ Theorem 8.12. Given any SUBEXP-space null x, there exists a SUBEXP-space L1-
computable f ∈ L1(Σ∞, µ) such that for any PSPACE simple measure preserving transfor-
mation, the following conditions are true:
1. For all n ∈ N, ∥Af

n −
∫

fdµ∥1 = 0. Hence,
∫

fdµ is an PSPACE-rapid L1-limit point of
Af

n.
2. There exists a collection of simple functions {gn,i} such that for each n, ⟨gn,i⟩∞

i=1 is a
SUBEXP-space L1-approximation of Af

n but lim
n→∞

lim
i→∞

gn,i(x) ̸=
∫

fdµ.
The proofs of both Theorem 8.11 and Theorem 8.12 are similar to those of Theorem 6.2 and
Theorem 7.1, but requires Lemma 8.3 for minimizing summations of the form

∑
n− log(n)

appearing in the error bounds.
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A Proof of Theorem 5.1

Proof of Theorem 5.1. Let ⟨fn⟩∞
n=1 be a PSPACE sequence of simple functions witnessing

the fact that f is PSPACE L1-computable. Let p be a controlling polynomial and let t be a
polynomial upper bound for the space complexity of the machine associated with ⟨fn⟩∞

n=1.
Let q1,q2 be the polynomials from Lemma 5.2. Let c ∈ N be any number such that if a r ∈ Q
has a representation of length l then r ≤ 2lc (see Section 2). Observe that for any m ∈ N,

∥Af
n −
∫

fdµ∥1 ≤ ∥Af
n − A

fq1(m+3)
n ∥1 + ∥A

fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 + ∥

∫
fq1(m+3)dµ −

∫
fdµ∥1

≤ 1
2q1(m+3) + ∥A

fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 + 1

2q1(m+3) .

≤ 1
2m+3 + ∥A

fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 + 1

2m+3 .

We know that there exist {σ1, σ2 . . . σk} ⊆ Σp(q1(m+3)) such that A
fq1(m+3)
n =

k(q1(m+3))∑
i=1

diχσi

where each di ≤ 2t(q1(m+3)+p(q1(m+3)))c . Hence,

∥A
fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 ≤ 2t(q1(m+3)+p(q1(m+3)))c

k(q1(m+3))∑
i=1

∥A
χσi
n − µ(σi)∥1

Since |σi| ≥ p(q1(m + 3)) ≥ q1(m + 3), using Lemma 5.2, for

n ≥ p(q1(m + 3))32q2(t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))+m+3)

we get that,

∥A
fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 ≤ 2t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))

2t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))+m+3

≤ 1
2m+3 .

Hence, for all n ≥ p(q1(m + 3))32q2(t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))+m+3) we have ∥Af
n −∫

fdµ∥1 ≤ 3.2−(m+3) < 2−m. ◀

http://arxiv.org/abs/1909.03431
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Proof of Lemma 5.2. The major difficulty in directly approximating ∥Aχσ
n − µ(σ)∥1 is that

for any n, m ∈ N, Aχσ
n and Aχσ

m may not be independent. In order to overcome this, we
use constructions similar to those used in proving Pillai’s theorem (see [20], [16] for normal
numbers, [18] for continued fractions) in order to approximate each Aχσ

n with sums of disjoint
averages. These disjoint averages turns out to be averages of independent random variables.
Hence, elementary results from probability theory regarding independent random variables
can be used to show that Aχσ

n converges to
∫

fdµ sufficiently fast.
Observe that for any x ∈ Σ∞

Aχσ
n (x) = |{i ∈ [0, n − 1] | T ix ∈ [σ]}|

n

Let k = |σ|. As in the proof of Theorem 3.1 from [18], the following is a decomposition of
the above term as disjoint averages,

|{i ∈ [0, n − 1] | T ix ∈ [σ]}|
n

= g1(n) + g2(n) + · · · + g(1+⌊log2
n
k ⌋)(n) + (k − 1).O(log n)

n

where

gp(n) =


|{i | T kix ∈ [σ] , 0 ≤ i ≤ ⌊n/k⌋}|

n
if p = 1∑k−1

j=1 |{i | T (2p−1)kix ∈ [Sj ], 0 ≤ i ≤ ⌊n/2p−1k⌋}|
n

if 1 < p ≤ (1 + ⌊log2(n/k)⌋)
0 otherwise,

and Sj is the finite collection of 2(p−1)k length blocks s.t σ occurs in it at starting position
(2(p−2)k − j + 1)th position i.e Sj is the set of strings of the form, u a1a2 . . . ak v where u is
some string of length 2p−2k − j, and v is some string of length 2p−2k − k + j.

When p = 1,

g1(n) =

⌊ n
k ⌋∑

i=1
X1,1

i

n

where

X1,1
i (x) =

{
1 if x[ik + 1, (i + 1)k] = σ

0 otherwise

When 1 < p ≤ ⌊log2(n/k)⌋,

gp(n) =

⌊ n

2p−1k
⌋∑

i=1

k−1∑
j=1

Xp,j
i

n

where,

Xp,j
i (x) =

{
1 if x[2p−2k − j + 1, 2p−2k − j + k] = σ

0 otherwise

Hence,

Aχσ
n (x) =

⌊ n
k ⌋∑

i=1
X1,1

i (x)

n
+

⌊log2( n
k )⌋∑

p=2

k−1∑
j=1

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

n
+ (k − 1).O(log n)

n
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An important observation that we use later in the proof is that for any fixed p and j, {Xp,j
i }∞

i=1
is a collection of i.i.d Bernoulli random variables such that µ({x : Xp,j

i (x) = 1}) = 2−|σ|. We
will show that the conclusion of the lemma holds when q1(m) = 2(m+6) and q2(m) = 5(m+6).
For any m ∈ N,∥∥∥∥∥∥

∞∑
p=m+5+2

k−1∑
j=1

1
n

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

∥∥∥∥∥∥
2

≤
∞∑

p=m+5+2

1
2p−1 ≤ 1

2m+5

(1)

And for n ≥ |σ|32q2(m) > |σ|222(m+5),∥∥∥∥ (k − 1)O(log(n))
n

∥∥∥∥
2

=
∥∥∥∥ (k − 1)O(log(n))√

n
√

n

∥∥∥∥
2

≤
∣∣∣∣k − 1√

n

∣∣∣∣ ≤
∣∣∣∣ k − 1
k2m+5

∣∣∣∣ ≤ 1
2m+5 (2)

Let,

Dσ
n,m(x) =

⌊ n
k ⌋∑

i=1
X1,1

i (x)

n
+

m+5+2∑
p=2

k−1∑
j=1

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

n

From (1) and (2), we get that

∥Aχσ
n − Dσ

n,m∥2 ≤ 2
2m+5 .

Let,

Eσ
n,m(x) =


⌊ n

k ⌋∑
i=1

X1,1
i (x)

⌊ n
k ⌋

− 1
2k

 ⌊ n
k ⌋
n

+
m+5+2∑

p=2

k−1∑
j=1


⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

⌊ n
2p−1k ⌋

− 1
2k

 ⌊ n
2p−1k ⌋

n

Now,

Dσ
n,m(x) − Eσ

n,m(x) = 1
2kk

+
m+5+2∑

p=2

k−1∑
j=1

1
2k

⌊ n
2p−1k ⌋

n

It follows that,

∥Dσ
n,m(x) − Eσ

n,m∥2 ≤ 1
2k

+
m+5+2∑

p=2

k−1∑
j=1

1
2k2p−1k

≤ 1
2k

+
m+5+2∑

p=2

1
2k2p−1

≤ 1
2k

+
m+5+2∑

p=2

1
2k

≤ m + 5 + 2
2k
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Hence, if |σ| = k ≥ q1(m) = m + 5 + 2 + m + 5 then,

∥Dσ
n,m(x) − Eσ

n,m∥2 ≤ 1
2m+5

and,

∥Aχσ
n − µ(σ)∥2 ≤ ∥Aχσ

n − Dσ
n,m∥2 + ∥Dσ

n,m(x) − Eσ
n,m∥2 + ∥Eσ

n,m∥2 + 1
2k

≤ 3
2m+5 + ∥Eσ

n,m∥2 + 1
22m+12

≤ 4
2m+5 + ∥Eσ

n,m∥2.

Hence, in order to show that for all n ≥ |σ|32q2(m), ∥Aχσ
n − µ(σ)∥1 ≤ ∥Aχσ

n − µ(σ)∥2 ≤ 2−m,
it is enough to show that for all n ≥ |σ|32q2(m), ∥Eσ

n,m∥2 ≤ 2−(m+5). Observe that

∥Eσ
n,m∥2 ≤

∥∥∥∥∥∥ 1
⌊ n

k ⌋

⌊ n
k ⌋∑

i=1
X1,1

i (x) − 1
2k

∥∥∥∥∥∥
2

+
m+5+2∑

p=2

k−1∑
j=1

∥∥∥∥∥∥ 1
⌊ n

2p−1k ⌋

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i − 1
2k

∥∥∥∥∥∥
2

.

Let Y1, Y2, . . . Yn be i.i.d Bernoulli random variables,∥∥∥∥∥ 1
n

n∑
i=1

Yi − E(Y1)

∥∥∥∥∥
2

=

√√√√√E

( 1
n

n∑
i=1

Yi − E(Y1)
)2


=

√√√√Var
(

1
n

n∑
i=1

Yi

)

=
√

1
n2 nVar(Y1)

≤
√

Var(Y1)√
n

≤ 1
2
√

n

The last inequality follows from the fact that the variance of Bernoulli random variables are
always bounded by 1

4 . Hence, if n ≥ |σ|32q2(m) = |σ|325(m+6) then,⌊n

k

⌋
> k224(m+6)

and⌊ n

2p−1k

⌋
≥ k325(m+6)

2m+5+1k
> k224(m+6).

Hence for all n ≥ |σ|32q2(m) = |σ|325(m+6),

∥Eσ
n,m∥2 ≤ 1

2k22(m+6) + (m + 6)k 1
2k22(m+6)

<
1

2m+6 + 1
2m+6

≤ 1
2m+5 .

Hence we obtain the desired conclusion. ◀
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Abstract
We study guidable parity automata over infinite trees introduced by Colcombet and Löding, which
form an expressively complete subclass of all non-deterministic tree automata. We show that, for
any non-deterministic automaton, an equivalent guidable automaton with the smallest possible
index can be effectively found. Moreover, if an input automaton is of a special kind, i.e. it
is deterministic or game automaton then a guidable automaton with an optimal index can be
deterministic (respectively game) automaton as well. Recall that the problem whether an equivalent
non-deterministic automaton with the smallest possible index can be effectively found is open, and
a positive answer is known only in the case when an input automaton is a deterministic, or more
generally, a game automaton.
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1 Introduction

Rabin automata on infinite trees constitute one of the most expressive formalisms based
on finite-state recognisability. Introduced by Rabin in the proof of his seminal decidability
result [19] as an enhancement of the more basic concept of Büchi automata on ω-words [2], tree
automata continue to attract attention of researchers, and make a crossing point of various
areas like logic, games, set-theoretic topology, fixed-point calculi, and theory of verification.
It is an intriguing fact that a number of questions, which are by now well understood for
automata on ω-words, are still largely unsolved for automata on trees. This concerns in
particular decidability questions like effective measurability and effective classification within
various hierarchies based on topology, or on the structure of automata. While it is plausible
that we reach the frontiers of decidability here, there is neither any evidence that these
problems may not be decidable.

Among the hierarchies mentioned above, the Rabin-Mostowski index hierarchy has
attracted a special attention, owing to its close relation to an alternation hierarchy in the
µ-calculus (cf. [1, 17]), and to the complexity of the non-emptiness problem. It refers to the
acceptance criterion, which for infinite computations is conveniently expressed in terms of
colours associated with the automaton states, that may or should repeat infinitely often.
In a general setting, the criterion specifies explicitly the requested combinations of colours
(Muller criterion), which refines the original Büchi criterion that has just requested some
“good” colour to repeat infinitely often. While the Büchi and Muller criteria are equivalent
for non-deterministic automata on ω-words [2], they are not for automata on trees as noted
already by Rabin [20]. The parity criterion is derived from Büchi’s idea by distinguishing
between “good” and “bad” colours and requesting that the highest-ranked colour repeating
infinitely often is good. This is implemented by representing good and bad colours by
even and odd integers, respectively. An index is a set of colours {i, i+1, . . . , j} used by
an automaton; its size corresponds to the number of alternations between good and bad
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colours. The parity criterion is expressively equivalent to the Muller criterion, but it is more
succinct and leads to the better complexity of the non-emptiness problem, up to our present
knowledge. (See [21] for an insightful discussion of other meaningful criteria.)

The complexity of the non-emptiness problem for automata on infinite trees is actually
a pertinent open question. While the problem is NP-complete for automata with the original
Rabin acceptance criterion [9], it is expectedly more feasible for automata with the parity
criterion, being in turn equivalent to the celebrated problem of solving parity games [10]. It
is well-known that the complexity of this last problem has been recently improved [4] roughly
from nO(d) to nO(log d), where n is the number of positions and d the number of priorities
(colours). This yields a quasi-polynomial solution for the non-emptiness problem for parity
tree automata as well, with d corresponding to the size of automaton’s index. Whether this
improvement makes the quest for a small index more or less important may be the subject
of discussion. In prospective applications in the model checking, the index d is derived from
the formula whereas n corresponds to the size of the system, and is usually much bigger than
d, so that even a small improvement of the index may be advantageous. But in any case,
the recent development for parity games shows that the index is an essential parameter in
understanding the problem.

The relevance of this parameter has been noticed already by Mostowski [15]. While it is
known that in general an arbitrarily high index is needed for non-deterministic [16] as well
as for alternating [1] automata, it is generally open if an automaton with an optimal index
can be effectively found. Algorithms were given only in the special cases, where the input
automaton is deterministic [18], or more generally it is a so-called game automaton [11].

An interesting approach has been undertaken by Colcombet and Löding [7], who reduced
the non-deterministic index problem of parity tree automata to a problem of an apparently
different nature, concerning the asymptotic behaviour of counters in some automata related
to the (classical) star-height problem. In the course of their proof, these authors introduced
an auxiliary concept of a guidable tree automaton, which in our opinion has a compelling
potential and deserves to be better understood. Intuitively, a guidable automaton behaves
almost like a deterministic automaton if it is given (as a kind of oracle) the non-deterministic
choices of any other automaton running on the same tree. Colcombet and Löding [7] showed
in particular that any automaton can be transformed into an equivalent guidable automaton,
which essentially realises a strategy of Pathfinder in the celebrated game introduced by
Gurevich and Harrington [13]. Although a guidable automaton is unsurprisingly not unique,
it nevertheless constitutes a kind of a normal form of a non-deterministic automaton. It
should be stressed that canonical forms are generally missing in the theory of automata on
infinite objects, which is one of the sources of difficulties there. Therefore, we believe that
the idea of guidable automata is worth to pursue.

In the present paper we show how to effectively compute an equivalent guidable automaton
with the smallest possible index – among all guidable automata – without any restriction on
the input automaton. We also revisit the concept of game automata mentioned above and
show, relying on the construction of a guidable automaton by Colcombet and Löding [7],
that any game automaton is itself guidable. Moreover, if an input automaton is a game or
deterministic automaton then a guidable automaton with an optimal index can be a game
(respectively, deterministic) automaton as well.

Unfortunately, the guidable index can be in general arbitrarily worse than the smallest
possible index of an equivalent non-deterministic automaton, we are primarily searching for.
We believe however, that the games used in our proofs may be of potential interest for the
main problem. Note that similar games have been used in a recent work [5] (see [6]) to decide
separability of regular tree languages by deterministic and game automata.
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2 Basic notions

The set of natural numbers {0, 1, . . .} is denoted ω. An alphabet is any finite non-empty
set Σ of letters. By Σ∗ we denote the set of words (i.e. finite sequences) over an alphabet
Σ. By u↾n we denote the finite sequence consisting of the first n symbols of u. The empty
sequence is denoted ϵ. By |u| we denote the length of a finite sequence u.

A Σ-labelled tree (shortly tree) is a function t : {L, R}∗ → Σ, where L ̸= R are two special
symbols called directions. The set of all such trees is denoted TrΣ. If Σ and Γ are two
alphabets then each pair of trees t1 ∈ TrΣ and t2 ∈ TrΓ induces their product t1 ⊗ t2 ∈ TrΣ×Γ,
with (t1 ⊗ t2)(u) def=

(
t1(u), t2(u)

)
. Given a tree language L ⊆ TrΣ×Γ, its projection onto Σ is

the set of trees t1 ∈ TrΣ, such that there exists a tree t2 ∈ TrΓ, for which t1 ⊗ t2 ∈ L.
An infinite sequence of directions b ∈ {L, R}ω is called a branch. Similarly, a path in

a tree t ∈ TrA is a sequence (an, dn)n∈ω ∈
(
Σ × {L, R}

)ω, such that an = t(d0 · · · dn−1) for
n = 0, 1, . . .

An index is a non-empty finite range of natural numbers C = {i, i+1, . . . , j} ⊆ ω.
Elements c ∈ C are called priorities. We say that an infinite sequence of priorities (cn)n∈ω

is parity accepting if lim supn→∞ cn ≡ 0 mod 2. Otherwise, we say that such a sequence is
parity rejecting.

A non-deterministic C-parity tree automaton (shortly non-deterministic automaton) is
a tuple A = ⟨Σ, QA, qA

I , ∆A, ΩA⟩, where Σ is an alphabet, QA a finite set of states, qA
I ∈ QA

an initial state, ∆A ⊆ QA × Σ × QA × QA a transition relation; and ΩA : QA → C a priority
mapping. An element (q, a, qL, qR) ∈ ∆A is called a transition of the automaton A. We
say that such a transition is from the state q and is over the letter a. We make a proviso
that, unless stated otherwise, all automata in consideration are trimmed, that is, for each
state q ∈ QA and letter a ∈ Σ, there is at least one transition from q over a in ∆A. When
an automaton A is known from the context then we skip the superscript and write just Q,
∆, etc.

We extend the notions of parity accepting (resp. rejecting) sequences of priorities to
sequences of states by applying Ω, i.e. a sequence of states (qn)n∈ω is parity accepting
(resp. parity rejecting) in A if the priorities (Ω(qn))n∈ω are parity accepting (resp. parity
rejecting).

Given a tree t ∈ TrΣ, a run of an automaton A over t is a tree ρ ∈ TrQ such that ρ(ϵ) = qI
and, for each node u ∈ {L, R}∗, the tuple

(
ρ(u), t(u), ρ(uL), ρ(uR)

)
is a transition of A. Such a run is accepting if, for every branch b ∈ {L, R}ω, the sequence of
states qn

def= ρ
(
b↾n

)
for n = 0, 1, . . . is parity accepting. The set of trees over which a given

automaton A has some accepting run is called the language of A and is denoted L(A). If
q ∈ Q is a state of an automaton A then by L(A, q) we denote the language of the automaton
A with the initial state set to q. We say that q is productive if L(A, q) ̸= ∅. Thus L(A) ̸= ∅
iff the initial state qA

I is productive.
A set of trees is a regular tree language if it is of the form L(A) for some non-deterministic

automaton A.
An automaton A is deterministic if for every state q ∈ Q and letter a ∈ Σ there exists

a unique transition in ∆A starting from q over a. A deterministic automaton has exactly one
run over each tree t ∈ TrΣ and this run can be constructed inductively in a top-down way.
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Guidable automata

The notion of a guiding function and one automaton guiding another was introduced in [7],
here we follow the exposition from [14].

Fix two non-deterministic automata A and B over the same alphabet Σ. A guiding function
from B to A is a function g : QA × ∆B → ∆A such that g

(
p, (q, a, qL, qR)

)
= (p, a, pL, pR)

for some pL, pR ∈ QA (i.e. the function g is compatible with the state p and the letter
a). If ρ ∈ TrQB is a run of B over a tree t ∈ TrΣ then we define the tree g⃗(ρ) ∈ TrQA ,
inductively as follows. We let g⃗(ρ)(ϵ) def= qA

I and, for each u ∈ {L, R}∗, if g⃗(ρ)(u) = p ∈ QA,
t(u) = a, and γ is a transition of B taken in u, i.e. γ

def=
(
ρ(u), a, ρ(uL), ρ(uR)

)
, and if finally

g(p, γ) = (p, a, pL, pR) ∈ ∆A, then we let,

g⃗(ρ)(uL) def= pL, g⃗(ρ)(uR) def= pR.

Notice that directly by the definition, the tree g⃗(ρ) is a run of A over t. We say that a guiding
function g : QA × ∆B → ∆A preserves acceptance if whenever ρ is an accepting run of B
then g⃗(ρ) is an accepting run of A. We say that an automaton B guides an automaton A
(denoted B ↪→ A), if there exists a guiding function g : QA × ∆B → ∆A which preserves
acceptance. In particular, it implies that L(B) ⊆ L(A).

An automaton A is guidable if it can be guided by any automaton B such that L(B) = L(A)
(in fact one can equivalently require that L(B) ⊆ L(A), see [14, Remark 4.5]).

The main result concerning guidable automata is the following theorem.

▶ Theorem 1 ([7, Theorem 1], see also [14, Theorem 4.7]). For every regular tree language L

there exists a guidable automaton recognising L. Moreover, such an automaton can be
effectively constructed from any non-deterministic automaton for L.

Since we will rely on the exact structure of such an automaton, we recall the crucial
steps in the construction. First, let A be a non-deterministic automaton recognising the
given language L. Assume that A′ = ⟨Σ, Q′, q′

I, ∆′, Ω′⟩ is any automaton recognising the
complement of L.

An important role in this construction is played by selectors, i.e. functions f : ∆′ → {L, R}
(in other words f ∈ {L, R}∆′). Consider a product tree t⊗τ ∈ TrΣ×{L,R}∆′ and one of its paths(

(an, fn), dn

)
n∈ω

. We say that this path is losing if there exists a sequence of transitions(
δ′

n = (pn, an, pL,n, pR,n)
)

n∈ω
of A′ which is A′-accepting in the following sense:

p0 = qA′

I ,
∀n ∈ ω. pn+1=pdn,n ∧ dn=fn(δ′

n),
the sequence of states (pn)n∈ω is parity accepting in A′.

Lemma 1.15 in [14] provides a deterministic automaton Winning(A′) over the alphabet
Σ × {L, R}∆′ . The crucial properties of this automaton are stated in the following fact.

▶ Fact 2. The automaton Winning(A′) accepts a product tree t ⊗ τ ∈ TrΣ×{L,R}∆′ if and
only if none of its paths is losing. The projection of L

(
Winning(A′)

)
onto Σ is the original

language L, i.e. the complement of L(A′).

By Complement(A′) we denote the non-deterministic automaton obtained from the auto-
maton Winning(A′) by projecting the transitions of Winning(A′) onto the coordinate Σ: each
transition of the form

(
q, (a, f), qL, qR

)
is replaced by

(
q, a, qL, qR

)
; yielding a non-deterministic

automaton recognising L. We say that a transition
(
q, a, qL, qR

)
of Complement(A′) is arising

from f ∈ {L, R}∆′ if
(
q, (a, f), qL, qR

)
is a transition of Winning(A′).
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Notice that in fact the only non-determinism of the automaton Complement(A′) comes
from the projection from the alphabet Σ × {L, R}∆′ onto Σ. Therefore, to define a guiding
function to guide the automaton Complement(A′), whenever specifying a transition of
Complement(A′), it is enough to provide a selector f ∈ {L, R}∆′ and then take the unique
transition arising from f .

▶ Lemma 3 (See the proof of [14, Theorem 4.7]). The automaton Complement(A′) is guidable.

3 Guidability relation

The guidability relation B ↪→ A can be seen as a reduction, showing that one automaton uses
less non-determinism than the other one. Thus, one would naturally expect this relation to
be transitive, which is indeed the case.

▶ Proposition 4. If C ↪→ B and B ↪→ A then C ↪→ A.

A proof of this fact is implicit in [14, Proposition 4.11], where it is shown how to compose
two guiding functions gB and gA into a winning strategy in a game characterising guidability,
called weak inclusion game, see [14, page 78]. However, the transitivity of the relation ↪→
has not been explicitly stated before. Therefore, for the sake of completeness, we provide
a proof of Proposition 4 here.

First, we recall the notion of the weak inclusion game Gguide(B, A) from [14, page 78]
which is used to characterise when an automaton B guides another automaton A, and
consequently to decide whether a non-deterministic automaton is guidable. We introduce
a small modification, justified below, using the following concept: a transition (q, a, qL, qR) is
productive if both states qL, qR are productive (cf. Section 2).

The positions of the game Gguide(B, A) are of the form (p, q) ∈ QA × QB. The initial
position (p0, q0) is (qA

I , qB
I ). At an nth round for n = 0, 1, . . . which starts in a position

(pn, qn):
1. ∀ chooses a letter an ∈ Σ,
2. ∀ chooses a productive transition γn = (qn, an, qL,n, qR,n) ∈ ∆B; if there is no productive

transition from qn over an then ∀ loses immediately,
3. ∃ chooses a transition δn = (pn, an, pL,n, pR,n) ∈ ∆A,
4. ∀ chooses a direction dn ∈ {L, R}.
The next position (pn+1, qn+1) of the game is (pdn,n, qdn,n).

The winning condition for ∃ expresses, that if the sequence of states (qn)n∈ω is parity
accepting in B then the sequence of states (pn)n∈ω is parity accepting in A.

▶ Lemma 5 ([14, Proposition 4.9]). The player ∃ wins the above game Gguide(B, A) if and
only if B ↪→ A. Moreover, the player ∃ has a positional winning strategy.

The requirement that the transitions chosen by ∀ in step 2 are productive is added
because of the case when L(B) = ∅. In this corner case the relation B ↪→ A holds trivially
whereas the characterisation as stated in [14, Proposition 4.9] seems to fail. For the sake
of completeness we recall the proof of Proposition 4.9 from [14], taking into account our
modification.

Proof. The fact that the game is determined and the player ∃ has a positional winning
strategy follows from the general theory of infinite games (see, e.g. [21, 12]); indeed the
winning criterion of Gguide(B, A) can be easily presented as a union of parity criteria and
hence it is a so-called Rabin criterion. Clearly, the fact that ∃ can also win in finite time
does not affect the positional determinacy for this player.
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Now if B guides A then an acceptance-preserving guiding function g : QA × ∆B → ∆A

yields a positional strategy for ∃: in a position (pn, qn), given the choice by ∀ of a transition
γn = (qn, an, qL,n, qR,n) ∈ ∆B, ∃ chooses δn = g(pn, γn). Conversely, a positional winning
strategy of ∃ induces a partial function g̃ : QA × ∆B → ∆A that is defined for p ∈ QA and
γ = (q, a, qL, qR) ∈ ∆B whenever the position (p, q) is winning for ∃ and the transition γ is
productive. We extend g̃ to a total guiding function g : QA × ∆B → ∆A that for all other
arguments is defined in any way; note that it is always possible since, by our proviso, the
automaton A is trimmed. By the assumption, the initial position (qA

I , qB
I ) is winning. Then

the fact that g̃ has been derived from a winning strategy implies that the function g preserves
acceptance. ◀

▶ Remark 6. Based on the above lemma, the notion that a guiding function preserves
acceptance can be equivalently rephrased as follows. Consider any sequence of productive
transitions

(
γn = (qn, an, qL,n, qR,n)

)
n∈ω

of B and a sequence of directions (dn)n∈ω. Assume
that q0 = qB

I and qn+1 = qdn,n for n = 0, 1, . . . Let δn = (pn, an, pL,n, pR,n) be defined
inductively for n = 0, 1, . . . by p0

def= qA
I , δn = g(pn, γn), and pn+1 = pdn,n. Then the

condition that g preserves acceptance boils down to saying that if (qn)n∈ω is parity accepting
in B then (pn)n∈ω is parity accepting in A.

We can now move to a proof of Proposition 4. Assume that gB and gA are two guiding
functions which preserve acceptance, witnessing that C ↪→ B and B ↪→ A.

We will show that ∃ has a winning strategy in Gguide(C, A), using the set of states of B
as a memory structure. More precisely, ∃ keeps track of an additional state rn ∈ QB with
r0

def= qB
I . Consider an nth round starting in a position (pn, qn) with a memory state rn of

∃. Assume that ∀ has played an ∈ Σ and γn ∈ ∆C as above. Let γ′
n = (rn, an, rL,n, rR,n) def=

gB(rn, γn) ∈ ∆B be the transition of B given by gB. Note that if the transition γn was
productive then γ′

n must be productive as well. Similarly, let δn
def= gA(pn, γ′

n) be the
transition of A given by gA. Let ∃ play δn as her choice in that round. Once the round is
finished, let the new memory state of ∃ be rn+1

def= rdn,n.

▷ Claim 7. The strategy defined above is in fact winning for ∃.

Proof. Consider a play of Gguide(C, A) that was played according to the above strategy. Let
(rn)n∈ω be the sequence of memory states of ∃ used during that play. Assume that (qn)n∈ω

is parity accepting in C. Since gB represents a winning strategy of ∃ in Gguide(C, B), we know
that (rn)n∈ω is parity accepting in B. Therefore, we can use the fact that gA represents
a winning strategy of ∃ in Gguide(B, A) and entail that (pn)n∈ω is parity accepting in A. ◁

This concludes the proof of Proposition 4.

▶ Corollary 8 (See [14, Proposition 4.11]). Consider an automaton A and a guidable automaton
B, both recognising the same language L. Then the automaton A is guidable if and only if
B ↪→ A.

Note that the above corollary combined with Lemma 5 and Theorem 1 yield a procedure
to decide whether a non-deterministic automaton is guidable ([14, Theorem 4.7]).

4 Game automata as guidable automata

It is straightforward to see that deterministic automata are guidable (the function g in
the definition above does not depend on the argument in ∆B). Hence, guidable automata
can be viewed as a semantic extension of deterministic automata. However, there already
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exists an established notion of automata naturally extending the deterministic ones, namely
the game automata, see [8]. In this section we recall this notion in the framework of
non-deterministic automata, and prove the following new result.

▶ Proposition 9. Every game automaton is guidable.

Since every deterministic automaton is also game, we get a syntactic stratification:

Deterministic ⊊ Game ⊊ Guidable, (1)

with each consecutive class not only containing more automata but also recognising more
languages. Theorem 1 means that the last class in this stratification is expressively complete
for all regular tree languages.

We say that a non-deterministic tree automaton A is a game automaton if it satisfies
the following two properties. First of all, Q contains a non-initial all-accepting state ⊤ ∈ Q:
Ω(⊤) is even and for each letter a ∈ A there is a unique transition starting from ⊤ over a,
namely (⊤, a, ⊤, ⊤) (thus L(A, ⊤) = TrΣ). Moreover, for a state q ∈ Q − {⊤} and a letter
a ∈ Σ we say that (q, a) is in one of the following modes:

conjunctive: there is a unique transition starting from q over a of the form (q, a, qL, qR)
with both qL and qR distinct from ⊤;
disjunctive: there are exactly two transitions starting from q over a, one of the form
(q, a, qL, ⊤) and the other of the form (q, a, ⊤, qR), with both qL and qR distinct from ⊤.

The above definition is a direct translation of the alternating formulation of game automata
into the format of non-deterministic automata. The two modes above correspond to the use
of ∧ or ∨ in the transition formula δ(q, a), see [11, Definition 3.2].

Before we move to a proof of Proposition 9, we need to recall that game automata admit
a syntactic complementation construction. Fix a game automaton A = ⟨Σ, Q, qI, ∆, Ω⟩.
Consider another game automaton denoted Ac defined as Ac = ⟨Σ, Q, qI, ∆′, Ω′⟩, where ∆′

and Ω′ are defined as follows. First of all, Ω′(q) def= Ω(q) + 1 for all q distinct than ⊤ and
Ω′(⊤) def= Ω(⊤). Moreover, ∆′ contains the following transitions:

for each a ∈ Σ we have (⊤, a, ⊤, ⊤) ∈ ∆′;
if q ∈ Q − {⊤} and a ∈ Σ are in conjunctive mode and (q, a, qL, qR) ∈ ∆ then the mode
of (q, a) in Ac is disjunctive, with (q, a, qL, ⊤) and (q, a, ⊤, qR) in ∆′;
if q ∈ Q − {⊤} and a ∈ Σ are in disjunctive mode and (q, a, qL, ⊤), (q, a, ⊤, qR) ∈ ∆ then
the mode of (q, a) in Ac is conjunctive, with (q, a, qL, qR) ∈ ∆′.

The following fact is an immediate consequence of the alternating semantics of game
automata, see [11, page 24:7].

▶ Fact 10. The automaton Ac is also a game automaton and L(Ac) = TrΣ − L(A).

The rest of this section is devoted to a proof of Proposition 9. Fix a game automaton
A = ⟨Σ, Q, qI, ∆, Ω⟩ and let A′ def= Ac denote its syntactic complement defined as above. Let
∆′ be the set of transitions of A′. Notice that (up to subtracting 2 from Ω) the automaton
(A′)c is equal to the original automaton A. We will now apply the procedure of constructing
a guidable automaton for L. Recall that this procedure involves a deterministic automaton
Winning(A′) that accepts a product tree t ⊗ τ ∈ TrΣ×{L,R}∆′ if and only if none of its
paths is losing. The desired guidable automaton Complement(A′) is then obtained from
Winning(A′) by projection on the component Σ. The automaton Winning(A′) itself is not
concretely specified; it can be any deterministic automaton with the required property. We
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will define it in such a way that the eventual automaton Complement(A′) will coincide with
the original automaton A. It is convenient here to use a variant of a deterministic automaton
where transitions leading to non-productive states are undefined, so that there is always
at most one transition rather than exactly one. (So we momentarily suspend our proviso
that all automata are trimmed, but the projection automaton will be trimmed again.) Let
Aw = ⟨Σ × {L, R}∆′

, Q, qI, ∆w, Ω⟩; that is, the automaton shares the states and the priority
function with A. The transitions of Aw are defined as follows.

For each a ∈ Σ and f ∈ {L, R}∆′ , we have (⊤, (a, f), ⊤, ⊤) ∈ ∆w.
If (q, a) are in disjunctive mode in A, and (q, a, qL, ⊤), (q, a, ⊤, qR) ∈ ∆, which implies that
(q, a, qL, qR) ∈ ∆′, and if f : (q, a, qL, qR) 7→ d (for f ∈ {L, R}∆′) then the unique transition
of Aw from q over (a, f) is (q, (a, f), qL, ⊤) or (q, (a, f), ⊤, qR) depending on whether d = L

or d = R.
If (q, a) are in conjunctive mode in A, and (q, a, qL, qR) ∈ ∆, which implies that (q, a, qL, ⊤),
(q, a, ⊤, qR) ∈ ∆′, and if moreover the selector f “behaves properly” in the sense that
f : (q, a, qL, ⊤) 7→ L and f : (q, a, ⊤, qR) 7→ R then the unique transition of Aw from q over
(a, f) is (q, (a, f), qL, qR). In all other cases, a transition from q over (a, f) is undefined.

Now, it is clear that an automaton Complement(Aw) obtained from A by replacing
each transition

(
q, (a, f), qL, qR

)
by

(
q, a, qL, qR

)
(cf. Section 2) coincides with the original

automaton A. So the proof of Proposition 9 boils down to the following.

▷ Claim 11. The automaton Aw accepts a product tree t ⊗ τ ∈ TrΣ×{L,R}∆′ if and only if
none of its paths is losing.

Proof. Let the automaton Aw accept a product tree t ⊗ τ ∈ TrΣ×{L,R}∆′ by a unique run τ .
For the sake of contradiction, suppose that there exists a losing path

(
(an, fn), dn

)
n∈ω

along
with a sequence of transitions

(
δ′

n = (pn, an, pL,n, pR,n)
)

n∈ω
of A′, such that p0 = qA′

I , and
∀n ∈ ω, pn+1=pdn,n ∧ dn=fn(δ′

n). Let
(
qn

)
n∈ω

be the sequence of states visited by the run
τ on this path, i.e. qn = τ(d0 . . . dn−1). We verify by induction on n that qn = pn ̸= ⊤.
Clearly qn = qA

I = qA′

I = p0 ̸= ⊤. Suppose the claim holds for n. If (qn, an) is in
conjunctive mode in A with the unique transition (qn, an, qL, qR) (with qL, qR ̸= ⊤) then
(pn, an) (with pn = qn) is in disjunctive mode in A′, with two possible transitions. Let
δ′

n = (pn, an, pL,n, pR,n) = (qn, an, qL,n, ⊤); the other case is symmetric. It follows from the
definition of Aw that in this case fn : δ′

n 7→ L, as otherwise the next transition would not be
defined and the run τ would not be accepting. Clearly, the transition of Aw used at this
point is (qn, (an, fn), qL, qR). Therefore, we have dn+1 = L and qn+1 = qL = pn+1 ̸= ⊤, as
required. If (qn, an) is in disjunctive mode in A and hence δ′

n = (pn, an, pL,n, pR,n) is the
unique transition of A′ from pn = qn over an, and moreover fn : δ′

n 7→ dn then the transition
of Aw from qn over (an, fn) is (pn, (an, fn), pL,n, ⊤) or (q, (an, fn), ⊤, pR,n) depending on
whether dn = L or d = R, but in any case we have qn+1 = qL = pn+1 ̸= ⊤, as required.

As the sequence of states
(
qn

)
n∈ω

is parity accepting in Aw (hence also in A), it cannot
be at the same time parity accepting in A′, which yields a contradiction.

Now let t ⊗ τ ∈ TrΣ×{L,R}∆′ be a product tree not accepted by Aw. There are two
possibilities: either the unique run of Aw on t ⊗ τ is non-accepting, or there is no (complete)
run at all, because the transitions are blocked at some place. We will show that in both cases
there is a losing path in t ⊗ τ . Suppose first that in a run ρ of Aw on t ⊗ τ there is a path(
qn, dn

)
n∈ω

, with q0 = qA
I and qn+1 = ρ(d0 . . . dn), such that the sequence

(
qn

)
n∈ω

is parity
rejecting. Thus in particular qn ̸= ⊤, for all n. Let an = t(d0 . . . dn−1) and fn = τ(d0 . . . dn−1).
We will define inductively a sequence of transitions

(
δ′

n = (pn, an, pL,n, pR,n)
)

n∈ω
of A′
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with pn = qn, which along with the sequence (dn)n∈ω will witness a losing path. As
usual, we consider two cases. If (qn, an) are in disjunctive mode in A then we let δ′

n
def=

(qn, an, qL, qR), where the last is the unique transition of A′ from qn over an. Suppose further
that fn : (qn, an, qL, qR) 7→ L (the other case is symmetric). Then the transition used by the
automaton Aw is

(
qn, (an, fn), qL, ⊤

)
, and we know that qn+1 = qL (because it is different

from ⊤), hence dn = L and the local condition of a losing path is satisfied. If (qn, an) are in
conjunctive mode in A with the transition (qn, an, qL, qR) then, since the transition of Aw

over (an, fn) is defined, we know that fn “behaves properly”, i.e. fn : (qn, an, qL, ⊤) 7→ L and
f : (qn, an, ⊤, qR) 7→ R. Suppose dn = L (the other case is symmetric), hence qn+1 = qL. We
let δ′

n
def= (qn, an, qL, ⊤); then again the local condition of a losing path is satisfied. Thus we

have obtained a losing path in t ⊗ τ , as expected.
Now suppose that there is no run of Aw on t ⊗ τ . We may however define a partial

run, i.e. a mapping ρ : dom → Q, where dom ⊆ {L, R}∗ is closed under initial segment, such
that ρ(ϵ) = qA

I , and whenever τ(v) = q and the transition
(
q, (t(v), ρ(v)), qL, qR

)
of Aw is

defined then ρ(vL) = qL and ρ(vR) = qR. Since ρ is not complete, there must be a finite
path d0, . . . , dm−1, such that ρ(d0, . . . , dm−1) = q, t(d0, . . . , dm−1) = a, τ(d0, . . . , dm−1) = f ,
and there is no transition of Aw from q over (a, f). (It is possible that m = 0.) This
means that (q, a) are in conjunctive mode in A with the transition (q, a, qL, wR), but f does
not “behave properly”; for example f : (q, a, qL, ⊤) 7→ R (the other case is symmetric). Let
qi = ρ(d0 . . . di−1), for i = 0, . . . , m. We define a finite sequence δ′

0, . . . , δ′
m−1 of transitions

of A′ corresponding to the path d0, . . . , dm−1, exactly as in the previous case, satisfying the
local condition of a losing path, with pi = qi, and hence pm = qm = q. Now, under the
assumption that f : (q, a, qL, ⊤) 7→ R, we let δ′

m
def= (q, a, qL, ⊤), dm = R, and pm+1 = ⊤. Then

we can clearly prolong this path to a losing path (with δ′
n, for n ≥ m + 1 being a transition

for ⊤).
This concludes the proof of Claim 11, and hence also of Proposition 9. ◁

5 Decidability of guidable index

In this section we provide the main result of the present article:

▶ Theorem 12. Given a regular language of infinite trees L ⊆ TrΣ and an index C =
{i, . . . , j} it is decidable whether there exists a guidable C-parity automaton which recog-
nises L.

Let A = ⟨Σ, QA, qA
I , ∆A, ΩA⟩ be a guidable parity automaton for the given language L,

which can be constructed as in Theorem 1.
Consider the following game, played between two players called ∃ and ∀. The positions

of the game are pairs of states QA × QA of the automaton A, the initial position (p0, p′
0) is

(qA
I , qA

I ). At an nth round for n = 0, 1, . . . which starts in a position (pn, p′
n) ∈ QA × QA:

1. ∃ chooses a priority cn ∈ C,
2. ∀ chooses a transition δn = (pn, an, pL,n, pR,n) ∈ ∆A from pn over some letter an ∈ Σ,
3. ∃ chooses a transition δ′

n = (p′
n, an, p′

L,n, p′
R,n) ∈ ∆A from p′

n over the same letter an ∈ Σ,
4. ∀ chooses a direction dn ∈ {L, R}.
The next position of the game (pn+1, p′

n+1) is (pdn,n, p′
dn,n).

The winning condition for ∃ in that game is the conjunction of the following two conditions:
W1 If the sequence of states (pn)n∈ω is parity accepting in A then the sequence of priorities

(cn)n∈ω must be also parity accepting.
W2 If the sequence of priorities (cn)n∈ω is parity accepting then the sequence of states

(p′
n)n∈ω is parity accepting in A.
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Clearly the winning condition of the game is ω-regular so the winner effectively has
a finite memory winning strategy [3]. The rest of this section is devoted to a proof of the
following proposition.

▶ Proposition 13. The player ∃ wins the game above if and only if there exists a guidable
C-parity automaton B which recognises the language L = L(A).

▶ Corollary 14. The problem of existence of a guidable C-parity automaton recognising
a given regular language is decidable. Moreover, it is possible to effectively construct such
an automaton whenever it exists.

The construction of a guidable automaton for the language recognised by a given non-de-
terministic automaton may involve a double-exponential growth in the number of states [14,
Proposition 4.8]. Therefore, already the size of the above game is in general double-exponen-
tial in the given representation of L. Since the index of the constructed automaton A is only
single-exponential, there exists a double-exponential deterministic parity automaton with
single-exponentially many priorities verifying the conjunction of the winning conditions W1
and W2 (cf. [6, Section 7]). It all implies that the complexity of the proposed algorithm is
2-EXPTIME.

Soundness

Assume that ∃ has a (finite memory) winning strategy in the game above. Such a strategy
consists of a finite set of memory values M ; the initial memory value mI ∈ M ; a memory
update function of the type:

τ : QA × QA × M × ∆A × {L, R} → M,

which updates the memory value depending on the choices of the opponent in a given round;
and two skolemised decision functions:

c : QA × QA × M → C which gives the choices of the priorities cn depending only on the
position of the game and the memory value in M ,
δ′ : QA × QA × M × ∆A → ∆A which gives the choices of the transitions δ′

n depending
on the position of the game, the memory value in M , and the choice of the transition δn

made by ∀ in the given round.

We construct a non-deterministic automaton B which guesses the choices of the transitions
δn ∈ ∆A and simulates the above strategy. Together with a definition of B, we define a guiding
function gB : QB × ∆A → ∆B that will be used to witness that A ↪→ B.

Let the set of states of the automaton B be QA × QA × M . The initial state is
(qA

I , qA
I , mI). The priority of a state (p, p′, m) is c(p, p′, m). Given a state (p, p′, m) of

B and a transition δ = (p, a, pL, pR) ∈ ∆A we define gB(
(p, p′, m), δ

)
as the transition(

(p, p′, m), a, (pL, p′
L, mL), (pR, p′

R, mR)
)

such that δ′(p, p′, m, δ) = δ′ = (p′, a, p′
L, p′

R) ∈ ∆A and
for each direction d ∈ {L, R} we have τ(p, p′, m, δ, d) = md. The set of transitions of B consists
of all the transitions gB(

(p, p′, m), δ
)

for (p, p′, m) ∈ QB and δ ∈ ∆A. This concludes the
definition of the automaton B.

In the following two proofs we will rely on the path-wise definition of when a guiding
function preserves acceptance, see Remark 6.

The following fact follows directly from the assumption that we began with a winning
strategy of ∃ and therefore its choices satisfy the winning condition W1.
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▶ Fact 15. The guiding function gB defined above preserves acceptance. Thus, it witnesses
that A ↪→ B and in particular L(A) ⊆ L(B).

▶ Lemma 16. We have B ↪→ A and in particular L(B) ⊆ L(A).

Proof. We can use the decision function δ′ as a guide function gA : QA × ∆B → ∆A. More
formally, consider a transition γ of B that is of the form gB(

(p, p′, m), δ) for some1 δ ∈ ∆A.
Let gA(p′, γ) = δ′(p, p′, m, δ); the remaining values of gA(p′′, γ) with the first argument p′′

different than p′ that comes from γ are irrelevant.
The fact that gA preserves acceptance follows directly from the assumption that we began

with a winning strategy of ∃ and therefore its choices satisfy the winning condition W2. ◀

The two above observations allow us to use Corollary 8 to learn the following fact.

▶ Fact 17. The automaton B is guidable and recognises the language L = L(A).

Since B is a C-parity automaton, the above fact concludes this direction of the proof.

Completeness

We will now show that if there exists a guidable C-parity automaton B which recognises
L then ∃ has a winning strategy in the game above. Let B = ⟨Σ, QB, qB

I , ∆B, ΩB⟩ be such
a guidable automaton.

Fix two guiding functions gA : QA × ∆B → ∆A and gB : QB × ∆A → ∆B, witnessing that
B ↪→ A and A ↪→ B, respectively.

Let the memory structure of the constructed strategy of ∃ consists of the set of states of
B. The initial memory value q0 is qB

I . In an nth round of the game that starts in a position
(pn, p′

n) ∈ QA × QA and with a memory value qn ∈ QB let ∃ play as follows:
∃ plays the priority cn

def= ΩB(qn),
∀ plays a transition δn = (pn, an, pL,n, pR,n) ∈ ∆A, which is mapped by gB to a transition
γ = (qn, an, qL,n, qR,n) def= gB(qn, δ) ∈ ∆B,
∃ plays the transition δ′

n = (p′
n, an, p′

L,n, p′
R,n) def= gA(p′

n, γ) ∈ ∆A,
∀ plays a direction dn ∈ {L, R},

and the next memory value qn+1 is qdn,n.
The following fact is an immediate consequence of the assumptions that the functions gB

and gA map accepting runs into accepting runs, see Remark 6.

▶ Lemma 18. The strategy defined above is winning for ∃.

Proof. Consider an infinite play of the game where ∃ played according to the above defined
strategy. First consider the winning condition W1. Assume that the sequence of states
(pn)n∈ω is parity accepting in A. Therefore, by the assumption on gB we know that the
sequence of states (qn)n∈ω is parity accepting in B. But the choice of priorities cn as ΩB(qn)
guarantees that the sequence of priorities (cn)nω must also be parity accepting.

Now consider the winning condition W2 and assume that the sequence of priorities (cn)n∈ω

is parity accepting. Therefore, the sequence of states (qn)n∈ω must be parity accepting in B.
Based on the assumption on gA we know that the sequence of states (p′

n)n∈ω must be parity
accepting in A. ◀

1 In fact the transition δ is uniquely determined by γ.
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6 Index transfer results

In this section we show results binding deterministic, game, and guidable indices of languages,
as expressed by the following proposition.

▶ Proposition 19. Assume that L ⊆ TrΣ can be recognised by some deterministic (resp. game)
automaton and by some guidable C-parity automaton. Then L can be recognised by a determ-
inistic (resp. game) C-parity automaton.

First consider the case of deterministic automata. Let D be any deterministic automaton
recognising L and let A be a guidable C-parity automaton recognising L. Let gA : QA×∆D →
∆A be a guiding function witnessing that D ↪→ A.

Consider the automaton B constructed as a product of D and A. More formally, the set
of states of B is QD × QA; the initial state of B is (qD

I , qA
I ); the priority function is defined

as ΩB(q, p) = ΩA(p); and the transitions of B are of the form(
(q, p), a, (qL, pL), (qR, pR)

)
∈ ∆B

where γ = (q, a, qL, qR) is the unique transition of D from q over a and δ = (p, a, pL, pR) def=
gA(p, γ) ∈ ∆A is the transition given by the guiding function gA. Directly from the definition
we see that B is a deterministic C-parity automaton. Therefore, the following fact concludes
the proof of Proposition 19 in the case of deterministic automata.

▶ Lemma 20. L(B) = L.

Proof. The fact that L(B) ⊆ L(A) is immediate, as each accepting run of B encodes
an accepting run of A over the same tree. On the other hand, if t ∈ L(D) then the
assumptions on gA imply that the unique run of B over t must be accepting. ◀

We now move to the proof of Proposition 19 in the case of game automata. Similarly
as before, take any game automaton D recognising L and let A be a guidable C-parity
automaton recognising L.

We first modify the automaton A by adding an additional state ⊤ of even priority and
a transition of the form (⊤, a, ⊤, ⊤) for each letter a ∈ Σ. Now, for each state p ∈ QA − {⊤}
such that L(A, p) = TrΣ, remove this state and replace each occurrence of p by ⊤ in all the
transitions of A. Clearly, these modifications do not change the language recognised by A.
Moreover, if the original automaton was guidable then the new one is also guidable. For the
sake of simplicity we assume that from this moment on A denotes the modified automaton.
Let gA : QA × ∆D → ∆A be a guiding function witnessing that D ↪→ A.

The automaton B is defined analogously as in the deterministic case, as a product of the
automata D and A using the guiding function gA. We additionally restrict the set of states
of B to those that can be reached from the initial state (qD

I , qA
I ) using the transitions of B.

▷ Claim 21. If a state (⊤, p) is reachable from the initial state of B by the transitions of B
then L(A, p) = TrΣ, which means that p = ⊤.

Proof. Since all the transitions of B follow the guiding function gA, whenever a state (q, p)
is reachable in the automaton B, we know that it is a winning position of ∃ in the weak
inclusion game Gguide(D, A), see Lemma 5. This guarantees that L(D, q) ⊆ L(A, p), and as
L(D, ⊤) = TrΣ, we know that L(A, p) = TrΣ. ◁
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The above claim implies that B is in fact a game automaton with the shape of transitions
inherited from D and (⊤, ⊤) playing the role of the state ⊤ of B. Since the priority function
ΩB is again inherited from A, B is a C-parity automaton.

It remains to show that L(B) = L. Similarly as in the deterministic case, the inclusion
L(B) ⊆ L(A) is immediate as each accepting run of B encodes an accepting run of A. On the
other hand, the inclusion L(D) ⊆ L(B) is direct from the assumptions on gA – each accepting
run of D is mapped by gA into an accepting run of B.

This concludes the proof of Proposition 19.

Consequences

By combining Proposition 19 and Proposition 9 (or by direct construction) we can observe
the following.
▶ Remark 22. If L ⊆ TrΣ is recognised by some deterministic automaton and by some game
C-parity automaton then L can be recognised by a deterministic C-parity automaton.
Thus the stratification from (1) preserves indices of the languages: if a language happens to
be recognisable by a less expressive automaton then its parity index is the same from the
point of view of both less and more expressive classes.

On the other hand, it is known that there is no such transfer when moving between
deterministic and (general) non-deterministic automata. Indeed, we have the following
property on ω-words.

▶ Fact 23 ([22]). For each C = {i, . . . , j} ⊆ ω there exists a regular language of ω-words,
which can be recognised by a non-deterministic {1, 2}-parity (Büchi) ω-word automaton, but
not by any deterministic C-parity ω-word automaton.

This property can be easily shifted to infinite trees (e.g., by considering the set of all trees
whose leftmost branch belongs to a given regular language of ω-words). Thus we obtain the
following consequence of Proposition 19.

▶ Corollary 24. For each C = {i, . . . , j} ⊆ ω there exists a regular tree language L which
can be recognised by some deterministic automaton and some non-deterministic {1, 2}-parity
automaton but not by any deterministic, game, nor guidable C-parity automaton.

7 Conclusions

The present work is focused on the class of guidable automata. We show that they syntactically
extend the previously studied classes of deterministic and game automata. Moreover, we
provide an algorithm solving the guidable index problem. Finally, we show that for the
three considered classes of deterministic, game, and guidable automata, the index can be
transferred. As a negative consequence of this fact (Corollary 24) we show that there is no
correspondence between the general non-deterministic index of a regular tree language and
its guidable index.

Although these results do not bring a direct progress in the general non-deterministic
index problem; we hope that they may be useful in at least two ways.

First, we believe that the class of guidable automata is worth separate attention. As
our new results indicate, this class of tree automata is tractable and extends the previously
considered classes of structurally simple automata: deterministic and game. This is especially
important as, contrarily to the other two classes, guidable automata are expressively complete
for all regular tree languages.
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Second, the present results indicate a new way of approaching the index problems, by
providing new game-based techniques. In particular, we believe that the interplay between
the two sequences of transitions, δn and δ′

n, constructed in the game from Section 5, gives
some insight on ways of forcing the players to witness the existence of certain objects.
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1 Introduction

For a set of graphs F , an F-transversal of a graph G is a set of vertices that intersects
the vertex set of every (not necessarily induced) subgraph of G that is isomorphic to some
graph of F . The problem Min F-Transversal (also called F-Deletion) is to find an
F -transversal of minimum size (or size at most k, in the decision variant). Graph transversals
form a central topic in Discrete Mathematics and Theoretical Computer Science, both from
a structural and an algorithmic point of view.

If F is the set of all cycles, the set of all even cycles or odd cycles, then we obtain
the problems Feedback Vertex Set, Even Cycle Transversal and Odd Cycle
Transversal, respectively. All three problems are NP-complete; hence, they have been
studied for special graph classes, in particular hereditary graph classes, that is, classes closed
under vertex deletion. Such classes can be characterized by a (unique) set H of minimal
forbidden induced subgraphs. Then, in order to initiate a systematic study, it is standard to
first consider the case where H has size 1, say H = {H} for some graph H.
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82:2 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

We aim to extend known complexity results for Feedback Vertex Set for H-free
graphs and to perform a new, similar study for Even Cycle Transversal (for which, so
far, mainly parameterized complexity results exist [2, 3, 11, 12]). To describe the known and
new results we need some terminology. The cycle and path on r vertices are denoted Cr and
Pr, respectively. The disjoint union of two vertex-disjoint graphs G1 and G2 is the graph
G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We write sG for the disjoint union of s copies
of G. For a set S ⊆ V , let G[S] be the subgraph of G induced by S. We write H ⊆i G (or
G ⊇i H) if H is an induced subgraph of G.

1.1 Known Results

By Poljak’s construction [14], for every integer g ≥ 3, Feedback Vertex Set is NP-
complete for graphs of girth at least g (the girth of a graph is the length of its shortest cycle).
The same holds for Odd Cycle Transversal [7]. It is also known that Feedback Vertex
Set [13] and Odd Cycle Transversal [7] are NP-complete for line graphs and thus for
claw-free graphs (the claw is the 4-vertex star). Hence, both problems are NP-complete for
the class of H-free graphs whenever H has a cycle or claw. A graph with no cycles and no
claws is a forest of maximum degree at most 2. Thus, it remains to consider the case where
H is a linear forest, that is, a collection of disjoint paths. Both problems are polynomial-time
solvable on permutation graphs [5] and thus on P4-free graphs [5], on sP2-free graphs for every
s ≥ 1 [7] and on (sP1 + P3)-free graphs for every s ≥ 0 [9]. Additionally, Feedback Vertex
Set is polynomial-time solvable on P5-free graphs [1], and Odd Cycle Transversal is
NP-complete for (P2 + P5, P6)-free graphs [9]. A similar NP-hardness result for Feedback
Vertex Set or Even Cycle Transversal is unlikely: for every linear forest H, both
problems are quasipolynomial-time solvable on H-free graphs [9] (see Section 4 for details).

1.2 Our Results

We first note that Min F-Transversal is polynomially equivalent to Max Induced F-
Subgraph, the problem of finding a maximum-size induced subgraph of the input graph G

that does not belong to F (where we assume that G has at least one such subgraph). We say
that Max Induced F-Subgraph is the complementary problem of Min F-Transversal,
and vice versa. For example, setting F = {P2} yields the well-known complementary
problems Min Vertex Cover and Max Independent Set.

Using the complementary perspective, we now argue that Feedback Vertex Set and
Even Cycle Transversal are closely related, in contrast to Odd Cycle Transversal.
A graph G is biconnected if it has at least two vertices, is connected, and G − u is connected
for every u ∈ V (G). A block of a graph G is an inclusion-wise maximal biconnected subgraph
of G. We now let C be a set of biconnected graphs. A graph G is a C-block graph if every
block of G is isomorphic to some graph in C. If C = {P2}, then C-block graphs are precisely
forests, and if C = {P2, C3, C5, C7, . . .}, then C-block graphs are called odd cacti. It is well
known that a graph is an odd cactus if and only if it does not contain any even cycle
as a subgraph. Hence, the complementary problems of Even Cycle Transversal and
Feedback Vertex Set are somewhat similar: in particular, both forests and odd cacti
have bounded treewidth and their blocks have a very simple structure. This is in stark
contrast to Odd Cycle Transversal, whose complementary problem is to find a large
induced bipartite subgraph, which might be arbitrarily complicated.
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The commonality of complementary problems of Even Cycle Transversal and
Feedback Vertex Set leads to the following optimization problem, where C is some fixed
class of biconnected graphs, that is, C is not part of the input but specified in advance. Note
that we consider the more general setting in which every vertex v of G is equipped with a
weight w(v) > 0, and we must find a solution with maximum total weight, respectively.

Max C-Block Graph
Instance: a graph G = (V, E) with a vertex weight function w : V → Q+.

Objective: find a maximum-weight set X ⊆ V such that G[X] is a C-block graph.

We observe that Max C-Block Graph is well-defined for every set C, including C = ∅,
as every independent set in a graph forms a solution. A restriction of the Max C-Block
Graph problem was introduced and studied from a parameterized complexity perspective
by Bonnet et al. [4] as Bounded C-Block Vertex Deletion (so from the complementary
perspective) where each block must in addition have bounded size.

In Section 2 we slightly extend a previously known result, concerning the so-called blob
graphs [10]. This extended version of the result forms a key ingredient for the proof of our
main result, shown in Section 3, which is the following theorem for sP3-free graphs (these
are the graphs that become a disjoint union of cliques after removing the vertices of any
induced (s − 1)P3 and their neighbours).

▶ Theorem 1. For every integer s ≥ 1 and every finite class C of biconnected graphs, Max
C-Block Graph can be solved in polynomial time for sP3-free graphs.

Theorem 1 implies the corresponding result for Feedback Vertex Set, as it is equivalent
to Max {P2}-Block Graph. The condition for C to be finite is critical for our proof tech-
nique. Nevertheless, we still have the corresponding result for Even Cycle Transversal as
well: for sP3-free graphs, the cases C = {P2, C3, C5, C7, . . .} and C = {P2, C3, C5, . . . , C4s−3}
are equivalent. Note that we cannot make such an argument for Odd Cycle Transversal,
as arbitrarily large bicliques are 2P3-free.

▶ Corollary 2. For every integer s ≥ 1, Feedback Vertex Set and Even Cycle
Transversal can be solved in polynomial time for sP3-free graphs.

Corollary 2 extends the aforementioned results for Feedback Vertex Set on sP2-free
graphs and (sP1 + P3)-free graphs. In Section 4 we observe that as a direct consequence of a
more general result [1], Even Cycle Transversal is polynomial-time solvable for P5-free
graphs. There we also prove that Even Cycle Transversal is NP-complete for graphs
of large girth and for line graphs, and consequently, for H-free graphs where H contains a
cycle or a claw. Hence, Feedback Vertex Set and Even Cycle Transversal behave
similarly on H-free graphs, subject to a number of open cases, which we listed in Table 1.

2 Blob Graph of Graphs With No Large Linear Forest

Let G = (V, E) be a graph. A (connected) component is a maximal connected subgraph of G.
The neighbourhood of a vertex u ∈ V is the set NG(u) = {v | uv ∈ E}. For U ⊆ V , we let
NG(U) =

⋃
u∈U N(u) \ U . Two sets X1, X2 ⊆ V (G) are adjacent if X1 ∩ X2 ̸= ∅ or there

exists an edge with one endpoint in X1 and the other in X2. The blob graph G◦ of G is
defined as follows.

V (G◦) := {X ⊆ V (G) | G[X] is connected} and E(G◦) := {X1X2 | X1 and X2 are adjacent}.

Gartland et al. [10] showed that for every graph G, the length of a longest induced path
in G◦ is equal to the length of a longest induced path in G. We slightly generalize this result.

MFCS 2021
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Table 1 The complexity of Feedback Vertex Set (FVS), Even Cycle Transversal (ECT)
and Odd Cycle Transversal (OCT) on H-free graphs for a linear forest H. All three problems
are NP-complete for H-free graphs when H is not a linear forest (see also Section 4). The two blue
cases (one for FVS, one for ECT) are the algorithmic contributions of this paper. We write H ⊆i H ′

if H is an induced subgraph of H ′. See Section 1.1 for references to the known results in the table.

polynomial-time unresolved NP-complete
FVS H ⊆i P5 or sP3 for s ≥ 1 H ⊇i P1 + P4 none
ECT H ⊆i P5 or sP3 for s ≥ 1 H ⊇i P1 + P4 none
OCT H = P4 or

H ⊆i sP1 + P3 or
sP2 for s ≥ 1

H = sP1 + P5 for s ≥ 0 or
H = sP1 + tP2 + uP3 + vP4

for s, t, u ≥ 0, v ≥ 1
with min{s, t, u} ≥ 1 if v = 1, or
H = sP1 + tP2 + uP3 for s, t ≥ 0,
u ≥ 1 with u ≥ 2 if t = 0

H ⊇i P6 or P2+P5

▶ Theorem 3. For every linear forest H, a graph G contains H as an induced subgraph if
and only if G◦ contains H as an induced subgraph.

Proof. As G is an induced subgraph of G◦, the (⇒) implication is immediate. We prove the
(⇐) implication by induction on the number k of connected components of H . If k = 1, then
the claim follows directly from the aforementioned result of Gartland et al. [10]. So assume
that k ≥ 2 and the statement holds for all linear forests H with fewer than k connected
components. Let P ′ be one of the connected components of H, and define H ′ := H − P ′.

Suppose that G◦ contains an induced subgraph isomorphic to H. Let X be the set of
vertices of G◦, such that G◦[X ] is isomorphic to H. Furthermore, let Y ⊆ X be the set of
vertices that induce in G◦[X ] the component P ′ of H, that is, G◦[Y] is isomorphic to P ′.

Let Y ⊆ V (G) be the union of sets in Y. Note that G◦[Y] is an induced subgraph of
(G[Y ])◦. Thus, by the inductive assumption, G[Y ] contains an induced copy of P ′.

Let X ⊆ V (G) be the union of sets in X \ Y. Since the copy of H in G◦ is induced,
we know that in G◦ there are no edges between X \ Y and Y. This is equivalent to saying
that X ∩ N [Y ] = ∅. So we conclude that G◦[X \ Y ] is an induced subgraph of (G − N [Y ])◦.
Since G◦[X \ Y], and thus (G − N [Y ])◦, contains an induced copy of H ′, by the inductive
assumption we know that G−N [Y ] contains an induced copy of H ′. Combining this subgraph
with the induced copy of P ′ in G[Y ], we obtain an induced copy of H in G. ◀

3 The Proof of Theorem 1

We start with analyzing the structure of sP3-free C-block graphs in Section 3.1, where C is
any finite class of biconnected graphs. Then, in Section 3.2, we present our algorithm for
Max C-Block Graph on sP3-free graphs.

3.1 Blocks and Terminals in sP3-free Graphs
From now on, let C be a finite class of biconnected graphs. For some fixed positive integer s,
let G = (V, E) be an sP3-free graph with n vertices and vertex weights w : V → Q+. Let
X ⊆ V such that F = G[X] is a C-block graph. A component of F is trivial if it is a single
vertex or a single block, otherwise it is non-trivial. Let F ′ be the graph obtained from F by
removing all trivial components. Note that F ′ and F are sP3-free, as G is sP3-free.
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Figure 1 Left: a graph F ′. Blue shapes are blocks, squares are terminals, and dots are non-
terminal cutvertices. Right: BCF(F ′), rooted in the cutvertex v. Blue diamonds are blocks; w is a
terminal of type 1, u and x are terminals of type 2, and y is a terminal of both types. The remaining
cutvertices are not terminals. We also use this example with this particular BCF(F ′) in later figures.

We denote the set of cutvertices of F ′ and the set of blocks of F ′ by Cutvertices(F ′) and
Blocks(F ′), respectively. The block-cut forest BCF(F ′) of F ′ has vertex set Cutvertices(F ′) ∪
Blocks(F ′) and an edge set that consists of all edges xb such that x ∈ Cutvertices(F ′) and
b ∈ Blocks(F ′), and x belongs to b. By definition, each component of F ′ has a cutvertex; we
pick an arbitrary one as root for the corresponding tree in BCF(F ′) to get a parent-child
relation. Each leaf of BCF(F ′) belongs to Blocks(F ′), and we call such blocks leaf blocks.

A cutvertex x of F ′ is a terminal of type 1 if x has at least two children in BCF(F ′) that are
leaves, whereas x is a terminal of type 2 if there exists a leaf block, whose great-grandparent
in BCF(F ′) is x. In the latter case, there is a three-edge downward path from x to a leaf in
BCF(F ′); see also Fig. 1. Let d be the maximum number of vertices of a graph in C.

▶ Lemma 4. At most d · (s − 1) vertices of F ′ are terminals of type 1.

Proof. For contradiction, suppose that there are at least d · (s − 1) + 1 terminals of type 1.
We observe that F ′ is d-colourable. Indeed, each block has at most d vertices, so d colours
are sufficient to colour each block. Furthermore, we can permute the colours in each block,
so that the colourings agree on cutvertices.

This implies that there is an independent set X of size at least s, whose every element is
a terminal of type 1. For each such terminal v, let its private P3 be a 3-vertex path with v as
the central vertex and each endpoint belonging to a different leaf block that is a child of v in
BCF(F ′). Note that each private P3 is induced. Furthermore, the private P3’s of vertices in
X are pairwise non-adjacent: this follows from the definition of terminals of type 1 and the
fact that X is independent. Thus we have found an induced sP3 in F , a contradiction. ◀

▶ Lemma 5. At most (d + 1) · (s − 1) vertices of F ′ are terminals of type 2.

Proof. For contradiction, suppose that there are at least (d + 1) · (s − 1) + 1 terminals
of type 2. Observe that F ′ has a proper (d + 1)-colouring f , satisfying the following two
properties:

MFCS 2021
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1. the vertices in each block receive pairwise distinct colours and
2. if b is a block, then any vertex of b receives a colour which is different than the colour of

the cutvertex which is the great-grandparent of b in BCF(F ′) (if such a cutvertex exists).
It is easy to find such a colouring of each tree in BCF(F ′) by choosing an arbitrary colour for
the root and proceeding in a top-down fashion. Suppose we want to colour the block b and
its parent in BCF(F ′) is the cutvertex v. Recall that b has at most d vertices and exactly one
of them is already coloured. Furthermore, we want to avoid the colour of the grandparent of
v (if such a vertex exists), so we have sufficiently many free colours to colour each vertex of
b \ {v} with a different one.

Now, by our assumption, there is a set X of at least s terminals of type 2 that received
the same colour in f . For each v ∈ X, we define its private P3 as follows. Recall that by the
definition of a terminal of type 2, there is a leaf block b, whose great-grandparent in BCF(F ′)
is v. The private P3 of v is given by the first three vertices on a shortest path P from v to b.
Note that in the extreme case it might happen that both b and its grandparent in BCF(F ′)
are edges, but P always has at least three vertices.

Clearly, each private P3 is an induced path. We claim that the private P3’s associated
with the vertices of X are non-adjacent. For contradiction, suppose otherwise. Let v1, v2 be
distinct vertices of X, and let vi, xi, yi be the consecutive vertices of the private P3 associated
with vi. Let bi be the block containing vi and xi.

First, observe that the sets {v1, x1, y1} and {v2, x2, y2} are disjoint. Indeed, we know
that v1 ̸= v2 and because BCF(F ′) is a rooted tree, we have that {x1, y1} ∩ {x2, y2} = ∅.
Furthermore, recall that f(v1) = f(v2) and by the definition of f , we have that the colours
of xi and of yi are different from the colour of vi.

So now suppose that there is an edge with one endpoint in {v1, x1, y1} and the other in
{v2, x2, y2}. Clearly this edge cannot join v1 and v2, as the colouring f is proper. Furthermore,
there is no edge between {x1, y1} and {x2, y2}, as v1 and v2 are cutvertices of a rooted tree.
Suppose that v2 is adjacent to x1 (the case that v1 is adjacent to x2 is symmetric). As each
vertex of b1 gets a different colour in f , we observe that v2 cannot belong to b1. Thus x1 is a
cutvertex. However, by the second property of f , we obtain that the colour of v2 must be
different than the colour of v1, a contradiction.

So finally suppose that v2 is adjacent to y1. Note that then y1 cannot belong to a leaf
block, meaning that y1 belongs to b1. Similarly to the previous paragraph, the definition of
f implies that the colour of v2 must be different than the colour of v1, a contradiction.

Thus we have found an induced sP3 in F ′, a contradiction. ◀

Lemmas 4 and 5 imply the following.

▶ Lemma 6. The number of terminals of F ′ is at most (2d + 1) · (s − 1).

If v is a terminal of type 2, then by definition there is a cutvertex w that belongs to both
a block containing v as well as to some leaf block. We call such w a witness of v. We now
partition the set of blocks of F ′ into the following subsets; see also Fig. 2:

Bl1 is the set of leaf blocks containing a terminal of type 1,
Bl2 is the set of leaf blocks containing a witness w that is not a terminal of type 1,
Bl3 is the set of remaining leaf blocks, that is, the ones with a cutvertex that is neither a
terminal nor a witness,
Bw is the set of blocks with precisely two cutvertices, one of which is a terminal of type 2
and the other one the non-terminal witness of that type-2 terminal, and
Bin is the set of all remaining blocks.
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Bl1

Bl2

Bl3

Bw

Bin

double-blocks

Figure 2 The classification of blocks of the example of Figure 1.

Note that blocks in Bl2 and Bw come in pairs, that is, for each block B in one of these
sets, there is exactly one block B′ in the other set, such that B and B′ share a vertex (it is
the witness w, using the notation introduced above). We will consider these two blocks as
one object. Formally, a double-block is a graph consisting of two blocks sharing a cutvertex.
Let Bd be the family of double-blocks of F ′ obtained from blocks in Bl2 and Bw in the way
described above, i.e., Bd consists of graphs G[V (B) ∪ V (B′)], where B ∈ Bl2 , B′ ∈ Bw and
V (B)∩V (B′) ̸= ∅. Note that each double-block in Bd has fewer than 2d vertices and contains
exactly one terminal of type 2.

A backbone of a component Z of F ′ is a minimum tree TZ contained in Z that connects
all terminals of F ′ that belong to Z; observe that all leaves of TZ are terminals. The skeleton
S of F ′ is the graph obtained from F ′ by removing all vertices from the blocks in Bl1 except
terminals of type 1 and all vertices from the double-blocks in Bd except terminals of type 2.
Note that every backbone is a subgraph of S.

3.2 The Algorithm
Outline. Our polynomial-time algorithm consists of the following two phases:
1. Branching Phase, which consists of the following three steps:

1. guessing the terminals of F ′;
2. guessing the backbones of the components of F ′; and
3. guessing the skeleton of F ′, and

2. Completion Phase, where we extend the partial solutions obtained in the Branching Phase
to complete ones by finding non-skeleton vertices of F ′ and trivial components of F ; we
do this by:
1. reducing the problem to Max Weight Independent Set for sP3-free graphs using

the blob graph construction in Section 2, and
2. solving this problem using the polynomial-time algorithm of Brandstädt and Mosca [6].

We now describe our algorithm, prove its correctness and perform a running time analysis.

Branching Phase. This phase of our algorithm consists of a series of guesses, where we find
certain vertices and substructures in G. The total number of vertices to be guessed will be
O(s2d2). Since we guess them exhaustively, this results in a recursion tree with O(nO(s2d2))
leaves. As both s and d are constants, this bound is polynomial in n. We will ensure that

MFCS 2021
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Figure 3 Step 1 of the Branching Phase. Left: the graph F ′. Right: the terminals of F ′.

the optimum solution F = G[X] will be found in the call corresponding to at least one of
the leaves of the recursion tree. Based on the properties of F , we will expect the guessed
vertices to satisfy certain conditions. If, at some point, the guessed vertices do not satisfy
these conditions, we just terminate the current call, as it will not lead us to find F . This will
be applied implicitly throughout the execution of the algorithm.

The branching phase is illustrated in Figures 3–5. We use the convention that gray/black
elements are still unknown and blue elements are the ones that we have already guessed.

Step 1. Guessing the terminals of F′. We guess the set C ⊆ V of terminals of F ′. By
Lemma 6, the total number of terminals is bounded by (2d + 1) · (s − 1) ≤ 3ds. Furthermore,
for each terminal, we guess its type (1, 2, or both). This results in 3|C| ≤ 33ds possibilities. We
also guess the partition of C, corresponding to the connected components of F . This results
in at most |C||C| ≤ (3ds)3ds additional branches. In total, we have O(nO(ds)) branches.

Step 2. Guessing the backbone of each component of F′. Let Z be a component of F ′.
Let CZ ⊆ C be the subset of terminals that are in Z. Let TZ be the backbone of Z. Let
T ′

Z be the tree obtained from TZ by contracting every path in TZ whose internal vertices
are all non-terminals and of degree 2 to an edge. Note that every non-terminal vertex of
T ′

Z has degree at least 3. Since T ′
Z has at most |CZ | vertices of degree at most 2, by the

handshaking lemma we observe that the total number of vertices of T ′
Z is at most 2|CZ |.

Recall that every edge of T ′
Z corresponds to an induced path in TZ . Since F ′ is sP3-free and

thus P4s−1-free, we conclude that TZ has at most 2|CZ | · (4s − 2) ≤ 8s · |CZ | vertices.

Let T be the forest whose components are the guessed backbones of the components of
F ′. Note that the total number of vertices of T is at most

∑
Z 8s · |CZ | = 8s · |C| ≤ 24ds2.

Thus we may guess the whole forest T , which results in O(nO(ds2)) branches.

Step 3. Guessing the skeleton of F′. Let T be the forest guessed in the previous step;
recall that T has at most 24ds2 vertices. We guess the partition of E(T ) corresponding
to blocks of F ′; note that a vertex v may be in several blocks: this happens precisely if v

is a cutvertex in F ′. This results in at most |E(T )|O(|E(T )|) ≤ |V (T )|O(|V (T )|) ≤ (ds)O(ds2)

branches.
We now discuss some properties of the (double-)blocks. We use the names of vertices as

in the definitions introduced in Section 3.1, recall also Fig. 2. The crucial observation is that
now there is a branch, where:
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Figure 4 Step 2 of the Branching Phase. Left: the tree T ′
Z . Right: the tree TZ .

Figure 5 Step 3 of the Branching Phase. Left: our knowledge about F ′ after guessing the blocks
in Bl3 . Right: our knowledge about F ′ after guessing the blocks in Bin.

For each block in Bl1 , we have guessed its cutvertex and no other vertices.
For each block in Bl2 , we have not guessed any vertices.
For each block in Bl3 , we have guessed its cutvertex v connecting it to the rest of F ′ and
no other vertices; note that v is not a terminal. Moreover, for each such v there is at
most one block in Bl3 .
For each block in Bw, we have guessed its cutvertex v that does not belong to a block in
Bl2 and we guessed no other vertices. Thus, for each double-block in Bd, we have guessed
its cutvertex connecting it to the rest of F ′ and no other vertices.
For each block in Bin, we have guessed at least two vertices.

Now we proceed to the final guessing step, see Fig. 5. First, we guess all blocks in Bl3 .
Note that we can do it, as (i) we know their cutvertices, (ii) the number of these cutvertices
is at most |V (T )| ≤ 24ds2, (iii) each cutvertex is contained in at most one block from Bl3 ,
and (iv) each block has at most d vertices. This results in at most nO(|V (T )|·d) = nO(d2s2)

branches.
Next, we guess all blocks in Bin. Again, we can do it as (i) we know at least two vertices

of such a block, (ii) the number of these blocks is at most |E(T )| ≤ 24ds2, and (iii) each
block has at most d vertices. This results in at most nO(|V (T )|·d) = nO(d2s2) further branches.

The following claim summarizes the outcome of the guessing phase of the algorithm.

▷ Claim A. In time O(nO(s2d2)) we can enumerate a collection S of O(nO(s2d2)) triples
(S, C1, C2), where S ⊆ V and C1, C2 ⊆ S such that S has the following property. Let
X ⊆ V , such that F = G[X] is a C-block graph. Let X ′ ⊆ X be the vertex set of the graph
F ′ obtained from F by removing all trivial components. Then there is at least one triple
(S, C1, C2) ∈ S, where
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a) C1 is the set of terminals of type 1 in F ′,
b) C2 is the set of terminals of type 2 in F ′,
c) G[S] is the skeleton of F ′.

Completion Phase. Let S be the the collection from Claim A and let (S, C1, C2) ∈ S be a
triple that satisfies the properties listed in the statement of Claim A for an optimum solution
F = G[X]. Let X := X0 ∪ X1 ∪ X2 be the family of subsets of V with:

X0 :={{v} | v ∈ V },

X1 :={B ⊆ V | G[B] ∈ C}, and
X2 :={B ⊆ V | B is a double-block whose blocks are in C},

Let GC be the graph whose vertex set is X , and edges join sets that are adjacent in G.
Furthermore, we define a weight function wC : X → Q+ as

wC(A) =
∑
v∈A

w(v).

Note that in order to complete S to the optimum solution F = G[X], we need to
determine:

all blocks in Bl1 ,
all double-blocks in Bd,
all trivial components of F .

Note that the vertex sets of all these subgraphs are in the family X and they form an
independent set in GC . Furthermore, since X is of maximum weight, the total weight of
selected subsets must be maximized. Thus the idea behind the last step is to reduce the
problem to solving Max Weight Independent Set in an appropriately defined subgraph
of GC and weights wC .

To ensure that the selected subsets are consistent with our guess (S, C1, C2) ∈ S, we will
remove certain vertices from GC . In particular, let X ′ consist of the sets A ∈ X , such that:
1. A ∈ X0 ∪ X1 and A is non-adjacent to S; these are the candidates for trivial components

of F ,
2. A ∈ X1 and A intersects S in exactly one vertex, which is in C1; these are the candidates

for blocks in Bl1 ,
3. A ∈ X2 and A intersects S in exactly one vertex, which is in C2 and is not the cutvertex

of G[A]; these are the candidates for double-blocks in Bd.

Now let I ⊆ X ′ be an independent set of GC , and let S′ =
⋃

A∈I A. It is straightforward
to verify that if (S, C1, C2) ∈ S satisfies the properties listed in Claim A, then G[S ∪ S′] is a
C-block graph. Thus, in one of the branches, we will find the optimum solution F = G[X].

Now let us argue that the last step can be performed in polynomial time. First, observe
that |X | ≤ n + nd + n2d = nO(d) and the family X can be exhaustively enumerated in time
nO(d). Next, X ′ can be computed in time polynomial in |X |, and thus in n. This implies
that the graph GC [X ′] can be computed in time polynomial in n. We observe that GC , and
thus GC [X ′], is an induced subgraph of the blob graph G◦, introduced in Section 2. Hence,
by Theorem 3, we conclude that GC [X ′] is sP3-free.

The final ingredient is the polynomial-time algorithm for Max Weight Independent
Set in sP3-free graphs by Brandstädt and Mosca [6]. Its running time on an n′-vertex graph
is n′O(s). Since the number of vertices of GC [X ′] is nO(d), we conclude that a maximum-weight
independent set in GC [X ′] can be found in time nO(sd).



G. Paesani, D. Paulusma, and P. Rzążewski 82:11

Summing up, in the guessing phase, in time nO(s2d2) we enumerate the family S of size
nO(s2d2). Then, for each member (S, C1, C2) of S, we try to extend the partial solution to a
complete one. This takes time nO(sd) per element of S. Among all found solutions, we return
the one with maximum weight. The total running time of the algorithm is nO(s2d2), which is
polynomial in n, since s and d are constants. This completes the proof of Theorem 1.

4 More Results for Even Cycle Transversal on H-Free Graphs

In this section we prove that subject to a number of unsolved cases, the complexity of Even
Cycle Transversal for H-free graphs coincides with the one for Feedback Vertex Set.

CMSO2 and Even Cycle Transversal. Monadic Second-Order Logic (MSO2) over graphs
consists of formulas with vertex variables, edge variables, vertex set variables, and edge
set variables, quantifiers, and standard logic operators. We also have a predicate inc(v, e),
indicating that the vertex v belongs to the edge e. Counting Monadic Second-Order Logic
(CMSO2) is an extension of MSO2 which allows atomic formulas of the form |X| ≡ p mod q,
where X is a set variable and 0 ≤ p < q are integers.

Abrishami et al. [1, Theorems 5.3 and 7.3] proved that for any fixed CMSO2 formula Φ
and any constant t, the following problem is polynomial-time solvable: given a P5-free graph
G with weight function w : V (G) → Q+, find a maximum-weight set X ⊆ V (G), such that
G[X] is of treewidth at most t and satisfies Φ. This immediately yields a polynomial-time
algorithm for Feedback Vertex Set in P5-free graphs: just take t = 1 and a trivial
formula Φ that is satisfied for all graphs (see also [1]).

A similar argument can also be applied for Even Cycle Transversal. First, note
that every odd cactus has treewidth at most 2. Hence, it remains to show an appropriate
CMSO2 formula Φ that enforces G[X] to be an odd cactus. We will again look from the
complementary perspective: we need to say that G[X] has no even cycle. For this, it is
enough to say that there is no set E′ of edges in G[X], such that: (i) each vertex of X is
incident to 0 or 2 edges from E′, (ii) the edges from E′ induce a connected subgraph of G[X],
and (iii) the number of edges in E′ is even. Properties (i) and (ii) are easily expressible in
MSO2, see [8, Section 7.4], and property (iii) is expressed by the formula |E′| ≡ 0 (mod 2),
which is allowed in CMSO2. This immediately yields the following corollary.

▶ Corollary 7. Even Cycle Transversal is polynomial-time solvable for P5-free graphs.

Finally, the problem of finding a maximum-weight subset that induces a constant-treewidth
graph satisfying some fixed CMSO2 formula can be solved in quasipolynomial time for Pr-free
graphs for any fixed r [10]. This implies a quasipolynomial-time algorithm for Feedback
Vertex Set and Even Cycle Transversal for H-free graphs if H is a linear forest.

Hardness Results. An odd cycle factor of a graph G is a set of odd cycles such that every
vertex of G belongs to exactly one of them. The Odd Cycle Factor problem, which asks
if a graph has an odd cycle factor, is known to be NP-complete [15]. The line graph L(G) of
a graph G = (V, E) has vertex set E and an edge between two distinct vertices e and f if
and only if e and f share an end-vertex in G.

The proof of our next result for line graphs is somewhat similar to a proof for Odd
Cycle Transversal of [7] but uses some different arguments as well.

▶ Theorem 8. Even Cycle Transversal is NP-complete for line graphs.
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Proof. Let G = (V, E) be an instance of Odd Cycle Factor with n vertices and m edges.
We claim that G has an odd cycle factor if and only if its line graph L := L(G) has an even
cycle transversal of size at most m − n, see Fig. 6.

First suppose G has an odd cycle factor. Then there is E′ ⊆ E, such that |E′| = n and
L[E′] is a disjoint union of odd cycles. Hence, S := E \ E′ is an even cycle transversal of L

of size |E| − n = m − n. Now suppose L has an even cycle transversal S with |S| ≤ m − n.
Let E′ := E \ S, As |E| = m, we have |E′| ≥ n.

We prove the following claim.

▷ Claim B. Every component of L[E′] is either an odd cycle or the line graph of a tree.

Proof. Let D be a component of L[E′]. If D has no cycle, then D is a path, as L is a line
graph and thus is claw-free. Hence, D is the line graph of a path, and thus a tree.

So suppose D has a cycle C. Then C is odd and induced, as L[E′] is an odd cactus. If D

has no vertices except for the ones of C, then D is an odd cycle and we are done. Suppose
otherwise.

First, assume that C has at least five vertices. Since D has vertices outside C, there
is a vertex of C with a neighbour outside C. Hence, D contains either an even cycle or
an induced claw, both of which are not possible. So now suppose that C has at most four
vertices. Then C is a triangle, as D has no even cycles. Since D is an induced subgraph of
L, there exists a subgraph T of G such that D = L(T ). As D is a connected graph with at
least four vertices, containing a triangle, T is a connected graph with at least four vertices.

We aim to show that T is a tree. For contradiction, suppose that T contains a cycle CT .
Then CT must be a triangle, as otherwise D would contain an even cycle or an odd cycle
with at least five vertices. Let a, b, c be the vertices of CT . As T is connected and has at
least four vertices, at least one of {a, b, c}, say a, must have a neighbour d /∈ {b, c}. However,
the edges ad − ab − bc − ac form a C4 in D, a contradiction with D being an odd cactus. So
we conclude that T contains no cycles and thus T is a tree. ◁

Each component of L[E′] that is an odd cycle corresponds to an odd cycle in G. By
Claim B, each component D of L[E′] that is not an odd cycle is the line graph of some
subtree T of G. So, if D has r vertices, then T has r + 1 vertices. Furthermore, the vertex
sets of G corresponding to distinct components of L[E′] are pairwise disjoint. Suppose that
L[E′] has p ≥ 0 components that are not odd cycles. Let Q be the set of vertices incident
to at least one edge of E′. Then n = |V (G)| ≥ |Q| = |E′| + p ≥ n + p. Hence, p = 0 and
|Q| = n. So, the components of L[E′] correspond to an odd cycle factor of G. This completes
the proof. ◀

We make a straightforward observation similar to an observation for Feedback Vertex
Set [7, 14], except that we must subdivide edges of a graph an even number of times.

▶ Theorem 9. For every p ≥ 3, Even Cycle Transversal is NP-complete for graphs of
girth at least p.

Proof. We reduce from Even Cycle Transversal for general graphs by noting the
following. Namely, the size of a minimum even cycle transversal in G is equal to the size of a
minimum even cycle transversal in the graph G′ obtained from G by subdividing every edge
2p times, and the girth of G′ is at least p. ◀

The next theorem is analogous to the one for Feedback Vertex Set; see also Table 1.
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Figure 6 Left: a graph G with an odd cycle factor. Middle: the graph L = L(G) and the set E′

(red). Black vertices form an even cycle factor. Right: the odd cactus L[E′].

▶ Theorem 10. Let H be a graph. Then Even Cycle Transversal for H-free graphs is
polynomial-time solvable if H ⊆i sP3 for some s ≥ 1 or H ⊆i P5, and it is NP-complete if
H is not a linear forest.

Proof. If H ⊆i sP3, use Corollary 2, and if H ⊆i P5, use Corollary 7. If H is not a
linear forest, then it has a cycle or a claw. If H has a cycle, then we apply Theorem 9 for
p = |V (H)| + 1. Otherwise, H has an induced claw and we apply Theorem 8. ◀

5 Conclusions

We prove that for a large family of graphs F , the Min F-Transversal problem is polynomial-
time solvable on sP3-free graphs (for every s ≥ 1). The two best-known problems in this
framework are Feedback Vertex Set and Even Cycle Transversal. Our result for
Feedback Vertex Set generalizes two known results from the literature [7, 9]. We also
prove that in contrast to the situation for Odd Cycle Transversal, all other known
complexity results for Feedback Vertex Set on H-free graphs hold for Even Cycle
Transversal as well. Hence, so far both problems behave the same on special graph
classes, and it would be interesting to prove polynomial equivalency of the two problems
more generally. Table 1 still shows some missing cases for each of the three problems.

In particular, we highlight a borderline case:

Is each of the three problems is polynomial-time solvable for (P1 + P4)-free graphs?

The main obstacle is that we know no polynomial-time algorithm for finding a maximum
induced disjoint union of stars in a (P1 + P4)-free graph; note that such a subgraph could be
a potential optimal solution for each of the three problems.

We also recall that Feedback Vertex Set and Even Cycle Transversal can be
solved in quasipolynomial time for Pr-free graphs [10] for every r ≥ 1, whereas Odd Cycle
Transversal is NP-complete even for P6-free graphs [9]. An affirmative answer to the
above question for Feedback Vertex Set and Even Cycle Transversal would be a
first step in proving that these two problems are polynomial-time solvable on P6-free graphs.
If that turns out to be the case, then we will have further evidence that these two problems,
restricted to H-free graphs, differ in their complexity from Odd Cycle Transversal.
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Abstract
We study the stabilization time of two common types of influence propagation. In majority processes,
nodes in a graph want to switch to the most frequent state in their neighborhood, while in minority
processes, nodes want to switch to the least frequent state in their neighborhood. We consider the
sequential model of these processes, and assume that every node starts out from a uniform random
state.

We first show that if nodes change their state for any small improvement in the process, then
stabilization can last for up to Θ(n2) steps in both cases. Furthermore, we also study the proportional
switching case, when nodes only decide to change their state if they are in conflict with a 1+λ

2
fraction of their neighbors, for some parameter λ ∈ (0, 1). In this case, we show that if λ < 1

3 , then
there is a construction where stabilization can indeed last for Ω(n1+c) steps for some constant c > 0.
On the other hand, if λ > 1

2 , we prove that the stabilization time of the processes is upper-bounded
by O(n · log n).
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1 Introduction

Dynamically changing colorings in a graph can be used to model various situations when
entities of a network are in a specific state, and they occasionally decide to change their state
based on the states of their neighbors. Such colorings are essentially a form of distributed
automata, where the nodes can represent anything from brain cells to rival companies; as
such, the study of these processes has applications in almost every branch of science.

One prominent example of such colorings is a majority process, where each node wants to
switch to the color that is most frequent in its neighborhood. These processes are used to
model a wide range of phenomena in social sciences, e.g. the spreading of political opinions
in social networks, or the adoption of different social media platforms [16, 7, 20].

Another example is the dual setting of a minority process, where each node wants to
switch to the least frequent color among its neighbors. Minority processes can model settings
where nodes would prefer to differentiate from each other, e.g. frequency selection in wireless
networks, or selecting a production strategy in a market economy [6, 21, 9].

In our paper, we analyze the stabilization time of majority and minority processes, i.e.
the number of steps until no node wants to change its color anymore. We study the processes
in the sequential (or asynchronous) model, where in every step, exactly one node switches
its color. As such, stabilization time in the sequential model describes the total number of
switches before the process terminates.
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Compared to a synchronous setting, the sequential model has the advantage that neighbors
are never switching at the exact same time; this prevents the process from ending up in an
infinitely repeating periodic pattern. This property is indeed a reasonable assumption in
many application areas, including the examples mentioned above: you are highly unlikely to
e.g. switch your wireless frequency at the exact same time as your neighbors, or change your
political opinion at the exact same time as your friends.

We study the maximal stabilization time of the processes in general graphs, assuming
that the initial coloring of nodes is chosen uniformly at random. This setting may be relevant
for a worst-case analysis in applications where the only thing we can influence is the initial
coloring. For example, a wireless service provider might have no control over the topology of
the network or the times when clients decide to switch their frequency, but it could easily
ensure that its devices are initialized with a randomly chosen frequency.

An important parameter of the model is the switching rule, i.e. the threshold at which a
node decides to switch to the opposite color. Two very natural rules are (i) basic switching,
when nodes decide to switch for any small improvement, and (ii) proportional switching,
when we have a real parameter λ ∈ (0, 1), and nodes only change their color if they are
motivated to switch by a 1+λ

2 fraction of their neighborhood.
In our paper, we study the stabilization time for both basic and proportional switching.

As a warm-up (in Section 5), we first show that in case of basic switching, both minority
and majority processes can take Ω(n2) steps to stabilize with high probability, matching a
naive upper bound of O(n2). This follows from an extension of the lower-bound construction
in [27] to the random-initialized case.

Our main contributions (Sections 6 and 7) are stabilization bounds in case of proportional
switching:

for proportional switching with λ < 1
3 , we present a construction that w.h.p. exhibits a

superlinear stabilization time of Ω(n1+c) for a constant c > 0 that depends on λ.
for proportional switching with λ > 1

2 , we show that w.h.p. the process always stabilizes
in O(n · log n) steps, essentially matching a straightforward lower bound of Ω(n).

2 Related work

Majority and minority processes have been extensively studied from numerous different
perspectives since the early 1980s [15, 11]. Most of the results focus on the simplest case
of two colors, since this already captures the interesting properties of the process, and a
generalization to more colors is often straightforward.

Many different variants of these processes have been inspired by application areas ranging
from particle physics to social science, as in case of e.g. Ising systems or the voter model
[23, 22]. In particular, there is extensive literature on more sophisticated process definitions
that aim to provide a more realistic model for a specific application, such as social opinion
dynamics or virus infection spreading [2, 1, 8, 25].

In case of majority processes, there is a particular interest in analyzing how a small set
of nodes can influence the final state [35, 34, 14, 33, 3]. For both processes, there are also
numerous works on the analysis of stable states [17, 5, 21, 18, 4]. However, in contrast to our
work, most of these earlier results assume a synchronous setting, and only study the process
on specific graph topologies, e.g. cliques, grids or Erdős-Rényi random graphs.

There is a recent line of work on stabilization time in general graphs; however, these
results assume a worst-case initial coloring. For basic switching, the work of [12] shows
that in the sequential adversarial and synchronous models, stabilization can last for Ω̃(n2)
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steps, matching a straightforward upper bound of O(n2). A similar lower bound is known for
minority processes [27]. On the other hand, the two processes exhibit very different behavior
in a benevolent sequential model: majority processes always stabilize in O(n) time, while
minority processes can last for quadratically many steps [12, 27].

On the other hand, if we consider general graphs with proportional switching, then the
sequential processes are known to exhibit a worst-case runtime between quadratic and linear,
depending on the parameter λ of the switching rule [29]. Stabilization time in this case
is characterized by a non-elementary function f(λ) that monotonically and continuously
decreases from 1 to 0 on the interval [0, 1]. The results of [29] show that for any ε > 0,
stabilization time is upper-bounded by O(n1+f(λ)+ε), and the process can indeed last for
Ω(n1+f(λ)−ε) steps. Our results are an interesting contrast to this, showing that if we
randomize the initial state, then the process can only take Ω(n1+c) steps for smaller λ values.

For general weighted graphs and a worst-case initial coloring, an exponential lower bound
has also been shown for both majority [19] and minority [28] processes.

There are also various works that assume a randomized initial coloring, but these results
focus on special classes of graphs. For majority processes, stabilization time from a randomized
initial state has been analyzed in Erdős-Rényi random graphs, grids, tori and expanders
[13, 26, 10, 24]. For minority processes, the works of [30, 31, 32] study stabilization in cliques,
cycles, trees and tori. As such, to our knowledge, stabilization time from a randomized initial
coloring has not yet been studied in general graphs.

3 Model definition and tools

3.1 Preliminaries
We study the processes on simple, unweighted, undirected graphs G(V, E) with node set V

and edge set E. We denote the nodes of the graph by u or v, and the number of nodes in
the graph by n. For a specific node v, we denote the neighborhood of v by N(v), and the
degree of v by dv = |N(v)|. For ease of presentation, we usually define the size of our graph
constructions in terms of an (almost) linear parameter m, and in the end, we select a value
of m that ensures m ∈ Θ̃(n).

As common in this area, we focus on the case of two colors. That is, we say that a
coloring of the graph is a function γ : V → {black, white}. For a specific coloring γ, we
define Ns(v) = {u ∈ N(v) | γ(v) = γ(u)} as the neighbors of v with the same color, and
No(v) = {u ∈ N(v) | γ(v) ̸= γ(u)} as the neighbors of v with the opposite color.

We use the concept of conflicts to define both majority and minority processes in a general
form. We say that there is a conflict on the edge (u, v) if this edge motivates v to change
its color; more formally, if u ∈ No(v) in case of a majority process, and if u ∈ Ns(v) in case
of a minority process. We use Nc(v) to denote the conflicting neighbors of v under γ, i.e.
Nc(v) = No(v) for majority and Nc(v) = Ns(v) for minority.

Given a specific coloring γ, we say that node v is switchable if |Nc(v)| is larger than a
specific threshold, which is defined by the so-called switching rule (discussed in detail in the
next subsection). If v is switchable, then it can change its color to the opposite color (i.e. it
can switch). We also use the word balance to refer to the metric |Nc(v)|

dv
in general, which

indicates how close node v is to being switchable.
A majority/minority process is a sequence of colorings of the graph G (known as states).

Every state is obtained from the previous state by switching a switchable node in the previous
state. We assume that exactly one node switches in each step, which is often known as the
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sequential or asynchronous model of the process. In our paper, we also assume that the initial
state of the process is a uniform random coloring, i.e. each node is white with probability 1

2
and black with probability 1

2 , independently from other nodes.
We say that a state of the process is stable if there are no more switchable nodes in the

graph. The number of steps in the process (from the initial state until a stable state is
reached) is known as the stabilization time of the process.

We study the processes in general graphs, and we are interested in the longest possible
stabilization time of a process, i.e. if in each step, the next node to switch among the
switchable nodes is selected by an adversary who maximizes stabilization time. In other
words, we study the worst-case stabilization of a graph on n nodes under the worst possible
ordering of switches.

We also use basic tools from probability theory, such as the union bound and the Chernoff
bound, and the concept of an event happening with high probability (w.h.p.). For completeness,
a brief summary of these techniques is provided in the full version of the paper.

3.2 Switching rules
Another important parameter of the processes is the condition that allows nodes to switch
their color. There are two natural candidates for such a switching rule:

▶ I.Basic switching: node v is switchable if |Nc(v)| > 1
2 · dv.

▶ II.Proportional switching: node v is switchable if |Nc(v)| ≥ 1+λ
2 · dv.

Note that both rules ensure that the overall number of conflicts in the graph strictly
decreases in each switching step. Since there are at most |E| = O(n2) conflicts in the graph
initially, we obtain a straightforward upper bound of O(n2) on the stabilization time.

In case of basic switching, a node switches its color for an arbitrarily small improvement.
Alternatively, if we denote the complement of Nc(v) by Nc(v) := N(v) \ Nc(v), we can also
formulate this rule as |Nc(v)| − |Nc(v)| > 0. In case of the worst possible initial coloring,
this rule is known to allow a stabilization time of Θ(n2) [27, 12, 18].

In contrast to this, proportional switching is defined for a specific parameter λ ∈ (0, 1],
and it requires that v is in conflict with a specific portion of its neighborhood, with 1+λ

2 ∈
( 1

2 , 1]. This is often a more realistic approach if nodes have a large degree, or if switching
also induces some cost in an application area. Equivalently, we can rephrase this rule as
|Nc(v)| − |Nc(v)| ≥ λ · dv. This shows that whenever v switches, the total number of conflicts
in the graph decreases by at least λ · dv, and v can have at most 1+λ

2 · dv − λ · dv = 1−λ
2 · dv

conflicts on the incident edges after the switch.
In case of a worst-case initial coloring, the maximal stabilization time for propor-

tional switching is between quadratic and linear, following a monotonously decreasing
non-elementary function f(λ) described in [29]. Since this non-elementary function also plays
a role in our lower bound, we discuss f(λ) in the full version for completeness.

Note that for a very small λ value approaching 0, we can obtain basic switching as a
special case of proportional switching in the limit.

3.3 Application of earlier results
We also apply the basic ideas behind some of the constructions from previous work, which
were used to show similar lower bounds for a worst-case initial coloring.



P. A. Papp and R. Wattenhofer 83:5

Construction idea for basic switching. Recall that the result of [27] provides a quadratic
lower bound on the stabilization time of minority processes.

▶ Theorem (from [27]). Consider minority processes under the basic switching rule. There
exists a class of graphs and an initial coloring with a stabilization time of Ω(n2).

The main idea of the construction is to have a set P of m nodes, attached to two further
sets A and B of size m. The construction makes sure that every node in A and B wants
to switch to the opposite color. Then we switch these nodes in an alternating fashion: one
from A, one from B, one from A again, and so on. The set P is designed such that its
neighborhood is approximately balanced, and thus after each of these steps, the entire set P

is switchable. Switching P after each step gives a sequence of m · 2m = Θ(n2) switches.

Black box construction for proportional switching. We also use the result of [29], which
provides a lower bound construction for any λ ≤ 1

3 in case of proportional switching and
worst-case initial coloring. We apply this graph as a black box in our constructions, and refer
to it as the prop construction.

▶ Theorem (from [29]). Consider majority/minority processes under proportional switching
for any λ ≤ 1

3 . There exists a class of graphs and an initial coloring with a stabilization time
of Ω(n1+f(λ)−ε) for the function f and for any ε > 0.

4 Basic observations

4.1 Initially balanced sets

Since we start from a uniform random initial coloring, a basic tool in our proofs is the fact
that w.h.p., a large set of nodes has a balanced distribution of the colors initially.

▶ Definition 1 (ϵ-balanced set). Given a specific coloring, we say that a set of nodes S is
ϵ-balanced if the number of white nodes in S is within

[
( 1

2 − ϵ) · |S|, ( 1
2 + ϵ) · |S|

]
.

▶ Lemma 2. Let S1, ..., Sk be subsets of nodes in G such that |Si| ≥ c0 · log n for some
constant c0 for all i ∈ {1, ..., k}, and k ≤ n. Then for any constant ϵ > 0, there is a c0 such
that w.h.p., each set Si is initially ϵ-balanced.

Proof. Let us select c0 = 3
ϵ2 . According to the Chernoff bound, the probability that Si is

not ϵ-balanced is at most

2 · e−4ϵ2· 1
6 ·|Si| ≤ 2 · e− 2

3 ϵ2·c0·log n = 2 · n−2.

If we take a union bound over all the k ≤ n subsets, the probability that any of them is not
ϵ-balanced is at most n · 2 · n−2 = 2 · n−1, so w.h.p. the claim indeed holds. ◀

In particular, we can select a high constant c0, and refer to nodes v with dv ≥ c0 · log n

as high-degree nodes, and the remaining nodes as low-degree nodes. Then Lemma 2 can be
rephrased into the following claim:

▶ Corollary 3. For any ϵ > 0, there exists a c0 such that w.h.p. the following claim holds:
for all the high-degree nodes v in G, N(v) is initially ϵ-balanced.
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4.2 Linear lower bound
Note that we can easily provide an example of linear stabilization time, even for proportional
switching with any λ ∈ (0, 1).

Consider an edge graph, i.e. a connected component with only two adjacent nodes u and v.
With a probability of 1

2 , node v is initially switchable in this graph, for both majority/minority
processes (since it has the opposite/same color as u, respectively). Let us take n

2 independent
copies of this single-edge graph; this gives n

2 nodes in the role of v. Then n
4 of these nodes

are switchable in expectation, and with a Chernoff bound, one can show that at least n
8

are switchable w.h.p.. We can switch these n
8 nodes in any order to obtain a sequence of

n
8 ∈ Ω(n) switches.

5 Lower bound constructions for basic switching

For basic switching, we can give an example of quadratic stabilization time by a suitable
extension of the construction in [27] to the random-initialized setting.

In our analysis, we refer to a set of nodes as a group if they all have exactly the same
neighborhood. In our figures, we denote groups by double-sided circles, with the cardinality
shown beside the group, and an edge between two groups denotes a complete bipartite
connection between the corresponding sets. Note that the nodes of a group always prefer the
same color.

▶ Theorem 4. Consider majority/minority processes under the basic switching rule, starting
from a uniform random initial coloring. There exists a class of graphs that exhibit a
stabilization time of Ω(n2) with high probability in this model.

We now outline the main ideas of these graphs, with the details discussed in the full version.

5.1 Minority processes
For minority processes, consider the graph in Figure 1, which is essentially an extension of
the graph in [27] with a complete bipartite connection between A0 and B0. For simplicity,
we add an extra node to ensure that P has an odd degree. The graph has 5m + 3 nodes, and
thus m ∈ Θ(n).

Regardless of the initial coloring, each node in A0 has the same preferred color, since
they all have exactly the same neighbors and they have an odd degree. Thus we can switch
each node in A0 to this preferred color (if it did not have this color already). Assume w.l.o.g.
that this color is white. Since now A0 is white entirely, we can switch each node in B0 to
black. With this, the preferred color of each node in A becomes black, and the preferred
color of each node in B becomes white.

An intuitive description of the remaining sequence is as follows. Both A and B have
approximately m

2 nodes (and w.h.p. at least m
3 nodes) that have the same color as the

group above. These nodes are now all switchable, regardless of the color of nodes in P . We
disregard the remaining nodes, and only focus on these m

3 switchable nodes in A and B.
Initially, the neighborhood of P is w.h.p. ϵ-balanced. Hence by switching only ϵ · m of

nodes either in A or in B, we can ensure that P has exactly one more white neighbor than
black, which allows us to switch the entire group P to black. Then by switching one node
in A to black, P will have one more black neighbor than white, so P becomes switchable
again. We can then switch the nodes in A and B in an alternating fashion; this ensures that
P always has one more same-colored neighbor after each step, which makes P switchable
again. This process allows us to switch the nodes of P altogether Θ(m) times, which already
adds up to a sequence of Θ(m2) = Θ(n2) switches.
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m+1 m+1

m m

mP

A B

A0 B0

...

...

...

...

m+1 m+1

m m

mP

A B

A0 B0

A1,1 A1,i

A2,1 A2,i

B1,1 B1,i

B2,1 B2,i

Θ(log m) pairs of groups on both sides,
each group containing Θ( m

log m) nodes

Figure 1 Lower bound constructions of Ω(n2) steps in case of basic switching, for minority
processes (left) and majority processes (right). Recall that double-sided circles denote groups, and
edges between groups denote a complete bipartite connection between the two groups.

5.2 Majority processes
The case of majority processes is more involved, since in this case, it is more difficult to
ensure that the groups A0 and B0 attain different colors.

Instead of connecting A0 to B0, we connect A0 to Θ(log m) further groups of size Θ( m
log m ),

denoted by A1,1, A1,2, ... . Finally, we add Θ(log m) more distinct groups A2,1, A2,2, ..., also
on Θ( m

log m ) nodes each, and we create a complete bipartite connection between A1,i and
A2,i. We attach the same structures to group B0 in a symmetric manner; see Figure 1 for an
overview of the construction.

The main idea of the construction is as follows. With probability 1
2 , the group A1,i has

more white nodes than black initially, which allows us to switch A2,i entirely to white. Since
the groups A1,i are independent, there is indeed w.h.p. an index î such that the group A2,̂i

can be switched entirely to white. The neighbors of A1,̂i are initially approximately balanced,
so after recoloring all the Θ( m

log m ) nodes in A2,̂i to white, A1,̂i has more white neighbors
than black; this allows us to switch all of A1,̂i to white. We note while our previous steps all
follow directly from Corollary 3, this specific step requires a slightly stronger version of the
Chernoff bound.

We can then apply a similar reasoning on the group A0: since it was w.h.p. balanced
initially, and turning A1,̂i to white has increased the number of its white neighbors by
Θ( m

log m ) w.h.p., we can also turn the entire group A0 white. In a similar fashion, we can use
groups B2,̂i and B1,̂i to switch each node in B0 black w.h.p..

Once A0 is white and B0 is black, we again have Θ(m) switchable nodes in both A and
B, and thus we can apply the same alternating method as in the minority case.

6 Proportional switching: lower bound for λ < 1
3

We now show that for proportional switching with small λ values, stabilization time can
indeed be superlinear. Note that λ < 1

3 implies that 1+λ
2 = 2

3 − δ for some δ > 0.
We present our lower bound construction for majority processes; however, since our graph

is bipartite, we can easily adapt this result to minority processes by inverting the colors in
one of the color classes. More details of this technique are available in the full version.
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...

S0 S1

S2,1 S2,2 S2,3 S2,ℓ−1 S2,ℓ

Θ(log m) levels

Sw
2,ℓ

Sb
2,ℓ

S3
Sw

3

Sb
3

prop
construction

black white

Figure 2 High-level illustration of the proportional lower bound construction for any λ < 1
3 .

▶ Theorem 5. Consider majority/minority processes under the proportional switching rule
for any λ < 1

3 , starting from a uniform random initial coloring. For any ε > 0, there exists
a class of graphs that exhibit a stabilization time of Ω

(
n1+f( 2·λ

1−λ )−ε
)

with high probability.

In a simplified formulation, this means that there exists a constant c > 0 such that there is a
construction with a stabilization time of Ω(n1+c) in this setting.

We divide our construction technique into five main phases, and discuss them separately.
In each phase of the construction, we will refer to some edges of the nodes as output edges,
which go to the following phase of the construction. In a specific phase, we always achieve
a desired behavior without any change on these output neighbors yet. An overview of the
entire construction is available in Figure 2.

As before, we define our construction in terms of a parameter m = Θ̃(n), and discuss the
value of m in the end.

First, in the Opening Phase, our goal is to create a set S0 of constant-degree nodes
such that (i) each node in S0 has 1 output edge to the next phase, and (ii) for any
parameter p < 1, we can switch each node in S0 to black with a probability of at least p,
independently from the remaining nodes.

In the Collection Phase, we use our Opening Phase construction to produce another set
S1 where (i) each node in S1 has c0 · log n output edges for a large enough constant c0,
and (ii) w.h.p. we can switch all the nodes in S1 to black.

In the Growing Phase, we begin with this node set S2,1 := S1, and add a range of further
levels S2,2, S2,3, ... of the same size. Every level S2,i is only connected to the previous
and next levels S2,i−1 and S2,i+1. The levels will have an exponentially increasing output
degree, and hence in at most ℓ ≈ log m steps, we arrive at a final level S2,ℓ where each
node has an output degree of Θ(m). As in case of S1, we show that we can w.h.p. turn
each node in S2,i (and finally, in S2,ℓ) black.

In the Control Phase, we use S2,ℓ to produce a set S3 where each node still has an output
degree of Θ(m). We will ensure that (i) there is a specific point in the process where each
node in S3 is switchable to black, and (ii) later, there is a specific point in the process
where each node in S3 is switchable to white.
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Finally, in the Simulation Phase, we take an instance of the prop construction, and we
use our set S3 to force each node in this construction to take the desired “initial” color.
We can then simulate the behavior of prop as a black box, which is known to provide a
superlinear stabilization time from this artificially enforced worst-case initial coloring.

In this section, we outline the main ideas behind each of these phase. More details of the
construction are discussed in the full version.

We note that the second and third phases can be generalized to any λ up to 1
2 ; however,

there is no straightforward way to do this for the remaining phases.

6.1 Opening Phase
To construct the set S0, first consider a node v with dv = 3: one neighbor labeled as an
output, and two further neighbors u1 and u2. Initially, we have an 1

2 chance that v is already
black. Even if v is not black initially, we can switch it black if both u1 and u2 are black
initially: we have 1+λ

2 < 2
3 , so 2 black neighbors out of 3 are indeed enough to make v

switchable. The probability that initially v is white but u1 and u2 are black is
( 1

2
)3 = 1

8 , so
altogether, we can turn v black with a probability of p1 = 5

8 .
Now assume that we take two such nodes that can be switched black with probability 5

8 ,
we denote them by u′

1 and u′
2, and we connect their outputs to a new node v′. Again, v′ is

already black initially with probability 1
2 ; if not, we can turn v′ black if both u′

1 and u′
2 are

switched black, which happens with a probability of p 2
1 . This provides a black v′ with a

probability of p2 = 1
2 + 1

2 ·
( 5

8
)2 = 89

128 .
We can continue this in a recursive manner, always taking two copies of the previous

construction, and connecting them to a new root node. After i steps, we end up with a
full binary tree on 2i+1 − 1 nodes. This provides a black root node with a probability of pi,
defined by the recurrence

p0 = 1
2 and pi+1 = 1

2 + 1
2 · p 2

i .

One can easily show that limi→∞ pi = 1. Hence for any constant parameter p < 1, there
is an i such that pi ≥ p, and thus creating i layers with this method ensures that we can
switch the final node black with probability at least p.

In order to build our set S0, we can simply take m0 = |S0| independent copies of this
tree. Since p is a constant, i and the tree size 2i+1 − 1 are also constants; thus the whole
phase only requires O(m0) nodes altogether.

6.2 Collection Phase
Let us introduce a logarithmic parameter d0 = c0 · log n. Given our Opening Phase construc-
tion S0, our next step is to create a smaller set S1 on m1 = 1

4·d0
· m0 nodes. Recall that

all the m0 nodes in S0 had exactly 1 output edge; this allows us to connect each v ∈ S1 to
4 · d0 distinct nodes in S0. We also add d0 further output edges to each v ∈ S1 to provide a
connection to the next phase.

Since each node in S0 becomes black with probability p independently, a Chernoff bound
shows that v has at least (p − ϵ) · 4 · d0 black neighbors in S0 with a probability of 1 − O(n−2).
This already makes v switchable to black, since dv = 5 · d0, and thus for the appropriate p

and ϵ values we have
(p − ϵ) · 4 · d0

5 · d0
≈ 4

5 >
2
3 >

1 + λ

2 .

Applying a union bound over all nodes v ∈ S1, we get that w.h.p. the entire set S1 can be
switched to black.
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6.3 Growing Phase
Given our set S1 from the Collection Phase, the next step is to iteratively build a range of
levels S2,i for i = 1, 2, ... . Each of these levels has the same size |S2,i| = m1, but on the
other hand, their degrees increase exponentially: the output degree of each node in S2,i+1 is
always twice as big as the output degree of the nodes in S2,i.

We achieve this by connecting every pair of subsequent levels as a regular bipartite graph.
Let us begin with S2,1 := S1. Recall that each node in S1 has d0 output edges, so S2,1 and
S2,2 will form a d0-regular bipartite graph. We then connect S2,2 and S2,3 as a 2 · d0-regular
bipartite graph, S2,3 and S2,4 as a 4 · d0-regular bipartite graph, and so on. Thus in any level,
we have a value d such that each node has d edges to the previous and 2d edges to the next
level, and this value d doubles with each new level. Since the degrees grow exponentially,
after about log m1 levels, we reach a last level S2,ℓ where the output degree is Θ(m1).

We use an induction to prove that we can w.h.p. turn all nodes black in each S2,i. This is
already known for S2,1 = S1 initially. In the general case, let v be an arbitrary node of S2,i.
Since each v has at least d0 output edges to S2,i+1, we can use Lemma 2 to show that the
output neighborhood of every node is initially ϵ-balanced. This means that for any v ∈ S2,i,
at least ( 1

2 − ϵ) · 2d = (1 − 2ϵ) · d outputs are already black initially. Due to the induction,
we can turn all the d remaining neighbors in S2,i−1 black, altogether giving (2 − 2ϵ) · d black
neighbors of v. With dv = 3 · d, this amounts to a ratio of 2−2ϵ

3 black nodes in N(v). Since
we have 1+λ

2 = 2
3 − δ, a sufficiently small choice of ϵ always ensures that this ratio is above

1+λ
2 , and thus v is switchable to black. Hence each node in S2,i can indeed be turned black,

which completes our induction.

6.4 Control Phase
In the following Control Phase, we create a new set S3 on m3 nodes. The goal of this phase
is to ensure that at a specific point in the process, each v ∈ S3 switches to black, and then
at a later point, each v ∈ S3 is switchable to white.

In order to be able to initialize a prop construction on m nodes in the final phase, each
node in S3 will have an output degree of m, for some parameter m. A detailed analysis
shows that for a large constant α > 1, a choice of m3 = 1

α · m1 and m = 1
2 · m3 suffices for

our purposes.
To achieve the desired switching behavior for S3, we first create two copies of the previous

phases: one of them ending with a level Sb
2,ℓ on α·m nodes where w.h.p. each nodes switches

to black, and the other one ending with a last level Sw
2,ℓ on 2α·m nodes where w.h.p. each

node switches to white in a symmetric manner. We connect each node in S3 to every node
in both Sb

2,ℓ and Sw
2,ℓ. As a result, each v ∈ S3 has a degree of dv = (3α+1)·m. Note that

the output degree of both Sb
2,ℓ and Sw

2,ℓ is Θ(m1) = Θ(α · m3), so for α large enough, they
can indeed be connected to each node in S3.

Now consider the neighbors of a node v ∈ S3. First Sb
2,ℓ becomes black and v’s neighbor-

hood in Sw
2,ℓ is ϵ-balanced; this gives at least α · m + ( 1

2 − ϵ) · 2α · m = 2α · m · (1 − ϵ) black
neighbors in N(v), amounting to a 2α·(1−ϵ)

3α+1 fraction of dv. As 1+λ
2 = 2

3 − δ, for a sufficiently
small ϵ and sufficiently large α, we can ensure that this ratio is larger than 1+λ

2 , and thus v

is indeed switchable. We switch each v ∈ S3 to black at this point.
After this, we turn each node in Sw

2,ℓ white. Nodes in S3 now have 2α · m white neighbors
at least; this again ensures that each v ∈ S3 is now switchable to white. However, for our
purposes in the last phase, we will only switch half of the nodes in S3 white at this point
(denoted by Sw

3 ), and leave the remaining part black (denoted by Sb
3).
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6.5 Simulation Phase
Finally, we use the prop construction on m nodes to obtain superlinear stabilization time.
Given a node v in prop, assume w.l.o.g. that v is initially black in the example sequence of
prop; we can apply the same technique for white nodes in a symmetric manner.

Our main idea is to connect v to some new nodes in Sb
3 and Sw

3 . When Sb
3 and Sw

3 both
switch to black, this allows us to switch v to its desired initial color (black). Then when
Sw

3 switches back to white, the new neighbors become balanced, and thus the switchability
of v will again depend on its original neighbors within prop. However, with these extra
connections, the original N(v) is now only a smaller fraction of v’s total neighborhood, so
this only allows us to simulate prop with a smaller parameter λ′ < λ.

More specifically, if v has original degree d′
v within the prop construction, then we

connect v to 1
2 · 1+λ

1−λ · d′
v arbitrary nodes in both Sb

3 and Sw
3 . We point out that our choice

of m = 1
2 · m3 is indeed sufficient for this: since λ < 1

3 implies 1+λ
1−λ < 2, every node in the

prop construction needs at most 1
2 · 1+λ

1−λ · d′
v < d′

v new edges to both Sb
3 and Sw

3 . Hence
with d′

v < m in the prop construction, it is indeed enough to have m nodes in the sets Sb
3

and Sw
3 . Furthermore, since each node in S3 has an output degree of m, we can also connect

a node in Sb
3 or Sw

3 to as many nodes in the prop construction as necessary.
With v connected to 1

2 · 1+λ
1−λ · d′

v nodes in both Sb
3 and Sw

3 , the new degree of v is now

dv =
(

1 + 1 + λ

1 − λ

)
· d′

v = 2
1 − λ

· d′
v ,

so v requires 1+λ
2 · dv = 1+λ

1−λ · d′
v conflicts to be switchable. Hence when Sb

3 and Sw
3 are

both switched black, this is already enough to switch v black, since the two sets provide
2 · 1

2 · 1+λ
1−λ · d′

v = 1+λ
1−λ · d′

v black neighbors to v together. Later Sw
3 switches to white; then for

the rest of the process, v has 1
2 · 1+λ

1−λ · d′
v neighbors of both colors in S3.

Let us now select λ′ = 2λ
1−λ , and apply the prop construction for λ′ as a black box.

If v was switchable in the original prop construction at some point, then it had at least
1+λ′

2 · d′
v = 1

2 · 1+λ
1−λ · d′

v conflicts within prop. Then together with the 1
2 · 1+λ

1−λ · d′
v additional

conflicts to either Sb
3 or Sw

3 , v has at least 1+λ
1−λ · d′

v = 1+λ
2 · dv conflicts in our construction,

and thus it is indeed switchable.
Hence we can indeed simulate the behavior of prop in our construction: whenever v is

switchable in the original prop graph, it is also switchable in our construction. This allows
us to run the entire sequence of m1+f(λ′)−ε steps in prop, giving a sequence of m1+f( 2λ

1−λ )−ε

steps in terms of our λ.
One can observe that our constructions contains only O(m · log m) nodes altogether, thus

allowing a choice of m = Θ( n
log n ). This results in about

n1+f( 2λ
1−λ )−ε · log n −(1+f( 2λ

1−λ )−ε)

steps for the prop sequence in terms of n. Since such a prop construction exists for any
ε > 0, we can get rid of the second factor in this lower bound by simply applying the same
proof with a smaller value ε̂ < ε. Thus the claim of Theorem 5 follows.

7 Proportional switching: upper bound for λ > 1
2

We now show that with λ = 1
2 + δ for some δ > 0, stabilization happens w.h.p. in Õ(n) time.

The only probabilistic element of this proof is the assumption that initially all high-degree
nodes have an ϵ-balanced neighborhood; this indeed holds w.h.p., as we have seen before in
Corollary 3.
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The idea of the proof is that even though there might be Θ(n2) conflicts in the graph
initially, only a few of these conflicts can propagate through the graph. Let us call a conflict
on edge (u, v) in our current coloring an original conflict if it has been on the edge since the
beginning of the process, i.e. if every previous state (including the initial state) already had
a conflict on (u, v).

▶ Definition 6 (Active/Rigid conflicts). We say that a conflict on edge (u, v) is rigid if it is
an original conflict, and both u and v are high-degree nodes. Otherwise, the conflict is active.

Our proof is obtained as a result of three observations: that (i) there are only a few active
conflicts in the graph initially, (ii) the number of active conflicts decreases in each step of
the process, and (iii) the process stabilizes when there are no more active conflicts. Since the
second point is the most complex out of the three claims, we first discuss it separately.

▶ Lemma 7. The number of active conflicts strictly decreases in each step.

Proof. Consider a specific step of the process, and let v be the node that switches in this
step. Assume first that v is a low-degree node. In this case, v can only have active conflicts
on its incident edges at any point in the process: initially, all conflicts of v are active by
definition, and all the newly created conflicts in the process are also active. Since the number
of conflicts on v’s incident edges decreases when v switches, the total number of active
conflicts also decreases in this step.

Now assume that v is a high-degree node. Since N(v) is initially ϵ-balanced, it has at
most ( 1

2 + ϵ) · dv rigid conflicts in the beginning, and since all the newly created conflicts in
the process are active, it also has at most ( 1

2 + ϵ) · dv rigid conflicts at any later point in the
process. However, if v switches, then it must have at least 1+λ

2 · dv incident conflicts; this
implies that at least 1+λ

2 · dv − ( 1
2 + ϵ) · dv of these conflicts are active. When v switches,

it creates at most 1−λ
2 · dv new (active) conflicts. Thus, to show that the number of active

conflicts decreases, we only require

1 + λ

2 · dv −
(

1
2 + ϵ

)
· dv >

1 − λ

2 · dv,

which is equivalent to λ > 1
2 + ϵ. This holds for a sufficiently small choice of ϵ < δ. ◀

This already allows us to prove our upper bound.

▶ Theorem 8. Consider majority/minority processes under the proportional switching rule
for any λ > 1

2 , starting from a uniform random initial coloring. Any graph has a stabilization
time of O(n · log n) with high probability in this model.

Proof. In any initial coloring, the number of active conflicts is at most O(n · log n): each
low-degree node has at most c0 · log n incident edges, and the number of low-degree nodes is
at most n. Lemma 7 shows that the number of active conflicts decreases in each step, so
there are no active conflicts in the graph after at most O(n · log n) steps.

Once there are no more active conflicts, the coloring is stable, since nodes cannot be
switchable without an active conflict on the incident edges. More specifically, due to the
ϵ-balanced property, all high-degree nodes v have at most ( 1

2 + ϵ) · dv rigid conflicts on the
incident edges, which is smaller than 1+λ

2 · dv if we have ϵ < λ
2 . Low-degree nodes, on the

other hand, can never have rigid conflicts on the incident edges at all. Thus the process
indeed stabilizes in O(n · log n) steps. ◀
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Figure 3 Our upper and lower bounds on stabilization time in the proportional case.

8 Conclusion

Our results show that the behavior of the processes from a randomized initial coloring is
rather straightforward in case of the basic switching rule: stabilization time can indeed
tightly match the naive upper bound of O(n2).

However, in case of proportional switching, our work does leave some open questions.
Figure 3 illustrates our upper and lower bounds for this case. The most apparent open
question is the behavior of the process for the λ ∈ [ 1

3 , 1
2 ] case; in this interval, we only have

the straightforward lower bound of Section 4.2. While the figure gives the impression that
stabilization time might also have a Õ(n) upper bound in this case, it remains for future
work to prove or disprove this claim.

Furthermore, even for λ < 1
3 when stabilization is known to be superlinear, one might

also be interested in devising upper bounds. Currently, the best known upper bound is that
of O(n1+f(λ)+ε) from [29], which even applies for the worst-case initial coloring.
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Extended Abstract

In this work we study the problem of counting small patterns in large host graphs. With
applications in a diverse set of disciplines such as constraint satisfaction problems [13, 7],
database theory [15, 8] and network science [34, 1, 41], it is unsurprising that this problem
has received significant attention from the viewpoint of parameterized and fine-grained
complexity theory in recent years [2, 17, 33, 9, 12, 11, 5, 37, 38, 28, 39].

We continue this line of work and study the problem of counting k-edge subgraphs that
satisfy a graph property Φ: For any fixed Φ, the problem #EdgeSub(Φ) asks, on input
a graph G and a positive integer k, to compute the number of (not necessarily induced)
subgraphs with k edges in G that satisfy Φ. In particular, we focus on instances in which k

is significantly smaller than G. Formally, we choose k to be the parameter of the problem
and ask for which Φ there is a function f such that #EdgeSub(Φ) can be solved in time
f(k) · |V (G)|O(1); in this case we call the problem fixed-parameter tractable with respect to
the parameter k.

If #EdgeSub(Φ) is not fixed-parameter tractable, it is desirable to improve the exponent
of |V (G)| in the running time as far as possible. For example, the best known algorithm
for counting k-edge subgraphs [11] can be used to solve #EdgeSub(Φ) in time f(k) ·
|V (G)|0.174k+o(k) [39]. Additionally, it was shown in recent work that #EdgeSub(Φ) is
fixed-parameter tractable whenever Φ has bounded matching number, that is, whenever there
is a constant upper bound on the size of the largest matching of any graph satisfying Φ [39].
If, for each k, the property Φ is true for only one graph on k edges, then the previous
fixed-parameter tractability result is best possible: In this case, #EdgeSub(Φ) becomes an
instance of the counting version of the parameterized subgraph isomorphism problem which
has been fully classified by Curticapean and Marx [12].

However, for arbitrary Φ, much less is known about the complexity of #EdgeSub(Φ).
In [39], two of the authors, together with Wellnitz, presented first results for more general
properties such as connectivity, Eulerianity and, in particular, an almost exhaustive classific-
ation for minor-closed properties Φ, leaving (partially) open the case of forbidden minors of
degree at most 2. In this work, we close this gap and provide a full dichotomy result:

▶ Theorem 1. Let Φ be a minor-closed graph property. If Φ is trivially true or of
bounded matching number, then #EdgeSub(Φ) is fixed-parameter tractable. Otherwise,
#EdgeSub(Φ) is #W[1]-hard and, assuming the Exponential Time Hypothesis, it cannot be
solved in time

f(k) · |G|o(k/ log k)

for any function f .

Here, #W[1] is the parameterized counting analogue of NP; a formal definition is provided
in the full version. Particular cases for which we obtain novel intractability results are given
by the following (minor-closed) properties; the formal intractability results are stated and
proved in the full version as well.

Φ(H) = 1 if H is a forest.
Φ(H) = 1 if H is a linear forest.
Φ(H) = 1 if the tree-depth of H is bounded by a constant.
Φ(H) = 1 if the Colin de Verdière Invariant of H is bounded by a constant.

Additionally, we investigate the property of being bipartite. For this case, we present not
only a novel fine-grained lower bound, but also a #W[1]-hardness result, which was not
known before.
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▶ Theorem 2. Let Φ be the property of being bipartite. Then #EdgeSub(Φ) is #W[1]-hard
and, assuming the Exponential Time Hypothesis, it cannot be solved in time

f(k) · |G|o(k/ log k)

for any function f .

Our hardness results crucially rely on a novel construction of families of low-degree Cayley
graph expanders of p-groups, which might be of independent interest. We will present the
new Cayley graph expanders in the following theorem; their construction, as well as their role
in the hardness proofs for #EdgeSub(Φ) will be elaborated on in the technical discussion.

▶ Theorem 3. Let p ≥ 3 be a prime number, and d ≥ 2 be an integer. We assume that
d ≥ (p + 3)/2 if p ≥ 7.

Then there is an explicit construction of a sequence of finite p-groups Γi of orders that
tend to infinity, with symmetric generating sets Si of cardinality 2d such that the Cayley
graphs C(Γi, Si) form a family of expanders (of fixed valency 2d on a set of vertices of p-power
orders and with vertex transitive automorphism groups).

Our methods do not only apply to exact counting, but also to modular pattern counting
problems: Here the goal is to compute the number of occurrences of the pattern modulo
a fixed prime p. In classical complexity theory, the study of modular counting problems
has a rich history, such as the algorithm for computing the permanent modulo 2ℓ [44],
the so-called accidental algorithms [45], Toda’s Theorem [43], classifications for modular
#CSPs and Holants [24, 25] and the line of research on the modular homomorphism counting
problem [16, 20, 21, 22, 26, 18, 27], only to name a few.

While results are scarcer, the parameterized complexity of modular (pattern) counting
problems has also been studied in recent years [4, 14, 10], and we contribute to this line
of research as follows: First, we provide a novel intractability result for modular counting
of forests and matroid bases. We write #pForests for the problem of, given a graph G

and a positive integer k, computing the number of forests with k edges in G, modulo p.
Similarly, we write #pBases for the problem of, given a linear matroid M of rank k in
matrix representation, computing the number of bases of M , modulo p; the parameter of
both problems is given by k.

▶ Theorem 4. For each prime p ≥ 3, the problems #pForests and #pBases are ModpW[1]-
hard and, assuming the randomised Exponential Time Hypothesis, cannot be solved in time
f(k) · |G|o(k/ log k) (resp. f(k) · |M |o(k/ log k)), for any function f .

Here, ModpW[1] is the parameterized modular counting version of NP. Roughly speaking,
a problem is ModpW[1] if it is at least as hard as counting k-cliques modulo p; we give
a formal definition in the full version. Additionally, we provide an algorithmic result for
counting k-paths and k-cycles modulo 2:

▶ Theorem 5. The problems of counting k-paths and k-cycles in a graph G modulo 2 can be
solved in time kO(k) · |V (G)|k/6+O(1).
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We emphasize that the algorithm in the previous theorem is faster than the best known
algorithms for (non-modular) counting of k-cycles/k-paths, which run in time kO(k) ·
|V (G)|13k/75+o(k) [11]. Furthermore, it follows from a result by Curticapean, Dell and
Husfeldt [10] that counting k-paths modulo 2 is Mod2W[1]-hard, implying that we cannot
hope for an algorithm for k-paths running in time f(k) · |V (G)|O(1). Finally, we study the
parameterized complexity of counting homomorphisms modulo p. In the classical setting,
the related problem of modular counting homomorphisms with right-hand side restrictions
received much attention: For any fixed graph H, the problem #pHomsTo(H)1 asks, on
input a graph G, to compute the number of homomorphisms from G to H modulo p. Despite
significant effort [16, 20, 21, 22, 26, 18, 27], the problem has not been fully classified for each
graph H.2

In this work, we consider the related left-hand side version of the problem. Adapting
the definitions of Grohe, Dalmau and Jonsson [23, 13] for detecting and exact counting of
homomorphisms, we define a problem #pHom(H) for each class of graphs H and for each
prime p: This problem expects as input a graph H ∈ H and an arbitrary graph G, and the
goal is to compute the number of homomorphisms from H to G, modulo p. The problem is
parameterized by the size of H, that is, we assume H to be significantly smaller than G.

It is known that the decision version Hom(H) is fixed-parameter tractable (even solvable
in polynomial time) if the treewidth of the cores of H is bounded by a constant, and
W[1]-hard otherwise [23]. Similarly, the (exact) counting version #Hom(H) is known to be
fixed-parameter tractable (even solvable in polynomial time) if the treewidth of the graphs
of H is bounded by a constant, and #W[1]-hard otherwise [13].

In case of counting modulo p, we establish an exhaustive classification for #pHom(H)
along what we call the p-reduced quotients of the graphs in H. Let H be a graph and let
α be an automorphism of H of order p. Then we define the quotient graph H/α to have a
vertex for each orbit of the action of α on V (H), and two vertices corresponding to orbits O1
and O2 are made adjacent if and only if there are vertices v1 ∈ O1 and v2 ∈ O2 such that
{v1, v2} ∈ E(H). This induces a finite (possibly trivial) sequence H = H1, . . . , Hℓ where for
i = 1, . . . , ℓ − 1 we set Hi+1 = Hi/αi for some automorphism αi of order p of Hi and where
the last graph Hℓ does not have an automorphism of order p. Then H∗

p := Hℓ is called the
p-reduced quotient of H.3 We will see that H∗

p is well-defined by proving that each of the
aforementioned sequences yields the same graph, up to isomorphism.

Let us now state our classification for #pHom(H). In what follows, given a class H, we
write H∗

p for the p-reduced quotients without self-loops of graphs in H. We first present the
algorithmic part:

▶ Theorem 6. Let p ≥ 2 be a prime and let H be a class of graphs. The problem #pHom(H)
can be solved in time

exp(poly(|V (H)|)) · |V (G)|tw(H∗
p )+O(1) .

In particular, #pHom(H) is fixed-parameter tractable if the treewidth of H∗
p is bounded.

Here tw denotes treewidth.

1 For p = 2, the problem is usually denoted by ⊕HomsTo(H).
2 However, very recently a full classification was announced by Bulatov and Kazeminia [6].
3 We remark that H∗

p is related to the notion of involution-free reductions used in the analysis of the
right-hand side version of the problem [16, 22]. However, the difference is that the p-reduced quotient
identifies non-fixed points of an order-p automorphism by including a vertex for each orbit, while the
involution-free reduction just deletes all non-fixed points.
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▶ Remark 7. Using the quasi-polynomial time algorithm for GI due to Babai [3], we will also
show how the algorithm in the previous theorem can be improved to run in quasi-polynomial
time in the input length |V (H)| + |V (G)|. Additionally, proving that the construction of the
p-reduced quotient is at least as hard as the graph automorphism problem, we observe that
a polynomial-time algorithm is unlikely, unless the construction of the p-reduced quotients
can be avoided.

For the intractability part of our classification, we show that unbounded treewidth of H∗
p

yields hardness:

▶ Theorem 8. Let p ≥ 2 be a prime and let H be a computable class of graphs. If
the treewidth of H∗

p is unbounded, then #pHom(H) is ModpW[1]-hard and, assuming the
randomised Exponential Time Hypothesis, cannot be solved in time

f(|H|) · |G|o(tw(H∗
p )/ log tw(H∗

p ))

for any function f .

Can You Beat Treewidth?

We conclude the presentation of our results by commenting on the factor of 1/(log . . . ) in the
exponents of all of our fine-grained lower bounds. This factor is related to the conjecture of
whether it is possible to “beat treewidth” [31]. In particular, we point out that the factor can
be dropped in all of our lower bounds if this conjecture, formally stated as Conjecture 1.3
in [32], is true.

Technical Overview
Our central approach follows the so-called Complexity Monotonicity framework due to
Curticapean, Dell and Marx [11]. We express the counting problems considered in this
work as formal linear combination of homomorphism counts, which allows us to derive the
complexity of the problem at hand by analyzing the coefficients.

More precisely, let us fix a graph property Φ and a positive integer k. Given a graph G,
we furthermore write #EdgeSub(Φ, k → G) for the number of k-edge subgraphs of G that
satisfy Φ. It was shown in [39] that there exists a function of finite support aΦ,k from graphs
to rationals such that for every graph G we have

#EdgeSub(Φ, k → G) =
∑
H

aΦ,k(H) · #Hom(H → G) , (1)

where #Hom(H → G) is the number of graph homomorphisms from H to G. Curticapean,
Dell and Marx [11] have shown that computing a linear combination as in (1) is precisely as
hard as computing its hardest term. Fortunately, the complexity of counting and detecting
homomorphisms from H to G is thoroughly classified [13, 31]: Roughly speaking, the
higher the treewidth of H, the harder it is to compute the number of homomorphisms
from H to G. Therefore, proving hardness of computing #EdgeSub(Φ, k → G) reduces to
the purely combinatorial problem of determining which of the coefficients aΦ,k(H) in (1) for
high-treewidth graphs H are non-zero.

Unfortunately, it has turned out that the coefficients of such linear combinations for
related pattern counting problems are often determined by (or even equal to) a variety of
algebraic and topological invariants, whose analysis is known to be a difficult problem in
its own right. For example, in case of the vertex-induced subgraph counting problem, the
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v B1 B2

Figure 1 Illustration of the construction of a fractured graph. The left picture shows a vertex v

of a graph H with incident edges EH(v) = { , , , , , }. The right picture shows the splitting of
v in the construction of the fractured graph H♯ σ for a fracture σ satisfying that the partition σv

contains two blocks B1 = { , , }, and B2 = { , , }.

coefficient of the clique is the reduced Euler characteristic of a simplicial graph complex [37],
the coefficient of the biclique is the so-called alternating enumerator [14], and, more generally,
the coefficients of dense graphs are related to the h-and f -vectors associated with the property
of the patterns that are to be counted [38]. In all of the previous works mentioned here,
the complexity analysis of the respective pattern counting problems therefore amounted to
understanding the cancellation behaviour of those invariants. To do so, the papers used
tools from combinatorial commutative algebra and, to some extent, topological fixed-point
theorems.

In case of #EdgeSub(Φ), two of the authors, together with Wellnitz, observed that the
coefficients of high-treewidth low-degree vertex-transitive graphs can be analysed much easier
than generic graphs of high treewidth such as the clique or the biclique [39]. First, it was
shown that the coefficient of a graph H with k edges in (1) is equal to the indicator of Φ
and H, defined as follows:4

a(Φ, H) :=
∑

σ∈L(Φ,H)

∏
v∈V (H)

(−1)|σv|−1(|σv| − 1)! . (2)

Here, L(Φ, H) is the set of fractures σ of H such that the associated fractured graph H♯ σ

satisfies Φ. Here, a fracture of a graph H is a tuple σ = (σv)v∈V (H), where σv is a partition
of the set of edges EH(v) of H incident to v. Given a fracture ρ of H, the fractured graph
H♯ σ is obtained from H be splitting each vertex v ∈ V (H) according to σv; an illustration
is provided in Figure 1.

As a consequence, the #W[1]-hardness results of Theorems 1 and 2 can be obtained if we
find a family of graphs H of unbounded treewidth, such that a(Φ, H) ̸= 0 for infinitely many
graphs H in this family. The almost tight conditional lower bound under the Exponential
Time Hypothesis will, additionally, require sparsity of the graphs. In combination with the
main observation in [39], stating that the indicator a(Φ, H) can be analysed much easier
for vertex-transitive graphs, we propose that regular Cayley graph expanders are the right
choice for the family of graphs to be considered. Indeed, those graphs are sparse, have high
treewidth and are always vertex transitive. A particular family of Cayley graph expanders
was already used in [39], but it turned out to be impossible to prove Theorems 1 and 2
relying only on this family of Cayley graph expanders; we discuss this in detail in the full
version.

4 To be precise, the identity in (2) was obtained for a coloured version of #EdgeSub(Φ). However, we
will mostly rely on this result in a blackbox manner; all details of the coloured version necessary for the
treatment in this paper will be carefully introduced when needed.



N. Peyerimhoff, M. Roth, J. Schmitt, J. Stix, and A. Vdovina 84:7

In this work, we therefore present novel constructions of families of low-degree Cayley graph
expanders. Those will not only allow us to prove most of our main theorems by analysing
their indicators, but might be of independent interest. For the sake of presentation, we
decided to encapsulate the treatment of our constructions in separate sections, both in the
extended abstract and the main part of the paper. We hope that this makes the paper
accessible both for readers primarily interested in the novel construction of Cayley graph
expanders, as well as for readers mainly interested in the analysis of the pattern counting
problems. In particular, this last group may safely skip the next subsection and rely only on
Theorem 3.

Construction of Low-Degree Cayley Graph Expanders

We prove Theorem 3 via an explicit construction of the groups Γi and the symmetric
generating sets Si in the full version, motivated by number theoretic objects. In what follows
we present an overview of our construction.

Let us fix a prime p ≥ 3. The starting point is an explicit arithmetic lattice (a discrete
subgroup) in a group of generalized quaternions over a function field in characteristic p. The
quaternion algebra is at the heart of the mathematical properties of extracting the finite
p-groups and the expansion property of the resulting Cayley graphs, but it is not crucial for
understanding the construction. Concretely, for any choice of elements α ≠ β ∈ Z/(p − 1)Z
we construct an infinite group Γp;α,β defined in terms of 2(p + 1) generators ak, bj (where the
indices k, j run through sets K, J ⊆ Z/(p2 − 1)Z defined depending on α, β) and relations of
length 4. The set of relations is described by explicit algebraic equations in the field Fp2 .
In [40] these groups were realized by mapping the generators ak, bj to explicit generalized
quaternions, leading ultimately to an explicit injective group homomorphism

Ψ: Γp;α,β → GL3(Fp[[t]]) . (3)

In other words, every element of Γp;α,β is sent to an invertible 3 × 3-matrix whose entries are
power series in some formal variable t, whose coefficients live in the finite field Fp with p

elements. This is made explicit for p = 3 in the full version, but could also be made explicit
for any p ≥ 5. Since the applications do not depend on concrete matrices, we merely state
its existence.

To construct the finite p-groups Γi, consider the group homomorphism

πi : GL3(Fp[[t]]) → GL3(Fp[t]/(ti+1))

taking a matrix with power series entries and truncating the power series after the term of
order ti. Then the group GL3(Fp[t]/(ti+1)) is finite, and we define Γi to be the image of the
group Γp;α,β under the composition πi ◦ Ψ. These groups Γi are easily shown to be p-groups
and they are what is called congruence quotients (by construction). The generators ak, bj from
the construction of Γp;α,β map to symmetric generating sets Ti of Γi, i.e., to the set of cosets
akNi, bjNi when Γi = Γp;α,β/Ni is considered as a factor group. Using results from [40], we
know that the Cayley graphs Gi = C(Γi, Ti) associated to the congruence quotient groups Γi

with respect to the generating sets Ti are expanders. This argument is worked out in [40] by
Rungtanapirom and two of the authors, and it is based on a similar approach in the classical
papers by Lubotzky, Phillips and Sarnak [30] and by Morgenstern [35]. We note here that
the results of [40] ultimately rely on deep number theoretic results, namely a translation of
the spectrum of the adjacency operator into Satake parameters of an associated automorphic
representation and most crucially on work of Drinfeld on the geometric Langlands programme
for GL2.
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At this point we have proven Theorem 3 for the particular valency 2d = 2(p + 1). In order to
obtain the more general valencies stated in the theorem (which will be crucial for some of our
reductions), we recall in Section 3.1 of the full version that a uniformly controlled change of
the generating sets Ti of the groups Γi (the generators must be mutually expressible in words
of uniformly bounded length) preserves the expander property. This change of generating
set is best performed by finding a smaller generating set for the underlying infinite group
Γp;α,β . This is done in Proposition 3.7 in the full version, reducing to d = (p + 3)/2 for all
p ≥ 3. The reduction is based on the explicit form of the relations and a combinatorial group
theoretic result from [42] on the local permutation structure of the underlying geometric
square complex. To improve even further for p = 3 we consider in Section 3.3 of the full
version a concrete presentation of Γ3;0,1 which is shown to reduce to 2 generators. For p = 5,
an explicit example given in the full version achieves a reduction to 2 generators for Γ5;0,2.
In the last step, we will then show that by adding generators (as necessary) we obtain
Theorem 3 for all d’s in the range that the theorem promises.

While this is not needed for the purposes of our hardness results, all of the constructions
above are explicit, certainly in the weak sense that for a fixed p, the sequence of graphs Gi

from Theorem 3 is computable. We also would like to emphasize again, that the expanders
constructed for the proof of Theorem 3 consist of vertex transitive graphs, of prime power
number of vertices, with a fairly low bound on the degree. All of this is made possible by
working with very specific generalized quaternion groups in positive characteristic.

Analysis of the Indicators

Having established the existence of the low-degree Cayley graph expanders, we turn back to
the analysis of the indicator

a(Φ, H) =
∑

σ∈L(Φ,H)

∏
v∈V (H)

(−1)|σv|−1(|σv| − 1)! . (4)

Recall that we claimed the analysis of a(Φ, H) to be easier for vertex-transitive graphs. Let
us now elaborate on this claim. First of all, we restate the formal definition of Cayley graphs
for readers who skipped the explicit construction of our expanders: the Cayley graph of a
group Γ together with a symmetric generating set5 S ⊆ Γ is the graph G = C(Γ, S) with
vertex set V (G) = Γ and edge set

E(G) = {(x, xs) ∈ V (G) × V (G); x ∈ Γ, s ∈ S}.

Since S is symmetric, with any edge (x, xs) the Cayley graph also contains the edge with
opposite orientation (xs, x) = (xs, (xs)s−1). Hence we consider Cayley graphs as the
underlying unoriented graph.

Given a Cayley graph G as above, the group Γ acts on the graph by letting g ∈ Γ send
the vertex v ∈ V (G) = Γ to gv. This action extends to the set of fractures L(Φ, H) and
since the terms

∏
v∈V (H)(−1)|σv|−1(|σv| − 1)! in the formula (4) are shown to be invariant

under this action, the group Γ naturally permutes these summands. Since our Cayley graph
expanders Gi arise from p-groups Γi, it follows that when evaluating the indicator a(Φ, Gi)
modulo p, only those contributions from fractures fixed under Γi survive. Now recall that σv

is a partition of the edges incident to v. The fixed-point fractures σ will satisfy that all σv are
equal if we identify the edges incident to v with the elements of the generating set. Since, for

5 This means a subset S ⊆ Γ of the group that generates this group and satisfies S−1 = S.
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fixed p, our Cayley graph expanders have constant degree, we can thus prove the indicator
to be non-zero modulo p by considering just a constant number of fractures. This approach
was first used in [39], and we will show that it becomes significantly more powerful if applied
to our novel Cayley graph expanders.

Now let us illustrate and sketch this approach for the property Φ of being bipartite, that
is, for proving Theorem 2. By Theorem 3, there is a family G of 5-group Cayley graph
expanders of degree 6. For graphs G ∈ G, we can show that the indicator a(Φ, G) does not
vanish, given that Φ is the property of being bipartite. Theorem 2 will then follow by the
argument outlined above; the detailed and formal proof is presented in the full version.

In the first step, given a graph G = C(Γi, Si) ∈ G we need to establish which fixed-point
fractures σ are contained in L(Φ, G), that is, for which σ the fractured graph G♯ σ is bipartite.
Since fixed-point fractures σ = (σv)v∈V (G) of G satisfy that all σv correspond to one particular
partition of Si, we will ease notation and identify σ with this partition. Using that Si is
a symmetric set of generators of cardinality 6, that is, Si = {g1, g2, g3, g−1

1 , g−1
2 , g−1

3 }, we
define a graph H(σ) as follows: It has a vertex wB for each block B of σ, and its set of
(multi)edges is given by

E(H(σ)) =
{

{wB , wB′
} : one multiedge for each g ∈ {g1, g2, g3} s.t. g ∈ B, g−1 ∈ B′

}
. (5)

Note that we see H(σ) as a graph with possible loops and possible multiedges. In particular,
the graph H(σ) has precisely 3 edges.

The important property of H(σ), which we prove in the full version, is that H(σ) is
bipartite if and only if G♯ σ is bipartite. Consequently, for Φ being the property of being
bipartite, the indicator a(Φ, G) is given by the following drastically simplified6 expression, if
considered modulo 5:

a(Φ, G) ≡
∑

σ:H(σ) is bipartite

(−1)|σ|−1 · (|σ| − 1)! mod 5 , (6)

where the sum is over partitions σ of Si. We provide the evaluation of the above expression
in Table 1 and observe that the result is −16 ̸= 0 mod 5. Since this argument applies to all
members of the family of 5-group Cayley graph expanders, we conclude that the indicator is
non-zero infinitely often, which ultimately proves Theorem 2.

The proof of Theorem 1 will follow a comparable technique, but it will require multiple,
more involved cases.

Extension to Modular Counting

Our understanding of the cancellation behaviour of the indicators a(Φ, H) modulo p does not
only allow us to analyse the complexity of exact counting of k-edge subgraphs satisfying Φ,
but also extends to counting k-edge subgraphs modulo p.

To this end, we provide the necessary set-up for parameterized modular counting. In
particular, the basis for our intractability results on the modular counting versions is given
by the decision problem of detecting so-called colour-prescribed homomorphisms, which is
known to be hard for graphs of high treewidth due to Marx [31]. Using a version of the
Schwartz-Zippel-Lemma due to Williams et al. [46], we are able to reduce an instance I of

6 A priori, the formula (4) leads to the version of formula (6) with all summands taken to the power
|V (G)|. However, since the number of vertices is a power of p = 5, by Fermat’s little theorem it can be
omitted.
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Table 1 List of bipartite graphs H(σ) for 3 generators; here we give the isomorphism class of
H(σ), the number of partitions σ with the corresponding isomorphism class, the number of blocks
of sigma and the total contribution to a(Φ, G) mod 5 for the property Φ of being bipartite.

H(σ) No. of σ |σ| (−1)|σ|−1 · (|σ| − 1)!

1 6 −120 · 1

12 5 24 · 12

24 4 −6 · 24

8 4 −6 · 8

6 4 −6 · 6

24 3 2 · 24

4 2 −1 · 4
Total contribution −16 ≡ 4 mod 5

this problem to an instance I ′, such that, with high probability, I ′ has precisely one solution
if I has at least one solution, and I ′ has no solutions if I has no solutions. In a second step,
the obtained instance I ′ can then easily be reduced to the modular counting version for
each prime p. Since the first step of this reduction is randomised, we need to assume the
randomised Exponential Time Hypothesis for our fine-grained lower bounds.

Afterwards, we prove a variant of the Complexity Monotonicity principle for modular
counting in the case of colour-prescribed homomorphisms. As a consequence, our hardness
results for modular subgraph counting problems, including Theorem 4, can be proved following
the same strategy as outlined in the previous subsection.

Moreover, instead of only presenting intractability results, we investigate whether the
expression as a linear combination of homomorphism counts can also be used to achieve
improved algorithms for modular subgraph counting problems. And indeed, considering the
linear combination (1) modulo 2 for the property Φ of being a path or a cycle, allows us
to prove that each graph H with degree at least 5 vanishes in the linear combination, that
is, aΦ,k(H) = 0. More precisely, we will prove this for a version of the problem in which
two vertices of the k-paths or the k-cycles are already fixed. This must be done to avoid
automorphisms of even order, which turns out to be necessary for (1) to be well-defined
modulo 2, since some of the coefficients aΦ,k(H) = 0 are of the form #Aut(H)−1.
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The algorithms for counting k-paths and k-cycles modulo 2 turn then out to be very simple:
Essentially, we will see that it suffices to guess the two fixed vertices, and thereafter the
algorithm evaluates Equation (1) modulo 2, by computing each non-vanishing term using a
standard treewidth-based dynamic programming algorithm for counting homomorphisms.
Since each graph H whose coefficient survives modulo 2 has degree at most 4, we can rely on
known results on the treewidth of bounded degree graphs [19]. Ultimately, this allows us to
prove Theorem 5.

Finally, our classification for counting homomorphisms modulo p builds upon the well-
established algorithms and reduction sequences used both in the classification for the decision
problem [23], as well as in the classification for the exact counting problem [13]. However,
the difficulty in proving our classification for counting modulo p is due to graphs H which
have high treewidth but admit automorphisms of order p. For those graphs, we can neither
rely on an algorithm for exact counting, nor does the known hardness proof transfer.

We solve this problem by considering the p-reduced quotients. Let us denote the function
that maps a graph G to the number of homomorphisms from H to G, modulo p, by
#pHom(H → ⋆). We show that for each graph H we have

#pHom(H → ⋆) = #pHom(H∗
p → ⋆) .

As a consequence, it suffices to consider the p-reduced quotients for our classification. Since,
by definition, those graphs to not admit an automorphism of order p, we are able to show
that the known methods for proving classifications for homomorphism problems apply.

Let us conclude by pointing out that, while proving that the p-reduced quotient is uniquely
defined up to isomorphism, we also establish a modular variant of Lovász’ criterion for graph
isomorphism via homomorphism counts (see Chapter 5 in [29]):

▶ Lemma 9. Let H and H ′ be graphs, neither of which has an automorphism of order p.
Suppose that for all graphs G we have that

#pHom(H → G) = #pHom(H ′ → G) .

Then H and H ′ are isomorphic.

We point out that the previous result can be considered a dual version of [16, Lemma 3.10].

Conclusion and Open Questions
All of our hardness results for modular subgraph counting problems only apply to primes
p ≥ 3 and have, using the randomised Exponential Time Hypothesis as a slightly stronger
assumption, the same complexity as their counterparts from exact counting. However, for
p = 2 the complexity landscape seems different: We obtained an improvement for counting
k-cycles and k-paths modulo 2. Moreover, there are known instances of the counting version of
the parameterized subgraph isomorphism problem, such as counting k-matchings, where exact
counting, as well as counting modulo p for each prime p ≥ 3 is fixed-parameter intractable,
while the computation becomes fixed-parameter tractable if done modulo 2 [9, 10].

Since, additionally, many of our hardness proofs do not apply to the case of counting
modulo 2, we propose a thorough investigation of the complexity of the parameterized
subgraph counting problem modulo 2 as the next step in this line of research. As a starting
point, we suggest the problem of counting bipartite k-edge subgraphs modulo 2: While our
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proofs extend to counting such subgraphs modulo p for some primes p ≥ 3, a computer-
aided search revealed that, for p = 2, our approach cannot work for any family of Cayley
graph expanders of degree at most 12; details are provided in the full version. Indeed, we
conjecture that our methods for proving intractability can be used to show that the problem
is intractable for each prime p > 2, but not for p = 2, which leads to the question of whether
this problem might be fixed-parameter tractable.

There are also interesting open questions concerning p-group Cayley graph expanders
with low degree. To describe them, fix some prime p and consider the set D(p) ⊆ Z≥0 of
integers d such that there exists a sequence of finite p-groups Γi of orders that tend to infinity,
with symmetric generating sets Si of cardinality 2d such that the Cayley graphs C(Γi, Si)
form a family of expanders. With any d ∈ D(p) actually any d′ ≥ d also lies in D(p), because
we can find a uniform bound on the length of a word in Si to produce a new additional
generator for Γi, showing d + 1 ∈ D(p). So the ultimate question is the following:

▶ Question 10. What is the behaviour of the function p 7→ d(p) = min D(p)?

Since 2-regular graphs are never expanders, we know that d(p) ≥ 2 for all primes p. Moreover,
combining the construction of [36] (for p = 2) with our constructions and some further
examples that we computed, we obtain the following values and bounds for the function d:

p p ∈ {2, 3, 5, 7, 11, 13} 17 ≤ p ≤ 83 89 ≤ p

d(p) 2 d(p) ∈ {2, 3} 2 ≤ d(p) ≤ (p + 3)/2

Based on this experimental evidence we make the following conjecture:

▶ Conjecture 11. For every prime p ≥ 3 there is a group among the Γp,α,β that is 3-generated.
In particular, there are p-group Cayley graph expanders of fixed valency 2d for all p ≥ 3 and
all d ≥ 3.

If the conjecture is satisfied, the function d above would be uniformly bounded from above
by 3.
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Abstract
We study three levels in a hierarchy of nondeterminism: A nondeterministic automaton A is
determinizable by pruning (DBP) if we can obtain a deterministic automaton equivalent to A by
removing some of its transitions. Then, A is good-for-games (GFG) if its nondeterministic choices
can be resolved in a way that only depends on the past. Finally, A is semantically deterministic (SD)
if different nondeterministic choices in A lead to equivalent states. Some applications of automata
in formal methods require deterministic automata, yet in fact can use automata with some level of
nondeterminism. For example, DBP automata are useful in the analysis of online algorithms, and
GFG automata are useful in synthesis and control. For automata on finite words, the three levels in
the hierarchy coincide. We study the hierarchy for Büchi, co-Büchi, and weak automata on infinite
words. We show that the hierarchy is strict, study the expressive power of the different levels in it,
as well as the complexity of deciding the membership of a language in a given level. Finally, we
describe a probability-based analysis of the hierarchy, which relates the level of nondeterminism
with the probability that a random run on a word in the language is accepting.
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1 Introduction

Nondeterminism is a fundamental notion in theoretical computer science. It allows a
computing machine to examine several possible actions simultaneously. For automata on
finite words, nondeterminism does not increase the expressive power, yet it leads to an
exponential succinctness [25].

A prime application of automata theory is specification, verification, and synthesis of
reactive systems [29, 15]. Since we care about the on-going behavior of nonterminating
systems, the automata run on infinite words. Acceptance in such automata is determined
according to the set of states that are visited infinitely often along the run. In Büchi
automata [9], the acceptance condition is a subset α of states, and a run is accepting iff it
visits α infinitely often. Dually, in co-Büchi automata, a run is accepting iff it visits α only
finitely often. We also consider weak automata, which are a special case of both Büchi and
co-Büchi automata in which no cycle contains both states in α and states not in α. We use
three-letter acronyms in {D, N} × {F, B, C, W} × {W} to describe the different classes of
automata. The first letter stands for the branching mode of the automaton (deterministic or
nondeterministic); the second for the acceptance condition type (finite, Büchi, co-Büchi or
weak); and the third indicates that we consider automata on words.

For automata on infinite words, nondeterminism may increase the expressive power
and also leads to an exponential succinctness. For example, NBWs are strictly more
expressive than DBWs [19], whereas NCWs are as expressive as DCWs [21]. In some
applications of the automata-theoretic approach, such as model checking, algorithms can
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be based on nondeterministic automata, whereas in other applications, such as synthesis
and control, they cannot. There, the advantages of nondeterminism are lost, and algorithms
involve a complicated determinization construction [26] or acrobatics for circumventing
determinization [18]. Essentially, the inherent difficulty of using nondeterminism in synthesis
and control lies in the fact that each guess of the nondeterministic automaton should
accommodate all possible futures.

A study of nondeterministic automata that can resolve their nondeterministic choices in
a way that only depends on the past started in [16], where the setting is modeled by means
of tree automata for derived languages. It then continued by means of good for games (GFG)
automata [12].1 A nondeterministic automaton A over an alphabet Σ is GFG if there is a
strategy g that maps each finite word u ∈ Σ∗ to the transition to be taken after u is read;
and following g results in accepting all the words in the language of A. Note that a state q

of A may be reachable via different words, and g may suggest different transitions from q

after different words are read. Still, g depends only on the past, namely on the word read
so far. Obviously, there exist GFG automata: deterministic ones, or nondeterministic ones
that are determinizable by pruning (DBP); that is, ones that just add transitions on top of a
deterministic automaton. In fact, the GFG automata constructed in [12] are DBP.2 Beyond
the theoretical interest in DBP automata, they are used for modelling online algorithms: by
relating the “unbounded look ahead” of optimal offline algorithms with nondeterminism, and
relating the “no look ahead” of online algorithms with determinism, it is possible to reduce
questions about the competitive ratio of online algorithms and the memory they require to
questions about DBPness [2, 3].

In terms of expressive power, it is shown in [16, 24] that GFG-NXWs, for X ∈ {B, C}, are as
expressive as DXWs. For automata on finite words, GFG-NFWs are always DBP [16, 22]. For
automata on infinite words, GFG-NBWs and GFG-NCWs need not be DBP [5]. Moreover, the
best known determinization construction for GFG-NBWs is quadratic, and determinization
of GFG-NCWs has a tight exponential blow-up [14]. Thus, GFG automata on infinite words
are (possibly even exponentially) more succinct than deterministic ones. Further research
studies characterization, typeness, complementation, and further constructions and decision
procedures for GFG automata [14, 7, 4], as well as an extension of the GFG setting to
pushdown ω-automata [20] and to alternating automata [8, 6].

A nondeterministic automaton is semantically deterministic (SD, for short) if its non-
deterministic choices lead to states with the same language. Thus, for every state q of the
automaton and letter σ ∈ Σ, all the σ-successors of q have the same language. Beyond the
fact that semantically determinism is a natural relaxation of determinism, and thus deserves
consideration, SD automata naturally arise in the setting of GFG automata. Indeed, though
not all GFG automata are DBP, it is not hard to see that they can all be pruned to an
SD automaton [14]. Moreover, such a pruning can be done in polynomial time, and so we
assume, without loss of generality, that all GFG automata are SD. Thus, SD can be thought
also as a natural relaxation of GFG.

Thus, we obtain the following hierarchy, from deterministic to nondeterministic automata,
where each level is a special case of the levels to its right.

1 GFGness is also used in [11] in the framework of cost functions under the name “history-determinism”.
2 As explained in [12], the fact that the GFG automata constructed there are DBP does not contradict their

usefulness in practice, as their transition relation is simpler than the one of the embodied deterministic
automaton and it can be defined symbolically.
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For automata on finite words, all levels of the hierarchy coincide in their expressive power.
In fact, the three internal levels coincide already in the syntactic sense: every SD-NFW is
DBP. Also, given an NFW, deciding whether it is SD, GFG or DBP, can each be done in
polynomial time [2].

For Büchi and co-Büchi automata, the picture is less clear, and is the subject of our
research. Before we describe our results, let us mention that an orthogonal level of determinism
is that of unambiguous automata, namely automata that have a single accepting run on each
word in their languages. An unambiguous NFW need not be SD, and a DBP-NFW need not
be unambiguous. It is known, however, that a GFG unambiguous NFW, NCW, or NBW, is
DBP [7].

We study the following aspect and questions about the hierarchy.

Strictness. Recall that not all GFG-NBWs and GFG-NCWs are DBP [5], and examples for
this include also SD automata. On the other hand, all GFG-NWWs (in fact, all GFG-NXWs
whose language can be recognized by a DWW) are DBP [7]. We show that SD-NXWs need
not be GFG for all X ∈ {B, C, W}. Of special interest is our result on weak automata, whose
properties typically agree with these of automata on finite words. Here, while all SD-NFWs
are GFG, this is not the case for SD-NWWs.

Expressive power. It is known that for all X ∈ {B, C, W}, GFG-NXWs are as expressive as
DXWs. We extend this result to semantic determinism and show that while SD-NXWs need
not be GFG, they are not more expressive, thus SD-NXWs are as expressive as DXWs. Since
an SD-NXW need not be GFG, this extends the known frontier of nondeterministic Büchi
and weak automata that are not more expressive than their deterministic counterpart.

Deciding the determinization level of an automaton. It is already known that deciding
the GFGness of a given NXW, for X ∈ {B, C, W}, can be done in polynomial time [2, 14, 4].
On the other hand, deciding whether a given NCW is DBP is NP-complete [13]. We complete
the picture in three directions. First, we show that NP-completeness of deciding DBPness
applies also to NBWs. Second, we show that in both cases, hardness applies even when the
given automaton is GFG. Thus, while it took the community some time to get convinced
that not all GFG automata are DBP, in fact it is NP-complete to decide whether a given
GFG-NBW or GFG-NCW is DBP. Third, we study also the problem of deciding whether
a given NXW is SD, and show that it is PSPACE-complete. Note that our results imply
that the nondeterminism hierarchy is not monotone with respect to complexity: deciding
DBPness, which is closest to determinism, is NP-complete, then GFGness can be checked in
polynomial time, and finally SDness is PSPACE-complete. Also, as PSPACE-hardness of
checking SDness applies already to NWWs, we get another, even more surprising, difference
between weak automata and automata on finite words. Indeed, for NFWs, all the three levels
of nondeterminism coincide and SDness can be checked in polynomial time.

A probability-based analysis of the different levels. Consider a nondeterministic automaton
A. We say that A is almost-DBP if we can prune transitions from A and obtain a deterministic
automaton A′ such that the probability of a random word to be in L(A) \ L(A′) is 0. Thus,
while A′ need not accept all the words in L(A), it rejects only a negligible fragment of L(A).
Clearly, if A is DBP, then it is almost-DBP. A typical analysis of the performance of an
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on-line algorithm compares its performance with that of an off-line algorithm. The notion of
almost-DBPness captures cases where the on-line algorithm performs, with probability 1, as
good as the offline algorithm. We study the almost-DBPness of GFG and SD automata. We
show that while for Büchi (and hence also weak) automata, semantic determinism implies
almost-DBPness, thus every SD-NBW is almost-DBP, for co-Büchi automata semantic
determinism is not enough, and we need GFGness. Thus, there is an SD-NCW that is not
almost-DBP, yet all GFG-NCWs are almost-DBP.

2 Preliminaries

2.1 Automata
For a finite nonempty alphabet Σ, an infinite word w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence
of letters from Σ. A language L ⊆ Σω is a set of infinite words. For i, j ≥ 0, we use w[1, i] to
denote the (possibly empty) prefix σ1 · σ2 · · · σi of w, use w[i + 1, j] to denote the (possibly
empty) infix σi+1 · σi+2 · · · σj of w, and use w[i + 1, ∞] to denote its suffix σi+1 · σi+2 · · · .
We sometimes refer also to languages of finite words, namely subsets of Σ∗. We denote the
empty word by ϵ.

A nondeterministic automaton over infinite words is A = ⟨Σ, Q, q0, δ, α⟩, where Σ is an
alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×Σ → 2Q \∅ is a transition
function, and α is an acceptance condition, to be defined below. For states q and s and a
letter σ ∈ Σ, we say that s is a σ-successor of q if s ∈ δ(q, σ). Note that A is total, in the
sense that it has at least one successor for each state and letter. If |δ(q, σ)| = 1 for every
state q ∈ Q and letter σ ∈ Σ, then A is deterministic.

A run of A on w = σ1 · σ2 · · · ∈ Σω is an infinite sequence of states r = r0, r1, r2, . . . ∈ Qω,
such that r0 = q0, and for all i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1). We extend δ to sets of
states and finite words in the expected way. Thus, δ(S, u) is the set of states that A may
reach when it reads the word u ∈ Σ∗ from some state in S ∈ 2Q. Formally, δ : 2Q × Σ∗ → 2Q

is such that for every S ∈ 2Q, finite word u ∈ Σ∗, and letter σ ∈ Σ, we have that δ(S, ϵ) = S,
δ(S, σ) =

⋃
s∈S δ(s, σ), and δ(S, u · σ) = δ(δ(S, u), σ). The transition function δ induces a

transition relation ∆ ⊆ Q × Σ × Q, where for every two states q, s ∈ Q and letter σ ∈ Σ,
we have that ⟨q, σ, s⟩ ∈ ∆ iff s ∈ δ(q, σ). For a state q ∈ Q of A, we define Aq to be the
automaton obtained from A by setting the initial state to be q. Thus, Aq = ⟨Σ, Q, q, δ, α⟩.

The acceptance condition α determines which runs are “good”. We consider here the
Büchi and co-Büchi acceptance conditions, where α ⊆ Q is a subset of states. We use the
terms α-states and ᾱ-states to refer to states in α and in Q \ α, respectively. For a run r, let
inf (r) ⊆ Q be the set of states that r traverses infinitely often. Thus, inf (r) = {q ∈ Q : q =
ri for infinitely many i’s}. A run r of a Büchi automaton is accepting iff it visits states in α

infinitely often, thus inf (r) ∩ α ̸= ∅. Dually, a run r of a co-Büchi automaton is accepting iff
it visits states in α only finitely often, thus inf (r) ∩ α = ∅. A run that is not accepting is
rejecting. Note that as A is nondeterministic, it may have several runs on a word w. The
word w is accepted by A if there is an accepting run of A on w. The language of A, denoted
L(A), is the set of words that A accepts. Two automata are equivalent if their languages are
equivalent.

Consider a directed graph G = ⟨V, E⟩. A strongly connected set in G (SCS, for short) is a
set C ⊆ V such that for every two vertices v, v′ ∈ C, there is a path from v to v′. A SCS is
maximal if it is maximal w.r.t containment, that is, for every non-empty set C ′ ⊆ V \ C, it
holds that C ∪ C ′ is not a SCS. The maximal strongly connected sets are also termed strongly
connected components (SCCs, for short). The SCC graph of G is the graph defined over the
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SCCs of G, where there is an edge from an SCC C to another SCC C ′ iff there are two
vertices v ∈ C and v′ ∈ C ′ with ⟨v, v′⟩ ∈ E. A SCC is ergodic iff it has no outgoing edges in
the SCC graph.

An automaton A = ⟨Σ, Q, q0, δ, α⟩ induces a directed graph GA = ⟨Q, E⟩, where ⟨q, q′⟩ ∈
E iff there is a letter σ ∈ Σ such that ⟨q, σ, q′⟩ ∈ ∆. The SCSs and SCCs of A are those of
GA. The α-free SCCs of A are the SCCs of A that do not contain states from α.

A Büchi automaton A is weak [23] if for each SCC C in GA, either C ⊆ α (in which
case we say that C is an accepting SCC) or C ∩ α = ∅ (in which case we say that C is a
rejecting SCC). Note that a weak automaton can be viewed as both a Büchi and a co-Büchi
automaton, as a run of A visits α infinitely often, iff it gets trapped in an accepting SCC, iff
it visits states in Q \ α only finitely often.

We denote the different classes of automata by three-letter acronyms in {D, N} ×
{F, B, C, W} × {W}. The first letter stands for the branching mode of the automaton
(deterministic or nondeterministic); the second for the acceptance condition type (finite,
Büchi, co-Büchi or weak); and the third indicates that we consider automata on words. For
example, NBWs are nondeterministic Büchi word automata.

2.2 Probability
Consider the probability space (Σω,P) where each word w = σ1 · σ2 · σ3 · · · ∈ Σω is drawn by
taking the σi’s to be independent and identically distributed Unif(Σ). Thus. for all positions
i ≥ 1 and letters σ ∈ Σ, the probability that σi is σ is 1

|Σ| . Let A = ⟨Σ, Q, q0, δ, α⟩ be a
determnistic automaton, and let GA = ⟨Q, E⟩ be its induced directed graph. A random walk
on A, is a random walk on GA with the probability matrix P (q, p) = |{σ∈Σ:⟨q,σ,p⟩∈∆}|

|Σ| . It
is not hard to see that P(L(A)) is precisely the probability that a random walk on A is
an accepting run. Note that with probability 1, a random walk on A reaches an ergodic
SCC C ⊆ Q, where it visits all states infinitely often. It follows that P(L(A)) equals the
probability that a random walk on A reaches an ergodic accepting SCC.

2.3 Automata with Some Nondeterminism
Consider a nondeterministic automaton A = ⟨Σ, Q, q0, δ, α⟩. We say that two states q, s ∈ Q

are equivalent, denoted q ∼A s, if L(Aq) = L(As). Then, A is semantically deterministic
(SD, for short) if different nondeterministic choices in A lead to equivalent states. Thus, for
every state q ∈ Q and letter σ ∈ Σ, all the σ-successors of q are equivalent: for every two
states s, s′ ∈ δ(q, σ), we have that s ∼A s′.

An automaton A is good for games (GFG, for short) if its nondeterminism can be resolved
based on the past, thus on the prefix of the input word read so far. Formally, A is GFG if
there exists a strategy f : Σ∗ → Q such that the following hold:
1. The strategy f is consistent with the transition function. That is, f(ϵ) = q0, and for

every finite word u ∈ Σ∗ and letter σ ∈ Σ, we have that ⟨f(u), σ, f(u · σ)⟩ ∈ ∆.
2. Following f causes A to accept all the words in its language. That is, for every infinite

word w = σ1 · σ2 · · · ∈ Σω, if w ∈ L(A), then the run f(w[1, 0]), f(w[1, 1]), f(w[1, 2]), . . .,
which we denote by f(w), is an accepting run of A on w.

We say that the strategy f witnesses A’s GFGness. For an automaton A, we say that a
state q of A is GFG if Aq is GFG. Note that every deterministic automaton is GFG. Also,
every GFG automaton can be made SD. Indeed, removal of transitions that are not used
by a strategy that witnesses A’s GFGness does not reduce the language of A and results in
an SD automaton. Moreover, by [14, 4], the detection of such transitions can be done in
polynomial time.
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We say that a nondeterministic automaton A is determinizable by prunning (DBP) if
we can remove some of the transitions of A and get a deterministic automaton A′ that
recognizes L(A). We then say that A′ is a deterministic pruning of A. Note that every
DBP nondeterministic automaton is GFG. Indeed, the deterministic pruning of A induces a
witness strategy.

3 The Different Levels and Their Expressive Power

In this section we study syntactic and semantic hierarchies induced by the different levels
of nondeterminism. For two classes C1 and C2 of automata, we use C1 ⪯ C2 to indicate that
every automaton in C1 is also in C2. Accordingly, C1 ≺ C2 if C1 ⪯ C2 yet there are automata
in C2 that are not in C1. We first show that the nondeterminism hierarchy is strict, except
for all GFG-NWWs being DBP. The latter is not surprising, as all GFG-NFWs are DBP. On
the other hand, unlike the case of finite words, we show that not all SD-NWWs are GFG. In
fact the result holds already for NWWs that accept co-safety languages, namely all whose
states except for an accepting sink are rejecting.

▶ Theorem 1 (Syntactic Hierarchy). For X ∈ {B, C, W}, we have that DXW ≺ DBP-NXW
⪯ GFG-NXW ≺ SD-NXW ≺ NXW. For X ∈ {B, C}, the second inequality is strict.

Proof. By definition, each class is a special case of the one to its right. We prove strictness.
It is easy to see that the first and last strict inequalities hold. Indeed, for all X ∈ {B, C, W},
consider a nonempty DXW A, and obtain an NXW B by adding to A a σ-transition from
the initial state to a new rejecting state, for a letter σ such that A accepts some word that
starts with σ. Then, B is a DBP-NXW that is not a DXW. Also, as at least one σ-successor
of the initial state of A is not empty, B is an NXW that is not a SD-NXW.

The relation between DBPness and GFGness has already been studied. It is shown in [5]
that GFG-NXW need not be DBP for X ∈ {B, C}, and shown in [7] that GFG-NWW are
DBP. It is left to relate GFGness and SDness. Consider the NWW W in Figure 1. It is
not hard to check that W is indeed weak, it is SD, as all its states recognize the language
{a, b}ω, yet is not GFG, as every strategy has a word with which it does not reach qacc – a
word that forces each visit in qa and qb to be followed by a visit in q0.

W:

q0

qb

qa

qacc

a

b

a

b

a, b

a

b

b

a

W ′
:

q0

qb

qa

qacc

a

b

a, b

a

b

b

a

Figure 1 An SD-NWW that is not GFG.

Hence GFG-NWW ≺ SD-NWW. As weak automata are a special case of Büchi and
co-Büchi, strictness for them follows. ◀

We continue to study expressive power. Now, for two classes C1 and C2 of automata, we
say that C1 is less expressive than C2, denoted C1 ≤ C2, if every automaton in C1 has an
equivalent automaton in C2. Since NCW=DCW, we expect the hierarchy to be strict only in
the cases of Büchi and weak automata. As we now show, however, semantically deterministic
automata are not more expressive than deterministic ones also in the case of Büchi and weak
auotmata.
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▶ Theorem 2 (Expressiveness Hierarchy). For X ∈ {B, W }, we have that DXW = DBP-NXW
= GFG-NXW = SD-NXW < NXW.

Proof. In [16, 14], the authors suggest variants of the subset construction that determinize
GFG-NBWs. As we argue below, the construction in [14] is correct also when applied to
SD-NBWs. Moreover, it preserves weakness. Thus, DBW=SD-NBW and DWW=SD-NWW.
Also, the last inequality follows from the fact DBW<NBW and DWW<NWW [19].

Given an NBW A = ⟨Σ, Q, q0, δ, α⟩, the DBW generated in [14]3 is A′ = ⟨Σ, Q′, q′
0, δ′, α′⟩,

where Q′ = 2Q, q′
0 = {q0}, α′ = {S ∈ 2Q : S ⊆ α}, and the transition function δ′ is defined

for every subset S ∈ 2Q and letter σ ∈ Σ as follows. If δ(S, σ)∩α = ∅, then δ′(S, σ) = δ(S, σ).
Otherwise, namely if δ(S, σ) ∩ α ̸= ∅, then δ′(S, σ) = δ(S, σ) ∩ α.

The key observation about the correctness of the construction is that when A is an
SD-NBW, then for all reachable states S of A′, we have that q ∼A q′ for all states q, q′ ∈ S.
Indeed, if A is SD, then for every two states q, q′ ∈ Q, letter σ ∈ Σ, and transitions
⟨q, σ, s⟩, ⟨q′, σ, s′⟩ ∈ ∆, if q ∼A q′, then s ∼A s′. Also, by the definition of δ′, every reachable
state S of A′ contains only α-states or only ᾱ-states. As we formally prove in Appendix A,
these properties guarantee that indeed L(A′) = L(A) and that weakness of A is maintained
in A′. ◀

4 Deciding the Nondeterminism Level of an Automaton

In this section we study the complexity of the problem of deciding the nondeterminism level
of a given automaton. Note we refer here to the syntactic class (e.g., deciding whether a
given NBW is GFG) and not to the semantic one (e.g., deciding whether a given NBW has
an equivalent GFG-NBW). Indeed, by Theorem 2, the latter boils down to deciding whether
the language of a given NXW can be recognized by a DXW, which is well known: the answer
is always “yes” for an NCW, and the problem is PSPACE-complete for NBWs and NWWs
[17].4

Our results are summarized in Table 1. The entries there describe both the case in which
the given automaton is a general NXW, and the case in which the given automaton is an
NXW that belongs to a level, that is one level to the right of the questioned one (for example,
deciding DBPness of a GFG automaton). In fact, the complexity of the two cases coincide,
with one exception: deciding whether a given NWW is DBP, which is PTIME in general,
and is O(1) when the given NWW is GFG, in which case the answer is always “yes”.

▶ Theorem 3. Deciding whether an NXW is semantically deterministic is PSPACE-complete,
for X ∈ {B, C, W}.

Proof. Membership in PSPACE is easy, as we check SDness by polynomially many checks of
language equivalence. Formally, given an NXW A = ⟨Σ, Q, q0, δ, α⟩, a PSPACE algorithm
goes over all states q ∈ Q, letters σ, and σ-successors s and s′ of q, and checks that s ∼A s′.
Since language equivalence can be checked in PSPACE [28] and there are polynomially many
checks to perform, we are done.

3 The construction in [14] assumes automata with transition-based acceptance, and (regardless of this) is
slightly different: when α is visited, A′ continues with a single state from the set of successors. The key
point, however, is the same: A being SD enables A′ to maintain only subsets of states, rather than
Safra trees, which makes determinization much easier.

4 The proof in [17] is for NBWs, yet the arguments there apply also for weak automata.
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Table 1 Deciding the level of an NXW. The results are valid also in the case the given NXW is
one level to the right in the nondeterminism hierarchy. Two exceptions are the cases of deciding the
DBPness of a GFG NCW and GFG NWW, where the results are specified in ( ).

DBP GFG SD

NBW NP-complete PTIME PSPACE-complete
Th. 4 [4] Th. 3

NCW NP-complete PTIME PSPACE-complete
[13] (Th. 8) [14] Th. 3

NWW PTIME (O(1)) PTIME PSPACE-complete
[14, 4]([7]) [14, 4] Th. 3

Proving PSPACE-hardness, we do a reduction from polynomial-space Turing machines.
Given a Turing machine T with space complexity s : N → N, we construct in time polynomial
in |T | and s(0), an NWW A of size linear in T and s(0), such that A is SD iff T accepts the
empty tape5. Clearly, this implies a lower bound also for NBWs and NCWs. Let n0 = s(0).
Thus, each configuration in the computation of T on the empty tape uses at most n0 cells.
We assume, without loss of generality, that once T reaches a final (accepting or rejecting)
state, it erases the tape, moves with its reading head to the leftmost cell, and moves to the
initial state. Thus, all computations of T are infinite and after visiting a final configuration
for the first time, they consists of repeating the same finite computation on the empty tape
that uses n0 tape cells.

We define A so that it accepts a word w iff (C1) w is not a suffix of an encoding of a
legal computation of T that uses at most n0 cells, or (C2) w includes an encoding of the
initial configuration of T on the empty tape and the final configuration after it, is accepting.

It is not hard to see that if T accepts the empty tape, then A is universal (that is, accepts
all words). Indeed, each word w is either not a suffix of an encoding of a legal computation
of T that uses at most n0 cells, in which case w is accepted thanks to C1. Otherwise, the
encoding of the computation of T on the empty tape is a subword of w, in which case w

eventually includes an encoding of the initial configuration of T on the empty tape, and the
final configuration after it is accepting, and thus w is accepted thanks to C2. Also, if T

rejects the empty tape, then A rejects the word that encodes the computation of T on the
empty tape. Indeed, C1 is not satisfied, and since every encoding of the initial configuration
is followed by an encoding of the rejecting computation of T , the final configuration after it
is rejecting, and so C2 is not satisfied too.

In order to define A so that it is SD iff T accepts the empty tape, we define all its states
to be universal iff T accepts the empty tape. Intuitively, we do it by letting A guess and
check the existence of an infix that witnesses satisfaction of C1 or C2, and also let it, at each
point of its operation, go back to the initial state, where it can guess again. Note that when
T accepts the empty tape, all the suffixes of a word w satisfy C1 or C2. Thus, A making a
bad guess does not prevent it from later branching into an accepting run.

5 This is sufficient, as one can define a generic reduction from every language L in PSPACE as follows.
Let TL be a Turing machine that decides L in polynomial space f(n). On input w for the reduction,
the reduction considers the machine Tw that on every input, first erases the tape, writes w on its tape,
and then runs as TL on w. Then, the reduction outputs an automaton A, such that Tw accepts the
empty tape iff A is SD. Note that the space complexity of Tw is s(n) = max(n, f(|w|)), and that w is
in L iff Tw accepts the empty tape. Since A is constructed in time polynomial in s(0) = f(|w|) and
|Tw| = poly(|w|), it follows that the reduction is polynomial in |w|.
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We now describe the operation of A in more detail (see Figure 2).

wait for violation

wait for initial configuration wait for  before 

guess C1 success (C1)

retry

look for C1 or C2

retry

retry

found initial

success (C2)

found C1 or C2

Figure 2 The structure of the NWW constructed in Theorem 3.

In its initial state, A guesses which of C1 and C2 is satisfied. In case A guesses that C1 is
satisfied, it guesses the place in which w includes a violation of the encoding. As we detail in
Appendix B, this amounts to guessing a violation of the transition function of T : in each step,
A may guess that the next three letters encode a position in a configuration and the letter to
come n0 letters later, namely at the same position in the successive configuration, is different
from the one that should appear in a legal encoding of two successive configurations. If a
violation is detected, A moves to an accepting sink. Otherwise, A returns to the initial state
and w gets another chance to be accepted. In case A guesses that C2 is satisfied, it guesses
the place in which w encodes an initial configuration. If A guesses a position of an initial
configuration, but the guess fails, then A goes back to the initial state. If the guess succeeds,
A waits for an accepting configuration of T . If an accepting configuration arrives before a
rejecting one, then A moves to an accepting sink. Otherwise, if a rejecting configuration
arrives before an accepting one, then A returns to the initial state. Also, whenever A waits
to witness some behavior, namely, waits to guess a position of an initial state, waits to guess
a position of a violation, or waits to see a final configuration, it may nondeterministically,
upon reading the next letter, return to the initial state. It is not hard to see that A can be
defined in size linear in T and n0. As the only accepting states of A is the accepting sink, it
is clearly weak, and in fact describes a co-safety language.

We prove that T accepts the empty tape iff A is SD. First, if T rejects the empty tape,
then A is not SD. To see this, consider the word wε that encodes the computation of T on the
empty tape, and let w′

ε be a word that is obtained from wε by making a single violation in the
first letter. That is, w′

ε[2, ∞] = wε[2, ∞], and w′
ε[1, 1] ̸= wε[1, 1]. Note that w′

ε ∈ L(A) since
it has a violation. Note also that any proper suffix of w′

ε encodes a suffix of a computation
of T that uses at most n0 tape cells and does not have of a final accepting configuration, and
hence is not in L(A). Consequently, the word w′

ε can be accepted by A only by guessing a
violation that is caused by the first letter. In particular, if we guess to wait for the initial
configuration upon reading the first letter, then we cannot branch to an accepting run. This
shows that A is not SD. For the other direction, we show that if T accepts the empty tape,
then all the states of A are universal. First, note that each infinite word w is either not a
suffix of a legal encoding of a computation of T that uses at most n0 tape cells, in which
case it is in the language of A by C1, or it is a suffix of a legal encoding of a computation
that uses only n0 tapes cells, and is eventually an encoding of the computation of T on the
empty tape, in which case, as T accepts the empty tape, w is in the language of A according
to C2. Thus, the initial state of A is universal. Now by the definition of A, for every infinite
word w and for all states q of A that are not the accepting sink, there is a path from q to
the initial state that is labeled by a prefix of w. Thus, the language of all states is universal,
and they are all equivalent. This clearly implies that A is SD.
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Thus, we conclude that T accepts the empty tape iff A is SD. In Appendix B, we give
the full technical details of the construction of A. ◀

▶ Theorem 4. The problem of deciding whether a given GFG-NBW is DBP is NP-complete.

Proof. For membership in NP, observe we can check that a witness deterministic pruning A′

is equivalent to A by checking whether L(A) ⊆ L(A′). Since A′ is deterministic, the latter
can be checked in polynomial time. For NP-hardness, we describe a parsimonious polynomial
time reduction from SAT. That is, given a CNF formula φ, we construct a GFG-NBW Aφ

such that there is a bijection between assignments to the variables of φ and DBWs embodied
in Aφ, and an assignment satisfies φ iff its corresponding embodied DBW is equivalent to
Aφ. In particular, φ is satisfiable iff Aφ is DBP.

Consider a SAT instance φ over the variable set X = {x1, . . . , xn} and with m ≥ 1 clauses
C = {c1, . . . , cm}. For n ≥ 1, let [n] = {1, 2, . . . , n}. For a variable xk ∈ X, let C0

k ⊆ C be
the set of clauses in which xk appears negatively, and let C1

k ⊆ C be the set of clauses in
which xk appears positively. For example, if c1 = x1 ∨ ¬x2 ∨ x3, then c1 is in C1

1 , C0
2 , and

C1
3 . Assume that all clauses depend on at least two different variables (that is, no clause

is a tautology or forces an assignment to a single variable). Let Σn,m = X ∪ C, and let
Rn,m = (X · C)∗ · {x1 · cj · x2 · cj · · · xn · cj : j ∈ [m]} ⊆ Σ∗

n,m. We construct a GFG-NBW
Aφ that recognizes Ln,m = (Rn,m)ω, and is DBP iff φ is satisfiable.

Let Dn,m be a DFW that recognizes Rn,m with O(n · m) states, a single accepting state
p, and an initial state q0 that is visited only once in all runs. For example, we can define
Dn,m = ⟨Σn,m, Qn,m, q0, δn,m, {p}⟩ as follows: from q0, the DFW expects to read only words
in (X ·C)∗ – upon a violation of this pattern, it goes to a rejecting sink. Now, if the pattern is
respected, then with X \ {x1}, the DFW goes to two states where it loops with C · (X \ {x1})
and, upon reading x1 from all states that expect to see letters in X, it branches with each cj ,
for all j ∈ [m], to a path where it hopes to detect an x2 · cj · · · xn · cj suffix. If the detection is
completed successfully, it goes to the accepting state p. Otherwise, it returns to the two-state
loop.

Now, we define Aφ = ⟨Σn,m, Qφ, p, δφ, {q0}⟩, where Qφ = Qn,m∪{qi
k : (i, k) ∈ {0, 1}×[n]}.

The idea behind Aφ is as follows. From state p (that is, the accepting state of Dn,m, which
is now the initial state of Aφ), the NBW Aφ expects to read a letter in X. When it reads
xk, for 1 ≤ k ≤ n, it nondeterministically branches to the states q0

k and q1
k. Intuitively, when

it branches to q0
k, it guesses that the clause that comes next is one that is satisfied when

xk = 0, namely a clause in C0
k . Likewise, when it branches to q1

k, it guesses that the clause
that comes next is one that is satisfied when xk = 1, namely a clause in C1

k . When the guess
is successful, Aφ moves to the α-state q0. When the guess is not successful, it returns to
p. Implementing the above intuition, transitions from the states Qn,m \ {p} are inherited
from Dn,m, and transitions from the states in {qi

k : (i, k) ∈ {0, 1} × [n]} ∪ {p} are defined as
follows (see also Figure 3).

For all k ∈ [n], we have that δφ(p, xk) = {q0
k, q1

k}.
For all k ∈ [n], i ∈ {0, 1}, and j ∈ [m], if cj ∈ Ci

k, then δφ(qi
k, cj) = {q0}. Otherwise,

δφ(qi
k, cj) = {p}. For example, if c1 = x1 ∨ ¬x2 ∨ x3, then δφ(q0

2 , c1) = {q0} and
δφ(q1

2 , c1) = {p}.

Note that p is the only nondeterministic state of Aφ and that for every deterministic
pruning of Aφ, all the words in (X · C)ω have an infinite run in the pruned automaton. This
run, however, may eventually loop in {p} ∪ {q0

k, q1
k : k ∈ [n]}. Note also, that for readability

purposes, the automaton Aφ is not total. Specifically, the states of Aφ are partitioned into
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Dn,m

p

q0

q0k q1k

xk

C \ C0
k

C0
k

xk

C \ C1
k

C1
k

Figure 3 The transitions to and from the states q0
k and q1

k in Aφ.

states that expect to see letters in X and states that expect to see letters in C. In particular,
all infinite paths in Aφ are labeled by words in (X ·C)ω. Thus, when defining a GFG strategy
g for Aφ, we only need to define g on prefixes in (X · C)∗ ∪ (X · C)∗ · X.

In the following propositions, we prove that Aφ is a GFG NBW recognizing Ln,m, and
that Aφ is DBP iff φ is satisfiable. ◀

▶ Proposition 5. L(Aφ) ⊆ Ln,m.

Proof. As already mentioned, all infinite paths of Aφ, accepting or rejecting, are labeled by
words in (X · C)ω. Further, any accepting run of Aφ has infinitely many sub-runs that are
accepting finite runs of Dn,m. Since Ln,m = (Rn,m)ω = (X · C)ω ∩ (∞Rn,m), it follows that
L(Aφ) ⊆ Ln,m. ◀

▶ Proposition 6. There exists a strategy g : Σ∗ → Qφ for Aφ that accepts all words in
Ln,m. Formally, for all w ∈ Ln,m, the run g(w) = g(w[1, 0]), g(w[1, 1]), g(w[1, 2]), . . ., is an
accepting run of Aφ on w.

Proof. The definition of Ln,m is such that when reading a prefix that ends with a subword
of the form x1 · cj , for some j ∈ [m], then we can guess that the word continues with
x2 · cj · x3 · cj · · · xn · cj ; thus that cj is the clause that is going to repeat. Therefore, when we
are at state p after reading a word that ended with x1 · cj , and we read x2, it is a good GFG
strategy to move to a state qi

2 such that the assignment x2 = i satisfies cj (if such i ∈ {0, 1}
exists; otherwise the strategy can choose arbitrary between q0

2 and q1
2), and if the run gets

back to p, the strategy continues with assignments that hope to satisfy cj , until the run gets
to q0 or another occurrence of x1 is detected. Note that while it is not guaranteed that for
all k ∈ [n] there is i ∈ {0, 1} such that the assignment xk = i satisfies cj , it is guaranteed
that such an i exists for at least two different k’s (we assume that all clauses depend on at
least two variables). Thus, even though we a priori miss an opportunity to satisfy cj with
an assignment to x1, it is guaranteed that there is another 2 ≤ k ≤ n such that cj can be
satisfied by xk.

We define g inductively as follows. Recall that Aφ is nondeterministic only in the state p,
and so in all other states, the strategy g follows the only possible transition. First, for all
k ∈ [n], we define g(xk) = q0

k. Let v ∈ (X · C)∗ · X, be such that g has already been defined
on v and let j ∈ [m]. Since v /∈ (X · C)∗, we have that g(v) ̸= p and so g(v · cj) is uniquely
defined. We continue and define g on u = v · cj · xk, for all k ∈ [n]. If g(v · cj) ̸= p, then g(u)
is uniquely defined. Otherwise, g(v · cj) = p and we define g(u) as follows,

If k = 1, then we define g(u) = q0
1 .

If k > 1 and xk participates in cj , then we define g(u) = qi
k, where i ∈ {0, 1} is minimal

with cj ∈ Ci
k. That is, i is the minimal assignment to xk that satisfies cj .

If k > 1 and xk does not participate in cj , then the value of cj is not affected by the
assignment to xk, and in that case we define g(u) = q0

k.
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The reason for the distinction between the cases k = 1 and k > 1 is that when we see a finite
word that ended with cj · x1, then there is no special reason to hope that the next letter is
going to be cj . This is in contrast, for example, to the case we have seen a word that ends
with cj′ · x1 · cj · x2, where it is worthwhile to guess we are about to see cj as the next letter.

By the definition of g, it is consistent with ∆φ. In Appendix C we formally prove that
g is a winning GFG strategy for Aφ. Namely, that for all w ∈ Ln,m, the run g(w) on w,
generated by g is accepting. ◀

We now examine the relation between prunings of Aφ and assignments to φ. Consider an
assignment i1, . . . , in ∈ {0, 1}, for X. I.e., xk = ik for all k ∈ [n]. Then a possible memoryless
GFG strategy, is to always move from p to qik

k when reading xk. This in fact, describes
a one to one correspondence, between assignments and prunings of Aφ. Assume that the
assignment ik ∈ {0, 1}, for k ∈ [n], satisfies φ, then the corresponding pruning recognizes
Ln,m. Indeed, instead of trying to satisfy the last read clause cj , we may ignore this extra
information, and rely on the fact that one of the assignments xk = ik is going to satisfy cj .
In other words, the satisfiability of φ allows us to ignore the history and still accept all words
in Ln,m, which makes Aφ DBP. On the other hand, if an assignment does not satisfy some
clause cj , then the corresponding pruning will fail to accept the word (x1 · cj · · · xn · cj)ω,
which shows that if φ is not satisfiable then Aφ is not DBP. In Appendix C we formally
prove that there is a one to one correspondence between prunings of Aφ and assignments to
φ, and that an assignment satisfies φ iff the corresponding pruning recognizes Ln,m, implying
Proposition 7.

▶ Proposition 7. The formula φ is satisfiable iff the GFG-NBW Aφ is DBP.

We continue to co-Büchi automata. In [13], the authors prove that deciding the DBPness
of a given NCW is NP-complete. For the lower bound, they describe a reduction from the
Hamiltonian-cycle problem. Essentially, given a connected graph G = ⟨[n], E⟩, the reduction
outputs an NCW AG over the alphabet [n] that is obtained from G by adding self loops to
all vertices, labelling the loop at a vertex i by the letter i, and labelling the edges from vertex
i to all its neighbours in G by every letter j ̸= i. Then, the co-Büchi condition requires a
run to eventually get stuck at a self-loop6. Accordingly, L(AG) = [n]∗ ·

⋃
i∈[n] iω.

It is not hard to see that AG is GFG. Indeed, a GFG strategy can decide to which
neighbour of i to proceed with a letter j ̸= i by following a cycle c that traverses all the
vertices of the graph G. Since when we read j ̸= i at vertex i we move to a neighbour state,
then by following the cycle c upon reading iω, we eventually reach the vertex i and get stuck
at the i-labeled loop. Thus, the NP-hardness result of [13] apply already for GFG-NCWs,
and we can conclude with the following.

▶ Theorem 8. The problem of deciding whether a given GFG-NCW is DBP is NP-complete.

5 A probability-Based Analysis of the Different Levels

Consider a nondeterministic automaton A. We say that A is almost-DBP if there is a
deterministic pruning A′ of A such that P(L(A) \ L(A′)) = 0. Thus, while A′ need not
accept all the words accepted by A, it rejects only a negligible set of words in L(A). Clearly,
if A is DBP, then it is almost-DBP. In this section we study the almost-DBPness of GFG

6 The exact reduction is more complicated and involves an additional letter # that forces each deterministic
pruning of AG to proceed to the same neighbour of i upon reading a letter j ̸= i from the vertex i.
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and SD automata. We show that while for Büchi (and hence also weak) automata, semantic
determinism implies almost-DBPness, thus every SD-NBW is almost-DBP, for co-Büchi
automata semantic determinism is not enough, and we need GFGness. Thus, there is an
SD-NCW that is not almost-DBP, yet all GFG-NCWs are almost-DBP.

We first show that, unsurprisingly, not all NBWs are almost-DBP.

▶ Theorem 9. There is an NBW that is not almost-DBP.

Proof. Consider the NBW A1 in Figure 4. It is not hard to see that L(A1) = {a, b}ω, and
so P(L(A1)) = 1. Moreover, every deterministic pruning of A1 is such that qrej is reachable
from all states, which implies that {qrej} is the only ergodic SCC of any pruning. Since
{qrej} is α-free, it follows that every deterministic pruning of A1 recognizes a language of
measure zero, and hence A1 is not almost-DBP. As an example, consider the deterministic
pruning A′

1 described on the right hand side of Figure 4. The only ergodic SCC of A′
1 is

α-free, and as such P(L(A′
1)) = 0. ◀

A1:

q0

qa

qb

qrej
a

b

a

b

a, b

a

b

b

a

A′

1:

q0

qa

qb

qrej
a

b

a, b

a

b

b

a

Figure 4 An NBW that is not almost-DBP.

We continue to the positive result about Büchi automata. Consider an NBW A =
⟨Σ, Q, q0, δ, α⟩. We define a simple stochastic Büchi game GA as follows.7 The game is played
between Random and Eve. The positions of Random are Q, these of Eve are Q × Σ. The
game starts from position q0. A round in the game starts at some position q ∈ Q and
proceeds as follows.
1. Random picks a letter σ ∈ Σ uniformly, and the game moves to position (q, σ).
2. Eve picks a transition (q, σ, p) ∈ ∆, and the game moves to position p.

A probabilistic strategy for Eve is f : (Q × Σ)+ → [0, 1]Q, where for all histories
x ∈ (Q × Σ)∗ and positions of Eve (q, σ) ∈ Q × Σ, the function d = f(x · (q, σ)) : Q → [0, 1],
is a distribution on Q such that d(p) ̸= 0 implies that p ∈ δ(q, σ). As usual, we say that a
strategy f is memoryless, if it depends only on the current position, thus for all histories
x, y ∈ (Q × Σ)∗ and positions of Eve (q, σ) ∈ Q × Σ, it holds that f(x · (q, σ)) = f(y · (q, σ)).
A strategy for Eve is pure if for all histories x ∈ (Q × Σ)∗ and positions of Eve (q, σ) ∈ Q × Σ,
there is a position p ∈ δ(q, σ) such that f(x · (q, σ))(p) = 1. When Eve plays according to a
strategy f , the outcome of the game can be viewed as a run rf = q0

f , q1
f , q2

f , . . . in A, over a
random word wf ∈ Σω. (The word that is generated in a play is independent of the strategy
of Eve, but we use the notion wf to emphasize that we are considering the word that is
generated in a play where Eve plays according to f).

Let Qrej = {q ∈ Q : P(L(Aq)) = 0}. The outcome rf of the game is winning for Eve
iff rf is accepting, or rf visits Qrej . Note that for all positions q ∈ Qrej and p ∈ Q, if p is
reachable from q, then p ∈ Qrej . Hence, the winning condition can be defined by the Büchi

7 In [10] these games are called simple 1 1
2 -player games with Büchi winning objectives and almost-sure

winning criterion.
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objective α ∪ Qrej . Note that rf is winning for Eve iff inf(rf ) ⊆ Qrej or inf(rf ) ∩ α ≠ ∅. We
say that f is an almost-sure winning strategy, if rf is winning for Eve with probability 1,
and Eve almost-sure wins in GA if she has an almost-sure winning strategy.

▶ Theorem 10. All SD-NBWs are almost-DBP.

Proof. We first show that Eve has a probabilistic strategy to win GA with probability 1, even
without assuming that A is semantically deterministic. Consider the probabilistic strategy g

where from (q, σ), Eve picks one of the σ-successors of q uniformly by random. Note that
this strategy is memoryless, and hence the outcome of the game can be thought as a random
walk in A that starts at q0 and gives positive probabilities to all transitions. Thus, with
probability 1, the run rg is going to reach an ergodic SCC of A and visit all its states. If the
run rg reaches an α-free ergodic SCC, then inf(rg) ⊆ Qrej , and hence rg is then winning for
Eve. Otherwise, rg reaches a non α-free ergodic SCC, and with probability 1, it visits all the
states in that SCC. Thus, with probability 1, we have inf(rg) ∩ α ̸= 0, and rg is winning for
Eve. Overall, Eve wins GA with probability 1 when playing according to g.

Hence, by pure memoryless determinacy of simple stochastic parity games [10], we may
consider a pure memoryless winning strategy f for Eve in GA. We say that rf is correct
if wf ∈ L(A) implies that rf is accepting. Note that wf /∈ L(A) always implies that rf is
rejecting. We show that if A is SD, then rf is correct with probability 1, where f is a pure
memoryless winning strategy for Eve. Since f is pure memoryless, it induces a pruning of A.
Denote this pruning by Af . We may think of rf as a random walk in Af . With probability
1, the walk rf reaches an ergodic SCC C of Af , and visits all its states. Since f is a winning
strategy, we know that C ⊆ Qrej or C ∩ α ≠ ∅ with probability 1. If C ∩ α ≠ ∅, then
clearly rf is accepting with probability 1, and hence is correct with probability 1. Otherwise,
C ⊆ Qrej , but then we claim that wf ∈ L(A) with probability 0. For i ≥ 1, let wi

f be
the i-th letter of wf , and for i ≥ 0 let qi

f be the i-th state in rf . Then, by semantically
determinism, for all i ≥ 0, it holds that wf ∈ L(A) iff wf [i + 1, ∞] ∈ L(Aqi

f ). Moreover,
the word wf [i + 1, ∞] is independent of qi

f , and hence for all q ∈ Q and i ≥ 0, the event
wf [i + 1, ∞] ∈ L(Aq) is independent of qi

f . Thus, for all q ∈ Q and i ≥ 0, it holds that
P(wf ∈ L(A)|qi

f = q) = P(wf [i + 1, ∞] ∈ L(Aq)) = P(L(Aq)). Hence, by definition of Qrej ,
and by the fact that Qrej is finite, we have that P(wf ∈ L(A)|ri

f ∈ Qrej) = 0 for all i ≥ 0,
and so P(wf ∈ L(A)|rf visits Qrej) = 0. Overall, we showed that P(rf is correct) = 1.

Notice that P(L(A) \ L(Af )), is precisely the probability that a random word wf is
in L(A) but not accepted by Af . Namely, the probability that rf is not correct. Hence,
P(L(A) \ L(Af )) = 0, and A is almost-DBP. ◀

We continue to co-Büchi automata and show that unlike the case of Büchi, here semantic
determinism does not imply almost-DBPness.

▶ Theorem 11. There is an SD-NCW that is not almost-DBP.

Proof. Consider the NCW A2 in Figure 5. It is not hard to see that L(A2) = {a, b}ω,
and hence P(L(A2)) = 1. In fact all the states q of A2 have L(Aq

2) = {a, b}ω, and so it is
semantically deterministic. Moreover, every deterministic pruning of A2 is strongly connected
and not α-free. It follows that any deterministic pruning of A2 recognizes a language of
measure zero, and hence A2 is not almost-DBP. As an example, consider the deterministic
pruning A′

2 described on the right hand side of Figure 5. It is easy to see that A′
2 is strongly

connected and not α-free, and as such, P(L(A′
2)) = 0. ◀
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A2:

q0

qa

qb

p
a

b

a

b

a

b

a

b

a b

b a
A′

2:

q0

qa

qb

p
a

b

a

b

a b

b a

Figure 5 An SD-NCW that is not almost-DBP.

Consider a language L ⊆ Σω of infinite words. We say that a finite word x ∈ Σ∗ is a good
prefix for L if x · Σω ⊆ L. Then, L is a co-safety language if every word in L has a good
prefix [1]. Let co-safe(L) = {x · w ∈ Σω : x is a good prefix of L}. Clearly, co-safe(L) ⊆ L.
The other direction is not necessarily true. For example, if L ⊆ {a, b}ω is the set of all words
with infinitely many a’s, then co-safe(L) = ∅. In fact, co-safe(L) = L iff L is a co-safety
language. As we show now, when L is NCW-recognizable, we can relate L and co-safe(L) as
follows.

▶ Lemma 12. If L is NCW-recognizable, then P(L(A) \ co-safe(L(A))) = 0.

Proof. Consider an NCW-recognizable language L. Since NCW=DCW, there is a DCW
D that recognizes L(A). Assume without loss of generality that D has a single state q

with L(Aq) = Σω, in particular, C = {q} is the only ergodic α-free SCC of A. Then,
for every word w ∈ Σω, we have that w ∈ co-safe(L) iff the run of D on w reaches C.
Hence, the probability that w ∈ L(A) \ co-safe(L(A)) equals the probability that inf(r)
is α-free but is not an ergodic SCC of D. Since the later happens w.p 0, we have that
P(L(A) \ co-safe(L(A))) = 0. ◀

By Lemma 12, pruning an NCW in a way that would make it recognize co-safe(L(A))
results in a DCW that approximates A, and thus witnesses that A is almost-DBP. We now
show that for GFG-NCWs, such a pruning is possible, and conclude that GFG-NCWs are
almost-DBP.

▶ Theorem 13. All GFG-NCWs are almost-DBP.

Proof. Let A = ⟨Σ, Q, q0, δ, α⟩ be a GFG-NCW. Consider the NCW A′ = ⟨Σ, Q, q0, δ, α′⟩,
where α′ = α ∪ {q ∈ Q : L(Aq) ̸= Σω}. We prove that A′ is a GFG-NCW with L(A′) =
co-safe(L(A)). Consider a word w ∈ L(A′), and let r = q0, q1, q2, . . . be an accepting run of
A′ on w. There exists a prefix x ∈ Σ∗ of w such that r reaches some q /∈ α′ when reading x.
Hence L(Aq) = Σω, and so x · Σω ⊆ L(A). That is, x is a good prefix and w ∈ co-safe(L(A)).
Thus, L(A′) ⊆ co-safe(L(A)).

In order to see that A′ is GFG and that co-safe(L(A)) ⊆ L(A′), we consider a GFG
strategy f of A and use it as a strategy for A′. We need to prove that for all w ∈ co-safe(L(A)),
the run r that f generates on w eventually visits only states q /∈ α′. Since co-safe(L(A)) ⊆
L(A), we know that inf(r) ∩ α = ∅. It is left to show that r eventually visits only states
q ∈ Q with L(Aq) = Σω. Observe that if x ∈ Σ∗ is a good prefix of L(A), then for all y ∈ Σ∗,
we have that x · y is also a good prefix. Moreover, if x ∈ Σ∗ is a good prefix, then since f

is a GFG strategy, it follows that for all u ∈ Σω the run f(x · u) is accepting, and hence
u ∈ L(Af(x)). I.e, L(Af(x)) = Σω. Thus, w has only finitely many bad prefixes, and so
f(x) ∈ {q ∈ Q : L(Aq) ̸= Σω} for only finitely many prefixes x of w. That is, inf(r) ∩ α′ = ∅,
and f is a GFG strategy for A′.
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So, A′ is a GFG-NCW with L(A′) = co-safe(L(A)). Since co-safe(L(A)) is co-safe, it is
DWW-recognizable [27]. By [7], GFG-NCWs whose language is DWW-realizable are DBP. Let
δ′ be the restriction δ to a deterministic transition function such that D′ = ⟨Σ, Q, q0, δ′, α′⟩ is
a DCW with L(D′) = L(A′) = co-safe(L(A)). Consider now the DCW D = ⟨Σ, Q, q0, δ′, α⟩
that is obtained from D′ by replacing α′ with α. It is clear that D is a pruning of A. Note
that, α ⊆ α′, and hence co-safe(L(A)) = L(D′) ⊆ L(D). That is, D is a pruning of A that
approximates L(A) up to a negligible set, and A is almost-DBP. ◀
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A Determinization of a SD-NBW

Given an SD-NBW A = ⟨Σ, Q, q0, δ, α⟩, the DBW generated in [14] is A′ = ⟨Σ, Q′, q′
0, δ′, α′⟩,

where Q′ = 2Q, q′
0 = {q0}, α′ = {S ∈ 2Q : S ⊆ α}, and the transition function δ′ is defined

for every subset S ∈ 2Q and letter σ ∈ Σ as follows. If δ(S, σ)∩α = ∅, then δ′(S, σ) = δ(S, σ).
Otherwise, if δ(S, σ) ∩ α ̸= ∅, then δ′(S, σ) = δ(S, σ) ∩ α.

Thus, we proceed as the standard subset construction, except that whenever a constructed
set contains a state in α, we leave in the set only states in α. Accordingly, every reachable
state S ∈ Q′ contains only α-states of A or only ᾱ-states of A. Note that as A is SD, then
for every two states q, q′ ∈ Q, letter σ ∈ Σ, and transitions ⟨q, σ, s⟩, ⟨q′, σ, s′⟩ ∈ ∆, if q ∼A q′,
then s ∼A s′. Consequently, every reachable state S of A′ consists of A-equivalent states.
Without loss of generality, we restrict A′ to its reachable states.

The following two propositions follow immediately from the definitions:

▶ Proposition 14. Consider states q ∈ Q and S ∈ Q′, a letter σ ∈ Σ, and transitions
⟨q, σ, q′⟩ and ⟨S, σ, S′⟩ of A and A′, respectively. If q is A-equivalent to the states in S, then
q′ is A-equivalent to the states in S′.
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▶ Proposition 15. Consider a state S of A′ and a letter σ ∈ Σ. If ⟨S, σ, S′⟩ ∈ ∆′ and
S′ /∈ α′, then all the σ-successors of a state s ∈ S are in S′ \ α.

We can now prove the correctness of the construction:

▶ Proposition 16. The automata A and A′ are equivalent.

Proof. We first prove that L(A′) ⊆ L(A). Let rA′ = S0, S1, S2, . . . be an accepting run of A′

on a word w = σ1 · σ2 · · · . We construct an accepting run of A on w. Since rA′ is accepting,
there are infinitely many positions j1, j2, . . . with Sji ∈ α′. We also define j0 = 0. Consider
the DAG G = ⟨V, E⟩, where

V ⊆ Q × N is the union
⋃

i≥0(Sji
× {i}).

E ⊆
⋃

i≥0(Sji
×{i})×(Sji+1 ×{i+1}) is such that for all i ≥ 0, it holds that E(⟨s′, i⟩, ⟨s, i+

1⟩) iff there is a finite run from s′ to s over w[ji + 1, ji+1]. Then, we label this edge by
the run from s′ to s.

By the definition of A′, for every j ≥ 0 and state sj+1 ∈ Sj+1, there is a state sj ∈ Sj

such that ⟨sj , σj , sj+1⟩ ∈ ∆. Thus, it follows by induction that for every i ≥ 0 and state
si+1 ∈ Sji+1 , there is a state si ∈ Sji

such that there is a finite run from si to si+1 on
w[ji + 1, ji+1]. Thus, the DAG G has infinitely many reachable vertices from the vertex
⟨q0, 0⟩. Also, as the nondeterminism degree of A is finite, so is the branching degree of G.
Thus, by König’s Lemma, G includes an infinite path, and the labels along the edges of this
path define a run of A on w. Since for all i ≥ 1, the state Sji is in α′, and so all the states
in Sji

are in α, this run is accepting, and we are done.
For the other direction, assume that w = σ1 · σ2 · · · ∈ L(A), and let r = r0, r1, . . . be

an accepting run of A on w. Let S0, S1, S2 . . . be the run of A′ on w, and assume, by way
of contradiction, that there is a position j ≥ 0 such that Sj , Sj+1, . . . is an α-free run on
the suffix w[j + 1, ∞]. Then, an iterative application of Proposition 15 implies that all the
runs of a state sj ∈ Sj on w[j + 1, ∞] are α-free in A. Also, an iterative application of
Proposition 14 implies that rj ∼A sj , and since r is an accepting run of A, it holds that Asj

has an accepting run on w[j + 1, ∞], and we have reached a contradiction. ◀

It is left to prove that weakness of A is preserved in A′.

▶ Proposition 17. If A is an NWW, then A′ is a DWW.

Proof. Assume by way of contradiction that there are reachable states S ∈ α′ and S′ /∈ α′,
and an infinite run rA′ = S0, S1, S2, . . . that visits both S and S′ infinitely often. Recall that
a reachable state in Q′ contains only α-states of A or only ᾱ-states of A. Hence, S′ contains
only ᾱ-states of A.

As in the proof of Proposition 16, the run rA′ induces an infinite run rA = s0, s1, s2, . . .,
where for all positions j ≥ 0, it holds that sj ∈ Sj . Since the run rA′ visits S infinitely often,
then rA visits infinitely many α-states. Likewise, since rA′ visits S′ infinitely often, then rA
also visits infinitely many ᾱ-states. This contradicts the weakness of A, and we are done. ◀

B Details of the Reduction in Theorem 3

We describe the technical details of the construction of A. Let T = ⟨Γ, Q, →, q0, qacc, qrej⟩,
where Γ is the working alphabet, Q is the set of states, →⊆ Q × Γ × Q × Γ × {L, R} is the
transition relation (we use (q, a) → (q′, b, ∆) to indicate that when T is in state q and it
reads the input a in the current tape cell, it moves to state q′, writes b in the current tape
cell, and its reading head moves one cell to the left/right, according to ∆), q0 is the initial
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state, qacc is the accepting states, and qrej is the rejecting one. The transitions function →
is defined also for the final states qacc and qrej : when a computation of T reaches them, it
erases the tape, goes to the leftmost cell in the tape, and moves to the initial state q0. Recall
that s : N → N is the polynomial space function of T . Thus, when T runs on the empty tape,
it uses at most n0 = s(0) cells.

We encode a configuration of T on a word of length at most n0 by a word of the form
#γ1γ2 . . . (q, γi) . . . γn0 . That is, a configuration starts with #, and all its other letters are
in Γ, except for one letter in Q × Γ. The meaning of such a configuration is that the j’th
cell in T , for 1 ≤ j ≤ n0, is labeled γj , the reading head points at cell i, and T is in state q.
For example, the initial configuration of T is #(q0, b)b . . . b (with n0 − 1 occurrences of b’s)
where b stands for an empty cell. We can now encode a computation of T by a sequence of
configurations.

Let Σ = {#}∪Γ∪ (Q×Γ) and let #σ1 . . . σn0#σ′
1 . . . σ′

n0
be two successive configurations

of T . We also set σ0, σ′
0, and σn0+1 to #. For each triple ⟨σi−1, σi, σi+1⟩ with 1 ≤ i ≤ n0,

we know, by the transition relation of T , what σ′
i should be. In addition, the letter # should

repeat exactly every n0 + 1 letters. Let next(⟨σi−1, σi, σi+1⟩) denote our expectation for σ′
i.

That is,
next(⟨γi−1, γi, γi+1⟩) = next(⟨#, γi, γi+1⟩) = next(⟨γi−1, γi, #⟩) = γi.
next(⟨(q, γi−1), γi, γi+1⟩) = next(⟨(q, γi−1), γi, #⟩) ={

γi If (q, γi−1) → (q′, γ′
i−1, L)

(q′, γi) If (q, γi−1) → (q′, γ′
i−1, R)

next(⟨γi−1, (q, γi), γi+1⟩) = next(⟨#, (q, γi), γi+1⟩) =
next(⟨γi−1, (q, γi), #⟩) = γ′

i where (q, γi) → (q′, γ′
i, ∆) 8.

next(⟨γi−1, γi, (q, γi+1)⟩) = next(⟨#, γi, (q, γi+1)⟩) ={
γi If (q, γi+1) → (q′, γ′

i+1, R)
(q′, γi) If (q, γi+1) → (q′, γ′

i, L)
next(⟨σn0 , #, σ′

1⟩) = #.

Consistency with next now gives us a necessary condition for a word to encode a legal
computation that uses n0 tape cells.

In order to accept words that satisfy C1, namely detect a violation of next, the NWW
A use its nondeterminism and guesses a triple ⟨σi−1, σi, σi+1⟩ ∈ Σ3 and guesses a position
in the word, where it checks whether the three letters to be read starting this position are
σi−1, σi, and σi+1, and checks whether next(⟨σi−1, σi, σi+1⟩) is not the letter to come n0 + 1
letters later. Once A sees such a violation, it goes to an accepting sink. If next is respected,
or if the guessed triple and position is not successful, then A returns to its initial state. Also,
at any point that A still waits to guess a position of a triple, it can guess to return back to
the initial state.

In order to accept words that satisfy C2, namely detect an encoding of the initial
configuration of T on the empty tape and a final configuration after it that is accepting, the
NWW A guesses a position where it compares the next n0 + 1 letters with #(q0, b)b . . . b. If
the initial configuration is indeed detected, it waits for letters in {qacc, qrej} × Γ. If a letter
with qacc arrives before a letter with qrej , then A goes to the accepting sink. Otherwise if
a letter with qrej arrives before a letter with qacc, then A returns back to the initial state.
Also, at any point that A still waits to detect the initial configuration, or when it waits to

8 We assume that the reading head of T does not “fall” from the right or the left boundaries of the
tape. Thus, the case where (i = 1) and (q, γi) → (q′, γ′

i, L) and the dual case where (i = n0) and
(q, γi) → (q′, γ′

i, R) are not possible.
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see a letter in {qacc, qrej} × Γ, it can guess to return back to the initial state. Note that we
could have added the option to keep on waiting for qacc even if qrej arrives first. Indeed, if w

includes the initial configuration and both qrej and qacc afterwards, then there must be a
violation of next.

C Correctness and full details of the reduction in Theorem 4

We first prove that the GFG strategy g defined in Proposition 6 satisfies two essential
properties. Then, in Lemma 20, we show that these properties imply that g is a winning
GFG strategy for Aφ.

▶ Lemma 18. For all u ∈ (X · C)∗ and v ∈ Rn,m, if g(u) = p, then there is a prefix
y ∈ (X · C)∗ of v such that g(u · y) = q0.

Proof. Let j ∈ [m] and 2 ≤ k ≤ n, be such that v ends with the word xk ·cj ·xk+1 ·cj · · · xn ·cj ,
and k is the minimal index that is greater than 1, for which xk participates in cj . Since we
assume that each of the clauses of φ depend on at least two variables, such k > 1 exists.
Let i ∈ {0, 1} be minimal with cj ∈ Ci

k, and let z ∈ (X · C)∗ be a prefix of v such that
v = z · xk · cj · · · xn · cj . If there is a prefix y ∈ (X · C)∗ of z, such that g(u · y) = q0 then
we are done. Otherwise, g(u · z) = p. By definition of g and the choice of k, we know that
g(u · z · xk) = qi

k, where the assignment xk = i satisfies cj . Thus, if we take y = z · xk · cj ,
then g(u · y) = q0, and y is a prefix of v. ◀

▶ Lemma 19. For all u ∈ (X · C)∗ and v ∈ Rn,m, if g(u) = q0, then there is a prefix
z ∈ (X · C)∗ of v such that g(u · z) = p.

Proof. This follows immediately from the fact that Dn,m is a DFW that recognizes Rn,m

and p is the only accepting state of Dn,m. Thus, we may take z to be the minimal prefix of
v that is in Rn,m. ◀

Recall that a GFG strategy g : Σ∗ → Q has to agree with the the transitions of Aφ.
That is, for all w ∈ (X · C)∗, xk ∈ X, and cj ∈ C, it holds that (g(w), xk, g(w · xk)) and
(g(w · xk), cj , g(x · xk · cj)) are in ∆φ. In addition, if g satisfies the conditions in Lemmas 18
and 19, we say that g supports a (p, q0)-circle.

▶ Lemma 20. If g : Σ∗ → Q is consistent with ∆φ and supports a (p, q0)-circle, then for all
words w ∈ Ln,m, the run g(w) is accepting.

Proof. Consider a word w ∈ Ln,m = (Rn,m)ω. Observe that if w′ ∈ (X · C)ω is a suffix of w,
then w′ ∈ Ln,m, and hence has a prefix in Rn,m. Thus, if g supports a (p, q0)-circle, there
exist y1, z1 ∈ (X · C)∗, such that y1 · z1 is a prefix of w, g(y1) = q0, and g(y1 · z1) = p. Let
w′ ∈ (X · C)ω be the suffix of w with w = y1 · z1 · w′. By the above, w′ ∈ Ln,m, and we can
now apply again the assumption on g to obtain y2, z2 ∈ (X · C)∗ such that y2 · z2 is a prefix
of w′, g(y1 · z1 · y2) = q0, and g(y1 · z1 · y2 · z2) = p. By iteratively applying this argument,
we construct {yi, zi : i ≥ 1} ⊆ (X · C)∗, such that wi = y1 · z1 · y2 · z2 · · · yi−1 · zi−1 · yi is a
prefix of w, and g(wi) = q0, for all i ≥ 1. We conclude that q0 ∈ inf(g(w)), and hence g(w)
is accepting. ◀

It is easy to see that there is a correspondence between assignments to the variables in X

and deterministic prunnings of Aφ. Indeed, a pruning of p amounts to choosing, for each
k ∈ [n], a value ik ∈ {0, 1}: the assignment xk = ik corresponds to keeping the transition
⟨p, xk, qik

k ⟩ and removing the transition ⟨p, xk, q¬ik

k ⟩. For an assignment a : X → {0, 1}, we
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denote by Aa
φ the deterministic pruning of Aφ that is associated with a. We prove that a

satisfies φ iff Aa
φ is equivalent to Aφ. Thus, the number of deterministic prunnings of Aφ

that result in a DBW equivalent to Aφ, equals to the number of assignments that satisfy φ.
In particular, φ is satisfiable iff Aφ is DBP. This concludes the proof of the lower bound in
Theorem 4.

▶ Proposition 21. For every assignment a : X → {0, 1}, we have that L(Aa
φ) = L(Aφ) iff φ

is satisfied by a.

Proof. Assume first that φ is not satisfied by a. We prove that Ln,m ̸= L(Aa
φ). Let j ∈ [m]

be such that cj is not satisfied by a. I.e, for all k ∈ [n] the assignment xk = ik does not satisfy
cj . Since qi

k is reachable in Aa
φ iff i = ik, and all cj-labeled transitions from {qik

k : k ∈ [n]}
are to p, it follows that the run of Aa

φ on {x1 · cj · x2 · cj · · · xn · cj}ω never visits q0, and
hence is rejecting. Thus, (x1 · cj · x2 · cj · · · xn · cj)ω ∈ Ln,m \ L(Aa

φ).
For the other direction, we assume that a satisfies φ and prove that L(Aa

φ) = Ln,m. Let
ga : Σ∗ → Q be the memoryless strategy that correspond to the pruning Aa

φ. By Lemma 20,
it is sufficient proving that ga supports a (p, q0)-circle. Note that every strategy for Ln,m

satisfies Lemma 19. Indeed, the proof only uses the fact that Dn,m is a DFW that recognizes
Rn,m with a single accepting state p. Thus, we only need to prove that ga satisfies Lemma 18.
That is, for all u ∈ (X · C)∗ and v ∈ Rn,m, if ga(u) = p, then there is a prefix y ∈ (X · C)∗ of
v, such that ga(u · y) = q0. Consider such words u and v, and let j ∈ [m] be such that cj is
the last letter of v. Let k ∈ [n] be the minimal index for which cj ∈ Cik

k , and let z ∈ (X · C)∗

be a prefix of v such that v = z ·xk · cj ·xk+1 · cj · · · xn · cj . If there exists a prefix y ∈ (X ·C)∗

of z such that ga(u · y) = q0, then we are done. Otherwise, the finite run of Aa
φ on z from

p, returns back to p, and hence ga(u · z) = p. Now ga(u · z · xk) = qik

k , and since xk = ik

satisfies cj we have ga(u · z · xk · cj) = q0. Thus, we may take y = z · xk · cj which is a prefix
of v, and we are done. ◀
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1 Introduction

Nondeterministic finite automata (NFAs) were introduced by Rabin and Scott [19] in 1959,
and since then this model of computation has been extended in many ways. Notably, in
1976, Kozen [14] introduced a model of parallel computation based on a generalization of
nondeterminism which was later developed into the notion of alternating finite automaton
(AFA) by Chandra, Kozen, and Stockmeyer [7]. Independently from this work, Brzozowski
and Leiss [5] introduced an equivalent concept of a boolean finite automaton (BFA), using a
different notation. Often, the notions of AFA and BFA are used interchangeably. We use the
terminology and notation of [5].

The transition function of a BFA uses boolean combinations of its states, generalizing
the notion of NFAs which can be interpreted as using unions of states as transition targets.
However, the expressive powers of BFAs and NFAs are the same, that is, BFAs only accept
regular languages [5, 7]. Importantly, BFAs can succinctly represent regular languages:
for any n ⩾ 1 there exists a BFA with n states such that the minimal deterministic finite
automaton (DFA) of the same language has 2(2n) states [7, 16]. Also, it is known that any
regular language is accepted by an n-state boolean automaton if and only if its reverse
language is accepted by a DFA with at most 2n states [15, 16]. However, there are languages
such that their boolean, nondeterministic, and deterministic complexities coincide [17].

Atoms [6] of a regular language L can be considered as its building blocks, since any
quotient of L, including L itself, is a disjoint union of atoms. Recently, several old results
of automata theory have been revisited using atoms of regular languages: Brzozowski’s
double-reversal method for minimizing a DFA [4] was generalized in [6], the Kameda-Weiner
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method of finding a minimal NFA [13] was reinterpreted in terms of atoms and generalized
in [21], and lower bound methods for the size of an NFA [3, 10, 11] were presented in terms
of quotients and atoms of regular languages in [22].

We examine the role that atoms play in boolean automata. We show that the size of
a minimal BFA of a regular language is directly related to the number of atoms of that
language. More exactly, we observe that if a language L has m atoms, then a minimal BFA
of L has ⌈log2 m⌉ states. Furthermore, we show how to construct a minimal BFA using the
atoms of a given language. We note that constructions of a minimal BFA presented in the
literature [16, 15, 9] have been using a DFA of the reverse language. We think that using
atoms to build BFAs is more natural and goes well with the narrative of considering atoms as
building blocks of a language. Our method of constructing a minimal BFA using the atoms
of a language ensures that the resulting BFA is atomic; that is, the languages associated with
the states of a BFA are unions of atoms. Consequently, every regular language has an atomic
minimal BFA; however, we also show that a minimal BFA is not necessarily atomic. For
comparison, not every language has an atomic minimal NFA [6]. Symmetric difference NFAs
– a subclass of boolean automata that use only the symmetric difference operation in the
transition function – are known to be able to succinctly represent some regular languages [24].
Interestingly, every minimal symmetric difference NFA is atomic [23].

We revisit the Kameda-Weiner method of NFA minimization [13] which constructs NFAs
from grid covers of a special matrix. However, not every cover yields an NFA that would
accept a given language. The problem of “illegal” covers of the Kameda-Weiner matrix has
been of interest for decades [13, 11, 21, 22]. We show that one can construct a BFA for a
given language, using any cover of the Kameda-Weiner matrix. One can see this result as a
solution to the problem of interpreting grid covers of the Kameda-Weiner matrix in terms of
finite automata accepting a given language. The “illegal” cover problem implies that using
the union operation only to construct such an automaton – as is the case with NFAs –, is
not sufficient. We show that by using the union and the intersection operations (without the
complementation operation), it is possible to construct boolean automata accepting a given
language, for a given maximal cover. We note that by a result in [9], for any BFA of n states,
there is an equivalent BFA with 2n states that uses the union and the intersection operations
only. However, in certain cases, our method can produce such a BFA with less states.

We mention that learning regular languages via AFAs has been studied in [1, 2].
We also note that recently, symbolic versions of AFAs and BFAs have been introduced [8,

20], and it has been claimed that in the symbolic setting, these two automata models become
importantly different [20].

2 Automata, Languages, and Equations

A boolean finite automaton (BFA) is a quintuple B = (Q, Σ, δ, f0, F ) where Q = {q0, . . . , qn−1}
is a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q × Σ → BQ is the
transition function, where BQ is the free boolean algebra generated by Q, f0 ∈ BQ is the initial
function in BQ, and F ⊆ Q is the set of final states. We denote the empty word by ε. The
transition function is extended to the function δ : BQ ×Σ∗ → BQ as follows. For every qi ∈ Q,
a ∈ Σ, w ∈ Σ∗, and f ∈ BQ, δ(qi, ε) = qi, and δ(qi, aw) = fi,a(δ(q0, w), . . . , δ(qn−1, w)),
where fi,a(q0, . . . , qn−1) = δ(qi, a), and δ(f, w) = f(δ(q0, w), . . . , δ(qn−1, w)). Let φ : Q →
{0, 1} be defined by setting φ(qi) = 1 if qi ∈ F , and φ(qi) = 0 otherwise, for qi ∈ Q. The
language accepted by a BFA B is L(B) = {w ∈ Σ∗ | δ(f0, w)(φ(q0), . . . , φ(qn−1)) = 1}. Two
boolean automata are equivalent if they accept the same language. The right language of a
state q of B is L(Bq), where Bq = (Q, Σ, δ, q, F ).
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If the functions f0 and δ(q, a) are unions of states for every q ∈ Q and a ∈ Σ, then
B is a nondeterministic finite automaton (NFA). Traditionally, for NFAs these functions
have been presented as sets of states. We prefer to use the traditional notation of an NFA
N = (Q, Σ, δ, I, F ), where Q, Σ, and F are as in BFA, I ⊆ Q is the set of initial states, and
δ : Q × Σ → 2Q is the transition function. The reverse of an NFA N = (Q, Σ, δ, I, F ) is the
NFA N R = (Q, Σ, δR, F, I), where q ∈ δR(p, a) if and only if p ∈ δ(q, a) for p, q ∈ Q and
a ∈ Σ.

If f0 ∈ Q and δ(q, a) ∈ Q for every q ∈ Q and a ∈ Σ, then B is a deterministic finite
automaton (DFA). The boolean (nondeterministic, deterministic, respectively) complexity of
a regular language L, denoted by bc(L) (nc(L), dc(L), respectively) is the minimal number
of states of a boolean (nondeterministic, deterministic, respectively) automaton of L.

A boolean system of equations (BSE) B with variables L0, . . . , Ln−1 is a set of language
equations

Li =
⋃

a∈Σ
aFi,a(L0, . . . , Ln−1) ∪ Lε

i , i = 0, . . . , n − 1, (1)

where Fi,a is a boolean function of the variables L0, . . . , Ln−1, Lε
i = {ε} if ε ∈ Li, and Lε

i = ∅
otherwise, together with the initial function F0(L0, . . . , Ln−1). The language defined by a
BSE B is L(B) = F0(L0, . . . , Ln−1).

Any BSE defines a BFA and vice versa. There is a one-one correspondence between the
state set Q = {q0, . . . , qn−1} of a BFA B and the set of language variables {L0, . . . , Ln−1} of
the corresponding BSE B; there is a transition from qi ∈ Q with a ∈ Σ to a boolean function
fi,a in BQ if and only if Fi,a is the corresponding function of variables {L0, . . . , Ln−1} where
the disjunction(∨), conjunction(∧), and negation(¬) operations are replaced by the set
operations union(∪), intersection(∩), and complement(¯), respectively, and the constants 0
and 1 are replaced by ∅ and Σ∗, respectively, and a similar correspondence is between the
initial functions f0 and F0. Also, any state qi of B is final if and only if Lε

i = {ε}. In the
rest of the paper, we treat boolean automata and their corresponding systems of equations
interchangeably.

The left quotient, or simply quotient, of a language L by a word w ∈ Σ∗ is the language
w−1L = {x ∈ Σ∗ | wx ∈ L}. It is well known that the left quotients of L are the right
languages of the states of the minimal DFA of L.

An atom of a regular language L with quotients K0, . . . , Kn−1 is any non-empty language
of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, and Ki is the complement of Ki

with respect to Σ∗ [6]. An atom is initial if it has L (rather than L) as a term; it is final if it
contains ε. There is exactly one final atom, the atom K̂0 ∩ · · · ∩ K̂n−1, where K̂i = Ki if
ε ∈ Ki, and K̂i = Ki otherwise. If K0 ∩ · · · ∩ Kn−1 is an atom, then it is called the negative
atom, all the other atoms are positive. Thus atoms of L are pairwise disjoint languages
uniquely determined by L; they define a partition of Σ∗. Every quotient Ki (including L)
is a (possibly empty) union of atoms. Hence, atoms can be considered as building blocks
of regular languages. We also note that atoms of L are the classes of the left congruence
L≡ of L defined as follows: for x, y ∈ Σ∗, xL≡y if for every u ∈ Σ∗, ux ∈ L if and only if
uy ∈ L [12].

Let A = {A0, . . . , Am−1} be the set of atoms of L, let IA be the set of initial atoms, and
let Am−1 be the final atom. The átomaton of L is the NFA A = (A, Σ, α, IA, {Am−1}) where
Aj ∈ α(Ai, a) if and only if Aj ⊆ a−1Ai, for all Ai, Aj ∈ A and a ∈ Σ. It was shown in [6]
that the atoms of L are the right languages of the states of the átomaton, and that the
reverse NFA of the átomaton is the minimal DFA of the reverse language LR of L.
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The BSE corresponding to the átomaton A, also called the atom equations, is as follows:

Ai =
⋃

a∈Σ
a(

⋃
Aj⊆a−1Ai

Aj) ∪ Aε
i , i = 0, . . . , m − 1, (2)

where Aε
i = ∅ for i = 0, . . . , m − 2, and Aε

m−1 = {ε}, with the initial function L =
⋃

Ai∈IA
Ai.

A BFA B is atomic if the right languages of its states are unions of atoms of L(B).

3 Boolean Atoms

Let L be a regular language over Σ and let B be a BFA of L with variables L0, . . . , Ln−1.
A boolean atom of B is any non-empty language L̃0 ∩ · · · ∩ L̃n−1, where L̃i is either Li or

its complement Li with respect to Σ∗. Similarly to the atoms of L, boolean atoms of B are
pairwise disjoint, defining a partition of Σ∗.

We study the relationship between boolean atoms of B and atoms of L. To avoid confusion
between these two notions, we also call the atoms of L the language atoms.

▶ Proposition 1. Every atom of L is a union of boolean atoms of B.

Proof. Every quotient of L (including L itself) is obtained as a boolean combination of
some Li’s. Hence, every quotient of L can be expressed as a union of intersections involving
uncomplemented and complemented variables from {L0, . . . , Ln−1}. By adding in the missing
variables, every quotient can be expressed as a union of boolean atoms. Also, the complement
of any quotient is a union of boolean atoms. Since an intersection of unions of boolean atoms
is a union of boolean atoms, the proposition holds. ◀

▶ Corollary 2. Every boolean atom of B is a subset of some atom of L.

Proof. Since both the boolean atoms of B and the atoms of L define a partition of Σ∗, the
corollary follows from Proposition 1. ◀

▶ Proposition 3. A BFA B is atomic if and only if its boolean atoms are equal to the atoms
of L.

Proof. First assume that B is atomic. Then every language Li is a union of some atoms of
L, and so is its complement Li. Therefore, any boolean atom Bi = L̃0 ∩ · · · ∩ L̃n−1 is an
intersection of unions of language atoms, which is a union of language atoms. On the other
hand, by Corollary 2, Bi is a subset of some language atom. We conclude that Bi is equal to
some atom of L.

Conversely, if the boolean atoms of B are equal to the atoms of L, then since every Li is
a union of boolean atoms, it is as well a union of language atoms. Hence, B is atomic. ◀

We note that boolean atoms are a generalization of partial atoms of NFAs, introduced
in [6]. More exactly, given an NFA with its language equations, its partial atoms are the
boolean atoms of the corresponding BFA.

4 Constructing Minimal Boolean Automata Using Atoms

It is known that if a regular language L is accepted by an n-state BFA, then the reverse
language LR is accepted by a DFA with at most 2n states [7, 16]. We also recall the following
theorem by Leiss [16]:
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▶ Theorem 4. Let D be a DFA with m states. There exists a BFA with ⌈log2 m⌉ states
which accepts the reverse language of D.

Consequently, a minimal BFA of a language L has ⌈log2 m⌉ states, where m is the number
of states of the minimal DFA of LR. Since the átomaton of L is isomorphic to the reverse
automaton of the minimal DFA of LR [6], we make the following observation:

▶ Theorem 5. A minimal BFA of a regular language L has ⌈log2 m⌉ states, where m is the
number of atoms of L.

We note that Leiss [16] also describes a method to construct a BFA of LR with ⌈log2 m⌉
states by using a DFA of L with m states. Also, Kozen [15] (p. 327) discusses how to
construct an AFA of L with k states by using a DFA of LR with 2k states, and vice versa.

We present a method to construct a minimal BFA of a regular language, by using its
atoms.

Let L be a regular language over an alphabet Σ, and let A = {A0, . . . , Am−1} be the set of
atoms of L, with a subset IA ⊆ A of initial atoms and the final atom Am−1. Let k = ⌈log2 m⌉.
We show how to construct an atomic BFA with k variables L0, . . . , Lk−1 denoting some (not
yet identified) languages over Σ. Let us consider the set S of all intersections in the form
L̃0 ∩ . . . ∩ L̃k−1 where L̃i is either Li or Li. Clearly, there are 2k such intersections, and the
union of all these intersections is Σ∗. Also, we note that since k = ⌈log2 m⌉, the inequality
m ⩽ 2k holds.

Let us denote any intersection in S by XP =
⋂

i∈P Li ∩
⋂

i∈P Li, where P ⊆ {0, . . . , k −1}
and P = {0, . . . , k − 1} \ P . Now, let us choose any subset Sm = {XP0 , . . . , XPm−1} of S

consisting of m intersections, and set any XPj
∈ Sm to be equal to some atom Aj of L.

We note that Sm is the set of boolean atoms of the BFA we will be constructing, and by
Proposition 3, this BFA will be atomic. For instance, we may choose P0 = {0, . . . , k − 1},
P1 = {0, . . . , k − 2}, P2 = {0, . . . , k − 3, k − 1}, P3 = {0, . . . , k − 3}, etc., and form the
following equations between the boolean atoms and the atoms of L:

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A0,

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A1,

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A2,

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A3,

. . .

L̃0 ∩ L̃1 ∩ . . . ∩ L̃k−2 ∩ L̃k−1 = Am−1,

where L̃i is Li if ni = 0, and L̃i is Li if ni = 1, where n0n1 . . . nk−1 is the binary representation
of the number m − 1 using k bits. For every XPj

̸∈ Sm, that is, for j = m, . . . , 2k − 1, we let
XPj = ∅.

Clearly, every language Li, where i = 0, . . . , k − 1, is the union of those boolean atoms
XPj , where Li is uncomplemented, that is, Li =

⋃
i∈Pj

XPj .
We derive boolean equations for L0, . . . , Lk−1, using the equations above together with

the atom equations (2):

Li =
⋃

i∈Pj

XPj =
⋃

i∈Pj

Aj =
⋃

i∈Pj

(
⋃

a∈Σ
a(

⋃
Ah⊆a−1Aj

Ah) ∪ Aε
j) =

⋃
a∈Σ

a(
⋃

i∈Pj

⋃
Ah⊆a−1Aj

XPh
) ∪

⋃
i∈Pj

Aε
j ,
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that is, we obtain the equations

Li =
⋃

a∈Σ
a(

⋃
i∈Pj

⋃
Ah⊆a−1Aj

XPh
) ∪ Lε

i , i = 0, . . . , k − 1, (3)

where Lε
i = {ε} if i ∈ Pm−1, and Lε

i = ∅ otherwise.
We also notice that L =

⋃
Ah⊆L Ah =

⋃
Ah⊆L XPh

. That is, since L is a union of some
of its atoms Ah, it is the union of the corresponding boolean atoms XPh

. Hence, the
equations (3) together with the initial function L =

⋃
Ah⊆L XPh

form an atomic minimal
BFA of L.

In case our goal would be to obtain an atomic minimal BFA with the initial function
L = L0, we would have to be able to assign all the initial atoms of L to boolean atoms which
have L0 (rather than L0) as a term, and all the other language atoms to boolean atoms with
L0. It is not difficult to see that this is possible if and only if the condition

m − 2⌈log2 m⌉−1 ⩽ |IA| ⩽ 2⌈log2 m⌉−1 (4)

holds.
The method described above constructs an atomic minimal BFA of a language. However,

there may exist non-atomic minimal BFAs as well. The following example illustrates the
constructions of minimal BFAs and presents a case of a non-atomic minimal BFA.

▶ Example 6. Let us consider a regular language L from [6, 18], defined by the following
nondeterministic system of equations, with L = L0:

L0 = aL1 ∪ b(L1 ∪ L2),
L1 = aL3 ∪ b(L0 ∪ L3),
L2 = a(L0 ∪ L2 ∪ L3) ∪ ε,

L3 = aL3 ∪ bL1.

It was shown in [6] that the corresponding NFA is a minimal NFA of L, however, it is not
atomic. The language L has 6 atoms, denoted by A, B, C, D, E, and F , from which B, D,

and F are the initial atoms, and A is the final atom. The atom equations are as follows:

A = a(A ∪ B) ∪ ε,

B = aC ∪ bA,

C = b(B ∪ D),
D = bC,

E = aD,

F = a(E ∪ F ) ∪ b(E ∪ F ),

with the initial function L = B ∪D ∪F . One can verify that L0 = B ∪D ∪F , L1 = C ∪E ∪F ,
and L3 = D ∪ E ∪ F , whereas L2 = A ∪ E ∪ F ′, where F ′ = a(E ∪ F ) is a subset of F .

The boolean atoms of the original system of equations are found as the following non-empty
intersections:

L0 ∩ L1 ∩ L2 ∩ L3 = F ′,

L0 ∩ L1 ∩ L2 ∩ L3 = F \ F ′,

L0 ∩ L1 ∩ L2 ∩ L3 = D,

L0 ∩ L1 ∩ L2 ∩ L3 = B,

L0 ∩ L1 ∩ L2 ∩ L3 = E,

L0 ∩ L1 ∩ L2 ∩ L3 = C,

L0 ∩ L1 ∩ L2 ∩ L3 = A.
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Hence, the boolean atoms are A, B, C, D, E, F ′, and F \ F ′. We note that F is a union of
two boolean atoms, while the other language atoms coincide with boolean atoms.

In the following, we drop the union symbols when representing unions of atoms; for
example, B ∪ D ∪ F is denoted by BDF . A minimal BFA of this language has ⌈log2 6⌉ = 3
states. We construct an atomic minimal BFA by the approach described above. Let us
denote the states of a minimal BFA by variables L0, L1, L2, and form the following equations:

L0 ∩ L1 ∩ L2 = A,

L0 ∩ L1 ∩ L2 = B,

L0 ∩ L1 ∩ L2 = C,

L0 ∩ L1 ∩ L2 = D,

L0 ∩ L1 ∩ L2 = E,

L0 ∩ L1 ∩ L2 = F,

L0 ∩ L1 ∩ L2 = ∅,

L0 ∩ L1 ∩ L2 = ∅.

From these equations we obtain L0 = ABCD, L1 = ABEF , and L2 = ACE. All the
variables correspond to final states because the corresponding languages contain the final
atom A. Using the atom equations, we get the following equations:

ABCD = aABC ∪ bABCD ∪ ε,

ABEF = aABCDEF ∪ bAEF ∪ ε,

ACE = aABD ∪ bBD ∪ ε,

with L = BDF . By replacing atoms with the corresponding boolean expressions over the
variables L0, L1, and L2, and after a few straightforward simplifications, we obtain the
following system of equations, with L = L2:

L0 = a(L0 ∩ (L1 ∪ L2)) ∪ bL0 ∪ ε,

L1 = aΣ∗ ∪ b((L1 ∩ L2) ∪ L0) ∪ ε,

L2 = a((L0 ∩ L1) ∪ (L1 ∩ L2)) ∪ b(L0 ∩ L2) ∪ ε.

These equations form an atomic minimal BFA for L.
We may also obtain a minimal BFA for L with L = L0, since the condition (4) holds

for L. For instance, we could have the atom assignments as follows (with the rest of the
intersections set to be empty):

L0 ∩ L1 ∩ L2 = B,

L0 ∩ L1 ∩ L2 = D,

L0 ∩ L1 ∩ L2 = F,

L0 ∩ L1 ∩ L2 = A,

L0 ∩ L1 ∩ L2 = C,

L0 ∩ L1 ∩ L2 = E.

Now we obtain the languages L0 = BDF , L1 = ABCD, and L2 = ABEF , where L1 and
L2 correspond to the final states. Using the atom equations, we get the following equations:

BDF = aCEF ∪ bACEF,

ABCD = aABC ∪ bABCD ∪ ε,

ABEF = aABCDEF ∪ bAEF ∪ ε,

with L = BDF . Similarly as above, we obtain the following language equations, with L = L0:
L0 = a((L0 ∩ L2) ∪ (L1 ∩ L2)) ∪ b(L0 ∪ (L0 ∩ L1)),
L1 = a((L1 ∩ L2) ∪ (L0 ∩ L2)) ∪ bL1 ∪ ε,

L2 = aΣ∗ ∪ b((L0 ∩ L2) ∪ (L0 ∩ L1)) ∪ ε.

These equations form another atomic minimal BFA of L.
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We can also construct a non-atomic minimal BFA for L. Let us take L0 = BDF ,
L1 = CEF , and L2 = ADEF ′, where L2 is a final state. We note that L2 is not atomic.
Using the atom equations and the equation for F ′, we get the following equations:

BDF = aCEF ∪ bACEF,

CEF = aDEF ∪ bBDEF,

ADEF ′ = aABDEF ∪ bC ∪ ε,

with L = BDF . We obtain the following language equations, with L = L0:

L0 = aL1 ∪ b((L0 ∩ L1 ∩ L2) ∪ L1),
L1 = a((L0 ∩ L1) ∪ (L0 ∩ L2) ∪ (L1 ∩ L2)) ∪ b(L0 ∪ (L1 ∩ L2)),
L2 = a(L0 ∪ L2) ∪ b(L0 ∩ L1 ∩ L2) ∪ ε.

These equations form a non-atomic minimal BFA of L. ⌟

5 Boolean Automata and Quotient-Atom Matrix

Kameda and Weiner [13] studied the problem of finding a minimal NFA of a language L,
using a matrix based on the states of the minimal DFAs of L and LR. They suggested a
method of constructing NFAs, utilizing grid covers of this matrix. However, an NFA formed
this way does not necessarily accept L. Therefore, the method of finding a minimal NFA
tests grid covers of the matrix in the order of increasing size to see if they are “legal”. The
first legal NFA, that is, an NFA found to accept L, is a minimal one.

In this section, we revisit the Kameda-Weiner method and its recent reinterpretation in
terms of atoms of the language [21]. We will show that if one aims to form a BFA rather
than an NFA, then the problem of “illegal” covers disappears. That is, one can form a BFA
for L, using any cover of the quotient-atom matrix.

First, we describe the Kameda-Weiner method in terms of quotients and atoms as
presented in [21]. It was shown in [21] that the matrix used by Kameda and Weiner can
be viewed as the quotient-atom matrix of the language, that is, the matrix with its rows
corresponding to the non-empty quotients, and the columns, to the positive atoms of the
language. Any (i, j)-entry of this matrix is 1 if the quotient Ki has the atom Aj as its subset,
and 0 otherwise. A grid of the matrix is the direct product g = P × R of a set P of quotients
with a set R of atoms, such that every atom in R is a subset of every quotient in P . A grid
g = P × R is maximal if there is no other grid g′ = P ′ × R′ such that P ⊆ P ′ and R ⊆ R′. A
grid cover of the matrix is a set G = {g0, . . . , gk−1} of grids, such that every 1-entry (Ki, Aj)
belongs to some grid gh of G. A grid cover is maximal if it consists of maximal grids. Clearly,
any grid cover can be made maximal by replacing every non-maximal grid g = P × R in it
by the maximal grid g′ = P ′ × R′ such that P ⊆ P ′ and R ⊆ R′.

Let fG be the function that assigns to every non-empty quotient Ki the subset of G,
consisting of grids g = P × R such that Ki ∈ P . The Kameda-Weiner method constructs the
NFA NG = (G, Σ, ηG, IG, FG), where G is a maximal grid cover, IG = fG(K0), g ∈ FG if and
only if g ∈ fG(Ki) implies that ε ∈ Ki, and transition function is computed by the so-called
intersection rule ηG(g, a) =

⋂
Ki∈P fG(a−1Ki), for a grid g = P × R in G and a ∈ Σ. The

NFA NG may or may not accept L. A cover G is called “legal” if L(NG) = L. To find a
minimal NFA of a language L, covers of the matrix are tested in the order of increasing size
to see if they are legal; the first legal NFA is a minimal one.

In [21], the Kameda-Weiner method was interpreted in terms of atoms, with the key
observation being that any maximal grid can be seen as the set of atoms it involves. We call
a set {L0, . . . , Lk−1} of languages a language cover for L if for every Li there is a quotient
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Kj such that Li ⊆ Kj and if every quotient of L is a union of some Li’s. A language
cover {L0, . . . , Lk−1} is atomic if every Li, where i = 0, . . . , k − 1, is a union of atoms of L.
Now, for any grid cover G = {g0, . . . , gk−1} there is a corresponding atomic language cover
C = {U(R0), . . . , U(Rk−1)}, where gi = Pi × Ri and U(Ri) =

⋃
Aj∈Ri

Aj for i = 0, . . . , k − 1.
The following theorem was proved in [21]:

▶ Theorem 7. Let G = {g0, . . . , gk−1} be a cover consisting of maximal grids gi = Pi × Ri,
i = 0, . . . , k − 1, and let NG = (G, Σ, ηG, IG, FG) be the corresponding NFA, obtained by the
intersection method. It holds that gi ∈ IG if and only if U(Ri) ⊆ L, and gi ∈ FG if and
only if ε ∈ U(Ri). For any gi, gj ∈ G and a ∈ Σ, gj ∈ ηG(gi, a) if and only if the inclusion
U(Rj) ⊆ a−1U(Ri) holds.

By Theorem 7, it is easy to see that forming the NFA NG corresponds to defining this
NFA with variables L0, . . . , Lk−1 using the language equations

Li =
⋃

a∈Σ
a(

⋃
U(Rj)⊆a−1U(Ri)

Lj) ∪ Lε
i , i = 0, . . . , k − 1, (5)

where Lε
i = {ε} if ε ∈ U(Ri), and Lε

i = ∅ otherwise, and the initial function
⋃

U(Ri)⊆L Li.
We recall that this NFA not necessarily accepts L.

Gruber and Holzer [11] defined a canonical bipartite graph GL of a language, which is a
graph representation of the Kameda-Weiner matrix. By denoting the bipartite dimension of
GL, that is, the minimum number of bicliques to cover the edges of GL, by d(GL), it is clear
that the size of the minimal grid cover of the quotient-atom matrix is equal to d(GL). It has
been a long-standing problem to identify languages with a legal minimal cover [11, 13, 21, 22].

It is known that dc(L) ⩽ 2d(GL) [11]. Since dc(LR) = m, where m is the number of atoms
of L [6], and d(GLR) = d(GL) [11, 13], we get that m ⩽ 2d(GL). By Theorem 5, a minimal
BFA of L has bc(L) = ⌈log2 m⌉ states, implying that bc(L) ⩽ d(GL). Hence, the following
statement holds:

▶ Theorem 8. A minimal BFA of a regular language L has at most d(GL) states.

Theorem 8 provides an upper bound to the size of a minimal BFA of a language in terms
of the size of a minimal cover of the quotient-atom matrix/graph of the language. Since a
minimal NFA has at least d(GL) states [11, 13, 21], the inequalities

bc(L) ⩽ d(GL) ⩽ nc(L)

hold. Also, we can state the following corollary:

▶ Corollary 9. A minimal NFA is a minimal BFA of L if and only if the equalities bc(L) =
d(GL) = nc(L) hold.

In the following sections, we present two methods to construct a BFA, using a cover of
the quotient-atom matrix/graph.

5.1 Constructing a General BFA
Given a language cover C = {L0, . . . , Lk−1} of L, we call any non-empty intersection
L̃0 ∩ . . . ∩ L̃k−1 where L̃i is either Li or Li, a cover atom of C. Similarly to the atoms of L,
cover atoms are pairwise disjoint and their union is Σ∗.

The following proposition is a slightly modified version of the result in [6]1:

1 The result in [6] concerns the case where the language cover consists of the right languages of an NFA
accepting L; however, its proof holds for any cover.
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▶ Proposition 10. Given a language cover C of L, every cover atom of C is a subset of
some atom of L.

We note that cover atoms of the cover K = {K0, . . . , Kn−1} consisting of the quotients
of L, are clearly the atoms of L. Moreover, the following proposition holds:

▶ Proposition 11. The cover atoms of a cover C of L are equal to the atoms of L if and
only if C is atomic.

Proof. Let C = {L0, . . . , Lk−1} be an atomic language cover of L, meaning that every Li ∈ C

is a union of atoms of L. In this case every complement language Li, for i = 0, . . . , k − 1, is
also a union of atoms. Therefore, any cover atom as an intersection of unions of atoms, is a
union of atoms. However, since by Proposition 10, any cover atom is a subset of some atom
of L, we conclude that cover atoms are equal to the atoms of L.

If the cover C is not atomic, then there is some Li ∈ C that is not a union of atoms of L.
However, since Li is the union of those cover atoms that have Li uncomplemented in their
intersection, there exists at least one non-atomic cover atom of C. ◀

Let us now consider any grid cover G = {g0, . . . , gk−1} of the quotient-atom matrix and the
corresponding language cover C = {U(R0), . . . , U(Rk−1)} of L, with gi = Pi×Ri and U(Ri) =⋃

Aj∈Ri
Aj for i = 0, . . . , k − 1. Let the set of cover atoms of C be X = {X0, . . . , Xℓ−1}.

Since the cover C is atomic, by Proposition 11, the cover atoms of C are the atoms of L.
Hence, any atom Ah of L can be expressed as Ah =

⋂
Ah∈Ri

U(Ri) ∩
⋂

Ah ̸∈Ri
U(Ri).

Now, we can form a BFA with the set {L0, . . . , Lk−1} of variables, using the correspondence
between the variables Li and the languages U(Ri), where i = 0, . . . , k − 1. We obtain the
following equations for a BFA, using the atom expressions above and the atom equations (2):

Li =
⋃

a∈Σ
a(

⋃
Aj∈Ri

⋃
Ah⊆a−1Aj

(
⋂

Ah∈Ri

Li ∩
⋂

Ah ̸∈Ri

Li)) ∪ Lε
i , i = 0, . . . , k − 1, (6)

where Lε
i = {ε} if ε ∈ U(Ri), and Lε

i = ∅ otherwise. The initial function of the BFA is
L =

⋃
U(Ri)⊆L Li. Clearly, this BFA is atomic, because every Li is a union of atoms. We

also note that boolean atoms of this BFA are equal to the cover atoms.

5.2 Constructing a BFA Without Complementation
We show that any maximal grid cover can be used to construct a BFA that uses the union
and the intersection operations only, without a need for the complementation operation. We
use the following definition from [21]:

▶ Definition 12. A set R of atoms is maximal if R = {Aj | Aj ⊆
⋂

U(R)⊆Ki
Ki}, where

U(R) =
⋃

Aj∈R Aj is the union of atoms in R.

We observe that the intersection of any quotients of L corresponds to a maximal set of
atoms:

▶ Proposition 13. Given any set P ⊆ K of quotients of L, the set R = {Aj | Aj ⊆⋂
Kh∈P Kh} of atoms in their intersection, is maximal.

Proof. Let P ⊆ K be any set of quotients of L and let R = {Aj | Aj ⊆
⋂

Kh∈P Kh} be the
set of atoms in their intersection. Since U(R) =

⋂
Kh∈P Kh =

⋂
U(R)⊆Ki

Ki, we get that
R = {Aj | Aj ⊆

⋂
U(R)⊆Ki

Ki}. Thus, R is maximal. ◀
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▶ Proposition 14. If a set R of atoms is maximal, then the set {Aj | Aj ⊆ a−1U(R)}, where
a ∈ Σ, is also maximal.

Proof. Let R be a maximal set of atoms and a ∈ Σ. Then U(R) =
⋂

U(R)⊆Ki
Ki and we get

a−1U(R) = a−1 ⋂
U(R)⊆Ki

Ki =
⋂

U(R)⊆Ki
a−1Ki. Since for any quotient Ki of L, a−1Ki is

also a quotient of L, the language a−1U(R) is equal to an intersection of some quotients. By
Proposition 13, we conclude that the set {Aj | Aj ⊆ a−1U(R)} is maximal. ◀

Let us consider a maximal grid cover G = {g0, . . . , gk−1} of the quotient-atom matrix
and the corresponding language cover C = {U(R0), . . . , U(Rk−1)} of L, with gi = Pi × Ri

and U(Ri) =
⋃

Aj∈Ri
Aj for i = 0, . . . , k − 1. It is known that any maximal grid involves

a maximal set of atoms [21]. Hence, every Ri, where i = 0, . . . , k − 1, is a maximal set
of atoms. We denote by Pi,a, where a ∈ Σ, the set Pi,a = {Kh | a−1U(Ri) ⊆ Kh} of
those quotients of L that include a−1U(Ri) as a subset. By Proposition 14, the equality
a−1U(Ri) =

⋂
Kh∈Pi,a

Kh holds. Also, we recall that every quotient Kh is a union of some
elements of the cover C, that is, Kh =

⋃
U(Ri)⊆Kh

U(Ri).
We construct a BFA with the set {L0, . . . , Lk−1} of variables, using the correspondence

between the variables Li and the languages U(Ri), where i = 0, . . . , k − 1. The language
equations are as follows:

Li =
⋃

a∈Σ
a(

⋂
Kh∈Pi,a

⋃
U(Rj)⊆Kh

Lj) ∪ Lε
i , i = 0, . . . , k − 1, (7)

where Lε
i = {ε} if ε ∈ U(Ri), and Lε

i = ∅ otherwise. The initial function is L =
⋃

U(Ri)⊆L Li.
This BFA is atomic, since every Li is a union of atoms of L.

We note that the BFA corresponding to the equations (7) uses only the union and the
intersection operations. That is, the complementation operation is not needed when we use
a maximal cover as a basis for the states of a BFA.

One can see this result as a solution to the problem of interpreting grid covers of the
Kameda-Weiner matrix, or equivalently, biclique edge covers of the quotient-atom graph, in
terms of finite automata accepting a given language. The “illegal” cover problem mentioned
above implies that using the union operation only to construct such an automaton – as
is the case with NFAs –, is not sufficient. However, we showed that with the union and
the intersection operations it is possible to construct boolean automata accepting a given
language, for a given maximal cover.

We note that by a result in [9], for any BFA of n states, there is an equivalent BFA
with 2n states that uses the union and the intersection operations only. However, since the
inequality bc(L) ⩽ d(GL) holds for any language L, and because we can construct a BFA
with d(GL) states, using the union and the intersection operations only, our method can
produce such a BFA for any language L for which the inequality d(GL) < 2bc(L) holds, with
less states.

6 Conclusions

We have started a study of the role that atoms of a regular language have in the context
of boolean automata, their relationship with boolean atoms, and how they can be used to
construct BFAs.
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The problem of “illegal” covers of the Kameda-Weiner matrix used for NFA minimization
has been of interest for a long time. We presented a new interpretation of the covers in terms
of BFAs, so that every cover becomes “legal”. We showed that it is sufficient to use the union
and the intersection operations to construct a BFA for a given language, corresponding to a
maximal cover of the matrix. Moreover, the resulting BFAs are atomic.

These are part of the evidence of the significant role that atoms play in the theory of
automata.
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1 Introduction

Historically, the Dialectica interpretation was devised by Gödel [10] to prove the (relative)
consistency of arithmetic. The interpretation allowed him to reduce the problem of proving
the consistency of first-order arithmetic to the problem of proving the consistency of a
simply-typed system of computable functionals, the well-known System T. The key feature
of the translation is that it (mostly) constructively turns formulae of arbitrary quantifier
complexity into formulae of the form ∃x∀yα(x, y).

Over the years, several authors have explained the Dialectica interpretation in categorical
terms. In particular, de Paiva [7] introduced the notion of Dialectica categories as an internal
version of Gödel’s Dialectica Interpretation. The idea is to construct a category Dial(C)
from a category C with finite limits. The main focus in de Paiva’s original work is on the
categorical structure of the category Dial(C) obtained, as this notion of a Dialectica category
turns out to be also a model of Girard’s Linear Logic [9].

This construction was first generalized by Hyland, who investigated the Dialectica
construction associated to a fibred preorder [12]. Later Biering in her PhD work [3] studied
the Dialectica construction for an arbitrary cloven fibration.
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Meanwhile Hofstra [11] wrote an exposition and interpretation of the Dialectica con-
struction from a modern categorical perspective, emphasizing its universal properties. His
work gives centre stage to the well-known concepts of pseudo-monads, simple products and
co-products. We take Hofstra’s work as the basis for our work here.

Hofstra shows that the original Dialectica construction Dial can be seen as the composition
of two free constructions Sum and Prod, which are the simple sum (or co-product) and
product completions, respectively. These completions are fully dual, so we only need to study
one and can then deduce results for the other construction. However the whole Dialectica
construction is not fully dual, as indicated by the order of the composition of the completions.
Our work explains when the Dialectica construction can be performed, which hypotheses are
necessary for the categorical construction, which properties of the construction are preserved
and why. Most importantly we are able to connect these preservation properties to the logic
of the original interpretation, leading up to the definition of what we call a Gödel fibration.

Our contributions

The main contributions of this paper are the following.
1. We formalize the notion of fibrational quantifier-free formula. Given Hofstra’s characteriz-

ation it is clear that instances of the Dialectica construction should have simple products
and co-products, as the construction introduces completions under these. What else is
necessary to get a Dialectica construction? The first novelty of this work is the character-
ization of “covering quantifier-free objects” of a fibration. These objects correspond to
formulas in the logic system that are quantifier-free. As usually happens in a categorical
framework, a syntactical notion of “being quantifier-free” needs to be formalized in terms
of a universal property. The logical intuition behind our definition, is that an element
α of a fibration p is called quantifier-free if it satisfies the following universal property,
expressed in the internal language of p: if there is a proof π of a statement ∃iβ(i) assuming
α, then there exists a witness t, which depends on the proof π, together with a proof
of β(t). Moreover, this must hold for every re-indexing α(f), because in logic if α(x) is
quantifier-free then α(x)[f/x] = α(f) is quantifier-free too. The covering requirement,
as usual, means that, for every formula of the form i : I | α(i), there exists a formula
β(i, a, b) quantifier-free that is provably equivalent to it α(i) ⊣⊢ ∃a∀bβ(i, a, b).
Notice that these requirements reflect Gödel’s original translation and, at the same time,
they recall standard conditions used in category theory to say that a category is free for
a given structure. One could think for example about the condition of having enough
projectives in the exact completion of Carboni [5].

2. We introduce the notion of a Gödel fibration. A Gödel fibration is a fibration with simple
products and simple co-products, which, most importantly, admits a class of formal
sub-objects which are free from products and co-products and cover all the elements of the
fibre. Then we prove that a Gödel fibration is a fibration categorically embodying both
the logical principle of traditional Skolemization and the existence of a prenex normal
presentation for every logical formula.

3. We provide an intrinsic presentation of the Dialectica fibration. We prove that a given
fibration is an instance of the Dialectica construction if and only if it is a Gödel fibration.
This result helps understanding the existing notion of Dialectica fibration from a logical
perspective because it shows which properties an arbitrary fibration should satisfy to be
an instance of the Dialectica construction. In other words, given a fibration p there exists
a fibration p̄ such that p ∼= Dial(p̄) if and only if p is a Gödel fibration. From a categorical
perspective, we have classified the free-algebras for the Dialectica pseudo-monad.
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4. We prove that fibrations associated to the Dialectica construction satisfy a strong con-
structive feature in terms of witnesses. We have shown that in the internal language
of, say Hofstra’s Dialectica fibration Dial(p), i.e. in the logic theory that canonically
corresponds to this categorical notion, if there is a proof π of a statement ∃i α(i), then
there exists a witness t, which depends on the proof π, together with a proof of α(t).
This principle is sometimes called the Rule of Choice. For example, Regular Logic
(https://ncatlab.org/nlab/show/regular+logic) satisfies this principle, see [24].

Related work

In the present paper we provide an intrinsic characterization of the free algebras of the
pseudo-monad Dial(−) introduced by Hofstra in [11], i.e. we provide necessary and sufficient
conditions for a (cloven and split) fibration to be of the form Dial(p) for some fibration p.
Hofstra’s categorical presentation of the Dialectica construction generalizes to the fibrational
setting the original construction introduced by de Paiva [7]. In particular, we recall the
structural analysis due to Hyland [12] and Biering [2], where the first fibrational presentations
of the Dialectica construction were introduced. For a complete presentation of the theory of
fibrations and its connection to type theory, we refer the reader to Jacobs [13], and to [4] for
an introduction to pseudomonads.

More recently, modern reformulations of the Dialectica interpretation based on the
linearized version of de Paiva have been introduced, aiming to provide categorical models for
type theory. A relevant example of this line of work is Moss and von Glehn [17], where the
authors are interested not in the original construction, but in a modified version of Gödel’s
Dialectica interpretation for models of intensional Martin-Löf type-theory, using the notion
of fibred display map category. Their work focus on the preservation of the type constructors,
while they drop the layer of predicates from their Dialectica propositions, considering only
those Dialectica propositions of the form ∃x∀y⊤. In fact, they call their construction the
polynomial model, explaining that this name fits better, because they are considering the
predicate-free Dialectica construction. On a similar line, we mention the work of Pédrot [18],
investigating the validity of a Dialectica-like construction in a dependent setting. Different
variations of the Dialectica interpretation have been devised for automata, e.g. the work or
Pradic and Riba [19].

Finally, Topos-and tripos-theoretic versions of the Dialectica construction have been
studied by Biering in [3], while the recent work of Shulman [20], describes a “polycategorical”
version of a generalization of the Dialectica construction. Other applications of completions
involving universal and existential quantifiers can be found in [24, 23, 8], where similar
constructions are presented in the language of doctrines.

2 Revisiting categorical quantifiers

One of the pillars of categorical logic is Lawvere’s crucial intuition which considers logical
languages and theories as indexed categories and studies their 2-categorical properties. In
this setting connectives and quantifiers are characterized in terms of adjointness relations
[14, 15, 16].

In this fibrational setting, the intuition is that the base category B of a fibration p : E −→ B
represents the category of (type-theoretical) contexts, a fibre EI represents the propositions
α(i) in the context I, and the morphisms are proofs. Cartesian morphisms of p induce a
re-indexing or substitution operation. From this perspective, the simple form of quantification
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is described in terms of adjoints to weakening functors π∗ along projections π. For example,
existential quantification is given by an operation

∐
π∗ : EA×B → EA, which sends a

proposition α(a, b) to ∃b α(a, b).
Now we briefly recall the formal definition of a fibration with simple products (or simple

universal quantification) and coproducts (or simple existential quantification). For a complete
presentation of the theory of fibrations and its connection to type theory, we refer the reader
to Jacobs [13]. In this work, we will assume that a fibration p is always cloven and split, i.e.
that the re-indexing operation is functorial (these definitions can be found in pages 47 and
49 of [13]).

▶ Definition 2.1. We say a fibration p : E −→ B over a category B with finite products has
simple coproducts when the weakening functors π∗ have left adjoints

∐
π satisfying the

Beck-Chevalley Condition (abbreviated as BCC), i.e. for every pullback square of the form

I ×X
πI //

f×id

��

I

f

��
J ×X

πJ

// J

the canonical natural transformation f∗ ∐
πJ

⇒
∐
πI

(f × id)∗ is an isomorphism.
Dually, we say that a fibration p : E −→ B has simple products when the weakening

functors π∗ have have right adjoints
∏
π satisfying BCC.

For more details about the notion of fibration having simple coproducts (or simple products)
we refer to [13, Def. 1.9.1].

When one deals with quantification, for example in first-order logic, it is very common to
assert something like a formula α is quantifier-free. This assertion has a natural meaning
from a syntactic point of view, but it is not clear how it should be presented from a categorical
perspective. The aim of the following definitions, which are generalizations of definitions
in [24] to the fibrational setting, is to capture the common property of those elements of a
given fibration p : E −→ B which will appear as quantifier-free propositions in the internal
language of the fibration p. We start by defining when an element of a fibre of p is free
from the existential quantifier, and then we dualize the definition for the universal quantifier.
(Recall that the symbols

∐
and

∏
represent the logical quantifiers ∃ and ∀.)

The logical intuition behind the next definition is that an element α is existential-free
if it satisfies the following universal property: if there is a proof π of a statement ∃i β(i)
assuming α, then there exists a witness t, which depends on the proof π, together with a
proof of β(t). Moreover, we require that this holds for every re-indexing α(f) because in
logic quantifier-free propositions are stable under substitution, i.e. if α(x) is quantifier-free
then α(f) is quantifier-free.

▶ Definition 2.2. Let p : E −→ B be a fibration with simple coproducts. An object α of the
fibre EI is said to be

∐
-quantifier-free if it enjoys the following universal property. For

every arrow f and every projection πA in B as follows:

A×B
πA // A

f // I

and every vertical arrow:

f∗α
h−→

∐
πA

β
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of EA, where β is an object of the fibre EA×B, there exist a unique arrow A
g−→ B of B and a

unique vertical arrow f∗α
h−→ ⟨1A, g⟩∗β of EA such that:

h =
(
f∗α

h−→ ⟨1A, g⟩∗β
⟨1A,g⟩∗ηβ−−−−−−→ ⟨1A, g⟩∗(

π∗
A

∐
πA

β
)

=
∐
πA

β
)

where β ηβ−→ π∗
A

∐
πA
β is the unit at β of the adjunction

∐
πA

⊣ π∗
A.

Clarifying the concrete meaning of Definition 2.2, the given object α of EI represents a
formula α(i). Given an arrow A

f−→ I a term f(a) : I is in the context a : A, and it is the case
that f∗α represents the corresponding formula α(f(a)). The object β of EA×B corresponds
to a formula β(a, b), the object

∐
πA
β represents the formula (∃b)β(a, b), which is in the

same context a : A of α(fa). Meanwhile, the object ⟨1A, g⟩∗β is again the re-indexing of
β(a, b) through an arrow A

⟨1A,g⟩−−−−→ A×B, hence it represents the formula β(a, g(a)), which
is in the same context a : A of α(f(a)) and (∃b)β(a, b).

Thus the property we require of the formula α(i) is the following: whenever there is
a proof (an arrow h of the fibre) of (∃b)β(a, b) from α(f(a)) (for some term f(a) : I in
the context a : A), then there is a unique term g(a) : B in the context a : A together
with a unique proof h of β(a, g(a)) from α(f(a)), in such a way that, adding at the end of
the proof h the canonical proof of (∃b)β(a, b) from β(a, g(a)) (which is represented by the
re-indexing of the unit at β of the adjunction

∐
πA

⊣ π∗
A), we get back to the proof h itself

of (∃b)β(a, b) from α(f(a)). The uniqueness requirement of the term and the proof is due to
the proof-relevant nature of fibrations.

Observe that this is precisely the universal property, that we presented before Defini-
tion 2.2, enjoyed by a formula which is free from existential quantification.

▶ Remark 2.3. Notice that if we consider a fibration p with simple coproducts, then one can
define a sub-fibration p′ → p such that the fibres of p′ are given by

∐
-quantifier-free objects,

and the base category of p′ is the same of p. This follows since
∐

-quantifier-free objects are
stable under re-indexing by definition.

The next concept we are going to need in the categorical setting reminds us of the
existence of a prenex normal form in logic. Recall, for example from [6], that in (classical)
first-order logic (FOL) every formula is equivalent to some formula in prenex normal form.

▶ Definition 2.4. We say that a fibration with simple coproducts p : E −→ B has enough∐
-quantifier-free objects if, for every object I of B and for every element α ∈ EI , there

exist an object A and a
∐

-quantifier-free object β in EI×A such that α ∼=
∐
πI
β.

By duality we can define the same concept with respect to the universal quantifier.

▶ Definition 2.5. Let p : E −→ B be a fibration with simple products. An object α of the fibre
EI is said to be

∏
-quantifier-free if it enjoys the following universal property: for every

arrow f and every projection πA in B as follows:

A×B
πA // A

f // I

and every vertical arrow:∏
πA

β
h−→ f∗α

MFCS 2021
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of EA, where β is an object of the fibre EA×B, there exist a unique arrow A
g−→ B of B and a

unique vertical arrow ⟨1A, g⟩∗β
h−→ f∗α of EA such that:

h =
( ∏

πA

β = ⟨1A, g⟩∗(
π∗
A

∏
πA

β
) ⟨1A,g⟩∗εβ−−−−−−→ ⟨1A, g⟩∗β

h−→ f∗α
)

where π∗
A

∏
πA
β

εβ−→ β is the counit at β of the adjunction π∗
A ⊣

∏
πA

.

▶ Definition 2.6. We say that a fibration with simple products p : E −→ B has enough-
∏

-
quantifier-free objects if, for every object I of B and for every element α ∈ EI , there exist
an object A and a

∏
-quantifier-free object β in EI×A such that α ∼=

∏
πI

(β).

Now we can introduce a particular kind of fibration called a Skolem fibration. The name is
chosen because these fibrations satisfy a version of the traditional principle of Skolemization,
as presented in [10] and [11].

▶ Definition 2.7. A fibration p : E −→ B is called a Skolem fibration if:
its base category B is cartesian closed;
the fibration p has simple products and simple coproducts;
the fibration p has enough

∐
-quantifier-free objects.∐

-quantifier-free objects are stable under simple products, i.e. if α ∈ EI is a
∐

-quantifier-
free object, then

∏
π(α) is a

∐
-quantifier-free object for every projection π from I.

Notice that the last point of Definition 2.7 implies that, given a Skolem fibration p : E −→
B, the sub-fibration p′ : E′ −→ B of

∐
-quantifier-free objects of p defined in Remark 2.3 has

simple products.

▶ Proposition 2.8 (Skolemization). Every Skolem fibration p validates the principle:

∀x∃yα(i, x, y) ∼= ∃f∀xα(i, x, fx).

Proof. Let us consider an element α ∈ EA1×A2×B and a
∐

-quantifier-free object γ ∈ EA1 .
Hence, for every arrow π∗

1(γ) h−→
∐

⟨π1,π2⟩(α), there is a unique pair (g, h) where A1 ×A2
g−→ B

and π∗
1(γ) h−→ ⟨π1, π2, g⟩∗(α). Since B has exponents, then we have that g induces a unique

arrow A1
m−→ BA2 such ⟨π1, π2, g⟩ = ⟨π1, π2, ev⟨π1, π2⟩⟩⟨π1, π2,mπ1⟩. Therefore we have an

arrow

π∗
1(γ) h−→ ⟨π1, π2,mπ1⟩∗(⟨π1, π2, ev⟨π1, π2⟩⟩(α)).

Since p has simple products, h induces a unique arrow

γ
h−→

∏
π1

⟨π1, π2,mπ1⟩∗(⟨π1, π2, ev⟨π1, π2⟩⟩(α)).

Notice that the following square

A1 ×A2
π1 //

⟨π1,π2,mπ1⟩
��

A1

⟨idA1 ,m⟩
��

A1 ×A2 ×BA2
⟨π1,π3⟩

// A1 ×BA2
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is a pullback, hence by the BCC we have that
∏
π1

⟨π1, π2,mπ1⟩∗ ∼= ⟨idA1 ,m⟩∗ ∏
⟨π1,π3⟩.

Thus, we get that an arrow f induces a unique pair of arrows (m,h), but again (since
p has enough

∐
-quantifier-free objects) this pair represents a unique arrow of the fibre

EA1(γ,
∐
π3

∏
⟨π1,π1⟩(⟨π1, π2, ev⟨π1, π2⟩⟩(α)), i.e. the fibre

EA1×A2(π∗
1(γ),

∐
⟨π1,π2⟩

(α))

is isomorphic to

EA1(γ,
∐
π1

∏
⟨π1,π3⟩

(⟨π1, π2, ev⟨π1, π2⟩⟩(α))

and this means exactly that∏
π1

∐
⟨π1,π2⟩

(α) ∼=
∐
π1

∏
⟨π1,π3⟩

(⟨π1, π2, ev⟨π1, π2⟩⟩(α).

The proof for the general case where γ is a generic element of the fibre and not a
∐

-quantifier-
free object, follows by the observation that the arrows π∗(γ) −→ β are in bijection with those
of the form π∗

1(γ′) −→
∐
π2
β for appropriate projections, and where γ′ is the

∐
-quantifier-free

element which covers γ. ◀

Combining Definitions 2.4, 2.6 and 2.7, we introduce the notion of a Gödel fibration. The
idea is that a Gödel fibration is a Skolem fibration, such that every formula α(i) is equivalent
to a formula in prenex normal form with respect to p, i.e. there exists a formula β(x, y, i)
free from quantifiers, such that α(i) ∼= ∃x∀yβ(x, y, i).

▶ Definition 2.9. A Skolem fibration p : E −→ B is called a Gödel fibration if the sub-fibration
p′ : E′ −→ B, whose elements are

∐
-quantifier-free objects, has enough

∏
-quantifier-free

objects.

▶ Remark 2.10. Observe that if we consider a Gödel fibration p : E −→ B, an element which is
a

∏
-quantifier-free object in the sub-fibration p′ could not be

∏
-quantifier-free object of the

Gödel fibration. This because in Definition 2.9 of Gödel fibration, the universal property of
being a

∏
-quantifier-free object is required to hold only with respect to the

∐
-quantifier-free

objects of p.

The following proposition is an immediate consequence of Definition 2.9.

▶ Proposition 2.11 (Prenex normal form). In a Gödel fibration p : E −→ B, for every element
α of a fibre EI there exists an element β such that

α(i) ∼= ∃x∀yβ(x, y, i)

and β is
∏

-quantifier-free in the sub-fibration p′ of
∐

-quantifier-free objects of p.

Proof. Let us consider an element α of the fibre EI . Since p is a Gödel fibration, hence
in particular a Skolem fibration, the fibration p has enough

∐
-quantifier-free objects, and

hence there exists an element γ in the fibre EI×X such that α ∼=
∐
πI

(γ). Therefore, since
the sub-fibration p′ has enough

∏
-quantifier-free objects, there exists a

∏
-quantifier-free

object β of p′ in the fibre EI×X×Y such that γ ∼=
∏
πX

(β), and hence α ∼=
∐
πI

∏
πX

(β). ◀
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3 The Dialectica monad

In this section we assume that p : E −→ B is a cloven and split fibration whose base category
B has finite products. First we recall from Hofstra’s [11] the free construction Sum(−) which
adds simple sums (or coproducts) to a fibration, and then the dual construction Prod(−)
which freely adds simple products. Then, we present the Dialectica construction Dial(−)
and its decomposition in terms of simple coproducts and products completions.

Simple coproducts completion. The category Sum(p) has:
as objects triples (I,X, α), where I and X are objects of the base category B and α is
an object of the fibre EI×X ;
as morphisms triples (I,X, α) (f0,f1,ϕ)−−−−−−→ (J, Y, β), where I f0−→ J and I × X

f1−→ Y are
arrows of B and α(i, x) ϕ−→ β(f0(i), f1(i, x)) is a morphism of the fibre category EI×X .

The category Sum(p) is fibred over B via the first component projection and this fibration is
denoted by Sum(p) : Sum(p) −→ B. This fibration is called the simple coproduct (or sum)
completion of p. The intuition behind this definition is that an object (I,X, α) of the fibre
category Sum(p)I represents a formula (∃x : X)α(i, x). The assignment p 7→ Sum(p) extends
to a KZ pseudo-monad on the 2-category of cloven split fibrations, see [11, Theorem 3.9].
▶ Remark 3.1 (A presentation of Sum(p) reindexing functors). Let p : E −→ B be a cloven and
split fibration. Let I f−→ J be an arrow of B and let (J, Y, β) be an object of Sum(p)J . Then
the triple:

( I f−→ J, I × Y
πY−−→ Y, ⟨fπI , πY ⟩∗β

1⟨fπI ,πY ⟩∗β−−−−−−−−→ ⟨fπI , πY ⟩∗β )

is Sum(p)-cartesian (I, Y, ⟨fπI , πY ⟩∗β) → (J, Y, β) over I f−→ J . In particular Sum(p) is
endowed with a cloven and split structure. If:

(J, Y, β) (J×Y
g−→Y ′, β

γ−→⟨πJ ,g⟩∗β′)−−−−−−−−−−−−−−−−−−→ (J, Y ′, β′)

is an arrow of Sum(p)J (observe the omission of the first component, as it is forced to be
the identity arrow on J) then its f -reindexing is the pair:

(I, Y, ⟨fπI , πY ⟩∗β) (g⟨fπI ,πY ⟩, ⟨fπI ,πY ⟩∗γ)−−−−−−−−−−−−−−−−→ (I, Y ′, ⟨fπI , πY ′⟩∗β′)

of Sum(p)I , whose first component is the arrow I × Y
g⟨fπI ,πY ⟩−−−−−−−→ Y ′ of B and whose second

one is the arrow:

⟨fπI , πY ⟩∗β
⟨fπI ,πY ⟩∗γ−−−−−−−→ ⟨fπI , πY ⟩∗⟨πJ , g⟩∗β′ = ⟨πI , g⟨fπI , πY ⟩⟩∗⟨fπI , πY ′⟩∗β′

of EI×Y .
Now, let us assume that f is a projection J ×K

πJ−−→ J . In this particular case (in which
we are mostly interested) such an annoying presentation collapses into the following easier
one: the πJ -weakening of the arrow (g, γ) of Sum(p)J is the pair:

(J ×K,Y, ⟨πJ , πY ⟩∗β) (g⟨πJ ,πY ⟩,⟨πJ ,πY ⟩∗γ)−−−−−−−−−−−−−−→ (J ×K,Y ′, ⟨πJ , πY ′⟩∗β′)

of Sum(p)I , whose first component is the arrow J × K × Y
g⟨πJ ,πY ⟩−−−−−−→ Y ′ of B and whose

second one is the arrow:

⟨πJ , πY ⟩∗β
⟨πJ ,πY ⟩∗γ−−−−−−−→ ⟨πJ , πY ⟩∗⟨πJ , g⟩∗β′ = ⟨⟨πJ , πK⟩, g⟨πJ , πY ⟩⟩∗⟨πJ , πY ′⟩∗β′

of EJ×K×Y .
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▶ Remark 3.2 (Sum(p) has simple coproducts). Let p be a cloven and split fibration and let
us consider a projection J ×K

πJ−−→ J of B. The left adjoint
∐
πJ

of the πJ -weakening π∗
J in

Sum(p) exists and sends an arrow:

(J ×K,Y, β) (J×K×Y
g−→Y ′, β

γ−→⟨⟨πJ ,πK ⟩,g⟩∗β′)−−−−−−−−−−−−−−−−−−−−−−−−→ (J ×K,Y ′, β′)

of Sum(p)J×K to the arrow:

(J,K × Y, β) (J×K×Y
⟨πK ,g⟩−−−−→K×Y ′, β

γ−→⟨πJ ,⟨πK ,g⟩⟩∗β′)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (J,K × Y ′, β′)

of Sum(p)J , which we also denote as:

∐
πJ

(J ×K,Y, β)
∐

πJ
(g,γ)

−−−−−−→
∐
πJ

(J ×K,Y ′, β′).

▶ Remark 3.3. Let p : E −→ B be a fibration and consider its simple coproduct completion
Sum(p) : Sum(p) −→ B. As a consequence of Remark 3.2, every element (I, A, α) of the
fibre Sum(p)I isomorphic to an object of the form

∐
πI

(I ×A, 1, α′).
Notice that, by dualising the previous construction, one gets the notion of simple product

completion together with its analogous version of the previous characterization.

Simple products completion. The category Prod(p) is the one:
whose objects are triples (I,X, α), where I and X are objects of the base category B
and α is an object of the fibre EI×X ;
whose morphisms are triples (I,X, α) (f0,f1,ϕ)−−−−−−→ (J, Y, β), where I f0−→ J and I×Y

f1−→ X

are arrows of B and α(i, f1(i, y)) ϕ−→ β(f0(i), y) is a morphism of the fibre category EI×X .
Again, the category Prod(p) is fibred over B via first component projection and this fibration
is denoted by Prod(p) : Prod(p) −→ B and called simple product completion of p. The
intuition behind this definition is that an object (I,X, α) of the fibre category Prod(p)I
represents a formula (∀x : X)α(i, x).

▶ Proposition 3.4 (Hofstra [11]). There is an isomorphism of fibrations:

Prod(p) ∼= Sum(pop)op

which is natural in p.

Here one has to recall that pop stands for the fibrewise opposite of p, see [13] or [11, Def. 2.8].
Again, the assignment p 7→ Prod(p) extends to a co-KZ pseudo-monad on the 2-category

of cloven split fibrations, and its 2-category of pseudo-algebras is equivalent to the 2-category
of fibrations with simple products, see [11, Theorem 3.12].

We conclude this section by recalling the presentation of the Dialectica construction and
its presentation via the product-coproduct completions.

Dialectica construction. Let p : E −→ B be a fibration. Define a category Dial(p) as follows:
objects are quadruples (I,X,U, α) where I,X and U are objects of the base category B
and α ∈ EI×X×U is an objects of the fibre of p over I ×X × U ;
a morphism from (I,X,U, α) to (J, Y, V, β) is a quadruple (f, f0, f1, ϕ) where
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1. I
f−→ J is a morphism in B;

2. I ×X
f0−→ Y is a morphism in B;

3. I ×X × V
f1−→ U is a morphism in B;

4. α(i, x, f1(i, x, v)) ϕ−→ β(f(i), f0(i, x), v) is an arrow in the fibre over I ×X × V .
This is a fibration on B with the projection on the first component. Hofstra’s key observation
is that the construction of the fibration Dial(p) can be decomposed in two steps.

▶ Lemma 3.5 (Hofstra [11]). There is an isomorphism of fibrations, natural in p:

Dial(p) ∼= Sum(Prod(p)).

Notice that the pseudo-functor Sum(Prod(−)) is not a pseudo-monad in general, but, in
the case the base category B of a fibration p : E −→ B is cartesian closed, one can show that
there exists a pseudo-distributive law

ProdSum
λ−→ SumProd

of pseudo-monads, see [11, Theorem 4.4]. Therefore, by the known equivalence between
liftings of pseudo-monads and pseudo-distributive laws, see for example [21, 22], in this case
we have that Sum(Prod(−)) is a pseudo-monad.

A notably advantage of this algebraic presentation of the dialectica construction, is that
the principle of Skolemisation is represented by the pseudo-distributive law λ.

▶ Theorem 3.6 (Hofstra [11]). When the base category B of a fibration p is cartesian closed,
the fibration Dial(p) satisfies the principle

∀x∃yα(i, x, y) ∼= ∃f∀xα(i, x, fx)

for every α.

4 An intrinsic characterization of Dialectica fibrations

The main goal of this section is to connect the notion of Gödel fibration with that of Dialectica
construction, proving that a given fibration p is an instance of the Dialectica construction,
i.e. there exists a fibration p′ such that p ∼= Dial(p′), if and only if p is a Gödel fibration.
This result allows us to give an intrinsic definition of a Dialectica fibration because it shows
which properties an arbitrary fibration should satisfy to be an instance of the Dialectica
construction. Moreover, our proof of this equivalence is constructive, in the sense that when
p is a Gödel fibration, we are able to explicitly define and construct the fibration p′ such
that p ∼= Dial(p′).

To show this, we take the advantage of Hofstra’s decomposition Dial(−) ∼= Sum(Prod(−)),
and we start by showing how fibrations which are instances of the free construction Sum(−)
(and Prod(−)) can be described in terms of fibrations with

∐
-quantifier-free objects (and∏

-quantifier-free objects).

▶ Proposition 4.1. Let p : E −→ B be a fibration, and let us consider the simple coproduct
completion Sum(p). Let I be an object of B and let α be an object of its fibre EI . Then every
object of the form (I, 1, α) in the fibre Sum(p)I is a

∐
-quantifier-free element of Sum(p).

Moreover, the
∐

-quantifier-free objects of Sum(p) are up to isomorphism the elements of the
form (I, 1, α).
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Proof. First we prove that every element of the form (I, 1, α) is a
∐

-quantifier-free object.
Let us consider an arrow

ηp(α) = (I, 1, α) (f,ϕ)−−−→
∐
πI

(I ×A,B, β)

where I f=⟨g1,g2⟩−−−−−−→ A×B. We are going to prove that

ηp(α) (g2,ϕ)−−−−→ ⟨1I , g1⟩∗(I ×A,B, β)

is an arrow of Sum(p)I and that (f, ϕ) = (⟨1I , g1⟩∗ηβ)(g2, ϕ), where ηβ is the unit at
(I ×A,B, β) of the adjunction

∐
πI

⊣ π∗
I .

Moreover, we have to prove that such a choice of arrows I g−→ A of B and ηp(α) h−→
⟨1I , h⟩∗(I ×A,B, β) of Sum(p)I is unique. That is, whenever the equality:

(f, ϕ) = (⟨1I , g⟩∗ηβ)h

holds, it is the case that g = g1 and h = (g2, ϕ).
By Remarks 3.1 and 3.2, it is the case that

∐
πI

(I ×A,B, β) = (I, A×B, β), and that
⟨1I , g1⟩∗(I, A× B, β) = (I,B, ⟨πI , g1πI , πB⟩∗β), where πI and πB are the projections from
I ×B. Then:

ηp(α) (g2,ϕ)−−−−→ ⟨1I , g1⟩∗(I ×A,B, β) = (I,B, ⟨πI , g1πI , πB⟩∗β)

is a morphism of Sum(p)I since I g2−→ B is an arrow of B and:

α
ϕ−→ ⟨1I , g2⟩∗⟨πI , g1πI , πB⟩∗β = ⟨1I , g1, g2⟩∗β = ⟨1I , f⟩∗β

is a vertical morphism of EI . Observe that ηβ is the transpose along the adjunction
∐
πI

⊣ π∗
I

of the identity arrow of (I, A×B, β) =
∐
πI

(I ×A,B, β). Hence ηβ is the arrow:

(I ×A,B, β) (πA×B ,1β)−−−−−−−→ (I ×A,A×B, ⟨πI , πA×B⟩∗β)

and its ⟨1I , g1⟩-reindexing is the arrow:

(I,B, ⟨πI , g1πI , πB⟩∗β)
(⟨g1πI ,πB⟩, 1⟨πI ,g1πI ,πB ⟩∗β)
−−−−−−−−−−−−−−−−−−−→ (I, A×B, β)

whose precomposition by (g2, ϕ) yields indeed the arrow (f, ϕ).

Let us assume that the equality:

(f, ϕ) = (⟨1I , g⟩∗ηβ)h (1)

holds for some arrow I
g−→ A of B and ηp(α) h=(h2,ψ)−−−−−−→ ⟨1I , h⟩∗(I ×A,B, β) of Sum(p)I . As

it is the case that:

⟨1I , g⟩∗ηβ = (⟨gπI , πB⟩, 1⟨πI ,gπI ,πB⟩∗β)

one might compute the right-hand side of the equality (1) and infer the equality:

(f, ϕ) = (⟨g, h2⟩, ψ)

which implies that g = g1 and h = (h2, ψ) = (g2, ϕ).

MFCS 2021



87:12 The Gödel Fibration

Finally, notice that Whenever f is an arrow A → I of B, it is the case that the f -reindexing
of (I, 1, α) is the triple (A, 1, f∗α), which is still a quantifier-free formula, that is, its second
component is terminal in B.

Conversely, let us assume that the triple (I, A, α) is
∐

-quantifier-free and let us consider
its identity arrow (I, A, α) → (I, A, α) =

∐
πI

(I ×A, 1, α). By
∐

-quantifier-freeness, there
are an arrow I

g−→ A of B and an arrow:

(I, A, α) (I×A
!−→1, α

ϕ−→π∗
I ⟨1I ,g⟩∗α=⟨πI ,gπI ⟩∗α)−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⟨1I , g⟩∗(I ×A, 1, α) = (I, 1, ⟨1I , g⟩∗α)

of Sum(p)I such that the identity arrow (πA, 1α) of (I, A, α) equals the composition:(
(I, A, α) (I×A

!−→1, ϕ)−−−−−−−−→ (I, 1, ⟨1I , g⟩∗α)
(g,1⟨1I ,g⟩∗α)
−−−−−−−−→ (I, A, α)

)
where the pair (g, 1⟨1I ,g⟩∗α) is nothing but the ⟨1I , g⟩-reindexing of the unit at (I ×A, 1, α)
of the adjunction

∐
πI

⊣ π∗
I . We infer by this arrow equality that it needs to be the case that

(I ×A
πA−−→ A) = (I ×A

πI−→ I
g−→ A) and that:

( α ϕ−→ ⟨πI , gπI⟩∗α = ⟨πI , πA⟩∗α = α
1α−→ α ) = 1α

which means that ϕ = 1α. Finally we observe that the composition:

(I, 1, ⟨1I , g⟩∗α)
(g,1⟨1I ,g⟩∗α)
−−−−−−−−→ (I, A, α) (I×A

!−→1, ϕ=1α)−−−−−−−−−−−→ (I, 1, ⟨1I , g⟩∗α)

equals the identity arrow (I × 1 !−→ 1, 1⟨1I ,g⟩∗α). This concludes that the pair (I ×A
!−→ 1, 1α)

is actually an isomorphism (I, A, α) ∼= (I, 1, ⟨1I , g⟩∗α). ◀

▶ Remark 4.2. Let p : E −→ B be a fibration and let I be an object of B. Let us consider an
arrow (I, A, α) (f,ϕ)−−−→ (I,B, β) of Sum(p)I . W.l.o.f we can assume (I, A, α) to be of the form∐
πI

(I ×A, 1, α), see Remark 3.3, so we might consider its transpose (I ×A, 1, α) (1I×A,f,ϕ)−−−−−−−→
π∗
I (I,B, β) = (I×A,B, ⟨πI , πB⟩∗β), which is the unique arrow making the following diagram:

∐
πI

(I ×A, 1, α)
(1I ,f,ϕ) //∐

πI
(1I×A,f,ϕ)

��

(I,B, β)

∐
πI
π∗
I (I,B, β)

ε(I,B,β)

55

commute. Moreover, as (I × A,B, ⟨πI , πB⟩∗β) =
∐
πI×A

(I × A × B, 1, ⟨πI , πB⟩∗β), see
Proposition 4.1, the arrow (1I×A, f, ϕ) factors uniquely as the arrow:

(I ×A, 1, α) (!,ϕ)−−−→ ⟨1I×A, f⟩∗(I ×A×B, 1, ⟨πI , πB⟩∗β) = (I ×A, 1, ⟨πI , f⟩∗β)

(which can be uniquely expressed as the image (p ↪→ Sum(p))ϕ of the arrow α
ϕ−→ ⟨πI , f⟩∗β

of EI×A) followed by the arrow:

(I ×A, 1, ⟨πI , f⟩∗β)
⟨1I×A,f⟩∗η(I×A×B,1,⟨πI ,πB ⟩∗β)−−−−−−−−−−−−−−−−−−−−→

∐
πI×A

(I ×A×B, 1, ⟨πI , πB⟩∗β)

which is the ⟨1I×A, f⟩-reindexing of the unit:

(I ×A×B, 1, ⟨πI , πB⟩∗β)
η(I×A×B,1,⟨πI ,πB ⟩∗β)−−−−−−−−−−−−−−→ (I ×A×B,B, ⟨πI , πB⟩∗β)

of the adjunction
∐
πI×A

⊣ π∗
I×A.



D. Trotta, M. Spadetto, and V. de Paiva 87:13

Notice that in Proposition 4.1 the elements of the form (I, 1, α) represent propositions which
are free from the existential quantifier.

▶ Remark 4.3. The analogous of Remark 4.2 can be proved for a fibration having enough∐
-quantifier-free objects. In other words, in this kind of fibration the arrows of the fibres are

completely described by arrows between quantifier-free objects, unit and counit of adjunctions
given by coproducts.

Now we have all the tools to give an intrinsic description of the free-algebras for the
pseudo-monad which adds the simple coproducts to a given fibration.

▶ Theorem 4.4. A fibration p : E −→ B with simple coproducts is an instance of simple
coproduct completion if and only if it has enough

∐
-quantifier-free objects. Moreover, in this

case p ∼= Sum(p′) where p′ is the subfibration of
∐

-free-quantifers objects of p.

Proof. We define p′ : E′ −→ B the full-subfibration of p : E −→ B such that the objects of E′

are the
∐

-quantifier-free objects. By the universal property of the inclusion morphism p′ ↪→
Sum(p), there is unique a morphism of fibrations with simple coproducts F : Sum(p′) −→ p
commuting with the inclusion morphisms p′

ηp′
↪→ Sum(p′) and p′ ↪→ p. We claim that F is an

equivalence of fibrations. Firstly we observe that F is essentially surjective and then we show
that it is fully faithful. From now on, whenever π is a projection in B, we indicate as

∐
π the

left adjoint to the π-weakening w.r.t. Sum(p′) and as
∑
π the one w.r.t. p. Observe that:

F (I, 1, γ) = F
(
p′ ηp′
↪→ Sum(p′)

)
γ = (p′ ↪→ p)γ = γ

for every I in B and every γ in E′
I .

Essential surjectivity. Let α be an object of E and let I be the object pα of B. Since p
has enough

∐
-quantifier-free objects, there are J in B and β in EI×J such that

∑
πI
β ∼= α.

Since F preserves simple coproducts, it is the case that:

F (I, J, β) = F
∐
πI

(I × J, 1, β) =
∑
πI

F (I × J, 1, β) =
∑
πI

β

and we are done. Observe that (I, J, β) is an object of EI , hence the functor EI → E′
I induced

by F is essentially surjective as well.

Full faithfulness. It sufficies to prove that the morphism F of fibrations over B gives rise
to an equivalence EI → E′

I , for any given object I of B (see [13]). As the essential surjectivity
of F ↾EI

: EI → E′
I follows by the previous part, we only need to observe its full faithfulness.

By Remark 4.2 we write a given arrow (I, A, α) (f,ϕ)−−−→ (I,B, β) of EI as the composition:

ε(I,B,β)

( ∐
πI

⟨1I×A, f⟩∗η(I×A×B,1,⟨πI ,πB⟩∗β)

)( ∐
πI

(p′ ↪→ Sum(p′))ϕ
)

and this factorisation is unique, because of the uniqueness of adjoint transposition, because of
the uniqueness-part of Proposition 4.1 and because of faithfulness of the functor p′ ↪→ Sum(p′).
As F is forced to preserve simple coproducts and commutes with the inclusion morphisms
p′

ηp′
↪→ Sum(p′) and p′ ↪→ p, the arrow F (f, ϕ) equals the composition:

ε(
∑

πI
β)

( ∑
πI

⟨1I×A, f⟩∗η⟨πI ,πB⟩∗β

)( ∑
πI

ϕ
)
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which is indeed an arrow
∑
πI
α →

∑
πI
β. Observe that, analogously, every arrow

∑
πI
α →∑

πI
β of E′

I can be uniquely factored as such a composition, again by the existence and the
uniqueness of the adjoint transposition, by Definition 2.2 (recall that p is assumed to have∐

-quantifier-free objects) and by full faithfulness of p′ ↪→ p. Hence the function:

EI((I, A, α), (I,B, β)) → E′
I

( ∑
πI

α,
∑
πI

β
)

induced by F ↾EI
is bijective, i.e. F ↾EI

is fully faithful. ◀

Notice that the characterization of Theorem 4.4 can be obtained also for the simple product
completion because of the equivalence the equivalence Prod(p) ∼= Sum(pop)op, see Proposi-
tion 3.4.

▶ Theorem 4.5. A fibration p : E −→ B with simple products is an instance of simple product
completion if and only if it has enough-

∏
-quantifier-free objects. Moreover, in this case

p ∼= Prod(p′′) where p′′ is the subfibration of
∏

-free-quantifers objects of p.

Proof. It follows by Theorem 4.4 and Proposition 3.4. ◀

Combining Lemma 3.5, Theorem 4.4 and Theorem 4.5 we can prove the main result of our
work, which allows us to recognize if an arbitrary fibration p is an instance of the Dialectica
construction or not, and if it is, we can construct the fibration p̄ such that Dial(p̄) ∼= p.

▶ Theorem 4.6. Let p : E −→ B be a fibration with products, coproducts and such that B is
cartesian closed. Then there exists a fibration p̄ such that for Dial(p̄) ∼= p if and only if p is
a Gödel fibration.

Proof. By Lemma 3.5 we have that Dial(−) ∼= Sum(Prod(−)). Therefore, the result follows
from Theorem 4.5 and Theorem 4.4 by directly rephrasing the sequential application of these
results. ◀

▶ Remark 4.7. Notice that from a pure categorical perspective Theorem 4.6 provides a
characterization of the free-algebras of the pseudo-monad Dial(−).

5 Conclusion

Our results develop the original Dialectica construction from both a categorical and logical
perspectives, which contributes to a deeper understanding of the construction.

Our main result Theorem 4.6, provides an internal characterization of fibrations which
are instances of the Dialectica construction, highlighting the key features a fibration should
satisfy, namely it must be a Gödel fibration, to be an instance of the Dialectica construction.

Our presentation in terms of Gödel fibrations underlines a double nature of Dialectica
fibrations: they satisfy principles which are typical of classical logic, such as the existence of
a prenex normal form presentation for formulae, but they also satisfy principles normally
associated to intuitionistic logic. For example, they satisfy the existence of terms witnessing
a proof: for every proof of α ⊢ ∃xβ(x) where α is quantifier-free, we have a proof of α ⊢ β(t)
for some term t.
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Dialectica-like constructions are pervasive in several areas of mathematics and computer
science, and we briefly describe some future work, based on our previous analysis. We
wonder if the decomposition introduced by Hofstra can be extended or modified to provide
similar results for cousins of the Dialectica construction. In particular, we believe that this
decomposition, combined with the results presented in [23], could be generalized to the
context of dependent type theory.

There are two fibrations which seem to share common features with the Dialectica
construction. In particular, we would like to investigate and compare the fibrations arising
from work by Abramsky and Väänänen [1] on the Hodges semantics for independence-friendly
logic and the Dialectica tripos, which is a model of separation logic [3].

Finally, the strong constructive features of Dialectica fibrations we have shown suggest
that these kinds of fibrations could lead to interesting applications in constructive foundations
for mathematics and proof theory.
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1 Introduction

The problem of full abstraction for programming language semantics [21, 13], i.e. the
perfect agreement between a denotational and an operational specification, has been both
significant and enduring. It requires that the denotational semantics, which bestows each
program with a denotation, a meaning, is sufficiently coarse that it does not distinguish terms
behaving the same operationally. At the same time, the denotational semantics must remain
a congruence [36], to make the semantics compositional : the denotation of a composite term
is fully determined by the denotations of its subterms irrespective of their internal structure.

From an operational point of view, the choice of behavioral equivalence is generally
open. Bisimilarity, trace equivalence, weak bisimilarity etc. are all potentially applicable.
However, bisimilarity is often too strong for practical purposes. For instance, labelled
transition systems [39] (LTS) may perform invisible steps which are not ignored by bisimilarity
as opposed to weak bisimilarity [18, 19]. This is taken a step further in programming
language semantics, where a natural definition of program equivalence is that of the largest
adequate (w.r.t. observing termination) congruence relation [25]. This relation is also
known as contextual equivalence, the crown jewel of program equivalences, and can be
reformulated in a more explicit manner as Morris-style contextual equivalence [20, 13, 24],
i.e. indistinguishability under all program contexts.
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Despite being the subject of vigorous research, proving that coarser behavioral equivalences
are congruences remains a hard problem. Weak bisimilarity in particular stands out as a
popular equivalence that has seen widespread usage in the literature yet has been proven hard
to reason with [30, 31, 3]. To that end, various powerful methods exist for proving congruence-
closedness of bisimilarity, like Howe’s method [15, 16] and logical relations [10, 22, 23], yet
the machinery involved is complicated and non-trivial to execute correctly. In addition,
there have been the so-called cool congruence formats for weak bisimulation introduced by
Bloom [4] and van Glabbeek [37] that ensure weak bisimilarity being a congruence, but only
if the semantics adhere to the rule formats.

In this work, we propose three general compositionality criteria over operational specifica-
tions that, when all three are satisfied, guarantee weak bisimilarity being a congruence. The
foundation of our approach is categorical: on the one hand, the framework of mathematical
operational semantics introduced by Turi and Plotkin [35] acts as an ideal abstract setting
to explore programming language semantics. On the other hand, the coalgebraic approach
introduced by Brengos [8, 9] describes a seamless way to define weak bisimulation in cate-
gories of coalgebras, should the underlying behavior be monadic and equipped with an order
structure. With that in mind, the three criteria, which we name continuity, unitality and
observability, essentially characterize how the semantics interact with the order structure of
the behavior.

Related work

As mentioned earlier, Bloom and van Glabbeek have introduced the cool congruence formats;
weak bisimulation for any system given in these formats is guaranteed to be a congruence. In
this work we are also able to establish a formal connection with the simply WB cool format for
LTSs (Theorem 3.16), specifically that any system given in the simply WB cool rule format
automatically satisfies the three criteria. In that sense, our three criteria form a broader,
less restrictive approach on the same problem (extended beyond LTSs). Furthermore, the
many examples provided by van Glabbeek [37] help explain this connection and at the same
time act as excellent hands-on case studies for our three criteria.

Apart from the aforementioned work of Brengos, various approaches at the hard problem
of coalgebraic weak bisimulation have been proposed [27, 29, 12, 5]. Of particular interest is
the work of Bonchi et al. [6] on up-to techniques [7] for weak bisimulations in the context of
mathematical operational semantics. The main theoretical device in their work is that of a
lax model, a relaxation of the notion of a bialgebra. We relate lax models with our work by
showing that specifications satisfying the three criteria induce lax models (Theorem 3.21)
and argue that, as a formal method, our criteria are significantly easier to prove.

Paper outline

In Section 2.1 we introduce Turi and Plotkin’s mathematical operational semantics [35] as
well as the two “running” example systems used throughout the paper. In Section 2.2 we
present the work of Brengos on weak bisimulation [8, 9] and show how it applies to our
two examples. We expand on our contribution in Section 3, where we introduce the three
criteria and put them to the test against our main examples as well as examples from van
Glabbeek [37]. We subsequently formalize the connection of our three criteria with the
simply WB cool rule format (Theorem 3.16) and then move on to present our main theorem
(Theorem 3.18). Finally, in Section 3.3 we show how our three criteria induce lax models in
the sense of Bonchi et al. [6].
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2 Preliminaries

2.1 Mathematical Operational Semantics
We first summarize the basic framework of Turi and Plotkin’s mathematical operational
semantics [35]. The idea is that operational semantics correspond to distributive laws
of varying complexity on a base category C. For our work we need only consider the
most important form of distributive laws, that of GSOS laws [35], as they are in an 1-1
correspondence with the historically significant GSOS rule format [26].

▶ Definition 2.1. Let endofunctors Σ, B : C→ C on a cartesian category C. A GSOS law
of Σ over B is a natural transformation ρ : Σ(Id×B) =⇒ BΣ∗, where Σ∗ is the free monad
over Σ.

Endofunctors Σ and B are understood as the syntax and behavior (resp.) of a system
whereas ρ represents the semantics. Over the course of the paper we will also be using an
alternative representation of GSOS laws given by the following correspondence.

▶ Proposition 2.2. GSOS laws ρ : Σ(Id×B) =⇒ BΣ∗ are equivalent to natural transforma-
tions λ : Σ∗(Id×B) =⇒ BΣ∗ respecting the structure of Σ∗ as follows:

Σ∗Σ∗(Id×B) Σ∗(Id×B)Σ∗ BΣ∗Σ∗

Σ∗(Id×B) BΣ∗

Σ∗⟨Σ∗π1,λ⟩

µ(Id×B)

λΣ∗

Bµ

λ

Id×B

Σ∗(Id×B) BΣ∗
η(Id×B)

Bη◦π2

λ

▶ Remark 2.3. We shall be calling both GSOS laws ρ and natural transformations λ, as used
in Proposition 2.2, GSOS laws for the sake of brevity.

GSOS laws induce bialgebras, i.e. algebra-coalgebra pairs that agree with the semantics.

▶ Definition 2.4. A bialgebra for a GSOS law λ : Σ∗(Id× B) =⇒ BΣ∗ (resp. ρ : Σ(Id×
B) =⇒ BΣ∗) is a Σ-algebra, B-coalgebra pair ΣX X BX

g h that commutes with λ (ρ):

Σ∗X X BX

Σ∗(X ×BX) BΣ∗X

g#

Σ∗⟨1,h⟩

h

λ

Bg#

ΣX X BX

Σ(X ×BX) BΣ∗X

g

Σ⟨1,h⟩

h

ρ

Bg#

Where g# is the EM-algebra induced by g. A bialgebra morphism from ΣX X BX
g h to

ΣY Y BY
j k is a map f : X → Y that is both a Σ-algebra and a B-coalgebra morphism.

If a : ΣA A
∼= is the initial Σ-algebra, the algebra of terms, and z : Z BZ

∼=

is the final B-coalgebra, the coalgebra of behaviors, the following proposition promotes a
GSOS law to an operational semantics of a language, in the form of a morphism f mapping
programs living in A to behaviors in Z.

▶ Proposition 2.5 (From [17, 35]). Let endofunctors Σ, B : C→ C on a cartesian category
C such that a : ΣA A

∼= is the initial Σ-algebra and z : Z BZ
∼= is the final B-

coalgebra. Every GSOS law λ : Σ∗(Id × B) =⇒ BΣ∗ induces a unique initial λ-bialgebra
ΣA A BAa h , the operational model of the language, and a unique final λ-bialgebra
ΣZ Z BZ

g z , the denotational model. In addition, there exists a unique λ-bialgebra
morphism f : A→ Z, mapping every program in A to its behavior in Z.

MFCS 2021
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The fact that map f : A → Z is an algebra homomorphism is a fundamental well-
behavedness property of GSOS laws, as it implies that bisimilarity, defined as equality under
f , is a congruence, i.e. is respected by all syntactic operators.

The categorical interpretation of GSOS rules can be better understood by the following
examples, which serve as the “running” examples of this paper.

▶ Example 2.6 (A While language). We introduce While, a basic imperative language with a
mutable state, whose syntax is generated by the following grammar:
⟨prog⟩ ::= skip | v := ⟨expr⟩ | ⟨prog⟩ ; ⟨prog⟩ | while ⟨expr⟩ ⟨prog⟩

The statements are the standard skip, assignment :=, sequential composition ; and
while-loops. Expressions and assignments act on a variable store whose type we denote as S

and we shall be writing [e]s to denote evaluation of an expression e under variable store s.
The syntax of While corresponds to the Set-endofunctor Σ ≜ ⊤⊎(V ×Exp)⊎Id2⊎(Exp×

Id), with the set of While-programs A as the carrier of the initial Σ-algebra a : ΣA A
∼= .

The typical behavior functor for deterministic systems with mutable state is [S×({✓}⊎ Id)]S ,
where {✓} ∼= ⊤ is populated by the element that denotes termination, but we will instead
use T ≜ [Pc(S × ({✓} ⊎ Id))]S , where Pc is the countable power-set monad. This way the
behavior can be equipped with both a monadic and an order structure, given by inclusion
(see Section 2.2), while also allowing for non-determinism. The carrier of the final coalgebra
z : Z TZ

∼= is the set of behaviors acting on variable stores S returning countably many
new stores and possibly new behaviors.

skip
s, skip → s,✓

asn
s, v := e → s[v←[e]s],✓

seq1
s, p → s′,✓

s, p;q → s′, q

seq2
s, p → s′, p′

s, p;q → s′, p′;q
w1

[e]s = 0
s, while e p → s,✓

w2
[e]s ̸= 0 q ≜ while e p

s, q → s, p ; q

The above semantics determines a GSOS law ρ : Σ(Id× T ) =⇒ T Σ∗ in the category Set
of sets and (total) functions, or equivalently a natural transformation λ : Σ∗(Id×T ) =⇒ T Σ∗.
This example is covered in the literature [34, 33], but we include the definition for posterity.

▶ Definition 2.7 (GSOS law of While).

ρX : Σ(X × TX) → TΣ∗X
(x, f) ; (y, g) 7→ λs.({(s′, y) | (s′,✓) ∈ f(s)} ∪ {(s′, (x′ ; y)) | (s′, x′) ∈ f(s)})

while e (x, f) 7→ λ s.

{
{(s, (x ; while e x))} if [e]s ̸= 0
{(s,✓)} if [e]s = 0

skip 7→ λs.{(s,✓)}
v := e 7→ λs.{(s[v←ev],✓)} for ev = [e]s

To see how the semantics is connected to the GSOS law, consider rules seq1 and seq2,
corresponding to the first line in ρ. Roughly, writing s, p→ s′,✓ denotes that (s′,✓) ∈ f(s).
The fact that s, p→ s′,✓ and s, p→ s′, q are rule premises is reflected in the construction
of the set of transitions. Note also that q is used in the conclusion of rules seq1 and seq2.
Similarly in ρ we can see that y is present in both the left and right side of ρ, which is why
the shape of the behavior of subterms is X × TX rather than simply TX.

▶ Example 2.8 (A simple process calculus). We introduce a simple process calculus, or SPC for
short, based on the classic Calculus of communicating systems introduced by Milner [18]. Its
syntax is generated by the following grammar:
⟨p⟩ ::= 0 | δ.⟨p⟩ | ⟨p⟩ ∥ ⟨p⟩ | ⟨p⟩ + ⟨p⟩
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From left to right we have the null process 0, prefixing of a process p with action
δ ∈ ∆τ = ∆ ∪∆ ∪ {τ} living in a set composed of actions ∆, coactions ∆ and an internal
action τ , parallel composition and finally non-deterministic choice.

sum1 P
δ−−→ P ′

P + Q
δ−−→ P ′

sum2
Q

δ−−→ Q′

P + Q
δ−−→ Q′

com1 P
δ−−→ P ′

P∥Q δ−−→ P ′∥Q

com2
Q

δ−−→ Q′

P∥Q δ−−→ P∥Q′
syn

α ∈ ∆ P
α−−→ P ′ Q

α−−→ Q′

P∥Q τ−−→ P ′∥Q′
prefix

δ.P
δ−−→ P

Similarly to Example 2.6, the semantics forms a GSOS law ρ : Σ(Id× T ) =⇒ TΣ∗ in Set
for Σ ≜ ⊤ ⊎ (∆τ × Id) ⊎ Id2 ⊎ Id2 and T ≜ Pc(∆τ × Id). In this case, the carrier of the
final coalgebra z : Z TZ

∼= is the set of all strongly extensional (meaning that distinct
children of nodes are not bisimilar), countably-branching, ∆τ -labelled trees [2, §4].

▶ Definition 2.9 (GSOS law of SPC).

ρX : Σ(X × TX) 7→ TΣ∗X
δ.(x, W ) 7→ {(δ, x)}
(x, X) ∥ (y, Z) 7→ {(δ, (x′ ∥ y)) | (δ, x′) ∈W} ∪ {(δ, (x ∥ y′)) | (δ, y′) ∈ Z} ∪

{(τ, (x′ ∥ y′)) | (α, x′) ∈W ∧ (a, y′) ∈ Z}
(x, W ) + (y, Z) 7→ W ∪ Z

2.2 Order-enrichment

Order-enriched categories [38] typically equip their hom-sets with an order structure. While
there are many forms of order-enrichment, one “nice” such form that is convenient for our
purposes is ω-Cpo∨ld-enrichment.

▶ Definition 2.10 ([9, §2.3]). A category C is ω-Cpo∨ld-enriched when
Every hom-set C(X, Y ) carries a partial order ≤ and has all finite joins ∨.
Composition is left-distributive over finite joins, i.e. given any morphisms f, g, i with
suitable domains and codomains, i ◦ (f ∨ g) = i ◦ f ∨ i ◦ g.
Every ascending ω-chain f0 ≤ f1 ≤ . . . for fi ∈ C(X, Y ) has a supremum

∨
i fi ∈ C(X, Y ).

Composition − ◦ − : C(X, Y )× C(Y, Z)→ C(X, Z) is continuous, meaning that for any
ascending ω-chains fi, gi and morphisms f, g with suitable (co)domains, we have

g ◦
∨

i

fi =
∨

i

(g ◦ fi) and (
∨

i

gi) ◦ f =
∨

i

(gi ◦ f)

For reasons that will become clear in Section 2.3, we are interested in monads whose Kleisli
category is ω-Cpo∨ld-enriched as we are looking to use them as behaviors in our distributive
laws and exploit their order structure. Examples of such monads are the powerset P [9, §4.1],
the countable powerset Pc [9, §4.3] and the convex combination monad CM [9, §4.3].

▶ Example 2.11 (Continuation of Example 2.6). The monad structure ⟨T, η, µ⟩ for T ≜ [Pc(S×

({✓} ⊎ Id))]S is given by η(x)(s) = {(s, x)} and µ(f)(s) =
⋃

(s′,g)∈f(s)

{
(s′,✓) if g = ✓

g(s′) if g ̸= ✓
.

MFCS 2021



88:6 Abstract Congruence Criteria for Weak Bisimilarity

The ω-Cpo∨ld-enrichment of Kℓ(T ) stems from the fact that the countable powerset monad
Pc is itself ω-Cpo∨ld-enriched1. More specifically, we have f ≤ g ⇐⇒ ∀x, s.f(x)(s) ⊆ g(x)(s),
f ∨ g ≜ λx.λs.[f(x)(s) ∪ g(x)(s)] and

∨
i fi = λx.λs.

⋃
i fi(x)(s).

▶ Example 2.12 (Continuation of Example 2.8). The monad structure ⟨T, η, µ⟩ for T ≜
Pc(∆τ × Id) was developed by Brengos [8, §4.1] as a central, demonstrative example of the
role of monads in coalgebraic weak bisimulation. The unit is simply η(x) = {(τ, x)} and
the join µX : Pc[∆τ × Pc(∆τ ×X)] → Pc(∆τ ×X) is µ = µPc ◦ Pcµ∆ ◦ µPc ◦ Pcst where
stX,Y : X × PcY → Pc(X × Y ) is the tensorial strength of Pc given by

stX,Y (x, Y ) = {(x, y) | y ∈ Y }

and µ∆ : ∆τ ×∆τ ×X → Pc∆τ X is

µ∆ =


(δ, τ, x) 7→ {(δ, x)}
(τ, δ, x) 7→ {(δ, x)}
(δ1, δ2, x) 7→ ∅ when δ1, δ2 ̸= τ.

In other words, µ will disallow any two-step transition that outputs two visible labels
in a row and allow everything else, but only after redundant invisible labels are removed.
The motivation behind the definition of µ will become clear in Section 2.3. As for the
ω-Cpo∨ld-enrichment of Kℓ(T ), it is also a consequence of Kℓ(Pc) being ω-Cpo∨ld-enriched,
with f ≤ g ⇐⇒ f(x) ⊆ g(x), f ∨ g ≜ λx.[f(x) ∪ g(x)] and

∨
i fi = λx.

⋃
i fi(x).

2.3 Free monads in ω-Cpo∨
ld-enriched categories

We now turn our attention to the coalgebraic approach to weak bisimulation of Brengos [8, 9].
The main idea is that given an endomorphism α : X → X in an ω-Cpo∨ld-enriched category,
there exists the free monad over α, α∗ . This process, which we call the reflexive transitive
closure of a or simply the rt-closure of a, can be used to derive saturated transition systems
or the multi-step evaluation relation of a programming language.
▶ Remark 2.13. In general, a monad in a bicategory K is an endomorphism ϵ : X → X

equipped with 2-cells η : 1X → ϵ and µ : ϵ◦ϵ→ ϵ subject to the conditions µ◦ϵη = µ◦ηϵ = 1ϵ

and µ ◦ ϵµ = µ ◦ µϵ. One can recover the classic definition of a monad by taking the strict
2-category Cat of categories, functors and natural transformation as K. In order-enriched
categories, where there is at most one 2-cell between morphisms, usually denoted by ≤,
monads are simply endomorphisms ϵ : X → X satisfying 1X ≤ ϵ and ϵ ◦ ϵ ≤ ϵ. Monads in
order-enriched categories are known as closure operators.

▶ Definition 2.14 ([9, Definition 3.6]). An order-enriched category K admits free monads if
for any endomorphism α : X → X there exists a monad α∗ such that

α ≤ α∗

if α ≤ β for a monad β : X → X then α∗ ≤ β.

The free monad of an endomorphism in ω-Cpo∨ld-enriched categories is the least solution
of a certain assignment or, equivalently, the supremum of an ascending ω-chain.

▶ Proposition 2.15 ([9, §3.2]). For an ω-Cpo∨ld-enriched category C, the free monad
(−)∗ : ∀X.C(X, X)→ C(X, X) of α : X → X is given by α∗ ≜ µx.1∨ x ◦α =

∨
n<ω(1∨α)n.

1 We (slightly abusively) say that a monad T is ω-Cpo∨ld-enriched whenever Kℓ(T ) is.
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Free monads in ω-Cpo∨ld-enriched categories enjoy a number of interesting properties.

▶ Lemma 2.16 (Properties of free monads). For all α : X → X, β : Y → Y , we have
i. ∀f : X → Y. f ◦ α ≤ β ◦ f =⇒ f ◦ α∗ ≤ β∗ ◦ f

ii. α∗∗ = α∗

iii. α∗ = α∗ ◦ α∗

iv. 1∗ = 1.

We can now revisit Example 2.6 and Example 2.8 to witness how the rt-closure acts on
each operational model h : A→ TA. Note that throughout the paper we shall be using the
notation − ⋄ − to denote composition in Kleisli categories.

▶ Example 2.17 (Continuation of Example 2.6). The rt-closure (free monad) h∗ of the
operational model h : A→ TA amounts to the reflexive, transitive closure of h. The initial
stage (1 ∨ h)0 = 1Kℓ(T ) = ηA takes care of the reflexive step, while stages (1 ∨ h)n+1 =
(1 ∨ h)n ⋄ (1 ∨ h) = (1 ∨ h)n ∨ ((1 ∨ h)n ⋄ h) amount to the inductive, transitive step, which
acts according to the definition of monadic composition. For instance, (s, skip ; skip)
weakly transitions to (s, skip ; skip), (s, skip) and (s , ✓).

▶ Example 2.18 (Continuation of Example 2.8). The rt-closure h∗ amounts to the saturation
of h : A → TA. The unit η establishes p

τ==⇒ p as a silent step in h∗ for p ∈ A whereas µ

ensures that one-step transitions in the saturated system cannot produce more than one
visible label, i.e. they will always be of the sort of p

τ∗

===⇒ q
δ−−→ r

τ∗

===⇒ s or p
τ∗

===⇒ q. The
reader may refer to [8, 9] for more details.

2.4 Weak bisimulation
We are now ready to define weak bisimulation as a special case of an Aczel-Mendler bisimula-
tion [1, 32].

▶ Definition 2.19. Let f : X → FX be a coalgebra for a functor F : C → C. An Aczel-
Mendler bisimulation, or simply bisimulation, for f is a relation (span) X

r1←− R
r2−→ X which

is the carrier of a coalgebra e : R→ FR that lifts to a span of coalgebra homomorphisms, i.e.
making the following diagram commute.

FX FR FX

X R X

F r1 F r2

f e

r1 r2

f

In our setting we elect to use the “unoptimized” definition of weak bisimulation as
bisimulation on a saturated system, mainly due to its simplicity. Regardless, under the mild
condition that arbitrary cotupling in Kℓ(T ) is monotonic, which is true in all of our examples,
this definition of weak bisimulation coincides with the traditional one [8, §6].

▶ Definition 2.20. Assume a coalgebra h : X → TX for an ω-Cpo∨ld-enriched monad
⟨T, η, µ⟩. A weak bisimulation for h is a bisimulation for h∗.

Two elements x, y ∈ X are (weakly) bisimilar, written as (x ≈ y) x ∼ y, if there is a
(weak) bisimulation that contains them. If z : Z → TZ is the final T -coalgebra, then for
every coalgebra h : X → TX we write h! : X → Z for the unique coalgebra homomorphism
from h to z and h† for the one from h∗ to z. The following theorem presents the principle of
weak coinduction, i.e. that weakly bisimilar elements are mapped to the same weak behavior.
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▶ Theorem 2.21 ([8, Theorem 6.8]). Let ⟨T, η, µ⟩ be an ω-Cpo∨ld-enriched monad with final
coalgebra z : Z → TZ. If T preserves weak pullbacks, then the greatest weak bisimulation
for a coalgebra h : X → TX exists and coincides with the pullback of the equality span
⟨1Z , 1Z⟩ : Z ↣ Z × Z along h† × h† : X ×X → Z × Z.

The † construction can be applied to any coalgebra, including the final coalgebra z : Z →
TZ. The following lemma shows that h† can also be recovered via z† and h!, a fact that will
turn out to be useful in Section 3.

▶ Lemma 2.22 ([8, Lemma 6.9]). For any h : X → TX, we have h† = z† ◦ h!.

3 Weak bisimulation congruence semantics

The theory introduced in Section 2.2 sets the stage for our three compositionality criteria,
which ensure that weak bisimilarity is a congruence. In addition, we shall test the criteria
on While and SPC and establish a correspondence with the simply WB cool rule format of
van Glabbeek (see [37], definition also included in Appendix A), both formally and through
examples, as it also guarantees weak bisimilarity being a congruence and comes with less
overhead compared to the WB cool format. Finally, we shall briefly touch on the work of
Bonchi et al. [6] and show that systems satisfying the three criteria induce lax models.

3.1 The three compositionality criteria
Simply put, the three criteria ensure that semantics interact with the order structure of the
behavior functor in a sensible way. They are abstract in that they apply to any GSOS law
λ : Σ∗(Id× T ) =⇒ TΣ∗ when ⟨T, η, µ⟩ is an ω-Cpo∨ld-enriched monad. As such, we assume
the existence of such a T and λ throughout Section 3. We present and explore each criterion
individually starting with the simplest of the three.

▶ Criterion 1 (Continuity). For any ascending ω-chain f0 ≤ f1 ≤ . . . : X → TX the following
condition applies:

λ ◦ Σ∗⟨1,
∨

i

fi⟩ =
∨

i

λ ◦ Σ∗⟨1, fi⟩ (1)

Alternatively, we can write the above using ρ : Σ(Id× T ) =⇒ TΣ∗ as

ρ ◦ Σ⟨1,
∨

i

fi⟩ =
∨

i

ρ ◦ Σ⟨1, fi⟩. (2)

▶ Proposition 3.1. Equation (1) and Equation (2) are equivalent.

We can compare Criterion 1 to the local continuity property of lifted functors in Kleisli
categories [14, §2.3], i.e. lifted functors respecting the ω-Cpo∨ld-enrichment structure of
the category. When it comes to semantics, the following example from van Glabbeek [37,
Example 2] underlines what sort of rules may violate Criterion 1.

▶ Example 3.2 (Illegal rules). Let us extend SPC with a new unary operator, ⌊⟨p⟩⌋, subject
to the following GSOS rules applying to specific actions α, b ∈ ∆:

pos P
τ−−→ P ′

⌊P ⌋ τ−−→ ⌊P ′⌋
neg

P ̸a−−→

⌊P ⌋ b−−→ 0
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Rule neg allows a process that cannot perform an a-transition to terminate with a b-
transition. This rule violates Criterion 1, which can be witnessed by testing the criterion
with (f0(p) = {(τ, p′)}) ≤ (f1(p) = {(a, q), (τ, p′)}), as only f0 is able to induce a b-transition.
In addition, weak bisimulation fails to be a congruence as τ.α.0 ≈ α.0 but ⌊τ.α.0⌋ ̸≈ ⌊α.0⌋.

Rule neg in the above example includes a negative premise. A GSOS specification that
has no negative premises - conclusions are never negative - is called positive. Positive GSOS
specifications correspond to monotone GSOS laws (see [11] and also [6, Equation 7]), in the
sense that g ≤ f =⇒ λ◦Σ∗⟨1,g⟩ ≤ λ◦Σ∗⟨1,f⟩. This is weaker than continuity (Criterion 1),
in that continuous GSOS laws are monotone but not the other way around, but one has to
look very hard to find semantics that are monotone yet not continuous.

▶ Example 3.3 (A non-continuous monotone rule). We substitute the set of visible actions

of SPC with N and define a new operator, ⌊_⌋, subject to rule mon P
∞−−→

⌊P ⌋ τ−−→ 0
, where

P
∞−−→ denotes that P can perform an infinite number of transitions, i.e. set {(δ, P ′) | P δ−−→

P ′} is infinite. Even though this is a monotone rule, it is not continuous. Consider for
instance the ascending ω-chain fi : X → TX for some set of processes X with fi(x) =
{(0, x), (1, x) . . . (i, x)}. Notice that (τ, x) ⊆ λ ◦ Σ∗⟨1,

∨
i fi⟩, but (τ, x) ̸⊆

∨
i λ ◦ Σ∗⟨1, fi⟩.

▶ Example 3.4 (Continuation of Example 2.6). Back to our While language, Criterion 1 is
trivially true for all terms except for sequential composition, which is slightly more involved.
In this case, we can see that ρX((x,

∨
i fi(x)) ; (y,

∨
i fi(y))) is mapped to

λs.({(s′, y) | (s′,✓) ∈ (
∨

i

fi(x))(s)} ∪ {(s′, (x′ ; y)) | (s′, x′) ∈ (
∨

i

fi(y))(s)})

= λs.
∨

i

({(s′, y) | (s′,✓) ∈ fi(x)(s)} ∪ {(s′, (x′ ; y)) | (s′, x′) ∈ fi(y)(s)}),

which is precisely
∨

i(ρX((x, fi(x)) ; (y, fi(y)))).

▶ Example 3.5 (Continuation of Example 2.8). The transitions of prefix expressions such as
δP are, for any given P , independent of (the transitions of) P thus the prefix rule is trivially
continuous. Transitions for parallel composition and non-deterministic choice are basically
unions of transitions of their subterms and hence satisfy Criterion 1.

▶ Criterion 2 (Unitality). For any f : X → TX,

Σ∗X

Σ∗(X × TX) TΣ∗X

Σ∗⟨1,ηX∨f⟩

(λX◦Σ∗⟨1,f⟩)∗

≤

λX

This criterion characterizes how the semantics deal with internal steps, here represented
by the monadic unit η. The right path on the diagram represents the rt-closed (weak)
transitions of a composite term, the subterms of which (strongly) transition according to f .
On the other hand, the left path represents the strong transitions of a composite term, the
subterms of which may also perform internal steps. This criterion, which somewhat resembles
the identity condition for lifting functors to Kleisli categories [14, §2.2], dictates that adding
arbitrary internal steps to subterms should not lead to extraneous, meaningful observations.
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▶ Remark 3.6. A slightly stronger but simpler formulation of Criterion 2 based on ρ is

ΣX

Σ(X × TX) TΣ∗X

Σ⟨1,ηX∨f⟩

(ρX◦Σ⟨1,f⟩)∨(ηX◦θX )

≤

ρX

where θ : Σ =⇒ Σ∗ is the universal natural transformation sending Σ to its free monad.
Compared to the original criterion, which asks for the transitions induced by internal steps
to eventually appear on the right side, this version asks for said transition to appear either
on step 0, the reflexive, identity step (hence the added ηX ◦ θX), or step 1, i.e. the transitions
induced immediately by f . We can apply similar logic to Proposition 3.1 to show that this
version of Criterion 2 is stronger.

Criterion 2 works in the same way as the “patience rule” requirement of the simply
WB cool rule format [37, Definition 8, item 2], which dictates that the only rules with
τ -premises are patience rules. For instance, the patience rule for a unary operator o(p) is

p
τ−−→ p′

o(p) τ−−→ o(p′)
. It is clear that patience rules are achieving the same effect of forcing

composite terms to only relay silent steps of subterms.

▶ Example 3.7 ([37, Example 4]). We extend SPC with ⌊_⌋ and introduce the following
impatient rules:

pat P
τ−−→ P ′

⌊P ⌋ τ−−→ ⌊P ′⌋
imp P

τ−−→ P ′

⌊P ⌋ c−−→ ⌊P ′⌋

Rule imp violates Criterion 2, as taking f = λx.∅ will not induce the c-transition present in
the left path. Weak bisimulation fails to be a congruence as 0 ≈ τ.0 but ⌊0⌋ ̸≈ ⌊τ.0⌋.

▶ Example 3.8 (Continuation of Example 2.6). Language While actually respects the stronger
version of Criterion 2 found in Remark 3.6. For skip, assignment and while-loops the
transitions induced by ρX ◦ Σ⟨1,f⟩ are the same regardless of f . This is not the case for
sequential composition, but we observe that the left path always leads to s, x;y → s, x;y,
which is covered by the added ηX ◦ θX on the right path.

▶ Example 3.9 (Continuation of Example 2.8). SPC provides for a good example of failure of
Criterion 2 as it echoes the well-known fact that weak bisimilarity is not compatible with non-
deterministic choice in a manner similar to Example 3.7. In particular, the left path always
assigns x+y transitions {(τ, x), (τ, y)} but for f = λx.∅ we have (λX◦Σ∗⟨1, f⟩)∗ = {(τ, x+y)}.
Clearly {(τ, x), (τ, y)} ⊈ {(τ, x + y)} and so Criterion 2 is not satisfied. We can witness the
incompatibility of non-deterministic choice by taking a cue from the failing instance and use
a process which has no transitions, i.e. the null process: 0 ≈ τ.0 but δ.0 + 0 ̸≈ δ.0 + τ.0.

▶ Criterion 3 (Observability). For any f : X → TX,

λX ◦ Σ∗⟨1,f ⋄ f⟩ ≤ (λX ◦ Σ∗⟨1,f⟩)∗ (3)

Equivalently, we can reformulate the above as

ρX ◦ Σ⟨1,f ⋄ f⟩ ≤ (λX ◦ Σ∗⟨1,f⟩)∗ ◦ θX (4)

where θ : Σ =⇒ Σ∗ is the universal natural transformation sending Σ to its free monad.
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▶ Remark 3.10. The fact that Equation (3) and Equation (4) are equivalent can be proved
in a manner similar to Proposition 3.1.

This criterion is roughly a weakening of the associativity condition for liftings to Kleisli
categories [14, §2.2]. We can think of f ⋄ f as a two-step transition applied to subterms
and λX ◦ Σ∗⟨1,f ⋄ f⟩ as the act of a context inspecting zero or more subterms performing
that two-step transition. The criterion relates the information obtained by contexts when
inspecting two-step transitions as opposed to inspecting each step individually, possibly many
times over. Specifically, it ensures that the former always carries less information than the
latter. A further way to interpret this criterion is that inspecting an effect now instead of
later does not produce new outcomes.

Criterion 3 is more complex to explain in terms of the simply WB cool format, as
requirements 1,3,4,5 in Definition 8 from van Glabbeek [37] all contribute towards observations
on visible transitions not being affected by silent transitions, regardless of when the latter
occur. First, let us look at straightness. An operator is straight if it has no rules where a
variable occurs multiple times in the left-hand side of its premises. The following example
shows how non-straight rules can lead to issues.

▶ Example 3.11 ([37, Example 3]). Let operator ⌊_⌋ subject to the following rules applying
to specific a, b, c ∈ ∆:

pat P
τ−−→ P ′

⌊P ⌋ τ−−→ ⌊P ′⌋
cur

P
a−−→ Q P

b−−→W

⌊P ⌋ c−−→ ⌊Q⌋

We can see how rule cur violates Criterion 3 by taking f(p) = {(a, q), (τ, w)}, f(q) = {(τ, q)}
and f(w) = {(b, w)}. Since (f ⋄ f)(p) = {(a, q), (b, w)}, running λX ◦ Σ∗⟨1,f ⋄ f⟩ on ⌊p⌋
induces a c-transition, which does not occur on the right side. With rule cur weak bisimilarity
is not a congruence, as α.0 + b.0 + τ.b.0 ≈ α.0 + τ.b.0 but ⌊α.0 + b.0 + τ.b.0⌋ ̸≈ ⌊α.0 + τ.b.0⌋.

Requirements 3 and 4 in the definition of the simply WB cool format underline how the
lack of patience rules can affect observations.

▶ Example 3.12 ([37, Example 5]). Consider operator ⌊_⌋ subject to rule oba P
a−−→ P ′

⌊P ⌋ τ−−→ 0
applying to a specific action a. Rule oba fails Criterion 3 with f(p) = {(τ, q)} and f(q) =
{(a, w)}, making (f ⋄f)(p) = {(a, w)}. Running λX ◦Σ∗⟨1,f ⋄f⟩ on ⌊p⌋ induces a τ -transition,
which does not occur on the right side. We can see how α.0 ≈ τ.α.0 but ⌊α.0⌋ ̸≈ ⌊τ.α.0⌋.

The final requirement is that of smoothness. A straight operator for an LTS is smooth
if it has no rules where a variable occurs both in the target and in the left-hand side of a
premise. Non-smooth rules can also cause problems, as evidenced by the following example.

▶ Example 3.13 ([37, Example 7]). Let operator ⌊_⌋ with the following rules:

play P
δ−−→ P ′

⌊P ⌋ δ−−→ ⌊P ′⌋
pause P

δ−−→ P ′

⌊P ⌋ δ−−→ ⌊P ⌋

Non-smooth rule pause also violates Criterion 3. Take f(p) = {(τ, q)} and f(q) = {(a, w)},
making (f ⋄ f)(p) = {(a, w)}. Running λX ◦ Σ∗⟨1,f ⋄ f⟩ on ⌊p⌋ induces a-transition (a, ⌊p⌋),
but the only a-transitions induced on the other side are (a, ⌊q⌋) and (a, ⌊w⌋) instead. Weak
bisimilarity fails to be a congruence, with α.0 + τ.b.0 ≈ α.0 + τ.b.0 + b.0 but ⌊α.0 + τ.b.0⌋ ̸≈
⌊α.0 + τ.b.0 + b.0⌋. The difference here is that only ⌊α.0 + τ.b.0 + b.0⌋ is able to perform an
α-transition after a b-transition.
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▶ Example 3.14 (Continuation of Example 2.6). The situation for Criterion 3 is less obvious
for both while-loops and sequential composition, but still trivial for skip and assignment
statements. Using the simpler ρ-based formulation of Criterion 3, we have that for while-
loops, the induced transition is not affected by transitions of subterms, hence ρX ◦Σ⟨1,f ⋄ f⟩
is always included in the first iteration of (λX ◦ Σ∗⟨1,f⟩)∗ ◦ θ.

Showing that the criterion is satisfied by an expression x;y for any x, y ∈ X requires case
analysis of (f ⋄ f)(x) only, as the rule ignores y. The two cases are:

(t, z) ∈ (f ⋄ f)(x)(s). In this case x did not terminate, but rather went through an
intermediate transition t′, z′. According to rule seq2, the transition produced by ρX ◦
Σ⟨1,f ⋄f⟩ is s, x;y → t, z;y. Going over to (λX ◦Σ∗⟨1,f⟩)∗ ◦θ, the first iteration produces
s, x;y → t′, z′;y, and in the second we get t′, z′;y → t, z;y, which is the same result.
(t,✓) ∈ (f⋄f)(x)(s). Here, x terminated producing t either immediately ((t,✓) ∈ f(x)(s))
or in two steps ((s′, x′) ∈ f(x)(s) and (t,✓) ∈ f(x′)(s′)). In any case, the transition
produced by ρX ◦ Σ⟨1,f ⋄ f⟩ is s, x;y → t, y. Depending on when x terminated, this
transition will be “caught” in either the first or the second iteration of (λX ◦Σ∗⟨1,f⟩)∗ ◦ θ.

▶ Example 3.15 (Continuation of Example 2.8). When instantiated to SPC, the criterion
essentially asks if the act of “forgetting” invisible steps of subterms, as imposed by the rules
of monadic composition in Kℓ(T ), gives rise to new transitions for a composite term. In most
cases, this is evidently true; consider for instance the parallel composition of two terms P∥Q,
for which P P ′ P ′′τ δ , i.e. (τ, P ′) ∈ f(P ) and (δ, P ′′) ∈ f(P ′). Forgetting the invisible
step gives P

δ−−→ P ′′ ((δ, P ′′) ∈ (f ⋄ f)(P )), so by rule com1 we have P∥Q δ−−→ P ′′∥Q on the
left-hand side. This transition will occur after two iterations on the right-hand side, as in
P∥Q τ−−→ P ′∥Q δ−−→ P ′′∥Q.

Rule syn is especially interesting, as it showcases the full power of Criterion 3. There are
four different cases where syn induces a transition P∥Q τ−−→ P ′′∥Q′′ on the left side, namely

P
τ−−→ P ′

α−−→ P ′′ and Q
τ−−→ Q′

α−−→ Q′′

P
τ−−→ P ′

α−−→ P ′′ and Q
α−−→ Q′

τ−−→ Q′′

P
α−−→ P ′

τ−−→ P ′′ and Q
α−−→ Q′

τ−−→ Q′′

P
α−−→ P ′

τ−−→ P ′′ and Q
τ−−→ Q′

α−−→ Q′′.
The third and fourth case work similarly to the first and second (resp.) and so we focus
on the latter. Either way, the right side of Criterion 3 needs three iterations (meaning
(λX ◦Σ∗⟨1,f⟩)⋄(λX ◦Σ∗⟨1,f⟩)⋄(ρX ◦Σ⟨1,f⟩)) in order to produce transition P∥Q τ−−→ P ′′∥Q′′.
In the first case, each iteration executes (in sequence) rules com1, com2 and syn leading
to P∥Q τ−−→ P ′∥Q τ−−→ P ′∥Q′ τ−−→ P ′′∥Q′′. In the second case the order changes with rules
com1, syn and com2 inducing P∥Q τ−−→ P ′∥Q τ−−→ P ′′∥Q′ τ−−→ P ′′∥Q′′.

Up to this point, the connection of our criteria with the simply WB cool format has
remained informal. The following theorem turns this connection to a formal correspondence.

▶ Theorem 3.16. Any language in the simply WB cool format satisfies the three composi-
tionality criteria.

The converse is not true, as for example any simple non-smooth rule satisfying the three
criteria, such as [x] c−−→ x, is not simply WB cool. A proof of Theorem 3.16 is provided
in Appendix B.2.
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3.2 An algebra for a †
We are now ready to move on to the main theorem of our work, namely the existence of a
compatible algebra structure for morphism h† : A→ Z mapping every term in A to its weak
behavior in Z. First, we present the following intermediate result that plays a catalytic role
in the main theorem and is noteworthy in its own right.

▶ Proposition 3.17. Let λ : Σ∗(Id× T ) =⇒ TΣ∗ be a GSOS law of Σ over T with T being
an ω-Cpo∨ld-enriched monad. If λ satisfies the three compositionality criteria, then for any
T -coalgebra f : X → TX we have (λ ◦ Σ∗⟨1,f∗⟩)∗ = (λ ◦ Σ∗⟨1,f⟩)∗.

Proof. By antisymmetry on the order structure ≤ of T . To avoid unnecessary clutter, for
the rest of the proof we shall be writing λ ◦ Σ∗⟨1, f⟩ as Σf and the 1 in Σ(1 ∨ f) will stand
for η, the identity morphism in Kℓ(T ).

Via Criterion 1 and Lemma 2.16 we have f ≤ f∗ =⇒ Σf ≤ Σf∗ =⇒ (Σf)∗ ≤ (Σf∗)∗.
In other words, (λ ◦ Σ∗⟨1,f⟩)∗ ≤ (λ ◦ Σ∗⟨1,f∗⟩)∗.
We first show that Σ(1 ∨ f)n ≤ (Σf)∗ for all n ∈ N by induction on n. For n = 0 and
n = 1 and by Criterion 1 (as 1 ≤ (1 ∨ f)) and Criterion 2,

Σ(1 ∨ f)0 = Σ1 ≤ Σ(1 ∨ f) = Σ(1 ∨ f)1 ≤ (Σf)∗ (5)

We now have to show that Σ((1 ∨ f)n+1 ⋄ (1 ∨ f)) ≤ (Σf)∗ for some n by making use of
the inductive hypothesis Σ(1∨ f)n+1 ≤ (Σf)∗. To that end, we first note that 1 ≤ (1∨ f)
and thus, due to ω-Cpo∨ld-enrichment, we have that for all n ∈ N,

1∨f ≤ (1∨f)⋄(1∨f) ≤ · · · ≤ (1∨f)n+1 =⇒ (1∨f)n+1⋄(1∨f) ≤ (1∨f)n+1⋄(1∨f)n+1 (6)

Next, by (6), Criterion 1 and Criterion 3,

Σ((1 ∨ f)n+1 ⋄ (1 ∨ f)) ≤ Σ((1 ∨ f)n+1 ⋄ (1 ∨ f)n+1) ≤ (Σ(1 ∨ f)n+1)∗ (7)

The induction hypothesis gives Σ(1 ∨ f)n+1 ≤ (Σf)∗ and so (7) becomes

Σ((1 ∨ f)n+1 ⋄ (1 ∨ f)) ≤ (Σ(1 ∨ f)n+1)∗ ≤ (Σf)∗∗ = (Σf)∗ (8)

Inequalities (8) and (5) complete the inductive proof that ∀n ∈ N. Σ(1 ∨ f)n ≤ (Σf)∗.
Finally, by Proposition 2.15 and Criterion 1:

Σf∗ = Σ
∨

n<ω

(1 ∨ f)n =
∨

n<ω

Σ(1 ∨ f)n

We just proved that every link in the ω-chain is smaller than (Σf)∗, and thus Σf∗ ≤ (Σf)∗.
By Definition 2.14, this becomes (Σf∗)∗ ≤ (Σf)∗, i.e. (λ ◦ Σ∗⟨1,f∗⟩)∗ ≤ (λ ◦ Σ∗⟨1,f⟩)∗.

Having shown both directions, we end up with (λ ◦ Σ∗⟨1,f∗⟩)∗ = (λ ◦ Σ∗⟨1,f⟩)∗. ◀

In other words, the transition system of (arbitrarily deep) contexts with subterms in X

is weakly equivalent that of contexts having access to all the weak transitions of subterms
in X. Proposition 3.17 is what enables the formation of a compatible algebra structure for
h† : A→ Z by applying it to the final coalgebra z : Z

∼=−−→ BZ. It is currently unclear if the
converse of Proposition 3.17 holds.

▶ Theorem 3.18 (Main theorem). Let λ : Σ∗(Id× T ) =⇒ TΣ∗ be a GSOS law of Σ over T

with T being an ω-Cpo∨ld-enriched monad. If λ satisfies the three compositionality criteria,
then for ΣA A TAa h and ΣZ Z TZ

g z as in Proposition 2.5, h† is a Σ-algebra
homomorphism from a : ΣA A

∼= to z† ◦ g : ΣZ → Z.
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Proof. We first observe that the following diagram commutes due to finality of z (top left
and bottom rectangle) and naturality of λ. Note that the horizontal lines are all T -coalgebras
and g# is the EM-algebra induced by the denotational model g.

Σ∗Z Σ∗(Z × TZ) TΣ∗Z

Σ∗Z Σ∗(Z × TZ) TΣ∗Z

Z TZ

Σ∗⟨1,z∗⟩

Σ∗(z†) Σ∗(Id×T )(z†)

λ

T Σ∗(z†)
Σ∗⟨1,z⟩

g#

λ

T g#

z
∼=

Since rt-closing preserves T -coalgebra homomorphisms, rt-closing the T -coalgebras and
finality of z gives us

Σ∗Z TΣ∗Z

Σ∗Z TΣ∗Z

Z TZ

Z TZ

(λ◦Σ∗⟨1,z∗⟩)∗

Σ∗(z†) T Σ∗(z†)
(λ◦Σ∗⟨1,z⟩)∗

g# T g#

z†

z∗

T z†

z
∼=

Via Proposition 3.17 we have (λ ◦ Σ∗⟨1,z∗⟩)∗ = (λ ◦ Σ∗⟨1,z⟩)∗. Since all homomorphisms
on final coalgebras are unique, we see that z† ◦ g# = z† ◦ g# ◦ Σ∗(z†), which in turn makes
the following diagram commute:

ΣZ Σ∗Z Z

ΣZ Σ∗Z Z

θZ

Σz† Σ∗z†

g#

z†

θZ z†◦g#

Where θ : Σ =⇒ Σ∗ is the universal natural transformation sending Σ to its free monad.
But g# ◦ θ = g and so we can conclude

z† ◦ g = z† ◦ g ◦ Σz† (9)
=⇒ z† ◦ g ◦ Σh! = z† ◦ g ◦ Σz† ◦ Σh! (10)
=⇒ z† ◦ h! ◦ a = z† ◦ g ◦ Σ(z† ◦ h!) (11)
=⇒ h† ◦ a = z† ◦ g ◦ Σh†. (12)

Equation (10) gives (11) due to h! being a bialgebra morphism and finally we have (12)
by Lemma 2.22, which finishes the proof. ◀

Weak bisimilarity being a congruence is thus a simple corollary of Theorems 2.21 and 3.18.

▶ Corollary 3.19. Let λ : Σ∗(Id × T ) =⇒ TΣ∗ be a GSOS law of Σ over weak-pullback
preserving functor T with T being an ω-Cpo∨ld-enriched monad as in Theorem 3.18. If λ

satisfies the three compositionality criteria, weak bisimilarity in λ is a congruence.
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3.3 Lax models for weak bisimulation
Up-to techniques for bisimulation [19, 28] are techniques that simplify reasoning about
behavioral equivalences, the main idea being that instead of having to show that two
processes are included in a bisimulation relation, one can show that they are included in a
different relation which is sound with respect to bisimulation. Bonchi et al. [6, Corollary 22]
proved that weak bisimulation up-to contextual closure is a compatible (and hence sound)
up-to technique for systems specified in the simply WB cool rule format. This result is a
corollary of their main theorem [6, Theorem 20], which requires the underlying system to be
positive and also the saturated transition system to be a lax model for the given specification,
requirements that are automatically true for systems in the simply WB cool format.

As mentioned in Section 3.1, the abstract equivalent of positivity for GSOS specifications
is monotonicity, which is weaker than continuity (Criterion 1). Thus, a GSOS law satisfying
the three compositionality criteria is monotone. As for lax models, our behaviors come with
an order structure and hence we can give the following definition.

▶ Definition 3.20 (Lax models for GSOS laws). Let λ : Σ∗(Id× T ) =⇒ TΣ∗ be a GSOS law
of Σ over T with T being an ω-Cpo∨ld-enriched monad. A lax λ-model is a Σ-algebra and
T -coalgebra pair ΣX X TX

g h making the following diagram commute laxly:

Σ∗X X TX

Σ∗(X × TX) TΣ∗X

g#

Σ∗⟨1,h⟩ ≤

h

λ

T g#

Where g# is the respective EM-algebra induced by g.

In other words, a lax model is a relaxed version of a bialgebra (Definition 2.4), implying
that only, but not necessarily all, weak transitions of a composite term can be deduced from
the weak transitions of its subterms. One non-example of a lax model is ΣA A BAa h∗

of SPC from Example 2.8. We can use the same problematic case as Example 3.9: the lower
path on the bialgebra diagram for process δ.0 + 0 reveals transition δ.0 + 0 τ−−→ 0, which is
not a transition of δ.0 + 0.

For all their nice properties, there is little indication as to which GSOS laws have lax
models and why. Thus, in the context of our work, it is sensible to ask if the three congruence
criteria are adequate with respect to producing lax models for GSOS laws, with the following
theorem asserting that this is indeed the case.

▶ Theorem 3.21. Let λ : Σ∗(Id × T ) =⇒ TΣ∗ be a GSOS law of Σ over T with T being
an ω-Cpo∨ld-enriched monad. If λ satisfies the three compositionality criteria, then for any
λ-bialgebra ΣX X TX

g h , ΣX X TX
g h∗

is a lax λ-model.

Proof. By Lemma 2.16 and the definition of a bialgebra we have Tg# ◦ (λX ◦ Σ∗⟨1,h⟩)∗ =
h∗ ◦ g#. Thus, to prove that ΣX X TX

g h∗
is lax λ-model, it suffices to show that

λ ◦ Σ∗⟨1,h∗⟩ ≤ (λ ◦ Σ∗⟨1,h⟩)∗. by Proposition 3.17 and Definition 2.14 we indeed have that
λ ◦ Σ∗⟨1,h∗⟩ ≤ (λ ◦ Σ∗⟨1,h∗⟩)∗ = (λ ◦ Σ∗⟨1,h⟩)∗. ◀

It is worth noting that compatibility of the up-to context technique for weak bisimulation
entails the congruence property of weak bisimilarity, which means that there is an alternative
route to Corollary 3.19 via Proposition 3.17 and [6, Theorem 20]. With that in mind, can
lax models work as a formal method for proving congruence of weak bisimilarity like our
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three criteria? The problem is that proving laxness of a model (typically the initial, rt-closed
model ΣA A TAa h∗

) involves non-trivial reasoning on an rt-closed system that is itself
defined inductively on the structure of terms. Conversely, our three criteria are significantly
easier to establish as they characterize a GSOS law acting on a single layer of syntax.

4 Conclusion

In this paper we presented three abstract criteria over operational semantics, given in the
form of Turi and Plotkin’s bialgebraic semantics, that guarantee weak bisimilarity being a
congruence. We believe that the criteria gracefully balance between generality and usefulness
but, as is often the case with abstract results, this is something hard to assess accurately.
What is equally important however is that each of the criteria can be given an intuitive
explanation as to the kind of restriction it imposes on the semantics. We hope that these
insights can contribute towards a conclusive answer to the general problem of full abstraction:
the definition of the best adequate denotational semantics, the underlying equivalence of
which coincides with contextual equivalence.
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We can now give the complete definition of the simply WB cool rule format.

▶ Definition A.1. A GSOS language L is simply WB cool if it is positive and the following
conditions are all true.
1. All operators in L are straight.
2. The only rules in L with τ -premises are patience rules.
3. Every active argument of an operator has a patience rule.
4. Every receiving argument of an operator has a patience rule.
5. All operators in L are smooth.

B Selected proofs

In this section of the appendix we include the proofs of Proposition 3.1 and Theorem 3.16.

B.1 Equivalence of the two representations of the continuity criterion
Proof of Proposition 3.1. We introduce the friendlier notation Σf in place of λ ◦ Σ∗⟨1, f⟩
for any f : X → TX. (1) =⇒ (2) is immediate since ρ = λ ◦ θ, where θ : Σ =⇒ Σ∗ is
the universal natural transformation sending Σ to its free monad. For (2) =⇒ (1), we
first note that for each “link” fi, Σfi is (equivalently) defined via “structural recursion with
accumulators” (see [35, Theorem 5.1]), i.e. it is the unique morphism making the following
diagram commute.

ΣΣ∗X Σ∗X X

Σ(Id× T )Σ∗X TΣ∗Σ∗X TΣ∗X

µ◦θΣ∗

Σ⟨1,Σfi⟩ Σfi ∃!

η

T η◦fi
ρΣ∗ T µ

This makes Σfi the (necessarily unique) homomorphic extension of Tµ◦ρΣ∗ along Tη ◦fi.
Continuity of composition in Kℓ(T ) gives

Tη ◦
∨

i

fi =
∨

i

(Tη ◦ fi) (13)

Tη ◦ fi = Σfi ◦ η, thus
∨

i(Σfi ◦ η) exists and also∨
i

(Σfi ◦ η) = (
∨

i

Σfi) ◦ η (14)

Via similar reasoning, we have

Tµ ◦
∨

i

(ρΣ∗ ◦ Σ⟨1,Σfi⟩) =
∨

i

(Tµ ◦ ρΣ∗ ◦ Σ⟨1,Σfi⟩) (15)∨
i

(Σfi ◦ µ ◦ θΣ∗) = (
∨

i

Σfi) ◦ µ ◦ θΣ∗ (16)

Equation (2) allows us to rewrite Equation (15) as

Tµ ◦ ρΣ∗ ◦ Σ⟨1,
∨

i

Σfi⟩ =
∨

i

(Tµ ◦ ρΣ∗ ◦ Σ⟨1,Σfi⟩) (17)
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By taking the supremum over i of the i-dependent arrows in the previous diagram,
Equation (13), (14), (16) and (17) allow us to present

∨
i Σfi as a morphism that makes the

following diagram commute.

ΣΣ∗X Σ∗X X

Σ(Id× T )Σ∗X TΣ∗Σ∗X TΣ∗X

µ◦θΣ∗

Σ⟨1,
∨

i
Σfi⟩

∨
i

Σfi

η

T η◦
∨

i
fi

ρΣ∗ T µ

But there can only be one such morphism, namely Σ(
∨

i fi), the unique homomorphic
extension of Tµ ◦ ρΣ∗ along Tη ◦

∨
i fi. In other words,

∨
i Σfi = Σ(

∨
i fi). ◀

B.2 Correspondence with the simply WB cool rule format
Proof of Theorem 3.16. In order to prove that any language L in the simply WB cool
format automatically satisfies the three criteria, it suffices to show that (the GSOS law
induced by) any arbitrary rule in L satisfies them. First of all, we know that rules in the

simply WB cool format are of the form
{xi

ci−−→ yi | i ∈ I}
o(x1, . . . , xn) α−−→ t

for I ⊆ {1, . . . , n}[37, §3], or

simply
{xi

ci−−→ yi | i ∈ I}
o(−→x ) α−−→ t

, where o is an n-ary operator. We thus consider an arbitrary

rule in the above form and proceed by distinguishing by the number of active arguments.

B.2.1 0 active arguments
All cases are trivial.

B.2.2 1 active argument

The rule is of the form
xj

c−−→ y

o(−→x ) α−−→ t
meaning that the rule is active on a position j. There

is only a single premise because of the first requirement (straightness) in Definition A.1.

B.2.2.1 Patience rule

If c = τ then by the second requirement of Definition A.1 this rule has to be a patience rule

of the form
xj

τ−−→ y

o(−→x ) τ−−→ o(−→x )[y/xj ]
.

Criterion 1.∨
i

ρ(o(−→x , fi(−→x ))) =
∨

i

{τ, o(−→x )[y/xj ] | (τ, yi) ∈ fi(xj)} =

{τ, o(−→x )[y/xj ] | (τ, yi) ∈
∨

i

(fi(xj))} = ρ(o(−→x ,
∨

i

(fi(−→x )))

Criterion 2. ρ(o(−→x , (η∨f)(−→x ))) induces a single transition o(−→x ) τ−−→ o(−→x ) for all f , which
is included in ηx ◦ θX .
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Criterion 3. The only transitions in ρ(o(−→x , (f ⋄ f)(−→x ))) are o(−→x ) τ−−→ o(−→x )[z/xj ] when
xj

τ−−→ y
τ−−→ z, i.e. (τ, y) ∈ f(xj), (τ, z) ∈ g(y) for some y, z. Running (λX ◦ Σ∗⟨1,f⟩) ⋄

(ρX ◦ Σ⟨1,f⟩) 2, which is the second iteration on the right side, we can see that o(−→x ) τ−−→
o(−→x )[y/xj ] τ−−→ o(−→x )[z/y], which satisfies the criterion.

B.2.2.2 Impatient rule

This time we have c ≠ τ which entails, by the third requirement of Definition A.1, the
presence of a patience rule for argument j.

Criterion 1. Similar to B.2.2.1.∨
i

ρ(o(−→x , fi(−→x ))) =
∨

i

{c, o(−→x )[y/xj ] | (c, yi) ∈ fi(xj)} =

{c, o(−→x )[y/xj ] | (c, yi) ∈
∨

i

(fi(xj))} = ρ(o(−→x ,
∨

i

(fi(−→x )))

Criterion 2. Similarly to B.2.2.1, the presence of the patience rule for argument j means
that there is always transition o(−→x ) τ−−→ o(−→x ) for all f on the left side, which is included on
the right side by ηx ◦ θX . The transitions induced by f exist on both sides.

Criterion 3. Transitions on the left side occur if and only if there are w, z such that xj
τ−−→

w
c−−→ z or xj

c−−→ w
τ−−→ z, i.e. (τ, w) ∈ f(xj), (c, z) ∈ f(w) or (c, w) ∈ f(xj), (τ, z) ∈ f(w).

We also have to distinguish between y in premise xj
c−−→ y being receiving in t or not. For

each case, we give the transition(s) on the left side (of Criterion 3) and the respective iteration
step where the left-side transitions appear on the right side (of Criterion 3).
1. y is not receiving, xj

τ−−→ w
c−−→ z.

ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t

(λX ◦ Σ∗⟨1,f⟩) ⋄ (ρX ◦ Σ⟨1,f⟩): o(−→x ) τ−−→ o(−→x )[w/xj ] α−−→ t

2. y is not receiving, xj
c−−→ w

τ−−→ z.
ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t

ρX ◦ Σ⟨1,f⟩: o(−→x ) α−−→ t

3. y is receiving, xj
τ−−→ w

c−−→ z.
ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t(z)
(λX ◦ Σ∗⟨1,f⟩) ⋄ (ρX ◦ Σ⟨1,f⟩): o(−→x ) τ−−→ o(−→x )[w/xj ] α−−→ t(z)

4. y is receiving, xj
c−−→ w

τ−−→ z

This is the trickiest case. Let us look back at the rule in question (with y receiving),

which is
xj

c−−→ y

o(−→x ) α−−→ t(y)
. The key observation is that requirement 4 in Definition A.1,

requiring that every receiving argument of an operator has a patience rule, implies that
no matter how complex the receiving expression t(y) is, there will be patience rules in

place to ensure a derivation amounting to x
τ−−→ y

s(x) τ−−→ s(y)
for each sub-expression s(y)

in t(y) that “receives” y. The number of iterations on the right-hand required in order to
trigger all necessary patience rules depends on the number of sub-expressions s.
For example, let t(y) ≜ d(e(l(y, 0)), e(l(0, y))), where d, l are binary operations, e is a
unary operation and 0 is some term. Due to requirement 4, d, l, e will all have patience

2 Recall that (λX ◦ Σ∗⟨1,f⟩) ◦ θ = ρX ◦ Σ⟨1,f⟩.
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rules in all positions and we need exactly two iterations to trigger the two patience rules
in each of the positions of d. More generally,

ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t(z)
(λX ◦ Σ∗⟨1,f⟩)∗ ⋄ (ρX ◦ Σ⟨1,f⟩): o(−→x ) α−−→ t(w) τ∗

−−−→ t(z).

B.2.3 2 or more active arguments
We first note that the only rules with τ -premises are patience rules, which are already
covered in B.2.2.1 and so we move on to c1, c2 ̸= τ with the rule being of the form of

xi
c1−−→ y1 xj

c2−−→ y2

o(−→x ) α−−→ t
. The third requirement of Definition A.1 means that there are

patience rules for arguments i and j in o.

Criterion 1. Similar to the case for Criterion 1 in B.2.2.1.

Criterion 2. Similar to the case for Criterion 2 in B.2.2.1.

Criterion 3. There are four separate cases where a transition occurs in ρ(o(−→x , (f ⋄ f)(−→x ))),
as a c1-transition and a c2-transition may occur in either step for both subterms.
1. xi

τ−−→ w1
c1−−→ z1 and xj

τ−−→ w2
c2−−→ z2

2. xi
τ−−→ w1

c1−−→ z1 and xj
c2−−→ w2

τ−−→ z2

3. xi
c1−−→ w1

τ−−→ z1 and xj
c2−−→ w2

τ−−→ z2

4. xi
c1−−→ w1

τ−−→ z1 and xj
τ−−→ w2

c2−−→ z2.
In addition, y1 and y2 can each be either receiving or not receiving in t and, as this affects
transitions the same way as y being receiving in B.2.2.2.
1. xi

τ−−→ w1
c1−−→ z1 and xj

τ−−→ w2
c2−−→ z2

Here, whether y1 and y2 are receiving or not does not make a difference and we write
t(y1, y2) to denote a term which potentially has instances of y1 and y2.

ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t(z1, z2)
(λX ◦ Σ∗⟨1,f⟩) ⋄ (λX ◦ Σ∗⟨1,f⟩) ⋄ (ρX ◦ Σ⟨1,f⟩):
o(−→x ) τ−−→ o(−→x )[w1/xi]

τ−−→ o(−→x )[w1/xi][w2/xj ] α−−→ t(z1, z2)
We can see that we need to iterate three times on the right-hand side: one to trigger the
patience rule on position i, one to trigger the patience rule on position j on the new term
and one more to trigger the main rule.

2. xi
τ−−→ w1

c1−−→ z1 and xj
c2−−→ w2

τ−−→ z2
In this case y2 being receiving makes a difference, while y1 does not. Let us first deal
with the non-receiving case for y2.

ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t(z1)
(λX ◦ Σ∗⟨1,f⟩) ⋄ (ρX ◦ Σ⟨1,f⟩): o(−→x ) τ−−→ o(−→x )[w1/xi]

α−−→ t(z1)
The first iteration will trigger the patience rule for i, while the second produces the
α-transition. Variable y2 is not receiving and so nothing else is needed. On the other
hand, if y2 is receiving, we see that

ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t(z1, z2)
(λX ◦ Σ∗⟨1,f⟩)∗ ⋄ (λX ◦ Σ∗⟨1,f⟩) ⋄ (ρX ◦ Σ⟨1,f⟩):
o(−→x ) τ−−→ o(−→x )[w1/xi]

α−−→ t(z1, w2) τ∗

−−−→ t(z1, z2)
Similarly to the fourth case of Criterion 3 in B.2.2.2, requirement 4 in Definition A.1
guarantees that there will be a sequence of patience rules that gives t(z1, w2) τ∗

−−−→ t(z1, z2).
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3. xi
c1−−→ w1

τ−−→ z1 and xj
c2−−→ w2

τ−−→ z2
If y1 and y2 are not receiving, this is very similar to the first case. If y1 and/or y2 are
receiving, then requirement 4 in Definition A.1 comes into play in the same manner as
before. For instance, if both y1 and y2 are receiving:

ρX ◦ Σ⟨1,f ⋄ f⟩: o(−→x ) α−−→ t(z1, z2)
(λX ◦ Σ∗⟨1,f⟩)∗ ⋄ (λX ◦ Σ∗⟨1,f⟩)∗ ⋄ (ρX ◦ Σ⟨1,f⟩):
o(−→x ) α−−→ t(w1, w2) τ∗

−−−→ t(z1, w2) τ∗

−−−→ t(z1, z2)
4. xi

c1−−→ w1
τ−−→ z1 and xj

τ−−→ w2
c2−−→ z2

Very similar to the second case.

In the presence of three or more active arguments we can apply the same principles, the
only difference being that the maximum number of necessary iterations on the right side will
be higher, as more patience rules will have to be triggered. ◀

MFCS 2021





Quantum Multiple-Valued Decision Diagrams in
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Abstract
Graphical calculi such as the ZH-calculus are powerful tools in the study and analysis of quantum
processes, with links to other models of quantum computation such as quantum circuits, measurement-
based computing, etc.

A somewhat compact but systematic way to describe a quantum process is through the use
of quantum multiple-valued decision diagrams (QMDDs), which have already been used for the
synthesis of quantum circuits as well as for verification.

We show in this paper how to turn a QMDD into an equivalent ZH-diagram, and vice-versa, and
show how reducing a QMDD translates in the ZH-Calculus, hence allowing tools from one formalism
to be used into the other.
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1 Introduction

Graphical calculi for quantum computation such as the ZX-Calculus [9], the ZW-Calculus [10]
and the ZH-Calculus [2] are powerful yet intuitive tools for the design and analysis of quantum
processes. They have already been succesfully applied to the study of measurement-based
quantum computing [15], error correction through the operations of lattice surgery on surface
codes [12, 13], as well as for the optimisation of quantum circuits [4, 11, 22]. Their strong
links with “sums-over-paths” [1, 23, 28], as well as their respective complete equational
theories [4, 16, 21, 27], make them good candidates for automated verification [7, 14, 17].

An important question, whose answer benefits a lot of these different aspects, is the one of
synthesis. Given a description of a quantum process, how do we turn it into a ZX-diagram?
This all depends on the provided description. It was already shown how to efficiently get a
diagram from quantum circuits [4], from a measurement-based process [15], from a sequence
of lattice surgery operations [13], from “sums-over-paths” [23], or even from the whole matrix
representation of the process [20]. Although this last translation is efficient in the size of
the matrix, the size of the matrix itself grows exponentially in the number of qubits, so few
processes will actually be given in terms of their whole matrix.

The matrix representation however has an advantage: it is (essentially) unique. Two
quantum operators are operationally the same if and only if their matrix representations are
colinear. This is to be contrasted with all the different previous examples, where for instance
two different quantum circuits may implement the same operator.

The form of the ZX-diagram obtained from a quantum state by [20] is that of a binary
tree: a branching in the tree corresponds to a cut in half of the represented vector, while the
leaves of the tree exactly correspond to the entries in the vector. It is however possible to
exploit redundancies in the entries of the vector, by merging similar subtrees. Doing so alters
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the notion of normal form by compacting it, whilst retaining its uniqueness property. This
can be done at the level of the ZX-diagram using its equational theory, and in particular
some equality that is reminiscent to that of a bialgebra rule. Doing this from a proper tree on
the other hand gives rise to a quantum version of a decision diagram, which has already been
introduced in [24]. The so-called quantum multiple-valued decision diagrams (QMDDs) [25]
have since then been used to synthesise quantum circuits [26] or to perform verification of
quantum programs [5, 6].

We hence aim in this paper at showing the links between the aforementioned graphical
calculi and QMDDs. We in particular show how to translate from one formalism to the other,
and how the reduction of a QMDD translates in the graphical languages. As a consequence,
tools developped in one formalism may be transported and used in the other. Additionally,
this result together with the aforementionned results in the graphical languages, relates
the QMDDs to measurement-based computation, lattice surgery operations, “sums-over-
paths”, etc.

In Section 2, we present the ZH-calculus, the graphical language we will use in this paper
for convenience. We then present in Section 3 the quantum multiple-valued decision diagrams.
In Section 4, we show how to turn a QMDD into a ZH-diagram that represents the same
quantum operator. In Section 5, we show an algorithm to turn a ZH-diagram into QMDD
form, which can be used to get the QMDD description of any ZH-diagram.

2 The ZH-Calculus

We aim in this paper at showing links between quantum multiple-valued decision diagrams
and graphical languages for quantum computing: ZX, ZW and ZH. Since any of the three
languages can be translated in the other two [2, 16, 19], we may simply choose one. It so
happens that the closest to QMDDs we have is the ZH-Calculus. We hence present here this
language.

2.1 ZH-Diagrams
A ZH-diagram D : k → ℓ with k inputs and ℓ outputs is generated by:

Zn
m : n→ m ::

n...

...
m

called Z-spiders

Hn
m(r) : n→ m :: r

n...

...
m

called H-spiders

id : 1→ 1 ::
σ : 2→ 2 ::
η : 0→ 2 ::
ϵ : 2→ 0 ::

where n,m ∈ N and r ∈ C. In the following, we may write H-spiders with no parameter, in
which case, the implied parameter is −1 by convention.

Diagrams can then be composed either sequentially:
D1

...

...
D2
...

(if the number of output of the

top diagram matches the number of inputs of the bottom one), or in parallel: D1

...

...
D2

...

...
.
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It is customary to define the additional two “X-spiders”:

n...

...
m

:=

n...

...
m

1
2 and

n...

...
m

:=

n...

...
m

1
2¬

ZH-diagrams can be understood as quantum operators thanks to the standard interpreta-
tion J.K which maps any ZH-diagram D : n→ m to a complex matrix JDK ∈ C2m ×C2n , and
which is inductively defined as:u

ww
v
D1

...

...
D2
...

}

��
~ = JD2K ◦ JD1K

t

D1

...

...
D2

...

...

|

= JD1K⊗ JD2K

u

v
n...

...
m

}

~ = 2m



2n︷ ︸︸ ︷
1 0 · · · · · · 0
0 0

......
. . .

...... 0 0
0 · · · · · · 0 1


u

v r

n...

...
m

}

~ = 2m



2n︷ ︸︸ ︷
1 · · · · · · 1...

. . .
...... 1 1

1 · · · 1 r


r z

=
(

1 0
0 1

) r z
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 q y
=

q y† =


1
0
0
1


The standard interpretation of the X-spiders can then be obtained by composition. We

underline that
r z

= |0⟩ :=
(

1
0

)
and that

r
¬

z
= |1⟩ :=

(
0
1

)
.

We have used here the Dirac notion, were a quantum state i.e. a vector is denoted |ψ⟩. We
recall that ⟨ψ| is defined as |ψ⟩† where (.)† yields the transconjugate of a matrix.

The language is universal, i.e. any quantum operator can be represented as a ZH-
diagram [2]:

∀f ∈ C2m

× C2n

, ∃D ∈ ZH(n,m), JDK = f

An important result that we will use in the following is the fact that there is an isomorphism
between ZH(n,m) and ZH(0,m+ n), i.e. any ZH-diagram D : n→ m can be turned into a
state D′ : 0→ m+ n in a reversible manner. This is called the map/state duality [9, 8, 18].

Graphically, this isomorphism is obtained by ψn,m(D) = D

...

...
...

...

and ψ−1
n,m(D′) = D′

...

... ,

and the fact that this is indeed an isomorphism comes from the fact that:
= = =

Notice that this definition of the map/state duality differs from more usual ones by a
rearranging of the wires. This is useful in the following to better relate state-QMDDs to
proper QMDDs.

2.2 Equational Theory

The previous equalities constitute the first of a series of axioms that makes up an equational
theory for the language. The axioms are summed up in Figure 1.
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...

...
=

...

...(zs) r

...

...
= r

...

...
2

(hs)
==

(sp) (id)
= 2

(hh)

...

...
=

...

...
(ba1)

...

...

=

...

...
(ba2)

r s

=
rs

(m)
=1

(u)

r s =
r+s

2

¬
2

(a)
r r

¬
=

r

(i)
¬

=
¬

1
2

(o)

Figure 1 Rules of the ZH-Calculus.

The previous equality is actually part of an implicit set of axioms of the language,
aggregated under the paradigm “only connectivity matters”, which states that all deformations
of diagrams are allowed.

When we can turn a diagram D1 into another diagram D2 by a succession of the
transformations in Figure 1, we usually write ZH ⊢ D1 = D2, however, to keep things simple,
we will abbreviate it as D1 = D2 in this paper. This set of rules was proven to be sound and
complete [2], that is:

∀D1, D2 ∈ ZH(n,m), JD1K = JD2K ⇐⇒ ZH ⊢ D1 = D2

Two useful lemmas that will be important in the following can be derived from the
previous axiomatisation, as proved in [3]:

▶ Lemma 1.

0

...

...
= 1

2

...

...

▶ Lemma 2.

0 =

In the following, since J r K = r and since it represents a global scalar, we may “forget the

box”, and write r D

...

...
simply as r D

...

...
. The equation r s rs= is also derivable [3],

which means that following the convention, different global scalars will get multiplied. For
instance, we have (r1 ·D1)⊗ (r2 ·D2) = (r1r2) · (D1 ⊗D2).

2.3 New Constructions
To make the link between decision diagrams and ZH-diagrams, we feel it is simpler to

introduce two new constructions: := 1
2 and :=

0
=
1

1
2

of which we may compute the standard interpretation:
t |

=
(

1 0 0 0
0 1 1 0

)
and

t |

=


1 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0

.
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corresponds to the diagram of the ZW-Calculus [10], it is very close to the so-

called W-state. It can also by found in [3] in the context of the ZH-calculus. The interaction
of this building block with classical states is given by:

▶ Lemma 3.

=

▶ Lemma 4.

¬

=
¬

The pair
(

,

)
can be seen as a commutative monoid, which means that, on top of

Lemma 3, the following is true:

▶ Lemma 5.

=

▶ Lemma 6.

=

Proof. Proof for associativity can be found in [3], and commutativity is obvious from the
definition of the operator. ◀

This allows us to use a generalised version of this diagram, with arbitrary number of

inputs, defined inductively as follows: := and
...

:=
...

. In practice, in the

following, we will not use the case 0 inputs. We will however use the case 1 extensively,

which we will assume simplified: =

The second diagram is the ZH version of the gadget used in the normal forms of [20], and
it can be understood as follows:

t |

= ⟨0| ⊗
s {

+ ⟨1| ⊗
s {

so it is a diagram that builds and whose leftmost wire controls whether or not the
outputs are swapped. This can be checked diagrammatically:

▶ Lemma 7.

=

▶ Lemma 8.

=
¬

▶ Lemma 9.

¬ =

▶ Lemma 10.

=
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3 Quantum Multiple-valued Decision Diagrams

Quantum multiple-valued decision diagrams (QMDD) were introduced to store quantum
unitaries in a way that is efficient in certain cases, similarly to binary decision diagrams for
representing decision problems. In the following, we use the map/state duality to turn every
map into a state. As a consequence, QMDDs are adapted to “state-QMDDs” as follows:

▶ Definition 11. A state-QMDD (SQMDD) is a tuple (s, V, u0, t,H, h,E, ω) where:
s ∈ C is called the overall scalar
V ̸= ∅ is a set of vertices
u0, t ∈ V are two distinguished vertices, called respectively root and terminal node
u0 = t ⇐⇒ V = {t}, i.e. u0 and t coincide only if V only contains one vertex
H ∈ N is the height of the SQMDD
h : V 7→ {0, ...,H} maps each vertex to their height in the SQMDD
h(u) = 0 ⇐⇒ u = t

E : V \ {t} → V 2 maps any non-terminal vertex to a pair of vertices. These are the edges
of the SQMDD
If E(u) = (v0, v1) then h(vi) < h(u) for i ∈ {0, 1}
∀v ∈ V \ {u0}, ∃u ∈ V, v ∈ E(u), i.e. all vertices have at least one parent
ω : V \ {t} → C2 maps edges to complex weights

Notice that the requirement on the heights of two endpoints of an edge also enforces the fact
that an SQMDD is acyclical.

When drawing a SQMDD, it is relevant to set all the same-height nodes at the same
height in the representation. It is also customary to omit writing weights of 1, as well as the
vertices’ names (we write instead their height). We highlight the root by an incoming wire,
and distinguish the terminal node by drawing it as a square, instead of a circle for the other
nodes (following [24]’s convention). Finally, we display the overall scalar as a weight on the
incoming edge of the root, and if h(u0) = H, we omit H, which we otherwise specify at the
top of the SQMDD.

▶ Example 12. The diagram:

4

3 3

2

1

3√
2

1√
2

0

0

i

1√
2

−1

0

is a graphical representation of an SQMDD.

▶ Remark 13. SQMDDs can be seen as a more fine-grained version of proper QMDDs. Indeed,
using the map/state duality ψn,m defined above amounts to decomposing a QMDD vertex

into . This for instance allows us to apply a swap only on one side of a
circuit/diagram, while the associated QMDD notion of variable reordering requires swapping
the whole qubit i.e. apply a swap on both sides of the circuit. A similar presentation of
QMDDs for states can be found in [29].
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We can define two natural constructions from any SQMDD of height ≥ 1:

▶ Definition 14. Let D = (s, V, u0, t,H, h,E, ω) be a SQMDD with H ≥ 1. We denote ℓ(D)
the diagram obtained from D by:

If h(u0) = H:
replacing the overall scalar s by s · π0ω(u0)
removing all nodes (and subsequent edges) that cannot be reached by π0E(u0)
replacing the root u0 by π0E(u0)

decreasing the height H by 1

Where π0 and π1 are the usual left and right projectors of a pair.
We can similarly build r(D) by replacing π0 by π1 in the definition.

▶ Example 15. With D the SQMDD defined in the previous example:

ℓ(D) =

3

2

1

3√
2

1√
2

0

0

0

and r(D) =

3

2

1

− 3√
2

0

0

i

1√
2

0

We can now use these constructions to understand SQMDDs as representations of quantum
states.

▶ Definition 16. For any SQMDD D, JDK is the (unnormalised) quantum state inductively
defined as:s

s
0

{
= s = s |⟩

JDK = |0⟩ ⊗ Jℓ(D)K + |1⟩ ⊗ Jr(D)K
(here |⟩ is used to represent the vector

(
1
)

i.e. the canonical 0-qubit state).

▶ Example 17. With D the diagram of example 12:

JDK = 3√
2

(
1 0 0 0 1√

2
1√
2

1√
2

1√
2 − 1√

2 0 0 0 −i 0 −i 0
)T

The definition of SQMDDs given here does not only differ from that of [24] by the
fact that we only consider states, but also by the fact that our definition is laxer. As a
consequence, different SQMDDs can have the same interpretation. To address this problem,
we can give a set of rewrite rules that will reduce the “size” of the SQMDD while preserving
its interpretation. We give in Figure 2 this set of rewrite rules, expressed graphically. Notice
that the rules use the graphical notation to encompass transformations on the root and the
overall scalar.

It is fairly easy to see that this rewriting terminates. Let us denote deg(t) the arity of t,
i.e. the number of occurrences of t in E(V \ {t}). Notice that deg(t) < 2|V |. For u ∈ V \ {t},
define:

δ(u) :=
{

0 if π0(ω(u)) = 1 ∨ (π0(ω(u)) = 0 ∧ π1(ω(u)) ∈ {0, 1})
1 otherwise

Consider now for any SQMDD the quantity
(
|V |, 2|V | − deg(t),

∑
u|h(u)=1

δ(u), ...,
∑

u|h(u)=H

δ(u)
)

,

and the lexicographical order over these. We can see that this quantity is reduced by any
rewrite.

MFCS 2021
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...

ba

w1 wn →
a ̸=0
a ̸=1

...
b
a1

aw1 awn
...

b0
w1 wn →

b̸=1

...

10
bw1 bwn

...0
→

0
...

0

0
...

...

...
b

...
a →

...... h

...

1 1 →
h′

...

...

h′
...

h h

... ...

a
a

→
h′′

...
b b

h′
...

h

... ...

a

h′′

...b

h′
...

here the nodes with height h′

and h′′ can be the same node

Figure 2 Simplification rules for QMDDs.

When none of these rewrite rules can be applied on an SQMDD, it is called irreducible.
Notice that in an irreducible SQMDD, using the notions of [24], no non-terminal vertex is
redundant, and all non-terminal vertices are normalised and unique. Hence, an irreducible
SQMDD is what [24] properly calls a QMDD, from which we get:

▶ Theorem 18 ([24]). For any quantum state |ψ⟩ ∈ C2n , there exists a unique irreducible
SQMDD D (of height n) such that JDK = |ψ⟩.

4 From SQMDDs to ZH

From any SQMDD, it is possible to build a ZH-diagram whose interpretation will be the
same, in a fairly straightforward manner, using the two syntactic sugars defined above. We
denote [.]ZH this map. We define it on every “layer” of an SQMDD, that is, on all the nodes
of the same height ≤ H. Such a layer is mapped to a ZH-diagram as follows:

...
7→

...

h ...
...
h

...
...... ... ......

This construction adds a wire to the left. It is the “effective” wire of the layer, the one that
will constitute the output qubit in the quantum state. If there is no node of height h, the
construction still add a wire on the left, disconnected from everything: . Omitted in the

previous definition is the mapping of the weights on wires, which are simply: r 7→ r ,

as well that of the terminal node, for which we have: 7→
0

... ... . Finally, the particular

state ¬ is plugged on top of the root: h(u0) 7→

¬
H

...

H-h(u0)
(if the root has height < H

we technically have empty layers on top of the root, hence the ’s).
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The full SQMDD is then mapped as follows, where L is the layer of interest, and A and B

will themselves be inductively decomposed layer by layer:

A

B

L 7→
...

...

[A]ZH
...

...
[L]ZH

... [B]ZH

...

▶ Example 19.

4

3 3

2

1

3√
2

1√
2

0

0

i

1√
2

−1

0



ZH

= 3√
2

¬

i

1√
2

1√
2

0

0

This interpretation [.]ZH was not chosen at random: it builds a quantum state with the
intended semantics.

▶ Proposition 20. For any SQMMD D,
q
[D]ZHy

= JDK.

Proof. Since and ¬ represent |0⟩ and |1⟩ respectively, we have, for any ZH-diagram
D : 0→ n:

s
D
...

{
= |0⟩ ⊗

s
D
...

{
+ |1⟩ ⊗

s
D
...¬

{

Now, let D be an SQMDD, and D := [D]ZH. We proceed by induction on H the height of D,
where the base case is obvious. We then focus on the root u0. We need to distinguish two
cases:
•H > h(u0): In this case, ℓ(D) = r(D) which entails JDK = (|0⟩+|1⟩)⊗Jℓ(D)K. It can be easily
seen that [D]ZH = [ℓ(D)]ZH, hence

q
[D]ZHy

=
r z
⊗

q
[ℓ(D)]ZHy

= (|0⟩+ |1⟩)⊗
q
[ℓ(D)]ZHy

• H = h(u0): Then, D =

¬

D′
...

. We hence have:

q
[D]ZHy

=

u

www
v

¬

D′
...

}

���
~

= |0⟩ ⊗

u

www
v

¬

D′
...

}

���
~

+ |1⟩ ⊗

u

www
v

¬

D′
...

¬

}

���
~

= |0⟩ ⊗
t

D′
...

¬ |

+ |1⟩ ⊗
t

D′
...

¬ |
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where the last equality is obtained thanks to Lemmas 7 and 9. We now need to show thatt

D′
...

¬ |

=
q
[ℓ(D)]ZHy

and similarly with the right hand side. We can actually show that

we can reduce D′
...

¬
to [ℓ(D)]ZH using the following rewrites (provable in ZH):

r → r
¬ ¬

(1) → (2) r → (3)

→
... ...

(4)
...

...
→

...

...
(5)

Rewrite 1 ensures that if the left wire was weighted, the weight itself gets factored in the
overall scalar.
Rewrites 2 and 3 destroy all the nodes that are not descendent of the left child of the root.
Rewrite 4 dictates that if arrives at a node with several parents, the behaviour depends

on what happens to the others parents (if all parents are destroyed, will get to all its

inputs, which will result in , hence pursuing the destruction of subsequent nodes). It also
shows what happens to when it arrives at the terminal node.
Finally, Rewite 5 simply normalises the connected Z-spiders one can obtain from Rewrite 2.

This rewrite strategy goes on as long as some exist in the diagram, until they all
disappear from Rewrite 4, in which situation we get the diagram one would have obtained

from ℓ(D). Similarly, we see that D′
...

¬
reduces to [r(D)]ZH. Hence, by soundness of the

rewrite strategy, we do have:

q
[D]ZHy

= |0⟩ ⊗
q
[ℓ(D)]ZHy

+ |1⟩ ⊗
q
[r(D)]ZHy

which by induction hypothesis means
q
[D]ZHy

= JDK. ◀

This proof introduces a small rewrite strategy, that will be used in the following, in
particular to simplify a ZH-diagram in SQMDD form.

5 Setting a ZH-Diagram in SQMDD Form

If any SQMDD can be turned into a ZH-diagram, the reciprocal requires some work. In the
following, we describe an algorithm that turns any ZH-diagram into SQMDD form, i.e. into
a ZH-diagram that is in the image of [.]ZH, using its equational theory.

5.1 SQMDD Reduction

We start to show that all the simplification rules for SQMDDs can be derived directly into
the ZH-Calculus. For this, we need the following lemmas:
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▶ Lemma 21.

=

...

...

...

...

▶ Lemma 22.

...
= 0

0 0
...

▶ Lemma 23.

r
=

rr

▶ Lemma 24.

=

▶ Lemma 25.
r

=
r r

▶ Lemma 26.

=

▶ Lemma 27.

=

▶ Lemma 28.

= =

▶ Proposition 29. For any simplification rule D1
r→ D2, the following diagram commutes:

D1 D2

[D1]ZH [D2]ZH

r

[.]ZH [.]ZH

ZH

Proof. We start with the first rewrite of Figure 2, where a ̸= 0:

...

ba

w1 wn 7→

...
wnw1

ba

=
(m)

...
wnw1

b
a

a
a

=
25
23

...
wnw1

b
a

aa

=
(m)

...
awnaw1

b
a

←[
...

b
a1

aw1 awn

The proof for the rewrite where a = 0 and b diffuses instead is similar. When applied to the
root, the proofs are the same with the additional equality r → r

¬ ¬
.

...0

0
...

7→

...
0

...
=
2
3

(ba1)

...

...
=
2
3

(ba1)

...
0

...
←[

0

0
...

...

The rule
...

b
...
a →

......
is a direct consequence of the rewrite strategy of the

proof of Proposition 20.

h

...

1 1

h′
... 7→ ...

...

= ...

...

=
28

...

...

= ...

...

←[

...

h′
...

h h

... ...

a
a
h′′

...
b b

h′
... 7→ a

... ...

ab
b...... =

23

... ...

......

a b

=
27

... ...

......
a b

←[
h

... ...

a

h′′

...b

h′
...
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The case where the two children are the same is very similar:

a

... ...

ab
b

...
=
23

... ...

... ba
=
27

......

... ba ◀

Thanks to this proof, we now have a strategy to systematically reduce any ZH-diagram that
is in SQMDD form. We then show how to put a ZH-diagram in SQMDD form in the first
place.

5.2 SQMDD form of Generators and Compositions
We now show that all the generators of the ZH-Calculus can be put in SQMDD form, and
furthermore that the compositions of diagrams in SQMDD form can be put in SQMDD form.

▶ Proposition 30. Suppose D′ differs from a diagram D in SQMDD form by replacing some

of its by . We then have: ZH ⊢ D = D′.

This result actually still holds for any commutative monoid whose neutral element is

. A straightforward analysis yields that such monoids are of the form
(

1 0 0 a

0 1 1 b

)
for

a, b ∈ C.
This result will be used in the proposition that follows, but notice that it can also be

used to simplify the ZH-diagram obtained from an SQMDD.
Now, we can show that all the generators can be set in SQMDD form:

▶ Proposition 31. The generators of the ZH-Calculus can be set in SQMDD form:

... =

...

¬

0 0

0 0
r

...
=

r...

¬

We then need to show that the composition of diagrams in SQMDD form can be put in
SQMDD form.

▶ Proposition 32. The parallel composition of ZH-diagrams in SQMDD form can be put in
SQMDD form, by joining the root of the right diagram to the terminal node of the diagram
on the left.

Since we work only with quantum states after using the map/state duality, what accounts
for sequential composition is the linking of two ZH-diagrams in SQMDD form through .
This element can be decomposed into two primitives: = . We hence show that

applying each of these two primitives to a ZH-diagram in SQMDD form can be put in
SQMDD form. To simplify the proof, we first show that swapping two outputs of a state in
SQMDD can be put in SQMDD form.
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▶ Proposition 33. Let D be a ZH-diagram in SQMDD form. Applying on two of its
outputs can be put in SQMDD form. By repeated application of , any permutation of the
outputs of D can be put in SQMDD form.

We can then move on to the two subproofs that show that applying to a diagram in
SQMDD form can be turned in SQMDD form:

▶ Proposition 34. Let D be a ZH-diagram in SQMDD form. Applying on two of its

outputs can be put in SQMDD form.

▶ Proposition 35. Let D be a ZH-diagram in SQMDD form. Applying on any of its
outputs can be put in SQMDD form.

Combining the previous propositions, we get the expected result:

▶ Theorem 36. Any ZH-diagram can be put in reduced SQMDD form.

This theorem gives an algorithm to translate any ZH-diagram into an SQMDD. Indeed,
since a diagram D in reduced SQMDD form is in the image of [.]ZH (which is injective), it
now suffices to take its inverse to get a proper SQMDD.
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Abstract
Tree transductions are binary relations of finite trees. For tree transductions defined by non-
deterministic top-down tree transducers, inclusion, equivalence and synthesis problems are known
to be undecidable. Adding origin semantics to tree transductions, i.e., tagging each output node
with the input node it originates from, is a known way to recover decidability for inclusion and
equivalence. The origin semantics is rather rigid, in this work, we introduce a similarity measure for
transducers with origin semantics and show that we can decide inclusion, equivalence and synthesis
problems for origin-close non-deterministic top-down tree transducers.
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1 Introduction

In this paper we study decision problems for top-down tree transducers over finite trees with
origin semantics. Rounds [30] and Thatcher [31] independently invented tree transducers
(their model is known today as top-down tree transducer) as a generalization of finite state
word transducers in the context of natural language processing and compilers in the beginning
of the 1970s. Nowadays, there is a rich landscape of various tree transducer models used in
many fields, for example, syntax-directed translation [18], databases [29, 20], linguistics [27, 5],
programming languages [33, 28], and security analysis [23].

Unlike tree automata, tree transducers have undecidable inclusion and equivalence
problems [13]. This is already the case for word transducers [19, 17]. The intractability of,
e.g., the equivalence problem for transducers (whether two given transducers recognize the
same transduction, that is, the same relation) mainly stems from the fact that two transducers
recognizing the same transduction may produce their outputs very differently. One transducer
may produce its output fast and be ahead of the other. In general, there is an infinite number
of transducers for a single transduction. To overcome this difficulty Bojanczyk [1] has
introduced origin semantics, that is, additionally, there is an origin function that maps output
positions to their originating input positions. The main result of [1] is a machine-independent
characterization of transductions defined by deterministic two-way transducers with origin
semantics. Word transducers with origin semantics where further investigated in [2], and
properties of subclasses of transductions with origin semantics definable by one-way word
transducers have been studied in [14, 9]. Under origin semantics, many interesting problems
become decidable, e.g., equivalence of one-way word transducers. This is not surprising as a
transduction now incorporates how it translates an input word into an output word providing
much more information.
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In [16], the authors have initiated a study of several decision problems for different
tree transducer models on finite trees with origin semantics. More concretely, they studied
inclusion, equivalence, injectivity and query determinacy problems for top-down tree trans-
ducers, tree transducers definable in monadic second order logic, and top-down tree-to-word
transducers. They showed (amongst other results) that inclusion and equivalence become
decidable for all models except tree-to-string transducers with origin semantics.

In general, there has been an interest to incorporate some kind of origin information (i.e.,
how a transduction works) into tree transductions, in order to gain more insight on different
tree transductions, see, e.g., [32, 11, 26].

However, the origin semantics is rather rigid. To mitigate this, in [15], the authors have
introduced a similarity measure between (one-way) word transducers with origin semantics
which amounts to a measure that compares the difference between produced outputs on
the same input prefix, in short, the measure compares their output delays. They show that
inclusion, equivalence, and sequential uniformization (see next paragraph) problems become
decidable for transducers that have bounded output delay. These problem are undecidable
for word transducers in general, see [19, 17, 7]. The introduction of this similarity measure
has triggered similar works on two-way word transducers, see [4, 3].

In order to obtain decidability results (in a less rigid setting than origin semantics), we
initiate the study of inclusion, equivalence, and uniformization problems for top-down tree
transducers under similarity measures which are based on the behavior of the transducers.

A uniformization of a binary relation is a function that selects for each element of the
domain of the relation an element in its image. Synthesis problems are closely related
to effective uniformization problems; algorithmic synthesis of specifications (i.e., relations)
asks for effective uniformization by functions that can be implemented in a specific way.
The classical setting is Church’s synthesis problem [8], where logical specifications over
infinite words are considered. Büchi and Landweber [6] showed that for specifications in
monadic second order logic, that is, specifications that can be translated into synchronous
finite automata, it is decidable whether they can be realized by a synchronous sequential
transducer. Later, decidability has been extended to asynchronous sequential transducers
[22, 21]. Detailed studies of the synthesis of sequential transducers from synchronous and
asynchronous finite automata on finite words are provided in [15, 34], for an overview see [7].

Uniformization questions in this spirit have been first studied for relations over finite
trees in [25, 24]. The authors have considered tree-automatic relations, that is, relations
definable by tree automata over a product alphabet. They have shown that for tree-automatic
relations definable by deterministic top-down tree automata uniformization by deterministic
top-down tree transducers (which are a natural extension of sequential transducer on words)
is decidable. However, for non-deterministic top-down tree automata it becomes undecidable.

Our contribution is the introduction of two similarity measures for top-down tree trans-
ducers. The first measure is an extension of the output delay measure introduced for word
transducers in [15] to tree transducers. Comparing top-down tree transducers based on their
output delay has also been done in e.g., [12], we use the same notion of delay to define our
measure. Unfortunately, while decidability for major decision problems is regained in the
setting of word transducers, we show that it is not in the setting of tree transducers. The
second similarity measure is more closely connected to the origin semantics. We define two
transducers as origin-close if there is a bound on the distance of two positions which are
origins of the same output node by the two transducers. Our main result is that inclusion,
equivalence and uniformization by deterministic top-down tree transducers is decidable for
origin-close top-down tree transducers.



S. Winter 90:3

The paper is structured as follows. In Section 2 we provide definitions and terminology
used throughout the paper. In Section 3 we present two similarity measures for (top-down
tree) transducers and provide a comparison of their expressiveness, and in Section 4 we
consider decision problems for origin-close top-down tree transducers.

2 Preliminaries

Words, trees, and contexts. An alphabet Σ is a finite non-empty set of letters or symbols.
A finite word is a finite sequence of letters. The set of all finite words over Σ is denoted by
Σ∗. The length of a word w ∈ Σ∗ is denoted by |w|, the empty word is denoted by ε. We
write u ⊑ w if there is some v such that w = uv for u, v ∈ Σ∗. A subset L ⊆ Σ∗ is called
language over Σ. A ranked alphabet Σ is an alphabet where each letter f ∈ Σ has a rank
rk(f) ∈ N. The set of letters of rank i is denoted by Σi. A tree domain dom is a non-empty
finite subset of (N \ {0})∗ such that dom is prefix-closed and for each u ∈ (N \ {0})∗ and
i ∈ N \ {0} if ui ∈ dom , then uj ∈ dom for all 1 ≤ j < i. We speak of ui as successor of u

for each u ∈ dom and i ∈ N \ {0}, and the ⊑-maximal elements of dom are called leaves.
A (finite Σ-labeled) tree is a mapping t : domt → Σ such that for each node u ∈ domt

the number of successors of u is a rank of t(u). The height h of a tree t is the length of its
longest path, i.e., h(t) = max{|u| | u ∈ domt}. The set of all Σ-labeled trees is denoted by
TΣ. A subset T ⊆ TΣ is called tree language over Σ.

A subtree t|u of a tree t at node u is defined by domt|u
= {v ∈ N∗ | uv ∈ domt} and

t|u(v) = t(uv) for all v ∈ domt|u
. In order to formalize concatenation of trees, we introduce

the notion of special trees. A special tree over Σ is a tree over Σ∪· {◦} such that ◦ has rank
zero and occurs exactly once at a leaf. Given t ∈ TΣ and u ∈ domt, we write t[◦/u] for the
special tree that is obtained by deleting the subtree at u and replacing it by ◦. Let SΣ be
the set of special trees over Σ. For t ∈ SΣ and s ∈ TΣ or s ∈ SΣ let the concatenation t · s be
the tree that is obtained from t by replacing ◦ with s.

Let Xn be a set of n variables {x1, . . . , xn} and Σ be a ranked alphabet. We denote by
TΣ(Xn) the set of all trees over Σ which additionally can have variables from Xn at their
leaves. We define X0 to be the empty set, the set TΣ(∅) is equal to TΣ. Let X =

⋃
n>0 Xn.

A tree from TΣ(X) is called linear if each variable occurs at most once. For t ∈ TΣ(Xn)
let t[x1 ← t1, . . . , xn ← tn] be the tree that is obtained by substituting each occurrence of
xi ∈ Xn by ti ∈ TΣ(X) for every 1 ≤ i ≤ n.

A tree from TΣ(Xn) such that all variables from Xn occur exactly once and in the order
x1, . . . , xn when reading the leaf nodes from left to right, is called n-context over Σ. Given
an n-context, the node labeled by xi is referred to as ith hole for every 1 ≤ i ≤ n. A special
tree can be seen as a 1-context, a tree without variables can be seen a 0-context. If C is an
n-context and t1, . . . , tn ∈ TΣ(X) we write C[t1, . . . , tn] instead of C[x1 ← t1, . . . , xn ← tn].

Tree transductions, origin mappings, and uniformizations. Let Σ, Γ be ranked alphabets.
A tree transduction (from TΣ to TΓ) is a relation R ⊆ TΣ× TΓ. Its domain, denoted dom(R),
is the projection of R on its first component. Given trees t1, t2, an origin mapping of t2 in
t1 is a function o : domt2 → domt1 . Given v ∈ domt2 , u ∈ domt1 , we say v has origin u if
o(v) = u. Examples are depicted in Figures 1g and 2. A uniformization of a tree transduction
R ⊆ TΣ × TΓ is a function f : dom(R)→ TΓ such that (t, f(t)) ∈ R for all t ∈ dom(R).

Top-down tree transducers. We consider top-down tree transducers, which read the tree
from the root to the leaves in a parallel fashion and produce finite output trees in each step
that are attached to the already produced output.
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A top-down tree transducer (a tdtt) is of the form T = (Q, Σ, Γ, q0, ∆) consisting of a
finite set of states Q, a finite input alphabet Σ, a finite output alphabet Γ, an initial state
q0 ∈ Q, and ∆ is a finite set of transition rules of the form

q(f(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn
)],

where f ∈ Σi, w is an n-context over Γ, q, q1, . . . , qn ∈ Q and variables xj1 , . . . , xjn ∈ Xi. A
deterministic tdtt (a dtdtt) has no two rules with the same left-hand side.

We now introduce a non-standard notion of configurations which is more suitable to prove
our results. Usually, a configuration is a partially transformed input tree; the upper part
is the already produced output, the lower parts are remainders of the input tree. Here, we
keep the input and output tree separate and introduce a mapping from nodes of the output
tree to nodes of the input tree from where the transducer continues to read. A visualization
of several configurations is given in Figure 1.

A configuration of a top-down tree transducer is a triple c = (t, t′, φ) of an input tree
t ∈ TΣ, an output tree t′ ∈ TΓ∪Q and a function φ : Dt′ → domt, where

t′(u) ∈ Γi for each u ∈ domt′ with i > 0 successors, and
t′(u) ∈ Γ0 or t′(u) ∈ Q for each leaf u ∈ domt′ , and
Dt′ ⊆ domt′ with Dt′ = {u ∈ domt′ | t′(u) ∈ Q}, i.e., φ maps every node from the output
tree t′ that has a state-label to a node of the input tree t.

Let c1 = (t, t1, φ1) and c2 = (t, t2, φ2) be configurations of a top-down tree transducer
over the same input tree. We define a successor relation →T on configurations as usual
by applying one rule. Figure 1 illustrates a configuration sequence explained in Example 1
below. Formally, for the application of a rule, we define c1 →T c2 :⇔

There is a state-labeled node u ∈ Dt′ of the output tree t1 that is mapped to a node
v ∈ domt of the input tree t, i.e., φ1(u) = v, and
there is a rule t1(u) (t(v)(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn

)] ∈ ∆ such that the output
tree is correctly updated, i.e., t2 = t1[◦/u] · w[q1, . . . , qn], and
the mapping φ2 is correctly updated, i.e., φ2(u′) = φ1(u′) if u′ ∈ Dt1 \ {u} and φ2(u′) =
v.ji if u′ = u.ui with ui is the ith hole in w.

Furthermore, let →∗
T be the reflexive and transitive closure of →T . From here on, let φ0

always denote the mapping φ0(ε) = ε. A configuration (t, q0, φ0) is called initial configuration
of T on t. A configuration sequence starting with an initial configuration where each
configuration is a successor of the previous one is called a run. For a tree t ∈ TΣ let
T (t) ⊆ TΓ∪Q be the set of final transformed outputs of a computation of T on t, that is the
set {t′ | (t, q0, φ0)→∗

T (t, t′, φ) s.t. there is no successor configuration of (t, t′, φ)}. Note, we
explicitly do not require that the final transformed output is a tree over Γ. In the special case
that T (t) is a singleton set {t′}, we also write T (t) = t′. The transduction R(T ) induced by
a tdtt T is R(T ) = {(t, t′) | t′ ∈ T (t) ∩ TΓ}. The class of relations definable by tdtts is
called the class of top-down tree transductions, conveniently denoted by tdtt.

Let T be a tdtt, and let ρ = c0 . . . cn be a run of T on an input tree t ∈ TΣ that results
in an output tree s ∈ TΓ. The origin function o of ρ maps a node u of the output tree to the
node v of the input tree that was read while producing u, formally o : doms → domt with
o(u) = v if there is some i, such that ci = (t, ti, φi), ci+1 = (t, ti+1, φi+1) and φi(u) = v and
ti+1(u) = s(u), see Figure 1. We define Ro(T ) to be the set

{(t, s, o) | t ∈ TΣ, s ∈ TΓ and ∃ ρ : (t, q0, φ)→∗
T (t, s, φ′) with origin o}.

▶ Example 1. Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g, h}, and Σ0 = {a}.
Consider the tdtt T given by ({q}, Σ, Σ, {q}, ∆) with ∆ = { q(a)→ a, q(g(x1))→ q(x1),
q(h(x1))→ h(q(x1)), q(f(x1, x2))→ f(q(x1), q(x2)) }. For each t ∈ TΣ the transducer deletes
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Figure 1 The configuration sequence c0 to c5 of T on f(g(h(a)), a) and resulting origin mapping
from Example 1.
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(b) o′ : doms → domt.

Figure 2 Origin mappings o, o′. We have that dist(o(111), o′(111)), that is, the distance of the
origins of the leaf node, is the length of the shortest path from node 111 to node 211 which is 6.

all occurrences of g in t. Consider t := f(g(h(a)), a). A possible sequence of configurations
of T on t is c0 →5

T c5 such that c0 := (t, q, φ0) with φ0(ε) = ε, c1 := (t, f(q, q), φ1) with
φ1(1) = 1, φ1(2) = 2, c2 := (t, f(q, q), φ2) with φ2(1) = 11, φ2(2) = 2, c3 := (t, f(q, a), φ3)
with φ3(1) = 11, c4 := (t, f(h(q), a), φ4) with φ4(11) = 111, and c5 := (t, f(h(a), a), φ5). A
visualization of this sequence and resulting origin mapping is shown in Figure 1.

▶ Example 2. Let Σ, Γ be given by Σ2 = {f}, Σ0 = {a}, Γ1 = {h}, and Γ0 = {b}. Consider
the tdtt T given by ({q}, Σ, Γ, {q}, ∆) with ∆ = { q(a) → b, q(f(x1, x2)) → h(q(x1)),
q(f(x1, x2)) → h(q(x2)) }. Basically, when reading an f -labeled node, the tdtt can non-
deterministically decide whether to continue reading in left or the right subtree. In Figure 2
two origin mappings o : doms → domt and o′ : doms → domt are given that are result of
runs of T on t = f(f(f(a, a), a), a), f(f(a, a), a), a)) with final output s = h(h(h(b))).

In this work, we focus on decision problems for transducers with origin semantics. To
begin with, we introduce some notations and state relevant known results in this context.

Shorthand notations. Let C denote a class of transducers with origin semantics, e.g., tdtt
or dtdtt. Given a class C and T1, T2 ∈ C, if R(T1) ⊆ R(T2) (resp. Ro(T1) ⊆ Ro(T2)), we
write T1 ⊆ T2 (resp. T1 ⊆o T2). Furthermore, if R(T1) = R(T2) (resp. Ro(T1) = Ro(T2)),
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we write T1 = T2 (resp. T1 =o T2). Given classes C1, C2, T1 ∈ C1, and T2 ∈ C2, if T1 defines
a function f that is a uniformization of R(T2), we say T1 uniformizes T2, if additionally
T1 ⊆o T2, we say T1 origin uniformizes T2.

Decision problems. The inclusion resp. origin inclusion problem for a class C asks, given
T1, T2 ∈ C, whether T1 ⊆ T2 resp. T1 ⊆o T2. The equivalence resp. origin equivalence problem
for a class C asks, given T1, T2 ∈ C, whether T1 = T2 resp. T1 =o T2. Lastly, the uniformization
resp. origin uniformization problem for classes C1, C2 asks, given T2 ∈ C2, whether there exists
T1 ∈ C1 such that T1 uniformizes (resp. origin uniformizes) T2.

As mentioned in the introduction, generally, a transduction can be defined by several
transducers behaving very differently, making many problems intractable. Adding origin
semantics to transducers, i.e., seeing the transducer behavior as part of the transduction,
allows to recover decidability. The following is known for the class tdtt.

▶ Theorem 3 ([13]). Inclusion and equivalence are undecidable for the class tdtt.

▶ Theorem 4 ([16]). Origin inclusion and origin equivalence are decidable for the class
tdtt.

Turning to uniformization problems, it is known that every tdtt is uniformizable by a
dtdtt with regular lookahead (a dtdttR), that is, the transducer can check membership
of the subtrees of a node in regular tree-languages before processing the node.

▶ Theorem 5 ([10]). Every tdtt has a dtdttR-uniformization.

However, when requiring that the input should be transformed on-the-fly (without regular
lookahead), the uniformization problem becomes undecidable. In [7], it was shown that it is
undecidable whether a one-way (non-deterministic) word transducer has a uniformization by
a sequential transducer (that is, basically, a one-way deterministic transducer). So, we get
undecidability in the tree setting for free (as stated in Theorem 6). This problem has not
been investigated with origin semantics so far. We show decidability (also for more relaxed
versions), see Theorem 16.

▶ Theorem 6. dtdtt-uniformization is undecidable for the class tdtt.

Since the origin semantics is rather rigid, in the next section, we introduce two similarity
measures between transducers which are based on their behavior and re-investigate the
introduced decision problems for transducers with “similar” behavior.

3 Similarity measures for transducers

An idea that naturally comes to mind is to say that two transducers behave similarly if for
two computations over the same input that yield the same output their respective origin
mappings are “similar”.

The other idea is to say that two computations are similar if their output delay is small,
roughly meaning that for the same prefix (for an adequate notion of prefix for trees) of the
input the so-far produced output is of similar size. Decision problems using this measure
have already been investigated for (one-way) word transducers [15], we lift the measure to
top-down tree transducers.
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Origin distance. Given a tree t, let the distance between two nodes u, v ∈ domt, written
dist(u, v), be the shortest path between u and v (ignoring the edge directions), an example is
given in Figure 2.

Given T , T1, T2 ∈ C, where C is a class of transducers with origin semantics. We say
(t, s, o) is k-origin included in Ro(T ), written (t, s, o) ∈k Ro(T ), if there is (t, s, o′) ∈ Ro(T )
such that dist(o(i), o′(i)) ≤ k for all i ∈ doms. We say T1 is k-origin included in T2, written
T1 ⊆k T2, if (s, t, o) ∈k Ro(T2) for all (s, t, o) ∈ Ro(T1). We say T1 and T2 are k-origin
equivalent, written T1 =k T2, if T1 ⊆k T2 and T2 ⊆k T1. We say T1 k-origin uniformizes T2 if
T1 ⊆k T2 and T1 uniformizes T2. The k-origin decision problems are defined as expected.

We need some additional notations, before we can introduce the concept of delay.

Partial and prefix trees. Let NΣ be the set of all trees over Σ which can have symbols from
Σ, that is, symbols with rank ≥ 0, at their leaves. The set NΣ is the set of all partial trees
over Σ. Note that NΣ includes TΣ. We say a tree t′ ∈ NΣ is a prefix tree of a tree t ∈ NΣ,
written t′ ⊑ t, if domt′ ⊆ domt, and t′(u) = t(u) for all u ∈ domt′ . Given t1, t2 ∈ NΣ, its
greatest common prefix, written t1∧ t2, is the tree t ∈ NΣ such that domt is the largest subset
of domt1 ∩ domt2 such that t ⊑ t1 and t ⊑ t2. Removing t1 ∧ t2 from t1 and t2 naturally
yields a set of partial trees (we omit a formal definition) called difference trees. These notions
are visualized in Figure 3.

Delay. Given words w1, w2, to compute their delay, we remove their greatest common prefix
w = w1 ∧ w2, say w1 = wv1 and w2 = wv2, and their delay is the maximum of the length
of their respective reminders, i.e., max{|v1|, |v2|}. We lift this to trees, given (partial) trees
t1, t2, we remove their greatest common prefix t1 ∧ t2 from t1 and t2 which yields a set S of
partial trees, we define their delay as delay(t1, t2) = max{h(t) + 1 | t ∈ S}. An example is
given in Figure 3. Note that for trees over unary and leaf symbols (a way to see words) the
definitions for words and trees are equal. Recall that the length of the word a is one, but the
height of the tree a is zero.

In order to define a similarity measure between transducers using delay, we take two
transducer runs on the same input and compute the delay between their produced outputs
throughout their runs. Although we have defined delay between words and trees, we only
provide a formal definition for top-down tree transducers. However, for word transducers,
examples are given in Example 17, and a formal definition can be found in [15].

Now, let T1 and T2 be tdtts, and ρ1 and ρ2 be runs of T1 and T2, respectively, over
the same input tree t ∈ TΣ such that ρ1 : (t, qT1

0 , φ0) →∗
T1

(t, t1, φ) with t1 ∈ TΓ, and
ρ2 : (t, qT2

0 , φ0)→∗
T2

(t, t2, φ′) with t2 ∈ TΓ.
Basically, we take a look at all configurations that occur in the runs and compute the

delay between the output trees of compatible configurations where compatible means in both
configurations the same prefix (level-wise, see below) of the input tree has been processed.

Let us be a bit more clear what we mean with compatible. Note that when comparing
two configuration sequences (i.e., runs) of word transducers the notion of “have processed the
same input so far” is clear. For tree transducers, in one configuration sequence, a left-hand
subtree might be processed before the right-hand subtree, and in another configuration
sequence vice versa. Since these computation steps are done in a parallel fashion (just written
down in an arbitrary order in the configuration sequence), we need to make sure to compare
configurations where the subtrees have been processed equally far (we call this level-wise).
Also, a tree transducer might not even read the whole input tree, as, e.g., in Example 2. We
also (implicitly) take care of this in our definition.
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Figure 3 The greatest common prefix of the partial trees t1 and t2, t1 ∧ t2, is marked with
circles in t1 and t2. The delay between t1 and t2 is computed from their non-common parts as
delay(t1, t2) = max{h(t) + 1 | t ∈ {b, h(a), a}} = 2.

The result is the maximum of the delay between output trees of compatible configurations.
Given t ∈ TΣ, let Prefslevel(t) denote the set of all prefix trees of t such that if a node at
level i is kept, then all other nodes at level i are kept, i.e., for t = f(h(a), h(a)), Prefslevel(t)
contains f(h, h), but not f(h(a), h). Given an intermediate configuration (t, t′

i, φ′) of the run
ρi, we recall that t′

i ∈ TΓ∪QTi
meaning t′

i contains states of Ti as leaves. Let t′
i|Γ denote the

partial tree obtained from ti by removing all non-Γ-labelled nodes. We define delay(ρ1, ρ2) as

max{delay(t′
1|Γ, t′

2|Γ) | there is t′ ∈ Prefslevel(t), there is (t, t′
1, φ′) in ρ1 with t′

1 ∈ T1(t′),
and, there is (t, t′

2, φ′′) in ρ2 with t′
2 ∈ T2(t′) }.

The conditions t′
1 ∈ T1(t′) and t′

2 ∈ T2(t′) are introduced to make sure that all input nodes
that can be processed from t′ are processed in the selected configurations.

We introduce (shorthand) notations. Let T1, T2 ∈ C, where C is a class of transducers.
Given (t, s) ∈ R(T1), we say (t, s) is k-delay included in R(T2), written (t, s) ∈Dk

R(T2),
if there are runs ρ and ρ′ of T1 and T2, respectively, with input t and output s such that
delay(ρ, ρ′) ≤ k. We say T1 is k-delay included in T2, written T1 ⊆Dk

T2, if (t, s) ∈Dk
R(T2) for

all (t, s) ∈ R(T1). We say T1 and T2 are k-delay equivalent, written T1 =Dk
T2, if T1 ⊆Dk

T2
and T2 ⊆Dk

T1. We say T1 k-delay uniformizes T2 if T1 ⊆Dk
T2 and T1 uniformizes T2. The

k-delay decision problems are defined as expected.
In order to get a better understanding of the expressiveness and differences between the

two similarity measures, we first explore their properties on word transductions since words
are a particular case of trees (i.e., monadic trees).

Word transducers. We denote by fst a finite state transducer, the class of word transduc-
tions recognized by fsts is the class of rational transductions, conveniently also denoted
by fst. We omit a formal definition of fsts, because they are not considered outside of
this section. An fst is sequential if its transitions are input-deterministic, more formally, a
dtdtt over ranked alphabets with only unary and leaf symbols can be seen as an fst.

The results below concern origin distance, the same results were proven for delay in [15].

▶ Proposition 7.
1. There exist fsts T1, T2 such that T1 ⊆ T2, but T1 ̸⊆k T2 for all k ≥ 0.
2. There exist fsts T1, T2 such that T1 = T2, but T1 ̸=k T2 for all k ≥ 0.
3. There exists an fst T such that T is sequentially uniformizable, but T is not k-origin

sequentially uniformizable for all k ≥ 0.
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(b) We have T3 = T4, and T3 =1 T4, but T3 ̸=Dk
T4 for all k ≥ 0.

Figure 4 Comparing origin distance and delay for word transducers, see the proof of Proposition 7
and Example 17.

Proof. First, consider the fsts T1, T2 depicted in Figure 4a. Both recognize the same
function f : {a, b, c}∗ → {a}∗ defined as f(ab∗c) = a. Clearly, T1 ⊆ T2 and T1 = T2. However,
the origin distance between T1 and T2 is unbounded. In T1, the origin of the single output
letter a is always the first input letter. In contrast, in T2, the origin of the output letter
a is always the last input letter. Secondly, consider the fsts T , T ′ depicted in Figure 4a.
The recognized relation R(T ) ⊆ {a, b, A, B}∗ × {a, b}∗ consists of {(abnA, abn) | n ∈ N}
and {(abnB, abm) | 0 ≤ m ≤ 2n − 1, n ∈ N}. The sequential transducer T ′ recognizes the
function f : {a, b, A, B}∗ → {a, b}∗ defined by f(abnX) = abn for X ∈ {A, B} and all n ∈ N.
Clearly, T ′ is a sequential uniformization of T . However, no sequential uniformization with
bounded origin distance exists, see Appendix B. ◀

We give an example (depicted in Figure 4 and described in detail in Example 17) that
shows that the two notions are orthogonal to each other. However, if we restrict the class fst
to real-time1 fst, that is, word transducers such that in every transition exactly one input
symbol is read, the notion of delay is more powerful than origin distance, see below. It is
important to note that we have proven Proposition 7 for real-time fsts which are equivalent
to tdtts on monadic trees, i.e., Proposition 7 is true for the class tdtt.

▶ Proposition 8. Let T1, T2 be real-time fsts, if T1 ⊆i T2 for some i ≥ 0, then T1 ⊆Dj
T2

for some j ≥ 0.

The notion of bounded delay is suitable to regain decidability.

▶ Theorem 9 ([15]). Given k ≥ 0, k-delay inclusion, k-delay equivalence and k-delay
sequential uniformization are decidable for the class fst.

Ideally, we would like to lift Theorem 9 from word to tree transducers, but it turns out
that the notion of delay is too expressive to yield decidability results for tree transducers as
shown in the next paragraph.

1 ε-transitions (as, e.g., the loop in T3 from Figure 4, not be confused with non-producing transitions)
are standard for fst, and non-standard for tdtt in the literature. We consider “real-time” tdtt by
default.
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Tree transducers. It is undecidable whether a given tree-automatic relation has a uni-
formization by a synchronous dtdtt [24]. A tdtt is called synchronous if for one processed
input node one output node is produced as, e.g., in Example 2. Tree-automatic relations are
a subclass of the relations that are recognizable by synchronous tdtt. To prove the result,
the authors showed that

▶ Lemma 10 ([24]). There exists a synchronous tdtt TM , based on a Turing machine M ,
that is 0-delay dtdtt-uniformizable iff M halts on the empty input.

In the proof, for a TM M , a dtdtt T ′
M is constructed such that T ′

M 0-delay uniformizes
TM iff M halts on the empty input. Recall that this implies that T ′

M ⊆D0 TM iff M halts on
the empty input. Consequently, we obtain that

▶ Theorem 11. Given k ≥ 0, k-delay inclusion and k-delay dtdtt-uniformization are
undecidable for the class tdtt (even for k = 0).

We do not know whether k-equivalence is decidable for a given k ≥ 0. Note that
Theorem 11 does not imply that 0-origin inclusion and 0-origin dtdtt-uniformization is
undecidable for the class tdtt. For the class fst, the notions of 0-origin and 0-delay fall
together, but for tdtt this is no longer the case. Recall the tdtt given in Example 2 and
its unique runs that yield the origin mappings depicted in Figure 2. The delay between these
runs is zero, but their origin mappings are different. An analysis of the (un)decidability
proof(s) in [24] pins the problems down to the fact that in the specification and in the possible
implementations the origins for the same output node lie on different paths in the input
tree. For trees, this fact has no influence when measuring the delay between computations
(as seen in Example 2). However, it is recognizable using the origin distance as measure.
Since the notion of delay is so powerful that the decision problems under bounded delay
become undecidable for tree transducers (see Theorem 11) in contrast to word transducers
(see Theorem 9), in the next section, we focus on bounded origin distance.

4 Decision problems for origin-close transducers

We show that the decision problems become decidable for top-down tree transducers with
bounded origin distance, see Theorem 16. The next part is devoted to explaining our proof
ideas and introducing our main technical lemma (Lemma 13) which is used in all proofs.

Origin-close transductions are representable as regular tree languages. Given k ≥ 0, and
a tdtt T , we construct an infinite tree HT ,k, given as the unfolding of a finite graph GT ,k,
such that a node in this infinite tree represents an input sequence from a finite input tree
and an output sequence (where the intuition is that this output sequence was produced while
processing this input sequence). The idea is that in HT ,k, we define choices (aka. strategies)
of two so-called players In and Out, where a strategy t of In together with a strategy s of Out
defines an input tree t, an output tree s, and an origin mapping o : doms → domt of s in
t. We can annotate the tree HT ,k with the strategies t and s which yields a tree HT ,k

⌢t⌢s.
We use this game-like view for all considered decision problems. We illustrate this view.

▶ Example 12. Recall the tdtt T over Σ and Γ given in Example 2. First, we explain how
the graph GT ,0 looks like. Its unfolding is the infinite tree HT ,0 (with annotations t and s)
depicted in Figure 5. We have three types of nodes: {ε, 1, 2} to indicate that the current
node is the root, a first or a second child. The maximum rank of Σ is two, hence {ε, 1, 2}.
These nodes belong to In who can choose the input label, represented by nodes {f, a}. Then
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(b) (t, s, o).

Figure 5 Infinite tree HT ,0 based on T from Example 2. On red nodes In must make a choice, on
green nodes Out must make a choice. Their respective strategies t and s which define their choices
are highlighted on the edges in red and green, respectively. Together, t and s encode the input tree
t = f(f(a, a), a), the output tree s = h(b) and origin mapping o : doms → domt as depicted. Note
that since t and s are strategies, choices are made whatever the other player does, that is why in
HT ,0

⌢t⌢s, we also have, e.g., a green annotation at node 1112 even though In picked node 1111.

Out chooses which output (from TΓ(X)) should be produced while processing a node. Since
k = 0, and all right-hand sides of rules in T have height at most one, only outputs of height
at most one are suitable to maintain origin distance k = 0. For input f possible choices are
h(x1) and h(x2), indicating whether to continue to process the left or the right subtree, or b.
For input a only output b is possible. After the output, edges to {1, · · · , rk(σ)} exist, where
σ is the last seen input letter. Further explanation is given in Figure 5.

We present our main technical lemma which states that origin-close transductions are
representable as tree language recognizable by a parity tree automaton (a pta).

▶ Lemma 13. Given k ≥ 0 and a tdtt T , there exists a pta that recognizes the tree
language {HT ,k

⌢t⌢s | (t, s, o) ∈k Ro(T )}.

Proof sketch. The infinite tree HT ,k
⌢t⌢s encodes a triple (t, s, o). We construct a pta

(which has in fact a safety acceptance condition) that guesses a run of T over the input
tree t with output tree s that yields an origin mapping o′ such that (t, s, o′) ∈ Ro(T ) and
dist(o(i), o′(i)) ≤ k which implies that (t, s, o) ∈k Ro(T ).

Checking whether dist(o(i), o′(i)) ≤ k can be done on-the-fly because the origin distance
is bounded which implies that the difference trees of so-far produced output by the guessed
run and the productions encoded by the annotations are of bounded size. Thus, they
can be stored in the state space of the pta. Even tough the construction idea is rather
simple, the implementation and correctness proof are non-trivial. We face two difficulties.
Firstly, we have to account for the fact that in o and o′ origins for the same output node
can lie on different paths of the input tree. However, since their distance is bounded, the
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amount of shared information that the pta has to check on different paths is also bounded.
Secondly, it is possible to have non-linear transformation rules (that is, rules with copy, e.g.,
q(f(x1, x2))→ f(q1(x2), q2(x2))) which adds another layer of complication. This causes that
an unbounded number of output nodes can have the same input node as origin. We require
that HT ,k

⌢t⌢s is a tree over a ranked alphabet, hence we have to bound the number of
output choices that can be made at an input node. We show that it suffices to only make a
bounded number of output choices for each input node. The main insight is that when two
continuations of the output tree depend on the same continuation of the input tree, then it
suffices to only consider one of them (because the other one can be continued in the same
way) if they share the same relevant information where relevant basically means that the
state that T has reached (guessed by the pta) at these two output nodes and the output
difference trees compared to Out’s choices (given by s) are the same. ◀

Solving decision problems for origin-close transducers. We show that deciding k-origin
inclusion and equivalence for tdtts reduces to deciding language inclusion for ptas.

▶ Proposition 14. Given k ≥ 0, k-origin inclusion and k-origin equivalence are decidable
for the class tdtt.

Proof. Let T1, T2 be tdtts over the same input and output alphabet. If T1 ⊆k T2, then
(t, s, o) ∈ Ro(T1) implies that (t, s, o) ∈k Ro(T1) for all (t, s, o) ∈ Ro(T1). Lemma 13 yields
that there are ptas A1,A2 that recognize {HT1,0

⌢t⌢s | (t, s, o) ∈ Ro(T )} and {HT2,k
⌢t⌢s |

(t, s, o) ∈k Ro(T2)}, respectively. Basically, we want to check that L(A1) ⊆ L(A2). However,
we have to overcome a slight technical difficulty. If there are trees HT1,0

⌢t1
⌢s1 ∈ L(A1)

and HT2,k
⌢t2

⌢s2 ∈ L(A2) such that for their encoded triples (t1, s1, o1) and (t2, s2, o2)
holds that t1 = t2, s1 = s2 and o1 and o2 have an origin difference of at most k, i.e.,
(t1, s1, o1) ∈k R0(T2), it not necessarily holds that HT1,0

⌢t1
⌢s1 ∈ L(A2). This is due to the

fact that the base trees HT1,0 and HT2,k look different in general because choices for Out in
the first tree are based on the rules of T1 and without origin distance and in the latter tree
based on the rules of T2 with k-origin distance. We only care whether the paths reachable by
following the annotations t1 and s1 through HT1,0 and the paths reachability by following the
annotations t2 and s2 through HT2,k are the same. Thus, we introduce the operation purge
which applied to a tree annotated with strategies of In and Out removes all non-strategy
paths. It is not difficulty to see that the sets L1 := {purge (HT1,0

⌢t⌢s) | (t, s, o) ∈ Ro(T )}
and L2 := {purge (HT2,k

⌢t⌢s) | (t, s, o) ∈k Ro(T2)} are also pta-recognizable. Hence, in
order to check whether T1 ⊆k T2, we have to check whether L1 ⊆ L2, which is decidable. We
have shown that k-origin inclusion for tdtts is decidable, consequently, k-origin equivalence
for tdtts is decidable for all k ≥ 0. ◀

We show that checking whether a tdtt is k-origin dtdtt-uniformizable reduces to
deciding emptiness of ptas.

▶ Proposition 15. Given k ≥ 0, k-origin dtdtt-uniformization is decidable for the class
tdtt.

Proof. Given a tdtt T , by Lemma 13, there is a pta that recognizes
{HT ,k

⌢t⌢s | (t, s, o) ∈k Ro(T )}.
By closure under complementation and intersection, there is a pta that recognizes
{HT ,k

⌢t⌢s | (t, s, o) /∈k Ro(T )}.
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By closure under projection, there is a pta that recognizes
{HT ,k

⌢s | ∃ t : (t, s, o) /∈k Ro(T )}.
By closure under complementation and intersection, there is a pta that recognizes
{HT ,k

⌢s | ∀ t : (t, s, o) ∈k Ro(T )}.
By closure under projection, there is a pta that recognizes
{HT ,k | ∃ s : ∀ t : (t, s, o) ∈k Ro(T )}.

Let A denote the pta obtained in the last construction step. We show that T is k-origin
dtdtt-uniformizable iff L(A) ̸= ∅. We have that L(A) = {HT ,k | ∃ s : ∀ t : (t, s, o) ∈k

Ro(T )}. Colloquially, this means that we can fix output choices that only depend on the
previously seen input choices, which exactly describes dtdtt-uniformizability.

Assume T is k-origin dtdtt-uniformizable, say by a dtdtt T ′. There exists a strategy
of Out in HT ,k that copies the computations of T ′. Clearly, since T ′ is deterministic, we
obtain that ∃ s : ∀ t : (t, s, o) ∈k Ro(T ), s can be chosen to be the strategy that copies T ′.
Thus, L(A) ̸= ∅.

For the other direction, assume that L(A) ̸= ∅. This implies that also the set {HT ,k
⌢s |

∀ t : (t, s, o) ∈k Ro(T )} is non-empty and pta recognizable. Since the set is pta recognizable,
it contains a regular infinite tree (meaning the tree has a finite representation). This tree
implicitly contains a finite representation of some strategy s such that ∀ t : (t, s, o) ∈k

Ro(T ). Hence, the strategy s can be translated into a finite-state dtdtt that k-origin
uniformizes T . ◀

Finally, combining Propositions 14 and 15, we obtain our main result.

▶ Theorem 16. Given k ≥ 0, k-origin inclusion, k-origin equivalence, and k-origin dtdtt-
uniformization are decidable for the class tdtt.

5 Conclusion

We introduced two similarity measures for tdtts based on their behavior and studied decision
problems for similar tdtts. For tdtts with bounded delay, the decision problems remain
undecidable. For origin-close tdtts they become decidable. For future work, we plan to
consider other tree transducer models. In [16], it was shown that origin inclusion and origin
equivalence are decidable for MSO tree transducers and macro tree transducers.
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A Missing example

▶ Example 17. To begin with, consider the fsts T1, T2 depicted in Figure 4a, we already
explained in the proof of Proposition 7 that T1 = T2, but T1 ̸=k T2 for all k ≥ 0, i.e., their
origin distance is unbounded. However, their delay is bounded by 1. It is easy to see that
T1 =D1 T2, because their difference in the length of their outputs for the same input is at
most one letter. Now, consider the fsts T3, T4 depicted in Figure 4b. Both recognize the
relation {(ab, cn) | n ∈ N}, hence, T3 = T4. Clearly, their origin distance is bounded by 1.
The whole output either has the first or the second letter as origin. However, T3 ̸=Dk

T4 for
all k ≥ 0, i.e., their delay is unbounded. For any k, take the consider the unique runs that
admit output ck+1 in T3 and T4, respectively. We compare these runs for the input prefix a,
T3, already has produced ck+1, and T4 no output so far. Their delay is k + 1.

B Missing proofs of Propositions 7 and 8

▶ Proposition 7.
1. There exist fsts T1, T2 such that T1 ⊆ T2, but T1 ̸⊆k T2 for all k ≥ 0.
2. There exist fsts T1, T2 such that T1 = T2, but T1 ̸=k T2 for all k ≥ 0.
3. There exists an fst T such that T is sequentially uniformizable, but T is not k-origin

sequentially uniformizable for all k ≥ 0.

Proof. Secondly, consider the fsts T , T ′ depicted in Figure 4a. The recognized relation
R(T ) ⊆ {a, b, A, B}∗×{a, b}∗ consists of {(abnA, abn) | n ∈ N} and {(abnB, abm) | 0 ≤ m ≤
2n − 1, n ∈ N}. The sequential transducer T ′ recognizes the function f : {a, b, A, B}∗ →
{a, b}∗ defined by f(abnX) = abn for X ∈ {A, B} and all n ∈ N. Clearly, T ′ is a sequential
uniformization of T . However, no sequential uniformization with bounded origin distance
exists. Towards a contradiction, assume there is sequential transducer T ′′ that uniformizes
T such that T ′′ ⊆k T for some k ≥ 0. Consider the input word ab2kA, in T there is only one
run with the input which yields the output ab2k and the origin of the ith output letter is the
ith input letter for all i. Since T ′′ ⊆k T there exists a run of T ′′ on ab2kA that yields ab2k

and the origin of the first b in the output is at latest the kth b in the input. Now, consider
the input ab6kB, the output of T ′′ on ab6kB is ab6k. Since T ′′ is sequential, the the runs of
T ′′ on ab2kA and ab6kB are the same up to the input ab2k, thus, also for the output ab6k
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the origin first output b is at latest the kth b in the input. Now we compare this with all
possible runs in T on ab6kB that also yield ab6k. Note that T (after producing the first b)
must always produce two b at once, thus in order to produce ab6k for the input ab6kB, the
production of b can only start after while reading the second half of the input. This implies
that the first output has an origin in the second half of input which has a distance of more
than k (at least 2k) to the kth b in the input. ◀

▶ Proposition 8. Let T1, T2 be real-time fsts, if T1 ⊆i T2 for some i ≥ 0, then T1 ⊆Dj
T2

for some j ≥ 0.

Proof. Let T1, T2 be real-time fsts such that T1 ⊆i T2 for some i ≥ 0. Let ℓ be the
maximum number of output letters that T1 produces in a computation step. Consider any
(u, v, o1) ∈ Ro(T1), since T1 ⊆i T2, there is (u, v, o2) ∈ Ro(T2) such that dist(o1(d), o2(d)) ≤ i

for all d ∈ domv. Let ρ1 and ρ2 be the corresponding runs of T1 and T2, respectively. We show
that delay(ρ1, ρ2) ≤ ℓ · i which implies that T1 ⊆Dℓ·i

T2. Let u = a1 · · · an and v = b1 · · · bm.
Pick any prefix of u, say a1 · · · ak, and consider the prefixes of the runs ρ1 and ρ2 such that
the input a1 · · · ak has been processed. Let b1 · · · bk1 and b1 · · · bk2 be the respective produced
outputs. Wlog., let k1 ≤ k2. If k1 = k1, then the output delay for the prefix a1 · · · ak is
zero. So assume k1 < k2. We have to show that |bk1+1 · · · bk2 | is less than ℓ · i. Since the
origin mappings of ρ1 and ρ2, that is, o1 and o2, have a distance of at most i, we know that
the origin of bk1+1 · · · bk2 in ρ1 is no later than at the letter ak+i. On ak+1 · · · ak+1, T1 can
produce at most ℓ · i output letters. Consequently, |bk1+1 · · · bk2 | ≤ ℓ · i. ◀
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