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—— Abstract

We present an algorithm for constructing a depth-first search tree in planar digraphs; the algorithm
can be implemented in the complexity class ACl(UL N co-UL), which is contained in AC2. Prior to
this (for more than a quarter-century), the fastest uniform deterministic parallel algorithm for this

problem was O(log'® n) (corresponding to the complexity class AC'® C NC'').
We also consider the problem of computing depth-first search trees in other classes of graphs,
and obtain additional new upper bounds.
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1 Introduction

Depth-first search trees (DFS trees) constitute one of the most useful items in the algorithm
designer’s toolkit, and for this reason they are a standard part of the undergraduate al-
gorithmic curriculum around the world. When attention shifted to parallel algorithms in
the 1980’s, the question arose of whether NC algorithms for DFS trees exist. An early
negative result was that the problem of constructing the lexicographically least DFS tree
in a given digraph is complete for P [20]. But soon thereafter significant advances were
made in developing parallel algorithms for DFS trees, culminating in the RNC” algorithm of
Aggarwal, Anderson, and Kao [1]. This remains the fastest parallel algorithm for the problem
of constructing DFS trees in general graphs, in the probabilistic setting, or in the setting of
nonuniform circuit complexity. It remains unknown if this problem lies in (deterministic) NC
(and we do not solve that problem here).

More is known for various restricted classes of graphs. For directed acyclic graphs (DAGs),
the lexicographically-least DFS tree from a given vertex can be computed in AC* [10]. (See
also [11, 7, 13, 19, 16, 15].) For undirected planar graphs, an AC' algorithm for DFS trees
was presented by Hagerup [14]. For more general planar directed graphs Kao and Klein
presented an AC'® algorithm. Kao subsequently presented an AC® algorithm for DFS in
strongly connected planar digraphs. In stating the complexity results for this prior work
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in terms of complexity classes (such as AC!, AC™0, etc.), we are ignoring an aspect that
was of particular interest to the authors of this earlier work: minimizing the number of
processors. This is because our focus is on classifying the complexity of constructing DFS
trees in terms of complexity classes. Thus, if we reduce the complexity of a problem from
AC'? to AC?, then we view this as a significant advance, even if the AC? algorithm uses many
more processors (so long as the number of processors remains bounded by a polynomial).
Indeed, our algorithms rely on the logspace algorithm for undirected reachability [21], which
does not directly translate into a processor-efficient algorithm. We suspect that our approach
can be modified to yield a more processor-efficient AC® algorithm, but we leave that for
others to investigate.

1.1 OQur Contributions

First, we observe that, given a DAG G, computation of a DFS tree in G logspace reduces to
the problem of reachability in G. Thus, for general DAGs, computation of a DFS tree lies in
NL, and for planar DAGs, the problem lies in UL N co-UL [8, 23]. For classes of graphs where
the reachability problem lies in L, so does the computation of DFS trees. One such class
of graphs is planar DAGs with a single source (see [2], where this class of graphs is called
SMPDs, for Single-source, Multiple-sink, Planar DAGs).

For undirected planar graphs, it was shown in [4] that the approach of Hagerup’s AC!
DFS algorithm [14] can be adapted in order to show that construction of a DFS tree in a
planar undirected graph logspace-reduces to computing the distance between two nodes in
a planar digraph. Since this latter problem lies in UL N co-UL [24], so does the problem of
DFS for planar undirected graphs.

Our main contribution in the current paper is to show that a more sophisticated application
of the ideas in [14] leads to an AC!(UL N co-UL) algorithm for construction of DFS trees in
planar directed graphs. (That is, we show DFS trees can be constructed by unbounded fan-in
log-depth circuits that have oracle gates for a set in UL N co-U L.l) Since UL C NL C SAC! -
AC', the AC' (UL N co-UL) algorithm can be implemented in AC?. Thus this is a significant
improvement over the best previous parallel algorithm for this problem: the AC'® algorithm
of [18], which has stood for 28 years.

2 Preliminaries

We assume that the reader is familiar with depth-first search trees (DFS trees).

We further assume that the reader is familiar with the standard complexity classes L, NL
and P (see e.g. the text [6]). We will also make frequent reference to the logspace-uniform
circuit complexity classes NC* and AC*. NCF is the class of problems for which there is a
logspace-uniform family of circuits {C),} consisting of AND, OR, and NOT gates, where
the AND and OR gates have fan-in two and each circuit C, has depth O(log"n). (The
logspace-uniformity condition implies that each C, has only n®1) gates.) ACF is defined
similarly, although the AND and OR gates are allowed unbounded fan-in. An equivalent
characterization of AC¥ is in terms of concurrent-read concurrent-write PRAMs with running
time O(logk n), using n®1) processors. For more background on these circuit complexity
classes, see, e.g., the text [26].

L An earlier version of this work claimed a stronger upper bound, but there was an error in one of the
lemmas in that version [3].
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A nondeterministic Turing machine is said to be unambiguous if, on every input x, there is
at most one accepting computation path. If we consider logspace-bounded nondeterministic
Turing machines, then unambiguous machines yield the class UL. A set A is in co-UL if and
only if its complement lies in UL.

The construction of DFS trees is most naturally viewed as a function that takes a graph
G and a vertex v as input, and produces as output an encoding of a DFS tree in G rooted at
v. But the complexity classes mentioned above are all defined as sets of languages, instead of
as sets of functions. Since our goal is to place DFS tree construction into the appropriate
complexity classes, it is necessary to discuss how the complexity of functions fits into the
framework of complexity classes.

When C is one of {L, P}, it is fairly obvious what is meant by “f is computable in C”; the
classes of logspace-computable functions and polynomial-time-computable functions should
be familiar to the reader. However, the reader might be less clear as to what is meant by
“f is computable in NL”. As it turns out, essentially all of the reasonable possibilities are
equivalent. Let us denote by FNL the class of functions that are computable in NL; it is
shown in [17] each of the three following conditions is equivalent to “f € FNL”.

1. f is computed by a logspace machine with an oracle from NL.

2. f is computed by a logspace-uniform NC! circuit family with oracle gates for a language
in NL.

3. f(x) has length bounded by a polynomial in |z|, and the set {(x,7,b) : the i*® bit of f(x)
is b} is in NL.

Rather than use the unfamiliar notation “FNL”, we will abuse notation slightly and refer to

certain functions as being “computable in NL”.

The proof of the equivalence above relies on the fact that NL is closed under complement.
Thus it is far less clear what it should mean to say that a function is “computable in UL”
since it remains an open question if UL is closed under complement (although it is widely
conjectured that UL = NL) [22, 5]). However the proof from [17] carries over immediately to
the class UL N co-UL. That is, the following conditions are equivalent:

1. f is computed by a logspace machine with an oracle from UL N co-UL.

2. f is computed by a logspace-uniform NC! circuit family with oracle gates for a language
in UL N co-UL.

3. f(z) has length bounded by a polynomial in |z|, and the set {(x,4,b) : the i*® bit of f(x)
is b} is in UL N co-UL.

Thus, if any of those conditions hold, we will say that “f is computable in UL N co-UL".

The important fact that the composition of two logspace-computable functions is also
logspace-computable (see, e.g., [6]) carries over with an identical proof to the functions
computable in LY for any oracle C. Thus the class of functions computable in UL N co-UL is
also closed under composition. We make implicit use of this fact frequently when presenting
our algorithms. For example, we may say that a colored labeling of a graph G is computable
in UL N co-UL, and that, given such a colored labeling, a decomposition of the graph into
layers is also computable in logspace, and furthermore, that — given such a decomposition of
G into layers — an additional coloring of the smaller graphs is computable in UL N co-UL, etc.
The reader need not worry that a logspace-bounded machine does not have adequate space
to store these intermediate representations; the fact that the final result is also computable in
UL N co-UL follows from closure under composition. In effect, the bits of these intermediate
representations are re-computed each time we need to refer to them.

Finally, we will consider ACF circuits augmented with oracle gates for an oracle in
UL N co-UL, which we denote by AC*(UL N co-UL).
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3 DFS in DAGs logspace reduces to Reachability

In this section, we observe that constructing the lexicographically-least DFS tree in a DAG
G can be done in logspace given an oracle for reachability in G. But first, let us define what
we mean by the lexicographically-first DFS tree in G:

» Definition 1. Let G be a DAG, with the neighbours of the vertices given in some order
in the input. (For example, with adjacency lists, we can consider the ordering in which the
neighbors are presented in the list). Then the lexicographic first DFS traversal of G is the
traversal with the (very natural) condition that the children of every vertex are explored in
the order given in the input. For details, see the full version [3].

The lemma we need is the following:

» Lemma 2. Construction of lexicographic least DFSs tree in DAGs logspace reduces to
reachability. In particular, DFS in general DAGSs, planar DAGSs, and planar DAGs with
single source(SMPDs) lie in classes NL, UL N co-UL, and L respectively.

The correctness of this lemma is shown by the proof of Theorem 11 of [10] for general
DAGs. The extension for the other two classes is a consequence of planar reachability in
UL Nco-UL [24] and of SMPD reachability in L [2]. We defer the details to the full version [3].

4 Overview of the Algorithm

The main algorithmic insight that led us to the current algorithm was a generalization of
the layering algorithm that Hagerup developed for undirected graphs [14]. We show that
this approach can be modified to yield a useful decomposition of directed graphs, where the
layers of the graph have a restricted structure that can be exploited. More specifically, the
strongly-connected components of each layer are what we call meshes, which enable us easily
to construct paths (which will end up being paths in the DFS trees we construct) whose
removal partitions the graph into significantly smaller strongly connected components.
The high-level structure of the algorithm is thus:

1. Construct a planar embedding of G.

. Partition the planar graph G into layers (each of which is surrounded by a directed cycle).

3. Identify one such cycle C that has properties that will allow us to partition the graph
into smaller weakly connected components.

4. Depending on which properties C satisfies, create a path p from the exterior face either
to a vertex on C or to one of the meshes that reside in the layer just inside C. Removal
of p partitions G into weakly connected components, where each strongly-connected
component therein is smaller than G by a constant factor.

5. Let the vertices on this path p be vy, vs,...,v5. The DFS tree will start with the path p,
and append DFS trees for subgraphs G1, G, ..., Gy to this path, where G; consists of
all of the vertices that are reachable from v; that are not reachable from v; for any j > 1.

N

(This is obviously a tree, and it will follow that it is a DFS tree.) Further, decompose each
G; into a DAG of strongly-connected components. Build a DFS of that DAG, and then
work on building DFS trees of the remaining (smaller) strongly-connected components.

6. Each of the steps above can be accomplished in UL N co-UL, which means that there is
an ACO circuit with oracle gates from UL N co-UL that takes G as input and produces
the list of much smaller graphs G, ..., Gy, as well as the path p that forms the spine
of the DFS tree. We now recursively apply this procedure (in parallel) to each of these
smaller graphs. The construction is complete after O(logn) phases, yielding the desired
ACL(UL N co-UL) circuit family.
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In the exposition below, we first layer the graph in terms of clockwise cycles (which we
will henceforth call red cycles), and obtain a decomposition of the original graph into smaller
pieces. We then apply a nested layering in terms of counterclockwise cycles (which we will
henceforth call blue cycles); ultimately we decompose the graph into units that are structured
as a DAG, which we can then process using the tools from the earlier sections of the paper.
The more detailed presentation follows.

4.1 Degree Reduction and Expansion

» Definition 3 (of Expo(G) and ExpO(G)). Let G be a planar digraph. The “expanded”
digraph Exp®(G) (respectively, Exp®(G)) is formed by replacing each vertez v of total degree
d(v) > 3 by a clockwise (respectively, counterclockwise) cycle C, on d(v) vertices such that
the endpoint of the i-th edge incident on v is now incident on the the i-th vertex of the cycle.

Exp®(G) and Exp®(G) each have maximum degree bounded by 3; i.e., they are subcubic.
Next we define the clockwise (and counterclockwise) dual for such a graph and also a notion
of distance.

Recall that for an undirected plane graph H, the dual (multigraph) H* is formed by
placing, for every edge e € E(H), a dual edge e* between the face(s) on either side of e (see
Section 4.6 from [12] for more details). Faces f of H and the vertices f* of H* correspond
to each other as do vertices v of H and faces v* of H*.

» Definition 4 (of Duals G and G©). Let G be a plane digraph, then the clockwise dual G©
(respectively, counterclockwise dual G© ) is a weighted bidirected version of the undirected dual
of the underlying undirected graph of G in a way so that the orientation formed by rotating
the corresponding directed edge of G in a clockwise (respectively, counterclockwise) way gets a
weight of 1 and the other orientation gets weight 0. We inherit the definition of dual vertices
and faces from the underlying undirected dual.

» Definition 5. For a plane subcubic digraph G, let fy be the external face. Define the type
type®(f) (respectively, type®(f)) of a face to be the singleton set consisting of the distance
at which f lies from fo in G°: {d°(fo, f)} (respectively, {d°(fo, f)}). Generalise this to
edges e by defining type® (e) (respectively type©(e)) as the set consisting of the union of the
type® (respectively, typeo) of the two faces adjacent to e, and to vertices v by defining as
the type® (v) (respectively type® (v)) union of the type® (respectively, type® ) of the faces
incident on the vertex v.

The following is a direct consequence of subcubicity and the triangle inequality:

» Lemma 6. In cvery subcubic graph G, the cardinality |type® ()], |type® (z)| where ©
is a face, edge or a vertex is at least one and at most 2 and in the latter case consists of
consecutive non-negative integers.

Further, if v € V(G) is such that |type® (v)| = 2, then there exist unique u,w € V(G),
such that (u,v), (v,w) € E(G) and |type® (u,v)| = [type® (v, w)| = 2.

For proof, see Appendix A.1.

» Definition 7. For a plane subcubic graph G as above, we refer to vertices and edges with
a type of cardinality two in G° (respectively, in G) as red (respectively, blue) while the
ones with a cardinality of one as white. The resulting colored graphs are called red(G) and
blue(G) respectively.
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We will see later how to apply both the duals in G to get red and blue layerings of a
given input graph.

Also note that a red (respectively blue) edge must have red (respectively blue) end points,
as they are adjacent to the same faces as the edge between is.

We enumerate some properties of red(G), blue(G) (G is subcubic):

» Lemma 8.

1. Red vertices and edges in red(G) form disjoint clockwise cycles.

2. No clockwise cycle in red(G) consists of only white edges (and hence white vertices).
Similar properties hold for blue(QG).

Proof.

1. Firstly, note that a red edge must have red end point vertices, as they are adjacent to
the same faces that the edge between them is adjacent to. It is immediate from Lemma 6
that if v is a red vertex, it has exactly one red incoming edge and one red outgoing edge,
proving that they form disjoint cycles. Now consider a red cycle C. The type of each edge
of C' must be the same, since if there are two consecutive edges in C' of different types,
it would make the common vertex adjacent to at least three vertices of different types
contradicting lemma 6. This means that the distance in G© of each face bordering the
“outside” of C from the external face is one less than the distance of each face bordering
the “inside” of C. But in any counterclockwise cycle, the distance in G© from the external
face to both sides of C' are the same (by the way distances are defined in G®). Thus C' is
clockwise.

2. Suppose C is a clockwise cycle. Consider the shortest path in G© from the external face
to a face enclosed by C. From the Jordan curve theorem (Theorem 4.1.1 [12]), it must
cross the cycle C'. The edge dual to the crossing must be red. |

The definitions above, which apply only to subcubic plane graphs, can now be extended
to a general plane graph G, by considering the subcubic graphs Exp®(G) (and Exp®(QG)).
But first, we must make a simple observation about red(Exp®(G)) (respectively about
blue(Exp®(G))).

» Lemma 9. Let v € V(G) be a vertex of degree more than 3. Let C, be the corresponding
expanded cycle in ExpO(G). Suppose at least one edge of C,, is white in red(ExpO (@)) then
there is a unique red cycle C that shares edges with C,.

Proof. First we note that C, does not contain anything inside it since it is an expanded
cycle. By lemma 8 we know that C, has at least one red edge. Suppose it shares one or
more edges with a red cycle R;. Since both cycles are clockwise and C, has nothing inside,
the cycle Ry must enclose C,. Now suppose there is another red cycle Ry that shares one or
more edges with C,. Then Ry must also enclose C,,. But two cycles cannot enclose a cycle
whilst sharing edges with it without touching each other, which contradicts the above lemma
that all red cycles in a subcubic graph are vertex disjoint. |

The last two lemmas allow us to consistently contract the red cycles in red(Exp®(G)):

» Definition 10. The colored graph Col®(G) (respectively, Col®(G)) is obtained by labeling
a degree more than 3 vertex v € V(G) as red iff the cycle C,, in red(Exp®(G)) has at least
one red edge and at least one white edge. FElse the color of v is white. All the low degree
vertices and edges of G inherit their colors from red(Exp®(QG)). The coloring of Col®(G)
is similar.
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Figure 1 An example of contracting expanded cycles. The figure on right shows the graph after
contracting the expanded cycles C1, C2, C3 according to definition 10.

We can now characterize the colorings in the graph Col®(G):

» Lemma 11. The following hold:
1. A red cycle in Col® (G) is vertex disjoint from every red cycle contained in its interior.
2. FEvery 2-connected component of the red subgraph of ColO(G) is a simple clockwise cycle.
We defer the proof to Section A.1.

Although the above lemmas have been proved for the clockwise dual, they also hold for
counterclockwise dual with red replaced by blue.

4.2 Layering the colored graphs

» Definition 12. Let 2 € V(Col®(G)) U E(Col®(G)). Let (°(x) be one more than the
minimum integer that occurs in type® ('), for each ' € V(Exp®(Q))UE(Exp®(Q)) that is
contracted to x. Further let LF(Col®(@)) = {z € V(Col®(G)) U E(Col®(Q)) : £°(z) = k}.
Similarly define, (©(z), LF(Col°(G)). We call L¥(Col®(Q)) the k'™ layer of the graph.

See Fig 11 for an example. It is easy to see the following from Lemma 11:

» Proposition 13. For every x € V(Col®(G))U E(Col®(G)) the quantity {°(x) is one more
than the number of red cycles that strictly enclose x in ColO(G). All the vertices and edges
of a red cycle of Col®(G) lie in the same layer LT (Col®(G)) for the enclosure depth k of
the cycle.

We had already noted above that the red subgraph of G had simple clockwise cycles as
its biconnected components. We note a few more lemmas about the structure of a layer of G:

» Lemma 14. We have:

1. A red cycle in a layer L5T1(Col®(G)) does not contain any vertez/edge of the same layer
inside it.

2. Any clockwise cycle in a layer consists of only red vertices and edges.

Dually, a blue cycle in a layer does not contain any vertex or edge of the same layer inside it.

17
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» Remark 15. Notice that the conclusion in the second part of the lemma fails to hold if we
allow cycles spanning more than one layer.

Proof. The first part is a direct consequence of proposition 13. For the second part we mimic
the proof of the second part of Lemma 8. Consider a clockwise cycle C' C £F1(Col®(@))
that contains a white edge e. Every face adjacent to C from the outside must have type® = k
because C' is contained in layer k + 1. Then the type® of the faces on either side of e is the
same and therefore must be k. Let f be a face enclosed by C that has type®(f) = k. Thus
it must be adjacent to a face of type® = k — 1. But this contradicts that every face inside
and adjacent to C' must have type® at least k. |

The lemmas above show that the strongly connected components of the red subgraph of a
layer consist of red cycles touching each other without nesting, in a tree like structure. This
prompts the following definition:

» Definition 16. For a red cycle R C Ek(Colo(G)) we denote by Gr, the graph induced by
vertices of L¥T1(Col®(Q)) enclosed by R.

Now we combine Definitions 10 and 12:

» Definition 17. Each vertez or edge x € V(G) U E(G) gets a red layer number k + 1 if it
belongs to L¥T1(Col®(Q)) and a blue layer number | + 1, if it belongs to L71(Col®(GRr))
where R C L¥(Col®(Q)) is the red cycle immediately enclosing x.

Moreover this defines the colored graph Col(G) by giving x the color red if it is red in
Col®(G) and/or blue in Col®(Gr) (notice it could be both red and blue) and lastly white if it
is white in both the graphs. In this case, we say that x belongs to sublayer LFTH1F1(Col(Q)).

By Proposition 13, we can also say that a sublayer £¥+1!+1(Col(G)) thus consists of
edges/vertices that are strictly enclosed inside & red cycles and inside ! blue cycles that are
contained inside the first enclosing red cycle.

We’ll see some observations and lemmas regarding the structure of a sublayer now.

Since every edge/vertex in L¥T1I+1(Col(G)) has the same red AND blue layer number,
it is clear that there can be no nesting of colored cycles. Also we have:

» Lemma 18. Every clockwise cycle in a sublayer LXTHH1(Col(G)) consists of all red edges
and vertices and any every counterclockwise cycle in the sublayer consists of all blue vertices
and edges. (Some edges/vertices of the cycle can be both red as well as blue)

Proof. This is a direct consequence of Lemma 14 applied to the sublayer £¥+1!+1(Col(G)),
which is a (counterclockwise) layer in graph G for some red cycle R. |

Thus we can refer to clockwise cycles and counterclockwise cycles as red and blue cycles
respectively.

» Definition 19. For a red or blue colored cycle C of layer LF'(Col(G)), we denote by G¢
the graph induced by vertices of L¥ V' (Col(G)) enclosed by C, where {k',1'} is {k+ 1,1} or
{k,l + 1} according to whether C is a red or a blue cycle respectively.

Note that:
» Proposition 20. Two cycles of the same color in LF<TLHY(G) cannot share an edge.

This is since neither is enclosed by the other as they belong to the same layer, and as they
also have the same orientation. Cycles of different colors can share edges but we note:
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» Lemma 21. Two cycles of a sublayer LFTHF1(Col(G)) can only share one contiguous
segment of edges.

Proof. Let a red cycle R and a blue cycle B in a sublayer share two vertices u, v but let the
paths R(u, v), B(u,v) in the two cycles be disjoint. Notice that the graph (R\ R(u,v))UB(u,v)
is also a clockwise cycle that encloses the edges of R(u,v) contradicting the first part of
Lemma 14. <

We consider the strongly connected components of a sublayer and note the following lemmas
regarding them:

» Lemma 22. The trivial strongly connected components of a sublayer (those that consist
of a single vertex) are white vertices. The non-trivial strongly connected components of a
sublayer have the following properties:

1. Ewvery vertex/edge in them is blue or red (possibly both).

2. Ewvery face, except possibly the outer face, is a directed cycle.

3. Ewvery face other than the outer face has at least one edge adjacent to the outer face.

We defer the proof to Section A.1. The strongly connected components of a sublayer hence
consist of intersecting red and blue facial cycles, with every face having at least one boundary
edge adjacent to the outer face of the component.

» Definition 23. We call the strongly connected components of a sublayer L(k,l) meshes.

5 Mesh Properties

» Definition 24. Given a subgraph H of G embedded in the plane, we define the closure of
H, denoted by H, to be the induced graph on the vertices of H together with the vertices of
G that lie in the interior of faces of H (except for the outer face of H).

For convenience, we call a face of a graph that is not the outer face an internal face.

From Lemmas 18 and 22, we have a bijection: every face of a mesh, except possibly its
outer face, is a directed cycle, and every directed cycle in a mesh is the boundary of a face of
the mesh.

» Definition 25. Let 0 < o < 1. An « separator of a digraph H that is a subgraph of a
digraph G is a set of vertices of H whose removal from H separates H into subgraphs, where
no strongly connected component has size greater than «|G|. A path separator is a sequence
of vertices (v1,...,v,) that is a separator and also is a directed path.

» Definition 26. Let G be a graph and let M be a mesh in a sublayer G. For an internal

face f of M, we define wt(f) to be |V(f)|. Let wt(H) where H is a subgraph of M be defined
as |V (H)|.

» Definition 27. For a mesh M, we call a vertex that is adjacent to the outer face of M an
external vertex, and a vertexr that is not adjacent to the outer face an internal vertex. Also,
we call vertices of degree more than two junction vertices.

If p= (v1,v2,...,vk) is a directed path such that va,...,vi_1 are all vertices of degree
two, but vi, v have degree more than two, then we call p a segment. We call vy the out
junction neighbour of v1 and vy the in junction neighbour of vy.

We call a segment with all edges adjacent to the outer face an external segment, and
a segment with no edge adjacent to the outer face an internal segment. If the end points
of an internal segment are both internal vertices also, we call the segment an i-i-segment.

7:9
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Viem
Viest

V, ight

Figure 2 An example of a mesh. Figure 3 An example of a path separator.
The vertex v is a central node, and the
green path is a separator.

The rest of this section is devoted to a proof of the following, which asserts that we can
construct a path separator in a mesh, assuming that no internal face of the mesh is too large.

» Lemma 28. Suppose wit(f) < wt(G)/12 holds for every internal face f of a mesh M that
is a subgraph of G. Then from any external vertex v of M, we can find (in UL N co-UL) an
% path separator of M, starting at r.

The high level idea is that using a clique sum decomposition of 2, 3-cliques (see figure 9) we
find a “central” vertex v in the mesh M, such that we can find a path from the external
vertex r to v, and then extend the path around one of the faces adjacent to v to get the path
separator (all faces are directed cycles by lemma 22). Because every face touches the outer
face and weight of every face is small by the hypothesis of the lemma, we can always find a
face adjacent to v to encircle such that removing the path leaves no large (weakly) connected
component. The vertices of M with degree two (in-degree 1 and out-degree 1 because M is
strongly connected) are not important since they can be seen as just “subdivision” vertices.
Now we will look at the structure of a mesh around an internal junction vertex, and the way
the rest of the mesh is attached to that structure. Also, we state here that we will abuse the
notion of 3-connected components by ignoring the non-junction vertices for convenience.

» Lemma 29. If v is an internal junction vertex of a mesh and ey, ..., e are the edges
adjacent to v in the cyclic order of embedding, then the edges alternate in directions i.e. if eq
is outgoing from v, then es is incoming to v and e3 is outgoing and so on. Consequently, v
has even degree (at least 4).

» Definition 30. Let v be an internal junction vertex of degree 2d in a mesh M, and let

its junction neighbours be (u1, w1, Ug, Wa, ..., uq, wq) in clockwise order starting from edge
(u1,v) (the w;’s are out neighbours, and u;’s the in neighbours, since junction neighbours
alternate).

Every adjacent pair of edges incident to v borders a face that is not the outer face. Let
fuvw denote the face bordered by v and the junction neighbours uw and w of v which are
adjacent in cyclic order around v. The boundary of fy . can be written as three disjoint
parts (except for endpoints), segment (u,v) + segment (v, w) + petaly ., where the third
part denotes a simple path from w to u along the face boundary. We will use the notation
petaly, ., to denote the corresponding boundary for any face fy .. adjacent to v. We define
flower(v) as | J{vertices on boundary of faces adjacent to v} (See figure 4).
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We note the following property of petals whose proof is deferred to AppendixA.2.

» Proposition 31. For all adjacent junction neighbour pairs w;,u; of internal vertex v,
petaly, o, are disjoint, except possibly the end points.

For an internal junction vertex v, the union of the petals around flower(v) thus form an
undirected cycle around v, with at least four alternations in directions. Now we define bridges
of the cycle, which roughly, are components of M we get after removing flower(v), leaving
the points of attachment intact. We use the formal definition of bridges from [25]:

» Definition 32. For a subgraph H of M, a vertex of attachment of H is a vertex of H that
is incident with some edge of M not belonging to H. Let J be an undirected cycle of M. We
define a bridge of J in M as a subgraph B of M with the following properties:

1. each vertex of attachment of B is a vertex of J.

2. B is not a subgraph of J.

3. no proper subgraph of B has both the above properties.

We denote by 2-bridge, bridges with exactly two vertices of attachment to the specified cycle,
and by 3-bridge, bridges with three or more vertices of attachment.

Note that for the cycle formed by petals of lower(v), the vertex v along with paths leading
to/ coming from flower(v) also form a bridge, but we call that a trivial bridge and do not
take it into consideration.

» Lemma 33.

1. The vertices of attachment of a 2-bridge of flower(v) must both lie on one petal of
flower(v).

2. The vertices of attachment of a 3-bridge of flower(P) can lie on one or, at most two
adjacent petals. Moreover, in the latter case the junction neighbour of v common to both
petals must be a vertex of attachment of the 3-bridge.

3. For an internal vertex v, and an external vertex r of M, let p = (r,... ,u1,v) be a
simple path from r to v, where uy is an in junction neighbour of v. Let the other
junction neighbours of v be named as in Definition 30 in cyclic order from uy. For j €
{i, 141}, consider an extended path of p, pu, w; = (s .., u1, v, ws)+petaly, o4 (uj, ..., v),
excluding the last edge incident to v in the sequence. That is, pw, u; goes from r to v,
then to an out junction neighbour w;, and then wraps around fu; v.w, by taking petaly, .,
and then the segment back towards v from u;. If there is a bridge of flower(v) of which
uy is a point of attachment and also includes the edge of p incoming to uy, we denote it
by Biy,. The set V(M) \ V(puw;,u;) can be partitioned into four disconnected parts, say
Viert and Viight, Vi, Viem such that:

‘/left :({ful,v,wl U f’“f?»'”vwl U fug,v,wz LU fui,v,wi_l} U {fui,'mwi ifj =1 -+ 1}
U {vertices in closure of bridges attached to the petals of these faces, excluding Bin}
U {the “left” part of Bin.(See figure 8) })\ V(puw;u;)

Vright :({fuiw’wwl u fui+2ﬂvﬂwi+1 U fwaywd} U {fu¢+1,v,wiifj = Z}
U {wertices in closure of bridges attached to petals petals these faces, excluding Bin}
U {the “right” part of Bin.(See figure 8) } \'V (Dw;u;)

Vi = fujv”vwi \V(pwiyuj)
Viem = (U{vertices in closure of all bridges that have vertices

of attachment only in petalw,; u; }) \ V(Pw;u;)-

MFCS 2021
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petalvu

flower(v)

Figure 4 A vertex v and flower(v). B is a bridge with two points of attachment z,y on two
different petals of flower(v). On the right are drawn the bridge B itself, and its closed version B°.
The only way the boundary of f, ., , can have an external edge is if it touches B, making w a point
of attachment of B also.

such that there is no undirected path between any vertex of one of these four sets to
any vertex of another. The path Dy, ., s therefore a path separator that gives these
components.

We introduce another notation for an extension of a bridge:

» Definition 34. For a bridge B of flower(v), we define B® as B along with segments
of flower(v) that lie between consecutive vertices of attachment of B. We call this the

closed bridge of B.

Now we will give definitions/lemmas regarding the “internal structure” of meshes, that will
be useful to define the “center” of a mesh.

» Definition 35. For a mesh M, we call its internal-skeleton, denoted by I(M), the
induced subgraph on the vertices of i-i-segments of M. (See figure 6)

» Lemma 36.

1. For a mesh M, the graph I(M) is a forest.

2. If H is a 3-connected induced subgraph of M (ignoring subdivision vertices), then I(H) is
a tree.

We state a well-known proposition about a vertex separator in a tree T' with weighted nodes,

without the proof.

» Proposition 37. Suppose T is a tree with each node having a weight assigned to it. Let
wt(T") denote sum of weights of each node in a subgraph T’ of T. Then there exists a node
Ve or a pair of adjacent nodes v, , Ve,, such that after removing it (or them in case of a pair),
no connected component in the remaining forest has weight more than %wt(T).

We will next give a procedure to define a “center” of a mesh.

» Definition 38. For a mesh M, let T); denote the tree obtained by the 1,2-clique sum
decomposition of M. The nodes of Tas are of two types, clique nodes (cut vertices or separating
pairs), and piece nodes, which are either 3-connected parts or cycles. Every piece node is
adjacent to a clique node and vice-versa. (See [9, Section 3.1] for background about this
decomposition.)

Consider the % separator node of Ty as described in Proposition 37. If it is a separating
pair, a cut vertex, or a face cycle, we call that subgraph the center of M.
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N ‘~-~"l \\—i_r*\'/ e
Figure 5 An example of a mesh. Figure 6 The internal skeleton of the mesh.

One of its components is a single node.

If it is a 3-connected node P, look at its internal skeleton I(P). We construct a new
graph I'(P) which is isomorphic to I(P) but has edges directed differently. let u,v be two
adjacent internal junction vertices of M. To give direction to a segment (u,v) in I'(P),
we consider the unique bridge B of flower(u) that contains v as a point of attachment; we
denote the closed bridge of B by B (v). BS(u) is defined analogously. We orient (u,v) in
the direction of the heavier of B2 (v) and B (u) (breaking ties arbitrarily), where the weights

of BS (v),BS(u) are |BS(v)| and \]%L respectively.
The center of M is defined to be flower(v) in this case, where v is the sink node of
I'(P).

We show why I’(P) cannot have more than one sink.
» Lemma 39. The tree I'(P) defined above will have exactly one sink verter.

» Lemma 40. If the center of M is flower(v), and w is an out neighbor of v, then
wt(BY(w)) < &(wt(M — wt(Vyem (u, w))), where u is either of the two in neighbors of v that
are adjacent to w around flower(v).

Proof. Since the center is flower(v), we have that wt(BS(w)) < wt(B,(v)). But Viem(u,
has empty intersection with each of Bf(w) and By, (v). Thus wt(Bj(w)) + wt(Bg,(v))
wt(M) — wt(Veem (u, w)). The lemma follows.

&

A IN

» Lemma 41.

1. If the center of M is not of the form flower(v) where v is an internal node of a 3-
connected component, then removing it from M disconnects M into weakly connected
components, each with weight less than %wt(/]\Z)

2. If the center of M is flower(v) for an internal node v of a 3-connected component P,

then on removing flower(v) from M, no weakly connected component has weight more
than Swt(M).

Proof.
1. This follows from the vertex separator lemma for trees with weighted vertices.
2. This follows from the v being the sink node of I'(P). <

» Lemma 42. For every possible path py, .; around v as defined in Lemma 33, Vyer, consists
of a disjoint union of weakly-connected components, each of which has weight < %(wt(M)).
For a path py,,., (Where j € {i,i+1}) we sometimes use the notation V..., (w;, u;) to specify
the petal where the bridges of V., are attached.

7:13
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A

&

Viem

Viignt

Figure 7 The tree decomposition of the Figure 8 An example of a path separator.
mesh using 1,2-clique sums. The nodes The vertex v is a central node, and the
encircled red are clique separator nodes. green path is a separator.

5.1 Mesh Separator Algorithm

Now we give the algorithm to find an « separator in a mesh M (G), assuming the hypothesis

of Lemma 28.

1. Find the decomposition tree, T, of M with 2-cliques and 1-cliques as the separating sets.

2. Find the center of the mesh M. It will either be a cut vertex, a separating pair, a cycle,
or flower(v) for some internal vertex v.

3. If it is a cut vertex, we just find a path from the root r to it. If it is a separating pair
(u,v), both the vertices must lie on a same face, which is a directed cycle. In both this
case, and also the case in which the center is a cycle, find a path from the root to any
vertex of the face that touches it the first time, and then extend the path by encircling
the cycle.

4. If it is flower(v) for some internal vertex v, find a path p = (r,...,u1,v) to v. Let the
junction neighbours of v in clockwise order starting from (u1,v), be wy,ug, wa, ..., wq,
with the w’s being out junction neighbours and the u’s being in junction neighbours.
Starting clockwise from segment (u,v), find the first index ¢ and j € {i,i + 1} s.t.
after removing the extended path py, ., (defined in Lemma 33) the remaining strongly
connected components are smaller than %wt(G).

The algorithm above can clearly be implemented in logspace with an oracle for planar

reachability, and thus it can be implemented in UL N co-UL.

It remains to show that the “first ” mentioned in the final step actually exists. For the

proof see Appendix A.3:

» Lemma 43. If the center of M is flower(v) for some internal vertex v, then there will
always exist an adjacent face fy, vw, 5-t. the path py, ., s a %-sepamtor.

6 Path separator in a planar digraph

Having seen how to construct a path separator in a mesh, we now show how to use that to

construct an % separator in any planar digraph.

1. Given a graph G, first embed the graph so that the root r lies on the outer face. Through
the root, draw a virtual directed cycle Cy that encloses the entire graph, and orient it,
say clockwise. Find the layering described in Section 4 and output it on a transducer.
Cycle Cy will be colored red and will be in the sublayer (0,0).
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In the laminar family of red/blue cycles, find the cycle C s.t. wt(C) is more than |G|/12,
but no colored cycle C’ in the interior of C has the same property. Such a cycle will
clearly exist (it could be the virtual cycle Cp). Let the sublayer of C be (k,1).

Find a path p from the root r to any vertex r¢ of the cycle C such that no other vertex

of C' is in the path. As seen above in Lemma 22, the graph in the interior of C and

belonging to the immediately next sublayer ((k + 1,1) if C is clockwise and (k,l+ 1) if C

is counter-clockwise) is a DAG of meshes. There are two cases possible:

a. The graph C has no strongly connected components of weight larger than |G |/12. In
this case we simply extend the path p from r¢& by encircling the cycle C' till the last
vertex and stop.

b. The graph C has a strongly connected component of weight more than |G|/12. In
this case, we extend p from r¢c by encircling C till the last vertex u on C that can
reach any such component Mc. Then extend the path from u to any vertex of Mg
and apply the mesh separator lemma (Lemma 28) to obtain the desired separator.
(Observe that M¢ satisfies the hypothesis of Lemma 28.)

11

» Lemma 44. The path p obtained by the above procedure is an 15 separator.

12

Proof. We look at the two cases:

1.

7

In this case it is clear that the interior and exterior of cycle C are disconnected by p.
The exterior of C has size < 13|G| (by definition of C)), and in its interior every strongly-
connected component has weight at most |G|/12. Thus this satisfies the definition of an

11 o
15 separator.

. We took the last edge in C' from r¢ that can reach the mesh M¢, and extended the path

to M¢. Thus after removing p, one weakly-connected component consists of the exterior

)

of G, along with (possibly) some vertices in the interior of C' that cannot reach any “large’

mesh in the interior. Since M¢ has weight greater than |G|, no strongly-connected

component embedded outside of M can have weight more than %\G| Also, after

removing path p, Lemma 28 guarantees that no other strongly-connected component will
11

have weight more than 1%|G|. Thus this is an 11 separator.

Hence overall we can guarantee an % path separator in G. |

Building a DFS tree using path separators

We give a recursive divide and conquer algorithm for DF'S:

1.

2.

Given a planar drawing of G and a root vertex on the outer face r, find an % path
separator p = (r, vy, va..vx). Path p is included in the DFS tree.

Let R(v) denote the set of vertices of G reachable from v. Now for every vertex v; in
p compute in parallel: R'(v;) = R(v)\(U?Zi+1 R(vj)) Our DFS will correspond to first
traveling along p to vy, doing DFS on R(vy), and then while backtracking on p, do DFS
on R'(v;) for i from k — 1 downto 1. Given G, the encodings of p and R'(v;) can all be
computed in AC°(UL N co-UL).

For any v;, R'(v;) can be written as a DAG of SCCs (strongly connected components),
where each SCC is smaller than 13|G|. In AC°(UL N co-UL) we can compute this DAG
and we can compute an encoding of the tuple (i, M, v) where M is a SCC in R'(i) and v
is a vertex in M. Recursively, in parallel, we compute a DFS tree of M for each tuple
(i, M, v), using v is the root. Now we need to show how to sew together (some of) these
trees, to form a DFS tree for G with root .

7:15
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D

Vs
M

Figure 9 The tree decomposition of the Figure 10 The cycle C is a cycle satisfying
mesh using 1,2-clique sums. The nodes the property stated in step 2 of the algorithm.
encircled red are clique separator nodes. The mesh M in the next sublayer is heavy, so
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A Appendix: Omitted details

A.1 Proofs from Section 4

We first need a simple lemma:

» Lemma 45. Suppose (f1, f2) is a dual edge with weight 1 (and (fa, f1) is of weight 0) then,
d®(fo, fr) < d°(fo, f2) < d°(fo, f1) + 1.

Proof. From the triangle inequality d®(fo, f1) < d°(fo, f2) + d°(fa, f1) = d°(fo, f2). Simil-
arIYa do(f()a f2) < do(f()vfl) + do(flva) < do(f()?fl) +1 <

Proof of Lemma 6. Since each vertex v € V(G) of a subcubic graph is incident on at
most 3 faces the only case in which [type®(v)| > 2 corresponds to three distinct faces
f1, f2, f3 being incident on a vertex. But here the undirected dual edges form a triangle
such that in the directed dual the edges with weight 1 are oriented either as a cycle or
acyclically. In the former case by three applications of the first half of Lemma 45 we get
that d®(fo, f1) < d°(fo, f2) < d°(fo, f3) < d°(fo, f1), hence all 3 distances are the same.
Therefore [type® (v)| = 1.

In the latter case, suppose the edges of weight 1 are (f1, f2), (fe, f3), (f1,f3), then
by Lemma 45 we get: do(fo,fl) < do(fo,fg),do(f(),fg) < do(fo,fl) + 1. Thus, both
d®(fo, f2),d°(fo, f3) are sandwiched between two consecutive values d® ( fo, f1),d° (fo, f1)+1.
Hence d®(fo, f1), d°(fo, f2), d°(fo, f3) must take at most two distinct values, and thus
type®(v)| < 2. Moreover either type®(f1) # type®(f2) = type®(fs) or type®(f1) =
type®(fa2) # type®(fs). Let e1,es, e3 be such that, e;© = (fo, f3), 20 = (f1, f3),e3° =
(f1, f2). Then the two cases correspond to [type®(e1)| = |type®(e2)| = 2, [type®(e3)] = 1
and to [type®(e1)| = 1, |type®(e2)| = [type®(es)| = 2 respectively. Noticing that ey, e3 are
both incoming or both outgoing edges of v completes the proof for the clockwise case. The
proof for the counterclockwise case is formally identical. <

Proof of Lemma 11. For v € V(G), let C, € Exp®(G) be the expanded cycle. If it has
a red vertex it is immediately enclosed by a unique red cycle R in Exp®(G) by Lemma 9.
Assuming C), is not all red, it consists of alternating red subpaths and white subpaths.
On contracting C, we get a collection of clockwise red cycles outside sharing a common
cut-vertex v. Notice that the new collection of red cycles consists of edges that R did not
share with C,. Also notice that (as a thought experiment) if we contracted the C,’s that
share a vertex with R, one at a time we would get an edge-disjoint set of red cycles with
distinct cut vertices. Therefore, in Col® (G), the red subgraph consists of a collection of
connected components, each of which is a remnant of exactly one red cycle in Exp® (G);
these connected components consist of red cycles that touch externally at cut vertices. Hence
both parts of the lemma follow. <
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Proof of Lemma 22.

1. In a non-trivial strongly connected graph every vertex and edge lies on a cycle and
therefore by Lemma 18 must be colored red or blue (or both).

2. Suppose there is a face f the boundary of which is not a directed cycle. Look at a
directed dual (say clockwise) of the strongly connected component (just the component
independently). This dual must be a DAG since the primal is strongly connected. The
vertex f* in the dual corresponding to face f of the strongly connected component has
in degree at least one and out degree at least one since it has boundary edges of both
orientations, hence the edges adjacent to f* do not form a directed cut of the dual.

Let 0o* denote the dual vertex corresponding to the outer face of the SCC. In order to
prove the claim, it is sufficient to show the existence of a directed cut C* that separates
f* and o*, since it would imply by cut cycle duality that there is a directed cycle C in
the primal SCC that encloses the face f w.r.t the outer face and since the boundary of f
is not a directed cycle, C' must strictly enclose at least one edge of the boundary of f
contradicting Lemma 14. To see the cut, consider a topological sort ordering of the dual

(it is a DAG). Let the number of a dual vertex v* in the ordering be denoted by n(v*).

W.lo.g, let n(f*) < n(o*). Consider the partition of the dual vertices:

A= {v" [n(v?) <n(f)}, B ={v" | n(v") >n(f)}

By definition of topological sort, all edges across this partition must be directed from A
to B, hence it is a directed cut, and therefore it must also contain a subset which is a
minimal directed cut. But clearly the minimal cut is not the set of edges adjacent to f*
since it has both out and in degree at least one, hence proving the claim. Hence every
face in the SCC of a sublayer must be a directed (hence colored) cycle (by Lemma 18).
3. Let H be an SCC of the sublayer. We observed from the proof above that no vertex in
the dual of H, except possibly the vertex corresponding to the outer face of H, can have
both in degree and out degree more than one. (i.e. every dual vertex, except the outer
face is a source or a sink). Therefore if any dual vertex f* has a directed path to o* or
vice versa, then the path must be an edge and we are done. Suppose there is no directed
path from f* to o* and w.l.o.g. let f* be a source. Consider the trivial directed cut Cy:

A={f}, B=V(H\A

This is a cut since there are no edges from B to A, and this cut clearly corresponds to
the directed cycle which is the boundary of face f in H.
Now consider the cut Cs:

A" = {v* | v*is reachable from f*}, B’ =V (H)\A’

Clearly this is a f*-0* cut with no edge from a vertex in A’ to a vertex in B’ and o* € B'.

But this f*-0* cut is different from C; since f* is a source vertex and hence A’ has
at least one more vertex than just f*. Hence this corresponds to a directed cycle in
H that strictly encloses at least some edge of f, and we again get a contradiction of
Lemma 14. |

A.2 Details for Section 5

Proof. (of Lemma 29 Let ¢;, e;1+1 be two edges adjacent to v, that are also adjacent in
the cyclic order of the drawing. Since they are adjacent in the drawing, they must enclose
between them, a region, and hence a face, which is not the outer face. But the boundary of
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Figure 11 Figure (a) is a graph G. Figure (b)
is the graph in (a) after labelling red edges using
clockwise dual. We omit the cycle expansion
and contraction procedure here.

Figure 12 Figure (c) shows G after applying
blue labellings to each red layer we obtained
in the previous figure. The vertices and edges
colored purple are those that are red as well as
blue. Figure (d) represents the sublayer (1,1).
The dashed edges and empty vertices are not
part of the layer.

every non-outer face in a mesh is a directed cycle, hence v, e;, e;11 lie on a directed cycle,

with both edges adjacent to v. Hence one of them must be an out edge from v, and the other

incident towards v.

<

Proof of Proposition 31. Petals of two faces must be internally disjoint because the corres-
ponding faces share the vertex v and two faces cannot have a non-contiguous intersection, by

Lemma 21.

Proof of Lemma 33.

<

1. Let z,y be the two vertices of attachment of the 2-bridge B on flower(v). Since bridges
are connected graphs without the edges of the corresponding cycle(by 3"¢ property of
definition 32), there must be an undirected path, p in the bridge connecting x, y, without
using any edge of flower(v). If z and y were not on the same petal, then this path along
with the other petals in flower(v), must clearly enclose a junction neighbour of v, say
w (see Figure 4). Thus w is not adjacent to the outer face. Now since w is an internal
junction vertex, and two of its adjacent faces are also adjacent to v, look at another face
f adjacent to w and not adjacent to v. (Internal junction vertices have at least four
adjacent faces.) The boundary of this face cannot touch B since that would make it
a part of B and consequently w a vertex of attachment of B to flower(v). Therefore
the boundary of f is enclosed within the paths p and the part of flower(v) that is also
enclosed by p. Therefore f has no external edge, contradicting Lemma 22.
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Figure 13 Figure (e) figure represents the Figure 14 Figure (f) represents the sublayer
sublayer (2,1). (3,1).
2. Let x1,xa,...,x be the vertices of attachment of the bridge B on flower(v), in the

cyclic order of boundary of flower(v). Clearly if the vertices of attachment lie on more
than two petals of v, then at least one petal will be completely enclosed by B, which is
not possible since every petal must have at least one external edge. Lets say they lie on
two adjacent petals, and the junction neighbour common to both of them is w. By the
same argument as above, w must have an edge other than those of adjacent petals of v,
that connect it to B. Therefore w must be a vertex of attachment of B to flower(v).
3. First we note that petaly, ., will have an external vertex in it since the boundary of every
face has at least one external vertex (Lemma 22), and segments (u;,v) and (v, w;) are
internal. Let z be an external vertex on petaly, ;. The path p starts at external vertex r,
comes to u1, v, w;, and reaches external vertex z on its way back to v. It will clearly divide
M into at least two parts by Jordan Curve theorem. Since py, ., is just a wrap around
the face fu,; v w, after z, is clear that since wi,ug, ..., w;—1 and everything connected to
them after removing p lie in one region, which we call Vi ¢¢, and w;q1, %42, ..., wq and
everything connected to them after removing p lie in another, and vertices of ﬁ,uw lie in
another disconnected region since p wraps around f v - |

Proof of Lemma 36.

1. Suppose there were an undirected cycle in M of all internal segments, then this cycle
must enclose a face whose boundaries are also all internal segments. This contradicts
Lemma 22 as it states that every face must have at least one external edge, and hence
segment. Hence there can be no cycle (directed or undirected) consisting of all internal
segments, and consequently, no cycle (directed or undirected) of all internal vertices.

2. Let H be a 3-connected induced subgraph of M. By definition, I(H) is obtained from M
by removing all external edges and external non-junction vertices. Suppose I(H) is not a
tree, and hence consists of two or more disconnected trees. Let T and T be any two
trees in I(H). Let « be a vertex in T} and y be a vertex in T5. Since H is 3-connected,
there must be at least three disjoint paths(undirected) between x and y. Clearly in a
planar graph, if there are three disjoint paths between two vertices, one of the paths must
be strictly enclosed in the closed region formed by other two. Therefore there must a
path between x and y that is strictly enclosed inside the boundary of H, and hence does
not contain any edge or vertex adjacent to the outer face of H. Hence x and y cannot
become disconnected after removing external edges and external non-junction vertices
leading to a contradiction that I(H) is disconnected. Therefore I(H) must be a tree. <«
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Proof of Lemma 39. Suppose I’(P) has two junction vertices x and y that are sinks. They
cannot be adjacent, so consider the unique undirected path in I'(P) between x and y. There
must be a source z on the path. Let neighbours of z be z/,%/, lying on the path from z to z
and from z to y respectively.

Let BZ(z') and B¢(y') denote the bridges of flower(z) with points of attachments z’

and g/’ rebpectively Then by the orientations of the edges we have: |BS(z’)| > \ﬁ{,(/zn
which glves|B°( Nl > |B°( ")|since B (y ’) is clearly a proper subgraph of B, (z) and
\BO( N > |B° (2)| which gives|BS(y")| > |B§(x’)\ which is clearly a contradiction. <

Proof of Lemma 42. A (weakly connected) component of V.., is a bridge, attached to
petaly, o, or to petaly, ..., via its vertices of attachment. In the clique sum decomposition,
these vertices of attachment will always contain a 1 or 2 separating clique, since if a bridge is
attached to a petal via three or more nodes, the first and the last vertices of attachment form
a separating pair that separates the bridge from flower(v). Hence it is a branch remaining
in Ty after removing the 3 — connected piece node that is central in Th;. Since every branch
after removal of the central piece of Ty has weight < I (wt(M)), every (weakly) connected
component of V., has weight < £ (wt(M)). <

A.3 Mesh Separator Algorithm

Proof of Lemma 43. We have the following two cases

1. For some i and j € {i,i + 1}, pu,u;, Wt(Vyem (Wi, u;)) = swt(M).
Then by Lemma 42, py, ., separates Viem (w;, uj) from the rest of the graph, and also
every weakly connected component in Ve, (w;, u;) has weight < %wt(M ). Hence every
weakly connected component in M after removing py,,., has weight < Jwt(M).

2. For every pu, u;, Wt(Veem (wi, uj)) < %wt(M)
We know that for any index ¢ and j € {i,i + 1}, if f = fu; vw,, then wt(Vy) < wt(G)/12
by the hypothesis of Lemma 28. Starting clockwise from py, w,, at first Vjez is small,
and on shifting from pu, u; t0 Pw; u,y OF from pu; w;y 0 Puyyy iy, , the increase in Viesy

is bounded above by wt(Vy) + wt(Vyem (wi, u;)) + wt(B(w;)). Recall that
a. wt(Vy) < wt(G)/12 (by the hypothesis of Lemma 28).
b. wt(Vyem(wi,u;)) < wt(M) (by hypothesis for this case).

c. wt(B(w;)) < & (wt(M) — wt(Vrem(wi, uy))) (by Lemma 40).
Thus the addition to Viey; in each iteration is < L wt(G)+wt(Viem (wi, u;))+ 5 (wt(M))—
3 (Wt (Voo (w03, 47)))), which s equal to 5wH(G) + Jwt(Vyen (w, ue)) + Hwt(M)) <

LwtG + 3wt(M). Thus we can stop the first time wt(Vjeyt) is greater than wit(G)/12.
So, we have wt(Viesr) < Zwt(G) + 3wt(M) < L2wt(G), and wt(Vyign:) < 12wt(M), and
wt(Vy) < Lwt(M), and wt(vyem) < 2wt(M). Thus we have an upper bound of L wt(G)
on all the disconnected components. Hence pg, ., is a 55 path separator. |
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