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Abstract
We initiate the study of computational complexity of graph coverings, aka locally bijective graph
homomorphisms, for graphs with semi-edges. The notion of graph covering is a discretization of
coverings between surfaces or topological spaces, a notion well known and deeply studied in classical
topology. Graph covers have found applications in discrete mathematics for constructing highly
symmetric graphs, and in computer science in the theory of local computations. In 1991, Abello et al.
asked for a classification of the computational complexity of deciding if an input graph covers a fixed
target graph, in the ordinary setting (of graphs with only edges). Although many general results are
known, the full classification is still open. In spite of that, we propose to study the more general
case of covering graphs composed of normal edges (including multiedges and loops) and so-called
semi-edges. Semi-edges are becoming increasingly popular in modern topological graph theory, as
well as in mathematical physics. They also naturally occur in the local computation setting, since
they are lifted to matchings in the covering graph. We show that the presence of semi-edges makes
the covering problem considerably harder; e.g., it is no longer sufficient to specify the vertex mapping
induced by the covering, but one necessarily has to deal with the edge mapping as well. We show
some solvable cases and, in particular, completely characterize the complexity of the already very
nontrivial problem of covering one- and two-vertex (multi)graphs with semi-edges. Our NP-hardness
results are proven for simple input graphs, and in the case of regular two-vertex target graphs,
even for bipartite ones. We remark that our new characterization results also strengthen previously
known results for covering graphs without semi-edges, and they in turn apply to an infinite class
of simple target graphs with at most two vertices of degree more than two. Some of the results
are moreover proven in a more general setting (e.g., finding k-tuples of pairwise disjoint perfect
matchings in regular graphs, or finding equitable partitions of regular bipartite graphs).
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1 Introduction

1.1 Graph coverings and complexity
The notion of a graph covering is a discretization of coverings between surfaces or topological
spaces, a notion well known and deeply studied in classical topology. Graph coverings
have found many applications. Primarily as a tool for construction of highly symmetric
graphs [5, 15, 24, 27], or for embedding complete graphs in surfaces of higher genus [48].

Graph coverings attracted attention of computer scientists as well. Angluin [2] exploited
graph covers when introducing models of local computations, namely by showing that a
graph and its cover cannot be distinguished by local computations. Later, Litovsky et
al. [39] proved that planar graphs and series-parallel graphs cannot be recognized by local
computations, and Courcelle and Metivier [14] showed that in fact no nontrivial minor-closed
class of graphs can. In both of these results, graph coverings were used as the main tool, as
well as in more recent papers of Chalopin et al. [8, 9]. Here, the authors presented a model for
distributed computations and addressed the algorithmic complexity of problems associated
with such a model. To this end, they used the existing results on NP-completeness of the
covering problem to provide their hardness results. In [10], the authors study a close relation
of packing bipartite graphs to a special variant of graph coverings called pseudo-coverings.

Another connection to algorithmic theory comes through the notions of the degree
partition and the degree refinement matrix of a graph. These notions were introduced by
Corneill [12, 13] in hope of solving the graph isomorphism problem efficiently. It can be easily
seen that a graph and all of its covers have the same degree refinement matrix. Motivated
by this observation, Angluin and Gardiner [3] proved that any two finite regular graphs of
the same valency have a finite common cover, and conjectured the same for every two finite
graphs with the same degree refinement matrix, which was proved by Leighton [37].

The stress on finiteness of the common cover is natural. For every matrix, there exists a
universal cover, an infinite tree, that covers all graphs with this degree refinement matrix.
Trees are planar graphs, and this inspired an at first sight innocent question of which graphs
allow a finite planar cover. Negami observed that projective planar graphs do (in fact, their
double planar covers characterize their projective embedding), and conjectured that these
two classes actually coincide [46]. Despite a serious effort of numerous authors, the problem is
still open, although the scope for possible failure of Negami’s conjecture has been significantly
reduced [4, 28, 29].

A natural computational complexity question is how difficult is to decide, given two
graphs, if one covers the other one. This question is obviously at least as difficult as the graph
isomorphism problem (consider two given graphs on the same number of vertices). It was
proven NP-complete by Bodlaender[7] (in the case of both graphs being part of the input).
Abello et al. [1] initiated the study of the computational complexity of the H-cover problem
for a fixed target graph H by showing that deciding if an input graph covers the dumbbell
graph W (0, 1, 1, 1, 0) (in our notation from Section 4) is NP-complete (note that the dumbbell
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graph has loops, and they also allowed the input graph to contain loops). Furthermore, they
asked for a complete characterization of the computational complexity, depending on the
parameter graphs H. Such a line of research was picked by Kratochvíl, Proskurowski and
Telle, who completely characterized the complexity for simple target graphs with at most 6
vertices [33], and then noted that in order to fully characterize the complexity of the H-cover
problem for simple target graphs, it is sufficient (but also necessary) to classify it for mixed
colored multigraphs with minimum degree at least three [30]. The latter result gives a hope
for a more concise description of the characterization, but is also in line with the original
motivation from topological graph theory, where loops and multiedges are widely considered.

The complexity of covering 2-vertex multigraphs was fully characterized in [30], the
characterization for 3-vertex undirected multigraphs can be found in [34]. The most general
NP-hardness result known so far is the hardness of covering simple regular graphs of valency
at least three [32, 17]. More recently, Bílka et al. [6] proved that covering several concrete
small graphs (including the complete graphs K4, K5 and K6) remains NP-hard for planar
inputs. This shows that planarity does not help in graph covering problems in general, yet
the conjecture that the H-Cover problem restricted to planar inputs is at least as difficult
as for general inputs, provided H itself has a finite planar cover, remains still open. Planar
graphs have also been considered by Fiala et al. [19] who showed that for planar input graphs,
H-RegularCover is in FPT when parameterized by H. This is in fact the first and only
paper on the complexity of regular covers, i.e., covering projections determined by a regular
action of a group of automorphisms on the covering graph.

Graph coverings were also extensively studied under a unifying umbrella of locally
constrained homomorphisms. In these relaxations, homomorphisms can be either locally
injective or locally surjective and not necessarily locally bijective. The computational
complexity of locally surjective homomorphisms has been classified completely, with respect
to the fixed target graph [22]. Though the complete classification of the complexity of locally
injective homomorphisms is still out of sight, it has been proved for its list variant [16]. The
problem is also interesting for its applied motivation – a locally injective homomorphism
into the complement of a path of length k corresponds to an L(2, 1)-labeling of span k,
an intensively studied notion stemming from the theory of frequency assignment. Further
generalizations include the notion of H(p, q)-coloring, a homomorphism into a fixed target
graph H with additional rules on the neighborhoods of the vertices [18, 35]. To find more
about locally injective homomorphisms, see e.g. [41, 11] or [21]. For every fixed graph H,
the existence of a locally injective homomorphism to H is provably at least as hard as the
H-cover problem. In this sense our hardness results extend the state of the art also for the
problem of existence of locally injective homomorphisms.

1.2 Graphs with semi-edges
The notion of semi-edges has been introduced in the modern topological graph theory and it
is becoming more and more frequently used (the terminology has not yet stabilized; semi-
edges are often called half-edges, and sometimes fins). Mednykh and Nedela recently wrote
a monograph [44] in which they summarize and survey the ambitions and efforts behind
generalizing the notion of graph coverings to the graphs with semi-edges. This generalization,
as the authors pinpoint, is not artificial as such graphs emerge “in the situation of taking
quotients of simple graphs by groups of automorphisms which are semiregular on vertices and
darts (arcs) and which may fix edges”. As the authors put it: “A problem arises when one
wants to consider quotients of such graphs (graphs embedded to surfaces) by an involution
fixing an edge e but transposing the two incident vertices. The edge e is halved and mapped
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to a semiedge – an edge with one free end.” This direction of research proved to be very
fruitful and provided many applications and generalizations to various parts of algebraic
graph theory. For example, Malnič et al. [42] considered semi-edges during their study of
abelian covers and as they write “...in order to have a broader range of applications we allow
graphs to have semiedges.” To highlight a few other contributions, the reader is invited
to consult [45, 43], the surveys [36] and (aforementioned) [44], and finally for more recent
results the series of papers [19, 23, 20]. It is also worth noting that the concept of graphs
with semi-edges was introduced independently and naturally in mathematical physics by
Getzler and Karpanov [26].

In the view of the theory of local computations, semi-edges and their covers prove very
natural, too, and it is even surprising that they have not been considered before in the
context. If a computer network is constructed as a cover of a small template, the preimages
of normal edges in the covering projection are matchings completely connecting nodes of two
types (the end-vertices of the covered edge). Preimages of loops are disjoint cycles with nodes
of the same type. And preimages of semi-edges are matchings on vertices of the same type.
The role of semi-edges was spotted by Woodhouse et. al. [51, 49] who have generalized the
fundamental theorem of Leighton on finite common covers of graphs with the same degree
refinement matrix to graphs with semi-edges.

Our goal is to initiate the study of the computational complexity of covering graphs with
semi-edges, and the current paper is opening the door in this direction.

1.3 Formal definitions
In this subsection we formally define what we call graphs. A graph has a set of vertices and
a set of edges (also referred to as links). As it is standard in topological graph theory, we
automatically allow multiple edges and loops. Every ordinary edge is connecting two vertices,
every loop is incident with only one vertex. On top of these, we also allow semi-edges. Each
semi-edge is also incident with only one vertex. The difference between loops and semi-edges
is that a loop contributes two to the degree of its vertex, while a semi-edge only one. A
very elegant description of ordinary edges, loops and semi-edges through the concept of
darts is used in more algebraic-based papers on covers. The following formal definition is a
reformulation of the one given in [44].

▶ Definition 1. A graph is a triple (D, V, Λ), where D is a set of darts, and V and Λ are
each a partition of D into disjoint sets. Moreover, all sets in Λ have size one or two.

With this definition, the vertices of a graph (D, V, Λ) are the sets of V (note that empty
sets correspond to isolated vertices, and since we are interested in covers of connected graphs
by connected ones, we assume that all sets of V are nonempty). The sets of Λ are referred
to as links, and they are of three types – loops (2-element sets with both darts from the
same set of V ), (ordinary) edges (2-element sets intersecting two different sets of V ), and
semi-edges (1-element sets). After this explanation it should be clear that this definition is
equivalent to a definition of multigraphs which is standard in the graph theory community:

▶ Definition 2. A graph is an ordered triple (V, Λ, ι), for Λ = E ∪ L ∪ S, where ι is the
incidence mapping ι : Λ −→ V ∪

(
V
2
)

such that ι(e) ∈ V for all e ∈ L ∪ S and ι(e) ∈
(

V
2
)

for
all s ∈ E.

For a comparison of Definitions 1 and 2, see Figure 1. Since we consider multiple edges
of the same type incident with the same vertex (or with the same pair of vertices), the edges
are given by their names and the incidence mapping ι expresses which vertex (or vertices)
“belong” to a particular edge. The degree of a vertex is then defined as follows.
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parts of Λ
parts of V

Figure 1 An example of a graph presented in a usual graph-theoretical way (left) and using the
dart-based Definition 1 (right).

▶ Definition 3. For a graph G = (V, Λ = E ∪ L ∪ S, ι), the degree of a vertex u ∈ V is
defined as

degG(u) = pS(u) + pE(u) + 2pL(u),

where pS(u) ( pL(u)) is the number of semi-edges e ∈ S (of loops e ∈ L) such that ι(e) = u,
and pE(u) is the number of ordinary edges e ∈ E such that u ∈ ι(e).

We call a graph G simple if pS(u) = pL(u) = 0 for every vertex u ∈ V (G) (the graph
has no loops or semi-edges) and ι(e) ̸= ι(e′) for every two distinct e, e′ ∈ E (the graph has
no multiple (ordinary) edges). We call G semi-simple if pS(u) ≤ 1 and pL(u) = 0 for every
vertex u ∈ V (G) and ι(e) ̸= ι(e′) for every two distinct e, e′ ∈ E.

Note that in the language of Definition 1, the degree of a vertex v ∈ V is simply |v|. And
in this language, the main object of our study, a graph cover (or equivalently a covering
projection), is defined as follows.

▶ Definition 4. We say that a graph G = (DG, VG, ΛG) covers a connected graph H =
(DH , VH , ΛH) (denoted as G −→ H) if there exists a map f : DG → DH such that:

For every u ∈ VG, there is a u′ ∈ VH such that the restriction of f onto u is a bijection
between u and u′.
For every e ∈ ΛG, there is an e′ ∈ ΛH such that f(e) = e′.

The map f is called graph cover (or covering projection).

One must appreciate how compact and elegant this definition is after translating it into
the language of Definition 2 in Proposition 5, which otherwise is the definition of (multi)graph
covering in the standard language of Definition 2.

▶ Proposition 5. A graph G covers a graph H if and only if G allows a pair of mappings
fV : V (G) −→ V (H) and fΛ : Λ(G) −→ Λ(H) such that
1. fΛ(e) ∈ L(H) for every e ∈ L(G) and fΛ(e) ∈ S(H) for every e ∈ S(G),
2. ι(fΛ(e)) = fV (ι(e)) for every e ∈ L(G) ∪ S(G),
3. for every link e ∈ Λ(G) such that fΛ(e) ∈ S(H) ∪ L(H) and ι(e) = {u, v}, we have

ι(fΛ(e)) = fV (u) = fV (v),
4. for every link e ∈ Λ(G) such that fΛ(e) ∈ E(H) and ι(e) = {u, v} (note that it must be

fV (u) ̸= fV (v)), we have ι(fΛ(e)) = {fV (u), fV (v)},
5. for every loop e ∈ L(H), f−1(e) is a disjoint union of loops and cycles spanning all

vertices u ∈ V (G) such that fV (u) = ι(e),
6. for every semi-edge e ∈ S(H), f−1(e) is a disjoint union of edges and semi-edges spanning

all vertices u ∈ V (G) such that fV (u) = ι(e), and
7. for every edge e ∈ E(H), f−1(e) is a disjoint union of edges (i.e., a matching) spanning

all vertices u ∈ V (G) such that fV (u) ∈ ι(e).

MFCS 2021
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G H

Figure 2 An example of a covering. The vertex mapping of the covering from G to H is determined
by the shape of the vertices, the edge mapping by the colors of the edges.

See an example of a covering projection in Fig. 2. Conditions 1–4. express the fact that
fV and fE commute with ι, i.e., that f is a homomorphism from G to H. Conditions 5–7
express that this homomorphism is locally bijective (for every ordinary edge e incident with
fV (u) in H, there is exactly one ordinary edge of G which is incident with u and mapped
to e by fE ; for every semi-edge e incident to fV (u) in H, there is exactly one semi-edge, or
exactly one ordinary edge (but not both) in G incident with u and mapped to e by fE ; and
for every loop e incident with fV (u) in H, there is exactly one loop or exactly two ordinary
edges (but not both) of G which are incident with u and mapped to e by fE).

Even though the aforementioned definitions of graphs and graph covers through darts are
compact and elegant, in the rest of the paper we shall work with the standard definition of
graphs and the equivalent description of graph covers given by Proposition 5, because they
are better suited for describing the reductions and understanding the illustrative figures.

It is clear that a covering projection (more precisely, its vertex mapping) preserves degrees.
One may ask when (or if) a degree preserving vertex mapping can be extended to a covering
projection. An obvious necessary condition is described by the following definition.

▶ Definition 6. A vertex mapping fV : V (G) −→ V (H) between graphs G and H is called
degree-obedient if
1. for any two distinct vertices u, v ∈ V (H) and any vertex x ∈ f−1

V (u), the number of
ordinary edges e of H such that ι(e) = {u, v} equals the number of ordinary edges of G

with one end-vertex x and the other one in f−1
V (v), and

2. for every vertex u ∈ V (H) and any vertex x ∈ f−1
V (u), the value pS(H)(u) + 2pL(H)(u)

equals pS(G)(x) + 2pL(G)(x) + r, where r is the number of edges of G with one end-vertex
x and the other one from f−1

V (u) \ {x},
3. for every vertex u ∈ V (H) and any vertex x ∈ f−1

V (u), pS(G)(x) ≤ pS(H)(u).

Finally, let us recall that the product G × H of graphs G and H is defined as the graph
with the vertex set being the Cartesian product V (G) × V (H) and with vertices (u, v) and
(u′, v′) being adjacent in G × H if and only if u is adjacent to u′, and v is adjacent to v′.

1.4 Overview of our results
The first major difference between graphs with and without semi-edges is that for target
graphs without semi-edges, every degree-obedient vertex mapping to it can be extended to a
covering. This is not true anymore when semi-edges are allowed (consider a one-vertex graph
with three semi-edges, every 3-regular graph allows a degree-obedient mapping onto it, but
only the 3-edge-colorable ones are covering it). In Section 2 we show that the situation is not
as bad if the source graph is bipartite. In Theorem 10 we prove that if the source graph is
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bipartite and has no semi-edges, then every degree-obedient vertex mapping can be extended
to a covering, while if semi-edges are allowed in the bipartite source graph, it can at least be
decided in polynomial time if a degree-obedient mapping can be extended to a covering.

All other results concern the complexity of the following decision problem

Problem: H-Cover
Input: A graph G.

Question: Does G cover H?

In order to present our results in the strongest possible form, we aim at proving the
hardness results for restricted classes of input graphs, while the polynomial ones for the
most general inputs. In particular, we only allow simple graphs as inputs when we prove
NP-hardness, and on the other hand, we allow loops, multiple edges as well as semi-edges
when we present polynomial-time algorithms.

The first NP-hardness result is proven in Theorem 11, namely that covering semi-simple
regular graphs of valency at least 3 is NP-hard even for simple bipartite input graphs. In
Sections 3 and 4 we give a complete classification of the computational complexity of covering
graphs with one and two vertices. This extends the main result of [30] to graphs with
semi-edges. Moreover, we strengthen the hardness results of [30] considerably by showing
that all NP-hard cases of covering regular two-vertex graphs (even those without semi-edges)
remain NP-hard for simple bipartite input graphs. It must be noted that through the
reduction from [31], our results on the complexity of covering one- or two-vertex graphs
provide characterization results on infinitely many simple graphs which contain at most two
vertices of degrees greater than 2.

All considered computational problems are clearly in the class NP, and thus we only
concentrate on the NP-hardness proofs in the NP-completeness results. We restrict our
attention to connected target graphs, in which case it suffices to consider only connected
input graphs. In this case every cover is a k-fold cover for some k, which means that the
preimage of every vertex has the same size.

2 The impact of semi-edges

In this section we demonstrate the huge difference between covering graphs with and without
semi-edges. First, we discuss the necessity of specifying the edge mapping in a covering
projection. In other words, we discuss when a degree mapping can always be extended to a
covering, and when this question can be decided efficiently. The following proposition follows
straightforwardly from the definitions.

▶ Proposition 7. For every graph covering projection between two graphs, the vertex mapping
induced by this projection is degree-obedient.

▶ Proposition * 8. If H has no semi-edges, then for any graph G, any degree-obedient
mapping from the vertex set of G onto the vertex set of H can be extended to a graph covering
projection of G to H.

Proof sketch. For simple graphs G, this is proved already in [30]. If multiple edges and loops
are allowed, we use a similar approach. The key point is that Petersen theorem [47] about
2-factorization of regular graphs of even valence is true for multigraphs without semi-edges
as well, and the same holds true for König-Hall theorem [40] on 1-factorization of regular
bipartite multigraphs. ◀

MFCS 2021
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As we will see soon, the presence of semi-edges changes the situation a lot. Even for simple
graphs, degree-obedient vertex mappings to a graph with semi-edges may not extend to a
graph covering projection, and the possibility of such an extension may even be NP-complete.

▶ Observation 9. Let F (3, 0) be the graph with one vertex and three semi-edges pending on
this vertex. Then a graph covers F (3, 0) if and only if it is 3-regular and 3-edge-colorable.
Testing 3-edge-colorability is well known to be NP-hard even for simple graphs.

However, if the input graph is bipartite, the situation gets much easier.

▶ Theorem * 10. If a graph G is bipartite, then for any graph H, it can be decided in
polynomial time whether a degree-obedient mapping from the vertex set of G onto the vertex
set of H can be extended to a graph covering projection of G to H. In particular, if G has
no semi-edges and is bipartite, then every degree-obedient mapping from the vertex set of G

onto the vertex set of H can be extended to a graph covering projection of G to H.

Proof sketch. To prove this statement, it is enough to analyze the edges of H and their
preimages in G according to the following classification:

For each vertex pair x ̸= y ∈ V (H) inducing k ≥ 0 parallel edges in H, their preimage
forms a k-regular subgraph Gx,y of bipartite G, and hence Gx,y is k-edge colorable which
immediately gives a covering projection for these edges.
For each vertex x ∈ V (H) with b ≥ 0 semi-edges and c ≥ 0 loops incident to x in H,
these semi-edges and loops lift to a (b + 2c)-regular subgraph G̃x of G. The algorithmic
task now is to decide whether G̃x admits a factor projecting onto the semi-edges incident
to x (this is efficiently solvable, e.g., by network flows since G̃x is again bipartite). If the
answer is true, a projection of the remaining edges onto the loops incident to x always
exists by Petersen theorem. ◀

Now we prove the first general hardness result, namely that covering semi-simple regular
graphs is always NP-complete (this is the case when every vertex of the target graph is
incident with at most one semi-edge, and the graph has no multiple edges nor loops). See
Fig. 3 for examples of semi-simple graphs H defining such hard cases.

Figure 3 Examples of small semi-simple graphs which define NP-complete covering problems.

▶ Theorem 11. Let H be a semi-simple k-regular graph, with k ≥ 3. Then the H-Cover
problem is NP-complete even for simple bipartite input graphs.

Proof. Consider H ′ = H × K2. This graph is simple, k-regular and bipartite, hence the
H ′-Cover problem is NP-complete by [32]. Given an input k-regular graph G, it is easy
to see that G covers H ′ if and only it is bipartite and covers H. Since bipartiteness can be
checked in polynomial time, the claim follows. ◀

3 One-vertex target graphs

We start the section by proving a slightly more general hardness result, which may be of
interest on its own. In particular, it implies that for every d ≥ 3, it is NP-complete to decide
if a simple d-regular graph contains an even 2-factor, i.e., a spanning 2-regular subgraph
whose every cycle has even length.
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▶ Theorem * 12. For every k ≥ 2 and every d ≥ k + 1, it is NP-complete to decide if a
simple d-regular graph contains k pairwise disjoint perfect matchings.

Proof sketch. The complement of the union of k pairwise disjoint perfect matchings in a
(k + 1)-regular graph is a perfect matching as well, and thus a (k + 1)-regular graph contains
k pairwise disjoint perfect matchings if and only if it is (k + 1)-edge colorable. Hence for
d = k + 1, the claim follows from the NP-completeness of d-edge colorability of d-regular
graphs which has been proven by Leven and Galil [38].

G1 G2

Hu,1

Hu,2

Hu,3

u1 u2

xu,1

xu,2

xu,3

Figure 4 An illustration to the construction of the graph G′ in the proof of Theorem 12.

For d ≥ k+2, we reduce from the previous case, as we sketch next. If G is a (k+1)-regular
instance (of the k disjoint perfect matchings problem), we construct an equivalent d-regular
instance G′ starting from two copies G1 and G2 of G, as shown in Fig. 4. Then for each
vertex u of G, we connect its two copies u1, u2 (in G1, G2) by d − k − 1 paths of length 2,
and add copies of a suitable gadget H to the middle vertices of those paths. The purpose of
this gadget is two-fold – it raises all degrees to d, and it prevents edges of the incident path
from being used in a perfect matching since the gadget is of an even order. It is routine to
finish the construction and to show that G contains k disjoint perfect matchings if and only
if G′ does so. ◀

Now we are ready to prove a dichotomy theorem on the complexity of covering one-vertex
graphs. Let us denote by F (b, c) the one-vertex graph with b semi-edges and c loops.

▶ Theorem * 13. The F (b, c)-Cover problem is polynomial-time solvable if b ≤ 1, or b = 2
and c = 0, and it is NP-complete otherwise, even for simple graphs.

Proof sketch. The high-level idea is similar to the second point of the proof of Theorem 10:
The input graph G possibly covering F (b, c) should better be (b + 2c)-regular (which can be
easily checked), and it remains to argue that such G covers F (b, c) if and only if it contains b

pairwise disjoint perfect matchings (then a covering projection onto the c loops follows easily).
The cases of b = 0, b = 1, or b = 2 and c = 0 can be efficiently solved using standard tools,
while the remaining cases are hard from Theorem 12 by setting k = b and d = b + 2c. ◀

4 Two-vertex target graphs

Let W (k, m, ℓ, p, q) be the two-vertex graph with k semi-edges and m loops at one vertex, p

loops and q semi-edges at the other one, and ℓ > 0 multiple edges connecting the two vertices
(these edges are referred to as bars). In other words, W (k, m, ℓ, p, q) is obtained from the
disjoint union of F (k, m) and F (q, p) by connecting their vertices by ℓ parallel edges. For
an example see the graph H from Fig. 2 which is isomorphic to both W (1, 1, 2, 1, 0) and
W (0, 1, 2, 1, 1).

MFCS 2021



21:10 Computational Complexity of Covering Multigraphs with Semi-Edges

▶ Theorem 14. The W (k, m, ℓ, p, q)-Cover problem is solvable in polynomial time in the
following cases
1. k + 2m ̸= 2p + q and (k ≤ 1 or k = 2 and m = 0) and (q ≤ 1 or q = 2 and p = 0)
2. k + 2m = 2p + q and ℓ = 1 and k = q ≤ 1 and m = p = 0
3. k + 2m = 2p + q and ℓ > 1 and k = m = p = q = 0
and it is NP-complete otherwise.

Note that case 1 applies to non-regular target graph W , while cases 2 and 3 apply to
regular graphs W , i.e., they cover all cases when k + 2m + ℓ = 2p + q + ℓ.

We will refer to the vertex with k semi-edges as blue and the vertex with q semi-edges as
red. In a covering projection f = (fV , fE) from a graph G onto W (k, m, ℓ, p, q), we view the
restricted vertex mapping fV as a coloring of V (G). We call a vertex u ∈ V (G) blue (red)
if fV maps u onto the blue (red, respectively) vertex of W (k, m, ℓ, p, q). In order to keep
the text clear and understandable, we divide the proof into a sequence of claims in separate
subsections. This will also allow us to state several hardness results in a stronger form.

4.1 Polynomial parts of Theorem 14

We follow the case-distinction from the statement of Theorem 14:
1. If k + 2m ̸= 2p + q, then the two vertex degrees of W (k, m, ℓ, p, q) are different, and the

vertex restricted mapping is uniquely defined for any possible graph covering projection
from the input graph G to W (k, m, ℓ, p, q). For this coloring of G, if it exists, we check if
it is degree-obedient. If not, then G does not cover W (k, m, ℓ, p, q). If yes, we check using
Theorem 12 whether the blue subgraph of G covers F (k, m) and whether the red subgraph
of G covers F (q, p). If any one of them does not, then G does not cover W (k, m, ℓ, p, q).
If both of them do, then G covers W (k, m, ℓ, p, q), since the “remaining” subgraph of G

formed by edges with one end-vertex red and the other one blue is ℓ-regular and bipartite,
thus covering the ℓ parallel edges of W (k, m, ℓ, p, q) (Proposition 8).

2. In case 2, the input graph G covers W (1, 0, 1, 0, 1) only if G is 2-regular. If this holds,
then G is a disjoint union of cycles, and it is easy to see that a cycle covers W (1, 0, 1, 0, 1)
if and only if it length is divisible by 4. For the subcase of k = q = 0, see the next point.

3. The input graph G covers W (0, 0, ℓ, 0, 0) only if it is a bipartite ℓ-regular graph without
semi-edges, but in that case it does cover W (0, 0, ℓ, 0, 0), as follows from Proposition 8.

4.2 NP-hardness for non-regular target graphs

▶ Proposition * 15. Let the parameters k, m, p, q be such that k + 2m ̸= 2p + q, and ((k ≥ 3
or k = 2 and m ≥ 1), or (q ≥ 3 or q = 2 and p ≥ 1)). Then the W (k, m, ℓ, p, q)-Cover
problem is NP-complete.

Proof sketch. The proof essentially relies on the reductions from the preceding section. The
parameters ensure that after deleting the ℓ ordinary edges from the target graph, we end up
with two graphs, F (k, m) and F (p, q), where at least one of them identifies one of the hard
cases of covering one-vertex graphs. We then utilize a special gadget by which we connect the
vertices of instances of F (k, m)-Cover and F (q, p)-Cover to get a graph G′. We further
claim that we can decide both of these instances if and only if G′ covers W (k, m, ℓ, p, q). The
argument is significantly simplified by the determination of images of vertices due to the
different degrees of vertices in the target graph. ◀
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4.3 NP-hardness for connected regular target graphs
The aim of this subsection is to conclude the proof of Theorem 14 by showing the NP-hardness
for the case of ℓ ≥ 1 and k + 2m = 2p + q. We will actually prove a result which is more
general in two directions. Firstly, we formulate the result in the language of colorings of
vertices, and secondly, we prove the hardness for bipartite inputs. This might seem surprising,
as we have seen in Section 2 that bipartite graphs can make things easier. Moreover, this
strengthening in fact allows us to prove the result in a unified, and hence simpler, way.

Note that the following definition of a relaxation of usual proper 2-coloring resembles
the so-called defective 2-coloring (see survey of Wood [50]). Hoverer, the definitions are not
equivalent.

▶ Definition 16. A (b, c)-coloring of a graph is a 2-coloring of its vertices such that every
vertex has b neighbors of its own color and c neighbors of the other color.

▶ Observation 17. For any parameters k, m, ℓ, p, q such that k+2m = 2p+q, a bipartite graph
G with no semi-edges covers W (k, m, ℓ, p, q) if and only if it allows a (k + 2m, ℓ)-coloring.

Proof. On one hand, any graph covering projection from G to W (k, m, ℓ, p, q) induces a
(k +2m, ℓ)-coloring of G, provided k +2m = 2p+q. On the other hand, a (k +2m, ℓ)-coloring
of G is a degree-obedient vertex mapping from G to W (k, m, ℓ, p, q), again provided that
k + 2m = 2p + q. If G is bipartite and has no semi-edges, then this mapping can be extended
to a graph covering projection by Theorem 10. ◀

In view of the previous observation, we will be proving the NP-hardness results for the
problem (b, c)-Coloring which takes a graph G on input and asks if G allows a (b, c)-coloring.

▶ Theorem * 18. For every pair of positive integers b, c such that b + c ≥ 3, the (b, c)-
Coloring problem is NP-complete even for simple bipartite graphs.

Proof sketch. First observe that the (b, c)-Coloring and (c, b)-Coloring problems are
polynomially equivalent on bipartite graphs, as the colorings are mutually interchangeable
by switching the colors in one class of the bi-partition. Thus we may consider only b ≥ c.

a) b)

H1
P1 P2 P3 P4

Figure 5 A 20-vertex auxiliary graph H1, used in the first part of the proof of Theorem 18, and
its possible partial (2, 1)-colorings.

NP-hardness of the (2, 1)-Coloring is proved by a reduction from NAE-3-SAT [25] by
using three kinds of building blocks: a clause gadget (here K1,3), a vertex gadget enforcing
the same color on selected subset of vertices, and a garbage collection that allows to complete
the coloring to a cubic graph, that as a part contains the vertex and clause gadgets linked
together to represent a given instance of NAE-3-SAT. This reduction is the actual core of
the proof, and is briefly sketched in Figures 5 and 6. The former one shows a special gadget
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Figure 6 Garbage collection and the overall construction for the first part of Theorem 18. Clause
gadgets are in the corners of the figure b).
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Figure 7 An illustration of the constructions used in the proof of Theorem 18; a reduction to
(b, 1)-Coloring on the left, and a reduction to (b, c)-Coloring on the right.

H1 used in the color-enforcing constructions of this reduction. For every variable, copies of
H1 are concatenated into a chain, whose one side is connected to ensure that the coloring P2
(or its inverse) is the only admissible (2,1)-coloring, the other side transfers this information
as the truth valuation of the variable to the clause gadgets of clauses containing it. The
latter figure sketches the garbage collection and the overall construction of the reduction.

The result on (2, 1)-Coloring, in particular, implies that W (0, 2, 1, 2, 0)-Cover is
NP-complete for simple bipartite input graphs, whereas the semi-edgeless dumbbell graph
W (0, 2, 1, 2, 0) is the smallest semi-edgeless graph whose covering is NP-complete.

Further on, we reduce (2, 1)-Coloring to (b, 1)-Coloring by using two copies of the
instance of (2, 1)-Coloring and linking them together by suitable graphs called bridges, that
enforce replication of colors for the desired coloring. See a brief sketch in Fig. 7 (left). In view
of the initial observation, at this point we know that (b, 1)-Coloring and (1, b)-Coloring
are NP-complete on bipartite inputs for all b ≥ 2.

Then we reduce (1, c)-Coloring to (b, c)-Coloring with b > c. Again we take two
copies of an instance of (1, c)-Coloring, say a (1 + c)-regular graph G. As sketched in
Fig. 7 (right), we construct an auxiliary graph H with two vertices of degree b − 1 (called
the “connector” vertices), all other vertices being of degree b + c (these are called the “inner”
vertices). This bridge graph is such that in every two-coloring of its vertices, such that all
inner vertices have exactly b neighbors of their own color and exactly c neighbors of the
opposite color, while the connector vertices have at most b neighbors of their own color and
at most c neighbors of the opposite color, in every such a coloring the connector vertices and
their neighbors always get the same color. And, moreover, such a coloring exists. We then
take two copies of G and for every vertex of G, identify its copies with the connector vertices
of a copy of the bridge graph (thus we have as many copies of the bridge graph as is the
number of vertices of G). The above stated properties of the bridge graph guarantee that
the new graph allows a (b, c)-coloring if and only if G allows a (1, c)-coloring.
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It is worth mentioning that we have provided two different constructions of the bridge
gadget. A general one for the case of b ≥ c + 2 and a specific one for the case of b = c + 1. It
is a bit surprising that the case analysis needed to prove the properties of the bridge graph
is much more involved for the specific construction in the case of b = c + 1.

Finally, for (b, b)-Coloring with b ≥ 2 we establish a completely different reduction
from a special variant of satisfiability (k-in-2k)-SATq, a generalization of NAE-3-SAT. ◀

Theorem 18 and Observation 17 imply the following proposition, which concludes the
proof of Theorem 14.

▶ Proposition 19. The W (k, m, ℓ, p, q)-Cover problem is NP-complete for simple bipartite
input graphs for all parameter sets such that k + 2m = 2p + q ≥ 1, ℓ ≥ 1, and k + 2m + ℓ ≥ 3.

5 Conclusion

The main goal of this paper is to initiate the study of the computational complexity of
covering graphs with semi-edges. We have exhibited a new level of difficulty that semi-
edges bring to coverings by showing a connection to edge-colorings. We have presented a
complete classification of the computational complexity of covering graphs with at most two
vertices, which is already a quite nontrivial task. In the case of one-vertex target graphs, the
problem becomes polynomial-time solvable if the input graph is bipartite, while in the case
of two-vertex target graphs, bipartiteness of the input graphs does not help. This provides a
strengthening of known results of covering two-vertex graphs without semi-edges.

It is worth noting that the classification in [30] concerns a more general class of colored
mixed (multi)graphs. I.e., graphs which may have both directed and undirected edges and
whose edges come with assigned colors which must be preserved by the covering projections.
It turns out that covering a two-vertex (multi)graph is NP-hard if and only if it is NP-hard
for at least one of its maximal monochromatic subgraphs. It can be shown that the same
holds true when semi-edges are allowed (note that all semi-edges must be undirected only).

We end up with an intriguing open problem.

▶ Problem. Do there exist graphs H1 and H2, both without semi-edges, such that H1 covers
H2, and such that the H1-Cover is polynomial-time solvable and H2-Cover is NP-complete?

If semi-edges are allowed, then H1 = W (0, 0, 3, 0, 0) and H2 = F (3, 0) is such a pair.
All further examples that we can obtain generalize this observation. They are unique in
the sense that NP-completeness of H2-Cover follows from the NP-completeness of the
edge-colorability problem of general graphs which becomes polynomialy solvable for bipartite
instances.
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