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Abstract
Given a pair of graphs A and B, the problems of deciding whether there exists either a homomorphism
or an isomorphism from A to B have received a lot of attention. While graph homomorphism is
known to be NP-complete, the complexity of the graph isomorphism problem is not fully understood.
A well-known combinatorial heuristic for graph isomorphism is the Weisfeiler-Leman test together
with its higher order variants. On the other hand, both problems can be reformulated as integer
programs and various LP methods can be applied to obtain high-quality relaxations that can still be
solved efficiently. We study so-called fractional relaxations of these programs in the more general
context where A and B are not graphs but arbitrary relational structures. We give a combinatorial
characterization of the Sherali-Adams hierarchy applied to the homomorphism problem in terms of
fractional isomorphism. Collaterally, we also extend a number of known results from graph theory to
give a characterization of the notion of fractional isomorphism for relational structures in terms of
the Weisfeiler-Leman test, equitable partitions, and counting homomorphisms from trees. As a result,
we obtain a description of the families of CSPs that are closed under Weisfeiler-Leman invariance in
terms of their polymorphisms as well as decidability by the first level of the Sherali-Adams hierarchy.
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1 Introduction

The graph isomorphism and homomorphism problems, that is, the problems of deciding,
given input graphs A and B, whether A is isomorphic (respectively homomorphic) to B,
have been the subject of extensive research. Despite an important research effort, it is still
an open problem to determine whether the isomorphism problem for graphs can be solved
in polynomial time. The recent quasipolynomial algorithm for the problem presented by
Babai [4] is widely regarded as a major breakthrough in theoretical computer science.
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In turn, the complexity of the graph homomorphism problem has also been intensively
studied in combinatorics (see [21]) as well as in a more general setting, known as the Constraint
Satisfaction Problem (CSP), where A and B are not required to be graphs but can be arbitrary
relational structures. The CSP is general enough to encompass problems from areas as
diverse as artificial intelligence, optimization, computer algebra, computational biology,
computational linguistics, among many other. In contrast with the graph isomorphism
problem it was quickly established that the homomorphism problem is NP-complete even for
graphs, as it can encode graph coloring. Consequently, an important research effort has been
put into identifying tractable fragments of the problem, in particular by fixing the target
structure B. This culminated in the recent major result of Bulatov [8] and Zhuk [37], which
confirmed a conjecture by Feder and Vardi [15] that, given a fixed target structure B, the
homomorphism problem for B is either solvable in polynomial time or NP-complete.

Linear programming relaxations, among other relaxations such as SDP-based, have been
largely used in the study of both the isomorphism and the homomorphism problem. In fact,
the isomorphism problem for graphs A, B can be reformulated as an integer program which
asks whether there exists a permutation matrix X such that XNA = NBX, where NA and
NB are the adjacency matrices of A, B respectively. If we relax this condition to only require
that X is doubly stochastic, we obtain what is known as fractional isomorphism.

Fractional isomorphism has a combinatorial counterpart in the 1-dimensional Weisfeiler-
Leman (1-WL) algorithm [26], also known as colour refinement. In particular, it was shown
in [34, 35] and [30] that A and B are fractionally isomorphic if and only if 1-WL does not
distinguish between them. 1-WL produces a sequence of colourings c0, c1, . . . of the nodes of
a graph by means of an iterative refinement procedure which assigns a pair of nodes to the
same colour class of ci if they belong to the same class of ci−1, and additionally they have
the same number of neighbours of each colour in ci−1. The algorithm keeps iterating until a
fixed point is reached. The Weisfeiler-Leman algorithm is a very powerful heuristic to test
for graph isomorphism: if two graphs are distinguished by 1-WL (that is, they give rise to
distinct fixed-point colourings up to renaming of the vertices), then this is a witness that
the graphs are not isomorphic. In fact, it was shown that 1-WL decides the isomorphism
problem on almost all graphs (that is, all but o(2(n

2)) graphs on n vertices for every n) [5].
However, it is also easy to see that 1-WL fails on some very simple instances, such as

regular graphs. To address these limitations, the original Weisfeiler-Leman algorithm has
been extended so that at every iteration on a graph A it produces a colouring of the set of
k-tuples (k > 1) of nodes of A. It was initially conjectured that this hierarchy of increasingly
powerful methods, known as the k-dimensional Weisfeiler-Leman (k-WL) algorithm, would
provide a polynomial time graph isomorphism test at least for graphs of bounded degree.
While this conjecture was proved to be incorrect [10], k-WL turns out to have a number of
useful applications, such as the important role it plays in the aforementioned quasipolynomial
algorithm of Babai.

In addition, the k-WL algorithm has proven to be very robust and has a number of
equivalent formulations. In [14], a new characterization was given in terms of counting
homomorphisms: for every k ≥ 1, A and B are indistinguishable by the k-WL algorithm if
for every graph T of treewidth at most k, the number of homomorphisms from T to A is
equal to the number of homomorphisms from T to B. Further, it has been shown in [10] that
A and B are indistinguishable by the k-WL algorithm if and only if they are indistinguishable
in the logic Ck+1 consisting of all FO formulas with counting quantifiers that have at most
k + 1 variables.
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Similarly to the Weisfeiler-Leman hierarchy for fractional isomorphism, any LP relaxation
of an integer 0/1-program, like that of graph isomorphism, can be further strengthened by
sequentially applying so-called lift-and-project methods from mathematical programming
in order to obtain a hierarchy of increasingly tighter relaxations which can still be solved
efficiently. The main idea behind these is to add auxiliary variables and valid inequalities to
an initial relaxation of a 0/1 integer program. These methods, which include Lovász-Schrijver
[27] and Sherali-Adams [32], have been used to study classical problems in combinatorial
optimization such as Max-Cut, Vertex Cover, Maximal Matching, among many others.

Quite surprisingly, Atserias and Maneva [3] and Malkin [28] were able to lift the connection
between the 1-WL algorithm and fractional isomorphism to show a close correspondence
between the higher levels of the SA hierarchy for the graph isomorphism problem and
the k-WL algorithm (and, hence, with the logic Ck+1). This correspondence was further
tightened in [20].

Let us now turn our attention to the homomorphism problem. Here, LP relaxations have
been intensively used in the more general setting of the Constraint Satisfaction Problem and,
most usually, in the approximation of its optimization versions such as MaxCSP, consisting
of finding a map from the universe of A to the universe of B that maximizes the number
of constraints satisfied, among other variants. For instance, a simple linear programming
relaxation yields a 2-approximation algorithm for the Vertex Cover problem, and no better
polynomial time approximation algorithm is known.

One of the simplest and most widespread LP relaxations of the homomorphism problem
(see for example [24]) has an algebraic characterization that very much resembles that of
fractional isomorphism. For the sake of simplicity we shall present it here in the restricted case
of graphs. Let us start with the algebraic formulation of fractional isomorphism which can be,
alternatively, expressed as the existence of a pair of doubly stochastic matrices X and Y such
that XMA = MBY and MAY T = XT MB, where MA denotes the incidence matrix of A. If
we relax this condition to only require that X and Y are left stochastic and, additionally,
we drop the second equation, then we obtain a relaxation of graph homomorphism, which
we call fractional homomorphism. With some minor variations depending on whether the
objective function is present (as in MaxCSP) or not and how repeated elements in a tuple
are treated, this LP formulation has been extensively used [7, 12, 13, 18, 23, 24].

We consider relaxations arising from the application of the Sherali-Adams (SA) method.
Giving an explicit description of the inequalities produced by the SA method for homo-
morphism might be relatively cumbersome (because the constraints of the input structures
A and B must be encoded in the polytope-defining inequalities rather than in the objective
function as in the optimization variants) even when the target structure B is fixed. Hence,
we consider a simpler family of LP inequalities, interleaved with the SA hierarchy, of which
fractional homomorphism corresponds to the first level. Our hierarchy coincides with the
usual SA hierarchy for MaxCSP [11, 17, 33, 36] where the objective function has been turned
into a constraint.

Our main result is a combinatorial characterization of this family of LP relaxations which,
abusing slightly notation, we still shall refer to as SAk, k ≥ 1. Along the way, we extend
a number of the aforementioned results from graph isomorphism to general isomorphism
between relational structures which yields a hierarchy of relaxations of (relational structure)
isomorphism. Our results show that, for every k ≥ 1, the kth level relaxation of the
homomorphism problem, that is, SAk, is tightly related with the corresponding kth level
relaxation of isomorphism, which we denote using ≡k.

MFCS 2021
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Let us consider the first level of the hierarchy, i.e, fractional homomorphism and fractional
isomorphism. In the case of graphs ≡1-equivalence coincides precisely with 1-WL equivalence.
Here we show that a structure A is fractionally homomorphic to a structure B if and only if
there exists a sequence of structures X0, X1, . . . , Xn with A = X0, B = Xn, and for every
i < n, Xi is either homomorphic or ≡1-equivalent to Xi+1. The correspondence for any
higher level k is obtained by replacing X0 and Xn by suitably defined structures A∗

k, B∗
k

that allow to reduce the kth level of the hierarchy to the first level.
In particular, it follows that feasibility in SAk is preserved by structures that are ≡k-

equivalent.
In essence, this is due to the fact that the LP relaxation of homomorphism inherits the

symmetries of A and B. There are, indeed, several results exploring the symmetries of an
LP program in a similar fashion. In [3] such types of symmetries are used to transfer results
between the logic Ck and LP relaxations of several combinatorial problems, whereas [19] aims
to identify the partition classes (as in the WL algorithm) of the variables and constraints of
an LP program so that, by identifying those in the same class, the LP size is reduced. That
being said, the main interest of our result lies precisely in the opposite direction: that is,
the fact that the fractional homomorphism LP relaxation is able to certify that A is not
homomorphic to B unless A belongs to the backwards closure of B under homomorphism
and ≡1 equivalence, or, even more strongly, unless A is homomorphic to a structure X1
which is ≡1-equivalent to a structure X2 which in turn is homomorphic to B.

We apply our results to study the following question: for which structures B is the
set CSP(B), which contains all the structures homomorphic to B, closed under 1-WL
equivalence. This question arises in the context of solving CSPs in a distributed manner [9]
where the elements of the input instance (nodes, edges) are distributed among agents which
communicate with each other by sending messages through fixed communication channels.
Using our main results we can rederive the classification obtained in [9] using substantially
different techniques.

2 Preliminaries

Relational structures

For a positive integer n, We denote by [n] the set {1, . . . , n}. We shall denote tuples in
boldface. Let a = (a1, . . . , ak) ∈ Ak. We use a[i] to denote ai and {a} to denote the set
of variables which occur in a. For every tuple i = (i1, . . . , in) ∈ [k]n we use πi a to denote
the projection of a to i, i.e, the tuple (ai1 , . . . , ain

). If I ⊆ [k] we might abuse slightly
notation and use πI a to refer to πi a where i is the tuple that contains the elements of I in
increasing order. For every function f on a domain containing {a}, we denote by f(a) the
coordinate-wise application of f to a.

Given a set A and a positive integer k, a k-ary relation over A is a subset of Ak. A
signature σ is a finite collection of relation symbols, each with an associated arity. We shall use
arity(R) to denote the arity of a relation symbol R. A relational structure A over σ, or simply
a σ-structure, consists of a set A called the universe of A, and a relation R(A) over A for
each R ∈ σ of the corresponding arity. We denote by CA the set {(a, R) | a ∈ R(A), R ∈ σ}.
Elements (a, R) of CA will alternatively be denoted R(a) and will be referred to as constraints.
We shall usually use the same boldface and (standard) capital letter to refer to a structure
and its universe, respectively.

A graph is a relational structure whose signature consists of a single binary relation that
is symmetric and non-reflexive.
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Let A, B be σ-structures. A homomorphism from A to B is a map h : A → B such
that for every R ∈ σ and every a ∈ R(A) it holds that h(a) ∈ R(B). If there exists a
homomorphism from A to B we say that A is homomorphic to B and we write A → B. We
shall use Hom(A; B) to denote the number of homomorphisms from A to B. The problem of
deciding, given two similar structures A and B, whether A is homomorphic to B is known as
the Constraint Satisfaction Problem (CSP). If we fix the target structure B so that the input
is only A, then we obtain the Constraint Satisfaction Problem over B, denoted CSP(B).

An isomorphism from A to B is a bijective map f : A → B such that for every R ∈ σ

and every a ∈ Aarity(R) it holds that a ∈ R(A) if and only if f(a) ∈ R(B).
The union A ∪ B of two σ-structures A and B is the structure C with C = A ∪ B and

R(C) = R(A) ∪ R(B) for every R ∈ σ. The disjoint union of two structures A and B is the
structure A ∪ C where C is any σ-structure isomorphic to B satisfying A ∩ C = ∅. We say
that a structure is connected if it cannot be expressed as the disjoint union of two structures.
We say that A is a substructure of B if A ∪ B = B. If, in addition, R(A) = R(B) ∩ Aarity(R)

for every R ∈ σ then A is the substructure of B induced by A.

Tree-like structures

We define the factor graph1 of a structure A to be the bipartite graph with nodes A ∪ CA
and where every R(a) in CA is joined by an edge with every a ∈ {a}.

Then, we say that a structure T is an ftree (factor tree) if its factor graph is a tree in the
ordinary graph-theoretic sense. If Q is a substructure of T and Q is an ftree then we say
that Q is a subftree of T.

A tree-decomposition of a structure A is a pair (G, β) where G = (V, E) is a tree and
β : V → P(A) is a mapping such that the following conditions are satisfied:
1. For every constraint R(a) in CA there exists a node v ∈ V such that {a} ⊆ β(v)
2. If a ∈ β(u) ∩ β(v) then a ∈ β(w) for every node w in the unique path in G joining u to v.

The width of a tree-decomposition (G, β) is max{|β(v)| | v ∈ V } − 1 and the treewidth of
A is defined as the smallest width among all its tree-decompositions.

The Sherali–Adams hierarchy

In this presentation we follow [3]. Let P ⊆ [0, 1]n be a polytope {x ∈ Rn : Mx ≥ b, 0 ≤ x ≤
1} for a matrix M ∈ Rm×n, and a column vector b ∈ Rm. We denote the convex hull of the
{0, 1}-vectors in P by PZ. The sequence of Sherali-Adams relaxations of PZ is the sequence
of polytopes P = P 1 ⊇ P 2 ⊇ · · · where P k is defined in the following way.

Each inequality in Mx ≥ b is multiplied by all possible terms of the form Πi∈IxiΠj∈J (1−
xj) where I, J ⊆ [n] satisfy |I ∪ J | ≤ k − 1 and I ∩ J = ∅. This leaves a system of polynomial
inequalities, each of degree at most k. Then, this system is linearized and hence relaxed in
the following way: each square x2

i is replaced by xi and each resulting monomial Πi∈Kxi is
replaced by a variable yK . In this way we obtain a polytope P k

L. Finally, P k
L is projected

back to n dimensions by defining

P k := {x ∈ Rn : there exists y ∈ P k
L such that y{i} = xi for each i ∈ [n]}.

We note here that PZ ⊆ P k for every k ≥ 1.

1 We note that the definition of factor graph presented here differs from that in [9], in which the edges
are labelled. We also note that the notion of factor graph, although similar, differs in several ways from
the incidence multigraph (see [25]) as the latter allows for parallel edges.

MFCS 2021
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In order to apply the SA method to the homomorphism problem there are different
possible choices for the polytope P (encoding a relaxation of homomorphism) to start with,
each one then yielding a different hierarchy.

Here we shall adapt a SA-based family of relaxations commonly used in optimization
variants of CSP [11, 17, 33, 36] which we transform into a relaxation of (plain) CSP by just
turning the objective function into a set of new restrictions. Hence, the resulting system of
inequalities is not, strictly speaking, obtained using the SA method. Nonetheless, we shall
abuse slightly notation and still use SAk to refer to our system of inequalities.

In fact, giving an explicit description of all inequalities obtained using the SA method
for any natural polytope P encoding the LP relaxation for a general CSP in our setting is a
bit cumbersome (because the constraints of the CSP are encoded in the polytope-defining
inequalities instead of the objective function as in CSP optimization variants). Hence, it
seems sensible to settle for a good approximation as SAk. Indeed, as it can be seen in
Appendix A, the sequence of relaxations SAk is tightly interleaved with the sequence P k

obtained by the SA method, in stricto sensu, for a natural choice of initial polytope P .
Given two structures A and B, the system of inequality SAk(A, B) for the homomorphism

problem over (A, B) contains a variable pV (f) for every V ⊆ A with 1 ≤ |V | ≤ k and every
f : V → B, and a variable pR(a)(f) for every R(a) ∈ CA and every f : {a} → B. Each
variable must take a value in the range [0, 1]. The variables are constrained by the following
conditions:∑

f :V →B

pV (f) = 1 V ⊆ A s.t. |V | ≤ k (SA1)

pU (f) =
∑

g:V →B,g|U =f

pV (g) U ⊆ V ⊆ A s.t. |V | ≤ k, f : U → B (SA2)

pU (f) =
∑

g:V →B,g|U =f

pR(a)(g) R(a) ∈ CA, U ⊆ {a} = V s.t. |U | ≤ k, f : U → B (SA3)

pR(a)(f) = 0 R(a) ∈ CA, f : {a} → B s.t. f(a) ̸∈ R(B) (SA4)

For the particular case of k = 1 we shall use the simplified notation pv(f(v)) to denote
the variable pV (f) for a singleton set V = {v} and a function f : V → B.

The transformation ∗k

For every k > 0 we define an operator ∗k that maps a structure into a new structure. As we
shall see later this operator will allow to reduce SAk feasibility to SA1 feasibility.

Let A be a σ-structure. Then we define the universe of A∗
k to be A∗

k := ∪j≤kAj ∪ CA.

Additionally, A∗
k contains the following relations:

Tj,S(A∗
k) = {(a1, . . . , aj) ∈ Aj | ai = ai′ ∀i, i′ ∈ S} j ≤ k, S ⊆ [j]

Tj,i(A∗
k) = {(a, πia) | a ∈ Aj} j′, j ≤ k, i ∈ [j]j

′

RS(A∗
k) = {(a1, . . . , aarity(R)) ∈ R(A) | ai = ai′ ∀i, i′ ∈ S} R ∈ σ, S ⊆ [arity(R)]

Ri(A∗
k) = {(R(a), πi a) | a ∈ R(A)} R ∈ σ, j ≤ k, i ∈ [arity(R)]j .

Then we have:

▶ Lemma 1. Let A, B be σ-structures. Then SAk(A, B) is feasible if and only if SA1(A∗
k, B∗

k)
is feasible.
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Iterated degree, fractional isomorphism, and equitable partitions

In order to prove our main result we need to lift the known equivalence between fractional
isomorphism and the WL algorithm from graphs to relational structures.

Let L := {(S, R) | R ∈ σ, S ⊆ [arity(R)]} be a set, the elements of which we shall call
labels. We construct the matrix representation MA of a σ-structure A as follows (it will be
convenient to assume that the indices of the rows and columns of a matrix are arbitrary sets).
MA is an A × CA matrix whose entries are elements of L. In particular, for all a ∈ A and
R(a) ∈ CA, we have that MA[a, R(a)] = (S, R) where S is the set containing all elements
i ∈ [arity(R)] such that a = a[i].

In a nutshell we are lifting from graph isomorphism to matrix isomorphism, where two
matrices are isomorphic if they are identical modulo a permutation of the rows and columns.
To formalize this, it will be convenient to associate A with a set of 0-1 incidence matrices.
In particular, for every ℓ ∈ L we define M ℓ

A ∈ {0, 1}A×CA as follows: M ℓ
A[a, R(a)] = 1 if

MA[a, R(a)] = ℓ and M ℓ
A[a, R(a)] = 0 otherwise. In [19], relaxations of matrix isomorphism

are also considered although in that setting the matrices have real entries and the goal is
different from ours.

We now describe a procedure akin to the 1-dimensional Weisfeiler-Leman algorithm to
calculate iterative refinements of a colouring of the universe and constraint set of a relational
structure. While there are syntactical differences, when run on graphs this procedure is
equivalent for all purposes to 1-WL. For every k ≥ 0 and x ∈ A ∪ CA, we define inductively
the iterated degree δA

k (x) of x on A as follows. We set δA
0 (x) to be one of two arbitrary

symbols that distinguish elements of A from elements of CA. For k ≥ 1 we set δA
k (a) =

{{(ℓ, δA
k−1(a, R)) | M ℓ

A[a, R(a)] = 1}} and δA
k (a, R) = {{(ℓ, δA

k−1(a)) | M ℓ
A[a, R(a)] = 1}},

where double curly brackets denote that δA
k (x) is a multiset.

We say that A and B have the same iterated degree sequence if for every k ≥ 0,
{{δA

k (a) | a ∈ A ∪ CA}} = {{δB
k (b) | b ∈ B ∪ CB}}. Note that if there exists a matrix

isomorphism from A to B (or alternatively, A and B are isomorphic) then A and B have
the same iterated degree sequence, but the converse does not hold.

The notion of equitable partition is key in the proof of the equivalence of the different
characterizations of fractional isomorphism. We present its adaptation to relational structures.
A partition of a σ-structure A is a pair (P, Q) where P = {Pi | i ∈ I} is a partition of A

and Q = {Qj | j ∈ J} is a partition of CA. We say that (P, Q) is equitable if for every i ∈ I,
j ∈ J , and ℓ ∈ L, there are integers cℓ

i,j , dℓ
j,i, called the parameters of the partition, such that

for every every i ∈ I, every a ∈ Pi, every ℓ ∈ L, and every j ∈ J , we have

|{(a, R) ∈ Qj | MA[a, R(a)] = ℓ}| = cℓ
i,j (P1)

and, similarly, for every j ∈ J , every R(a) ∈ Qj , every ℓ ∈ L, and every i ∈ I we have

|{a ∈ Pi | MA[a, (a, R)] = ℓ}| = dℓ
j,i. (P2)

We say that two structures A, B have a common equitable partition if there are equitable
partitions ({P A

i | i ∈ I}, {QA
j | j ∈ J}) and ({P B

i | i ∈ I}, {QB
j | j ∈ J}) of A and B with

the same parameters satisfying |P A
i | = |P B

i | for every i ∈ I and |QA
j | = |QB

j | for every j ∈ J .
We note that if A and B are connected it is not necessary to verify this latter requirement
and, instead, it is enough to check that |A| = |B|.

A matrix M of non-negative real numbers is said to be left (resp. right) stochastic if all
its columns (resp. rows) sum to 1. Note that we do not require M to be square. A doubly
stochastic matrix is a square matrix that is both left and right stochastic.

MFCS 2021
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▶ Theorem 2. Let A, B be σ-structures. The following are equivalent:
1. There exist doubly stochastic matrices X, Y such that XM ℓ

A = M ℓ
BY and M ℓ

AY T =
XT M ℓ

B for every ℓ ∈ L;
2. A and B have the same iterated degree sequence;
3. A and B have a common equitable partition;
4. Hom(T, A) = Hom(T, B) for all σ-ftrees T.
If, additionally, A and B are graphs, then the following is also equivalent:
5. There exists a doubly stochastic matrix X such that XNA = NBX where NA and NB

denote the adjacency matrices of A and B respectively.

We refer the reader to the full version of this paper for the proof. The equivalence between
(1), (2) and (3) is an immediate generalization of the equivalence between the algebraic and
combinatorial characterizations of fractional graph isomorphism (see for example [31]), while
(4) generalizes the corresponding characterization of graphs from [14] in terms of counting
homomorphisms from trees. Also, note that condition (5) shows that our definition coincides
with the standard notion of fractional isomorphism when A and B are graphs.

Similarly to the case of graphs, the notion of fractional isomorphism captured in Theorem 2
can be strengthened giving rise to a hierarchy of increasingly tighter relaxations. In particular,
for every k ≥ 1, we shall denote A ≡k B whenever A∗

k and B∗
k satisfy the conditions of

Theorem 2.
It is easy to see that the case k = 1 would be unchanged if one replaces A∗

1 and B∗
1 by

A and B respectively and, hence, Theorem 2 characterizes ≡1. For other small values of k

other than k = 1, ≡k is a bit more difficult to characterize. However, as long as k is at least
as large as the arity of any relation in the signature then we have the following result.

▶ Lemma 3. Let r be the maximum arity among all relations in σ and assume that r ≤ k.
Then for every pair of structures A, B the following are equivalent:
1. A ≡k B
2. Hom(Q; A) = Hom(Q; B) for every structure Q of treewidth < k.

This result, which follows easily from condition (4) in Theorem 2, is inspired by a similar
result [14] which states that two graphs A, B are indistinguishable by the k-WL algorithm
if and only if Hom(Q; A) = Hom(Q; B) for every graph Q of treewidth ≤ k. It is not that
surprising that a similar result can be shown for ≡k since, after all, the k-WL algorithm
can be seen as the 1-WL algorithm applied to k-ary tuples. However, note that the bound
on the treewidth differs in one unit between k-WL and ≡k. Still, using Lemma 3 it can be
shown that for r ≤ k, ≡k can be alternatively characterized in logical terms extending, again,
an analogous result for k-WL [22]. More precisely, A ≡k B if and only A and B satisfy
the same formulas in the k-variable fragment of first-order logic with counting quantifiers,
denoted Ck (we omit the definition as it will not be needed).

2.1 Main results
The main result of this paper is a new characterization in terms of fractional isomorphism of
the Sherali-Adams relaxation of the homomorphism problem.

▶ Theorem 4. Let A, B be relational structures. Then, the following are equivalent:
1. SAk(A, B) is feasible;
2. There exists a sequence of structures X0, . . . , Xn such that X0 = A∗

k, Xn = B∗
k, and for

all i = 0, . . . , n − 1 we have that Xi → Xi+1 or Xi ≡1 Xi+1;
3. There exist structures X1, X2 such that A∗

k → X1, X1 ≡1 X2, and X2 → B∗
k.

Theorem 4 is an immediate consequence, using Lemma 1, of the following Theorem.
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▶ Theorem 5. Let A, B be relational structures. Then, the following are equivalent:
1. SA1(A, B) is feasible;
2. There exist left stochastic matrices X, Y such that for every ℓ = (S, R) ∈ L, it holds that

XM ℓ
A ≤

∑
ℓ′ M ℓ′

B Y where ℓ′ ranges over all (S′, R) ∈ L with S ⊆ S′;
3. There exists a sequence of structures X0, . . . , Xn such that X0 = A, Xn = B, and for all

i = 0, . . . , n − 1 we have that Xi → Xi+1 or Xi ≡1 Xi+1;
4. There exist structures X1, X2 such that A → X1, X1 ≡1 X2, and X2 → B.
If in addition A and B have no loops (meaning that there are no repeated elements in any
constraint) then the following condition is also equivalent:
5. There exist left stochastic matrices X, Y such that for every ℓ ∈ L it holds that XM ℓ

A =
M ℓ

BY .

Note that for graphs condition (5) of the above theorem is naturally seen as the homo-
morphism counterpart of the notion of fractional isomorphism (see condition (1) in Lemma 2).
Consequently, we shall say that A is fractionally homomorphic to B whenever A and B
satisfy the conditions of Theorem 5.

While Theorems 4 and 5 have applications, for instance in the field of Constraint
Satisfaction Problems (see Section 4), we believe that their main interest is that they shed
light on the LP relaxations for homomorphism as they show that fractional homomorphism
and its higher order counterparts can be decomposed into a sequence of basic, better studied
morphisms, a fact which we find interesting on its own. Additionally, they establish a close
link between LP relaxations for isomorphism and homomorphism, which were introduced
initially in different fields.

3 Proof of Theorem 5

The equivalence (1) ⇔ (2) is merely syntactic. In particular we shall show that there is a
one-to-one satisfiability-preserving correspondence between pairs of matrices and variable
assignments of SA1(A, B). However, we first need to massage a bit the two formulations.
First, we can assume that for every RA(a) ∈ CA and RB(b) ∈ CB, the corresponding entry
in Y is null unless RA = RB and f(a) = b for some f : {a} → {b}, since otherwise there is
no way that Y can be part of a feasible solution. Secondly, we note that the feasibility of
SA1(A, B) does not change if in (SA3) we replace = by ≤ obtaining a new set of inequalities
(which to avoid confusion we shall denote by (SA3′)) and, in addition, we add for every
R(a) ∈ CA the equality∑

f :{a}→B

pR(a)(f) = 1. (SA5)

Finally, note that in SA1(A, B) we can ignore (SA2).
Then we can establish the following correspondence between pairs of matrices X, Y

and assignments SA1(A, B): for every a ∈ A and b ∈ B, we set pa(b) = X[b, a] and for
every R(a) ∈ CA and f : {a} → B we define pR(a)(f) = Y [R(f(a)), R(a)]. Then, it
is easy to see that (SA3′) corresponds to XM ℓ

A ≤
∑

ℓ′∈Lℓ
M ℓ′

B Y for every ℓ ∈ L (where
L(S,R) := {(S′, R) ∈ L | S ⊆ S′}), X being left stochastic corresponds to (SA1), and Y being
left stochastic corresponds to (SA5).

The equivalence (1) ⇐⇒ (5) is obtained as in (1) ⇐⇒ (2). We just need to notice that
when A and B have no loops, then none of the entries in MA and MB contain any label
ℓ = (S, R) ∈ L where |S| > 1 and hence it is only necessary to consider labels ℓ = (S, R) ∈ L

where S is a singleton. Observe that, in this case, the equation in (2) becomes XM ℓ
A ≤ M ℓ

BY
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since for every label ℓ = (S, R) where S is a singleton, the only label (S′, R) with S ⊆ S′ and
M ℓ

B not a zero matrix is ℓ itself. Finally, in order to replace ≤ by = in the previous equation
we just need to use (SA3) instead of (SA3′).

Notice that (4) =⇒ (3) is trivial.
The proof of (3) =⇒ (2) is by induction on n. If n = 0 the claim is immediate, so assume

that n ≥ 1. Let X0, X1, . . . , Xn be a sequence of structures satisfying (3). By the induction
hypothesis, there exist left stochastic matrices X, Y such that XM ℓ

X1
≤

∑
ℓ′∈Lℓ

M ℓ′

Xn
Y for

all ℓ ∈ L.
If X0 ≡1 X1 then it follows from Theorem 2 that there exist doubly stochastic matrices

X ′ and Y ′ such that X ′M ℓ
X0

= M ℓ
X1

Y ′ for all ℓ ∈ L, and so it is easy to verify that XX ′,
Y Y ′ are such that (2) holds. Assume that X0 → X1. We shall show that there exist left
stochastic matrices X ′ and Y ′ such that for all b ∈ B, for all R(a) ∈ CA, and for all ℓ ∈ L

there exists ℓ̂ = ℓ̂(b, R(a), ℓ) ∈ Lℓ such that XAℓ[b, R(a)] ≤ B ℓ̂Y [b, R(a)]. Assuming that
this holds, again it follows by the induction hypothesis that XX ′, Y Y ′ are left stochastic
matrices such that XX ′M ℓ

X0
≤

∑
ℓ′∈Lℓ

M ℓ′

Xn
Y Y ′ for all ℓ ∈ L.

Let h be a homomorphism from A to B. We define X ′[b, a] = 1 if b = h(a) and
X ′[b, a] = 0 otherwise. Similarly, we set Y ′[RB(b), RA(a)] = 1 if b = h(a) and RB = RA

and Y ′[RB(b), RA(a)] = 0 otherwise. It is easy to see that X ′ and Y ′ are left stochastic.
Now let ℓ = (S, R) ∈ L, b ∈ B and R(a) ∈ CA. If M ℓ

A[a, R(a)] = 0 for all a ∈ A then
XM ℓ

A[b, R(a)] = 0 and there is nothing to prove. So we can assume that there is a ∈ A such
that for all i ∈ [arity(R)], a[i] = a if and only if i ∈ S. Then we have that XM ℓ

A[b, R(a)] = 1
if b = h(a), and XM ℓ

A[b, R(a)] = 0 otherwise. Again in the latter case there is nothing to
prove so let us assume that b = h(a). It follows that h(a)[i] = b for all i ∈ S and hence there
exists ℓ̂ = (R, S′) with S ⊆ S′ such that M ℓ̂

B[b, R(h(a))] = 1, which completes the proof.
It only remains to prove (1) =⇒ (4). Assume that A and B satisfy (1). Further, we can

assume that there exists an integer m > 0 such that all variables in the feasible solution of
SA1(A, B) take rational values of the form n/m for some integer n. Let Y be the set of all
tuples ((b1, c1), . . . , (bm, cm)) ∈ (B × [m])m satisfying the following conditions:

(bi, ci) ̸= (bi′ , ci′) for every i ̸= i′ ∈ [m] (i.e, the tuple has no repeated elements), and
for every i ∈ [m], ci is at most |{j ∈ [m] | bj = bi}|.

In other words, Y is the set of tuples that can be obtained if in every tuple (b1, . . . , bm) ∈ Bm

we replace all occurrences, say n, of any symbol b ∈ B by n “copies” (b, 1), . . . , (b, n), in
any possible order. Let Π : Y → Bm be the function mapping ((b1, c1), . . . , (bm, cm)) to
(b1, . . . , bm).

Let X = A × Y . For every permutation τ on [m] and any m-ary tuple z = (z1, . . . , zm) ∈
Zm where Z is any arbitrary set we shall use z ◦ τ to denote the tuple (zτ(1), . . . , zτ(m)).
This notation is justified by the fact that we can see formally z as a mapping from [m] to Z.
For any x = (a, y) ∈ X, we shall abuse notation and write x ◦ τ to denote (a, y ◦ τ).

For any two z, z′ in any of the sets Bm, Y or X, we shall write z ∼ z′ iff there exists
some permutation τ on [m] such that z′ = z ◦ τ .

For every multiset U = {{b1, . . . , bm}} of m elements from B, we shall fix one arbitrary
element of Y , denoted ⟨U⟩, satisfying that the multiset of variables in Π(⟨U⟩) coincides
with U . We shall abuse slightly notation and for every b = (b1, . . . , bm) ∈ Bm we shall also
use ⟨b⟩ to denote ⟨{{b1, . . . , bm}}⟩. Clearly if b ∼ b′ then ⟨b⟩ = ⟨b′⟩. Moreover, for every
b ∈ Bm we shell denote by yb the tuple ((b1, c1), . . . , (bm, cm)) ∈ Y obtained by choosing
ci < cj whenever bi = bj and i < j. Notice that Π(y) = b and yb ∼ ⟨b⟩.
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Now we shall show how to construct two structures X1 and X2 which satisfy condition (4).
The domain of both X1 and X2 is X. The constraints of X1 and X2 are constructed as
follows. Let J be the set of all triplets (R, T, a) where R ∈ σ, a ∈ Aarity(R), and T is a
multiset of size m of tuples in R(B) such that for every s, s′ ∈ [arity(R)]:

a[s] = a[s′] ⇒ ∀t ∈ T (t[s] = t[s′]).

In other words, T only contains tuples t ∈ R(B) such that t = f(a) for some function
f : {a} → B. Then for every (R, T, a) ∈ J and d ∈ [2], we define Qd

j to be the set of m!
constraints obtained in the following way. Fix any arbitrary ordering t1, . . . , tm of the tuples
in T and let b1 . . . , br ∈ Bm, r = arity(R) such that bs[i] = ti[s] for every i ∈ [m] and s ∈ [r].
Then, for every permutation τ on [m], we include constraint R((a1, ⟨b1⟩)◦τ, . . . , (ar, ⟨br⟩)◦τ)
in Q1

j and constraint R((a1, yb1) ◦ τ, . . . , (ar, ybr ) ◦ τ) in Q2
j , where a = (a1, ..., ar).

Finally, we define CXd
, d ∈ [2] to be ∪j∈JQd

j (note that for each d ∈ [2], all sets Qd
j ,

j ∈ J are disjoint). To complete the proof it only remains to show that X1 and X2 satisfy
condition (4).

▷ Claim 6. A is homomorphic to X1.

Proof. Let p be a feasible solution of SA1(A, B). We define a mapping h : A → X by setting
h(a) = (a, ⟨ca⟩), where ca ∈ Bm is any tuple satisfying that every element b ∈ B occurs
exactly m · pa(b) times. We shall show that h is a homomorphism from A to X1. Let R ∈ σ,
a = (a1, . . . , ar) ∈ R(A) where r = arity(R), and consider the multiset T = {t1, . . . , tm}
of tuples in R(B) obtained by picking each tuple ti = fi(a) ∈ R(B) exactly m · pR(a)(fi)
times (note that we are using implicitly (SA4) to guarantee the existence of T ). For every
s, s′ ∈ [r] satisfying as = as′ it follows from the construction of T that t[s] = t[s′] for
every t ∈ T , and hence (R, T, a) ∈ J . Let t1, . . . , tm be the ordering of the elements in T

associated to (R, T, a) in the construction of X1 and b1, . . . , br be the tuples obtained by
setting bs[i] = ti[s] for i ∈ [m] and s ∈ [r]. Then, it follows that X1 contains the constraint
R((a1, ⟨b1⟩), . . . , (ar, ⟨br⟩)). It follows again from (SA3) that for every s ∈ [r] cas ∼ bs and
hence (as, ⟨bs⟩) is precisely h(as) as desired. ◁

▷ Claim 7. X2 is homomorphic to B.

Proof. Let h : X → B be the function mapping any (a, y) to π1(Π(y)). It is immediate that
h defines a homomorphism from X2 to B. ◁

▷ Claim 8. X1 and X2 have a common equitable partition.

Proof. We shall prove that (P, Q1) and (P, Q2) define a common equitable partition of X1
and X2 where P = {Pi | i ∈ I} is the partition given by the equivalence relation ∼ on X

and Qd = {Qd
j | j ∈ J}, d ∈ [2] are as defined in the construction of X1 and X2.

This follows immediately from the following fact. Let d ∈ [2], i ∈ I, j ∈ J , and ℓ ∈ L.
Then exactly one of the following conditions holds:
1. There is no x ∈ Pi and C ∈ Qd

j such that MXd
[x, C] = ℓ;

2. There exists a one-to-one correspondence between the elements of Pi and Qd
j such that

for every pair (x, C) of associated elements, MXd
[x, C] = ℓ.

Furthermore, for every i ∈ I, j ∈ J , and ℓ ∈ L, condition (1) holds for d = 1 if and only
if it holds for d = 2.

MFCS 2021
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Let us prove it. Let j = (R, T, a) and let b1, . . . , br and yb1 , . . . , ybr be as in the
construction of Qd

j (where r = arity(R)). We first observe that for every x ∈ Pi, every C =
R(x1, . . . , xr) ∈ Qd

j , and every permutation τ on [m], MXd
[x, C] = ℓ ⇔ MXd

[x ◦ τ, C ◦ τ ] = ℓ

where we use C ◦ τ to denote R(x1 ◦ τ, . . . , xr ◦ τ). It then follows that if (1) fails then (2)
must hold.

Now it only remains to see that (1) holds for d = 1 if and only if (1) holds for d = 2.
Clearly, this follows immediately if the relation symbol in ℓ is different from R, so we can
assume that ℓ = (R, S) for some S ⊆ [r]. We then note that if there is some pair (x, C)
violating (1), then MXd

[x ◦ τ, C ◦ τ ] = ℓ for all permutations τ on [m], and hence C can be
chosen to be any constraint in Qd

j . Hence, if we choose R((a1, ⟨b1⟩), . . . , (ar, ⟨br⟩)) for d = 1
and R((a1, yb1), . . . , (ar, ybr )) for d = 2, in order to complete the proof it is enough to show
that for every s, s′ ∈ [r], (as, ⟨bs⟩) = (as′ , ⟨bs′⟩) ⇔ (as, ybs) = (as′ , ybs′ ).

The direction (⇐) is immediate. For the direction (⇒) assume that s, s′ satisfy the
left-hand side. Since as = as′ it follows that bs = bs′ . Since ybs and ybs′ are determined in
a unique way from bs and bs′ respectively, we are done. ◁

4 Some Applications

As an immediate consequence of Theorem 4 we obtain that feasibility of the kth Sherali-Adams
relaxation of the homomorphism problem is closed under ≡k.

▶ Corollary 9. Let A, A′ and B be σ-structures and suppose that A ≡k B. Then, SAk(A, B)
is feasible if and only if SAk(A′, B) is feasible.

We note that if the maximum arity on the signature σ is at most k, then the previous
corollary can be alternatively stated in the following way: if A and A′ are Ck-equivalent
then SAk(A, B) is feasible if and only if SAk(A′, B) is feasible. Then, one could be tempted
to use this observation to transfer results from LP relaxations to logical definability. In
particular one could infer that if SAk decides correctly CSP(B) then it is definable in the
logic Ck

∞,ω which is the extension of Ck consisting of all formulas made from atomic formulas
and equality by means of finitary and infinitary conjunctions, negations, and standard and
counting quantifiers. However, this is of limited interest as it follows by combining [2] and [6]
that CSP(B) would also be definable in the much weaker logic L

max(k,3)
∞,ω where counting

quantifiers are not allowed. Consequently, the previous corollary is most likely to find
applications in obtaining lower bounds on the Sherali-Adams rank for concrete instances
of CSP.

However, the principal novelty in our result is precisely the opposite direction, which leads
to an alternative combinatorial characterization of the Sherali-Adams relaxation. A concrete
application is the answer to the following question: for which structures B is CSP(B) closed
under ≡1-equivalence? This question arises in the context of the distributed CSP [9] where
the variables and constraints of an instance are distributed among agents which communicate
with each other by sending messages through fixed communication channels. In fact, the
connection between the Weisfeiler-Leman algorithm and distributed computation goes back
to the influential paper of Angluin on networks of processors [1]. For the distributed CSP,
one of the most natural configurations for the communication network is essentially identical
to the factor graph [16]. It then follows, under some technical requirements (agent anonymity
and synchronicity) that any distributed message passing algorithm will necessarily behave
in an identical manner on every two input instances that are ≡1-equivalent and, hence, it
follows that CSP(B) can only be solved by a distributed algorithm if CSP(B) is closed under
≡1-equivalence.
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This question was already answered in [9] where it was shown that CSP(B) is closed under
≡1 if and only if B has symmetric polymorphisms of all arities, where a k-ary symmetric
polymorphism of a σ-structure B is any homomorphism h from Bk to B that is invariant
under the permutation of its arguments (the reader can safely ignore the definition of
symmetric polymorphism as we will be using it as a black-box). The proof in [9] makes use
of a result from [24] stating that CSP(B) has symmetric polymorphisms of all arities if and
only if it is solvable by an LP relaxation known as the basic linear programming relaxation
(BLP). Although BLP is slightly different from SA1, both coincide over instances (A, B)
where A has no loops (i.e, every constraint has no repeated elements). It is then very easy
to obtain the following characterization:

▶ Lemma 10. Let B be a fixed finite σ-structure. The following are equivalent:
1. CSP(B) is closed under ≡1-equivalence;
2. SA1 decides CSP(B);
3. BLP decides CSP(B);
4. B has symmetric polymorphisms of all arities.

Proof (Sketch). (1) ⇔ (2) follows from Theorem 5 and (3) ⇔ (4) from [24]. Hence, it is
only necessary to verify (2) ⇔ (3). We use the following fact which follows from the Sparse
Incomparability Lemma [29]: for every instance A of CSP(B), there exists a structure A′

with no loops such that A′ → A and A → B iff A′ → B. Now, assume that BLP does not
solve CSP(B). This means that there exists a structure A not homomorphic to B and such
that BLP(A, B) is feasible. Now, let A′ be the structure given by the Sparse Incomparability
Lemma. Since A′ → A it follows that BLP(A′, B) is feasible, and, since A′ has no loops,
SA1(A′, B) is feasible as well. Since A′ is not homomorphic to B it follows that SA1 does
not solve CSP(B). The same argument can be used to show the converse although it is not
necessary as it also follows immediately by comparing the inequalities of SA1 and BLP. ◀
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A Applying the SA method to the Homomorphism problem

Here we shall show that the family of relaxations SAk considered in the present paper is
closely interleaved with the system of relaxations obtained by applying the SA method to a
natural choice of initial polytope P .

Let A and B be σ-structures. We define polytope P = P (A, B) using a system of
inequalities. The variables of the system are xa,b for each a ∈ A and b ∈ B. Each variable
must take a value in the range [0, 1]. We remark that by fixing some arbitrary ordering
on the variables in xa,b we can represent any assignment on the variables xa,b with a tuple
x ∈ Rn with n = |A| · |B|. Therefore we shall abuse notation and use xa,b to refer to the
value in x corresponding to variable xa,b.

The variables are subject to the following inequalities.∑
b∈B

xa,b = 1 for every a ∈ A, (1)
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∑
a∈{a}

xa,f(a) ≤ |{a}| − 1 for each R ∈ σ, a ∈ R(A),
and f : {a} → B with f(a) ̸∈ R(B). (2)

Note that if h is a homomorphism from A to B then the assignment setting xa,h(a) = 1
for every a ∈ A and the rest of variables to zero is feasible.

Now let P k, k ≥ 1 be the sequence of polytopes obtained using the SA method. The next
lemma shows that the sequence of relaxations defined by SAk and P k are interleaved.

▶ Lemma 11. Let k ≥ 1 and let r be the maximum arity of a relation in σ. Then
1. If P k ̸= ∅ and r ≤ k then SAk is feasible.
2. If SAk+r−1 is feasible then P k ̸= ∅

Proof. (1). Assume that P k ̸= ∅ and let y be a feasible solution of P k
L. We shall construct

a feasible solution of SAk. First, set every variable of the form pV (f) to yK where K =
{(a, f(a)) | a ∈ V }. We first observe that this assignment satisfies (SA1) and (SA2). Indeed,
let U ⊆ A with |U | < k, let f : U → B, and let I = {(u, f(u)) : u ∈ U}. Then, multiplying
the equality (1) with a ∈ A \ U by Πi∈Ixi and linearizing we obtain equality (SA2) for U , f ,
and V = U ∪ {a}. In this way we can obtain all equalities in (SA2) for |U | + 1 = |V |. We
note here that the rest of equalities in (SA2) along all equalities in (SA1) can be obtained as
a linear combination.

Secondly, let us set the rest of variables. For every (a, R) ∈ CA and f : {a} → B, set
p(a,R)(f) to be yK where K = {(a, f(a)) | a ∈ {a}} (note that we are using implicitly the
fact that r ≤ k). Then, (SA3) follows directly from (SA2). Finally, it only remains to show
that (SA4) is also satisfied. Indeed, for every f(a) ̸∈ R(B) we obtain equality p(a,R)(f) = 0
if we multiply (2) by the term Πi∈K and linearize. We want to note that, in fact, (1) also
holds under the weaker assumption r ≤ k + 1, but the proof is slightly more involved.

(2). Assume that SAk+r−1 is feasible. We construct a feasible solution y of P k
L as follows.

For every K ⊆ A × B which satisfies K = {(a, f(a)) | a ∈ U} for some U ⊆ A with |U | ≤ k

and f : U → B, we set yK := pU (f). Otherwise, we set yK to zero.
Let us show that this assignment satisfies all inequalities in P k

L. Let

cT y ≤ d (3)

be any inequality defining P k
L. Since (3) is obtained by multiplying an inequality which

contains at most r variables by a term of at most k − 1 variables, there exists a set V ⊆ A

with |V | ≤ r + k − 1 such that for every variable yK appearing in (3), V satisfies K ⊆ V × B.
Note that, by (SA1), variables pV (g), g : V → B define a probability distribution. For every
g : V → B in the support of this distribution, consider the assignment xg that sets xg

v,b = 1
if v ∈ V and b = g(v) and xv,b = 0 otherwise.

Inequality (3) has been obtained by multiplying an inequality from (1) or (2) by a
term and linearizing. We claim that in both cases, the inequality that has generated (3) is
satisfied by xg. If the inequality generating (3) is

∑
b∈B xa,b = 1 for some a ∈ A this follows

simply from the fact that a ∈ V . Assume now that (3) has been generated by inequality∑
a∈{a} xa,f(a) ≤ |{a}| − 1. In this case note that {a} ⊆ V and then the claim follows from

(SA3) and (SA4). This finalizes the proof of the claim.
Consequently, since xg is integral it follows that the assignment yg defined as yg

K =
Πi∈Kxg

i satisfies (3). Finally, note that if we set αg = pV (g), then for every K ⊆ V × B, yK

is precisely given by the convex combination
∑

g αgyg
K . ◀
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B Proof of Lemma 1

▶ Lemma 1. Let A, B be σ-structures. Then SAk(A, B) is feasible if and only if SA1(A∗
k, B∗

k)
is feasible.

Proof (Sketch). The proof is purely syntactical although it is convenient to massage first
a bit the LP formulations SAk(A, B) and SA1(A∗

k, B∗
k). We shall refer to the solutions of

SAk(A, B) and SA1(A∗
k, B∗

k) by appropriately indexed sets of variables p, q respectively.

In SAk(A, B), it follows from (SA4) that we can safely replace all variables pR(a)(f) with
f(a) ̸∈ R(B) by 0.
In SA1(A∗

k, B∗
k) we are required a bit more of work. First, for each j ≤ k and each

a ∈ Aj , it follows from conditions (SA3) and (SA4) for Tj,S (S ⊆ [j]) that for every x in
B∗

k , qa(x) must take value 0 unless x = f(a) for some function f : {a} → B. Hence, in a
first stage we set qa(x) to zero for each j ≤ k, each a ∈ Aj and each x that is not a tuple
of the form f(a) for some function f : {a} → B.
Furthermore, it follows from condition (SA3) for Tj,i that qa(f(a)) = qa′(f(a′)) for every
a, a′ satisfying {a} = {a′} and every f : {a} → B. Hence, in a second stage, for each
V ⊆ A with |V | ≤ k and every f : V → B we identify all variables qa(f(a)) which satisfy
{a} = V .
Then, consider now the variables of the form qR(a)(x), x ∈ B∗

k . It follows from conditions
(SA3) and (SA4) for RS (S ⊆ [arity(R)]) that qR(a)(x) must be set to 0 unless x = R(f(a))
for some function f : {a} → B.
The other variables in SA1(A∗

k, B∗
k) are of the form qC(f) where C ∈ CA∗

k
. As we shall see

they can always safely be identified with some of the other variables. Let us start first with
the case in which C is a unary constraint. If C = Tj,S(a) or C = RS(a), then it follows
from (SA3) that qC(f) = qa(f(a)). Assume now that C is a binary constraint, that is
C = Tj,i(a, πi a) or C = Ri(a, πi a). It follows again from (SA3) that qC(f) = qa(f(a))

Now we are ready to prove the lemma. In particular, consider the following one-to-one
correspondence between the assignments in SAk(A, B) and SA1(A∗

k, B∗
k):

Every variable pV (f) in SAk(A, B) is assigned as variable qa(f(a)) in SA1(A∗
k, B∗

k) where
a is any tuple satisfying {a} = V .
Every variable pR(a)(f) in SAk(A, B) is assigned as variable qR(a)(R(f(a))) in
SA1(A∗

k, B∗
k).

It is not difficult to see that this correspondence preserves feasibility. ◀

C Proof of Lemma 3

▶ Lemma 3. Let r be the maximum arity among all relations in σ and assume that r ≤ k.
Then for every pair of structures A, B the following are equivalent:
1. A ≡k B
2. Hom(Q; A) = Hom(Q; B) for every structure Q of treewidth < k.

From Theorem 2 it follows that for a pair of σ-structures A and B, A∗
k ≡k B∗

k if and
only if Hom(T, A∗

k) = Hom(T, B∗
k) for every σ∗

k-ftree T. So it only remains to prove the
following.

▷ Claim 12. Assume that r ≤ k. Then the following are equivalent:
1. Hom(Q, A) = Hom(Q, B) for every σ-structure Q of treewidth < k;
2. Hom(T, A∗

k) = Hom(T, B∗
k) for every σ∗

k-ftree T.
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Proof. (1) ⇒ (2). Let T be a σ∗-ftree. It follows immediately that if (1) holds then both
A and B must have the same number of elements and constraints. It then follows that (2)
holds for T if it consists of a single element and no constraints at all. Consequently we can
safely assume that all elements in T participate in at least one constraint.

In what follows D∗
k ∈ {A∗

k, B∗
k}. Let t be any node in T . Since t participates in

a constraint it follows that the possible image of t in homomorphism from T is heavily
restricted. In particular, if the image of t according to some homomorphism from T to D∗

k

is in Dj for some j ≤ k then necessarily the image of t in any homomorphism from T to
any structure C∗

k ∈ {A∗
k, B∗

k} must be in Cj . This means that we can safely add constraint
Tj,∅(t) to T without altering Hom(T, A∗

k) or Hom(T, B∗
k).

Likewise, if some homomorphism from T to a structure D∗
k maps t to a constraint R(d),

then likewise we can assume that constraint R∅(t) belongs to T.
To complete the proof we shall show that it is always possible to construct from T a

σ-structure Q of treewidth < k such that |Hom(T, D∗
k)| = |Hom(Q, D)|. It is convenient

to construct Q in two stages. First, let us construct a σ-structure P (not necessarily of
treewidth < k) satisfying that |Hom(T, D∗

k)| = |Hom(P, D)|. We shall allow to use equalities
in P, i.e., constraints of the form p1 = p2, indicating that p1 and p2 must be assigned to the
same element in D.

We shall define P along with a function α mapping every element t of T to a j-ary tuple
of elements in P (j ≤ k) inductively on the number of elements of T as follows.

Assume (base case) that T contains a unique element t. As discussed above we can
assume that T contains constraint Tj,∅(t) for some j ≤ k or R∅(t) for some R ∈ σ. In the
first case, we set the universe of P to contain j new elements p1, . . . , pj . Furthermore, for
every unary constraint Tj,S(t) in T and every i, i′ ∈ S, we include in P the equality pi = pi′ ,
and we define α(t) = (p1, . . . , pj). In the second case, we set the universe of P to contain
arity(R) new elements p1 . . . , parity(R) and we include in P the constraint R(p1, ..., parity(R)).
Similarly to the previous case, for every unary constraint RS(t) in T and every i, i′ ∈ S, we
include in P the equality pi = pi′ . Finally, we set α(t) = (p1, . . . , parity(R)).

Let us consider now the inductive case. Let t1 and t2 be nodes that participate in a binary
constraint U(t1, t2) (recall that U is either Tj,i or Ri) in T. By removing this constraint T gets
divided in two ftrees T1 and T2 such that T1 contains t1 and T2 contains t2. Now, assume
that Pi and αi are already constructed for Ti, i = 1, 2. We are ready to define P. First, we
compute the disjoint union of P1 and P2. Then, we add some further equalities depending
on constraint U(t1, t2). Consider first the case that U = Tj1,i, i = (i1, . . . , ij2) ∈ [j1]j2 for
some j1, j2 ≤ k and let αi(ti) = (pi

1, . . . , pi
ji

), i = 1, 2. Then, for every ℓ ≤ j2 we add the
equality p2

ℓ = p1
iℓ

. Finally, for every t ∈ T we define α(t) to be αi(t) where Ti contains t.
The procedure is identical for U = Ri, where we just substitute j1 by arity(R). It follows
immediately from the definition that Hom(P, D) = Hom(T, D∗

k).
Finally, let us define Q to be the structure obtained by identifying (i.e, merging into

a single element) all elements in P joined by a chain of equalities. It is immediate that
Hom(P, D) = Hom(Q, D).

We shall conclude by giving a tree-decomposition (G, β) of Q of width < k. In particular,
let G be the tree where the vertex set is precisely the universe of T and two different nodes
are adjacent if both participate in some common constraint in T and let β(t) = {α(t)}.

(2) ⇒ (1). Let Q be a σ-structure of treewidth < k and let D ∈ {A, B}. We note here
that we can assume that Q is connected since if Q is the disjoint union of structures Q1
and Q2 then Hom(Q, D) = Hom(Q1, D) · Hom(Q2, D). We shall show that there exists
a σ∗

k-ftree T such that Hom(T, D∗
k) = Hom(Q, D). Let (G, β) be a tree-decomposition of
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width at most k of Q. It is well-known and easy to prove that, since Q is connected we
can always construct (G, β) in such a way that for every pair u, v of adjacent nodes in G,
β(u) ⊆ β(v) or β(v) ⊆ β(u). Furthermore, it is easy to see that we can further enforce that
for every constraint R(q) in Q there exists a node v ∈ G such that β(v) = {q}.

The universe T of T is V ∪ CQ where V is the node-set of G. Furthermore T contains
the following constraints.

Let us start with the unary constraints. Let t be an element in T. If t = v ∈ G then we
include in T a constraint Tjv,∅(t) where jv = |β(v)|. Otherwise, if t = R(q) ∈ CQ then we
include in T all constraints R{i,i′}(t) where q[i] = q[i′].

Now, let us turn our attention to the binary constraints. Fix some arbitrary ordering
on Q and for every v ∈ V let qv = (qv

1 , . . . , qv
jv

) be an array containing the nodes in β(v)
following this fixed order.

Then, for every edge (u, v) in G include constraint Tju,i(u, v) where i = (i1, . . . , ijv ) is
defined as follows. First, we assume without loss of generality that β(v) ⊆ β(u). Then, for
every ℓ ≤ jv, iℓ is defined to be such that qu[iℓ] = qv[ℓ].

Finally, for every constraint t = R(q) in Q we pick some element v ∈ V satisfying
{q} = β(v) and we add the constraint Ri(t, v) with i = (i1, . . . , ijv

) where iℓ satisfies
q[iℓ] = qv[ℓ]. It is immediate to see that T is an ftree and that Hom(Q, D) = Hom(T, D∗

k) ◁
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