
Budgeted Dominating Sets in Uncertain Graphs
Keerti Choudhary #

Indian Institute of Technology Delhi, India

Avi Cohen #

Tel Aviv University, Israel

N. S. Narayanaswamy #

Department of Computer Science and Engineering, IIT Madras, India

David Peleg #

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel

R. Vijayaragunathan #

Department of Computer Science and Engineering, IIT Madras, India

Abstract
We study the Budgeted Dominating Set (BDS) problem on uncertain graphs, namely, graphs with
a probability distribution p associated with the edges, such that an edge e exists in the graph
with probability p(e). The input to the problem consists of a vertex-weighted uncertain graph
G = (V, E, p, ω) and an integer budget (or solution size) k, and the objective is to compute a vertex
set S of size k that maximizes the expected total domination (or total weight) of vertices in the closed
neighborhood of S. We refer to the problem as the Probabilistic Budgeted Dominating Set (PBDS)
problem. In this article, we present the following results on the complexity of the PBDS problem.

1. We show that the PBDS problem is NP-complete even when restricted to uncertain trees of
diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem
is solvable in polynomial time in trees. We further show that PBDS is W[1]-hard for the budget
parameter k, and under the Exponential time hypothesis it cannot be solved in no(k) time.

2. We show that if one is willing to settle for (1 − ϵ) approximation, then there exists a PTAS for
PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be
solved optimally in polynomial time.

3. We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS
(where all edge probabilities are identical) is W[1]-hard for the parameter pathwidth. On the other
hand, we show that it is FPT in the combined parameters of the budget k and the treewidth.

4. Finally, we extend some of our parameterized results to planar and apex-minor-free graphs.

Our first hardness proof (Thm. 1) makes use of the new problem of k-Subset Σ−Π Maximization
(k-SPM), which we believe is of independent interest. We prove its NP-hardness by a reduction from
the well-known k-SUM problem, presenting a close relationship between the two problems.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Uncertain graphs, Dominating set, NP-hard, PTAS, treewidth, planar graph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.32

Related Version Full Version: https://arxiv.org/abs/2107.03020

Acknowledgements We thank an anonymous reviewer for pointing us to [6], yielding a shorter proof
of the FPT algorithm for Uni-PBDS parameterized by treewidth and k.
David Peleg is supported by the Venky Harinarayanan and Anand Rajaraman Visiting Chair
Professorship at the Indian Institute of Technology Madras, Chennai, India (IIT Madras). Supported
by the chair’s funds, this work was done in part when David Peleg, Avi Cohen, and Keerti Choudhary
visited IIT Madras and when R. Vijayaragunathan visited the Weizmann Institute of Science,
Rehovot, Israel.

© Keerti Choudhary, Avi Cohen, N. S. Narayanaswamy, David Peleg, and R. Vijayaragunathan;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 32; pp. 32:1–32:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:keerti@iitd.ac.in
mailto:avicohen2@mail.tau.ac.il
mailto:swamy@cse.iitm.ac.in
https://orcid.org/0000-0002-8771-3921
mailto:david.peleg@weizmann.ac.il
https://orcid.org/0000-0003-1590-0506
mailto:vijayr@cse.iitm.ac.in
https://orcid.org/0000-0001-8554-6392
https://doi.org/10.4230/LIPIcs.MFCS.2021.32
https://arxiv.org/abs/2107.03020
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Budgeted Dominating Sets in Uncertain Graphs

1 Introduction

Background and Motivation. Many optimization problems in network theory deal with
placing resources in key vertices in the network so as to maximize coverage. Some practical
contexts where such coverage problems occur include placing mobile towers in wireless
networks to maximize reception, assigning emergency vehicle centers in a populated area to
guarantee fast response, opening production plants to ensure short distribution lines, and so
on. In the context of social networks, the problem of spreading influencers so as to affect as
many of the network members as possible has recently attracted considerable interest.

Coverage problems may assume different forms depending on the optimized parameter.
A basic “full coverage” variant is the classical dominating set problem, which asks to find
a minimum vertex set S such that each vertex not in S is dominated by S, i.e., is adjacent
to at least one vertex in S. In the dual budgeted dominating set (BDS) problem, given a
bound k (the budget), it is required to find a set S of size at most k maximizing the number
of covered vertices. Over vertex weighted graphs, the goal is to maximize the total weight of
the covered vertices, also known as the domination. It is this variant that we’re concerned
with here.

Traditionally, coverage problems involve a fixed network of static topology. The picture
becomes more interesting when the network structure is uncertain, due to potential edge
connections and disconnections or link failures. Pre-selection of resource locations at the
design stage becomes more challenging in such partial-information settings.

In this work, we study the problem in one of the most fundamental settings, where the
input is a graph whose edges fail independently with a given probability. The goal is to find
a k-element set that maximizes the expected (1-hop) coverage (or domination). Our results
reveal that the probabilistic versions of the coverage problem are significantly harder than
their deterministic counterparts, and analyzing them require more elaborate techniques.

An uncertain graph G is a triple (V,E, p), where V is a set of n vertices, E ⊆ V × V is a
set of m edges, and the function p : E → [0, 1] assigns a probability of existence to each edge
in E. So an m edge uncertain graph G represents a probability space consisting of 2m graphs,
sometimes called possible worlds, derived by sampling each edge e ∈ E independently with
probability p(e). For H = (V,E′ ⊆ E), the event of sampling H as a possible world, denoted
H ⊑ G, occurs with probability Pr(H ⊑ G) =

∏
e∈E′ p(e)

∏
e∈E\E′

(
1 − p(e)

)
. The notion of

possible worlds dates back to Leibniz and possible world semantics (PWS) is well-studied in
the modal logic literature, beginning with the work of Kripke.

Our work focuses on budgeted dominating sets on vertex-weighted uncertain graphs,
i.e., the Probabilistic Budgeted Dominating Set (PBDS) problem. The input consists of a
vertex-weighted uncertain graph G = (V,E, p, ω), with a weight function ω : V → Q+ and
an integer budget k. Set p(vv) = 1 for every v. For a vertex u and a set S ⊆ V , denote by
Pr(u ∼ S) = 1−

∏
v∈S(1−p(uv)) the probability that u ∈ S or u is connected to some vertex

in S. For sets S1, S2 ⊆ V , the expected coverage (or domination) of S1 by S2 is defined as
C(S1, S2) =

∑
v∈S1

(
w(v) Pr(v ∼ S2)

)
. The PBDS problem aims to find a set S of size k that

maximizes C(V, S) over the possible worlds. Its decision version is defined as follows.

Probabilistic budgeted dominating set (PBDS)
Input: A vertex-weighted uncertain graph G = (V,E, p, ω), an integer k and a target
domination value t.
Question: Is there a set S ⊆ V of size at most k such that C(V, S) ≥ t ?

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:3

Our Results and Discussion. The budgeted dominating set problem is known to have a
polynomial time solution on trees. A natural question is if the same applies to the probabilistic
version of the problem. We answer this question negatively, showing the following.

▶ Theorem 1. The PBDS problem is NP-hard on uncertain trees of diameter 4. Furthermore,
(i) the PBDS problem on uncertain trees is W[1]-hard for the parameter k, and (ii) an no(k)

time solution to PBDS will falsify the Exponential time hypothesis.

In order to prove the theorem, we introduce the following problem.

Subset Σ − Π Maximization (k-SPM)
Input: A multiset A = {(x1, y1), . . . , (xN , yN)} of N pairs of positive rationals, an integer
k, and a rational t.
Question: Is there a set S ⊆ [N] of size exactly k satisfying

∑
i∈S xi −

∏
i∈S yi ≥ t ?

To establish the complexity of the k-SPM problem, we present a polynomial time
reduction from k-SUM to k-SPM, thereby proving that both k-PBDS and k-SPM are NP-
hard. Moreover, Downey and Fellows [23] showed that the k-SUM problem is W[1]-hard,
implying that if k-SUM has an FPT solution with parameter k, then the W hierarchy
collapses. This provides our second hardness result.

▶ Theorem 2. The k-SPM problem is W[1]-hard for the parameter k. Furthermore, any
No(k) time solution to k-SPM falsify the Exponential time hypothesis.

The k-SUM problem can be solved easily in Õ(n⌈k/2⌉) time. However, it has been a
long-standing open problem to obtain any polynomial improvement over this bound [1, 47].
Patrascu and Williams [48] showed an no(k) time algorithm for k-SUM falsifies the famous
Exponential time hypothesis (ETH). Hence, our polynomial time reductions also imply that
any algorithm optimally solving k-PBDS or k-SPM must require nΩ(k) time unless ETH fails.

▶ Theorem 3. Under the k-SUM conjecture, for any ε > 0, there does not exist an n⌈k/2⌉−ε

time algorithm to PBDS problem on vertex-weighted uncertain trees.

An intriguing question is whether the k-SPM is substantially harder than k-SUM. For the
simple scenario of k = 2, the 2-SUM problem has an O(n logn) time solution. However, it is
not immediately clear whether the 2-SPM problem has a truly sub-quadratic time solution
(i.e., O(n2−ε) time for some ε > 0). We leave this as an open question. This is especially of
interest due to the following result.

▶ Theorem 4. Let 1 ⩽ c < 2 be the smallest real such that 2-SPM problem has an Õ(nc)
time algorithm. Then, there exists an Õ

(
(dn)c⌈k/2⌉+1)

time algorithm for optimally solving
k-PBDS on trees with arbitrary edge-probabilities, for some constant d > 0.

Given the hardness of k-PBDS on uncertain trees, it is of interest to develop efficient
approximation algorithms. Clearly, the expected neighborhood size of a vertex set is a
submodular function, and thus it is known that the greedy algorithm yields a (1 − 1/ e)-
approximation for the PBDS problem in general uncertain graphs [39, 46]. For uncertain
trees, we improve this by presenting a fully polynomial-time approximation scheme for PBDS.

▶ Theorem 5. For any integer k, and any n-vertex tree with arbitrary edge probabilities, a
(1 − ϵ)-approximate solution to the optimal probabilistic budgeted dominating set (PBDS) of
size k can be computed in time Õ(k2ϵ−1n2).

MFCS 2021

32:4 Budgeted Dominating Sets in Uncertain Graphs

We also consider a special case that the number of distinct probability edges on the input
uncertain tree is bounded above by some constant γ.

▶ Theorem 6. For any integer k, and an n-vertex tree T with at most γ edge probabilities,
an optimal solution for the PBDS problem on T can be computed in time Õ(k(γ+2)n).

We investigate the complexity of PBDS on bounded treewidth graphs. The hardness
construction on bounded treewidth graphs is much more challenging. Due to this inherent
difficulty, we focus on the uniform scenario, where all edge probabilities p(e) are identical.
We refer to this version of the problem as Uni-PBDS. We show that for any 0 < q < 1, the
Uni-PBDS problem with edge-probability q is W[1]-hard for the pathwidth parameter of the
input uncertain graph G. In contrast, the BDS problem (when all probabilities are one) is
FPT when parameterized by the pathwidth of the input graph.

▶ Theorem 7. Uni-PBDS is W[1]-hard w.r.t. the pathwidth of the input uncertain graph.

Then, we consider the Uni-PBDS problem with combined k and treewidth parameters.
We show that the Uni-PBDS problem can be formulated as a variant of the Extended Monadic
Second order (EMS) problem due to Arnborg et al. [6], to derive an FPT algorithm for the
Uni-PBDS problem parameterized by the treewidth of G and k.

▶ Theorem 8. For any integer k, and any n-vertex uncertain graph of treewidth w with
uniform edge probabilities, k-Uni-PBDS can be solved in time O(f(k,w)n2), and thus is
FPT in the combined parameter involving k and w. By dynamic programming on a nice tree
decomposition we can show that f(k,w) is kO(w) (we do not present this here).

Finally, using the structural property of dominating sets from Fomin et al. [28], we derive
FPT algorithms parameterized by the budget k in apex-minor-free graphs and planar graphs.

▶ Theorem 9. For any integer k, and any n-vertex weighted planar or apex-minor free graph,
the Uni-PBDS problem can be solved in time 2O(

√
k log k)nO(1).

Related Work. Uncertain graphs have been used in the literature to model the uncertainty
among relationships in protein-protein interaction networks in bioinformatics [7], road
networks [8, 37] and social networks [22, 39, 52, 54]. Connectivity [9, 10, 33, 38, 51, 53],
network flows [27, 31], structural-context similarity [55], minimum spanning trees [26],
coverage [16, 34, 35, 44, 43], and community detection [11, 49] are well-studied problems
on uncertain graphs. In particular, budgeted coverage problems model a wide variety of
interesting combinatorial optimization problems on uncertain graphs. For example, the
classical facility location problem [36, 40] is a variant of coverage. As another example, in a
classical work, Kempe, Kleinberg, and Tardos [39] study influence maximization problem
as an expected coverage maximization problem in uncertain graphs. They consider the
scenario where influence propagates probabilistically along relationships, under different
influence propagation models, like the Independent Cascade (IC) and Linear Threshold
(LT) models, and show that choosing k influencers to maximize the expected influence is
NP-hard in the IC model. The coverage problem in the presence of uncertainty was studied
extensively also in sensor placement and w.r.t. the placement of light sources in computer
vision. SS A special case of the budgeted coverage problem is the Most Reliable Source
(MRS) problem, where given an uncertain graph G = (V,E, p), the goal is to find a vertex
u ∈ V such that the expected number of vertices in u’s connected component is maximized.
To the best of our knowledge, the computational complexity of MRS is not known, but

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:5

it is polynomial time solvable on some specific graph classes like trees and series-parallel
graphs [12, 19, 20, 21, 43]. Domination is another special kind of coverage and its complexity
is very well-studied. The classical dominating set (DS) problem is known to be W[2]-hard
in general graphs [23], and on planar graphs it is fixed parameter tractable with respect to
the size of the dominating-set as the parameter [32]. Further, on H-minor-free graphs, the
dominating-set problem is solvable in subexponential time [4, 17]. It also admits a linear
kernel on H-minor-free graphs and graphs of bounded expansion [3, 25, 29, 30, 50]. On
graphs of treewidth bounded by w, the classical dynamic programming approach [15] can
be applied to show that the DS problem is FPT when parameterized by w. The Budgeted
Dominating Set (BDS) problem is known to be NP-hard [42] as well as W[1]-hard for the
budget parameter [23]. Furthermore, a subexponential parameterized algorithm is known for
BDS on apex-minor-free graphs [28]. The treewidth-parameterized FPT algorithm for the
dominating-set problem can be adapted to solve the BDS problem in time O(3wkn). In
particular, for trees there exists a linear running time algorithm. PBDS was studied as Max-
Exp-Cover-1-RF in the survey paper [45], and given a dynamic programming algorithm
on a nice tree decomposition with runtime 2O(w·∆)nO(1), where ∆ is the maximum degree of
G. The question whether PBDS has a treewidth parameterized FPT algorithm remained
unresolved; it is settled in the negative in this work.

2 Preliminaries

Consider a simple undirected graph G = (V,E) with vertex set V and edge set E, and let
n = |V | and m = |E|. Given a vertex subset S ⊆ V , the subgraph induced by S is denoted
by G[S]. For a vertex v ∈ V , N(v) denotes the set of neighbors of v and N [v] = N(v) ∪ {v}
is the closed neighborhood of v. Let deg(v) denote the degree of the vertex v in G. A vertex
subset S ⊆ V is said to be a dominating set of G if every vertex u ∈ V \ S has a neighbor
v ∈ S. For an integer r > 0, a vertex subset S ⊆ V is said to be an r-dominating set of
G if for every vertex u ∈ V \ S there exists a vertex v ∈ S at distance at most r from u.
A graph H is said to be an apex if it can be made planar by the removal of at most one
vertex. A graph G is said to be apex-minor-free if it does not contain as its minor some fixed
apex graph H. All planar graphs are apex-minor-free as they do not contain as minor the
apex graphs K3,3 and K5. The notations R, Q and N denote, respectively, the sets of real,
rational, and natural numbers (including 0). For integers a ≤ b, define [a, b] to be the set
{a, a + 1, . . . , b}, and for b > 0 let [b] ≡ [1, b]. Other than this, we follow standard graph
theoretic and parameterized complexity terminology [15, 18, 24].

Tree Decomposition. A Tree decomposition of an undirected graph G = (V,E) is a pair
(T, X), where T is a tree whose set of nodes is X = {Xi ⊆ V | i ∈ V (T)}, such that
1. for each edge u ∈ V , there is an i ∈ V (T) such that u ∈ Xi,
2. for each edge uv ∈ E, there is an i ∈ V (T) such that u, v ∈ Xi, and
3. for each vertex v ∈ V the set of nodes {i | v ∈ Xi} forms a subtree of T.
The width of a tree decomposition (T, X) equals maxi∈V (T) |Xi| − 1. The treewidth of a graph
G is the minimum width over all tree decompositions of G.

A tree decomposition (T, X) is nice if T is rooted by a node r with Xr = ∅ and every node
in T is either an insert node, forget node, join node or leaf node. Thereby, a node i ∈ V (T) is
an insert node if i has exactly one child j such that Xi = Xj ∪ {v} for some v /∈ Xj; it is a
forget node if i has exactly one child j such that Xi = Xj \ {v} for some v ∈ Xj; it is a join
node if i has exactly two children j and h such that Xi = Xj = Xh; and it is a leaf node if
Xi = ∅. Given a tree decomposition of width w, a nice tree decomposition of width w and
O(w n) nodes can be obtained in linear time [41].

MFCS 2021

32:6 Budgeted Dominating Sets in Uncertain Graphs

A tree decomposition (T ,X) is said to be a path decomposition if T is a path. The
pathwidth of a graph G is minimum width over all possible path decompositions of G.
Let pw(G) and tw(G) denote the pathwidth and treewidth of the graph G, respectively.
The pathwidth of a graph G is one lesser than the minimum clique number of an interval
supergraph H which contains G as an induced subgraph. It is well-known that the maximal
cliques of an interval graph can be linearly ordered so that for each vertex, the maximal
cliques containing it occur consecutively in the linear order. This gives a path decomposition
of the interval graph. A path decomposition of the graph G is the path decomposition of the
interval supergraph H which contains G as an induced subgraph. In our proofs we start with
the path decomposition of an interval graph and then reason about the path decomposition
of graphs that are constructed from it.

Uncertain Graphs. For an uncertain graph G = (V,E, p, ω), the vertex weights and the
probabilities associated with the edges are given as rationals. The treewidth and diameter of
G are the same as the treewidth and diameter of its maximal possible world, G = (V,E).

Numerical Approximation. When analyzing our polynomial reductions, we employ nu-
merical analysis techniques to bound the error in numbers obtained as products of an
exponential and the root of an integer. We use the following well-known bound on the error
in approximating an exponential function by the sum of the lower degree terms in the series
expansion.

▶ Lemma 10 ([5]). For z ∈ [−1, 1], ez can be approximated using the Lagrange remainder as

ez = 1 + z + z2

2! + z3

3! + . . .+ zQ

Q! +RQ(z)

where |RQ(z)| ≤ e/(Q+ 1)! ≤ 1/2Q.

We use the following lemma for bounding the error in multiplying approximate values.

▶ Lemma 11. For any set {d1, . . . , dk} of k reals in the range [0, 1],∏
i∈[k]

(1 − di) ≥ 1 −
∑
i∈[k]

di.

Proof. The proof is by induction on k. The base case of k = 1 trivially holds. For any two
reals a, b ∈ [0, 1], (1 − a)(1 − b) ≥ 1 − (a+ b). Applying this result iteratively yields that for
any k ≥ 1, if

∏
i∈[k−1](1 − di) ≥ 1 − (

∑
i∈[k−1] di), then

∏
i∈[k]

(1 − di) ≥
(

1 −
(∑

i∈[k−1]

di

))
(1 − dk) ≥ 1 −

∑
i∈[k]

di.

The claim follows. ◀

3 Hardness Results on Trees

3.1 k-SPM hardness
We first show that the k-Subset Σ − Π Maximization (k-SPM) problem is NP-hard by a
reduction from the k-SUM problem. Let ⟨X, k⟩ with X = {x1, . . . , xN } be an instance of
the k-SUM problem. Let L = 1 + maxi∈[N] |xi|.

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:7

Denote by ⟨A, k, t⟩ an instance of the k-SPM problem. Given an instance ⟨X, k⟩ of
k-SUM, we compute the array A(X) = {(x̃i, ỹi) | i ∈ [N]} of the k-SPM problem as follows.
For 1 ≤ i ≤ N , set x̃i := (L+ xi)/(kL).

Let Q = 3 log2(kL). For i ∈ [N], define yi = exi/(kL), and let ỹi be a rational approxima-
tion of yi that is computed using Lemma 10 such that 0 ≤ yi − ỹi ≤ 1/2Q. The new instance
of the k-SPM problem is ⟨A(X), k, t = 0⟩.

Observe that for each i ∈ [N], ỹi ≥ yi − 1/2Q ≥ e−1/k −1/(kL)3 ≥ 1/2, for k ≥ 3. Thus,
the elements of A(X) are positive rationals. The next lemma provides a crucial property of
any set S of vertices of size k.

▶ Lemma 12. Let λ = 1
(2kL)2 . For each S ⊆ [N] of size k, 0 ≤

∏
i∈S yi −

∏
i∈S ỹi ≤ λ.

Proof. Let α = 1/(kL)3. We have:∏
i∈S yi −

∏
i∈S ỹi ≤

∏
i∈S yi −

∏
i∈S(yi − α) =

∏
i∈S yi

(
1 −

∏
i∈S

(
1 − α

yi

))
≤

∏
i∈S yi

(∑
i∈S

α
yi

)
≤ e

∑
i∈S

xi/(kL)
αk e1/k ≤ αk e2 ≤ 1

4(kL)2 ,

where the second inequality is obtained by Lemma 11. The claim follows. ◀

We now establish the correctness of the reduction.

▶ Theorem 13. The k-SUM problem is polynomial-time reducible to k-SPM.

Proof. Let M =
∑

i∈[N](xi + L). Define a real valued function F (z) = z − e−1+z with
domain [0,M/(kL)]. Observe that F (1) = 0 and the derivative is F ′(1) = 0. The function
F (·) is clearly concave, which indicates that:

(i) F (z) ≤ 0, for each z ∈ [0,M/(kL)],
(ii) F (z) obtains its unique maximum at z = 1, where its value is 0, and
(iii) When restricted to the values in the set

{
z/(kL) | z ∈ [0,M] is an integer

}
, F (z)

obtains its second largest value at z = 1 − 1/(kL).
For any S ⊆ [N], denote zS =

∑
i∈S x̃i. For a set S ⊆ [N] of size k, we have:∑

i∈S x̃i −
∏

i∈S yi = zS − e
∑

i∈S
xi/(kL) = zS − e

∑
i∈S

x̃i/(kL)−1/k (1)

= zS − e−1 · ezS/(kL) = F (zS). (2)

By combining Lemma 12 and Eq. (2), we obtain the following.

F (zS) ≤
∑

i∈S x̃i −
∏

i/∈S ỹi ≤ F (zS) + λ.

On the other hand, for any set S ⊆ [N] of size k for which F (zS) < 0, we have F (zS) ≤
F (1 − 1/(kL)) = (1 − 1/(kL) − e−1/(kL)).

F (zS) ≤ F (1 − 1/(kL)) = (1 − 1/(kL) − e−1/(kL)).

Further,

1 − 1
kL − e−1/(kL) ≤

(
1 − 1

kL

)
−

(
1 − 1

kL + 1
2(kL)2 − 1

6(kL)3

)
≤ − 1

4(kL)2 = −λ .

So, for a set S,
∑

i∈S x̃i −
∏

i∈S ỹi ≥ 0 if and only if
∑

i∈S x̃i = 1, or equivalently
∑

i∈S xi = 0.
It follows that ⟨X, k⟩ is a yes instance of the k-SUM problem if and only if ⟨A(X), k, t = 0⟩ is
a yes instance of the k-SPM problem. The time to compute x̃i and ỹi from xi is polynomial
in Q · log2(kL), for 1 ≤ i ≤ N . Thus, the time-complexity of our reduction is N · logO(1)

2 (kL),
which is at most polynomial in N as long as L = 2O(N). Hence, the k-SUM problem is
polynomial-time reducible to the k-SPM problem. ◀

MFCS 2021

32:8 Budgeted Dominating Sets in Uncertain Graphs

ri

qi 1 1

a0

b1 bi bn

c11 c12 c1n ci1 ci2 cin cn1 cn2 cnn

.

.

Figure 1 Illustration of the lower bound of Theorem 1. Here pi = 1 − yi/(Xmax · Ymax) and
qi = xi/(Xmax · Ymax)k for i ∈ [N].

Proof of Theorem 2. The reduction given in the proof of Theorem 13 is a parameter
preserving reduction for the parameter k. That is, the parameters in the instances of the
k-SUM and the k-SPM problem are same in values and the constructed instance of the
k-SPM problem is of size polynomial in the input size of the k-SUM instance. Thus, the
reduction preserves the parameter k. Since the k-SUM problem is known to be W[1]-hard for
the parameter k [2, 23], the k-SPM problem is also W[1]-hard for the parameter k. Further,
it is known that under the Exponential time hypothesis (ETH), there cannot exist an o(Nk)
time solution for the k-SUM problem [48], so it follows that under ETH there is no o(Nk)
time algorithm for k-SPM as well. ◀

3.2 Hardness of PBDS on Uncertain Trees
In this subsection, we show the hardness results for the PBDS problem on trees, establishing
Theorem 1. In order to achieve this, we present a polynomial time reduction from k-SPM to
PBDS on unweighted trees.

Proof of Theorem 1. In order to prove our claim, we provide a reduction from k-SPM to
PBDS. Given an instance ⟨A = ((x1, y1), . . . , (xN , yN)), k, t⟩ of the k-SPM problem, where
t is a rational, an equivalent instance of the PBDS problem is constructed as follows. Let
n = N2 +N + 1. Construct an uncertain tree T = (V,E, p), where the vertex set V consists
of three disjoint sets, namely, A = {a0}, B = {b1, . . . , bN }, and C = {c11, c12, . . . , cNN } (see
Figure 1. Note that the uncertain tree T is considered to be unweighted or unit weight on the
vertices. The vertex a0 is connected by edges to the vertices in B. For each 1 ≤ i ≤ n, the
vertex bi is connected by edges to the vertices ci1 . . . , ciN . Let Xmax = max{1, x1, x2, . . . , xN }
and Ymax = max{1, y1, y2, . . . , yN }. To complete the construction, define the probability
function p : E → [0, 1] as follows:

p(vv̄) =


ri = 1 − (yi)/(Xmax · Ymax), if vv̄ = a0bi for 1 ≤ i ≤ N,

qi = xi/(Xmax · Ymax)k, if vv̄ = bici1 for 1 ≤ i ≤ N,

1, otherwise.

Since xi, yi ⪈ 0 for each 1 ≤ i ≤ n, we have that p(v, v̄) ∈ [0, 1] is rational for every (v, v̄) ∈ E.
This completes the construction of the instance for the PBDS problem. We show that the
given instance ⟨A, k, t⟩ is a yes instance of k-SPM if and only if T has a set S of size k such
that C(V, S) ≥ 1 + (N − 1)k + t/(XmaxYmax)k.

Let Sopt be a set of size k maximizing C(V, Sopt) in T . We show Sopt ⊆ B. Assume, to
the contrary, that there exists some z ∈ Sopt satisfying z /∈ B. Consider i ∈ [N] such that
none of the vertices ci1, . . . , ciN lie in Sopt. Such i must exist since |Sopt| = k. If z ∈ C, then
replacing z by bi results in a set S′ = Sopt \{z}∪{bi} such that C(V, S′) ≥ C(V, Sopt)+N −3,

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:9

contradicting the optimality of Sopt. Hence, Sopt must be contained in A∪B. In this case, z
must be a0. Now the set S′ = Sopt \ {z} ∪ {bi} is such that C(V, S′) ≥ C(V, Sopt) +N/2 − 2.
Since N ≥ 6, this contradicts the optimality of Sopt. It follows that Sopt ⊆ B.

Next, consider a set S ⊆ B of size k, and let IS = {i ∈ [N] | bi ∈ S}. We have

C(V, S) =
(
1 −

∏
i∈IS

(1 − p(a0, bi))
)

+
(∑

i∈IS
(p(bi, ci1) +N − 1)

)
= 1 + (N − 1)k +

∑
i∈IS

xi/(Xmax · Ymax)k −
∏

i∈IS
yi/(Xmax · Ymax)

= 1 + (N − 1)k + (Xmax · Ymax)−k
(∑

i∈IS
xi −

∏
i∈IS

yi

)
.

This formulation of the coverage function shows that the given instance ⟨A, k, t⟩ is a yes
instance of k-SPM if and only if T has a set S of vertices of size k such that C(V, S) ≥
1 + (N − 1)k + t/(XmaxYmax)k. Thus, the k-SPM problem is reduced in polynomial time to
PBDS on unweighed trees.

It remains to prove NP-hardness, W[1]-hardness, and no(k) lower-bound under ETH.
Note that the above reduction is a parameterized preserving reduction for the parameter k.
That is, the parameter k in the k-SPM problem is the solution size (also called k) parameter
for the PBDS problem. Since the k-SPM problem (i) is NP-hard, (ii) is W[1]-hard for
the parameter k, and (iii) cannot have time complexity no(k) under the Exponential time
hypothesis (by Theorem 2), it follows that the same hardness results hold for PBDS as well.
Therefore, the PBDS problem on uncertain trees (i) is NP-hard, (ii) is W[1]-hard for the
parameter k, and (iii) cannot have time complexity no(k) if ETH holds true. ◀

The k-SUM conjecture [1, 47] states that the k-SUM, for the parameters N and k, requires
at least N⌈k/2⌉−o(1) time.

▶ Conjecture 14 (k-SUM Conjecture). There do not exist a k ≥ 2, an ε > 0, and an
algorithm that succeeds (with high probability) in solving k-SUM in N⌈k/2⌉−ε time.

Proof of Theorem 3. Consider the uncertain tree T constructed in the proof of Theorem 1.
We set n0 = 0. Modify the original construction of T by deleting the N − 2 vertices:
ci3, ci4, . . . , ciN , and setting ωci2 = N − 1, for 1 ≤ i ≤ N . Thus the tree contains exactly
n = 3N + 1 vertices. Now, k-SUM is reducible to k-SPM, and k-SPM is reducible to PBDS,
both in polynomial time, and, moreover the parameter k remains unaltered and the size of
problem grows by at most constant factor. This shows that, for ε > 0, an n⌈k/2⌉−ε time
algorithm to weighted PBDS implies an N⌈k/2⌉−Ω(ε) time algorithm to k-SUM, thereby,
falsifying the k-SUM conjecture. ◀

Note that since the PBDS problem is NP-hard on trees, it is also para-NP-hard [15, 24]
for the treewidth parameter.

4 Hardness of Uni-PBDS for the pathwidth parameter

In this section, we show that even for the restricted case of uniform probabilities, the
Uni-PBDS problem is W[1]-hard for the pathwidth parameter, and thus also for treewidth
(Theorem 7). This is shown by a reduction from the Multi-Colored Clique problem
to the Uni-PBDS problem. It is well-known that the Multi-Colored Clique problem is
W[1]-hard for the parameter solution size [23].

MFCS 2021

32:10 Budgeted Dominating Sets in Uncertain Graphs

Multi-Colored Clique
Input: A positive integer k and a k-colored graph G.
Parameter: k
Question: Does there exist a clique of size k with one vertex from each color class?

Let (G = (V,E), k) be an input instance of the Multi-Colored Clique problem, with n

vertices and m edges. Let V = (V1, . . . , Vk) denote the partition of the vertex set V in the
input instance. We assume, without loss of generality, |Vi| = n for each i ∈ [k]. For each
1 ≤ i ≤ k, let Vi = {ui,ℓ | 1 ≤ ℓ ≤ n}.

4.1 Gadget based reduction from Multi-Colored Clique
Let (G, k) be an instance of the Multi-Colored Clique problem. For any probability
0 < p < 1, and for any integer f such that f > max{knm, n + k2/p}, our reduction
constructs an uncertain graph G. The output of the reduction is an instance (G, k′, t′)
of the Uni-PBDS problem where each edge has probability p, k′ = (n + 1)(m + kn) and
t′ = (kn + m)

(
(n + 1)fp + n + np + 1 + 2(1 − (1 − p)n)

)
+ 4

(
k
2
)
(1 − (1 − p)n+1). In the

presentation below, we show that this choice of k′ and t′ ensures that there is a set of size k′

with expected domination at least t′ in G if and only if G has a multi-colored clique of size k.
We first construct a gadget graph to represent the vertices and edges of the input instance

of the Multi-Colored Clique problem. We construct two types of gadgets, D and I in
the reduction, illustrated in Figure 2 (in Appendix A.1). The gadget I is the primary gadget
and D is a secondary gadget used to construct I. When we refer to a gadget, we mean the
primary gadget I unless the gadget D is specified. For each vertex and edge in the given
graph, our reduction has a corresponding gadget. The gadget D is defined as follows.

Gadget of type D. Given a pair of vertices u and v, the gadget Du,v consists of vertices u,
v, and f additional vertices. The vertices u and v are made adjacent to every other vertex.
We refer to the vertices u and v as heads, and remaining vertices of Du,v as tails, and u are v
are said to be connected by the gadget Du,v.

▶ Observation 15. The pathwidth of a gadget of type D is 2.

Gadget of type I. We begin the construction of the gadget with 2n vertices partitioned into
two sets where each partition contains n vertices. Let A = {a1, . . . , an} and C = {c1, . . . , cn}
be this partition. For each i ∈ [n], vertices ai and ci are connected by the gadget Dai,ci . Let
ha and hc be two additional vertices connected by the gadget Dha,hc

. The vertices in the
sets A and C are made adjacent to ha and hc, respectively. This completes the construction
of the gadget. In the reduction, a gadget of type I is denoted by the symbol I along with an
appropriate subscript based on whether the gadget is associated with a vertex or an edge.

▷ Claim 16. The pathwidth of a gadget of type I is at most 4.

Description of the reduction. For 1 ≤ i < j ≤ k, let Ei,j = {xy | x ∈ Vi, y ∈ Vj} be the set
of edges with one end point in Vi and the other in Vj in G. For each 1 ≤ i < j ≤ k, the graph
G has an induced subgraph Gi corresponding to Vi, and has an induced subgraph Gi,j for the
edge set Ei,j . We refer to Gi as a vertex-partition block and Gi,j as an edge-partition block.
Inside block Gi, there is a gadget of type I for each vertex in Vi, and in the block Gi,j , there
is a gadget for each edge in Ei,j . For a vertex ui,x, Ix denotes the gadget corresponding to
ui,x in the partition Vi, and for an edge e, Ie denotes the gadget corresponding to e. The
blocks are appropriately connected by connector vertices which are defined below.

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:11

We start by defining the structure of a block denoted by B. The definition of the block
applies to both the vertex-partition block and the edge-partition block. A block B consists
of gadgets and additional vertices as follows (See Figure 3 in Appendix A.1).

The block B corresponding to the vertex-partition block Gi for any i ∈ [k] is described as
follows: for each ℓ ∈ [n], add a gadget Iℓ to the vertex-partition block Gi, to represent
the vertex ui,ℓ ∈ Vi. In addition to the gadgets, we add n + 1 vertices to the block B

described as follows: Let F (B) = {b1, . . . , bn, di} be the set of additional vertices that
are added to the block B. For each ℓ ∈ [n], the vertices in the set C of the gadget Iℓ in
the block B are made adjacent to bℓ. For each ℓ ∈ [n], the vertices in the set A of the
gadget Iℓ in the block B are made adjacent to di.
The block B corresponding to the edge-partition block Gi,j for any 1 ≤ i < j ≤ k is
described as follows: for each e ∈ Ei,j , add a gadget Ie in the edge-partition block Gi,j , to
represent the edge e. In addition to the gadgets, we add |Ei,j | + 1 vertices to the block B
described as follows: Let F (B) = {be | e ∈ Ei,j} ∪ {di,j} be the set of additional vertices
that are added to the block B. For each e ∈ Ei,j , the vertices in the set C of the gadget
Ie in the block B are made adjacent to be. For each e ∈ Ei,j , the vertices in the set A of
the gadget Ie in the block B are made adjacent to di,j .

The blocks defined above are connected by the connector vertices described next. These con-
nector vertices are used to connect the edge-partition blocks and vertex-partition blocks, and
thus ensure that each edge in G is appropriately represented in G. Let R = {ri

i,j , s
i
i,j , r

j
i,j , s

j
i,j |

1 ≤ i < j ≤ k} be the connector vertices. The blocks are connected based on the cases
described below. The connections involving the I gadgets in two vertex-partition blocks and
an I gadget in an edge-partition block is illustrated in Figure 4 in Appendix A.1. First, we
describe the connection of vertex-partition blocks corresponding Vi and Vj to the appropriate
connector vertices. Following this, we describe the connection of the two vertex-partition
blocks to the edge-partition block corresponding to Ei,j through the appropriate connector
vertices.
For each i ∈ [k], each i < j ≤ k and each ℓ ∈ [n],

for each 1 ≤ t ≤ ℓ, at in the gadget Iℓ of Gi is made adjacent to si
i,j , and

for each ℓ ≤ t ≤ n, at in the gadget Iℓ of Gi is made adjacent to the vertex ri
i,j .

For each i ∈ [k], each 1 ≤ j < i and each ℓ ∈ [n],
for each 1 ≤ t ≤ ℓ, at in the gadget Iℓ of Gi is made adjacent to the vertex si

j,i, and
for each ℓ ≤ t ≤ n, at in the gadget Iℓ of Gi is made adjacent to the vertex ri

j,i.
Now, we describe the edges to connect the I gadgets in the vertex-partition blocks Gi and
Gj and to the appropriate I gadgets in the edge-partition block Gi,j . For each 1 ≤ i < j ≤ k,
and for each e = ui,xuj,y ∈ Ei,j ,

for each 1 ≤ t ≤ x, at in the gadget Ie of Gi,j is made adjacent to the vertex ri
i,j , and

for each x ≤ t ≤ n, at in the gadget Ie of Gi,j is made adjacent to the vertex si
i,j .

for each 1 ≤ t ≤ y, at in the gadget Ie of Gi,j is made adjacent to the vertex rj
i,j , and

for each y ≤ t ≤ n, at in the gadget Ie of Gi,j is made adjacent to the vertex sj
i,j .

This completes the construction of the graph G with O(mn2) vertices and O(mn3) edges.

▷ Claim 17. The pathwidth of a block B is at most 6.

The following lemma bounds the pathwidth of the graph G by a polynomial in k.

▶ Lemma 18. The pathwidth of the graph G is at most 4
(

k
2
)

+ 6.

Due to space constraints, we have deferred the complete proof to the expanded version.

MFCS 2021

32:12 Budgeted Dominating Sets in Uncertain Graphs

Proof of Theorem 7. Given an instance (G, k) of Multi-Colored Clique , the instance
(G, k′) is constructed in polynomial time where k′ and t′ are polynomial in input size. By
Lemma 18, the pathwidth of G is a quadratic function of k. Finally, we can also show that the
Uni-PBDS instance (G, k′, t′) output by the reduction is equivalent to the Multi-Colored
Clique instance (G, k) that was input to the reduction. Since Multi-Colored Clique
is known to be W[1]-hard for the parameter k, it follows that the Uni-PBDS problem is
W[1]-hard with respect to the pathwidth parameter of the input graph. ◀

This completes the proof of Theorem 7.

5 PBDS on Trees: PTAS and Exact Algorithm

In this section, we present our algorithmic results for the PBDS problem on trees. Throughout
this section, assume T is rooted at some vertex r. For each x ∈ V , denote by par(x) the
parent of x in V , and by T (x) the subtree of T rooted at x.

5.1 PTAS for PBDS on Trees
For each v ∈ V and each b ∈ [0, k], define Yv(par, curr, b) to be the optimal value of

C(V (T (v)), S) where par and curr are boolean indicator variables that, respectively, denote
whether or not par(v) and v are in S (written below as Ipar(v)∈S and Iv∈S), and b denotes
the number of descendants of v in S. Formally, Yv(par, curr, b) is represented as follows:

arg max
{ ∑

x∈T (v) C(x, S)
∣∣∣ S ⊆ V, |S ∩ (T (v) \ v)| = b, curr = Iv∈S , par = Ipar(v)∈S

}
The main idea behind our PTAS is to use the rounding method. Instead of computing Yx,
we compute its approximation, represented as Ŷx. This is done in a bottom-up fashion,
starting from leaf nodes of T . For each x ∈ V , define δ(x) to be |Yx − Ŷx|. Throughout our
algorithm, we maintain the invariant that Ŷx ≤ Yx, for every x ∈ V .

We now present an algorithm to compute Ŷ . Since Yx is easy to compute for a leaf x, we
set Ŷx = Yx. For a leaf x, Yx(par, curr, b) is (i) undefined if b ̸= 0, (ii) ωx if curr = 1, b = 0,
(iii) ωx p(par(x),x) if par = 1, curr = 0, b = 0, and (iv) zero otherwise. Consider a non-leaf
v. Let z1, . . . , zt be v’s children in T , and z0 be v’s parent in T (if exists). Let L(β), for
β ≥ 0, denote the collection of all integral vectors σ = (b1, curr1, . . . , bt, currt) of length 2t
satisfying (i) curri ∈ {0, 1} and bi ≥ 0, for i ∈ [1, t], and (ii)

∑
i∈[1,t](bi + curri) = β. In our

representation of σ as (b1, curr1, . . . , bt, currt), the term curri corresponds to the indicator
variable representing whether or not zi lies in our tentative set S, and bi corresponds to the
cardinality of S ∩

(
V (T (zi)) \ zi

)
. Further, for i ∈ [1, t], let Li(β) be the collection of those

vectors σ = (b1, curr1, . . . , bt, currt) ∈ L(β) that satisfy bj , currj = 0 for j > i.
For a given curr, par, b ≥ 0, we now explain the computation of Ŷv(par, curr, b). Assume

that we have already computed the approximate values Ŷzi (i ∈ [1, t]) corresponding to v’s
children in T . Setting W = maxu∈V ωu, and using the scaling factor M = ϵW/n, let

A(σ) =


ωv, if curr=1,

M

⌊
ωv

M

(
1 − (1 − par · p(z0,v)) •

∏
i∈[1,t]

curri=1
(1 − p(zi,v))

)⌋
, otherwise,

(3)

B(σ) =
∑

i∈[1,t]

Ŷzi
(curr, curri, bi), (4)

Ŷv(par, curr, b) = max
σ∈L(b)

(
A(σ) +B(σ)

)
. (5)

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:13

In order to efficiently compute Ŷv, we define the notion of preferable vectors. For any
two vectors σ1, σ2 ∈ L(β), we say that σ1 is preferred over σ2 (and write σ1 ≥ σ2) if both
(i) A(σ1) ≥ A(σ2), and (ii) B(σ1) ≥ B(σ2). For i ∈ [1, t], let L∗

i (β) be a maximal subset of
Li(b) such that σ1 ≱ σ2 for any two vectors σ1, σ2 ∈ L∗

i (β).
Define ϕv = |{A(σ) | σ ∈ L(β), for β ∈ [0, k]}|. The following observation is immediate

by the definition of L∗
i .

▶ Observation 19. For each i ∈ [1, t] and β ∈ [0, k], |L∗
i (β)| ≤ ϕv.

In order to compute Ŷv(par, curr, b), we explicitly compute and store L∗
i (β), for 1 ≤ i ≤ t.

The set L∗
1(β) is quite easy to compute. Let σ1 = (β, 0, 0, . . . , 0) and σ2 = (β − 1, 1, 0, . . . , 0)

be the only two vectors lying in L1(β). Then L∗
1(β) is that vector among σ1 and σ2 that

maximizes the sum A(σ) +B(σ).
The lemma below provides an iterative procedure for computing the sets L∗

i (β), for i ≥ 2.

▶ Lemma 20. For every i, β ≥ 1, the set L∗
i (β) can be computed from L∗

i−1(β) in time
Õ

(
β +

∑
α∈[0,β] |L∗

i−1(α)|
)
.

Proof. Initialize L∗
i (β) to ∅. At each stage, maintain the list L∗

i (β) sorted by the values
A(·), and reverse-sorted by the values B(·). Our algorithm to compute L∗

i (β) involves the
following steps.
1. For each curr ∈ {0, 1} and b ∈ [0, β], first compute a set Pb,curr obtained by replacing

the values bi and curri in each σ ∈ L∗
i−1(β − (curr + b)) by b and curr respectively. Let

P =
⋃

b∈[0,β],curr∈{0,1} Pb,curr.
2. For each σ ∈ P , check in O(log |P|) time if there is a σ′ ∈ L∗

i (β) that is preferred over σ
(i.e. σ′ ≥ σ). If no such σ′ exists, then (a) add σ to L∗

i (β), and (b) remove all those σ′′

from L∗
i (β) that are less preferred than σ, that is, σ′′ < σ.

The runtime of the algorithm is O(β+ |P| log |P|) which is at most Õ(β+
∑

α∈[0,β] |L∗
i−1(α)|).

Next we now prove its correctness. Consider a σ = (b1, curr1, . . . , bt, currt) ∈ Li(β). It
suffices to show that if σ /∈ Pbi,curri

, then there exists a σ′ ∈ Pbi,curri
satisfying σ′ ≥ σ.

Let σ0 be obtained from σ by replacing bi, curri with 0. Since σ /∈ Pbi,curri , it follows that
σ0 /∈ Li−1(β − (bi + curri)). So there must exist a vector σ′

0 = (b′
1, curr

′
1, . . . , b

′
t, curr

′
t) ∈

Li−1(β − (bi + curri) satisfying A(σ′
0) ≥ A(σ0) and B(σ′

0) ≥ B(σ0). Let σ′ be the vector
obtained from σ′

0 by replacing b′
i, curr

′
i with bi, curri. It can be easily verified from Eq. (3)

and (4), that A(σ′) ≥ A(σ) and B(σ′) ≥ B(σ). Since the constructed σ′ indeed lies in
Pbi,curri

, the proof follows. ◀

The following claim is an immediate corollary of Lemma 20.

▶ Lemma 21. The value of Ŷv(par, curr, b), for any par, curr ∈ {0, 1} and b ∈ [0, k], is
computable in Õ(b · deg(v) · ϕv) time, given the values of Ŷzi for i ≤ t.

Proof. Observe that Ŷv(par, curr, b) = maxσ∈L∗
t (b)

(
A(σ) +B(σ)

)
, where A(σ) and B(σ) are

as defined in Eq. (3) and (4). By Observation 19 and Lemma 20, the total computation time
of the set L∗

t (b) is at most Õ(b · t · ϕv), which is equal to Õ(b · deg(v) · ϕv). ◀

Lemma 21 implies that starting from leaf nodes, the values Ŷx(par, curr, b) can be
computed in bottom-up manner, for each valid choice of triplet (par, curr, b) and each x ∈ V ,
in total time Õ(k2n · maxv∈V ϕv). We now prove ϕv = O(ϵ−1n). If curr = 1, then A(σ)
takes only one value. If curr = 0, then the value of A(σ) is a multiple of M and is also
bounded above by W . This implies that the number of distinct values A(σ) can take is
indeed bounded by W/M = O(ϵ−1n).

MFCS 2021

32:14 Budgeted Dominating Sets in Uncertain Graphs

▶ Proposition 22. Computing Ŷx for all x ∈ V takes in total Õ(k2n · maxx∈V ϕx) =
Õ(k2ϵ−1n2) time.

5.2 Approximation Analysis of PTAS on Trees
We provide here the approximation analysis of the (1 − ϵ)-bound. Let

Sopt = arg max
S⊆V,|S|=k

C(V, S) = arg max
S⊆V,|S|=k

∑
x∈V

ωx Pr(x ∼ S),

Ŝopt = arg max
S⊆V,|S|=k

(∑
x∈S

ωx Pr(x ∼ S) +
∑

x∈V \S

M
⌊ωx Pr(x ∼ S)

M

⌋)
.

Observe that max{Yr(0, 0, k),Yr(0, 1, k−1)} = C(V, Sopt) and max{Ŷr(0, 0, k), Ŷr(0, 1, k−
1)} = C(V, Ŝopt). The following lemma proves that Ŝopt indeed achieves a (1−ϵ)-approximation
bound.

▶ Lemma 23. (1 − ϵ) C(V, Sopt) ≤ C(V, Ŝopt) ≤ C(V, Sopt).

Proof. In order to prove the first inequality, we first show that
C(V, Sopt) − C(V, Ŝopt) ≤ ϵ C(V, Sopt).

C(V, Sopt) − C(V, Ŝopt) ≤ max
S⊆V
|S|=k

(∑
x∈V

ωx Pr(x ∼ S) −
∑
x∈S

ωx Pr(x ∼ S) −
∑

x∈V \S

M

⌊
ωx Pr(x ∼ S)

M

⌋)
≤ (n − k)M ≤ ϵ W ≤ ϵ C(V, Sopt).

Next, for each x ∈ V and S ⊆ V , we have M⌊M−1ωx Pr(x ∼ S)⌋ ≤ ωx Pr(x ∼ S), thereby
implying that C(V, Ŝopt) ≤ C(V, Sopt). This completes our proof. ◀

Proof of Theorem 5. For any integer k, any n-vertex tree T with arbitrary edge probabilities,
and for every ϵ > 0, a (1 − ϵ) approximate solution can be computed in time Õ(k2ϵ−1n2).
This follows from Proposition 22 and Lemma 23. This completes the proof Theorem 5. ◀

5.3 Linear-time algorithm for Uni-PBDS on Trees
We next establish our result for the scenario of Uni-PBDS on trees (Thm. 6). In fact, this
result holds for a somewhat broader scenario, wherein, for each vertex x, the cardinality of
probx = {pe | e is incident to x} is bounded above by some constant γ.

Proof of Theorem 6. Observe that the only place where approximation was used in our
PTAS was in bounding the number of distinct values that can be taken by A(σ) in Eq. (3). In
order to obtain an exact solution for the bounded probabilities setting, the only modification
performed in our algorithm is to redefine A(σ) as follows.

A(σ) = ωv · I(curr=1) + ωv

(
1 − (1 − par · p(z0,v)) •

∏
i∈[1,t]

curri=1

(1 − p(zi,v))
)

· I(curr ̸=1).

It can be verified that the algorithm correctly computes Yx at each step, that is, δ(x)
is essentially zero. The time it takes to compute Yv(par, curr, b), for a non-leaf v, crucially
depends on the cardinality of {A(σ) | σ ∈ L∗

t (b)}, where t is the number of children of v in T .
Observe that the number of distinct values A(σ) can take is at most b|probx| = O(kγ). This
along with Lemma 22 implies that the total runtime of our exact algorithm is Õ(kγ+2n). ◀

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:15

5.4 Solving PBDS optimally on general trees
Let c ≥ 1 be the smallest real such that 2-SPM problem has an Õ(N c) time algorithm.
We will show that in such a case, k-PBDS can be solved optimally on trees with arbitrary
probabilities in Õ((δN)c⌈k/2⌉+1) time, for a constant δ > 0.

For any node v ∈ T , let T i
v , for 1 ≤ i ≤ deg(v), represent the components of the subgraph

T \ {v}. We start with the following lemma (proved in Appendix B.1), which is easy to
prove using a standard counting argument.

▶ Lemma 24. For any set S of size k in T , there exist a node v ∈ T and an index
q ∈ [1,deg(v)] such that the cardinalities of the sets S∩

(⋃
i⪇q T

i
v

)
, S∩

(
T q

v

)
and S∩

(⋃
i⪈q T

i
v

)
are all bounded by k/2.

For the rest of this section, we refer to a tuple (v, q) satisfying the conditions stated
in Lemma 24 as a valid pair. Let us suppose we are provided with a valid pair (v, q). For
sake of convenience, we assume that T is rooted at node v. Let U0 = T q

v , U1 =
⋃

i⪇q T
i
v,

and U2 =
⋃

i⪈q T
i
v. Also let {x1, . . . , xα} be the children of v in U1, where α = q − 1; let

{y1, . . . , yβ} be the children of v in U2, where β = deg(v) − q; and let z be qth child of v.
An important observation is that if the optimal S contains v, then the problem is easily

solvable in O(k2 · nk/2) time, as then the structures U0, U1 and U2 become independent.
Indeed, it suffices to consider all O(k2) partitions of k − 1 into triplet (c0, c1, c2) consisting
of integers in the range [0, k/2], and next we iterate over all the ci ≤ k/2 subsets in Ui.
This takes in total O(k2nk/2) time. So the challenge is to solve the problem when v is not
contained in S. Assuming (v, q) is a valid pair, and v is not contained in the optimal S, the
solution S to k-PBDS is the union S0 ∪ S1 ∪ S2 of the tuple (S0, S1, S2) ∈ U0 ×U1 ×U2 that
maximizes

C(U0, S0)+C(U1, S1)+C(U2, S2)+ωv

(
1−(1−d·p(v, z))•

∏
i∈[1,α]
xi∈S1

(1−p(v, xi))
∏

j∈[1,β]
yi∈S2

(1−p(v, yj))
)

(6)

where d is an indicator variable denoting whether or not z ∈ S0, and |S1|, |S2|, |S3| are
integers in the range [0, k/2] that sum up to k.

Define Γ to be set of all quadruples (d, c0, c1, c2) comprising of integers in the range
[0, k/2] such that d ∈ {0, 1} and c0 + c1 + c2 = k. For each γ = (d, c0, c1, c2) ∈ Γ, let

L1
γ =

{(C(U1, S1)
ωv(1 − d · p(v, z)) ,

∏
i∈[1,α]
xi∈S1

(1 − p(v, xi))
) ∣∣∣ S1 ⊆ U1 is of size c1

}
,

L2
γ =

{(C(U2, S2)
ωv(1 − d · p(v, z)) ,

∏
j∈[1,β]
yj∈S2

(1 − p(v, yj))
) ∣∣∣ S2 ⊆ U2 is of size c2

}
,

Zγ = max
{

C(U0, S0)
∣∣∣ S0 ⊆ U0 is of size c0, and d = Iz∈S0

}
.

So, the maximization considered in Eq. (6) is equivalent to the following optimization:

max
γ=(d,c0,c1,c2)∈Γ

(a,b) ∈ L1
γ , (ā,b̄) ∈ L2

γ

ωv + Zγ +
(
ωv(1 − d · p(v, z))

)(
a+ ā− bb̄

)
. (7)

In the next lemma we show that optimizing the above expression is equivalent to solving
|Γ| = O(k2) different 2-SPM problems (each of size O(nk/2)).

MFCS 2021

32:16 Budgeted Dominating Sets in Uncertain Graphs

▶ Lemma 25. Let A =
(
(a1, b1), . . . , (aN , bN)

)
and Ā =

(
(ā1, b̄1), . . . , (āN , b̄N)

)
be two arrays.

Then, solving the maximization problem maxi0,j0(ai0 + āj0 − bi0 b̄j0), can be transformed in
linear time to the following equivalent 2-SPM:

L =
(
(Q+ a1, Rb1), . . . , (Q+ aN , RbN), (−Q+ ā1, R

−1b̄1), . . . , (−Q+ āN , R
−1b̄N)

)
,

where Q = maxi,j(bib̄j) + 2 maxi,j(ai + āj) and R =
√

4Q/mini(bi)2.

Proof. Consider the following 2-SPMs obtained by two equal partitions of L:

L1 =
(
(Q+ a1, Rb1), . . . , (Q+ aN , RbN)

)
, and

L2 = (−Q+ ā1, R
−1b̄1), . . . , (−Q+ āN , R

−1b̄N)
)
.

Observe that the optimal value of L1 is bounded above by 2Q+ 2 maxi(ai) −R2 mini(b̄i)2

which is strictly less than −Q. Similarly, the optimal value of L2 is bounded above by
2Q+ 2 maxi(āi) − mini(b̄i)2/R2, which is again strictly less than −Q.

Now the answer to the optimization problem maxi0,j0(ai0 + āj0 − bi0 b̄j0) is at least −Q.
This clearly shows that the solution to L cannot be obtained by its restrictions L1 and L2.
Hence, the maximization problem maxi0,j0(ai0 + āj0 − bi0 b̄j0) is equivalent to solving the
2-SPM L. ◀

Proof of Theorem 4. The time to compute L1
γ , L2

γ , Zγ , for a given γ, is Õ(nk/2). By
transformation presented in Lemma 25, it follows that the total time required to optimize the
expression in Eq. (7) is kO(1) · nc⌈k/2⌉, which is at most O

(
(δn)c⌈k/2⌉+1)

, for some constant
δ ≥ 1. Now recall that Eq. (7) provides an optimal solution assuming (v, q) is a valid pair,
and v is not contained in optimal S. Even when (v, q) is a valid pair, and v is contained in
the optimal S, the time complexity turns out to be O(k2 · nk/2). Iterating over all choices of
pair (v, q) incurs an additional multiplicative factor of n in the runtime. ◀

6 Parameterization based on graph structure

In this section, we state our results on structural parameterizations of the Uni-PBDS problem.
First, following the approach of Arnborg et al. [6], we formulate the MSOL formula for the
Uni-PBDS problem where the quantifier rank of the formula is O(k) (outlined in Appendix
C.1). This indeed yields an FPT algorithm for the Uni-PBDS problem parameterized by
budget k and the treewidth of the input graph.

In addition, we show that the Uni-PBDS problem is FPT for the budget parameter on
apex-minor-free graphs. In particular we show that, for any integer k, and any n-vertex
weighted apex-minor free graph with uniform edge probability, the Uni-PBDS problem can
be solved in time (2O(

√
k log k)nO(1)).

Due to space constraints, we defer our complete constructions and proofs to the upcoming
full-version of the paper.

References
1 A. Abboud and K. Lewi. Exact weight subgraphs and the k-sum conjecture. In Proc. 40th Int.

Colloq. on Automata, Languages, and Programming (ICALP), pages 1–12. Springer, 2013.
2 A. Abboud, K. Lewi, and R. Williams. Losing weight by gaining edges. In Proc. 22th European

Symp. on Algorithms (ESA), pages 1–12. Springer, 2014.
3 J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for dominating

set. J. ACM, 51(3):363–384, 2004.

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:17

4 J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential speed-up for
planar graph problems. J. Algorithms, 52(1):26–56, 2004. doi:10.1016/j.jalgor.2004.03.
005.

5 T.M. Apostol. Calculus. Number v. 1 in Blaisdell book in pure and applied mathematics.
Blaisdell Pub. Co., 1969.

6 S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J.
Algorithms, 12:308–340, 1991.

7 S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting protein complex membership
using probabilistic network reliability. Genome Research, 14 6:1170–5, 2004.

8 J. Añez, T. De La Barra, and B. Pérez. Dual graph representation of transport networks. Trans-
portation Research Part B: Methodological, 30(3):209–216, 1996. doi:10.1016/0191-2615(95)
00024-0.

9 M. O. Ball. Complexity of network reliability computations. Networks, 10(2):153–165, 1980.
doi:10.1002/net.3230100206.

10 M. O. Ball and J. S. Provan. Calculating bounds on reachability and connectedness in
stochastic networks. Networks, 13(2):253–278, 1983. doi:10.1002/net.3230130210.

11 F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposition of uncertain
graphs. In Proc. 20th ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD),
pages 1316–1325, 2014.

12 C. J. Colbourn and G. Xue. A linear time algorithm for computing the most reliable source on
a series-parallel graph with unreliable edges. Theoretical Computer Science, 209(1):331–345,
1998. doi:10.1016/S0304-3975(97)00124-2.

13 B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

14 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A Language-
Theoretic Approach, volume 138 of Encycl. Mathematics and Its Applications. Cambridge Univ.
Press, 2012.

15 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

16 M. S. Daskin. A maximum expected covering location model: Formulation, properties and
heuristic solution. Transportation Science, 17(1):48–70, 1983. URL: http://EconPapers.
repec.org/RePEc:inm:ortrsc:v:17:y:1983:i:1:p:48-70.

17 Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. J. ACM, 52(6):866–893, 2005.

18 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

19 W. Ding. Computing the most reliable source on stochastic ring networks. In 2009 WRI
World Congress on Software Engineering, volume 1, pages 345–347, May 2009. doi:10.1109/
WCSE.2009.31.

20 W. Ding. Extended most reliable source on an unreliable general network. In 2011 International
Conference on Internet Computing and Information Services, pages 529–533, September 2011.
doi:10.1109/ICICIS.2011.138.

21 W. Ding and G. Xue. A linear time algorithm for computing a most reliable source on a tree
network with faulty nodes. Theoretical Computer Science, 412(3):225–232, 2011. Combinatorial
Optimization and Applications. doi:10.1016/j.tcs.2009.08.003.

22 Pedro Domingos and Matt Richardson. Mining the network value of customers. In Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’01, pages 57–66, New York, NY, USA, 2001. ACM. doi:10.1145/502512.
502525.

MFCS 2021

https://doi.org/10.1016/j.jalgor.2004.03.005
https://doi.org/10.1016/j.jalgor.2004.03.005
https://doi.org/10.1016/0191-2615(95)00024-0
https://doi.org/10.1016/0191-2615(95)00024-0
https://doi.org/10.1002/net.3230100206
https://doi.org/10.1002/net.3230130210
https://doi.org/10.1016/S0304-3975(97)00124-2
http://EconPapers.repec.org/RePEc:inm:ortrsc:v:17:y:1983:i:1:p:48-70
http://EconPapers.repec.org/RePEc:inm:ortrsc:v:17:y:1983:i:1:p:48-70
https://doi.org/10.1109/WCSE.2009.31
https://doi.org/10.1109/WCSE.2009.31
https://doi.org/10.1109/ICICIS.2011.138
https://doi.org/10.1016/j.tcs.2009.08.003
https://doi.org/10.1145/502512.502525
https://doi.org/10.1145/502512.502525

32:18 Budgeted Dominating Sets in Uncertain Graphs

23 Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and completeness. In
Complexity Theory: Current Research, Dagstuhl Workshop, February 2-8, 1992, pages 191–225,
1992.

24 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

25 P. G. Drange, M. S. Dregi, F. V. Fomin, S. Kreutzer, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk,
F. Reidl, F. S. Villaamil, S. Saurabh, S. Siebertz, and S. Sikdar. Kernelization and sparseness:
the case of dominating set. In Proc. 33rd Symp. on Theoretical Aspects of Computer Science
(STACS), pages 31:1–31:14, 2016.

26 T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman. Computing minimum
spanning trees with uncertainty. In STACS 2008, 25th Annual Symposium on Theoretical
Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings, pages
277–288, 2008. doi:10.4230/LIPIcs.STACS.2008.1358.

27 J. R. Evans. Maximum flow in probabilistic graphs-the discrete case. Networks, 6(2):161–183,
1976. doi:10.1002/net.3230060208.

28 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subexponential
algorithms for partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011. doi:
10.1016/j.ipl.2011.05.016.

29 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 503–510. SIAM, 2010.

30 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Kernels
for (connected) dominating set on graphs with excluded topological minors. ACM Trans.
Algorithms, 14(1):6:1–6:31, 2018. doi:10.1145/3155298.

31 H. Frank and S. Hakimi. Probabilistic flows through a communication network. IEEE
Transactions on Circuit Theory, 12(3):413–414, September 1965. doi:10.1109/TCT.1965.
1082452.

32 M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposalbe graphs. In
Proc. 26th Int. Colloq. on Automata, Languages and Programming (ICALP), pages 331–340,
1999.

33 Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal
network reliability. SIAM J. Comput., 48(3):964–978, 2019. doi:10.1137/18M1201846.

34 R. Hassin, R. Ravi, and F. S. Salman. Tractable Cases of Facility Location on a Network
with a Linear Reliability Order of Links, pages 275–276. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

35 R. Hassin, R. Ravi, and F. S. Salman. Multiple facility location on a network with linear
reliability order of edges. Journal of Combinatorial Optimization, pages 1–25, 2017.

36 Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing
Co., Boston, MA, USA, 1997.

37 M. Hua and J. Pei. Probabilistic path queries in road networks: Traffic uncertainty aware
path selection. In Proc. 13th ACM Conf. on Extending Database Technology (EDBT), pages
347–358, 2010.

38 R. M. Karp and M. Luby. Monte-carlo algorithms for the planar multiterminal network
reliability problem. J. Complexity, 1(1):45–64, 1985. doi:10.1016/0885-064X(85)90021-4.

39 D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of influence through a
social network. In Proc. Ninth ACM Conf. on Knowledge Discovery and Data Mining (KDD),
pages 137–146, 2003.

40 Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem. Inf.
Process. Lett., 70(1):39–45, 1999. doi:10.1016/S0020-0190(99)00031-9.

41 T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994.

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.1002/net.3230060208
https://doi.org/10.1016/j.ipl.2011.05.016
https://doi.org/10.1016/j.ipl.2011.05.016
https://doi.org/10.1145/3155298
https://doi.org/10.1109/TCT.1965.1082452
https://doi.org/10.1109/TCT.1965.1082452
https://doi.org/10.1137/18M1201846
https://doi.org/10.1016/0885-064X(85)90021-4
https://doi.org/10.1016/S0020-0190(99)00031-9

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:19

42 J. Kneis, D. Mölle, and P. Rossmanith. Partial vs. complete domination: T-dominating set. In
Proc. 33rd Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM),
pages 367–376. Springer-Verlag, 2007.

43 Emanuel Melachrinoudis and Mary E. Helander. A single facility location problem on a tree with
unreliable edges. Networks, 27(4):219–237, 1996. doi:10.1002/(SICI)1097-0037(199605)27:
3.

44 N. S. Narayanaswamy, M. Nasre, and R. Vijayaragunathan. Facility location on planar graphs
with unreliable links. In Proc. 13th Computer Science Symp in Russia (CSR), pages 269–281,
2018.

45 N. S. Narayanaswamy and R. Vijayaragunathan. Parameterized optimization in uncertain
graphs - A survey and some results. Algorithms, 13(1):3, 2020.

46 G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978.
doi:10.1007/BF01588971.

47 M. Patrascu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd ACM
Symp. on Theory of Computing (STOC), pages 603–610, 2010.

48 M. Patrascu and R. Williams. On the possibility of faster SAT algorithms. In Proc. 21st
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1065–1075, 2010.

49 Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin. Efficient probabilistic k-core computation
on uncertain graphs. In Proc. 34th IEEE Conf. on Data Engineering (ICDE), pages 1192–1203,
2018.

50 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating
set in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms, 9(1):11,
2012. doi:10.1145/2390176.2390187.

51 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing
the probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983. doi:
10.1137/0212053.

52 G. Swamynathan, C. Wilson, B. Boe, K. C. Almeroth, and B. Y. Zhao. Do social networks
improve e-commerce?: a study on social marketplaces. In Proc. 1st Workshop on Online Social
Networks (WOSN), pages 1–6, 2008.

53 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

54 Douglas R. White and Frank Harary. The cohesiveness of blocks in social networks: Node
connectivity and conditional density. Sociological Methodology, 31(1):305–359, 2001. doi:
10.1111/0081-1750.00098.

55 Zhaonian Zou and Jianzhong Li. Structural-context similarities for uncertain graphs. In 2013
IEEE 13th International Conference on Data Mining, Dallas, TX, USA, December 7-10, 2013,
pages 1325–1330, 2013. doi:10.1109/ICDM.2013.22.

MFCS 2021

https://doi.org/10.1002/(SICI)1097-0037(199605)27:3
https://doi.org/10.1002/(SICI)1097-0037(199605)27:3
https://doi.org/10.1007/BF01588971
https://doi.org/10.1145/2390176.2390187
https://doi.org/10.1137/0212053
https://doi.org/10.1137/0212053
https://doi.org/10.1137/0208032
https://doi.org/10.1111/0081-1750.00098
https://doi.org/10.1111/0081-1750.00098
https://doi.org/10.1109/ICDM.2013.22

32:20 Budgeted Dominating Sets in Uncertain Graphs

A Remainder of Section 4

A.1 Figures illustrated in the reduction

A C

ha hca

u

v

b

Figure 2 (a) The gadget I for n = 4. (b) The gadget D. The zigzag edges in I between two
vertices u and v is replaced by the gadget Du,v.

di

b1 b2 bn

A

C

I1 I2 In

Figure 3 Illustration of a vertex block Gi for a Vi, i ∈ [k]. Note the n I gadgets for the n vertices
in Vi. Similarly, an edge block Gi,j for some 1 ≤ i < j ≤ k has |Ei,j |-many I gadgets.

B Deferred Details from Section 5.4

B.1 Solving PBDS exactly on Trees
▶ Reminder of Lemma 24. For any set S of size k in T , there exists a node v ∈ T and
an index q ∈ [1,deg(v)] such that the cardinality of sets: S ∩

(
∪i⪇q T

i
v

)
, S ∩

(
T q

v

)
, and

S ∩
(

∪i⪈q T
i
v

)
, are all bounded by k/2.

Proof. We first show that there exists a node v in T satisfying the property |S∩T i
v| ≤ k/2, for

each i ∈ [1,deg(v)]. Consider a node u ∈ T . If u satisfies the above mentioned property then
we are done. Otherwise, there exists an index j ∈ [1,deg(u)] for which |S ∩ T j

u | ⪈ k/2. This
implies the number of elements of S lying in {u} ∪

(
T 1

u ∪ · · · ∪ T j−1
u

)
∪

(
T j+1

u ∪ · · · ∪ T deg(u)
u

)
is at most k/2. In such a case we replace u by its jth neighbor. Repeating the process
eventually leads to the required node v.

K. Choudhary, A. Cohen, N. S. Narayanaswamy, D. Peleg, and R. Vijayaragunathan 32:21

a1

A

axIxGi

an

a1

A

ay Iy Gj

an

an

A

ax

Ie

Gi,j

ay

a1

si
i,j

ri
i,j

sj
i,j

rj
i,j

Figure 4 An illustration of the connector vertices si
i,j , ri

i,j , sj
i,j and rj

i,j , which connect the
blocks Gi and Gi,j , and Gj and Gi,j , for some 1 ≤ i < j ≤ k. The gadget Ie represents an edge
e = ui,xuj,y ∈ Ei,j .

Now, let q ∈ [1,deg(v)] be the smallest integer for which S ∩
(
T 1

v ∪ · · · ∪ T q
v

)
is larger

than k/2. Then, S ∩
(⋃

i⪇q T
i
v

)
and S ∩

(⋃
i⪈q T

i
v

)
are both bounded by k/2, by definition

of q. Also, S ∩ T q
v is bounded by k/2 due to the choice of v. ◀

C Deferred details from Section 6

C.1 MSOL formulation of the Uni-PBDS problem

We show that an extension of Courcelle’s theorem due to Arnborg et. al. [6] results in an
FPT algorithm for the combined parameters treewidth and k. This is obtained by expressing
the Uni-PBDS problem as a monadic second order logic (MSOL) formula (see [13, 14]) of
length O(k). The following MSOL formulas are used in the MSOL formula for the Uni-PBDS
problem. The upper case variables (with subscripts) take values from the set of subsets of V ,
and the lower case variables take values from V .

The vertex set S contains d elements.

SIZEd(S) = ∃x1∃x2 · · · ∃xd∀y(y ∈ S →
d∨

i=0
(y = xi))

Given a vertex set X and a vertex x, there exists a set S ⊆ X of size d, and for each
vertex y in S, y is a neighbor of x.

INCd(x,X) = ∃S(SIZEd(S) ∧ ∀y((y ∈ S → y ∈ X) ∧ (y ∈ S → adj(x, y))))

The sets X, Y0, Y1, . . . , Yk partition the vertex set V .

PART(X,Y0, Y1, . . . , Yk) = ∀x
(

(x ∈ X ∨
k∨

i=0
x ∈ Yi) ∧

k∧
i=0

¬(x ∈ X ∧ x ∈ Yi) ∧
∧
i ̸=j

¬(x ∈ Yi ∧ x ∈ Yj)
)

Now we define the MSOL formula for the Uni-PBDS problem. The formula expresses the
statement that V can be partitioned into X and V \X, and V \X can be partitioned into
k + 1 sets Y0, Y1, . . . , Yk such that for each set Yi and each vertex y in Yi, y has i neighbors
in X.

MFCS 2021

32:22 Budgeted Dominating Sets in Uncertain Graphs

Uni-PBDS = ∃X∃Y0∃Y1 · · · ∃Yk

(
PART(X,Y0, Y1, . . . , Yk) ∧

∀x∀y
((
y ∈ Y0 ∧ x ∈ X) → ¬

(
adj(x, y)

))
∀y

(k∧
i=1

(
y ∈ Yi → INCi(y,X)

)))
▶ Lemma 26. The quantifier rank of Uni-PBDS is O(k).

Proof. There are k + 2 initial quantifiers for the sets X,Y0, Y1, . . . , Yk. For two MSOL
formulas ϕ and ψ with quantifier rank qr(ϕ) and qr(ψ), respectively, qr(ϕ∧ψ) = qr(ϕ∨ψ) =
max{qr(ϕ), qr(ψ)}. Therefore, qr(Uni-PBDS) is bounded as follows:

qr(Uni-PBDS) = k + 2 + max{qr(PART), 1 + qr(INC)}
= k + 2 + max{1, 1 + max{qr(SIZE), 2}}
≤ k + 2 + k = 2k + 3 = O(k) ◀

We now show that the Uni-PBDS problem is fixed-parameter tractable in parameters k and
treewidth by expressing the maximization problem on the MSOL formula as a minor variation
of extended monadic second-order extremum problem as described by Arnborg et. al. [6].

Proof of Theorem 8. For each 0 ≤ i ≤ k, define the weight function wi associated with the
set variable Yi as follows: for each v ∈ V (G), wi

v = (1− (1−p)i)w(v). The difference between
the weight function in [6] and our problem is that in their paper w(v) is considered to be
constant value, for all vertices, for the set variable Yi. Observe, however, that the running
time of their algorithm does not change as long as wi

v can be computed in polynomial time,
which is the case in our definition. Therefore, our maximization problem is now formulated
as a variant of the EMS maximization problem in [6]:

Maximize
∑
u∈X

w(u)+
k∑

i=0

∑
u∈Yi

wi
v ·yi

v over partitions (X,Y0, Y1, . . . , Yk) satisfying Uni-PBDS

Using Theorem 5.6 in [6] along with the additional observation, we make, that wi
v can be

efficiently computed, an optimal solution for the Uni-PBDS problem can be computed in
time f(qr(Uni-PBDS), w) · poly(n), where f(qr(Uni-PBDS), w) is a function which does not
depend on n- it depends only on the quantifier rank of Uni-PBDS and the treewidth. By
Lemma 26, qr(Uni-PBDS) = O(k), and thus by [6], f(qr(Uni-PBDS), w) = f(O(k), w). This
shows that Uni-PBDS is FPT with resepect the parameters k and treewidth. Hence the
theorem is proved. ◀

	1 Introduction
	2 Preliminaries
	3 Hardness Results on Trees
	3.1 k-SPM hardness
	3.2 Hardness of PBDS on Uncertain Trees

	4 Hardness of Uni-PBDS for the pathwidth parameter
	4.1 Gadget based reduction from Multi-Colored Clique

	5 PBDS on Trees: PTAS and Exact Algorithm
	5.1 PTAS for PBDS on Trees
	5.2 Approximation Analysis of PTAS on Trees
	5.3 Linear-time algorithm for Uni-PBDS on Trees
	5.4 Solving PBDS optimally on general trees

	6 Parameterization based on graph structure
	A Remainder of Section 4
	A.1 Figures illustrated in the reduction

	B Deferred Details from Section 5.4
	B.1 Solving PBDS exactly on Trees

	C Deferred details from Section 6
	C.1 MSOL formulation of the Uni-PBDS problem

