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—— Abstract

We consider the TRIVIALLY PERFECT EDITING problem, where one is given an undirected graph
G = (V,E) and a parameter k € N and seeks to edit (add or delete) at most k edges from G to
obtain a trivially perfect graph. The related TRIVIALLY PERFECT COMPLETION and TRIVIALLY
PERFECT DELETION problems are obtained by only allowing edge additions or edge deletions,

respectively. Trivially perfect graphs are both chordal and cographs, and have applications related
to the tree-depth width parameter and to social network analysis. All variants of the problem are
known to be NP-complete [6, 29] and to admit so-called polynomial kernels [13, 23]. More precisely,
the existence of an O(k?®) vertex-kernel for TRIVIALLY PERFECT COMPLETION was announced by
Guo [23] but without a stand-alone proof. More recently, Drange and Pilipczuk [13] provided O(k")
vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work,
we answer positively to this question for all three variants of the problem.
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Introduction

A broad range of optimization problems on graphs are particular cases of so-called modification
problems. Given an arbitrary graph G = (V, E) and an integer k, the question is whether G
can be turned into a graph satisfying some desired property by at most k& modifications. By
modifications we mean, according to the problem, vertex deletions (as for VERTEX COVER
and FEEDBACK VERTEX SET where we aim to obtain graphs with no edges, or without
cycles respectively) or edge deletions and/or additions (as for MINIMUM FILL-IN, also known
as CHORDAL COMPLETION, where the goal is to obtain a chordal graph, with no induced
cycles with four or more vertices, by adding at most k edges).

Here we consider edge modifications problems, that can be split in three categories,
depending whether we allow only edge additions, only edge deletions, or both operations, in
which case we speak of edge editing. Consider a family H of graphs, called obstructions. In
the H-FREE EDITING problem we seek to edit at most k£ edges of G to obtain a graph that
does not contain any obstruction from H as an induced subgraph. One can similarly define
‘H-FREE COMPLETION and H-FREE DELETION variants of this problem by only allowing the
addition or deletion of edges, respectively. E.g., MINIMUM FILL-IN corresponds to H-FREE
COMPLETION, where H is formed by all cycles with at least four vertices. For most families
‘H, all three versions are NP-complete, but thinking of k£ as of some suitably small quantity,
they have been intensively studied in the framework of parameterized complexity (see [11] for
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a comprehensive survey). The aim of parameterized complexity is to determine whether it is
possible to decide the instance at hand in time f(k)-n°®) for some computable function f.
Such problems are said to be FPT (fixzed-parameter tractable). With a simple but elegant
and powerful argument, Cai [7] proved that whenever # is finite all three variants are FPT.
Basically, whenever the graph contains one of the obstructions (graphs of #), the algorithm
branches on all possible modifications to destroy it, and makes the recursive calls with
a lesser parameter k. When the family H contains all cycles with at least four vertices,
the corresponding edition problem CHORDAL EDITING was shown to be FPT relatively
recently [10]. The completion variant, i.e., the MINIMUM FILL-IN, was known to be FPT
since the 90’s [7, 25].

We consider an equivalent definition of fixed-parameter tractability, namely kernelization.
Given a parameterized problem IT, a kernelization algorithm for IT (or kernel for short) is
an algorithm that given any instance (I, k) of IT runs in time polynomial in |I| and k and
outputs an equivalent instance (I, k) of IT such that |I'| < h(k) and k' < g(k) for some
computable functions g and h. Whenever h is polynomial, we say that II admits a polynomial
kernel. A kernelization algorithm uses a set of polynomial-time computable reduction rules
to reduce the instance at hand. We say that a reduction rule is safe whenever its application
on an instance (I, k) of IT results in an equivalent instance (I’, k") of II. It is well-known
that a parameterized problem is FPT if and only if it admits a kernelization algorithm [17].
While many polynomial kernels are known to exist for editing problems (see [11] or [27] for
surveys), it is known that some editing problems are unlikely to admit polynomial kernels
under reasonable complexity-theoretic assumptions [8, 22, 26]. When H contains only a
single obstruction, several results towards a dichotomy regarding the existence of polynomial
kernels have been obtained [1, 8, 28]. Very recently, Marx and Sandeep [28] narrowed down
the problem for obstructions containing at least 5 vertices to only nine distinct obstructions.
In other words, the non-existence of polynomial kernels for H-FREE EDITING for all such
obstructions would imply the non-existence of polynomial kernels for any obstruction with at
least 5 vertices. When H contains several obstructions, a very natural setting is to include
all cycles of length at least 3 in H, thus targeting a subclass of chordal graphs. Indeed,
editing (and especially completion) problems towards such classes cover classical problems
with both theoretical and practical interest [15, 21, 24, 25, 33]. Notice that many known
polynomial kernels for editing problems concern such classes [3, 4, 13, 23, 25]. For completion
and deletion versions, polynomial kernels are often used as a first step in the design of
subexponential parameterized algorithms [5, 12, 18, 19].

In this work, we focus on editing problems towards trivially perfect graphs, that is
H = {P4,Cy4} (respectively a path and a cycle on 4 vertices). This problem is known as
TRIVIALLY PERFECT EDITING in the literature. By allowing edge addition or edge deletion
only, we obtain the TRIVIALLY PERFECT COMPLETION and TRIVIALLY PERFECT DELETION
problems, respectively.

Related work

While the NP-Completeness of TRIVIALLY PERFECT COMPLETION and TRIVIALLY PERFECT
DELETION has been known for some time [6], the complexity of TRIVIALLY PERFECT EDITING
remained open until a work of Nastos and Gao [29]. Trivially perfect graphs have recently
regained attention since they are related to the well-studied width parameter tree-depth [20, 30]
which corresponds to the size of the largest clique of a trivially perfect supergraph of G with
the smallest clique number. Moreover, Nastos and Gao [29] proposed a new definition for
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community structure based on small obstructions. In particular, the authors emphasized
that editing a given graph into a trivially perfect graph yields meaningful clusterings in real
networks [29]. Trivially perfect graphs also correspond to chordal cographs and admit a
so-called universal clique decomposition [12]. Polynomial kernels with O(k") vertices have
been obtained for all variants of the problem by Drange and Pilipczuk [13]. The technique
used relies on a reduction rule bounding the number of vertices in any trivially perfect
module and the computation of a so-called verter modulator, that is a maximal packing
of obstructions with additional properties. Combined with sunflower-like reduction rules
and a careful analysis of the graph remaining apart from the vertex modulator, the authors
managed to provide polynomial kernels. They then asked whether the O(k”) bound could
be improved, and qualify as “really challenging question” whether one can match the O(k?)
bound for TRIVIALLY PERFECT COMPLETION claimed by Guo [23].

Our contribution

We answer positively to this question and provide kernels with O(k3) vertices for all considered
problems. To be complete, a quadratic vertex-kernel for the completion version only is claimed
in [2, 9]. While our kernelization algorithm shares similarities with the work of Drange and
Pilipczuk [13], our technique differs in several points. In particular, we do not rely on the
computation of a vertex modulator, a useful technique to design polynomial kernels but
somehow responsible for the large bound obtained. To circumvent this issue, we only rely on
the so-called universal clique decomposition of trivially perfect graphs. This decomposition
partitions the vertices of trivially perfect graph G into cliques, the bags being structured
as nodes of a rooted forest such that two vertices are adjacent in GG if and only they are
in a same bag, or in two bags such that one is an ancestor of the other in the forest. For
any positive instance of the problem, at most 2k bags contain vertices incident to modified
edges. Informally, the rest of the bags can be regrouped into two types of ’chunks’ Some
correspond to trivially perfect modules of the input graph (which are known to be reducible
to small sizes by [13]), others have a more complicated but still particular structure, similar
to the combs of [13]. We show how to reduce the size of these combs. Altogether we believe
that our rules not only improve the size of the kernel but also significantly simplify the
kernelization algorithm of [13]. Last but not least, we think that this approach based on
tree-like decompositions and the analysis of large chunks of the graph that are not affected by
the modified edges might be exploitable for other editing problems. Indeed the technique has
strong similarities with the notion of branches introduced by Bessy et al. [3] for modification
to 3-leaf power graphs, a closely related graph class.

Outline

We begin with some preliminaries definitions and results about trivially perfect graphs
(Section 1). We then introduce the notion of combs and provide the set of reduction rules
needed to obtain an O(k?®) vertex-kernel for TRIVIALLY PERFECT EDITING (Section 2). The
combinatorial bound on the kernel size is provided in Section 3. We explain how these
results can be adapted to obtain similar kernels for TRIVIALLY PERFECT COMPLETION and
TRIVIALLY PERFECT DELETION (Section 4). The Conclusion section summarizes the results
and suggests further developments. Proofs of statements labeled with (%) are omitted in this
extended abstract. The interested reader may refer to [14] for a full version of this paper.
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1 Preliminaries

We consider simple, undirected graphs G = (V, E) where V denotes the vertex set and
E C (V x V) the edge set of G. We will sometimes use V(G) and E(G) to clarify the context.
Given a vertex u € V, the open neighborhood of u is the set Ng(u) = {v € V : ww € E}.
The closed neighborhood of w is defined as Ng[u] = Ng(u) U{u}. A vertex u € V is universal
if Nglu] =V, and two vertices u and v are true twins if Ng[u] = Ng[v]. The set of universal
vertices forms a clique and is called the universal clique of G. Given a subset of vertices
S CV, Ng[S] is the set U,csNg[v] and Ng(S) is the set N [S]\S. We will omit the mention
to G whenever the context is clear. The subgraph induced by S is defined as G[S] = (S, Es)
where Es = {uv € E: u € S,v € S}. For the sake of readability, given a subset S CV
we define G\ S as G[V'\ S]. A subset of vertices C C V is a connected component of G if
G[C] is a maximal connected subgraph of G. A subset of vertices M C V is a module of
G if and only if Ng(u) \ M = Ng(v) \ M holds for every u,v € M. A maximal set of true
twins K C V is a critical clique. Notice that G[K] is a clique module and that the set K(G)
of critical cliques of any graph G partitions its vertex set V(G). Notice that the universal
clique is a critical clique.

Trivially perfect graphs

A graph G = (V, E) is trivially perfect if and only if it does not contain any P, (a path on 4
vertices) nor Cy (a cycle on 4 vertices) as an induced subgraph (see Figure 1). We consider
the following problem.

TRIVIALLY PERFECT EDITING
Input: A graph G = (V, E), a parameter k € N
Question: Does there exist a set of pairs F C (V x V) of size at most k such that the graph
H = (V,EAF) is trivially perfect, with EAF = (E\ F)U(F \ E)?

Given an instance (G = (V, E), k) of TRIVIALLY PERFECT EDITING, a set F' C (V x V)
such that H = (V, EAF) is trivially perfect is an edition of G. When F' is constrained to be
disjoint from (resp. contained in) E, we say that F'is a completion (resp. a deletion) of G. The
corresponding problems are TRIVIALLY PERFECT COMPLETION and TRIVIALLY PERFECT
DELETION, respectively. For the sake of simplicity, given an edition (resp. completion,
deletion) F of G, we use GAF, G+ F and G — F to denote the graphs (V, EAF), (V,EUF)
and (V, E \ F), respectively. A vertex is affected by F whenever it is contained in some pair
of F. The set F is a k-edition (resp. k-completion, k-deletion) whenever |F'| < k. Finally,
we say that such a set F' is optimal whenever it is minimum-sized.

Figure 1 The C4, P4 and claw graphs, respectively. The claw will be useful in some of our proofs.

Trivially perfect graphs are hereditary and closed under true twin addition. This property
will be useful to deal with critical cliques, as stated by the following result. Recall that
critical cliques are maximal sets of true twins (or, equivalently, maximal clique modules),
they will play a central role throughout this paper.
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» Lemma 1 ([3]). Let G be a hereditary class of graphs closed under true twin addition.
For every graph G = (V, E), there exists an optimal edition (resp. completion, deletion) F
into a graph of G such that for any two critical cliques K and K’ either (K x K') C F or
(K x K'YnF ={.

Several characterizations are known to exist for trivially perfect graphs. We will mainly
use the following ones.

» Proposition 2 ([32]). The class of trivially perfect graphs can be defined recursively as
follows:
a single vertex is a trivially perfect graph.
Adding a universal vertex to a trivially perfect graph results in a trivially perfect graph.
The disjoint union of two trivially perfect graphs results in a trivially perfect graph.

» Definition 3 (Universal clique decomposition, [12]). A universal clique decomposition (UCD)
of a connected graph G = (V, E) is a pair T = (T = (Vr, Er), B = {Bt}tevy) where T is a
rooted tree and B is a partition of the vertex set V into disjoint nonempty subsets, such that:
ifvw e E and v € By, w € Bs then s and t are on a path from a leaf to the root, with
possibly s =t, and
for every node t € Vi, the set of vertices By is the universal clique of the induced subgraph
GlUsev(r,) Bsl, where T, denotes the subtree of T' rooted at t.

The vertices of T are called nodes of the decomposition, while the sets of B are called
bags. We will sometimes abuse notation and identify nodes of T" with their corresponding
bags in B. Notice moreover that in a universal clique decomposition, every node ¢ of T" that
is not a leaf has at least two children since otherwise B; would not contain all universal
vertices of G[U ey (r,) Bsl-

» Lemma 4 ([12]). A connected graph G admits a universal clique decomposition if and only
if it is trivially perfect. Moreover, such a decomposition is unique up to isomorphisms.

One can observe that finding a universal clique decomposition can be done in polynomial
time by iteratively identifying universal cliques and connected components. Finally, both
Definition 3 and Lemma 4 can be naturally extended to disconnected trivially perfect graphs
by considering a rooted forest instead of a rooted tree. More precisely, the universal clique
decomposition of a disconnected graph G = (V| E) is a rooted forest of universal clique
decompositions of its connected components. Such a graph is thus trivially perfect if and
only if it admits a universal clique decomposition shaped like a rooted forest.

We conclude this section by providing a new characterization of trivially perfect graphs
in terms of maximal cliques and nested families.

» Definition 5 (Nested family). Let U be a universe and F C 20Ul g family of subsets of U.
The family F is nested if and only if for every A,Be€ F, AC B or B C A holds.

» Lemma 6 (). Let G = (V, E) be a graph, S CV a maximal clique of G and Ky, ..., K,
the connected components of G\S. The graph G is trivially perfect if and only if the following
conditions are verified:

(i) G[S U K;] is trivially perfect for every 1 <i <r,

(i) Uy<j< {NG(K5)} is a nested family,

(iii) (K;X_Ng(Ki)) CE for every1 <i<r.

45:5
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2 Kernelization algorithm for Trivially Perfect Editing

We begin this section by providing a high-level description of our kernelization algorithm. As
mentioned in the introductory section, we use the universal clique decomposition of trivially
perfect graphs to bound the number of vertices of a reduced instance. Let us consider a
positive instance (G = (V, E), k) of TRIVIALLY PERFECT EDITING, F’ a suitable solution
and H = GAF. Denote by T = (T, B) the universal clique decomposition of H as described
Definition 3. Since |F| < k, we know that at most 2k bags of T may contain affected vertices.
Let A be the set of such bags, and let A’ denote the lowest common ancestor closure of A in
forest T' (Definition 17). As we shall see later, the size of A’ is also linear in & (Lemma 18).
The removal of every bag of A’ from T will disconnect the forest T into several components
(see Figure 2).

Such a connected component D of T'\ A’ may see zero, one or two nodes of A’ in the
forest T (Lemma 4). If D has no neighbour in A’, the union of all bags of D corresponds
to a connected component of H and of G, inducing a trivially perfect graph in G, and will
be eliminated by a reduction rule. We shall see that the union of all components D, of the
second type, seeing a unique bag a € A’ in the forest T, corresponds to a trivially perfect
module of graph G. We use the reductions rules of [13] to shrink such a module to O(k?)
vertices, which boils down to a total O(k?®) vertices since |A’'| = O(k).

Our efforts will be focused on components D seeing two bags a1,as € A’, one of them
being ancestor of the other in forest 7. We call such a structure D a comb (Definition 9 and
Figure 2).

al

Figure 2 Analysis of a universal clique decomposition of a connected trivially perfect graph.
Black vertices represent bags of A, gray vertices bags of A’ and triangles are connected trivially
perfect subgraphs of G. The leftmost rectangle is a comb of G, the rightmost a trivially perfect
module. Note that any group of triangles rooted at a same bag is a trivially perfect module.

Such combs (the union of their bags) induce, in graph G, a trivially perfect subgraph
that can be partitioned with regard to critical cliques and trivially perfect modules with
nice inclusion properties on their neighborhoods. We provide two distinct reduction rules
on these structures. Rule 4 reduces the so-called shaft of the comb (intuitively, the path
strictly between a1 and as in T') to length O(k). Rule 5 reduces the size of the whole comb
(the union of its bags) to O(k?). Altogether, the reduced instance cannot contain more than
O(k3) vertices.

We would like to note that the combs considered in this work are similar to the ones
defined by Drange and Pilipczuk [13] and thus named after them. However, the two structures
are not strictly identical, in particular since they were originally defined with respect to a
vertex modulator (i.e. a packing of obstructions), and thus their neighborhood towards the
rest of the graph was structured differently.
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In the remaining of this section we assume that we are given an instance (G = (V, E), k)
of TRIVIALLY PERFECT EDITING.

2.1 Reducing critical cliques and trivially perfect modules

We first give a classical reduction rule when dealing with modification problems. This rule is
trivially safe for trivially perfect graphs.

» Rule 1. Let C CV be a subset of vertices such that G[C] is a trivially perfect connected
component of G. Remove C' from G.

We now give known reduction rules that deal with critical cliques and trivially perfect
modules. The safeness of Rule 2 comes from the fact that trivially perfect graphs are
hereditary and closed under true twin addition combined with Lemma 1. The safeness and
polynomial-time application of Rule 3 was proved by Drange and Pilipczuk [13]. We would
like to mention that while the statement of their rule assumes the instance at hand to be
reduced by classical sunflower rules, this is actually not needed to prove the safeness of the
rule. Altogether, we have the following.

» Rule 2. Let K C V be a set of true twins of G such that |K| > k+1. Remove |K|— (k+1)
arbitrary vertices in K from G.

» Rule 3. Let M CV be a module of G such that G[M] is trivially perfect and M contains
an independent set I of size at least 2k + 5. Remove all vertices of M\ I from G.

» Lemma 7 (Folklore, [3, 13]). Rules 1 to 3 are safe and can be applied in polynomial time.

Using a structural result on trivially perfect graphs where critical cliques and independent
sets have bounded size, Drange and Pilipczuk [13] proved the following.

» Lemma 8 ([13]). Let (G = (V,E),k) be an instance of TRIVIALLY PERFECT EDITING
reduced under Rules 2 and 3. Then for every module M C V such that G[M] is trivially
perfect, |M| = O(k?).

2.2 Reducing shafts of combs

We now consider the main structure of our kernelization algorithm, namely combs. Recall
that such structures are similar to the ones defined by Drange and Pilipczuk [13] but not
strictly identical. More precisely, the inner part of the structure is the same but not their
neighborhoods towards the rest of the graph. We however choose to use the same name since
it is well-suited to illustrate the structure (see Figure 3).

» Definition 9 (Comb). Let G = (V, E) be a graph and C,R CV be such that C is a clique
which can be partitioned into | critical cliques {C1,...,Ci} and R can be partitioned into |
non-empty and non-adjacent trivially perfect modules {Ry, ..., R;}. The pair P = (C,R) is a
comb if and only if:

there exist Vi, V, C V(G)\{C, R}, Vy # 0 such that Vx € C, Ng(z)\(CUR) =V, UV}

and Vy € R, Ng(y)\(CUR) =V,

Ne(Ci)NR=U._; Rj and Ne(R;)NC =J;_, C; for 1 <i <.
By the following property, given a comb (C, R) of graph G = (V, E), the subgraph G[CUR] is
trivially perfect, and has a universal clique decomposition in which critical cliques (C1, ..., C})
are arranged in a path starting from the root, the shaft of the comb, and the decomposition of
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Figure 3 Illustration of a comb, with shaft C' and teeth R. The edges between V,, and V; can be
anything. Every tooth R; induces a (possibly disconnected) trivially perfect module.

each tooth R; is attached to Cy; see Figure 3. The length of (C, R) is I, the number of critical
cliques in C'. We can observe that Ng[Ci] C -+ & Ng[C1] and Ng(R1) € --- C Ng(R)

=

because for 1 <i <[, Ng[C;] = (Ué‘:i R;) UV, UV and Ng(R;) = (Uj—, Cj) U V).

» Proposition 10 (). Given a comb (C,R) of graph G = (V, E), the subgraph G[C' U R] is
trivially perfect. Moreover the sets V,, and Vy, and the ordered partitions (Ci,...,C;) of C
and (Ry,...,R)) of R are uniquely determined.

» Lemma 11. Given an instance (G = (V, E), k) of TRIVIALLY PERFECT EDITING and a
comb (C, R) of length 1 > 2k + 2 of G, there is no optimal k-edition that affects vertices in
CUR.

Proof. Consider a k-edition F of G and H = GAF. Denote by F’ C F the subset of pairs
from F which does not contain any vertex from CUR and let H' = GAF’. Since |F| < k and
(C,R) is a comb of length at least 2k + 2, there exist ¢ # j € {1,...,{} such that C;, R;,C}
and R; do not include affected vertices of F'. Let us take ¢; € C;,m1 € R;,c2 € C; and
ro € Rj.

Suppose that H’ is not trivially perfect, then there exists an obstruction W of H’ such
that A = W N (CUR) # @. Since pairs of F’ do not contain vertices of C U R, (C, R)
is a comb in H' and |A| = 4 is impossible since H'[C'U R] = G[C' U R] is trivially perfect
by Proposition 10. We show that |A| = 3 is also impossible. If |A] = 3 then the vertex
z € W\(C'UR) is in the set Vj, UV}, otherwise the obstruction W would not be connected.
We now show that H'[W] is a claw, contains a triangle (as subgraph) or is not connected. If
x € V,, then by construction z is adjacent to every vertex of the comb and H'[W] would be
a claw. If x € V; and A contains at least two vertices in C, then these vertices would induce
a triangle with x. If # € V; and A contains at least two vertices /,7” € R, then z is not
adjacent to any of them (since Vy does not see R in G). If v’ and " are not adjacent in H’,
either the fourth vertex of W sees v/, 7" and x so H'[W] is a claw, or H'[W] is disconnected.
If 7/ and 7 are adjacent in H', they must belong to a same module R;. Again the fourth
vertex of W must either see them both thus forming a triangle, or none of them and H'[W]
is disconnected. In any case, A cannot be an obstruction and we conclude that either |A| =1
or |A] = 2. We shall now construct an obstruction W’ = (W\A) U A" such that H'[W] and
H'[W'] are isomorphic and A" C {¢1,71,¢2,72}. We can observe that W must contain a
vertex from V, or Vy.

If |[A] = 1, take z € A. If x € R then let A’ = {r1}, else let A’ = {c;}. Since (C,R) is a

comb, H'[W] and H'[W’] are isomorphic.
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If |A| = 2, denote by = and y the elements of A. If z,y € C, then H[W] contains
a triangle. If x € C and y € R, in the subcase xzy € E(H') let A" = {c1,r1} and
observe that ¢y € E(H'), hence H'[W] and H'[W'] are isomorphic; in the other subcase
xy ¢ E(H'), take A" = {ca,7r1}, so cory ¢ E(H') thus again H'[W] and H'[W'] are
isomorphic. Eventually consider the last case z,y € R. If xy € E(H') then H[W]
contains a triangle, else zy ¢ E(H'), so let A’ = {re,r1} and note that rory ¢ E(H')
thus H'[W] and H'[W’] are isomorphic.

The set W' is an obstruction of H' and since the vertices in {c1, 71, 2,72} are not incident

to any pair of F', W’ is also an obstruction of H. Therefore H is not trivially perfect, which

is a contradiction, concluding the proof of the Lemma. |

» Rule 4. Given a comb (C,R) of length | > 2k + 2 of G, remove from G the vertices in
C; UR; f07‘2k‘+2<iSl.

» Lemma 12 (x). Rule 4 is safe.

2.3 Reducing the teeth

» Lemma 13. Let (G = (V, E), k) be a yes-instance of TRIVIALLY PERFECT EDITING, and
(C,R) be a comb of G such that there exist a,b € {1,...,1} with X,<i<i|R;| > 2k + 1 and
Yi<icalRi| > 2k + 1. Then there exists an optimal k-edition F' of G such that for every
m € {1,...,b— 1}, the vertices of Ry, are all adjacent to the same vertices of V(G)\ Ry, in
GAF, and F contains no pair of vertices of Ry, .

Proof. Let F' be an optimal k-edition of G and H = GAF'. There exist v € (R, U Rgy1 U
+++UR)) and v; € (RpURp1U---UR,_1) unaffected by F. The neighborhood of v; in H\R
must be a clique: indeed, if there exist x,y € Ng(v1)\R such that xy ¢ E(H), then since
(Ng(v1)\R) € (Ng(v2)\R), the vertices {vy, z,ve,y} would induce a Cy. Let 1 < m < b, we
will construct an edition F,, such that |F,,| < |F|, F,, contains no pair of vertices included
in R, and the vertices of R,, are all adjacent to the same vertices in GAF,,. Applying this
construction iteratively to each R,,, 1 < m < b will yield an edition F* that verifies the
desired properties.

Let S be a maximal clique in H that contains Ng(v1)\R and vy, and let K7, ..., K, be
the connected components of H\S. Observe that Kj,..., K, respect the conditions i, ii
and iii of Lemma 6 with S. Let v,,, € R,, be a vertex contained in the least number of pairs
of F' with the other element in S.

Denote by N the set of vertices of S adjacent to v, in graph H. Let H' be the graph
constructed from H\R,, and G[R,,] by adding the edges N x R,,, and F,, be the edition
such that H' = GAF,,. By construction |F,| < |F|, we will now show that H’ is trivially
perfect.

We can observe that R,, NS = @ (because v; is unaffected by F and is non-adjacent with
R,, in G) and therefore that S is a maximal clique of H\R,,.

By construction of H’, S is also a maximal clique of H' and R,,, is a connected component
of Hy, \ S. Let K1,..., K/, be the connected components of (H\R,,)\S. Sets Ki,..., K,
verify the conditions i, ii and iii of Lemma 6 with respect to S in H\R,, and thus also in

H'. Moreover H'[SU R,,] is trivially perfect and (Ng/(R,,) X Ry,) C E(H') by construction.

The family J; «;<,.{Nu (K5)} is nested according to Lemma 6, and, by construction of H’,
Unrcicr AN (KD} € Ur<ic, {Nu(Ki)}. We also have that N € U, <, {Nm(K;)}. Indeed,
let K (vy,) the connected component of H \ S containing v,,, according to condition iii from
Lemma 6 we have Ny (K (vy,)) = Ni(vm)NS = N. Therefore the family J; o, o, { Nu(K})}U
{N7} is also nested. By Lemma 6 applied on H' and S, graph H’ is trivially perfect.
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As mentioned previously, we can apply this construction iteratively to each R,,, 1 < m < b
and obtain an edition F'* that verifies the desired properties. |

» Rule 5. Given a comb (C, R) of G such that there exist a,b € {1,...,1} with Xo<;<i|Ri| >
2k +1 and Xy<i<q|Ril > 2k + 1. Then for everyi € {1,...,b— 1}, replace R; by a clique of
size min(|R;|, k + 1) with the same neighborhood.

» Lemma 14 (%). Rule 5 is safe.

» Lemma 15 (). Let (G = (V, E), k) be an instance of TRIVIALLY PERFECT EDITING such
that Rules 2 to 5 are not applicable. Then, for every comb (C, R) of G, |C' U R| = O(k?).

» Lemma 16 (x). Given an instance (G = (V, E), k) of TRIVIALLY PERFECT EDITING,
Rules 4 and 5 can be exhaustively applied in polynomial time.

3 Bounding the size of a reduced instance

We now prove thoroughly that any reduced yes-instance of TRIVIALLY PERFECT EDITING
contains O(k3) vertices. To that end, we need the following definition and result.

» Definition 17 (LCA-closure [16]). Let T = (V, E) be a rooted tree and A C V(T). The
lowest common ancestor-closure (LCA-closure) A’ of A is obtained as follows. Initially, set
A’ = A. Then, as long as there exist x,y € A’ whose lowest common ancestor w is not in
A’, add w to A’. The LCA-closure of A is the last set A’ obtained using this process.

» Lemma 18 ([16]). Let T = (V, E) be a rooted tree, A C V(T) and A’ = LCA-closure(A).
Then |A’'] < 2-|A| and for every connected component C of T\ A, N7 (C)| < 2.

» Theorem 19. TRIVIALLY PERFECT EDITING admits a kernel with O(k®) vertices.

Proof. Let (G = (V, E), k) be a reduced yes-instance of TRIVIALLY PERFECT EDITING and
F a k-edition of G. Let H = GAF and T = (T, B) the universal clique decomposition of
H. The graph G is not necessarily connected, thus T is a forest. Let A be the set of nodes
t € V(T) such that the bag B; contains a vertex affected by F. Since |F| < k, we have
|A| < 2k. Let A’ C V(T) be the set containing the nodes of LCA-closure(A) and the root of
each connected component of T' (in case the closure does not contain them). According to
Lemma 18 and Rule 1 which implies that there are at most 2k connected components in G
and thus 2k roots, we have |A’| < 6k.

Let D be a connected component of 7'\ A’. We can observe that, by construction of A’
(which for every pair of nodes, contains also the smallest common ancestor in 7'), only three
cases are possibles (see Figure 4):

Nr(D) =10 (D is a connected component of T).

Nr(D) = {a} (D is a subtree of T whose parent is a € A’).

Nr(D) = {a1,as} with one of the nodes a1, as € A’ being an ancestor of the other in 7.
We will say that these connected components are respectively of type 0, 1 or 2. For D C V(T),
we denote by W (D) = U,cp B: the set of vertices of G corresponding to bags of D.

There is no connected component of type 0 or else W (D) would be a connected component
of G inducing a trivially perfect graph. Rule 1 would have been applied to this component,
contradicting the fact that G is a reduced instance.

Now consider the set of type 1 components Dy, Ds, ..., D, of T\ A" attached in T to the
same node a € A’. We show that W, = W (D) UW(Dy)U---UW(D,) is a trivially perfect
module of G. In the graph H, W, is by construction a module of the decomposition. Since
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Figure 4 (Left) universal clique decomposition of a connected component of H. (Right) shape of
a reduced comb.

no vertex of W, was affected by the edition F', W, is also a module of G, trivially perfect by
heredity. By Lemma 8, we have |W,| = O(k?). There are at most |A’| < 6k such sets W,,
thus the set of vertices of G in bags of type 1 components is of size O(k?).

Now consider the type 2 connected components D of T'\ A’ which have two neighbors

in T. Let a; and as be these neighbors, one being the ancestor of the other, say a; is the
ancestor of as. Let t1,...,t; be the nodes of the tree on the path from a; to ag, in this
order. The component D can be seen as a comb of shaft (By,, ..., By, ). More precisely, by
construction of the universal clique decomposition, W (D) can be partitioned into a comb
(C,R) of H: the critical clique decomposition of C' is (C; = By,,...,C; = By,), and each
R; corresponds to the union of bags of the subtrees rooted at ¢; which do not contain t;41,
for 1 < i < [, and to the union of bags of the subtrees rooted at ¢; which do not contain
ag, for ¢ = 1. Since (C, R) was not affected by F, it is also a comb of G. Thus for each
type 2 component D, W (D) contains O(k?) vertices by Lemma 15. Since T is a forest, it
can contain at most |A’| — 1 < 6k — 1 such components in T\ A. Therefore the set of bags
containing type 2 connected components of T\ A contains O(k3) vertices.
It remains to bound the set of vertices of G which are in bags of A’. The vertices corresponding
to nodes of A’\ A are critical cliques of G, and are hence of size at most k + 1 by Rule 2.
Thus the set of vertices in bags of A’\ 4 is of size O(k?). The vertices corresponding to nodes
of A are critical cliques in H but not necessarily of G. Let B, be a bag corresponding to a
node a € A. We will show that B, is covered by at most 2k + 1 critical cliques of G, which
by Rule 2 will imply that B, contains O(k?) vertices of G, and thus the set of vertices in
bags of A’ is of size O(k3).

To see this, observe that B, is a critical clique of H, and that G is obtained from H by
editing at most k pairs of vertices. A result from [31] claims that, starting from a graph H
and editing an edge, we add at most two critical cliques. The same arguments allow to claim
that if B is a set of vertices covered by at most p critical cliques in H, and if H' is obtained

by editing a pair of vertices z,y of H, then p+ 2 critical cliques are enough to cover B in H'.

To be complete, we now show this claim. Let Cy,Cs,...,C,, ..., Cy be the critical cliques of
H, suppose that B is covered by the first p cliques Cy,...,C,. For each i, 1 < i < g, the
set Cf = C; \ {z,y} is a clique module (not necessarily maximal) of H'. In particular, each
C7 is contained in a critical clique C}] of H (the C] are not necessarily distinct). Let C’(z)
and C’(y) be the critical cliques of H’' containing respectively « and y. Clearly, the critical
cliques C1,...,C,,C'(x) and C’'(y) of H' cover the vertices of B, showing our claim. By
applying this argument & times (one for each pair of F') to the bag B,, which was a critical
clique of H, we conclude that it is covered by at most 2k + 1 critical cliques of G. Thus
|Ba| = O(K?) by Rule 2.
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We conclude that |[V(G)| = O(k®). Finally, we claim that a reduced instance can
be computed in polynomial time. Indeed, Lemma 7 states that it is possible to reduce
exhaustively a graph under Rules 2 to 3. Once this is done, it remains to apply exhaustively
Rules 4 and 5 which is ensured by Lemma 16. <

4 Kernels for trivially perfect completion/deletion

In this section we show that the rules used for TRIVIALLY PERFECT EDITING are safe for
TRIVIALLY PERFECT COMPLETION and TRIVIALLY PERFECT DELETION. First Rules 1, 2
and 3 are safe for both problems. Indeed, the safeness of Rule 2 directly follows from Lemma 1
and Rule 3 was shown safe in [13].

We will now argue that Rules 4 and 5 are also safe. Lemma 11 states that no trivially
perfect edition for an instance (G = (V, E), k) of TRIVIALLY PERFECT EDITING affects a
comb of G of length at least 2k + 2. This is also true when allowing only edge addition or
edge deletion, implying the safeness of Rule 4 in both cases. In the proof of Lemma 13, for a
trivially perfect edition F' we construct another edition F/ C F. In case F consists only of
edge additions or deletions, it is also the case for F’, thus Lemma 13 holds for TRIVIALLY
PERFECT COMPLETION and TRIVIALLY PERFECT DELETION and Rule 5 is safe for these
problems.

The proof for the size of the kernel is the same as the proof of Theorem 19. Altogether,
we obtain the following result.

» Theorem 20. TRIVIALLY PERFECT COMPLETION and TRIVIALLY PERFECT DELETION
admits a kernel with O(k?®) vertices.

5 Conclusion

We have provided a kernelization algorithm for TRIVIALLY PERFECT EDITING, producing
a cubic vertex-kernel, hence improving upon the O(k")-size kernel of [13]. The techniques
extend to the deletion and completion versions of the problem, within the same bounds. A
natural question is whether the size of the kernel for TRIVIALLY PERFECT EDITING can
still be reduced — note that for TRIVIALLY PERFECT COMPLETION, Bathie et al. claim a
quadratic kernel [2].

Some ideas used in this work remind of very similar techniques applied to kernelization
problems for edge editing towards classes of graphs G having a tree-like decomposition. The
simplest case — like here or for the class of so-called 3-leaf power graphs, see [3] — is when the
vertices of the graph can be partitioned into bags inducing modules, and these bags can be
structured as nodes of a forest T', with specific adjacency rules. If an arbitrary graph G can
be turned into a graph of class G by editing at most k pairs of vertices, the edited pairs are
in some set A of at most 2k bags. Again by taking the lowest common ancestor closure A’ of
A, set A is of size O(k) and its removal from forest 7' will produce some chunks attached in
T to 0, 1 or 2 nodes of A’ (e.g., in [3], the authors speak of 1 and 2-branches, playing similar
roles to modules and combs in this article). Kernelization algorithms can be obtained if we
are able to reduce the bags themselves as well as the chunks, which hopefully have good
structural properties. It is natural to wonder how general are these techniques, especially on
subclasses of chordal graphs.
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