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Abstract
For a DFA, a word avoids a subset of states, if after reading that word the automaton cannot be
in any state from the subset regardless of its initial state. A subset that admits an avoiding word
is avoidable. The k-avoiding threshold of a DFA is the smallest number such that every avoidable
subset of size k can be avoided with a word no longer than that number. We study the problem
of determining the maximum possible k-avoiding thresholds. For every fixed k ≥ 1, we show a
general construction of strongly connected DFAs with n states and the k-avoiding threshold in
Θ(nk). This meets the known upper bound for k ≥ 3. For k = 1 and k = 2, the known upper
bounds are respectively in O(n2) and in O(n3). For k = 1, we show that 2n − 3 is attainable for
every number of states n in the class of strongly connected synchronizing binary DFAs, which is
supposed to be the best possible in the class of all DFAs for n ≥ 8. For k = 2, we show that
the conjectured solution for k = 1 (an upper bound in O(n)) also implies a tight upper bound in
O(n2) on 2-avoiding threshold. Finally, we discuss the possibility of using k-avoiding thresholds of
synchronizing automata to improve upper bounds on the length of the shortest reset words.
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1 Introduction

A deterministic finite complete semi-automaton (called simply automaton) is a 3-tuple
(Q, Σ, δ), where Q is a finite set of states, Σ is an input alphabet, and δ : Q × Σ → Q is the
transition function. The transition function is naturally extended to a function Q × Σ∗ → Q.
Throughout the paper, by n we always denote the number of states in Q.

Given a subset S ⊆ Q, the image of S under the action of a word w ∈ Σ∗ is δ(S, w) =
{δ(q, w) | q ∈ S}. The preimage of S under the action of w is δ−1(S, w) = {q ∈ Q | δ(q, w) ∈
S}.

The rank of a word w is the cardinality of the image δ(Q, w). A word w is reset if it has
rank 1, i.e., its action maps all the states to one state. If an automaton admits a reset word,
then it is called synchronizing, and its reset threshold is the length of the shortest reset word.

The central problem in the theory of synchronizing automata is the famous Černý
conjecture, which states that every synchronizing n-state automaton has reset threshold at
most (n−1)2. Fig. 1 shows the 4-state automaton from the well-known Černý series [2], which
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46:2 Lower Bounds on Avoiding Thresholds

meets the conjectured upper bound for every n. The Černý conjecture is one of the most
longstanding open problems in automata theory, with constantly growing literature around
the topic; see an old survey [15] and a recent special issue dedicated to the problem [17]. The
best known general upper bound on reset threshold is cubic and equals ∼ 0.1654n3+o(n3) [11].
Better bounds are known for many subclasses of automata.
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q3q4

b b

b

a
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Figure 1 The Černý automaton with n = 4 states.

1.1 Avoiding words
Avoiding words are defined similarly to reset words. For a state q ∈ Q, a word w is avoiding
if q /∈ δ(Q, w), i.e., no state is mapped by the action of w to q. More generally, a word w

avoids a subset S ⊂ Q if δ(Q, w) ∩ S = ∅. Note that a word of rank n − k is also a word
avoiding some subset S of size k. In this way, a reset word is a specific case of an avoiding
word.

A subset S is avoidable if there exists an avoiding word for S. Then, the S-avoiding
threshold is the length of the shortest words avoiding S. The k-avoiding threshold is the
maximum S-avoiding threshold over all subsets S ⊂ Q of size k. In other words, every
avoidable subset of size k can be avoided with a word of length not exceeding the k-avoiding
threshold.

Obviously, a k-avoiding threshold is never larger than the (k + 1)-avoiding threshold. In
a synchronizing automaton, every subset of size ≤ n − 1 is avoidable.

For example, for the automaton from Fig. 1, the k-avoiding thresholds for k = 1, 2, 3 are
respectively equal to 4, 8, 12. For instance, the shortest word avoiding subset {q2, q3} is
ba3ba3, and no other subset of size two requires a longer word.

Avoiding words are closely related to reset words and can be interesting as such for similar
reasons. Yet, so far the focus was put on their application to bounding reset thresholds.

Originally, the concept was first used by Trahtman as a tool for improving the cubic upper
bound on the reset threshold [14]. This turned out to be wrong as is based on the claim
that 1-avoiding threshold is at most n, whereas it can be larger [5]. Nevertheless, the idea of
applying avoiding words has been shown to be useful. A non-trivial quadratic upper bound
on 1-avoiding threshold already led to the first improvement [12] of the old and well-known
upper bound on the reset threshold [8]. This was later refined to ∼ 0.1654n3 + o(n3) [11],
using the same method but improving the counting argument.

Better upper bounds on avoiding thresholds should lead to better upper bounds on reset
thresholds. Yet, the problem of avoiding may be of similar difficulty.

Avoiding a subset is closely related to subset reachability. The latter is the question for
a given subset T ⊆ Q, are there and how long are words w such that δ(Q, w) = T . It is
known that the decision problem is PSPACE-complete even if the automaton is strongly
connected [18] and the shortest such words can have a length larger than 2n/n [4]. It
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holds similarly in the weaker included version where w is such that δ(Q, w) ⊆ T [4]. This is
equivalent to avoiding the complement of T : δ(Q, w) ⊆ T is equivalent to δ(Q, w)∩(Q\T ) = ∅.
It is also equivalent to that w is totally extending, i.e., δ−1(T, w) = Q, which was shown to be
PSPACE-complete even if the automaton is strongly connected and binary [1]. It follows that
avoiding a subset, in general, should require exponentially long words, but precise bounds
were not shown so far. In particular, these results do not say what happens in the case of a
synchronizing automaton nor if the size of the subset S to avoid is small. Yet, as we note,
these cases are particularly important.

1.2 Known upper bounds
For the 1-avoiding threshold, the best known upper bound is quadratic in n. It is derived
through linear algebraic methods applied to automata.

▶ Theorem 1 (rephrased [12, Corollary 5]). For an n-state automaton, the 1-avoiding threshold
is at most (n − 2)(n − 1) + 2.

In the general case, for k-avoiding threshold, we have the following asymptotic bound:

▶ Theorem 2 (rephrased [1, Theorem 12]). Let A = (Q, Σ, δ) be an n-state automaton, let r

be the minimal rank in A over all words, and let m be the length of the shortest words of the
minimal rank. Then the k-avoiding threshold is at most O(nmin(r,k) + m).

Since for m we have only a cubic upper bound O(n3), this component is dominating for
k = 1 and k = 2. In these cases, it is unlikely to be tight. There is also the well-known rank
(Pin-Černý) conjecture [8] stating that m ≤ (n − r)2.

No better bounds on avoiding thresholds are known in the case of a synchronizing
and/or strongly connected automaton. Except for the obvious fact that for a synchronizing
automaton O(n3) is an upper bound on every k-avoiding threshold, and O(n2) would be an
upper bound if the (weak version of) Černý conjecture holds.

We note that it is also an easy exercise to prove that avoiding thresholds are small (at most
linear) for many subclasses of automata. For example, for Eulerian automata, the k-avoiding
threshold is at most k(n − 1) [6]. For aperiodic automata [13, 16], or more generally, for
automata with letters whose transitions contain only trivial cycles (self-loops), it is at most
n − 1.

1.3 Known lower bounds
Concerning automata with the largest possible avoiding thresholds, only a few particular
examples of automata were described so far. Moreover, they were limited to 1-avoiding
threshold.

The first such example is a 4-state automaton with the 1-avoiding threshold equal to
6, which was found as a counterexample to the conjecture that the 1-avoiding threshold is
bounded above by the number of states [5]. Later experiments [7] revealed several other
examples with n ≤ 11 states, suggesting that 2n − 2 may be an upper bound.

It is also known that deciding whether 1-avoiding threshold or {q}-avoiding threshold
(for a given q) is smaller than a given integer is NP-complete [1].

1.4 Contribution
We tackle the problem of constructing automata with large avoiding thresholds. In this
paper, we summarize our efforts.

MFCS 2021



46:4 Lower Bounds on Avoiding Thresholds

First, we show that 1-avoiding threshold can be equal to 2n − 3, for every number of
states n ≥ 2, and this is met by a series of strongly connected synchronizing automata. We
conjecture that it is best possible, except for finitely many examples meeting 2n − 2.

For the general case, we show a series of automata with k-avoiding thresholds in Θ(nk).
These automata are strongly connected but not synchronizing. This matches the asymptotic
upper bound for k ≥ 3, leaving open the cases k = 2 and k = 1. Yet, we show that the case
of k = 2 can be reduced to a possible solution of the case of k = 1.

Finally, we note the potential of avoiding words for improving upper bounds on the
reset threshold. So far, only an application of 1-avoiding threshold was considered; being in
O(n), it would imply an upper bound on the reset threshold equal to 7/48n3 + O(n2) [14].
However, with the generalized concept of avoiding subsets of size k, we can achieve more. If
the k-avoiding threshold is subquadratic for all k bounded by any growing function in n (e.g.,
if for all k ≤ log n, the k-avoiding threshold is o(n2)), then the reset threshold is subcubic.

2 1-avoiding threshold

We show a series of binary strongly connected synchronizing automata with 1-avoiding
threshold equal to 2n − 3. The existence of the series has been mentioned several times
([7, 12]), but it has not been described yet.

For each n ≥ 5, we define An = (Q = {q1, . . . , qn}, Σ = {a, b}, δ), which is shown in
Fig. 2. The transition function is defined as follows: δ(q1, a) = q2; δ(q1, b) = q1; δ(q2, a) = q1;
δ(q2, b) = q3; δ(q3, a) = q1; δ(q3, b) = q4; δ(qi, a) = δ(qi, b) = qi+1 for all i ∈ {4, . . . , n − 1};
δ(qn, a) = q4; δ(qn, b) = q2.

q4

q5

q6

q7

. . .

qn−1

qn

q3 q2

q1

a

a

b

a

b

a, b

a, b

a, b a, b

a, b

a, b

a

bb

Figure 2 The binary automaton An with the 1-avoiding threshold equal to 2n − 3.

▶ Proposition 3. For n ≥ 5, the automaton An is strongly connected and synchronizing,
and its reset threshold is at most 3n − 4.
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Proof. We can avoid all even-indexed states on the a-cycle by word (ab)k for some k:

Q
ab−→ Q \ {q4} ab−→ Q \ {q4, q6} ab−→ · · · ab−→ {q1, q2, q3} ∪ {q5, q7, . . .}.

Moreover, if n is even, then we can continue applying word ab to avoid also all odd-indexed
states on the a-cycle:

{q1, q2, q3} ∪ {q5, q7, . . .} ab−→ {q1, q2, q3} ∪ {q7, q9, . . .} ab−→ · · · ab−→ {q1, q2, q3} ab−→ {q1, q3}.

If n is odd, then we can apply one additional a letter to avoid all odd-number states and
repeat the procedure of avoiding even-number states, that is:

{q1, q2, q3} ∪ {q5, q7, . . .} a−→ {q1, q2, q3} ∪ {q4, q6, . . .} ab−→ {q1, q2, q3} ∪ {q6, q8, . . .}
ab−→ · · · ab−→ {q1, q2, q3, qn−1} ab−→ {q1, q2, q3}.

Overall, we can compress the automaton to the set {q1, q2, q3} using a word of length at
most 2(n − 3) for an even and 2(n − 3) + 1 for an odd n, since each ab application decreases
the size of the image by 1 until there are only three states left. The set {q1, q2, q3} can be
easily synchronized to q1 by the word abn−3aba. ◀

Informally, the key property of the construction is the following. To avoid q1, we must
avoid both q2 and q3. But to do so, we must first avoid two consecutive states in the cycle
q4, . . . , qn on a. This requires one full round on this cycle. In particular, the avoided states
on the cycle will be always q4 and q5 at some point. Then, we need a second round to map
these two gaps to q2 and q3, respectively. Hence, the shortest avoiding words for q1 have
length ∼ 2n.

▶ Theorem 4. For n ≥ 7, the 1-avoiding threshold of An equals 2n − 3.

Proof. We show that the length of the shortest avoiding words for state q1 is 2n − 3.
If n is even, then (ab)n−3bba is an avoiding word for q1 of length 2n − 3. We have:

Q
(ab)n−3

−−−−−→ {q1, q2, q3} bba−−→ {q2, q4, q5}.

If n ≥ 9 is odd, then aban−5babn−3a is the desired word. We have:

Q
ab−→ Q\{q4} an−5

−−−→ Q\{q3, qn−1} ba−→ Q\{q3, q4, q5} bn−3

−−−→ Q\{qn, q2, q3} a−→ Q\{q1, q4, q3}

For n = 7, a shortest avoiding word is abaabaaabba.
To prove the lower bound, we start with an auxiliary claim.

Claim 1: If a word v avoids state qn, then |v| ≥ n − 2. It follows because the only state that
can be avoided with one letter (a) is q3, and the shortest words with an action mapping q3
to qn have length n − 3.

Let w be a shortest word avoiding state q1. Since δ(q1, b) = q1, δ(q1, aa) = q1, and
δ(q1, aba) = q1, it follows that w must end with bba, as otherwise it would not be a shortest
such word. Let write w = w′bba. We have δ(qn, bba) = δ(qn−1, bba) = q1, which implies that
w′ must avoid both qn and qn−1. From Claim 1, |w′| ≥ n − 2, so we can write w = w′′xyubba,
where |u| = n − 5, |x| = |y| = 1, and |w′′| ≥ 1. Since w′ = w′′xyu avoids both qn and qn−1,
and these states are mapped respectively to qn and qn−1 by the action of every word of
length n − 5, we know that w′′xy avoids both q5 and q4.

MFCS 2021



46:6 Lower Bounds on Avoiding Thresholds

We consider three cases:
1. If y = a, then w′′x must avoid qn (as δ(qn, a) = q4). From Claim 1, we get that

|w′′x| ≥ n − 2, hence |w| ≥ (n − 2) + 1 + (n − 5) + 3 = 2n − 3.
2. If y = b and x = a, then w′′ must avoid qn (as δ(qn, ab) = q5). Similarly as in the previous

case, we get that |w| ≥ 2n − 2.
3. If y = b and x = b, then w′′ must avoid both q2 and q3. Then, however, w′′a would avoid

q1, which contradicts that w is a shortest such word. ◀

The proof covers the cases n ≥ 7, whereas the lower bound for the cases n ≤ 6 was
confirmed by experiments [7].

Automata An have another extremal property: The quadratic upper bound on the
1-avoiding threshold is derived by an iterative application of [12, Lemma 3], which for a given
subset S gives a word w of length at most n − |S| + 1 that either avoids a fixed state q ∈ Q

or compresses S (i.e., |δ(S, w)| < |S|). In the worst case, we must apply this lemma a linear
number of times, hence a quadratic upper bound follows. The automata An demonstrate
that this may be the case: we may be forced to apply the lemma Θ(n) times obtaining each
time the word w = ba, which compresses the subset. On the other hand, ba is very short
compared to the linear upper bound n − |S| + 1. Yet, it would be possible that also this
bound can be met. There also exists another series of automata (similar to the automaton
from Fig. 4) showing that the upper bound n − |S| + 1 on the length of shortest avoiding
or compressing word is tight for each n ≥ |S| ≥ 1. However, it is an open question whether
both these bounds can be met simultaneously.

2.1 Exceptional examples

q2

q3

q4

q5

q6q7

q1

a
a

a

a

b

b b

b

bb

a

a

a

b

Figure 3 An automaton with the 1-avoiding threshold equal to 2n − 2 = 12 (for state q1).

There are several particular examples of synchronizing automata with 1-avoiding threshold
equal to 2n − 2. For instance, for the automaton A5 it is 8. Another example is shown Fig. 3,
which is a largest known automaton meeting this bound.
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No such example seems to belong to a series keeping that 1-avoiding threshold. It is
known that there are no binary synchronizing automata exceeding 1-avoiding threshold 2n−3
in range n ∈ {8, 9, 10, 11} [7] (the case of n = 11 was verified later).

3 k-avoiding thresholds

3.1 General lower bound
For every fixed k ≥ 1, we show an infinite series of (non-synchronizing) automata such that
their k-avoiding threshold is in Θ(nk). The construction is built from gadgets of two types.

3.1.1 One-track counting gadget

q0

q1 . . . qℓ−1 qℓ

aI,ΣN

aR

aR

aR

aR,ΣN

ΣN
ΣN

ΣN
aI

aI aI aI

Figure 4 The one-track counting gadget. The identity action of ΣP is not drawn.

Let ℓ ≥ 2 be an integer, ΣP, ΣN be disjoint sets of letters, and aR, aI /∈ ΣP∪ΣN be two other
distinct letters. We define the one-track counting gadget T (ℓ, aR, ΣP, aI, ΣN) (shown in Fig. 4),
which is the automaton (QT , ΣT , δT ), where P = {q0, q1, . . . , qℓ}, ΣT = {aR, aI} ∪ ΣP ∪ ΣN
and δT is defined as follows. Letter aR is the reset letter with the action mapping all the
states to q1:

δT (qi, aR) = q1 for i ∈ {0, 1, . . . , ℓ}.

Letter aI is the incrementing letter with the action shifting the states q1, . . . , qk:

δT (qi, aI) = qi+1 for i ∈ {1, . . . , ℓ − 1}; δT (qℓ, aI) = q0; δT (q0, aI) = q0.

The letters from ΣP are called previous letters and they all act as the identity. The letters
from ΣN are called next letters; they have the same action mapping all the states to q0 except
qℓ, which is mapped to q1:

δT (qi, a) = q0 for i ∈ {0, 1, . . . , ℓ − 1}, a ∈ ΣN; δT (qℓ, a) = q1 for a ∈ ΣN.

MFCS 2021



46:8 Lower Bounds on Avoiding Thresholds

The mechanism of the gadget is that, in order to avoid q0, applications of next letters are
restricted. We must start with aR and then keep applying aℓ−1

I alternatingly with one next
letter. Additionally, previous letters can be applied interleaving at any time. Formally, we
have the following:

▶ Lemma 5. Consider T and a word w ∈ ({aI} ∪ ΣP ∪ ΣN)∗. If the word aRw avoids q0,
then in w, the number of occurrences of aI is at least ℓ − 1 times larger than the total number
of occurrences of letters from ΣN.

Proof. In the analysis, we can ignore the occurrences of ΣP and assume equivalently that
w ∈ ({aI} ∪ ΣN)∗.

Since w does not contain aR and this is the only letter with the action mapping q0
to another state, for every prefix w′ of w, aRw′ must also avoid q0. In the beginning,
δT (QT , aR) = {q1}. The only possibility to keep q0 avoided is to apply aℓ−1

I , which must
be followed by a letter from ΣN. We end with the singleton {q1} and the argument repeats,
keeping the proportion between the numbers of occurrences of aI and of letters from ΣN. ◀

3.1.2 Two-track counting gadget

q0

q1 . . . qℓ−1 qℓ

p1 . . . pℓ−1 pℓ

aI

aI aI aI

aI

aI aI aI

aI

aR

aR aR aR aR

aR aR aR aR

Figure 5 The two-track counting gadget. The identity action of ΣP is not drawn.

Let ℓ ≥ 1 be an integer, ΣP be a set of letters, and aR, aI be two other distinct letters.
We define the two-track counting gadget D(ℓ, aR, ΣP, aI) (shown in Fig. 5), which is the
automaton (QD , ΣP ∪{aR, aI}, δD), where QD = {q0, q1, . . . , qℓ, p1, . . . , pℓ}, and δD is defined
as follows. Letter aR is the reset letter, whose action maps the corresponding states qi to pi:

δD(qi, aR) = pi for i ∈ {1, . . . , ℓ}; δD(pi, aR) = pi for i ∈ {1, . . . , ℓ}; δD(q0, aR) = q0.

Letter aI is the incrementing letter acting as follows:

δD(qi, aI) = qi+1, δD(pi, aI) = pi+1 for i ∈ {1, . . . , ℓ − 1}; δD(pℓ, aI) = δD(qℓ, aI) = q0.

Finally, the letters from ΣP act as identity.
The point of the gadget is that, in order to avoid pℓ, we have to apply ℓ − 1 times letter

aI without applying letter aR in between.
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▶ Lemma 6. For D , if a word w ∈ Σ∗
D avoids pℓ, then w contains at least ℓ occurrences of

aI without any occurrence of aR in between.

Proof. Observe that for every word u ∈ Σ∗
D , we have δD(QD , uaR) = {q0, p1, . . . , pℓ}. Thus,

if pℓ is avoided by w, then w must contain a subword (factor) w′ ∈ ΣD \ {aR} such that
pℓ /∈ δD({q0, p1, . . . , pℓ}, v). Ignoring the letters from ΣP, the only such words are ai

I for
i ≥ ℓ. ◀

3.1.3 The construction
We build the construction as a union of gadgets. For each k ≥ 1 and ℓ ≥ 2, we build the
automaton K (k, ℓ) = (QK (k,ℓ), ΣK (k,ℓ), δK (k,ℓ)). Let ΣK (k,ℓ) = {aR, a1, . . . , ak} be the
input alphabet. The automaton is the disjoint union of the following gadgets:

D = D(ℓ, aR, {ak, . . . , a2}, a1);
Ti = T (ℓ, aR, {ak, . . . , ai+1}, ai, {ai−1, . . . , a1}) for all i ∈ {2, . . . , k}.

As it contains states from several gadgets, when denoting a state, we specify the owning
gadget in the superscript. Finally, we define the subset to be avoided:

Sk = {pD
ℓ } ∪

⋃
i∈{1,...,k−1}

{qTi
0 }.

Observe that the number of states n of K (k, ℓ) equals (k − 1)(ℓ + 1) + (1 + 2ℓ) =
kℓ + k + ℓ = ℓ(k + 1) + k.

Note that for every k, we have QK (k,ℓ) ⊊ QK (k+1,ℓ), ΣK (k,ℓ) ⊊ ΣK (k+1,ℓ), δK (k,ℓ) ⊊
δK (k+1,ℓ), and also Sk ⊊ Sk+1. Hence, every letter of K (k, ℓ) acts the same on the same
common states in every K (k + i) for i ≥ 0.

For every word u ∈ Σ∗, further applying aR yields the same fixed image, that is:

δK (k,ℓ)(QK (k,ℓ), uaR) = δK (k,ℓ)(QK (k,ℓ), aR) = {qD
0 }∪

⋃
j∈{1,...,ℓ}

{pD
j }∪

⋃
i∈{1,...,k}

{qTi
1 }. (1)

▶ Lemma 7. For K (k, ℓ), the subset Sk is avoidable and the length of the shortest avoiding
words for Sk equals 1 + ℓk (and ℓ if k = 1).

Proof. For k = 1, the shortest avoiding word for S1 is aℓ
1. For the remaining part, assume

that k ≥ 2.
Let wk be a shortest avoiding word for Sk in K (k, ℓ). First, we observe that wk must

contain aR, since otherwise the states qCi
0 could not be avoided. From (1), we know that

wk may contain only one occurrence of aR and it must appear at the beginning; otherwise,
there would exist a shorter avoiding word.

To show that Sk is avoidable with a word of length 1+ℓk, we use induction on k. We show
that there is an avoiding word wk from aR{a1, . . . , ak}∗ of the required length. For k = 1, there
is only the gadget D , and the word w1 = aRaℓ

1 does the job. Assuming the statement for k, we
show that it holds for k+1. Then wk acts the same in K (k+1, ℓ) as in K (k, ℓ) on the common
states. Let wk+1 be the word obtained from wk by inserting aℓ−1

k+1 before each occurrence of
every letter from {a1, . . . , ak}. Since ak+1 works as the identity in the gadgets D , T1, . . . , Tk,
Sk is avoided. Also, we can see that δK (k+1,ℓ)({q

Tk+1
0 , . . . , q

Tk+1
ℓ }, wk+1) = {q

Tk+1
1 }. Thus

wk+1 avoids Sk+1 and has length 1 + ℓk · ℓ = 1 + ℓk+1.
To show that there are no shorter avoiding words, we also use induction on k. We show

that every avoiding word for Sk contains at least ℓk occurrences of letters from {a1, . . . , ak}.
For k = 1, by Lemma 6, w has at least ℓ occurrences of a1. Assuming the statement for k,
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we show that it holds for k + 1. Let wk+1 = aRw′
k+1 be a shortest avoiding word for Sk+1.

Since Sk ⊂ Sk+1, wk+1 also avoids Sk. Let w′
k be the word obtained from w′

k+1 by removing
every occurrence of ak+1. Then, aRw′

k is over the alphabet of K (k, ℓ) and is an avoiding
word for Sk in K (k, ℓ). Thus, by the inductive assumption, it has at least ℓk occurrences of
letters from {a1, . . . , ak}. Then w′

k+1 contains them as well. By Lemma 4 for the last gadget
Tk+1, where the set of the next letters is {a1, . . . , ak}, we get that w′

k+1 also must contain
at least (ℓ − 1) · ℓk occurrences of ak+1. Altogether, w′

k+1 contains at least ℓk+1 occurrences
of letters from {a1, . . . , ak+1}. ◀

3.1.4 Strong connectivity

Each particular gadget is already strongly connected. We can make the whole construction
strongly connected by redefining the special action of aR so that its transitions work cyclically
on the gadgets. Let

δK (k,ℓ)(qD
0 , aR) = qT1

1 ;

δK (k,ℓ)(qTi
j , aR) = q

Ti+1
1 for i ∈ {1, . . . , k − 1}, j ∈ {0, . . . , ℓ};

δK (k,ℓ)(qTk
j , aR) = qD

0 for j ∈ {0, . . . , ℓ};

and the action is left unchanged for the other states of D : qD
1 , . . . , qD

ℓ , pD
1 , . . . , pD

ℓ .
Since (1) still holds for the modified construction, Lemma 7 works as well. We conclude

the construction with the following:

▶ Theorem 8. For every k ≥ 2, there exists an infinite series of strongly connected automata
such that its k-avoiding threshold is at least 1 +

(
n−k
k+1

)k

. For a fixed k, its k-avoiding
threshold is in Θ(nk).

Proof. For an integer k ≥ 2, the build the automata K (k, ℓ) for all ℓ ≥ 2. Each K (k, ℓ)
has n = ℓ(k + 1) + k states and its k-avoiding threshold is at least 1 + ℓk, thus we get the
lower bound.

Note that aR is the shortest word of the minimal rank, so for a fixed k, the lower bound
asymptotically coincides with the upper bound from Theorem 2 for k ≥ 2, thus the k-avoiding
threshold is in Θ(nk). ◀

3.2 2-avoiding threshold reduction

The bound O(nk) is asymptotically tight for k ≥ 3, but the cases of k = 1 and k = 2 remain
open. This is due to the cubic upper bound on the length of the shortest minimal-rank words.
However, we can reduce the problem for k = 2 to the case of k = 1. If 1-avoiding threshold is
bounded by f(n), then 2-avoiding threshold is at most O(n2 + n · f(n)). Thus, if 1-avoiding
threshold is at most linear, then 2-avoiding threshold is at most quadratic, which would be a
tight bound.

A similar result, but restricted to strongly connected synchronizing automata, was shown
in [12, Lemma 13]. Here, we show it in the general case, which in essence combines both
techniques behind Theorem 8 and Theorem 4.

▶ Theorem 9. For every n-state automaton, if the 1-avoiding threshold is at most f(n) for
some function f , then the 2-avoiding threshold is at most O(n2 + n · f(n))).
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Proof. A strongly connected bottom component is a minimal non-empty set of states X ⊆ Q

such that for every word w we have δ(X, w) ⊆ X. A synchronizing automaton has exactly
one strongly connected bottom component, whereas a non-synchronizing automaton can have
many of them. Let z be a shortest word such that all states in δ(Q, z) are in the strongly
connected bottom components of the automaton. It is well-known that the length of z is in
O(n2) [9].

Let {q1, q2} be a subset to avoid. States q1 and q2 are either in the same strongly
connected component or in separate ones. In any case, we can ignore every other strongly
connected component, since their states cannot be mapped to q1 or q2. Let C1 and C2 be
these components, respectively of q1 and q2. From now, consider the automaton containing
only C1 and C2.

Let u1 and u2 be avoiding words respectively for q1 and q2, both of length at most f(n).
We build iteratively some words w1, w2, . . . , wn−1. Each wi will be of length O(i(n+f(n))).

Let w0 = ε.
Assume that we have built wi, and let X = δ(Q, wi). Now, we use a linear algebraic

argument to infer that one of three possibilities hold:
(1) there exists a word v of length at most n − 1 such that q1 /∈ δ(X, vu2), or
(2) there exists a word v of length at most n − 1 such that there are at least two distinct

states r1, r2 ∈ X such that δ(r1, vu2) = δ(r2, vu2) = q1, or
(3) there does not exist any word v (of any length) satisfying (1) or (2).
We omit to repeat the argument here since it follows in the same way as in the proof of [12,
Lemma 13] and requires introducing many linear algebraic definitions. In [12, Lemma 13],
however, (3) cannot happen due to the assumption that the automaton is synchronizing and
strongly connected, so such a word v always exist.

If (1) holds, then wivu2 is an avoiding word for {q1, q2} and it has a desired length. If (2)
holds, then let wi+1 = wivu2, which is longer than wi by at most n − 1 + f(n). If (3) holds,
then it means that wi in the automaton restricted to C1 has the minimal rank. Otherwise,
we could map two distinct states from X ∩ C1 to the same state, and then map it to q1. In
this case, we also stop with wi.

If we have stopped with (3), then we repeat the construction symmetrically for q2. If
we also do not find an avoiding word, then we obtain a word w′

i′ that has the minimal rank
in the automaton restricted to C2. Altogether, wiwi′ has the minimal rank the automaton
with both C1 and C2.

Then, it remains to use the upper bound from Theorem 2. Since the length of wiwi′ is
an upper bound on m, we get the upper bound O(n2 + n · f(n)).

Finally, we have to add z at the beginning to construct an avoiding word in the original
automaton, and the length of z is also at most O(n2). ◀

4 Bounding reset threshold with avoiding words

If 1-avoiding threshold is subquadratic, it would yield an upper bound on reset threshold
equal to 7/48n3 + o(n3). However, the application of 1-avoiding threshold to bound reset
threshold can be generalized to the usage of k-avoiding thresholds, if they are small enough.
It turns out that, in a synchronizing automaton, a subquadratic value of k-avoiding thresholds
already for small values of k is enough to imply a subcubic upper bound on the reset threshold.
In the following calculations, we disregard particular constants and focus only on asymptotic
bounds.
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▶ Lemma 10. Let (Q, Σ, δ) be an n-state synchronizing automaton and w be a word of rank
r ≥ 2. There exist at least one state q ∈ δ(Q, w) such that |δ−1({q}, w)| ≤ ⌊n/r⌋.

Proof. For each q, the states in δ−1({q}, w) are pairwise disjoint and they cover the whole Q.
As we have r states in R, there exist a state q ∈ R such that the cardinality of δ−1({q}, w)
is at most n/r. ◀

▶ Lemma 11. Let (Q, Σ, δ) be an n-state synchronizing automaton and w be a word of rank
r ≥ 2. There is a word of rank at most r − 1 and of length at most |w| + d, where d is the
⌊n/r⌋-avoiding threshold.

Proof. We take the state q from Lemma 10. Since r ≥ 2, so ⌊n/r⌋ < n, thus every subset of
that size is avoidable. We first avoid the subset δ−1({q}, w) by a word u of length at most
d, and then apply w. We have δ(Q, uw) ⊆ δ(Q, w) and q ∈ δ(Q, w), but also q /∈ δ(Q, uw),
thus we obtain that δ(Q, uw) ⊊ δ(Q, w). ◀

Taking the usual notation, ω(1) is the set of R → R functions growing faster than a
constant.

▶ Theorem 12. If there exists a function f ∈ ω(1) such that for every n-state synchronizing
automaton and every k ≤ f(n), the k-avoiding threshold is at most O(n2)/f(n), then the
reset threshold is in o(n3).

Proof. We build a reset word in two phases. First, we start with the empty word and
iteratively apply Lemma 11 until the built word reaches a rank of at most n/f(n). Thus,
there are at most n − n/f(n) applications of the lemma. The rank is at least n/f(n) every
time, so we need the k-avoiding threshold for k ≤ n/(n/f(n)) = f(n). Hence, d from the
lemma is bounded above by O(n2)/f(n) from the assumption of the theorem. It follows that
the resulted word of rank n/f(n) has length at most (n−n/f(n)) ·O(n2)/f(n) = O(n3)/f(n).

In the second phase, we use the usual pair compression [8]. We need to compress a pair
at most n/f(n) − 1 times, each time appending a word of length smaller than n2. Thus, the
word from this phase also has length at most O(n3)/f(n).

Altogether, our reset word has length at most n3/f(n), which is in o(n3). ◀

5 Conclusions, discussion, and open problems

In the general case of an automaton and its k-avoiding threshold, we have a complete
asymptotic solution for k ≥ 3. The cases of k = 2 and k = 1 are open, yet a conjectured
solution to the latter would solve also the former.

As for now, determining the maximum 1-avoiding threshold is the core problem, in
particular in the class of synchronizing automata, but the general case of an automaton does
not seem different for k = 1. Here, we considered a precise bound and have shown that
2n − 3 is attainable for every n ≥ 2. Yet, a few isolated examples reach 2n − 2. We have the
following conjecture:

A trivial extension of an automaton (Q, Σ, δ) is any automaton (Q, Σ ∪ Σ′, δ ∪ δ′) such
that each letter from Σ′ act either as an identity or as a letter from Σ.

▶ Conjecture 13. For an n-state automaton, the 1-avoiding threshold is at most 2n − 3,
except for a finite number of cases and their trivial extensions, where it is equal to 2n − 2.

A weak version (with any linear bound) of Conjecture 13 implies the following:



R. Ferens, M. Szykuła, and V. Vorel 46:13

▶ Conjecture 14. For an n-state automaton, a tight upper bound on 2-avoiding threshold is
O(n2).

Conjecture 13 was verified for small cases [7], in particular up to 11 states for binary
synchronizing automata. We have also experimented with the case of k = 2. The maximum
2-avoiding threshold of an n-state binary synchronizing automaton for n = 3, . . . , 10 equals
respectively 6, 8, 12, 17, 19, 23, 25, and 28. However, for this problem, the range is much
too small to reveal the tendency.

The case of synchronizing automata is much harder, and the problem remains open for
all k. We have the trivial upper bound O(n3), thus the situation is surely different than in
the general case already for k ≥ 4 and most likely already for k ≥ 2.

We have made an effort to find a lower bound on the maximum possible k-avoiding
threshold also for k ≥ 2. We have not found any series of automata that would exceed the
upper bound O(kn) (when k is a variable). This bound is easily met, for example by the
well-known Rystsov series [10] with a sink (zero) state and reset threshold n(n − 1)/2. We
should consider the following:

▶ Conjecture 15. For an n-state synchronizing automaton, the k-avoiding threshold is at
most O(kn) (when k is a variable).

It turns out that this is a weaker (by several means) version of the disproved Don’s
conjecture [3, Conjecture 18], which states that if a subset T is reachable, then it is reachable
with a word of length at most n(n − |T |). We know that Conjecture 15 does not hold
for non-synchronizing automata, and even for synchronizing automata with the original
non-asymptotic bound (by e.g., Theorem 4 for k = 1). On the other hand, if the reset
threshold is at most quadratic, then the conjecture trivially holds for k ∈ Θ(n).

Finally, we have noted that a subquadratic upper bound on k-avoiding threshold of a
synchronizing automaton for small, but non-constant, values of k, is enough to imply a
subcubic upper bound on reset threshold. This should motivate further efforts on bounding
avoiding thresholds. Since the current upper bound on 1-avoiding threshold is quadratic, this
requires both decreasing it and generalizing to k-avoiding thresholds for small k. We know
that a subquadratic upper bound for k = 2 is not possible in the class of non-synchronizing
automata. Yet, our conjectures are much stronger than the required upper bound to give
further improvements.
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