
Quantum Speedups for Dynamic Programming on
n-Dimensional Lattice Graphs
Adam Glos # Ñ

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Warsaw, Poland

Martins Kokainis #

Centre for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia

Ryuhei Mori # Ñ

School of Computing, Tokyo Institute of Technology, Japan

Jevgēnijs Vihrovs #

Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia

Abstract
Motivated by the quantum speedup for dynamic programming on the Boolean hypercube by Ambainis
et al. (2019), we investigate which graphs admit a similar quantum advantage. In this paper, we
examine a generalization of the Boolean hypercube graph, the n-dimensional lattice graph Q(D, n)
with vertices in {0, 1, . . . , D}n. We study the complexity of the following problem: given a subgraph
G of Q(D, n) via query access to the edges, determine whether there is a path from 0n to Dn. While
the classical query complexity is Θ̃((D + 1)n), we show a quantum algorithm with complexity Õ(T n

D),
where TD < D + 1. The first few values of TD are T1 ≈ 1.817, T2 ≈ 2.660, T3 ≈ 3.529, T4 ≈ 4.421,
T5 ≈ 5.332. We also prove that TD ≥ D+1

e (here, e ≈ 2.718 is the Euler’s number), thus for general
D, this algorithm does not provide, for example, a speedup, polynomial in the size of the lattice.

While the presented quantum algorithm is a natural generalization of the known quantum
algorithm for D = 1 by Ambainis et al., the analysis of complexity is rather complicated. For the
precise analysis, we use the saddle-point method, which is a common tool in analytic combinatorics,
but has not been widely used in this field.

We then show an implementation of this algorithm with time and space complexity poly(n)log nT n
D

in the QRAM model, and apply it to the Set Multicover problem. In this problem, m subsets of [n]
are given, and the task is to find the smallest number of these subsets that cover each element of [n]
at least D times. While the time complexity of the best known classical algorithm is O(m(D + 1)n),
the time complexity of our quantum algorithm is poly(m, n)log nT n

D.

2012 ACM Subject Classification Theory of computation → Quantum query complexity; Theory of
computation → Dynamic programming

Keywords and phrases Quantum query complexity, Dynamic programming, Lattice graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.50

Related Version Full Version: https://arxiv.org/abs/2104.14384

Funding Adam Glos: Supported in part by National Science Center under grant agreement
2019/32/T/ ST6/00158 and 2019/33/B/ST6/02011.
Martins Kokainis: Supported by “QuantERA ERA-NET Cofund in Quantum Technologies imple-
mented within the European Union’s Horizon 2020 Programme” (QuantAlgo project).
Ryuhei Mori: Supported in part by JST PRESTO Grant Number JPMJPR1867 and JSPS KAKENHI
Grant Numbers JP17K17711, JP18H04090, JP20H04138, and JP20H05966.
Jevgēnijs Vihrovs: Supported in part by the project “Quantum algorithms: from complexity theory
to experiment” funded under ERDF programme 1.1.1.5.

Acknowledgements We would like to thank Krišjānis Prūsis for helpful discussions and comments.
We also thank anonymous reviewers for helpful comments and suggestions on the presentation.

© Adam Glos, Martins Kokainis, Ryuhei Mori, and Jevgēnijs Vihrovs;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 50; pp. 50:1–50:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aglos@iitis.pl
https://iitis.pl/pl/person/aglos
https://orcid.org/0000-0001-6320-7699
mailto:martins.kokainis@lu.lv
https://orcid.org/0000-0003-3381-7271
mailto:mori@c.titech.ac.jp
https://q.c.titech.ac.jp/mori/
https://orcid.org/0000-0001-5474-5145
mailto:jevgenijs.vihrovs@lu.lv
https://orcid.org/0000-0002-3143-2610
https://doi.org/10.4230/LIPIcs.MFCS.2021.50
https://arxiv.org/abs/2104.14384
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

1 Introduction

Dynamic programming (DP) algorithms have been widely used to solve various NP-hard
problems in exponential time. Bellman, Held and Karp showed how DP can be used to solve
the Travelling Salesman Problem in Õ(2n)1 time using DP [5, 22], which still remains
the most efficient classical algorithm for this problem. Their technique can be used to solve
a plethora of different problems [16, 7].

The DP approach of Bellman, Held and Karp solves the subproblems corresponding to
subsets of an n-element set, sequentially in increasing order of the subset size. This typically
results in an Θ̃(2n) time algorithm, as there are 2n distinct subsets. What kind of speedups
can we obtain for such algorithms using quantum computers?

It is natural to consider applying Grover’s search, which is known to speed up some
algorithms for NP-complete problems. For example, we can use it to search through the 2n

possible assignments to the SAT problem instance on n variables in Õ(
√

2n) time. However,
it is not immediately clear how to apply it to the DP algorithm described above. Recently,
Ambainis et al. showed a quantum algorithm that combines classical precalculation with
recursive applications of Grover’s search that solves such DP problems in Õ(1.817n) time,
assuming the QRAM model of computation [4].

In their work, the authors applied this result to obtain quantum speedups for the
algorithms solving graph vertex ordering problems like Pathwidth and Sum Cut [7], and
using a more involved analysis, for the Graph Bandwidth problem [12]. They also used
similar ideas to provide speedups for the Travelling Salesman, Feedback Arc Set and
Minimum Set Cover problems by combining the Divide & Conquer and DP techniques.
Subsequently, these ideas have been used to construct quantum speedups for the Graph
Coloring [29], Minimum Steiner Tree [26] and finding the optimal variable ordering for
the binary decision diagrams (OBDDs) [30]. More surprisingly, [1] used the quantum speedup
for the Minimum Set Cover to prove non-trivial conditional lower bounds for the k-SUM
problem [1] (assuming the Set Cover Conjecture, which states that Minimum Set Cover
cannot be solved classically in time O((2− δ)n) for any δ > 0).

The Õ(1.817n) quantum speedup of Ambainis et al. for the aforementioned DP algorithm
on the subsets of the n-element set examines the underlying transition graph, which can be
seen as a directed n-dimensional Boolean hypercube, with edges connecting smaller weight
vertices to larger weight vertices. A natural question arises, for what other graphs there exist
quantum algorithms that achieve a speedup over the classical DP? In this work, we examine
a generalization of the hypercube graph, the n-dimensional lattice graph with vertices in
{0, 1, . . . , D}n.

While the classical DP for this graph has running time Θ̃((D + 1)n), as it examines
all vertices, we prove that there exists a quantum algorithm (in the QRAM model) that
solves this problem in time and space poly(n)log nT n

D for TD < D + 1 (Theorems 4, 7). Our
algorithm essentially is a generalization of the algorithm of Ambainis et al. We show the
following running time for small values of D:

Table 1 The complexity of the quantum algorithm.

D 1 2 3 4 5 6

TD 1.81692 2.65908 3.52836 4.42064 5.33149 6.25720

1 f(n) = Õ(g(n)) if f(n) = O(logc(g(n))g(n)) for some constant c.

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:3

A detailed summary of our numerical results is given in Section 5.3. Note that the case
D = 1 corresponds to the hypercube, where we have the same algorithm and complexity as
Ambainis et al. In our proofs, we extensively use the saddle point method from analytic
combinatorics to estimate the asymptotic value of the combinatorial expressions arising from
the complexity analysis.

It is interesting to compare our analysis and that of Ambainis et al. Their original
algorithm is recursive, and solves instances of the problem of smaller size (on the subcubes of
smaller dimensions). These instances are symmetrical, so the recursive calls can be analyzed
identically, and the calculation of the complexity is relatively simple. However, this is
not the case in our generalization for the n-dimensional lattice. To see this, consider, for
example, the lattice {0, 1, 2}n. In the recursive calls, our algorithm will examine sublattices
{0, 1}n1 × {0, 1, 2}n2 with fixed maximum vertex weight w = n1 + 2n2. The first obstacle
is that now there are many different cases (n1, n2) to analyze. The second obstacle is that
recursively we have to solve the problem for a lattice {0, 1}n1 × {0, 1, 2}n2 : now it becomes
difficult to describe and analyze the sublattices examined in the recursion of depth at least
2. To solve these issues, we first make an ansatz that the exponential complexity of the
algorithm on the lattice

ŚD
d=1{0, 1, . . . , d}nd can be expressed as T n1

1 T n2
2 · · ·T

nD

D , for some
positive constants Td. Then we make use of the saddle point method to find such optimal
constants (that minimize TD), and also prove that the ansatz is correct. Our analysis provides
exactly the same Õ(1.816...n) complexity for the hypercube algorithm as by Ambainis et al.

Next, we also prove a lower bound on the query complexity of the algorithm for general
D. Our motivation is to check whether our algorithm, for example, could achieve complexity
Õ((D + 1)cn) for large D for some c < 1. We prove that this is not the case: more
specifically, for any D, the algorithm performs at least Ω̃

((
D+1

e
)n
)

queries (Theorem 5),
where e = 2.71828 . . . is the Euler’s number.

As an example application, we apply our algorithm to the Set Multicover problem
(SMC), which is a generalization of the Set Cover problem. In this problem, the input
consists of m subsets of the n-element set, and the task is to calculate the smallest number
of these subsets that together cover each element at least D times, possibly with overlap and
repetition. While the best known classical algorithm has running time O(m(D + 1)n) [27, 24],
our quantum algorithm has running time poly(m, n)log nT n

D, improving the exponential
complexity (Theorem 8).

The paper is organized as follows. In Section 2, we formally introduce the n-dimensional
lattice graph and some of the notation used in the paper. In Section 3, we define the
generic query problem that models the examined DP. In Section 4, we describe our quantum
algorithm. In Section 5, we establish the query complexity of this algorithm and prove the
aforementioned lower bound. In Section 6, we discuss the implementation of this algorithm
and establish its time complexity. Finally, in Section 7, we show how to apply our algorithm
to SMC, and discuss other related problems.

2 Preliminaries

The n-dimensional lattice graph is defined as follows. The vertex set is given by {0, 1, . . . , D}n,
and the edge set consists of directed pairs of two vertices u and v such that vi = ui + 1 for
exactly one i, and uj = vj for j ≠ i. We denote this graph by Q(D, n). Alternatively, this
graph can be seen as the Cartesian product of n paths on D + 1 vertices. The case D = 1 is
known as the Boolean hypercube and is usually denoted by Qn.

We define the weight of a vertex x ∈ V as the sum of its coordinates |x| :=
∑n

i=1 xi.
Denote x ≤ y iff for all i ∈ [n], xi ≤ yi holds. If additionally x ≠ y, denote such relation by
x < y.

MFCS 2021

50:4 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

Throughout the paper we use the standard notation [n] := {1, . . . , n}. In Section 7.1,
we use notation for the superset 2[n] := {S | S ⊆ [n]} and for the characteristic vector
χ(S) ∈ {0, 1}n of a set S ∈ [n] defined as χ(S)i = 1 iff i ∈ S, and 0 otherwise.

We write f(n) = poly(n) to denote that f(n) = O(nc) for some constant c. We also write
f(n, m) = poly(n, m) to denote that f(n, m) = O(ncmd) for some constants c and d.

For a multivariable polynomial p(x1, . . . , xm), we denote by [xc1
1 · · ·xcm

m]p(x1, . . . , xm) its
coefficient at the multinomial xc1

1 · · ·xcm
m .

3 Path in the hyperlattice

We formulate our generic problem as follows. The input to the problem is a subgraph G

of Q(D, n). The problem is to determine whether there is a path from 0n to Dn in G. We
examine this as a query problem: a single query determines whether an edge (u, v) is present
in G or not.

Classically, we can solve this problem using a dynamic programming algorithm that
computes the value dp(v) recursively for all v, which is defined as 1 if there is a path from 0n

to v, and 0 otherwise. It is calculated by the Bellman, Held and Karp style recurrence [5, 22]:

dp(v) =
∨

(u,v)∈E

{dp(u) ∧ ((u, v) ∈ G)}, dp(0n) = 1.

The query complexity of this algorithm is O(n(D + 1)n). From this moment we refer to this
as the classical dynamic programming algorithm.

The query complexity is also lower bounded by Ω̃((D + 1)n). Consider the sets of edges
EW connecting the vertices with weights W and W + 1,

EW := {(u, v) | (u, v) ∈ Q(D, n), |u| = W, |v| = W + 1}.

Since the total number of edges is equal to (D + 1)n−1Dn, there is such a W that |EW | ≥
(D + 1)n−1Dn/Dn = (D + 1)n−1 (in fact, one can prove that the largest size is achieved for
W = ⌊nD/2⌋ [13], but it is not necessary for this argument). Any such EW is a cut of HD,
hence any path from 0n to Dn passes through EW . Examine all G that contain exactly one
edge from EW , and all other edges. Also examine the graph that contains no edges from
EW , and all other edges. In the first case, any such graph contains a desired path, and in
the second case there is no such path. To distinguish these cases, one must solve the OR
problem on |EW | variables. Classically, Ω(|EW |) queries are needed (see, for example, [8]).
Hence, the classical (deterministic and randomized) query complexity of this problem is
Θ̃((D + 1)n). This also implies Ω̃(

√
(D + 1)n) quantum lower bound for this problem [6].

4 The quantum algorithm

Our algorithm closely follows the ideas of [4]. We will use the well-known generalization of
Grover’s search:

▶ Theorem 1 (Variable time quantum search (VTS), Theorem 3 in [3]). Let A1, . . ., AN be
quantum algorithms that compute a function f : [N]→ {0, 1} and have query complexities t1,
. . ., tN , respectively, which are known beforehand. Suppose that for each Ai, if f(i) = 0, then
Ai = 0 with certainty, and if f(i) = 1, then Ai = 1 with constant success probability. Then
there exists a quantum algorithm with constant success probability that checks whether f(i) = 1
for at least one i and has query complexity O

(√
t2
1 + . . . + t2

N

)
. Moreover, if f(i) = 0 for all

i ∈ [N], then the algorithm outputs 0 with certainty.

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:5

Even though Ambainis formulates the main theorem for zero-error inputs, the statement
above follows from the construction of the algorithm.

Now we describe our algorithm. We solve a more general problem: suppose s, t ∈
{0, 1, . . . , D}n are such that s < t and we are given a subgraph of the n-dimensional lattice

n
ą

i=1
{si, . . . , ti},

and the task is to determine whether there is path from s to t. We need this generalized
problem because our algorithm is recursive and is called for sublattices.

Define di := ti − si. Let nd be the number of indices i ∈ [n] such that di = d. Note that
the minimum and maximum weights of the vertices of this lattice are |s| and |t|, respectively.

We call a set of vertices with fixed total weight a layer. The algorithm will operate with K

layers (numbered 1 to K), with the k-th having weight |s|+Wk, where Wk :=
⌊∑D

d=1 αk,ddnd

⌋
.

Denote the set of vertices in this layer by

Lk := {v | |v| = |s|+ Wk}.

Here, αk,d ∈ (0, 1/2) are constant parameters that have to be determined before we run
the algorithm. The choice of αk,d does not depend on the input to the algorithm, similarly
as it was in [4]. For each k ∈ [K] and d ∈ [D], we require that αk,d < αk+1,d. In addition
to the K layers defined in this way, we also consider the (K + 1)-th layer LK+1, which is
the set of vertices with weight |s|+ WK+1, where WK+1 :=

⌊
|t|−|s|

2

⌋
. We can see that the

weights W1, . . . , WK+1 defined in this way are non-decreasing.
The informal description of the algorithm (Path) is as follows. First, we use the classical

dynamic programming to calculate which vertices v with weight |v| ≤ |s|+ W1 are reachable
from s. Then, we store all of these answers in memory. Symmetrically, we also calculate from
which vertices v with weight |v| ≥ |t| −W1 we can reach t, and also store this in memory.
We refer to these steps as the classical precalculation part.

Next, we use VTS to search for a vertex v(K+1) in the layer LK+1 such that there is path
from s to v(K+1) and from v to t. The LayerPath function is then used to detect whether
there is a path from s to v(K+1). First, we use VTS to search for a vertex v(K) ∈ LK such
that: (1) there exists a path from v(K) to v(K+1); (2) there exists a path from s to v(K). The
first condition we can check using Path recursively for the lattice bounded by the vertices
v(K) and v(K+1). The second condition is checked recursively using LayerPath in a similar
fashion. Finally, for the vertex v(1) ∈ L1, the LayerPath will need to check whether there
is a path from s to v(1): this can be then simply read out from the memory, using the results
of the precalculation part. We then similarly find whether t is reachable from v(K).

5 Query complexity

For simplicity, let us examine the lattice
n

ą

i=1
{0, . . . , ti − si},

as the analysis is identical.

Let the number of positions with maximum coordinate value d be nd. We make an ansatz
that the exponential complexity can be expressed as

T (n1, . . . , nD) := T n1
1 T n2

2 · . . . · T nD

D

MFCS 2021

50:6 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

Algorithm 1 The quantum algorithm for detecting a path in the hyperlattice.
Path(s, t):
1. Calculate n1, . . ., nD, and W1, . . ., WK+1. If Wk = Wk+1 for some k, determine whether

there exists a path from s to t using classical dynamic programming and return.
2. Otherwise, first perform the precalculation step. Let dp(v) be 1 iff there is a path from s

to v. Calculate dp(v) for all vertices v such that |v| ≤ |s|+ W1 using classical dynamic
programming. Store the values of dp(v) for all vertices with |v| = |s|+ W1.
Let dp′(v) be 1 iff there is a path from v to t. Symmetrically, we also calculate dp′(v) for
all vertices with |v| = |t| −W1.

3. Define the function LayerPath(k, v) to be 1 iff there is a path from s to v such that
v ∈ Lk. Implement this function recursively as follows.

LayerPath(1, v) is read out from the stored values.
For k > 1, run VTS over the vertices u ∈ Lk−1 such that u < v. The required value is
equal to

LayerPath(k, v) =
∨
u

{LayerPath(k − 1, u) ∧Path(u, v)}.

4. Similarly define and implement the function LayerPath′(k, v), which denotes the exist-
ence of a path from v to t such that v ∈ L′

k (where L′
k is the layer with weight |t| −Wk).

To find the final answer, run VTS over the vertices in the middle layer v ∈ LK+1 and
calculate∨

v

{
LayerPath(K + 1, v) ∧ LayerPath′(K + 1, v)

}
.

for some values T1, T2, . . . , TD > 1 (we also can include n0 and T0, however, T0 = 1 always
and doesn’t affect the complexity). We prove it by constructing generating polynomials
for the precalculation and quantum search steps, and then approximating the required
coefficients asymptotically. We use the saddle point method that is frequently used for such
estimation, specifically the theorems developed in [9].

5.1 Generating polynomials
First we estimate the number of edges of the hyperlattice queried in the precalculation step.
The algorithm queries edges incoming to the vertices of weight at most W1, and each vertex
can have at most n incoming edges. The size of any layer with weight less than W1 is at most
the size of the layer with weight exactly W1, as the size of the layers is non-decreasing until
weight WK+1 [13]. Therefore, the number of queries during the precalculation is at most
n ·W1 · |L1| ≤ n2D|L1|, as W1 ≤ nD. Since we are interested in the exponential complexity,
we can omit n and D, thus the exponential query complexity of the precalculation is given
by |L1|.

Now let Pd(x) :=
∑d

i=0 xi. The number of vertices of weight W1 can be written as the
coefficient at xW1 of the generating polynomial

P (x) :=
D∏

d=0
Pd(x)nd .

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:7

Indeed, each Pd(x) in the product corresponds to a single position i ∈ [n] with maximum
value d and the power of x in that factor represents the coordinate of the vertex in this
position. Therefore, the total power that x is raised to is equal to the total weight of the
vertex, and coefficient at xW1 is equal to the number of vertices with weight W1. Since the
total query complexity of the algorithm is lower bounded by this coefficient, we have

T (n1, . . . , nD) ≥
[
xW1

]
P (x). (1)

Similarly, we construct polynomials for the LayerPath calls. Consider the total com-
plexity of calling LayerPath recursively until some level 1 ≤ k ≤ K and then calling Path
for a sublattice between levels Lk and Lk+1. Define the variables for the vertices chosen by
the algorithm at level i (where k ≤ i ≤ K + 1) by v(i). The Path call is performed on a
sublattice between vertices v(k) and v(k+1), see Fig. 1.

LK+1
LK

Lk+1
Lk

L1

.

v
(K+1)

v
(K)

v
(k+1)

v
(k)

Figure 1 The choice of the vertices v(i) and the application of Path on the sublattice.

Define

Sk,d(xk,k, . . . , xk,K+1) :=
d∑

i=0
T 2

i ·
∑

pk,...,pK+1∈[0,d]
pk+1≤...≤pK+1

pk+1−pk=i

K+1∏
j=k

x
pj

k,j .

Again, this corresponds to a single coordinate. The variable xk,j corresponds to the vertex
v(j) and the power pj corresponds to the value of v(j) in that coordinate.

Examine the following multivariate polynomial:

Sk(xk,k, . . . , xk,K+1) :=
D∏

d=0
Snd

k,d(xk,k, . . . , xk,K+1).

We claim that the coefficient[
xWk

k,k · · ·x
WK+1
k,K+1

]
Sk(xk,k, . . . , xk,K+1)

is the required total complexity squared.
First of all, note that the value of this coefficient is the sum of t2, where t is the variable

for the running time of Path between v(k) and v(k+1), for all choices of vertices v(k), v(k+1),
. . ., v(K+1). Indeed, the powers pj encode the values of coordinates of v(j), and a factor of
T 2

i is present for each multinomial that has pk+1 − pk = i (that is, v
(k+1)
l − v

(k)
l = i for the

corresponding position l).
Then, we need to show that the sum of t2 equals the examined running time squared.

Note that the choice of each vertex v(j) is performed using VTS. In general, if we perform
VTS on the algorithms with running times s1, . . ., sN , then the total squared running time

MFCS 2021

50:8 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

is equal to s2
1 + . . . + s2

N by Theorem 1. By repeating this argument in our case inductively
at the choice of each vertex v(j), we obtain that the final squared running time indeed is the
sum of all t2.

Therefore, the square of the total running time of the algorithm is lower bounded by

T (n1, . . . , nD)2 ≥
[
xWk

k,k · · ·x
WK+1
k,K+1

]
Sk(xk,k, . . . , xk,K+1). (2)

Together the inequalities (1) and (2) allow us to estimate T . The total time complexity
of the quantum algorithm is twice the sum of the coefficients given in Eq. (1) and (2)
for all k ∈ [K] (twice because of the calls to LayerPath and its symmetric counterpart
LayerPath′). This is upper bounded by 2K times the maximum of these coefficients. Since
2K is a constant, and there are O(log n) levels of recursion (see Appendix A), in total
this contributes only (2K)O(log n) = poly(n) factor to the total complexity of the quantum
algorithm.

5.2 Saddle point approximation
In this section, we show how to describe the tight asymptotic complexity of T (n1, . . . , nD)
using the saddle point method (a detailed review can be found in [15], Chapter VIII). Our
main technical tool will be the following theorem.

▶ Theorem 2. Let p1(x1, . . . , xm), . . ., pD(x1, . . . , xm) be polynomials with non-negative
coefficients. Let n be a positive integer and b1, . . . , bD be non-negative rational numbers such
that b1 + . . . + bD = 1 and bdn is an integer for all d ∈ [D]. Let ai,d be rational numbers
(for i ∈ [m], d ∈ [D]) and αi := ai,1b1 + . . . + ai,DbD. Suppose that αin are integer for all
i ∈ [m]. Then

(1) [xα1n
1 · · ·xαmn

m]
∏D

d=1 pd(x1, . . . , xm)bdn ≤

(
infx1,...,xm>0

∏D
d=1

(
pd(x1,...,xm)
x

a1,d
1 ···x

am,d
m

)bd
)n

(2) [xα1n
1 · · ·xαmn

m]
∏D

d=1 pd(x1, . . . , xm)bdn = Ω
((

infx1,...,xm>0
∏D

d=1

(
pd(x1,...,xm)
x

a1,d
1 ···x

am,d
m

)bd
)n)

,

where Ω depends on the variable n.

Proof. To prove this, we use the following saddle point approximation.2

▶ Theorem 3 (Saddle point method, Theorem 2 in [9]). Let p(x1, . . . , xm) be a polynomial
with non-negative coefficients. Let α1, . . . , αm be some rational numbers and let ni be the
series of all integers j such that αkj are integers and

[
xα1j

1 · · ·xαmj
m

]
p(x1, . . . , xm)j ≠ 0.

Then

lim
i→∞

1
ni

log([xα1ni
1 · · ·xαmni

m]p(x1, . . . , xm)ni) = inf
x1,...,xm>0

log
(

p(x1, . . . , xm)
xα1

1 · · ·x
αm
m

)
.

Let p(x1, . . . , xm) :=
∏D

d=1 pd(x1, . . . , xm)bd , then

p(x1,...,xm)
xα1

1 ···x
αm
m

=
∏D

d=1pd(x1,...,xm)bd

xα1
1 ···x

αm
m

=
D∏

d=1

pd(x1,...,xm)bd

x
a1,dbd

1 ···xam,dbd
m

=
D∏

d=1

(
pd(x1,...,xm)
x

a1,d

1 ···xam,d
m

)bd

.

2 Setting γ = 1 in the statement of the original theorem.

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:9

For the first part, as p(x1, . . . , xm)n has non-negative coefficients, the coefficient at the
multinomial xα1n

1 · · ·xαmn
m is upper bounded by

inf
x1,...,xm>0

p(x1, . . . , xm)n

xα1n
1 · · ·xαmn

m
=
(

inf
x1,...,xm>0

p(x1, . . . , xm)
xα1

1 · · ·x
αm
m

)n

The second part follows directly by Theorem 3. ◀

5.2.1 Optimization program
To determine the complexity of the algorithm, we construct the following optimization
problem. Recall that the Algorithm 1 is given by the number of layers K and the constants
αk,d that determine the weight of the layers, so assume they are fixed known numbers.
Assume that αk,d are all rational numbers between 0 and 1/2 for k ∈ [K]; indeed, we can
approximate any real number with arbitrary precision by a rational number. Also let T0 = 1
and αK+1,d = 1/2 for all d ∈ [D] for convenience.

Examine the following program OPT(D, K, {αk,d}):

minimize TD s.t. Td ≥
Pd(x)
xα1,dd

∀d ∈ [D]

T 2
d ≥

Sk,d(xk,k, . . . , xk,K+1)
x

αk,dd
k,k · · ·xαK+1,dd

k,K+1

∀d ∈ [D],∀k ∈ [K]

Td ≥ 1 ∀d ∈ [D]
x > 0
xk,j > 0 ∀k ∈ [K],∀j ∈ {k, . . . , K + 1}

Let n := n1 + . . . + nD and αk :=
∑D

d=1
αk,ddnd

n . Suppose that T1, . . . , TD is a feasible
point of the program. Then by Theorem 2 (1) (setting bi := ni/n and ai,d := αi,dd) we have

[xα1n]P (x) ≤ inf
x>0

D∏
d=1

(
Pd(x)
xα1,dd

)nd

≤ T n1
1 · · ·T

nD

D .

Similarly,

[xαkn
k,k · · ·x

αK+1n
k,K+1]Sk(xk,k, . . . , xk,K+1) ≤ inf

xk,k,...,xk,K+1>0

D∏
d=1

(
Sk,d(xk,k, . . . , xk,K+1)

x
αk,dd
k,k · · ·xαK+1,dd

k,K+1

)nd

≤ (T n1
1 · · ·T

nD

D)2.

Therefore, the program provides an upper bound on the complexity. There are two subtleties
that we need to address for correctness: firstly, what happens when αkn is not an integer;
secondly, the case when Wk = Wk+1 for some k. We show that both do not raise an issue in
Appendix B.

5.2.2 Optimality of the program
In the start of the analysis, we made an assumption that the exponential complexity
T (n1, . . . , nD) can be expressed as T n1

1 · · ·T
nD

D . In Appendix C, using the lower bound
of Theorem 3 (2), we show that OPT(D, K, {αk,d}) (which gives an upper bound on the
complexity) can indeed achieve such value and also gives the best possible solution.

MFCS 2021

50:10 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

5.2.3 Total complexity
Finally, in Appendix D we argue that there exists a choice for the parameters {αk,d} such
that OPT(D, K, {αk,d}) < D + 1. Therefore, putting all together, we have the main result:

▶ Theorem 4. There exists a bounded-error quantum algorithm that solves the path in the
n-dimensional lattice problem using Õ(T n

D) queries, where TD < D + 1. The optimal value
of TD can be found by optimizing OPT(D, K, {αk,d}) over K and {αk,d}.

5.3 Complexity for small D

To find the estimate on the complexity for small values of D and K, we have optimized the
value of OPT(D, K, {αk,d}) using Mathematica (minimizing over the values of αk,d). Table
2 compiles the results obtained by the optimization. In case of D = 1, we recovered the
complexity of the quantum algorithm from [4] for the path in the hypercube problem, which
is a special case of our algorithm.

Table 2 The complexity of the quantum algorithm for small values of D and K.

D = 1 D = 2 D = 3 D = 4 D = 5 D = 6

K = 1 1.86793 2.76625 3.68995 4.63206 5.58735 6.55223
K = 2 1.82562 2.67843 3.55933 4.46334 5.38554 6.32193
K = 3 1.81819 2.66198 3.53322 4.42759 5.34059 6.26840
K = 4 1.81707 2.65939 3.52893 4.42148 5.33263 6.25862
K = 5 1.81692 2.65908 3.52836 4.42064 5.33149 6.25720

For K = 1, we were able to estimate the complexity for up to D = 18. Figure 2 shows
the values of the difference between D + 1 and TD for this range.

5 10 15

0.1

0.2

0.3

0.4

0.5

0.6

D

D
+

1
−

T
D

Figure 2 The advantage of the quantum algorithm over the classical for K = 1.

Our Mathematica code used for determining the values of TD can be accessed at https:
//doi.org/10.5281/zenodo.4603689. In Appendix E, we list the parameters for the case
K = 1.

https://doi.org/10.5281/zenodo.4603689
https://doi.org/10.5281/zenodo.4603689

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:11

5.4 Lower bound for general D

Even though Theorem 4 establishes the quantum advantage of the algorithm, it is interesting
how large the speedup can get for large D. In this section, we prove that the speedup cannot
be substantial, more specifically:

▶ Theorem 5. For any fixed integers D ≥ 1 and K ≥ 1, Algorithm 1 performs Ω̃
((

D+1
e
)n
)

queries on the lattice Q(D, n).

Proof. The structure of the proof is as follows. First, we prove that if α1,D > 1
4 , then

the number of queries used in the algorithm during the precalculation step 2 is at least
Ω̃((0.664554(D + 1))n) queries. Then, we prove that if α1,D ≤ 1

4 , then the quantum search
part in steps 3 and 4 performs at least Ω̃

((
D+1

e
)n
)

queries. Therefore, depending on whether

α1,D > 1
4 , one of the precalculation or the quantum search performs Ω̃((c(D + 1))n) queries

for constant c, and the claim follows, since 1
e < 0.664554. Due to space limitations, the proof

can be accessed online in the full version of the paper [18] (Appendix B). ◀

6 Time complexity

In this section we examine a possible high-level implementation of the described algorithm
and argue that there exists a quantum algorithm with the same exponential time complexity
as the query complexity.

Firstly, we assume the commonly used QRAM model of computation that allows to access
N memory cells in superposition in time O(log N) [17]. This is needed when the algorithm
accesses the precalculated values of dp. Since in our case N is always at most (D + 1)n, this
introduces only a O(log((D + 1)n)) = O(n) additional factor to the time complexity.

The main problem that arises is the efficient implementation of VTS. During the VTS
execution, multiple quantum algorithms should be performed in superposition. More formally,
to apply VTS to algorithms A1, . . ., AN , we should specify the algorithm oracle that, given
the index of the algorithm i and the time step t, applies the t-th step of Ai (see Section 2.2
of [11] for formal definition of such an oracle and related discussion). If the algorithms Ai

are unstructured, the implementation of such an oracle may take even O(N) time (if, for
example, all of the algorithms perform a different gate on different qubits at the t-th step).

We circumvent this issue by showing that it is possible to use only Grover’s search to
implement the algorithm, retaining the same exponential complexity (however, the sub-
exponential factor in the complexity will increase). Nonetheless, the use of VTS in the
query algorithm not only achieves a smaller query complexity, but also allowed to prove the
estimate on the exponential complexity, which would not be so amiable for the algorithm
that uses Grover’s search.

6.1 Implementation
The main idea of the implementation is to fix a “class” of vertices for each of the 2K + 1
layers examined by the algorithm, and do this for all r = O(log n) levels of recursion. We will
essentially define these classes by the number of coordinates of a vertex in such layer that are
equal to 0, 1, . . ., D. Then, we can first fix a class for each layer for all levels of recursion
classically. We will show that there are at most nD2 different classes we have to consider
at each layer. Since there are 2K + 1 layers at one level of recursion, and O(log n) levels
of recursion, this classical precalculation will take time nO(D2K log n). For each such choice
of classes, we will run a quantum algorithm that checks for the path in the hyperlattice
constrained on these classes of the vertices the path can go through. The advantage of

MFCS 2021

50:12 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

the quantum algorithm will come from checking the permutations of the coordinates using
Grover’s search. The time complexity of the quantum part will be nO(K log n)T n

D (T n
d as in the

query algorithm, and nO(K log n) from the logarithmic factors in Grover’s search), therefore
the total time complexity will be nO(D2K log n) · nO(K log n)T n

D = nO(D2K log n)T n
D, thus the

exponential complexity stays the same.

6.2 Layer classes
In all of the applications of VTS in the algorithm, we use it in the following scenario: given
a vertex x, examine all vertices y with fixed weight |y| = W such that y < x (note that VTS
over the middle layer LK+1 can be viewed in this way by taking x to be the final vertex in
the lattice, and VTS over the vertices in the layers symmetrical to LK+1 can be analyzed
similarly).

We define a class of y’s (in respect to x) in the following way. Let na,b be the number
of i ∈ [n] such that yi = a and xi = b, where a ≤ b. All y in the same class have the same
values of na,b for all a, b. Also define a representative of a class as a single particular y from
that class; we will define it as the lexicographically smallest such y.

As mentioned in the informal description above, we can fix the classes for all layers
examined by the quantum algorithm and generate the corresponding representatives classically.
Note that in our quantum algorithm, recursive calls work with the sublattice constrained on
the vertices s ≤ y ≤ t for some s < t, so for each position of yi we should have also yi ≥ si;
however, we can reduce it to lattice 0n ≤ y′ ≤ x, where xi := ti − si for all i. To get the real
value of y, we generate a representative y′, and set yi := y′

i + si.
Consider an example for D = 2. The following figure illustrates the representative y (note

that the order of positions of x here is lexicographical for simplicity, but it may be arbitrary).

x = 00 . . . 0 11 1 22 2
y = 00 . . . 0︸ ︷︷ ︸

n0,0

00 . . . 0︸ ︷︷ ︸
n0,1

11 . . . 1︸ ︷︷ ︸
n1,1

00 . . . 0︸ ︷︷ ︸
n0,2

11 . . . 1︸ ︷︷ ︸
n1,2

22 . . . 2︸ ︷︷ ︸
n2,2

Figure 3 The (lexicographically smallest) representative for y for D = 2.

Note that na,b can be at most n. Therefore, there are at most nD2 choices for classes at
each layer. Thus the total number of different sets of choices for all layers is nO(D2K log n).
For each such set of choices, we then run a quantum algorithm that checks for a path in the
sublattice constrained on these classes.

6.3 Quantum algorithm
The algorithm basically implements Algorithm 1, with VTS replaced by Grover’s search.
Thus we only describe how we run the Grover’s search. We will also use the analysis of
Grover’s search with multiple marked elements.

▶ Theorem 6 (Grover’s search). Let f : S → {0, 1}, where |S| = N . Suppose we can generate
a uniform superposition 1√

N

∑
x∈S |x⟩ in O(poly(log N)) time, and there is a bounded-error

quantum algorithm A that computes f(x) with time complexity T . Suppose also that there is
a promise that either there are at least k solutions to f(x) = 1, or there are none. Then there
exists a bounded-error quantum algorithm that runs in time O(T log N

√
N/k), and detects

whether there exists x such that f(x) = 1.

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:13

Proof. First, it is well-known that in the case of k marked elements, Grover’s algorithm [21]
needs O(

√
N/k) iterations. Second, the gate complexity of one iteration of Grover’s search

is known to be O(log N). Finally, even though A has constant probability of error, there is
a result that implements Grover’s search with a bounded-error oracle without introducing
another logarithmic factor [23]. ◀

Now, for a class C of y’s (for a fixed x) we need to generate a superposition 1√
|C|

∑
y∈C |y⟩

efficiently to apply Grover’s algorithm. We will generate a slightly different superposition for
the same purposes. Let I1, . . . , ID be sets Id := {i ∈ [n] | xi = d} and let nd := |Id|. Let yC
be the representative of C. We will generate the superposition

D⊗
d=0

1√
nd!

∑
π∈Snd

|π(yCId
)⟩ |π⟩ , (3)

where yCId
are the positions of yC in Id.

We need a couple of procedures to generate such state. First, there exists a procedure
to generate the uniform superposition of permutations 1√

n!

∑
π∈Sn

|π1, . . . , πn⟩ that requires
O(n2 log n) elementary gates [2, 10]. Then, we can build a circuit with O(poly(n)) gates that
takes as an input π ∈ Sn, s ∈ {0, 1, . . . , D}n and returns π(s). Such an circuit essentially
could work as follows: let t := 0n; then for each pair i, j ∈ [n], check whether π(i) = j; if yes,
let tj ← tj + sπ(i); in the end return t. Using these two subroutines, we can generate the
required superposition using O(poly(n)) gates (we assume D is a constant).

However, we do not necessarily know the sets Id, because the positions of x have been
permuted by previous applications of permutations. To mitigate this, note that we can access
this permutation in its own register from the previous computation. That is, suppose that x

belongs to a class C′ and x = σ(xC′), where xC′ is the representative of C′ generated by the
classical algorithm from the previous subsection. Then we have the state |σ(xC′)⟩ |σ⟩.

We can then apply σ to both π(yC) and π. That is, we implement the transformation

|π(yC)⟩ |π⟩ → |σ(π(yC))⟩ |σπ⟩ .

Such transformation can also be implemented in O(poly(n)) gates. Note that now we store
the permutation σπ in a separate register, which we use in a similar way recursively.

Finally, examine the number of positive solutions among π(yC). That is, for how many π

there exists a path from π(y) to x? Suppose that there is a path from y to x for some y ∈ C.
Examine the indices Id; for na,d of these indices i we have yi = a. There are exactly na,d!
permutations that permute these indices and don’t change y. Hence, there are

∏d
a=0 na,d!

distinct permutations π ∈ Snd
such that π(y) = y.

Therefore, there are k :=
∏D

d=0
∏d

a=0 na,d! distinct permutations π among the considered
such that π(y) = y. The total number of considered permutations is N :=

∏D
d=0 nd!. Among

these permutations, either there are no positive solutions, or at least k of the solutions are
positive. Grover’s search then works in time O(T log N

√
N/k). In this case, N/k is exactly

the size of the class C, because nd!
n0,d!···nd,d! is the number of unique permutations of yCPd

, the
multinomial coefficient

(
nd

n0,d,...,nd,d

)
. Hence the state Eq. (3) effectively replaces the need for

the state 1√
|C|

∑
y∈C |y⟩.

6.4 Total complexity
Finally, we discuss the total time complexity of this algorithm. The exponential time
complexity of the described quantum algorithm is at most the exponential query complexity
because Grover’s search examines a single class C, while VTS in the query algorithm examines

MFCS 2021

50:14 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

all possible classes. Since Grover’s search has a logarithmic factor overhead, the total time
complexity of the quantum part of the algorithm is what is described in Section 5 multiplied
by nO(K log n), resulting in nO(K log n)T n1

1 · · ·T
nD

D .
Since there are nO(D2K log n) sets of choices for the classes of the layers, the final total

time complexity of the algorithm is nO(D2K log n)T n1
1 · · ·T

nD

D .
For the space complexity, note that the precalculation step requires asymptotically the

same exponential amount of space as time, thus T n1
1 · · ·T

nD

D is also the exponential space
complexity of the algorithm.

Therefore, we have the following result.

▶ Theorem 7. Assuming QRAM model of computation, there exists a quantum algorithm
that solves the path in the n-dimensional lattice problem with time and space complexity
poly(n)D2 log n · T n

D.

7 Applications

7.1 Set multicover
As an example application of our algorithm, we apply it to the Set Multicover problem
(SMC). This is a generalization of the Minimum Set Cover problem. The SMC problem is
formulated as follows:

Input: A set of subsets S ⊆ 2[n], and a positive integer D.
Output: The size k of the smallest tuple (S1, . . . , Sk) ∈ Sk, such that for all i ∈ [n], we

have |{j | i ∈ Sj}| ≥ D, that is, each element is covered at least D times (note that each set
S ∈ S can be used more than once).

Denote this problem by SMCD, and m := |S|. This problem has been studied classically,
and there exists an exact deterministic algorithm based on the inclusion-exclusion principle
that solves this problem in time Õ(m(D + 1)n) and polynomial space [27, 24]. While there
are various approximation algorithms for this problem, we are not aware of a more efficient
classical exact algorithm.

There is a different simple classical dynamic programming algorithm for this problem
with the same time complexity (although it uses exponential space), which we can speed up
using our quantum algorithm. For a vector x ∈ {0, 1, . . . , D}n, define dp(x) to be the size k

of the smallest tuple (C1, . . . , Ck) ∈ Sk such that for each i, we have |{j ∈ [k] | i ∈ Cj}| ≥ xi.
It can be calculated using the recurrence

dp(0n) = 0, dp(x) = 1 + min
S∈S
{dp(x′)},

where x′ is given by x′
i = max{0, xi − χ(S)i} for all i. Consequently, the answer to the

problem is equal to dp(Dn). The number of distinct x is (D + 1)n, and dp(x) for a single x

can be calculated in time O(nm), if dp(y) has been calculated for all y < x. Thus the time
complexity is O(nm(D + 1)n) and space complexity is O((D + 1)n).

Note that even though the state space of the dynamic programming here is {0, 1, . . . , D}n,
the underlying transition graph is not the same as the hyperlattice examined in the quantum
algorithm. A set S ∈ S can connect vertices that are |S| distance apart from each other,
unlike distance 1 in the hyperlattice. We can essentially reduce this to the hyperlattice-like
transition graph by breaking such transition into |S| distinct transitions.

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:15

More formally, examine pairs (x, S), where x ∈ {0, 1, . . . , D}n, S ∈ S. Let e(x, S) :=
min{i ∈ S | xi > 0}; if there is no such i, let e(x, S) be 0. Define a new function

dp(x, S) =


0, if x = 0n,
dp(x− χ({e(x, S)}), S), if e(x, S) > 0,
1 + minT ∈S,e(x,T)>0{dp(x− χ({e(x, T)}), T}, if e(x, S) = 0.

The new recursion also solves SMCD, and the answer is equal to minS∈S{dp(Dn, S)}.
Examine the underlying transition graph between pairs (x, S). We can see that there is

a transition between two pairs (x, S) and (y, T) only if yi = xi + 1 for exactly one i, and
yi = xi for other i. This is the n-dimensional lattice graph Q(D, n). Thus we can apply our
quantum algorithm with a few modifications:

We now run Grover’s search over (x, S) with fixed |x| for all S ∈ S. This adds a poly(m, n)
factor to each run of Grover’s search.
Since we are searching for the minimum value of dp, we actually need a quantum algorithm
for finding the minimum instead of Grover’s search. We can use the well-known quantum
minimum finding algorithm that retains the same query complexity as Grover’s search
[14]3. It introduces only an additional O(log n) factor for the queries of minimum finding
to encode the values of dp, since dp(x, S) can be as large as Dn.
A single query for a transition between pairs (x, S) and (y, T) in this case returns the
value of the value added to the dp at transition, which is either 0 or 1. If these pairs are
not connected in the transition graph, the query can return ∞. Note that such query can
be implemented in poly(m, n) time.

Since the total number of runs of Grover’s search is O(K log n), the additional factor
incurred is poly(m, n)O(K log n). This provides a quantum algorithm for this problem with
total time complexity

poly(m, n)O(K log n) · nO(D2K log n)T n
D = mO(K log n)nO(D2K log n)T n

D.

Therefore, we have the following result.

▶ Theorem 8. Assuming the QRAM model of computation, there exists a quantum algorithm
that solves SMCD in time and space poly(m, n)log nT n

D, where TD < D + 1.

7.2 Related problems
We are also aware of a couple of other works that implement the dynamic programming on
the {0, 1, . . . , D}n n-dimensional lattice.

Psaraftis examined the job scheduling problem [28], with application to aircraft landing
scheduling. The problem requires ordering n groups of jobs with D identical jobs in each
group. A cost transition function is given: the cost of processing a job belonging to group
j after processing a job belonging to group i is given by f(i, j, d1, . . . , dn), where di is the
number of jobs left to process. The task is to find an ordering of the nD jobs that minimizes
the total cost. This is almost exactly the setting for our quantum algorithm, hence we get
poly(n)log nT n

D time quantum algorithm. Psaraftis proposed a classical O(n2(D + 1)n) time

3 Note that this algorithm assumes queries with zero error, but we apply it to bounded-error queries.
However, it consists of multiple runs of Grover’s search, so we can still use the result of [23] to avoid the
additional logarithmic factor.

MFCS 2021

50:16 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

dynamic programming algorithm. Note that if f(i, j, d1, . . . , dn) are unstructured (can be
arbitrary values), then there does not exist a faster classical algorithm by the lower bound of
Section 3.

However, if f(i, j, d1, . . . , dn) are structured or can be computed efficiently by an oracle,
there exist more efficient classical algorithms for these kinds of problems. For instance, the
many-visits travelling salesman problem (MV-TSP) asks for the shortest route in a weighted
n-vertex graph that visits vertex i exactly Di times. In this case, f(i, j, d1, . . . , dn) = w(i, j),
where w(i, j) is the weight of the edge between i and j. The state-of-the-art classical algorithm
by Kowalik et al. solves this problem in Õ(4n) time and space [32]. Thus, our quantum
algorithm does not provide an advantage. It would be quite interesting to see if there exists
a quantum speedup for this MV-TSP algorithm.

Lastly, Gromicho et al. proposed an exact algorithm for the job-shop scheduling problem
[20, 31]. In this problem, there are n jobs to be processed on D machines. Each job consists
of D tasks, with each task to be performed on a separate machine. The tasks for each job
need to be processed in a specific order. The time to process job i on machine j is given by
pij . Each machine can perform at most one task at any moment, but machines can perform
the tasks in parallel. The problem is to schedule the starting times for all tasks so as to
minimize the last ending time of the tasks. Gromicho et al. give a dynamic programming
algorithm that solves the problem in time O((pmax)2n(D + 1))n, where pmax = maxi,j{pij}.

The states of their dynamic programming are also vectors in {0, 1, . . . , D}n: a state x

represents a partial completion of tasks, where xi tasks of job i have already been completed.
Their dynamic programming calculates the set of task schedulings for x that can be potentially
extended to an optimal scheduling for all tasks. However, it is not clear how to apply Grover’s
search to calculate a whole set of schedulings. Therefore, even though the state space is the
same as in our algorithm, we do not know whether it is possible to apply it in this case.

References
1 Amir Abboud. Fine-Grained Reductions and Quantum Speedups for Dynamic Programming.

In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume
132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1–8:13, Dagstuhl,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ICALP.2019.8.

2 Daniel S. Abrams and Seth Lloyd. Simulation of many-body fermi systems on a univer-
sal quantum computer. Phys. Rev. Lett., 79:2586–2589, September 1997. doi:10.1103/
PhysRevLett.79.2586.

3 Andris Ambainis. Quantum search with variable times. Theory of Computing Systems,
47(3):786–807, 2010. doi:10.1007/s00224-009-9219-1.

4 Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis, and
Jevgēnijs Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’19, page 1783–1793, USA, 2019. Society for Industrial and Applied Mathematics.
doi:10.1137/1.9781611975482.107.

5 Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.
ACM, 9(1):61–63, 1962. doi:10.1145/321105.321111.

6 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.
doi:10.1137/S0097539796300933.

https://doi.org/10.4230/LIPIcs.ICALP.2019.8
https://doi.org/10.4230/LIPIcs.ICALP.2019.8
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.1137/1.9781611975482.107
https://doi.org/10.1145/321105.321111
https://doi.org/10.1137/S0097539796300933

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:17

7 Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M.
Thilikos. A note on exact algorithms for vertex ordering problems on graphs. Theory of
Computing Systems, 50(3):420–432, 2012. doi:10.1007/s00224-011-9312-0.

8 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

9 David Burshtein and Gadi Miller. Asymptotic enumeration methods for analyzing LDPC
codes. IEEE Transactions on Information Theory, 50:1115–1131, 2004. doi:10.1109/TIT.
2004.828064.

10 Mitchell Chiew, Kooper de Lacy, Chao-Hua Yu, Sam Marsh, and Jingbo B. Wang. Graph
comparison via nonlinear quantum search. Quantum Information Processing, 18:302, August
2019. doi:10.1007/s11128-019-2407-2.

11 Arjan Cornelissen, Stacey Jeffery, Maris Ozols, and Alvaro Piedrafita. Span Programs and
Quantum Time Complexity. In Javier Esparza and Daniel Kráľ, editors, 45th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2020), volume 170
of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:14, Dagstuhl,
Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
MFCS.2020.26.

12 Marek Cygan and Marcin Pilipczuk. Faster exact bandwidth. In Graph-Theoretic Concepts
in Computer Science, pages 101–109, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-92248-3_10.

13 N. G. de Bruijn, CA. van Ebbenhorst Tengbergen, and D. Kruyswijk. On the set of divisors of
a number. Nieuw Archief voor Wiskunde, 23(2):191–193, 1951. URL: https://research.tue.
nl/en/publications/on-the-set-of-divisors-of-a-number.

14 Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum, 1996.
arXiv:quant-ph/9607014.

15 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
USA, 1 edition, 2009. doi:10.1017/CBO9780511801655.

16 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer Science &
Business Media, 2010.

17 Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory.
Phys. Rev. Lett., 100:160501, 2008. doi:10.1103/PhysRevLett.100.160501.

18 Adam Glos, Martins Kokainis, Ryuhei Mori, and Jevgēnijs Vihrovs. Quantum speedups for
dynamic programming on n-dimensional lattice graphs, 2021. arXiv:2104.14384.

19 I. J. Good. Saddle-point Methods for the Multinomial Distribution. The Annals of Mathematical
Statistics, 28(4):861–881, 1957. doi:10.1214/aoms/1177706790.

20 Joaquim A. S. Gromicho, Jelke J. van Hoorn, Francisco Saldanha da Gama, and Gerrit T.
Timmer. Solving the job-shop scheduling problem optimally by dynamic programming.
Computers & Operations Research, 39(12):2968–2977, 2012. doi:10.1016/j.cor.2012.02.024.

21 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page
212–219, New York, NY, USA, 1996. Association for Computing Machinery. doi:10.1145/
237814.237866.

22 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
Journal of SIAM, 10(1):196–210, 1962. doi:10.1145/800029.808532.

23 Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum search on bounded-error inputs.
In Automata, Languages and Programming, ICALP’03, page 291–299, Berlin, Heidelberg, 2003.
Springer-Verlag. doi:10.1007/3-540-45061-0_25.

24 Qiang-Sheng Hua, Yuexuan Wang, Dongxiao Yu, and Francis C.M. Lau. Dynamic programming
based algorithms for set multicover and multiset multicover problems. Theoretical Computer
Science, 411(26):2467–2474, 2010. doi:10.1016/j.tcs.2010.02.016.

MFCS 2021

https://doi.org/10.1007/s00224-011-9312-0
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1109/TIT.2004.828064
https://doi.org/10.1109/TIT.2004.828064
https://doi.org/10.1007/s11128-019-2407-2
https://doi.org/10.4230/LIPIcs.MFCS.2020.26
https://doi.org/10.4230/LIPIcs.MFCS.2020.26
https://doi.org/10.1007/978-3-540-92248-3_10
https://research.tue.nl/en/publications/on-the-set-of-divisors-of-a-number
https://research.tue.nl/en/publications/on-the-set-of-divisors-of-a-number
http://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1103/PhysRevLett.100.160501
http://arxiv.org/abs/2104.14384
https://doi.org/10.1214/aoms/1177706790
https://doi.org/10.1016/j.cor.2012.02.024
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/800029.808532
https://doi.org/10.1007/3-540-45061-0_25
https://doi.org/10.1016/j.tcs.2010.02.016

50:18 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

25 Bronisław Knaster, Casimir Kuratowski, and Stefan Mazurkiewicz. Ein beweis des fix-
punktsatzes für n-dimensionale simplexe. Fundamenta Mathematicae, 14(1):132–137, 1929.
doi:10.4064/fm-14-1-132-137.

26 Masayuki Miyamoto, Masakazu Iwamura, Koichi Kise, and François Le Gall. Quantum
speedup for the minimum steiner tree problem. In Donghyun Kim, R. N. Uma, Zhipeng Cai,
and Dong Hoon Lee, editors, Computing and Combinatorics, pages 234–245, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-58150-3_19.

27 Jesper Nederlof. Inclusion exclusion for hard problems. Master’s thesis, Utrecht University,
2008. URL: https://webspace.science.uu.nl/~neder003/MScThesis.pdf.

28 Harilaos N. Psaraftis. A dynamic programming approach for sequencing groups of identical
jobs. Operations Research, 28(6):1347–1359, 1980. doi:10.1287/opre.28.6.1347.

29 Kazuya Shimizu and Ryuhei Mori. Exponential-time quantum algorithms for graph coloring
problems. In Yoshiharu Kohayakawa and Flávio Keidi Miyazawa, editors, LATIN 2020:
Theoretical Informatics, pages 387–398, Cham, 2020. Springer International Publishing. arXiv:
1907.00529.

30 Seiichiro Tani. Quantum Algorithm for Finding the Optimal Variable Ordering for Binary
Decision Diagrams. In Susanne Albers, editor, 17th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2020), volume 162 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 36:1–36:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.SWAT.2020.36.

31 Jelke J. van Hoorn, Agustín Nogueira, Ignacio Ojea, and Joaquim A. S. Gromicho. An
corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic
programming. Computers & Operations Research, 78:381, 2017. doi:10.1016/j.cor.2016.
09.001.

32 Łukasz Kowalik, Shaohua Li, Wojciech Nadara, Marcin Smulewicz, and Magnus Wahlström.
Many Visits TSP Revisited. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms (ESA 2020), volume 173 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 66:1–66:22, Dagstuhl, Germany, 2020.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2020.66.

A Depth of recursion

Note that the algorithm stops the recursive calls if for at least one k, we have Wk = Wk+1,
in which case it runs the classical dynamic programming on the whole sublattice at step 1.
That happens when⌊

D∑
d=1

αk,ddnd

⌋
=
⌊

D∑
d=1

αk+1,ddnd

⌋
.

If this is true, then we also have
∑D

d=1 αk+1,ddnd −
∑D

d=1 αk,ddnd = c for some constant
c < 1. By regrouping the terms, we get

D∑
d=1

(αk+1,d − αk,d)dnd = c.

Denote h := mind∈[D]{αk+1,d − αk,d}. Then
∑D

d=1 dnd ≤ c
h . Note that the left hand side is

the maximum total weight of a vertex. However, at each recursive call the difference between
the vertices with the minimum and maximum total weights decreases twice, since the VTS
call at step 4 runs over the vertices with weight half the current difference. Since c and h

is constant, after O(log(nD)) = O(log n) recursive calls the recursion stops. Moreover, the
classical dynamic programming then runs on a sublattice of constant size, hence adds only a
factor of O(1) to the overall complexity.

https://doi.org/10.4064/fm-14-1-132-137
https://doi.org/10.1007/978-3-030-58150-3_19
https://webspace.science.uu.nl/~neder003/MScThesis.pdf
https://doi.org/10.1287/opre.28.6.1347
http://arxiv.org/abs/1907.00529
http://arxiv.org/abs/1907.00529
https://doi.org/10.4230/LIPIcs.SWAT.2020.36
https://doi.org/10.1016/j.cor.2016.09.001
https://doi.org/10.1016/j.cor.2016.09.001
https://doi.org/10.4230/LIPIcs.ESA.2020.66

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:19

Lastly, we can address the contribution of the constant factor of VTS from Theorem 1 to
the complexity of our algorithm. At one level of recursion there are K + 1 nested applications
of VTS, and there are O(log n) levels of recursion. Therefore, the total overhead incurred is
O(1)O(K log n) = poly(n), since K is a constant.

B Complexity technicalities of the optimization program

For correctness, we need to address the following two subtleties.
The numbers αkn might not be integer; in Algorithm 1, the weights of the layers are
defined by Wk = ⌊αkn⌋. This is a problem, since the inequalities in the program use
precisely the numbers αk,d. Examine the coefficient [x⌊α1n⌋

1 · · ·x⌊αmn⌋
m]p(x1, . . . , xm) in

such general case (when we need to round the powers). Let δk := αkn − ⌊αkn⌋, here
0 ≤ δk < 1. Then, by Theorem 2 (1),[

x
⌊α1n⌋
1 · · ·x⌊αmn⌋

m

]
p(x1, . . . , xm)n ≤ inf

x1,...,xm≥0

p(x1, . . . , xm)n

xα1n−δ1
1 · · ·xαmn−δm

m

. (4)

Now let x̂1, . . . , x̂m be the arguments that achieve infx1,...,xm≥0
p(x1,...,xm)
x

α1
1 ···xαm

m
. Since 0 ≤

δk < 1, we have x̂δk

k ≤ max{x̂k, 1}. Hence, (4) is at most

(x̂δ1
1 · · · x̂δm

m) · p(x̂1, . . . , x̂m)n

x̂α1n
1 · · · x̂αmn

m
≤

(
m∏

k=1
max{x̂k, 1}

)
·
(

inf
x1,...,xm≥0

p(x1, . . . , xm)
xα1

1 · · ·x
αm
m

)n

.

As the additional factor is a constant, we can ignore it in the complexity.
The second issue is when Wk = Wk+1 for some k. Then according to Algorithm 1, we run
the classical algorithm with complexity Θ̃((D + 1)n). However, in that case n is constant
(see Appendix A), which gives only a constant factor to the complexity.

C Proof of the optimality of the optimization program

First, we prove that OPT(D, K, {αk,d}) has a feasible solution. For that, we need to
show that all polynomials in the program can be upper bounded by a constant for some
fixed values of the variables.
First of all, Pd(x)

xα1,dd is upper bounded by d + 1 (setting x = 1). Now fix k and examine
the values Sk,d(xk,k,...,xk,K+1)

x
αk,dd

k,k
···x

αK+1,dd

k,K+1

. Examine only such assignments of the variables xk,j that

xk,kxk,k+1 = 1 and xk,j = 1 for all other j > k + 1. Now we write the polynomial as a
univariate polynomial Sk,d(y) := Sk,d(1/y, y, 1, 1, . . . , 1). Note that for any summand of
Sk,d(y), if it contains some T 2

i as a factor, then it is of the form xpk

k,kxpk+i
k,k+1 · T 2

i = yiT 2
i .

Hence the polynomial can be written as Sk,d(y) =
∑d

i=0 ciy
iT 2

i for some constants
c1, . . . , cd. From this we can rewrite the corresponding program inequality and express T 2

d :

T 2
d ≥

∑d
i=0 ciy

iT 2
i

y(αk+1,d−αk,d)d
(5)

T 2
d ≥

∑d−1
i=0 ciy

iT 2
i

y(αk+1,d−αk,d)d
+ y(1−αk+1,d+αk,d)dcdT 2

d

T 2
d ≥

1
1− y(1−αk+1,d+αk,d)dcd

·
∑d−1

i=0 ciy
iT 2

i

y(αk+1,d−αk,d)d
.

MFCS 2021

50:20 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

Note that cd are constants that do not depend on Ti. If the right hand side is negative,
then it follows that the original inequality Eq. (5) does not hold. Thus we need to pick
such y that the right hand side is positive for all d. Hence we require that

y <

(
1
cd

) 1
(1−αk+1,d+αk,d)d

.

Since the right hand side is a constant that does not depend on Ti, we can pick such y

that satisfies this inequality for all d. Then it follows that all Ti is also upper bounded by
some constants (by induction on i).
Now the question remains whether the optimal solution to OPT(D, K, {αk,d}) gives the
optimal complexity. That is, is the complexity T n

1 · · ·T
nD

D given by the optimal solution
of the optimization program such that TD is the smallest possible?
Suppose that indeed the complexity of the algorithm is upper bounded by T n

1 · · ·T
nD

D

for some T1, . . ., TD. We will derive a corresponding feasible point for the optimization
program.
Examine the complexity of the algorithm for n1 = b1n, . . . , nD = bDn for some fixed
rational bi such that b1 + . . . + bD = 1. The coefficients of the polynomials P and Sk

give the complexity of the corresponding part of the algorithm (precalculation, and
quantum search until the k-th level, respectively). Such coefficients are of the form
[xα1n

1 · · ·xαmn
m]

∏D
d=1 pd(x1, . . . , xm)nd . Let Ad := Td, if p = P , and Ad := T 2

d , if p = Sk.
Then we have

An1
1 · · ·A

nD

D ≥ [xα1n
1 · · ·xαmn

m]
D∏

d=1
pd(x1, . . . , xm)nd . (6)

On the other hand, (6) is at least

Ω
((

inf
x1,...,xm>0

D∏
d=1

(
pd(x1, . . . , xm)
x

a1,d

1 · · ·xam,d
m

)bd
)n)

when n grows large by Theorem 2 (2) (setting ai,d := αi,dd). Then, in the limit n→∞,
we have

Ab1
1 · · ·A

bD

D ≥ inf
x1,...,xm>0

D∏
d=1

(
pd(x1, . . . , xm)
x

a1,d

1 · · ·xam,d
m

)bd

. (7)

Now let ∆D−1 be the standard D-simplex defined by {b ∈ RD | b1 + . . . + bD = 1, bd ≥ 0}.
Define Fd(x) := pd(x1,...,xm)

x
a1,d
1 ···x

am,d
m

, and F (b, x) :=
∏D

d=1 Fd(x)bd for b ∈ ∆D−1 and x ∈ Rm
>0.

First, we prove that that for a fixed b, the function F (b, x) is strictly convex. Examine
the polynomial pd(x1, . . . , xm), which is either Pd(x) or Sk,d(xk,k, . . . , xk,K+1). It was
shown in [19], Theorem 6.3 that if the coefficients of pd(x1, . . . , xm) are non-negative, and
the points (c1, . . . , cm), at which

[xc1
1 · · ·xcm

m]pd(x1, . . . , xm) > 0,

linearly span an m-dimensional space, then log(Fd(x)) is a strictly convex function. If
pd = Pd, then this property immediately follows, because there is just one variable x and
the polynomial is non-constant. For pd = Sk,d, the polynomial consists of summands
of the form T 2

ck+1−ck
xck

k,kx
ck+1
k,k+1 · · ·x

cK+1
k,K+1, for ck ≤ ck+1 ≤ . . . ≤ cK+1. Note that the

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:21

coefficient T 2
ck+1−ck

is positive. Thus the points (ck, . . . , cK+1) = (0, . . . , 0, 1, . . . , 1) indeed
linearly span a (K − k + 2)-dimensional space. Therefore, log(Fd(x)) is strictly convex.
Then also the function

∑D
d=1 bd log(Fd(x)) = log(F (b, x)) is strictly convex (for fixed b),

as the sum of strictly convex functions is convex. Therefore, F (b, x) is strictly convex
as well.
Therefore, the argument x̂(b) achieving infx∈Rm

>0
F (b, x) is unique. Let F̂d(b) := Fd(x̂(b))

and define D subsets of the simplex Cd := {b ∈ ∆D−1 | F̂d(b) ≤ Ad}. We will apply the
following result for these sets:
▶ Theorem 9 (Knaster-Kuratowski-Mazurkiewicz lemma [25]). Let the vertices of ∆D−1
be labeled by integers from 1 to D. Let C1, . . ., CD be a family of closed sets such that
for any I ⊆ [D], the convex hull of the vertices labeled by I is covered by ∪d∈ICd. Then
∩d∈[D]Cd ̸= ∅.

We check that the conditions of the lemma apply to our sets. First, note that F (b, x) is
continuous and strictly convex for a fixed b, hence x̂(b) is continuous and thus F̂d(b) is
continuous as well. Therefore, the “threshold” sets Cd are closed.
Secondly, let I ⊆ [D] and examine a point b in the convex hull of the simplex vertices
labeled by I. For such a point, we have bd = 0 for all d ̸∈ I. For the indices d ∈ I, for
at least one we should have F̂d(b) ≤ Ad, otherwise the inequality in Eq. (7) would be
contradicted. Note that it was stated only for rational b, but since F̂d(b) are continuous
and any real number can be approximated with a rational number to arbitrary precision,
the inequality also holds for real b. Thus indeed any such b is covered by ∪d∈ICd.
Therefore, we can apply the lemma and it follows that there exists a point b ∈ ∆D−1
such that Ad ≥ F̂d(b) for all d ∈ [D]. The corresponding point x̂(b) is a feasible point for
the examined set of inequalities in the optimization program.

D Proof of the quantum speedup

Examine the algorithm with only K = 1; the optimal complexity for any K > 1 cannot be
larger, as we can simulate K levels with K + 1 levels by setting α2,d = α1,d + ϵ for ϵ→ 0 for
all d ∈ [D]. For simplicity, denote αd := α1,d.

Now examine the precalculation inequalities in OPT(D, 1, {α1,d}). For any values of α1,d,

if we set x = 1, we have Pd(x)
xαdd =

∑d

i=0
xi

xαdd = d + 1. The derivative is equal to(∑d
i=0 xi

xαdd

)′

=
xαdd ·

∑d
i=1 ixi−1 − αddxαdd−1 ·

∑d
i=0 xi

x2αdd
= d(d + 1)

2 − αdd(d + 1)

at point x = 1. Thus when αd < 1
2 , the derivative is positive. It means that for arbitrary

αd < 1
2 , there exists some x(d) such that Pd(x)

xαdd < d + 1, and Pd(x)
xαdd monotonically grows

on x ∈ [x(d), 1]. Thus, for arbitrary setting of {αd} such that αd < 1
2 for all d ∈ [D], we

can take x̂ := maxd∈[D]{x(d)} as the common parameter, in which case all Pd(x̂)
x̂αdd < d + 1.

Now examine the set of the quantum search inequalities. Let y := x1,1 and z := x1,2 for
simplicity. Then such inequalities are given by

T 2
d ≥ S1,d(y, z) =

∑d
i=0 T 2

i

∑d−i
p=0 ypzp+i

yαddzd/2 .

MFCS 2021

50:22 Quantum Speedups for Dynamic Programming on n-Dimensional Lattice Graphs

Now restrict the variables to condition yz = 1. In that case, the polynomial above
simplifies to

S1,d(z) :=
∑d

i=0 T 2
i

∑d−i
p=0 zi

y
d
2 +d(αd− 1

2)zd/2
=
(

d∑
i=0

T 2
i (d− i + 1)zi

)
· zd(αd− 1

2).

We now find such values of z and α1, . . . , αD so that S1,d(z) < (d + 1)2 for all d ∈ [D],
where T1, . . . , TD are any values such that Td ≤ d + 1 for all d ∈ [D]. Denote Ŝ1,d(z) to
be S1,d(z) with Td = d + 1 for all d ∈ [D], then Ŝ1,d(z) < (d + 1)2 as well. Now let Td

be the maximum of Pd(x̂)
x̂αdd from the previous bullet and Ŝ1,d(z). Then, Td < d + 1, and

we have both Td ≥ Pd(x̂)
x̂αdd and T 2

d ≥ Ŝ1,d(z) ≥ S1,d(z), since S1,d(z) cannot become larger
when Td decrease.
Now we show how to find such z and α1, . . . , αD. Examine the sum in the polynomial
Ŝ1,d(z)

d∑
i=0

(i + 1)2(d− i + 1)zi = (d + 1) +
d∑

i=1
(i + 1)2(d− i + 1)zi.

Examine the second part of the sum. We can find a sufficiently small value of z ∈ (0, 1)
such that this part is smaller than any value ϵ > 0 for all d ∈ [D]. Now, let αd = 1

2 −
c
d

for some constant c > 0. Then

zd(αd− 1
2) = z−c

for all d ∈ [D]. Thus, the total value of the sum now is at most (d + 1 + ϵ)z−c. As
z−1 > 1, take a sufficiently small value of c so that this value is at most (d + 1)2.

E Numerical results for K = 1

D = 1

T1 = 1.86793
x = 0.464808

x1,1 = 6.0606
x1,2 = 0.104715
α1,1 = 0.317317

D = 2

T1 = 1.87788
T2 = 2.76626
x = 0.595073

x1,1 = 5.74769
x1,2 = 0.12725
α1,1 = 0.314447
α1,2 = 0.337219

D = 3

T1 = 1.89454
T2 = 2.77944
T3 = 3.68995
x = 0.684299

x1,1 = 5.41613
x1,2 = 0.146775
α1,1 = 0.310059
α1,2 = 0.336865
α1,3 = 0.351627

A. Glos, M. Kokainis, R. Mori, and J. Vihrovs 50:23

D = 4

T1 = 1.91039
T2 = 2.80346
T3 = 3.7035
T4 = 4.63207
x = 0.747046

x1,1 = 5.11625
x1,2 = 0.163892
α1,1 = 0.306472
α1,2 = 0.335557
α1,3 = 0.351929
α1,4 = 0.362866

D = 5

T1 = 1.92386
T2 = 2.828
T3 = 3.72975
T4 = 4.64486
T5 = 5.58737
x = 0.792588

x1,1 = 4.8582
x1,2 = 0.178964
α1,1 = 0.304026
α1,2 = 0.334429
α1,3 = 0.351624
α1,4 = 0.36331
α1,5 = 0.371992

D = 6

T1 = 1.93495
T2 = 2.85009
T3 = 3.75806
T4 = 4.6709
T5 = 5.600
T6 = 6.55224
x = 0.826544

x1,1 = 4.63595
x1,2 = 0.192435
α1,1 = 0.302631
α1,2 = 0.333786
α1,3 = 0.351339
α1,4 = 0.363364
α1,5 = 0.372425
α1,6 = 0.379599

MFCS 2021

	1 Introduction
	2 Preliminaries
	3 Path in the hyperlattice
	4 The quantum algorithm
	5 Query complexity
	5.1 Generating polynomials
	5.2 Saddle point approximation
	5.2.1 Optimization program
	5.2.2 Optimality of the program
	5.2.3 Total complexity

	5.3 Complexity for small D
	5.4 Lower bound for general D

	6 Time complexity
	6.1 Implementation
	6.2 Layer classes
	6.3 Quantum algorithm
	6.4 Total complexity

	7 Applications
	7.1 Set multicover
	7.2 Related problems

	A Depth of recursion
	B Complexity technicalities of the optimization program
	C Proof of the optimality of the optimization program
	D Proof of the quantum speedup
	E Numerical results for K=1

