
Online Domination: The Value of Getting to Know
All Your Neighbors
Hovhannes A. Harutyunyan
Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

Denis Pankratov
Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

Jesse Racicot
Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

Abstract
We study the dominating set problem in an online setting. An algorithm is required to guarantee
competitiveness against an adversary that reveals the input graph one node at a time. When a
node is revealed, the algorithm learns about the entire neighborhood of the node (including those
nodes that have not yet been revealed). Furthermore, the adversary is required to keep the revealed
portion of the graph connected at all times. We present an algorithm that achieves 2-competitiveness
on trees. We also present algorithms that achieve 2.5-competitiveness on cactus graphs, (t − 1)-
competitiveness on K1,t-free graphs, and Θ(

√
∆) for maximum degree ∆ graphs. We show that all

of those competitive ratios are tight. Then, we study several more general classes of graphs, such as
threshold, bipartite planar, and series-parallel graphs, and show that they do not admit competitive
algorithms (i.e., when competitive ratio is independent of the input size). Previously, the dominating
set problem was considered in a different input model (often together with the restriction of the input
graph being always connected), where a vertex is revealed alongside its restricted neighborhood:
those neighbors that are among already revealed vertices. Thus, conceptually, our results quantify
the value of knowing the entire neighborhood at the time a vertex is revealed as compared to the
restricted neighborhood. For instance, it was known in the restricted neighborhood model that
3-competitiveness is optimal for trees, whereas knowing the neighbors allows us to improve it to
2-competitiveness.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Dominating set, online algorithms, competitive ratio, trees, cactus graphs,
bipartite planar graphs, series-parallel graphs, closed neighborhood

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.57

Related Version Full Version: https://arxiv.org/abs/2105.00299

Funding This research is supported NSERC.

1 Introduction

Given an undirected simple graph G = (V, E), a subset of vertices D ⊆ V is called dominating
if every vertex of V is either in D or is adjacent to some vertex in D. In the well-known
N P-hard dominating set problem, the goal is to find a dominating set of minimum cardinality.
We study this problem in the online setting, where a graph is revealed one node at a time.
When a node is revealed its entire neighborhood is revealed as well. An algorithm is required
to make an irrevocable decision on whether to include the newly revealed vertex into the
dominating set the algorithm is constructing or not. This decision must be made before the
next vertex is revealed. Performance of an online algorithm is measured against an optimal

© Hovhannes A. Harutyunyan, Denis Pankratov, and Jesse Racicot;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 57; pp. 57:1–57:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2021.57
https://arxiv.org/abs/2105.00299
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Online Domination: The Value of Getting to Know All Your Neighbors

offline algorithm, i.e., an algorithm that knows the entire input in advance and has infinite
computational resources. This measure is captured by the notion of competitive ratio and
analysis, which is made precise below. For now, it suffices to note that competitive ratio is
analogous to approximation ratio in the offline setting.

The dominating set problem has important practical and theoretical applications, such as
establishing surveillance service ([1]), routing and transmission services in (wireless) networks
([5]), as well as broadcasting ([7, 8]). While the dominating set problem and its variants
(connected dominating set, independent dominating set, weighted dominating set, etc.) have
been extensively studied in the offline setting [1, 9, 11, 15, 16, 17], this problem has received
little attention in the online algorithms community. The current paper attempts to fill in this
gap, while making a quantitative comparison with another online model for dominating set.

Online dominating set problem has been studied in the vertex arrival model by Boyar
et al. [3]. In that model, when a vertex is revealed only restricted neighborhood of that
vertex is revealed as well, namely, those neighbors that appear among previously revealed
vertices. Moreover, in the model considered by Boyar et al. decisions are only partially
irrevocable, i.e., when a vertex arrives an algorithm may add this vertex together with any
of its neighbors from the restricted neighborhood to the dominating set. Thus, the decision to
include a vertex is irrevocable, while the decision not to include a vertex is only partially
irrevocable – an algorithm has a chance to reconsider when any yet unrevealed neighbors
arrive. The catch is that the algorithm does not know the input size and has to maintain a
dominating set at all times. In the model considered in this paper, all decisions (to include
or exclude a vertex from a dominating set) are irrevocable. Boyar et al. [3] considered the
online dominating set problem in two settings, namely, with the restriction of an adversary
being forced to maintain an always connected graph and without this restriction. For the
fairness of comparison, when we talk about Boyar et al. results we refer to their results for
the always-connected setting1. To summarize, on one hand, our model is stronger for the
adversary since it forces the algorithm to make an irrevocable decision at each step. On
another hand, our model is weaker for the adversary than the model of Boyar et al. in the
aspect of the adversary being forced to reveal all neighbors of a newly revealed vertex at
once. Thus, our results when compared to those of the vertex arrival model can be viewed as
quantifying the value of getting to know all neighbors of a vertex at the time of its revelation.

Perhaps somewhat surprisingly, we discover in several results that the benefit of knowing all
neighbors outweighs the drawbacks of fully irrevocable decisions. Our results are summarized
below, but in particular we show that in our model ∆-bounded degree graphs admit O(

√
∆)

online algorithms, while Boyar et al. show that Ω(∆) is necessary in their model. Similarly,
we analyze a 2-competitive algorithm for trees, while Kobayashi [13] shows a lower bound
of 3 in the vertex arrival model. Our degree upper bound implies that O(

√
n) competitive

ratio is tight for general graphs, whereas Boyar et al. showed the lower bound of Ω(n) in the
vertex arrival model. This paints a picture that knowing all the neighbors improves not only
precise constants, when graph classes allow for small competitive ratio algorithms, but also
give asymptotic improvements for more “challenging” graph classes for algorithms.

Prior to summarizing our results, we give a brief overview of competitive analysis
framework. For more details, an interested reader should consult excellent books [2, 14]
and references therein. Let ALG be an algorithm for the online dominating set problem.

1 In our model, two natural definitions of always-connected restriction are possible: (i) with respect to
all vertices that the algorithm is aware of at any particular moment (this includes vertices that have
arrived and their neighbors that have not yet arrived), and (ii) with respect to only those vertices that
have arrived. Our work is in setting (ii). This distinction is absent in the vertex arrival model.

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:3

Let ALG(G, σ) denote the set of vertices that are selected by ALG on the input graph
G with its vertices revealed according to the order σ. We sometimes abuse the notation
and omit G or σ (or both) when they are clear from the context. Abusing notation even
more, we sometimes write ALG(G, σ) to mean |ALG(G, σ)|. Similar conventions apply to
an offline optimal solution denoted by OPT . We say that ALG has strict competitive ratio c

if ALG ≤ c · OPT on all inputs. We say that ALG has asymptotic competitive ratio c (or,
alternatively, that ALG is c-competitive) if lim supOP T →∞

ALG
OP T ≤ c. The competitive ratio

of ALG is the infimum over all c such that ALG is c-competitive. When we simply write
“competitive ratio” we typically mean “asymptotic competitive ratio” unless stated otherwise.

We shall consider performance of algorithms with respect to restricted inputs, specified by
various graph classes, such as trees, cactus graphs, series-parallel, etc. The above definitions
of competitive ratios can be modified by restricting them to inputs coming from certain
graph classes. We denote the competitive ratio of an algorithm ALG with respect to the
restricted graph class CLASS by ρ(ALG,CLASS).

The following is a summary of our contributions with the section numbers where the
results appear. Due to space considerations some of our results have been moved to appendix:

tight competitive ratio 2 on trees (Section 3.1);
tight competitive ratio 5

2 on cactus graphs (Section 3.2);
tight competitive ratio Θ(

√
∆) on maximum degree ∆ graphs (Section 3.3);

tight competitive ratio t − 1 on K1,t-free graphs (Section 3.4);
tight competitive ratio Θ(

√
n) for threshold graphs (Section B.1), planar bipartite graphs

(Section B.2), and series-parallel graphs (Section B.3).

We note that all our upper bounds are in terms of strict competitive ratios, and all our
lower bounds, with the exception of K1,t-free graphs, are in terms of asymptotic competitive
ratios.2 Most of our upper bounds are established by charging arguments. Our charging
schemes are natural and to analyze them we establish several combinatorial properties of
relevant graph classes. We suspect that these (or similar) techniques can be used to extend the
results to other graph classes, such as almost-tree(k). Our main contribution is conceptual:
we begin a systematic study of a well known N P-hard problem in an online setting that
hasn’t been extensively considered before and which allows quantifying how much extra
information about the neighborhood helps the competitive ratio.

2 Preliminaries

In this section we describe definitions and establish notations that will be used frequently
in the rest of the paper. Let G = (V, E) be a connected undirected graph on n = |V | ≥ 1
vertices. The closed neighborhood of a subset of vertices S ⊆ V , denoted by N [S], is defined
as S ∪ {v ∈ V | ∃u ∈ S, {u, v} ∈ E}.

The vertices V are revealed online in order (v1, ..., vn). Since we consider the online input
model where vertices are revealed alongside their neighbors, we distinguish between two
notions: those vertices that are revealed by a certain time and those that are visible. More
precisely, we have the following:

2 With the small caveat that the performance ratio for threshold graphs is measured as a function of
input size for reasons provided later.

MFCS 2021

57:4 Online Domination: The Value of Getting to Know All Your Neighbors

▶ Definition 1.
vi is revealed by time j if i ≤ j.
vj is visible at time i if it is either revealed by time i or it is adjacent to some vertex
revealed by time i.
Ri denotes the set of all vertices revealed by time i.
Vi denotes the vertices visible at time i (i.e. Vi = N [Ri]).

The adversary chooses the graph G as well as the revelation order of vertices; however, the
adversary is restricted to those revelation orders that guarantee that the induced subgraph
on Ri is connected for all i. Thus, we observe that the process of revelation of a graph by
the adversary is a natural generalization of the breadth-first search (BFS) and depth-first
search (DFS) explorations of the graph. Thus, we can define the revelation tree analogous to
BFS and DFS trees. We need the following observation first:

▶ Observation 2. If vj ∈ Vi \ Vi−1 with j > i ≥ 2 then vi is the unique neighbor of vj at
time i.

In the preceding observation, we say that vj is a child of vi and that vi is the parent of
vj . The edge {vi, vj} is called a tree edge. The subgraph induced on the tree edges is the
revelation tree. Any edge {u, v} where u is not the parent of v nor v the parent of u is called
a cross edge.

After the vertex vi is revealed together with its closed neighborhood N [vi], an online
algorithm ALG must make a decision di ∈ {0, 1}, which indicates whether the algorithm
takes this vertex to be in the dominating set or not. For a given online algorithm ALG we
define the following:

▶ Definition 3.
Si = {vk | dk = 1, 1 ≤ k ≤ i} is the set of revealed vertices selected by ALG after i

decisions where S0 = ∅.
Di = N [Si] is the set of visible vertices that are dominated after i decisions.
Ui = Vi \ Di−1 is the set of visible vertices undominated immediately before decision di

where U0 = ∅.

A series of figures are provided below which illustrate the preceding definitions. For these
figures, and all others in this paper, the convention is that vertices that are shaded in gray
are those selected by ALG, vertices with thicker boundaries belong to OPT , an edge that is
dashed is a cross edge, and all the solid edges are tree edges.

v1 v1

v2

v1

v2 v3

v4

v1

v2 v3

Figure 1 An example of vertices v1, v2, v3, v4 from some input graph being revealed in that order
(from left to right). Empty vertices in this figure are visible but not yet revealed. The adversary
must maintain the connectivity of revealed vertices (ignoring visible but not yet revealed vertices) at
all times. The process continues until all vertices are revealed. An edge that is dashed is a cross
edge and one that is solid is a tree edge.

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:5

Since an algorithm makes irrevocable decisions and must produce a feasible solution, there
may be situations where an algorithm is forced to select a vertex vj to be in the dominating
set. This happens because vj is the “last chance” to dominate some other vertex vi. In this
case, we say that vj saves vi or that vj is the savior of vi. Note that it is possible for a vertex
vj to save itself. The following definition makes the notion of “saving” precise.

▶ Definition 4. A vertex vj saves a vertex vi if j = max{k | vk ∈ N [vi]} and N [vi] \ {vj}
contains no vertices from Sj−1. Let s(vj) denote the set of vertices that vj saves.

Observe that if a vertex is saved then it must be that every one of its neighbors (itself
included) had a chance to dominate the said vertex.

▶ Observation 5. If vi is saved then vi ∈ N [vj] ∩ Uj for any vj ∈ N [vi].

All our upper bounds are established by either a GREEDY algorithm or a k-DOMINATE
algorithm for some fixed integer value of parameter k:

The algorithm GREEDY selects a newly revealed vertex if and only if the vertex is not
currently dominated. Using the notation introduced above, GREEDY selects vi, i ≥ 1 if
and only if vi ∈ Ui.
The algorithm k-DOMINATE (for some fixed integer parameter k) selects a newly revealed
vertex if and only if either (1) the vertex has at least k undominated neighbors, or (2)
the vertex saves at least one other vertex. Using the notation introduced before, vi is
selected if and only if either (1) |N(vi) ∩ Ui| ≥ k, or (2) |s(vi)| ≥ 1.

Both GREEDY and k-DOMINATE give rise to rather efficient offline algorithms so that any
of the positive results given in this paper may be realized as efficient offline approximation
algorithms.

3 Competitive Graph Classes

3.1 Trees
In this section we establish the tight bound of 2 on the best competitive ratio when the
input graph is restricted to be a tree. The upper bound is achieved by the 2-DOMINATE
algorithm and is proved in Theorem 7 below. The lower bound on all online algorithms is
established in Theorem 6. Within this section all of the formal statements implicitly assume
that the input is a tree. We begin the section by proving the lower bound.

▶ Theorem 6. ρ(ALG, TREE) ≥ 2 for any algorithm ALG.

Proof. Consider an arbitrary small ϵ > 0. We will give an adversarial input that guarantees
that ALG ≥ (2 − ϵ)OPT . Let k = ⌈ 3

ϵ ⌉ ≥ 4. At the start, the adversary reveals v1 with k

children {c1, . . . , ck}. Then we start the process described in the next paragraph at c1. The
process can terminate in two ways: (i) ALG stops selecting vertices to be in the dominating
set, or (ii) ALG selects k vertices revealed after c1 (inclusive). If the process terminates
because of (i), then the adversary restarts the process at child c2 of v1. The process again
terminates either with (i) or (ii) with respect to c2. If it is due to (i), then the adversary
restarts the process at c3, and so on. If the process terminates with (ii) with respect to ci

then we reveal cj for j > i as leaves of v1.
Next, we describe the process with respect to ci. The adversary reveals ci with 2 children

and if ALG selects ci then exactly one child of ci is revealed with two additional children.
If ALG selects the child then one of its children is revealed with two additional children,
and so on. Let ji be the number of these vertices that are selected by ALG. This process

MFCS 2021

57:6 Online Domination: The Value of Getting to Know All Your Neighbors

terminates only if ALG stops selecting these vertices with two children (ji < k) or when
ALG selects k of them (ji = k). At this point the subtree grown at ci has some revealed
vertices as well as visible, but not yet revealed vertices. To finish revealing the entire subtree,
the adversary proceeds as follows.

If ji < k then the two children on the (ji +1)’st vertex are revealed to be leaves. Moreover,
each of the ji selected vertices have exactly one visible child that is not yet revealed. Reveal
those ji children, called support vertices, with an additional leaf child (i.e. the child is
revealed to be a leaf after its parent is revealed). Including the 2 children of the (ji + 1)’st
vertex ALG must select at least ji + 2 additional vertices to dominate these leaves for a total
of ji + (ji + 2) = 2(ji + 1) selected vertices in this subtree. In this case, OPT can select the
support vertices together with the (ji + 1)’st vertex for a total ji + 1 vertices to dominate
the entire subtree.

If ji = k the procedure to finish revealing the entire subtree at ci is similar: the k’th
vertex children are both revealed to be leaves and each of the other k − 1 selected vertices
has the other child become a support vertex, i.e., revealed with an additional leaf child. The
performance is similar here but ALG is not forced to select the two children of the k’th
vertex so ALG selects at least k + (k − 1) = 2k − 1. In this case, OPT needs only select
the k’th vertex together with the support vertices for a total of k vertices to dominate the
subtree.

To finish the analysis, we consider the following two cases:
Case 1: for all i we have ji < k. Then ALG ≥ 2(ji+1) on each subtree whereas OPT ≤ ji+1

on each subtree. Summing over all subtrees and remarking that OPT might select v1 we
obtain that ALG/OPT ≥ (

∑
2(ji + 1)) / (1 +

∑
(ji + 1)) ≥ 2 − 2/k ≥ 2 − ϵ.

Case 2: there exists ℓ such that jℓ = k. Then OPT selects ji + 1 vertices for i < ℓ, k vertices
for i = ℓ, 0 vertices for i > ℓ per subtree, plus v1. Whereas ALG selects at least 2(ji + 1)
for i < ℓ, 2k − 1 for i = ℓ, and 0 for i > ℓ. By a similar calculation to Case 1, we obtain
that ALG/OPT ≥ 2 − 3/k ≥ 2 − ϵ. ◀

ci

ci,1

ci,2

ci,3

si,1

si,2

si,3

ci

ci,1

ci,2

ci,3

Figure 2 An example of the process described in Theorem 6 where ALG selects ji = 3 vertices
on the subtree rooted at ci. The top depicts the subtree immediately after revealing ci,3 whereas
the bottom shows the entirely revealed subtree.

Now that we have established an asymptotic lower bound of 2 for any algorithm we show
that 2-DOMINATE is 2-competitive.

▶ Theorem 7. ρ(2-DOMINATE, TREE) = 2.

High level overview of the proof. Consider an arbitrary input T = (V, E) on n ≥ 3 vertices
and let OPT denote a minimum dominating set of T which contains no vertices of degree 1
(i.e. any such vertex can be exchanged for its only neighbor). Recall that S is the set of
vertices selected by 2-DOMINATE. Initially, we assign charge 1 to each vertex v in S and

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:7

charge 0 to each vertex v not in S. Thus, |S| =
∑

v∈S

chinit(v) where chinit(v) denotes the

initial charge of v. With a charging scheme described shortly, we spread the charge from the
vertices in S to the vertices of V . Let ch(v) denote the new charge associated with vertex
v. We extend the functions chinit and ch to subsets of vertices linearly, e.g., for W ⊆ V

we have ch(W) =
∑

v∈W ch(v). We shall demonstrate that the procedure of spreading the
charge satisfies two properties:
1. conservation property:

∑
v chinit(v) =

∑
v ch(v) meaning that the total charge is pre-

served; and
2. OPT -concentration property: for each v ∈ OPT we have ch(N [v]) ≤ 2.
With these two properties it follows that 2-DOMINATE ≤

∑
v chinit(v) =

∑
v ch(v) ≤∑

v∈OP T ch(N [v]) ≤ 2OPT , so 2-DOMINATE is strictly 2-competitive.
Before we proceed with this plan, we make a couple of useful observations:

▶ Lemma 8. There are no cross edges incident on any vertex vi. In particular, any vertex
vi has at most one neighbor before it is revealed.

▶ Corollary 9. If deg(vi) ≥ 3 then vi ∈ S.

Now, we are ready to present formal details of the above plan. We spread the charges
according to the following rule:

Consider any vi ∈ S with Xi = N [vi] ∩ Ui. Remarking that Xi ̸= ∅ we then give each
vertex in Xi an equal charge of 1

|Xi| . That is, a vertex selected by 2-DOMINATE spreads its
charge evenly to all the newly dominated vertices in its closed neighborhood. We say that
each vertex in Xi is charged by vi.

▶ Observation 10. Every vertex is charged by exactly one vertex.

The preceding observation immediately implies that any vertex has charge at most 1.
This observation is tight in the sense that, on certain inputs, there are vertices with charge
equal to 1. A vertex with charge 1 is a rather special case though. Suppose that a vertex vi

receives charge 1 from a vertex vj where vi and vj are not necessarily distinct. Therefore we
have that |Xj | = |N [vj] ∩ Uj | = 1 which implies that |N(vj) ∩ Uj | ≤ |N [vj] ∩ Uj | = 1 < 2.
Therefore when vi receives charge it must be from a vertex vj ∈ S that was selected due
to the “saviour” rule of 2-DOMINATE. Hence, vj must have saved a vertex, and only one
vertex since |Xj | = 1. Ultimately we conclude that if vi has charge 1 then it must be saved
by some vertex vj where Xj = {vi} (this does not exclude the possibility that vi = vj). If vi

does not meet this condition then it must have charge at most 1
2 .

▶ Lemma 11. If vi and vj both have charge equal to 1 then they share no common neighbors.

Proof. Suppose for the sake of deriving a contradiction that vi′ were a common neighbor of
vi and vj . Since vi is saved, by Observation 5 it must be that vi ∈ N(v′

i) ∩ Ui′ . Similarly,
we have that vj ∈ N(v′

i) ∩ Ui′ . That is, |N(v′
i) ∩ Ui′ | ≥ 2 and thus v′

i ∈ S. Moreover,
Xi′ = N [vi′] ∩ Ui′ contains vi and vj . In particular, we have that |Xi′ | ≥ 2 with vi, vj ∈ Xi′

and therefore vi and vj receive charge no larger than 1
2 , a contradiction. ◀

▶ Lemma 12. If vi and vj both have charge equal to 1 then they are not adjacent.

Proof. It is easy to see that v1 cannot have charge 1 on any input with at least 2 vertices.
Therefore we safely assume that 1 < i < j such that both vi and vj have a parent. We
assume for the sake of deriving a contradiction that vi and vj are adjacent.

MFCS 2021

57:8 Online Domination: The Value of Getting to Know All Your Neighbors

Now, since both vi and vj have charge 1 it follows that they are both saved vertices.
First we show that both vi, vj /∈ S. Notice that any saved vertex vk has the property that
|N [vk] ∩ S| = 1. Therefore, if we assume by way of contradiction that vi ∈ S we obtain
that N [vi] ∩ S = N [vj] ∩ S = {vi} and therefore vi saves itself and vj . This yields that
Xi = N [vi] ∩ Ui contains vi and vj . In particular, we have that |Xi| ≥ 2 with vi, vj ∈ Xi and
therefore vi and vj receive charge no larger than 1

2 , a contradiction. An identical argument
will yield that vj /∈ S.

Therefore it must be that vi is saved by some vertex vi′ with i′ /∈ {i, j}. Moreover, we
must have i < j < i′ since i < j by assumption and i′ = max{k | vk ∈ N [vi]}. This implies
that both vj , vi′ are children of vi by Observation 8 yielding that |N(vi) ∩ Ui| ≥ 2 but vi

cannot be in S. ◀

From the two preceding lemmas we have the immediate corollary.

▶ Corollary 13. For any vertex vi, at most one vertex in N [vi] has charge 1.

Now, we finish the proof of 2-competitiveness of 2-DOMINATE on trees.

Proof of Theorem 7. The lower bound follows from Theorem 6. Let vi ∈ OPT be an
arbitrary vertex in OPT . We consider two cases (1) deg(vi) = 2 or (2) deg(vi) ≥ 3.

Case 1: Suppose that deg(vi) = 2 and hence |N [vi]| = 3. By Corollary 13 it follows that
at most one vertex in N [vi] has charge 1. If no vertices in N [vi] have charge 1 then
ch(x) ≤ 1

2 for each x ∈ N [vi] and we obtain that
∑

x∈N [vi]
ch(x) ≤ 3

(1
2
)

< 2. If there

is exactly one vertex x′ ∈ N [vi] with charge 1 we therefore obtain that
∑

x∈N [vi]
ch(x) =∑

x∈N [vi]\{x′}
ch(x) + ch(x′) ≤ 2

2 + 1 = 2.

Case 2: Suppose that deg(vi) ≥ 3. By Corollary 9 it follows that vi ∈ S with at least 2
children. Let Ci = Vi \ Vi−1 denote the children of vi and remark that Ci ⊆ Xi. That is,
each child of vi is charged by vi and only vi. Therefore the children of vi can receive at
most the full initial charge on vi and thus attribute a charge of at most 1.

Now we claim that any vertex in N [vi] \ Ci has a charge of at most 1
2 . Indeed, suppose a

vertex vi′ ∈ N [vi] \ Ci has charge 1 then it must be saved by vi since |N [vi′] ∩ S| = 1 for
any saved vertex vi′ . That is, there is exactly one vertex in its closed neighborhood that
is selected and since vi is selected it must be vi. Thus, we must have that vi′ ∈ Xi but
since Ci ⊆ Xi we know that |Xi| ≥ 2 and thus vi′ receives a charge of no more than 1

2 < 1,
contradicting our assumption that vi′ has charge 1.

Thus, by remarking that |N [vi] \ Ci| ≤ 2 we obtain that
∑

x∈N [vi]
ch(x) =

∑
vj∈Ci

ch(vj) +∑
vi′ ∈N [vi]\Ci

ch(vi′) ≤ 1 + 2
(1

2
)

= 2 as desired. ◀

3.2 Cactus Graphs
A graph G is said to be a cactus graph if it is connected and every edge lies on at most
one cycle. Hedetniemi, Laskar, and Pfaff [10] provide an exact offline algorithm that runs
in linear time for finding a minimum dominating set of a cactus graph. Of course, an
efficient offline algorithm does not guarantee that an online algorithm can perform well but
fortunately, cactus graphs are a class of graphs for which an online algorithm can achieve

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:9

constant competitive ratio. In this section, we show that 2-DOMINATE is 5
2 -competitive

when inputs are restricted to cactus graphs, and that this is as well as any algorithm can
perform. Within this section all of the formal statements implicitly assume that the input is
a cactus graph.

r

c c′

r

c c′

x

Figure 3 The cactus 2-gadget : The leftmost figure depicts the case where ALG does not select
the root r and rightmost depicts the case where ALG selects r.

Before presenting a lower bound of 5
2 on all online algorithms we describe a gadget that

is used in the proof. The gadget itself is a cactus graph on 3 ≤ n ≤ 4 vertices with the
property that OPT selects exactly 1 vertex and any algorithm ALG selects at least 2 vertices.
Consider revealing a root vertex r with 2 children c and c′. If ALG does not select r then
both c, c′ are revealed as only adjacent to r and ALG must select both whereas OPT selects
only r. If ALG does select r then c is revealed as adjacent to c′, and c′ is revealed with an
additional child x. The vertex x is adjacent only to c′ and thus ALG must select at least
one of c′, x whereas OPT selects only c′ (both cases are depicted in Figure 3). Given any
input cactus graph with a visible vertex r not yet revealed this gadget can be constructed
with r as the root. Within the proof of the lower bound we call this a 2-gadget.

c

c1,1

c

c1,1 c1,2 c1,3

22

Figure 4 The case described in Theorem 14 where ALG does not select c1,1.

▶ Theorem 14. ρ(ALG, CACTUS) ≥ 5
2 for any algorithm ALG.

Proof. Consider an arbitrary small ϵ > 0 and let k = ⌈ 4
ϵ ⌉ ≥ 5. We will give an adversarial

input that guarantees that OPT ≥ k and ALG ≥ (5
2 − ϵ)OPT . To begin the input, the

adversary reveals v1 with k children {c1, . . . , ck}. Then we run an adversarial process starting
with the child c1 of v1. The process consists of rounds, where each round increases OPT by
2 while increasing ALG by 5. The process might terminate for one of two reasons: either
(i) we guarantee strict competitive ratio at least 5/2 on the subcactus rooted at c1, or (ii)
k rounds starting at c1 elapse. If the process terminates because of (i), then the adversary
restarts the process at child c2 of v1. The process again terminates either with (i) or (ii)
with respect to c2. If it is due to (i), then the adversary restarts the process at c3, and so on.
If the process terminates with (ii) with respect to ci then we reveal cj for j > i as leaves.
Below we describe the process starting at a child of v1 although the first round of the process
differs from the others that follow.

MFCS 2021

57:10 Online Domination: The Value of Getting to Know All Your Neighbors

We now describe the first round starting at a child c of v1. Initially, we reveal c with 3
children. If ALG does not select c then each child of c is revealed as leaf and ALG must select
all 3 children whereas OPT selects c. Suppose then that ALG selects c and let c1,1, c1,2, c1,3
be the three children of c. Reveal c1,1 as adjacent to c1,2 along with 2 additional children.
If ALG does not select c1,1 then the children of c1,1 are revealed as leaves, forcing ALG to
select them and c1,3 is revealed as the root of a 2-gadget (c1,2 is revealed with no additional
neighbors). Thus, ALG

OP T ≥ 5
2 in this case (see Figure 4). If instead ALG selects c1,1 then c1,2

and c1,3 are revealed as the roots of two distinct 2-gadgets and since c is dominated by v1
(we assume that v1 ∈ OPT) we have that ALG

OP T ≥ 5
2 on this subcactus (excluding c1,1) thus

far (see Figure 5a). At this point, c1,1 is selected by ALG and we start the second round
(which is described below) with c1,1 as the root. Every round that follows will be the same
as the second and requires a root selected by ALG which has two children.

The second round starts at a selected root c1,1 and we let c2,1, c2,2 be the 2 children of
c1,1. We reveal c2,1 as adjacent to c2,2 with 2 children c3,1, c3,2. If ALG does not select c2,1
then c3,1, c3,2 are revealed as leaves and ALG selects c1,1, c3,1, c3,2 and OPT can select c2,1
for a performance of 3 along with the running performance of 5

2 (see Figure 5b). If ALG does
select c2,1 then c3,1 is revealed as adjacent to c3,2 with two children c4,1, c4,2. If ALG does
not select c3,1 then c4,1, c4,2 are revealed as leaves and c2,2 is revealed with an additional
leaf neighbor l2,2 so that ALG must select at least one of c2,2, l2,2. Thus, ALG here selects
c1,1, c2,1, c4,1, c4,2 and at least one of c2,2, l2,2 whereas OPT can select c3,1 and c2,2 for a
performance of 5

2 (see Figure 6a). If instead ALG selects c3,1 (thus far c1,1, c2,1 and c3,1 are
all selected) then c2,2 is revealed with an additional leaf neighbor l2,2 so that ALG must
select at least one of c2,2, l2,2, and c3,2 is revealed as the root of a 2-gadget so that ALG

OP T ≥ 5
2

on the subcactus thus far (excluding c3,1) and we repeat the trap with c3,1 as the selected
root (see Figure 6b).

Let ji ≥ 1 denote the number of rounds that passed in the adversarial process starting at
the child ci. To finish the analysis, we consider the following two cases:

Case 1: For all i we have that ji < k. Then ALG ≥ 5ji on each subcactus whereas
OPT ≤ 2ji on each subcactus3. Summing over all subcacti and remarking that OPT

selects v1 we obtain that ALG/OPT ≥ (
∑

5ji) / (1 +
∑

2ji) ≥ 5
2 − 5

2k ≥ 5
2 − ϵ.

Case 2: There exists ℓ such that jℓ = k. In this case, there is an additional vertex cj,1 with
j = 3(k − 1) that was selected by ALG and must also be selected by OPT . (i.e. cj is
the root where a (k + 1)’st round could start). Therefore, OPT selects 2ji vertices for
each process on child ci with i < ℓ, 2k + 1 vertices for i = ℓ, 0 vertices for i > ℓ plus v1.
Whereas ALG selects at least 5ji for i < ℓ, 5k + 1 for i = ℓ, and 0 for i > ℓ. Ultimately,
we obtain that ALG/OPT ≥ (

∑
5ji + 5k + 1) / (

∑
2ji + 2k + 2) ≥ 5

2 − 4/k ≥ 5
2 − ϵ. ◀

▶ Theorem 15. ρ(2-DOMINATE, CACTUS) = 5
2 .

The proof can be viewed as an adaptation of our proof for trees to cactus graphs. We use
a charging argument similar to the one given in the section on trees. Initially, a charge of 1
is given for each v ∈ S, the charge on each vertex is then spread to certain neighbors, and
we then show that

∑
x∈N [vi]

ch(x) ≤ 5
2 for each vi ∈ OPT . We spread the charge according

3 We have omitted the cases where ALG does not select the root ci. These cases result in ALG selecting
3 vertices on the subcacti with OP T selecting only 1 and the result clearly still holds in this case.

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:11

c

c1,1 c1,2 c1,3

222

(a) ALG does select c1,1. The enclosed region
contributes a performance of 5

2 . A trap is continued
in this case with the root c1,1.

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

(b) ALG does not select c2,1.

Figure 5 Two cases described in Theorem 14.

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

c4,1 c4,2

l2.2

(a) ALG does not select c3,1. The enclosed regions
each contribute a performance of 5

2 .

c

c1,1 c1,2 c1,3

222
c2,1

c3,1 c3,2

c2,2

l2.2

2

(b) ALG does select c3,1. The enclosed regions
each contribute a performance of 5

2 . The trap that
was used on a selected root c1,1 is repeated with
c3,1 as the selected root.

Figure 6 Two more cases described in Theorem 14.

to the same rule given in the preceding section and recall that Observation 10 (each vertex
receives a new charge from one other vertex) still holds. In the analysis of how the charge
gets reallocated, the structure of the underlying graph is of paramount importance. We
begin with an analogue to Lemma 8.

▶ Lemma 16. There is at most one cross edge incident on any vi. In particular, vi has at
most 2 neighbors before it is revealed.

Proof. Suppose that vi ̸= v1 since the statement is clearly true for vi = v1. Suppose for the
sake of deriving a contradiction that, at time i − 1, vi has three neighbors vh, vi1 , vi2 where
vh is the parent of vi and {vi, vi1}, {vi, vi2} are cross edges. Notice that vi1 is visible at time
i − 1 as otherwise would imply that {vi, vi1} were a tree edge. Thus, at time i − 1, vi1 is
visible and there is only one tree edge incident on vi. In particular, this implies that there is
a path consisting entirely of tree edges from vi1 to vh where said path does not contain the
edge {vh, vi} since it does not pass through vi nor does it contain the edges {vi, vi1}, {vi, vi2}
since they are cross edges. Thus, by adding edges {vh, vi}, {vi, vi1} to this path we obtain a
cycle (in the completely revealed input graph) that contains the edge {vh, vi} but does not

MFCS 2021

57:12 Online Domination: The Value of Getting to Know All Your Neighbors

contain the edge {vi, vi2}. A similar argument yields that there is a path consisting of tree
edges from vi2 to vh that does not contain the edges {vh, vi}, {vi, vi1}, {vi, vi2} and hence
by adding edges {vh, vi}, {vi, vi2} we obtain a cycle which contains the edge {vh, vi} but
does not contain the edge {vi, vi1}. That is, two distinct cycles that share the common edge
{vh, vi}, a contradiction. ◀

Since vi has at most 2 neighbors before it is revealed then it has at least deg(vi) − 2
children. The following is analogous to Corollary 9 for trees.

▶ Corollary 17. If deg(vi) ≥ 4 then vi ∈ S.

▶ Lemma 18.
1. If vi and vj both have charge equal to 1 then they share no common neighbors.
2. If vi and vj both have charge equal to 1 then they are not adjacent.
3. For any vertex vi, at most one vertex in N [vi] has charge 1.

Proof.
1. Follows identically to the proof of Lemma 11.
2. First, note that v1 cannot have charge 1 on any input with at least 2 vertices. Therefore

we safely assume that 1 < i < j such that both vi and vj have a parent. We assume for
the sake of deriving a contradiction that vi and vj are adjacent.
Now, since both vi and vj have charge 1 it follows that they are both saved vertices. We
first argue that both vi, vj /∈ S. Notice that any saved vertex vk has the property that
|N [vk] ∩ S| = 1. Therefore, if we assume by way of contradiction that vi ∈ S we obtain
that N [vi] ∩ S = N [vj] ∩ S = {vi} and therefore vi saves itself and vj . This yields that
Xi = N [vi] ∩ Ui contains vi and vj . In particular, we have that |Xi| ≥ 2 with vi, vj ∈ Xi

and therefore vi and vj receive charge no larger than 1
2 , a contradiction. An identical

argument will yield that vj /∈ S.
Thus, we assume that vi is saved by a neighbor vi′ and vj is saved by a neighbor vj′

where i′, j′ /∈ {i, j}. Moreover, i′ ≠ j′ since vi and vj can share no common neighbors by
part 1. Thus, we have that i, j, i′, j′ are all distinct with i < j < i′ and i < j < j′ since
i′ = max{k | vk ∈ N [vi]} and j′ = max{k | vk ∈ N [vj]}. As mentioned above vi must
have a parent vh where h < i < j < i′. Therefore, deg(vi) ≥ 3 and since vi /∈ S it follows
by Corollary 17 that deg(vi) = 3.
We are now in the situation where vi, vj /∈ S and vi is incident on exactly 3 edges {vh, vi},
{vi, vj}, {vi, vi′} where exactly one of the edges {vi, vj}, {vi, vi′} is a tree edge (and the
other a cross edge). We finish the proof by examining the two cases where (1) : {vi, vi′}
is a tree edge or (2) : {vi, vj} is a tree edge.
Case 1: Suppose {vi, vi′} is a tree edge so that vi′ is a child of vi. Therefore, vi′ ∈ Ci ⊆

N(vi) ∩ Ui, that is, vi′ is an undominated neighbor of vi when vi is revealed. Since
vj is saved then by Observation 5 it follows that vj ∈ N(vi) ∩ Ui, that is, vj is also
an undominated neighbor of vi when vi is revealed. That is, both vi′ , vj ∈ N(vi) ∩ Ui

implying that |N(vi) ∩ Ui| ≥ 2 but vi /∈ S, a contradiction.
Case 2: Suppose {vi, vj} is a tree edge so that vj is a child of vi. First notice that {vi, vj}

is the only tree edge incident on vj . Indeed, if there were a tree edge {vj , vl} then vl

would be the child of vj . Since vi is saved we have vi ∈ N(vj) ∩ Uj by Observation
5 implying that |N(vj) ∩ Uj | ≥ 2 but vj /∈ S. Thus, we are in the situation depicted
in Figure 7a where {vi, vj} is the only tree edge incident on vj and by assumption
{vh, vi}, {vi, vj} are the only two tree edges incident on vi. Therefore we have a path
from vi′ to vh consisting of tree edges where said path does not contain the edges

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:13

vh

vi vi′

vj vj′

(a) Case 2 of the second part of
Lemma 18.

vh

vi vi′

vj vj′

vh

vi vi′

vj′vj

vh

vi vi′

vh

vi

vj vj′

(b) Resolution of the preceding case in Figure 7a. Two cycles sharing
the common edge {vh, vi}.

Figure 7 Figures used in the proof of Lemma 18.

{vh, vi}, {vi, vi′}, {vi, vj}, {vj , vj′}. Thus, by adding edges {vh, vi}, {vi, v′
i} to this path

we obtain a cycle (in the completely revealed input) that contains the edge {vh, vi} but
does not contain the edge {vj , vj′}. Similarly, there is a path from vj′ to vh consisting of
tree edges where said path does not contain the edges {vh, vi}, {vi, vi′}, {vi, vj}, {vj , vj′}
and by adding edges {vh, vi}, {vi, vj}, {vj , vj′} we obtain a cycle (in the completely
revealed input) that contains the edge {vh, vi} but does not contain the edge {vi, vi′}.
That is, two distinct cycles that share the common edge {vh, vi}, a contradiction.

3. Follows immediately from the previous parts. ◀

Now, we are ready to prove the upper bound for Theorem 15.

Proof of Theorem 15. The lower bound follows from Theorem 14. Let vi ∈ OPT be an
arbitrary vertex in OPT . We consider two cases (1) deg(vi) ≤ 3 or (2) deg(vi) ≥ 4.
Case 1: Suppose that deg(vi) ≤ 3 and hence |N [vi]| ≤ 4. By Lemma 18 part 3 it follows

that at most one vertex in N [vi] has charge 1. If no vertices in N [vi] have charge 1 then
ch(x) ≤ 1

2 for each x ∈ N [vi] and we obtain that
∑

x∈N [vi]
ch(x) ≤ 4

(1
2
)

= 2 < 5
2 . If there

is exactly one vertex x′ ∈ N [vi] with charge 1 we therefore obtain that
∑

x∈N [vi]
ch(x) =∑

x∈N [vi]\{x′}
ch(x) + ch(x′) ≤ 3

2 + 1 = 5
2 .

Case 2 : Suppose that deg(vi) ≥ 4. By Corollary 17 it follows that vi ∈ S with at least 2
children. Let Ci = Vi \ Vi−1 denote the children of vi and remark that Ci ⊆ Xi. That is,
each child of vi is charged by vi and only vi. Therefore the children of vi can receive at
most the full initial charge on vi and thus attribute a charge of at most 1.

Now we claim that any vertex in N [vi] \ Ci has a charge of at most 1
2 . Indeed, suppose a

vertex vi′ ∈ N [vi] \ Ci has charge 1 then it must be saved by vi since |N [vi′] ∩ S| = 1 for any
saved vertex vi′ . That is, there is exactly one vertex in its closed neighborhood that is selected
and since vi is selected it must be vi. Thus, we must have that vi′ ∈ Xi but since Ci ⊆ Xi

we know that |Xi| ≥ 2 and thus vi′ receives a charge of no more than 1
2 < 1, contradicting

our assumption that vi′ has charge 1. Thus, by remarking that |N [vi] \ Ci| ≤ 3 we obtain
that

∑
x∈N [vi]

ch(x) =
∑

vj∈Ci

ch(vj) +
∑

vi′ ∈N [vi]\Ci

ch(vi′) ≤ 1 + 3
(1

2
)

= 5
2 as desired. ◀

MFCS 2021

57:14 Online Domination: The Value of Getting to Know All Your Neighbors

3.3 Graphs of Bounded Degree
We study the problem when the inputs are restricted to graphs of bounded degree. That
is, a positive integer ∆ ≥ 2 is provided to the algorithm beforehand and the adversary
is restricted to presenting graphs where every vertex has degree no larger than ∆. The
problem of bounded degree graphs was explored in [3] although within the vertex arrival
model described earlier. The authors show that a greedy strategy obtains a competitive ratio
no larger than ∆ and, when inputs are further restricted to be “always-connected” (i.e. each
prefix of the input is connected) they provide a lower bound of ∆ − 2 for any algorithm.

By definition, any input belonging to our setting is “always-connected” yet the lower
bound of ∆ − 2 does not apply. In particular, we show that

⌈√
∆

⌉
-DOMINATE is 3

√
∆-

competitive along with a lower bound of Ω(
√

∆) for any online algorithm, essentially closing
the problem in our setting. As previously mentioned, the authors in [12] consider a setting
similar to ours where their adversary is not required to reveal visible vertices and they assume
that an algorithm has additional knowledge of input size n. In this setting they provide
an algorithm that achieves competitive ratio of Θ(

√
n) for arbitrary graphs. For the upper

bound below we follow a proof nearly identical to theirs modulo some minor details and
definitions.

▶ Definition 19. A vertex vi ∈ S is said to be heavy if |N(vi)∩Ui| ≥
⌈√

∆
⌉

and light otherwise.
We let H and L denote the set of heavy and light vertices in S so that |S| = |H| + |L|.

To establish that
⌈√

∆
⌉
-DOMINATE is 3

√
∆-competitive we use a charging argument,

but it is quite different from the arguments in Sections 3.1 and 3.2. Initially, let ch(v) = 1
for each v ∈ S so that |S| =

∑
v∈S

ch(v). Then spread the charge from S strictly to vertices

in OPT so that
∑

v∈S

ch(v) =
∑

v∈OP T

ch∗(v) where ch∗(v) is the new charge on a vertex in

OPT . We then show that ch∗(v) ≤ 2
√

∆ for all v ∈ OPT and thus |S| =
∑

v∈S

ch(v) =∑
v∈OP T

ch∗(v) ≤ |OPT |2
√

∆ and the result then follows. We spread the charge from S to

OPT according to the following rules:
1. If vi ∈ S ∩ OPT then vi keeps its full initial charge.
2. If vi ∈ H \ OPT then its spread its initial charge evenly over all vertices in OPT . That

is, each v ∈ OPT obtains an additional charge of 1
|OP T | from vi.

3. For each vi ∈ L \ OPT , let s(vi) denote the set of vertices saved by vi. Given a vertex
vi′ ∈ s(vi) let opt be the mapping that maps vi′ to itself if it is in OPT or to its
earliest revealed neighbor in OPT otherwise. That is, opt(vi′) = vi′ if vi′ ∈ OPT and
opt(vi′) = vk where k = min{j | vj ∈ N(vi′) ∩ OPT} otherwise. For each vi′ ∈ s(vi), vi

spreads a charge of 1
|s(vi)| to opt(vi′).

▶ Lemma 20. If vi ∈ OPT then it receives charge from at most ⌈
√

∆⌉ light vertices.

Proof. We consider two cases; (1) vi ∈ S or (2) vi /∈ S.
Case 1: Assume that vi ∈ S, we show that vi receives no charge from a distinct light vertex

(therefore it receives charge from at most one light vertex, itself). Since vi ∈ S this implies
that it is not saved by any vj , j ̸= i. Thus, if vi were to receive charge from a light vertex
it must be that vi = opt(vi′) for some vi′ that is saved by some vk ∈ L different from vi.
More precisely, vi must be adjacent to some vi′ that is saved by some vk with k ̸= i. Yet,
if vi′ ∈ N(vi) is saved then N [vi′] ∩ S = {vi} so this cannot be the case.

Case 2: Assume that vi /∈ S and first remark that vi is saved by at most one vertex so
that it receives at most one charge from a light vertex in this way. If vi receives charge
from any other light vertex vk ∈ L, it must be that vi is adjacent to some vertex vi′

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:15

that is saved by vk. By Observation 5 it must be that vi′ ∈ N(vi) ∩ Ui, that is, is
undominated when vi is revealed. All this to say, that any light vertex that charges vi

determines at least one neighbor of vi that is undominated at time i. Since vi /∈ S we
have |N(vi) ∩ Ui| ≤ ⌈

√
∆⌉ − 1 and thus accounting for possibly one light vertex that

charges vi there are at most ⌈
√

∆⌉ light vertices that charge vi. ◀

▶ Lemma 21. |H|
|OP T | ≤

√
∆ + 1√

∆
.

Proof. Since every vertex in H is selected because it dominated at least ⌈
√

∆⌉ undominated
vertices it follows that |H| ≤

⌊
n

⌈
√

∆⌉

⌋
. Moreover, by a standard result, first proved by

Berge [1], a lower bound on OPT is |OPT | ≥
⌈

n
∆+1

⌉
. Ultimately this yields that |H|

|OP T | ≤⌊
n

⌈
√

∆⌉

⌋⌈
n

∆+1

⌉ ≤
n

⌈
√

∆⌉
n

∆+1
≤

n√
∆

n
∆+1

= ∆+1√
∆

=
√

∆ + 1√
∆

. ◀

▶ Theorem 22. ρ(
⌈√

∆
⌉
-DOMINATE, ∆-BOUNDED) ≤ 3

√
∆.

Proof. Consider an arbitrary vertex vi ∈ OPT . In light of Lemma 20 we see that it receives
charge from at most ⌈

√
∆⌉ light vertices, where each charge is no larger than 1. Moreover,

by Lemma 21 the charge received by the heavy vertices is at most
√

∆ + 1√
∆

and vi possibly
receives charge from itself (it may be a heavy or light vertex). In particular we obtain that
ch(vi) ≤ |H|

|OP T | +
⌈√

∆
⌉

+ 1 ≤
(√

∆ + 1√
∆

)
+

⌈√
∆

⌉
+ 1 ≤ 3

√
∆. ◀

We now prove a lower bound Ω(
√

∆) for any online algorithm. We should note that the
adversarial input is bounded in size by a function of ∆. Although we have omitted the details,
it is straightforward to extend the input so that the lower bound is in fact an asymptotic one.

▶ Theorem 23. ρ(ALG, ∆-BOUNDED) = Ω(
√

∆).

Proof. For simplicity we assume that ∆ is a perfect square. Reveal v1 with ∆ children and
reveal each child of v1 with an additional

√
∆ children. Of the ∆ children of v1, suppose

that ALG selects exactly j where 0 ≤ j ≤ ∆. For the ∆ − j vertices not selected, their
√

∆
neighbors are revealed to have degree 1 and ALG is forced to select each of these (∆−j)(

√
∆)

vertices of degree 1.
Let Sj denote the set of the j selected vertices in N(v1) and X =

⋃
vi∈Sj

N(vi). Since
each vertex in Sj has

√
∆ children, it follows that |X| = j

√
∆. Partition the vertices of X

into ⌈ j
√

∆
∆ ⌉ = ⌈ j√

∆
⌉ parts of size ∆ (with at most one part having size < ∆). Letting the

parts be X1, X2, ..., X⌈ j√
∆

⌉ we reveal each vertex in a given part to a common vertex yi (see
figure 8 for an example). ALG must select at least one vertex for each part to dominate yi

and therefore at least an additional ⌈ j√
∆

⌉ vertices are selected.
In total, ALG selects at least j + (∆ − j)(

√
∆) + j√

∆
whereas OPT simply selects v1,

the ∆ − j vertices in N(v1) \ Sj and the j√
∆

vertices with labels yi. Ultimately we have
ALG
OP T ≥

j+(∆−j)(
√

∆)+ j√
∆

1+(∆−j)+ j√
∆

= j+j
√

∆+(∆−j)∆
j+

√
∆+(∆−j)

√
∆

=
√

∆(j/
√

∆+j+(∆−j)
√

∆)
2(j/2+

√
∆/2+(∆−j)

√
∆/2)

≥
√

∆
2 , where the last

inequality follows from the fact that j/2 +
√

∆/2 + (∆ − j)
√

∆/2 ≤ j/
√

∆ + j + (∆ − j)
√

∆,
since

√
∆/2 ≤ j/

√
∆ + j/2 + (∆ − j)

√
∆/2, which can be seen since when j < ∆ then the

last term on the right hand side already is at least as large as the left hand side and when
j = ∆ then the middle term on the right hand side is at least the left hand side. ◀

MFCS 2021

57:16 Online Domination: The Value of Getting to Know All Your Neighbors

v1

c1 c2 c3 c4

v1

c1 c2 c3 c4

y1 y2

Figure 8 An instance described in the proof of Theorem 23 with ∆ = 4. The left depicts the
graph after the children of v1 have been revealed. Assuming that ALG selects {c1, c3, c4} above, the
right depicts the completely revealed graph.

3.4 Graphs with Bounded Claws
In Appendix A we study K1,t-free graphs, which we also refer to as graphs with bounded
“claws” (for t = 3, this graph class is known as “claw-free graphs”). We show that the
competitive ratio t − 1 is both necessary and sufficient for this class of graphs. The upper
bounds that we have demonstrated so far were all based on the k-DOMINATE algorithm
for a suitable choice of parameter k. Interestingly, our upper bound on K1,t-free graphs is
based on a conceptually simpler GREEDY algorithm. The analysis is no longer based on a
charging scheme, but follows from combinatorial properties of graphs with bounded claws.
For the details, one should consult the appendix.

4 Conclusions

In this paper we studied the minimum dominating set problem in an online setting where
a vertex is revealed alongside all its neighbors. We also contrasted our results with those
obtained by Boyar et al. [3] and Kobayashi [13] in a related vertex-arrival model. Dominating
set is a difficult problem both offline and online. In our setting, the best achievable competitive
ratio on general graphs is O(

√
n). This observation prompted us to study this problem

with respect to more restrictive graph classes. Trees provide a natural graph class that
usually allows for non-trivial competitive ratios. Indeed, we showed that in our model trees
admit 2-competitive algorithms. There are several ways to try to extend this result to larger
graph classes. We considered cactus graphs and showed that the optimal competitive ratio is
2.5 on them. Another way of generalizing trees is to consider graphs of higher treewidth.
Unfortunately, once treewidth goes up to 2, competitive ratio jumps to Ω(

√
n) (which is

trivial in our setting due to O(
√

n) upper bound), as witnessed by series-parallel graphs. We
also established non-trivial upper bounds on graphs of bounded degree, as well as graphs
with bounded claws. When one moves to planar (even bipartite planar) graphs and threshold
graphs, the competitive ratio jumps to Ω(

√
n) again.

The above can be viewed as a larger program of developing a deeper understanding of the
dominating set problem in an online setting. What are the main structural obstacles in graphs
that prohibit online algorithms with small competitive ratios? Can one discover a family of
graphs parameterized by some parameter t, which include cactus graphs, claw-free graphs,
and bounded-degree graphs, such that the competitive ratio scales gracefully with t? Lastly,

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:17

as another research direction, we mention that we have only considered the deterministic
setting, so it would be of interest to extend our results to the randomized setting, as well as
the setting of online algorithms with advice.

References
1 C. Berge. The Theory of Graphs and Its Applications. Methuen, 1962.
2 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.
3 Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbcík, and Kim S. Larsen.

Online dominating set. Algorithmica, 81(5):1938–1964, 2019.
4 Marek Cygan, Geevarghese Philip, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry

Wojtaszczyk. Dominating set is fixed parameter tractable in claw-free graphs. Theoretical
Computer Science, 412(50):6982–7000, 2011.

5 Bevan Das and Vaduvur Bharghavan. Routing in ad-hoc networks using minimum connected
dominating sets. In 1997 IEEE International Conference on Communications: Towards the
Knowledge Millennium, ICC 1997, Montréal, Québec, Canada, June 8–12, 1997, pages 376–380.
IEEE, 1997.

6 Hovhannes Harutyunyan, Denis Pankratov, and Jesse Racicot. Online domination: The value
of getting to know all your neighbors, 2021. arXiv:2105.00299.

7 Hovhannes A. Harutyunyan. An efficient vertex addition method for broadcast networks.
Internet Math., 5(3):211–225, 2008.

8 Hovhannes A. Harutyunyan and Arthur L. Liestman. Upper bounds on the broadcast function
using minimum dominating sets. Discret. Math., 312(20):2992–2996, 2012.

9 T.W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. Marcel
Dekker, New York, 1998.

10 Stephen T. Hedetniemi, Renu C. Laskar, and John Pfaff. A linear algorithm for finding a
minimum dominating set in a cactus. Discret. Appl. Math., 13(2-3):287–292, 1986.

11 M. Henning and A. Yeo. Total Domination in Graphs. Springer-Verlag New York, 2013.
12 Gow-Hsing King and Wen-Guey Tzeng. On-line algorithms for the dominating set problem.

Inf. Process. Lett., 61(1):11–14, 1997.
13 Koji M. Kobayashi. Improved bounds for online dominating sets of trees. In Yoshio Okamoto

and Takeshi Tokuyama, editors, 28th International Symposium on Algorithms and Computation,
ISAAC 2017, December 9–12, 2017, Phuket, Thailand, volume 92 of LIPIcs, pages 52:1–52:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

14 Dennis Komm. An Introduction to Online Computation – Determinism, Randomization,
Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

15 D. König. Theorie der Endlichen und Unendlichen Graphen. Chelsea, New York, 1950.
16 O. Ore. Theory of Graphs. American Mathematical Society, 1962.
17 Feng Wang, Ding-Zhu Du, and Xiuzhen Cheng. Connected dominating set, 2016. In Encyclo-

pedia of Algorithms.

A Tight Bound for Graphs with Bounded Claws

Let t ≥ 3, a graph G is said to be K1,t-free if it contains no induced subgraph isomorphic to
K1,t. When t = 3, this is the well-studied class of claw-free graphs. In this section we study
K1,t-free graphs, which we also refer to as graphs with bounded “claws”.

From the preceding sections one might notice that the existence of an induced subgraph
K1,t poses challenges for an algorithm. This section suggests that this intuition holds more
than just a grain of truth. We show that, when inputs are restricted to K1,t-free graphs, the
competitive ratio of every algorithm is bounded below by t − 1 and there is an algorithm that

MFCS 2021

http://arxiv.org/abs/2105.00299

57:18 Online Domination: The Value of Getting to Know All Your Neighbors

achieves competitive ratio t − 1. The upper bounds that we have demonstrated so far were all
based on the k-DOMINATE algorithm for a suitable choice of parameter k. Interestingly, our
upper bound on K1,t-free graphs is based on a conceptually simpler GREEDY algorithm. The
analysis is no longer based on a charging scheme, but follows from combinatorial properties
of graphs with bounded claws.

▶ Theorem 24. ρ(ALG, K1,t-FREE) ≥ t − 1.

Proof. Reveal v1 with t − 1 children. If ALG does not select v1 then the input terminates as
a star on t vertices (i.e. the t − 1 neighbors of v1 are revealed with no additional neighbors).
Any feasible algorithm must select the t − 1 neighbors of v1 whereas OPT selects v1 and the
statement then follows. Suppose that ALG selects v1 and let ci, 1 ≤ i ≤ t − 1 be the children
of v1. Reveal c1 as adjacent to each child of v1 and with an additional t − 2 children. If
ALG does not select c1 then the children of c1 are revealed as leaves whereas the rest of the
input is revealed to be a clique. That is, N [v1] is a clique and only c1 has children. ALG

selected v1 and is forced to select the t − 2 children of c1 whereas OPT selects only c1 as a
single dominating vertex. It is not hard to see that this input is K1,t-free and the result then
follows (see Figure 9 for an example).

Suppose that ALG selects c1, the input then continues in the following way; For each
2 ≤ j ≤ t − 2, (as long as ALG is accepting cj) we reveal cj as adjacent to every visible
vertex and with an additional t − 3 children. That is, cj is adjacent to each child ci, i ̸= j of
v1 and the grandchildren of v1 (i.e. the children of all the ci with 1 ≤ i ≤ j) so that cj is a
single dominating vertex of this prefix.
Case 1: If there is some 2 ≤ j ≤ t−2 such that ALG does not select cj then the t−3 children of

cj are revealed as leaves, N [vi] is revealed as a clique, and the (t−2)+
j∑

i=2
(t−3) = j(t−3)+1

grandchildren of v1 are revealed to form a clique. At this point, ALG has selected
{v1, c1, ..., cj−1} and is now forced to select the t − 3 children of cj for an output of at
least j + (t − 3) ≥ 2 + (t − 3) = t − 1 whereas OPT selects only cj so that ALG

OP T ≥ t−1
1 .

We now argue that this input is K1,t-free. Notice that for all v in this input we have
N(v) ⊆ N(cj) so that if there is a an induced K1,t with central vertex v then there is a
claw with central vertex cj . Therefore it is sufficient to show that is no claw with central
vertex cj to finish the claim. Suppose for contradiction’s sake that there were an induced
K1,t where cj is the central vertex and the t neighbors of cj are all pairwise non-adjacent.
Let G denote the grandchildren of v1 and remark that any neighbor of cj is either a child
of cj , a grandchild of v1, or a vertex from N [v1] \ {cj}. Since there are t vertices and cj

only has t − 3 children by the pigeonhole principle we must have at least two vertices
u, v that both are grandchildren of v1 or both belong N [v1] \ {cj}. Yet, both the set of
grandchildren of v1 and N [v1] \ {cj} are cliques. Therefore we have that u and v are
adjacent, contradicting our assumption.

Case 2: If ALG selects each ci, 1 ≤ i ≤ t − 2 then the (t − 2)(t − 3) + 1 grandchildren of v1
are then revealed to form a clique (N [v1] has already been revealed as a clique). ALG

has already selected {v1, c1, ..., ct−2} and therefore has an output of at least t − 1 whereas
OPT selects only ct−2. An argument similar to the one above will yield that this input
is K1,t-free and the result then follows. ◀

When inputs are restricted to K1,t-free graphs, we show that the online algorithm
GREEDY is (t − 1)-competitive. The crucial observation to make here is that the output
of GREEDY is an independent set. We provide a result below that is a straightforward
generalization of one given in [4]. The simplicity of the result suggests that it may have
appeared in earlier work.

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:19

v1

c1

v1

c1 c2 c3 c4

Figure 9 An instance described in Theorem 24 with t = 5 where ALG does not select c1. The
left depicts the graph at the moment c1 was revealed and the right depicts the completely revealed
graph.

v1

c1 c2

v1

c1 c2 c3 c4

Figure 10 An instance described in Theorem 24 with t = 5 where ALG does not select c2. The
left depicts the graph at the moment c1 was revealed and the right depicts the completely revealed
graph.

▶ Lemma 25. Let t ≥ 3, G = (V, E) be a K1,t-free graph and I be any independent set in G.
Then |D| ≥ |I|

t−1 for any dominating set D in G.

Proof. Suppose for the sake of deriving a contradiction that there is some dominating set D

in G with |D| < |I|
t−1 . Remarking that the vertices of D dominate the vertices of I as D is a

dominating set we notice that there is some vertex v ∈ D that dominates at least t vertices
of I (i.e. if every vertex of D dominated at most t − 1 vertices then D would dominate at
most (t − 1)|D| < |I| vertices). Moreover, since v is adjacent to at least one of the t ≥ 3
vertices of I it dominates, it cannot belong to I as I is independent. Therefore, the vertices
of I dominated by v /∈ I are adjacent to v. In particular, at least t vertices of I, all pairwise
non-adjacent, are neighbors of v and this induces K1,t in G. ◀

The preceding lemma shows that for any independent set I in a K1,t-free graph G,
|I| ≤ (t − 1)γ(G). Given that GREEDY outputs an independent set we obtain the following
result which is of interest to us.

▶ Theorem 26. ρ(GREEDY, K1,t-FREE) = t − 1.

Proof. The upper bound is a consequence of Proposition 25 and the remarks that follow.
The lower bound follows from Theorem 24. ◀

B Noncompetitive Graph Classes

Recall that the setting defined in [12] is nearly identical to ours except that an algorithm
knows the input size n beforehand and the induced subgraph on the revealed vertices is not
necessarily connected. Within this setting the authors establish a lower bound of Ω(

√
n) for

arbitrary graphs. Their proof can be augmented to show a lower bound of Ω(
√

n) in our
model, which is tight by our upper bound of O(

√
∆) on degree at most ∆ graphs (applied

MFCS 2021

57:20 Online Domination: The Value of Getting to Know All Your Neighbors

v1

c1 c2

v1

c1 c2 c3 c4c3

Figure 11 An instance described in Theorem 24 with t = 5 where ALG does not select c3. The
left depicts the graph at the moment c3 was revealed and the right depicts the completely revealed
graph.

to ∆ = n − 1). Instead, we strengthen such a result in several ways by showing that the
lower bound of Ω(

√
n) applies to several restricted classes such as threshold graphs4, planar

bipartite graphs, and series-parallel graphs. Some of the proofs are omitted in this section
due to space limitations. These proofs can be found in the full version of the paper [6].

B.1 Threshold Graphs
The graph join operation applied to two graphs G1 and G2 takes the disjoint union of the
two graphs and adds all possible edges between the two graphs to the result (in addition to
retaining the edges of G1 and G2). The class of threshold graphs can be described recursively
as follows:
1. K1 (i.e. a single isolated vertex) is a threshold graph.
2. If G is a threshold graph then the disjoint union G ∪ K1 is a threshold graph.
3. If G is a threshold graph then the graph join G ⊕ K1 is a threshold graph.

It is not hard to see that any connected threshold graph has a dominating set of size 1.
Since our setting only allows for connected graphs we instead measure ALG as a function of
input size n since OPT ≤ 1 on every input. In particular, we show that for any algorithm
there is an infinite family of threshold graphs for which this algorithm selects Ω(

√
n) vertices

(where the input has n vertices). Although OPT does not tend towards infinity, we consider
this to be an asymptotic lower bound, but with input size n tending to infinity. In a sense,
this is a stronger lower bound since the algorithm is guaranteed an input graph with a single
dominating vertex, yet it still selects more than Ω(

√
n) vertices in the input.

▶ Theorem 27. For infinitely many values of n there is a threshold graph Gn such that
ALG(Gn) = Ω(

√
n).

B.2 Planar Bipartite Graphs
Below is a lower bound of Ω(

√
n) for planar bipartite graphs. We should mention that is

strikingly similar to the lower bound on general graphs given in [12]. We provide a simple
augmentation of their lower bound so that it not only consists of inputs that are revealed
according to our model but inputs that are also planar bipartite graphs.

▶ Theorem 28. ρ(ALG,PLANAR BIPARTITE) = Ω(
√

n).

4 With the caveat that, for threshold graphs, we instead consider the performance ratio as a function of
input size.

H. A. Harutyunyan, D. Pankratov, and J. Racicot 57:21

B.3 Series-Parallel Graphs
In light of our 2-competitive algorithm for trees, it is natural to suppose that some class
of graphs generalizing trees might admit competitive algorithms, that is, algorithms with
bounded competitive ratio. One such generalization is graphs of bounded treewidth. Trees
have treewidth 1, so the next step is to consider graphs of treewidth 2. Unfortunately, in this
section we show that by increasing treewidth parameter from 1 to 2, the online dominating
set problem becomes extremely hard for online algorithms. More specifically, we show that
series-parallel graphs do not admit online algorithms with competitive ratio better than
Ω(

√
n). We remark that series-parallel graphs have treewidth at most 2.

We begin by recalling the definition of a series-parallel graph. It is defined with the help
of the notion of a two-terminal graph (G, s, t), which is a graph G with two distinguished
vertices s, called a source, and t, called a sink. For a pair of two-terminal graphs (G1, s1, t1)
and (G2, s2, t2), there are two composition operations:

Parallel composition: take a disjoint union of G1 with G2 and merge s1 with s2 to get
the new source, as well as t1 with t2 to get the new sink.
Series composition: take a disjoint union of G1 with G2 and merge t1 with s2, which now
becomes an inner vertex of the resulting two-terminal graph; s1 becomes the new source
and t2 becomes the new sink.

A two-terminal series-parallel graph is a two-terminal graph that can be obtained by starting
with several copies of the K2 graph and applying a sequence of parallel and series compos-
itions. Lastly, a graph is called series-parallel if it is a two-terminal series-parallel graph
for some choice of source and sink vertices. Observe that intermediate graphs resulting in
the construction of a series-parallel graph may have multiple parallel edges, so they are
multigraphs. This is permitted, as long as the resulting overall graph is a simple undirected
graph at the end.

Now, we are ready to prove the main result of this section.
▶ Theorem 29. ρ(ALG,SERIES-PARALLEL) = Ω(

√
n).

Proof. Let k ≥ 2 be an integer. The adversary reveals s with k neighbors c1, . . . , ck. Then
c1, . . . , ck are revealed in this order with k new neighbors each. Let neighbors of ci be
di1, . . . , dik. Let S ⊆ {c1, . . . , ck} be those vertices selected by ALG. For those i /∈ S we
reveal their new neighbors in order di1, . . . , dik. Each such dij is revealed with a single new
neighbor fij . For i ∈ S we reveal their new neighbors in order di1, . . . , dik. Each such dij is
revealed with a new neighbor t that is common to all these vertices. Then fij are revealed in
arbitrary order with t as a new neighbor. Lastly t is revealed without any new neighbors.

Let p = |S|. Observe that in addition to these p vertices ALG must select at least one
vertex from each of {dij , fij} pairs for those i /∈ S; otherwise, vertex dij would be undominated.
Thus, ALG ≥ p + k(k − p). Also, observe that {s, t} ∪ {ci | i /∈ S} is a dominating set, so
OPT ≤ k − p + 2. The bound on the competitive ratio is ALG

OP T ≥ p+k(k−p)
k−p+2 = k − 2k−p

k−p+2 ≥ k
2 ,

where the last inequality is obtained as follows. For k ≥ 2 we have k2 − kp ≥ 2k − 2p, which
implies k2 − kp + 2k ≥ 4k − 2p. This in turn implies that k(k − p + 2) ≥ 2(2k − p), hence
(2k − p)/(k − p + 2) ≤ k/2. The quantitative part of the statement of this theorem follows
from the fact that the total number of vertices is at most 2 + k + k2 + k(k − p) = Θ(k2).

Lastly, we note that the adversarial graph thus constructed is, indeed, series-parallel. For
each i /∈ S and j ∈ {1, . . . , k} the path ci → dij → fij → t is a series-composition of 3 copies
of K2. These paths can be merged by a parallel composition to obtain the subgraph induced
on {ci, t} ∪ {dij , fij | j ∈ {1, . . . , k}} for each i /∈ S. Each of these subgraphs is composed
at ci with another copy of K2 with the new vertex playing the role of s. Similar argument
holds to show that the subgraph induced on {s, ci, t} ∪ {dij | j ∈ {1, . . . , k}} for i ∈ S is a
two-terminal series-parallel graph. Lastly, all these subgraphs are merged by a sequence of
parallel compositions at s and t. ◀

MFCS 2021

	1 Introduction
	2 Preliminaries
	3 Competitive Graph Classes
	3.1 Trees
	3.2 Cactus Graphs
	3.3 Graphs of Bounded Degree
	3.4 Graphs with Bounded Claws

	4 Conclusions
	A Tight Bound for Graphs with Bounded Claws
	B Noncompetitive Graph Classes
	B.1 Threshold Graphs
	B.2 Planar Bipartite Graphs
	B.3 Series-Parallel Graphs

