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Abstract
Using a recently introduced algebraic framework for classifying fragments of first-order logic, we
study the complexity of the satisfiability problem for several ordered fragments of first-order logic,
which are obtained from the ordered logic and the fluted logic by modifying some of their syntactical
restrictions.
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1 Introduction

The study of computational properties of fragments of first-order logic is an active research
area, which has been motivated by the general observation that most of the logics used
in computer science applications, such as the description logics, can be translated into
first-order logic [5]. The main goal of this area is to discover expressive fragments which have
nice computational properties; in particular, their satisfiability problem – the problem of
determining whether a given sentence of the fragment is satisfiable – should be decidable.
Perhaps the most widely studied decidable fragments of first-order logic are the two-variable
logic FO2 and the guarded fragment GF, and their various extensions, see for example
[2, 3, 11, 17]. Recently there has been an increasing interest on studying fragments that we
refer to in this paper collectively as the ordered fragments [1, 12, 13, 14].

Informally speaking, we define a fragment of first-order logic to be ordered, if the syntax
of the fragment restricts permutations of variables (with respect to some ordering of the
variables) and the order in which the variables are to be quantified. To illustrate these
restrictions, consider the sentence

∀v1(P (v1) → ∃v2(R(v1, v2) ∧ ∀v3S(v1, v2, v3))).

This sentence is ordered in the sense that variables occur in the right order in the atomic
formulas, and they are quantified in the correct order. This particular sentence belongs to
the most well-known member of this family of logics, namely the so-called fluted logic, which
was proved to have a Tower-complete satisfiability problem in [13].

Another important ordered fragment, which is also relevant for the present work, is the
so-called ordered logic, which on the level of sentences is a fragment of fluted logic (for a
formal definition of this logic we refer the reader to section 3). In [4] it was proved that the
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complexity of the satisfiability problem of this logic is in Pspace, by reducing this problem to
the satisfiability problem of modal logic over serial frames. It turns out that the satisfiability
problem of this fragment is also Pspace-complete, and the proof for Pspace-hardness can
be found in the full version of this paper.

Thus the aforementioned syntactical restrictions, which guarantee that the formulas of
the fragment are ordered, seem to guarantee that the underlying fragments are decidable.
Another aspect that makes the ordered fragments of first-order logic interesting is that they
are orthogonal in expressive power with respect to other well-known fragments of first-order
logic, such as the guarded fragments. For instance, the formula ∀v1∀v2∀v3R(v1, v2, v3) is
clearly ordered, but it expresses a property that is, for example, neither expressible in GF
nor in FO2. Thus they form a genuinely new family of decidable fragments of first-order
logic, and hence they provide us with a fresh perspective on the question of what makes a
fragment of first-order logic decidable.

Ordered fragments can also be used to tame the complexity of decidable fragments. To
give an example of what we mean by this, we mention the recent work conducted in [1] where
the author showed, among other results, that even though the complexity of the satisfiability
problem of GF is 2ExpTime-complete, it becomes ExpTime-complete if we restrict attention
to the set of formulas that also belong to the fluted logic. More precisely the author introduced
a new ordered fragment, namely the forward guarded fragment which contains as a proper
subset the aforementioned intersection of GF and the fluted logic, and then proceeded to
prove that the satisfiability problem of this stronger logic is ExpTime-complete.

Since the syntax of ordered logics restricts heavily the permutations of variables and the
order in which the variables are quantified, their syntax can often be presented naturally in a
variable-free way. Indeed, the fluted logic was originally discovered by Quine as a by-product
of his attempts to present the full syntax of first-order logic in a variable-free way by using
the predicate functor logic [15, 16]. Interestingly, this approach was also adopted in the
recent papers [12, 14], where the fluted logic was presented using its variable-free syntax.

Recently a research program was introduced in [6, 7, 10] for classifying fragments of
first-order logic within an algebraic framework that is closely related to the aforementioned
predicate functor logic. In a nutshell, the basic idea is to identify fragments of first-order
logic with finite algebraic signatures (for more details, see the next section). The algebraic
framework naturally suggests the idea of defining logics with limited permutations, and hence
it is well suited for defining various logics that belong to the family of ordered fragments.

The main purpose of the present work is to apply the aforementioned algebraic framework
to study how the complexities of ordered and fluted logic change, if we modify their syntax
in various ways. The first question that we study in this paper is whether one could extend
the syntax of ordered logic while maintaining the requirement that the complexity of the
satisfiability problem remains relatively low. We will formalize different minimal extension
of the ordered logic using additional algebraic operators and study the complexities of the
resulting logics. The picture that emerges from our results seems to suggest that even if one
modifies the syntax of the ordered logic in a very minimal way, the resulting logics will most
likely have much higher complexity. For instance, if we relax even slightly the order in which
the variables can be quantified, the resulting logic will have NExpTime-hard satisfiability
problem. However, there are also exceptions to this rule, since the complexity of ordered
logic with equality turns out to be the same as the complexity of the regular ordered logic.

Motivated by the recent study of one-dimensional guarded fragments conducted in [8], we
will also study the one-dimensional fragments of fluted logic and ordered logic. Intuitively a
logic is called one-dimensional if quantification is limited to applications of blocks of existential
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(universal) quantifiers such that at most one variable remains free in the quantified formula.
Imposing the restriction of one-dimensionality to fluted logic and ordered logic decreases quite
considerably the complexity of the underlying logics: the complexity of the one-dimensional
fluted logic is NExpTime-complete while the complexity of the one-dimensional ordered logic
(even with equality) is NP-complete. In the case of one-dimensional fluted logic we are able
to add some further algebraic operators into its syntax without increasing its complexity.

We will also prove that several natural extensions of the ordered logic and the fluted logic
are undecidable. First, for the ordered logic we are able to show that if we allow variables
to be quantified in an arbitrary order, then the resulting logic is undecidable. Secondly, we
are able to show that if we lift the restrictions on how the variables in the atomic formulas
can be permuted in the one-dimensional fluted logic, then the resulting logic is undecidable.
Finally, in the case of the full fluted logic, we can show that if we relax only slightly the
way variables can be permuted and the order in which variables can be quantified, then the
resulting logic is undecidable.

2 Algebraic way of presenting logics

The purpose of this section is to present the algebraic framework introduced in [6, 7, 10] for
defining logics in an algebraic way. We will be working with purely relational vocabularies
with no constants and function symbols. In addition we will not consider vocabularies with
0-ary relation symbols. Throughout this paper we will use the convention where the domain
of a model A will be denoted by the set A.

Let A be an arbitrary set. As usual, a k-tuple over A is an element of Ak. We will use
ϵ to denote the 0-ary tuple. Given a non-negative integer k, a k-ary AD-relation over A
is a pair T = (X, k), where X ⊆ Ak. Here ’AD’ stands for arity-definite. Given a k-ary
AD-relation T = (X, k) over A, we will use (a1, ..., ak) ∈ T to denote (a1, ..., ak) ∈ X. Given
an AD-relation T , we will use ar(T ) to denote its arity.

Given a set A, we will use AD(A) to denote the set of all AD-relations over A. If T1, ..., Tk ∈
AD(A), then the tuple (A, T1, ..., Tk) will be called an AD-structure over A. A bijection
g : A → B is an isomorphism between AD-structures (A, T1, ..., Tk) and (B,S1, ..., Sk), if
for every 1 ≤ ℓ ≤ k we have that ar(Tℓ) = ar(Sℓ), and g is an ordinary isomorphism between
the relational structures (A, rel(T1), ..., rel(Tk)) and (B, rel(S1), ..., rel(Sk)), where rel(T )
denotes the underlying relation of an AD-relation.

The following definition was introduced in [7], where it was called arity-regular relation
operator.

▶ Definition 1. A k-ary relation operator F is a mapping which associates to each set A
a function FA : AD(A)k → AD(A) and which satisfies the following requirements.
1. The operator F is isomorphism invariant in the sense that whenever two AD-structures

(A, T1, ..., Tk) and (B,S1, ..., Sk) are isomorphic via g, the same mapping is also an
isomorphism between the AD-structures (A,FA(T1, ..., Tk)) and (B,FB(S1, ..., Sk)).

2. There exists a function ♯ : Nk → N so that for every AD-structure (A, T1, ..., Tk) we have
that the arity of the AD-relation FA(T1, ..., Tk) is ♯(ar(T1), ..., ar(Tk)). In other words
the arity of the output AD-relation is always determined fully by the sequence of arities
of the input AD-relations.

Given a set of relation operators F and a vocabulary τ , we can define a language
GRA(F)[τ ] as follows, where R ∈ τ and F ∈ F :

T ::= ⊥ | ⊤ | R | F (T , ..., T )︸ ︷︷ ︸
ar(F) times

.

MFCS 2021
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Here “GRA” stands for general relational algebra. We sometimes use the infix notation
instead of the prefix notation, if the infix notation is more conventional. Furthermore we will
drop the brackets in the case where F is unary operator.

If the underlying vocabulary τ is clear from context or irrelevant, we will write GRA(F)
instead of GRA(F)[τ ]. The members of GRA(F) will be referred to as terms. In the case
where F is a finite set {F1, .., Fn}, we will use GRA(F1, ..., Fn) to denote GRA({F1, ..., Fn}).

Given a model A of vocabulary τ and T ∈ GRA(F)[τ ], we define its interpretation
JT KA recursively as follows:

1. If T = ⊥, then we define JT KA := (∅, 0), and if T = ⊤, then we define JT KA := ({ϵ}, 0).
2. If T = R ∈ τ , then we define JRKA = (RA, ar(R)).
3. If T = F(T1, ..., Tk), then we define JT KA = FA(JT1KA, ..., JTkKA).

Note that the interpretation of a term over A is an AD-relation over A. The arity of this
AD-relation (over some fixed model) is called the arity of the term T and we will denote
it by ar(T ). Note that by definition the arity of the output relation is independent of the
underlying model, which guarantees that ar(T ) is well-defined.

Given two k-ary terms T and P over the same vocabulary, we say that T is contained in
P , if for every model A over τ and for every (a1, ..., ak) ∈ Ak we have that if (a1, ..., ak) ∈ JT KA
then (a1, ..., ak) ∈ JPKA. We will denote this by T |= P. If T is a 0-ary term and A is a
model so that JT KA = ({ϵ}, 0), then we denote this by A |= T . Given a 0-ary term T , we say
that T is satisfiable if there exists a model A so that A |= T .

We will conclude this section by briefly indicating how we can compare the expressive
power of algebras with fragments of FO. Let k ≥ 0 and consider an FO-formula φ(vi1 , ..., vik

),
where (vi1 , ..., vik

) lists all the free variables of φ, and i1 < ... < ik. If A is a suitable model,
then φ defines the AD-relation JφKA := ({(a1, ..., ak) | A |= φ(a1, ..., ak)}, k) over A. Given
a k-ary term T and FO-formula φ(vi1 , ..., vik

) over the same vocabulary, we say that T is
equivalent with φ if for every model A we have that JT KA = JφKA.

If F is a set of relation operators and L ⊆ FO, then we say that GRA(F) and L are
equivalent, if for every T ∈ GRA(F) there exists an equivalent formula φ ∈ L, and conversely
for every formula φ ∈ L there exists an equivalent term T ∈ GRA(F). Similarly, we say that
GRA(F) and L are sententially equivalent, if for every 0-ary term T ∈ GRA(F) there
exists an equivalent sentence φ ∈ L, and conversely for every sentence φ ∈ L there exists an
equivalent 0-ary term T ∈ GRA(F).

3 Relevant fragments and complexity results

The purpose of this section is to present the relevant FO-fragments that we are going to
study and to present the main complexity results that we are able to obtain. Through out
this section (X, k) and (Y, ℓ) are AD-relations over some set A.

We are going to start by defining formally the ordered logic OL, which will form the
backbone for the rest of fragments studied in this paper.

▶ Definition 2. Let vω = (v1, v2, ...) and let τ be a vocabulary. For every k ∈ N we define
the set OLk[τ ] as follows.
1. Let R ∈ τ be an ℓ-ary relation symbol and consider the prefix (v1, ..., vℓ) of vω containing

precisely ℓ-variables. If k ≥ ℓ, then R(v1, ..., vℓ) ∈ OLk[τ ].
2. Let ℓ ≤ ℓ′ ≤ k and suppose that φ ∈ OLℓ[τ ] and ψ ∈ OLℓ′

[τ ]. Then ¬φ, (φ∧ψ) ∈ OLk[τ ].
3. If φ ∈ OLk+1[τ ], then ∃vk+1φ ∈ OLk[τ ].
Finally we define OL[τ ] :=

⋃
k OLk[τ ].
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▶ Remark 3. The way we have presented the syntax of OL here is slightly different from the
way it is often presented in the literature. The two logics are nevertheless equivalent on the
level of sentences.

The syntax of this logic is somewhat involved, but it can be given a very nice algebraic
characterization using just three relation operators {¬,∩,∃}, which we are going to define
next. Recalling that if F is a relation operator, then FA denotes the function to which F

maps the set A, we can define the relation operators as follows.

¬) We define ¬A(X, k) = (Ak\X, k). We call ¬ the complementation operator.
∩) If k ̸= ℓ, then we define ∩A((X, k), (Y, ℓ)) = (∅, 0). Otherwise we define

∩A((X, k), (Y, ℓ)) = (X ∩ Y, k).

We call ∩ the intersection operator.
∃) If k = 0, then we define ∃A(X, k) = (X, k). Otherwise we define

∃A(X, k) = ({(a1, ..., ak) | (a1, ..., ak, b) ∈ X, for some b ∈ A}, k − 1).

We call ∃ the projection operator.

The following proposition establishes the promised characterization result.

▶ Proposition 4. OL and GRA(¬,∩,∃) are sententially equiexpressive.

The complexity of OL is rather low and thus it is natural to ask how it changes if we
add additional operators to the syntax of the logic. The first operator that is studied in this
paper is the operator E, which we define as follows.

E) If k < 2, then we define EA(X, k) = (X, k). Otherwise we define

EA(X, k) = ({(a1, ..., ak) ∈ X | ak−1 = ak}, k).

We call E the equality operator.

It turns out that the addition of equality does not increase the complexity of ordered
logic. In our proof for the Pspace upper bound, it will be convenient to extend the ordered
logic with an additional operator I, which we define as follows.

I) If k ≤ 1, then we define IA(X, k) = (X, k), and otherwise we define

IA(X, k) = ({(a1, ..., ak−1) ∈ Ak−1 | (a1, ..., ak−1, ak−1) ∈ X}, k − 1).

We call I the substitution operator.

In contrast with the equality operator, adding either of the following two operators to
OL will result in a logic with NExpTime-hard satisfiability problem.

s) If k < 2, then we define sA(X, k) = (X, k). Otherwise we define

sA(X, k) = ({(a1, ..., ak−2, ak, ak−1) | (a1, ..., ak) ∈ X}, k).

We call s the swap operator.

MFCS 2021
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C) If k ̸= 1 and ℓ ≤ 1, then we define CA((X, k), (Y, ℓ)) = (∅, 0). In the case where
1 = k ≤ ℓ (the case 1 = ℓ ≤ k is defined similarly) we will define

CA((Y, ℓ), (X, k)) = ({(a1, ..., aℓ) ∈ Y | aℓ ∈ X}, ℓ).

We call C the one-dimensional intersection.

The intuition behind the swap operator is clear: it lifts in a minimal way the ordering
restriction on the syntax of ordered logic. The one-dimensional intersection may appear to
be somewhat unnatural, but the underlying intuition is that we want to lift the uniformity
imposed by ∩ in a minimal way.

The other ordered fragment investigated in this paper is the fluted logic FL. We will not
give a formal definition for this fragment here, but instead we will introduce its algebraic
characterization using the operators {¬, ∩̇,∃}, where ∩̇ is defined as follows.

∩̇) If m := max{k, ℓ}, then we define

∩̇A((X, k), (Y, ℓ)) =
(
{(a1, . . . , am) | (am−k+1, . . . , am) ∈ X

and (am−ℓ+1, . . . , am) ∈ Y }, m
)
,

We call ∩̇ the suffix intersection.

The following result was proved in [7].

▶ Proposition 5. FL and GRA(¬, ∩̇,∃) are equiexpressive.

It was proved in [13] that the satisfiability problem for FL is Tower-complete. The
natural follow-up question is then to study what fragments of FL have more feasible complexity.
In this paper we approach this question by studying the so-called one-dimensional fragment
of fluted logic. To give this logic an algebraic characterization, we will need to introduce two
additional operators, ∃1 and ∃0, which we define as follows.

∃1) If k < 2, then we define ∃A
1 (X, k) = (X, k). Otherwise we define

∃A
1 (X, k) = ({a ∈ A | There exists b ∈ Ak−1 such that ab ∈ X}, 1)

∃0) If k = 0, then we define ∃A
0 (X, k) = (X, k). Otherwise we define ∃A

0 (X, k) to be ({ϵ}, 0),
if X is non-empty, and (∅, 0), if X is empty.

We call collectively the operators ∃1 and ∃0 one-dimensional projection operators.
These operators correspond to quantification which leaves at most one free-variable free.
Now we define the algebra GRA(¬, ∩̇,∃1,∃0) to be the one-dimensional fluted logic.

As one might expect, imposing the one-dimensionality requirement to formulas of FL
will result in a logic with much lower complexity. The exact complexity of one-dimensional
FL turns out to be NExpTime-complete, even for its extension with the swap and equality
operators GRA(s, E,¬, ∩̇,∃1,∃0). In this paper we also study the one-dimensional fragment
of ordered logic with equality operator GRA(E,¬,∩,∃), for which the satisfiability problem
turns out to be just NP-complete.

Besides just decidability results, we will also prove several undecidability results. To state
some of these results, we will first define the following operator p.

p) If k < 2, then we define pA(X, k) = (X, k). Otherwise we define

pA(X, k) = ({(a1, ..., ak) | (ak, a1, ..., ak−1) ∈ X}, k).

We call p the cyclic permutation operator.
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Table 1 Complexities of the fragments. For each of the fragments the satisfiability problem is
complete for the corresponding complexity class listed in the second column, excluding the case
{s, E, ¬, C, ∩, ∃} where the complexity is not known. All the results listed here are new.

E, ¬, ∩, ∃1, ∃0 NP
E, ¬, ∩, ∃ Pspace

s, ¬, C, ∩, ∃ NExpTime
E, ¬, C, ∩, ∃ NExpTime

s, E, ¬, C, ∩, ∃ ?
s, E, ¬, ∩̇, ∃1, ∃0 NExpTime

p, ¬, ∩, ∃ Π0
1

p, ¬, ∩̇, ∃1, ∃0 Π0
1

s, ¬, ∩̇, ∃ Π0
1

Adding p to an ordered fragments correspondence essentially to the removal of the
syntactical restriction that variables should be quantified in a specific order. The following
theorem collects our undecidability results.

▶ Theorem 6. Suppose that F is a set of relation operators that contains {p,¬,∩,∃},
{p,¬, ∩̇,∃1,∃0} or {s,¬, ∩̇,∃}. Now the satisfiability problem for GRA(F) is Π0

1-hard.

Let us conclude this section by mentioning briefly two complexity results that follow
immediately from the literature and which complement the picture emerging from the results
listed in Table 1. First, it is easy to verify that GRA(p, s, E,¬, C,∩,∃1,∃0) is essentially
equivalent with one-dimensional uniform fragment UF1, which was proved to be NExpTime-
complete in [9]. The second result that we should mention is that the satisfiability problem
for GRA(E,¬, ∩̇,∃) is Tower-complete, since it contains FL and it can be translated to
FL with equality, for which the satisfiability problem was recently proved in [14] to be
Tower-complete.

4 Tables and normal forms

In this paper we are going to perform several model constructions and hence it is useful to
start by collecting some definitions and tools that we are going to need in the later sections.

▶ Definition 7. Let k ∈ Z+ and F ⊆ {I, s}. A k-table with respect to F is a maximally
consistent set of k-ary terms of the form T or ¬T , where T ∈ GRA(F). Given a model A
and a ∈ Ak, we will use tpA(a) to denote the k-table realized by a.

We will identify k-tables ρ with the terms
⋂

α∈ρ α, which makes sense since all of the
algebraic signatures that we are going to consider always include the operator ∩. This allows
us to use notation such as ρ |= ρ′, where ρ and ρ′ are k-tables. Furthermore, we will refer to
1-tables also as 1-types. We say that a ∈ A is king, if there is no other element in the model
that realizes the same 1-type.

Notice that there is almost no “overlapping” between tables. For instance, if we consider
tables for ∅, then the table realized by a tuple (a1, ..., ak) will not imply anything about the
table realized by any non-identity permutation of the tuple (a1, ..., ak) or any sub-tuple of
(a1, ..., ak). And even if we are considering tables for {s}, the table realized by (a1, ..., ak)
will only imply something about the table realized by (a1, ..., ak, ak−1).

MFCS 2021
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▶ Definition 8. Let A and B be models over the same vocabulary, and let F be a subset of
{I, s, E,¬, C,∩, ∩̇}. Let a ∈ Ak and b ∈ Bk, where k ∈ Z+. We say that a and b are similar
with respect F , if for every k-ary term T ∈ GRA(F) we have that a ∈ JT KA if, and only if,
b ∈ JT KB.

In what follows we will not mention the set F explicitly, since it will always be clear from
the context. For different subsets of {I, s, E,¬, C,∩, ∩̇} one can find explicit characterizations
for when two tuples are similar using the notions of 1-types and tables. For example, if
F = {s, C,¬,∩}, then two tuples a and b are similar with respect to F if and only if
tpA(a) = tpB(b), tpA(ak−1) = tpB(bk−1) and tpA(ak) = tpB(bk).

We will next introduce two Scott-normal forms for our logics. In the normal forms we
will use the operator ∪ which can be defined in a standard way in terms of ¬ and ∩.

▶ Definition 9. Let F ⊆ {I, s, E,C}.
We say that a term T ∈ GRA(F ∪ {¬,∩,∃}) is in normal form, if it has the following
form ⋂

1≤i≤m1
∃

∃κi ∩
⋂

1≤j≤m1
∀

∀λj ∩
⋂

1≤i≤m∃

∀ni(¬α∃
i ∪ ∃β∃

i ) ∩
⋂

1≤j≤m∀

∀nj (¬α∀
j ∪ ∀β∀

j ),

where κi, λj , α
∃
i , β

∃
i , αj and β∀

j are terms of GRA(F ∪ {¬,∩}), and the terms κi and λj

are unary. Here ∀ is short-hand notation for ¬∃¬ and ∀n stands for a sequence of ∀ of
length n.
We say that a term T ∈ GRA(F ∪ {¬,∩, ∩̇,∃1,∃0}) is in normal form, if it has the
following form⋂

1≤i≤m1
∃

∃0κi ∩
⋂

1≤j≤m1
∀

∀0λj ∩
⋂

1≤i≤m∃

∀0(¬α∃
i ∪ ∃1β

∃
i ) ∩

⋂
1≤j≤m∀

∀0(¬α∀
j ∪ ∀1β

∀
j ),

where κi, λj , α
∃
i , β

∃
i , αj and β∀

j are terms of GRA(F ∪ {¬,∩, ∩̇}), and the terms κi and
λj are unary. Here ∀0 and ∀1 are short-hand notations for ¬∃0¬ and ¬∃1¬ respectively.

In a rather standard fashion one can prove the following lemma.

▶ Lemma 10. Let F ⊆ {I, s, E,C}.
1. There is a polynomial time nondeterministic procedure, taking as its input a term T ∈

GRA(F ∪ {¬,∩,∃}) and producing a term T ′ in normal form (over extended signature),
such that

if A |= T , for some structure A, then there exists a run of the procedure which produces
a term T ′ in normal form so that A′ |= T for some expansion A′ of A.
if the procedure has a run producing T ′ and A |= T ′, for some A, then A |= T .

2. There is a polynomial time nondeterministic procedure, which operates similarly as the
above procedure with the exception that it takes as its input a term in T ∈ GRA(F ∪
{¬,∩, ∩̇,∃1,∃0}), and which satisfies the additional requirement that if T does not contain
the operator ∩̇, then neither does any of the terms that this procedure produces.

To conclude this section, we will introduce some further notation and terminology
which will be useful in the later sections of this paper. Consider a term T in normal
form. Subterms of T that are of the form ∀ni(¬α∃

i ∪ ∃β∃
i ) or ∀0(¬α∃

i ∪ ∃1β
∃
i ) are called

existential requirements and we will denote them with T ∃
i . Similarly subterms of the

form ∀nj (¬α∀
j ∪ ∀β∀

j ) or of the form ∀0(¬α∀
j ∪ ∀1β

∀
j ) will be called universal requirements

and we will denote them with T ∀
j . Consider a model A and an existential requirement T ∃

i . If
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T ∃
i is of the form ∀ni(¬α∃

i ∪ ∃β∃
i ) and a ∈ Jα∃

i KA, then an element c ∈ A so that ac ∈ Jβ∃
i KA

will be called a witness for a and T ∃
i . Similarly, if T ∃

i is of the form ∀0(¬α∃
i ∪ ∃1β

∃
i ) and

a ∈ Jα∃
i KA, then a tuple c ∈ Ak, where k = ar(β∃

i ) − 1, is called a witness for a and T ∃
i .

5 Ordered logic with equality

In this section we will study the complexity of GRA(E,¬,∩,∃), i.e. ordered logic with
equality. We will start by proving that this logic has a polynomially bounded model property,
which means that each satisfiable term has a model of size at most polynomial with respect
to the size of the term.

Before proceeding with the proof, we will first note that w.l.o.g. we can assume that if
an element c is a witness for some existential requirement T ∃

i and a tuple (a1, ..., ak), then
ak ̸= c. This follows from the observation that if T ∃

i is of the form ∀ni(¬α∃
i ∪ ∃β∃

i ) then it is
equivalent with the following term ∀ni(¬(α∃

i ∩ ¬∃Eβ∃
i ) ∪ ∃β∃

i ), where we can replace ∃Eβ∃
i

with Iβ∃
i .

▶ Theorem 11. Let T ∈ GRA(I, E,¬,∩,∃) and suppose that T is satisfiable. Then T has a
model of size bounded polynomially in |T |.

Proof. Let T ∈ GRA(I, E,¬,∩,∃) be a term in normal form. Let A be a model of T .
Without loss of generality we will assume that A contains at least two distinct elements.
Our goal is to construct a bounded model B |= T . As the domain of our model we will take
the set

B = {1, ...,m} × {0, 1},

where m = max{m1
∃,m∃}. To define the model, we just need to specify the tables for all

the k-tuples of elements from B. This will be done inductively, and in such a way that the
following condition is maintained: for every b ∈ Bk there exists a ∈ Ak so that b is similar
with a. Maintaining this requirement will make sure that our model B will not violate any
universal requirements.

We will start by defining the 1-types for all the elements of B. Since A |=
⋂

1≤i≤m1
∃

∃κi,
for every 1 ≤ i ≤ m1

∃ there exists ai ∈ A so that tpA(ai) |= κi. We will define that for every
(i, j) ∈ B, tpB((i, j)) = tpA(ai). Suppose then that we have defined the tables for k-tuples
and we wish to define the tables for (k + 1)-tuples. We will start by making sure that all the
existential requirements are full-filled. So, let 1 ≤ i ≤ m∃ and b ∈ Bk so that we have not
assigned a witness for b and T ∃

i . By construction we know that there exists a ∈ Ak which is
similar to b. Now there exists ak ̸= c ∈ A so that ac ∈ Jβ∃

i K. If bk = (i′, j), then we will use
the element d = (i, j+ 1 mod 2) as a witness for b by defining that tpB(bd) = tpA(ac). Since
we have reserved for every element m∃ ≤ m distinct witnesses for the existential requirements,
the process of providing witnesses can be done without conflicts.

Having provided witnesses for k-tuples, we will still need to do define the (k+1)-tables for
the remaining k-tables. So, let b ∈ Bk and d ∈ B be elements so that the table of bd has not
been defined. If bk = d, then the table for bd is determined by the table for b. Suppose then
that bk ̸= d. Let a ∈ Ak be a k-tuple which is similar with b. Pick an arbitrary ak ̸= c ∈ A

and define tpB(bd) = tpA(ac). ◀

The above theorem can be used to show that if we assume that the underlying vocabulary
to be bounded, i.e., there is a fixed constant bound on the maximum arity of relation symbols,
then the complexity of the ordered logic is NP-complete.
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▶ Theorem 12. The satisfiability problem for GRA(E,¬,∩,∃) over bounded vocabularies is
NP-complete.

In the case where the vocabulary is not assumed to be bounded, the complexity of the
ordered logic turns out to be Pspace-complete. The complete proof can be found in the
full version of this paper, but we will sketch the basic idea here. The Pspace-hardness can
be proved by reducing the satisfiability problem of modal logic over serial frames to that of
GRA(¬,∩,∃). For the upper bound one can adapt the well-known algorithm of Ladner. The
idea is to non-deterministically construct a model in a depth-first fashion by first guessing a
set of 1-types of polynomial size (the domain of the model) and then guess tables for longer
and longer tuples of elements.

▶ Theorem 13. The satisfiability problem for GRA(E,¬,∩,∃) is Pspace-complete.

6 Further extensions of ordered logic

In this section we will study extensions of ordered logic which are obtained by adding either
the swap or the one-dimensional intersection (or both) into its syntax. It turns out that we
can deduce easily from the literature sharp lower bounds for the relevant fragments.

▶ Proposition 14. Let F be a set of of relation operators that contains either {¬, C,∩,∃} or
{s,¬,∩,∃}. Now the satisfiability problem for GRA(F) is NExpTime-hard.

▶ Remark 15. We remark that the proof of the above proposition shows that the proposition
holds even if we restrict attention to vocabularies which contain at most binary relation sym-
bols. In particular, the satisfiability problems of GRA(¬, C,∩,∃1,∃0) and GRA(s,¬,∩,∃1,∃0)
are also NExpTime-hard.

Now we will focus on proving the corresponding upper bounds on the complexities
of GRA(¬, C,∩,∃) and GRA(s,¬,∩,∃) by showing that their least common extension
GRA(s,¬, C,∩,∃) has the exponentially bounded model property. The core of the argument
is the same as the proof of the exponential model property for FO2 given in [3].

▶ Theorem 16. Let T ∈ GRA(s,¬, C,∩,∃) and suppose that T is satisfiable. Then T has a
model of size bounded exponentially in |T |.

Proof. Let T ∈ GRA(s,¬, C,∩,∃) be a term in normal form and let A be a model of T .
Our goal is to construct a bounded model B so that B |= T . As the domain of the model B
we will take the set

B := {tpA(a) | a ∈ A} × {1, ...,m} × {0, 1, 2},

where m = max{m1
∃,m∃}. Clearly |B| ≤ 2O(|T |). Again, to construct the model, we will

need to specify the tables for all the k-tuples of elements from B. We will follow the same
strategy as in the proof of theorem 11, i.e. the tables will be specified inductively while
maintaining the condition that for every b ∈ Bk for which tpB(b) has been specified, there
exists a ∈ Ak which is similar to b.

We will start with the 1-types. For every b = (tpA(a), i, j) ∈ B we define that tpB(b) :=
tpA(a). Suppose then that we have defined the tables for k-tuples. We start defining the tables
for (k+ 1)-tuples by providing witnesses for all the relevant tuples. So, consider an existential
requirement T ∃

i and a tuple b ∈ Bk so that b ∈ JαiKB. Suppose that bk = (tpA(a), i′, j). By
construction there exists a tuple a ∈ Ak so that b and a are similar. Thus a ∈ JαiKA. Since
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A |= T ∃
i , there exists an element c ∈ A which is a witness for a and T ∃

i . We will use the
element d = (tpA(c), i, j+1 mod 3) ∈ B as a witness for b by defining that tpB(bd) := tpA(ac)
and tpB((b1, ..., bk−1, d, bk)) := tpA((a1, ..., ak−1, c, ak)).

Before moving forward, let us argue that our method of assigning witnesses does not
produce conflicts. Consider a tuple b = (b1, ..., bk) ∈ Bk and d ∈ B so that we used d as a
witness for b and some existential requirement T ∃

i . We will argue that the table for the tuple
(b, d) was not defined in two different ways. First we note that we have reserved distinct
elements for each of the existential requirements, and thus we used d as a witness for b only
for the existential requirement T ∃

i . We then note that since we are assigning witnesses for
tuples in a “cyclic” manner, we will not use bk as a witness for the tuple (b1, ..., bk−1, d).
Since these cases are the only possible ways that we might have defined the table of the tuple
bd in two different ways, we conclude that it is only defined once.

We will now assign tables for the remaining (k + 1)-tuples. So, consider a tuple b ∈ Bk

and d = (tpA(c), i, j) ∈ B so that we have not defined the table for the tuple bd. By
construction there exists a tuple a ∈ Ak which is similar to b. Let c ∈ A be an element that
realizes the 1-type of d (and which is not necessarily distinct from ak). Now we define that
tpB(bd) := tpA(ac) and that tpB((b1, ..., bk−1, d, bk)) = tpA((a1, ..., ak−1, c, ak)). ◀

▶ Corollary 17. The satisfiability problem for GRA(s,¬, C,∩,∃) is NExpTime-complete.

We will conclude this section by considering GRA(E,¬, C,∩,∃) and GRA(s, E,¬, C,∩,∃).
An easy modification in the argument of theorem 11 yields a bounded model property for
the first logic.

▶ Theorem 18. Let T ∈ GRA(E,¬, C,∩,∃) and suppose that T is satisfiable. Then T has
a model of size bounded exponentially in |T |.

Proof. Let T be a term in normal form and assume that A is a model of T . If K = {tpA(a) |
a is a king}, then one can take as the domain of the bounded model B the set

B := K ∪ ({tpA(a) | a is not a king} × {1, ...,m} × {0, 1}),

where m = max{m1
∃,m∃}. One can now adapt the proof of theorem 11 to obtain a model B

of T with domain B. ◀

▶ Corollary 19. The satisfiability problem for GRA(E,¬, C,∩,∃) is NExpTime-complete.

The logic GRA(s, E,¬, C,∩,∃) turns out to be more tricky. We have not been able to
verify whether this logic is undecidable, but we can show that it does not have the finite
model property, see the full version of this paper.

7 One-dimensional ordered logics

In this section we consider logics that are obtained from the ordered logic and the fluted logic
by imposing the restriction of one-dimensionality. We will first show that the satisfiability
problem of the one-dimensional fluted logic, which has been extended with the operators s
and E, is NExpTime-complete. As usual, we will prove this by showing that the logic has
the bounded model property. The proof is heavily influenced by similar model constructions
performed in [9] and [8], which were based on the classical construction of [3].

▶ Theorem 20. Let T ∈ GRA(s, E,¬, ∩̇,∃1,∃0) and suppose that T is satisfiable. Then T
has a model of size bounded exponentially in |T |.
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Proof. Let T ∈ GRA(s, E,¬, ∩̇,∃1,∃0) be a term in normal form and suppose that T is
satisfiable. Let us fix an arbitrary model A of T , which we will use to construct a bounded
model B for T . Let K ⊆ A denote the set of kings of A. For each existential requirement T ∃

i

of T and k ∈ Jα∃
i KA ∩K, we will pick some witness c. Let C denote the resulting set. Next,

we let P denote the set of non-royal 1-types realized by elements of A. Fix some function
f : P → A with the property that tpA(f(π)) = π, for every π ∈ P . For every existential
requirement T ∃

i and π ∈ P so that π |= α∃
i , we will pick some witness cπ,i. Let Wπ,i denote

the set of elements occurring in cπ,i that are not kings.
As the domain of the bounded model B we will then take the following set

B = C ∪
⋃

π,i,j

Wπ,i,j ,

where π ranges over P , i ranges over {1, ...,m}, where m = max{m1
∃,m∃}, and j ranges over

{0, 1, 2}. The sets Wπ,i,j are pairwise disjoint copies of the sets Wπ,i. Clearly |B| ≤ 2O(|T |).
We will make B ↾ C isomorphic with A ↾ C. Furthermore, we will make each of the structures
B ↾ (K ∪Wπ,i,j) isomorphic with the corresponding structures A ↾ (K ∪Wπ,i).

We will then provide witnesses for elements of B. Since we have already provided witnesses
for kings, we need to only provide witnesses for non-royal elements of the court and for
elements in (B\C). We will start with the non-royal elements of the court. Consider an
existential requirement T ∃

i and let b ∈ (C\K) ∩ Jα∃
i KA. If there exists a witness for b and T ∃

i

in C, then nothing needs to be done. So suppose that there does not exists a witness for b
and T ∃

i in C. If π is the 1-type of b in B, then we know that there exists a witness c for
f(π) and T ∃

i . We have now two cases.
Suppose first that the length of c is one, i.e. c = c, for some c ∈ A. If c = a, then

b is already a witness for itself in B. If c ̸= a, then we define tpB(b, d) = tpB(a, c) and
tpB(d, b) = tpB(c, a), where d denotes the single element of Wπ,i,0 (note that d can’t be
a king, since otherwise b and T ∃

i would have had a witness in C). Suppose then that the
length of c is k > 1. If d ∈ (Wπ,i,0 ∪K)k denotes the corresponding witness, then we define
tpB(bd) = tpA(ac) and tpB(bd1, ..., dk, dk−1) = tpB(ac1, ..., ck, ck−1). Note that since b does
not occur in d and d contains at least one non-royal element, the above definitions do not
lead into any conflicts with the structure that we have assigned for B ↾ C.

Thus we have managed to provide witnesses for elements in C\K. To provide witnesses
for elements of (B\C), we can do roughly the same as above with the exception that instead
of Wπ,i,0, we will use - assuming that b ∈ Wπ′,i′,j - the set Wπ,i,j+1 mod 3. Let us then briefly
argue that the above procedure for producing witnesses can be executed without conflicts.
First we note that we do not face any conflicts when assigning witnesses for some b and T ∃

i

and then for b and T ∃
i , where i ̸= i′, since for every j the sets Wπ,i,j and Wπ,i′,j are disjoint.

Secondly we note that we do not face any conflicts when assigning witnesses for some b and
T ∃

i and then for b ̸= b′ and T ∃
i , since in the first case we assign a table for the tuple bd and

in the second case for b′d, and neither of these tables imply anything about the other table.
Finally we note that since we are assigning witnesses in a cyclic manner, if we use d as a
witness for b ̸∈ C and T ∃

i , then we we are never using any tuple containing b as a witnesses
for any of the elements in d.

To complete the structure, for every k we need to define the tables for tuples b ∈ Bk. We
can do this inductively with respect to k as follows. Suppose first that there exists distinct
elements b, b′ ∈ B so that we have not assigned table for the pair (b, b′). Now we choose
a pair of distinct elements a, a′ ∈ A with the same 1-types as b and b′, and then define
tpB(b, b′) = tpA(a, a′) and tpB(b′, b) = tpA(a′, a). Note that such elements a, a′ exists even
if the elements b, b′ would have the same 1-types, since at least one of them is not a king.
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Suppose then that we have defined the tables for every d ∈ Bk. Let b ∈ B and d ∈ Bk be so
that we have not defined the table for the tuple (b, d). By construction there exists c ∈ Ak

which is similar with d. Let a ∈ A be an arbitrary element which has the same 1-type as
b. We then define tpB(b, d) = tpA(a, c) and tpB(b, d1, ..., dk, dk−1) = tpA(a, c1, ..., ck, ck−1).
Continuing this way it is clear that we can define tables for all the tuples of Bk in such a
way that we do not violate any of the universal requirements. ◀

▶ Corollary 21. The satisfiability problem for GRA(s, E,¬, ∩̇,∃1,∃0) is NExpTime-complete.

We will conclude this section by considering the one-dimensional ordered logic with
equality, which is the logic GRA(E,¬,∩,∃1,∃0). Perhaps unsurprisingly, the satisfiability
problem for this logic is NP-complete.

▶ Theorem 22. The satisfiability problem for GRA(E,¬,∩,∃1,∃0) is NP-complete.

8 Conclusions

In this paper we have studied systematically how the complexities of various ordered fragments
of first-order logic change if we modify slightly the underlying syntax. The general picture
that emerges is that even if we relax only slightly the restrictions on the syntax, the complexity
of the logic can increase drastically. On the other hand, we have seen that adding the further
restriction of one-dimensionality on the logics can greatly decrease the complexity of the
logic.

There are several directions in which the work conducted in this paper can be continued.
Perhaps the most immediate technical problem is whether the logic GRA(s, E,¬, C,∩,∃) is
decidable. As we have seen, this logic does not have the finite model property, and thus
we don’t expect that traditional model building techniques can be used to prove that it is
decidable. On the other hand, we have not been able to prove that this logic is undecidable
using standard tiling arguments.
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