
Griddings of Permutations and Hardness of Pattern
Matching
Vít Jelínek #

Computer Science Institute, Charles University, Prague, Czech Republic

Michal Opler #

Computer Science Institute, Charles University, Prague, Czech Republic

Jakub Pekárek #

Department of Applied Mathematics, Charles University, Prague, Czech Republic

Abstract
We study the complexity of the decision problem known as Permutation Pattern Matching, or PPM.
The input of PPM consists of a pair of permutations τ (the “text”) and π (the “pattern”), and the
goal is to decide whether τ contains π as a subpermutation. On general inputs, PPM is known to
be NP-complete by a result of Bose, Buss and Lubiw. In this paper, we focus on restricted instances
of PPM where the text is assumed to avoid a fixed (small) pattern σ; this restriction is known as
Av(σ)-PPM. It has been previously shown that Av(σ)-PPM is polynomial for any σ of size at most
3, while it is NP-hard for any σ containing a monotone subsequence of length four.

In this paper, we present a new hardness reduction which allows us to show, in a uniform way,
that Av(σ)-PPM is hard for every σ of size at least 6, for every σ of size 5 except the symmetry class
of 41352, as well as for every σ symmetric to one of the three permutations 4321, 4312 and 4231.
Moreover, assuming the exponential time hypothesis, none of these hard cases of Av(σ)-PPM can
be solved in time 2o(n/ log n). Previously, such conditional lower bound was not known even for the
unconstrained PPM problem.

On the tractability side, we combine the CSP approach of Guillemot and Marx with the structural
results of Huczynska and Vatter to show that for any monotone-griddable permutation class C, PPM
is polynomial when the text is restricted to a permutation from C.
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1 Introduction

Permutation Pattern Matching, or PPM, is one of the most fundamental decision problems
related to permutations. In PPM, the input consists of two permutations: τ , referred to
as the “text”, and π, referred to as the “pattern”. The two permutations are represented
as sequences of distinct integers. The goal is to determine whether the text τ contains the
pattern σ, that is, whether τ has a subsequence order-isomorphic to σ (see Section 2 for
precise definitions).

Bose, Buss and Lubiw [7] have shown that the PPM problem is NP-complete. Thus, most
recent research into the complexity of PPM focuses either on parametrized or superpolynomial
algorithms, or on restricted instances of the problem.
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For a pattern π of size k and a text τ of size n, a straightforward brute-force approach can
solve PPM in time O(nk+1). This was improved by Ahal and Rabinovich [1] to O(n0.47k+o(k)),
and then by Berendsohn, Kozma and Marx [6] to O(nk/4).

When k is large in terms of n, a brute-force approach solves PPM in time O(2n+o(n)).
The first improvement upon this bound was obtained by Bruner and Lackner [8], whose
algorithm achieves the running time O(1.79n), which was in turn improved by Berendsohn,
Kozma and Marx [6] to O(1.6181n).

Guillemot and Marx [11] have shown, perhaps surprisingly, that PPM is fixed-parameter
tractable with parameter k, via an algorithm with running time n · 2O(k2 log k), later improved
to n · 2O(k2) by Fox [10].

Restricted instances

Given that PPM is NP-hard on general inputs, various authors have sought to identify
restrictions on the input permutations that would allow for an efficient pattern matching
algorithm. These restrictions usually take the form of specifying that the pattern must
belong to a prescribed set C of permutations (the so-called C-Pattern PPM problem), or
that both the pattern and the text must belong to a set C (known as C-PPM problem). The
most commonly considered choices for C are sets of the form Av(σ) of all the permutations
that do not contain a fixed pattern σ.

Note that for the class Av(21), consisting of all the increasing permutations, Av(21)-
Pattern PPM corresponds to the problem of finding the longest increasing subsequence
in the given text, a well-known polynomially solvable problem [17]. Another polynomially
solvable case is Av(132)-Pattern PPM, which follows from more general results of Bose et
al. [7].

In contrast, for the class Av(321) of permutations avoiding a decreasing subsequence
of length 3 (or equivalently, the class of permutations formed by merging two increasing
sequences), Av(321)-Pattern PPM is already NP-complete, as shown by Jelínek and
Kynčl [15]. In fact, Jelínek and Kynčl show that Av(σ)-Pattern PPM is polynomial for
σ ∈ {1, 12, 21, 132, 231, 312, 213} and NP-complete otherwise.

For the more restricted Av(σ)-PPM problem, a polynomial algorithm for σ = 321 was
found by Guillemot and Vialette [12] (see also Albert et al. [2]), and it follows that Av(σ)-
PPM is polynomial for any σ of length at most 3. In contrast, the case σ = 4321 (and by
symmetry also σ = 1234) is NP-complete [15]. It follows that Av(σ)-PPM is NP-complete
whenever σ contains 1234 or 4321 as subpermutation, and in particular, it is NP-complete
for any σ of length 10 or more.

In this paper, our main motivation is to close the gap between the polynomial and
the NP-complete cases of Av(σ)-PPM. We develop a general type of hardness reduction,
applicable to any permutation class that contains a suitable grid-like substructure. We
then verify that for most choices of σ large enough, the class Av(σ) contains the required
substructure. Specifically, we can prove that Av(σ)-PPM is NP-complete in the following
cases:

Any σ of size at least 6.
Any σ of size 5, except the symmetry type of 41352 (i.e., the two symmetric permutations
41352 and 25314).
Any σ symmetric to one of 4321, 4312 or 4231.

Note that the list above includes the previously known case σ = 4321. Our hardness
reduction, apart from being more general than previous results, has also the advantage of
being more efficient: we reduce an instance of 3-SAT of size m to an instance of PPM of
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size O(m log m). This implies, assuming the exponential time hypothesis (ETH), that none
of these NP-complete cases of Av(σ)-PPM can be solved in time 2o(n/ log n). Previously, this
lower bound was not known to hold even for the unconstrained PPM problem.

Grid classes

The sets of permutations of the form Av(σ), i.e., the sets determined by a single forbidden
pattern, are the most common type of permutation sets considered; however, such sets
are not necessarily the most convenient tools to understand the precise boundary between
polynomial and NP-complete cases of PPM. We will instead work with the more general
concept of permutation class, which is a set C of permutations with the property that for any
π ∈ C, all the subpermutations of π are in C as well.

A particularly useful family of permutation classes are the so-called grid classes. When
dealing with grid classes, it is useful to represent a permutation π = π1π2 · · · πn by its
diagram, which is the set of points {(i, πi) | i = 1, . . . , n}. A grid class is defined in terms of
a gridding matrix M, whose entries are (possibly empty) permutation classes. We say that
a permutation π has an M-gridding, if its diagram can be partitioned, by horizontal and
vertical cuts, into an array of rectangles, where each rectangle induces in π a subpermutation
from the permutation class in the corresponding cell of M. The permutation class Grid(M)
then consists of all the permutations that have an M-gridding.

To a gridding matrix M we associate a cell graph, which is the graph whose vertices are
the entries in M that correspond to infinite classes, with two vertices being adjacent if they
belong to the same row or column of M and there is no other infinite entry of M between
them.

In the griddings we consider in this paper, a prominent role is played by four specific
classes, forming two symmetry pairs: one pair are the monotone classes Av(21) and Av(12),
containing all the increasing and all the decreasing permutations, respectively. Note that
any infinite class of permutations contains at least one of Av(12) and Av(12) as a subclass,
by the Erdős–Szekeres theorem [9].

The other relevant pair of classes involves the so-called Fibonacci class, denoted ⊕21,
and its mirror image ⊖12. The Fibonacci class can be defined as the class of permutations
avoiding the three patterns 321, 312 and 231, or equivalently, it is the class of permutations
π = π1π2 · · · πn satisfying |πi − i| ≤ 1 for every i.

Griddings have been previously used, sometimes implicitly, in the analysis of special cases
of PPM, where they were applied both in the design of polynomial algorithms [2, 12], and in
NP-hardness proofs [15, 16]. In fact, all the known NP-hardness arguments for special cases
of C-Pattern PPM are based on the existence of suitable grid subclasses of the class C. In
particular, previous results of the authors [16] imply that for any gridding matrix M that
only involves monotone or Fibonacci cells, Grid(M)-Pattern PPM is polynomial when the
cell graph of M is a forest, and it is NP-complete otherwise. Of course, if Grid(M)-Pattern
PPM is polynomial then Grid(M)-PPM is polynomial as well. However, the results in
this paper identify a broad family of examples where Grid(M)-PPM is polynomial, while
Grid(M)-Pattern PPM is known to be NP-complete.

Our main hardness result, Theorem 2, can be informally rephrased as a claim that C-PPM
is hard for a class C whenever C contains, for each n and a fixed ε > 0, a grid subclass whose
cell graph is a path of length n, and at least εn of its cells are Fibonacci classes. A somewhat
less technical consequence, Corollary 4, says that Grid(M)-PPM is NP-hard whenever the
cell graph of M is a cycle with no three vertices in the same row or column and with at least
one Fibonacci cell.

MFCS 2021
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Corollary 4 is, in a certain sense, best possible, since our main tractability result,
Theorem 10, states that C-PPM is polynomial whenever C is monotone-griddable, that is,
C ⊆ Grid(M), where M contains only monotone (or empty) cells. Moreover, by a result of
Huczynska and Vatter [13], every class C that does not contain ⊕21 or ⊖12 is monotone
griddable. Taken together, these results show that Grid(M)-PPM is polynomial whenever
no cell of M contains ⊕21 or ⊖12 as a subclass.

2 Preliminaries

A permutation of length n is a sequence π1, . . . , πn in which each element of the set [n] =
{1, 2, . . . , n} appears exactly once. When writing out short permutations explicitly, we shall
omit all punctuation and write, e.g., 15342 for the permutation 1, 5, 3, 4, 2. The permutation
diagram of π is the set of points Sπ = {(i, πi) | i ∈ [n]} in the plane. Observe that no two
points from Sπ share the same x- or y-coordinate. We say that such a set is in general
position. Note that we blur the distinction between permutations and their permutation
diagrams, e.g., we shall refer to “the point of π”.

For a point p in the plane, we let p.x denote its horizontal coordinate and p.y its vertical
coordinate. Two finite sets S, R ⊆ R2 in general position are order-isomorphic, or just
isomorphic for short, if there is a bijection f : S → R such that for any pair of points p ̸= q

of R we have f(p).x < f(q).x if and only if p.x < q.x, and f(p).y < f(p).y if and only if
p.y < q.y; in such case, the function f is the isomorphism from S to R. The reduction of a
finite set S ⊆ R2 in general position is the unique permutation π such that S is isomorphic
to Sπ.

A permutation τ contains a permutation π, denoted by π ⪯ τ , if there is a subset P ⊆ Sτ

that is isomorphic to Sπ. Such a subset is then called an occurrence of π in τ , and the
isomorphism from S to P is an embedding of π into τ . If τ does not contain π, we say that τ

avoids π.
A permutation class is any down-set C of permutations, i.e., a set C such that if π ∈ C and

σ ⪯ π then also σ ∈ C. For a permutation σ, we let Av(σ) denote the class of all σ-avoiding
permutations. We shall throughout use the symbols and as short-hands for the class
of increasing permutations Av(21) and the class of decreasing permutations Av(12).

Observe that for every permutation π of length at most m, the permutation diagram Sπ

is a subset of the set {p | 1
2 < p.x < m + 1

2 ∧ 1
2 < p.y < m + 1

2 }, called m-box. This fact
motivates us to extend the usual permutation symmetries to bijections of the whole m-box.
In particular, there are eight symmetries generated by:
reversal which reflects the m-box through its vertical axis, i.e., the image of a point p is the

point (m + 1 − p.x, p.y),
complement which reflects the m-box through its horizontal axis, i.e., the image of a point

p is the point (p.x, m + 1 − p.y),
inverse which reflects the m-box through its ascending diagonal axis, i.e., the image of a

point p is the point (p.y, p.x).

We say that a permutation π is symmetric to a permutation σ if π can be transformed
into σ by any of the eight symmetries generated by reversal, complement and inverse. The
symmetry type1 of a permutation σ is the set of all the permutations symmetric to σ.

1 We chose the term “symmetry type” over the more customary “symmetry class”, to avoid possible
confusion with the notion of permutation class.
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The symmetries generated by reversal, complement and inverse can be applied not only to
individual permutations but also to their classes. Formally, if Ψ is one of the eight symmetries
and C is a permutation class, then Ψ(C) refers to the set {Ψ(σ)| σ ∈ C}. We may easily see
that Ψ(C) is again a permutation class.

Consider a pair of permutations π of length n and σ of length m. The inflation of a point
p of π by σ is the reduction of the point set

Sπ \ {p} ∪
{(

p.x + q.x

m + 1 , p.y + q.y

m + 1

) ∣∣∣∣ q ∈ Sσ

}
.

Informally, we replace the point p with a tiny copy of σ.
The direct sum of π and σ, denoted by π ⊕ σ, is the result of inflating the “1” in 12

with π and then inflating the “2” with σ. Similarly, the skew sum of π and σ, denoted
by π ⊖ σ, is the result of inflating the “2” in 21 with π and then inflating the “1” with σ.
If a permutation τ cannot be obtained as direct sum of two shorter permutations, we say
that τ is sum-indecomposable and if it cannot be obtained as a skew sum of two shorter
permutations, we say that it is skew-indecomposable. Moreover, we say that a permutation
class C is sum-closed if for any π, σ ∈ C we have π ⊕σ ∈ C. We define skew-closed analogously.

We define the sum completion of a permutation π to be the permutation class

⊕π = {σ1 ⊕ σ2 ⊕ · · · ⊕ σk | σi ⪯ π for all i ≤ k ∈ N}.

Analogously, we define the skew completion ⊖π of π. The class ⊕21 is known as the Fibonacci
class.

2.1 Grid classes
When we deal with matrices, we number their rows from bottom to top to be consistent with
the Cartesian coordinates we use for permutation diagrams. For the same reason, we let the
column coordinates precede the row coordinates; in particular, a k × ℓ matrix is a matrix
with k columns and ℓ rows, and for a matrix M, we let Mi,j denote its entry in column i

and row j.
A matrix M whose entries are permutation classes is called a gridding matrix. Moreover,

if the entries of M belong to the set { , , ∅} then we say that M is a monotone gridding
matrix.

A k × ℓ-gridding of a permutation π of length n are two weakly increasing sequences
1 = c1 ≤ · · · ≤ ck+1 = n + 1 and 1 = r1 ≤ · · · ≤ rℓ+1 = n + 1. For each i ∈ [k] and j ∈ [ℓ],
we call the set of points p ∈ Sπ such that ci ≤ p.x < ci+1 and rj ≤ p.y < rj+1 the (i, j)-cell
of π. An M-gridding of a permutation π is a k × ℓ-gridding such that the reduction of the
(i, j)-cell of π belongs to the class Mi,j for every i ∈ [k] and j ∈ [ℓ]. If π has an M-gridding,
then π is said to be M-griddable, and the grid class of M, denoted by Grid(M), is the class
of all M-griddable permutations.

The cell graph of the gridding matrix M, denoted GM, is the graph whose vertices are
pairs (i, j) such that Mi,j is an infinite class, with two vertices being adjacent if they share
a row or a column of M and all the entries between them are finite or empty. See Figure 1.
We slightly abuse the notation and use the vertices of GM for indexing M, i.e., for a vertex
v of GM, we write Mv to denote the corresponding entry.

A proper-turning path in GM is a path P such that no three vertices of P share the same
row or column. Similarly, a proper-turning cycle in GM is a cycle C such that no three
vertices of C share the same row or column.

MFCS 2021
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M =

⊕21 Av(21)

	12 Av(12)


Figure 1 A gridding matrix M on the left and a permutation equipped with an M-gridding on

the right. Empty entries of M are omitted and the edges of GM are displayed inside M.

Let π be a permutation, and let (c, r) be its k × ℓ-gridding, where c = (c1, . . . , ck+1)
and r = (r1, . . . , rℓ+1). A permutation π together with a gridding (c, r) form a gridded
permutation. When dealing with gridded permutations, it is often convenient to apply
symmetry transforms to individual columns or rows of the gridding. Specifically, the reversal
of the i-th column of π is the operation which generates a new (c, r)-gridded permutation
π′ by taking the diagram of π, and then reflecting the rectangle [ci, ci+1 − 1] × [1, n] in the
diagram through its vertical axis, producing the diagram of the new permutation π′. Note
that π′ differs from π by having all the entries at positions ci, ci + 1, . . . , ci+1 − 1 in reverse
order. If ci+1 ≤ ci + 1, then π′ = π.

Similarly, the complementation of the j-th row of the (c, r)-gridded permutation π is
obtained by taking the rectangle [1, n] × [rj , rj+1 − 1] and turning it upside down, obtaining
a permutation diagram of a new permutation.

Column reversals and row complementations can also be applied to gridding matrices: a
reversal of a column i in a gridding matrix M simply replaces all the classes appearing in the
entries of the i-th column by their reverses; a row complementation is defined analogously.

We often need to perform several column reversals and row complementations at once.
To describe such operations succinctly, we introduce the concept of k × ℓ-orientation. A k × ℓ-
orientation is a pair of functions F = (fc, fr) with fc : [k] → {−1, 1} and fr : [ℓ] → {−1, 1}.
To apply the orientation F to a k×ℓ-gridded permutation π means to create a new permutation
F(π) by reversing in π each column i for which fc(i) = −1 and complementing each row
j for which fr(j) = −1. Note that the order in which we perform the reversals and
complementations does not affect the final outcome. Note also that F is an involution, that
is, F(F(π)) = π for any k × ℓ-gridded permutation π.

We may again also apply F to a gridding matrix M. By performing, in some order, the
row reversals and column complementations prescribed by F on the matrix M, we obtain a
new gridding matrix F(M). For instance, taking the gridding matrix

( )
and applying

reversal to its first column yields the gridding matrix
( )

. Observe that if (c, r) is an
M-gridding of a permutation π, then the same gridding (c, r) is also an F(M)-gridding of
the permutation F(π).

Let M be a monotone gridding matrix. An orientation F of M is consistent if all
the nonempty entries of F(M) are equal to . For instance, the matrix

( )
has

a consistent orientation acting by reversing the first column and complementing the first
row, while the matrix

( )
has no consistent orientation. We remark that Vatter and

Waton [18] have shown that any monotone gridding matrix whose cell graph is acyclic has a
consistent orientation.

A vital role in our arguments is played by the concept of monotone griddability. We
say that a class C is monotone-griddable if there exists a monotone gridding matrix M such
that C is contained in Grid(M). Huczynska and Vatter [13] provided a neat and useful
characterization of monotone-griddable classes.



V. Jelínek, M. Opler, and J. Pekárek 65:7

▶ Theorem 1 (Huczynska and Vatter [13]). A permutation class C is monotone-griddable if
and only if it contains neither the Fibonacci class ⊕21 nor its symmetry ⊖12.

Finally, a monotone grid class Grid(C D) where both C and D are non-empty is called
a horizontal monotone juxtaposition. Analogously, a vertical monotone juxtaposition is a
monotone grid class Grid ( C

D ) with both C and D non-empty. A monotone juxtaposition is
simply a class that is either a horizontal or a vertical monotone juxtaposition.

2.2 Pattern matching complexity
In this paper, we deal with the complexity of the decision problem known as C-PPM. For a
permutation class C, the input of C-PPM is a pair of permutations (π, τ) with both π and τ

belonging to C. An instance of C-PPM is then accepted if τ contains π, and rejected if τ

avoids π. In the context of pattern-matching, π is referred to as the pattern, while τ is the
text.

Note that an algorithm for C-PPM does not need to verify that the two input permutations
belong to the class C, and the algorithm may answer arbitrarily on inputs that fail to fulfill
this constraint. Decision problems that place this sort of validity restrictions on their inputs
are commonly known as promise problems.

Our NP-hardness results for C-PPM are based on a general reduction scheme from the
classical 3-SAT problem. Given that C-PPM is a promise problem, the reduction must map
instances of 3-SAT to valid instances of C-PPM, i.e., the instances where both π and τ

belong to C.
On top of NP-hardness arguments, we also provide time-complexity lower bounds for the

hard cases of C-PPM. These lower bounds are conditioned on the exponential-time hypothesis
(ETH), a classical hardness assumption which states that there is a constant ε > 0 such that
3-SAT cannot be solved in time O(2εn), where n is the number of variables of the 3-SAT
instance. In particular, ETH implies that 3-SAT cannot be solved in time 2o(n).

Given an instance (π, τ) of C-PPM, we always use n to denote the length of the text τ .
We also freely assume that π has length at most n since otherwise the instance can be
straightforwardly rejected. Following established practice, we express our complexity bounds
for C-PPM in terms of n. Note that inputs of C-PPM of size n actually require Θ(n log n)
bits to encode.

3 Hardness of PPM

In this section, we present the main technical hardness result and then derive its several
corollaries. However, we first need to introduce one more definition.

We say that a permutation class C has the D-rich path property for a class D if there is
a positive constant ε such that for every k, the class C contains a grid subclass whose cell
graph is a proper-turning path of length k with at least ε · k entries equal to D. Moreover,
we say that C has the computable D-rich path property, if C has the D-rich path property
and there is an algorithm that, for a given k, outputs a witnessing proper-turning path of
length k with at least ε · k copies of D in time polynomial in k.

▶ Theorem 2. Let C be a permutation class with the computable D-rich path property for a
non-monotone-griddable class D. Then C-PPM is NP-complete, and unless ETH fails, there
can be no algorithm that solves C-PPM

in time 2o(n/ log n) if D moreover contains any monotone juxtaposition,
in time 2o(

√
n) otherwise.

MFCS 2021
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P1 P2

P3 P4

P5

PL

T1 T2

T3 T4

T5

TL

π τ

D
D

M
Figure 2 The gridding matrix M, the gridded permutation π (the pattern) and the gridded

permutation τ (the text), used in the simplified overview of the proof of Theorem 2.

We remark, without going into detail, that the two lower bounds we obtained under ETH
are close to optimal. It is clear that the bound of 2o(n/ log n) matches, up to the log n term in
the exponent, the trivial 2O(n) brute-force algorithm for PPM. Moreover, the lower bound of
2o(

√
n) for C-PPM also cannot be substantially improved without adding assumptions about

the class C. Consider for instance the class C =
(

⊕21

)
. As we shall see in Proposition 3,

this class has the computable ⊕21-rich path property, and therefore the 2o(
√

n) conditional
lower bound applies to it. However, by using the technique of Ahal and Rabinovich [1], which
is based on the concept of treewidth of permutations, we can solve C-PPM (even C-Pattern
PPM) in time nO(

√
n). This is because we can show that a permutation π ∈ C of size n has

treewidth at most O(
√

n). We omit the details of the argument here.

3.1 Overview of the proof of Theorem 2
The proof of Theorem 2 is based on a reduction from the well-known 3-SAT problem. The
individual steps of the construction are rather technical and in view of the space constraints,
we only present here a high-level overview of the construction, while some of the more
technical aspects are described in the appendix.

Suppose that C is a class with the computable D-rich path property, where D is not
monotone griddable. This means that D contains the Fibonacci class ⊕21 or its reversal ⊖12
as subclass. Suppose then, without loss of generality, that D contains ⊕21.

To reduce 3-SAT to C-PPM, consider a 3-SAT formula Φ, with n variables x1, . . . , xn

and m clauses. We may assume that each clause of Φ has exactly 3 literals.
Let L = L(m, n) be an integer whose value will be specified later. By the D-rich path

property, C contains a grid subclass Grid(M) where the cell graph of M is a path of length
L, in which a constant fraction of cells is equal to D.

To simplify our notation in this high-level overview, we will assume that the cell graph
of M corresponds to an increasing staircase. More precisely, the cells of M representing
infinite classes can be arranged into a sequence C1, C2, . . . , CL, where C1 is the bottom-left
cell M1,1 of M, each odd-numbered cell C2i−1 corresponds to the diagonal cell Mi,i, and
each even numbered cell C2i,2i corresponds to Mi+1,i. All the remaining cells of M are
empty. To simplify the exposition even further, we will assume that each odd-numbered cell
of the path is equal to and each even-numbered cell is equal to D. See Figure 2.

With the gridding matrix M specified above, we will construct two M-gridded permu-
tations, the pattern π and the text τ , such that π can be embedded into τ if and only
if the formula Φ is satisfiable. We will describe π and τ geometrically, as permutation
diagrams, which are partitioned into blocks by the M-gridding. We let Pi denote the part of
π corresponding to the cell Ci of M, and similarly we let Ti be the part of τ corresponding
to Ci.
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A B

The copy gadget

A B1

B2

The choose gadget

A B

The pick gadget

A B1
B2

The multiply gadget

B

A2

A1

The merge gadget

A B

The follow gadget

Figure 3 The constructions of simple gadgets. The tile Qi is always on the left and the tile Qi+1

is on the right. The dotted lines show the relative vertical order of points.

To get an intuitive understanding of the reduction, it is convenient to first restrict our
attention to grid-preserving embeddings of π into τ , that is, to embeddings which map the
elements of Pi to elements of Ti for each i.

The basic building blocks in the description of π and τ are the atomic pairs, which
are specific pairs of points appearing inside a single block Pi or Ti. It is a feature of the
construction that in any grid preserving embedding of π into τ , an atomic pair inside a pattern
block Pi is mapped to an atomic pair inside the corresponding text block Ti. Moreover,
each atomic pair in π or τ is associated with one of the variables x1, . . . , xn of Φ, and any
grid-preserving embedding will maintain the association, that is, atomic pairs associated to a
variable xj inside π will map to atomic pairs associated to xj in τ .

To describe π and τ , we need to specify the relative positions of the atomic pairs in two
adjacent blocks Pi and Pi+1 (or Ti and Ti+1). These relative positions are given by several
typical configurations, which we call gadgets. Several examples of gadgets are depicted in
Figure 3. In the figure, the pairs of points enclosed by an ellipse are atomic pairs. The choose,
multiply and merge gadgets are used in the construction of τ , while the pick and follow
gadgets are used in π. The copy gadget will be used in both. We also need more complicated
gadgets, namely the flip gadgets of Figure 4, which span more than two consecutive blocks.
In all cases, the atomic pairs participating in a single gadget are all associated to the same
variable of Φ.

The sequence of pattern blocks P1, P2, . . . , PL, as well as their corresponding text blocks
T1, . . . , TL, is divided into several contiguous parts, which we call phases. We now describe
the individual phases in the order in which they appear.

The initial phase and the assignment phase. The initial phase involves a single pattern
block P1 and the corresponding text block T1. Both P1 and T1 consist of an increasing
sequence of 2n points, divided into n consecutive atomic pairs X1

1 , X1
2 , . . . , X1

n ⊆ P1 and
Y 1

1 , Y 1
2 , . . . , Y 1

n ⊆ T1, numbered in increasing order. The pairs X1
j and Y 1

j are both associated
to the variable xj . Clearly any embedding of P1 into T1 will map the pair X1

j to the pair
Y 1

j , for each j ∈ [n].
The initial phase is followed by the assignment phase, which also involves only one pattern

block P2 and the corresponding text block T2. P2 will consist of an increasing sequence of n

atomic pairs X2
1 , X2

2 , . . . , X2
n, where each X2

j is a decreasing pair, i.e., a copy of 21. Moreover,
X1

j ∪ X2
j forms the pick gadget, so the first two pattern blocks can be viewed as a sequence

of n pick gadgets stacked on top of each other.
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A1

A2 si+1
2

si+1
1

Bi+2
1

Bi+2
2

Bj
1

Bj
2

A si+1

Bi+2

Bj

Figure 4 A flip text gadget on the left and a flip pattern gadget on the right. The first tile
pictured is Qi and the last tile is Qj where j = i + 3. As before, the dotted lines show the relative
order of points.

The block T2 then consists of 2n atomic pairs {Y 2
j , Z2

j ; j ∈ [n]}, positioned in such a
way that Y 1

j ∪ Y 2
j ∪ Z2

j is a choose gadget. Thus, T1 ∪ T2 is a sequence of n choose gadgets
stacked on top of each other, each associated with one of the variables of Φ.

In a grid-preserving embedding of π into τ , each pick gadget X1
j ∪ X2

j must be mapped
to the corresponding choose gadget Y 1

j ∪ Y 2
j ∪ Z2

j , with X1
j mapped to Y 1

j , and X2
j mapped

either to Y 2
j or to Z2

j . There are thus 2n grid-preserving embeddings of P1 ∪ P2 into T1 ∪ T2,
and these embeddings encode in a natural way to the 2n assignments of truth values to the
variables of Φ. Specifically, if X2

j is mapped to Y 2
j , we will say that xj is false, while if X2

j

maps to Z2
j , we say that xj is true. The aim is to ensure that an embedding of P1 ∪ P2 into

T1 ∪ T2 can be extended to an embedding of π into τ if and only if the assignment encoded
by the embedding satisfies Φ.

Each atomic pair that appears in one of the text blocks T2, T3, . . . , TL is not only associated
with a variable of Φ, but also with its truth value; that is, there are “true” and “false” atomic
pairs associated with each variable xj . The construction of π and τ ensures that in an
embedding of π into τ in which X2

j is mapped to Y 2
j (corresponding to setting xj to false),

all the atomic pairs associated to xj in the subsequent stages of π will map to false atomic
pairs associated to xj in τ , and conversely, if X2

j is mapped to Z2
j , then the atomic pairs of

π associated to xj will only map to the true atomic pairs associated to xj in τ .

The multiplication phase. The purpose of the multiplication phase is to “duplicate” the
information encoded in the assignment phase. Without delving into the technical details, we
describe the end result of the multiplication phase and its intended behaviour with respect
to embeddings. Let dj be the number of occurrences (positive or negative) of the variable xj

in Φ. Note that d1 + d2 + · · · + dn = 3m, since Φ has m clauses, each of them with three
literals. Let Pk and Tk are the final pattern block and text block of the multiplication phase.
Then Pk is an increasing sequence of 3m increasing atomic pairs, among which there are dj

atomic pairs associated to xj . Moreover, the pairs are ordered in such a way that the d1
pairs associated to x1 are at the bottom, followed by the d2 pairs associated to x2 and so
on. The structure of Tk is similar to Pk, except that Tk has 6m atomic pairs. In fact, we
may obtain Tk from Pk by replacing each atomic pair Xk

i ⊆ Pk associated to a variable xj

by two adjacent atomic pairs Y k
i , Zk

i , associated to the same variable, where Y k
i is false and

Zk
i is true.

It is useful to identify each pair Xk
i ⊆ Pk as well as the corresponding two pairs

Y k
i , Zk

i ⊆ Tk with a specific occurrence of xj in Φ. Thus, each literal in Φ is represented by
one atomic pair in Pk and two adjacent atomic pairs of opposite truth values in Tk.
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The blocks P3, . . . , Pk and T3, . . . , Tk are constructed in such a way that any embedding
of π into τ that encodes an assignment in which xj is false has the property that all the
atomic pairs in Pk associated to xj are mapped to the false atomic pairs of Tk associated
to xj , and similarly, when xj is encoded as true in the assignment phase, the pairs of Pk

associated to xj are only mapped to the true atomic pairs of Tk. Thus, the mapping of any
atomic pair of Pk encodes the information on the truth assignment of the associated variable.

The multiplication phase is implemented by a combination of multiply gadgets and flip
text gadgets in τ , and copy gadgets and flip pattern gadgets in π. It requires no more than
O(log m) blocks in π and τ , i.e., k = O(log m).

The sorting phase. The purpose of the sorting phase is to rearrange the relative positions
of the atomic pairs. While at the end of the multiplication phase, the pairs representing
occurrences of the same variable appear consecutively, after the sorting phase, the pairs
representing literals belonging to the same clause will appear consecutively. More precisely,
letting Pℓ and Tℓ denote the last pattern block and the last text block of the sorting phase,
Pℓ has the same number of atomic pairs associated to a given variable xj as Pk, and similarly
for Tℓ and Tk. If K1, . . . , Km are the clauses of Φ, then for each clause Kj , Pℓ contains
three consecutive atomic pairs corresponding to the three literals in Kj , and Tℓ contains the
corresponding six atomic pairs, again appearing consecutively. Similarly as in Pk and Tk,
each atomic pair in Pℓ must map to an atomic pair in Tℓ representing the same literal and
having the correct truth value encoded in the assignment phase.

To prove Theorem 2, we need two different ways to implement the sorting phase, depending
on whether the class D contains a monotone juxtaposition or not. The first construction,
which we call sorting by gadgets, does not put any extra assumptions on D. However, it may
require up to Θ(m) blocks to perform the sorting, that is ℓ = Θ(m).

The other implementation of the sorting phase, which we call sorting by juxtapositions is
only applicable when D contains a monotone juxtaposition, and it can be performed with
only O(log m) blocks. The difference between the lengths of the two versions of sorting is
the reason for the two different lower bounds in Theorem 2.

The evaluation phase. The final phase of the construction is the evaluation phase. The
purpose of this phase is to ensure that for any embedding of π into τ , the truth assignment
encoded by the embedding satisfies all the clauses of Φ. For each clause Kj , we attach
suitable gadgets to the atomic pairs in Pℓ and Tℓ representing the literals of Kj . Using the
fact that the atomic pairs representing the literals of a given clause are consecutive in Pj

and Tj , this can be done for all the clauses simultaneously, with only O(1) blocks in π and τ .
This completes an overview of the hardness reduction proving Theorem 2.

When the reduction is performed with sorting by gadgets, it produces permutations π

and τ of size O(m2), since we have L = O(m) blocks and each block has size O(m). When
sorting is done by juxtapositions, the number of blocks drops to L = O(log m), hence π and
τ have size O(m log m). ETH implies that 3-SAT with n variables and m clauses cannot be
solved in time 2o(m+n) [14]. From this, the lower bounds from Theorem 2 follow.

Further details of the reduction, as well as the correctness proof, are presented in the
appendix A.

3.2 Consequences
In the rest of this section, we focus on presenting examples of classes that satisfy the technical
“rich path” property, which is the backbone of all our hardness arguments.
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Figure 5 Illustration of the proof of Proposition 3. Left: a gridding matrix M whose cell graph
is a cycle with a single entry equal to D. The numbers along the bottom and the left edge form an
orientation that maps each entry to a sum-closed class. Right: a gridding matrix whose grid class is
contained in Grid(M) and whose cell graph is a path. The endvertices of the path are highlighted
in gray, and the first and last few steps of the path are shown as dashed lines. The numbers along
the edges are the labels forming the characteristic of each entry.

▶ Proposition 3. Let D be a non-monotone-griddable class that is sum-closed or skew-closed.
If M is a gridding matrix whose cell graph GM contains a proper-turning cycle with at least
one entry equal to D, then Grid(M) has the computable D-rich path property.

Proof. We note that the proof closely follows a proof of a similar claim for monotone grid
classes by Jelínek et al. [16, Lemma 3.5].

We may assume, without loss of generality, that the cell graph of M consists of a single
cycle, that it contains a unique entry equal to D, and that all the remaining nonempty entries
are equal to or to . This is because each infinite permutation class contains either
or as a subclass, and replacing an entry of M by its infinite subclass can only change
Grid(M) into its subclass. If we can establish the D-rich path property for the subclass,
then it also holds for the class Grid(M) itself.

We may also assume that D is sum-closed, since the skew-closed case is symmetric. In
particular, D contains ⊕21 as a subclass.

Let L be a given integer. We show how to obtain a grid subclass of Grid(M) whose
cell graph is a proper-turning path of length at least L that contains a constant fraction of
D-entries. Refer to Figure 5. Suppose N is a k × ℓ gridding matrix whose every entry is
either sum-closed or skew-closed. The refinement N ×q of N is the qk × qℓ matrix obtained
from N by replacing the entry Ni,j with

a q × q diagonal matrix with all the non-empty entries equal to Ni,j if Ni,j is sum-closed,
a q × q anti-diagonal matrix with all the non-empty entries equal to Ni,j if Ni,j is
skew-closed.

It is easy to see that Grid(N ×q) is a subclass of Grid(N ). We call the submatrix of N ×q

formed by the entries N ×q
a,b for q · i < a ≤ (q + 1) · i and q · j < b ≤ (q + 1) · j the (i, j)-block

of N ×q.



V. Jelínek, M. Opler, and J. Pekárek 65:13

Importantly, it follows from the work of Albert et al. [3, Proposition 4.1] that for every
monotone gridding matrix N , there exists a consistent orientation of the refinement N ×2.
Translating it to our setting, we can assume that there is a k × ℓ orientation F such that the
image of Mi,j under F is sum-closed for every i ∈ [k] and j ∈ [ℓ]. If that is not the case for
M, we simply start with M×2 instead.

Given such an orientation F = (fc, fr), we label the rows and columns of the refinement
M×L using the set [L]. The L-tuple of columns created from the i-th column of M is
labeled in the increasing order from left to right if fc(i) is positive and right to left otherwise.
Similarly, the L-tuple of rows created from the j-th row of M is labeled in the increasing
order from bottom to top if fr(j) is positive and top to bottom otherwise. The characteristic
of an entry in M×L is the pair of labels given to its column and row. Observe that each
non-empty entry in M×L has a characteristic of the form (s, s) for some s ∈ [L] by the
choice of orientation. Therefore, GM×L consists exactly of L connected components, each
corresponding to a copy of M.

We pick an arbitrary non-empty monotone entry Mi,j of M and obtain a matrix ML by
replacing the (i, j)-block in M×q with the q × q matrix whose only non-empty entries are the
ones with characteristic (s, s+ 1) for all s ∈ [L− 1] and they are all equal to Mi,j . Grid(ML)
is a subclass of Grid(M) since the modified (i, j)-block corresponds to shifting the original
(anti-)diagonal matrix by one row either up or down, depending on the orientation of the
j-th row of M.

Observe that we connected all the L copies of M into a single long path. Moreover, the
path contains L − 1 entries in the (i, j)-block and L entries in every other non-empty block.
Therefore, a constant fraction of its entries belong to the (a, b)-block such that Ma,b = D
and thus are equal to D. It is easy to see that the described procedure is constructive and
can easily be implemented to run in polynomial time. Therefore, Grid(M) indeed has the
computable D-rich path property. ◀

Combining Proposition 3 with Theorem 2, we get the following corollary. Note that in
the corollary, if D fails to be sum-closed or skew-closed, we may simply replace it with ⊕21
or ⊖12, since at least one of these two classes is its subclass by Theorem 1.

▶ Corollary 4. Let D be a non-monotone-griddable class. If M is a gridding matrix whose
cell graph contains a proper-turning cycle with one entry equal to D, then Grid(M)-PPM
is NP-complete. Moreover, unless ETH fails, there can be no algorithm for Grid(M)-PPM
running

in time 2o(n/ log n) if D additionally contains any monotone juxtaposition and is either
sum-closed or skew-closed,
in time 2o(

√
n) otherwise.

Three symmetry types of patterns of length 4 can be tackled with a special type of grid
classes. The k-step increasing (C, D)-staircase, denoted by Stk(C, D) is a grid class Grid(M)
of a k × (k + 1) gridding matrix M such that the only non-empty entries in M are Mi,i = C
and Mi,i+1 = D for every i ∈ [k]. In other words, the entries on the main diagonal are
equal to C and the entries of the adjacent lower diagonal are equal to D. The increasing
(C, D)-staircase, denoted by St(C, D), is the union of Stk(C, D) over all k ∈ N.

Observe that if C and D are two infinite classes and one of them contains ⊕21 or ⊖12
then Theorem 2 applies and St(C, D)-PPM is NP-complete. Furthermore, if it also contains
a monotone juxtaposition as a subclass, then the almost linear lower bound under ETH
follows. We proceed to show that three symmetry types of classes avoiding a pattern of
length 4 actually contain such a staircase subclass.
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▶ Proposition 5. For any sum-indecomposable permutation σ, the class St( , Av(σ)) is
contained in the class Av(1 ⊖ σ).

Proof. Suppose for a contradiction that σ′ = 1 ⊖ σ belongs to St( , Av(σ)). In particular it
belongs to Stk( , Av(σ)) for some k and there is a witnessing gridding. If the first element
is not mapped to one of the -entries on the upper diagonal, then the whole σ′ must lie
in a single Av(σ)-entry on the lower diagonal, which is clearly not possible. Therefore, the
first element must be mapped to one of the -entries. Notice that the rest of σ′ cannot be
mapped to any of the -entries as it lies below and to the right of the first element. However,
it cannot lie in more than one Av(σ)-entry; otherwise, we could express σ as a direct sum of
two shorter permutations. Hence, there must be an occurrence of σ in an Av(σ)-entry which
is clearly a contradiction. ◀

A direct consequence of Proposition 5 is that taking σ to be 321, 312 or 231, we see that
St( , Av(321)) ⊆ Av(4321), St( , Av(231)) ⊆ Av(4231) and St( , Av(312)) ⊆ Av(4312).
Note that the first inclusion is rather trivial and the latter two have been previously observed
by Berendsohn [5].

We may easily observe that for any pattern σ of size 3, the class Av(σ) contains the
Fibonacci class or its reversal, as well as a monotone juxtaposition. Combining Proposition 5
with Theorem 2 yields the following consequence.

▶ Corollary 6. For any permutation σ that contains a pattern symmetric to 4321, to 4231,
or to 4312, the problem Av(σ)-PPM is NP-complete, and unless ETH fails, it cannot be
solved in time 2o(n/ log n).

We verified by computer that there are only five symmetry types of patterns of length
5 that do not contain any of 4321, 4213, 4312 or their symmetries – represented by 14523,
24513, 32154, 42513 and 41352. Of these five, four can be handled by Corollary 4 since they
contain a specific type of cyclic grid classes, as we now show.

▶ Proposition 7. The class Av(σ) contains the class Grid(M) for the gridding matrix
M =

(
Av(π)

)
whenever

π = 132 and σ = 14523, or
π = 231 and σ = 24513, or
π = 321 and σ ∈ {32154, 42513}.

Proof. Suppose that σ and π are one of the listed cases. Observe that Grid(M) is a subclass
of Av(σ) if and only if σ is not in Grid(M). For contradiction, suppose that the class
Grid(M) contains σ. Therefore, there exists a witnessing M-gridding 1 = c1 ≤ c2 ≤ c3 = 6
and 1 = r1 ≤ r2 ≤ r3 = 6 of σ.

Let us consider the four choices of σ separately, starting with σ = 14523: if c2 ≤ 3 and
r2 ≤ 3, the cell (2, 2) of the gridding contains the pattern 21, if c2 ≤ 4 and r2 ≥ 4, the cell
(2, 1) contains 12, if c2 ≥ 4 and r2 ≤ 4, the cell (1, 2) contains 12, and if c2 ≥ 5 and r2 ≥ 5,
the cell (1, 1) contains 132. In all cases we get a contradiction with the properties of the
M-gridding. The same argument applies to σ = 14513, except in the last case we use the
pattern 231 instead of 132.

For σ = 32154, the four cases to consider are c2 ≤ 4 ∧ r2 ≤ 4, c2 ≥ 5 ∧ r2 ≤ 3,
c2 ≤ 3 ∧ r2 ≥ 5, and c2 ≥ 4 ∧ r2 ≥ 4, in each case getting contradiction in a different cell of
the gridding. For σ = 42513, the analogous argument distinguishes the cases c2 ≤ 3 ∧ r2 ≤ 3,
c2 ≥ 4 ∧ r2 ≤ 4, c2 ≤ 4 ∧ r2 ≥ 4, and c2 ≥ 5 ∧ r2 ≥ 5. ◀
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It is easy to see that every σ of length at least 6 contains a pattern of size 5 which is not
symmetric to 41352. Therefore, Av(σ)-PPM is NP-complete for all permutations σ of length
at least 4 except for one symmetry type of length 5 and for four out of seven symmetry types
of length 4. As Av(σ)-PPM is polynomial-time solvable for any σ of length at most 3, these
are, in fact, the only cases left unsolved.

▶ Corollary 8. If σ is a permutation of length at least 4 that is not in symmetric to any of
3412, 3142, 4213, 4123 or 41352, then Av(σ)-PPM is NP-complete, and unless ETH fails, it
cannot be solved in time 2o(n/ log n).

To conclude this section, we remark that the suitable grid subclasses were discovered via
computer experiments facilitated by the Permuta library [4].

4 Polynomial-time algorithm

We say that a permutation π is t-monotone if there is a partition Π = (S1, . . . , St) of Sπ

such that Si is a monotone point set for each i ∈ [t]. The partition Π is called a t-monotone
partition.

Given a t-monotone partition Π = (S1, . . . , St) of a permutation π and a t-monotone
partition Σ = (S′

1, . . . , S′
t) of τ , an embedding ϕ of π into τ is a (Π, Σ)-embedding if ϕ(Si) ⊆ S′

i

for every i ∈ [t]. Guillemot and Marx [11] showed that if we fix a t-monotone partitions of
both π and τ , the problem of finding a (Π, Σ)-embedding is polynomial-time solvable.

▶ Proposition 9 (Guillemot and Marx [11]). Given a permutation π of length m with a
t-monotone partition Π and a permutation τ of length n with a t-monotone partition Σ, we
can decide if there is a (Π, Σ)-embedding of π into τ in time O(m2n2).

We can combine this result with the fact that there is only a bounded number of ways
how to grid a permutation, and obtain the following counterpart to Corollary 4.

▶ Theorem 10. C-PPM is polynomial-time solvable for any monotone-griddable class C.

Proof. Let M be a k × ℓ monotone gridding matrix such that Grid(M) contains the class C.
We have to decide whether π is contained in τ for two given permutations π of length m and
τ of length n, both belonging to the class C.

First, we find an M-gridding of τ . We enumerate all possible k × ℓ griddings and for each,
we test if it is a valid M-gridding. Observe that there are in total O(nk+ℓ−2) such griddings
since they are determined by two sequences of values from the set [n], one of length k − 1
and the other of length ℓ − 1. Moreover, it is straightforward to test in time O(n2) whether
a given k × ℓ gridding is in fact an M-gridding. Note that we are guaranteed to find an
M-gridding as τ belongs to C ⊆ Grid(M). We set Σ to be the (k · ℓ)-monotone partition of
τ into the monotone sequences given by the individual cells of the gridding.

In the second step, we enumerate all possible M-griddings of π. As with τ , we enumerate
all possible O(mk+ℓ−2) k × ℓ griddings of π and check for each gridding whether it is actually
an M-gridding in time O(m2). For each M-gridding found, we let Π be the (k · ℓ)-monotone
partition of π given by the gridding, and we apply Proposition 9 to test whether there is a
(Π, Σ)-embedding in time O(m2n2).

If there is an embedding ϕ of π into τ , there is a (k · ℓ)-monotone partition Σ′ of π such
that ϕ is a (Π, Σ′)-embedding. Therefore, the algorithm correctly solves C-PPM in time
O(nk+ℓ + mk+ℓn2) – polynomial in n, m. ◀
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Notice that if M is a gridding matrix whose every entry is monotone griddable, or
equivalently no entry contains the Fibonacci class or its reverse as a subclass, then the
class Grid(M) is monotone griddable as well. It follows that for such M, the Grid(M)-
PPM problem is polynomial-time solvable. We also note that recent results on C-Pattern
PPM [16] imply that if a gridding matrix M has an acyclic cell graph, and if every nonempty
cell is either monotone or symmetric to a Fibonacci class, then Grid(M)-Pattern PPM,
and therefore also Grid(M)-PPM, is polynomial-time solvable as well. These two tractability
results contrast with our Corollary 4, which shows that for any gridding matrix M whose
cell graph is a cycle, and whose nonempty cells are all monotone except for one Fibonacci
cell, Grid(M)-PPM is already NP-hard.

5 Open problems

We have presented a hardness reduction which allowed us to show that the Av(σ)-PPM
problem is NP-complete for every permutation σ of size at least 6, as well as for most shorter
choices of σ. Nevertheless, for several symmetry types of σ, the complexity of Av(σ)-PPM
remains open. We collect all the remaining unresolved cases as our first open problem.

▶ Open problem 1. What is the complexity of Av(σ)-PPM, when σ is a permutation from
the set {3412, 3142, 4213, 4123, 41352}?

Our hardness results are accompanied by time complexity lower bounds based on the
ETH. Specifically, for our NP-hard cases, we show that under ETH, no algorithm may solve
C-PPM in time 2o(

√
n). The lower bound can be improved to 2o(n/ log n) under additional

assumptions about C. This opens the possibility of a more refined complexity hierarchy
within the NP-hard cases of C-PPM. In particular, we may ask for which C can C-PPM be
solved in subexponential time.

▶ Open problem 2. Which cases of C-PPM can be solved in time 2O(n1−ε)? Can the general
PPM problem be solved in time 2o(n)?
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A The proof of Theorem 2

Our job is to construct a pair of permutations π and τ , both having a gridding corresponding
to a D-rich path, with the property that the embeddings of π into τ will simulate satisfying
assignments of a given 3-SAT formula. First, we introduce the concept of F -assembly which
enables us to describe constructions of gridded permutations from a grid class Grid(M)
somewhat independently from the actual shape of M.

A.1 F-assembly
A finite subset P of the m-box in general position is called an m-tile and a k × ℓ family of
m-tiles is a set P = {Pi,j | i ∈ [k], j ∈ [ℓ]} where each Pi,j is an m-tile. Let F = (fc, fr) be a
k × ℓ orientation and let P be a family of m-tiles Pi,j for i ∈ [k], j ∈ [ℓ]. The F-assembly of
P is the point set S defined as follows.

We define for every i ∈ [k], j ∈ [ℓ] the point set P ′
i,j = {p+(i ·m, j ·m) | p ∈ Φi(Ψj(Pi,j))}

where Φi is an identity if fc(i) = 1 and reversal otherwise, while Ψj is an identity if fr(j) = 1
and complement otherwise. We set S =

⋃
P ′

i,j to be the F-assembly of P. If S is not in
general position, we rotate it clockwise by a tiny angle to a general position without changing
the order of any points that originally did not share a common coordinate.
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Let M be a k × ℓ gridding matrix. We say that the image of Mi,j under F is the class
Φi(Ψj(Mi,j)). The F-image of M, denoted by F(M), is then the k × ℓ gridding matrix
defined as F(M)i,j = Φi(Ψj(Mi,j)).

▶ Observation 11. Let M be a k × l gridding matrix, let F be a k × ℓ orientation and P a
k × ℓ family of m-tiles. If for every i ∈ [k] and j ∈ [ℓ] the reduction of Pi,j belongs to the
class F(M)i,j then the reduction of the F-assembly of P belongs to Grid(M).

Furthermore, if the cell graph GM of a monotone gridding matrix M is acyclic, we can
always find an orientation F such that the image F(M)i,j of every non-empty entry Mi,j is
the class . We say that such F is a consistent orientation for the gridding matrix M. The
existence of consistent orientations is guaranteed for matrices with acyclic cell graphs.

▶ Lemma 12 (Vatter and Waton [18]). There exists a consistent k × ℓ orientation F for any
monotone k × ℓ gridding matrix M whose cell graph GM is acyclic.

A.2 The reduction
Let Φ be a given 3-CNF formula with n variables x1, x2, . . . , xn and m clauses K1, K2, . . . , Km

each containing exactly three literals. Let M be a g × h gridding matrix such that Grid(M)
is a subclass of C, the cell graph GM is a proper-turning path of sufficient length to be
determined later with a constant fraction of its entries is equal to D.

First, we label the vertices of the path as p1, p2, p3, . . . choosing the direction such that
at least half of the D-entries share a row with their predecessor. By application of Lemma 12,
there is a g × h orientation F such that the class F(M)i,j is equal to for every monotone
entry Mi,j and the class F(M)i,j contains ⊕21 for every D-entry Mi,j . Our plan is to
simultaneously construct two g × h families of tiles P and T and then set π and τ to be the
F-assemblies of P and T , respectively. We abuse the notation and for any g × h family of
tiles Q (in particular for P and T ), we use Qi instead of Qpi

to denote the tile corresponding
to the i-th cell of the path.

For now, we will only consider restricted embeddings. We say that an embedding of π into
τ where π is an F -assembly of P and τ is an F -assembly of T , is grid-preserving if the image
of tile Pi,j is mapped to the image of Ti,j for every i and j. We slightly abuse the notation
in the case of grid-preserving embeddings and say that a point q in the tile Pi,j is mapped
to a point r in the tile Ti,j instead of saying that the image of q under the F-assembly is
mapped to the image of r under the F -assembly. We say that a pair of points r, q in the tile
Qi sandwiches a set of points A in the tile Qi+1 if for every point t ∈ A r.y < t.y < q.y in
case pi and pi+1 occupy a common row or otherwise, if the same holds for the x-coordinates.

A.2.1 Gadgets
We construct the tiles from gadgets consisting of pairs of points that we call atomic pairs.
We assume that the tiles are formed as direct sums of the individual gadgets. Consequently,
if A, B ⊆ Qi are point sets of two different gadgets, then either whole A lies to the right
and above B or vice versa. We describe the gadgets in the case when pi and pi+1 share a
common row and pi is to the left of pi+1, as the other cases are symmetric. The gadgets
are fully described by the relative positions of their points, therefore we refer the reader to
Figure 3 for their definitions.

We say that the copy, pick and follow gadgets connect the pair A to the pair B and the
multiply gadget multiplies the pair A to B1 and B2. The choose gadget is said to branch the
pair A to B1 and B2 and the merge gadget merges the pairs A1 and A2 into the pair B. We
follow with two observations about the behavior of these gadgets.
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▶ Observation 13. Suppose there is a choose gadget branching an atomic pair AT in the tile
Ti to two atomic pairs BT

1 and BT
2 in the tile Ti+1, and a pick gadget in P connecting an

atomic pair AP in the tile Pi to an atomic pair BP in the tile Pi+1. In any grid-preserving
embedding of π into τ , if AP is mapped to AT then BP is mapped either to BT

1 or to BT
2 .

▶ Observation 14. Suppose there is a merge gadget merging atomic pairs AT
1 and AT

2 in the
tile Ti into an atomic pair BT in the tile Ti+1, and a follow gadget connecting an atomic pair
AP in the tile Pi to an atomic pair BP in the tile Pi+1. In any grid-preserving embedding of
π into τ , if AP is mapped to AT

α for some α ∈ {1, 2} then BP is mapped to BT .

The flip gadget

We proceed to define two gadgets – a flip text gadget and a flip pattern gadget. It is insufficient
to consider just two neighboring tiles as we need two D-entries for the construction. To that
end, let i and j be indices such that both pi+1 and pj are D-entries and there is no other
D-entry between them.

As before, suppose that A1 and A2 are two atomic pairs in Qi. The flip text gadget
attached to the atomic pairs A1 and A2 consists of two points si+1

1 , si+1
2 in the tile Qi+1 and

two atomic pairs Bk
1 and Bk

2 in each tile Qk for every k ∈ [i + 2, j] = {i + 2, i + 3, . . . , j}. The
points si+1

1 , si+1
2 form an occurrence of 21 and si+1

α is sandwiched by Aα for each α ∈ {1, 2}.
The atomic pairs Bk

1 , Bk
2 for k ∈ [i + 2, j − 1] are set such that Bk

2 lies to the left and
below of Bk

1 , and together, they form an occurrence of 1234. The only difference in the case
of atomic pairs Bj

1, Bj
2 is that they form an occurrence of 2143. For every k ∈ [i + 3, j] and

α ∈ {1, 2}, the pair Bk
α sandwiches the pair Bk−1

α and moreover, the pair Bi+2
α sandwiches

the point si+1
α . We say that the flip text gadget flips the pairs A1, A2 in Qi to the pairs

Bj
2, Bj

1 in Qj . See the left part of Figure 4.
We define the flip pattern gadget as a set of points isomorphic to the pairs Bk

1 for all k

together with the point si+2
1 . See the right part of Figure 4.

Observe that flip gadget propagates the mapping properties while switching the order of
the pairs. However, it can also be used to test if only one of its initial atomic pairs is used in
the embedding. We omit proofs of the following lemmas due to space constraints.

▶ Lemma 15. Suppose there is a flip pattern gadget connecting an atomic pair A in Pi with
an atomic pair B in Pj . Furthermore, suppose that there is a flip text gadget flipping atomic
pairs A1 and A2 in Ti to atomic pairs B2 and B1 in Tj. In any grid-preserving embedding
of π into τ , if A is mapped to Aα for some α ∈ {1, 2} then B is mapped to Bα.

▶ Lemma 16. Suppose that there are two flip pattern gadgets connecting an atomic pair AP
α

in Pi to an atomic pair BP
α in Pj for α ∈ {1, 2}. Suppose that there is a flip text gadget in

T that flips atomic pairs AT
1 and AT

2 in Ti to atomic pairs BT
2 and BT

1 in Tj . There cannot
exist a grid-preserving embedding ϕ of π into τ that maps AP

α to AT
α for each α ∈ {1, 2}.

Note that all the gadgets except for the copy and multiply ones require a non-monotone
entry and thus, we need to somehow bridge the segments of the path consisting only of
monotone entries. By attaching a gadget to the pair A, we mean connecting to A a chain
of copy gadgets leading all the way to its first non-monotone entry and then attaching the
desired gadget at the end of this chain.
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A.2.2 Constructing the C-PPM instance
We define the initial tile P1 to contain atomic pairs X0

k for k ∈ [n] and the initial tile T1 to
contain atomic pairs Y 0

k for k ∈ [n] where each X0
k and Y 0

k form an occurrence of 12 and X0
i

(Y 0
j ) lies to the left and below of X0

j (Y 0
i ) for every i < j. Any grid-preserving embedding

of π into τ must obviously map X0
k to Y 0

k for every k ∈ [n]. We describe the rest of the
construction in four distinct phases.

Assignment phase. In the first phase, we simulate the assignment of truth values to the
variables. To that end, we attach to each pair Y 0

k for k ∈ [n] a choose gadget that branches
Y 0

k to two atomic pairs Y 1
k,1 and Z1

k,1 and we attach to each pair X0
k for k ∈ [n] a pick gadget

that connects X0
k to an atomic pair X1

k,1. The properties of choose and pick gadgets imply
that in any grid-preserving embedding, X1

k,1 is either mapped to Y 1
k,1 or to Z1

k,1.

Multiplication phase. Our next goal is to multiply the atomic pairs corresponding to a
single variable into as many pairs as there are occurrences of this variable in the clauses. We
describe the gadgets dealing with each variable individually.

Fix k ∈ [n] and let mk for k ∈ [n] denote the total number of occurrences of xk and ¬xk

in Φ. We are going to describe the construction inductively in ⌈log mk⌉ steps. Fix i ≥ 1.
We add for each j ∈ [2i] three multiply gadgets, one that multiplies the atomic pair Xi

k,j to
atomic pairs X̃i+1

k,2j−1 and X̃i+1
k,2j , one that multiplies the pair Y i

k,j to Ỹ i+1
k,2j−1 and Ỹ i+1

k,2j , and
finally one that multiplies Zi

k,j to Z̃i+1
k,2j−1 and Z̃i+1

k,2j . Observe that the properties of gadgets
imply that for arbitrary j ∈ [2i+1], X̃i+1

k,j maps either to Ỹ i+1
k,j or to Z̃i+1

k,j . However in the
text, we have the quadruple Ỹ i+1

k,2j−1, Ỹ i+1
k,2j , Z̃i+1

k,2j−1, Z̃i+1
k,2j in this specific order.

To solve this, we add for each j ∈ [2i] a flip text gadget that flips Ỹ i+1
k,2j , Z̃i+1

k,2j−1 to atomic
pairs Zi+1

k,2j−1, Y i+1
k,2j . The properties of flip gadgets (Lemma 15) guarantee that for every

j ∈ [2i+1], the pair Xi+1
k,j is mapped either to Y i+1

k,j or to Zi+1
k,j . Moreover, the order of atomic

pairs in the text now alternates between Y and Z as desired. It follows that we need in total
O(log m) D-entries for the multiplication phase.

Sorting phase. The multiplication phase ended with atomic pairs Xi
k,j in the pattern

ordered lexicographically by (k, j), i.e., bundled in blocks by the variables. The goal of the
sorting phase is to rearrange them such that they become bundled by clauses.

First, we remark that it is possible to flip the order of any two neighboring pairs in the
pattern using only a O(1) layers of gadgets. Unfortunately, the space constraints make it
impossible to include the description here as it is quite involved and technical. Using this
approach, we can flip an arbitrary set of neighboring pairs in O(1) layers of gadgets and thus,
we can arbitrarily reshuffle the atomic pairs of the pattern in O(m) layers.

On the other hand, we describe how we can do the sorting phase using significantly fewer
fewer tiles if the class D contains a monotone juxtaposition. We shall discuss here only the
case when D contains the juxtaposition B = Grid( ) as the other cases can be solved
using the same technique. Let pi be an entry such that F(M)pi

contains B and recall that we
assumed that pi shares a common row with pi−1. We construct a tile Qi from two increasing
sets Q1

i and Q2
i placed next to each other. In particular, we can attach to any atomic pair A

in Qi−1 a copy gadget connecting A to an atomic pair B and choose arbitrarily whether B

lies in Q1
i or Q2

i .
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Figure 6 Example of one sorting step using Grid( ) and a partition {1, 2, 3} = {1, 3} ∪ {2}.

Let J1 and J2 be a partition of the set [3m]. We attach a copy gadget ending in Qα
i to

each Xj , Yj and Zj with j ∈ Jα for each α ∈ {1, 2}. In this way, we rearranged the atomic
pairs in P such that first we have all pairs Xj such that j ∈ J1 followed by all pairs Xj for
j ∈ J2. Similarly in T , we have Yj , Zj for j ∈ J1 followed by Yj , Zj for j ∈ J2. See Figure 6.

Notice that the described operation simulates a stable bucket sort with two buckets.
Therefore, we can simulate radix sort and rearrange the atomic pairs into arbitrary order
given by σ by iterating this operation O(log m) times. In this way, the whole sorting phase
uses only O(log m) entries equal to D.

Evaluation phase. In the evaluation phase, we test whether each clause Kj = (xa ∨ xb ∨ xc)
is satisfied. We consider the case when Kj contains only positive literals as clauses with
negative literals can be handled with minor modifications of the argument. Suppose Xa, Xb

and Xc are the three neighboring atomic pairs in P that correspond to the three literals in
Kj . In T , there are six neighboring atomic pairs Ya, Za, Yb, Zb, Yc, Zc such that in any
grid-preserving embedding, the pair Xα is mapped to either Yα or Zα for every α ∈ {a, b, c}.

We abuse the notation and use the same letters to denote atomic pairs in different tiles so
that the gadgets carry the names through. First, we add (i) a choose gadget that branches
Zb to Zb and Z̃b, and (ii) pick gadgets to Ya, Za, Yb, Yc, Zc, Xa, Xb and Xc. We continue with
adding two layers of flip gadgets, modifying the order of atomic pairs in the text as follows

YaZa

↶↷
YbZbZ̃b

↶↷
YcZc → Ya

↶↷
ZaZbYb

↶↷
Z̃bZcYc → YaZbZaYbZcZ̃bYc.

Observe that either Xb is mapped to Yb and thus Kj is satisfied, or Xb is mapped to one of
Zb and Z̃b. Subsequently, the order of pairs in the final tile guarantees by Lemma 16 that
simultaneously, Xa cannot map to Za and Xc to Zc and thus, Kj must be satisfied.

That concludes the construction of P and T . Observe that each tile in both P and T
contains O(m) points. If D contains a monotone juxtaposition, then |π|, |τ | ∈ O(m log m)
and otherwise, |π|, |τ | ∈ O(m2). This gives rise to the two different conditional lower bounds.

Beyond grid-preserving embeddings. First, we modify both π and τ such that any embed-
ding that maps the image of P1 to the image of T1 must already be grid-preserving. To that
end, we add atomic pairs A1, A2 to the initial tile P1 such that A1 is to the left and below
everything else and A2 is to the right and above everything else. We then attach to both A1,
A2 a chain of copy gadgets going all the way to the last tile of the path. We modify T , in the
same way, using chains of copy gadgets originating in the atomic pairs B1 and B2. Observe
that in any embedding that sends P1 to T1, the image of Aα is mapped to the image of Bα

for each α ∈ {1, 2}. The chain of copy gadgets attached to Aα then must map to the chain
of gadgets attached to Bα and these chains force the embedding to be grid-preserving.
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Finally, we modify π and τ to obtain permutations π′ and τ ′ such that any embedding
of π′ into τ ′ can be translated to an embedding of π into τ that maps P1 to T1 and vice
versa. Let r and q be the lowest and topmost points in P1 and similarly, let s and t be the
lowest and topmost points of T1. The family of tiles P ′ is obtained from P by inflating both
r and q with an increasing sequence of length |τ | + 1 and similarly, the family T ′ is obtained
from T by inflating both s and t. We call the points obtained by inflating r and q lower
anchors and the ones obtained by inflating s and t upper anchors. We let π′ and τ ′ be the
F -assemblies of P ′ and T ′. Observe that these modifications did not change the asymptotic
size of the input as |π′| = O(|τ |) and |τ ′| = O(|τ ′|) = O(|τ |).

A.3 Correctness
The “only if” part. Let Φ be a satisfiable formula and fix arbitrary satisfying assignment.
We map the image of P1 to the image of T1. In the assignment phase, we map the pair X1

k,1
to Y 1

k,1 if xk is set to true, otherwise we map it to Z1
k,1. The embedding of the multiplication

and sorting phase is uniquely determined by the gadgets. It is easy to check that for each
satisfied clause Kj there is a way to extend the mapping to the evaluation phase.

The “if” part. Let ϕ be an embedding of π′ into τ ′. The total length of the anchors in
both π′ and τ ′ is 2|τ | + 2. Therefore, at least |τ | + 2 points of the anchors in π′ must be
mapped to the anchors in τ ′ and in particular, there is at least one point in each anchor
of π′ that maps to corresponding anchor in τ ′. The chains of copy gadgets attached to A1
and A2 force the rest of the embedding to be grid-preserving, and thus it straightforwardly
translates to a grid-preserving embedding of π into τ .

Using the grid-preserving embedding, we define a satisfying assignment ρ : [n] → {T, F}.
We set ρ(k) = T if the pair X1

k,1 is mapped to Y 1
k,1 and we set ρ(k) = F if it is mapped to

Z1
k,1. This property is clearly maintained throughout the multiplication and sorting phases

due to the properties of the gadgets. Finally, we already argued that our construction of
evaluation phase guarantees that all three literals in a given clause cannot be negative.
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