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Abstract
We study quantum communication protocols, in which the players’ storage starts out in a state
where one qubit is in a pure state, and all other qubits are totally mixed (i.e. in a random state),
and no other storage is available (for messages or internal computations). This restriction on the
available quantum memory has been studied extensively in the model of quantum circuits, and it
is known that classically simulating quantum circuits operating on such memory is hard when the
additive error of the simulation is exponentially small (in the input length), under the assumption
that the polynomial hierarchy does not collapse.

We study this setting in communication complexity. The goal is to consider larger additive error
for simulation-hardness results, and to not use unproven assumptions.

We define a complexity measure for this model that takes into account that standard error
reduction techniques do not work here. We define a clocked and a semi-unclocked model, and
describe efficient simulations between those.

We characterize a one-way communication version of the model in terms of weakly unbounded
error communication complexity.

Our main result is that there is a quantum protocol using one clean qubit only and using Oplog nq

qubits of communication, such that any classical protocol simulating the acceptance behaviour of
the quantum protocol within additive error 1{polypnq needs communication Ωpnq.

We also describe a candidate problem, for which an exponential gap between the one-clean-qubit
communication complexity and the randomized communication complexity is likely to hold, and
hence a classical simulation of the one-clean-qubit model within constant additive error might be
hard in communication complexity. We describe a geometrical conjecture that implies the lower
bound.
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1 Introduction

The computational power of quantum models of computation with different memory restric-
tions has been studied in order to understand the use of imperfectly implemented qubits.
Some possible types of memory restrictions include having only few qubits that are in a pure
state plus an abundance of qubits that start in the totally mixed state [12], having memory
that starts in an incompressible state that needs to be returned unchanged at the end of
the computation, plus some limited auxiliary space available [8], or simply having very little
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memory for the computation [2, 20, 16, 3]. The underlying idea in these topics is to study
the power of models of quantum computing in which the quantum memory is weak, but
the control of this memory is good. This is in contrast to the study of models of quantum
computation, where the underlying memory is good, but the control is weak, or restricted,
such as the Boson-Sampling model [1]. Both are a step towards understanding the power
of quantum computing models that are closer to being implementable than the standard
circuit model, and eventually to demonstrate quantum supremacy (i.e., to show that for
some problem (of possibly small practical interest) quantum computers that can be built
outperform classical computers demonstrably).

This paper explores the potential of a model of quantum communication that uses memory
containing only a small number of qubits that start in a known pure state, in particular the
power of a having only a single clean qubit (plus many qubits that start in the totally mixed
state, i.e., start in a random state).

The one-clean-qubit model proposed by Knill and Laflamme [21] is a model of quantum
computing where the memory starts in the tensor product of a single qubit in a pure state
|0y with the other m qubits that are in the completely-mixed state, with no further storage
allowed. This initial state is described by the density matrix ρ “ |0y x0| b I

2m .
The model was originally motivated by the nuclear magnetic resonance (NMR) approach to

quantum computing, where the initial state may be highly mixed. Quantum circuits operating
on such memory are able to perform tasks that look hard classically, such as estimating
Jones polynomials, computing Schatten p-norms, spectral density approximation, testing
integrability, computation of fidelity decay [21, 34, 9, 30, 31], just to name a few. [12] showed
that quantum circuits under the one-clean-qubit restriction cannot be efficiently classically
simulated unless the polynomial hierarchy collapses to the second level. In other words,
assuming that the polynomial hierarchy does not collapse, polynomial size quantum circuit
operating under the one-clean qubits restriction can have acceptance/rejection probabilities
such that any classical randomized circuit that has the same acceptance/rejection probabilities
up to additive error 1{exppnq must have superpolynomial size. We note here that we will not
consider simulations with multiplicative error in this paper, since those pose a much stronger
requirement on the simulation, for instance the simulating algorithm must replicate events of
tiny probability with approximately the same probability, and hence such simulations are
much less interesting.

In this paper, we study the hardness of simulating the one-clean-qubit model classically in
the model of communication complexity. We will consider simulations of the one-clean-qubit
model with different amounts of additive errors, namely 1

polypnq
and Op1q.

Organization

After some preliminaries in Section 2, in Section 3 we discuss related work. In Section 4,
we sketch our results. In Section 5 we develop our model of quantum communication with
one clean qubit. We motivate the main complexity measure and introduce the concepts of
clocked and semi-unclocked protocols. Section 6 is about our characterization of one-way
communication complexity in our model. Section 8 discusses our main result, which concerns
the hardness of classically simulating the one-clean-qubit model with additive error.



H. Klauck and D. Lim 69:3

2 Preliminaries

Communication Complexity
Yao’s [38] model of communication complexity consists of two players, Alice and Bob, who
are each given private inputs x P X and y P Y respectively. In addition, they both know the
function f and agree to a certain communication protocol beforehand. The task they wish
to perform is to compute z “ fpx, yq. Having no knowledge of each others’ inputs, they have
to communicate with each other in order to obtain the result z. Communication complexity
asks the question “how much communication is needed to compute fpx, yq?”, and assumes
that the players have unlimited computational power.

For formal definitions regarding standard types of communication protocols see [24],
regarding quantum communication complexity see [11]. We will use the following notations:

▶ Definition 1. Qpfq, Rpfq denote the quantum (without entanglement) and randomized
(with public coin) communication complexities of a function f with error 1{3. A subscript
like Qϵpfq denotes other errors ϵ.

3 Related Work

There has been a lot of research focusing on the hardness of classical simulations of restricted
models of quantum computing under certain assumptions [5, 1, 37, 29, 14, 26, 36, 6, 35].
That is to say, a reasonable assumption in complexity theory leads to the impossibility of
efficient sampling by a classical computer according to an output probability distribution
that can be generated by a quantum computation model. For instance, it is proven that
classical simulation with multiplicative error of the IQP model [5] and Boson sampling [1] is
hard, unless the polynomial-time hierarchy collapses.

It is interesting to ask if such a result holds for the one-clean-qubit model as well. Over
the past few years, the one-clean-qubit model has be shown to be capable of efficiently solving
problems where no efficient classical algorithm is known, such as estimating Jones polynomials,
computing Schatten p-norms, spectral density approximation, testing integrability and
computation of fidelity decay [21, 34, 9, 30, 31]. It has been conjectured that the one-clean-
qubit model can be more powerful than classical computing for some problems. However, there
has been no proof for such a conjecture. In [27], it is showed that if the output probability
distribution of the one-clean-qubit model can be classically efficiently approximated (with
at most an exponentially small additive error) then BQP Ď BPP . Although the belief
that BQP ‰ BPP is equivalent to that of P ‰ NP or that the polynomial hierarchy does
not collapse, there is still a good case for it and the assumption is necessary for simulation
hardness anyway. Therefore the results in [27] suggest that the one-clean-qubit model is
unlikely to be classically efficiently simulatable with exponentially small additive error.

[26] introduced DQC1k, a modified version of the one-clean-qubit model where the
workspace starts with one clean qubit and k qubits are measured at the end of the computation.
They showed that the DQC1k model cannot be efficiently classically simulated for k ě 3
(within constant multiplicative error) unless the polynomial hierarchy collapses.

Later on, [26] showed via circuit complexity that the one-clean-qubit model cannot be
efficiently classically simulated with 1

exppnq
additive error unless the polynomial hierarchy

collapses to the second level.
All existing results regarding the efficient classical simulation of the one-clean-qubit model

are conditional (e.g. rely on non-collapse of the polynomial hierarchy) and require simulations
to have exponentially small additive error.

We also mention work on classical memory-restricted communication complexity (e.g. [7])
in which some similar issues appear as in this work.

MFCS 2021
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4 Overview of Results

Definition of a complexity measure for the one-clean-qubit model in communication
complexity:
The complexity measure (cost) of a one-clean-qubit protocol is given by c ¨

` 1
ϵ2

˘

, where c

is the communication and ϵ is the bias. We define a clocked and a semi-unclocked version.
Simulation of a clocked k-clean-qubit models using only one-clean qubit is inexpensive:
Such simulations cost pc ` 1q ¨

` 2k

ϵ

˘2, where c is the communication and ϵ is the bias.
The clocked k-clean-qubit model can be simulated by the semi-unclocked one-clean-qubit
model:
Such simulations incur a cost of Opc log cq ¨

` 2k

ϵ

˘2, where c is the communication and ϵ is
the bias.
Upper and lower bounds on the complexity measure of the one-way one-clean-qubit
communication complexity model:
The complexity measure of the one-way one-clean-qubit communication complexity model
denoted as QAÑB

r1s
pfq is bounded by 2ΩpP P pfqq´Oplog nq ď QAÑB

r1s
pfq ď 2OpP P pfqq. See [17]

for the definition of PP pfq.
Classically simulating the one-clean-qubit model with 1

polypnq
additive error requires an

exponential increase in communication:
We consider the MIDDLE problem and give a quantum protocol with one-clean qubit
that requires Oplog nq communication while any classical simulation with 1

polypnq
additive

error requires Ωpnq communication.
We stress that in previous results about the hardness of simulating the one-clean-qubit
model (in circuit complexity) the additive error must be of size at most 1{exppnq for
the simulation to be hard, which stems from low probability events being considered
that one would never observe realistically. That means that running the one-clean-qubit
circuit as an experiment, and observing an outcome that contradicts classicality is an
event that happens only with exponentially small probability, and the classical simulation
is only hard because of such extremely low probability events. Our result also uses low
probability events, but 1{polypnq is much more reasonable, and the events are observable
when repeating such a protocol polypnq times.
Simulating the one-clean-qubit model with constant additive error:
We consider a problem ABC as a candidate to show that simulating the one-clean-qubit
model with constant additive error is hard, and construct a quantum protocol that
requires Oplog nq communication using one clean qubit for ABC. We conjecture that any
classical simulation with constant additive error requires Ωp

?
nq communication and give

a matching upper bound.
Disclaimer: All I’s used in this paper are identity matrices whose dimensions
are clear from the context.

5 Communication Complexity of the One-Clean-Qubit Model

5.1 The One-Clean-Qubit Model
▶ Definition 2 (k-Clean-Qubit Model). In a k-clean-qubit protocol, all storage initially
consists of only k qubits in a clean state |0y, while the rest (m qubits) are in the totally mixed
state. The players communicate as in a standard quantum protocol. Only at the end of the
computation, a single, arbitrary projective measurement (not depending on the inputs) is
performed.



H. Klauck and D. Lim 69:5

By this definition, all storage in the one-clean-qubit model consists of only one qubit
in a clean state |0y, while the rest (m qubits) are in the totally mixed state. This can be
described by the density matrix

ρ “ |0y x0| b
I

2m
. (1)

A protocol in this model for a function f communicates c qubits. Assume the protocol
has a bias of ϵ and hence an error of 1

2 ´ ϵ. In general, it is not possible to improve the
error to, say, 1

3 . Analogous to allowing the computation to be repeated Op 1
ϵ2 q times until

a correctness probability of at least 2
3 is achieved, we define the cost of the (unrepeated)

protocol to be c ¨ p 1
ϵ q2 qubits.

▶ Definition 3 (Qr1spfq). Let P denote a one-clean-qubit clocked (explained later) protocol
for a function f : X ˆ Y Ñ t0, 1u, such that 0-inputs are accepted with probability at most
p ´ ϵ and 1-inputs are accepted with probability at least p ` ϵ for some constant p ą 0 and
that uses communication c at most on all inputs. The cost of P is then c{ϵ2.

We denote the complexity measure of the clocked one-clean-qubit model by Qr1spfq “

infP
communicationpPq

biaspPq2 , where the infimum is over all protocols P for f .

The motivation behind Definition 3 is that it seems unlikely that the success probability
can always be amplified arbitrarily. Therefore, we allow the protocol to run with an
arbitrarily bad bias but include the cost that it would take to bring this bias up by a
standard amplification (repeat the computation O

` 1
bias2

˘

times): in the situation described
in Definition 3 by a standard Chernoff bound repeating t “ 4{ϵ2 times (and accepting if at
least pt runs accepted) would lead to error at most 1{3.

There is no prior entanglement allowed in this model because the EPR-pairs could be
used to create more pure qubits, simply by sending one qubit from one communicating
party to another, who can then make the state |00y. It is also essential that measurements
are performed only at the end of the computation, or a pure state could be obtained by
measuring the state (1).

In our paper, we allow arbitrary projective measurements in the one-clean-qubit model.
There are papers such as [34] and [27] defining the one-clean-qubit model in a way such
that it measures only one qubit at the end of the computation. However, in Theorem 8,
we show that there is only negligible difference between these definitions in communication
complexity.

5.2 Clocked and Semi-unclocked Models
We consider two types of models: the clocked model and the semi-unclocked model.

▶ Definition 4 (Clocked model). In the clocked model, the message in round i is computed
by a unitary that can depend on i. In other words, the protocol knows i without having to
store i anywhere. The communication channel of a clocked model is ghosted, i.e. different
qubits can be communicated in different rounds.

Protocols in the clocked model implicitly use a counter to tell the protocol which round it
is in. This counter could be considered as extra classical storage, so we define another model
that does not allow this. In that model, however, protocols still need to know when to stop,
and that in a sense is a counter, just one that cannot be used “inside” the protocol. Since no
intermediate measurements are allowed, we simply switch the protocol off after the correct
number of rounds, and measure.

MFCS 2021
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Figure 1 Clocked model.

▶ Definition 5 (Semi-unclocked model). In the semi-unclocked model, the same unitary must
be applied in every round. The protocol terminates after a fixed number of rounds. The
communication channel of a semi-unclocked model is fixed, i.e., the same qubits have to be
communicated in every round.

Figure 2 Semi-unclocked model.

▶ Example 6. The inner product modulo 2 problem is defined as IP2px, yq “
ř

i xiyi

mod 2, where x, y P t0, 1un. Under the clocked model P̂ shown in Figure 3, let U i
x be Alice’s

unitary and let V i
y be Bob’s for i “ 1 ¨ ¨ ¨ n. We start with two clean qubits. The first qubit is

meant to store Alice’s xi while the second stores
ř

i xiyi mod 2. The protocol (informally)
goes as follows:

In the first round, Alice stores x1 in the first qubit and sends the two qubits to Bob, who
multiplies x1 in the first qubit with his y1 and stores the product in the second qubit. He
then sends the first qubit back to Alice. For every round i “ 2, ¨ ¨ ¨ , n,
1. U i

x first XORs |xi´1y on the first qubit with xi´1, thereby restoring the qubit to |0y,
before storing the value xi in it.

2. Alice sends the first qubit to Bob.
3. V i

y multiplies yi with xi (stored in the first qubit) and adds the product to the sum stored
in the second qubit modulo 2.

4. Bob sends the first qubit back to Alice.

The communication terminates after a total number of 2n ´ 1 rounds and the bias is 1
2

(i.e. zero error). Bob does the measurement, the total communication is 2n.

Figure 3 Clocked two-clean-qubit model for computation of inner product modulo 2.

P̂ can be simulated with a clocked one-clean-qubit protocol that uses 1 clean qubit and 2
mixed qubits.The unitary M does the following:

M :
#

|0y b |0y b |0y ÞÑ |1y b |0y b |0y

|0y b |z1y b |z2y ÞÑ |0y b |z1y b |z2y
,

where |z1y or |z2y ‰ |0y. Extend to a unitary arbitrarily. In other words, M flips the first
qubit if the next two qubits are both in the |0y state (this happens with probability 1

4 ). After
applying M, the protocol is carried out as per P̂ . The measurement is done as follows:
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If the first qubit is |0y, a “coin toss” is being performed for the output (e.g. measure yet
another mixed qubit).
If the first qubit is |1y, the measurement is done as per P̂ .

Note that the two measurements can be combined into one.
Therefore, we get an error probability of 3

4 ¨ 1
2 “ 3

8 , and a bias of 1
8 . The total communic-

ation is 2n ` 1 and hence the cost is 64p2n ` 1q “ Opnq.

We now compare the k-clean-qubit model with the one-clean-qubit model and also the
clocked model with the semi-unclocked model. We prove the following theorems:

▶ Theorem 7. Given a clocked k-clean-qubit protocol P for a function f that has com-
munication c and a bias of ϵ, there exists a clocked one-clean-qubit protocol P̃ for f that
has communication c (or c ` 1 depending on which player does the measurement), and a
bias of ϵ

2k .

Proof. The clocked k-clean-qubit protocol P illustrated in Figure 4 has communication c

and a bias of ϵ. Hence, it has an error probability of 1
2 ´ ϵ and cost c

ϵ2 . Denote by U i
x Alice’s

unitaries and by V i
y Bob’s unitaries for i “ 1, ¨ ¨ ¨ , r. Note that U i

x is defined as a unitary on
all qubits, but acts only on Alice’s qubits.

Figure 4 Clocked k-clean-qubits protocol P.

P can be modified into a clocked one-clean-qubit protocol P̃ as in Figure 5 with about
the same amount of communication.

Figure 5 Clocked one-clean-qubit model P̃.

In P̃, the unitary A does a bit flip on the first qubit if the next k qubits are in the |0y

state, and does nothing otherwise. All the k ` m mixed qubits undergo the same series of
unitary transformation as in P. The measurement in P̃ is done as follows:

If the first qubit is |0y, a “coin toss” is being done.
If the first qubit is |1y, the measurement is carried out as per P.

Note that the two measurements can be combined into one.
The communication in P̃ is c or c ` 1, depending on which player does the measurement.

If the measurement is done by the player who begins the communication, the communication
is c. Otherwise, the first qubit has to be sent to the other player for the measurement to be
done, causing the communication to be increased to c ` 1.

The error probability of P̃ can be computed to be

p1 ´
1
2k

q ¨
1
2 `

1
2k

¨ p
1
2 ´ ϵq “

1
2 ´

ϵ

2k
.

Hence, the bias decreases from ϵ to ϵ
2k .

The cost of P̃ is given by c ¨ p 2k

ϵ q2 or pc ` 1q ¨ p 2k

ϵ q2. ◀

MFCS 2021
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▶ Theorem 8. Given a clocked k-clean-qubit protocol P̃ for a function f : X ˆY Ñ t0, 1u with
a ghosted communication channel, that does an arbitrary projective measurement with two
outcomes, has communication c and a bias of ϵ, there exists a semi-unclocked one-clean-qubit
protocol Pf for f with a fixed communication channel, that does a measurement on one qubit,
has communication Opc log cq and a bias of Ωp ϵ

2k q.

Proof. From Theorem 7, a clocked k-clean qubit protocol P̃ with a ghosted communication
channel that does an arbitrary projective measurement and has communication c and a bias
of ϵ, can be modified into a clocked one-clean-qubit protocol P with a ghosted communication
channel, that does an arbitrary projective measurement, has communication c ` 1 and bias
ϵ

2k . The total number of qubits is m ` k ` 1, with 1 clean qubit.
We would like to turn P into a protocol P 1 that measures only one qubit in the computa-

tional basis. This can be done by adding an extra clean qubit and replacing the measurement
in P with a unitary operator US and a measurement that measures the newly added qubit
in the standard basis. US does the following:

US :
#

|ay |biy ÞÑ |ay |biy , for bi P B

|ay |biy ÞÑ |a ‘ 1y |biy , for bi R B
,

where a P t0, 1u and B “ tb1, ¨ ¨ ¨ , blu is the basis of the subspace S Ď Cm`k`1, which is a
constituent of the observable used to measure the quantum state in P.

In other words, US flips the first qubit on any basis vector bi R B, and does nothing
otherwise. The resulting protocol P 1 is as follows:

Figure 6 Clocked two-clean-qubit protocol that measures one qubit P 1.

▶ Remark 9. A clocked protocol with a ghosted communication channel can be easily
converted to one with fixed channel in which Alice and Bob take turns to send one qubit
each. This at most doubles the communication.

In the new protocol, the communication channel is fixed, the total communication is
increased to at most 2pc ` 1q, and the bias remains unchanged.

According to [34], the probability of measuring 0 (which corresponds to acceptance) can
be made to depend only on the trace of a unitary operator as shown below.

Consider the following trace estimation protocol Pmain illustrated in Figure 7,

Figure 7 Trace estimation protocol Pmain.
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which contains the unitary operator P2 shown in Figure 8. Pmain accepts with probability

1
2 `

RepTrpP2qq

2d`1 ,

where d “ m ` k ` 5 is the number of qubits in P2 and Repxq is the real part of x.

Figure 8 P2.

Let Iℓ denote the 2ℓ-dimensional identity matrix. We have that

Trrp|0y x0| b Im`k`1qP 1p|0y
2

x0|
2

b Im`kqP 1:s “
1
8TrrP2s,

because TrrP2s “
ř

xPt0,1um`k`5 xx| P2 |xy, and so for instance basis vectors |xy that have
a 1 in qubit 1 contribute nothing to the sum due to the rightmost CNOT. Similarly, the
other CNOTs correspond to the other projection one the left hand side. This equation also
shows that the right-hand-side trace is real: up to scaling the left hand side corresponds to a
probability of measuring 0 when running P 1 on the two-clean-qubit state.

The acceptance probability of Pmain is given by

p0 “
1
2 `

TrrP2s

2k`m`6

“
1
2 `

8 ¨ Trrp|0y x0| b Im`k`1qP 1p|0y
2

x0|
2

b Im`kqP 1:s

2k`m`6

“
1
2 `

8 ¨ 2k`m ¨ p 1
2 ` ϵ

2k q

2k`m`6

“
1
2 `

1
16 `

ϵ

2k`3

▶ Remark 10. The factor of 8 instead of 4 as in [34] is due to the presence of three CNOT
gates/extra qubits instead of two.

The communication of Pmain is four times the communication of P 1, since P2 runs P 1

backwards and forwards, and because the clean control qubit in Pmain must be communicated
in every round (every round communicates only one qubit in P 1), i.e. the communication
becomes 8pc ` 1q. The bias decreases to ϵ

2k`3 and is around 1
2 ` 1

16 instead of 1
2 .

Lastly, we turn Pmain into a semi-unclocked protocol Pf by adding log r mixed qubits to
act as a counter, where r is the number of rounds. The resulting protocol looks as follows:

In Pf , Ûx “ pH b Iq ¨ Ux ¨ pH b Iq, where

Ux : |zy |iy ÞÑ pU i
x |zyq |iy

MFCS 2021
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Figure 9 Semi-unclocked one-clean-qubit protocol that measure one qubit Pf .

and V̂y “ pH b Iq ¨ Vy ¨ pH b Iq, where

Vy : |zy |iy ÞÑ pV i
y |zyq |i ` 1 mod ry ,

for all z P t0, 1uk`m`6, for all i P t0, 1ulog r and where U i
x and V i

y are the unitaries from P2.
This means that, starting from a random j on the counter, the unitaries V̂y and Ûx apply

V i
y and U i

x in the correct, but shifted order. Also note that the Hadamard operators cancel
out in between consecutive unitaries, and only the first and last have an effect.

▶ Fact 11 (Cyclic property of matrix trace). The trace of a product of three or more square
matrices is invariant under cyclic permutations of the order of multiplication of the matrices.

Since the acceptance probability of Pmain depends only on the trace of the product of
the sequence of unitary operators in P2, it follows from Fact 11 that the counter can start
from any arbitrary j mod r without affecting the acceptance probability of Pf .

The protocol terminates after r rounds of communication. Note that r “ Θpcq, the total
communication is now 8pc ` 1q ` Opc log cq “ Opc log cq. The bias is remains unchanged from
Pmain, i.e. Ωp ϵ

2k q. ◀

Applying Theorem 8 to Example 6 gives the following.

▶ Corollary 12. The semi-unclocked one-clean-qubit quantum communication complexity of
IP2 is Opn log nq.

6 One-way Complexity with One Clean Qubit

6.1 The Upper Bound on QAÑB
r1s

pfq

Let QAÑB
r1s

pfq denote the complexity measure of a one-way two-player one-clean-qubit
protocol. We define a one-way two-player one-clean-qubit protocol as follows:

▶ Definition 13 (One-way two-player one-clean-qubit protocol). The computation in the one-
way version of one-clean-qubit protocols starts with a single qubit in the clean state and
the rest of the qubits in the totally mixed state. The first player applies her unitary on an
arbitrary number of qubits, sends some of the qubits to the next player who also applies his
unitary on an arbitrary number of qubits, and does a measurement. The cost is defined as
for general one-clean qubit protocols. This can be described by the figure below:

Figure 10 One-round one-clean-qubit protocol.

Note that this type of protocol is semi-unclocked by definition.
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We show an upper bound in terms of the weakly unbounded-error communication
complexity.

▶ Definition 14 (Weakly unbounded-error protocol, PP ). In a weakly unbounded-error
(randomized) protocol (PP protocol), the function f is computed correctly with probability
greater than 1

2 by a classical private coin protocol. The cost of the protocol with a maximum
error (over all inputs) of 1

2 ´ ϵ and a maximum communication of c, is given by PP pfq “

c ´ tlog ϵu. [17]

We show the following theorem for the upper bound on the communication complexity of
the one-clean-qubit one-way protocols (in the appendix):

▶ Theorem 15. QAÑB
r1s

pfq ď 2OpP P pfqq.

6.2 The Lower Bound on QAÑB
r1s

pfq

▶ Theorem 16. For all f : t0, 1un ˆ t0, 1un Ñ t0, 1u we have QAÑB
r1s

pfq ě 2ΩpP P pfqq´Oplog nq.

The proof relies only on the fact that an efficient one-way one-clean-qubit protocol needs
to achieve a large enough bias. The communication needed to do so is immaterial for our
lower bound, which is quite interesting. In other words, there is a threshold to the bias which
simply cannot be passed even if we allow more qubits to be sent. This is in sharp contrast to
many common modes of communication with error.

The bound on the achievable bias comes from margin complexity, an important concept
in learning theory [25].

Before we delve into the proof we need a few definitions.We define the notion of rectangles
and two complexity measures: discrepancy and margin complexity.

▶ Definition 17 (Rectangle [24]). A rectangle in X ˆ Y is a subset R Ď X ˆ Y such that
R “ A ˆ B for some A Ď X and B Ď Y .

▶ Definition 18 (Communication matrix [24]). The communication matrix Mf of a function
f : X ˆ Y Ñ t0, 1u is an p|X| ˆ |Y |q-dimensional matrix, whose rows are indexed by the
elements of X and the columns by the elements of Y .The px, yq entry of Mf is simply defined
as fpx, yq.

▶ Definition 19 (Discrepancy [24]). Let f : X ˆ Y Ñ t0, 1u be a function, R be any rectangle
in the communication matrix, and µ be a probability distribution on X ˆ Y . The discrepancy
of f according to µ is

discµpfq “ max
R

| Pr
µ

rfpx, yq “ 0 and px, yq P Rs ´ Pr
µ

rfpx, yq “ 1 and px, yq P Rs|.

Denote discpfq “ minµ discµpfq as the discrepancy of f over all distributions µ on X ˆ Y .

It is known that PP pfq ě Ωplogp 1
discpfq

qq from Fact 2.8 in [17], and from Theorem 8.1 in [17]
we get PP pfq ď Oplogp 1

discpfq
qq ` log nq.

▶ Definition 20 (Margin [25]). For a function f : X ˆ Y Ñ t0, 1u, let Mf denote the sign
matrix where all entries are Mf px, yq “ p´1qfpx,yq. The margin of Mf is given by:

mpMf q “ sup
taxu,tbyu

min
x,y

| xax|byy |

||ax||2||by||2
,

where the supremum is over all systems of vectors (of any length) taxuxPX , tbyuyPY such that
signpxax|byyq “ Mf px, yq for all x, y.
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The notion of margin complexity determines the extent to which a given class of functions
can be learned by large margin classifiers, which is an important class of machine learning
algorithms [25].

The proof of Theorem 16 is in the appendix.

7 The Trivial Lower Bound on Qr1spfq

The lower bound on the two-way one-clean-qubit communication complexity Qr1spfq ě

ΩpQpfqq is trivial since one-clean-qubit protocols can be turned into standard quantum
protocols at their cost. In Appendix C we discuss this lower bound for some well-known
functions.

8 Hardness of Classically Simulating the One-Clean-Qubit Model

We now turn to simulations of quantum protocols with the one-clean-qubit restriction by
randomized protocols. The most demanding definition of simulating a quantum protocol
by a randomized protocol is that the randomized protocol must replicate the acceptance
probabilities of a given quantum protocol on all inputs, up to some additive error1.

Our weaker (one-sided) definition of an ϵ-error simulation is:

▶ Definition 21 (ϵ-error simulation of a quantum protocol). Given a quantum protocol P for a
function f : X ˆ Y Ñ t0, 1u such that for all inputs px, yq P X ˆ Y , P accepts 1-inputs with
probability at least α and accepts 0-inputs with probability at most β. A classical simulation
of P with additive error of ϵ is one that accepts 1-inputs with probability at least α ´ ϵ and
accepts 0-inputs with probability at most β ` ϵ.

▶ Remark 22. The above definition is nontrivial only if α ´ ϵ ą β ` ϵ.

8.1 Simulating the One-Clean-Qubit Model with Polynomially Small
Additive Error

We show the following lemma (see the appendix):

▶ Lemma 23. Given any two-round (Alice Ñ Bob Ñ Alice) k-clean-qubit quantum protocol
(with communication 2k and where both messages contain only the k clean qubits) for a
function f that accepts 0-inputs with probability at most q and accepts 1-inputs with probability
at least p, there exists a two-round one-clean qubit protocol (with communication 2k) for the
same function that accepts 0-inputs with probability at most q

2k and accepts 1-inputs with
probability at least p

2k .

▶ Theorem 24. In communication complexity, there exists a function f : t0, 1un ˆ t0, 1un Ñ

t0, 1u and a one-clean-qubit quantum protocol P with communication Oplog nq such that
simulating P classically with an allowance of 1

n4 additive error requires Θpnq communication.

Proof. Consider the function below:

MIDDLEpx, yq “ 0 ô
ÿ

i

xiyi “
n

2 , MIDDLEpx, yq “ 1 ô
ÿ

i

xiyi ‰
n

2 ,

1 We only consider additive error.
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where x, y P t0, 1un. With Lemma 23 in mind, we design a standard quantum protocol first.
We would like to compute the state 1?

n

řn
i“1p´1qxiyi |iy. This can be done by executing the

following quantum protocol P:
1. Alice prepares the state 1?

n

řn
i“1 |iy |xiy and sends it to Bob.

2. Bob applies his unitary, which maps the state he received from Alice to
1?
n

řn
i“1p´1qxiyi |iy |xiy and sends the result to Alice.

3. Alice XORs the last qubit with xi and then traces out that qubit to obtain
1?
n

řn
i“1p´1qxiyi |iy, applies a Hadamard transformation and does a complete meas-

urement in the computational basis. The protocol outputs 1 if it measures the all-zero
string and outputs 0 otherwise.

This protocol requires 2 log n ` 2 communication and uses log n ` 1 clean qubits. Finally, we
transform the above protocol into a one-clean-qubit protocol according to Lemma 23.

Now we compute the acceptance probabilities of the standard quantum protocol above.
Note that x¨|¨y denotes the inner product.

xHp
1

?
n

n
ÿ

i“1
|iy p´1qxiyi q| |00 ¨ ¨ ¨ 0yy “ x

1
?

n

n
ÿ

i“1
|iy p´1qxiyi |Hp|00 ¨ ¨ ¨ 0yqy

“ x
1

?
n

n
ÿ

i“1
|iy p´1qxiyi |

1
?

n

n
ÿ

i“1
|iyy . (2)

For the case where xx, yy “
řn

i“1 xiyi “ n
2 , we have n

2 0’s and n
2 1’s among the xiyi and

hence, (2) for this case equals to zero, which implies that the protocol rejects 0-inputs with
certainty.

For the case where xx, yy “
řn

i“1 xiyi “ n
2 ` t, we have n

2 ´ t 0’s and n
2 ` t 1’s and

hence, the amplitude from (2) is 1?
n

¨
`

n
2 ` t ´ p n

2 ´ tq
˘ 1?

n
“ 2t

n , which implies an acceptance
probability of p 2t

n q2 “ 4t2

n2 .
Notice that the gap between 0- and 1-inputs is 4t2

n2 . Now, simulating P using only one
clean qubit does not change the communication but reduces the acceptance probability of
1-inputs from 4t2

n2 to 2t2

n3 and does not change the acceptance probability of 0-inputs. The
gap between the acceptance probability of 0-inputs and 1-inputs is now 2t2

n3 ´ 0 “ 2t2

n3 .
We will focus on the 1-inputs with t “ ´1.
We then show that classically simulating the one-clean-qubit protocol with 1

n4 additive
error for the function MIDDLEpx, yq requires Ωpnq communication. For this, we use
Razborov’s analysis of the rectangle bound for the Disjointness problem[32] together with a
reduction and the fact that the rectangle bound is not sensitive to acceptance probabilities
being small. This shows that any classical protocol that simulates the above quantum protocol
within additive error 1{n4 needs communication Ωpnq. Details are in Appendix E. ◀

8.2 Simulating the One-Clean-Qubit Model with Constant Additive
Error

Previous results about the hardness of simulating the one-clean-qubit model (in circuit
complexity) require the additive simulation error to be exponentially small. In the previous
subsection we have shown that in communication complexity additive error 1{polypnq is
already enough to give a separation (which is also not based on unproven assumptions). Here
we consider pushing this even further: can the one-clean-qubit model be simulated classically
with constant additive error?
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Showing hardness of a classical simulation with constant additive error is equivalent
to showing a separation between Qr1spfq and Rpfq: regarding both complexity measures
efficient error reduction is possible2. And showing hardness of a simulation of a quantum
protocol for f within a small constant error means showing Rpfq is large.

The strength of the one-clean-qubit model is trace-estimation. Any communication-like
unitary can have its trace estimated by a quantum protocol with only one clean qubit
(compare the proof of Theorem 8). So we look for a hard problem along those lines. A
two-party one-way quantum protocol is not a good choice, since the trace of the product of
unitaries applied by Alice and Bob is a vector inner product and can be estimated well by
known randomized protocols with small error, if the gap of acceptance between one-inputs
and zero-inputs is large [23].

For technical reasons (cyclic property of matrix trace), looking for the simplest problem
that should exhibit a separation we consider the three-player number-in-hand model3.

We conjecture the following:

▶ Conjecture 25. There exists a function f and a one-clean-qubit quantum protocol P that
computes f exactly with communication Oplog nq such that simulating P classically with an
allowance of constant additive error requires Ωp

?
nq communication.

Consider the number-in-hand ABC (promise) problem involving three parties: Alice, Bob
and Charlie, who are each given nˆn matrices A, B and C respectively, where A, B, C P SOn,
where SOn is the special orthogonal group. The ABC problem is described by the following
function:

ABCpA, B, Cq “ 1 ðñ ABC “ I, ABCpA, B, Cq “ 0 ðñ ABC “ ´I.

▶ Lemma 26. There exists a three-player number-in-hand one-clean-qubit protocol that solves
ABC exactly with communication Oplog nq.

Proof. The initial state starts off with one qubit in a pure state |0y and log n totally mixed
qubits. The protocol goes as follows:
1. Alice applies a Hadamard transformation to the clean qubit and obtains σ “ H |0y “

1?
2 p|0y ` |1yq. She then tensors it with an arbitrary state ρ on log n qubits (for example

I
n ) and we denote the resulting state as ζ. She then applies her controlled-A unitary to ζ

and gets ζ 1. Alice send ζ 1 to Bob.
2. Bob applies his controlled-B unitary to ζ 1 and gets ζ2. Bob sends ζ2 to Charlie.
3. Charlie applies his controlled-C unitary to ζ2 and gets ζ3. He then applies a Hadamard

transformation to the first qubit in ζ3 and does a measurement.

The protocol is illustrated in Figure 11.

Figure 11 One-clean-qubit protocol for ABC.

2 We defined Qr1s so.
3 In the three-player number-in-hand model, each player sees only their own input.
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If ABC “ I, the composite of controlled A, B and C is the same as that of a controlled-
identity unitary, which does nothing to σ. When σ undergoes a Hadamard transformation
before being measured, it becomes the |0y state. The protocol outputs 1 if it measures |0y .
If ABC “ ´I, the composite of controlled A, B and C is similar to that of a controlled-Z
unitary, which does a phase flip on |1y in σ, changing it into 1?

2 p|0y ´ |1yq. We denote
the phase-flipped σ as σ1. When σ1 undergoes a Hadamard transformation before being
measured, it becomes the |1y state. The protocol outputs 0 if it measures |1y. ◀

Note that the quantum protocol uses the arbitrary state ρ (here ρ “ I{n) as a catalyst
as in [8]. Regarding the randomized complexity of ABC, we prove the following theorem:

▶ Theorem 27. RpABCq ď Op
?

nq.

See the full version [18] for the proof.
Let us note here that with minor modifications, both the quantum and classical protocols

for ABC are one-way and can be run in any order among the players, e.g. Charlie to Alice to
Bob or Alice to Charlie to Bob.

It remains an open problem to derive a matching lower bound for the randomized
communication complexity of ABC.

▶ Conjecture 28. RpABCq ě Ωp
?

nq as long as n is even.

We now consider a geometric conjecture that implies Conjecture 28. This conjecture says
that if we take two sufficiently large subsets of SOn (the special orthogonal group), choose
two operators independently from them, and multiply them, we get something similar to the
uniform distribution on all of SOn.

▶ Conjecture 29. There are constants δ ą 0, γ ą 1 such that the following is true:
Let M, R Ď SOn and, for the Haar measure µ on SOn, let µpMq, µpRq ě 2´δ

?
n. Denote

by τ the density function of the probability distribution that arises, when B P M and C P R

are chosen uniformly from these sets independently, and the matrix product BC is formed.
Then ProbAPSOn pτpAq R r1{γ, γsq ď 2´δ

?
n.

Conjecture 28 follows from Conjecture 29 by an application of the rectangle bound from
communication complexity: A large rectangle/box L ˆ M ˆ R, where L, M, R Ď SOn leads
to a τ that is similar to the uniform distribution. Only an exponentially small subset of
matrices A P SOn has τpAq not constant. This also implies that EAPLτpAq “ Θp1q, if we
throw out the small subset of A P L where τpAq is too large (this does not affect size or error
much.) Denote by βC the density function of the distribution where a random B P M is
multiplied to a fixed C. τpAq “ ECPRβCpA˚q.

Define H “ tpA, B, Cq : A, B, C P SOn and ABC “ Iu and G “ tpA, B, Cq : A, B, C P

SOn and ABC “ ´Iu. It is easy to show that EAPLECPRrβCpAqs “
µpLˆMˆR|Hq

µpLˆMˆRq
. That

means that µpL ˆ M ˆ R|Hq and µpL ˆ M ˆ R|Gq differ by at most a constant factor and
L ˆ M ˆ R has constant error under the distribution that puts weight 1/2 on each of G, H.
Hence the rectangle/box L ˆ M ˆ R has large error. We use that n is even because otherwise
´I R SOn. Furthermore in the case of odd n Alice, Bob, and Charlie can simply compute
detpABCq “ detpAqdetpBqdetpCq in order to determine whether ABC “ I or ABC “ ´I.
This does not work in the case of even n of course.

We also note that the corresponding conjecture is wrong for On, since SOn is a subgroup
of measure 1/2 that serves as a counterexample. Note that SOn does not have any proper
subgroups of size larger than 0.
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As weaker conjecture, in which the stated probability is upper bounded by a small
constant would be sufficient to give a lower bound on one-way protocols and might be much
easier to achieve. We note that in [19] we have recently shown a lower bound for the related
aBc problem, in which Alice and Charlie receive vectors from the sphere instead of matrices
in a generalized one-way setting. Note that the protocol for Theorem 27 really solves the
aBc problem.

9 Conclusion

We investigate a communication complexity model in which all storage consist initially of
only one clean qubit plus other qubits that start in the totally mixed state, and where only
one projective measurement can be done in the end. Since error reduction is not possible
efficiently in this model we define an appropriate complexity measure depending on the bias.

We introduce the notions of clocked protocols with ghosted communication channel
and semi-unclocked protocols with fixed communication channel for this model. Efficient
simulations of clocked k-clean-qubits protocols by clocked one-clean-qubit protocols as well
as simulations of clocked k-clean-qubit protocols by semi-unclocked one-clean-qubit protocols
are described. Remarkably, the semi-unclocked model is only less efficient by a logarithmic
factor compared to the clocked model.

We study one-way protocols in the model and are able to almost pinpoint their complexity
in terms of PP-communication complexity: 2ΩpP P pfqq´Oplog nq ď QAÑB

r1s
pfq ď 2OpP P pfqq,

implying that functions when computed using the one-clean-qubit model have a cost of at
most 2Opmq, where m is the input length, and that this is tight for some functions (one-way).

Classically simulating a certain one-clean-qubit protocol for the MIDDLEpx, yq problem
with 1

polypnq
additive error is hard, as a classical simulation with such error requires Θpnq

communication, compared to the Oplog nq communication of the one-clean-qubit protocol.
We conjecture that classically simulating the one-clean-qubit protocol we give for the

three-player number-in-hand ABC problem with constant additive error requires Ωp
?

nq

communication, compare to the Oplog nq communication in the one-clean-qubit protocol. We
show the corresponding upper bound on RpABCq.
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A Open Problems

Prove Conjecture 28 or the weaker version mentioned above that establishes a lower
bound for one-way protocols.
What are some nontrivial lower bounds on Qr1spfq, for instance what are Qr1spDISJq

and Qr1spV iSq (Vector in Subspace [15])? We conjecture that Qr1spDISJq “ Ωpnq based
on the difficulty of trying to compute the function in the one-clean-qubit model. Suppose
that V iS can computed in the one-clean-qubit communication model efficiently (say with
polyplogq communication), then arbitrary one-way quantum protocols can be simulated
with low communication in the one-clean-qubit model. However, we assume that such a
supposition seems unlikely and hence we conjecture that Qr1spV iSq is fairly large, possibly
even Qr1spV iSq “ Ωpnq.
Is Qr1spfq ą n for any function? A candidate for this problem would be a random function
chosen from all functions f : t0, 1un ˆ t0, 1un Ñ t0, 1u. It would be interesting if the
one-clean-qubit model can compute all or most f : t0, 1un ˆ t0, 1un Ñ t0, 1u with linear
cost.
What are some examples of functions in which Qr1spfq ąą Rpfq or Qr1spfq ăă Rpfq?
For instance, for the two-player ABC problem, ABC2, described as follows:

ABC2pA1, A2, B1, B2q “ 1 ô A1B1A2B2 “ I,

ABC2pA1, A2, B1, B2q “ 0 ô A1B1A2B2 “ ´I,

where A1, A2 are Alice’s unitaries and B1, B2 are Bob’s unitaries, Qr1spABC2q “ Oplog nq.
What is RpABC2q?
Are there any specific lower bound methods for the semi-unclocked one-clean-qubit
protocol?

http://arxiv.org/abs/0707.2831v3
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B Proofs Concerning One-Way Protocols

B.1 Proof of Theorem 15
Consider a c-bit PP -communication protocol P with bias ϵ where Alice sends a message
T pxq of length c to Bob4.
1. We define Alice’s unitary Ux

A such that
If z “ T pxq, then Ux

A : |0y |z1 ¨ ¨ ¨ zcy ÞÑ |1y |z1 ¨ ¨ ¨ zcy

If z ‰ T pxq, then Ux
A : |0y |z1 ¨ ¨ ¨ zcy ÞÑ |0y |z1 ¨ ¨ ¨ zcy

and extend to a unitary in any possible way, for all z P t0, 1uc. Alice applies Ux
A to the

initial state, and computes Ux
Ap|0y x0| b I

2c qUx:

A .
2. Alice then sends the result σ to Bob. This requires c ` 1 qubits of communication.
3. Upon receiving σ from Alice, Bob tensors it with I

2 and obtains the state σ b I
2 . Bob

then applies the unitary V y
B to the state σ b I

2 , in particular, V y
Bpσ b I

2 qV y˚

B , as follows

V y
B :

#

|0y |z1 ¨ ¨ ¨ zc`1y ÞÑ |0y |zc`1y |z1 ¨ ¨ ¨ zcy

|1y |z1 ¨ ¨ ¨ zc`1y ÞÑ |1y Uy
B b I |z1 ¨ ¨ ¨ zc`1y ,

for all z P t0, 1uc`1. That is to say, if the first qubit of σ b I
2 is 1, V y

B will apply the
protocol unitary Uy

B . Otherwise, a “coin toss” is done by flipping the last qubit over to
the second position.

4. Lastly, he does the measurement on the second qubit.

The probability of the correct message is 1
2c . With a protocol of bias ϵ (and hence and

error of 1
2 ´ ϵ), the acceptance probability of the message is 1

2c p 1
2 ` ϵq. On the other hand,

the acceptance probability of the message in the “coin toss” is given by 1
2 p1 ´ 1

2c q. Therefore,
we have the total acceptance probability:

p1 ´
1
2c

q
1
2 `

1
2c

p
1
2 ` ϵq “

1
2 ´

1
2c`1 `

1
2c`1 `

ϵ

2c

“
1
2 `

ϵ

2c (3)

The total cost of the protocol is bounded as follows:

QAÑB
r1s pfq ď pc ` 1q ¨

1
ϵ12 “ pc ` 1q ¨ 22c ¨

1
ϵ2 ď 22P P pfq ¨ pPP pfq ` 1q ď 2OpP P pfqq, (4)

where ϵ1 “ ϵ
2c from (3).

B.2 Proof of Theorem 16
Proof. Assume that the protocol measures the first qubit in the computational basis (if not,
then a similar construction as in Theorem 8 can be used to make this true). The probability
of measuring zero is given by 1

2 `
trpIAbUy

B
¨Ux

AbIBq

2m`1 [34], where m is the total number of qubits
involved and the bias is the term trpIAbUy

B
¨Ux

AbIBq

2m`1 . Note that IA and IB act on the private
qubits of Alice and Bob respectively. Let Ux

A b IB “ Ax and IA b Uy
B “ By, and it follows

that
trpIA b Uy

B ¨ Ux
A b IBq

2m`1 “
trpByAxq

2m`1 “
xby|aT

x y

2m`1 “
xby|aT

x y

2||ax||2||by||2
,

4 P P -protocols can be assumed to be one-way without loss of generality [4]
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where ax and by are the matrices Ax and By viewed as vectors, since Ax and By are unitary
and hence ||ax||2 “ ||by||2 “ 2 m

2 . If the protocol has bias ϵ, then xby |aT
x y

2m`1 ě ϵ for fpx, yq “ 1
and xby |aT

x y

2m`1 ď ´ϵ for fpx, yq “ 0.

▶ Remark 30. The size of the unitary matrices does not matter, which is good, since there
can be an arbitrarily number of private qubits used by the players but never communicated.

We know from the above that the best possible bias satisfies 2ϵ ď mpfq. From Theorem
3.1 in [25] which states that discpAq “ ΘpmpAqq, and from Theorem 8.1 in [17], which states
that PP pfq ď Op´ log discpfq ` log nq we have

QAÑB
r1s pfq ě

4
m2pfq

ě 2ΩpP P pfqq´Oplog nq. ◀

▶ Remark 31. This lower bound holds regardless of how much communication is involved: it
follows from the fact that one-way one-clean qubit protocols cannot achieve a better bias.

C The Trivial Lower Bound

Qpfq for some functions is given as below [22, 33, 10, 11, 28]:
The equality function (EQ) defined as

EQpx, yq “ 1 ðñ x “ y , EQpx, yq “ 0 ðñ x ‰ y,

where x, y P t0, 1un, has QpEQq “ Θplog nq.
Note: No public coin or entanglement.
The disjointness function (DISJ) defined as

DISJpx, yq “ 1 ðñ x X y “ H , DISJpx, yq “ 0 ðñ x X y ‰ H,

where x, y P t0, 1un, has QpDISJq “ Θp
?

nq.
Note: Ωp

?
nq ď Qr1spDISJq ď Opnq.

The inner product modulo two function (IP2) defined as

IP2px, yq “
ÿ

i

xiyi mod 2,

where x, y P t0, 1un, has QpIP2q “ Θpnq.
Note: QAÑB

r1s
pIP2q “ 2Θpnq while Qr1spIP2q “ Θpnq.

The vector in subspace function (ViS) defined as

V iSpv, H0q “ 1 ðñ v P H0 , V iSpv, H0q “ 0 ðñ v P HK
0 ,

where v P Rn and H0 Ď Rn is a subspace with dimension n
2 , has QpV iSq “ Θplog nq.

The index function (INDEX) defined as

INDEXpx, iq “ xi,

where x P t0, 1un and 1 ď i ď n has QpINDEXq “ Θplog nq.
Qr1spEQq, Qr1spV iSq and Qr1spINDEXq are basically unknown: the lower bounds we know
are Ωplog nq, but the upper bounds we have are Opnq for INDEX and EQ, while Theorem
7 implies Qr1spV iSq “ Opn2 log nq.
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D Proof of Lemma 23

In the quantum protocol, Alice prepares the first message |ϕxy by applying a protocol unitary
W

p1q
x to the all-zero state on the k clean qubits, and sends it to Bob. Bob then applies

the protocol unitary V
1p1q

y to the message sent by Alice and sends the result back to her.
Alice then applies her second unitary W

1p2q
x and does a measurement. This protocol has

communication 2k and accepts 0-inputs with probability at most q and accepts 1-inputs with
probability at least p, where p ą q.

Given any state |ϕxy, we can find an orthonormal basis βx “ t|β1y ¨ ¨ ¨ |β2k yu that includes
|ϕxy so that |ϕxy is a member of the basis and

ř2k

i“1
|βiyxβi|

2k “ I
2k , such that the state I{2k is

the uniform distribution on the elements in the basis. Consider a one-clean-qubit protocol
that simulates the above quantum protocol and goes as follows:
1. We define Alice’s unitary W

1p1q
x such that

If |βiy “ |ϕxy, then W
1p1q
x : |0y |βiy ÞÑ |1y |βiy

If |βiy ‰ |ϕxy, then W
1p1q
x : |0y |βiy ÞÑ |0y |βiy

and extend to a unitary in any possible way.
where |βiy P βx. Alice applies W

1p1q
x to the initial state, in particular, computes σx “

W
1p1q
x p|0y x0| b I

2c qW
1p1q:
x .

2. Alice then sends the last k qubits to Bob.
3. Bob applies the unitary V

1p1q
y to the qubits he received from Alice, in particular computes

σy “ I b V
1p1q

y pσxqI b V
1p1q:

y , where dim(I)=2. Bob sends the qubits back to Alice.
4. Alice applies her unitary W

1p2q
x (tensored with identity on the first qubit) to σy and

measures the first qubit. She outputs 0 if she obtains a measurement result of |0y. On the
other hand, if she obtains a measurement of |1y, she proceeds to execute the measurement
of the original quantum protocol. In this case, the acceptance probability of 0-inputs is
at most q

2k and the acceptance probability for 1-inputs is at least p
2k . Note that the two

measurements can be combined into one.
The simulation of a k-clean-qubit quantum protocol by a one-clean-qubit protocol is shown
in Figure 12:

(a) Original Quantum Protocol. (b) One-Clean-Qubit Protocol.

Figure 12 Simulation by a one-clean-qubit protocol.

E The Simulation Lower Bound

First, we insert dummies into the first n
2 ´ 1 entries of each string (set all to 1) and the

remaining entries are drawn according to a distribution defined in [32].
Consider the linear program (LP) for the rectangle bound (see [13]) as follows, where we

set the acceptance probability for 1-inputs to be at least α “ 1
n3 . We consider an additive

error of 1
n4 and the simulation is required to accept 0-inputs with probability at most 1

n4

and accept 1-inputs with probability at least 2
n3 ´ 1

n4 ě 1
n3 “ α. Recall that we consider

as 1-inputs only those x, y with
ř

i xiyi “ n
2 ´ 1, and as 0-inputs those with

ř

i xiyi “ n
2 .
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Denote by R the set of all rectangles in the communication matrix.
Primal

minimize
ÿ

RPR
WR

subject to
ÿ

tRPR|x,yPRu

WR ě α, for all x, y :
ř

i xiyi “ n
2 ´ 1

ÿ

tRPR|x,yPRu

´WR ě ´ 1
n4 , for all x, y :

ř

i xiyi “ n
2

WR ě 0

Dual

maximize
ÿ

tx,y|
ř

i xiyi“ n
2 ´1u

αγxy ´
ÿ

tx,y|
ř

i xiyi“ n
2 u

1
n4 σxy

subject to
ÿ

tx,yPR|
ř

i xiyi“ n
2 ´1u

γxy ´
ÿ

tx,yPR|
ř

i xiyi“ n
2 u

σxy ď 1 for all R P R

σxy, γx,yě 0

A protocol P that accepts 1-inputs with probability at least 1
n3 and accepts 0-inputs with

probability at most 1
n4 can be viewed as a probability distribution on deterministic protocols.

Each deterministic protocol (in a randomized public-coin protocol) can be represented by a
protocol tree. The probabilities of decision trees are given as p1, p2, . . . , pt. Every leaf in each
decision tree has an attached rectangle, and a decision: accept or reject. We consider only the
rectangles which lead to acceptance, and we assign weight 0 to those rectangles that do not
appear in any protocol tree at an accepting leaf and weight WR “

ÿ

ti|R accepted in tree iu

pi

for rectangles appearing in protocol trees i.

▷ Claim 32. The constraints in the primal LP hold.

Proof.
Let px, yq be a 1-input. Summing up all the probabilities of the decision trees where
px, yq is in a 1-rectangle, we get the LHS of the first inequality constraint, which also
corresponds to the acceptance probability, which must exceed α on the RHS.
Let px, yq be a 0-input. Adding up the probabilities of decision trees where px, yq appears
in a 1-rectangle will give the LHS of the second inequality constraints, which is at most
1{n4 because that is the maximum additive error allowed.
The nonnegativity constraint is automatically fulfilled since WR’s are sums of probabilities
which must be at least zero. ◁

▷ Claim 33. If there is a classical protocol that accepts 1-inputs with probability ě α and
0-inputs with probability ď 1{n4 and communication c then there exists a solution of cost 2c

for the primal LP.

Proof. The contribution of each decision tree to WR is at most 2c ¨ pi, since there are at most
2c leaves in each decision tree. Therefore,

ÿ

RPR
WR ď

t
ÿ

i“1
2c ¨ pi “ 2c. ◁
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Therefore, in a 1
n4 -error simulation of a quantum protocol (that accepts 1-inputs with

probability at least 2
n3 and accepts 0-inputs with probability 0), the simulating randomized

protocol (with communication c) must accept 1-inputs with probability at least 2
n3 ´ 1

n4 ě 1
n3

and accept 0-inputs with probability at most 1
n4 , and hence yield a solution to the primal

LP of cost at most 2c. By LP duality the primal and its dual have the same cost, and we
want to show the lower bound for the cost. Hence, we work with the dual.

▷ Claim 34. The cost of the LP is 2Ωpnq.

See the full version [18] for the proof.
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