
Parallel Algorithms for Power Circuits and the
Word Problem of the Baumslag Group
Caroline Mattes #

Institut für Formale Methoden der Informatik (FMI), University of Stuttgart, Germany

Armin Weiß #

Institut für Formale Methoden der Informatik (FMI), University of Stuttgart, Germany

Abstract
Power circuits have been introduced in 2012 by Myasnikov, Ushakov and Won as a data structure for
non-elementarily compressed integers supporting the arithmetic operations addition and (x, y) 7→ x·2y.
The same authors applied power circuits to give a polynomial-time solution to the word problem of
the Baumslag group, which has a non-elementary Dehn function.

In this work, we examine power circuits and the word problem of the Baumslag group under
parallel complexity aspects. In particular, we establish that the word problem of the Baumslag
group can be solved in NC – even though one of the essential steps is to compare two integers given
by power circuits and this, in general, is shown to be P-complete. The key observation is that the
depth of the occurring power circuits is logarithmic and such power circuits can be compared in NC.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Circuit complexity

Keywords and phrases Word problem, Baumslag group, power circuit, parallel complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.74

Related Version Full Version: https://arxiv.org/abs/2102.09921 [28]

Funding Armin Weiß: Funded by DFG project DI 435/7-1.

1 Introduction

The word problem of a finitely generated group G is as follows: does a given word over the
generators of G represent the identity of G? It was first studied by Dehn as one of the
basic algorithmic problems in group theory [8]. Already in the 1950s, Novikov and Boone
succeeded to construct finitely presented groups with an undecidable word problem [5, 33].
Nevertheless, many natural classes of groups have an (efficiently) decidable word problem –
most prominently the class of linear groups (groups embeddable into a matrix group over
some field): their word problem is in LOGSPACE [22, 38] – hence, in particular, in NC, i.e.,
decidable by Boolean circuits of polynomial size and polylogarithmic depth.

There are various other results on word problems of groups in small parallel complexity
classes defined by circuits. For example the word problems of solvable linear groups are even
in TC0 (constant depth with threshold gates) [19] and the word problems of Baumslag-Solitar
groups and of right-angled Artin groups are AC0-Turing-reducible to the word problem of
a non-abelian free group [42, 18]. Moreover, Thompson’s groups are co-context-free [21]
and hyperbolic groups have word problem in LOGCFL [23]. All these classes are contained
within NC. On the other hand, there are also finitely presented groups with a decidable word
problem but with arbitrarily high complexity [36].

A mysterious class of groups under this point of view are one-relator groups, i.e. groups
that can be written as a free group modulo a normal subgroup generated by a single element
(relator). Magnus [26] showed that one-relator groups have a decidable word problem; his
algorithm is called the Magnus breakdown procedure (see also [25, 27]). Nevertheless, the

© Caroline Mattes and Armin Weiß;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 74; pp. 74:1–74:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:caroline.mattes@fmi.uni-stuttgart.de
mailto:armin.weiss@fmi.uni-stuttgart.de
https://orcid.org/0000-0002-7645-5867
https://doi.org/10.4230/LIPIcs.MFCS.2021.74
https://arxiv.org/abs/2102.09921
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 Parallel Algorithms for the Baumslag Group

complexity remains an open problem – although it is not even clear whether the word
problems of one-relator groups are solvable in elementary time, in [3] the question is raised
whether they are actually decidable in polynomial time.

In 1969 Gilbert Baumslag defined the group G1,2 =
〈
a, b | bab−1a = a2bab−1〉

as an
example of a one-relator group which enjoys certain remarkable properties. It is infinite
and non-abelian, but all its finite quotients are cyclic and, thus, it is not residually finite
[4]. Moreover, Gersten showed that the Dehn function of G1,2 is non-elementary [15] and
Platonov [34] made this more precise by proving that it is (roughly) τ(logn) where τ(0) = 1
and τ(i+ 1) = 2τ(i) for i ≥ 0 is the tower function (note that he calls the group Baumslag-
Gersten group). Since the Dehn function gives an upper bound on the complexity of the
word problem, the Baumslag group was a candidate for a group with a very difficult word
problem. Indeed, when applying the Magnus breakdown procedure to an input word of length
n, one obtains as intermediate results words of the form vx1

1 · · · vxm
m where vi ∈ {a, b, bab−1},

xi ∈ Z, and m ≤ n. The issue is that the xi might grow up to τ(logn); hence, this algorithm
has non-elementary running time. However, as foreseen by the above-mentioned conjecture,
Myasnikov, Ushakov and Won succeeded to show that the word problem of G1,2 is, indeed,
decidable in polynomial time [30]. Their crucial contribution was to introduce so-called
power circuits in [31] for compressing the xi in the description above.

Roughly speaking, a power circuit is a directed acyclic graph (a dag) where the edges
are labelled by ±1. One can define an evaluation of a vertex P as two raised to the power
of the (signed) sum of the successors of P . Note that this way the value τ(n) of the tower
function can be represented by an n-vertex power circuit – thus, power circuits allow for a
non-elementary compression. The crucial feature for the application to the Baumslag group
is that power circuits not only efficiently support the operations +, −, and (x, y) 7→ x · 2y,
but also the test whether x = y or x < y for two integers represented by power circuits can
be done in polynomial time. The main technical part of the comparison algorithm is the
so-called reduction process, which computes a certain normal form for power circuits.

Based on these striking results, Diekert, Laun and Ushakov [10, 9] improved the algorithm
for power circuit reduction and managed to decrease the running time for the word problem
of the Baumslag group from O(n7) down to O(n3). They also describe a polynomial-time
algorithm for the word problem of the famous Higman group H4 [16]. In [32] these algorithms
have been implemented in C++. Subsequently, more applications of power circuits to these
groups emerged: in [20] a polynomial time solution to the word problem in generalized
Baumslag and Higman groups is given, in [12, 11] the conjugacy problem of the Baumslag
group is shown to be strongly generically in P and in [2] the same is done for the conjugacy
problem of the Higman group. Here “generically” roughly means that the algorithm works
for most inputs (for details on the concept of generic complexity, see [17]).

Other examples where compression techniques lead to efficient algorithms in group theory
can be found e.g. in [13, 14] or [24, Theorems 4.6, 4.8 and 4.9]. Finally, notice that in [29]
the word search problem for the Baumslag group has been examined using parametrized
complexity.

Contribution. The aim of this work is to analyze power circuits and the word problem
of the Baumslag group under the view of parallel (circuit) complexity. For doing so, we
first examine so-called compact representations of integers and show that ordinary binary
representations can be converted into compact representations by constant depth circuits
(i.e., in AC0 – see Section 3). We apply this result in the power circuit reduction process,
which is the main technical contribution of this paper. While [31, 10] give only polynomial

C. Mattes and A. Weiß 74:3

time algorithms, we present a more refined method and analyze it in terms of parametrized
circuit complexity. The parameter here is the depth D of the power circuit. More precisely,
we present threshold circuits of depth O(D) for power circuit reduction – implying our first
main result:

▶ Proposition A. The problem of comparing two integers given by power circuits of logarithmic
depth is in TC1 (decidable by logarithmic-depth, polynomial-size threshold circuits).

We then analyze the word problem of the Baumslag group carefully. A crucial step is to show
that all appearing power circuits have logarithmic depth. Using Proposition A we succeed to
describe a TC1 algorithm for computing the Britton reduction of uv if u and v are already
Britton-reduced (Britton reductions are the basic step in the Magnus breakdown procedure –
see Section 5 for a definition). This leads to the following result:

▶ Theorem B. The word problem of the Baumslag group G1,2 is in TC2.

In the final part of the paper we prove lower bounds on comparison in power circuits, and
thus, on power circuit reduction. In particular, this emphasizes the relevance of Proposition
A and shows that our parametrized analysis of power circuit reduction is essentially the best
one can hope for. Moreover, Theorem C highlights the importance of the logarithmic depth
bound for the power circuits appearing during the proof of Theorem B.

▶ Theorem C. The problem of comparing two integers given by power circuits is P-complete.

Power circuits can be seen in the broader context of arithmetic circuits and arithmetic
complexity. Thus, results on power circuits also give further insight into these arithmetic
circuits. Notice that the corresponding logic over natural numbers with addition and 2x has
been shown to be decidable by Semënov [37]. In the full version [28] we show that, indeed,
for every power circuit with a marking M there is an arithmetic circuit of polynomial size
with +-, −-, and 2x-gates evaluating to the same number and vice-versa.

Due to space constraints we present only short outlines of the proofs for our main theorems;
the full proofs as well as further details can be found in the full version on arXiv [28]. Details
of the reduction process also can be found in the appendix.

2 Notation and preliminaries

General notions. We use standard O-notation for functions from N to non-negative reals
R≥0, see e.g. [7]. Throughout, the logarithm log is with respect to base two. The tower
function τ : N → N is defined by τ(0) = 1 and τ(i+1) = 2τ(i) for i ≥ 0. It is primitive recursive,
but τ(6) written in binary cannot be stored in the memory of any conceivable real-world
computer. We denote the support of a function f : X → R by σ(f) = {x ∈ X | f(x) ̸= 0}.
Furthermore, the interval of integers {i, . . . , j} ⊆ Z is denoted by [i .. j] and we define
[n] = [0 .. n− 1]. We write Z[1/2] = {p/2q ∈ Q | p, q ∈ Z} for the set of dyadic fractions.

Let Σ be a set. The set of all words over Σ is denoted by Σ∗ =
⋃

n∈N Σn. The length of
a word w ∈ Σ∗ is denoted by |w|. A dag is a directed acyclic graph. For a dag Γ we write
depth(Γ) for its depth, which is the length (number of edges) of a longest path in Γ.

Complexity. We assume the reader to be familiar with the complexity classes LOGSPACE
and P (polynomial time); see e.g. [1] for details. Most of the time, however, we use circuit
complexity within NC.

Throughout, we assume that languages L (resp. inputs to functions f) are encoded over
the binary alphabet {0, 1}. A Boolean circuit is a dag where the vertices are either input
gates x1, . . . , xn, or Not, And, or Or gates. There are one or more designated output gates

MFCS 2021

74:4 Parallel Algorithms for the Baumslag Group

and there is an order given on the output gates. All gates may have unbounded fan-in (i.e.,
there is no bound on the number of incoming wires). Let k ∈ N. A language L ⊆ {0, 1}∗

belongs to ACk if there exists a family (Cn)n∈N of Boolean circuits such that x ∈ L ∩ {0, 1}n

if and only if the (unique) output gate of Cn evaluates to 1 when assigning x = x1 · · ·xn to
the input gates. Moreover, Cn may contain at most nO(1) gates and have depth O(logk n).
Likewise ACk-computable functions are defined.

The class TCk is defined analogously with the difference that also Majority gates are
allowed (a Majority gate outputs 1 if its input contains more 1s than 0s). Moreover,
NC =

⋃
k≥0 TCk =

⋃
k≥0 ACk. For more details on circuits we refer to [40]. Our algorithms

(or circuits) rely on two basic building blocks which can be done in TC0:

▶ Example 1. Iterated addition is the following problem: on input of n binary numbers
A1, . . . , An each having n bits, compute

∑n
i=1 Ai. This is well-known to be in TC0 – see e.g.

[40, Theorem 1.37] for a proof.

▶ Example 2. Let (k1, v1), . . . , (kn, vn) be a list of n key-value pairs (ki, vi) equipped with
a total order on the keys ki such that it can be decided in TC0 whether ki < kj . Then
the problem of sorting the list according to the keys is in TC0: the desired output is a list
(kπ(1), vπ(1)), . . . , (kπ(n), vπ(n)) for some permutation π such that kπ(i) ≤ kπ(j) for all i < j.

We briefly describe a circuit family to do so: The first layer compares all pairs of keys
ki, kj in parallel. For all i and j the next layer computes a Boolean value P (i, j) which is
true if and only if |{ℓ | kℓ < ki}| = j. The latter is computed by iterated addition. As a final
step the j-th output pair is set to (ki, vi) if and only if P (i, j) is true.

▶ Remark 3. The class NC is contained in P if we consider uniform circuits. Roughly speaking,
a circuit family is called uniform if the n-input circuit can be computed efficiently from the
string 1n. In order not to overload the presentation, throughout, we state all our results in
the non-uniform case – all uniformity considerations are left to the reader.

Parametrized circuit complexity. In our work we also need some parametrized version
of the classes TCk, which we call depth-parametrized TCk. Let par : {0, 1}∗ → N (called
the parameter). Consider a family of circuits (Cn,D)n,D∈N such that Cn,D contains at most
nO(1) gates (independently of D)1 and has depth O(D · logk n). A language L is said to be
accepted by this circuit family if for all n and D and all x ∈ {0, 1}n with par(x) ≤ D we
have x ∈ L if and only if Cn,D evaluates to 1 on input x. Similarly, f : {0, 1}∗ → {0, 1}∗ is
computed by (Cn,D)n,D∈N if for all n and D and all x ∈ {0, 1}n with par(x) ≤ D the circuit
Cn,D evaluates to f(x) on input x. We define DepParaTCk as the class of languages (resp.
functions) for which there are such parametrizations par : {0, 1}∗ → N and families of circuits
(Cn,D)n,D≥0. Note that this is not a standard definition – but it perfectly fits our purposes.

▶ Lemma 4. Let C > 0, k, ℓ ∈ N and par : {0, 1}∗ → N such that
{
w ∈ {0, 1}∗

∣∣
par(w) ≤ C · ⌊log |w|⌋ℓ} ∈ TCk+ℓ and L ∈ DepParaTCk (parametrized by par). Then
L̃ =

{
w ∈ L

∣∣∣ par(w) ≤ C · ⌊log |w|⌋ℓ
}

is in TCk+ℓ.

Power circuits. Consider a pair (Γ, δ) where Γ is a set of n vertices and δ is a mapping
δ : Γ × Γ → {−1, 0,+1}. Notice that (Γ, σ(δ)) is a directed graph. Throughout we require
that (Γ, σ(δ)) is acyclic – i.e., it is a dag. In particular, δ(P, P) = 0 for all vertices P . A

1 Here and in most other natural applications the parameter D is bounded by the input size n. In this
case, we could let the size of Cn,D be a polynomial in both n and D – without changing the actual class.

C. Mattes and A. Weiß 74:5

marking is a mapping M : Γ → {−1, 0,+1}. Each node P ∈ Γ is associated in a natural way
with a marking ΛP : Γ → {−1, 0,+1} , Q 7→ δ(P,Q) called its successor marking. We define
the evaluation ε(P) ∈ R>0 of a node (ε(M) ∈ R of a marking resp.) bottom-up in the dag
by induction: leaves (nodes of out-degree 0) evaluate to 1 and, in general,

ε(P) = 2ε(ΛP) for a node P , ε(M) =
∑

P

M(P)ε(P) for a marking M.

▶ Definition 5. A power circuit is a pair (Γ, δ) with δ : Γ×Γ → {−1, 0,+1} such that (Γ, σ(δ))
is a dag and all nodes evaluate to some positive natural number in 2N.

The size of a power circuit is the number of nodes |Γ|. By abuse of language, we also simply
call Γ a power circuit and suppress δ whenever it is clear. If M is a marking on Γ and
S ⊆ Γ, we write M |S for the restriction of M to S. Let (Γ′, δ′) be a power circuit, Γ ⊆ Γ′,
δ = δ′|Γ×Γ, and δ′|Γ×(Γ′\Γ) = 0. Then (Γ, δ) itself is a power circuit. We call it a sub-power
circuit and denote this by (Γ, δ) ≤ (Γ′, δ′) or, if δ is clear, by Γ ≤ Γ′.

If M is a marking on S ⊆ Γ, we extend M to Γ by setting M(P) = 0 for P ∈ Γ \S. With
this convention, every marking on Γ also can be seen as a marking on Γ′ if Γ ≤ Γ′.

▶ Example 6. A power circuit of size n can realize τ(n) since a directed path of n nodes
represents τ(n) as the evaluation of the last node. The following power circuit realizes τ(6)
using 6 nodes:

1 2 4 16 65536 265536ε(P)

+ + + + +

▶ Example 7. We can represent every integer in the range [−2n − 1, 2n − 1] as the evaluation
of some marking in a power circuit with node set {P0, . . . , Pn−1} with ε(Pi) = 2i for i ∈ [n].
Thus, we can convert the binary notation of an n-bit integer into a power circuit with n

vertices and O(n logn) edges (each successor marking requires at most ⌊logn⌋ + 1 edges).
For an example of a marking representing the integer 23, see Figure 1.

− + +

1 2 4 8 16 32

+ +

++

+
+

+

Figure 1 Each integer z ∈ [−63 .. 63] can be represented by a marking in the following power
circuit. The marking given in blue is representing the number 23.

▶ Definition 8. We call a marking M compact if for all P,Q ∈ σ(M) with P ̸= Q we have
|ε(ΛP) − ε(ΛQ)| ≥ 2. A reduced power circuit of size n is a power circuit (Γ, δ) with Γ
given as a sorted list Γ = (P0, . . . , Pn−1) such that all successor markings are compact and
ε(Pi) < ε(Pj) whenever i < j. In particular, all nodes have pairwise distinct evaluations.

It turns out to be crucial that the nodes in Γ are sorted by their values. Still, sometimes it is
convenient to treat Γ as a set – we write P ∈ Γ or S ⊆ Γ with the obvious meaning. For
more details on power circuits see [10, 31].
▶ Remark 9. If (Γ, δ) is a reduced power circuit with Γ = (P0, . . . , Pn−1), we have δ(Pi, Pj) = 0
for j ≥ i. Thus, the order on Γ by evaluations is also a topological order on the dag (Γ, σ(δ)).

MFCS 2021

74:6 Parallel Algorithms for the Baumslag Group

3 Compact signed-digit representations

▶ Definition 10.
(i) A sequence B = (b0, . . . , bm−1) with bi ∈ {−1, 0,+1} for i ∈ [m] is called a signed-digit

representation of val(B) =
∑m−1

i=0 bi · 2i ∈ Z.
(ii) The digit-length of B = (b0, . . . , bm−1) is the maximal i with bi−1 ̸= 0.
(iii) The sequence B = (b0, . . . , bm−1) is called compact if bibi−1 = 0 for all i ∈ [1 ..m− 1]

(i.e., no two successive digits are non-zero).
Henceforth, we abbreviate “compact signed-digit representation” with csdr. A non-negative
binary number is the special case of a signed-digit representation where all bi are 0 or 1 (note
that, in general, they are not compact). In particular, every integer k can be represented
as a signed-digit representation. However, in general, a signed-digit representation for an
integer k is not unique. In [31, Section 2.1] a linear-time algorithm for calculating csdrs has
been given; here we aim for optimizing the parallel complexity.

▶ Theorem 11. The following is in AC0:
Input: A binary number A = (a0, . . . , am−1).
Output: A compact signed-digit representation of A.

Proof sketch. Computation of the csdr is in the spirit of a carry-lookahead adder: On input
of the binary number A = (a0, . . . , am−1) we define

ci =
∨

1≤j≤i

(
aj ∧ aj−1 ∧

∧
j<k≤i

(ak ∨ ak−1)
)
, and bi = (ai ⊕ ci) · (−1)ai+1 .

Here ⊕ denotes the exclusive or and we treat the Boolean values 0, 1 as a subset of the integers.
Then B = (b0, . . . , bm−1, bm) can be calculated in AC0 using the above formulas. The main
part of the proof consists in showing that B, indeed, is compact and that val(B) = val(A).
This is done by induction using the recurrence c0 = 0 and ci = (ai ∧ai−1)∨

(
ci−1 ∧(ai ∨ai−1)

)
for i ≥ 1. ◀

▶ Lemma 12 ([31, Lemma 4]). Let A = (a0, . . . , am−1), B = (b0, . . . , bm−1) be csdrs. Then:
(i) val(A) = val(B) if and only if ai = bi for all i ∈ [m].
(ii) Assume there is some i with ai ̸= bi and let i0 = max {i ∈ [m] | ai ̸= bi}. Then

val(A) < val(B) if and only if ai0 < bi0 .

From this lemma together with Theorem 11 it follows that each k ∈ Z can be uniquely
represented by a compact signed digit representation CR(k). Likewise for a signed digit
representation A, we write CR(A) for its compact signed digit representation.

If A and B are signed digit representations, it follows from Theorem 11 and Lemma 12
that we can calculate CR(A) and CR(A+B) and decide whether val(A) < val(B) in AC0.

4 Operations on power circuits

Basic operations. Before we consider the computation of reduced power circuits, which is
our main result in this section, let us introduce some more notation on power circuits and
recall the basic operations from [31, 10] under circuit complexity aspects.

▶ Definition 13. Let (Γ, δ) be a reduced power circuit with Γ = (P0, . . . , Pn−1).
(i) A chain C of length ℓ = |C| in Γ starting at Pi = start(C) is a sequence (Pi, . . . , Pi+ℓ−1)

such that ε(Pi+j+1) = 2 · ε(Pi+j) for all j ∈ [ℓ− 1].

C. Mattes and A. Weiß 74:7

(ii) We call a chain C maximal if it cannot be extended in either direction. We denote the
set of all maximal chains by CΓ.

(iii) There is a unique maximal chain C0 containing the node P0 of value 1. We call C0 the
initial maximal chain of Γ and denote it by C0 = C0(Γ).

For an example of a power circuit with three maximal chains, see Figure 2.

1 2 4 8 28 29 229

+ + +

−
+

+

+

+

Figure 2 This power circuit is an example for a reduced power circuit with three maximal chains:
The first one consists of the nodes of values 1, 2, 4, 8, the next one is formed by the nodes of values
28 and 29 and the node of value 229

is a maximal chain of length 1.

▶ Proposition 14. Let △ ∈ {=, ̸=, <,≤, >,≥}. The following problem is in AC0:

Input: A reduced power circuit (Γ, δ) with compact markings L, M and k ∈
[
0 ..

⌊
2|C0|+1

3

⌋]
given in binary.

Question: Is ε(L) △ ε(M) + k?

▶ Lemma 15. The following problems are all in TC0:

(a) Input: A power circuit (Π, δΠ) together with markings K and L.
Output: A power circuit (Π′, δΠ′) with a marking M such that ε(M) = ε(K) + ε(L) and

(Π, δΠ) ≤ (Π′, δΠ′), |Π′| ≤ 2 · |Π| and depth(Π′) = depth(Π).

(b) Input: A power circuit (Π, δΠ) together with a marking L.
Output: A marking M in the power circuit (Π, δΠ) such that ε(M) = −ε(L).

(c) Input: A power circuit (Π, δΠ) together with markings K and L such that ε(L) ≥ 0.
Output: A power circuit (Π′, δΠ′) with a marking M such that ε(M) = ε(K) · 2ε(L) and

(Π, δΠ) ≤ (Π′, δΠ′), |Π′| ≤ 3 · |Π| and depth(Π′) ≤ depth(Π) + 1.

Lemma 15 applies the constructions from [31, Section 7] and [10, Section 2]. For (c) it can be
summarized as follows: Add L to the successor marking of every node in σ(K). To prevent
other nodes from changing their value, first create disjoint copies of σ(K) and σ(L).

▶ Remark 16. Since membership in AC0 often highly depends on the encoding of the input,
we assume that power circuits are given in a suitable way, e.g. as an n×n matrix representing
δ where each entry from {0,±1} is encoded using two bits, similarly for markings. If the
power circuit is reduced, the nodes appear sorted according to their values.

We need these assumptions for proving the AC0-bound in Proposition 14. However, in the
following, we do not consider these encoding issues because, as soon as we are dealing with
TC0 circuits, there is a lot of freedom how to encode inputs. Also note that in Lemma 15 we
only state membership in TC0, although, with some proper work (and suitable encodings),
one could also show AC0.

MFCS 2021

74:8 Parallel Algorithms for the Baumslag Group

Power circuit reduction

While compact markings on a reduced power circuit yield unique representations of integers,
in an arbitrary power circuit (Π, δΠ) we can have two markings L and M such that L ̸= M

but ε(L) = ε(M). Therefore, given an arbitrary power circuit, we wish to produce a reduced
power circuit for comparing markings. This is done by the following theorem, which is our
main technical result on power circuits.

▶ Theorem 17. The following is in DepParaTC0 parametrized by depth(Π):
Input: A power circuit (Π, δΠ) together with a marking M on Π.
Output: A reduced power circuit (Γ, δ) together with a compact marking M̃ on Γ such that

ε(M̃) = ε(M).

For a power circuit (Π, δΠ) with a marking M we call the power circuit (Γ, δ) together with
the marking M̃ obtained by Theorem 17 the reduced form of Π.

The proof of Theorem 17 consists of several steps, which we introduce on the next pages.
The high-level idea is as follows: Like in [31, 10], we keep the invariant that there is an
already reduced part and a non-reduced part (initially the non-reduced part is Π). The main
difference is that in one iteration we insert all the nodes of the non-reduced part that have
only successors in the reduced part into the reduced part. Each iteration can be done in TC0;
after depth(Π) + 1 iterations we obtain a reduced power circuit.

Insertion of new nodes. The following procedure is a basic tool for the reduction process.
Let (Γ, δ) be a reduced power circuit and I be a set of nodes with Γ ∩ I = ∅. Assume that
for every P ∈ I there exists a marking ΛP : Γ → {−1, 0, 1} such that ΛP is compact and
ε(ΛP) ≥ 0 for all P ∈ I, and ε(ΛP) ̸= ε(ΛQ) for all P,Q ∈ I ∪ Γ with P ̸= Q.

We wish to add I to the reduced power circuit (Γ, δ). For this, we set Γ′ = Γ∪I and define
δ′ : Γ′ × Γ′ → {−1, 0, 1} in the obvious way: δ′|Γ×Γ = δ, δ′|Γ′×I = 0 and δ′(P,Q) = ΛP (Q) for
(P,Q) ∈ I × Γ. Now, (Γ′, δ′) is a power circuit with (Γ, δ) ≤ (Γ′, δ′) and for every P ∈ I the
map ΛP is the successor marking of P . Moreover, each node of Γ′ has a unique value. Since
for every node P ∈ Γ′ the marking ΛP is a compact marking on the reduced power circuit
Γ, by Proposition 14, for P,Q ∈ Γ′ we are able to decide in AC0 whether ε(ΛQ) ≤ ε(ΛP).
Therefore, by Example 2 we can sort Γ′ according to the values of the nodes in TC0 and,
hence, assume that Γ′ = (P0, . . . , P|Γ′|−1) is in increasing order. This yields the following:

▶ Lemma 18 (InsertNodes). The following problem is in TC0:
Input: A power circuit (Γ, δ) and a set I with the properties described above.
Output: A reduced power circuit (Γ′, δ′) such that (Γ, δ) ≤ (Γ′, δ′) and such that for every

P ∈ I there is a node Q in Γ′ with ΛQ = ΛP . In addition, |Γ′| = |Γ| + |I|, and
|CΓ′ | ≤ |CΓ| + |I|.

The three steps of the reduction process. The reduction process for a power circuit
(Π, δΠ) with a marking M consists of several iterations. Each iteration starts with a power
circuit (Γi ∪ Ξi, δi) such that Γi is a reduced sub-power circuit and a marking Mi with
ε(Mi) = ε(M). The aim of one iteration is to integrate the vertices Min(Ξi) ⊆ Ξi into Γi

where Min(Ξi) is defined by Min(Ξi) = {P ∈ Ξi | σ(ΛP) ⊆ Γi} and to update the marking
Mi accordingly. Each iteration consists of the three steps UpdateNodes, ExtendChains,
and UpdateMarkings, which can be done in TC0. We have Ξi+1 = Ξi \ Min(Ξi). Thus,
the full reduction process consists of depth(Π) + 1 many TC0 computations. Let us now
describe these three steps. The proofs of these Lemmas can be found in the appendix.

C. Mattes and A. Weiß 74:9

We write (Γ∪Ξ, δ) = (Γi ∪Ξi, δi) for the power circuit at the start of one iteration. Let us
fix its precise properties: Γ∩Ξ = ∅, (Γ, δ|Γ×Γ) ≤ (Γ∪Ξ, δ) is a reduced power circuit and ΛP |Γ
is a compact marking for every P ∈ Ξ. Moreover, we assume that |C0(Γ)| ≥ ⌈log(|Ξ|)⌉ + 1.

▶ Lemma 19 (UpdateNodes). The following problem is in TC0:
Input: A power circuit (Γ ∪ Ξ, δ) as above.
Output: A reduced power circuit (Γ′, δ′) such that (Γ, δ|Γ×Γ) ≤ (Γ′, δ′) and such that for

every node Q ∈ Min(Ξ) there exists a node P ∈ Γ′ with ε(P) = ε(Q). In addition,
|Γ′| ≤ |Γ| + |Min(Ξ)|, and |CΓ′ | ≤ |CΓ| + |Min(Ξ)|.

▶ Lemma 20 (ExtendChains). The following problem is in TC0:

Input: A reduced power circuit (Γ′, δ′) and µ ∈ N such that µ ≤
⌊

2|C0(Γ′)|+1

3

⌋
.

Output: A reduced power circuit (Γ′′, δ′′) such that (Γ′, δ′) ≤ (Γ′′, δ′′) and such that for
each P ∈ Γ′ and each i ∈ [0 .. µ] there is a node Q ∈ Γ′′ with ε(ΛQ) = ε(ΛP) + i.
In addition, |Γ′′| ≤ |Γ′| + |CΓ′ | · µ, and |CΓ′′ | ≤ |CΓ′ |.

In the following, (Γ′, δ′) denotes the power circuit obtained by UpdateNodes when
starting with (Γ ∪ Ξ, δ), and (Γ′′, δ′′) denotes the power circuit obtained by ExtendChains
with µ = ⌈log(|Min(Ξ)|)⌉ + 1 on input of the power circuit (Γ′, δ′) (observe that, by the
assumption |C0(Γ)| ≥ ⌈log(|Ξ|)⌉ + 1, the condition on µ in Lemma 20 is satisfied). The value
of µ is chosen to make sure that in the following lemma one can make the markings compact.
Indeed, if Min(Ξ) = {P1, . . . , Pk} and all Pi have the same evaluation and are marked with 1
by M , then we might need a node of value 2µ · ε(P1) in order to make M compact.

▶ Lemma 21 (UpdateMarkings). The following problem is in TC0:
Input: The power circuit (Γ′′, δ′′) as a result of ExtendChains with µ = ⌈log(|Min(Ξ)|)⌉+

1 and a marking M on Γ ∪ Ξ.
Output: A marking M̃ on Γ′′ ∪ (Ξ \ Min(Ξ)) such that ε(M̃) = ε(M) and M̃ |Γ′′ is compact.

Proof sketch of Theorem 17. We start with an initial reduced power circuit (Γ0, δ0) (a
chain of length ⌈log(|Π|)⌉ + 1) and a non-reduced part Ξ0 = Π and successively apply the
three steps (Lemma 19, 20, and 21) to obtain a sequence of power circuits (Γi ∪ Ξi, δi)
and markings Mi for i = 0, 1 . . . with Ξi+1 = Ξi \ Min(Ξi) while keeping the invariants
(Γi, δi|Γi×Γi

) ≤ (Γi ∪ Ξi, δi), Γi is reduced, Γi−1 ≤ Γi, Ξi ⊆ Ξi−1, and ε(Mi) = ε(M). After
depth(Π) + 1 iterations we reach Ξd+1 = Ξd \ Min(Ξd) = ∅ where d = depth(Π). Thus,
(Γ, δ) = (Γd+1, δd+1) is a reduced power circuit and Md+1 is a compact marking on Γd+1
with ε(Md+1) = ε(M).

▷ Claim 22. Let d = depth(Π) and Γ0, . . . ,Γd+1 be as constructed above. Then for all i we
have |CΓi

| ≤ |Π| + 1 and |Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2).

Let D ∈ N and assume that depth(Π) ≤ D. By Lemma 19, 20, and 21, each iteration can
be done in TC0. The construction of the markings M̃ i and Λ̃P during UpdateMarkings
can be done in parallel – so it is in TC0, although Lemma 21 is stated only for a single
marking. Now, the crucial observation is that, due to Claim 22, the input size for each
iteration is polynomial in the original input size of (Π, δΠ). Therefore, we can compose the
individual iterations and obtain a circuit of polynomial size and depth bounded by O(D). ◀

▶ Remark 23.
(1) While Theorem 17 is only stated for one input marking, the construction works within

the same complexity bounds for any number of markings on (Π, δΠ) since during
UpdateMarkings these all can be updated in parallel.

MFCS 2021

74:10 Parallel Algorithms for the Baumslag Group

1 2 4 25

23 23 232+

+

+

+

+ +

+

+

+− + −

+

+

+

a) Starting situation

1 2 4 23 25

23 23 232

232

+ +

+

+

+ +

+

+

+

−

+− − +

+

+

+

+

b) After UpdateNodes

1 2 4 23 25 28

23 23

232 233 234 235

232+ +

+

+

.+ + +

−

− +
−

+

+

+

+

+

c) After ExtendChains.

1 2 4 23 24 25 27

212

232 233 234 235

+

+

+

. . .+ + +

−

+−

+

d) After UpdateMarkings

Figure 3 The three steps of power circuit reduction. The already reduced part consist of blue
nodes and Min(Ξi) is colored in cyan. The red signs indicate a marking. Three dots · · · in between
two nodes mean that we omitted some nodes. A dashed edge - - means that we actually omitted the
outgoing edges of the right node.

(2) Moreover, note that for every maximal chain C ∈ CΓ there exists a node Q ∈ Π (i.e., in
the original power circuit) such that ε(Q) = ε(start(C)). This is because new chains are
only created during UpdateNodes, the other steps only extend already existing chains.

(3) Further observe that |σ(M̃)| ≤ |σ(M)|. Looking at the construction of M̃ we see that
we first make sure that M does not mark two nodes of the same value, then we make the
marking compact. Both operations do not increase the number of nodes in the support
of the marking.

▶ Example 24. In Figure 3 we illustrate what happens in the steps UpdateNodes,
ExtendChains and UpdateMarkings during the reduction process. Picture a) shows our
starting situation. In b) we already inserted the nodes of value 23 and 232 into the reduced
part. Now the reduced part consists of three chains: one starting at the node of value 1 and
the nodes 25 and 232 as chains of length 1. Because |Min(Ξ)| = 3, we have to extend each
chain by three nodes or until two chains merge. So in c) we obtain two chains, one from 1 to
28 and the one from 232 to 235. In d) we then updated the markings and deleted the nodes
from Min(Ξ).

▶ Example 25. In Section 4 we give an example of the complete power circuit reduction
process by showing the result after each iteration. We start with a non-reduced power circuit
of depth 2 in a). This power circuit has size 5, so we first construct the starting chain of
length 4 in b). Part c) and d) show the result after inserting layer 0 and layer 1, respectively.
In e) we finally inserted all layers and thus have constructed the reduced power circuit.

For comparing two markings L and M on an arbitrary power circuit, we can proceed as
follows: first compute the difference (Lemma 15), then reduce the power circuit (Theorem 17)
and, finally, compare the resulting compact marking with zero (Proposition 14). This shows
the next corollary and, together with Lemma 4, also proves Proposition A.

C. Mattes and A. Weiß 74:11

1 1

2221

27

+ −

+−

+

+
++

+

++

a) Non-reduced circuit

1 1

2221

27

1 2 4 23
+ −

+−

+

+
++

+

++

+ + +

−

b) With initial chain Γ0.

1 2 4 23 25

21 22

27

. . .

+−

+

+ + +

−

+ +

+
+ +

c) After inserting layer 0

1 2 4 23 27

27

. . .

+

+

+ + +

−

− +

d) After inserting layer 1

1 2 4 23 27 28. . .
++

+ + +

−

e) After inserting layer 2

Figure 4 The complete process of power circuit reduction – inserting layer after layer. For the
meaning of the colors, see Figure 3.

▶ Corollary 26. The following is in DepParaTC0 parametrized by depth(Π):
Input: A power circuit (Π, δΠ) together with markings L, M on Π.
Question: Is ε(L) ≤ ε(M)?

Operations with floating point numbers. In the following, we want to represent a number
r ∈ Z[1/2] using markings in a power circuit. For this, we use a floating point representation.
Observe that for each such r ∈ Z[1/2] \ {0} there exist unique u, e ∈ Z with u odd such that
r = u · 2e.

▶ Definition 27. A power circuit representation of r ∈ Z[1/2] consists of a power circuit
(Π, δΠ) together with a pair of markings (U,E) on Π such that ε(U) is either zero or odd and
r = ε(U) · 2ε(E).

▶ Lemma 28. The following problems are in DepParaTC0 parametrized by depth(Π):
Input: A power circuit representation for r, s ∈ Z[1/2] over a power circuit (Π, δΠ) and

a marking M on Π.
Output A: A power circuit representation of ε(M) ∈ Z[1/2] over a power circuit (Π̃, δΠ̃).
Output B: A power circuit representation of r · 2ε(M) over a power circuit (Π̃, δΠ̃).
Output C: A power circuit representation of −r over (Π, δΠ).
Output D: If r

s
is a power of two, a marking L in a power circuit (Π̃, δΠ̃) such that ε(L) =

log(r
s
) (otherwise the output is undefined).

Output E: A power circuit representation of r + s over a power circuit (Π̃, δΠ̃).
Output F: Is r ∈ Z? If yes, a marking L in a power circuit (Π̃, δΠ̃) such that ε(L) = r.
Question G: Is r △ 0 for △ ∈ {=, ̸=, <, ≤, >, ≥}?

In all cases we have (Π, δΠ) ≤ (Π̃, δΠ̃), |Π̃| ∈ O(|Π|), and depth(Π̃) = depth(Π) + O(1).

Proof sketch. We only outline the proof for the first point, which is the most difficult one.
The other points follow rather easily using Corollary 26 and Lemma 15. Given a marking M ,
we wish to compute markings U,E such that ε(M) = ε(U) · 2ε(E) and ε(U) is zero or odd.

MFCS 2021

74:12 Parallel Algorithms for the Baumslag Group

First, we construct the reduced form (Γ, δ) of Π to obtain a compact marking M̃ on
Γ such that ε(M) = ε(M̃) =

∑k
i=1 M̃(Qi) · 2ε(ΛQi

) where σ(M̃) = {Q1, . . . , Qk} ⊆ Γ and
the Qi are ordered according to their value. This is possible in DepParaTC0 according to
Theorem 17. It is easy to see that |σ(M̃)| ≤ |σ(M)|.

Our aim is ε(E) = ε(ΛQ1) and ε(U) =
∑k

i=1 M̃(Qi) · 2ε(ΛQi
)−ε(E). For this, we add nodes

Si to Π with ε(ΛSi) = ε(ΛQi)−ε(E) for i ∈ [1 .. k] as follows: Looking closely at the reduction
process, we can find nodes Ri ∈ Π and integers mi ∈ [0 .. |Γ|] such that ε(ΛQi

) = ε(ΛRi
) +mi.

To define markings Mi that evaluate to mi, we construct nodes of depth 1 and values 2j for
j ∈ [0 .. ⌊log(|Γ|)⌋] in Π. Then ΛSi

= ΛRi
+Mi − E. So U(Si) = M̃(Qi) for i ∈ [1 .. k] and

E = ΛR1 +M1 satisfies ε(M) = ε(U) · 2ε(E). ◀

5 The word problem of the Baumslag group

Before we start solving the word problem of the Baumslag group, let us fix our notation
from group theory. Let G be a group and η : Σ∗ → G a surjective monoid homomorphism.
We treat words over Σ both as words and as their images under η. We write v =G w with
the meaning that η(v) = η(w). The word problem of G is as follows: given a word w ∈ Σ∗,
is w =G 1? For further background on group theory, we refer to [25].

The Baumslag-Solitar group and the Baumslag group. The Baumslag-Solitar group is
defined by BS1,2 =

〈
a, t | tat−1 = a2〉

. We have BS1,2 ∼= Z[1/2] ⋊ Z via the isomorphism
a 7→ (1, 0) and t 7→ (0, 1). The multiplication in Z[1/2] ⋊ Z isdefined by (r,m) · (s, n) =
(r + 2ms,m+ n). In the following we use BS1,2 and Z[1/2] ⋊ Z as synonyms.

A convenient way to understand the Baumslag group G1,2 is as an HNN extension2 of
the Baumslag-Solitar group:

G1,2 =
〈
BS1,2, b | bab−1 = t

〉
=

〈
a, t, b | tat−1 = a2, bab−1 = t

〉
.

Note that the letter t can be seen as an abbreviation for bab−1; by removing it, we obtain
exactly the presentation

〈
a, b | bab−1a = a2bab−1〉

. Moreover, BS1,2 is a subgroup of G1,2
via the canonical embedding. We have b(q, 0)b−1 = (0, q), so a conjugation by b “flips” the
two components of the semi-direct product (if possible). Henceforth, we will use the alphabet
Σ = {1, a, a−1, t, t−1, b, b−1} to represent elements of G1,2 (the letter 1 represents the group
identity; it is there for padding reasons).

Britton reductions. Britton reductions are a standard way to solve the word problem in
HNN extensions. Let ∆ = BS1,2 ∪

{
b, b−1}

be an infinite alphabet (note that Σ ⊆ ∆). A
word w ∈ ∆∗ is called Britton-reduced if it is of the form w = (s0, n0)β1(s1, n1) · · ·βℓ(sℓ, nℓ)
with βi ∈

{
b, b−1}

and (si, ni) ∈ BS1,2 for all i (i.e., w does not have two successive letters
from BS1,2) and there is no factor of the form b(q, 0)b−1 or b−1(0, k)b with q, k ∈ Z. If
w is not Britton-reduced, one can apply one of the rules (r,m)(s, n) → (r + 2ms,m + n),
b(q, 0)b−1 → (0, q), or b−1(0, k)b → (k, 0) in order to obtain a shorter word representing the
same group element. The following lemma is well-known (see also [25, Section IV.2]).

▶ Lemma 29 (Britton’s Lemma for G1,2 [6]). Let w ∈ ∆∗ be Britton-reduced. Then w ∈ BS1,2
as a group element if and only if w does not contain any letter b or b−1. In particular,
w =G1,2 1 if and only if w = (0, 0) or w = 1 as a word.

2 Named after Graham Higman, Bernhard H. Neumann and Hanna Neumann. For a precise definition,
we refer to [25]. This is also the way how the Magnus breakdown procedure works.

C. Mattes and A. Weiß 74:13

▶ Example 30. Define words w0 = t and wn+1 = bwn aw
−1
n b−1 for n ≥ 0. Then we have

|wn| = 2n+2 − 3 but wn =G1,2 t
τ(n). While the length of the word wn is only exponential in

n, the length of its Britton-reduced form is τ(n).

Conditions for Britton reductions. The idea to obtain a parallel algorithm for the word
problem is to compute a Britton reduction of uv given that both u and v are Britton-reduced.
For this, we have to find a maximal suffix of u which cancels with a prefix of v. The following
lemma is our main tool for finding the longest canceling suffix.

▶ Lemma 31. Let w = β1(r,m)β2 xβ
−1
2 (s, n)β−1

1 ∈ ∆∗ with β1, β2 ∈
{
b, b−1}

such that
β1(r,m)β2 and β−1

2 (s, n)β−1
1 both are Britton-reduced and β2xβ

−1
2 =G1,2 (q, k) ∈ BS1,2 (in

particular, k = 0 and q ∈ Z, or q = 0).
Then w ∈ BS1,2 if and only if the respective condition in the following table is satisfied.

Moreover, if w ∈ BS1,2, then w =G1,2 ŵ according to the last column of the table.

β1 β2 Condition ŵ

b b r + 2m+ks ∈ Z, m + n + k = 0
(
0, r + 2−ns

)
b b−1 r + 2m(q + s) ∈ Z, m + n = 0 (0, r + 2m(q + s))

b−1 b r + 2m+ks = 0
(
n + log(−r

s
), 0

)
b−1 b−1 r + 2m(q + s) = 0 (m + n, 0)

Notice that in the case β1 = b−1 and β2 = b, we have r ̸= 0 and s ̸= 0.

▶ Example 32. Let us illustrate how to read Lemma 31 by giving an example. Let
w = β1(r1,m1)β2 xβ

−1
2 (s1, n1)β−1

1 ∈ ∆∗ with the same properties as in Lemma 31, in
particular, β2 xβ

−1
2 =G1,2 (q, k) ∈ BS1,2. Further assume that β1 = β2 = b. Then, according

to Lemma 31, w ∈ BS1,2 if and only if m1 + n1 = −k and r1 + 2m1+k · s1 ∈ Z. So we need
to compute k.

Assume that (q, k) =G1,2 β2xβ
−1
2 = β2(r2,m2)β3 x

′ β−1
3 (s2, n2)β−1

2 for some r2,m2, s2, n2.
Moreover, consider the case that β3 = b. By applying Lemma 31 again we obtain that
(q, k) = (0, r2 + 2−n2 · s2). Hence, w ∈ BS1,2 if and only if m1 +n1 + (r2 + 2−n2 · s2) = 0 and
r1 + 2m1+r2+2−n2 ·s2 · s1 ∈ Z. If both conditions are satisfied, then w =G1,2 (0, r1 + 2−n1s1).

Proof sketch of Lemma 31. Consider the case that β1 = b and β2 = b: Since β2xβ
−1
2 ∈

BS1,2, we have β2xβ
−1
2 =G1,2 (0, k) for some k ∈ Z. Therefore, we obtain

(r,m)β2 xβ
−1
2 (s, n) =G1,2 (r,m)(0, k)(s, n) =G1,2 (r + 2m+ks, m+ k + n).

Thus, since β1 = b, we have w ∈ BS1,2 if and only if r + 2m+ks ∈ Z and m + n + k = 0.
Moreover, if the latter conditions are satisfied, we have w =G1,2 b(r + 2m+ks, 0)b−1 =
b(r + 2−ns, 0)b−1 =G1,2 (0, r + 2−ns). This shows the first row of the table in Lemma 31.
The other rows follow with a similar calculation. ◀

Let us fix the following notation for elements v, w ∈ G1,2 written as words over ∆:

u = (rh,mh)βh · · · (r1,m1)β1(r0,m0), v = (s0, n0)β̃1(s1, n1) · · · β̃ℓ(sℓ, nℓ) (1)

with (rj ,mj), (sj , nj) ∈ Z[1/2] ⋊ Z and βj , β̃j ∈
{
b, b−1}

. We define

uv[i, j] = βi(ri−1,mi−1) · · ·β1(r0,m0) (s0, n0)β̃1 · · · (sj−1, nj−1)β̃j .

MFCS 2021

74:14 Parallel Algorithms for the Baumslag Group

Notice that as an immediate consequence of Britton’s Lemma we obtain that, if u and v as
in (1) are Britton-reduced and uv[i, i] ∈ BS1,2 for some i, then also uv[j, j] ∈ BS1,2 for all
j ≤ i. Moreover, uv is Britton-reduced if and only if β1(r0,m0)(s0, n0)β̃1 ̸∈ BS1,2.

For ℓ ∈ N let Xℓ denote some set of ℓ variables. Denote by PowExp(Xℓ) the set of
expressions which can be made up from the variables Xℓ using the operations +, −, (r, s) 7→
r · 2s if s ∈ Z (and undefined otherwise), and (r, s) 7→ log(r/s) if log(r/s) ∈ Z (and undefined
otherwise).

▶ Lemma 33. For every β⃗ ∈ {b, b−1,⊥}4 there are expressions θβ⃗ , ξβ⃗ , φβ⃗ , ψβ⃗ ∈ PowExp(X12)
such that the following holds: Let u, v ∈ G1,2 as in (1) be Britton-reduced and assume that
uv[i− 1, i− 1] ∈ BS1,2 and βi = β̃−1

i and let Vi = {rj , sj ,mj , nj | j ∈ {i− 1, i− 2, i− 3}}.
If β⃗ = (βi, βi−1, βi−2, βi−3) (where βj = ⊥ for j ≤ 0), then
1. uv[i, i] ∈ BS1,2 if and only if θβ⃗(Vi) ∈ Z and ξβ⃗(Vi) = 0,

2. if uv[i, i] ∈ BS1,2, then uv[i, i] =G1,2

(
φβ⃗(Vi), ψβ⃗(Vi)

)
.

Be aware that here we have to read the set Vi of cardinality (at most) 12 as assignment
to the variables X12. In particular, given that uv[i − 1, i − 1] ∈ BS1,2, one can decide
whether uv[i, i] ∈ BS1,2 by looking at only constantly many letters of uv – this is the crucial
observation we shall be using for describing an NC algorithm for the word problem of G1,2
(see Lemma 34 below).

Proof. W. l. o. g. i ≥ 4. We follow the approach of Example 32. By assumption we know that
there exist q, k ∈ Z such that uv[i−1, i−1] =G1,2 (q, k) ∈ BS1,2. According to the conditions
in Lemma 31, to show Lemma 33 it suffices to find expressions φβ⃗(Vi), ψβ⃗(Vi) for q and k

respectively. If (βi−1, βi−2) ̸= (b, b−1), this follows directly from the rightmost column in
Lemma 31. Otherwise, we know that (βi−2, βi−3) ̸= (b, b−1) and so we obtain the expressions
for q and k by applying Lemma 31 to uv[i − 2, i − 2] (note that uv[i − 2, i − 2] ∈ BS1,2
because uv[i− 1, i− 1] ∈ BS1,2). This proves the lemma. ◀

The algorithm. A power circuit representation of u ∈ G1,2 written as in (1) consists of
the sequence (βh, . . . , β1) and a power circuit (Π, δΠ) with markings Ui, Ei,Mi for i ∈ [0 .. h]
such that (Ui, Ei) is a power circuit representation of ri (see Definition 27) and mi = ε(Mi).

▶ Lemma 34. The following problem is in DepParaTC0 parametrized by maxi depth(Πi):
Input: Britton-reduced power circuit representations of u, v ∈ G1,2 over power circuits

Π1, Π2.
Output: A Britton-reduced power circuit representation of w ∈ G1,2 over a power circuit

Π′ such that w =G1,2 uv and depth(Π′) = maxi depth(Πi) + O(1) and |Π′| ∈
O(|Π1| + |Π2|).

Proof. Let Π be the disjoint union of Π1 and Π2. We need to find the maximal i such that
uv[i, i] ∈ BS1,2. This can be done as follows: By Lemma 28 one can evaluate the expressions
θβ⃗(Vi) and ξβ⃗(Vi) of Lemma 33 and test the conditions θβ⃗(Vi) ∈ Z and ξβ⃗(Vi) = 0 in
DepParaTC0. For every i this can be done independently in parallel giving us Boolean values
indicating whether uv[i− 1, i− 1] ∈ BS1,2 implies uv[i, i] ∈ BS1,2. Now, we have to find only
the maximal i0 such that for all j ≤ i0 this implication is true. Since uv[0, 0] = 1 ∈ BS1,2,
it follows inductively that uv[i, i] ∈ BS1,2 for all i ≤ i0. Moreover, as the implication
uv[i0, i0] ∈ BS1,2 =⇒ uv[i0 + 1, i0 + 1] ∈ BS1,2 fails, we have uv[j, j] /∈ BS1,2 for j ≥ i0 + 1.

C. Mattes and A. Weiß 74:15

Now, using the expressions φβ⃗ , ψβ⃗ from Lemma 33 one can compute again using Lemma 28
(q, k) = (φβ⃗(Vi0), ψβ⃗(Vi0)) =G1,2 uv[i0, i0] in DepParaTC0. Again using Lemma 28, we can
compute in DepParaTC0 (s,m) = (ri0 ,mi0)(q, k)(si0 , ni0) as a power circuit representation
over a power circuit (Π′, δΠ′) with (Π, δΠ) ≤ (Π′, δΠ′), |Π′| ∈ O(Π) and depth(Π′) ∈
depth(Π) + O(1). Now, the output is

(rh,mh)βh · · · (ri0+1,mi0+1)βi0+1 (s,m) β̃i0+1(si0+1, ni0+1) · · · β̃ℓ(sℓ, nℓ). ◀

Instead of Theorem B, we prove the following slightly more general result. Theorem B
then easily follows by Britton’s Lemma. Recall that Σ = {1, a, a−1, t, t−1, b, b−1}.

▶ Theorem 35. The following problem is in TC2:
Input: A word w ∈ Σ∗.
Output: A power circuit representation for a Britton-reduced word wred ∈ ∆∗ such that

w =G1,2 wred and the underlying power circuit has depth O(log |w|).

Proof sketch. Let w = w1 · · ·wn with wj ∈ Σ be the input. First, we transform each letter
wj into a power circuit representation. Then, the first layer computes the Britton reduction
of two-letter words using Lemma 34, the next layer takes always two of these Britton-reduced
words and joins them to a new Britton-reduced word and so on. After logn layers a single
Britton-reduced word remains. The crucial observation is that, due to Lemma 34, the size of
the power circuits stays polynomial in n and their depth in O(logn). Thus, by Lemma 4
each application of Lemma 34 is in TC1 and the whole computation in TC2. ◀

6 P-hardness of power circuit comparison

Finally, we prove some hardness results on comparison in power circuits. In particular, they
imply that Theorem 17 is optimal in a certain sense. Here, we use LOGSPACE-reductions.

▶ Proposition 36. The following problem is NL-hard:
Input: Given a power circuit and markings M, K.
Question: Is ε(M) = ε(K)?

The proof of Proposition 36 is a straightforward reduction from s-t-connectivity. For
comparison with ≤, we obtain a more interesting hardness result:

▶ Theorem 37. The following problem is P-complete:
Input: A power circuit (Π, δΠ) and nodes R, S ∈ Π such that for all P ∈ Π the marking

ΛP is compact and for all P ̸= Q, ε(P) ̸= ε(Q).
Question: Is ε(R) ≤ ε(S)?

A weaker form of this result already has been stated in the second author’s dissertation [41],
but it never appeared in a refereed journal or conference proceedings. Notice that the only
feature the power circuit in Theorem 37 lacks for being reduced is the sorting of the nodes.
In particular, under the assumption NC ̸= P, it is not possible to sort the nodes of a given
power circuit in NC.
▶ Remark 38.
(a) It is an immediate consequence of Theorem 37 that the comparison problem of two

markings in a power circuit is P-complete. This is because for two nodes R and S in a
power circuit (Π, δΠ) we have ε(R) ≤ ε(S) if and only if ε(ΛR) ≤ ε(ΛS).

MFCS 2021

74:16 Parallel Algorithms for the Baumslag Group

Qgi

Pu Pv

Pgi

Xi

+
+

+
+

+

Figure 5 Power circuit for an Or gate gi.

Pu

Pgi

Rk

Sk

Xi

++

−
+

Figure 6 Power circuit for a Not gate gi

on level k.

(b) If the input is given as in Theorem 37, we can check in AC0 whether ε(R) = ε(S) because
this is the case if and only if ΛR(P) = ΛS(P) for all P ∈ Γ (see Lemma 12). This can
be viewed as a hint that also in an arbitrary power circuit testing for equality might be
easier than comparing for less than.

▶ Corollary 39. The following problem is P-complete:
Input: A power circuit representation of w ∈ G1,2.
Question: Is w ∈ BS1,2?

Proof sketch of Theorem 37. By [31, Proposition 49], we only need to show the hardness
part. We give a reduction from the CircuitValueProblem which is P-complete (see [39,
Thm. 10.44]). We start with a circuit C of size L and depth D consisting of input gates,
Not gates, Or gates (of fan-in two) and one output gate. W. l. o. g. the circuit is layered:
input gates are on level 0, and gates on level k only receive inputs from level k − 1. After
fixing an evaluation eval(x) ∈ {0, 1} for all input gates x, each gate g evaluates to a truth
value eval(g) ∈ {0, 1} in a natural way. The task is to compute eval(output). We construct
a power circuit (Γ, δ) such that for every gate g on level k in C there exists a node Pg in Γ
satisfying

τ(L− 1) < ε(ΛPg
) ≤ τ(2k + L) − 2 if eval(g) = 0,

τ(2k + L) ≤ ε(ΛPg) ≤ τ(2k + L+ 1) − 2 if eval(g) = 1.
(2)

For this, we first create nodes Xk, Rk and Sk such that ε(Xk) = 2k, ε(Rk) = τ(2k + L),
ε(Sk) = τ(2k + L− 1)/2. For an input gate gi we set ε(ΛPgi

) = τ(L− 1) + i if eval(gi) = 0
and ε(ΛPgi

) = τ(L) + i otherwise. For the output gate with incoming edge from gate u, we
define ε(ΛPoutput) = ε(Pu). Figure 5 and 6 illustrate the construction for Or and Not gates.
Now all nodes of Γ have pairwise different evaluations in 2N (this is essentially because we
always add i to the successor marking) and compact successor markings. A rather tedious
but straightforward induction shows Equation (2). Let us consider an Or gate as in Figure 5
as example: if both ε(ΛPu

), ε(ΛPv
) ≤ τ(2(k − 1) + L) − 2, then ε(ΛPg

) ≤ 22ε(ΛPu
)+2ε(ΛPv

)
≤

22·2τ(2(k−1)+L)−2 ≤ τ(2k + L) − 2. On the other hand, if ε(ΛPu
) ≥ τ(2(k − 1) + L), then also

ε(ΛPg) ≥ 22ε(ΛPu
)

≥ τ(2k + L). The other cases of the induction follow similarly.
Thus, we have that ε(Poutput) ≥ ε(RD) if and only if eval(output) = 1. ◀

Conclusion. We showed that the word problem of the Baumslag group can be solved in
TC2. The proof relies on the fact that all power circuits used during the execution of the
algorithm have logarithmic depth. The-23 comparison problem for such power circuits is in
TC1, although for arbitrary power circuits it is P-complete. We conclude with some open
problems:

C. Mattes and A. Weiß 74:17

Is it possible to reduce the complexity of the word problem of the Baumslag group any
further – e.g. to find a LOGSPACE algorithm? Can we prove some non-trivial lower
bounds (the word problem is NC1-hard as G1,2 contains a non-abelian free group [35])?
The problem of comparing two markings on a power circuit for equality is NL-hard – is it
also P-complete like comparison with less than?
Is the word problem of the Baumslag group with power circuit representations as input
P-complete? (By Corollary 39 this holds for the subgroup membership problem for BS1,2
in G1,2. Moreover, as a consequence of Proposition 36, the word problem is NL-hard.)
By Corollary 26 for every k the comparison problem for power circuits of depth logk n is in
TCk. Moreover, the proof of Theorem 37 can be modified to show that the same problem
is hard for ACk under AC0-Turing-reductions. Thus, the question remains whether, indeed,
this problem is complete for TCk under AC0-Turing-reductions.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge

University Press, 2009.
2 Owen Baker. The conjugacy problem for Higman’s group. Internat. J. Algebra Comput.,

30(6):1211–1235, 2020. doi:10.1142/S0218196720500393.
3 G. Baumslag, A. G. Myasnikov, and V. Shpilrain. Open problems in combinatorial group theory.

Second Edition. In Combinatorial and geometric group theory, volume 296 of Contemporary
Mathematics, pages 1–38. American Mathematical Society, 2002.

4 Gilbert Baumslag. A non-cyclic one-relator group all of whose finite quotients are cyclic.
Journal of the Australian Mathematical Society, 10(3-4):497–498, 1969.

5 W. W. Boone. The Word Problem. Ann. of Math., 70(2):207–265, 1959.
6 John L. Britton. The word problem. Ann. of Math., 77:16–32, 1963.
7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. The MIT Press, 3 edition, 2009.
8 Max Dehn. Ueber unendliche diskontinuierliche Gruppen. Math. Ann., 71:116–144, 1911.
9 Volker Diekert, Jürn Laun, and Alexander Ushakov. Efficient algorithms for highly compressed

data: The word problem in Higman’s group is in P. In Proc. 29th International Symposium
on Theoretical Aspects of Computer Science, STACS 2012, Paris, France, volume 14 of
LIPIcs, pages 218–229. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.STACS.2012.218.

10 Volker Diekert, Jürn Laun, and Alexander Ushakov. Efficient algorithms for highly compressed
data: The word problem in Higman’s group is in P. International Journal of Algebra and
Computation, 22(8), 2013. doi:10.1142/S0218196712400085.

11 Volker Diekert, Alexei G. Myasnikov, and Armin Weiß. Conjugacy in Baumslag’s Group,
Generic Case Complexity, and Division in Power Circuits. In Alberto Pardo and Alfredo Viola,
editors, Latin American Theoretical Informatics Symposium, volume 8392 of Lecture Notes in
Computer Science, pages 1–12. Springer, 2014. doi:10.1007/978-3-642-54423-1_1.

12 Volker Diekert, Alexei G. Myasnikov, and Armin Weiß. Conjugacy in Baumslag’s group,
generic case complexity, and division in power circuits. Algorithmica, 74:961–988, 2016.
doi:10.1007/s00453-016-0117-z.

13 Will Dison, Eduard Einstein, and Timothy R. Riley. Ackermannian integer compression
and the word problem for hydra groups. In 41st International Symposium on Mathematical
Foundations of Computer Science, MFCS 2016, August 22-26, 2016 – Kraków, Poland, pages
30:1–30:14, 2016. doi:10.4230/LIPIcs.MFCS.2016.30.

14 Will Dison, Eduard Einstein, and Timothy R. Riley. Taming the hydra: The word problem
and extreme integer compression. Int. J. Algebra Comput., 28(7):1299–1381, 2018. doi:
10.1142/S0218196718500583.

15 S. M. Gersten. Isodiametric and isoperimetric inequalities in group extensions. Preprint, 1991.

MFCS 2021

https://doi.org/10.1142/S0218196720500393
https://doi.org/10.4230/LIPIcs.STACS.2012.218
https://doi.org/10.4230/LIPIcs.STACS.2012.218
https://doi.org/10.1142/S0218196712400085
https://doi.org/10.1007/978-3-642-54423-1_1
https://doi.org/10.1007/s00453-016-0117-z
https://doi.org/10.4230/LIPIcs.MFCS.2016.30
https://doi.org/10.1142/S0218196718500583
https://doi.org/10.1142/S0218196718500583

74:18 Parallel Algorithms for the Baumslag Group

16 Graham Higman. A finitely generated infinite simple group. J. London Math. Soc., 26:61–64,
1951.

17 I. Kapovich, A. G. Miasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity, decision
problems in group theory and random walks. Journal of Algebra, 264:665–694, 2003.

18 Jonathan Kausch. The parallel complexity of certain algorithmic problems in group theory.
Dissertation, Institut für Formale Methoden der Informatik, Universität Stuttgart, 2017.

19 Daniel König and Markus Lohrey. Evaluation of circuits over nilpotent and polycyclic groups.
Algorithmica, 80(5):1459–1492, 2018. doi:10.1007/s00453-017-0343-z.

20 Jürn Laun. Efficient algorithms for highly compressed data: The word problem in gen-
eralized Higman groups is in P. Theory Comput. Syst., 55(4):742–770, 2014. doi:
10.1007/s00224-013-9509-5.

21 J. Lehnert and P. Schweitzer. The co-word problem for the Higman-Thompson group is
context-free. Bull. London Math. Soc., 39:235–241, 2007. doi:10.1112/blms/bdl043.

22 Richard J. Lipton and Yechezkel Zalcstein. Word problems solvable in logspace. J. ACM,
24:522–526, 1977.

23 Markus Lohrey. Decidability and complexity in automatic monoids. International Journal of
Foundations of Computer Science, 16(4):707–722, 2005.

24 Markus Lohrey. The Compressed Word Problem for Groups. Springer Briefs in Mathematics.
Springer, 2014. doi:10.1007/978-1-4939-0748-9.

25 Roger Lyndon and Paul Schupp. Combinatorial Group Theory. Classics in Mathematics.
Springer, 2001. First edition 1977.

26 Wilhelm Magnus. Das Identitätsproblem für Gruppen mit einer definierenden Relation.
Mathematische Annalen, 106:295–307, 1932.

27 Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial Group Theory. Dover,
2004.

28 Caroline Mattes and Armin Weiß. Parallel algorithms for power circuits and the word problem
of the Baumslag group. CoRR, abs/2102.09921, 2021. arXiv:2102.09921.

29 Alexei Miasnikov and Andrey Nikolaev. On parameterized complexity of the word search
problem in the Baumslag-Gersten group. In ISSAC ’20: International Symposium on Symbolic
and Algebraic Computation, Kalamata, Greece, July 20-23, 2020, pages 360–363, 2020. doi:
10.1145/3373207.3404042.

30 Alexei G. Myasnikov, Alexander Ushakov, and Won Dong-Wook. The Word Problem in the
Baumslag group with a non-elementary Dehn function is polynomial time decidable. Journal of
Algebra, 345:324–342, 2011. URL: http://www.sciencedirect.com/science/article/pii/
S0021869311004492.

31 Alexei G. Myasnikov, Alexander Ushakov, and Won Dong-Wook. Power circuits, exponential
algebra, and time complexity. International Journal of Algebra and Computation, 22(6):3–53,
2012.

32 Alexei G. Myasnikov and Sasha Ushakov. Cryptography and groups (CRAG). Software
Library. URL: http://www.stevens.edu/algebraic/downloads.php.

33 P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudy
Mat. Inst. Steklov, pages 1–143, 1955. In Russian.

34 A. N. Platonov. Isoparametric function of the Baumslag-Gersten group. Vestnik Moskov.
Univ. Ser. I Mat. Mekh., 3:12–17, 2004. Russian. Engl. transl. Moscow Univ. Math. Bull. 59
(3) (2004), 12–17.

35 David Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, University of
California, San Diego, 1993.

36 Mark V. Sapir, Jean-Camille Birget, and Eliyahu Rips. Isoperimetric and Isodiametric
Functions of Groups. Ann. Math., 156(2):345–466, 2002.

37 A. L. Semenov. Logical theories of one-place functions on the natural number series. Izv.
Akad. Nauk SSSR Ser. Mat., 47(3):623–658, 1983.

https://doi.org/10.1007/s00453-017-0343-z
https://doi.org/10.1007/s00224-013-9509-5
https://doi.org/10.1007/s00224-013-9509-5
https://doi.org/10.1112/blms/bdl043
https://doi.org/10.1007/978-1-4939-0748-9
http://arxiv.org/abs/2102.09921
https://doi.org/10.1145/3373207.3404042
https://doi.org/10.1145/3373207.3404042
http://www.sciencedirect.com/science/article/pii/ S0021869311004492
http://www.sciencedirect.com/science/article/pii/ S0021869311004492
http://www.stevens.edu/algebraic/downloads.php

C. Mattes and A. Weiß 74:19

38 Hans-Ulrich Simon. Word problems for groups and contextfree recognition. In Proceedings
of Fundamentals of Computation Theory (FCT’79), Berlin/Wendisch-Rietz (GDR), pages
417–422. Akademie-Verlag, 1979.

39 Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing,
1st edition, 1996.

40 Heribert Vollmer. Introduction to Circuit Complexity. Springer, Berlin, 1999.
41 Armin Weiß. On the Complexity of Conjugacy in Amalgamated Products and HNN Extensions.

Dissertation, Institut für Formale Methoden der Informatik, Universität Stuttgart, 2015.
42 Armin Weiß. A logspace solution to the word and conjugacy problem of generalized Baumslag-

Solitar groups. In Algebra and Computer Science, volume 677 of Contemporary Mathematics,
pages 185–212. American Mathematical Society, 2016.

A Details on power circuit reduction

In the following we present more details concerning the reduction process for power circuits.
We give the proofs of the three steps UpdateNodes, ExtendChains, UpdateMarkings
and of Theorem 17. We need the following definition and lemmas. Their proofs can be found
in the full version on arXiv [28].

▶ Lemma 40. Let A be a csdr and let B = (b0, . . . , bn−1) be a csdr of digit-length n such
that bi = n− i mod 2 (i.e., bn−1 = 1 and then B alternates between 0 and 1). Then we have

(i) val(B) =
⌊

2n+1

3

⌋
,

(ii) val(A) ≤ val(B) if and only if the digit-length of A is at most n or val(A) ≤ 0.

▶ Definition 41. Let M be a marking in the reduced power circuit (Γ, δ) and let C =
(Pi, . . . , Pi+ℓ−1) ∈ CΓ and define aj = M(Pi+j) for i ∈ [ℓ]. Then we write digitC(M) =
(a0, . . . , aℓ−1).

▶ Lemma 42. Let (Γ, δ) be a reduced power circuit. Let L and M be compact markings in
Γ such that ε(L) > ε(M) and let 0 ≤ k ≤

⌊
2|C0|+1

3

⌋
. Then ε(L) ≤ ε(M) + k if and only if

ε(M |Γ\C0) = ε(L|Γ\C0) and ε(L|C0) ≤ ε(M |C0) + k.

For the proof of Lemma 19, we define the following equivalence relation ∼ε on Γ∪Min(Ξ):
P ∼ε Q if and only if ε(P) = ε(Q). For P ∈ Γ ∪ Min(Ξ) we write [P]ε for the equivalence
class containing P .

Proof of Lemma 19. Define I ⊆ Min(Ξ) by taking one representative of each ∼ε-class not
containing a node of Γ. Such a set I can be computed in TC0: Clearly, Min(Ξ) can be
computed in TC0. The ∼ε-classes can be computed in AC0 by Proposition 14. Finally, for
defining I one has to pick representatives, which can be done in TC0. Now, we can apply
Lemma 18 to insert I into Γ in TC0. This yields our power circuit (Γ′, δ′). The size bounds
follow now immediately from those in Lemma 18. ◀

Proof of Lemma 20. First assume that |C0| = 1. Then |Γ′| = 1 and µ ≤ 1. If µ = 1, then
just one node has to be created, namely the one of value 2 and we are done. Thus, in
the following we can assume that |C0| ≥ 2. Now, the proof of Lemma 20 consists of two
steps: first, we extend only the chain C0 to some longer (and long enough) chain in order
to make sure that the values of the (compact) successor markings of the nodes we wish to
introduce can be represented within the power circuit; only afterwards we add the new nodes
as described in the lemma.

MFCS 2021

74:20 Parallel Algorithms for the Baumslag Group

Step 1: We first want to extend the chain C0 to the chain C̃0 of minimal length such that
C̃0 is a maximal chain, C0 ⊆ C̃0, and the last node of C̃0 is not already present in Γ′. The
resulting power circuit will be denoted by Γ̃. We define

i0 = min
{
i ∈ [|Γ′|]

∣∣ ε(ΛPi+1) − ε(ΛPi) > 2
}
.

We use the convention that P|Γ′| has value infinity, so i0 indeed exists. Furthermore, we
define

I =
{
i ∈ [0 .. i0]

∣∣ ε(ΛPi+1) − ε(ΛPi) ≥ 2
}
.

Thus, in order to obtain Γ̃, we need to insert a new node between Pi and Pi+1 into Γ′ for
each i ∈ I (resp. one node above Pi0). Since the successor markings of these new nodes might
point to some of the other new nodes, we cannot apply Lemma 18 as a black-box. Instead,
we need to take some more care: the rough idea is that, first, we compute all positions I
where new nodes need to be introduced (I is as defined above), then we compute csdrs for
the respective successor markings, and, finally, we introduce these new nodes all at once
knowing that all nodes where the successor markings point to are also introduced at the same
time. In order to map the positions of nodes in Γ′ to positions of nodes in Γ̃, we introduce a
function λ : [|Γ′|] → N with λ(i) = i+ |I ∩ [0 .. i− 1]| .

Observe that λ(i) = i for i ∈ [|C0|], and λ(i+ 1) = λ(i) + 2 for i ∈ I, and λ(j) = j + |I|
for j ≥ i0 + 1.

For each i ∈ I we introduce a node Qi whose successor marking we will specify later such
that ε(Qi) = 2ε(Pi). We define the new power circuit Γ̃ = (P̃0, . . . , P̃|Γ′|+|I|−1) by

P̃j =
{
Pi if j = λ(i)
Qi if j = λ(i) + 1 and i ∈ I.

Notice that, if j = λ(i) + 1 for some i ∈ I, then j ̸= λ(i) for any i – hence, P̃j is well-defined
in any case.

The nodes P̃0, . . . , P̃λ(i0)+1 will form the chain C̃0 as claimed above. Moreover, we have
Γ′ ⊆ Γ̃ and Γ̃ is sorted increasingly. The successor markings of nodes from Γ′ remain
unchanged (i.e., ΛP̃λ(i)

(P̃λ(j)) = ΛPi
(Pj) for i, j ∈ [|Γ′|] and ΛP̃λ(i)

(Qj) = 0 for j ∈ I).
For every i ∈ I we define the successor marking of the node Qi by

digitC̃0
(ΛQi

) = CR (ε(ΛPi
) + 1) and ΛQi

|Γ̃\C̃0
= 0.

Be aware that, since Qi ∈ C̃0, also the successor marking of Qi (of value ε(ΛPi) + 1) can be
represented using only the nodes from C̃0 (see Remark 9), so this is, indeed, a meaningful
definition (be aware that to represent ε(ΛPi) + 1, we might need some of the additional nodes
Qi, but never a node that is not part of the chain C̃0). Clearly, this yields ε(ΛQi

) = ε(ΛPi
)+1

as desired.
We obtain a reduced power circuit (Γ̃, δ̃) with (Γ′, δ′) ≤ (Γ̃, δ̃) where the map δ̃ : Γ̃ →

{−1, 0, 1} is defined by the successor markings. Moreover, C̃0 ⊆ Γ̃ has the required properties.
It remains to show that Γ̃ can be computed in TC0: As |C0| ≥ 2, according to Pro-

position 14, we are able to decide in AC0 whether the markings ΛPi
and ΛPi+1 differ by

1, 2, or more than 2 – for all i ∈ [|Γ′|] in parallel. Now, i0 can be determined in TC0 via
its definition as above. Likewise I and the function λ can be computed in TC0. Using
Theorem 11, CR (ε(ΛPi) + 1) for i ∈ I can be computed in AC0 (since |C̃0| ≤ 2 · |Γ′|) showing
that altogether Γ̃ can be computed in TC0.

C. Mattes and A. Weiß 74:21

Step 2: The second step is to add nodes above each chain of Γ̃ as required in the Lemma.
The outcome will be denoted by (Γ′′, δ′′). We start by defining

di = min{ε(ΛP̃i+1
) − ε(ΛP̃i

) − 1, µ} for i ∈ [|Γ̃|] \
{

|C̃0| − 1
}

and

di = min{ε(ΛP̃i+1
) − ε(ΛP̃i

) − 1, µ− 1} for i = |C̃0| − 1.

In order to obtain (Γ′′, δ′′) from (Γ̃, δ̃), for every i ∈ [|Γ̃|] and every h ∈ [1 .. di] we have to
insert a node R(i,h) such that ε(ΛR(i,h)) = ε(ΛP̃i

) + h. Observe that the numbers di can be
computed in TC0: since

µ+ 1 ≤
⌊

2|C0|+1

3

⌋
+ 1 ≤

⌊
2|C̃0|

3

⌋
+ 1 ≤

⌊
2|C̃0|+1

3

⌋
,

by Proposition 14, we can check in AC0 whether ε(ΛP̃i+1
) ≤ ε(ΛP̃i

) + k with k ≤ µ+ 1. If
i = |C̃0| − 1 we choose k = µ, otherwise k = µ + 1. If the respective inequality holds, we
obtain by Lemma 42 that ε(ΛP̃i+1

) − ε(ΛP̃i
) − 1 = ε(ΛP̃i+1

|C̃0
) − ε(ΛP̃i

|C̃0
) − 1. For the latter

we have signed-digit representations of digit-length at most |C̃0|. Hence, this difference can
be computed in TC0.

Since P̃|C̃0|−1 ̸∈ Γ′ and in Step 1 we have not introduced any vertex above P̃|C̃0|−1, we
know that P̃|C̃0|−1 is not marked by ΛP̃ for any P̃ ∈ Γ̃. Therefore, for all i ∈ [|Γ̃|] we have
ε(ΛP̃i

|C̃0
) + µ ≤

⌊
2|C̃0|

3

⌋
+

⌊
2|C0|+1

3

⌋
≤ 2

⌊
2|C̃0|

3

⌋
and, hence, by Lemma 40, ε(ΛP̃i

|C̃0
) + h can

be represented as a compact marking using only nodes from C̃0 for every h ∈ [1 .. di]. Thus,
for every di ̸= 0 and every h ∈ [1 .. di] we define a successor marking of R(i,h) by

digitC̃0
(ΛR(i,h)) = CR(ε(ΛP̃i

|C̃0
) + h) and ΛR(i,h) |Γ̃\C̃0

= ΛP̃i
|Γ̃\C̃0

.

Again, we know that |C̃0| ≤ 2 |Γ′|. With Theorem 11 we are able to calculate CR(ε(ΛP̃i
|C̃0

)+h)
in AC0.

Now we set I =
{
R(i,h)

∣∣ di ̸= 0, h ∈ [1 .. di]
}

. According to Lemma 18 we are able to
construct in TC0 a reduced power circuit (Γ′′, δ′′) such that (Γ̃, δ̃) ≤ (Γ′′, δ′′) and such that
for each R ∈ I there exists a node Q ∈ Γ′′ with ε(Q) = ε(R).

Considering the size of Γ′′, observe that during the whole construction, for every node
Pi ∈ Γ′ we create at most µ new nodes between Pi and Pi+1. Moreover, we only create new
nodes between Pi and Pi+1 if Pi is the last node of a maximal chain of Γ′. Furthermore,
notice that the only node of Γ′ above which we have introduced new nodes in both Step 1
and Step 2 is the second largest node of C̃0: in Step 1 we have created one new node and in
Step 2 we have created at most µ− 1 new nodes above it. Thus, for every chain of Γ′ we
have introduced at most µ new nodes. Thus, |Γ′′| ≤ |Γ′| + |CΓ′ | · µ. Finally, the new nodes
we create only prolongate the already existing chains, so we do not create any new chains.
This finishes the proof of the lemma. ◀

Proof of Lemma 21. Consider again the equivalence relation ∼ε as defined above on Γ′′ ∪
Min(Ξ). For the equivalence class of a node P ∈ Γ′′ ∪ Min(Ξ) we write [P]ε. We will define
the marking M̃ on Γ′′ by defining it on each maximal chain. Recall that we can view M as a
marking on Γ′′ ∪ Ξ by defining M(P) = 0 if P ̸∈ Γ ∪ Ξ.

Let C = (Pi, . . . , Pi+h−1) ∈ CΓ′′ be a maximal chain of length h and let

S =
⋃

P ∈C

[P]ε =
⋃

P ∈C

{Q ∈ Γ′′ ∪ Min(Ξ) | ε(Q) = ε(P)} ⊆ Γ′′ ∪ Min(Ξ).

MFCS 2021

74:22 Parallel Algorithms for the Baumslag Group

We wish to find a compact marking M̃C with support contained in C ⊆ Γ′′ and evaluation
ε(M̃C) = ε(M |S). First define the integer

ZM,C =
h−1∑
r=0

 ∑
Q∈[Pi+r]ε

M(Q)

 2r.

Then we have

ZM,C · ε(start(C)) =
h−1∑
r=0

∑
Q∈[Pi+r]ε

M(Q)2r · ε(start(C))

=
∑
Q∈S

M(Q)ε(Q) = ε(M |S).

Thus, defining M̃C by digitC(M̃C) = CR(ZM,C) gives our desired marking.
However, be aware that, for this, we have to show that the digit-length of CR(ZM,C)

is at most |C| = h. Let k be maximal such that Pi+k ∈ Γ′. Then, in particular, no node
in S with higher evaluation than Pi+k is marked by M . Moreover, by the properties of
ExtendChains(⌈log(|Min(Ξ)|)⌉ + 1), we have h− 1 − k ≥ ⌈log(|Min(Ξ)|)⌉ + 1. Therefore,

ZM,C ≤ val(digitC(M)) + |Min(Ξ)| · 2k

≤ 1
3 · 2k+2 + 2k+log(|Min(Ξ)|) (by Lemma 40)

≤ 4
3 ·

(
2k + 2k+log(|Min(Ξ)|)

)
≤ 2

3 · 2k+⌈log(|Min(Ξ)|)⌉+2.

Thus, by Lemma 40, the digit-length of CR(ZM,C) is at most k + ⌈log(|Min(Ξ)|)⌉ + 2 ≤ h.
As an easy consequence of Proposition 14, the maximal chains can be determined in TC0.
Now, for every maximal chain C the (binary) number ZM,C can be computed in TC0 using
iterated addition and made be compact in AC0 using Theorem 11. Thus, the marking M̃C

can be computed in TC0. The marking M̃ as desired in the lemma is simply defined by
M̃ |Ξ\Min(Ξ) = M |Ξ\Min(Ξ) and M̃ |C = M̃C |C for C ∈ CΓ′′ – all the markings M̃C can be
computed in parallel. ◀

Proof of Theorem 17. Now we are ready to describe the full reduction process based on the
three steps described above. We aim for a DepParaTC0 circuit where the input is parametrized
by the depth of the power circuit. The input is some arbitrary power circuit (Π, δΠ) together
with a marking M on Π. We start with some initial reduced power circuit (Γ0, δ0) and some
non-reduced part Ξ0 = Π and successively apply the three steps to obtain power circuits
(Γi ∪ Ξi, δi) and markings Mi for i = 0, 1 . . . while keeping the following invariants:

(Γi, δi|Γi×Γi) ≤ (Γi ∪ Ξi, δi) (i.e., there are no edges from Γi to Ξi),
Γi is reduced,
Γi−1 ≤ Γi and Ξi ⊆ Ξi−1,
ε(Mi) = ε(M).

Moreover, as long as Ξi−1 ̸= ∅ we assure that depth(Ξi) < depth(Ξi−1).
We first construct the initial reduced power circuit (Γ0, δ̃0) which consists exactly of a

chain of length ℓ = ⌈log(|Π|)⌉ + 1. This can be done as follows: Let Γ0 = (P0, . . . , Pℓ−1) = C0
and define successor markings by digitC0(ΛPi) = CR(i) for i ∈ [ℓ]. This defines δ̃0. Now
we set Ξ0 = Π and we define δ0 : (Γ0 ∪ Ξ0) × (Γ0 ∪ Ξ0) → {−1, 0, 1} by δ0|Γ0×Γ0 = δ̃0,

C. Mattes and A. Weiß 74:23

δ0|Ξ0×Ξ0 = δΠ and δ = 0 otherwise. We extend the marking M to Γ0 by setting M(P) = 0
for all P ∈ Γ0. So we obtain a power circuit of the form (Γ0 ∪ Ξ0, δ0) with the properties
described above.

Now let the power circuit (Γi ∪ Ξi, δi) together with the marking Mi be the input for the
i+ 1-th iteration meeting the above described invariants. We write δ̃i = δi|Γi×Γi . Now we
apply the three steps from above:
1. Using UpdateNodes (Lemma 19) we compute a reduced power circuit (Γ′

i, δ
′
i) with

(Γi, δ̃i) ≤ (Γ′
i, δ

′
i) such that for every P ∈ Min(Ξi) there is some Q ∈ Γ′

i with ε(Q) = ε(P).
2. Using ExtendChains (Lemma 20) with µ = ⌈log(|Min(Ξi)|)⌉+1 we extend each maximal

chain in (Γ′
i, δ

′
i) by at most ⌈log(|Min(Ξi)|)⌉+1 nodes. Notice that ⌈log(|Min(Ξi)|)⌉+1 ≤

⌈log(|Π|)⌉ + 1 and so, as Γ0 ≤ Γ′
i, the condition µ ≤

⌊
2|C0(Γ′

i
)|+1

3

⌋
in Lemma 20 is satisfied.

The result of this step is denoted by (Γ′′
i , δ

′′
i).

3. We apply UpdateMarkings (Lemma 21) to obtain markings M̃ i and Λ̃P for P ∈
Ξi \ Min(Ξi) on Γ′′

i ∪ (Ξi \ Min(Ξi)) such that ε(M̃ i) = ε(Mi) and ε(Λ̃P) = ε(ΛP).
Observe that these markings restricted to Γ′′

i are compact.
4. Each iteration ends by setting Γi+1 = Γ′′

i and Ξi+1 = Ξi \ Min(Ξi) and Mi+1 = M̃ i.
Finally, δi+1 is defined as δ′′

i on Γi+1 and via the successor markings Λ̃P for P ∈ Ξi+1.

After exactly depth(Π) + 1 iterations we reach Ξd+1 = Ξd \ Min(Ξd) = ∅ where d =
depth(Π). In this case we do not change the resulting power circuit any further. It is clear
from Lemma 19, Lemma 20 and Lemma 21 that throughout the above-mentioned invariants
are maintained. Thus, (Γ, δ) = (Γd+1, δd+1) is a reduced power circuit and for every node
P ∈ Π there exists a node Q ∈ Γd+1 such that ε(Q) = ε(P) and Md+1 is a compact marking
on Γd+1 with ε(Md+1) = ε(M).

▷ Claim 43 (see Claim 22). Let d = depth(Π) and Γ0, . . . ,Γd+1 be as constructed above.
Then for all i we have |CΓi | ≤ |Π| + 1 and |Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2).

Proof. According to Lemma 19 and Lemma 20 we have
∣∣CΓi+1

∣∣ ≤ |CΓi
| + |Min(Ξi)|. Further

observe that Π is the disjoint union of the Min(Ξj) for j ∈ [0 .. d]. Since |CΓ0 | = 1, we obtain
for all i ∈ [0 .. d] that∣∣CΓi+1

∣∣ ≤ |CΓi
| + |Min(Ξi)| ≤ 1 +

∑
0≤j≤i

|Min(Ξj)| ≤ |Π| + 1. (3)

Again by Lemma 19 and Lemma 20 we have

|Γi+1| ≤ |Γ′
i| +

∣∣CΓ′
i

∣∣ · (⌈log(|Min(Ξi)|)⌉ + 1) (by Lemma 20)

≤ |Γi| + |Min(Ξi)| + (|CΓi
| + |Min(Ξi)|) · (⌈log(|Min(Ξi)|)⌉ + 1) (by Lemma 19)

≤ |Γi| + |Min(Ξi)| + (|Π| + 1) · (⌈log(|Π|)⌉ + 1) . (by (3))

Since |Γ0| = ⌈log(|Π|)⌉ + 1, we obtain by induction that

|Γi| ≤ |Γ0| +
∑

0≤j≤i−1
|Min(Ξj)| + i · (|Π| + 1) · (log(|Π|) + 2)

≤ (⌈log(|Π|)⌉ + 1) + |Π| + i · (|Π| + 1) · (log(|Π|) + 2)
≤ (i+ 1) · (|Π| + 1) · (log(|Π|) + 2)

for all i ∈ [1 .. d+ 1]. The last inequality is due to the fact that |Π|+1 ≥ 2 and log(|Π|)+2 ≥ 2.
Since d+ 1 ≤ |Π|, we obtain |Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2). ◁

MFCS 2021

74:24 Parallel Algorithms for the Baumslag Group

Let D ∈ N and assume that depth(Π) ≤ D. By Lemma 19, Lemma 20 and Lemma 21
each iteration of the three steps above can be done in TC0. Notice here that the construction
of the markings M̃ i and Λ̃P during UpdateMarkings can be done in parallel – so it is in
TC0, although Lemma 21 is stated only for a single marking. Now, the crucial observation is
that, due to Claim 43, the input size for each iteration is polynomial in the original input
size of (Π, δΠ). Therefore, we can compose the individual iterations and obtain a circuit of
polynomial size and depth bounded by O(D). Thus, we have described a DepParaTC0 circuit
(parametrized by depth(Π)) for the problem of computing a reduced form for (Π, δΠ). This
completes the proof of Theorem 17. ◀

	1 Introduction
	2 Notation and preliminaries
	3 Compact signed-digit representations
	4 Operations on power circuits
	5 The word problem of the Baumslag group
	6 P-hardness of power circuit comparison
	A Details on power circuit reduction

