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Abstract
A function f is said to be idempotent if f(f(x)) = f(x) holds whenever f(x) is defined. This paper
presents a computation model for idempotent functions, called an idempotent Turing machine. The
computation model is necessarily and sufficiently expressive in the sense that not only does it always
compute an idempotent function but also every idempotent computable function can be computed
by an idempotent Turing machine. Furthermore, a few typical properties of the computation model
such as robustness and universality are shown. Our computation model is expected to be a basis
of special-purpose (or domain-specific) programming languages in which only but all idempotent
computable functions can be defined.
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1 Introduction

A function f whose domain and codomain are equal is said to be idempotent if f(f(x)) = f(x)
holds whenever f(x) is defined. The idempotence of functions plays an essential role in a wide
area of computer science. For example, some program optimization and parallelization do
work only when core functions are idempotent; bidirectional transformation is well-behaved
only when backward (putback) functions must be idempotent [4,5,15]. Moreover, a string
sanitizer that removes or escapes potentially dangerous characters to prevent cross-site
scripting attacks must be idempotent. Non-idempotent sanitizers are known to make the
server vulnerable against double encoding attacks [16]. In such situations, we need to decide
if a given function is idempotent or not. However, the idempotence of computable functions
is undecidable in general.

To solve the problem, we may design a domain-specific language so that every function
defined in the language either is always idempotent as far as it follows the syntax of the
language or can be statically verified to be idempotent. Hooimeijer et al. [8] developed
the BEK language for describing string sanitizers, which can be checked to perform their
appropriate behaviour including idempotence. In this linguistic approach, programmers can
define only idempotent functions. However, the restriction may be too strong to exclude
idempotent functions that they want to define.

This paper gives a solution to this problem by a computation model, called an idempotent
Turing machine, which exactly characterizes all idempotent computable functions. More
specifically, the computation model is expressive enough for idempotent functions in the
sense that every idempotent Turing machine computes an idempotent function and every
idempotent computable function can be computed by an idempotent Turing machine. Because
of the latter statement, we can claim that a language is sufficiently expressive for idempotent
functions if it is capable of simulating any other idempotent Turing machines.
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79:2 Idempotent Turing Machines

The present work follows along the lines of prior work of Axelsen and Glück [2] on
reversible Turing machines, which are (locally) forward and backward deterministic Turing
machines. They have shown that a reversible Turing machine is expressive enough for
computing injective functions under function semantics under which the meaning of a Turing
machine is specified by a function whose input and output correspond to strings on the tape
at the initial and final configuration, respectively. We will adopt the function semantics to
show the expressiveness of idempotent Turing machines in the present paper. In addition,
two more desirable properties of idempotent Turing machines are shown under the function
semantics, which have been shown for reversible Turing machines by Axelsen and Glück: the
robustness under tape reduction and the existence of a universal machine. The author [14]
has also followed along this line to introduce involutory Turing machines as a computation
model for involution which is its own inverse.

Our contribution of the present paper is summarized as follows:
An idempotent Turing machine is proposed as a particular form of a multitape Turing
machine. Every idempotent Turing machine computes an idempotent function.
An idempotent Turing machine is shown to be expressive enough to specify idempotent
functions, i.e., every idempotent function is computed by an idempotent Turing machine.
An idempotent Turing machine is shown to be robust under tape reduction, i.e., every
multitape idempotent Turing machine can be simulated by a single-tape Turing machine.
A universal idempotent Turing machine is shown to exist in terms of an appropriate
redefinition of universality [2] i.e., there is an idempotent Turing machine which simulates
any other idempotent Turing machine from the description of that machine.

After all of the above are presented, this paper concludes with the related work and a
discussion on future work. Some proofs are provided in Appendix A.

2 Preliminaries

An alphabet is a finite set of symbols. The set of all strings over an alphabet Σ is denoted by
Σ∗. For convenience, we regard a nested tuple of strings as a flattened one, e.g., ((w1, w2), w3)
and (w1, (w2, w3)) may be identified with (w1, w2, w3) for w1, w2, w3 ∈ Σ∗.

For a (binary) relation R ⊆ A × B, a R b stands for (a, b) ∈ R. The identity relation
IdA ⊆ A×A is {(a, a) | a ∈ A}. The composition of two relations R ⊆ A×B and S ⊆ B×C,
denoted by S ◦ R, is given as {(a, c) | ∃b ∈ B, a R b ∧ b S c}. For a relation R ⊆ A × B
over two sets A and B, the inverse relation R−1 ⊆ B × A is defined by {(b, a) | a R b}. A
relation R ⊆ A×A is said to be symmetric if R−1 = R. A relation R ⊆ A×B is said to be
functional if a R b1 and a R b2 imply b1 = b2 for any a ∈ A and b1, b2 ∈ B. A functional
relation R ⊆ A× B, written by R : A→ B, is simply called a (partial) function and R(a)
with a ∈ A stands for b ∈ B such that a R b if exists. We may write a 7→ b for an element
(a, b) in a functional relation. A function R : A→ B is said to be total if R(a) ∈ B is defined
for any a ∈ A. A function R : A → B is said to be injective if R−1 is functional. For any
injective function R : A→ B it is easy to see that R−1 ◦R ⊆ IdA and R ◦R−1 ⊆ IdB hold.
A function R : A→ A is called idempotent if R ◦R = R holds.

3 Turing Machines

The notion of Turing machines is one of the best-known computation model which can
implement any computable functions. Many variants of Turing machines have been proposed
in the literature in which a single tape or multiple tapes are used, tapes are one-ended or
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doubly-infinite, and a head peeks only single cell or multiple adjacent cells. Since they are
known to be equi-expressive [17], we basically follow the definition given by Axelsen and
Glück [2]. In this section, we define a Turing machine and show its basic properties. We also
present a reversible Turing machine, which plays an important role for our main results.

3.1 Syntax and Semantics of Turing machines
A Turing machine manipulates symbols on a doubly-infinite tape of cells according to an
internal state and a fixed transition relation.

▶ Definition 1 (k-tape Turing machine). A k-tape Turing machine T is a tuple
(Q,Σ, qini, qfin,∆) where Q is a finite set of states, Σ is a tape alphabet not containing
the special blank symbol ⊔, qini ∈ Q is the initial state, qfin ∈ Q is the final state, and
∆ = ∆sym ⊎∆↔ is a ternary relation defining a set of transition rules where

∆sym ⊆ (Q \ {qfin}) × (Σ⊔ × Σ⊔)k × (Q \ {qini})
∆↔ ⊆ (Q \ {qfin}) × {�, ♦,�}k × (Q \ {qini})

in which Σ⊔ stands for Σ⊎{⊔}. A symbol rule in ∆sym has the form (q, (s1⇒s′
1, . . . , sk⇒s′

k), q′)
with s1, . . . , sk, s

′
1, . . . , s

′
k ∈ Σ⊔. A move rule in ∆↔ has the form (q, (d1, . . . , dk), q′) with

d1, . . . , dk ∈ {�, ♦,�}. The second component of a transition rule is called an action. In
particular, an action in {(s, s) | s ∈ Σ⊔}k ∪ {♦}k is called a null action.

As presented in [2], transition rules are separated into symbol rules and move rules
for our convenience of further discussion, in particular, about the inversion of Turing
machines. Although these two kinds of actions are caused by a single rule in ordinary Turing
machines [17], the separation of rules does not change the expressiveness of functions. It is
easy to simulate a transition rule in an ordinary Turing machine by two transition rules and
extra states in the present model.

A configuration of a k-tape Turing machine is specified by the current internal state and k
tapes with their tape head. Each configuration can be characterized by ⟨l, s, r⟩ ∈ Σω

⊔
×Σ⊔×Σω

⊔

where s is the symbol at its head position and l and r are the left and right tapes of the head.
Note that Σω

⊔
is a set of infinite strings over Σ⊔ going infinitely to the right. Accordingly l is

“mirrored” where its first symbol is the immediate left one of the head.

▶ Definition 2 (Configuration). A configuration of a k-tape Turing machine T = (Q,Σ, qini, qfin,

∆) is a tuple (q, ⟨l1, s1, r1⟩, . . . , ⟨lk, sk, rk⟩) where q ∈ Q is an internal state, li, ri ∈ Σω
⊔

for
each i = 1, . . . , k are the left and right of the i-th tape head, and si ∈ Σ⊔ for each i = 1, . . . , k
is the symbol at the i-th tape head. The set of all configurations of T is written by CT .

▶ Definition 3 (Configuration step). Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing machine.
Then a single configuration step is defined as a relation ⊢T over CT such that

(q, τ1, . . . , τk) ⊢T (q′, τ ′
1, . . . , τ

′
k)

holds for each transition rule (q, a, q′) ∈ ∆ where
when a = (s1⇒s′

1, . . . , sk⇒s′
k), (τi, τ

′
i) = (⟨l, si, r⟩, ⟨l, s′

i, r⟩) holds with some l, r ∈ Σω
⊔

for
all i = 1, . . . , k;
when a = (d1, . . . , dk) with di ∈ {�, ♦,�},

(τi, τ
′
i) = (⟨s′l, s, r⟩, ⟨l, s′, sr⟩) holds with some l, r ∈ Σω

⊔
and s, s′ ∈ Σ⊔ if di = �

(τi, τ
′
i) = (⟨l, s, r⟩, ⟨l, s, r⟩) holds with some l, r ∈ Σω

⊔
and s, s′ ∈ Σ⊔ if di = ♦

(τi, τ
′
i) = (⟨l, s, s′r⟩, ⟨sl, s′, r⟩) holds with some l, r ∈ Σω

⊔
and s, s′ ∈ Σ⊔ if di = �

for all i = 1, . . . , k.
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The subscript T may be omitted if clear from the context.

The semantics of a k-tape Turing machine T is given by a relation over k strings based
on ⊢∗

T as follows. In the rest of the paper, a finite string w ∈ Σ∗ is used to represent an
infinite string w⊔ω ∈ Σω

⊔
; thereby, ε denotes ⊔ω.

▶ Definition 4 (Semantics of Turing machines). Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing
machine. The semantics of T , denoted by JT K, is given by the relation

JT K = {((w1, . . . , wk), (w′
1, . . . , w

′
k)) ∈ (Σ∗)k × (Σ∗)k

| (qini, ⟨ε,⊔, w1⟩, . . . , ⟨ε,⊔, wk⟩) ⊢∗
T (qfin, ⟨ε,⊔, w′

1⟩, . . . , ⟨ε,⊔, w′
k⟩)}.

Recall that we may write JT K(w1, . . . , wk) = (w′
1, . . . , w

′
k) if JT K is functional.

Following [14], we define the notion of tidiness of Turing machines, which is required
for further discussion in particular, on the concatenation of Turing machines defined later.
Roughly speaking, the tidiness of a Turing machine indicates that the initial configuration is
valid if and only if so is the final one. The validity has been called a standard configuration
in [1, 2].

▶ Definition 5 (Tidiness of Turing machine). A k-tape Turing machine T = (Q,Σ, qini, qfin,∆)
is said to be tidy if for any sequence (qini, ⟨l1, s1, r1⟩, . . . , ⟨lk, sk, rk⟩) ⊢∗

T (qfin, ⟨l′1, s′
1, r

′
1⟩, . . . ,

⟨l′k, s′
k, r

′
k⟩) of computation steps, the following two conditions

(li, si, ri) ∈ {ε} × {⊔} × Σ∗ for each i = 1, . . . , k
(l′i, s′

i, r
′
i) ∈ {ε} × {⊔} × Σ∗ for each i = 1, . . . , k

are equivalent.

In the rest of the paper, every k-tape Turing machine is assumed to be tidy. We may call it
the tidiness assumption.

We shall show two examples of Turing machines whose semantics are both idempotent.
As we will see later, due to the form of their transition rules, the second example is an
idempotent Turing machine but the first example is not. The main theorem of the present
paper claims that any non-idempotent Turing machine has an equivalent idempotent Turing
machine whenever its semantics is idempotent, though.

▶ Example 6. The 1-tape Turing machine Tralz = (Q, {0, 1}, qini, qfin,∆) where

Q = {qini, qmove, qralz, qback, qfin}
∆ = {(qini,⊔⇒⊔, qmove), (qmove,�, qralz), (qralz, 0⇒⊔, qmove),

(qralz, 1⇒1, qback), (qralz,⊔⇒⊔, qback), (qback,�, qfin)}

computes the function that removes all leading zeros, i.e., we have JTralzK(0 . . . 0w) = w for
w ∈ {ε} ∪ {1v | v ∈ {0, 1}∗}.

▶ Example 7. The 2-tape Turing machine Tcopy = (Q,Σ, qini, qfin,∆) where

Q = {qini, qmove, qcopy, qdefer, qtrail, qerase, qreturn, qback, qcheck, qfin}
∆ = {(qini, (⊔⇒⊔,⊔⇒⊔), qmove), (qmove, (�,�), qcopy)}∪

{(qcopy, (s1⇒s2, s2⇒s2), qmove) | s1 ∈ Σ⊔, s2 ∈ Σ}∪
{(qcopy, (s⇒s,⊔⇒⊔), qtrail) | s ∈ Σ}∪
{(qcopy, (⊔⇒⊔,⊔⇒⊔), qback), (qtrail, (�,�), qdefer)}∪
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{(qdefer, (s⇒s,⊔⇒⊔), qtrail) | s ∈ Σ}∪
{(qdefer, (⊔⇒⊔,⊔⇒⊔), qreturn), (qreturn, (�,�), qerase)}∪
{(qerase, (s⇒⊔,⊔⇒⊔), qreturn) | s ∈ Σ} ∪ {(qerase, (s⇒s, s⇒s), qback) | s ∈ Σ⊔}∪
{(qcheck, (s⇒s, s⇒s), qback) | s ∈ Σ} ∪ {(qback, (�,�), qcheck), (qcheck, (⊔⇒⊔,⊔⇒⊔), qfin)}

computes the function that copies the second string to the first, i.e., we have JTcopy K(w1, w2) =
(w2, w2) for w1, w2 ∈ Σ∗. The 2-tape Turing machine Tcopy can be straightforwardly gen-
eralized into 2k-tape Turing machine Tcopy(k) so that JTcopy(k)K(w1, . . . , wk, v1, . . . , vk) =
(v1, . . . , vk, v1, . . . , vk) holds for w1, . . . , wk, v1, . . . , vk ∈ Σ∗. In particular, Tcopy(1) = Tcopy .

The second example could be given with fewer states and transition rules by merging qdefer with
qcopy, qtrail with qmove, qerase with qcheck, and qreturn with qback, and removing some redundant
rules. However, the smaller alternative is against the condition to be an idempotent Turing
machine which will be presented in the next section. The Turing machine Tcopy of the
present form will play an important role in the proof of expressiveness of idempotent Turing
machines.

Definition 4 implies that the semantics of a Turing machine returns a tuple that consists of
the same number of strings as a given input. However, when the function either only accepts
or always returns the empty string on some tapes, we may regard it as a function whose input
or output tuple consists of fewer strings following the formalization by Axelsen and Glück [2].
For example, let T be a 3-tape Turing machine over Σ such that JT K(w1, w2, w3) = (w′

1, w
′
2, w

′
3)

implies w2 = w3 = w′
2 = ε. Then we may say that T computes a function f : Σ∗ → Σ∗ × Σ∗

defined by f(w) = (v1, v2) where JT K(w, ε, ε) = (v1, ε, v2) holds. We may simply write
JT K = f by ignoring empty input/output strings.

▶ Definition 8 (Forward/backward determinism). Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing
machine. Then T is forward deterministic if, for any distinct pair (q, a1, q1), (q, a2, q2) ∈ ∆ of
transition rules with the common source state q ∈ Q, their actions a1 and a1 have the form of
(s1,1⇒s′

1,1, . . . , s1,k⇒s′
1,k) and (s2,1⇒s′

2,1, . . . , s2,k⇒s′
2,k), respectively, such that s1,i ≠ s2,i holds

for some i = 1, . . . , k. The Turing machine T is backward deterministic if, for any distinct
pair (q1, a1, q), (q2, a2, q) ∈ ∆ of transition rules with the common target state q ∈ Q, their
actions a1 and a1 have the form of (s1,1⇒s′

1,1, . . . , s1,k⇒s′
1,k) and (s2,1⇒s′

2,1, . . . , s2,k⇒s′
2,k),

respectively, such that s′
1,i ̸= s′

2,i holds for some i = 1, . . . , k.

Example 6 and Example 7 are both forward deterministic but not backward deterministic.
It is easy to see that every configuration step induced by a forward deterministic Turing
machine is functional. In the rest of the paper, we deal with only forward deterministic
Turing machines, and hence their semantics are all functional. We may simply say Turing
machines even for forward deterministic ones.

Turing machines can be concatenated to synthesize a single one which computes the
composition of their semantics.

▶ Definition 9 (Concatenation of Turing machines). Let {Ti = (Qi,Σ, qini,i, qfin,i,∆i)}i=1,...,n

be a family of k-tape Turing machines where Q1, . . . , Qn are disjoint without loss of generality.
Their concatenation, denoted by Tn ◦ · · · ◦ T1, is a k-tape Turing machine T = (Q1 ⊎ · · · ⊎
Qn,Σ, qini,1, qfin,n,∆) where ∆ = ∆1 ⊎ · · · ⊎ ∆n ⊎ {(qfin,i−1, (♦, . . . , ♦︸ ︷︷ ︸

k

), qini,i) | i = 2, . . . , n}.

When Q1, . . . , Qn are not disjoint, every state in either should be renamed before the
concatenation.

MFCS 2021
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▶ Proposition 10 (Semantics of concatenation of Turing machines). For k-tape reversible
Turing machines T1, . . . , Tn, we have JTn ◦ · · · ◦ T1K = JTnK ◦ · · · ◦ JT1K.

Proof. It can be shown straightforwardly with taking notice of the tidiness assumption. ◀

3.2 Reversible Turing Machines
We define a reversible Turing machine, which can be used for the proof of expressiveness of
idempotent Turing machines.

▶ Definition 11 (Reversible Turing machine). A k-tape Turing machine T is reversible if T is
forward and backward deterministic.

▶ Example 12. The 2-tape reversible Turing machine Tdup = ({qini, qmove, qcopy, qback, qcheck,

qfin},Σ, qini, qfin,∆) where

∆ = {(qini, (⊔⇒⊔,⊔⇒⊔), qmove), (qmove, (�,�), qcopy)}∪
{(qcopy, (s⇒s,⊔⇒s), qmove) | s ∈ Σ} ∪ {(qcopy, (⊔⇒⊔,⊔⇒⊔), qback)}∪
{(qcheck, (s⇒s, s⇒s), qback) | s ∈ Σ} ∪ {(qback, (�,�), qcheck), (qcheck, (⊔⇒⊔,⊔⇒⊔), qfin)}

computes the function JTdupK, which satisfies JTdupK(w, ε) = (w,w) for w ∈ Σ∗. The 2-tape
reversible Turing machine Tdup can be straightforwardly generalized into 2k-tape reversible
Turing machine Tdup(k) so that JTdup(k)K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k

) = (w1, . . . , wk, w1, . . . , wk) holds

for w1, . . . , wk ∈ Σ∗. In particular, we have Tdup(1) = Tdup.

Although the Turing machines Tdup and Tcopy are similar in a sense that they both output
pairs of the same string, Tdup differs in that the second component of its input is restricted
to the empty string. Because of this difference, JTdupK is not idempotent while so is JTcopy K.

As seen from the definition, a Turing machine obtained by inverting all transition rules of
a reversible Turing machine is also reversible. Its semantics is naturally the inverse function
of the semantics of the original reversible Turing machine as formally stated below.

▶ Definition 13 (Inversion of reversible Turing machines). Let T = (Q,Σ, qini, qfin,∆) be
a k-tape reversible Turing machine. We define T−1 = (Q,Σ, qfin, qini,∆−1) with ∆−1 =
{(p, a−1, q) | (q, a, p) ∈ ∆} where (a1, . . . , ak)−1 = (a1

−1, . . . , ak
−1), (s⇒s′)−1 = (s′⇒s),

(�)−1 = (�), (♦)−1 = (♦), and (�)−1 = (�).

▶ Proposition 14 (Bennet [3]). Let T = (Q,Σ, qini, qfin,∆) be a k-tape reversible Turing
machine. Then, T−1 forms a k-tape reversible Turing machine such that JT−1K = JT K−1.

In reversible Turing machines, by definition, there is no distinct pair of configurations
that have the same successive configuration. This implies that the semantics of a reversible
Turing machine is always injective.

Axelsen and Glück [2] have shown its converse, i.e., every injective computable function can
be defined by a reversible Turing machine. Their proof is constructive so that an equivalent
reversible Turing machine can be constructed effectively from a given non-reversible Turing
machine whose semantics is injetive.

▶ Theorem 15 (Expressiveness of reversible Turing machines [2]). The reversible Turing
machines can compute exactly all injective computable functions. That is, given a k-tape
Turing machine T such that JT K is injective, there is a k-tape reversible Turing machine T ′

such that JT ′K = JT K.
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4 Idempotent Turing Machines

We introduce an idempotent Turing machine and its properties, expressiveness, robustness,
and universality.

4.1 Definition and Expressiveness
An idempotent Turing machine is defined by imposing a restriction upon the form of transition
rules of a standard Turing machine. Informally, the key of the restriction forces every valid
run to include an internal configuration C such that the sequence of configuration steps
from C to the final configuration can also become a valid run by concatenating its reversed
sequence at the front. Note that in the obtained run, the initial and final tapes contain the
same string. This indicates that JT K(y) = y holds for any x and y such that JT K(x) = y

for the Turing machine T , which concludes that JT K is idempotent. Formally, idempotent
Turing machines are defined as below.

▶ Definition 16 (Idempotent Turing machine). Let T = (Q,Σ, qini, qfin,∆) be a k-tape forward
deterministic Turing machine. Then T is said to be idempotent if there exist a set Q′ ⊂ Q of
states and a total function ψ : Q′ → Q \Q′ that satisfy the following conditions:
(I-1) qini ̸∈ Q′, qfin ∈ Q′, and ψ(qfin) = qini;
(I-2) there is no transition rule (q′, a, q) ∈ ∆ with q′ ∈ Q′ and q ∈ Q \Q′;
(I-3) there is a transition rule (ψ(p′), a−1, ψ(q′)) ∈ ∆ for each (q′, a, p′) ∈ ∆ with p′, q′ ∈ Q′;

and
(I-4) there is a transition rule (ψ(q′), a0, q

′) ∈ ∆ with a null action a0 for each (q, a, q′) ∈ ∆
with q ∈ Q \Q′ and q′ ∈ Q′.

Each state q′ ∈ Q′ is called a rear state and the function ψ is called a rear state map.

Definition 16 implies that every valid sequence of configuration steps of an idempotent
Turing machine can be split into two parts of non-rear and rear states because of the (I-1)
and (I-2) conditions. Moreover, with the (I-3) and (I-4) conditions, we can conclude that
the semantics of an idempotent Turing machine is idempotent.

▶ Theorem 17 (Semantics of idempotent Turing machine). Let T = (Q,Σ, qini, qfin,∆) be a
k-tape idempotent Turing machine. Then JT K is idempotent.

Proof. For simplicity of the proof, only the case of k = 1 is shown. The proof can be
easily generalized to the other cases. Let T = (Q,Σ, qini, qfin,∆) be a 1-tape idempotent
Turing machine with a set Q′ of rear states and a rear state map ψ. It suffices to show
that JT K(v) = v holds for any v = JT K(w) with w ∈ Σ∗. Suppose that v = JT K(w) for some
v, w ∈ Σ∗. Because of the definition of idempotent Turing machines, there must exist a valid
sequence of configuration steps of the form

(qini, ⟨ε,⊔, w⟩) ⊢ (q1, ⟨l1, s1, r1⟩) ⊢ . . . ⊢ (qm, ⟨lm, sm, rm⟩) ⊢
(q′

1, ⟨l′1, s′
1, r

′
1⟩) ⊢ . . . ⊢ (q′

n, ⟨l′n, s′
n, r

′
n⟩) ⊢ (qfin, ⟨ε,⊔, v⟩)

with q1, . . . , qm ∈ Q \Q′ and q′
1, . . . , q

′
n ∈ Q′ from the (I-1) and (I-2) conditions. Because of

the (I-4) condition, there is a transition rule (ψ(q′
1), a0, q

′
1) ∈ ∆ with a null action a0. Then

we have a valid sequence

(qini, ⟨ε,⊔, v⟩) ⊢ (ψ(q′
n), ⟨l′n, s′

n, r
′
n⟩) ⊢ . . . ⊢ (ψ(q′

1), ⟨l′1, s′
1, r

′
1⟩) ⊢

(q′
1, ⟨l′1, s′

1, r
′
1⟩) ⊢ . . . ⊢ (q′

n, ⟨l′n, s′
n, r

′
n⟩) ⊢ (qfin, ⟨ε,⊔, v⟩)

due to the (I-1) and (I-3) conditions, which demonstrates JT K(v) = v. ◀
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The Turing machine Tcopy introduced in Example 7 can be shown to be idempotent
accompanied by a set Q′ of rear states and a rear state map ψ specified by

Q′ = {qfin, qcheck, qback} ψ = {qfin 7→ qini, qcheck 7→ qmove, qback 7→ qcopy}.

The conditions (I-1) and (I-2) obviously hold. The condition (I-3) can be confirmed by the
correspondence of the pairs of transition rules,

(qcheck, (⊔⇒⊔,⊔⇒⊔), qfin) (qini, (⊔⇒⊔,⊔⇒⊔), qmove)
(qback, (�,�), qcheck) (qmove, (�,�), qcopy)
(qcheck, (s⇒s, s⇒s), qback) (qcopy, (s⇒s, s⇒s), qmove)

with s ∈ Σ. The condition (I-4) holds because of the transition rule (qcopy, (⊔⇒⊔,⊔⇒⊔), qback).
The general Turing machine Tcopy(k) can be checked to be idempotent as well.

In contrast, the 1-tape Turing machine Tralz introduced in Example 6 and the smaller
alternative of Tcopy mentioned after Example 7 are not idempotent even though their semantics
is idempotent. As for Tralz , we can check it as follows. In order to satisfy the conditions
(I-1) and (I-3), the qback state cannot be a rear state. Then it is impossible to satisfy the
condition (I-4). In general we can decide whether a given Turing machine is idempotent.

▶ Proposition 18 (Decidability of idempotence of Turing machines). Let T be a k-tape Turing
machine. It is decidable whether T is idempotent.

Proof. The proof depends on the finiteness of the set of states and accordingly the finiteness
of the choice of the set of rear states and the rear state map, which is required to be
idempotent. ◀

The proof above indicates just the existence an extremely naive procedure for the decision
problem. The complexity of the decision procedure is beyond double exponential to the
number of states. We leave for future work a more efficient algorithm.

Note that the decision problem is only to decide if a Turing machine is idempotent but
not to decide if the Turing machine computes an idempotent function. The latter problem
is obviously undecidable. However, we will prove that an equivalent idempotent Turing
machine can be constructed whenever the Turing machine computes an idempotent function.

Idempotent functions are closed under conjugation with injective functions, i.e., for any
idempotent function f and injective function g, the conjugate g−1 ◦ f ◦ g is idempotent. The
following lemma shows that the idempotent Turing machines have a similar property which
will be used to prove the main theorem. The proof of this lemma is given in Appendix A.

▶ Lemma 19 (Closed under conjugation). Let T be a k-tape idempotent Turing machine. For
any k-tape reversible Turing machine Tr, the k-tape reversible Turing machine Tr

−1 ◦ T ◦ Tr

is idempotent.

Now we are ready to prove expressiveness of the idempotent Turing machines which is
one of the main theorems in the present paper.

▶ Theorem 20 (Expressiveness of idempotent Turing machines). The idempotent Turing
machines can compute any idempotent computable function. More specifically, given a k-tape
Turing machine T such that JT K is idempotent, there is a 2k-tape idempotent Turing machine
T ′ such that JT ′K = JT K.
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Proof sketch. Let T be a k-tape Turing machine such that JT K : Σk → Σk is idempotent.
Consider a (partial) function f : Σ2k → Σ2k such that f(w1, . . . , wk, wk+1, . . . , w2k) =
(w1, . . . , wk, JT K(w1, . . . , wk)) holds only if JT K(w1, . . . , wk) is defined and wk+1 = · · · =
w2k = ε holds. Since the function f is injective and computable, we can construct a 2k-tape
reversible Turing machine Tf such that JTf K = f by Theorem 15. Then, define a 2k-tape
Turing machine T ′ = Tf

−1 ◦ Tcopy(k) ◦ Tf where Tcopy(k) is a 2k-tape idempotent Turing
machine introduced in Example 7. The Turing machine T ′ is idempotent due to Lemma 19
and a simple calculation can verify JT ′K = JT K as shown in Appendix A. ◀

4.2 Robustness under Tape Reduction
Single-tape Turing machines are as expressive as multitape Turing machines [17]. This
property is known as one of the robustness of Turing machines. We will see the property
for idempotent Turing machines, i.e., every multitape idempotent Turing machine has an
equivalent single-tape idempotent Turing machine. To this end, we simulate a k-tuple of
strings with a single string by an encoding function enc : (Σ∗)k → (Σ ⊎ {$})∗ using a special
symbol $ not in Σ. The encoding function is defined as

enc(s1,1s1,2 . . . s1,n, . . . , sk,1sk,2 . . . sk,n) = s1,1 . . . sk,1s1,2 . . . sk,2s1,n . . . sk,n

with the maximum length n of the input strings where the symbol $ is filled at the end
of the shorter strings as necessary, e.g., enc(ab, cdef, ghi) = acgbdh$ei$f$. The encoding
function is injective and computable where k is fixed. We will write Σ$ for Σ ⊎ {$} and enc
may be used even for encoded strings, i.e., enc : (Σ∗

$)k → Σ∗
$ .

We first show how to construct a 2-tape idempotent Turing machine equivalent to a
given multitape idempotent Turing machine. This is easily shown by the expressiveness of
idempotent Turing machines.

▶ Theorem 21 (Reduction to 2-tape idempotent Turing machine). Let T be a k-tape idem-
potent Turing machine. Then there exists a 2-tape idempotent Turing machine T ′ that
simulates T , that is, JT K(w1, . . . , wk) = (v1, . . . , vk) if and only if JT ′K(enc(w1, . . . , wk), ε) =
(enc(v1, . . . , vk), ε).

Proof. Let T be a k-tape idempotent Turing machine. Consider a function f : Σ∗
$ →

Σ∗
$ satisfying f(enc(w1, . . . , wk)) = enc(JT K(w1, . . . , wk)) for any w1, . . . , wk ∈ Σ∗ only if

JT K(w1, . . . , wk) is defined. Since f is computable, we have a 1-tape Turing machine that
computes f . Note that f is idempotent because of the idempotence of JT K. Therefore, there
exists a 2-tape idempotent Turing machine that computes f by Theorem 20 with k = 1. ◀

The theorem above is not satisfactory because it still requires at least two tapes to
simulate arbitrary multitape idempotent Turing machines. We need a further idea to show
the robustness under the tape reduction down to a single tape. The idea is similar to that of
the proof for expressiveness. We employ a 1-tape idempotent Turing machine Tblur , which
behaves like Tcopy as shown by the following lemma. Its proof is given in Appendix A.

▶ Lemma 22. There exists a 1-tape idempotent Turing machine Tblur computing the idem-
potent function fblur : Σ∗

$ → Σ∗
$, which satisfies fblur (ε) = ε and fblur (s1s2w) = s1s1fblur (w)

for any s1, s2 ∈ Σ$ and w ∈ Σ∗
$.

Now we are ready to prove the robustness under tape reduction for idempotent Turing
machines. In the proof of the robustness theorem, the idempotent Turing machine Tblur plays
a similar role to Tcopy(k) in the proof of Theorem 20.
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▶ Theorem 23 (Robustness of idempotent Turing machines). Let T = (Q,Σ, qini, qfin,∆)
be a k-tape idempotent Turing machine. Then there exists a 1-tape idempotent Turing
machine T ′ such that JT K(w1, . . . , wk) = (v1, . . . , vk) if and only if JT ′K(enc(w1, . . . , wk)) =
enc(v1, . . . , vk).

Proof sketch. Let T = (Q,Σ, qini, qfin,∆) be a k-tape idempotent Turing machine. Consider a
function f : Σ∗

$ → Σ∗
$ satisfying f(enc(w1, . . . , wk)) = enc(enc(JT K(w1, . . . , wk)), enc(w1, . . . ,

wk)) for any w1, . . . , wn ∈ Σ∗ only if JT K(w1, . . . , wk) is defined. Since the function f is
injective and computable, we can construct a 1-tape Turing machine Tf such that JTf K = f

by Theorem 15. Then, define a 1-tape Turing machine T ′ = Tf
−1 ◦ Tblur ◦ Tf where Tblur is

an idempotent Turing machine given in Lemma 22. The Turing machine T ′ is idempotent
because of Lemma 19 and a simple calculation can verify JT ′K ◦ enc = enc ◦ JT K as shown in
Appendix A. ◀

4.3 Universality
A standard Turing machine is called universal if it is capable of simulating an arbitrary
Turing machine on arbitrary input. A universal Turing machine takes a pair of strings: one
is the description of the given Turing machine T , which is typically provided as the Gödel
number ⌈T ⌉ as a string; another is an input w of T . Then it is expected to return the output
string JT K(w). In essence, a universal Turing machine U must satisfy JUK(⌈T ⌉, x) = JT K(w)
for any Turing machine T and its input string w.

With regard to idempotent Turing machines, there is no universal machines in the sense
above, i.e., no idempotent Turing machine simulate arbitrary idempotent Turing machines.
Since the domain and codomain of idempotent functions must be equal, the universal machine
cannot be idempotent. Therefore, we relax the definition of universality as Axelsen and
Glück have done to introduce the universality of reversible Turing machines [2] where the
universal machine returns not only the expected output string but also the given Turing
machine itself. Under this relaxed definition, the universal machine computes an idempotent
function as far as the given Turing machine is idempotent.

▶ Definition 24 (Universality). A k-tape idempotent Turing machine U is said to be IdTM-
universal if JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) holds for any idempotent Turing machine T and
its input string w.

In the present paper, a universal model of ordinary Turing machines is called a classically
universal Turing machine to distinguish from our IdTM-universal machines.

It is not difficult to show the existence of an IdTM-universal machine because of the
expressiveness of idempotent Turing machines.

▶ Theorem 25. There exists an IdTM-universal idempotent Turing machine.

Proof. Let f be a function satisfying f(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for any idempotent Turing
machine T and its input string w. Note that f is idempotent because f(f(⌈T ⌉, w)) =
f(⌈T ⌉, JT K(w)) = (⌈T ⌉, JT K(JT K(w))) = (⌈T ⌉, JT K(w)) where the last equality comes from
the idempotence of JT K. By Theorem 20, we obtain an idempotent Turing machine U that
computes f . ◀

The theorem above just shows the existence of an universal machine, which is considered
impractical as noticed in the prior work [1, 2, 14] because its proof relies on Theorem 15 (via
Theorem 20), which is the expressive theorem of reversible Turing machine. As mentioned
in [2], the proof of Theorem 15 is based on very inefficient generate-and-test method by
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McCarthy [12]. To avoid this problem, we shall show the construction of an universal
Turing machine without Theorem 15 where we construct a universal idempotent Turing
machine from a classically universal Turing machine. Following the existing work [1,2,14],
we employ Bennett’s trick with Landauer’s trace embedding to construct a special type
of reversible Turing machines that computes the function λx.(x, f(x)) for an arbitrary
computable function f . We present a multitape version of the theorem as below. Its proof is
provided in Appendix A.

▶ Proposition 26 (Bennett’s trick [3]). Let T be a k-tape Turing machine. There exists a
(2k + 1)-tape reversible Turing machine Benk(T ) such that JBenk(T )K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k+1

) =

(w1, . . . , wk, JT K(w1, . . . , wk), ε) for any input w1, . . . , wk of T .

With the Bennett’s trick, we can construct a universal idempotent Turing machine from
a classically universal Turing machine.

▶ Theorem 27 (IdTM-universal Turing machine constructed with Bennett’s trick). Let U
be a (2-tape) classically universal Turing machine, i.e., JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for
any Turing machine T and its input w. Then a 5-tape idempotent Turing machine U ′ =
Ben2(U)−1◦T ′

copy(2)◦Ben2(U) is IdTM-universal where T ′
copy(2) is obtained by adding one extra

tape as the fifth tape to Tcopy(2), i.e., JT ′
copy(2)K(w1, w2, w3, w4, w5) = (w3, w4, w3, w4, w5).

Proof sketch. Let U be a 2-tape classically universal Turing machine such that
JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for any Turing machine T and its input w. Note that the
Turing machine U ′ = Ben2(U)−1 ◦T ′

copy(2) ◦Ben2(U) is idempotent due to the idempotence of
T ′

copy(2) and Lemma 19. In addition, we can show the 5-tape idempotent Turing machine U ′

is IdTM-universal, that is, JU ′K(⌈T ⌉, w, ε, ε, ε) = (⌈T ⌉, JT K(w), ε, ε, ε) holds for any Turing
machine T and its input w as shown in Appendix A. ◀

The author [14] has constructed a universal machine for involutory Turing machines using
Bennett’s trick in a way similar to Theorem 27. The difference is that he uses the Turing
machine permuting some of tapes for the center one of the composition instead of T ′

copy(2).

5 Related work

This work proposes idempotent Turing machines, which can compute exactly all idempotent
computable functions. The present work has followed along the lines of prior work on
special Turing machines for particular classes of computable functions [1,2,14] under function
semantics, in which the meaning of a Turing machine is specified by a function whose
input and output correspond to strings on the tape at the initial and final configuration,
respectively.

Axelsen and Glück [1,2] have investigated several properties of reversible Turing machines
under function semantics. Even though the notion of reversible Turing machines had been
already introduced and studied before the work [3, 11], Axelsen and Glück gave much clearer
semantics to reversible Turing machines to observe what they compute. They showed that
reversible Turing machines can compute exactly all injective computable functions. They
also proved the robustness under tape and symbol reduction: 1-tape 3-symbol reversible
Turing machines can simulate arbitrary multitape reversible Turing machines. Furthermore,
they showed the existence of universal reversible Turing machines under an appropriate
redefinition of universality and gave an efficient construction of a universal machine. The
present work has followed their approach and utilized their results even though idempotent
functions are not necessarily injective.
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The author [14] introduced involutory Turing machines and showed that they can compute
exactly all involutory computable functions, which are own inverse, i.e., a function f such
that f(f(x)) = x holds whenever f(x) is defined. He naturally followed Axelsen and Glück’s
work since every involutory function is injective. He defined an involutory Turing machine as
a Turing machine whose transition rules are related each other under an involutory map over
states. The idea is found in discrete time-symmetric systems [6, 9]. In the present work, we
refer to the idea to define an idempotent Turing machine with the rear state map.

Besides Turing machines, there are many other model of computable functions, e.g.,
untyped lambda calculus, combinatory logic, and term/string rewriting systems. We could
consider a restricted model of them for idempotent functions. We have selected Turing
machines because there is a well-studied subclass of the model, namely reversible Turing
machine, for injective functions that can be invertible. A candidate of other such models
would be Mu et al’s injective language Inv [13] in which every function is defined by a few
primitives including the fixed-point operator. They have shown that the Inv language is
expressive enough to simulate reversible Turing machines. However, it is not simple to utilize
the injective language for a computational model of idempotent functions. We need to add
more primitives to describe non-injective functions and impose some syntactic restrictions to
define only idempotent functions. It would be interesting if such a programming language
can be defined, though.

6 Conclusion

We have introduced a computation model for idempotent functions, called an idempotent
Turing machine. This model is necessarily and sufficiently expressive: every idempotent
Turing machine computes an idempotent function and every idempotent function can be
computed by an idempotent Turing machine. The class of Turing machines has been shown to
be robust under tape reduction. We have also shown the existence of an universal idempotent
Turing machine and its construction.

Our computation model is expected to be a basis of special-purpose (or domain-specific)
programming languages in which only but all idempotent computable functions can be defined.
A computation model is said to be Turing-complete if it can simulate any Turing machine.
The notion of Turing-completeness is often used to show the expressiveness of not only a
computation model but also a programming language or a set of machine instructions. For
reversible computation, the notion of r-Turing completeness has been proposed [1,2,19]. There
have been reversible programming languages, e.g., Janus with dynamic storage [18], reversible
flowchart language [19], and R-WHILE [7], that have been shown to be r-Turing complete.
Similarly, the notion of idempotent-Turing-completeness can be defined and applied to a
special-purpose (or domain-specific) programming languages in which only but all idempotent
computable functions can be defined. Such a special programming language will be required
for string sanitizers, automated program optimizers, and bidirectional transformation.

In addition, it is interesting to consider computational models that exactly cover all
computable functions with some constraints in the general case. Axelsen and Glück [1] have
shown that reversible Turing machines can exactly cover injective computable functions. The
author [14] has shown a computational model that exactly covers involutory computable
functions, and he shows such a result for idempotent functions in the present paper. It
is a natural question to ask what kind of semantic constraints on computable functions
corresponds to syntactically constrained Turing machines in general, which is left for future
work.



K. Nakano 79:13

References
1 Holger Bock Axelsen and Robert Glück. What Do Reversible Programs Compute? In

Foundations of Software Science and Computational Structures - 14th International Conference,
FOSSACS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, pages 42–56,
2011. doi:10.1007/978-3-642-19805-2_4.

2 Holger Bock Axelsen and Robert Glück. On reversible Turing machines and their function
universality. Acta Inf., 53(5):509–543, 2016. doi:10.1007/s00236-015-0253-y.

3 Charles H Bennett. Logical reversibility of computation. IBM journal of Research and
Development, 17(6):525–532, 1973. doi:10.1147/rd.176.0525.

4 Sebastian Fischer, Zhenjiang Hu, and Hugo Pacheco. The essence of bidirectional programming.
Sci. China Inf. Sci., 58(5):1–21, 2015. doi:10.1007/s11432-015-5316-8.

5 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang. Syst., 29(3):17, 2007. doi:10.1145/
1232420.1232424.

6 Anahí Gajardo, Jarkko Kari, and Andrés Moreira. On time-symmetry in cellular automata. J.
Comput. Syst. Sci., 78(4):1115–1126, 2012. doi:10.1016/j.jcss.2012.01.006.

7 Robert Glück and Tetsuo Yokoyama. A Linear-Time Self-Interpreter of a Reversible Imperative
Language. Computer Software, 33(3):3_108–3_128, 2016. doi:10.11309/jssst.33.3_108.

8 Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes.
Fast and Precise Sanitizer Analysis with BEK. In 20th USENIX Security Symposium, San
Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association, 2011.

9 Martin Kutrib and Thomas Worsch. Time-Symmetric Machines. In Reversible Computation -
5th International Conference, RC 2013, Victoria, BC, Canada, July 4-5, 2013. Proceedings,
pages 168–181, 2013. doi:10.1007/978-3-642-38986-3_14.

10 R. Landauer. Irreversibility and Heat Generation in the Computing Process. IBM Journal of
Research and Development, 5(3):183–191, July 1961. doi:10.1147/rd.53.0183.

11 Yves Lecerf. Machines de Turing réversibles. Comptes Rendus Hebdomadaires des Séances de
l’Académie des Sciences, 257:2597–2600, 1963.

12 John McCarthy. The Inversion of Functions Defined by Turing Machines. In Automata Studies.
(AM-34), pages 177–182. Princeton University Press, 1956. doi:10.1515/9781400882618-009.

13 Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An Injective Language for Reversible
Computation. In Dexter Kozen and Carron Shankland, editors, Mathematics of Program
Construction, 7th International Conference, MPC 2004, Stirling, Scotland, UK, July 12-14,
2004, Proceedings, volume 3125 of Lecture Notes in Computer Science, pages 289–313. Springer,
2004. doi:10.1007/978-3-540-27764-4_16.

14 Keisuke Nakano. Involutory Turing Machines. In Ivan Lanese and Mariusz Rawski, editors,
Reversible Computation - 12th International Conference, RC 2020, Oslo, Norway, July 9-10,
2020, Proceedings, volume 12227 of Lecture Notes in Computer Science, pages 54–70. Springer,
2020. doi:10.1007/978-3-030-52482-1_3.

15 Keisuke Nakano. A Tangled Web of 12 Lens Laws. In Shigeru Yamashita and Tetsuo Yokoyama,
editors, Reversible Computation - 13th International Conference, RC 2021, Virtual Event, July
7-8, 2021, Proceedings, volume 12805 of Lecture Notes in Computer Science, pages 185–203.
Springer, 2021. doi:10.1007/978-3-030-79837-6_11.

16 OWASP. Double Encoding. https://owasp.org/www-community/Double_Encoding. [Online;
21-January-2021].

17 Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, Boston,
MA, 1997.

18 Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Principles of a reversible program-
ming language. In Proceedings of the 5th Conference on Computing Frontiers, 2008, Ischia,
Italy, May 5-7, 2008, pages 43–54, 2008. doi:10.1145/1366230.1366239.

MFCS 2021

https://doi.org/10.1007/978-3-642-19805-2_4
https://doi.org/10.1007/s00236-015-0253-y
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1007/s11432-015-5316-8
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1016/j.jcss.2012.01.006
https://doi.org/10.11309/jssst.33.3_108
https://doi.org/10.1007/978-3-642-38986-3_14
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1515/9781400882618-009
https://doi.org/10.1007/978-3-540-27764-4_16
https://doi.org/10.1007/978-3-030-52482-1_3
https://doi.org/10.1007/978-3-030-79837-6_11
https://owasp.org/www-community/Double_Encoding
https://doi.org/10.1145/1366230.1366239


79:14 Idempotent Turing Machines

19 Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Reversible Flowchart Languages
and the Structured Reversible Program Theorem. In Luca Aceto, Ivan Damgård, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Auto-
mata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Pro-
gramming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes
in Computer Science, pages 258–270. Springer, 2008. doi:10.1007/978-3-540-70583-3_22.

A Proofs of Lemmas, Theorems and Proposition

This Appendix provides proofs that are omitted or condensed in the main text.

▶ Lemma 19 (Closed under conjugation). Let T be a k-tape idempotent Turing machine. For
any k-tape reversible Turing machine Tr, the k-tape reversible Turing machine Tr

−1 ◦ T ◦ Tr

is idempotent.

Proof. Let T = (Q,Σ, qini, qfin,∆) be a k-tape idempotent Turing machine with a set Q′ ⊂ Q
of rear states and a rear state map ψ. Let Tr = (Qr,Σr, qini,r, qfin,r,∆r) be a k-tape
reversible Turing machine where Q and Qr are disjoint without loss of generality. In order
to concatenate Tr, T , and Tr

−1 following Definition 9, we rename every state q ∈ Qr of Tr
−1

with q̂. Let Q̂r be a set of states of Tr
−1, i.e., Q̂r = {q̂ | q ∈ Qr} and ∆r

−1 = {(p̂, a−1, q̂) |
(q, a, p) ∈ ∆r}. Then we can define Tc = Tr

−1 ◦ T ◦ Tr, which is to be shown idempotent, as
Tc = (Qc,Σ, qini,r, q̂ini,r,∆c) where

Qc = Qr ⊎ Q ⊎ Q̂r

∆c = ∆r ⊎ ∆ ⊎ {(p̂, a−1, q̂) | (q, a, p) ∈ ∆r} ⊎ {(qfin,r, (♦, . . . , ♦︸ ︷︷ ︸
k

), qini), (qfin, (♦, . . . , ♦︸ ︷︷ ︸
k

), q̂fin,r)}.

Let Q′
c be a subset of Qc defined by Q′ ⊎ Q̂r. We define a function ψc : Q′

c → Qc \Q′
c as

ψc(q) =
{
ψ(q) (q ∈ Q′)
qr (q = q̂r ∈ Q̂r)

where the codomain of ψc is (Q \Q′) ⊎Qr that is equal to Qc \Q′
c.

We shall check the four conditions of Q′
c and ψc for Tc to be idempotent.

The (I-1) condition holds since qini,r ∈ Qr ⊂ Qc \Q′
c, q̂ini,r ∈ Q̂r ⊂ Q′

c, and ψc(q̂ini,r) =
qini,r.
The (I-2) condition holds because of the definition of concatenation and the (I-2) condition
for T .
Concerning the (I-3) condition, suppose that we have (q′, a, p′) ∈ ∆c with p′, q′ ∈ Q′

c =
Q′ ⊎ Q̂r. Since it is impossible to have p′ ∈ Q′ ⊂ Q and q′ ∈ Q̂r due to the construction
of ∆c, we divide it into three cases:

When p′, q′ ∈ Q′, we have (ψc(p′), a−1, ψc(q′)) ∈ ∆c because of the (I-3) condition of
T with ψc(p′) = ψ(p′), ψc(q′) = ψ(p′), and ∆ ⊂ ∆c;
When p′ ∈ Q̂r and q′ ∈ Q′, we must have p′ = q̂fin,r and q′ = qfin according to the
construction of ∆c. Hence, we have (ψc(p′), a−1, ψc(q′)) ∈ ∆c because of ψc(p′) = qfin,r,
ψc(q′) = ψ(qfin) = qini, and the construction of ∆c; and
When p′, q′ ∈ Q̂r, there exist pr, qr ∈ Qr such that p′ = p̂r and q′ = q̂r. Hence, we have
(ψc(p′), a−1, ψc(q′)) ∈ ∆c because of ψc(p′) = pr, ψc(q′) = qr, and the construction of
∆c with ∆r.

Thus, the condition (I-3) holds.
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Concerning (I-4) condition, suppose that we have (q, a, q′) ∈ ∆c with q ∈ (Qc \ Q′) =
(Q \ Q′ ⊎ Qr) and q′ ∈ Q′

c = Q′ ⊎ Q̂r. From the construction of ∆c, we must have
q ∈ Q \Q′ and q′ ∈ Q′. Thus, we obtain q = ψ(q′) = ψc(q′) and a = a−1 because of the
condition (I-4) of T .

Therefore we conclude that Tc is idempotent with the set Qc of rear states and the rear state
map ψc. ◀

▶ Theorem 20 (Expressiveness of idempotent Turing machines). The idempotent Turing
machines can compute any idempotent computable function. More specifically, given a k-tape
Turing machine T such that JT K is idempotent, there is a 2k-tape idempotent Turing machine
T ′ such that JT ′K = JT K.

Proof. Let T be a k-tape Turing machine such that JT K : Σk → Σk is idempotent.
Consider a (partial) function f : Σ2k → Σ2k such that f(w1, . . . , wk, wk+1, . . . , w2k) =
(w1, . . . , wk, JT K(w1, . . . , wk)) holds only if JT K(w1, . . . , wk) is defined and wk+1 = · · · =
w2k = ε holds. Since the function f is injective and computable, we can construct a 2k-tape
reversible Turing machine Tf such that JTf K = f by Theorem 15.

Let us define a 2k-tape Turing machine T ′ = Tf
−1 ◦ Tcopy(k) ◦ Tf where Tcopy(k) is a

2k-tape idempotent Turing machine introduced in Example 7. Since T ′ is idempotent
because of Lemma 19, it suffices to show JT ′K = JT K, i.e., JT ′K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k

) =

(JT K(w1, . . . , wk), ε, . . . , ε︸ ︷︷ ︸
k

). This can be shown by

JT ′K(w1, . . . , wk, ε, . . . , ε) = { by the definition of T ′ and Proposition 10 }
JTf

−1K(JTcopy(k)K(JTf K(w1, . . . , wk, ε, . . . , ε)))
= { by the definition of Tf and Proposition 14 }

JTf K−1(JTcopy(k)K(w1, . . . , wk, JT K(w1, . . . , wk)))
= { by the definition of Tcopy(k) }

JTf K−1(JT K(w1, . . . , wk), JT K(w1, . . . , wk))
= { by the idempotence of JT K }

JTf K−1(JT K(w1, . . . , wk), JT K(JT K(w1, . . . , wk)))
= { by the semantics of Tf and its injectivity }

(JT K(w1, . . . , wk), ε, . . . , ε). ◀

▶ Lemma 22. There exists a 1-tape idempotent Turing machine Tblur computing the idem-
potent function fblur : Σ∗

$ → Σ∗
$, which satisfies fblur (ε) = ε and fblur (s1s2w) = s1s1fblur (w)

for any s1, s2 ∈ Σ$ and w ∈ Σ∗
$.

Proof. Let T = (Q,Σ$, qini, qfin,∆) be a 1-tape Turing machine where

Q = {qini, qmov, qread, qback, qpick, qfin} ∪
⋃

s∈Σ$

{qmem(s), qwrite(s), qkeep(s), qcheck(s)}

∆ = {(qini, ⊔⇒⊔, qmov), (qmov, �, qread), (qpick, ⊔⇒⊔, qfin), (qback, �, qpick), (qread, ⊔⇒⊔, qback)} ∪
{(qread, s⇒s, qmem(s)) | s ∈ Σ$} ∪ {(qmem(s), �, qwrite(s)) | s ∈ Σ$} ∪
{(qwrite(s), s′⇒s, qmov) | s, s′ ∈ Σ$} ∪ {(qpick, s⇒s, qkeep(s)) | s ∈ Σ$} ∪
{(qkeep(s), �, qcheck(s)) | s ∈ Σ$} ∪ {(qcheck(s), s⇒s, qback) | s ∈ Σ$}.
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Then T is found to be idempotent by the set Q′ ⊂ Q of rear states and the rear state map
ψ defined as

Q′ = {qfin, qpick, qback} ∪
⋃

s∈Σ$

{qcheck(s), qkeep(s)}

ψ = {qfin 7→ qini, qpick 7→ qmov, qback 7→ qread}∪⋃
s∈Σ$

{qcheck(s) 7→ qmem(s), qkeep(s) 7→ qwrite(s)}

since the four conditions obviously hold. We can check that T computes the function fblur in
the statement as follows. Firstly the relation

(qread, ⟨ε, s, ws′w′⟩) ⊢∗ (qread, ⟨
←−−−−−−
fblur (sw), s′, w′⟩)

holds for any s, s′ ∈ Σ$ and w,w′ ∈ Σ∗
$ where the length of w is odd and ←−x denotes the

reversed string of x, which can be proved by induction on the length of w. Moreover the
relation

(qback, ⟨←−sw, s′, w′⟩) ⊢∗ (qback, ⟨ε, s, ws′w′⟩)

holds for any s, s′ ∈ Σ$ and w,w′ ∈ Σ∗
$ where the length of w and w′ are odd and the strings

sw and s′w′ are in the domain of fblur , i.e., every even-numbered symbol in them is the same
as the previous symbol. This can also be proved by induction on the length of w. Then, we
have the relation

(qini, ⟨ε,⊔, w⟩) ⊢∗ (qfin, ⟨ε,⊔, fblur (w)⟩)

whenever the length of w is even, which indicates that T computes fblur . ◀

▶ Theorem 23 (Robustness of idempotent Turing machines). Let T = (Q,Σ, qini, qfin,∆)
be a k-tape idempotent Turing machine. Then there exists a 1-tape idempotent Turing
machine T ′ such that JT K(w1, . . . , wk) = (v1, . . . , vk) if and only if JT ′K(enc(w1, . . . , wk)) =
enc(v1, . . . , vk).

Proof. Let T = (Q,Σ, qini, qfin,∆) be a k-tape idempotent Turing machine. Consider a
function f : Σ∗

$ → Σ∗
$ satisfying

f(enc(w1, . . . , wk)) = enc(enc(JT K(w1, . . . , wk)), enc(w1, . . . , wk))

for any w1, . . . , wn ∈ Σ∗ only if JT K(w1, . . . , wk) is defined. Since the function f is injective
and computable, we can construct a 1-tape Turing machine Tf such that JTf K = f by
Theorem 15.

Let us define a 1-tape Turing machine T ′ = Tf
−1 ◦Tblur ◦Tf where the idempotent Turing

machine Tblur is given by Lemma 22. Note that

fblur (enc(x, y)) = enc(x, x) (1)

holds for any x, y ∈ Σ∗
$ . Since T ′ is idempotent because of Lemma 19, it suffices to show T ′

simulates T under encoding with enc. This can be shown by

JT ′K(enc(w1, . . . , wk)) = { by the definition of T ′ and Proposition 10 }
JTf

−1K(JTblur K(JTf K(enc(w1, . . . , wk))))
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= { by the semantics of Tf and Proposition 14 }

JTf K−1(JTblur K(enc(enc(JT K(w1, . . . , wk))), enc(w1, . . . , wk)))
= { by the semantics of Tblur with Equation (1) }

JTf K−1(enc(enc(JT K(w1, . . . , wk))), enc(JT K(w1, . . . , wk)))
= { by the idempotence of T and Theorem 17 }

JTf K−1(enc(enc(JT K(JT K(w1, . . . , wk)))), enc(JT K(w1, . . . , wk)))
= { by the injectivity of f and the semantics of f−1 }

enc(JT K(w1, . . . , wk)).

◀

▶ Proposition 26 (Bennett’s trick [3]). Let T be a k-tape Turing machine. There exists a
(2k + 1)-tape reversible Turing machine Benk(T ) such that JBenk(T )K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k+1

) =

(w1, . . . , wk, JT K(w1, . . . , wk), ε) for any input w1, . . . , wk of T .

Proof. Let T = (Q,Σ, qini, qfin,∆) be a k-tape Turing machine. Firstly, by Landauer embed-
ding [10], we can construct a (k + 1)-tape Turing machine TL such that

JTLK(w1, . . . , wk, ε) = (JT K(w1, . . . , wk), trace(T,w1, . . . , wk))

where the function trace encodes the history of applied transition rules on the run into
Σ∗. Since the history tells the previous configuration for each step, the Turing machine
TL is backward deterministic, that is, reversible. We extend TL with k extra tapes in
between working tapes and the history tape where the extra tapes are never touched during
computation. Let T ′

L be the (2k + 1)-reversible Turing machine obtained by the extension.
Then we have

JT ′
LK(w1, . . . , wk, v1, . . . , vk, ε) = (JT K(w1, . . . , wk), v1, . . . , vk, trace(T,w1, . . . , wk))

for w1, . . . , wk, v1, . . . , vk ∈ Σ∗. In addition, we similarly extend the 2k-tape Turing machine
Tdup(k) with one extra tape to obtain (2k + 1)-tape Turing machine T ′

dup(k) such that

JT ′
dup(k)K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸

k

, v) = (w1, . . . , wk, w1, . . . , wk, v)

holds for w1, . . . , wk, v ∈ Σ∗.
Let us define the (2k + 1)-tape Turing machine Benk(T ) = T ′

L
−1 ◦ T ′

dup(k) ◦ T
′
L which is

reversible because so are all constituents. Because of the domain of Tdup(k) and the semantics
of T ′

L, the input of the Turing machine Benk(T ) is restricted to (2k + 1)-tuples of strings
whose (k + 1)-th through 2k + 1-th strings are the empty string. Therefore the equation in
the statement can be checked by

JBenk(T )K(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸
k

, ε)

= { by the definition of Benk(T ) and Proposition 10 }

JT ′
L

−1K(JT ′
dup(k)K(JT ′

LK(w1, . . . , wk, ε, . . . , ε︸ ︷︷ ︸
k

, ε)))

= { by the semantics of T ′
L and Proposition 14 }

JT ′
LK−1(JT ′

dup(k)K(JT K(w1, . . . , wk), ε, . . . , ε︸ ︷︷ ︸
k

, trace(T,w1, . . . , wk)))
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= { by the semantics of T ′
dup(k) }

JT ′
LK−1(JT K(w1, . . . , wk), JT K(w1, . . . , wk), trace(T,w1, . . . , wk))

= { by the inverse of the semantics of T ′
L }

(w1, . . . , wk, JT K(w1, . . . , wk), ε). ◀

▶ Theorem 27 (IdTM-universal Turing machine constructed with Bennett’s trick). Let U
be a (2-tape) classically universal Turing machine, i.e., JUK(⌈T ⌉, w) = (⌈T ⌉, JT K(w)) for
any Turing machine T and its input w. Then a 5-tape idempotent Turing machine U ′ =
Ben2(U)−1◦T ′

copy(2)◦Ben2(U) is IdTM-universal where T ′
copy(2) is obtained by adding one extra

tape as the fifth tape to Tcopy(2), i.e., JT ′
copy(2)K(w1, w2, w3, w4, w5) = (w3, w4, w3, w4, w5).

Proof. Let U be a 2-tape classically universal Turing machine such that JUK(⌈T ⌉, w) =
(⌈T ⌉, JT K(w)) for any Turing machine T and its input w. Note that the Turing machine
U ′ = Ben2(U)−1 ◦ T ′

copy(2) ◦ Ben2(U) is idempotent due to Lemma 19. We shall show the
5-tape idempotent Turing machine U ′ is IdTM-universal, that is, JU ′K(⌈T ⌉, w, ε, ε, ε) =
(⌈T ⌉, JT K, ε, ε, ε) holds for any Turing machine T and its input w. Because of the domain of
Ben2(U), the input of the Turing machine U ′ is restricted to 5-tuples whose third through
fifth are the empty string. Therefore, the statement can be verified by

JU ′K(⌈T ⌉, w, ε, ε, ε) = { by the definition of U ′ and Proposition 10 }

JBen2(U)−1K(JT ′
copy(2)K(JBen2(U)K(⌈T ⌉, w, ε, ε, ε)))

= { by the semantics of Ben2(U) and U }

JBen2(U)−1K(JT ′
copy(2)K(⌈T ⌉, w, ⌈T ⌉, JT K(w), ε))

= { by the semantics of T ′
copy(2) }

JBen2(U)−1K(⌈T ⌉, JT K(w), ⌈T ⌉, JT K(w), ε)
= { by the idempotence of T and Theorem 17 }

JBen2(U)−1K(⌈T ⌉, JT K(w), ⌈T ⌉, JT K(JT K(w)), ε)
= { by the inverse of the semantics of Ben2(U) }

(⌈T ⌉, JT K(w), ε, ε, ε). ◀
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