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Abstract
We examine the role that atoms of regular languages play in boolean automata. We observe that
the size of a minimal boolean automaton of a regular language is directly related to the number of
atoms of the language. We present a method to construct minimal boolean automata, using the
atoms of a given regular language. The “illegal” cover problem of the Kameda-Weiner method for
NFA minimization implies that using the union operation only to construct an automaton from
a cover – as is the case with NFAs –, is not sufficient. We show that by using the union and the
intersection operations (without the complementation operation), it is possible to construct boolean
automata accepting a given language, for a given maximal cover.
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1 Introduction

Nondeterministic finite automata (NFAs) were introduced by Rabin and Scott [19] in 1959,
and since then this model of computation has been extended in many ways. Notably, in
1976, Kozen [14] introduced a model of parallel computation based on a generalization of
nondeterminism which was later developed into the notion of alternating finite automaton
(AFA) by Chandra, Kozen, and Stockmeyer [7]. Independently from this work, Brzozowski
and Leiss [5] introduced an equivalent concept of a boolean finite automaton (BFA), using a
different notation. Often, the notions of AFA and BFA are used interchangeably. We use the
terminology and notation of [5].

The transition function of a BFA uses boolean combinations of its states, generalizing
the notion of NFAs which can be interpreted as using unions of states as transition targets.
However, the expressive powers of BFAs and NFAs are the same, that is, BFAs only accept
regular languages [5, 7]. Importantly, BFAs can succinctly represent regular languages:
for any n ⩾ 1 there exists a BFA with n states such that the minimal deterministic finite
automaton (DFA) of the same language has 2(2n) states [7, 16]. Also, it is known that any
regular language is accepted by an n-state boolean automaton if and only if its reverse
language is accepted by a DFA with at most 2n states [15, 16]. However, there are languages
such that their boolean, nondeterministic, and deterministic complexities coincide [17].

Atoms [6] of a regular language L can be considered as its building blocks, since any
quotient of L, including L itself, is a disjoint union of atoms. Recently, several old results
of automata theory have been revisited using atoms of regular languages: Brzozowski’s
double-reversal method for minimizing a DFA [4] was generalized in [6], the Kameda-Weiner
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method of finding a minimal NFA [13] was reinterpreted in terms of atoms and generalized
in [21], and lower bound methods for the size of an NFA [3, 10, 11] were presented in terms
of quotients and atoms of regular languages in [22].

We examine the role that atoms play in boolean automata. We show that the size of
a minimal BFA of a regular language is directly related to the number of atoms of that
language. More exactly, we observe that if a language L has m atoms, then a minimal BFA
of L has ⌈log2 m⌉ states. Furthermore, we show how to construct a minimal BFA using the
atoms of a given language. We note that constructions of a minimal BFA presented in the
literature [16, 15, 9] have been using a DFA of the reverse language. We think that using
atoms to build BFAs is more natural and goes well with the narrative of considering atoms as
building blocks of a language. Our method of constructing a minimal BFA using the atoms
of a language ensures that the resulting BFA is atomic; that is, the languages associated with
the states of a BFA are unions of atoms. Consequently, every regular language has an atomic
minimal BFA; however, we also show that a minimal BFA is not necessarily atomic. For
comparison, not every language has an atomic minimal NFA [6]. Symmetric difference NFAs
– a subclass of boolean automata that use only the symmetric difference operation in the
transition function – are known to be able to succinctly represent some regular languages [24].
Interestingly, every minimal symmetric difference NFA is atomic [23].

We revisit the Kameda-Weiner method of NFA minimization [13] which constructs NFAs
from grid covers of a special matrix. However, not every cover yields an NFA that would
accept a given language. The problem of “illegal” covers of the Kameda-Weiner matrix has
been of interest for decades [13, 11, 21, 22]. We show that one can construct a BFA for a
given language, using any cover of the Kameda-Weiner matrix. One can see this result as a
solution to the problem of interpreting grid covers of the Kameda-Weiner matrix in terms of
finite automata accepting a given language. The “illegal” cover problem implies that using
the union operation only to construct such an automaton – as is the case with NFAs –, is
not sufficient. We show that by using the union and the intersection operations (without the
complementation operation), it is possible to construct boolean automata accepting a given
language, for a given maximal cover. We note that by a result in [9], for any BFA of n states,
there is an equivalent BFA with 2n states that uses the union and the intersection operations
only. However, in certain cases, our method can produce such a BFA with less states.

We mention that learning regular languages via AFAs has been studied in [1, 2].
We also note that recently, symbolic versions of AFAs and BFAs have been introduced [8,

20], and it has been claimed that in the symbolic setting, these two automata models become
importantly different [20].

2 Automata, Languages, and Equations

A boolean finite automaton (BFA) is a quintuple B = (Q, Σ, δ, f0, F ) where Q = {q0, . . . , qn−1}
is a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q × Σ → BQ is the
transition function, where BQ is the free boolean algebra generated by Q, f0 ∈ BQ is the initial
function in BQ, and F ⊆ Q is the set of final states. We denote the empty word by ε. The
transition function is extended to the function δ : BQ ×Σ∗ → BQ as follows. For every qi ∈ Q,
a ∈ Σ, w ∈ Σ∗, and f ∈ BQ, δ(qi, ε) = qi, and δ(qi, aw) = fi,a(δ(q0, w), . . . , δ(qn−1, w)),
where fi,a(q0, . . . , qn−1) = δ(qi, a), and δ(f, w) = f(δ(q0, w), . . . , δ(qn−1, w)). Let φ : Q →
{0, 1} be defined by setting φ(qi) = 1 if qi ∈ F , and φ(qi) = 0 otherwise, for qi ∈ Q. The
language accepted by a BFA B is L(B) = {w ∈ Σ∗ | δ(f0, w)(φ(q0), . . . , φ(qn−1)) = 1}. Two
boolean automata are equivalent if they accept the same language. The right language of a
state q of B is L(Bq), where Bq = (Q, Σ, δ, q, F ).
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If the functions f0 and δ(q, a) are unions of states for every q ∈ Q and a ∈ Σ, then
B is a nondeterministic finite automaton (NFA). Traditionally, for NFAs these functions
have been presented as sets of states. We prefer to use the traditional notation of an NFA
N = (Q, Σ, δ, I, F ), where Q, Σ, and F are as in BFA, I ⊆ Q is the set of initial states, and
δ : Q × Σ → 2Q is the transition function. The reverse of an NFA N = (Q, Σ, δ, I, F ) is the
NFA N R = (Q, Σ, δR, F, I), where q ∈ δR(p, a) if and only if p ∈ δ(q, a) for p, q ∈ Q and
a ∈ Σ.

If f0 ∈ Q and δ(q, a) ∈ Q for every q ∈ Q and a ∈ Σ, then B is a deterministic finite
automaton (DFA). The boolean (nondeterministic, deterministic, respectively) complexity of
a regular language L, denoted by bc(L) (nc(L), dc(L), respectively) is the minimal number
of states of a boolean (nondeterministic, deterministic, respectively) automaton of L.

A boolean system of equations (BSE) B with variables L0, . . . , Ln−1 is a set of language
equations

Li =
⋃

a∈Σ
aFi,a(L0, . . . , Ln−1) ∪ Lε

i , i = 0, . . . , n − 1, (1)

where Fi,a is a boolean function of the variables L0, . . . , Ln−1, Lε
i = {ε} if ε ∈ Li, and Lε

i = ∅
otherwise, together with the initial function F0(L0, . . . , Ln−1). The language defined by a
BSE B is L(B) = F0(L0, . . . , Ln−1).

Any BSE defines a BFA and vice versa. There is a one-one correspondence between the
state set Q = {q0, . . . , qn−1} of a BFA B and the set of language variables {L0, . . . , Ln−1} of
the corresponding BSE B; there is a transition from qi ∈ Q with a ∈ Σ to a boolean function
fi,a in BQ if and only if Fi,a is the corresponding function of variables {L0, . . . , Ln−1} where
the disjunction(∨), conjunction(∧), and negation(¬) operations are replaced by the set
operations union(∪), intersection(∩), and complement(¯), respectively, and the constants 0
and 1 are replaced by ∅ and Σ∗, respectively, and a similar correspondence is between the
initial functions f0 and F0. Also, any state qi of B is final if and only if Lε

i = {ε}. In the
rest of the paper, we treat boolean automata and their corresponding systems of equations
interchangeably.

The left quotient, or simply quotient, of a language L by a word w ∈ Σ∗ is the language
w−1L = {x ∈ Σ∗ | wx ∈ L}. It is well known that the left quotients of L are the right
languages of the states of the minimal DFA of L.

An atom of a regular language L with quotients K0, . . . , Kn−1 is any non-empty language
of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, and Ki is the complement of Ki

with respect to Σ∗ [6]. An atom is initial if it has L (rather than L) as a term; it is final if it
contains ε. There is exactly one final atom, the atom K̂0 ∩ · · · ∩ K̂n−1, where K̂i = Ki if
ε ∈ Ki, and K̂i = Ki otherwise. If K0 ∩ · · · ∩ Kn−1 is an atom, then it is called the negative
atom, all the other atoms are positive. Thus atoms of L are pairwise disjoint languages
uniquely determined by L; they define a partition of Σ∗. Every quotient Ki (including L)
is a (possibly empty) union of atoms. Hence, atoms can be considered as building blocks
of regular languages. We also note that atoms of L are the classes of the left congruence
L≡ of L defined as follows: for x, y ∈ Σ∗, xL≡y if for every u ∈ Σ∗, ux ∈ L if and only if
uy ∈ L [12].

Let A = {A0, . . . , Am−1} be the set of atoms of L, let IA be the set of initial atoms, and
let Am−1 be the final atom. The átomaton of L is the NFA A = (A, Σ, α, IA, {Am−1}) where
Aj ∈ α(Ai, a) if and only if Aj ⊆ a−1Ai, for all Ai, Aj ∈ A and a ∈ Σ. It was shown in [6]
that the atoms of L are the right languages of the states of the átomaton, and that the
reverse NFA of the átomaton is the minimal DFA of the reverse language LR of L.

MFCS 2021
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The BSE corresponding to the átomaton A, also called the atom equations, is as follows:

Ai =
⋃

a∈Σ
a(

⋃
Aj⊆a−1Ai

Aj) ∪ Aε
i , i = 0, . . . , m − 1, (2)

where Aε
i = ∅ for i = 0, . . . , m − 2, and Aε

m−1 = {ε}, with the initial function L =
⋃

Ai∈IA
Ai.

A BFA B is atomic if the right languages of its states are unions of atoms of L(B).

3 Boolean Atoms

Let L be a regular language over Σ and let B be a BFA of L with variables L0, . . . , Ln−1.
A boolean atom of B is any non-empty language L̃0 ∩ · · · ∩ L̃n−1, where L̃i is either Li or

its complement Li with respect to Σ∗. Similarly to the atoms of L, boolean atoms of B are
pairwise disjoint, defining a partition of Σ∗.

We study the relationship between boolean atoms of B and atoms of L. To avoid confusion
between these two notions, we also call the atoms of L the language atoms.

▶ Proposition 1. Every atom of L is a union of boolean atoms of B.

Proof. Every quotient of L (including L itself) is obtained as a boolean combination of
some Li’s. Hence, every quotient of L can be expressed as a union of intersections involving
uncomplemented and complemented variables from {L0, . . . , Ln−1}. By adding in the missing
variables, every quotient can be expressed as a union of boolean atoms. Also, the complement
of any quotient is a union of boolean atoms. Since an intersection of unions of boolean atoms
is a union of boolean atoms, the proposition holds. ◀

▶ Corollary 2. Every boolean atom of B is a subset of some atom of L.

Proof. Since both the boolean atoms of B and the atoms of L define a partition of Σ∗, the
corollary follows from Proposition 1. ◀

▶ Proposition 3. A BFA B is atomic if and only if its boolean atoms are equal to the atoms
of L.

Proof. First assume that B is atomic. Then every language Li is a union of some atoms of
L, and so is its complement Li. Therefore, any boolean atom Bi = L̃0 ∩ · · · ∩ L̃n−1 is an
intersection of unions of language atoms, which is a union of language atoms. On the other
hand, by Corollary 2, Bi is a subset of some language atom. We conclude that Bi is equal to
some atom of L.

Conversely, if the boolean atoms of B are equal to the atoms of L, then since every Li is
a union of boolean atoms, it is as well a union of language atoms. Hence, B is atomic. ◀

We note that boolean atoms are a generalization of partial atoms of NFAs, introduced
in [6]. More exactly, given an NFA with its language equations, its partial atoms are the
boolean atoms of the corresponding BFA.

4 Constructing Minimal Boolean Automata Using Atoms

It is known that if a regular language L is accepted by an n-state BFA, then the reverse
language LR is accepted by a DFA with at most 2n states [7, 16]. We also recall the following
theorem by Leiss [16]:
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▶ Theorem 4. Let D be a DFA with m states. There exists a BFA with ⌈log2 m⌉ states
which accepts the reverse language of D.

Consequently, a minimal BFA of a language L has ⌈log2 m⌉ states, where m is the number
of states of the minimal DFA of LR. Since the átomaton of L is isomorphic to the reverse
automaton of the minimal DFA of LR [6], we make the following observation:

▶ Theorem 5. A minimal BFA of a regular language L has ⌈log2 m⌉ states, where m is the
number of atoms of L.

We note that Leiss [16] also describes a method to construct a BFA of LR with ⌈log2 m⌉
states by using a DFA of L with m states. Also, Kozen [15] (p. 327) discusses how to
construct an AFA of L with k states by using a DFA of LR with 2k states, and vice versa.

We present a method to construct a minimal BFA of a regular language, by using its
atoms.

Let L be a regular language over an alphabet Σ, and let A = {A0, . . . , Am−1} be the set of
atoms of L, with a subset IA ⊆ A of initial atoms and the final atom Am−1. Let k = ⌈log2 m⌉.
We show how to construct an atomic BFA with k variables L0, . . . , Lk−1 denoting some (not
yet identified) languages over Σ. Let us consider the set S of all intersections in the form
L̃0 ∩ . . . ∩ L̃k−1 where L̃i is either Li or Li. Clearly, there are 2k such intersections, and the
union of all these intersections is Σ∗. Also, we note that since k = ⌈log2 m⌉, the inequality
m ⩽ 2k holds.

Let us denote any intersection in S by XP =
⋂

i∈P Li ∩
⋂

i∈P Li, where P ⊆ {0, . . . , k −1}
and P = {0, . . . , k − 1} \ P . Now, let us choose any subset Sm = {XP0 , . . . , XPm−1} of S

consisting of m intersections, and set any XPj
∈ Sm to be equal to some atom Aj of L.

We note that Sm is the set of boolean atoms of the BFA we will be constructing, and by
Proposition 3, this BFA will be atomic. For instance, we may choose P0 = {0, . . . , k − 1},
P1 = {0, . . . , k − 2}, P2 = {0, . . . , k − 3, k − 1}, P3 = {0, . . . , k − 3}, etc., and form the
following equations between the boolean atoms and the atoms of L:

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A0,

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A1,

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A2,

L0 ∩ L1 ∩ . . . ∩ Lk−2 ∩ Lk−1 = A3,

. . .

L̃0 ∩ L̃1 ∩ . . . ∩ L̃k−2 ∩ L̃k−1 = Am−1,

where L̃i is Li if ni = 0, and L̃i is Li if ni = 1, where n0n1 . . . nk−1 is the binary representation
of the number m − 1 using k bits. For every XPj

̸∈ Sm, that is, for j = m, . . . , 2k − 1, we let
XPj = ∅.

Clearly, every language Li, where i = 0, . . . , k − 1, is the union of those boolean atoms
XPj , where Li is uncomplemented, that is, Li =

⋃
i∈Pj

XPj .
We derive boolean equations for L0, . . . , Lk−1, using the equations above together with

the atom equations (2):

Li =
⋃

i∈Pj

XPj =
⋃

i∈Pj

Aj =
⋃

i∈Pj

(
⋃

a∈Σ
a(

⋃
Ah⊆a−1Aj

Ah) ∪ Aε
j) =

⋃
a∈Σ

a(
⋃

i∈Pj

⋃
Ah⊆a−1Aj

XPh
) ∪

⋃
i∈Pj

Aε
j ,

MFCS 2021
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that is, we obtain the equations

Li =
⋃

a∈Σ
a(

⋃
i∈Pj

⋃
Ah⊆a−1Aj

XPh
) ∪ Lε

i , i = 0, . . . , k − 1, (3)

where Lε
i = {ε} if i ∈ Pm−1, and Lε

i = ∅ otherwise.
We also notice that L =

⋃
Ah⊆L Ah =

⋃
Ah⊆L XPh

. That is, since L is a union of some
of its atoms Ah, it is the union of the corresponding boolean atoms XPh

. Hence, the
equations (3) together with the initial function L =

⋃
Ah⊆L XPh

form an atomic minimal
BFA of L.

In case our goal would be to obtain an atomic minimal BFA with the initial function
L = L0, we would have to be able to assign all the initial atoms of L to boolean atoms which
have L0 (rather than L0) as a term, and all the other language atoms to boolean atoms with
L0. It is not difficult to see that this is possible if and only if the condition

m − 2⌈log2 m⌉−1 ⩽ |IA| ⩽ 2⌈log2 m⌉−1 (4)

holds.
The method described above constructs an atomic minimal BFA of a language. However,

there may exist non-atomic minimal BFAs as well. The following example illustrates the
constructions of minimal BFAs and presents a case of a non-atomic minimal BFA.

▶ Example 6. Let us consider a regular language L from [6, 18], defined by the following
nondeterministic system of equations, with L = L0:

L0 = aL1 ∪ b(L1 ∪ L2),
L1 = aL3 ∪ b(L0 ∪ L3),
L2 = a(L0 ∪ L2 ∪ L3) ∪ ε,

L3 = aL3 ∪ bL1.

It was shown in [6] that the corresponding NFA is a minimal NFA of L, however, it is not
atomic. The language L has 6 atoms, denoted by A, B, C, D, E, and F , from which B, D,

and F are the initial atoms, and A is the final atom. The atom equations are as follows:

A = a(A ∪ B) ∪ ε,

B = aC ∪ bA,

C = b(B ∪ D),
D = bC,

E = aD,

F = a(E ∪ F ) ∪ b(E ∪ F ),

with the initial function L = B ∪D ∪F . One can verify that L0 = B ∪D ∪F , L1 = C ∪E ∪F ,
and L3 = D ∪ E ∪ F , whereas L2 = A ∪ E ∪ F ′, where F ′ = a(E ∪ F ) is a subset of F .

The boolean atoms of the original system of equations are found as the following non-empty
intersections:

L0 ∩ L1 ∩ L2 ∩ L3 = F ′,

L0 ∩ L1 ∩ L2 ∩ L3 = F \ F ′,

L0 ∩ L1 ∩ L2 ∩ L3 = D,

L0 ∩ L1 ∩ L2 ∩ L3 = B,

L0 ∩ L1 ∩ L2 ∩ L3 = E,

L0 ∩ L1 ∩ L2 ∩ L3 = C,

L0 ∩ L1 ∩ L2 ∩ L3 = A.
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Hence, the boolean atoms are A, B, C, D, E, F ′, and F \ F ′. We note that F is a union of
two boolean atoms, while the other language atoms coincide with boolean atoms.

In the following, we drop the union symbols when representing unions of atoms; for
example, B ∪ D ∪ F is denoted by BDF . A minimal BFA of this language has ⌈log2 6⌉ = 3
states. We construct an atomic minimal BFA by the approach described above. Let us
denote the states of a minimal BFA by variables L0, L1, L2, and form the following equations:

L0 ∩ L1 ∩ L2 = A,

L0 ∩ L1 ∩ L2 = B,

L0 ∩ L1 ∩ L2 = C,

L0 ∩ L1 ∩ L2 = D,

L0 ∩ L1 ∩ L2 = E,

L0 ∩ L1 ∩ L2 = F,

L0 ∩ L1 ∩ L2 = ∅,

L0 ∩ L1 ∩ L2 = ∅.

From these equations we obtain L0 = ABCD, L1 = ABEF , and L2 = ACE. All the
variables correspond to final states because the corresponding languages contain the final
atom A. Using the atom equations, we get the following equations:

ABCD = aABC ∪ bABCD ∪ ε,

ABEF = aABCDEF ∪ bAEF ∪ ε,

ACE = aABD ∪ bBD ∪ ε,

with L = BDF . By replacing atoms with the corresponding boolean expressions over the
variables L0, L1, and L2, and after a few straightforward simplifications, we obtain the
following system of equations, with L = L2:

L0 = a(L0 ∩ (L1 ∪ L2)) ∪ bL0 ∪ ε,

L1 = aΣ∗ ∪ b((L1 ∩ L2) ∪ L0) ∪ ε,

L2 = a((L0 ∩ L1) ∪ (L1 ∩ L2)) ∪ b(L0 ∩ L2) ∪ ε.

These equations form an atomic minimal BFA for L.
We may also obtain a minimal BFA for L with L = L0, since the condition (4) holds

for L. For instance, we could have the atom assignments as follows (with the rest of the
intersections set to be empty):

L0 ∩ L1 ∩ L2 = B,

L0 ∩ L1 ∩ L2 = D,

L0 ∩ L1 ∩ L2 = F,

L0 ∩ L1 ∩ L2 = A,

L0 ∩ L1 ∩ L2 = C,

L0 ∩ L1 ∩ L2 = E.

Now we obtain the languages L0 = BDF , L1 = ABCD, and L2 = ABEF , where L1 and
L2 correspond to the final states. Using the atom equations, we get the following equations:

BDF = aCEF ∪ bACEF,

ABCD = aABC ∪ bABCD ∪ ε,

ABEF = aABCDEF ∪ bAEF ∪ ε,

with L = BDF . Similarly as above, we obtain the following language equations, with L = L0:
L0 = a((L0 ∩ L2) ∪ (L1 ∩ L2)) ∪ b(L0 ∪ (L0 ∩ L1)),
L1 = a((L1 ∩ L2) ∪ (L0 ∩ L2)) ∪ bL1 ∪ ε,

L2 = aΣ∗ ∪ b((L0 ∩ L2) ∪ (L0 ∩ L1)) ∪ ε.

These equations form another atomic minimal BFA of L.

MFCS 2021
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We can also construct a non-atomic minimal BFA for L. Let us take L0 = BDF ,
L1 = CEF , and L2 = ADEF ′, where L2 is a final state. We note that L2 is not atomic.
Using the atom equations and the equation for F ′, we get the following equations:

BDF = aCEF ∪ bACEF,

CEF = aDEF ∪ bBDEF,

ADEF ′ = aABDEF ∪ bC ∪ ε,

with L = BDF . We obtain the following language equations, with L = L0:

L0 = aL1 ∪ b((L0 ∩ L1 ∩ L2) ∪ L1),
L1 = a((L0 ∩ L1) ∪ (L0 ∩ L2) ∪ (L1 ∩ L2)) ∪ b(L0 ∪ (L1 ∩ L2)),
L2 = a(L0 ∪ L2) ∪ b(L0 ∩ L1 ∩ L2) ∪ ε.

These equations form a non-atomic minimal BFA of L. ⌟

5 Boolean Automata and Quotient-Atom Matrix

Kameda and Weiner [13] studied the problem of finding a minimal NFA of a language L,
using a matrix based on the states of the minimal DFAs of L and LR. They suggested a
method of constructing NFAs, utilizing grid covers of this matrix. However, an NFA formed
this way does not necessarily accept L. Therefore, the method of finding a minimal NFA
tests grid covers of the matrix in the order of increasing size to see if they are “legal”. The
first legal NFA, that is, an NFA found to accept L, is a minimal one.

In this section, we revisit the Kameda-Weiner method and its recent reinterpretation in
terms of atoms of the language [21]. We will show that if one aims to form a BFA rather
than an NFA, then the problem of “illegal” covers disappears. That is, one can form a BFA
for L, using any cover of the quotient-atom matrix.

First, we describe the Kameda-Weiner method in terms of quotients and atoms as
presented in [21]. It was shown in [21] that the matrix used by Kameda and Weiner can
be viewed as the quotient-atom matrix of the language, that is, the matrix with its rows
corresponding to the non-empty quotients, and the columns, to the positive atoms of the
language. Any (i, j)-entry of this matrix is 1 if the quotient Ki has the atom Aj as its subset,
and 0 otherwise. A grid of the matrix is the direct product g = P × R of a set P of quotients
with a set R of atoms, such that every atom in R is a subset of every quotient in P . A grid
g = P × R is maximal if there is no other grid g′ = P ′ × R′ such that P ⊆ P ′ and R ⊆ R′. A
grid cover of the matrix is a set G = {g0, . . . , gk−1} of grids, such that every 1-entry (Ki, Aj)
belongs to some grid gh of G. A grid cover is maximal if it consists of maximal grids. Clearly,
any grid cover can be made maximal by replacing every non-maximal grid g = P × R in it
by the maximal grid g′ = P ′ × R′ such that P ⊆ P ′ and R ⊆ R′.

Let fG be the function that assigns to every non-empty quotient Ki the subset of G,
consisting of grids g = P × R such that Ki ∈ P . The Kameda-Weiner method constructs the
NFA NG = (G, Σ, ηG, IG, FG), where G is a maximal grid cover, IG = fG(K0), g ∈ FG if and
only if g ∈ fG(Ki) implies that ε ∈ Ki, and transition function is computed by the so-called
intersection rule ηG(g, a) =

⋂
Ki∈P fG(a−1Ki), for a grid g = P × R in G and a ∈ Σ. The

NFA NG may or may not accept L. A cover G is called “legal” if L(NG) = L. To find a
minimal NFA of a language L, covers of the matrix are tested in the order of increasing size
to see if they are legal; the first legal NFA is a minimal one.

In [21], the Kameda-Weiner method was interpreted in terms of atoms, with the key
observation being that any maximal grid can be seen as the set of atoms it involves. We call
a set {L0, . . . , Lk−1} of languages a language cover for L if for every Li there is a quotient
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Kj such that Li ⊆ Kj and if every quotient of L is a union of some Li’s. A language
cover {L0, . . . , Lk−1} is atomic if every Li, where i = 0, . . . , k − 1, is a union of atoms of L.
Now, for any grid cover G = {g0, . . . , gk−1} there is a corresponding atomic language cover
C = {U(R0), . . . , U(Rk−1)}, where gi = Pi × Ri and U(Ri) =

⋃
Aj∈Ri

Aj for i = 0, . . . , k − 1.
The following theorem was proved in [21]:

▶ Theorem 7. Let G = {g0, . . . , gk−1} be a cover consisting of maximal grids gi = Pi × Ri,
i = 0, . . . , k − 1, and let NG = (G, Σ, ηG, IG, FG) be the corresponding NFA, obtained by the
intersection method. It holds that gi ∈ IG if and only if U(Ri) ⊆ L, and gi ∈ FG if and
only if ε ∈ U(Ri). For any gi, gj ∈ G and a ∈ Σ, gj ∈ ηG(gi, a) if and only if the inclusion
U(Rj) ⊆ a−1U(Ri) holds.

By Theorem 7, it is easy to see that forming the NFA NG corresponds to defining this
NFA with variables L0, . . . , Lk−1 using the language equations

Li =
⋃

a∈Σ
a(

⋃
U(Rj)⊆a−1U(Ri)

Lj) ∪ Lε
i , i = 0, . . . , k − 1, (5)

where Lε
i = {ε} if ε ∈ U(Ri), and Lε

i = ∅ otherwise, and the initial function
⋃

U(Ri)⊆L Li.
We recall that this NFA not necessarily accepts L.

Gruber and Holzer [11] defined a canonical bipartite graph GL of a language, which is a
graph representation of the Kameda-Weiner matrix. By denoting the bipartite dimension of
GL, that is, the minimum number of bicliques to cover the edges of GL, by d(GL), it is clear
that the size of the minimal grid cover of the quotient-atom matrix is equal to d(GL). It has
been a long-standing problem to identify languages with a legal minimal cover [11, 13, 21, 22].

It is known that dc(L) ⩽ 2d(GL) [11]. Since dc(LR) = m, where m is the number of atoms
of L [6], and d(GLR) = d(GL) [11, 13], we get that m ⩽ 2d(GL). By Theorem 5, a minimal
BFA of L has bc(L) = ⌈log2 m⌉ states, implying that bc(L) ⩽ d(GL). Hence, the following
statement holds:

▶ Theorem 8. A minimal BFA of a regular language L has at most d(GL) states.

Theorem 8 provides an upper bound to the size of a minimal BFA of a language in terms
of the size of a minimal cover of the quotient-atom matrix/graph of the language. Since a
minimal NFA has at least d(GL) states [11, 13, 21], the inequalities

bc(L) ⩽ d(GL) ⩽ nc(L)

hold. Also, we can state the following corollary:

▶ Corollary 9. A minimal NFA is a minimal BFA of L if and only if the equalities bc(L) =
d(GL) = nc(L) hold.

In the following sections, we present two methods to construct a BFA, using a cover of
the quotient-atom matrix/graph.

5.1 Constructing a General BFA
Given a language cover C = {L0, . . . , Lk−1} of L, we call any non-empty intersection
L̃0 ∩ . . . ∩ L̃k−1 where L̃i is either Li or Li, a cover atom of C. Similarly to the atoms of L,
cover atoms are pairwise disjoint and their union is Σ∗.

The following proposition is a slightly modified version of the result in [6]1:

1 The result in [6] concerns the case where the language cover consists of the right languages of an NFA
accepting L; however, its proof holds for any cover.
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▶ Proposition 10. Given a language cover C of L, every cover atom of C is a subset of
some atom of L.

We note that cover atoms of the cover K = {K0, . . . , Kn−1} consisting of the quotients
of L, are clearly the atoms of L. Moreover, the following proposition holds:

▶ Proposition 11. The cover atoms of a cover C of L are equal to the atoms of L if and
only if C is atomic.

Proof. Let C = {L0, . . . , Lk−1} be an atomic language cover of L, meaning that every Li ∈ C

is a union of atoms of L. In this case every complement language Li, for i = 0, . . . , k − 1, is
also a union of atoms. Therefore, any cover atom as an intersection of unions of atoms, is a
union of atoms. However, since by Proposition 10, any cover atom is a subset of some atom
of L, we conclude that cover atoms are equal to the atoms of L.

If the cover C is not atomic, then there is some Li ∈ C that is not a union of atoms of L.
However, since Li is the union of those cover atoms that have Li uncomplemented in their
intersection, there exists at least one non-atomic cover atom of C. ◀

Let us now consider any grid cover G = {g0, . . . , gk−1} of the quotient-atom matrix and the
corresponding language cover C = {U(R0), . . . , U(Rk−1)} of L, with gi = Pi×Ri and U(Ri) =⋃

Aj∈Ri
Aj for i = 0, . . . , k − 1. Let the set of cover atoms of C be X = {X0, . . . , Xℓ−1}.

Since the cover C is atomic, by Proposition 11, the cover atoms of C are the atoms of L.
Hence, any atom Ah of L can be expressed as Ah =

⋂
Ah∈Ri

U(Ri) ∩
⋂

Ah ̸∈Ri
U(Ri).

Now, we can form a BFA with the set {L0, . . . , Lk−1} of variables, using the correspondence
between the variables Li and the languages U(Ri), where i = 0, . . . , k − 1. We obtain the
following equations for a BFA, using the atom expressions above and the atom equations (2):

Li =
⋃

a∈Σ
a(

⋃
Aj∈Ri

⋃
Ah⊆a−1Aj

(
⋂

Ah∈Ri

Li ∩
⋂

Ah ̸∈Ri

Li)) ∪ Lε
i , i = 0, . . . , k − 1, (6)

where Lε
i = {ε} if ε ∈ U(Ri), and Lε

i = ∅ otherwise. The initial function of the BFA is
L =

⋃
U(Ri)⊆L Li. Clearly, this BFA is atomic, because every Li is a union of atoms. We

also note that boolean atoms of this BFA are equal to the cover atoms.

5.2 Constructing a BFA Without Complementation
We show that any maximal grid cover can be used to construct a BFA that uses the union
and the intersection operations only, without a need for the complementation operation. We
use the following definition from [21]:

▶ Definition 12. A set R of atoms is maximal if R = {Aj | Aj ⊆
⋂

U(R)⊆Ki
Ki}, where

U(R) =
⋃

Aj∈R Aj is the union of atoms in R.

We observe that the intersection of any quotients of L corresponds to a maximal set of
atoms:

▶ Proposition 13. Given any set P ⊆ K of quotients of L, the set R = {Aj | Aj ⊆⋂
Kh∈P Kh} of atoms in their intersection, is maximal.

Proof. Let P ⊆ K be any set of quotients of L and let R = {Aj | Aj ⊆
⋂

Kh∈P Kh} be the
set of atoms in their intersection. Since U(R) =

⋂
Kh∈P Kh =

⋂
U(R)⊆Ki

Ki, we get that
R = {Aj | Aj ⊆

⋂
U(R)⊆Ki

Ki}. Thus, R is maximal. ◀
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▶ Proposition 14. If a set R of atoms is maximal, then the set {Aj | Aj ⊆ a−1U(R)}, where
a ∈ Σ, is also maximal.

Proof. Let R be a maximal set of atoms and a ∈ Σ. Then U(R) =
⋂

U(R)⊆Ki
Ki and we get

a−1U(R) = a−1 ⋂
U(R)⊆Ki

Ki =
⋂

U(R)⊆Ki
a−1Ki. Since for any quotient Ki of L, a−1Ki is

also a quotient of L, the language a−1U(R) is equal to an intersection of some quotients. By
Proposition 13, we conclude that the set {Aj | Aj ⊆ a−1U(R)} is maximal. ◀

Let us consider a maximal grid cover G = {g0, . . . , gk−1} of the quotient-atom matrix
and the corresponding language cover C = {U(R0), . . . , U(Rk−1)} of L, with gi = Pi × Ri

and U(Ri) =
⋃

Aj∈Ri
Aj for i = 0, . . . , k − 1. It is known that any maximal grid involves

a maximal set of atoms [21]. Hence, every Ri, where i = 0, . . . , k − 1, is a maximal set
of atoms. We denote by Pi,a, where a ∈ Σ, the set Pi,a = {Kh | a−1U(Ri) ⊆ Kh} of
those quotients of L that include a−1U(Ri) as a subset. By Proposition 14, the equality
a−1U(Ri) =

⋂
Kh∈Pi,a

Kh holds. Also, we recall that every quotient Kh is a union of some
elements of the cover C, that is, Kh =

⋃
U(Ri)⊆Kh

U(Ri).
We construct a BFA with the set {L0, . . . , Lk−1} of variables, using the correspondence

between the variables Li and the languages U(Ri), where i = 0, . . . , k − 1. The language
equations are as follows:

Li =
⋃

a∈Σ
a(

⋂
Kh∈Pi,a

⋃
U(Rj)⊆Kh

Lj) ∪ Lε
i , i = 0, . . . , k − 1, (7)

where Lε
i = {ε} if ε ∈ U(Ri), and Lε

i = ∅ otherwise. The initial function is L =
⋃

U(Ri)⊆L Li.
This BFA is atomic, since every Li is a union of atoms of L.

We note that the BFA corresponding to the equations (7) uses only the union and the
intersection operations. That is, the complementation operation is not needed when we use
a maximal cover as a basis for the states of a BFA.

One can see this result as a solution to the problem of interpreting grid covers of the
Kameda-Weiner matrix, or equivalently, biclique edge covers of the quotient-atom graph, in
terms of finite automata accepting a given language. The “illegal” cover problem mentioned
above implies that using the union operation only to construct such an automaton – as
is the case with NFAs –, is not sufficient. However, we showed that with the union and
the intersection operations it is possible to construct boolean automata accepting a given
language, for a given maximal cover.

We note that by a result in [9], for any BFA of n states, there is an equivalent BFA
with 2n states that uses the union and the intersection operations only. However, since the
inequality bc(L) ⩽ d(GL) holds for any language L, and because we can construct a BFA
with d(GL) states, using the union and the intersection operations only, our method can
produce such a BFA for any language L for which the inequality d(GL) < 2bc(L) holds, with
less states.

6 Conclusions

We have started a study of the role that atoms of a regular language have in the context
of boolean automata, their relationship with boolean atoms, and how they can be used to
construct BFAs.

MFCS 2021



86:12 Boolean Automata and Atoms of Regular Languages

The problem of “illegal” covers of the Kameda-Weiner matrix used for NFA minimization
has been of interest for a long time. We presented a new interpretation of the covers in terms
of BFAs, so that every cover becomes “legal”. We showed that it is sufficient to use the union
and the intersection operations to construct a BFA for a given language, corresponding to a
maximal cover of the matrix. Moreover, the resulting BFAs are atomic.

These are part of the evidence of the significant role that atoms play in the theory of
automata.
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