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Abstract
We introduce the notion of a Gödel fibration, which is a fibration categorically embodying both
the logical principles of traditional Skolemization (we can exchange the order of quantifiers paying
the price of a functional) and the existence of a prenex normal form presentation for every logical
formula. Building up from Hofstra’s earlier fibrational characterization of de Paiva’s categorical
Dialectica construction, we show that a fibration is an instance of the Dialectica construction if
and only if it is a Gödel fibration. This result establishes an intrinsic presentation of the Dialectica
fibration, contributing to the understanding of the Dialectica construction itself and of its properties
from a logical perspective.
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1 Introduction

Historically, the Dialectica interpretation was devised by Gödel [10] to prove the (relative)
consistency of arithmetic. The interpretation allowed him to reduce the problem of proving
the consistency of first-order arithmetic to the problem of proving the consistency of a
simply-typed system of computable functionals, the well-known System T. The key feature
of the translation is that it (mostly) constructively turns formulae of arbitrary quantifier
complexity into formulae of the form ∃x∀yα(x, y).

Over the years, several authors have explained the Dialectica interpretation in categorical
terms. In particular, de Paiva [7] introduced the notion of Dialectica categories as an internal
version of Gödel’s Dialectica Interpretation. The idea is to construct a category Dial(C)
from a category C with finite limits. The main focus in de Paiva’s original work is on the
categorical structure of the category Dial(C) obtained, as this notion of a Dialectica category
turns out to be also a model of Girard’s Linear Logic [9].

This construction was first generalized by Hyland, who investigated the Dialectica
construction associated to a fibred preorder [12]. Later Biering in her PhD work [3] studied
the Dialectica construction for an arbitrary cloven fibration.
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Meanwhile Hofstra [11] wrote an exposition and interpretation of the Dialectica con-
struction from a modern categorical perspective, emphasizing its universal properties. His
work gives centre stage to the well-known concepts of pseudo-monads, simple products and
co-products. We take Hofstra’s work as the basis for our work here.

Hofstra shows that the original Dialectica construction Dial can be seen as the composition
of two free constructions Sum and Prod, which are the simple sum (or co-product) and
product completions, respectively. These completions are fully dual, so we only need to study
one and can then deduce results for the other construction. However the whole Dialectica
construction is not fully dual, as indicated by the order of the composition of the completions.
Our work explains when the Dialectica construction can be performed, which hypotheses are
necessary for the categorical construction, which properties of the construction are preserved
and why. Most importantly we are able to connect these preservation properties to the logic
of the original interpretation, leading up to the definition of what we call a Gödel fibration.

Our contributions

The main contributions of this paper are the following.
1. We formalize the notion of fibrational quantifier-free formula. Given Hofstra’s characteriz-

ation it is clear that instances of the Dialectica construction should have simple products
and co-products, as the construction introduces completions under these. What else is
necessary to get a Dialectica construction? The first novelty of this work is the character-
ization of “covering quantifier-free objects” of a fibration. These objects correspond to
formulas in the logic system that are quantifier-free. As usually happens in a categorical
framework, a syntactical notion of “being quantifier-free” needs to be formalized in terms
of a universal property. The logical intuition behind our definition, is that an element
α of a fibration p is called quantifier-free if it satisfies the following universal property,
expressed in the internal language of p: if there is a proof π of a statement ∃iβ(i) assuming
α, then there exists a witness t, which depends on the proof π, together with a proof
of β(t). Moreover, this must hold for every re-indexing α(f), because in logic if α(x) is
quantifier-free then α(x)[f/x] = α(f) is quantifier-free too. The covering requirement,
as usual, means that, for every formula of the form i : I | α(i), there exists a formula
β(i, a, b) quantifier-free that is provably equivalent to it α(i) ⊣⊢ ∃a∀bβ(i, a, b).
Notice that these requirements reflect Gödel’s original translation and, at the same time,
they recall standard conditions used in category theory to say that a category is free for
a given structure. One could think for example about the condition of having enough
projectives in the exact completion of Carboni [5].

2. We introduce the notion of a Gödel fibration. A Gödel fibration is a fibration with simple
products and simple co-products, which, most importantly, admits a class of formal
sub-objects which are free from products and co-products and cover all the elements of the
fibre. Then we prove that a Gödel fibration is a fibration categorically embodying both
the logical principle of traditional Skolemization and the existence of a prenex normal
presentation for every logical formula.

3. We provide an intrinsic presentation of the Dialectica fibration. We prove that a given
fibration is an instance of the Dialectica construction if and only if it is a Gödel fibration.
This result helps understanding the existing notion of Dialectica fibration from a logical
perspective because it shows which properties an arbitrary fibration should satisfy to be
an instance of the Dialectica construction. In other words, given a fibration p there exists
a fibration p̄ such that p ∼= Dial(p̄) if and only if p is a Gödel fibration. From a categorical
perspective, we have classified the free-algebras for the Dialectica pseudo-monad.
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4. We prove that fibrations associated to the Dialectica construction satisfy a strong con-
structive feature in terms of witnesses. We have shown that in the internal language
of, say Hofstra’s Dialectica fibration Dial(p), i.e. in the logic theory that canonically
corresponds to this categorical notion, if there is a proof π of a statement ∃i α(i), then
there exists a witness t, which depends on the proof π, together with a proof of α(t).
This principle is sometimes called the Rule of Choice. For example, Regular Logic
(https://ncatlab.org/nlab/show/regular+logic) satisfies this principle, see [24].

Related work

In the present paper we provide an intrinsic characterization of the free algebras of the
pseudo-monad Dial(−) introduced by Hofstra in [11], i.e. we provide necessary and sufficient
conditions for a (cloven and split) fibration to be of the form Dial(p) for some fibration p.
Hofstra’s categorical presentation of the Dialectica construction generalizes to the fibrational
setting the original construction introduced by de Paiva [7]. In particular, we recall the
structural analysis due to Hyland [12] and Biering [2], where the first fibrational presentations
of the Dialectica construction were introduced. For a complete presentation of the theory of
fibrations and its connection to type theory, we refer the reader to Jacobs [13], and to [4] for
an introduction to pseudomonads.

More recently, modern reformulations of the Dialectica interpretation based on the
linearized version of de Paiva have been introduced, aiming to provide categorical models for
type theory. A relevant example of this line of work is Moss and von Glehn [17], where the
authors are interested not in the original construction, but in a modified version of Gödel’s
Dialectica interpretation for models of intensional Martin-Löf type-theory, using the notion
of fibred display map category. Their work focus on the preservation of the type constructors,
while they drop the layer of predicates from their Dialectica propositions, considering only
those Dialectica propositions of the form ∃x∀y⊤. In fact, they call their construction the
polynomial model, explaining that this name fits better, because they are considering the
predicate-free Dialectica construction. On a similar line, we mention the work of Pédrot [18],
investigating the validity of a Dialectica-like construction in a dependent setting. Different
variations of the Dialectica interpretation have been devised for automata, e.g. the work or
Pradic and Riba [19].

Finally, Topos-and tripos-theoretic versions of the Dialectica construction have been
studied by Biering in [3], while the recent work of Shulman [20], describes a “polycategorical”
version of a generalization of the Dialectica construction. Other applications of completions
involving universal and existential quantifiers can be found in [24, 23, 8], where similar
constructions are presented in the language of doctrines.

2 Revisiting categorical quantifiers

One of the pillars of categorical logic is Lawvere’s crucial intuition which considers logical
languages and theories as indexed categories and studies their 2-categorical properties. In
this setting connectives and quantifiers are characterized in terms of adjointness relations
[14, 15, 16].

In this fibrational setting, the intuition is that the base category B of a fibration p : E −→ B
represents the category of (type-theoretical) contexts, a fibre EI represents the propositions
α(i) in the context I, and the morphisms are proofs. Cartesian morphisms of p induce a
re-indexing or substitution operation. From this perspective, the simple form of quantification
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is described in terms of adjoints to weakening functors π∗ along projections π. For example,
existential quantification is given by an operation

∐
π∗ : EA×B → EA, which sends a

proposition α(a, b) to ∃b α(a, b).
Now we briefly recall the formal definition of a fibration with simple products (or simple

universal quantification) and coproducts (or simple existential quantification). For a complete
presentation of the theory of fibrations and its connection to type theory, we refer the reader
to Jacobs [13]. In this work, we will assume that a fibration p is always cloven and split, i.e.
that the re-indexing operation is functorial (these definitions can be found in pages 47 and
49 of [13]).

▶ Definition 2.1. We say a fibration p : E −→ B over a category B with finite products has
simple coproducts when the weakening functors π∗ have left adjoints

∐
π satisfying the

Beck-Chevalley Condition (abbreviated as BCC), i.e. for every pullback square of the form

I ×X
πI //

f×id

��

I

f

��
J ×X

πJ

// J

the canonical natural transformation f∗ ∐
πJ

⇒
∐
πI

(f × id)∗ is an isomorphism.
Dually, we say that a fibration p : E −→ B has simple products when the weakening

functors π∗ have have right adjoints
∏
π satisfying BCC.

For more details about the notion of fibration having simple coproducts (or simple products)
we refer to [13, Def. 1.9.1].

When one deals with quantification, for example in first-order logic, it is very common to
assert something like a formula α is quantifier-free. This assertion has a natural meaning
from a syntactic point of view, but it is not clear how it should be presented from a categorical
perspective. The aim of the following definitions, which are generalizations of definitions
in [24] to the fibrational setting, is to capture the common property of those elements of a
given fibration p : E −→ B which will appear as quantifier-free propositions in the internal
language of the fibration p. We start by defining when an element of a fibre of p is free
from the existential quantifier, and then we dualize the definition for the universal quantifier.
(Recall that the symbols

∐
and

∏
represent the logical quantifiers ∃ and ∀.)

The logical intuition behind the next definition is that an element α is existential-free
if it satisfies the following universal property: if there is a proof π of a statement ∃i β(i)
assuming α, then there exists a witness t, which depends on the proof π, together with a
proof of β(t). Moreover, we require that this holds for every re-indexing α(f) because in
logic quantifier-free propositions are stable under substitution, i.e. if α(x) is quantifier-free
then α(f) is quantifier-free.

▶ Definition 2.2. Let p : E −→ B be a fibration with simple coproducts. An object α of the
fibre EI is said to be

∐
-quantifier-free if it enjoys the following universal property. For

every arrow f and every projection πA in B as follows:

A×B
πA // A

f // I

and every vertical arrow:

f∗α
h−→

∐
πA

β
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of EA, where β is an object of the fibre EA×B, there exist a unique arrow A
g−→ B of B and a

unique vertical arrow f∗α
h−→ ⟨1A, g⟩∗β of EA such that:

h =
(
f∗α

h−→ ⟨1A, g⟩∗β
⟨1A,g⟩∗ηβ−−−−−−→ ⟨1A, g⟩∗(

π∗
A

∐
πA

β
)

=
∐
πA

β
)

where β ηβ−→ π∗
A

∐
πA
β is the unit at β of the adjunction

∐
πA

⊣ π∗
A.

Clarifying the concrete meaning of Definition 2.2, the given object α of EI represents a
formula α(i). Given an arrow A

f−→ I a term f(a) : I is in the context a : A, and it is the case
that f∗α represents the corresponding formula α(f(a)). The object β of EA×B corresponds
to a formula β(a, b), the object

∐
πA
β represents the formula (∃b)β(a, b), which is in the

same context a : A of α(fa). Meanwhile, the object ⟨1A, g⟩∗β is again the re-indexing of
β(a, b) through an arrow A

⟨1A,g⟩−−−−→ A×B, hence it represents the formula β(a, g(a)), which
is in the same context a : A of α(f(a)) and (∃b)β(a, b).

Thus the property we require of the formula α(i) is the following: whenever there is
a proof (an arrow h of the fibre) of (∃b)β(a, b) from α(f(a)) (for some term f(a) : I in
the context a : A), then there is a unique term g(a) : B in the context a : A together
with a unique proof h of β(a, g(a)) from α(f(a)), in such a way that, adding at the end of
the proof h the canonical proof of (∃b)β(a, b) from β(a, g(a)) (which is represented by the
re-indexing of the unit at β of the adjunction

∐
πA

⊣ π∗
A), we get back to the proof h itself

of (∃b)β(a, b) from α(f(a)). The uniqueness requirement of the term and the proof is due to
the proof-relevant nature of fibrations.

Observe that this is precisely the universal property, that we presented before Defini-
tion 2.2, enjoyed by a formula which is free from existential quantification.

▶ Remark 2.3. Notice that if we consider a fibration p with simple coproducts, then one can
define a sub-fibration p′ → p such that the fibres of p′ are given by

∐
-quantifier-free objects,

and the base category of p′ is the same of p. This follows since
∐

-quantifier-free objects are
stable under re-indexing by definition.

The next concept we are going to need in the categorical setting reminds us of the
existence of a prenex normal form in logic. Recall, for example from [6], that in (classical)
first-order logic (FOL) every formula is equivalent to some formula in prenex normal form.

▶ Definition 2.4. We say that a fibration with simple coproducts p : E −→ B has enough∐
-quantifier-free objects if, for every object I of B and for every element α ∈ EI , there

exist an object A and a
∐

-quantifier-free object β in EI×A such that α ∼=
∐
πI
β.

By duality we can define the same concept with respect to the universal quantifier.

▶ Definition 2.5. Let p : E −→ B be a fibration with simple products. An object α of the fibre
EI is said to be

∏
-quantifier-free if it enjoys the following universal property: for every

arrow f and every projection πA in B as follows:

A×B
πA // A

f // I

and every vertical arrow:∏
πA

β
h−→ f∗α

MFCS 2021
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of EA, where β is an object of the fibre EA×B, there exist a unique arrow A
g−→ B of B and a

unique vertical arrow ⟨1A, g⟩∗β
h−→ f∗α of EA such that:

h =
( ∏

πA

β = ⟨1A, g⟩∗(
π∗
A

∏
πA

β
) ⟨1A,g⟩∗εβ−−−−−−→ ⟨1A, g⟩∗β

h−→ f∗α
)

where π∗
A

∏
πA
β

εβ−→ β is the counit at β of the adjunction π∗
A ⊣

∏
πA

.

▶ Definition 2.6. We say that a fibration with simple products p : E −→ B has enough-
∏

-
quantifier-free objects if, for every object I of B and for every element α ∈ EI , there exist
an object A and a

∏
-quantifier-free object β in EI×A such that α ∼=

∏
πI

(β).

Now we can introduce a particular kind of fibration called a Skolem fibration. The name is
chosen because these fibrations satisfy a version of the traditional principle of Skolemization,
as presented in [10] and [11].

▶ Definition 2.7. A fibration p : E −→ B is called a Skolem fibration if:
its base category B is cartesian closed;
the fibration p has simple products and simple coproducts;
the fibration p has enough

∐
-quantifier-free objects.∐

-quantifier-free objects are stable under simple products, i.e. if α ∈ EI is a
∐

-quantifier-
free object, then

∏
π(α) is a

∐
-quantifier-free object for every projection π from I.

Notice that the last point of Definition 2.7 implies that, given a Skolem fibration p : E −→
B, the sub-fibration p′ : E′ −→ B of

∐
-quantifier-free objects of p defined in Remark 2.3 has

simple products.

▶ Proposition 2.8 (Skolemization). Every Skolem fibration p validates the principle:

∀x∃yα(i, x, y) ∼= ∃f∀xα(i, x, fx).

Proof. Let us consider an element α ∈ EA1×A2×B and a
∐

-quantifier-free object γ ∈ EA1 .
Hence, for every arrow π∗

1(γ) h−→
∐

⟨π1,π2⟩(α), there is a unique pair (g, h) where A1 ×A2
g−→ B

and π∗
1(γ) h−→ ⟨π1, π2, g⟩∗(α). Since B has exponents, then we have that g induces a unique

arrow A1
m−→ BA2 such ⟨π1, π2, g⟩ = ⟨π1, π2, ev⟨π1, π2⟩⟩⟨π1, π2,mπ1⟩. Therefore we have an

arrow

π∗
1(γ) h−→ ⟨π1, π2,mπ1⟩∗(⟨π1, π2, ev⟨π1, π2⟩⟩(α)).

Since p has simple products, h induces a unique arrow

γ
h−→

∏
π1

⟨π1, π2,mπ1⟩∗(⟨π1, π2, ev⟨π1, π2⟩⟩(α)).

Notice that the following square

A1 ×A2
π1 //

⟨π1,π2,mπ1⟩
��

A1

⟨idA1 ,m⟩
��

A1 ×A2 ×BA2
⟨π1,π3⟩

// A1 ×BA2
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is a pullback, hence by the BCC we have that
∏
π1

⟨π1, π2,mπ1⟩∗ ∼= ⟨idA1 ,m⟩∗ ∏
⟨π1,π3⟩.

Thus, we get that an arrow f induces a unique pair of arrows (m,h), but again (since
p has enough

∐
-quantifier-free objects) this pair represents a unique arrow of the fibre

EA1(γ,
∐
π3

∏
⟨π1,π1⟩(⟨π1, π2, ev⟨π1, π2⟩⟩(α)), i.e. the fibre

EA1×A2(π∗
1(γ),

∐
⟨π1,π2⟩

(α))

is isomorphic to

EA1(γ,
∐
π1

∏
⟨π1,π3⟩

(⟨π1, π2, ev⟨π1, π2⟩⟩(α))

and this means exactly that∏
π1

∐
⟨π1,π2⟩

(α) ∼=
∐
π1

∏
⟨π1,π3⟩

(⟨π1, π2, ev⟨π1, π2⟩⟩(α).

The proof for the general case where γ is a generic element of the fibre and not a
∐

-quantifier-
free object, follows by the observation that the arrows π∗(γ) −→ β are in bijection with those
of the form π∗

1(γ′) −→
∐
π2
β for appropriate projections, and where γ′ is the

∐
-quantifier-free

element which covers γ. ◀

Combining Definitions 2.4, 2.6 and 2.7, we introduce the notion of a Gödel fibration. The
idea is that a Gödel fibration is a Skolem fibration, such that every formula α(i) is equivalent
to a formula in prenex normal form with respect to p, i.e. there exists a formula β(x, y, i)
free from quantifiers, such that α(i) ∼= ∃x∀yβ(x, y, i).

▶ Definition 2.9. A Skolem fibration p : E −→ B is called a Gödel fibration if the sub-fibration
p′ : E′ −→ B, whose elements are

∐
-quantifier-free objects, has enough

∏
-quantifier-free

objects.

▶ Remark 2.10. Observe that if we consider a Gödel fibration p : E −→ B, an element which is
a

∏
-quantifier-free object in the sub-fibration p′ could not be

∏
-quantifier-free object of the

Gödel fibration. This because in Definition 2.9 of Gödel fibration, the universal property of
being a

∏
-quantifier-free object is required to hold only with respect to the

∐
-quantifier-free

objects of p.

The following proposition is an immediate consequence of Definition 2.9.

▶ Proposition 2.11 (Prenex normal form). In a Gödel fibration p : E −→ B, for every element
α of a fibre EI there exists an element β such that

α(i) ∼= ∃x∀yβ(x, y, i)

and β is
∏

-quantifier-free in the sub-fibration p′ of
∐

-quantifier-free objects of p.

Proof. Let us consider an element α of the fibre EI . Since p is a Gödel fibration, hence
in particular a Skolem fibration, the fibration p has enough

∐
-quantifier-free objects, and

hence there exists an element γ in the fibre EI×X such that α ∼=
∐
πI

(γ). Therefore, since
the sub-fibration p′ has enough

∏
-quantifier-free objects, there exists a

∏
-quantifier-free

object β of p′ in the fibre EI×X×Y such that γ ∼=
∏
πX

(β), and hence α ∼=
∐
πI

∏
πX

(β). ◀

MFCS 2021
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3 The Dialectica monad

In this section we assume that p : E −→ B is a cloven and split fibration whose base category
B has finite products. First we recall from Hofstra’s [11] the free construction Sum(−) which
adds simple sums (or coproducts) to a fibration, and then the dual construction Prod(−)
which freely adds simple products. Then, we present the Dialectica construction Dial(−)
and its decomposition in terms of simple coproducts and products completions.

Simple coproducts completion. The category Sum(p) has:
as objects triples (I,X, α), where I and X are objects of the base category B and α is
an object of the fibre EI×X ;
as morphisms triples (I,X, α) (f0,f1,ϕ)−−−−−−→ (J, Y, β), where I f0−→ J and I × X

f1−→ Y are
arrows of B and α(i, x) ϕ−→ β(f0(i), f1(i, x)) is a morphism of the fibre category EI×X .

The category Sum(p) is fibred over B via the first component projection and this fibration is
denoted by Sum(p) : Sum(p) −→ B. This fibration is called the simple coproduct (or sum)
completion of p. The intuition behind this definition is that an object (I,X, α) of the fibre
category Sum(p)I represents a formula (∃x : X)α(i, x). The assignment p 7→ Sum(p) extends
to a KZ pseudo-monad on the 2-category of cloven split fibrations, see [11, Theorem 3.9].
▶ Remark 3.1 (A presentation of Sum(p) reindexing functors). Let p : E −→ B be a cloven and
split fibration. Let I f−→ J be an arrow of B and let (J, Y, β) be an object of Sum(p)J . Then
the triple:

( I f−→ J, I × Y
πY−−→ Y, ⟨fπI , πY ⟩∗β

1⟨fπI ,πY ⟩∗β−−−−−−−−→ ⟨fπI , πY ⟩∗β )

is Sum(p)-cartesian (I, Y, ⟨fπI , πY ⟩∗β) → (J, Y, β) over I f−→ J . In particular Sum(p) is
endowed with a cloven and split structure. If:

(J, Y, β) (J×Y
g−→Y ′, β

γ−→⟨πJ ,g⟩∗β′)−−−−−−−−−−−−−−−−−−→ (J, Y ′, β′)

is an arrow of Sum(p)J (observe the omission of the first component, as it is forced to be
the identity arrow on J) then its f -reindexing is the pair:

(I, Y, ⟨fπI , πY ⟩∗β) (g⟨fπI ,πY ⟩, ⟨fπI ,πY ⟩∗γ)−−−−−−−−−−−−−−−−→ (I, Y ′, ⟨fπI , πY ′⟩∗β′)

of Sum(p)I , whose first component is the arrow I × Y
g⟨fπI ,πY ⟩−−−−−−−→ Y ′ of B and whose second

one is the arrow:

⟨fπI , πY ⟩∗β
⟨fπI ,πY ⟩∗γ−−−−−−−→ ⟨fπI , πY ⟩∗⟨πJ , g⟩∗β′ = ⟨πI , g⟨fπI , πY ⟩⟩∗⟨fπI , πY ′⟩∗β′

of EI×Y .
Now, let us assume that f is a projection J ×K

πJ−−→ J . In this particular case (in which
we are mostly interested) such an annoying presentation collapses into the following easier
one: the πJ -weakening of the arrow (g, γ) of Sum(p)J is the pair:

(J ×K,Y, ⟨πJ , πY ⟩∗β) (g⟨πJ ,πY ⟩,⟨πJ ,πY ⟩∗γ)−−−−−−−−−−−−−−→ (J ×K,Y ′, ⟨πJ , πY ′⟩∗β′)

of Sum(p)I , whose first component is the arrow J × K × Y
g⟨πJ ,πY ⟩−−−−−−→ Y ′ of B and whose

second one is the arrow:

⟨πJ , πY ⟩∗β
⟨πJ ,πY ⟩∗γ−−−−−−−→ ⟨πJ , πY ⟩∗⟨πJ , g⟩∗β′ = ⟨⟨πJ , πK⟩, g⟨πJ , πY ⟩⟩∗⟨πJ , πY ′⟩∗β′

of EJ×K×Y .
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▶ Remark 3.2 (Sum(p) has simple coproducts). Let p be a cloven and split fibration and let
us consider a projection J ×K

πJ−−→ J of B. The left adjoint
∐
πJ

of the πJ -weakening π∗
J in

Sum(p) exists and sends an arrow:

(J ×K,Y, β) (J×K×Y
g−→Y ′, β

γ−→⟨⟨πJ ,πK ⟩,g⟩∗β′)−−−−−−−−−−−−−−−−−−−−−−−−→ (J ×K,Y ′, β′)

of Sum(p)J×K to the arrow:

(J,K × Y, β) (J×K×Y
⟨πK ,g⟩−−−−→K×Y ′, β

γ−→⟨πJ ,⟨πK ,g⟩⟩∗β′)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (J,K × Y ′, β′)

of Sum(p)J , which we also denote as:

∐
πJ

(J ×K,Y, β)
∐

πJ
(g,γ)

−−−−−−→
∐
πJ

(J ×K,Y ′, β′).

▶ Remark 3.3. Let p : E −→ B be a fibration and consider its simple coproduct completion
Sum(p) : Sum(p) −→ B. As a consequence of Remark 3.2, every element (I, A, α) of the
fibre Sum(p)I isomorphic to an object of the form

∐
πI

(I ×A, 1, α′).
Notice that, by dualising the previous construction, one gets the notion of simple product

completion together with its analogous version of the previous characterization.

Simple products completion. The category Prod(p) is the one:
whose objects are triples (I,X, α), where I and X are objects of the base category B
and α is an object of the fibre EI×X ;
whose morphisms are triples (I,X, α) (f0,f1,ϕ)−−−−−−→ (J, Y, β), where I f0−→ J and I×Y

f1−→ X

are arrows of B and α(i, f1(i, y)) ϕ−→ β(f0(i), y) is a morphism of the fibre category EI×X .
Again, the category Prod(p) is fibred over B via first component projection and this fibration
is denoted by Prod(p) : Prod(p) −→ B and called simple product completion of p. The
intuition behind this definition is that an object (I,X, α) of the fibre category Prod(p)I
represents a formula (∀x : X)α(i, x).

▶ Proposition 3.4 (Hofstra [11]). There is an isomorphism of fibrations:

Prod(p) ∼= Sum(pop)op

which is natural in p.

Here one has to recall that pop stands for the fibrewise opposite of p, see [13] or [11, Def. 2.8].
Again, the assignment p 7→ Prod(p) extends to a co-KZ pseudo-monad on the 2-category

of cloven split fibrations, and its 2-category of pseudo-algebras is equivalent to the 2-category
of fibrations with simple products, see [11, Theorem 3.12].

We conclude this section by recalling the presentation of the Dialectica construction and
its presentation via the product-coproduct completions.

Dialectica construction. Let p : E −→ B be a fibration. Define a category Dial(p) as follows:
objects are quadruples (I,X,U, α) where I,X and U are objects of the base category B
and α ∈ EI×X×U is an objects of the fibre of p over I ×X × U ;
a morphism from (I,X,U, α) to (J, Y, V, β) is a quadruple (f, f0, f1, ϕ) where
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1. I
f−→ J is a morphism in B;

2. I ×X
f0−→ Y is a morphism in B;

3. I ×X × V
f1−→ U is a morphism in B;

4. α(i, x, f1(i, x, v)) ϕ−→ β(f(i), f0(i, x), v) is an arrow in the fibre over I ×X × V .
This is a fibration on B with the projection on the first component. Hofstra’s key observation
is that the construction of the fibration Dial(p) can be decomposed in two steps.

▶ Lemma 3.5 (Hofstra [11]). There is an isomorphism of fibrations, natural in p:

Dial(p) ∼= Sum(Prod(p)).

Notice that the pseudo-functor Sum(Prod(−)) is not a pseudo-monad in general, but, in
the case the base category B of a fibration p : E −→ B is cartesian closed, one can show that
there exists a pseudo-distributive law

ProdSum
λ−→ SumProd

of pseudo-monads, see [11, Theorem 4.4]. Therefore, by the known equivalence between
liftings of pseudo-monads and pseudo-distributive laws, see for example [21, 22], in this case
we have that Sum(Prod(−)) is a pseudo-monad.

A notably advantage of this algebraic presentation of the dialectica construction, is that
the principle of Skolemisation is represented by the pseudo-distributive law λ.

▶ Theorem 3.6 (Hofstra [11]). When the base category B of a fibration p is cartesian closed,
the fibration Dial(p) satisfies the principle

∀x∃yα(i, x, y) ∼= ∃f∀xα(i, x, fx)

for every α.

4 An intrinsic characterization of Dialectica fibrations

The main goal of this section is to connect the notion of Gödel fibration with that of Dialectica
construction, proving that a given fibration p is an instance of the Dialectica construction,
i.e. there exists a fibration p′ such that p ∼= Dial(p′), if and only if p is a Gödel fibration.
This result allows us to give an intrinsic definition of a Dialectica fibration because it shows
which properties an arbitrary fibration should satisfy to be an instance of the Dialectica
construction. Moreover, our proof of this equivalence is constructive, in the sense that when
p is a Gödel fibration, we are able to explicitly define and construct the fibration p′ such
that p ∼= Dial(p′).

To show this, we take the advantage of Hofstra’s decomposition Dial(−) ∼= Sum(Prod(−)),
and we start by showing how fibrations which are instances of the free construction Sum(−)
(and Prod(−)) can be described in terms of fibrations with

∐
-quantifier-free objects (and∏

-quantifier-free objects).

▶ Proposition 4.1. Let p : E −→ B be a fibration, and let us consider the simple coproduct
completion Sum(p). Let I be an object of B and let α be an object of its fibre EI . Then every
object of the form (I, 1, α) in the fibre Sum(p)I is a

∐
-quantifier-free element of Sum(p).

Moreover, the
∐

-quantifier-free objects of Sum(p) are up to isomorphism the elements of the
form (I, 1, α).
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Proof. First we prove that every element of the form (I, 1, α) is a
∐

-quantifier-free object.
Let us consider an arrow

ηp(α) = (I, 1, α) (f,ϕ)−−−→
∐
πI

(I ×A,B, β)

where I f=⟨g1,g2⟩−−−−−−→ A×B. We are going to prove that

ηp(α) (g2,ϕ)−−−−→ ⟨1I , g1⟩∗(I ×A,B, β)

is an arrow of Sum(p)I and that (f, ϕ) = (⟨1I , g1⟩∗ηβ)(g2, ϕ), where ηβ is the unit at
(I ×A,B, β) of the adjunction

∐
πI

⊣ π∗
I .

Moreover, we have to prove that such a choice of arrows I g−→ A of B and ηp(α) h−→
⟨1I , h⟩∗(I ×A,B, β) of Sum(p)I is unique. That is, whenever the equality:

(f, ϕ) = (⟨1I , g⟩∗ηβ)h

holds, it is the case that g = g1 and h = (g2, ϕ).
By Remarks 3.1 and 3.2, it is the case that

∐
πI

(I ×A,B, β) = (I, A×B, β), and that
⟨1I , g1⟩∗(I, A×B, β) = (I,B, ⟨πI , g1πI , πB⟩∗β), where πI and πB are the projections from
I ×B. Then:

ηp(α) (g2,ϕ)−−−−→ ⟨1I , g1⟩∗(I ×A,B, β) = (I,B, ⟨πI , g1πI , πB⟩∗β)

is a morphism of Sum(p)I since I g2−→ B is an arrow of B and:

α
ϕ−→ ⟨1I , g2⟩∗⟨πI , g1πI , πB⟩∗β = ⟨1I , g1, g2⟩∗β = ⟨1I , f⟩∗β

is a vertical morphism of EI . Observe that ηβ is the transpose along the adjunction
∐
πI

⊣ π∗
I

of the identity arrow of (I, A×B, β) =
∐
πI

(I ×A,B, β). Hence ηβ is the arrow:

(I ×A,B, β) (πA×B ,1β)−−−−−−−→ (I ×A,A×B, ⟨πI , πA×B⟩∗β)

and its ⟨1I , g1⟩-reindexing is the arrow:

(I,B, ⟨πI , g1πI , πB⟩∗β)
(⟨g1πI ,πB⟩, 1⟨πI ,g1πI ,πB ⟩∗β)
−−−−−−−−−−−−−−−−−−−→ (I, A×B, β)

whose precomposition by (g2, ϕ) yields indeed the arrow (f, ϕ).

Let us assume that the equality:

(f, ϕ) = (⟨1I , g⟩∗ηβ)h (1)

holds for some arrow I
g−→ A of B and ηp(α) h=(h2,ψ)−−−−−−→ ⟨1I , h⟩∗(I ×A,B, β) of Sum(p)I . As

it is the case that:

⟨1I , g⟩∗ηβ = (⟨gπI , πB⟩, 1⟨πI ,gπI ,πB⟩∗β)

one might compute the right-hand side of the equality (1) and infer the equality:

(f, ϕ) = (⟨g, h2⟩, ψ)

which implies that g = g1 and h = (h2, ψ) = (g2, ϕ).
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Finally, notice that Whenever f is an arrow A → I of B, it is the case that the f -reindexing
of (I, 1, α) is the triple (A, 1, f∗α), which is still a quantifier-free formula, that is, its second
component is terminal in B.

Conversely, let us assume that the triple (I, A, α) is
∐

-quantifier-free and let us consider
its identity arrow (I, A, α) → (I, A, α) =

∐
πI

(I ×A, 1, α). By
∐

-quantifier-freeness, there
are an arrow I

g−→ A of B and an arrow:

(I, A, α) (I×A
!−→1, α

ϕ−→π∗
I ⟨1I ,g⟩∗α=⟨πI ,gπI ⟩∗α)−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⟨1I , g⟩∗(I ×A, 1, α) = (I, 1, ⟨1I , g⟩∗α)

of Sum(p)I such that the identity arrow (πA, 1α) of (I, A, α) equals the composition:(
(I, A, α) (I×A

!−→1, ϕ)−−−−−−−−→ (I, 1, ⟨1I , g⟩∗α)
(g,1⟨1I ,g⟩∗α)
−−−−−−−−→ (I, A, α)

)
where the pair (g, 1⟨1I ,g⟩∗α) is nothing but the ⟨1I , g⟩-reindexing of the unit at (I ×A, 1, α)
of the adjunction

∐
πI

⊣ π∗
I . We infer by this arrow equality that it needs to be the case that

(I ×A
πA−−→ A) = (I ×A

πI−→ I
g−→ A) and that:

( α ϕ−→ ⟨πI , gπI⟩∗α = ⟨πI , πA⟩∗α = α
1α−→ α ) = 1α

which means that ϕ = 1α. Finally we observe that the composition:

(I, 1, ⟨1I , g⟩∗α)
(g,1⟨1I ,g⟩∗α)
−−−−−−−−→ (I, A, α) (I×A

!−→1, ϕ=1α)−−−−−−−−−−−→ (I, 1, ⟨1I , g⟩∗α)

equals the identity arrow (I × 1 !−→ 1, 1⟨1I ,g⟩∗α). This concludes that the pair (I ×A
!−→ 1, 1α)

is actually an isomorphism (I, A, α) ∼= (I, 1, ⟨1I , g⟩∗α). ◀

▶ Remark 4.2. Let p : E −→ B be a fibration and let I be an object of B. Let us consider an
arrow (I, A, α) (f,ϕ)−−−→ (I,B, β) of Sum(p)I . W.l.o.f we can assume (I, A, α) to be of the form∐
πI

(I ×A, 1, α), see Remark 3.3, so we might consider its transpose (I ×A, 1, α) (1I×A,f,ϕ)−−−−−−−→
π∗
I (I,B, β) = (I×A,B, ⟨πI , πB⟩∗β), which is the unique arrow making the following diagram:

∐
πI

(I ×A, 1, α)
(1I ,f,ϕ) //∐

πI
(1I×A,f,ϕ)

��

(I,B, β)

∐
πI
π∗
I (I,B, β)

ε(I,B,β)

55

commute. Moreover, as (I × A,B, ⟨πI , πB⟩∗β) =
∐
πI×A

(I × A × B, 1, ⟨πI , πB⟩∗β), see
Proposition 4.1, the arrow (1I×A, f, ϕ) factors uniquely as the arrow:

(I ×A, 1, α) (!,ϕ)−−−→ ⟨1I×A, f⟩∗(I ×A×B, 1, ⟨πI , πB⟩∗β) = (I ×A, 1, ⟨πI , f⟩∗β)

(which can be uniquely expressed as the image (p ↪→ Sum(p))ϕ of the arrow α
ϕ−→ ⟨πI , f⟩∗β

of EI×A) followed by the arrow:

(I ×A, 1, ⟨πI , f⟩∗β)
⟨1I×A,f⟩∗η(I×A×B,1,⟨πI ,πB ⟩∗β)−−−−−−−−−−−−−−−−−−−−→

∐
πI×A

(I ×A×B, 1, ⟨πI , πB⟩∗β)

which is the ⟨1I×A, f⟩-reindexing of the unit:

(I ×A×B, 1, ⟨πI , πB⟩∗β)
η(I×A×B,1,⟨πI ,πB ⟩∗β)−−−−−−−−−−−−−−→ (I ×A×B,B, ⟨πI , πB⟩∗β)

of the adjunction
∐
πI×A

⊣ π∗
I×A.
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Notice that in Proposition 4.1 the elements of the form (I, 1, α) represent propositions which
are free from the existential quantifier.

▶ Remark 4.3. The analogous of Remark 4.2 can be proved for a fibration having enough∐
-quantifier-free objects. In other words, in this kind of fibration the arrows of the fibres are

completely described by arrows between quantifier-free objects, unit and counit of adjunctions
given by coproducts.

Now we have all the tools to give an intrinsic description of the free-algebras for the
pseudo-monad which adds the simple coproducts to a given fibration.

▶ Theorem 4.4. A fibration p : E −→ B with simple coproducts is an instance of simple
coproduct completion if and only if it has enough

∐
-quantifier-free objects. Moreover, in this

case p ∼= Sum(p′) where p′ is the subfibration of
∐

-free-quantifers objects of p.

Proof. We define p′ : E′ −→ B the full-subfibration of p : E −→ B such that the objects of E′

are the
∐

-quantifier-free objects. By the universal property of the inclusion morphism p′ ↪→
Sum(p), there is unique a morphism of fibrations with simple coproducts F : Sum(p′) −→ p
commuting with the inclusion morphisms p′

ηp′
↪→ Sum(p′) and p′ ↪→ p. We claim that F is an

equivalence of fibrations. Firstly we observe that F is essentially surjective and then we show
that it is fully faithful. From now on, whenever π is a projection in B, we indicate as

∐
π the

left adjoint to the π-weakening w.r.t. Sum(p′) and as
∑
π the one w.r.t. p. Observe that:

F (I, 1, γ) = F
(
p′ ηp′
↪→ Sum(p′)

)
γ = (p′ ↪→ p)γ = γ

for every I in B and every γ in E′
I .

Essential surjectivity. Let α be an object of E and let I be the object pα of B. Since p
has enough

∐
-quantifier-free objects, there are J in B and β in EI×J such that

∑
πI
β ∼= α.

Since F preserves simple coproducts, it is the case that:

F (I, J, β) = F
∐
πI

(I × J, 1, β) =
∑
πI

F (I × J, 1, β) =
∑
πI

β

and we are done. Observe that (I, J, β) is an object of EI , hence the functor EI → E′
I induced

by F is essentially surjective as well.

Full faithfulness. It sufficies to prove that the morphism F of fibrations over B gives rise
to an equivalence EI → E′

I , for any given object I of B (see [13]). As the essential surjectivity
of F ↾EI

: EI → E′
I follows by the previous part, we only need to observe its full faithfulness.

By Remark 4.2 we write a given arrow (I, A, α) (f,ϕ)−−−→ (I,B, β) of EI as the composition:

ε(I,B,β)

( ∐
πI

⟨1I×A, f⟩∗η(I×A×B,1,⟨πI ,πB⟩∗β)

)( ∐
πI

(p′ ↪→ Sum(p′))ϕ
)

and this factorisation is unique, because of the uniqueness of adjoint transposition, because of
the uniqueness-part of Proposition 4.1 and because of faithfulness of the functor p′ ↪→ Sum(p′).
As F is forced to preserve simple coproducts and commutes with the inclusion morphisms
p′

ηp′
↪→ Sum(p′) and p′ ↪→ p, the arrow F (f, ϕ) equals the composition:

ε(
∑

πI
β)

( ∑
πI

⟨1I×A, f⟩∗η⟨πI ,πB⟩∗β

)( ∑
πI

ϕ
)
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which is indeed an arrow
∑
πI
α →

∑
πI
β. Observe that, analogously, every arrow

∑
πI
α →∑

πI
β of E′

I can be uniquely factored as such a composition, again by the existence and the
uniqueness of the adjoint transposition, by Definition 2.2 (recall that p is assumed to have∐

-quantifier-free objects) and by full faithfulness of p′ ↪→ p. Hence the function:

EI((I, A, α), (I,B, β)) → E′
I

( ∑
πI

α,
∑
πI

β
)

induced by F ↾EI
is bijective, i.e. F ↾EI

is fully faithful. ◀

Notice that the characterization of Theorem 4.4 can be obtained also for the simple product
completion because of the equivalence the equivalence Prod(p) ∼= Sum(pop)op, see Proposi-
tion 3.4.

▶ Theorem 4.5. A fibration p : E −→ B with simple products is an instance of simple product
completion if and only if it has enough-

∏
-quantifier-free objects. Moreover, in this case

p ∼= Prod(p′′) where p′′ is the subfibration of
∏

-free-quantifers objects of p.

Proof. It follows by Theorem 4.4 and Proposition 3.4. ◀

Combining Lemma 3.5, Theorem 4.4 and Theorem 4.5 we can prove the main result of our
work, which allows us to recognize if an arbitrary fibration p is an instance of the Dialectica
construction or not, and if it is, we can construct the fibration p̄ such that Dial(p̄) ∼= p.

▶ Theorem 4.6. Let p : E −→ B be a fibration with products, coproducts and such that B is
cartesian closed. Then there exists a fibration p̄ such that for Dial(p̄) ∼= p if and only if p is
a Gödel fibration.

Proof. By Lemma 3.5 we have that Dial(−) ∼= Sum(Prod(−)). Therefore, the result follows
from Theorem 4.5 and Theorem 4.4 by directly rephrasing the sequential application of these
results. ◀

▶ Remark 4.7. Notice that from a pure categorical perspective Theorem 4.6 provides a
characterization of the free-algebras of the pseudo-monad Dial(−).

5 Conclusion

Our results develop the original Dialectica construction from both a categorical and logical
perspectives, which contributes to a deeper understanding of the construction.

Our main result Theorem 4.6, provides an internal characterization of fibrations which
are instances of the Dialectica construction, highlighting the key features a fibration should
satisfy, namely it must be a Gödel fibration, to be an instance of the Dialectica construction.

Our presentation in terms of Gödel fibrations underlines a double nature of Dialectica
fibrations: they satisfy principles which are typical of classical logic, such as the existence of
a prenex normal form presentation for formulae, but they also satisfy principles normally
associated to intuitionistic logic. For example, they satisfy the existence of terms witnessing
a proof: for every proof of α ⊢ ∃xβ(x) where α is quantifier-free, we have a proof of α ⊢ β(t)
for some term t.
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Dialectica-like constructions are pervasive in several areas of mathematics and computer
science, and we briefly describe some future work, based on our previous analysis. We
wonder if the decomposition introduced by Hofstra can be extended or modified to provide
similar results for cousins of the Dialectica construction. In particular, we believe that this
decomposition, combined with the results presented in [23], could be generalized to the
context of dependent type theory.

There are two fibrations which seem to share common features with the Dialectica
construction. In particular, we would like to investigate and compare the fibrations arising
from work by Abramsky and Väänänen [1] on the Hodges semantics for independence-friendly
logic and the Dialectica tripos, which is a model of separation logic [3].

Finally, the strong constructive features of Dialectica fibrations we have shown suggest
that these kinds of fibrations could lead to interesting applications in constructive foundations
for mathematics and proof theory.
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