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Abstract
Many modern NLP models are already close to simulating children’s language acquisition; the main
thing they currently lack is a “real world” representation of semantics that allows them to map from
form to meaning and vice-versa. The aim of this “Crazy Idea” is to spark a discussion about how
we might get there.
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1 Crazy Idea

Modern NLP systems such as BERT, ELMo and GPT-3 have many potential applications
in both industry and academia; but one that has barely been considered is simulating how
children learn their native language. This question lies at the very heart of cognitive science
– with at least five journals devoted solely to it – but has yet to be tackled with modern NLP
approaches. Although modelling work is conducted in this domain, it typically uses small
and simple models (e.g., three-layer connectionist networks) to tackle narrowly circumscribed
problems (for example, children’s acquisition of the English past-tense system; [10]).

But here’s the thing: Models like BERT, ELMo and GPT-3 are, in many respects, nearly
there. What the past 50 years of child language research have taught us is that learners store
representations at every level from the concrete (e.g., the lexical string cup+of+tea) to the
abstract (e.g., the SUBJECT VERB OBJECT transitive construction), and everything in
between (see [1, 2] for reviews). That is, exemplars – utterances that children hear and store
– are never discarded in favour of context-free symbolic rules. Rather these exemplars are
re-represented at increasingly abstract levels, just as in BERT, ELMo, GPT-3 (and other
deep-learning models in domains such as image-classification models; e.g., [14]).

Crucially, as I argued in [2], “this type of model is not just a metaphor ([5, 6, 9]). The
brain really does contain multiple layers of units (i.e., neurons), each of which aggregates
input signals using a nonlinear function and outputs signals to other units. While any
particular artificial neural network model of language is only the clumsiest metaphor, the
claim that language is represented as patterns of activation across ‘dumb’ neurons, each of
which ‘knows’ nothing about nouns, verbs and all the rest of it is literally true, and quite
beyond dispute”.
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4:2 Child Language

So what’s missing? Why aren’t BERT and the like already viable candidates for models
of children’s language acquisition? The answer, of course, is that BERT lacks not only any
kind of communicative goals, but any links to real-world meanings at all (e.g., [3, 11, 12]),
with “meanings” represented solely as contextualized word embeddings. What we need, then,
is a deep-learning model that learns like children; a model that – when “listening” – maps
strings onto meanings and – when speaking – maps “meanings” onto strings.

Of course, this type of approach was tried in the earliest days of NLP, and swiftly
abandoned as unworkable. And, indeed, if our goal is to translate from one natural language
to another, to develop a predictive-text application, or to generate passages of text given a
prompt (e.g., GPT-3), contextualized word embeddings will probably do a better job. But
if our goal is to simulate children’s language acquisition, we have to bite the bullet and
develop “real-world” semantic representations (which, as Gary Marcus has often argued, are
important for many practical applications of NLP too).

Indeed, simulating the first few years of language acquisition may be a useful way to take
the first steps towards this much bigger problem. A typical two-year-old has a vocabulary of
only a couple of hundred words; a typical three-year-old, a couple of thousand. The amount
of input that children receive – around 10,000–20,000 words of speech per day – is also small
by BERT standards, and most of it is relatively simple, concrete and highly repetitive ([4]).
Thus, simulating the first few years of child language acquisition in its entirety is a realistic
goal for an ambitious and well-funded research team, even if some hand coding of semantics
is required (though a wrinkle here is the extent to which children’s semantic representations
are adultlike).

How should we go about this problem? This is where I hand over to you (and why I’m
submitting this paper as a “Crazy Idea” for discussion). I’m a child language experimentalist,
with only very limited experience of basic computational modelling. Could knowledge graphs
represent the necessary semantic information? Would we need some additional hand-coding
of at least the basic objects and actions in the child’s world? And, if so, can we adopt a “view
from nowhere”, or do we need to take account of the fact that human cognition is embodied
in our sensorimotor experience ([8]), perhaps by including something like sensorimotor norms
(e.g., [7])?

Could neural-symbolic approaches (e.g., [13]) connect knowledge graphs with neural
networks? And what other semantic representations are used in modern NLP? Or can we
use some kind of vector representation after all, perhaps using principal component analysis
to distil them into elements of meaning that can be used to encode semantic “messages”. Or
can we somehow represent meaning by leveraging techniques used in machine translation
and using crosslinguistic vectors (e.g., the “meaning” of cat is the entity that stands in the
same relationship to dog as does French chat to chien)? You tell me!
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