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Abstract
Terminological Concept Systems (TCS) provide a means of organizing, structuring and representing
domain-specific multilingual information and are important to ensure terminological consistency
in many tasks, such as translation and cross-border communication. While several approaches to
(semi-)automatic term extraction exist, learning their interrelations is vastly underexplored. We
propose an automated method to extract terms and relations across natural languages and specialized
domains. To this end, we adapt pretrained multilingual neural language models, which we evaluate
on term extraction standard datasets with best performing results and a combination of relation
extraction standard datasets with competitive results. Code and dataset are publicly available.2
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1 Introduction

Terminological inconsistency represents one major source of misunderstanding in specialized
communication. One vital measure to counteract such inconsistency is the creation of a TCS
that represents concepts, their terms and interrelations. Thereby, it can be ensured that
different parties in a communication, such as medical, political, and news teams in times
of crisis, consistently refer to phenomena by utilizing the same words. Several approaches
to automatically extract domain-specific terms, i.e., single- and multi-word sequences, from
natural language text exist. Such methods rely on frequency-based to Wikipedia-link-based
Automated Term Extraction (ATE) approaches [4]. ATE is further distinguished depending
on whether it is performed on document or corpus level. However, to the best of our
knowledge, no approaches to extract a full terminological concept system from multilingual
texts have been proposed.

1 Corresponding author
2 https://github.com/Text2TCS/Towards-Learning-Terminological-Concept-Systems
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22:2 Learning TCS from Multilingual Text

A TCS groups synonyms and equivalents across languages into a single concept and
interrelates these concepts with a set of prespecified relations. A major distinction is made
between hierarchical, i.e., generic and partitive, and non-hierarchical, e.g. activity and
ownership, relations. While to the best of our knowledge there are no approaches for learning
a TCS from text, neighboring fields can provide inspiration for the task at hand. For instance,
entity linking represents the task of identifying and interlinking named entities based on
information provided in text (e.g. [33]) and ontology learning also requires term and relation
extraction (e.g. [31] build on deep learning).

In this work, we rely on recent developments of deep learning and especially the recent
success of large pretrained multilingual language models. In our approach we split the
task of learning a TCS from text into two sentence-level steps: 1) term extraction, and 2)
relation extraction. We rely on adaptations of the pretrained multilingual language model
XLM-RoBERTa (XLM-R) [9] for both steps and connect them in a pipeline. The first step
reads the document sentence by sentence and assigns each word with one of three tags:
term, term continuation, not a term. In the second step and with a different adaptation of
XLM-R, we identify relations between terms building on a predefined set of hierarchical and
non-hierarchical terminological relations.

Given the resulting information we automatically learn from text, this approach con-
tributes to the topic of knowledge graphs as well as deep learning for Linguistic Linked
Open Data (LLOD). Since XLM-R is highly multilingual, trained on 100 different languages,
TCSs can be learned with the proposed approach from texts in any of those languages.
Nevertheless, very few datasets for evaluating multilingual TCSs exist. For term extraction,
we train and evaluate the system on the TermEval 2020 dataset [34] in English, French, and
Dutch across four specialized domains as well as the English ACL RD-TEC 2.0 dataset [32].
For relation extraction, we rely on a combination of SemEval datasets [15, 20], a WCL
hypernymy dataset [28], and manually annotated data we created, all of which are only
available in English. To represent the resulting TCS, we currently rely on the ISO standard
TermBase Exchange (TBX) format, however, the resulting information could be serialized
in any adequate format. Methods for hosting terminological resources as LLOD have been
proposed before (e.g. [11]).

In the next section, we present a brief theoretical introduction to a TCS and terminology,
followed by an introduction to language models in Section 3. Section 4 details the data
utilized to train and evaluate the proposed approach. Section 5 details the TCS learning
method as well as the individual steps thereof, the results of which are presented in Section 6.
We discuss the results in Section 7 and present related work in Section 8 prior to some
concluding remarks.

2 Terminological Concept Systems

This section provides a brief overview of the field of terminology and TCS. It also states the
relation typology utilized for our TCS learning approach.

2.1 Term, Concept and Terminology
Terminology can only be understood within the framework of specialized language or language
for special purposes, which is defined as “natural language [...] used in communication
between experts in a domain [...] and characterized by the use of specific linguistic means
of expression” (emphasis in original) [1]. Thus, terminology refers to a set of concepts and
their designations in a specialized field of knowledge (a language for special purposes). In
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terminology studies, different schools of thought exist and we will follow the so-called General
Theory of Terminology, where concepts and terms are differentiated, wherein concepts are
considered abstractions of a set of physical or abstract entities and terms are their designation
by linguistic means [3].

A designation can refer to a single- or multi-word term, a named entity, a symbol or even
a formula. When talking about term extraction, in general extracting named entities and
symbols is implicitly included. Concepts are rather vaguely referred to as units of thoughts
and knowledge, however, we treat them as structuring means for synonymous terms. A
concept system refers to the organization of concepts, and thereby also of knowledge.

Many ISO standards are based on this school of thought in terminology. The ISO
standards address topics that range from the definition of terminology and terminology
management to the representation of terminology in terminological databases. Among
these standards is the TermBase eXchange (TBX) standard [2] that defines an industry
representation format for exchanging terminological resources detailed below.

2.2 Relation Types
After identifying concepts, they can be analyzed and modeled by means of concept systems.
Concept relations describe the link between different concepts. In the literature on terminology,
different models for describing concept relations have been proposed, at times with a very
large typology of relation types (e.g. [30]). On the highest level, relation types are generally
classified into hierarchical and non-hierarchical relations.

Hierarchical relations connect a superordinate with a subordinate concept and are either
generic or partitive. Generic relations exist “between two concepts when the intension of the
subordinate concept includes the intension of the superordinate concept plus at least one
additional delimiting characteristic” [3], such as “furniture” which serves as the superordinate
concept for “desk”. A lexical manifestation of this relation could, for instance, be “desk is a
kind of furniture”. Partitive relations exist when the superordinate concept relates to the
entire object and the subordinate concept refers to its parts. For example, “root”, “branch”
and “stem” are parts of the superordinate concept “tree”, or linguistically described a “stem
is part of a tree”.

Non-hierarchical relations are called associative in ISO 1087 [1], however, in the typology
we adopt, an associative relation represents a thematic connection between two concepts that
is not further specified. The number of non-hierarchical relations in the ISO 1087 standard [1]
is rather small – sequential as superordinate to spatial, temporal and causal relations – and
has been criticized for being inconsistent and ambiguous. Fortunately, a variety of relations
have been proposed by different authors (e.g. [30]). In ontology learning and knowledge
graph generation non-hierarchical relations also play a crucial role. However, the relation
types generally vary significantly from one ontology or knowledge graph to another. While
in the future we seek to map our typology to existing standard LLOD resources, for now we
adopt relation types established in the terminology community and a consistent typology
across domains and languages.

The relation types used in this study are derived from a literature review and were
adapted to the needs of this research. The objective is to map semantic relations to this
prespecified typology in order to ease the alignment between different TCSs resulting from
our method across domains and languages, which consists of: generic relation (is a kind of,
e.g. table is a kind of furniture) and partitive relation (is part of, e.g. roots are part of a
tree), several non-hierarchical relations were included, that is, spatial relation (for objects
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and their location, e.g. avalanche and mountain), temporal relation (for objects and their
time or sequences, e.g. production and consumption), causal relation (for causes and their
effect, e.g. accident and injury),

Hierarchical relations:
generic relation the intension of the subordinate concept includes the intension of
the superordinate concept plus one additional characteristic, e.g. “table is a kind of
furniture”
partitive relation the subordinate concepts are parts of the superordinate concept, e.g.
“roots are part of a tree”

Non-hierarchical relations:
activity relation connects actors with an activity or an activity with its entity, e.g.
“teacher activity schoolchildren” where the activity can be teaching,
causal relation connects causes and their effect, e.g. “accident causes injury”,
instrumental relation: connects instruments and their use, e.g. “coffee machine instru-
mental coffee” since the former is utilized to make the latter,
origination relation connects an entity with its origin, e.g. “car origination factory”
since the car originates from a factory,
spatial relation connects an entity with its location, e.g. “avalanche spatial mountain”
since the former is located on the latter
associative relation provides a generic thematic connection between concepts, e.g.
“lecturer associative education” since both are thematically associated to each other.

An associative relation can serve to model a connection between two loosely related
concepts to which none of the other relation types applies. Apart from the symmetric
associative relation, all relations are directed, e.g. for the instrumental relation, the direction
is from instruments to their use and the partitive relation is directed from parts to whole.
We initially treat synonymy as a symmetric relation in the relation extraction step, even
though in the final output synonymy is not represented as relation, but as a set of synonyms
to form a concept called terminological entry.

2.3 Representation in TBX
ISO 30042 [2] defines a framework to represent terminological data in a structured format
called TBX, which aims at facilitating the exchange of terminological data for different
purposes, including analysis, representation and dissemination. The users of TBX files
include terminologists, translators or technical writers on the one hand, and computer
applications, such as computer-assisted translation tools and authoring software, on the
other. It is a flexible format that allows for user-defined relation types. As the de-facto
standard for terminological resource representation in industry and academia, we opted for
TBX as our initial output format, but intend to accommodate RDF directly and not only by
way of conversion of TBX to RDF [11] in the near future.

3 Language Models

Most of the recent progress in natural language processing can be traced back to transformer-
based pretrained language models. This type of transfer learning utilizes deep neural networks
based on the transformer architecture [38]. In a first stage called pretraining, the network
learns to predict a masked word given its context, a task for which large amounts of training
data are available. In the second stage called fine-tuning, the pretrained network is used
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again and is trained for a specific task like classification by adding additional layers on top
of the model, while making use of the previously learned rich language representations. A
frequently used English language model is BERT [10], for which also multilingual variants
exist that have been pretrained on corpora in multiple languages, e.g. multilingual BERT
or XLM-R [9]. XLM-R uses the enhanced training paradigm introduced by RoBERTa [26]
while being pretrained on a CommonCrawl dataset in 100 different languages. Due to the
pretraining, multilingual models can be fine-tuned in one language and show strong zero-shot
performances in another language, for which no training samples were provided during
fine-tuning.

4 Data

The data used for training and evaluation was compiled from multiple datasets. In order to
effectively use the data to train our model for the specified tasks, some pre-processing as
well as manual creation of additional data was necessary.

4.1 Term Extraction Data
For term extraction, we used the Annotated Corpora for Term Extraction Research (ACTER)3

that was also used in the TermEval 2020 challenge [34]. This provided us with hand-annotated
data and a good baseline to evaluate our systems. The data comes in the form of raw text
documents divided into four domains (corruption, dressage/equitation, wind energy, heart
failure) and a single document per domain containing all terms that have been identified in
the text documents by language experts. The terms are provided with the same surface-form
as they appear in the texts, so each term-list may contain several morphological variations
of a term. All terms are provided in lower-case. Additionally, the data is provided in three
languages, namely English, French, and Dutch. At the time of writing, the most recent
version of the dataset was version 1.4, which did not provide inline annotations. Since our
training is performed on sentences, we needed to annotate each sentence in the provided text
documents with the terms from the corresponding term document.

To annotate the texts, we first split the documents into sentences using the spaCy
sentencizer [21] and tokenized each sentence using sacremoses4, a tokenizer written in Python.
Subsequently, each individual sentence was annotated with terms from the term document of
the corresponding domain. Only terms that had a full match with any word or word sequence
composing each sentence were annotated. This way it was possible to create an inline
annotation from the raw data. In order to allow a comparison with the TermEval results we
followed the train-val-test-split of the TermEval 2020 challenge and used the corruption and
wind energy domains as training, the dressage (equitation) domain as validation, and the
heart failure domain as test data set. With this train-val-test-split, around 10,000 sentences
per language were used for supervised training, while the test set contained approximately
2,000 sentences. The exact word and term count per language is represented in Table 2.

We also trained separate models using the ACL RD-TEC 2.0 dataset [32] to verify if our
approach would work on other datasets. The ACL RD-TEC 2.0 dataset provides high-quality
inline annotations of 471 scientific abstracts by two human annotators. In total more than
2,200 sentences were annotated with 6,818 terms. Annotator 1 annotated 900 sentences and

3 https://github.com/AylaRT/ACTER
4 https://github.com/alvations/sacremoses
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Annotator 2 1,301 sentences. Since no split is proposed by the dataset authors, we split the
data into 60% training data, 20% validation data, and 20% test data for each of the two
annotators respectively. This resulted in 540 training sentences and 180 val/test sentences
for Annotator 1 and 780 training sentences and 260/261 val/test sentences for Annotator 2
respectively. Since the dataset is inline annotated, the terms from each sentence could be
easily extracted with an XML Parser. Additionally, unlike TermEval, capitalization of terms
is maintained both for the training and validation/test data.

4.2 Relation Extraction Data

For relation extraction, we combined training data from two SemEval tasks to obtain more
training examples with a higher diversity of relation types: SemEval 2007 Task 4 [15] and
SemEval 2010 Task 8 [20]. We then mapped the relation types of these datasets to the relation
types defined for our TCS (see Section 2.2). Since these two datasets lack generic relations, we
additionally utilized the manually created WCL 1.2 dataset [28] and automatically annotated
the terms in the ACTER dataset texts with generic relations and synonyms, which were
also not represented in the other datasets, by relying on WordNet relations. Furthermore,
we extracted acronyms and their long unabbreviated forms as synonyms from the ACTER
texts by adapting the regex-based acronym extraction method proposed by Azimi et al. [6].
We further added to the data by manually annotating around 200 acronym-term pairs from
ACTER with relations other than synonymy and another 271 sample sentences from the
Common Crawl News Corpus5 with term pairs that show no relation at all, i.e., negative
samples to be classified as “none”. All samples of the resulting relation dataset are in English.
Statistics regarding the relation type distribution can be seen in Figure 1.

Figure 1 Number of samples for each relation type.

5 https://commoncrawl.org/2016/10/news-dataset-available/

https://commoncrawl.org/2016/10/news-dataset-available/
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For the data originating from SemEval we use the original train-test split, while from the
additional data we take 20% for testing. An additional 20% from all resulting training data
is used for validation.

5 Method

We will first describe the overall architecture of the proposed TCS learning pipeline. Sub-
sequently, we introduce our term extraction and relation extraction models.

5.1 Architecture
The TCS extraction pipeline, as shown in Figure 2, takes text documents as input and
outputs terminologies in the TBX format as well as in the form of a graph visualization, an
example of which is shown in Figure 3. Due to input length restrictions of current language
models, terms as well as their relations are extracted on sentence-level basis. Thus, as the first
and only preprocessing step, the input document is split into sentences using the rule-based
sentence segmentation component provided by the software library spaCy [21].

Figure 2 TCS learning pipeline.

In a second step, terms are extracted from each sentence using the neural network
described in Section 5.2. After the term extraction step, we end up with pairs of sentences
and the terms they contain according to the model.

Based on this data, all possible pairs of terms are computed per sentence. These pairs
together with their respective context, i.e., the sentence which contains them, are then fed
one after the other to the second neural network, described in Section 5.3, which outputs
whether or not there is a relation between the terms and, if so, which relation type exactly.

As the fourth step, these term pairs and their corresponding relations are used to create
a terminological concept system. Therefore, terms with synonym relations are merged into
concepts with a unique identifier. The extracted relations, which at this point are still
between specific terms, are mapped to the newly created concepts. Through this process
it is possible that self-referential relations as well as duplicate relations are created, which
are subsequently deleted. Moreover, it is possible that there are multiple different relations
between the same two concepts, however, only one is represented in the final TCS. To provide
more insight into this process to the final user, we show the extraction network’s classification
confidence in the output. Lastly, the resulting TCS is represented in the TBX format and as
a graph utilizing the Graphviz library [13].

5.2 Term Extraction Model
For term extraction, we take advantage of the multilingual pretrained language model XLM-R
in its base size made available by the transformers library [40]. The input provided to the
model consists of full sentences and is based on the data described in Section 4.1. The output
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Figure 3 Example of a possible visualization with Graphviz.

labels are given on a word basis, i.e., each word is either tagged as “B-T” (beginning of
a term), “T” (continuation of a term), or “n” (no term). For instance, the labels for the
sentence “We meta-analyzed mortality using random-effect models” are “n”, “B-T”, “B-T”,
“n”, “B-T”, “T”. For classification into these three classes we use a single fully connected
layer which uses the representations created by XLM-R for the individual words as input.
Since XLM-R tokenizes the input on a subword level, we obtain labels for these subword
units which have to be mapped back to the original input. Training was conducted using the
Adam optimizer with a learning rate of 2e-5, a batch size of 8, and a validation every 100
steps allowing us to load the best performing model at the end of the training procedure,
which consisted of 10 epochs overall.

5.3 Relation Extraction Model
As with term extraction, we fine-tune the pretrained XLM-R for the relation extraction
task. The data used is described in Section 4.2. The input of the model consists of an entity
pair followed by a contextualizing sentence containing both entities, for instance, “cough.
Covid-19. The cough was caused by Covid-19.” The model classifies the representation of
the whole sequence created by XLM-R as input with a fully connected layer into one of the
relations presented in Section 2.2. For directional relations two classes are available, so that
the given example input would, for instance, be classified as causalRelation(e2,e1). The
model was trained for 9 epochs utilizing the Adam optimizer with a learning rate of 2e-5 and
a batch size of 32.

6 Results

Since no datasets for a full TCS evaluation are available as of yet, we evaluate our model on
the described datasets separately and present the results below.

6.1 Term Extraction
For the term extraction step, we evaluated our model in comparison to the best preforming
models of the TermEval 2020 shared task in terms of precision, recall and F1 score as shown in
Table 1. These metrics are calculated on the basis of the available annotation in the original
ACTER dataset, where we opted for the more comprehensive list of terms including named
entities. Since different combinations of training and test languages might have an impact
on the overall performance, we report on these combinations in Table 1. As in TermEval
2020 we use the heart failure domain as hold-out test set. The baseline for English and
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French is provided by [19], who used monolingual neural language models to predict whether
a given phrase is a term provided some context. Thus, other combinations as tested with our
multilingual model are not available with monolingual models. The baseline for Dutch is
provided by a bidirectional LSTM with GLOVE6. The overall best results are marked in
bold for each test language. For the ACL RD-TEC 2.0 corpus no baseline is available and
the data split into 60% training, 20% validation, and 20% test data was chosen by us as no
split was suggested by the authors of the dataset. The results are also available in Table 1.

Table 1 Test set results of our term extraction model on two different datasets evaluated on
different langauge combinations.

Dataset Training Test Token Classifier Previous SOTA
Prec Rec F1 Prec Rec F1

TermEval 2020 EN EN 54.9 62.2 58.3 34.8 70.9 46.7
TermEval 2020 FR EN 56.7 36.2 44.2
TermEval 2020 NL EN 55.3 61.8 58.3
TermEval 2020 ALL EN 54.4 58.2 56.2
TermEval 2020 EN FR 65.4 51.4 57.6
TermEval 2020 FR FR 68.7 43.0 52.9 44.2 51.5 48.1
TermEval 2020 NL FR 62.3 48.5 54.5
TermEval 2020 ALL FR 49.4 55.3 55.0
TermEval 2020 EN NL 67.9 71.7 69.8
TermEval 2020 FR NL 69.2 55.2 61.4
TermEval 2020 NL NL 71.4 67.8 69.6 18.9 18.6 18.7
TermEval 2020 ALL NL 70.0 65.8 67.8
ACL (An.1) EN EN 74.4 77.2 75.8
ACL (An.2) EN EN 80.1 79.3 80.0

It can be seen from Table 1 that our solution outperforms the TermEval 2020 baseline in
all three languages. However, it is interesting to see that mixed training and test languages
achieve best results. As a matter of fact, the model trained on English achieved best results
not only when tested on English, but also when tested on French and Dutch. When the test
language was English, training on Dutch achieved equivalent results to training on English.
A general assumption would be that training on the language that is being tested or training
on all available languages should perform best, an assumption that could not be confirmed
in this experiment. Furthermore, a substantial difference in recall behavior can be observed
from one and the same model, which can also be observed with the monolingually pretrained
baseline models even though they achieve a competitive or even higher recall. This suggests
differences in term type across the three languages. This observation can also be confirmed in
the validation set performance reported in Table 2, where French as training and validation
set performs significantly worse. Validation results also show some performance differences
to the test performances.

The models trained on the ACL RD-TEC 2.0 corpus show an even stronger performance
with an F1 score of 75.8 and 80.0 for Annotator 1 and 2 respectively. Moreover, the scores for
precision and recall of the two resulting models are nearly perfectly balanced. The validation
scores, reported in Table 2, are consistent with the test scores.

6 No system description paper was submitted for this approach after participation in the challenge.
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Table 2 Train, validation and test split by word count (Wlang) and term count (Tlang) per
language (left) and validation performance of token classifier (right).

Train Val Test
Wen 97,145 51,470 45,788
Ten 2,708 1,575 2,585
Wfr 106,792 53,316 46,751
Tfr 2,185 1,183 2,423
Wnl 96,887 50,882 47,888
Tnl 2,540 1,546 2,257

Training EN Val FR Val NL Val
EN (TermEval) 55.6 45.3 60.5
FR (TermEval) 41.9 33.6 49.6
NL (TermEval) 54.6 47.7 57.8
ALL (TermEval) 50.0 40.4 51.5
EN (ACL An.1) 75.5 / /
EN (ACL An.2) 79.3 / /

In terms of term type, the models trained on TermEval 2020 are able to handle acronyms
well, which might be due to the fact that much of the training data was based on rather
technical documents like scientific abstracts. However, if acronyms are part of the term,
e.g. “LV strain rate”, there was a high number of false negatives. Equally apostrophes in
named entities represented a challenge, e.g. “Chaga’s disease”. We could observe a tendency
of the model to split particularly long multi-word sequences (more than five words), e.g.
“resynchronization reverses remodeling in systolic left ventricular dysfunction”. We made
similar observations when manually evaluating the model trained and tested on Annotator 1
of ACL RD-TEC 2.0 dataset. While performance on acronym extraction was generally good,
if acronyms were part of a term, it likely resulted in a false negative. It can be observed,
that false positives often correlate with the false negatives, as the model extracts only parts
of the original term or splits the longer terms, e.g. “LRE project SmTA double check” is
extracted as “LRE” and “SmTA double check”. It was especially noticeable that the model
had difficulties extracting terms containing their acronym or the expansion of an acronym
in parentheses, e.g. “machine translation (MT) systems”. This issue also extended to other
terms containing parentheses, such as “document descriptors (keywords)”. In fact, not a
single example of terms containing parentheses was extracted. Similar to the model trained
on TermEval 2020 data, the model trained on the ACL RD-TEC 2.0 data showed a general
tendency for extracting shorter terms, with the largest group of false negatives being terms
composed of four or more words (41 out of 124 examples).

The model trained on the TermEval 2020 dataset turned out to be highly efficient in terms
of training time. Looking at the epochs required to reach the best score on the validation set,
we can observe that in most cases the token classifier model requires not even a single training
epoch. Training with the English dataset required 300 steps with a full epoch consisting of
432 steps. The model trained on French was the only model with its best performance being
reached during the second epoch after 700 steps, while a full epoch consists of 437 steps.
The model trained on Dutch performed best after 400 steps while one epoch takes 553 steps.
The multilingual model converged the quickest needing only 200 steps whereas a full epoch
consists of 1,421 steps. The models trained on the ACL RD-TEC 2.0 dataset need more
epochs and achieve their highest scores after 3 and 5 epochs respectively. However, due to
the lower training set size of the ACL RD-TEC 2.0 corpus this also corresponds to less than
500 steps, thus, being similar with the training times reported for the model trained with
TermEval 2020 data.

6.2 Relation Extraction
The trained model achieves a weighted averaged F1 score of 87% with a precision of 87% and
a recall of 87% on the hold-out test set. The confusion matrix in Figure 4 and Table 3 show
which classes were learned best. Only the activity relation from entity 2 to entity 1 was not
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Table 3 Test performance of the relation classifier and number of test samples.

Relation Type Precision Recall F1 Test samples
synonymy 0.85 0.76 0.80 89
activityRelation (e1,e2) 0.93 0.97 0.95 293
activityRelation (e2,e1) 0.00 0.00 0.00 2
associativeRelation 0.90 0.92 0.91 783
causalRelation (e1,e2) 0.90 0.95 0.92 135
causalRelation (e2,e1) 0.92 0.91 0.91 222
genericRelation (e1,e2) 0.90 0.93 0.92 533
genericRelation (e2,e1) 0.46 0.41 0.43 91
instrumentalRelation (e1,e2) 0.72 0.68 0.70 34
instrumentalRelation (e2,e1) 0.85 0.88 0.86 144
none 0.69 0.44 0.54 70
originationRelation (e1,e2) 0.83 0.89 0.86 116
originationRelation (e2,e1) 0.84 0.83 0.83 165
partitiveRelation (e1,e2) 0.90 0.85 0.87 176
partitiveRelation (e2,e1) 0.77 0.77 0.77 168
spatialRelation (e1,e2) 0.90 0.91 0.91 169
spatialRelation (e2,e1) 0.90 0.82 0.86 44

learned at all given the current training data as the class consists of overall less than 10 data
points. Activity relations are usually directed from actor to activity, which was also the case
in our dataset, i.e., the actor was mostly mentioned first (e1) and the activity second (e2),
with less than 10 exceptions where the actor was mentioned second. The only other relations
with an F1 score lower than 0.7 are the none-relation and the generic relation from e2 to
e1, which also can be traced back to relatively small amounts of training data as well as a
high confusion with the same relation in the opposite direction in case of the generic relation.
For the synonymy relation, the classification of synonym pairs including an acronym works
well, while the relation of two longer sequence (not shortened) pairs is often confused as a
generic relation. Many of the other relations, especially those supported by large amounts
of training data, achieve high F1 scores of up to 95%. Furthermore, we can observe very
balanced precision and recall scores for all relations.

7 Discussion

Currently, the proposed pipeline fully operates on a sentence-level. In the future we plan to
extend the architecture so that the model can extract relations which span over the whole
document. This could be achieved by models trained on an appropriate dataset containing
such relations. However, currently such datasets are rare and available ones are either
domain-specific, very small, and/or focus on named entities [25, 42]. Another option to
extract document-wide relations is to add a model to the pipeline which makes predictions
about the relation between two words independent from any context in which they appear,
something for which, for instance, approaches for hierarchical relations exist [39]. Such a
model could be applied to all possible term-pairs, however, due to the missing contexts only
limited effectiveness can be expected.

A problem of pipeline approaches is that errors from earlier pipeline steps are propagated
to the later components. In the case of the TCS extraction pipeline, wrongly extracted
terms are sent to the relation extraction component which tries to establish a relation to
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Figure 4 Confusion Matrix for the relation extraction model on the test set.

other terms. This problem can potentially be solved by joint models, which learn to extract
terms and their relations together, as was already done in the case of named entities and
very limited domain-specific entities and their relations (e.g. [22, 29]). Such models, however,
require datasets that annotate terms and their corresponding relations in the same texts,
which is something that is currently not available, but something that we are aiming to make
available in the future.

8 Related Work

Since the proposed pipeline to automatically learn TCS from text relies on two intermediate
steps, term and relation extraction, as well as their combination, we separate the related
work into the individual steps as well as approaches joining both steps.

8.1 Term Extraction
An initial classification of ATE methods into statistical, linguistic or hybrid has recently
been refined to methods based on term occurrence frequencies, occurrence contexts, domain-
specific corpora combined with general language corpora, topic modeling, and those utilizing
Wikipedia (see [4] for an overview). Methods are additionally categorized by the type of
context, i.e., corpus-level (e.g. [4, 45]) and document-level (e.g. [37]) settings. However,
neural ATE methods frequently operating on sentence-level cannot be easily accommodated
by these classifications.
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The approach most closely related to ours, which also provided our baseline [19], utilized
RoBERTa [26] for English and CamemBERT [27] for French and won the TermEval 2020
challenge. In their work, pretrained language models clearly outperformed a classification
method based on a variety of features, such as statistical descriptors. They, however, train
their model using pairs of context sentences and possible candidate terms, which are based
on all possible n-grams contained in a given context sentence, a procedure much slower
than our proposed token-level classifier. A recently published approach [36] relies on LSTM,
GRU and BERT embeddings and achieves high F1 scores for ATE of Lithuanian terms
in the cybersecurity domain. Several approaches build on word embeddings to perform
ATE on specific domains, such as medicine (e.g. [7]), or to separate general-language from
domain-specific embeddings [18]. In contrast, our model performs ATE on four domains and
in three languages utilizing a pretrained language.

8.2 Relation Extraction
Relation extraction describes the supervised task of classifying a relation given two entities
and a context. Most work and datasets in the field focus on sentence-level relation extrac-
tion [15, 20, 44] with only some exceptions providing relations over longer text spans [42].
Current state-of-the-art approaches for such datasets usually rely on either transformer-based
architectures [41, 47] or graph-based neural networks [17, 43].

8.3 Joint Term and Relation Extraction
While to the best of our knowledge no approaches exist to automatically extract terminological
concept systems from text, there is an entire research field on connecting terminological
information with ontologies, thereby providing relational information to terms. Methods
for modeling terminological information as ontologies are generally called terminological
ontologies (e.g. [24]). Approaches that model terminological information in relation to
ontologies are generally called ontology-terminology models (e.g. [35, 16]). One approach
in this direction that is probably most closely related to the one proposed in this paper is
TERMINAE [5], a platform that utilizes traditional NLP tools and methods to propose term
candidates and relations to users for manual editing by building on terminology engineering
principles and findings from ontology learning. While a very interesting method and platform,
the approach neither commits to a specific typology of relations nor seeks to provide a fully
automated solution. Thus, to broaden the scope of this discussion on related work and
consider related fields that directly inspire this joint task, we will discuss two additional
research directions. First, we present approaches on entity and relation extraction. Second,
we relate to selected ontology learning approaches.

Joint entity and relation extraction (e.g. [46]) is the task of identifying named entities in
text and detecting their semantic relations. Approaches to this task range from joining a
bidirectional LSTM for term extraction with a CNN for relation extraction [46] to utilizing a
Graph Convolutional Network [12]. This idea of joining recurrence and convolution operations
is taken up again by Geng et al. [14]. The approach probably most similar to ours is that of
Quiao et al. [33] who utilize BERT for joint entity and relation extraction in the agricultural
domain. However, our approach has been applied across several domains and languages.
In addition, named entities are a subcategory of single- and multi-word terms, where the
latter is considerably more challenging. The type of relation is also frequently restricted to
lexical-semantic relations, such as synonymy or hypernymy, specific semantic relations, such
as the temporal relation, or information in a specific domain, e.g. agriculture.
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Ontology learning (e.g. [31, 8]) is the task of automatically extracting knowledge from
text, starting with terms which are organized to form concepts, their interrelations which are
organized hierarchically and non-hierarchically, and finally axioms. Petrucci et al. [31] utilize
Neural Machine Translation (NMT) on a synthetically generated dataset to learn Description
Logic formulas from natural language sentences. In contrast, our approach operates on
non-synthetic, real-life datasets. Few other approaches utilize deep learning for ontology
learning (see [23] for an overview).

9 Conclusion

As a first step to approach fully automated TCS learning from multilingual text, we propose
adaptations of pretrained language models to perform term and relation extraction in a
pipeline approach. While a multilingual, cross-domain dataset for term extraction exists,
we had to accumulate and extend several relation extraction datasets to accommodate a
common terminological relation typology. Term extraction results substantially outperform
previous results and the relation extraction model achieves competitive results, even though
no baseline comparison was available for exactly these relation types.

As a next step we will manually create a full evaluation dataset for TCS across domains
and languages to provide a better evaluation scenario for the proposed approach. Additionally,
the model currently exclusively extracts information from sentences, whereby several global
relations beyond the sentential level will be lost, especially synonymy and generic relations.
We thus currently evaluate methods for achieving document-level TCS learning. Lastly,
we will extend the set of covered relations by including data for temporal, property, and
ownership relations.
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36 Aivaras Rokas, Sigita Rackevičienė, and Andrius Utka. Automatic extraction of lithuanian
cybersecurity terms using deep learning approaches. In Human Language Technologies–The
Baltic Perspective, volume 328, pages 39–46. IOS Press, 2020. doi:10.3233/FAIA200600.

37 Antonio Šajatović, Maja Buljan, Jan Šnajder, and Bojana Dalbelo Bašić. Evaluating automatic
term extraction methods on individual documents. In Agata Savary, Carla Parra Escartín,
Francis Bond, Jelena Mitrović, and Verginica Barbu Mititelu, editors, Proceedings of the Joint
Workshop on Multiword Expressions and WordNet (MWE-WN 2019), pages 149–154, Florence,
Italy, 2019. Association for Computational Linguistics. doi:10.18653/v1/W19-5118.

38 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
undefinedukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, page
6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

39 Lennart Wachowiak, Christian Lang, Barbara Heinisch, and Dagmar Gromann. CogALex-VI
shared task: Transrelation - a robust multilingual language model for multilingual relation
identification. In Rong Xiang, Emmanuele Chersoni, Luca Iacoponi, and Enrico Santus, editors,
Proceedings of the Workshop on the Cognitive Aspects of the Lexicon, pages 59–64, Online,
2020. Association for Computational Linguistics. URL: https://www.aclweb.org/anthology/
2020.cogalex-1.7.

40 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019.
arXiv:1910.03771.

41 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. LUKE:
Deep contextualized entity representations with entity-aware self-attention. In Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 6442–6454, Online, November 2020.
Association for Computational Linguistics. doi:10.18653/v1/2020.emnlp-main.523.

42 Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin
Huang, Jie Zhou, and Maosong Sun. DocRED: A large-scale document-level relation extraction
dataset. In Anna Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 764–777, Florence,
Italy, July 2019. Association for Computational Linguistics. doi:10.18653/v1/P19-1074.

43 Shuang Zeng, Runxin Xu, Baobao Chang, and Lei Li. Double graph based reasoning for
document-level relation extraction. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang
Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1630–1640, Online, November 2020. Association for Computational
Linguistics. doi:10.18653/v1/2020.emnlp-main.127.

LDK 2021

https://www.aclweb.org/anthology/L16-1294
https://doi.org/10.1007/s00521-021-05815-z
https://www.aclweb.org/anthology/2020.computerm-1.12
https://www.aclweb.org/anthology/2020.computerm-1.12
https://doi.org/10.3233/FAIA200600
https://doi.org/10.18653/v1/W19-5118
https://www.aclweb.org/anthology/2020.cogalex-1.7
https://www.aclweb.org/anthology/2020.cogalex-1.7
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/P19-1074
https://doi.org/10.18653/v1/2020.emnlp-main.127


22:18 Learning TCS from Multilingual Text

44 Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning. Position-
aware attention and supervised data improve slot filling. In Martha Palmer, Rebecca Hwa, and
Sebastian Riedel, editors, Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 35–45, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. doi:10.18653/v1/D17-1004.

45 Ziqi Zhang, Jose Iria, Christopher Brewster, and Fabio Ciravegna. A comparative evaluation
of term recognition algorithms. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, and Daniel Tapias, editors, Proceedings of the
Sixth International Conference on Language Resources and Evaluation (LREC’08), Marrakech,
Morocco, May 2008. European Language Resources Association (ELRA). URL: http://www.
lrec-conf.org/proceedings/lrec2008/pdf/538_paper.pdf.

46 Suncong Zheng, Yuexing Hao, Dongyuan Lu, Hongyun Bao, Jiaming Xu, Hongwei Hao, and
Bo Xu. Joint entity and relation extraction based on a hybrid neural network. Neurocomputing,
257:59–66, 2017. doi:10.1016/j.neucom.2016.12.075.

47 Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing Huang. Document-level relation extraction
with adaptive thresholding and localized context pooling. CoRR, abs/2010.11304, 2020.
arXiv:2010.11304.

https://doi.org/10.18653/v1/D17-1004
http://www.lrec-conf.org/proceedings/lrec2008/pdf/538_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/538_paper.pdf
https://doi.org/10.1016/j.neucom.2016.12.075
http://arxiv.org/abs/2010.11304

	1 Introduction
	2 Terminological Concept Systems
	2.1 Term, Concept and Terminology
	2.2 Relation Types
	2.3 Representation in TBX

	3 Language Models
	4 Data
	4.1 Term Extraction Data
	4.2 Relation Extraction Data

	5 Method
	5.1 Architecture
	5.2 Term Extraction Model
	5.3 Relation Extraction Model

	6 Results
	6.1 Term Extraction
	6.2 Relation Extraction

	7 Discussion
	8 Related Work
	8.1 Term Extraction
	8.2 Relation Extraction
	8.3 Joint Term and Relation Extraction

	9 Conclusion

