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Abstract
There is a well-known lexical gap between content expressed in the form of natural language (NL)
texts and content stored in an RDF knowledge base (KB). For tasks such as Information Extraction
(IE), this gap needs to be bridged from NL to KB, so that facts extracted from text can be represented
in RDF and can then be added to an RDF KB. For tasks such as Natural Language Generation,
this gap needs to be bridged from KB to NL, so that facts stored in an RDF KB can be verbalized
and read by humans. In this paper we propose LexExMachina, a new methodology that induces
correspondences between lexical elements and KB elements by mining class-specific association rules.
As an example of such an association rule, consider the rule that predicts that if the text about
a person contains the token “Greek”, then this person has the relation nationality to the entity
Greece. Another rule predicts that if the text about a settlement contains the token “Greek”, then
this settlement has the relation country to the entity Greece. Such a rule can help in question
answering, as it maps an adjective to the relevant KB terms, and it can help in information extraction
from text. We propose and empirically investigate a set of 20 types of class-specific association
rules together with different interestingness measures to rank them. We apply our method on a
loosely-parallel text-data corpus that consists of data from DBpedia and texts from Wikipedia, and
evaluate and provide empirical evidence for the utility of the rules for Question Answering.
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1 Introduction

There is a fundamental lexical gap between the “names”, that is URIs, that are given to data
elements in knowledge bases or knowledge graphs on the one hand, and how they are referred
to in natural language. Bridging between these two symbol levels is crucial. There are many
scenarios in which we need to map from natural language to KB, that is the case for text
understanding, information extraction and question answering. There are also scenarios in
which we need to map from KB to language, e.g. when verbalizing triples of a knowledge
base in natural language [12].
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33:2 Bridging Between Ontology and Lexicon

In this paper, we present an approach to inducing correspondences between the lexical
and knowledge base level that relies on mining association rules. The association rules that
we mine have a lexical or linguistic symbol on the one side, and a KB symbol or structure on
the other, thus allowing to bridge between the two levels.

The association rules that we mine are class-specific in the sense that at least one of
the sides of an association rule expresses a condition that the entities that the association
rule talks about belong to a specific class. The motivation for this is that the way a certain
property is verbalized depends on the class in question. Similarly, the interpretation of a
certain lexical element depends on the context of the class in question. Take the example of the
adjective Greek that according to classical formal semantics represents a unary predicate, that
is a class. When Greek modifies a person as in “Greek politician”, the correct interpretation
with respect to the schema of a knowledge base might be the one that the nationality
is Greek. In case of a city, e.g. “Greek city”, the correct interpretation might be that the
country in which the city is located in is Greece. So the interpretation is class-specific.
Conversely, take a property such as author. In the context of books, the property would be
verbalized as X wrote Y, while in the context of a music piece the appropriate verbalization
would be X composed Y.

In this paper we present our approach to mining class-specific association rules from
a loosely-parallel dataset consisting of a corpus and corresponding knowledge base. The
corpus and KB are loosely parallel in the sense that the text describes the entities in the
KB but there is no explicit relation between the two. Further, the relation is not 1:1 in
the sense that there are some triples that are not expressed in the text and there are many
aspects in the text that are not represented by triples. We describe 20 different types of such
class-specific association rules that we mine. We apply our approach to a parallel dataset
consisting of the Wikipedia abstracts for 1,297,623 entities from 354 classes, together with
the RDF descriptions of these entities. We derive 447,888,109 association rules from this
dataset in total. We evaluate our approach on the basis of the well-known QALD (Question
Answering over Linked Data) dataset, evaluating in how far our approach can retrieve valid
correspondences between lexical and KB elements.

The remainder of this paper is structured as follows: we present our method for mining
class-specific association rules in Section 2. We describe the application of our method on a
loosely-parallel text-data corpus consisting of texts from Wikipedia and data from DBpedia
in Section 3. We present the results of our evaluation on a question answering task in
Section 4. Before concluding we discuss related work.

All code and data is available at our website http://www.LexExMachina.xyz.

2 Approach

In this section, we describe our approach LexExMachina. We introduce relevant preliminaries
and notation needed to express the class-specific association rules in Section 2.1. We introduce
our approach by an example describing a particular association rule for our motivating example
in the introduction in Section 2.2. We describe our general approach in Section 2.3.

2.1 Preliminaries
Let P be a set of (URIs of) properties, let D be a set of documents, let C be a set of classes,
let E be a set of entities, let G be an RDF graph, and let L be a set of linguistic patterns
(for example, n-grams). Furthermore, let ce ⊆ C denote classes that entity e ∈ E belongs
to, let de ∈ D denote the document that describes the entity e ∈ E (e.g., the Wikipedia
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article about the entity), and let le ⊆ L denote the set of linguistic patterns that occur in
the document de describing e. An RDF graph is a set of triples of the form (s,p,o) where
s ∈ U ∪B is called the triple’s subject, p ∈ U is called the triple’s predicate, and o ∈ U ∪B ∪L
is called the triple’s object. U , B, and L are the sets of URIs, blank nodes, and literals,
respectively, and are pairwise disjoint. The set T of terms is the union of the sets U , B, and
L. The sets P , C, and E are true subsets of U .

An association rule has the form A ⇒ B where A and B are called events. For example,
Greece occurs in the text is an event. The support of an event A, denoted by sup(A), is the
number of times that this event is true in a given set. For example, given a set of texts, the
support of the event Greece occurs in the text is the number of documents for which it holds
that Greece occurs in the text. The confidence of an association rule A ⇒ B, denoted by
conf(A ⇒ B), is defined as conf(A ⇒ B) = sup(A ∧ B)/sup(A).1 For example, let B be
the event born occurs in the text. Thus, the confidence of the rule A ⇒ B is the support of
the event Greece and born occur in the text divided by the support of the event Greece occurs
in the text. The higher the confidence, the more likely it is that given that a text contains
the word Greece, it also contains the word born. Thus, the confidence of an association rule
A ⇒ B is identical to the estimated conditional probability P (B|A).

In practice, association rules with high confidence do not necessarily disclose truly interest-
ing event relationships [2]. Therefore, an interestingness measure quantifies the interestingness
of an association rule. We list the classical null-invariant measures of interestingness as
reformulated in terms of estimated conditional probabilities by Wu et al. [16] as well as the
null-invariant measure imbalance ratio (IR), also introduced by Wu et al. [16]:

AllConf(A, B) = min{P (A|B), P (B|A)} (1)
Coherence(A, B) = (P (A|B)−1 + P (B|A)−1 − 1)−1 (2)

Cosine(A, B) =
√

P (A|B)P (B|A) (3)
Kulczynski(A, B) = (P (A|B) + P (B|A))/2 (4)

MaxConf(A, B) = max{P (A|B), P (B|A)} (5)

IR(A, B) = |P (A|B) − P (B|A)|
P (A|B) + P (B|A) − P (A|B) × P (B|A) (6)

Note that all of these 6 metrics are symmetric, i.e., the order of the events A and B

does not matter (e.g., AllConf(A, B) = AllConf(B, A) for any events A and B). The
estimated conditional probabilities can be calculated via support counts given the equations
P (B|A) = sup(AB)/sup(A) and P (A|B) = sup(AB)/sup(B).

2.2 A Close Look at one Rule Pattern
In this section we describe a rule pattern with the name cs, ls ⇒ po in detail, before we
present the list of all 20 rule patterns in Section 2.3.

Given are a class c ∈ C, a property p ∈ P , a term o ∈ T , and a linguistic pattern l. Given
that an entity e is an instance of the class c and given that the linguistic pattern l occurs in
the document de that describes the entity e, we want to predict whether the triple (e, p, o) is
true. We define two events A and B. AB denotes the conjunction of these two events.

1 In the remainder of the paper we write AB to denote A ∧ B.
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33:4 Bridging Between Ontology and Lexicon

A = c ∈ ce ∧ l ∈ le

B = c ∈ ce ∧ (e, p, o) ∈ G

AB = c ∈ ce ∧ l ∈ le ∧ (e, p, o) ∈ G

Given a class c ∈ C and a linguistic pattern l, the support of the event A, denoted by
sup(A), can be calculated as |{e ∈ E | c ∈ ce ∧ l ∈ le}| – thus, the support of the event A is
the number of entities where each entity is an instance of the class c and where the linguistic
pattern l occurs in the document that describes the entity.

Given a class c ∈ C, a property p ∈ P , and a term o ∈ T , the support of the event B,
denoted by sup(B), can be calculated as |{e ∈ E | c ∈ ce ∧ (e, p, o) ∈ G}| – thus, the support
of the event B is the number of entities where each entity is an instance of the class c and
where the triple (e, p, o) exists in the graph G.

Given a class c ∈ C, a property p ∈ P , a term o ∈ T , and a linguistic pattern l, the support
of the event AB, denoted by sup(AB), can be calculated as |{c ∈ ce ∧ l ∈ le ∧ (e, p, o) ∈ G}|
– thus, the support of the event AB is the number of entities where each entity is an instance
of the class c and where the linguistic pattern l occurs in the document that describes the
entity and where the triple (e, p, o) exists in the graph G.

From these events we can construct association rules of the form A ⇒ B given a class
c ∈ C, a property p ∈ P , a term o ∈ T , and a linguistic pattern l:

c ∈ ce ∧ l ∈ le ⇒ (e, p, o) ∈ G

For example, with the class c = dbo:Politician, the property p = dbo:nationality, the
term o = dbr:Greece, and the linguistic pattern l = ”Greek”, we can create the following
association rule:

dbo:Politician ∈ ce ∧ ”Greek” ∈ le ⇒ (e, dbo:nationality, dbr:Greece) ∈ G

Due to the fact that the linguistic pattern is a 1-gram, matching the pattern against a text
is simple enough so that we can calculate the support of the three events via SPARQL queries.2
Thus, we obtain the values sup(A) = 128, sup(B) = 19, and sup(AB) = 19. The confidence
of an association rule of the form A ⇒ B can be calculated as sup(AB)/sup(A) = P (B|A).
For our example, the confidence of the association rule is sup(AB)/sup(A) = 19/128 ≈ 0.15.

If the class membership constraints are removed from the event definitions, then we obtain
the events A′ = l ∈ le and B′ = (e, p, o) ∈ G. For the example above, this results in the
support values sup(A′) = sup(”Greek” ∈ le) = 58, 563, sup(B′) = sup((e, dbo:nationality,

dbr:Greece) ∈ G) = 464, and sup(A′B′) = sup(”Greek” ∈ le∧(e, dbo:nationality, dbr:Greece)
∈ G) = 445, which results in the confidence value of sup(A′B′)/sup(A′) = 445/58, 563 ≈

2 sup(A): SELECT COUNT(?e) WHERE { ?e rdf:type dbo:Politician . ?e dbo:abstract ?a
. FILTER (LANG(?a)="en" && REGEX(?a, "(^|\\ W)Greek(\\ W|$)")) } → 128; sup(B):
SELECT COUNT(?e) WHERE { ?e rdf:type dbo:Politician . ?e dbo:nationality dbr:Greece
} → 19; sup(AB): SELECT COUNT(?e) WHERE { ?e rdf:type dbo:Politician . ?e
dbo:nationality dbr:Greece . ?e dbo:abstract ?a FILTER(LANG(?a)="en" && REGEX(?a,
"(^|\\W)Greek(\\W|$)"))} → 19. The parts before and after the term Greek ensure that the term
either occurs at the beginning of the text or after a non-word character and that the term occurs either
at the end of the text or is followed by a non-word character. The queries were ran against the public
endpoint of DBpedia (http://dbpedia.org/sparql) on January 5, 2021.

http://dbpedia.org/sparql
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0.0076, which is significantly lower than the confidence of the association rule with class
membership constraints (i.e., ≈ 0.15). For this reason, in this paper we only investigate
association rules that are class-specific. Note that if the word Greek appears in a text about
a person, this might indicate that the person is of Greek nationality, whereas if the word
Greek occurs in a text about a settlement, then this might indicate that the settlement is
located in Greece – thus, which property is used depends on the class an entity belongs to.

If for an association rule A ⇒ B we have calculated sup(A), sup(B), and sup(AB), then
we can not only calculate P (B|A), but also P (A|B), which means that we can calculate the
confidence of the “reversed” association rule B ⇒ A:

c ∈ ce ∧ (e, p, o) ∈ G ⇒ l ∈ le

The name of the reversed rule pattern cs, ls ⇒ po is cs, po ⇒ ls. For the example above,
this is the reversed rule:

dbo:Politician ∈ ce ∧ (e, dbo:nationality, dbr:Greece) ∈ G ⇒ ”Greek” ∈ le

The confidence of this rule (i.e., P(A|B)) is sup(AB)/sup(B) = 19/19 = 1. Given that
for an association rule A ⇒ B we have computed P (B|A) and P (A|B), we can also compute
values for the interestingness measures. Note that because the interestingness measures are
symmetric, the interestingness of the rule is the same as the interestingness of the reversed
rule for this interestingness measure.

For the example above, with P (B|A) = 19/128 and P (A|B) = 19/19, we obtain the inter-
estingness measurements AllConf(A, B) ≈ 0.15, Coherence(A, B) ≈ 0.15, Cosine(A, B) ≈
0.39, Kulczynski(A, B) ≈ 0.57, MaxConf(A, B) = 1, and IR(A, B) ≈ 0.85.

2.3 Class-specific association rule patterns
The complete set of 20 class-specific association rule patterns is shown in Table 1.

In the rules we have shown above the linguistic pattern occurs anywhere in a text. For
the task of deciding whether a text expresses the triple (e1, r, e2), one typically regards the
string between the mentions of e1 and e2 in the text. According to the principle of distant
supervision [10], one assumes that a text expresses (e1, r, e2) if both entities are mentioned
in the text. For example, for the property dbo:author the linguistic pattern that appears
between the mentions of the arguments could be is the author of or is best known for her.
Thus, we present rule patterns where the linguistic patterns that are made use of do not
occur anywhere in a text but instead need to occur between the arguments of a relation. We
refer to these rule patterns as localized rule patterns and to the rules where linguistic patterns
can occur anywhere in the text as non-localized rule patterns. Note that because localization
is predicate-specific, rule patterns that do not specify a predicate cannot be localized.

Let lc,p,d
e denote the set of linguistic patterns that occur in the document de that describes

the entity e where e is an instance of the class c and where the linguistic patterns occur
between the arguments of the relation p. The arguments of the relation appear in the order
d, which is either so (subject then object), or os (object then subject).

The following localized rule predicts a property-object pair for an entity where in the
text about the entity a linguistic pattern occurs that has been found between arguments of
this relation in other text about entities of the same class:

dbo:Settlement ∈ ce ∧ ”the Metropolitan City of Turin” ∈ ldbo:Settlement,dbo:region,so
e

⇒ (e, dbo:region, dbr:Piedmont) ∈ G

LDK 2021



33:6 Bridging Between Ontology and Lexicon

Table 1 The list of 20 class-specific association rule patterns.

c ∈ ce ∧ l ∈ le ⇒ (e, p, o) ∈ G (cs, ls ⇒ po)

c ∈ ce ∧ l ∈ lc,p,d
e ⇒ (e, p, o) ∈ G (cs, lls ⇒ po)

c ∈ ce ∧ l ∈ le ⇒ ∃o ∈ T : (e, p, o) ∈ G (cs, ls ⇒ p)

c ∈ ce ∧ l ∈ lc,p,d
e ⇒ ∃o ∈ T : (e, p, o) ∈ G (cs, lls ⇒ p)

c ∈ ce ∧ l ∈ le ⇒ ∃p ∈ U : (e, p, o) ∈ G (cs, ls ⇒ o)
c ∈ ce ∧ l ∈ le ⇒ (s, p, e) ∈ G (co, lo ⇒ sp)

c ∈ ce ∧ l ∈ lc,p,d
e ⇒ (s, p, e) ∈ G (co, llo ⇒ sp)

c ∈ ce ∧ l ∈ le ⇒ ∃p ∈ U : (s, p, e) ∈ G (co, lo ⇒ s)
c ∈ ce ∧ l ∈ le ⇒ ∃s ∈ U ∪ B : (s, p, e) ∈ G (co, lo ⇒ p)

c ∈ ce ∧ l ∈ lc,p,d
e ⇒ ∃s ∈ U ∪ B : (s, p, e) ∈ G (co, llo ⇒ p)

c ∈ ce ∧ (e, p, o) ∈ G ⇒ l ∈ le (cs, po ⇒ ls)

c ∈ ce ∧ (e, p, o) ∈ G ⇒ l ∈ lc,p,d
e (cs, po ⇒ lls)

c ∈ ce ∧ ∃o ∈ T : (e, p, o) ∈ G ⇒ l ∈ le (cs, p ⇒ ls)

c ∈ ce ∧ ∃o ∈ T : (e, p, o) ∈ G ⇒ l ∈ lc,p,d
e (cs, p ⇒ lls)

c ∈ ce ∧ ∃p ∈ U : (e, p, o) ∈ G ⇒ l ∈ le (cs, o ⇒ ls)
c ∈ ce ∧ (s, p, e) ∈ G ⇒ l ∈ le (co, sp ⇒ lo)

c ∈ ce ∧ (s, p, e) ∈ G ⇒ l ∈ lc,p,d
e (co, sp ⇒ llo)

c ∈ ce ∧ ∃p ∈ U : (s, p, e) ∈ G ⇒ l ∈ le (co, s ⇒ lo)
c ∈ ce ∧ ∃s ∈ U ∪ B : (s, p, e) ∈ G ⇒ l ∈ le (co, p ⇒ lo)

c ∈ ce ∧ ∃s ∈ U ∪ B : (s, p, e) ∈ G ⇒ l ∈ lc,p,d
e (co, p ⇒ llo)

In this example, ldbo:Settlement,dbo:region,so
e is the set of linguistic patterns that occur in

de and that frequently occur in texts about instances of the class dbo:Settlement between
the arguments of the relation dbo:region where these arguments appear in the order subject
then object.

3 Mining class-specific association rules from Wikipedia and DBpedia
as loosely-parallel corpus

The loosely-parallel text-data corpus we use consists of seven files3 from the English DB-
pedia [1]. We refer to it as a loosely-coupled text-data corpus because this data contains
the short abstracts of Wikipedia articles as well as structured data extracted from DBpedia.
The information that is contained in the DBpedia files has not been extracted from the
article’s natural language text, which means that not every piece of information contained in

3 From https://wiki.dbpedia.org/develop/datasets we retrieved the following files
in the stated versions: infobox-properties_lang=en.ttl.bz2 (v2020.11.01), instance-
types_lang=en_specific.ttl.bz2 (v2020.12.01), mappingbased-literals_lang=en.ttl.bz2 (v2020.12.01),
mappingbased-objects_lang=en.ttl.bz2 (v2020.12.01), short-abstracts_lang=en.ttl.bz2 (v2020.07.01),
labels_lang=en.ttl.bz2 (v2020.12.01), and anchor-text_lang=en.ttl.bz2 (v2020.12.01). Labels and
anchors were only used to identify the arguments of a relation so that localized linguistic patterns can
be collected. That means that rdf :type and rdfs:label never occur as predicate in any rule that we
have mined.

https://wiki.dbpedia.org/develop/datasets
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an article is contained in a DBpedia file. Furthermore, not every piece of information that
is contained in a DBpedia file is expressed in a Wikipedia article’s short abstract (e.g., an
athlete’s height is usually only contained in a table and is not expressed in the text).

By restricting a class to have at least 100 instances and ignoring owl:Thing, we obtained a
set of 354 classes (min_entities_per_class = 100). For each class, we randomly selected at
most 10, 000 instances (max_entities_per_class = 10, 000). In total, we selected 1,297,623
entities, which amounts to approximately 22.63% of all entities for which an abstract exists.

We tokenized the abstract of each entity by splitting at whitespaces and then removed
the characters dot (’.’), comma (’,’), round brackets (’(’ and ’)’), and colon (’:’). From the
obtained token sequences we extracted those n-grams (n ∈ [1..5]) that contain at least one
non-stopword – we used the NLTK stopword list,4 which contains 127 entries. We discarded
those 1-grams that consist of less than four characters (min_onegram_length = 4).

For the localized property patterns, we carried out a simple form of coreference resolution,
replacing the pronouns he, she, and it with the entity’s rdfs:label.

For patterns to be localized, the arguments of a relation need to be detected. For this
purpose we make use of an entity’s rdfs:label as well as those anchor texts that refer at least
10 times to a given entity (min_anchor_count = 10). We also try to identify literal values.
We convert literals of type xsd:date into a natural language representation such as 2021-03-
21^^xsd:date to 21 March 2021, but leave literals with other datatypes unchanged. If both
arguments of a relation were detected and the length of the string between the arguments
is not higher than 100 characters (max_propertystring_length = 100) and consists of at
least 5 characters (min_propertystring_length = 5), we tokenized the string and extract
n-grams (n ∈ [1, 5]) as described above. For each pattern, we recorded in which order the
arguments occurred in the text (i.e., d ∈ {so, os}).

The set of linguistic patterns for a class is the set of all n-grams that were found for at
least 5 instances of the class (min_pattern_count = 5). For the localized property patterns,
a pattern had to occur for at least 5 instances of the class (min_propertypattern_count = 5)
for each combination of class and property and order of arguments. This means that the
rules have, depending on which side the linguistic pattern occurs, a value for sup(A) or
sup(B) of greater or equal to 5.

Given the parameter settings above, we obtained 447,888,109 rules – 427,541,617 non-
localized rules and 20,346,492 localized rules. The number of rules found for each rule pattern
is shown in Table 2. Note that we set rather low threshold values as this allows to extract data
for higher threshold values by filtering, instead of mining, and to find appropriate threshold
parameters (e.g., for sup(A), sup(B), sup(AB), P (B|A), P (A|B)). For a particular linguistic
pattern, i.e., the token “Greek”, Table 3 shows the 20 localized rules that are ranked highest
according to the Cosine interestingness measure. These rules contain the linguistic pattern
on any side of the association rule.

4 Evaluation

We evaluate the utility of the rules that we have mined in the context of the task of Question
Answering over an RDF knowledge base. Given a natural language question and an RDF
knowledge base, typically, the goal is to infer a SPARQL query that represents the meaning
of the question using the KB’s vocabulary, so that evaluating the query on the KB results in
the KB’s answer(s) to the question. We created a corpus of (question, query) pairs from the

4 The list of stopwords is available at https://gist.github.com/sebleier/554280 (Accessed 2021-02-20).

LDK 2021
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33:8 Bridging Between Ontology and Lexicon

Table 2 The number of rules found for each rule pattern.

Group of rule patterns Number of rules
cs, po ⇒ ls cs, ls ⇒ po 75,127,937 each
cs, po ⇒ lls cs, lls ⇒ po 4,500,459 each
cs, p ⇒ ls cs, ls ⇒ p 98,317,655 each
cs, p ⇒ lls cs, lls ⇒ p 5,293,226 each
cs, o ⇒ ls cs, ls ⇒ o 67,147,957 each
co, sp ⇒ lo co, lo ⇒ sp 3,812,313 each
co, sp ⇒ llo co, llo ⇒ sp 157,519 each
co, s ⇒ lo co, lo ⇒ s 429,627 each
co, p ⇒ lo co, lo ⇒ p 6,499,288 each
co, p ⇒ llo co, llo ⇒ p 222,042 each

447,888,109 total

Table 3 The top-20 localized rules that contain the linguistic pattern Greek, ordered by the
Cosine interestingness measure. We abbreviated dbo:F ormerMunicipality to dbo:F M .

Cos Rule

0.9 dbo:Model ∈ ce ∧ (e, dbp:birthP lace, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:Model,p,so
e

0.9 dbo:Model ∈ ce ∧ ”Greek” ∈ ldbo:Model,p,so
e ⇒ (e, dbp:birthP lace, dbr:Greece) ∈ G

0.88 dbo:RugbyClub ∈ ce ∧ (e, dbo:location, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:RugbyClub,dbo:location,so
e

0.88 dbo:RugbyClub ∈ ce ∧ ”Greek” ∈ ldbo:RugbyClub,dbo:location,so
e ⇒ (e, dbo:location, dbr:Greece) ∈ G

0.88 dbo:Model ∈ ce ∧ (e, dbo:birthP lace, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:Model,dbo:birthP lace,so
e

0.88 dbo:Model ∈ ce ∧ ”Greek” ∈ ldbo:Model,dbo:birthP lace,so
e ⇒ (e, dbo:birthP lace, dbr:Greece) ∈ G

0.87 dbo:F ormerMunicipality ∈ ce ∧ (e, dbo:country, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:F M,dbo:country,so
e

0.87 dbo:F M ∈ ce ∧ (e, dbo:type, dbr:P refectures_of_Greece) ∈ G ⇒ ”Greek” ∈ ldbo:F M,dbo:country,so
e

0.87 dbo:F M ∈ ce ∧ (e, dbp:subdivisionName, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:F M,dbp:subdivisionName,so
e

0.87 dbo:F M ∈ ce ∧ ”Greek” ∈ ldbo:F M,dbo:country,so
e ⇒ (e, dbo:country, dbr:Greece) ∈ G

0.87 dbo:F M ∈ ce ∧ ”Greek” ∈ ldbo:F M,dbo:type,so
e ⇒ (e, dbo:type, dbr:P refectures_of_Greece) ∈ G

0.87 dbo:F M ∈ ce ∧ ”Greek” ∈ le(c, p, so) ⇒ (e, dbp:subdivisionName, dbr:Greece) ∈ G

0.83 dbo:P resident ∈ ce ∧ (e, dbo:nationality, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:P resident,dbo:nationality,so
e

0.83 dbo:P resident ∈ ce ∧ ”Greek” ∈ ldbo:P resident,dbo:nationality,so
e ⇒ (e, dbo:nationality, dbr:Greece) ∈ G

0.82 dbo:Swimmer ∈ ce ∧ (e, dbo:birthP lace, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:Swimmer,dbo:birthP lace,so
e

0.82 dbo:Swimmer ∈ ce ∧ ”Greek” ∈ ldbo:Swimmer,dbo:birthP lace,so
e ⇒ (e, dbo:birthP lace, dbr:Greece) ∈ G

0.82 dbo:Model ∈ ce ∧ (e, dbp:birthP lace, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:Model,dbp:birthP lace,os
e

0.82 dbo:RugbyClub ∈ ce ∧ (e, dbp:location, dbr:Greece) ∈ G ⇒ ”Greek” ∈ ldbo:RugbyClub,dbp:location,so
e

0.82 dbo:Model ∈ ce ∧ ”Greek” ∈ ldbo:Model,dbp:birthP lace,os
e ⇒ (e, dbp:birthP lace, dbr:Greece) ∈ G

0.82 dbo:RugbyClub ∈ ce ∧ ”Greek” ∈ ldbo:RugbyClub,dbp:location,so
e ⇒ (e, dbp:location, dbr:Greece) ∈ G
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QALD (Question Answering over Linked Data)5 challenge series6 that consists of 601 pairs.
For each (question, query) pair (t,q), we tokenize t and create a set of linguistic patterns
in the same way as we have processed the abstracts and extracted patterns, explained in
Section 3. For each query q we create the (possibly empty) sets sq, pq, oq, spq, and poq

that are defined as follows. sq is the set of terms that occur in subject position of triple
patterns in q, pq is the set of terms that occur in predicate position of triple patterns in
q, oq is the set of terms that occur in object position of triple patterns in q, spq is a set
of tuples of the form (t1, t2) where q contains a triple pattern with t1 in subject position
and t2 in predicate position, and poq is a set of tuples of the form (t1, t2) where q contains
a triple pattern with t1 in predicate position and t2 in object position. From the set pq

we removed the term rdfs:label and the term rdf :type, and from the sets spq and poq we
removed all pairs of terms that contained the term rdfs:label or the term rdf :type, because
in the experiment we decided against learning rules that are class-specific and that mention
another type or that predict a label, although this might be included in the future. qs

was non-empty for 315 queries, qp was non-empty for 579 queries, qo was non-empty for
322 queries, qsp was non-empty for 311 queries, and qpo was non-empty for 229 queries.
275 distinct terms occurred in subject position, 298 distinct terms occurred in predicate
position, 296 distinct terms occurred in object position, 309 distinct term pairs occurred in
subject-predicate position, and 259 distinct term pairs occurred in predicate-object position.

As an example, consider the following SPARQL query which corresponds to the question
Give me English actors starring in Lovesick.7

SELECT DISTINCT ?uri WHERE {
res:Lovesick dbo:starring ?uri .
{ ?uri dbo:birthPlace res:England . }
UNION
{ ?uri rdf:type yago:EnglishFilmActors . }

}

Given the SPARQL query above the sets have the following content: sq = {res:Lovesick},
pq = {dbo:starring, dbo:birthP lace}, oq = {res:England, yago:EnglishF ilmActors}, spq =
{(res:Lovesick, dbo:starring)}, poq = {(dbo:birthP lace, res:England)}. The set of linguistic
patterns lq contains the 1-grams “actors”, “Give”, “English”, “Lovesick”, and “starring”,
the 2-grams “Give me”, “actors starring”, “me English”, “in Lovesick”, “starring in”, and
“English actors”, and so forth up to 5-grams.

Given a (question, query) pair, we can now find all rules for the 10 rule patterns cs, ls ⇒ po;
cs, lls ⇒ po; cs, ls ⇒ p; cs, lls ⇒ p; cs, ls ⇒ o; co, lo ⇒ sp; co, llo ⇒ sp; co, lo ⇒ s; co, lo ⇒ p;
and co, llo ⇒ p, i.e., those that predict KB terms based on linguistic patterns. For all these
rule patterns, a triple pattern occurs on the right side of the association rules. For a rule r,
sr denotes the triple pattern’s subject term, pr denotes the triple pattern’s predicate term,
and or denotes the triple pattern’s object term.

5 See http://qald.aksw.org/
6 We used all files containing (question, query) pairs from the QALD challenge series that we could

get hold on. We used the files dbpedia-test.xml and dbpedia-train.xml from QALD-1, QALD-2,
and QALD-3, the files qald-4_multilingual_test.xml and qald-4_multilingual_train.xml from
QALD-4, the file qald-5_train.xml from QALD-5, the files qald-6-test-multilingual.json and
qald-6-train-multilingual.json from QALD-6, the file qald-7-train-multilingual.json from
QALD-7, and the file qald-9-train-multilingual.json. In the case where a question appeared in
several challenges we only make use of the corresponding query from the most recent challenge.

7 The example is taken from the QALD-5 challenge, question #293, file qald-5_train.xml.
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Let R be a set of rules and let Q be a set of (question, query) pairs. Given a set of
rules R and a query q, the set of true positives for predicate terms, denoted by TPp(q, R),
is the set of terms that are necessary for building the query (i.e., those terms that exist in
predicate position in the query) and that are proposed by some rule r ∈ R. Likewise, we
can define TPs, TPo, TPsp, and TPpo. The set FPp(q, R) of false positives for predicate
terms is the set of terms that are incorrectly proposed as necessary for building the query
(i.e., those terms that exist in predicate position in the query) and that are proposed by
some rule r ∈ R. Likewise, we can define FPs, FPo, FPsp, and FPpo. The set FNp(q, R)
of false negatives for predicate terms is the set of terms that are necessary for building the
query (i.e., those terms that exist in predicate position in the query) but are not proposed
by any rule r ∈ R. Likewise, we can define FNs, FNo, FNsp, and FNpo. Given TPx, FPx,
and FNx, we can calculate micro-averaged precision (micro−Px(Q, R)), micro-averaged
recall (micro−Rx(Q, R)), micro-averaged F1 (micro−F1x(Q, R)), macro-averaged preci-
sion (macro−Px(Q, R)), macro-averaged recall (macro−Rx(Q, R)), and macro-averaged F1
(macro−F1x(Q, R)) for each prediction type x ∈ {s, p, o, sp, po}.

Within the set of non-localized rules we found 17,165,8198 rules that contain a linguistic
pattern that appears in a QALD question. In the set of localized rules we found 742,8919

rules that contain a linguistic pattern that appears in a QALD question. From these rules,
only for 128,223 (≈1%) non-localized rules and for 42,838 (≈6%) localized rules there exists
a (question, query) pair such that the rule contains a linguistic pattern that exists in the
question and the rule predicts a term or a pair of terms that occurs in the query – thus,
these are the desired/helpful rules.10

Without filtering the set R of rules, we measured the recall values, because these help us to
understand the upper bounds for recall for any subset of R. For the set of non-localized (local-
ized) rules, we measured the following values: micro−Rs=0.08 (0.03), microRp=0.92 (0.74),
micro−Ro=0.31 (0.21), micro−Rsp=0.02 (0.01), micro−Rpo=0.47 (0.3), macro−Rs=0.08
(0.02), macro−Rp=0.92 (0.71), macroRo=0.27 (0.16), macro−Rsp=0.02 (0), and macro−Rpo

=0.44 (0.26). All precision values were close to zero. It can be seen that the localized rules
do not perform better than the non-localized rules.

We investigated the impact of the individual parameters on precision, recall and F1 for
non-localized and for localized rules. We filtered R with sup(A), sup(B) ∈ {5, 10, 15, 20},
sup(AB) ∈ {5, 10, 15}, P (B|A), P (A|B) ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05}, and for the AllConf
measure the threshold values {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Instead of exploring
the cartesian product of possible parameter value combinations, for each experiment we only
let one parameter take a value that is not the lowest possible value, which results in a set of
28 experiments. For localized rules, Figure 1 shows the precision values for each experiment,
Figure 2 shows the recall values for each experiment, and Figure 3 shows the F1 values

8 cs, ls ⇒ o: 5,599,910, co, lo ⇒ p: 529,331, cs, ls ⇒ p: 3,828,243, cs, ls ⇒ po: 6,395,776, co, lo ⇒ s:
59,584, co, lo ⇒ sp: 752,974

9 co, llo ⇒ sp: 41,204, co, llo ⇒ p: 30,870, cs, lls ⇒ po: 487,176, cs, lls ⇒ p: 409,408
10 Objects were correctly predicted by 8,044 rules of type cs, ls ⇒ o, 16,207 rules of type cs, ls ⇒ po, and

6,625 rules of type cs, lls ⇒ po; predicates were correctly predicted by 5,005 rules of type co, lo ⇒ p,
25,127 rules of type cs, ls ⇒ p, 107,186 rules of type cs, ls ⇒ po, 15,626 rules of type co, lo ⇒ sp, 1,384
rules of type co, llo ⇒ p, 10,392 rules of type cs, lls ⇒ p, 24,709 rules of type cs, lls ⇒ po, and 1,571
rules of type co, llo ⇒ sp; subjects were correctly predicted by 16 rules of type co, lo ⇒ s, 100 rules of
type co, lo ⇒ sp, and 37 rules of type co, llo ⇒ sp; subject-predicate pairs were correctly predicted by 9
rules of type co, lo ⇒ sp and 2 rules of type co, llo ⇒ sp; property-object pairs were correctly predicted
by 3,173 rules of type cs, ls ⇒ po and by 1,577 rules of type cs, lls ⇒ po .
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Figure 1 Precision values for each of the 28 experiments with localized rules.
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Figure 2 Recall values for each of the 28 experiments with localized rules.

for each experiment. The interestingness threshold appears to have the highest impact on
precision, recall, and F1. However, increasing the threshold for the AllConf measure also
decreases precision. Note that due to the bar chart being stacked, recall values can be above
1, because each recall value, e.g., macro−Rpo, is a value in the range [0, 1].

4.1 Gold Standard Evaluation
The evaluation described previously considers all possible pairs of lexical elements and KB
elements that can be extracted from pairs of NL question and SPARQL queries in the
QALD dataset. In order to allow for a more controlled evaluation that allows us to examine
the performance of our approach on different parts-of-speech, we manually created a gold
standard from QALD-9 for three parts-of-speech: for adjectives referring to a pair of property
and object, for verbs referring to a property, and for (relational) nouns referring to a property.
We describe the gold standards for the three different parts-of-speech in the following:

Gold standard for adjectives: comprising of 13 adjectives referring to a pair of property
and object. As an example, the adjective Swedish in the question “Give me all Swedish
holidays” refers to the pair (dbo:country, res:Sweden).
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Figure 3 F 1 values for each of the 28 experiments with localized rules.

Gold standard for verbs: comprising of 69 verbs referring to a property. As an example,
the verb dissolve in the question “When did the Ming dynasty dissolve?” refers to the
property dbo:dissolutionDate.
Gold standard for (relational) nouns: comprising of 55 nouns. As an example, the
relational noun founder (of) refers to the property dbo:founder in the question “Who is
the founder of Penguin Books?”.

In Table 4, we give the results in terms of four metrics: MRR, Hits@1, Hits@5, Hits@10.
Mean reciprocal rank (MRR) is a measure used in information retrieval to evaluate ranked
lists of results. The MRR is defined as follows:

MRR = 1
|Q|

|Q|∑
i=1

1
|ranki|

In our case the query is the lexical element in question and the retrieved list corresponds to
the KB elements ranked by the corresponding interestingness measure. Hits@k denotes the
percentage of queries for which the correct KB element is within the top k results. We provide
the results for the best configuration in terms of hyperparameters for each part-of-speech.

The best results were obtained for adjectives when we filtered rules that do not satisfy
the following constraints: supA ≥ 5, supB ≥ 50, P (A|B) ≥ 0.1, P (B|A) ≥ 0.05, and an
interestingness value ≥ 0.2 Among the interestingness measures, MaxConf achieves higher
performance (0.23, 0.35, 0.35, and 0.4 for MRR, Hits@1 and Hits@5, Hits@10 respectively)
than all other interestingness measures. The low results in terms of MRR are due to the fact
that in some cases, the correct (property, object) pair for an adjective is ranked rather low
in the list. For the adjective Canadian, the correct pair (dbo:country, dbr:Canada) ranks at
position 17 of the best ranking with the MaxConf measure, while other related (property,
object) pairs that are more specific rank higher, such as (dbo:region, dbr:Saskatchewan),
(dbo:location, dbr:Ontario) etc. The best results were obtained for verbs with the configura-
tion supA ≥ 50, supB ≥ 50, P (A|B) ≥ 0.1, P (B|A) ≥ 0.1, MaxConf ≥ 0.2. For the majority
of verbs including create, design, develop, die, direct, found, marry, etc. the correspond-
ing correct property dbo:creator, dbo:designer, dbo:developer, dbo:deathP lace, dbo:director,
dbo:founder, dbo:spouse rank at position 1. The best results were obtained for relative nouns
with the configuration supA ≥ 50, supB ≥ 50, P (A|B) ≥ 0.1, P (B|A) ≥ 0.05, IR ≥ 0.2.
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Table 4 Results of Gold Standard Evaluation of three parts-of-speech: adjective, verb, and noun.

Measure Adjective Verb Noun
MRR Hits1 Hits5 Hits10 MRR Hits1 Hits5 Hits10 MRR Hits1 Hits5 Hits10

Cosine 0.08 0.05 0.2 0.2 0.28 0.25 0.31 0.31 0.19 0.18 0.2 0.2
Coherence 0.05 0.0 0.15 0.2 0.28 0.25 0.31 0.31 0.19 0.18 0.2 0.2
AllConf 0.04 0.0 0.15 0.2 0.28 0.25 0.31 0.31 0.19 0.18 0.2 0.2
MaxConf 0.23 0.35 0.35 0.4 0.31 0.31 0.31 0.31 0.19 0.18 0.2 0.2
IR 0.13 0.05 0.2 0.4 0.31 0.31 0.31 0.31 0.2 0.2 0.2 0.2
Kulczynski 0.11 0.05 0.2 0.3 0.28 0.25 0.31 0.31 0.19 0.18 0.2 0.2

5 Related Work

Related work can be grouped into two areas: i) (mining of patterns for) information extraction
from text to RDF, and ii) (mining of patterns for) natural language generation from RDF.

Several works, such as by Gerber et al. [7], Nakashole et al. [13], and Walter et al. [15],
apply the distant supervision principle to extract relation-specific patterns from natural
language sentences. In our framework, relation-specific patterns can be expressed with the
association rule patterns cs, lls ⇒ p and co, llo ⇒ p.

Gerber et al. [7] apply their approach to texts from Wikipedia and DBpedia as KB. The
patterns, called BOA patterns, can be used to extract relations from texts and to populate
a knowledge base with the extraction results. BOA patterns are scored based on support,
as we propose as well, but furthermore BOA patterns are scored on typicity and specificity,
whereas we make use of conditional probabilities and interestingness measures. An example
of a BOA pattern for the predicate subsidiary is ?D?’s acquisition of ?R?. Here, ?D? and
?R? matches entities that are instances of the classes specified as the domain and range of
the predicate, respectively. Thus, a BOA pattern can be specific to up to two classes.

Nakashole et al. [13] introduce SOL patterns. These patterns can consist of syntactic
features, ontological type signatures, and lexical features. In contrast to our approach, the
authors extract patterns from dependency-parsed sentences instead of from tokenized texts
and collect dependency paths between identified entities. Patterns are scored by support and
confidence. An example of an SOL pattern for the relation hasMusicalIdol is <musician>
PRP idol <musician>, where musician, the ontological type signature, matches any entity
that is an instance of the class musician and PRP matches any token that is a pronoun.

The approach M-ATOLL by Walter et al. [15] mines textual patterns that denote binary
relations between entities. The text corpus is dependency-parsed and natural language
patterns are identified via a set of manually defined dependency graph patterns that are
matched against the parsed text. The resulting patterns are represented in lemon [9] format.
Going beyond M-ATOLL, we do not rely on a pre-definend set of patterns, but mine the
patterns inductively from data (that has not been dependency-parsed).

In contrast to the previous three approaches, although also extracting relations from
Wikipedia abstracts and making use of the distant supervision principle, Heist et al. [8]
propose an approach that does not make use of linguistic features, for example by considering
the position of an identified entity in an abstract. The authors train several classification
algorithms and show that a classifier trained on one language can also classify relations in
another language, which is possible since the features aren’t language-specific in the sense
that they do not make use of lexical or syntactic information.

Ding et al. [4] propose an approach to map adjectives to existential restrictions over a KB.
Their approach, Adj2ER, finds for example that the adjective American can be expressed via
the existential restriction ∃dbo:nationality.{dbr:United_States}. This existential restriction
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is comparable to the rule pattern cs, ls ⇒ po. As a further similarity, the authors take into
account which class an adjective modifies. Adj2ER can create existential restrictions that
contain negations. For example, the approach finds that for instances of the class Actor the
adjective alive can be mapped to ¬∃deathDate.⊤. Negation cannot be expressed within our
framework of association rules. Instead of distant supervision on natural language text, for
an adjective and a class their approach collects entities that are instances of that class and
then create two sets: one set where the instance and the adjective co-occur in some text and
the other set of entities that do not. Then, they make use of the information in a KB about
these entities to derive the existential restrictions.

A simple form of generation of natural language text from RDF can be realized, as Sun
and Mellish [14] show, by categorizing the names of terms such as predicates (e.g., “has”
+ noun) and by making use of a few templates specific to these categories. The approach
requires the names in an ontology to follow certain conventions and creates verbalizations
that may not always be natural. Moreover, each triple is verbalized as an individual sentence.
A possibility to create verbalizations that are natural in style is to make use of a lexicon,
as shown by Cimiano et al. [3]. However, such a lexicon may not always be available.
Ell and Harth [5] present an approach that applies the distant supervision principle and
automatically extracts verbalization templates that express multiple triples in one sentence. A
good overview about NLG from RDF can be found in the context of the WebNLG challenge11

[6]. Approaches that tackle this challenge need to be able to carry out tasks such as sentence
segmentation, lexicalization, aggregation, and surface realisation. Those association rules
mined by our approach that predict a linguistic pattern could be applicable in the context of
the lexicalization task. Recent work by Moussallem et al. [11] presents an approach based on
a encoder-decoder architecture that is capable of generating multilingual verbalizations.

6 Conclusion

We have presented LexExMachina, a new approach to closing the gap between lexicon and
ontology by mining a set of 20 types of class-specific association rules that connect a lexical
element to a data element from a KB. These rules can be used for information extraction,
question answering as well as KB verbalization tasks. We have mined association rules
from the loosely-parallel corpus consisting of Wikipedia and DBpedia for the 354 classes
that have at least 100 instances. The resulting rules have been evaluated on a QA task
of reconstructing all the elements of the query from the NL question by relying on these
correspondences as well as on a manually created gold standard that allows us to inspect the
results for different parts-of-speech. Our framework subsumes many of the pattern mining
approaches proposed so far and shows promising results. Although our experiment showed
that high-quality and high-coverage association rules can be found, for example those that
contain the token Greek, shown in Table 3, we need to investigate further how to increase
precision without severely sacrificing recall. Beyond the seven parameters taken into account
so far, we plan to investigate the impact of further parameters, such as the length of a string
between two arguments from which the patterns are extracted, and how fuzzy matching can
help to increase recall.

11 See https://webnlg-challenge.loria.fr/

https://webnlg-challenge.loria.fr/
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A Details on and Examples for the Rule Patterns

Rule Patterns cs, ls ⇒ po and cs, lls ⇒ po. Given for a rule of type cs, ls ⇒ po (cs, lls ⇒ po)
are a class c ∈ C, a property p ∈ P , a term o ∈ T , and a (localized) linguistic pattern l.

c ∈ ce ∧ l ∈ le ⇒ (e, p, o) ∈ G (cs, ls ⇒ po)
c ∈ ce ∧ l ∈ lc,p,d

e ⇒ (e, p, o) ∈ G (cs, lls ⇒ po)

Meaning: Given that in a document that describes an entity e that is an instance of the class
c occurs the (localized) linguistic pattern l, the rule predicts that the entity e has the value
o for the property p.

Example for rule pattern cs, ls ⇒ po:
dbo:P olitician ∈ ce ∧ ”Awami League” ∈ le

⇒ (e, dbo:party, dbr:Bangladesh_Awami_League) ∈ G

sup(A)= 40 AllConf(A,B)≈ 0.88
sup(B)= 42 Coherence(A,B)≈ 0.45

sup(AB)= 37 Cosine(A,B)≈ 0.9
P(B|A)≈ 0.88 IR(A,B)≈ 0.04
P(A|B)≈ 0.92 Kulczynski(A,B)≈ 0.9

MaxConf(A,B)≈ 0.92

Meaning: Given an entity that is an instance of the class dbo:Politician and where the
document that describes that entity contains the linguistic pattern ”Awami League”, the rule
predicts that the entity is in the relation dbo:party with dbr:Bangladesh_Awami_League.

Example for rule pattern cs, lls ⇒ po:
dbo:Arachnid ∈ ce ∧

”family Trombidiidae” ∈ ldbo:Arachnid,dbo:genus,so
e

⇒ (e, dbo:genus, dbr:T rombidium) ∈ G

sup(A)= 40 AllConf(A,B)≈ 0.88
sup(B)= 42 Coherence(A,B)≈ 0.45

sup(AB)= 37 Cosine(A,B)≈ 0.9
P(B|A)≈ 0.88 IR(A,B)≈ 0.04
P(A|B)≈ 0.92 Kulczynski(A,B)≈ 0.9

MaxConf(A,B)≈ 0.92

Meaning: Given an entity that is an instance of the class dbo:Arachnid and where the
abstract of that entity contains the localized linguistic pattern ”family Trombidiidae” (which
is localized to the class dbo:Arachnid and the predicate dbo:genus), the rule predicts that
the entity is in the relation dbo:genus with dbr:Trombidium.

Rule Patterns cs, ls ⇒ p and cs, lls ⇒ p. Given for a rule of type cs, ls ⇒ p (cs, lls ⇒ p)
are a class c ∈ C, a property p ∈ P , and a (localized) linguistic pattern l.

c ∈ ce ∧ l ∈ le ⇒ ∃o ∈ T : (e, p, o) ∈ G (cs, ls ⇒ p)
c ∈ ce ∧ l ∈ lc,p,d

e ⇒ ∃o ∈ T : (e, p, o) ∈ G (cs, lls ⇒ p)

Meaning: Given that in a document that describes an entity e that is an instance of the class
c occurs the linguistic pattern l, predict that the entity e has some value for the property p.

Example for rule pattern cs, ls ⇒ p:
dbo:Actor ∈ ce ∧ ”a Swedish actor” ∈ le

⇒ ∃o : (e, dbo:nationality, o) ∈ G

sup(A)= 213 AllConf(A,B)≈ 0.29
sup(B)= 729 Coherence(A,B)≈ 0.23

sup(AB)= 213 Cosine(A,B)≈ 0.54
P(B|A)≈ 0.29 IR(A,B)≈ 0.71
P(A|B)≈ 1 Kulczynski(A,B)≈ 0.65

MaxConf(A,B)≈ 1

Meaning: Given an entity that is an instance of the class dbo:Actor and where the document
that describes that entity contains the linguistic pattern ”a Swedish actor”, the rule predicts
that the entity is in the relation dbo:nationality with some entity.
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Example for rule pattern cs, lls ⇒ p:
dbo:Actor ∈ ce ∧ ”married to” ∈ ldbo:Actor,dbo:spouse,so

e

⇒ ∃o : (e, dbo:spouse, o) ∈ G

sup(A)= 61 AllConf(A,B)≈ 0.12
sup(B)= 289 Coherence(A,B)≈ 0.1

sup(AB)= 36 Cosine(A,B)≈ 0.27
P(B|A)≈ 0.12 IR(A,B)≈ 0.73
P(A|B)≈ 0.59 Kulczynski(A,B)≈ 0.36

MaxConf(A,B)≈ 0.59

Meaning: Given an entity that is an instance of the class dbo:Actor and where the document
that describes that entity contains the linguistic pattern ”married to” (which is localized to
the class dbo:Actor and the predicate dbo:spouse), the rule predicts that the entity is in the
relation dbo:spouse with some entity.

Rule Pattern cs, ls ⇒ o. Given for a rule of type cs, ls ⇒ o are a class c ∈ C, a term o ∈ T ,
and a linguistic pattern l.

c ∈ ce ∧ l ∈ le ⇒ ∃p ∈ U : (e, p, o) ∈ G (cs, ls ⇒ o)

Meaning: Given that in a document that describes an entity e that is an instance of the class
c occurs the linguistic pattern l, predict that there is some relation by which e is related to
the term o.

Example for rule pattern cs, ls ⇒ o:
dbo:Grape ∈ ce ∧ ”white” ∈ le

⇒ ∃p : (e, p, ”Blanc”@en) ∈

sup(A)= 225 AllConf(A,B)≈ 0.81
sup(B)= 198 Coherence(A,B)≈ 0.43

sup(AB)= 183 Cosine(A,B)≈ 0.87
P(B|A)≈ 0.92 IR(A,B)≈ 0.11
P(A|B)≈ 0.81 Kulczynski(A,B)≈ 0.87

MaxConf(A,B)≈ 0.92

Meaning: Given an entity that is an instance of the class dbo:Grape and where the document
that describes that entity contains the linguistic pattern ”white”, the rule predicts that the
entity is in some relation with the term ”Blanc”@en.

Rule Patterns co, lo ⇒ sp and co, llo ⇒ sp. Given for a rule of type co, lo ⇒ sp (co, llo ⇒ sp)
are a class c ∈ C, a term s ∈ U ∪ B, a predicate p ∈ P, and a (localized) linguistic pattern l.

c ∈ ce ∧ l ∈ le ⇒ (s, p, e) ∈ G (co, lo ⇒ sp)
c ∈ ce ∧ l ∈ lc,p,d

e ⇒ (s, p, e) ∈ G (co, llo ⇒ sp)

Meaning: Given that in a document that describes an entity e that is an instance of the
class c occurs the (localized) linguistic pattern l, predict that there is an entity s that is in
relation p with the entity e.

Example for rule pattern co, lo ⇒ sp:
dbo:Island ∈ ce ∧ ”Baltic” ∈ le

⇒ (dbr:Baltic_Sea, dbo:island, e) ∈ G

sup(A)= 43 AllConf(A,B)≈ 0.35
sup(B)= 23 Coherence(A,B)≈ 0.23

sup(AB)= 15 Cosine(A,B)≈ 0.48
P(B|A)≈ 0.65 IR(A,B)≈ 0.39
P(A|B)≈ 0.35 Kulczynski(A,B)≈ 0.5

MaxConf(A,B)≈ 0.65

Meaning: Given an entity that is an instance of the class dbo:Island and where the document
that describes that entity contains the linguistic pattern ”Baltic”, the rule predicts that the
entity dbr:Baltic_See is in the relation dbo:island with this entity.

Example for rule pattern co, llo ⇒ sp:
dbo:Artwork ∈ ce ∧ ”Salvador” ∈ ldbo:Artwork,dbo:notableW ork,so

e

⇒ (dbr:Salvador_Dalí, dbo:notableW ork, e) ∈ G

sup(A)= 6 AllConf(A,B)≈ 0.86
sup(B)= 7 Coherence(A,B)≈ 0.46

sup(AB)= 6 Cosine(A,B)≈ 0.93
P(B|A)≈ 0.86 IR(A,B)≈ 0.14
P(A|B)≈ 1 Kulczynski(A,B)≈ 0.93

MaxConf(A,B)≈ 1
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Meaning: Given an entity that is an instance of the class dbo:Artwork and where the docu-
ment that describes that entity contains the linguistic pattern ”Salvador” (which is localized
to the class dbo:Artwork and the predicate dbo:notableWork), the rule predicts that the
entity dbr:Salvador_Dalí is in the relation dbo:notableWork with this entity.

Rule Pattern co, lo ⇒ s. Given for a rule of type co, lo ⇒ s are a class c ∈ C, a term o ∈ T ,
and a linguistic pattern l.

c ∈ ce ∧ l ∈ le ⇒ (s, p, e) ∈ G (co, lo ⇒ s)

Meaning: Given that in a document that describes an entity e that is an instance of the class
c occurs the linguistic pattern l, predict that there is an entity s that is in some relation
with the entity e.

Example for rule pattern co, lo ⇒ s:
dbo:Language ∈ ce ∧ ”Nahuatl” ∈ le

⇒ ∃p : (dbr:Nahuan_languages, p, e) ∈ G

sup(A)= 21 AllConf(A,B)≈ 0.76
sup(B)= 18 Coherence(A,B)≈ 0.41

sup(AB)= 16 Cosine(A,B)≈ 0.82
P(B|A)≈ 0.89 IR(A,B)≈ 0.13
P(A|B)≈ 0.76 Kulczynski(A,B)≈ 0.83

MaxConf(A,B)≈ 0.89

Meaning: Given an entity that is an instance of the class dbo:Language and where the
document that describes that entity contains the linguistic pattern ”Nahuatl”, the rule
predicts that the entity dbr:Nahuan_languages is in some relation with this entity.

Rule Patterns co, lo ⇒ p and co, llo ⇒ p. Given for a rule of type co, lo ⇒ p (co, llo ⇒ p)
are a class c ∈ C, a predicate p ∈ P, and a (localized) linguistic pattern l.

c ∈ ce ∧ l ∈ le ⇒ ∃s ∈ U ∪ B : (s, p, e) ∈ G (co, lo ⇒ p)
c ∈ ce ∧ l ∈ lc,p,d

e ⇒ ∃s ∈ U ∪ B : (s, p, e) ∈ G (co, llo ⇒ p)

Meaning: Given that in a document that describes an entity e that is an instance of the class
c occurs the (localized) linguistic pattern l, predict that there is some entity that is in the
relation p with the entity e.

Example for rule pattern co, lo ⇒ p:
dbo:AmateurBoxer ∈ ce ∧ ”silver medal” ∈ le

⇒ ∃s : (s, dbo:silverMedalist, e) ∈ G

sup(A)= 70 AllConf(A,B)≈ 0.31
sup(B)= 29 Coherence(A,B)≈ 0.22

sup(AB)= 22 Cosine(A,B)≈ 0.49
P(B|A)≈ 0.76 IR(A,B)≈ 0.53
P(A|B)≈ 0.31 Kulczynski(A,B)≈ 0.54

MaxConf(A,B)≈ 0.76

Meaning: Given an entity e that is an instance of the class dbo:AmateurBoxer and where
the document that describes that entity contains the linguistic pattern ”silver medal”, the
rule predicts that there is some entity which is related via the relation dbo:silverMedalist

to the entity e.

Example for rule pattern co, llo ⇒ p:
dbo:Noble ∈ ce ∧ ”married” ∈ ldbo:Noble,dbo:spouse,so

e

⇒ ∃s : (s, dbo:spouse, e) ∈ G

sup(A)= 220 AllConf(A,B)≈ 0.1
sup(B)= 1588 Coherence(A,B)≈ 0.08

sup(AB)= 151 Cosine(A,B)≈ 0.26
P(B|A)≈ 0.1 IR(A,B)≈ 0.83
P(A|B)≈ 0.69 Kulczynski(A,B)≈ 0.39

MaxConf(A,B)≈ 0.69
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Meaning: Given an entity e that is an instance of the class dbo:Noble and where the document
that describes that entity contains the linguistic pattern ”married” (which is localized to the
class dbo:Noble and the predicate dbo:spouse), the rule predicts that there is some entity
which is related via the relation dbo:spouse to the entity e.

Rule Patterns cs, po ⇒ ls and cs, po ⇒ lls. Given for a rule of type cs, po ⇒ ls (cs, po ⇒ lls)
are a class c ∈ C, a predicate p ∈ P, a term o ∈ T , and a (localized) linguistic pattern l.

c ∈ ce ∧ (e, p, o) ∈ G ⇒ l ∈ le (cs, po ⇒ ls)
c ∈ ce ∧ (e, p, o) ∈ G ⇒ l ∈ lc,p,d

e (cs, po ⇒ lls)

Meaning: Given an entity e that is an instance of the class c and given that e is in relation p

to the term o, predict that the text that describes e contains the (localized) linguistic pattern l.

Example for rule pattern cs, po ⇒ ls:
dbo:Actor ∈ ce ∧ (e, dbo:nationality, dbr:Sweden) ∈ G

⇒ ”Swedish” ∈ le

sup(A)= 589 AllConf(A,B)≈ 0.98
sup(B)= 582 Coherence(A,B)≈ 0.49

sup(AB)= 579 Cosine(A,B)≈ 0.99
P(B|A)≈ 0.99 IR(A,B)≈ 0.01
P(A|B)≈ 0.98 Kulczynski(A,B)≈ 0.99

MaxConf(A,B)≈ 0.99

Meaning: Given an entity e that is an instance of the class dbo:Actor and where the entity
is in the relation dbo:nationality with the entity dbr:Sweden, the rule predicts that the
linguistic pattern ”Swedish” occurs in the text about the entity e.

Example for rule pattern cs, po ⇒ lls:
dbo:Criminal ∈ ce ∧ (e, dbo:deathP lace, dbr:Sicily) ∈ G

⇒ ”Mafia” ∈ ldbo:Criminal,dbo:deathP lace,os
e

sup(A)= 11 AllConf(A,B)≈ 0.64
sup(B)= 8 Coherence(A,B)≈ 0.37

sup(AB)= 7 Cosine(A,B)≈ 0.75
P(B|A)≈ 0.88 IR(A,B)≈ 0.25
P(A|B)≈ 0.64 Kulczynski(A,B)≈ 0.76

MaxConf(A,B)≈ 0.88

Meaning: Given an entity e that is an instance of the class dbo:Criminal and where the
entity is in the relation dbo:deathP lace with the entity dbr:Sicily, the rule predicts that the
localized linguistic pattern ”Mafia” (which is localized to the class dbo:Criminal and the
predicate dbo:deathP lace) occurs in the text about the entity e.

Rule Patterns cs, p ⇒ ls and cs, p ⇒ lls. Given for a rule of type cs, p ⇒ ls (cs, p ⇒ ls)
are a class c ∈ C, a predicate p ∈ P, and a (localized) linguistic pattern l.

c ∈ ce ∧ ∃o ∈ T : (e, p, o) ∈ G ⇒ l ∈ le (cs, p ⇒ ls)
c ∈ ce ∧ ∃o ∈ T : (e, p, o) ∈ G ⇒ l ∈ lc,p,d

e (cs, p ⇒ lls)

Meaning: Given an entity e that is an instance of the class c and given that e is in relation p

to some term, predict that the text that describes e contains the (localized) linguistic pattern l.

Example for rule pattern cs, p ⇒ ls:
dbo:F ungus ∈ ce ∧ ∃o : (e, dbp:genusAuthority, o) ∈ G

⇒ ”is a genus” ∈ le

sup(A)= 4330 AllConf(A,B)≈ 0.86
sup(B)= 3773 Coherence(A,B)≈ 0.46

sup(AB)= 3717 Cosine(A,B)≈ 0.92
P(B|A)≈ 0.99 IR(A,B)≈ 0.13
P(A|B)≈ 0.86 Kulczynski(A,B)≈ 0.92

MaxConf(A,B)≈ 0.99

Meaning: Given an entity e that is an instance of the class dbo:Fungus and where the entity
is in the relation dbo:genusAuthority with some term, the rule predicts that the linguistic
pattern ”is a genus” occurs in the text about the entity e.
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Example for rule pattern cs, p ⇒ lls:
dbo:CricketGround ∈ ce ∧ ∃o : (e, dbp:location, o) ∈ G

⇒ ”is a cricket ground in” ∈ ldbo:CricketGround,dbp:location,so
e

sup(A)= 195 AllConf(A,B)≈ 0.33
sup(B)= 64 Coherence(A,B)≈ 0.25

sup(AB)= 64 Cosine(A,B)≈ 0.57
P(B|A)≈ 1 IR(A,B)≈ 0.67
P(A|B)≈ 0.33 Kulczynski(A,B)≈ 0.66

MaxConf(A,B)≈ 1

Meaning: Given an entity e that is an instance of the class dbo:CricketGround and where
the entity is in the relation dbp:location with some term, the rule predicts that the localized
linguistic pattern ”is a cricket ground in” (which is localized to the class dbo:CricketGround

and the predicate dbp:location) occurs in the text about the entity e.

Rule Pattern cs, o ⇒ ls. Given for a rule of type cs, o ⇒ ls are a class c ∈ C, a term o ∈ T ,
and a linguistic pattern l.

c ∈ ce ∧ ∃p ∈ U : (e, p, o) ∈ G ⇒ l ∈ le (cs, o ⇒ ls)

Meaning: Given an entity e that is an instance of the class c and given that e is in some relation
to the term o, predict that the text that describes e contains the (localized) linguistic pattern l.

Example for rule pattern cs, o ⇒ ls:
dbo:P rotein ∈ ce ∧ ∃p : (e, p, ”MT ”) ∈ G

⇒ ”Mitochondrially encoded” ∈ le

sup(A)= 24 AllConf(A,B)≈ 1
sup(B)= 24 Coherence(A,B)≈ 0.5

sup(AB)= 24 Cosine(A,B)≈ 1
P(B|A)≈ 1 IR(A,B)≈ 0
P(A|B)≈ 1 Kulczynski(A,B)≈ 1

MaxConf(A,B)≈ 1

Meaning: Given an entity e that is an instance of the class dbo:Protein and where the
entity is in some relation with the term ”MT”, the rule predicts that the linguistic pattern
”Mitochondrially encoded” occurs in the text about the entity e.

Rule Patterns co, sp ⇒ lo and co, sp ⇒ llo. Given for a rule of type co, sp ⇒ lo (co, sp ⇒ llo)
are a class c ∈ C, a term s ∈ U ∪ B, a predicate p ∈ P, and a (localized) linguistic pattern l.

c ∈ ce ∧ (s, p, e) ∈ G} ⇒ l ∈ le (co, sp ⇒ lo)
c ∈ ce ∧ (s, p, e) ∈ G} ⇒ l ∈ lc,p,d

e (co, sp ⇒ llo)

Meaning: Given an entity e that is an instance of the class c and given that the term s is in rela-
tion p with e, predict that the text that describes e contains the (localized) linguistic pattern l.

Example for rule pattern co, sp ⇒ lo:
dbo:W ineRegion ∈ ce ∧ (dbr:Mendocino_County_wine,

dbp:subRegions, e) ∈ G

⇒ ”Mendocino County California ∈ le

sup(A)= 11 AllConf(A,B)≈ 0.92
sup(B)= 12 Coherence(A,B)≈ 0.48

sup(AB)= 11 Cosine(A,B)≈ 0.96
P(B|A)≈ 0.92 IR(A,B)≈ 0.08
P(A|B)≈ 1 Kulczynski(A,B)≈ 0.96

MaxConf(A,B)≈ 1

Meaning: Given an entity e that is an instance of the class dbo:WineRegion and where
the entity dbr:Mendocino_County_wine is in the relation dbp:subRegions with e, the rule
predicts that the linguistic pattern ”Mendocino County California” occurs in the text about
the entity e.

Example for rule pattern co, sp ⇒ llo:
dbo:Airline ∈ ce ∧ (dbr:Lufthansa, dbo:subsidiary, e) ∈ G

⇒ ”subsidiary of” ∈ ldbo:Airline,dbo:subsidiary,so
e

sup(A)= 11 AllConf(A,B)≈ 0.09
sup(B)= 64 Coherence(A,B)≈ 0.08

sup(AB)= 6 Cosine(A,B)≈ 0.23
P(B|A)≈ 0.09 IR(A,B)≈ 0.77
P(A|B)≈ 0.55 Kulczynski(A,B)≈ 0.32

MaxConf(A,B)≈ 0.55
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Meaning: Given an entity e that is an instance of the class dbo:Airline and where the
entity dbr:Lufthansa is in the relation dbo:subsidiary with e, the rule predicts that the
localized linguistic pattern ”subsidiary of” (which is localized to the class dbo:Airlines and
the predicate dbo:subsidiary) occurs in the text about the entity e.

Rule Pattern co, s ⇒ lo. Given for a rule of type co, s ⇒ lo are a class c ∈ C, a term
s ∈ U ∪ B, and a linguistic pattern l.

c ∈ ce ∧ ∃p ∈ U : (s, p, e) ∈ G} ⇒ l ∈ le (co, s ⇒ lo)

Meaning: Given an entity e that is an instance of the class c and given that the term s is in
some with e, predict that the text that describes e contains the (localized) linguistic pattern l.

Example for rule pattern co, s ⇒ lo:
dbo:Horse ∈ ce ∧ ∃p : (dbr:Orme_(horse), p, e) ∈ G

⇒ ”English Thoroughbred racehorse” ∈ le

sup(A)= 14 AllConf(A,B)≈ 0.43
sup(B)= 11 Coherence(A,B)≈ 0.24

sup(AB)= 6 Cosine(A,B)≈ 0.48
P(B|A)≈ 0.55 IR(A,B)≈ 0.16
P(A|B)≈ 0.43 Kulczynski(A,B)≈ 0.49

MaxConf(A,B)≈ 0.55

Meaning: Given an entity e that is an instance of the class dbo:Horse and where the entity
dbr:Orme_(horse) is in some relation with e, the rule predicts that the linguistic pattern
”English Thoroughbred racehorse” occurs in the text about the entity e.

Rule Patterns co, p ⇒ lo and co, p ⇒ llo. Given for a rule of type co, p ⇒ lo (co, p ⇒ llo)
are a class c ∈ C, a predicate p ∈ P, and a (localized) linguistic pattern l.

c ∈ ce ∧ ∃s ∈ U ∪ B : (s, p, e) ∈ G ⇒ l ∈ le (co, p ⇒ lo)
c ∈ ce ∧ ∃s ∈ U ∪ B : (s, p, e) ∈ G ⇒ l ∈ lc,p,d

e (co, p ⇒ llo)

Meaning: Given an entity e that is an instance of the class c and given that some term is in rela-
tion p with e, predict that the text that describes e contains the (localized) linguistic pattern l.

Example for rule pattern co, p ⇒ lo:
dbo:W restler ∈ ce ∧ ∃s : (s, dbp:bronze, e) ∈ G

⇒ ”bronze medal” ∈ le

sup(A)= 30 AllConf(A,B)≈ 0.47
sup(B)= 29 Coherence(A,B)≈ 0.24

sup(AB)= 14 Cosine(A,B)≈ 0.47
P(B|A)≈ 0.48 IR(A,B)≈ 0.02
P(A|B)≈ 0.47 Kulczynski(A,B)≈ 0.47

MaxConf(A,B)≈ 0.48

Meaning: Given an entity e that is an instance of the class dbo:Wrestler and where some
entity is in the relation dbp:bronze with e, the rule predicts that the linguistic pattern
”bronze medal” occurs in the text about the entity e.

Example for rule pattern co, p ⇒ llo:
dbo:Crustacean ∈ ce ∧ ∃s : (s, dbp:superfamilia, e) ∈ G

⇒ ”is a superfamily” ∈ ldbo:Crustacean,dbp:superfamilia,so
e

sup(A)= 33 AllConf(A,B)≈ 0.42
sup(B)= 15 Coherence(A,B)≈ 0.29

sup(AB)= 14 Cosine(A,B)≈ 0.63
P(B|A)≈ 0.93 IR(A,B)≈ 0.53
P(A|B)≈ 0.42 Kulczynski(A,B)≈ 0.68

MaxConf(A,B)≈ 0.93

Meaning: Given an entity e that is an instance of the class dbo:Crustacean and where some
entity is in the relation dbp:superfamilia with e, the rule predicts that the localized linguistic
pattern ”is a superfamily” (which is localized to the class dbo:Crustacean and the predicate
dbo:superfamilia) occurs in the text about the entity e.
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