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Abstract
Suffix sorting is arguably the most fundamental building block in string algorithmics, like regular
sorting in the broader field of algorithms. It is thus not surprising that the literature is full of
algorithms for suffix sorting, in particular focusing on their practicality. However, the advances on
practical suffix sorting stalled with the emergence of the DivSufSort algorithm more than 10 years
ago, which, up to date, has remained the fastest suffix sorter. This article shows how properties of
Lyndon words can be exploited algorithmically to accelerate suffix sorting again. Our new algorithm
is 6–19% faster than DivSufSort on real-world texts, and up to three times as fast on artificial
repetitive texts. It can also be parallelized, where similar speedups can be observed. Thus, we make
the first advances in practical suffix sorting after more than a decade of standstill.
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1 Introduction & Related Work

Since its introduction [13] in 1990, the suffix array – storing the order of the lexicographically
sorted suffixes – has become one of the most important data structures in the field of string
processing. Its applications include text indexing, text compression, and in particular the
construction of the Burrows–Wheeler transformation.

From a theoretical point of view, the story is almost over: the suffix array can be
computed in asymptotically optimal O(n) time and using only O(1) additional words of
working space [9]1. However, the fast practical construction of the suffix array remains an
active topic of research. The efficiency of existing suffix sorters varies immensely [2], and
the worst-case time and space bounds do not accurately predict the real world performance.
In fact, the practically fastest and also highly memory efficient algorithm DivSufSort is not
amongst the linear time algorithms [6], and has remained on the top of the scoreboard ever
since its introduction more than a decade ago.

In 2016, Baier introduced the algorithm GSACA [4], which is the first to construct
the suffix array in linear time without using recursion. It utilizes properties of so-called
Lyndon words, which are strings that are lexicographically smaller than all of their proper

1 for integer alphabet [1, σ] with σ ≤ n
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suffixes (for example, artist is a Lyndon word; concert is not a Lyndon word because it is
lexicographically larger than its suffix cert). Conceptually, the algorithm consists of two
phases. Franek et al. showed that the first phase computes (a partially sorted version of) the
Lyndon array (a definition follows later), which is then used in the second phase to induce
the suffix array [8]. Despite its interesting theoretical properties, GSACA cannot compete
with the best suffix sorters in practice.

Our Contributions. We make the first advances on practical suffix sorting since the intro-
duction of DivSufSort more than a decade ago. Our starting point is the GSACA algorithm,
but we show how special properties of Lyndon words allow us to use fast integer sorting
algorithms for its two phases. As a result, we obtain an efficient algorithm that is also easy
to parallelize. Our sequential implementation is around 6–19% faster than DivSufSort on
real-world inputs, and up to three times as fast on artificial repetitive inputs. However, it
comes at the cost of a larger memory footprint (even though we still use much less space
than the original implementation of GSACA). Our parallelization scales well up to at least 16
cores, and on large inputs it is faster than Labeit’s parallel implementation of DivSufSort
[12], the currently fastest shared memory suffix sorter.

The rest of the paper is organized as follows: In Section 2 we introduce the definitions
and notation that we use throughout the paper. We explain our new version of GSACA
in Section 3, and give implementation details and a description of our parallelization in
Section 4. We conclude the paper with an experimental evaluation in Section 5.

2 Preliminaries

We write lg x for log2 x. For i, j ∈ N, we use the closed, half-open, and open interval notations
[i, j] = [i, j + 1) = (i− 1, j] = (i− 1, j + 1) to represent the set {x | x ∈ N ∧ i ≤ x ≤ j}. Our
analysis is performed in the word RAM model [10], where we can perform fundamental
operations (logical shifts, basic arithmetic operations etc.) on words of size w bits in constant
time. For the input size n of our problems we assume ⌈lg n⌉ ≤ w.

A string (also called text) over the alphabet Σ is a finite sequence of symbols from the
finite and totally ordered set Σ. We say that a string S has length n and write |S| = n, if S

is a sequence of exactly n symbols. The string of length 0 is called empty string and denoted
by ϵ. The i-th symbol of a string S is denoted by S[i], while the substring from the i-th
to the j-th symbol is denoted by S[i..j]. For i > j we define S[i..j] = ϵ. For convenience,
we use the interval notations S[i..j + 1) = S(i− 1..j] = S(i− 1..j + 1) = S[i..j]. The i-th
suffix of S is defined as Si = S[i..n], while the substring S[1..i] is called prefix of S. A
prefix or suffix of S is called proper, if and only if its length is at least 1 and at most n− 1.
Let S and T be two strings over Σ of lengths n and m, respectively. The concatenation
of S and T is denoted by ST . The length of the longest common prefix (LCP) between S

and T is defined as lcp(S, T ) = max{ℓ | ℓ ∈ [0, min(n, m)] ∧ S[1..ℓ] = T [1..ℓ]}. The longest
common extension (LCE) of indices i and j is the length of the LCP between Si and Sj ,
i.e. lce(i, j) = lcp(Si, Sj). The total order on Σ induces a total order on the set Σ∗ of
strings over Σ. Let S and T be strings over Σ, and let ℓ = lcp(S, T ). We say that S is
lexicographically smaller than T and write S ≺ T , if and only if either ℓ = n < m (i.e. S is a
prefix of T ) or ℓ < min(n, m)∧S[ℓ + 1] < T [ℓ + 1]. We write S ⪯ T to denote S ≺ T ∨S = T .

We can simplify the description of our algorithm with a special symbol $ /∈ Σ that is smaller
than all symbols from Σ. We say that S is null-terminated, if S[n] = $∧ ∀i ∈ [1, n) : S[i] ̸= $.

Lexicographical Ordering of Suffixes. The suffix array lexicographically orders the suffixes
of a string. To save space we only store the starting index of each suffix.
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▶ Definition 1 (Suffix Array). Given a string S of length n, its suffix array A is the unique
permutation of [1, n] that satisfies SA[1] ≺ SA[2] ≺ . . . ≺ SA[n]. The inverse suffix array A−1

is the inverse permutation of A, i.e. ∀i ∈ [1, n] : A−1[A[i]] = i.

Baier’s algorithm computes the suffix array by exploiting properties of Lyndon words. A
Lyndon word is a string that is lexicographically smaller than all of its proper suffixes, i.e. S

is a Lyndon word if and only if ∀i ∈ [2..n] : S ≺ Si [5]. The Lyndon array of S identifies the
longest Lyndon word starting at each text position.

▶ Definition 2 (Lyndon Array). Given a string S of length n, its Lyndon array λ is defined
by ∀i ∈ [1, n] : λ[i] = max{ℓ | ℓ ∈ [1, n − i + 1] ∧ S[i..i + ℓ) is a Lyndon word}. We write
wλ(i) = S[i..i + λ[i]) to denote the longest Lyndon word that starts at index i.

An important property of the Lyndon array is that it inherently encodes some information
about the lexicographical ordering of the suffixes.

▶ Lemma 3 ([7, Lemma 15]). Let S be a string of length n with Lyndon array λ, and let
i ∈ [1, n]. It holds λ[i] = ℓ if and only if

(i + ℓ ≤ n + 1) ∧ (i + ℓ ≤ n =⇒ Si ≻ Si+ℓ) ∧ (∀j ∈ (i, i + ℓ) : Si ≺ Sj).

We conclude the preliminaries by showing two relations between Lyndon words and the
lexicographical order of suffixes:

▶ Lemma 4. Let S be a string of length n, let λ be its Lyndon array, and let i, j ∈ [1, n] be
arbitrary indices. If wλ(i) ≺ wλ(j), then Si ≺ Sj.

Proof. If wλ(i) ≺ wλ(j), then wλ(j) is not a prefix of wλ(i). If also wλ(i) is not a prefix
of wλ(j), then the first mismatch between wλ(i) and wλ(j) determines the lexicographical
order of Si and Sj . Thus we only have to consider the case where wλ(j) = wλ(i)α for a
non-empty string α. Let S[i..i + λ[j]) = wλ(i)β, then it must hold β ≺ α and thus also
Si ≺ Sj . Otherwise, [5, Prop. 1.5] would imply that wλ(i)β is a Lyndon word. ◀

▶ Lemma 5. Let Si = αSj (with j = i + |α|) be a suffix of a string, where α is a Lyndon
word. It holds Si ≻ Sj ⇐⇒ wλ(i) = α. If Si ≺ Sj, then αwλ(j) is a Lyndon word.

Proof. Lemma 3 directly implies Si ≻ Sj ⇐⇒ wλ(i) = α. Assume Si ≺ Sj , then Lemma 4
implies wλ(j) ⪰ α. If wλ(j) = α, then due to Lemma 3 it holds Sj ≻ Sj+|α|, which leads
to the contradiction Si = αSj ≻ αSj+|α| = Sj . Thus it holds wλ(j) ≻ α, and [5, Prop. 1.3]
implies that αwλ(j) is a Lyndon word. ◀

3 Sequential Algorithm

We start by giving a high level description of Baier’s algorithm. For clarity, we write Â to
denote the not yet computed suffix array, i.e. an array that serves as preliminary storage
during the execution of the algorithm, and ultimately becomes the actual suffix array A. We
use the terms suffix and index interchangeably. The algorithm consists of three main steps.
For each step, we provide an example in Figure 1a.

Initialization: We sort and group the suffixes by their first symbol. The suffixes of each
group are stored in increasing index order in a consecutive interval of Â, and the order
of the intervals is determined by the rank of the starting symbols. In our example, the
order of the alphabet is $ < a < b < c. Thus, the leftmost group contains the suffixes
that start with $, followed by the group of suffixes that start with a, and so forth.

ESA 2021
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a b a b a c a b a b c a b a b a $a b a b a c a b a b c a b a b a $S =

6 1 4 1 2 1 5 1 3 2 1 2 1 2 1 1 1λ =

17 1 3 5 7 9 12 14 16 2 4 8 10 13 15 6 11Â =

G$ Ga Gb Gc

17 16 12 14 1 7 3 9 5 2 4 8 13 15 10 6 11Â =

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

$ a ab ababac ababc abac abc ac b bc c

17 16 14 12 1 7 3 9 5 15 13 2 8 4 10 11 6A =

(a) Baier’s algorithm. Initially, we group the indices by symbol (above the first dotted line). In the first
phase, we group the indices by longest Lyndon words (below the first dotted line). In the second phase,
we lexicographically sort the suffixes within each group (below the second dotted line).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

∞ 3 ∞ 3 4 1 ∞ 3 5 2 1 ∞ 3 ∞ 3 ∞ ∞fgrp =

17 16 1 7 3 12 14 9 5 2 4 8 13 15 10 6 11Â =

$ a abab abc ac b bc c

Q = 〈1, 2, 1〉 〈2, 3, 1〉 〈3, 8, 2〉 = P〈16, 18, 1〉〈15, 16, 2〉〈10, 15, 1〉〈9, 10, 2〉〈8, 9, 3〉
bottom top bottomtop

(b) Data structures during Phase 1. The stack Q contains groups that we may still have to refine (left of
the red line). The stack P contains only final groups (right of the red line).

Figure 1 Baier’s algorithm and data structures used during Phase 1. The colored boxes represent
the group contexts, which are also exactly the longest Lyndon words in (a). (Best viewed in color.)

Phase 1: We refine the groups such that two suffixes Si and Sj belong to the same group
if and only if they share the longest Lyndon word wλ(i) = wλ(j). Again, the indices of
each group are stored in increasing order in a consecutive interval of Â. The order of the
groups is determined by the lexicographical order of the Lyndon words. In our example
it holds wλ(3) = abac ≺ abc = wλ(9), and thus the group containing index 3 is stored to
the left of the group containing index 9. From Lemma 4 follows that the grouping after
Phase 1 is compatible with the suffix array.

Phase 2: We lexicographically sort the suffixes within each group to obtain the suffix array.

Baier uses a special form of induced copying (see e.g. [11, 14]) for Phase 1 and 2, which
is elegant but results in a noncompetitive practical performance (see [4, Table 2] and [3,
Chapter 6]). In the remainder of this section we explain how to instead use integer sorting
for these phases, which allows a more efficient implementation of the algorithm. First, we
give a formal definition of the grouping structure.
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▶ Definition 6 (Suffix Grouping). A suffix grouping consists of an array Â and a list
G1, . . . , Gm of groups. A group with context α ∈ Σ+ is a triple ⟨ℓ, r, |α|⟩ with ℓ, r ∈ [1, n]
and ℓ < r, where the following 3 properties hold.
1. The interval Â[ℓ..r) contains exactly the elements of A[ℓ..r) in increasing (by text position)

order. We write i ∈ ⟨ℓ, r, |α|⟩ to denote ∃x ∈ [ℓ, r) : Â[x] = i.
2. All the suffixes share prefix α, i.e. ∀i ∈ ⟨ℓ, r, |α|⟩ : Si = αSi+|α|.
3. The context α is a Lyndon word.

The groups G1, . . . , Gm form a partition of Â as follows. Let Gi = ⟨ℓi, ri, |αi|⟩ be the i-th
group, then it holds ℓ1 = 1 and rm = n + 1. For i ∈ [2, n] it holds ℓi = ri−1. We write
Gi ≺ Gj ⇐⇒ i < j to denote that any suffix in Gi is lexicographically smaller than any
suffix in Gj, which also means that the context of Gi is lexicographically not larger than the
context of Gj. A group ⟨ℓ, r, |α|⟩ is called final if ∀i ∈ ⟨ℓ, r, |α|⟩ : wλ(i) = α.

As mentioned earlier, the initial suffix grouping partitions the suffixes by their first symbol,
which can be implemented as follows. We stably sort the array Â = [1, 2, . . . , n] in increasing
order, using key S[i] for entry i. After that, we determine the group borders with a simple
scan over the sorted suffixes. We store the groups on a stack Q, where the bottommost
element is the leftmost group, and the topmost element is the rightmost group.

3.1 Phase 1 with Integer Sorting
The goal of Phase 1 is to sort the group contexts lexicographically. To this end, we refine the
groups by splitting them into subgroups with possibly longer contexts. The general idea is as
follows. For any index i in a group Gk = ⟨ℓ, r, |α|⟩, let j = i + |α| be the position right after
the context. If Si ≻ Sj then wλ(i) = α (Lemma 5), and we place i into a final subgroup
with unchanged context α. If however Si ≺ Sj , then αwλ(j) is a Lyndon word (Lemma 5),
and we place i into a subgroup with context αwλ(j). We repeatedly refine the subgroups in
the same way, until all groups are final. At the point in time at which we refine the group
Gk = ⟨ℓ, r, |α|⟩, the data structures used by our Phase 1 algorithm are the following (see
Figure 1b for an example):

A stack Q contains groups G1, . . . , Gk that form a partition of Â[1..r). The groups are
stored in increasing lexicographical order (the bottommost group G1 is lex. smallest, the
topmost group Gk is lex. largest).
A stack P contains final groups F1, . . . , Fh that form a partition of Â[r..n]. The groups
are stored in decreasing lexicographical order (the bottommost group F1 is lex. largest,
the topmost group Fh is lex. smallest).
Together with the array Â, the groups G1, . . . , Gk, Fh, . . . , F1 are a suffix grouping
according to Definition 6.
A length-n array fgrp maps suffixes to their final groups. If ∃x ∈ [1, h] : i ∈ Fx, then
fgrp[i] = x. Otherwise, fgrp[i] =∞. Note that fgrp inherently encodes information about
the lexicographical order of suffixes due to ∀i, j ∈ [1, n] : fgrp[i] < fgrp[j] =⇒ Si ≻ Sj .

Now we describe Phase 1 in detail. The description is accompanied by pseudocode in
Algorithm 1. The algorithm takes the array Â and the stack Q from the initialization as input.
The stack P is initially empty, and all entries of fgrp are set to ∞ (lines 1–2). During the
execution of the algorithm, we may mark the groups on the stack Q as ready (indicating that
the group can easily be refined) or final (indicating that no further refinement is necessary).
Initially, all groups are unmarked. The refinement is performed in a simple loop. While the
stack Q is not empty, we pop the topmost group Gk = ⟨ℓ, r, |α|⟩ and process it (lines 3–4).
Depending on the marking of the group, there are three possible cases:

ESA 2021
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Algorithm 1 Phase 1 with integer sorting.

Input: Initial suffix grouping represented by array Â and stack Q (all groups unmarked).
Output: Final suffix grouping represented by array Â and stack P .

1: P ← empty stack
2: for i ∈ [1, n] do fgrp[i]←∞
3: while Q is not empty do
4: ⟨ℓ, r, |α|⟩ ← Q.pop()
5: if ⟨ℓ, r, |α|⟩ is marked final ∨ ℓ = 1 then
6: P.push(⟨ℓ, r, |α|⟩)
7: for i ∈ [ℓ, r) do
8: fgrp[Â[i]]← |P |

9: else if ⟨ℓ, r, |α|⟩ is marked ready then
10: Stably sort Â[ℓ..r) in decreasing order,

using key fgrp[Â[i] + |α|] for entry Â[i].
11: ℓ′ ← ℓ

12: for i ∈ (ℓ, r) in increasing order do
13: if fgrp[Â[i− 1] + |α|] ̸= fgrp[Â[i] + |α|] then
14: Let β be the context of Ffgrp[Â[i−1]+|α|].
15: Q.push(⟨ℓ′, i, |αβ|⟩)
16: ℓ′ ← i

17: Let β be the context of Ffgrp[Â[r−1]+|α|].
18: Q.push(⟨ℓ′, r, |αβ|⟩)
19: else
20: for i ∈ [ℓ, r) in decreasing order do
21: if i < r − 1 ∧ Â[i + 1] = Â[i] + |α| then
22: if sg(Â[i + 1]) =∞ then sg(Â[i])←∞
23: else sg(Â[i])← sg(Â[i + 1]) + 1
24: else
25: if fgrp[Â[i] + |α|] =∞ then sg(Â[i])←∞
26: else sg(Â[i])← 1
27: Stably sort Â[ℓ..r) in decreasing order,

using key sg(Â[i]) for entry Â[i].
28: ℓ′ ← ℓ

29: while sg(Â[ℓ′]) =∞ do ℓ′ ← ℓ′ + 1
30: if ℓ′ > ℓ then Q.push(⟨ℓ, ℓ′, |α|⟩) marked final
31: for i ∈ (ℓ′, r) in increasing order do
32: if sg(Â[i− 1]) ̸= sg(Â[i]) then
33: Q.push(⟨ℓ′, i, |α|⟩) marked ready
34: ℓ′ ← i

35: Q.push(⟨ℓ′, r, |α|⟩) marked ready

finalfinal
groupgroup

readyready
groupgroup

unmarkedunmarked
groupgroup
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The group is marked final, or it is the group containing only the lexicographically smallest
suffix Sn = $ (which gets processed last). During an earlier processing step, we have
already ensured that ∀i ∈ Gk : wλ(i) = α. We simply push the group onto the final stack
P , which now contains |P | = h + 1 groups. We update the array fgrp accordingly by
assigning fgrp[i]← h + 1 for each index i ∈ Gk (lines 5–8).

The group is marked ready. During an earlier processing step, we have already ensured
that for each index i ∈ Gk, the index i + |α| is contained in a group that is lex-
icographically larger than Gk. Since all the lexicographically larger groups are fi-
nal, it holds fgrp[i + |α|] ≠ ∞. Particularly, for any two indices i, j ∈ Gk it holds
fgrp[i + |α|] > fgrp[j + |α|] =⇒ Si ≺ Sj and fgrp[i + |α|] < fgrp[j + |α|] =⇒ Si ≻ Sj .
We sort the interval Â[ℓ..r) in decreasing order, using key fgrp[i + |α|] for index i (line 10).
Indices that share the same key x form a subgroup Hx (we again determine the group
borders by scanning; lines 12–13). Let β be the context of the final group Fx, then αβ

becomes the context of subgroup Hx (lines 14–15 and 17–18). We push the subgroups
onto the stack Q in lexicographically increasing order. All subgroups are unmarked.

The group is unmarked. We have already seen that ready and final groups are relatively
easy to process. In this processing step, we split an unmarked group into at most one
final subgroup H∞, and possibly multiple ready subgroups H1, H2, . . . Hm (where m is
unknown in advance). The lexicographical order of subgroups is H∞ ≺ Hm ≺ . . . ≺ H1.
All subgroups have unchanged context α; the context extension only takes place when
processing the ready subgroups. The subgroup H∞ will contain exactly the indices
i ∈ Gk with wλ(i) = α. Lemma 4 implies that these suffixes are lexicographically smallest
amongst the suffixes in Gk. Consider any index i ∈ Gk, and let x be the smallest positive
integer such that i′ = i + x · |α| /∈ Gk. It is easy to see that Si = αxSi′ .

If i′ is in one of the lexicographically smaller groups G1, . . . , Gk−1, then Si ≻ Si′ and
simple properties of the lexicographical order imply Si ≻ Si+|α| ≻ Si+2|α| ≻ . . . ≻
Si+x|α|. It follows from Lemma 3 that wλ(i) = α, and we place i into subgroup H∞.
Note that if x > 1 and i ∈ H∞, then i + |α| ∈ H∞.
If i′ is in one of the lexicographically larger groups F1, . . . , Fh, then Si ≺ Si′ and simple
properties of the lexicographical order imply Si ≺ Si+|α| ≺ Si+2|α| ≺ . . . ≺ Si+x|α|. It
follows from Lemma 3 that λ[i] > |α|, and we place i into subgroup Hx. Note that if
x > 1 and i ∈ Hx, then i + |α| ∈ Hx−1. Thus Hx can be marked ready.
Now we show that in fact Hm ≺ Hm−1 ≺ . . . ≺ H1. Assume that we place two
indices i and j into subgroups Hx and Hy respectively. We have to show that
(x > y =⇒ Si ≺ Sj) and (x < y =⇒ Si ≻ Sj). If x > y, then Si = αySi+y·|α| and
Sj = αySj+y·|α|. Because of x > y it holds i + y · |α| ∈ Gk, while j + y · |α| is in one of
the lexicographically larger groups F1, . . . , Fh. Thus it holds Si+y·|α| ≺ Sj+y·|α| and
therefore also Si ≺ Sj . The proof of x < y =⇒ Si ≻ Sj works analogously.

As seen above, if both i and i + |α| are in Gk, then it holds i + |α| ∈ H∞ =⇒ i ∈ H∞
and i + |α| ∈ Hx−1 =⇒ i ∈ Hx. In such cases, we can easily compute i’s subgroup
from (i + |α|)’s subgroup. We only need an efficient way to check whether i + |α| ∈ Gk

actually holds. Conveniently, i + |α| ∈ Gk if and only if i and i + |α| are neighboring
entries in Â[ℓ..r). This is due to the fact that there cannot be a suffix Sj = αSj+|α| with
j ∈ (i, i + |α|) (otherwise α would have a proper prefix that is also a proper suffix, which
contradicts the definition of Lyndon words).
Lines 19–35 of Algorithm 1 describe our strategy for unmarked groups in technical detail.
First, we compute a key sg(Â[i]) for each i ∈ [ℓ, r) in decreasing order, indicating that we
place index Â[i] into subgroup Hsg(Â[i]). If for some index Â[i] it holds Â[i] + |α| ∈ Gk,
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i.e. if Â[i] and Â[i] + |α| are neighbors in Â[ℓ..r), then we compute Â[i]’s subgroup
from (Â[i] + |α|)’s subgroup as described above (lines 21–23). Otherwise, we inspect
fgrp[Â[i]+|α|] to decide whether we place Â[i] into subgroup H∞ or subgroup H1 (lines 24–
26). Finally, we rearrange Â[ℓ..r) according to the new subgroups (line 27). We push the
subgroups onto stack Q in increasing lexicographical order (once again computing the
group borders with a simple scan). If H∞ exists, then we mark it final (lines 29–30). All
other groups are marked ready (lines 31–35).

3.2 Phase 2 with Integer Sorting
In the second phase, we lexicographically sort each final group, and simultaneously compute
the inverse suffix array (see Algorithm 2). We proceed similarly to the first phase, using
the stack P and the array Â as input. First, we pop the topmost group of P (which is
the lexicographically smallest group containing only the special suffix Sn = $), and assign
A−1[1] = n (line 1). Then we sort the remaining groups in a simple loop. While P is not
empty, we pop the topmost group Fh = ⟨ℓ, r, |α|⟩ of the stack (lines 2–3) and lexicographically
sort it. At this point in time, we have already sorted the suffixes of all groups that are
lexicographically smaller than Fh because P contains the groups in lexicographical order (the
topmost group is the lexicographically smallest unsorted group). Therefore, when processing
Fh we have ∀i ∈ [1, ℓ) : A−1[A[i]] = i.

Since the group is final, it holds SÂ[i] ≻ SÂ[i]+|α| for each i ∈ [ℓ, r). Thus Â[i] + |α| either
was in one of the lexicographically smaller groups that we have already sorted, or it holds
Â[i] + |α| ∈ Fh. Ideally, we would simply sort Â[ℓ..r) using key A−1[Â[i] + |α|] for entry
Â[i]. However, if Â[i] + |α| ∈ Fh, then we have not computed A−1[Â[i] + |α|] yet. We solve
this problem by first rearranging Fh into subgroups H1 ≺ H2 ≺ . . . ≺ Hm, where subgroup
Hx contains the suffixes that have prefix αx, but not prefix αx+1 (the correctness of the
lexicographical order of these subgroups can be shown similarly to the order of subgroups for
unmarked groups in Phase 1). We assign the indices to the subgroups in decreasing order
(line 4). If Â[i] + |α| /∈ Fh (as before, this is the case if and only if Â[i] and Â[i] + |α| are
not neighbors in Â[ℓ..r)), then we place Â[i] into subgroup H1 (line 6). Otherwise, we have
already placed Â[i] + |α| into some subgroup Hx−1, and we place i into subgroup Hx (line 5).
After we have rearranged the indices according to the new grouping (line 7), we finally sort
each subgroup using key A−1[Â[i] + |α|] for entry Â[i] (lines 8–15). Whenever we sort a group,
we also update the inverse suffix array. Since no two indices Â[i] and Â[i] + |α| are in the
same subgroup, and due to the lexicographical order of subgroups, the required keys are
always available once they are needed.

4 Implementation Details

Our C++17 implementation of the algorithm is publicly available on GitHub2. In general, it
closely follows the description from Section 3. In this section, we discuss the choice of integer
sorters as well as other practical optimizations, including the parallelization of the algorithm.

Sequential Implementation. The main computational effort of the algorithm lies in integer
sorting, as well as in the computation of the keys prior to sorting. Finding the group borders
after sorting only requires simple sequential scans that are cache efficient and very fast in

2 https://github.com/jonas-ellert/gsaca-double-sort

https://github.com/jonas-ellert/gsaca-double-sort
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Algorithm 2 Phase 2 with integer sorting.

Input: Final suffix grouping represented by array Â and stack P .
Output: Suffix array Â and inverse suffix array A−1.

1: P.pop(); A−1[1]← n;
2: while P is not empty do
3: ⟨ℓ, r, |α|⟩ ← P.pop()
4: for i ∈ [ℓ, r) in decreasing order do
5: if i < r − 1 ∧ Â[i + 1] = Â[i] + |α| then sg(Â[i])← sg(Â[i + 1]) + 1
6: else sg(Â[i])← 1
7: Stably sort Â[ℓ..r) in increasing order, using key sg(Â[i]) for entry Â[i].
8: ℓ′ ← ℓ

9: for i ∈ (ℓ, r) in increasing order do
10: if sg(Â[i− 1]) ̸= sg(Â[i]) then
11: Sort Â[ℓ′..i) in increasing order, using key A−1[Â[i] + |α|] for entry Â[i].
12: for j ∈ [ℓ′..i) do A−1[Â[i]]← i

13: ℓ′ ← i

14: Sort Â[ℓ′..r) in increasing order, using key A−1[Â[i] + |α|] for entry Â[i].
15: for j ∈ [ℓ′..r) do A−1[Â[i]]← i

practice. We use two different sorting algorithms. Whenever the keys are from a small
domain, we use a simple counting sort. This applies to the initialization (in practice we
assume the byte alphabet [0, 255]), the processing of unmarked groups in the first phase, and
the computation of subgroups in the second phase (Algorithm 1, line 27 and Algorithm 2,
line 7). In both of the latter cases, we simultaneously compute the keys and count their
frequencies. When refining ready groups in the first phase (Algorithm 1, line 10), and when
performing the final sorting in the second phase (Algorithm 2, lines 11 and 14), we use
MSD radix sort. We focus on speed and thus do not use an in-place variant of the sorter.
Therefore, apart from the space needed for the suffix array, one auxiliary array (for fgrp and
A−1), and the stacks, we need additional space linear in the size of the largest group that we
encounter.

We provide three versions DS1, DS3, and DSH of our sequential implementation that differ
only in the initialization (where DS stands for double sort because we reduced both phases to
integer sorting). The first version DS1 corresponds to the description in Section 3, i.e. we sort
the suffixes by their first symbol. The second version DS3 directly sorts the suffixes by their
first three symbols, resulting in smaller groups after the initialization (potentially resulting
in a smaller memory footprint). Finally, the version DSH directly sorts the suffixes using key
wλ(i) for suffix Si. However, if λ[i] > 8 then we use key wλ(i)[1..8]. Thus we immediately
place all suffixes with λ[i] < 8 into their correct final groups, skipping many refinement steps
and therefore accelerating Phase 1. The initialization of DSH consists of three steps.
Extract: We use a modification of Duval’s algorithm [5] to compute for each i ∈ [1, n] the

key x(i) = wλ(i), if λ[i] ≤ 8, or x(i) = wλ(i)[1..8] otherwise. We then use a hash table3

to check whether this is the first time we have seen key x(i). If it is, then we add the

3 We use an implementation of Robin Hood hashing by Martin Ankerl, see https://github.com/
martinus/robin-hood-hashing
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tuple ⟨x(i), i⟩ to the table. Otherwise, let j be the index where we first discovered key
x(i). We store Â[i] = j, indicating that we will place i into the same group as j.

Sort: We use comparison sorting to sort the tuples ⟨x(i), i⟩ by their first component.
Rearrange: We group the indices according to the sorted keys, and push the groups onto

the stack Q. If a group has context α with |α| < 8 then we mark it final.

Parallel Implementation. For our parallel algorithms we implemented the same ideas as
described in Section 3 using OpenMP for parallelization. We parallelized the counting sort
in the initialization as well as the processing of each suffix group in Phases 1 and 2. Because
processing a single suffix group consists mainly of integer sorting and sequential scans we can
parallelize them well in practice. We replace the sequential scans with parallel prefix sums.
For integer sorting we use ips4o [1]. In case we have to sort a range Â[ℓ..r) of elements
stably we sort Â[ℓ..r) by their keys, breaking ties by sorting elements with equal keys by
their entry Â[i]. Since for small suffix groups the overhead to process the group in parallel
is too high compared to the sequential implementation we use a threshold. If the size of a
suffix group is at most 1024, we switch to the sequential implementation (we performed a
preliminary evaluation to determine a value that performs well in practice).

Unfortunately, we cannot achieve a perfect speedup. We simply cannot process multiple
suffix groups in parallel because we heavily rely on processing them in decreasing lexico-
graphical order. For that reason the running time of our parallelization is still linear with
respect to the number of processed suffix groups (which is n in the worst case).

Similarly to our sequential implementation, we provide two different parallel versions
PDS1 and PDS2. In PDS1 we sort the suffixes in the initialization by their first symbol using
a parallel counting sort. In PDS2 we sort the suffixes by their first two symbols using ips4o.

5 Experimental Evaluation

We evaluated our algorithms on a number of real and artificial texts taken from the Pizza &
Chili text corpus4. In Table 1 we give an overview of the used texts. We divide the texts into
three different categories. Real texts (PC-Real) include english, dna, sources, proteins
and dblp.xml. They are good examples of texts that occur in real-world applications. Real
repetitive texts (PC-Rep-Real) include cere, einstein.en.txt, kernel and para. These
texts might still occur in real-world applications, but they are rather repetitive and thus
highly compressible. And lastly, artificial repetitive texts (PC-Rep-Art) include fib41, rs.13
and tm29. These texts were created artificially with the goal of repetitiveness in mind. All
the aforementioned texts are sufficiently short to compute the 32-bit suffix array. For our
weak scaling experiments we use a collection of larger texts (Large) that are summarized at
the bottom of Table 1. From each text we use a prefix of up to 16 GiB for our experiments,
which means that 32 bits are not sufficient to address the suffixes. Thus, we compute the
64-bit suffix array instead.

5.1 Experimental Setup and Results
We conducted our experiments on a Linux machine with an AMD EPYC 7452 processor (32
cores, 2.35 GHz, L1 32K, L2 512K, L3 16M) and 1 TB of RAM. The code was compiled
using GCC 7.5.0. We repeated all of our experiments five times and use the median as the

4 http://pizzachili.dcc.uchile.cl/

http://pizzachili.dcc.uchile.cl/
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Table 1 Texts from the Pizza & Chili text corpus and large texts. Apart from the text size n

and the alphabet size σ, we provide the number of suffix groups (SGs) and the average size of the
suffix groups that we process in Phase 1.

Category Text n (MiB) σ Count of SGs Avg. SG Size

PC-Real

english 1,024 237 102,640,785 40.72
dna 386 16 44,436,473 34.49
sources 202 230 27,961,111 28.92
proteins 1,024 27 144,323,711 28.62
dblp.xml 283 97 16,091,809 71.9

PC-Rep-Real

cere 440 5 10,585,469 174.06
einstein.en.txt 446 139 409,384 4,568.34
kernel 247 160 4,027,324 256.15
para 410 5 12,241,149 139.98

PC-Rep-Art
fib41 256 2 98 10,935,276.92
rs.13 207 2 197 4,400,958.45
tm29 256 2 194 5,534,751.23

Large
cc.txt 32,768 243 1,528,252,068 88.53
dna.txt 32,768 4 2,955,252,973 44.56
prot.txt 32,768 26 4,308,219,247 30.47
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Figure 3 Throughput and additional memory usage for each parallel algorithm on large texts.
The text size scales with the number of used threads (1GiB per thread). (Best viewed in color.)

final result. For the sequential experiments we compare our algorithms DS1, DS3, and DSH
with Baier’s original implementation of GSACA [4] and the currently fastest suffix sorter
DivSufSort [6]. For the weak scaling experiments we compare our parallel algorithms PDS1
and PDS2 with Labeit’s parallel implementation PDivSufSort of DivSufSort [12], and with
our sequential DS1 as a baseline to see how well our parallelization scales.

Sequential Results. For each of the categories PC-Real, PC-Rep-Real and PC-Rep-Art, we
averaged the running time and additional memory usage of the texts in each category. Before
computing the average, we normalized the running time for each algorithm to show how long
the algorithms take for 100 MiB of the input text. The additional memory is normalized
as well to show the additional memory usage for each byte in the input text. The results
for each category can be seen in Figure 2. Additionally, we provide a separate plot for dna,
which is one of the most relevant text types in practice.

All of our sequential algorithms are significantly faster than Baier’s original implementa-
tion. Our fastest sequential algorithm DSH is around twice as fast as Baier’s algorithm, and is
in each category even faster than DivSufSort (over 6% faster on PC-Real, over 19% faster on
PC-Rep-Real, and over three times as fast on PC-Rep-Art). On PC-Real and PC-Rep-Real,
the additional memory usage of our algorithms is much lower than Baier’s algorithm. Of
our new algorithms, DS3 has the lowest memory usage, but the running time is not as good
as DS1 and DSH. None of our algorithms comes close to the memory usage of DivSufSort,
which only uses a very small amount of constant additional memory.

Weak Scaling Results. Figure 3 shows the results of our weak scaling experiments. We
calculate for each text the throughput (text size divided by running time) in MiB/s and the
additional memory in bits/n for up to 16 threads. The input size grows proportionally to
the number of used threads, such that the input size is p GiB when using p threads. We do
not include results for more than 16 threads because otherwise the memory usage exceeds
the maximum amount of 500 GB memory that we can address on a single NUMA node, and
in some cases even the total memory of 1 TB (which is a limitation of our algorithms).
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On cc.txt and prot.txt, our parallel variants are significantly faster than PDivSufSort
for all input sizes. On dna.txt, the performance of all algorithms is similar. The memory
usage of PDS1 is up to five times as large as PDivSufSort and the memory usage of PDS2 is
up to four times as large as PDivSufSort on all input texts. The memory usage of DS1 is
on all input texts lower than PDS1. This is due to the fact that the sequential algorithm
uses 40-bit types for the additional arrays fgrp and A−1. The parallel algorithms however
use 64-bit types because the running time gets slower when using 40-bit types in parallel.
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