
Distant Representatives for Rectangles in the Plane
Therese Biedl #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Anna Lubiw #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Anurag Murty Naredla #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Peter Dominik Ralbovsky #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Graeme Stroud #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Abstract
The input to the distant representatives problem is a set of n objects in the plane and the goal is to
find a representative point from each object while maximizing the distance between the closest pair
of points. When the objects are axis-aligned rectangles, we give polynomial time constant-factor
approximation algorithms for the L1, L2, and L∞ distance measures. We also prove lower bounds
on the approximation factors that can be achieved in polynomial time (unless P = NP).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Distant representatives, blocker shapes, matching, approximation algorithm,
APX-hardness

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.17

Supplementary Material Full version appeared at ArXiV.
Full Version: https://arxiv.org/abs/2108.07751

Funding Therese Biedl: Supported by NSERC.
Anna Lubiw: Supported by NSERC.

Acknowledgements We thank Jeffrey Shallit for help with continued fractions, and we thank
anonymous reviewers for their helpful comments.

1 Introduction

The distant representatives problem was first introduced by Fiala et al. [17]. The name is
a play-on-words on the term “distinct representatives” from Philip Hall’s classic work on
bipartite matching [21]. The input is a set of geometric objects in a metric space. The goal
is to choose one “representative” point in each object such that the points are distant from
each other – more precisely, the objective is to maximize the distance between the closest
pair of representative points. In the decision version of the problem, we are given a bound δ

and the question is whether we can choose one representative point in each object such that
the distance between any two points is at least δ.

The distant representatives problem has applications to map labelling and data
visualization. To attach a label to each object, we can find representative points that
are at least distance δ apart, and label each object with a ball of diameter δ (a square in
L∞) centred at its representative point.

The distant representatives problem is closely related to dispersion and packing problems.
When all the objects are copies of a single object, the distant representatives problem becomes
the dispersion problem: to choose k points in a region R to maximize the minimum distance
between any two chosen points [3]. Equivalently, the problem is to pack k disjoint discs

© Therese Biedl, Anna Lubiw, Anurag Murty Naredla, Peter Dominik Ralbovsky, and Graeme Stroud;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biedl@uwaterloo.ca
https://orcid.org/0000-0002-9003-3783
mailto:alubiw@uwaterloo.ca
mailto:amnaredla@uwaterloo.ca
mailto:peter.ralbovsky@gmail.com
mailto:grstroud@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ESA.2021.17
https://arxiv.org/abs/2108.07751
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Distant Representatives for Rectangles in the Plane

(in the chosen metric) of diameter δ into an expanded region and maximize δ. The distant
representatives problem is also related to problems of “imprecise points” where standard
computational geometry problems are solved when each input point is only known to lie
within some small region [28].

There is a polynomial time algorithm for the distant representatives problem when the
objects are segments on a line [32]. This result comes from the scheduling literature – each
representative point is regarded as the centre-point of a unit length job. However, as shown
by Fiala et al. [17], the decision version of distant representatives becomes NP-hard in 2D
when the objects are unit discs for the L2 norm or unit squares for the L∞ norm.

Cabello [5] was the first to consider the optimization version of the distant representatives
problem. He gave polynomial time approximation algorithms for the cases in 2D where the
objects are squares under the L∞ norm, or discs under the L2 norm. The squares/discs may
intersect and may have different sizes. His algorithms achieve an approximation factor of 2
in L∞ and 8

3 in L2, with an improvement to 2.24 if the input discs are disjoint. A main idea
in his solution is an “approximate-placement” algorithm that chooses representative points
from a fine-enough grid using a matching algorithm; small squares/discs that do not contain
grid points are handled separately. Cabello noted that the NP-hardness proof of Fiala et
al. [17] can be modified to prove that there is no polynomial time approximation scheme
(PTAS) for these problems unless P=NP. However, no one has given exact lower bounds on
the approximation factors that can be achieved in polynomial time.

Our Results

We consider the distant representatives problem for axis-parallel rectangles in the plane.
Rectangles are more versatile than squares or circles in many applications, e.g., for labelling
rectangular Euler or Venn diagrams [29].

We give polynomial time approximation algorithms to find representative points for the
rectangles such that the distance between any two representative points is at least 1/f times
the optimum. The approximation factors f are given in Table 1 for the L1, L2, and L∞
norms. Since rectangles are not fat objects [8], Cabello’s approach of discretizing the problem
by choosing representative points from a grid does not extend. Instead, we introduce a new
technique of “imprecise discretization” and choose representative points from 1-dimensional
shapes (e.g., +-shapes) arranged in a grid. After that, our plan is similar to Cabello’s. First
we solve an approximation version of the decision problem – to find representative points so
long as the given distance δ is not too large compared to the optimum δ∗. Then we perform
a search to find an approximation to δ∗. Unlike previous algorithms which use the real-RAM
model, we use the word-RAM model, and thus must address bit complexity issues.

We accompany these positive results with lower bounds on the approximation factors
that can be achieved in polynomial time (assuming P ̸= NP). The lower bounds are shown
in Table 1. They apply even in the special case of horizontal and vertical line segments in
the plane. The results are proved via gap-producing reductions from Monotone Rectilinear
Planar 3-SAT [10]. These are the first explicit lower bounds on approximation factors for
the distant representatives problem for any type of object.

Finally, we consider the even more special case of unit-length horizontal line segments,
and the decision version of distant representatives. This is even closer to the tractable case of
line segments on a line. However, Roeloffzen in his Master’s thesis [30] proved NP-hardness
for the L2 norm. We give a more careful proof that takes care of bit complexity issues, and
we show that the problem is NP-complete in the L1 and L∞ norms.

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:3

Table 1 Bounds on polynomial time approximation factors for the distant representatives problem
for axis-aligned rectangles in the plane. A lower bound of x means that an approximation factor
less than x implies P = NP. (For other Lp norms, there are some constant factors, but we have not
optimized them.)

L1 L2 L∞

upper bound 5
√

34 ≈ 5.83 6
lower bound 1.5 1.4425 1.5

For our algorithms and our hardness results, we must deal with bit complexity issues. For
rectangles under the L1 and L∞ norms, we show that both the optimum value δ∗ and the
coordinates of an optimum solution have polynomially-bounded bit complexity. In particular,
the decision problems lie in NP. The L2 norm remains more of a mystery, and the decision
problem can only be placed in ∃R (for an explanation of this class, see [6]).

Background

In one dimension, the decision version of the distant representatives problem for intervals
on a line was solved by Barbara Simons [32], as a scheduling problem of placing disjoint
unit jobs in given intervals. To transform the decision version of distant representatives
to the scheduling problem, scale so δ = 1, then expand each interval by 1/2 on each side.
The midpoints of the unit jobs provide the desired solution. Simons’s decision algorithm
was speeded up to O(n log n) by Garey et al. [20]. The optimum δ∗ can be found using a
binary search – in fact there is a discrete set of O(n3) possible δ∗ values, which provides
an O(n3 log n) algorithm. (We see how to improve this to O(n2 log n) but we are not aware
of any published improvement.) There has been recent work on the online version of the
problem [9]. The (offline) problem is easier when the intervals are disjoint. More generally, the
problem is easier when the ordering of the representative points is specified, or is determined
– for example if no interval is contained in another then there is an optimum solution where
the ordering of the representative points is the same as the ordering of the interval’s left
endpoints. This “dispersion problem for ordered intervals” can be solved in linear time [26].
In a companion paper to this one, we improved this to a simpler algorithm using shortest
paths in a polygon that solves the harder problem of finding the lexicographic maximum list
of distances between successive pairs [4].

Cabello [5] gave polynomial time approximation algorithms for the distant representatives
problem for balls in the plane, specifically for squares in L∞ and for discs in L2, with
approximation factors of 2 and 8

3 = 2.66̇, respectively. For disjoint discs in L2 he improved the
approximation factor to 2.24. Dumitrescu and Jiang [14] further improved the approximation
factor for disjoint discs to 1.414 (= 1/.707) by adding LP-based techniques to Cabello’s
approach. They also considered the case of unit discs, where they gave an algorithm with
approximation factor 2.14 (= 1/.4674). For disjoint unit discs they gave a very simple
algorithm with approximation factor 1.96 (= 1/.511). In a follow-up paper Dumitrescu
and Jiang [15] gave bounds on the optimum δ∗ for balls and cubes in L2 depending on the
minimum area of the union of subsets of k objects – these results have the flavour of Hall’s
classic condition for the existence of a set of distinct representatives.

The geometric dispersion problem (when all objects are copies of one object) was studied by
Bauer and Fekete [3]. They considered the problem of placing k points in a rectilinear polygon
with holes to maximize the min L∞ distance between any two points or between a point
and the boundary of the region. Equivalently, the problem is to pack k as-large-as-possible

ESA 2021

17:4 Distant Representatives for Rectangles in the Plane

identical squares into the region. They gave a polynomial time 3/2-approximation algorithm,
and proved that 14/13 is a lower bound on the approximation factor achievable in polynomial
time. By contrast, if the goal is to pack as many squares of a given size into a region, the
famous shifting-grid strategy of Hochbaum and Maas [23] provides a PTAS. Bauer and Fekete
use this PTAS to design an approximate decision algorithm for their problem.

It is NP-hard to decide whether a square can be packed with given (different sized)
squares [25] or discs [11]. For algorithmic approaches, see the survey [22]. There is a vast
literature on the densest packing of equal discs/squares in a region (e.g. a large circle or
square) – see the book [33].

Many geometric packing problems suffer from issues of bit complexity. In particular, there
are many packing problems that are not known to lie in NP (e.g., packing discs in a square [11]).
This issue is addressed in a recent general approach to geometric approximation [16]. Another
direction is to prove that packing problems are complete for the larger class ∃R (existential
theory of the reals) [1].

The distant representatives problem is closely related to problems on imprecise points,
where each point is only known to lie within some ε-ball, and the worst-case or best-case
representative points, under various measures, are considered. Many geometric problems on
points (e.g., convex hulls, spanning trees) have been explored under the model of imprecise
points [7, 13,27,28].

As mentioned above, the distant representatives problem has application to labelling and
visualization, specifically it provides a new approach to the problem of labelling (overlapping)
rectangular regions or line segments. Most map labelling research is about labelling point
features with rectangular labels of a given size, and the objective is to label as many of the
points as possible [18]. There is a small body of literature on labelling line features [12,36],
and even less on labelling regions, except by assuming a finite pre-specified set of label
positions [34].

Definitions and Preliminaries

Suppose we are given a set R of n axis-aligned rectangles in 2D. In the distant representatives
problem, the goal is to choose a point p(R) ∈ R for each rectangle R in R so as to
maximize the minimum pairwise distance between points, i.e., we want to maximize
minR,R′∈R dℓ(p(R), p(R′)), where dℓ is the distance-function of our choice. We consider
here ℓ = 1, 2, ∞, i.e., the L1-distance, the Euclidean L2-distance and the L∞-distance. We
write δ∗

ℓ for the maximum such distance for ℓ ∈ {1, 2, ∞}, and omit “ℓ” when it is clear from
the context.

In the decision version of the distant representatives problem, we are given not only the
rectangles but also a value δ, and we ask whether there exists a set of representative points
that have pairwise distances at least δ.

2 Approximating the decision problem

In this section we give an algorithm that takes as input a set R of axis-aligned rectangles,
and a value δ and finds a set of representative points of distance at least δ apart so long as
δ is at most some fraction of the optimum, δ∗, for this instance. Let n = |R| and suppose
that the coordinates of the rectangle corners are even integers in the range [0, D] (which
guarantees that the rectangle centres also have integer coordinates).

The idea of the algorithm is to overlay a grid of blocker-shapes on top of the rectangles as
shown in Figure 1, while ensuring that any two blocker-shapes are distance at least δ apart.
The hope is to use a matching algorithm to match every rectangle to a unique intersecting

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:5

blocker-shape. Then, if rectangle R is matched to blocker-shape B, we choose any point
in R ∩ B as the representative point for B, which guarantees distance at least δ between
representative points since the blocker-shapes are distance at least δ apart. The flaw in
this plan is that there may be small rectangles that do not intersect a blocker shape. To
remedy this, we represent a small rectangle by its centre point, and we eliminate any nearby
blocker-shapes before running the matching algorithm.

For the L1 and L∞ norms we assume that δ is given as a rational number with at most t

digits in the numerator and denominator. Because we are using the word-RAM model where
we cannot compute square roots, we will work with δ2 for the L2 norm. Thus, for the L2
norm, we assume that we are given δ2 as a rational number with at most t digits in the
numerator and denominator. The bit size of the input is Θ(n log D + t). Similarly, for L2,
any output representative point (x, y) will be given as (x2, y2). With these nuances of input
and output, we express the main result of this section as follows:

▶ Theorem 1. There exists an algorithm Placement(δ) that, given input ℓ ∈ {1, 2, ∞},
rectangles R, and δ > 0, either finds an assignment of representative points for R of
Lℓ-distance at least δ, or determines that δ > δ∗

ℓ /fℓ. Here f1 = 5, f2 =
√

34 ≈ 5.83, f∞ = 6.
The run-time of the algorithm is O(n2 log n) in the word RAM model, i.e., assuming we

can do basic arithmetic on numbers of size O(log D + t) in constant time.

To describe our algorithm, we think of overlaying the D×D bounding box of the rectangles
with a grid of horizontal and vertical lines such that the diagonal distance across a square of
the grid is δ. This means that grid lines are spaced γℓ apart, where γ1 = δ/2, γ2 = δ/

√
2,

and γ∞ = δ. For L2 we will work with γ2
2 = δ2/2 which is rational. Note that the algorithm

does not explicitly construct the grid. Number the grid lines from left to right and bottom
to top, and identify a grid point by its two indices. Note that the number of indices is D/γℓ,
so the size of each index is O(log D + t). We imagine filling the grid with blocker-shapes,
where the chosen shape depends on the norm Lℓ that is used – see Figure 1.

For ℓ = 1, 2, we use +-shapes. Each +-shape consists of the four incident grid-segments
of one anchor grid-point, where (i, j) is the anchor of a +-shape iff i is even and i ≡ j

mod 4.
For ℓ = ∞, we use L-shapes. Each L-shape consists of the two incident grid-segments
above and to the right of one anchor grid-point, where (i, j) is the anchor of an L-shape
iff i ≡ j mod 3.

Observe that, by our choice of grid size γℓ, any two blocker shapes are distance δ or more
apart in the relevant norm.

Algorithm Placement(δ)

We now give the rough outline of our algorithm to compute a representative point p(R)
for each rectangle R. The details of how to implement each step are given later on. Our
algorithm consists of the following steps:
1. Partition the input rectangles into small and big rectangles. Roughly speaking, a rectangle

is big if it intersects a blocker-shape, but we give a more precise definition below to deal
with intersections on the boundary of the rectangle.

2. For any small rectangle r, let p(r) be the centre of r, i.e., the point where the two
diagonals of r intersect each other.

3. If two points p(r), p(r′) of two small rectangles r, r′ have Lℓ-distance less than δ, then
declare that δ∗ < fℓδ, and halt.

ESA 2021

17:6 Distant Representatives for Rectangles in the Plane

Figure 1 Grids and blocker-shapes. We indicate in each a big and a small rectangle (shaded
blue) and some cavities (hatched pink). Small rectangles are contained in cavities. (Left) The grid
of +-shapes for the L1 and L2 norms, with two long cavities and two square cavities. (Right) The
grid of L-shapes for the L∞-norm with two long cavities.

4. Find all the blocker-shapes that are owned by small rectangles, where a blocker-shape B

is owned by a small rectangle r if p(r) has distance strictly less than δ to some point of B.
For L2 we will enlarge ownership as follows: B is owned by r if d1(p(r), B) <

√
2δ. To

justify that this enlarges ownership, note that d1(p, q) ≤
√

2d2(p, q) so d2(p(r), B) < δ

implies d1(p(r), B) <
√

2δ.
5. Define a bipartite graph H as follows. On one side, H has a vertex for each big rectangle,

and on the other side, it has a vertex for each blocker-shape that is not owned by a small
rectangle. Add an edge whenever the rectangle intersects the blocker-shape.

6. Construct a subgraph H− of H as follows. For any big rectangle, if it has degree more
than n in H, then arbitrarily delete incident edges until it has degree n. Also delete any
blocker-shape that has no incident edges.

7. Compute a maximum matching M in H−. We say that it covers all big rectangles if
every big rectangle has an incident matching-edge in M .

8. If M does not cover all big rectangles, then declare that δ∗ < fℓδ and halt.
9. For each big rectangle R let B be the blocker-shape that R is matched to, and let p(R)

be an arbitrary point in B ∩ R. (This exists since (B, R) was an edge.)
10. Return the set {p(R)} (for both big and small rectangles R) as an approximate set of

distant representatives.

We now define big rectangles more precisely. The intuition is that a rectangle is big if
it intersects a blocker shape even if δ is decreased by an infinitesimal amount. Note that,
as δ decreases, the blocker-shapes change position and size continuously. More formally, a
rectangle is big with respect to δ if there is some ε0 > 0 such that for all ε, 0 ≤ ε < ε0, there
is a point in the (closed) rectangle and in a blocker-shape (for the blocker-shapes at δ − ε).
The reason for this definition is so the set of big rectangles remains the same if δ is decreased
by an infinitesimal amount, a property that becomes relevant when we use the Placement
algorithm to approximately solve the optimization version of distant representatives.

For implementation details and the correctness proof, we need one more definition. A
cavity is a closed maximal axis-aligned rectangular region with no points of blocker shapes
in its interior. We distinguish a square cavity, which is a 2 × 2 block of grid squares (only
possible for +-shapes), and a long cavity which lies between two consecutive grid lines. For
+-shapes a long cavity is a 1 × 4 or 4 × 1 block of grid squares, and for L-shapes, a long
cavity is a 1 × 3 or 3 × 1 block of grid squares. Observe that any small rectangle is contained
in a cavity.

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:7

Implementation and Runtime. In order to implement the algorithm efficiently we discuss:
How to test whether a rectangle is big/small.
How to find the blocker shapes owned by a small rectangle.
How to construct H−.
How to efficiently compute the matching.

We first show how to find which grid square contains a given point. Identify a grid square
by the indices of its lower left grid point. Given a point (x, y) in the plane (e.g., a corner of
an input rectangle) the vertical grid line just before x has index i where iγℓ ≤ x < (i + 1)γℓ

so i = ⌊x/γℓ⌋. For ℓ = 1, i = ⌊2x/δ⌋. For ℓ = ∞, i = ⌊x/δ⌋. For ℓ = 2, i is the largest
natural number such that i2 ≤ 2x2/δ2, i.e., i is the integer square root of ⌊2x2/δ2⌋. The
integer square root of a number with O(log D + t) bits can be found in time O(log D + t) on
a word RAM.

We apply the above procedure O(n) times to find the grid squares of all the rectangles’
corners and centres. Using the differences and parities of the indices of the grid squares
containing the corners, we can test if a rectangle contains points of blocker shapes in its
interior or on its boundary. From this, we can test if a rectangle is big or small in constant
time. (Note that our complicated rule is really just testing boundary conditions.)

Each small rectangle r owns a constant number of blocker shapes and these can be found
by testing a constant number of grid squares that are near p(r).

Next we show how to construct the bipartite graph H− and compute a maximum matching.
Note that blocker-shapes, which form one vertex set of H−, are specified using O(log D + t)
bits each, although we do not write that in our run-time bounds. To construct H− we first
build a dictionary for the O(n) blocker-shapes owned by small rectangles. Then for each big
rectangle R, enumerate blocker-shapes intersecting R in arbitrary order until we have found
n that are not owned by a small rectangle, or until we have found all of them, whichever
happens first. The run-time for this step is O(n2 log n) which will in fact be the bottleneck
in our runtime. The graph H− has O(n2) vertices and edges.

To find the maximum matching in H−, we can use the standard algorithm by Hopcroft
and Karp [24] which has run-time O(

√
ν|E|), where ν is the size of the maximum matching [31,

Theorem 16.5]. We have ν ≤ n and |E| = O(n2), so the run-time to find the matching is
O(n2.5). With appropriate further data structures the runtime of computing the matching can
be reduced to O(n

√
n log n); see the full version. Therefore the runtime becomes O(n2 log n).

Correctness

The algorithm outputs either a set of points or a declaration that δ∗
ℓ < fℓδ. We first show

that the algorithm is correct if it outputs a set of points.

▶ Lemma 2. If the algorithm returns a point-set, then the Lℓ-distance between any two
points chosen by the algorithm is at least δ.

Proof. For two small rectangles r, r′, this holds since we test dℓ(p(r), p(r′)) explicitly. For any
two big rectangles R, R′, the two assigned points p(R) and p(R′) lie on different blocker-shapes,
and hence have distance at least δ. For any big rectangle R and small rectangle r, point p(R)
lies on a blocker-shape that is not owned by r, so the blocker shape, and hence p(R), has
distance at least δ from p(r). ◀

If the algorithm does not output a set of points, then it outputs a declaration that δ is too
large compared to the optimum δ∗, viz., δ∗

ℓ < fℓδ. This declaration is made either in Step 3
because the points chosen for small rectangles are too close, or in Step 8 because no matching

ESA 2021

17:8 Distant Representatives for Rectangles in the Plane

is found. We must prove correctness in each case, Lemma 3 for Step 3, and Lemma 4 for Step
8. In the remainder of this section we let p∗(R), R ∈ R denote an optimum set of distant
representatives, i.e., p∗(R) is a point in R and every two such points have Lℓ-distance at
least δ∗

ℓ .

▶ Lemma 3. If two points p(r), p(r′) of two small rectangles r, r′ have distance less than δ,
then δ∗

ℓ < fℓδ.

Proof. We first show that for any small rectangle r, points p∗(r) and p(r) are close together,
specifically, dℓ(p∗(r), p(r)) ≤ 2.5γℓ. Because L1-distance dominates L2 and L∞-distances, it
suffices to prove that d1(p∗(r), p(r)) ≤ 2.5γℓ. Any small rectangle is contained in a cavity.
The L1 diameter of a cavity (i.e., the maximum distance between any two points in the
cavity) is at most 5γℓ – it is 5γℓ for a long cavity with +-shapes; 4γℓ for a square cavity with
+-shapes; and 4γℓ for a long cavity with L-shapes. This implies that any point of r is within
distance 2.5γℓ from p(r), the centre of rectangle r.

Now consider two small rectangles r and r′ with dℓ(p(r), p(r′)) < δ. We will bound the
distance between p∗(r) and p∗(r′) by applying the triangle inequality:

dℓ(p∗(r), p∗(r′)) ≤ dℓ(p∗(r), p(r)) + dℓ(p(r), p(r′)) + dℓ(p(r′), p∗(r′)) < 2.5γℓ + δ + 2.5γℓ = δ + 5γℓ.

Plugging in the values γ1 = δ/2, γ2 = δ/
√

2, and γ∞ = δ, we obtain bounds of 3.5δ,
(1 + 5/

√
2)δ ≈ 4.5δ, and 6δ, respectively. Since f1 = 5, f2 ≈ 5.8, and f∞ = 6, these bounds

are at most fℓδ in all three cases. Thus δ∗ < fℓδ, as required. ◀

▶ Lemma 4. If there is no matching M in H− that covers all big rectangles, then δ∗
ℓ < fℓδ.

Proof. We prove the contrapositive, using the following plan. Take an optimal set of distant
representatives, p∗(R), R ∈ R with Lℓ-distance δ∗

ℓ ≥ fℓδ. For any big rectangle R, we “round”
p∗(R) to a point b(R) that is in R and on a blocker-shape B(R). More precisely, we define
b(R) to be a point that is in R, on a blocker-shape, and closest (in Lℓ distance) to p∗(R). In
case of ties, choose b(R) so that the smallest rectangle containing p∗(R) and b(R) is minimal
(this is only relevant in L∞). Break further ties arbitrarily. Observe that b(R) exists, since a
big rectangle contains blocker-shape points. Define B(R) to be the blocker-shape containing
b(R).

By Lemma 5 (stated below) the pairs R, B(R) form a matching in H that covers all
big rectangles. We convert this to a matching in H− by repeatedly applying the following
exchange step. If big rectangle R is matched to a blocker shape B(R) that is not in H−, then
R has degree exactly n in H−. Not all its n neighbours can be used in the current matching
since there are at most n − 1 big rectangles other than R. So change the matching-edge at R

to go to one of the unmatched neighbours in H− instead. ◀

▶ Lemma 5. Let R be a big rectangle and let B = B(R). If δ∗ ≥ fℓδ then (1) no other big
rectangle R′ has B(R′) = B, and (2) no small rectangle owns B.

The general idea to prove this lemma is to show that either type of collision (B(R) = B(R′)
or B(R) owned by r) gives points p∗ that are “close together”, where close together means
in a ball of appropriate radius centred at the anchor of B(R).

Let Cℓ(B) be the open Lℓ-ball centred at the anchor of B and with diameter fℓδ. See
Figure 2 and note that the diameter of the ball in the appropriate metric is:

f1δ = 5δ = 10(δ/2) = 10γ1 f2δ =
√

34δ =
√

68(δ/
√

2) =
√

68γ2 f∞δ = 6δ = 6γ∞

We need a few claims localizing p∗(R) relative to b(R):

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:9

a

b

X

Figure 2 A blocker shape B (heavy black) and Cℓ(B), the Lℓ-ball of diameter fℓδ centred at B’s
anchor (dashed green) which is a diamond for L1 (left), a circle for L2 (left), and a square for L∞

(right). The long cavities that touch B are shaded gray. If a small rectangle r owns B, then p(r) lies
in C′ (in cyan), and r is contained in the union of the gray and blue-hatched regions.

▷ Claim 6. For any big rectangle R, the points b(R) and p∗(R) lie in one long cavity.

Proof. Let T be the rectangle with corners p∗(R) and b(R). By definition of b(R), there are
no points of blocker-shapes in or on the boundary of T except b(R). Thus T is contained in
a cavity. Furthermore, if T is contained in a square cavity, then we claim that T does not
contain the central grid point of the square cavity in its interior (otherwise b(R) could not
be the unique point of a blocker shape in T , see Figure 1). Thus T is contained in a long
cavity. ◁

▷ Claim 7. Let B be a blocker shape. Let R be a big rectangle with B(R) = B. Then p∗(R)
is contained in the ball Cℓ(B).

Proof. By the previous lemma, p∗(R) lies in a long cavity that contains a point of B. From
Figure 2 we see that any long cavity that contains a point of B lies inside the closed ball
Cℓ(B). Furthermore, note that if p∗(R) lies on the boundary of the ball, then it lies on a
different blocker shape, contrary to B(R) = B. Thus p∗(R) is contained in Rℓ(B). ◁

▷ Claim 8. Let B be a blocker shape. Let r be a small rectangle that owns B. Then p∗(r)
is contained in the ball Cℓ(B).

Proof. Recall that p(r) is the centre of r, and that, by the definition of ownership, for
ℓ = 1, ∞ we have dℓ(p(r), B) < δ, and for ℓ = 2 we have d1(p(r), B) <

√
2δ. Such points p(r)

lie in the open region C ′ drawn in cyan in Figure 2. Here C ′ is the Minkowski sum of an
open ball with B where we use an L1-ball of radius δ for ℓ = 1, an L1-ball of radius

√
2δ for

ℓ = 2 and an L∞-ball of radius δ for ℓ = ∞.
We next show that r is contained in the ball Cℓ(B). For ℓ = ∞, r must lie in a long

cavity intersecting C ′, i.e. in the open shaded gray region, thus in C∞(B).
For ℓ = 1, 2, r is contained in a cavity that intersects C ′. The union of the cavities that

intersect C ′ consists of the grey and blue-hatched region plus the grid square X and its
symmetric counterparts. But observe that a small rectangle that contains points of X has a
centre outside C ′. Therefore r is contained in Cℓ(B). ◁

Proof of Lemma 5. Let R be a big rectangle and let B = B(R). By Claim 7, p∗(R) lies in
Cℓ(B). If there is another big rectangle R′ with B(R′) = B, then p∗(R′) also lies in Cℓ(B).
If there is a small rectangle r that owns B, then by Claim 8, p∗(r) lies in Cℓ(B).

In either case, the distance between p∗(R) and the other p∗ point is less than fℓδ, since
that is the diameter of Cℓ(B). Thus δ∗ < fℓδ. ◀

ESA 2021

17:10 Distant Representatives for Rectangles in the Plane

3 Approximating the optimization problem

In this section we use Placement to design approximation algorithms for the optimization
version of the distant representatives problem for rectangles:

▶ Theorem 9. There is an fℓ-approximation algorithm for the distant representatives problem
on rectangles in the Lℓ-norm, ℓ = 1, 2, ∞ with run time O(n2(log n)2) for L∞ and run time
O(n2 polylog(nD)) for L1 and L2. Here (as before) f1 = 5, f2 =

√
34 ≈ 5.83, f∞ = 6.

One complicating factor is that Placement is not monotone, i.e., it may happen that
Placement fails for a value δ but succeeds for a larger value δ′. We note that Cabello’s
algorithm [5] behaves the same way. We deal with L∞ in Section 3.1 and with L1 and L2 in
Section 3.2.

We need some upper and lower bounds on δ∗. Note that if the input contains two
rectangles that are single identical points, then δ∗ = 0. Since this is easily detected, we
assume from now on that no two input rectangles are single identical points.

▷ Claim 10. We have 1/n ≤ δ∗ ≤ 2D.

Proof. The upper bound is obvious. For the lower bound, place a grid of points distance
1
n apart. All rectangles with non-zero dimensions will intersect at least n + 1 points, and
single-point rectangles will hit one point. Since no two single-point rectangles are identical,
they can be matched to the sole grid point that overlaps the rectangle. The remaining
rectangles can be matched trivially. ◁

Note that a solution with distance at least 1
n can be found easily, following the steps above.

3.1 Optimization problem for L∞

For the L∞ norm we use the following result about the possible optimum values; a proof is
in the full version.

▶ Lemma 11. In L∞, δ∗
∞ takes on one of the O(n3) values of the form (t − b)/k where

k ∈ {1, . . . , n} and t, b are rectangle coordinates.

Let ∆ be the set of O(n3) values from the lemma. We can compute the set ∆ in
O(n3) time and sort it in O(n3 log n) time. Say ∆ = {d1, d2, . . . , dN } in sorted order, and
set ci := di/f∞. Because of non-monotonicity, we cannot efficiently find the maximum
ci for which Placement succeeds. Instead, we use binary search to find i such that
Placement(ci) succeeds but Placement(ci+1) fails. Therefore δ∗

∞ < f∞ci+1 = di+1 which
implies that δ∗

∞ ≤ di = f∞ci and the representative points found by Placement(ci) provide
an f∞-approximation.

To initialize the binary search, we first run Placement(cN), and, if it succeeds, return
its computed representative points since they provide an f∞-approximation of the optimum
assignment. Also note that Placement(c1) must succeed – if it fails then δ∗

∞ < f∞c1 = d1,
which contradicts δ∗

∞ ∈ ∆. Thus we begin with the interval [1, N] and perform binary
search on within this interval to find a value i such that Placement(ci) succeeds but
Placement(ci+1) fails.

We can get away with sorting just the O(n2) numerators and performing an implicit
binary search, to avoid the cost of generating and sorting all of ∆. Let t be the sorted array
of O(n2) numerators, which takes O(n2 log n) time to generate and sort. The denominators
are just [n], so there is no need to generate and sort it explicitly. Define the implicit sorted

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:11

matrix a, where a[r, c] = t[r]/(n − c), for 0 ≤ r ≤ |t| − 1, 0 ≤ c ≤ n − 1. Each entry of a

can be computed in O(1) time. Since the matrix is sorted, the matrix selection algorithm of
Frederickson and Johnson [19] can be used to get an element of ∆ at the requested index in
O(n log n) time. Using selection, one can perform the binary search on ∆ implicitly. While
accessing elements of ∆ takes more time, it is still less than the time to call Placement on
the element accessed. Each iteration of the binary search is dominated by the runtime of
Placement, so the total runtime is O(n2(log n)2). This proves Theorem 9 for L∞.

3.2 Optimization problem for L1 and L2

In this section we give an approximation algorithm for the optimization version of distant
representatives for rectangles in the L1 and L2 norms. Define a critical value to be a right
endpoint of an interval where Placement succeeds. See Figure 3.

We use the following results whose proofs can be found below.

▶ Lemma 12. Placement succeeds at critical values, i.e., the intervals where Placement
succeeds are closed at the right. Furthermore, a critical value provides an fℓ-approximation.

]]]

�⇤

(1/f`)�⇤

�

success

failure

1

�⇤

(1/f`)�⇤

�

success

failure

1

�⇤

(1/f`)�⇤

�

success

failure

1

�⇤

(1/f`)�⇤

�

success

failure

1

�⇤

(1/f`)�⇤

�

success

failure

1

Figure 3 An illustration of critical values.

Thus our problem reduces to finding a critical value.

▶ Lemma 13. The Placement algorithm can be modified to detect critical values.

▶ Lemma 14. In L1 any critical value δ is a rational number with numerator and denominator
at most 4Dn. In L2 for any critical value δ, δ2 is a rational number with numerator and
denominator at most 8D2n2.

Based on these lemmas, we use continued fractions to find a critical value. We need the
following properties of continued fractions.
1. A continued fraction has the form a0 + 1

a1+ 1
a2+··· 1

ak

, where the ai’s are natural numbers.

2. Every positive rational number a
b has a continued fraction representation. Furthermore,

the number of terms, k, is O(log(max{a, b})). This follows from the fact that computing
the continued fraction representation of a

b exactly parallels the Euclidean algorithm;
see [2, Theorem 4.5.2] or the wikipedia page on the Euclidean algorithm [35]. For the
same reason, each ai is bounded by max{a, b}.

3. Suppose we don’t know a
b explicitly, but we know some bound G such that a, b ≤ G,

and we have a test of whether a partial continued fraction is greater than, less than, or
equal to a

b . Then we can find the continued fraction representation of a
b as follows. For

i = 1 . . . log G, use binary search on [2..G] to find the best value for ai. Note that the
continued fraction with i terms is increasing in ai for even i and decreasing for odd i,
and we adjust the binary search correspondingly. In each step, we have a lower bound
and an upper bound on a

b and the step shrinks the interval. If the test runs in time T ,
then the time to find the continued fraction for a

b is O(T (log G)2), plus the cost of doing
arithmetic on continued fractions (with no T factor).

ESA 2021

17:12 Distant Representatives for Rectangles in the Plane

Algorithm for L1, L2. Run the continued fraction algorithm using Placement (enhanced
to detect a critical value) as the test. The only difference from the above description is that
we do not have a specific target a

b ; rather, our interval contains at least one critical value and
we search until we find one. At any point we have two values bl and bu both represented as
continued fractions, where Placement succeeds at bl and fails at bu, so there is at least one
critical value between them. We can use the initial interval [1/n, 2D]. To justify this, note
that if Placement(1

n) fails , then fℓ/n > δ∗ by Theorem 1, so we get an fℓ-approximation
by using the representative points for δ = 1

n (see the remark after Claim 10).
For the runtime, we use the bound O(T (log G)2) from point 3 above, plugging in T =

O(n2 log n) for Placement and the bounds on G from Lemma 14, to obtain a runtime of
O(n2polylog(nD)), which proves Theorem 9 for L1 and L2.

The run-time for Theorem 9 can actually be improved to O(n2(log n)2) (i.e., without
the dependence on log D) with an approach that is very specific to the problem at hand
(and similar to Cabello’s approach). The details are complicated for such a relatively small
improvement and hence omitted here.

Missing proofs. For space reasons we can here only give the briefest sketch of the proofs
of Lemmas 12, 13, and 14; details are in the full version. A crucial ingredient is to study
what must have happened if Placement(δ) goes from success to failure (when viewing its
outcome as a function that changes over time δ).

▶ Observation 15. Assume Placement(δ) succeeds but Placement(δ′) fails for some
δ′ > δ. Then at least one of the following events occurs as we go from δ to δ′:
1. the set of small/big rectangles changes,
2. the distance between the centres of two small rectangles equals δ̂ for some δ ≤ δ̂ < δ′,
3. the set of blocker-shapes owned by a small rectangle increases,
4. the set of blocker-shapes intersecting a big rectangle decreases.

Roughly speaking, Lemma 12 can now be shown by arguing that such events do not
happen in a sufficiently small time-interval before Placement fails (hence the intervals
where it fails are open on the left). Lemma 14 holds because there necessarily must have
been an event at time δ, and we can analyze the coordinates when events happen. Finally
Lemma 13 is achieved by running Placement at time δ and also symbolically at time δ + ε.

4 Hardness results

In this section we outline NP-hardness and APX-hardness results for the distant
representatives problem. For complete details see the full version of the paper. We first show
that, even for the special case of unit horizontal segments, the decision version of the problem
is NP-complete for L1 and L∞ and NP-hard for L2 (where bit complexity issues prevent
us from placing the problem in NP). This L2 result was proved previously by Roeloffzen in
his Master’s thesis [30, Section 2.3] but we add details regarding bit complexity that were
missing from his proof.

Next, we enhance our reductions to “gap-producing reductions” to obtain lower bounds
on the approximation factors that can be achieved in polynomial time. Since our goal is to
compare with our approximation algorithms for rectangles, we consider the more general
case of horizontal and vertical segments in the plane (not just unit horizontals). Our main
result is that, assuming P ̸= NP, no polynomial time approximation algorithm achieves a
factor better than 1.5 in L1 and L∞ and 1.4425 in L2.

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:13

Our reductions are from the NP-complete problem Monotone Rectilinear Planar 3-SAT [10]
in which each clause has either three positive literals or three negative literals, each variable
is represented by a thin vertical rectangle at x-coordinate 0, each positive [negative] clause
is represented by a thin vertical rectangle at a positive [negative, resp.] x-coordinate, and
there is a horizontal line segment joining any variable to any clause that contains it. See
Figure 4(a) for an example instance of the problem. For n variables and m clauses, the
representation can be on an O(m) × O(n + m) grid.

4.1 NP-hardness
▶ Theorem 16. The decision version of the distant representatives problem for unit horizontal
segments in the L1, L2 or L∞ norm is NP-hard.

Lemma 11 implies that the decision problem lies in NP for the L∞ norm, even for
rectangles. In the full version we show the same for L1, and we discuss the bit complexity
issues that prevent us from placing the decision problem in NP for the L2 norm.

For our reduction from Monotone Rectilinear Planar 3-SAT we first modify the
representation so that each clause rectangle has fixed height and is connected to its three
literals via three “wires” – the middle one remains horizontal, the bottom one bends to
enter the clause rectangle from the bottom, and the top one bends twice to enter the clause
rectangle from the far side. See Figure 4(b). Each wire is directed from the variable to the
clause, and represents a literal. The representation is still on an O(m) × O(n + m) grid.

To complete the reduction to the distant representatives problem we replace the rectangles
with variable and clause gadgets constructed from unit horizontal intervals, and also implement
the wires using such intervals. The details, which can be found in the full version of the
paper, depend on the norm Lℓ, ℓ = 1, 2, ∞. We also set a value of δℓ to obtain a decision
problem that asks if there is an assignment of a representative point to each interval that is
valid, i.e., such that no two points are closer than δℓ. We set δ1 = 2, δ2 = 13

5 , and δ∞ = 1
2 .

An example of the construction for L1 (with δ1 = 2) is shown in Figure 4(c).
For the L2 norm, the bit complexity issue missed in Roeloffzen’s reduction [30, Section

2.3] is that the interval endpoints and their distances must have polynomially-bounded bit
complexity. We resolve this by using Pythagorean triples (see Figure 5(a)).

4.2 APX-hardness
In this section, we prove hardness-of-approximation results for the distant representatives
problem on horizontal and vertical segments in the plane. Specifically, we prove lower bounds
on the approximation factors that can be achieved in polynomial time, assuming P ̸= NP.

▶ Theorem 17. For ℓ = 1, 2, ∞, let gℓ be the constant shown in Table 2. Suppose P ̸= NP .
Then, for the Lℓ norm, there is no polynomial time algorithm with approximation factor less
than gℓ for the distant representatives problem for horizontal and vertical segments.

Table 2 Best approximation ratios that can be achieved unless P=NP.

L1 L2 L∞

lower bound g1 = 1.5 g2 = 1.4425 g∞ = 1.5

ESA 2021

17:14 Distant Representatives for Rectangles in the Plane

x1

x2

x3

x4

x5

C
1 =

 x
1

∨
x 2

 ∨
 x

3
C

3 =
 x

3
∨

x 4
 ∨

 x
5

C
4 =

 x
1

∨
x 3

 ∨
 x

5

C
2 =

 x
1

∨
x 3

 ∨
 x

4
−

−
−

x3

x2

x1

x1

x2

x3

x4

x5

C2
C4

C3

C1

C1

(a) (b) (c)

false

false

false

false

true

false

Figure 4 (a) An instance of Monotone Rectilinear Planar 3-SAT. (b) The modified representation
used for our NP-hardness proofs, with wires from variable to clause gadgets. (c) A detail of our
NP-hardness construction for clause C1 = x1 ∨ x2 ∨ x3 in the L1 norm showing how the truth-value
setting x1 = False, x2 = True, x3 = False, permits representative points (shown as red dots) at
distance at least δ1 = 2.

We prove Theorem 17 using a gap reduction. This standard approach is based on the fact
that if there were polynomial time approximation algorithms with approximation factors
better than gℓ then the gap versions of the problem (as stated below) would be solvable in
polynomial time. Thus, proving that the gap versions are NP-hard implies that there are no
polynomial time gℓ-approximation algorithms unless P=NP.

Recall that δ∗
ℓ is the max over all assignments of representative points, of the min distance

between two points.

Gap Distant Representatives Problem.
Input: A set I of horizontal and vertical segments in the plane.
Output:

YES if δ∗
ℓ (I) ≥ 1;

NO if δ∗
ℓ (I) ≤ 1/gℓ;

and it does not matter what the output is for other inputs.

To prove Theorem 17 it therefore suffices to prove:

▶ Theorem 18. The Gap Distant Representatives problem is NP-hard.

This is proved via a reduction from Monotone Rectilinear Planar 3-SAT, much like in
the previous section. The gadgets are simpler because we can use vertical segments, but we
must prove stronger properties. Given an instance Φ of Monotone Rectilinear Planar 3-SAT
we construct in polynomial time a set of horizontal and vertical segments I such that:

▷ Claim 19. If Φ is satisfiable then δ∗
ℓ (I) = 1.

▷ Claim 20. If Φ is not satisfiable then δ∗
ℓ (I) ≤ 1/gℓ.

Thus a polynomial time algorithm for the Gap Distant Representatives problem yields
a polynomial time algorithm for Monotone Rectilinear Planar 3-SAT. We give some of the
reduction details, but defer the proofs of the claims to the full version.

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:15

Reduction details

We reduce directly from Monotone Rectilinear Planar 3-SAT.

(a) (b) (c)

12

13513

xi

x1

x2

x3

C1

false

true

false

xi

Figure 5 (a) A variable gadget for NP-hardness for L2, based on Pythagorean triple 5, 12, 13.
To achieve δ = 13 the representative point for the variable interval (in cyan) is forced to the left
(true) or the right (false) in which case intervals on the right are also forced. (b) A clause gadget for
the APX-hardness reduction, with three horizontal wires attached. For clarity, segments are not
drawn all the way to their endpoints. Wires x1 and x2 are in the false setting and wire x2 is in
the true setting, which allows the representative point for C1 to be placed where the x2 wire meets
it, while keeping representative points at least distance 1 apart. (c) The basic splitter gadget for
APX-hardness for L∞ placed on the half grid and showing two wires extending left and two right.
The variable segment (in thick cyan) for the variable xi has its representative point (the large red
dot) at the right, which is the false setting. The representative points shown by large red/yellow
dots are distance at least 1 apart in L∞.

Wire. A wire is a long horizontal segment with 0-length segments at unit distances along it,
except at its left and right endpoints. See Figure 5(b). The representative point for a 0-length
segment must be the single point in the segment (shown as small red dots in the figure). As
before, a wire is directed from the variable gadget to the clause gadget. We distinguish a
“false setting” where the wire has its representative point within distance 1 of its forward end
(at the clause gadget) and a “true setting” where the wire has its representative point within
distance 1 of its tail end (at the variable gadget).

Clause gadget. A clause gadget is a vertical segment. Three wires corresponding to the
three literals in the clause meet the vertical segment as shown in Figure 5(b). There are
0-length segments at unit distances along the clause interval except where the three wires
meet it.

Variable gadget. A variable segment has length 3, with two 0-length segments placed 1
and 2 units from the endpoints. A representative point in the right half corresponds to a
false value for the variable, and a representative point in the left half corresponds to a true
value. In order to transmit the variable’s value to all the connecting horizontal wires we
build a “splitter” gadget. The basic splitter gadget for L∞ is shown in Figure 5(c). The
same splitter gadget works for the other norms but we can improve the lower bounds using
modified splitter gadgets as described in the full version.

ESA 2021

17:16 Distant Representatives for Rectangles in the Plane

5 Conclusions

We gave good approximation algorithms for the distant representatives problem for rectangles
in the plane using a new technique of “imprecise discretization” where we limit the choice of
representative points not to a discrete set but to a set of one-dimensional “shapes”. This
technique may be more widely applicable, and can easily be tailored, for example by using a
weighted matching algorithm to prefer representative points near the centres of rectangles.

We also gave the first explicit lower bounds on approximation factors that can be achieved
in polynomial time for distant representatives problems.

Besides the obvious questions of improving the approximation factors, the run-times, or
the lower bounds, we mention several other avenues for further research.

1. Is the distant representatives problem for rectangles in L2 hard for existential theory of
the reals? Recently, some packing problems have been proved ∃R-complete [1], but they
seem substantially harder.

2. Is there a good [approximation] algorithm for any version of distant representatives for a
lexicographic objective function. For example, suppose we wish to maximize the smallest
distance between points, and, subject to that, maximize the second smallest distance, and
so on. Or suppose we ask to lexicographically maximize the sorted vector consisting of
the n distances from each chosen point to its nearest neighbour. For the case of ordered
line segments in 1D there is a linear time algorithm to lexicographically minimize the
sorted vector of distances between successive pairs of points [4]. It is an open problem to
extend this to unordered line segments.

3. What about weighted versions of distant representatives? Here each rectangle R has a
weight w(R), and rather than packing disjoint balls of radius δ we pack disjoint balls of
radius w(R)δ centred at a representative point p(R) in R. Again, there is a solution for
ordered line segments in 1D [4].

References
1 Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for ∃R-completeness

of two-dimensional packing problems. arXiv preprint arXiv:2004.07558, 2020. URL: https:
//arXiv.org/abs/2004.07558.

2 Eric Bach and Jeffrey Shallit. Algorithmic Number Theory: Efficient Algorithms, volume 1.
MIT press, 1996.

3 Christoph Baur and Sándor P. Fekete. Approximation of geometric dispersion problems.
Algorithmica, 30(3):451–470, 2001. doi:10.1007/s00453-001-0022-x.

4 Therese Biedl, Anna Lubiw, Anurag Murty Naredla, Peter Dominik Ralbovsky, and Graeme
Stroud. Dispersion for intervals: A geometric approach. In Symposium on Simplicity in
Algorithms (SOSA), pages 37–44. SIAM, 2021. doi:10.1137/1.9781611976496.4.

5 Sergio Cabello. Approximation algorithms for spreading points. Journal of Algorithms,
62(2):49–73, 2007. doi:10.1016/j.jalgor.2004.06.009.

6 Jean Cardinal. Computational geometry column 62. ACM SIGACT News, 46(4):69–78, 2015.
doi:10.1145/2852040.2852053.

7 Erin Chambers, Alejandro Erickson, Sándor P. Fekete, Jonathan Lenchner, Jeff Sember,
Venkatesh Srinivasan, Ulrike Stege, Svetlana Stolpner, Christophe Weibel, and Sue Whitesides.
Connectivity graphs of uncertainty regions. Algorithmica, 78(3):990–1019, 2017. doi:10.1007/
s00453-016-0191-2.

8 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46(2):178–189, 2003.

https://arXiv.org/abs/2004.07558
https://arXiv.org/abs/2004.07558
http://dx.doi.org/10.1007/s00453-001-0022-x
http://dx.doi.org/10.1137/1.9781611976496.4
http://dx.doi.org/10.1016/j.jalgor.2004.06.009
http://dx.doi.org/10.1145/2852040.2852053
http://dx.doi.org/10.1007/s00453-016-0191-2
http://dx.doi.org/10.1007/s00453-016-0191-2

T. Biedl, A. Lubiw, A. M. Naredla, P. D. Ralbovsky, and G. Stroud 17:17

9 Jing Chen, Bo Li, and Yingkai Li. Efficient approximations for the online dispersion problem.
SIAM Journal on Computing, 48(2):373–416, 2019. doi:10.1137/17M1131027.

10 Mark de Berg and Amirali Khosravi. Optimal binary space partitions in the plane. In
International Computing and Combinatorics Conference, pages 216–225. Springer, 2010. doi:
10.1007/978-3-642-14031-0_25.

11 Erik D. Demaine, Sándor P. Fekete, and Robert J. Lang. Circle packing for origami design is
hard. arXiv preprint arXiv:1008.1224, 2010. URL: https://arxiv.org/abs/1008.1224.

12 Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M.E. Moret, and Binhai
Zhou. Map labeling and its generalizations. In Proc. 8th Ann. ACM/SIAM Symp. Discrete
Algs.(SODA97), pages 148–157. SIAM, 1997.

13 Reza Dorrigiv, Robert Fraser, Meng He, Shahin Kamali, Akitoshi Kawamura, Alejandro
López-Ortiz, and Diego Seco. On minimum-and maximum-weight minimum spanning trees
with neighborhoods. Theory of Computing Systems, 56(1):220–250, 2015. doi:10.1007/
s00224-014-9591-3.

14 Adrian Dumitrescu and Minghui Jiang. Dispersion in disks. Theory of Computing Systems,
51(2):125–142, 2012. doi:10.1007/s00224-011-9331-x.

15 Adrian Dumitrescu and Minghui Jiang. Systems of distant representatives in Euclidean space.
Journal of Combinatorial Theory, Series A, 134:36–50, 2015. doi:10.1016/j.jcta.2015.03.
006.

16 Jeff Erickson, Ivor van der Hoog, and Tillmann Miltzow. Smoothing the gap between NP and
∃R. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 1022–1033. IEEE, 2020.

17 Jiří Fiala, Jan Kratochvíl, and Andrzej Proskurowski. Systems of distant representatives.
Discrete Applied Mathematics, 145(2):306–316, 2005. doi:10.1016/j.dam.2004.02.018.

18 Michael Formann and Frank Wagner. A packing problem with applications to lettering of
maps. In Proceedings of the Seventh Annual Symposium on Computational Geometry, pages
281–288, 1991.

19 Greg N. Frederickson and Donald B. Johnson. Generalized selection and ranking: sorted
matrices. SIAM Journal on Computing, 13(1):14–30, 1984.

20 Michael R. Garey, David S. Johnson, Barbara B. Simons, and Robert Endre Tarjan. Scheduling
unit–time tasks with arbitrary release times and deadlines. SIAM Journal on Computing,
10(2):256–269, 1981. doi:10.1137/0210018.

21 Philip Hall. On representatives of subsets. Journal of the London Mathematical Society,
1(1):26–30, 1935.

22 Mhand Hifi and Rym M’hallah. A literature review on circle and sphere packing problems:
Models and methodologies. Advances in Operations Research, 2009, 2009. doi:10.1155/2009/
150624.

23 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.
doi:10.1016/j.orl.2010.07.004.

24 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

25 Joseph Y.T. Leung, Tommy W. Tam, Chin S. Wong, Gilbert H. Young, and Francis Y.L. Chin.
Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275,
1990. doi:10.1016/0743-7315(90)90019-L.

26 Shimin Li and Haitao Wang. Dispersing points on intervals. Discrete Applied Mathematics,
239:106–118, 2018. doi:10.1016/j.dam.2017.12.028.

27 Maarten Löffler and Marc van Kreveld. Largest and smallest convex hulls for imprecise points.
Algorithmica, 56(2):235, 2010. doi:10.1007/s00453-008-9174-2.

28 Maarten Löffler and Marc van Kreveld. Largest bounding box, smallest diameter, and
related problems on imprecise points. Computational Geometry, 43(4):419–433, 2010. doi:
10.1016/j.comgeo.2009.03.007.

ESA 2021

http://dx.doi.org/10.1137/17M1131027
http://dx.doi.org/10.1007/978-3-642-14031-0_25
http://dx.doi.org/10.1007/978-3-642-14031-0_25
https://arxiv.org/abs/1008.1224
http://dx.doi.org/10.1007/s00224-014-9591-3
http://dx.doi.org/10.1007/s00224-014-9591-3
http://dx.doi.org/10.1007/s00224-011-9331-x
http://dx.doi.org/10.1016/j.jcta.2015.03.006
http://dx.doi.org/10.1016/j.jcta.2015.03.006
http://dx.doi.org/10.1016/j.dam.2004.02.018
http://dx.doi.org/10.1137/0210018
http://dx.doi.org/10.1155/2009/150624
http://dx.doi.org/10.1155/2009/150624
http://dx.doi.org/10.1016/j.orl.2010.07.004
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1016/0743-7315(90)90019-L
http://dx.doi.org/10.1016/j.dam.2017.12.028
http://dx.doi.org/10.1007/s00453-008-9174-2
http://dx.doi.org/10.1016/j.comgeo.2009.03.007
http://dx.doi.org/10.1016/j.comgeo.2009.03.007

17:18 Distant Representatives for Rectangles in the Plane

29 Roger J. Marshall. Scaled rectangle diagrams can be used to visualize clinical and
epidemiological data. Journal of Clinical Epidemiology, 58(10):974–981, 2005. doi:10.1016/j.
jclinepi.2005.01.018.

30 M.J.M. Roeloffzen. Finding structures on imprecise points. Master’s thesis, TU Eindhoven,
2009. URL: https://www.win.tue.nl/~mroeloff/papers/thesis-roeloffzen2009.pdf.

31 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24.
Springer Science & Business Media, 2003.

32 Barbara Simons. A fast algorithm for single processor scheduling. In 19th Annual Symposium
on Foundations of Computer Science, pages 246–252. IEEE, 1978. doi:10.1109/SFCS.1978.4.

33 Péter Gábor Szabó, Mihaly Csaba Markót, Tibor Csendes, Eckard Specht, Leocadio G. Casado,
and Inmaculada García. New Approaches to Circle Packing in a Square: with Program Codes,
volume 6. Springer Science & Business Media, 2007.

34 Frank Wagner, Alexander Wolff, Vikas Kapoor, and Tycho Strijk. Three rules suffice for good
label placement. Algorithmica, 30(2):334–349, 2001.

35 Wikipedia contributors. Euclidean algorithm — Wikipedia, the free encyclopedia, 2021. [Online;
accessed 28-June-2021]. URL: https://en.wikipedia.org/w/index.php?title=Euclidean_
algorithm&oldid=1027503317.

36 Alexander Wolff, Lars Knipping, Marc van Kreveld, Tycho Strijk, and Pankaj K. Agarwal. A
simple and efficient algorithm for high-quality line labeling. In Peter Atkinson, editor, GIS
and GeoComputation. Taylor and Francis, 2000. doi:10.1201/9781482268263.

http://dx.doi.org/10.1016/j.jclinepi.2005.01.018
http://dx.doi.org/10.1016/j.jclinepi.2005.01.018
https://www.win.tue.nl/~mroeloff/papers/thesis-roeloffzen2009.pdf
http://dx.doi.org/10.1109/SFCS.1978.4
https://en.wikipedia.org/w/index.php?title=Euclidean_algorithm&oldid=1027503317
https://en.wikipedia.org/w/index.php?title=Euclidean_algorithm&oldid=1027503317
http://dx.doi.org/10.1201/9781482268263

	1 Introduction
	2 Approximating the decision problem
	3 Approximating the optimization problem
	3.1 Optimization problem for L_infinity
	3.2 Optimization problem for L_1 and L_2

	4 Hardness results
	4.1 NP-hardness
	4.2 APX-hardness

	5 Conclusions

