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Abstract
Staged self-assembly has proven to be a powerful abstract model of self-assembly by modeling
laboratory techniques where several nanoscale systems are allowed to assemble separately and then
be mixed at a later stage. A fundamental problem in self-assembly is Unique Assembly Verification
(UAV), which asks whether a single final assembly is uniquely constructed. This has previously been
shown to be Πp

2-hard in staged self-assembly with a constant number of stages, but a more precise
complexity classification was left open related to the polynomial hierarchy.

Covert Computation was recently introduced as a way to compute a function while hiding the
input to that function for self-assembly systems. These Tile Assembly Computers (TACs), in a
growth only negative aTAM system, can compute arbitrary circuits, which proves UAV is coNP-hard
in that model. Here, we show that the staged assembly model is capable of covert computation using
only 3 stages. We then utilize this construction to show UAV with only 3 stages is Πp

2-hard. We then
extend this technique to open problems and prove that general staged UAV is PSPACE-complete.
Measuring the complexity of n stage UAV, we show Πp

n−1-hardness. We finish by showing a Πp
n+1

algorithm to solve n stage UAV leaving only a constant gap between membership and hardness.
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1 Introduction

The Staged Self-Assembly model was designed as an extension to the standard hierarchical
model of tile self assembly that mimics the abilities of scientists in the lab to control the
assembly process by mixing test tubes. The additional features in this model allow for more
efficient tile complexity, but increased complexity of certain verification problems.

We use the concept of Covert Computation, a requirement of a computational system
stipulating that the input and computational history of the computation be hidden in the
final output of the system, within the context of Staged Self-assembly, an extension to tile
self-assembly that allows for basic operations such as mixing self-assembly batches over a
sequence of distinct stages. We use this connection to resolve open questions regarding the
complexity of the Unique Assembly Verification (UAV) problem within staged self-assembly-
the problem of whether a given system uniquely produces a specific assembly. The importance
of this work stems from the fundamental nature of the UAV problem, along with the natural
and experimentally motivated Staged Self-Assembly model. Further, the novel approach by
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23:2 Covert Computation in Staged Self-Assembly

which our results are obtained, by way of designing Covert Computation systems in Staged
Self-Assembly, may be of independent interest as it shows how to utilize Staged Self-Assembly
to implement general purpose computing systems with strong guarantees that might be
useful for cryptography or have applications for privacy within biomedical computation.

Staged Self-Assembly. The Staged Self-Assembly model [1, 6, 7, 8, 9, 10, 11, 14, 18] is
a generalization of the (2-handed) tile assembly model [4] where particles are modeled by
4-sided Wang tiles which nondeterministically combine based on the affinity of tile edges. Tile
self-assembly is a well-studied mathematical abstraction used in the study of self-assembly
systems with algorithmically complex behavior, and enjoys experimental success through a
DNA implementation [19]. In order to add the basic functionality of what an experimentalist
with a set of test tubes could execute [17], the staged model extends tile self-assembly by
allowing assembly to occur in multiple separate bins, and for the contents of these bins to be
either combined or split into a new set of bins after each one of a given sequence of stages.

Covert Computation. Tile self-assembly can be used as a model of computation in which
tiles attach to an input seed structure to grow a final output structure encoding the result of
the computation. This basic paradigm is one of most promising avenues for the development
of nanoscale molecular computing systems (see [19] for recent experimental work using DNA
tiles to implement 6-bit circuits). The authors in [5] recently proposed a new constraint
on such computing systems termed Covert Computation. A covert computation system
computes a function with the additional constraint that the output assembly provides no
information about either the original input or the computational history, beyond the actual
output of the computed function. This is a particularly daunting self-assembly problem
since the output is provided in the form of a self-assembled structure that encodes the exact
geometric location of every placed tile. In previous methods of tile self-assembly computation,
the entire computational history and original input are easily interpreted from the final
output assembly. However, while the output assembly specifies the location of each placed
tile, the result of the computation can be a function of not just these tile locations, but also
of the order in which these tiles are placed, which is the technique exploited in [5]. This
concept provides a useful technique for proving complexity results, and we use it here to
show PSPACE-completeness of verifying unique assembly in staged self-assembly.

Unique Assembly Verification. One well-studied problem in tile self-assembly is the Unique
Assembly Verification (UAV) problem which asks if a given system uniquely produces a given
assembly. This problem was shown to be solvable in polynomial time in the Abstract Tile
Assembly Model [2]. The addition of negative interactions and detachment of tiles makes
the UAV problem undecidable [12], while growth-only systems with no detachments are
coNP-complete [5]. The UAV problem in the 2-Handed Assembly Model was first studied
in [4] where coNP membership was shown with coNP-completeness in the third dimension.
The problem was also shown to be coNP-complete with a variable temperature [15], but
constant temperature UAV in the 2HAM is still open. In the staged assembly model, initial
investigation in [16] showed coNP-hardness using four stages and Πp

2-hardness for seven stages.
They also showed membership in PSPACE with a conjecture of PSPACE-completeness.

Our Results. In this paper, we introduce the concept of covert computation in the context
of staged self-assembly for the purpose of establishing the complexity of unique assembly
verification within the model. First, we show that staged self-assembly is capable of covert
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Table 1 Complexities of Unique Assembly Verification in the Staged Assembly Model with respect
to the number of stages n. Our results are in bold. ∗This result uses the temperature as an input
parameter/variable for the problem. All other results are true even with a constant temperature.

Stages Membership Hardness
1 (2HAM) coNP In [4] coNP-complete∗ In [15]

2 Πp
3 Thm. 19 coNP-hard∗ In [15]

3 Πp
4 Thm. 19 Πp

2-hard Thm. 6
n > 3 Πp

n+1 Thm. 19 Πp
n−1-hard Thm. 12

General PSPACE In. [16] PSPACE-complete Thm. 10

computation even when limited to three stages. Next, we use this fact to show UAV is
PSPACE-complete in staged self-assembly, resolving the open problem from [16]. Along the
way, we improve on some results from [16]: we show that UAV is Πp

2-hard with just three
stages, improving on the previous hardness result requiring seven stages. We then generalize
this result to show that for n stages, UAV is Πp

n−1-hard, but yields a Πp
n+1 algorithm, leaving

only a gap of two in levels between membership and hardness for this problem. An overview
of our results and known results related to UAV is shown in Table 1.

2 Preliminaries

We first provide definitions for the staged self-assembly model and covert computation.

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set Σ.
Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength str(g1, g2).

Configurations, bond graphs, and stability. A configuration is a partial function A : Z2 → T

for some set of tiles T , i.e. an arrangement of tiles on a square grid. For a given configuration A,
define the bond graph GA to be the weighted grid graph in which each element of dom(A) is
a vertex, and the weight of the edge between a pair of tiles is equal to the strength of the
coincident glue pair. A configuration is said to be τ -stable for positive integer τ if every edge
cut of GA has strength at least τ , and is τ -unstable otherwise.

Assemblies. For a configuration A and vector u⃗ = ⟨ux, uy⟩ with ux, uy ∈ Z2, A + u⃗ denotes
the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For two configurations A and B,
B is a translation of A, written B ≃ A, provided that B = A + u⃗ for some vector u⃗. For
a configuration A, the assembly of A is the set Ã = {B : B ≃ A}. An assembly Ã is a
subassembly of an assembly B̃, denoted Ã ⊑ B̃, provided that there exists an A ∈ Ã and
B ∈ B̃ such that A ⊆ B. An assembly is τ -stable provided the configurations it contains
are τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there exist
A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃ is τ -stable.

Two-handed assembly and bins. We define the assembly process in terms of bins. A bin
is an ordered tuple (S, τ) where S is a set of initial assemblies and τ is a positive integer
parameter called the temperature. For a bin (S, τ), the set of produced assemblies P ′

(S,τ) is
defined recursively as follows:
1. S ⊆ P ′

(S,τ).
2. If A, B ∈ P ′

(S,τ) are τ -combinable into C, then C ∈ P ′
(S,τ).

ESA 2021
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Figure 1 (a) A 2HAM example that uniquely builds a 2 × 3 rectangle. The top 4 tiles in the tile
set all combine with strength-2 glues building the ‘L’ shape. The tile with blue and purple glues
needs two tiles to cooperatively bind to the assembly with strength 2. All possible producibles are
shown with the terminal assembly highlighted. (b) A simple staged self-assembly example. The
system has 3 bins and 3 stages, as shown in the mixgraph. There are three tile types in our system
that we assign to bins as desired. From each stage only the terminal assemblies are added to the
next stage. The result of this system is the assembly shown in the bin in stage 3.

A produced assembly is terminal provided it is not τ -combinable with any other producible
assembly, and the set of all terminal assemblies of a bin (S, τ) is denoted P(S,τ). Intuitively,
P ′

(S,τ) represents the set of all possible assemblies that can self-assemble from the initial set
S, whereas P(S,τ) represents only the set of supertiles that cannot grow any further. The
assemblies in P(S,τ) are uniquely produced iff for each x ∈ P ′

(S,τ) there exists a corresponding
y ∈ P(S,τ) such that x ⊑ y. Thus unique production implies that every producible assembly
can be repeatedly combined with others to form an assembly in P(S,τ).

Staged assembly systems. An r-stage b-bin mix graph Mr,b is an acyclic r-partite digraph
consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the form (mi,j , mi+1,j′)
for some i, j, j′. A staged assembly system is a 3-tuple ⟨Mr,b, {T1, T2, . . . , Tb}, τ⟩ where Mr,b

is an r-stage b-bin mix graph, Ti is a set of tile types, and τ is an integer temperature
parameter.

Given a staged assembly system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, we define a corresponding
bin (Ri,j , τ) where Ri,j is defined as follows:
1. R1,j = Tj (this is a bin in the first stage);
2. For i ≥ 2, Ri,j =

( ⋃
k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τ)

)
.

Thus, the jth bin in stage 1 is provided with the initial tile set Tj , and each bin in any
subsequent stage receives an initial set of assemblies consisting of the terminally produced
assemblies from a subset of the bins in the previous stage as indicated by the edges of the
mix graph.1 The output of the staged system is the union of all terminal assemblies from
each of the bins in the final stage.2 We say this set of output assemblies is uniquely produced
if each bin in the staged system uniquely produces its respective set of terminal assemblies.

1 The original staged model [9] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage. Since our systems may have super-constant tile complexity, we restrict
tiles to only be added at the initial stage.

2 This is a slight modification of the original staged model [9] in that the final stage may have multiple
bins. However, all of our results apply to both variants of the model.
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Covert Computation. Tile assembly computers were first defined in [5, 13] with respect
to the aTAM. We provide formal definitions of both Tile Assembly Computers and Covert
Computation with respect to the Staged Self-Assembly model.

A Staged Tile Assembly Computer (STAC) for a function f consists of a staged self-
assembly system, and a format for encoding the input into tiles sets and a format for reading
the output from the terminal assembly. The input format is a specification for what set of
tiles to add to a specific bin in the first stage. Each bit of the input must be mapped to
one of two sets of tiles for the respective bit position: a tile set representing “0”, or tile set
representing “1”. The input set for the entire string is the union of all these tile sets. Our
staged self assembly system, with the set of tiles needed to build the input seed added in
a designated bin, is our final system which performs the computation. The output of the
computation is the terminal assembly the system assembles. To interpret what bit-string is
represented by the assembly, a second output format specifies a pair of sub-assemblies and
locations for each bit. An assembly that represents a bitstring is created by the union of
each sub-assembly represented by each bit.

For a STAC to covertly compute f , the STAC must compute f and produce a unique
assembly for each possible output of f . Thus, for all x such that f(x) = y, a covert STAC
that computes f produces the same output assembly representing output y for each possible
input x, making it impossible to determine which input value x was provided to the system.

Input Template. An n-bit input template over tile set T is a sequence of ordered pairs of
tile sets over T : I = (I0,0, I0,1), . . . , (In−1,0, In−1,1). For a given n-bit string b = b0, . . . , bn−1
and n-bit input template I, the input tile set for b with respect to I is the set I(b) =

⋃
i Ii,bi

.

Output Template. An n-bit output template over tile set T is a sequence of ordered pairs
of configurations over T : O = (C0,0, C0,1), . . . , (Cn−1,0, Cn−1,1). For a given n-bit string
x = x0, . . . , xn−1 and n-bit output template O, the representation of x with respect to O is
O(x) = the assembly of

⋃
i Ci,xi

. A template is valid for a temperature parameter τ ∈ Z+ if
this union never contains overlaps for any choice of x, and is always τ -stable. An assembly
B ⊇ O(x), which contains O(x) as a subassembly, is said to represent x as long as O(d) ⊈ B

for any d ̸= x.

Function Computing Problem. A staged tile assembly computer (STAC) is an ordered
triple ℑ = (Γ, I, O) where Γ = (M, {∅, T2, . . . , Ti}, τ) is a staged self assembly system, I is
an n-bit input template, and O is a k-bit output template. A STAC is said to compute
function f : Zn

2 → Zk
2 if for any x ∈ Zn

2 and y ∈ Zk
2 such that f(x) = y, then the staged

self assembly system Γℑ,x = (M, {I(x), T2, . . . , Ti}, τ) uniquely assembles a set of assemblies
which all represent y with respect to template O.

Covert Computation. A STAC covertly computes a function f(x) = y if 1) it computes
f , and 2) for each y, there exists a unique assembly Ay such that for all x, where f(x) = y,
the system Γℑ,x = (M, {I(x), T1, . . . , Ti}, τ) uniquely produces Ay. In other words, Ay is
determined by y, and every x where f(x) = y has the exact same final assembly.

3 Covert Computation in Staged Self-assembly

Here, we demonstrate covert computation in the staged assembly model. This construction
creates a logic circuit using a 3-stage temperature-2 system with a number of bins polynomial
in the size of the circuit. We consider only circuits made up of functionally universal NAND
gates, but these techniques could be used to create any 2-input gate.

ESA 2021
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Figure 2b shows a basic overview of the mixgraph used for the covert computation
implementation. The method requires three stages with a polynomial number of mixing bins.

In the first stage, we assemble the components needed to perform the computation. These
include an Input Assembly, which encodes the input to the function, Gate Assemblies,
which act as individual gates and perform the computation via their attachment rules
and geometry, and additional assemblies which are used to help “clean up” our circuit
and covertly get the output.
In stage two, the input assembly and gate assemblies are added to a single bin along
with a test tile. The gate assemblies will begin to attach to the input assembly creating
a Circuit Assembly. Once the computation is complete, the test tile can attach to the
circuit assembly if and only if the output is true. The circuit assembly is terminal in this
bin and will be passed to the final stage.
The final stage adds additional assemblies to the bin along with most of the tile set as
single tiles (not shown in figure). The additional assemblies read the output of the circuit
and it grows into one of the output templates. The Output Frame searches for the test
tile representing the output of the circuit. The single tiles fill in any spaces left in the
circuit assembly that would show the computation history, thereby turning the assembly
into the output template. This requires a linear number of additional bins in the first
and second stage to store these single tiles while mixing takes place in other bins.

For our circuit assembly we implement Planar Logic Circuits with only NAND gates. An
example circuit and an assembly showing how the gates are laid out are shown in Figure 2a.
Wires are represented by 2 × 3 blocks of tiles shown in blue in the image. Input and Gate
assemblies contain a subset of the tiles in each block we call arms which represent the values
being passed along the wires. The input assembly is a comb-like structure that is designed
so that each input bit reaches the gate it is used at (Figure 3a). For each NAND gate in
the circuit we have 4 different assemblies, one for each possible input to the gate. A gate
assembly can cooperatively bind to the input assembly if the variable values match. The gate
assembly has a third arm that represents the output. This allows the next gate assembly to
attach, which continues propagating until the computation is done and the circuit assembly
is complete. We now cover the construction in detail by stage.

3.1 First Stage - Assembly Construction
Each bin in the first stage will individually create the assemblies that will come together in
the next stage. For an n-input k-gate NAND logic circuit (considering crossovers as three
XOR gates [5]), we have an input assembly, 4k gate assemblies, and a constant number of
other assemblies that will be used in the final stage. Here we will describe the details of the
individual assemblies created in addition to the arms, which function as wires in our system.

Input. For each bit of the input we have two possible input bit assemblies (Figure 3a).
The value of the bit determines which tiles will be added to create that input bit assembly
in the first stage. Figure 3a shows the selected assemblies that come together to form the
input assembly shown in Figure 3b. Each subassembly has a domino which we call an “arm”
representing the corresponding bit value. The shape of these assemblies depends on the gates
to which they input because the arm of the assembly must reach the location of the gate it
inputs to. The last input bit assembly also contains an extra set of tiles that reach the final
output gate with a strength-1 glue on its north end and two glues on it’s east to allow for
the test tile and output frame to attach.
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Figure 2 (a) Simple 3-input logic circuit using 2 NAND gates, and the high-level abstraction
of the circuit assembly showing the input variables and gates highlighted as blocks. Blue blocks
are the sections of the assemblies we call Arms that function as wires in the systems. (b) (1) Our
input assembly and gate assemblies are constructed in separate bins. (2) Gate assemblies attach to
the input assembly forming a circuit assembly. (3) Unused gates are terminal in the second stage.
(4) This circuit evaluates to true, so the test tile will be able to attach. (5) Gate assemblies in this
stage grow into a circuit using single tiles. (6) Single tiles fill in open spots in the circuit assembly
to hide the history. The additional assemblies are used to reach the output template.

Arms. We describe assemblies as having input or output arms which function as the wires
of our circuit. Arms are vertical dominoes that represent bit values, with their location on
the assembly representing the bit having a value 0 or 1 (Figure 4a). The output arm being
in the left position represents a bit value of 0, with the right position representing 1. The
locations of input arms are complementary (right represents 0, left represents 1) to the output
arms. These arms have a glue on the second tile on the inner side. An input arm will attach
to an output arm to “read” the bit (Figure 4b) if they represent the same wire and the same
value. This glue is a strength-1 glue, so the assembly must attach cooperatively elsewhere in
the assembly. Another key feature of these arms is the ability to hide the information passed
through by adding single tiles in a later stage. The spaces left by the attachment may be
filled by single tiles which results in an assembly which looks like Figure 4c where the value
passed cannot be read. This feature will be used in the final stage of our system.

Gates. For each gate we create four assemblies with each representing one of the valid
input/output combinations of the desired logic gate. Each gate assembly has two input arms
and one output arm. We encode the logic gate by placing the output arm in the column
representing the output of the gate when input with the bits represented by the input arms
(Figure 3c). This assembly has strength-1 glues on each of its arms. The shape of each gate
is dependent on the layout of the circuit since the output arm needs to reach to the next
gate. In the case a gate has a fan out (outputs to multiple gates) a gate assembly may have
multiple output arms which share arm position. We will refer to the final gate of the circuit
as the output gate. It does not contain an output arm but instead contains a flag tile to
represent an output of false, or no flag tile to represent an output of true which can be seen
in Figure 3d. The flag tile also contains a strength-1 glue on it’s south edge which allows for
the test tile to attach.

3.2 Second Stage - Computation
In the second stage there is a single bin where the circuit assembly is created. In this stage
the input assembly and the gate assemblies are mixed together to compute the encoded
circuit. The computation starts by attaching gates to the input assembly to begin to build

ESA 2021
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Figure 3 (a) Possible input bit assemblies for a 3 bit function. Solid lines between tiles indicate
a strength 2 glue between the tiles. Small boxes indicate a strength 1 glue. For each bit we select
either the left or the right assembly based on the value of the bit and add those tiles to our input
bin in the First Stage. Lighter tiles are not used. (b) The input assembly that is constructed in the
First Stage. The last input bit assembly contains an extra column of tiles that reaches to where the
output gate will be for cooperative attachment of the test tile. (c) 4 gate assemblies, one for each
possible input combination of a NAND gate. Glues are labeled to match the wires of the NAND
gate. (d) Output gates. True output gates contain a flag tile (white).

Input Arm

Output Arm 0

0

1

1

(a)

0 1

(b)

X

(c)

Figure 4 (a) Information being passed along a wire is represented by the position of a domino
called an arm. Output arms represent a signal of “1” of “0” by being in the left or right position,
respectively. Input arms read bit values and have complimentary arm placement to allow for
attachment. (b) Information is passed by attachment. Another assembly may attach if the arms
have matching glues (they represent the same wire) and they have complementary arms (represent
the same bit value). (c) In the final stage we add additional tiles to hide the information that was
passed along a wire.

the circuit assembly. Once both inputs to a gate are present on the circuit assembly, the
next gate assembly can cooperatively attach to the circuit assembly since each arm has an
attachment strength of 1 as seen in Figure 5a. In this stage we also add the test tile. If the
output of the circuit is true, the flag tile can attach as in Figure 5c. If the output is false,
the terminal circuit assembly can be seen in Figure 5b. The test assembly is not able to
attach to the circuit assembly in this case and will be terminal. We note that at this point it
is possible to read the output of the circuit by checking the terminal assemblies, however the
computation history can still be read so the covert computation is not complete and we need
an additional stage.

3.3 Third Stage - Clean Up
In the third stage we hide the computational history and get the output of the computation.
The output template (Full Circuit Assembly) is shown in Figure 5d, which is a circuit
assembly with all open spaces in its arm filled in (computation history is hidden) and the
additional assemblies attached. The additional assemblies are the Output Frame, which the
test tile may attach to, the test domino, which attaches to a circuit assembly but not to the
output frame, the blocking tile, which turns a test tile into a test domino, and all single tiles
used in the circuit assembly other than the test tile. The difference between the true and
false output templates is the inclusion/exclusion of the test tile within the Output Frame.
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(a) (b) (c) (d)

Figure 5 (a) A NAND gate assembly representing input: “10” and output: “1” attaching to
the input assembly in the Second Stage. (b) False Output Gates which do not contain a flag tile
can attach to the circuit if the output is false. This assembly is terminal in the second bin. (c)
True Output Gates have an additional flag tile (white) that allows for the test tile (red) to attach
cooperatively to the input assembly and the True Output Gate. (d) Single tiles fill in the spaces left
by the arms and the output frame attaches forming our target assembly. If there is a flag tile in the
output frame the output of this circuit is true. Otherwise, the output is false.

▶ Theorem 1. For any function f computed by an n-input boolean circuit with k gates, there
exists a 3-stage O(n2 + k2) bin, temperature-2 staged tile assembly computer that covertly
computes f with an output template size of O(n2 + k2).

Proof. Given any boolean circuit c, we create gate assemblies for each gate. Given the input
to this circuit we create input assemblies that encode the input. In the second stage input
assemblies start attaching together to form a circuit assembly. Once two inputs to a gate
have attached the gate assembly computing the output of that gate is able to attach. Two
gate assemblies cannot attach away from the circuit assembly. There only exist strength-1
glues on the outer edges of a gate assembly, thus a gate can only attach to another assembly
with a cooperative bind at each arm. This ensures gates only attach once both inputs are
present, and forces the circuit to assemble in the correct order. In the second stage we add in
the test tile. This test tile may only attach to a circuit assembly that has a flag tile attached.
The flag tile is only present on output gates that evaluate to true so the test tile may attach
if and only if the circuit evaluates to true. The test tile is terminal otherwise.

In the final bin we add in single tiles to hide the input to the circuit and the inputs to
each gate. As explained above each assembly input to this bin will grow into a full circuit
assembly. This full circuit assembly will grow into one of our two output frames. The output
frame is a full circuit assembly with the output frame attached. The output frame contains
a test tile for false and is empty for true. The terminal assembly of our staged system will
have a test tile in the output frame if and only if the circuit evaluated to false which is one
of our output frames. If the circuit evaluates to true the test tile will not be present.

This system uses a polynomial number of bins in the first and second stage and a single
bin the final stage. The number of bins in the first and second stage are bounded by the
size of our tile set since we need individual bins to store each tile so they do not combine
before the final stage. The max size of a gate assembly is O(max(n, k)) since in the worst
case a gate needs to stretch across the whole circuit. The same bound applies to input bit
assemblies. Therefore the size of the system (the number of tile types + the size of the mix
graph) is O(n2 + k2) ◀
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Figure 6 A high level overview of the staged system created from an instance of ∀∃SAT. (a)
An input assembly is created for every possible input to ϕ and is evaluated using the computation
technique from Section 3. (b) A test assembly is created for every possible input to X. (c) Test
assemblies can attach to a true circuit assembly with the same assignment to X. Blank test assemblies
attach to any circuit. (d) Terminal assemblies are passed to the next stage, including unmatched
test assemblies if any exist. (e) In this stage we add the domino and square assemblies, as well as
every other single tile of the target assembly. (f) Any unmatched test assembly will grow into an
incomplete target assembly since it cannot attach to the square assembly. These incomplete target
assemblies are terminal, meaning the UAV instance is false.

4 Unique Assembly Verification

We now utilize covert computation to show that the open problem of Unique Assembly
Verification in staged self assembly is PSPACE-complete. We start by showing UAV with
3 stages is Πp

2-hard. We then show how to extend this construction to show that general
staged UAV is PSPACE-complete. With some adjustments the same concept is used to show
that when limiting the system to n stages, the problem of UAV is Πp

n−1-hard.

▶ Problem 2 (Staged Unique Assembly Verification). Given a staged system Γ and an assembly
A, does Γ uniquely assemble A?

4.1 3-stage UAV is Πp
2-hard

We modify the covert computation construction to provide a reduction from ∀∃SAT. Given an
instance of ∀∃SAT, we create a 3-stage temperature-2 staged system that uniquely produces
a target assembly iff the given instance of ∀∃SAT is true. The reduction uses the same
high-level idea as [16] and [3]. The process begins with the construction of an assembly for
every input to the ∀∃SAT formula. Circuit assemblies build from these inputs and are flagged
as true or false, while encoding a partial assignment through their geometry. Separate “test”
assemblies are constructed that also encode a partial assignment to the same variables, which
attach to true circuit assemblies with matching assignments. The systems uniquely assembles
a target assembly if for all test assemblies there exists a compatible true circuit assembly for
it to attach to. See Figure 6 for a visual overview of the created system.

▶ Problem 3 (∀∃SAT). Given an n-bit boolean formula ϕ(x1, x2...xn) with the inputs divided
into two sets X and Y , for every assignment to X, does there exist an assignment to Y such
that ϕ(X, Y ) = 1?
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Figure 7 (a) Input bit assemblies for variables in X with geometry on the left reflecting the bit
value. (b) An example initial circuit assembly for input x1 = 1, x2 = 0, x3 = 0. The geometry on
the left side of the assembly represents the assignment of X. (c) Separately built test bit assemblies
nondeterministically attach to build one test assembly for every assignment to variables in X. (d)
The blank test assembly is composed of the same base but has no protruding arms.

4.1.1 First Stage
Input and Gate Assemblies. In the first stage an input bit assembly for both assignments
to every variable x1, . . . , xn is built in its own bin (2n bins in total). Input bit assemblies
have the same structure as in the covert computation construction, except that input bit
assemblies representing bits in X also have a horizontal row of tiles on the left of the frame
that reflects the bit value. Figure 7a shows this modification to the input bit assemblies.
The bit assemblies representing variable xn no longer has additional tiles that attach to the
test tile used in section 3. The input bit assemblies representing variable x|X|+1 have an
additional 2 tiles attached, which are used to attach to the test assembly. Gate Assemblies
are built in the same way described in Section 3.

Test Assemblies. Similar to the input bit assemblies, two test bit assemblies are constructed
for every variable in X. A test bit assembly is a column of connected tiles, with a horizontal
row of 3 tiles extending to the right, the position of this row represents an assignment “0” or
“1”. An example test assembly building from separate test bit assemblies is shown in Figure
7c. A test assembly is composed of |X| test bit assemblies. Test assemblies have additional
geometry that allow them to attach to a circuit assembly.

4.1.2 Second Stage
In the second stage the input bit assemblies will attach together nondeterministically to form
2n unique input assemblies. The “1” and “0” input bit assembly exist for every variable, so
the nondeterministic nature of the model allows for the construction of an input assembly
for every possible input to the circuit. From this input assembly, computation will begin as
described in the covert section. There will exist a circuit assembly for each of the 2n possible
inputs, and each will be flagged as true or false, represented by the existence of a flag tile on
the output gate. We call a circuit assembly that contains the flag tile a true circuit assembly.

Test Assemblies. Test bit assemblies nondeterministically combine in this stage to create a
unique test assembly for every assignment to variables in X, with its assignment encoded
in its geometry. A test assembly can cooperatively bind to a true circuit assembly (with
the same assignment to X) by having glue strength with the output flag tile and the input
assembly (Figure 8b). A test assembly has its assignment encoded in its geometry in a
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Figure 8 (a) A test assembly (left) and a true circuit assembly that represent the same assignment
to variables in X (In this construction true assemblies contain the flag tile). (b) A test assembly
attaching to true circuit assembly with a matching assignment to X. (c) A test assembly that is
geometrically blocked from attaching to a true circuit assembly due to having a different assignment
to X. The red circled area shows the point of overlap.

complementary fashion to that of a circuit assembly. This ensures that a test assembly is
geometrically blocked from attaching to a circuit assembly that encodes a different assignment
to X (Figure 8c). If there are no true circuit assemblies with the assignment x to X, the
test assembly that represents that assignment of x will be terminal in the second stage. We
refer to these as unmatched test assemblies.

▶ Lemma 4. Let tx be the test assembly representing the assignment x to the variables in
X. tx is unmatched (terminal in the second stage) if and only if for all assignments y to the
variables in Y (ϕ(x, y) = 0).

Proof. True circuit assemblies are the only assemblies which have the necessary glue types
to attach to tx. The remaining question is whether a true circuit assembly exists which
represents a compatible assignment. tx can attach to any true circuit assembly with a
matching assignment to X, regardless of that circuit’s assignment to Y . It follows that
if there exists an assignment y to Y such that ϕ(x, y) = 1, then tx is not terminal. The
negation of which is ∀y(ϕ(x, y) = 0), then tx is terminal. ◀

4.1.3 Third Stage
The third stage utilizes a single bin that all assemblies are combined in. Nearly all single tiles
of the target assembly are added. Four single tiles are specifically excluded, and instead two
subassemblies are added in. This is done carefully to ensure the following property: every
assembly except unmatched test assemblies from the second stage will grow to the target
assembly. Our target assembly contains a circuit assembly attached to a test assembly with
every empty spot filled in. At the point where a test assembly attaches a the circuit assembly,
a domino assembly is attached completing the target assembly as seen in Figure 9a.

▶ Lemma 5. Let A be the set of initial assemblies in the sole bin in the third stage. For all
assemblies a ∈ A, a will grow to the target assembly iff a is not an unmatched test assembly.

Proof. All individual tiles of the target assembly are added into the last stage, with the
exception of four withheld tiles: the two tiles where the test assembly and input assembly
meet, and the two tiles below that (tiles A, B, C, D in Fig. 9a). Instead of these four tiles,
two assemblies are added that we refer to as the square and domino (Fig. 9b). These two
assemblies perform the function of allowing every initial assembly besides unmatched test
assemblies to grow into the target assembly. True circuit assemblies with test assemblies
attached will have their empty spaces filled by single tiles, and the domino assembly will
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Figure 9 (a) An example target assembly. The area boxed in red shows where the test assembly
meets the input assembly (A, B), and the adjacent domino (C, D). The four tile types A, B, C, D

are not added in individually at the third stage. (b) The two additional assemblies that are added
in at the third stage, composed of the same four tile types. (c) The square assembly is geometrically
blocked from attaching to an assembly that grew from an unmatched test assembly, as they both
contain tile A.

attach. Unused gates will grow to a near-complete circuit, attach to the square assembly, and
then continue to grow to the target assembly. True and False Circuit Assemblies with blank
test assemblies attached already contain the four withheld tiles, so will grow to the target by
attaching to all necessary single tiles. Unmatched test assemblies that did not attach to a
true circuit assembly can grow to a near complete target assembly, however, it will never
acquire tile B (Fig. 9a), as it could only achieve this by attaching to the square assembly.
They both contain tile A, making it geometrically blocked from doing so (Fig. 9c). ◀

▶ Theorem 6. UAV in the Staged Assembly Model with three stages is Πp
2-hard with τ = 2.

Proof. Given an instance of ∀∃SAT, the reduction provides an instance of a 3-stage
temperature-2 UAV instance which is true if and only if the instance of ∀∃SAT is true.

If the instance of ∀∃SAT is true, then for all assignments x to X, there exists an assignment
y to Y with ϕ(x, y) = 1. By Lemma 4, this implies there will be no unmatched test assemblies.
By Lemma 5, every assembly that is not an unmatched test assembly or grown from an
unmatched test assembly will grow into the target assembly in the third stage. Thus, the
system uniquely produces the target assembly. If the ∀∃SAT instance is false, then there
exists an assignment x to X, s.t. for all assignments y to Y , ϕ(x, y) = 0. By Lemma 4, a
test assembly representing assignment x would be unmatched, and by Lemma 5, unable to
grow into the target assembly. Thus, this UAV instance is false. ◀

4.2 Staged UAV is PSPACE-hard
In this section, we explain at a high level how the reduction is extended to reduce from
TQBF with n quantifiers over nvariables to temperature-2 O(n)-stage UAV, showing that
Staged UAV is PSPACE-Hard.

▶ Problem 7 (TQBF ). Given a boolean formula ϕ with n variables x1, . . . , xn, is it true
that ∀x1∃x2 . . . ∀xn(ϕ(x1, . . . , xn) = 1)?

We utilize the same technique used in section 4.1 which reduced from ∀∃SAT, a special
case of TQBF limited to only 2 quantifiers, but adapt the technique to work with a QBF
with n quantifiers ∀x1∃x2 . . . ∀xn(ϕ(x1, . . . , xn) = 1). In the 3rd stage, instead of adding
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Figure 10 An example mix graph for an instance of TQBF with 4 variables. (a) Test bit
assemblies combine into T2 test assemblies. Circuit assemblies evaluate every input. (b) T2 test
assemblies attach to compatible (matching partial assignment) true circuits. Any unmatched T2

assemblies are passed to the next stage. (c) T3 test assemblies are added in and attach to compatible
T2 test assemblies. (d) Any unmatched T3 assemblies are passed to the next stage. (e) T4 test
assemblies are added and attach to compatible T3 test assemblies. (f) The existence of an unmatched
T4 assembly directly corresponds to the truth of the TQBF instance.

in single tiles to “clean up”, we add in a second set of test assemblies that represent an
assignment with one less variable in the next stage and are complementary in their geometry.
These new test assemblies then attach to previous test assemblies that were terminal in
the previous stage with matching partial assignments. This process computes an additional
quantifier. We can then repeat this process of adding in complementary sets of test assemblies
for the number of quantifiers required. In the final stage, if a test assembly from the final
set couldn’t find a complementary test assembly to attach to, the instance of TQBF is false,
and that test assembly is prevented from growing to the target assembly. This allows the
truth of instance of staged UAV to correspond to the truth of the QBF. See Figure 10 for a
depiction of the mix graph. We now show how in a certain stage the existence of a terminal
test assembly relates to the truth of a statement about the boolean formula.

In total the system will have n + 1 stages, and n − 1 sets of test assemblies will be added
(denoted T2, . . . , Tn). The set Ts will be mixed in at stage s. The first set T2 represents an
assignment to x1, . . . , xn−1, and each consecutive set represents one less variable than the
set before it, i.e., a test assembly ts ∈ Ts represents a partial assignment to x1, . . . , xn−s−1.
The sets alternate between type L and R, which correlates to the direction the arms face
(Compare T3 and T4 in Figure 10). We build all these sets of test assemblies using the same
method in the first stage, and pass them along through “helper” bins until they are needed.

▶ Lemma 8. Let TERM(A, b) ⇐⇒ (Assembly A is terminal in bin b). Let a be
the number of variables the test assemblies in Ts represent (a = n − s + 1). Let
ts(x1, . . . , xa) be the test assembly ts ∈ TS that represents partial assignment x1, . . . , xa.
In the staged system SP created from an instance of TQBF P over n variables: ∀s ∈
{1, . . . , n}(TERM(ts(x1, . . . , xa), bs) ⇐⇒ ∀xa+1∃xa+2, . . . , Qxn(ϕ(x1, . . . , xn) = y)). If s

is even, y = 0 and Q = ∀, and y = 1, Q = ∃ otherwise.

▶ Lemma 9. In the staged system SP created from an instance of TQBF P over n variables,
in bin bn+1 in stage n + 1, let A be the set of initial assemblies in bn+1. For all a ∈ A, a

will grow to the target assembly if and only if a is not an unmatched test assembly tn ∈ Tn.
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▶ Theorem 10. Unique Assembly Verification in the Staged Assembly Model is PSPACE-
complete with τ = 2.

Proof. Given an instance of TQBF P over n variables/quantifiers, the reduction provides
an instance of n + 1-stage τ = 2 UAV that is true if and only if P is true. If P is true,
then in stage n + 1, every producible assembly grows into the target assembly. Since n is
always even, by Lemma 8, for a bin bn in stage n, an assembly tn ∈ Tn representing an
assignment x1 is terminal in bin bn if ∀x2∃x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 0). If P is true, then
the statement ∀x1∃x2∀x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 1) is true, and therefore no unmatched
tn ∈ Tn will be passed into bn+1. By Lemma 9, every initial assembly in bn+1 that is not
some tn ∈ Tn grows into the target assembly. Therefore, the target assembly is uniquely
assembled if the instance of TQBF is true. If P is false, then there exists an assignment to
x1 such that ∀x2∃x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 0). By Lemma 8, some test assembly tn ∈ Tn

will be terminal and passed into bin bn+1. By Lemma 9, any tn ∈ Tn will not grow into the
target assembly. Thus, the instance of staged UAV is false. ◀

4.3 n-Stage Hardness
We now show how the reduction can be used to show hardness for n-stage UAV. We reduce
from the boolean satisfiability problem for Πp

n, which is a quantified boolean formula with n

quantifiers (starting with universal) and n − 1 alternations. We show an instance of Πp
n-SAT

can be reduced to n + 1-stage τ = 3 UAV.

▶ Problem 11 (Πp
n − SAT ). Given a boolean formula ϕ with variables partitioned into n

sets X1, . . . , Xn, is it true that ∀X1∃X2 . . . QnXn(ϕ(X1, . . . , Xn)).

▶ Theorem 12. For all n > 1, UAV in the Staged Assembly Model with n stages is Πp
n−1-hard

with τ = 2.

Proof. The system functions nearly identically to the previous reduction. However, if n

is odd, the output gate assemblies will now contain the flag tile if they represent a false
output, rather than true. Each consecutive test assembly added now represents one less set
of variables, rather than just one less variable.

If n is even, the system acts in the way previously described. If n is odd, then by Lemma 8
any tn ∈ Tn representing an assignment to X1 is terminal if ∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) =
1). However, since we modified the output assemblies to contain the flag tile if they represent
a false output, they are now terminal if the statement is true for the negation of ϕ. Therefore
any tn representing X1 is terminal if and only if ∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) = 0). In
bin bn+1 all assemblies besides any tn grow to the target assembly in the same way. ◀

4.4 UAV Membership
In this section, we improve on previous work and show that an n-stage UAV problem is in
Πp

n+1. We use a similar method as [16], by defining three subproblems that are solved as
subroutines of a UAV algorithm. However, these subproblems differ from previous work as
we make some assumptions about our input. We first define bounded bins and systems, then
define the three subproblems, and show their complexity. However, due to space constraints,
the proofs have been omitted.

▶ Definition 13 (Bounded). Given a bin b = (S, τ) in a staged system where S is the set of
initial assemblies and τ is the temperature. Let Pb be the set of producible assemblies in bin
b. The bin is bounded by an integer k ∈ Z+ if for each a ∈ Pb, |a| ≤ k. A staged system is
bounded if all bins are bounded by some k.

ESA 2021



23:16 Covert Computation in Staged Self-Assembly

Table 2 Complexity of these problems in 1 stage (2HAM) and in s stages.

Stages UAV BPROD BTERM BBIN
1 Πp

1 Σp
0 Πp

1 Πp
1

s Πp
s+1 Σp

s Πp
s Πp

s

Algorithm 1 Staged Unique Assembly Verification Membership Algorithm.

Data: Given a staged system Γ with n stages, and an Assembly A.
Result: Does Γ uniquely assemble A and is Γ bounded?
for each stage s′ starting with s′ = 1 do

for each bin b in stage s′ do
if Not BBINs′(Γ, |A|, b′) then reject;

for each bin b in stage n do
if Not BPRODn(Γ, |A|, b, A) then reject;
if Not BTERMn(Γ, |A|, b, A) then reject;

Nondeterministically select an assembly B with |B| ≤ |A|;
for each bin b′ in stage n do

if BPRODn(Γ, |A|, b′, B) then
if BTERMn(Γ, |A|, b′, B) then reject;

accept;

▶ Problem 14 (Bounded Producibility (BPRODs)). Given a bounded staged system Γ, an
integer k (described in unary), a bin b in stage s bounded by k, and an assembly A, is A

producible in b?

▶ Problem 15 (Bounded Terminal Assembly with producibility promise (BTERMs)). Given a
bounded staged system Γ, an integer k (described in unary), a bin b in stage s bounded by k,
and an assembly A ∈ Pb, is A terminal in b?

▶ Problem 16 (Bounded Bin (BBINs)). Given a staged system Γ, a bin b in stage s, an
integer k (described in unary), assuming all bins in stages before s are bounded by k, is b

bounded by k?

▶ Lemma 17. For a bin b in stage s of a staged self-assembly system,
the Bounded Producibility problem is in Σp

s,
the Bounded Terminal Assembly problem with producibility promise is in Πp

s, and
the Bounded Bin problem is in Πp

s

4.5 UAVn Membership
We now present a co-nondeterministic algorithm using oracles for the previous problems to
solve UAV. For clarity, we use an alternate but equivalent definition of UAV. We provide
Algorithm 1 that uses oracles to solve the subproblems presented above.

▶ Problem 18 (Staged Unique Assembly Verification). Given a staged tile-assembly system Γ
and an assembly A, is Γ bounded by |A|, and for each bin in the last stage, is A the only
terminal assembly?

▶ Theorem 19. The n-stage Unique Assembly Verification problem in the staged assembly
model is in Πp

n+1.
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5 Conclusion

In this paper we answered an open problem from [16] by showing the Unique Assembly
Verification problem in the Staged Self-Assembly Model is PSPACE-complete. To show this,
we utilized a construction capable of covert computation and extended it to show Πp

2-hardness
of UAV with three stages. We then extended this reduction to show PSPACE-completeness.
This reduction is also used to show Πp

s−1-hardness with s stages.
Several important directions for future work remain open. We use three stages to perform

covert computation. Is the 2HAM alone capable of covert computation? If not, what is the
lower bound on the number of stages needed? If so, can the construction be used to solve
the open problem of UAV in that model? This might also mean fewer stages are needed for
our results in the staged model. The two known hardness results for 2HAM utilize either
one step into the third dimension or a variable temperature. Perhaps stronger results in the
staged assembly model can be obtained with one of these variants.
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