
Experimental Comparison of PC-Trees and
PQ-Trees
Simon D. Fink #

Faculty of Informatics and Mathematics, Universität Passau, Germany

Matthias Pfretzschner #

Faculty of Informatics and Mathematics, Universität Passau, Germany

Ignaz Rutter #

Faculty of Informatics and Mathematics, Universität Passau, Germany

Abstract
PQ-trees and PC-trees are data structures that represent sets of linear and circular orders, respectively,
subject to constraints that specific subsets of elements have to be consecutive. While equivalent to
each other, PC-trees are conceptually much simpler than PQ-trees; updating a PC-tree so that a set
of elements becomes consecutive requires only a single operation, whereas PQ-trees use an update
procedure that is described in terms of nine transformation templates that have to be recursively
matched and applied.

Despite these theoretical advantages, to date no practical PC-tree implementation is available.
This might be due to the original description by Hsu and McConnell [14] in some places only sketching
the details of the implementation. In this paper, we describe two alternative implementations of PC-
trees. For the first one, we follow the approach by Hsu and McConnell, filling in the necessary details
and also proposing improvements on the original algorithm. For the second one, we use a different
technique for efficiently representing the tree using a Union-Find data structure. In an extensive
experimental evaluation we compare our implementations to a variety of other implementations of
PQ-trees that are available on the web as part of academic and other software libraries. Our results
show that both PC-tree implementations beat their closest fully correct competitor, the PQ-tree
implementation from the OGDF library [6, 15], by a factor of 2 to 4, showing that PC-trees are
not only conceptually simpler but also fast in practice. Moreover, we find the Union-Find-based
implementation, while having a slightly worse asymptotic runtime, to be twice as fast as the one
based on the description by Hsu and McConnell.

2012 ACM Subject Classification Mathematics of computing → Permutations and combinations;
Mathematics of computing → Trees; Mathematics of computing → Graph algorithms

Keywords and phrases PQ-Tree, PC-Tree, circular consecutive ones, implementation, experimental
evaluation

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.43

Related Version Full Version: https://arxiv.org/abs/2106.14805

Supplementary Material Software (Source Code): https://github.com/N-Coder/pc-tree/
archived at swh:1:dir:00616576c1a16938cc5c376685086c7c2c368f7d

Funding Work partially supported by DFG-grant Ru-1903/3-1.
Simon D. Fink: DFG-grant Ru-1903/3-1.
Matthias Pfretzschner : DFG-grant Ru-1903/3-1.
Ignaz Rutter : DFG-grant Ru-1903/3-1.

1 Introduction

PQ-trees represent linear orders of a ground set subject to constraints that require specific
subsets of elements to be consecutive. Similarly, PC-trees do the same for circular orders
subject to consecutivity constraints. PQ-trees were developed by Booth and Lueker [3] to

© Simon D. Fink, Matthias Pfretzschner, and Ignaz Rutter;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 43; pp. 43:1–43:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:finksim@fim.uni-passau.de
https://orcid.org/0000-0002-2754-1195
mailto:pfretzschner@fim.uni-passau.de
https://orcid.org/0000-0002-5378-1694
mailto:rutter@fim.uni-passau.de
https://orcid.org/0000-0002-3794-4406
https://doi.org/10.4230/LIPIcs.ESA.2021.43
https://arxiv.org/abs/2106.14805
https://github.com/N-Coder/pc-tree/
https://archive.softwareheritage.org/swh:1:dir:00616576c1a16938cc5c376685086c7c2c368f7d;origin=https://github.com/N-Coder/pc-tree;visit=swh:1:snp:a16b4b47a72e5ff5a778a899cbae0dfeecf875a1;anchor=swh:1:rev:b4a0cc05d98bb9530286ddf6b96cba606334254b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Experimental Comparison of PC-Trees and PQ-Trees

solve the consecutive ones problem, which asks whether the columns of a Boolean matrix
can be permuted such that the 1s in each row are consecutive. PC-trees are a more recent
generalization introduced by Shih and Hsu [16] to solve the circular consecutive ones problem,
where the 1s in each row only have to be circularly consecutive.

Though PQ-trees represent linear orders and PC-trees represent circular orders, Haeupler
and Tarjan [10] show that in fact PC-trees and PQ-trees are equivalent, i.e., one can use one
of them to implement the other without affecting the asymptotic running time. The main
difference between PQ-trees and PC-trees lies in the update procedure. The update procedure
takes as input a PQ-tree (a PC-tree) T and a subset U of its leaves and produces a new PQ-
tree (PC-tree) T ′ that represents exactly the linear orders (circular orders) represented by T

where the leaves in U appear consecutively. The update procedure for PC-trees consists only
of a single operation that is applied independently of the structure of the tree. In contrast,
the update of the PQ-tree is described in terms of a set of nine template transformations
that have to be recursively matched and applied.

PQ-trees have numerous applications, e.g., in planarity testing [3, 16], recognition of
interval graphs [3] and genome sequencing [1]. Nevertheless, PC-trees have been adopted
more widely, e.g., for constrained planarity testing problems [2, 5] due to their simpler update
procedure. Despite their wide applications and frequent use in theoretical algorithms, few
PQ-tree implementations and even fewer PC-tree implementations are available. Table 1
shows an overview of all PC/PQ-tree implementations that we are aware of, though not all
of them are working.

In this paper we describe the first correct and generic implementations of PC-trees.
Section 2 contains an overview of the update procedure for applying a new restriction to a
PC-tree. In Section 3, we describe the main challenge when implementing PC-trees and how
our two implementations take different approaches at solving it. In Section 4, we present an
extensive experimental evaluation, where we compare the performance of our implementations
with the implementations of PC-trees and PQ-trees from Table 1. Our experiments show
that, concerning running time, PC-trees following Hsu and McConnell’s original approach
beat their closest competitor, the PQ-tree implementation from the OGDF library [6] by
roughly a factor 2. Our second implementation using Union-Find is another 50% faster than
this first one, thus beating the OGDF implementation by a factor of up to 4.

2 The PC-tree

A PC-tree T is a tree without degree-2 vertices whose inner nodes are partitioned into P-nodes
and C-nodes. Edges incident to C-nodes have a circular order that is fixed up to reversal,
whereas edges incident to P-nodes can be reordered arbitrarily. Traversing the tree according
to fixed orders around the inner nodes determines a circular ordering of the leaves L of the
tree. Any circular permutation of L that can be obtained from T after arbitrarily reordering
the edges around P-nodes and reversing orders around C-nodes is a valid permutation of L.
In this way a PC-tree represents a set of circular permutations of L.

When applying a restriction R ⊆ L to T , we seek a new tree that represents exactly the
valid permutations of L where the leaves in R appear consecutively. We call a restriction
impossible if there is no valid permutation of L where the leaves in R are consecutive. Thus,
restriction R is possible if and only if the edges incident to P-nodes can be rearranged
and orders of edges incident to C-nodes can be reversed in such a way that all leaves in R

are consecutive. Updating a PC-tree to enforce the new restriction can thus be done by
identifying and adapting the nodes that decide about the consecutivity of the elements of R

and then changing the tree to ensure that this consecutivity can no longer be broken.

S. D. Fink, M. Pfretzschner, and I. Rutter 43:3

1

2

3

45
6

7

8

9

10

11
12 13

14

15

1

2

3

65
9

7

8

4

10

11
12 15

14

13

t1

t2

t1

t2

→

(a)

1

2

3

65
9

7

8

4

10

11
12 15

14

13

c

(b)

Figure 1 (a) Two equivalent PC-Trees with their nodes colored according to the restriction
{4, 8, 10, 11, 12, 15}. C-nodes are represented by big double circles and the P-nodes are represented
by small circles. The white nodes represent empty nodes, the black nodes represent full nodes and
the gray nodes represent partial nodes. The thick edges represent the terminal path with terminal
nodes t1 and t2. As the restriction is possible, all full leaves of the tree on the left can be made
consecutive, as shown on the right. Furthermore all nodes that must be modified lie on a path.
(b) Updated PC-tree with new central C-node c.

Let a leaf x ∈ L be full if x ∈ R and empty otherwise. We call an edge terminal if the
two subtrees separated by the edge both contain at least one empty and at least one full leaf.
Exactly the endpoints of all terminal edges need to be “synchronized” to ensure that all full
leaves are consecutive. Hsu and McConnell [14, 13] show that R is possible if and only if the
terminal edges form a path and all nodes of this path can be flipped so that all full leaves
are on one side and all empty leaves are on the other. This path is called the terminal path,
the two nodes at the ends of the terminal path are the terminal nodes. Observe that each
node in T that is adjacent to two subtrees of which one only contains full leaves and the
other contains only empty leaves is contained in the terminal path. Figure 1a illustrates the
terminal path.

When updating T in order to apply the restriction, every node on the terminal path is
split into two nodes, one of which holds all edges to neighbors of the original node whose
subtree has only full leaves, the other holds all edges to empty neighbors, while terminal
edges are deleted. A new central C-node c is created that is adjacent to all the split nodes in
such a way that it preserves the order of the neighbors around the terminal path. Contracting
all edges to the split C-nodes incident to c and contracting all nodes with degree two results
in the updated tree that represents the new restriction [14, 13]. Figure 1 shows an example
of this update, while Figure 2 details changes made to the terminal path.

It remains to efficiently find the terminal edges, and thus the subtrees with mixed full
and empty leaves. To do so, Hsu and McConnell first choose an arbitrary node of the tree
as root. They also assign labels to the inner nodes of the tree, marking an inner node (and
conceptually the subtree below it) partial if at least one of its neighbors (i.e. children or
parent) is full, full if all its neighbors except one (which usually is the parent) are full, and
empty otherwise. Then, an edge is terminal if and only if it lies on a path between two partial
nodes [14, 13]. Assigning the labels and subsequently finding the terminal edges can be done
by two bottom-up traversals of the tree. We summarize these steps in the following, more
fine-granular description of Hsu and McConnell’s algorithm for updating the PC-tree [13,
Algorithm 32.2]:

ESA 2021

43:4 Experimental Comparison of PC-Trees and PQ-Trees

c c

Figure 2 Left: The terminal path with all full subtrees shown in black on top and all empty
subtrees shown in white on the bottom. Middle: The updated PC-tree, where all terminal edges
were deleted, all nodes on the terminal were split in a full and empty half and all new nodes were
connected to a new C-node c. Right: The PC-Tree after contracting all new C-nodes and all degree-2
P-nodes into c.

Algorithm for Applying Restrictions. To add a new restriction R to a PC-tree T :
1. Label all partial and full nodes by searching the tree bottom-up from all full leaves.
2. Find the terminal path by walking the tree upwards from all partial nodes in parallel.
3. Perform flips of C-nodes and modify the cyclic order of edges incident to P-nodes so that

all full leaves lie on one side of the path.
4. Split each node on the path into two nodes, one incident to all edges to full leaves and

one incident to all edges to empty leaves.
5. Delete the edges of the path and replace them with a new C-node c, adjacent to all split

nodes, whose cyclic order preserves the order of the nodes on this path.
6. Contract all edges from c to adjacent C-nodes, and contract any node that has only two

neighbors.

3 Our Implementations

The main challenge posed to the data structure for representing the PC-tree is that, in
step 6, it needs to be able to merge arbitrarily large C-nodes in constant time for the overall
algorithm to run in linear time. This means that, whenever C-nodes are merged, updating
the pointer to a persistent C-node object on every incident edge would be too expensive.
Hsu and McConnell (see [13, Definition 32.1]) solve this problem by using C-nodes that,
instead of having a permanent node object, are only represented by the doubly-linked list
of their incident half-edges, which we call arcs. This complicates various details of the
implementation, like finding the parent pointer of a C-node, which are only superficially
covered in the initial work of Hsu and McConnell [14]. These issues are in part remedied
by the so called block-spanning pointers introduced in the later published book chapter [13],
which are related to the pointer borrowing strategy introduced by Booth and Lueker [3].
These block-spanning pointers link the first and last arc of a consecutive block of full arcs (i.e.
the arcs to full neighbors) around a C-node and can be accompanied by temporary C-node
objects. Whenever a neighbor of a C-node becomes full, either a new block is created for the
corresponding arc of the C-node, an adjacent block grows by one arc, or the two blocks that
now became adjacent are merged.

Using this data structure, Hsu and McConnell show that the addition of a single new
restriction R takes O(p + |R|) time, where p is the length of the terminal path, and that
applying restrictions R1, . . . , Rk takes Θ(|L| +

∑k
i=1 |Ri|) time [14, 13]. Especially for steps 1

and 2, they only sketch the details of the implementation, making it hard to directly put

S. D. Fink, M. Pfretzschner, and I. Rutter 43:5

it into practice. In the full version, we fill in the necessary details for these steps and also
refine their runtime analysis, showing that step 1 can be done in O(|R|) time and step 2 can
be done in O(p) time. Using the original procedures by Hsu and McConnell, steps 3 and 4
can be done in O(|R|) time and steps 5 and 6 can be done in O(p) time.

For our first implementation, which we call HsuPC, we directly implemented these steps
in C++, using the data structure without permanent C-node objects as described by Hsu
and McConnell. During the evaluation, we realized that traversals of the tree are expensive.
This is plausible, as they involve a lot of pointer-dereferencing to memory segments that
are not necessarily close-by, leading to cache misses. To avoid additional traversals for
clean-up purposes, we store information that is valid only during the update procedure with
a timestamp. Furthermore, we found that keeping separate objects for arcs and nodes and
the steps needed to work around the missing C-node objects pose a non-negligible overhead.

To remove this overhead, we created a second version of our implementation, which we call
UFPC, using a Union-Find tree for representing C-node objects: Every C-node is represented
by an entry in the Union-Find tree and every incident child edge stores a reference to this
entry. Whenever two C-nodes are merged, we apply union to both entries and only keep
the object of the entry that survives. This leads to every lookup of a parent C-node object
taking amortized O(α(|L|)) time, where α is the inverse Ackermann function. Although
this makes the overall runtime super-linear, the experimental evaluation following in the
next section shows that this actually improves the performance in practice. As a second
change, the UFPC no longer requires separate arc and node objects, allowing us to use a
doubly-linked tree consisting entirely of nodes that store pointers to their parent node, left
and right sibling node, and first and last child node. Edges are represented implicitly by the
child node whose parent is the other end of the edge. Note that of the five stored pointers, a
lookup in the Union-Find data structure is only needed for resolving the parent of a node.

Our algorithmic improvements and differences of both implementations are described in
more detail in the full version. We use the Union-Find data structure from the OGDF [6] and
plan to merge our UFPC implementation into the OGDF. Furthermore, both implementations
should also be usable stand-alone with a custom Union-Find implementation. The source
code for both implementations, our evaluation harness and all test data are available on
GitHub (see Table 1).

4 Evaluation

In this section, we experimentally evaluate our PC-tree implementations by comparing the
running time for applying a restriction with that of various PQ- and PC-tree implementations
that are publicly available. In the following we describe our method for generating test cases,
our experimental setup and report our results.

4.1 Test Data Generation
To generate PQ-trees and restrictions on them, we make use of the planarity test by Booth
and Lueker [3], one of the initial applications of PQ-trees. This test incrementally processes
vertices one by one according to an st-ordering. Running the planarity test on a graph with n

vertices applies n − 1 restrictions to PQ-trees of various sizes. Since not all implementations
provide the additional modification operations necessary to implement the planarity test, we
rather export, for each step of the planarity test, the current PQ-tree and the restriction
that is applied to it as one instance of our test set. We note that the use of st-orderings
ensures that the instances do not require the ability of the PC-tree to represent circular
permutations, making them good test cases for comparing PC-trees and PQ-trees.

ESA 2021

43:6 Experimental Comparison of PC-Trees and PQ-Trees

(a) (b)

Figure 3 Distribution of tree and restriction size for the data sets (a) SER-POS and (b) SER-IMP.
Please note the different color scales. The SER-POS instances that are left of the black line are too
small and filtered out.

In this way, we create one test set SER-POS consisting of only PQ-trees with possible
restrictions by exporting the instances from running the planarity test on a randomly
generated biconnected planar graph for each vertex count n from 1000 to 20, 000 in steps
of 1000 and each edge count m ∈ {2n, 3n − 6}. To avoid clutter, to remedy the tendency
of the planarity test to produce restrictions with very few leaves, and to avoid bias from
trivial optimizations such as filtering trivial restrictions with |R| ∈ {1, |L| − 1, |L|}, which is
present in some of the implementations, we filter test instances where |R| lies outside the
interval [5, |L| − 2]. Altogether, this test set contains 199, 831 instances, whose distribution
with regards to tree and restriction size is shown in Figure 3a.

To guard against overly permissive implementations, we also create a small test set
SER-IMP of impossible restrictions. It is generated in the same way, by adding randomly
chosen edges to the graphs from above until they become non-planar. In this case the
planarity test fails with an impossible restriction at some point; we include these 3, 800
impossible restrictions in the set, see Figure 3b.

As most of the available implementations have no simple means to store and load a
PQ-/PC-tree, we serialize each test instance as a set of restrictions that create the tree,
together with the additional new restriction. When running a test case, we then first apply all
the restrictions to reobtain the tree, and then measure the time to apply the new restriction
from the test case. The prefix SER- in the name of both sets emphasizes this serialization.

To be able to conduct a more detailed comparison of the most promising implementations,
we also generate a third test set with much larger instances. As deserializing a PC- or PQ-tree
is very time-consuming, we directly use the respective implementations in the planarity test
by Booth and Lueker [3], thus calling the set DIR-PLAN. We generated 10 random planar
graphs with n vertices and m edges for each n ranging from 100, 000 to 1, 000, 000 in steps of
100, 000 and each m ∈ {2n, 3n − 6}, yielding 200 graphs in total. The planarity test then
yields one possible restriction per node. As we only want to test big restrictions, we filter out
restrictions with less than 25 full leaves, resulting in DIR-PLAN containing 564, 300 instances.

S. D. Fink, M. Pfretzschner, and I. Rutter 43:7
Ta

bl
e

1
Im

pl
em

en
ta

ti
on

s
co

ns
id

er
ed

fo
r

th
e

ev
al

ua
ti

on
.

Im
pl

em
en

ta
ti

on
s

th
at

ar
e

en
ti

re
ly

un
us

ab
le

as
th

ey
ar

e
in

co
m

pl
et

e
or

cr
as

h/
pr

od
uc

e
in

co
rr

ec
t

re
su

lts
on

al
m

os
t

al
li

np
ut

s
(m

ar
ke

d
w

ith
−

)
an

d
th

os
e

w
he

re
no

st
an

d-
al

on
e

PC
-/

PQ
-t

re
e

im
pl

em
en

ta
tio

n
co

ul
d

be
ex

tr
ac

te
d

(m
ar

ke
d

w
ith

n.
a.

)
co

ul
d

no
t

be
ev

al
ua

te
d.

C
or

re
ct

im
pl

em
en

ta
tio

ns
ar

e
m

ar
ke

d
w

ith
✓

an
d

im
pl

em
en

ta
tio

ns
th

at
ar

e
fu

nc
tio

na
l,

bu
t

do
no

t
al

w
ay

s
pr

od
uc

e
co

rr
ec

t
re

su
lts

ar
e

m
ar

ke
d

w
ith

✗
.

T
he

se
tw

o
ca

te
go

rie
s

ar
e

in
cl

ud
ed

in
ou

r
ex

pe
rim

en
ta

le
va

lu
at

io
n.

T
he

la
st

co
lu

m
n

sh
ow

s
ho

w
m

an
y

of
20

3,
63

0
re

st
ric

tio
ns

in
th

e
se

ts
SE

R-
PO

S
an

d
SE

R-
IM

P
fa

ile
d.

N
am

e
T

yp
e

C
on

te
xt

L
an

gu
ag

e
C

or
re

ct
E

rr
or

s
U

R
L

H
su

P
C

P
C

-T
re

e
ou

r
im

pl
.,

ba
se

d
on

[1
3]

C
+

+
✓

0
ht

tp
s:

//
gi

th
ub

.c
om

/N
-C

od
er

/p
c-

tr
ee

/t
re

e/
Hs

uP
CS

ub
mo

du
le

U
FP

C
P

C
-T

re
e

ou
r

im
pl

.
us

in
g

U
ni

on
-F

in
d

C
+

+
✓

0
ht

tp
s:

//
gi

th
ub

.c
om

/N
-C

od
er

/p
c-

tr
ee

Lu
k&

Zh
ou

P
C

-T
re

e
st

ud
en

t
co

ur
se

pr
oj

ec
t

C
+

+
−

−
ht

tp
s:

//
gi

th
ub

.c
om

/k
wm

ic
ha

el
lu

k/
pc

-t
re

e
H

su
[1

2]
P

C
-T

re
e

pl
an

ar
ity

te
st

pr
ot

ot
yp

e
C

+
+

n.
a.

−
ht

tp
:/

/q
a.

ii
s.

si
ni

ca
.e

du
.t

w/
gr

ap
ht

he
or

y
N

om
a

[4
]

P
C

-T
re

e
pl

an
ar

ity
te

st
ev

al
ua

tio
n

C
+

+
n.

a.
−

ht
tp

s:
//

ww
w.

im
e.

us
p.

br
/~

no
ma

/s
h

O
G

D
F

[1
5]

P
Q

-T
re

e
pl

an
ar

ity
te

st
in

g
C

+
+

✓
0

ht
tp

s:
//

og
df

.g
it

hu
b.

io
G

re
ga

bl
e

P
Q

-T
re

e
bi

cl
us

te
rin

g
C

+
+

✓
0

ht
tp

s:
//

gr
eg

ab
le

.c
om

/2
00

8/
11

/
pq

-t
re

e-
al

go
ri

th
m.

ht
ml

B
iV

oC
[9

]
P

Q
-T

re
e

au
to

m
at

ic
la

yo
ut

of
bi

cl
us

te
rs

C
+

+
✗

71
ht

tp
s:

//
bi

oi
nf

or
ma

ti
cs

.c
s.

vt
.e

du
/~

mu
ra

li
/

pa
pe

rs
/B

iV
oC

R
ei

sl
e

P
Q

-T
re

e
st

ud
en

t
pr

oj
ec

t
C

+
+

✗
23

6
ht

tp
s:

//
gi

th
ub

.c
om

/c
re

is
le

/p
q-

tr
ee

s
G

ra
ph

Se
t

[8
]

P
Q

-T
re

e
vi

su
al

gr
ap

h
ed

ito
r

C
+

+
✗

58
0

ht
tp

:/
/g

ra
ph

se
t.

cs
.a

ri
zo

na
.e

du
Za

ne
tt

i[
17

]
P

Q
R

-T
re

e1
ex

te
ns

io
n

of
P

Q
-T

re
es

Ja
va

✗
45

4
ht

tp
s:

//
gi

th
ub

.c
om

/j
pp

za
ne

tt
i/

PQ
RT

re
e

C
pp

Za
ne

tt
i

P
Q

R
-T

re
e1

ou
r

C
+

+
co

nv
er

si
on

of
Za

ne
tt

i
C

+
+

✗
45

4
ht

tp
s:

//
gi

th
ub

.c
om

/N
-C

od
er

/p
c-

tr
ee

#
in

st
al

la
ti

on
JG

ra
ph

E
d

[1
1]

P
Q

-T
re

e
vi

su
al

gr
ap

h
ed

ito
r

Ja
va

✗
11

ht
tp

s:
//

ww
w3

.c
s.

st
on

yb
ro

ok
.e

du
/~

al
go

ri
th

/
im

pl
em

en
t/

jg
ra

ph
ed

/i
mp

le
me

nt
.s

ht
ml

G
Te

a
[7

]
P

Q
-T

re
e

vi
su

al
gr

ap
h

th
eo

ry
to

ol
Ja

va
−

−
ht

tp
s:

//
gi

th
ub

.c
om

/r
os

ta
m/

GT
ea

Tr
yA

lg
o

P
Q

-T
re

e
co

ns
ec

ut
iv

e-
on

es
te

st
in

g
P

yt
ho

n
−

−
ht

tp
s:

//
tr

ya
lg

o.
or

g/
en

/d
at

as
tr

uc
tu

re
s/

20
17

/1
2/

15
/p

q-
tr

ee
s

Sa
ge

M
at

h
P

Q
-T

re
e

in
te

rv
al

gr
ap

h
de

te
ct

io
n

P
yt

ho
n

✓
0

ht
tp

s:
//

do
c.

sa
ge

ma
th

.o
rg

/h
tm

l/
en

/
re

fe
re

nc
e/

gr
ap

hs
/s

ag
e/

gr
ap

hs
/p

q_
tr

ee
s.

ht
ml

1
PQ

R
-T

re
es

ar
e

a
va

ria
nt

of
PQ

-T
re

es
th

at
ca

n
al

so
re

pr
es

en
t

im
po

ss
ib

le
re

st
ric

tio
ns

,r
ep

la
ci

ng
an

y
no

de
th

at
w

ou
ld

m
ak

e
a

re
st

ric
tio

n
im

po
ss

ib
le

by
an

R
-n

od
e

(a
ga

in
al

lo
w

in
g

ar
bi

tr
ar

y
pe

rm
ut

at
io

n)
.

To
m

ak
e

th
e

im
pl

em
en

ta
tio

ns
co

m
pa

ra
bl

e,
w

e
ab

or
t

ea
rly

w
he

ne
ve

r
an

im
po

ss
ib

le
re

st
ric

tio
n

is
de

te
ct

ed
an

d
an

R
-n

od
e

w
ou

ld
be

ge
ne

ra
te

d.

ESA 2021

https://github.com/N-Coder/pc-tree/tree/HsuPCSubmodule
https://github.com/N-Coder/pc-tree/tree/HsuPCSubmodule
https://github.com/N-Coder/pc-tree
https://github.com/kwmichaelluk/pc-tree
http://qa.iis.sinica.edu.tw/graphtheory
https://www.ime.usp.br/~noma/sh
https://ogdf.github.io
https://gregable.com/2008/11/pq-tree-algorithm.html
https://gregable.com/2008/11/pq-tree-algorithm.html
https://bioinformatics.cs.vt.edu/~murali/papers/BiVoC
https://bioinformatics.cs.vt.edu/~murali/papers/BiVoC
https://github.com/creisle/pq-trees
http://graphset.cs.arizona.edu
https://github.com/jppzanetti/PQRTree
https://github.com/N-Coder/pc-tree#installation
https://github.com/N-Coder/pc-tree#installation
https://www3.cs.stonybrook.edu/~algorith/implement/jgraphed/implement.shtml
https://www3.cs.stonybrook.edu/~algorith/implement/jgraphed/implement.shtml
https://github.com/rostam/GTea
https://tryalgo.org/en/data structures/2017/12/15/pq-trees
https://tryalgo.org/en/data structures/2017/12/15/pq-trees
https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/pq_trees.html
https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/pq_trees.html

43:8 Experimental Comparison of PC-Trees and PQ-Trees

4.2 Experimental Setup
Table 1 gives an overview of all implementations we are aware of, although not all implemen-
tations could be considered for the evaluation.

The three existing implementations of PC-trees we found are incomplete and unusable
(Luk&Zhou) or tightly intertwined with a planarity test in such a way that we were not
able to extract a generic implementation of PC-trees (Hsu, Noma). We further exclude two
PQ-tree implementations as they either crash or produce incorrect results on almost all
inputs (GTea) or have an excessively poor running time (TryAlgo). Among the remaining
PQ-tree implementations only three correctly handle all our test cases (OGDF, Gregable,
SageMath). Several other implementations have smaller correctness issues: After applying
a fix to prevent segmentation faults in a large number of cases for BiVoC, the remaining
implementations crash (BiVoC, GraphSet, Zanetti) and/or produce incorrect results (Reisle,
JGraphEd, Zanetti) on a small fraction of our tests; compare the last column of Table 1. We
nevertheless include them in our evaluation.

We changed the data structure responsible for mapping the input to the leaves of the
tree for BiVoC and Gregable from std::map to std::vector to make them competitive.
Moreover, BiVoC, Gregable and GraphSet use a rather expensive cleanup step that has to
be executed after each update operation. As this could probably largely be avoided by the
use of timestamps, we do not include the cleanup time in their reported running times. For
SageMath the initial implementation turned out to be quadratic, which we improved to linear
by removing unnecessary recursion. As Zanetti turned out to be a close competitor to our
implementation in terms of running time, we converted the original Java implementation
to C++ to allow a fair comparison. This decreased the runtime by one third while still
producing the exact same results. All other non-C++ implementations were much slower or
had other issues, making a direct comparison of their running times within the same language
environment as our implementations unnecessary. Further details on the implementations
can be found in the full version.

Each experiment was run on a single core of a Intel Xeon E5-2690v2 CPU (3.00 GHz,
10 Cores) with 64 GiB of RAM, running Linux Kernel version 4.19. Implementations in
C++ were compiled with GCC 8.3.0 and optimization -O3 -march=native -mtune=native.
Java implementations were executed on OpenJDK 64-Bit Server VM 11.0.9.1 and Python
implementations were run with CPython 3.7.3. For the Java implementations we ran each
experiment several times, only measuring the last one to remove startup-effects and to
facilitate optimization by the JIT compiler. We used OGDF version 2020.02 (Catalpa) to
generate the test graphs.

4.3 Results
Our experiments turn out that SageMath, even with the improvements mentioned above,
is on average 30 to 100 times slower than all other implementations.2 For the sake of
readability, we scale our plots to focus on the other implementations. As the main application
of PC-/PQ-trees is applying possible restrictions, we first evaluate on the dataset SER-POS.
Figure 4 shows the runtime for individual restrictions based on the size of the restriction (i.e.
the number of full leaves) and the overall size of the tree. Figure 4a clearly shows that for all
implementations the runtime is linear in the size of the restriction. Figure 4b suggests that

2 Part of this might be due to the overhead of running the code with CPython. As the following analysis
shows, SageMath also has other issues, allowing us to safely exclude it.

S. D. Fink, M. Pfretzschner, and I. Rutter 43:9

(a) (b)

Figure 4 Runtime for SER-POS restrictions depending on (a) restriction size and (b) tree size.

(a) (b)

Figure 5 (a) A heatmap showing the average runtime of SER-POS restrictions, depending on
both the size of the restriction and the size of the tree. The color scale is based on the maximum
runtime of each respective implementation. (b) Runtime for SER-POS restrictions depending on the
terminal path length.

(a) (b)

Figure 6 Runtime for SER-IMP restrictions depending on (a) restriction size and (b) tree size for
all implementations.

ESA 2021

43:10 Experimental Comparison of PC-Trees and PQ-Trees

the runtime of Reisle and GraphSet does not solely depend on the restriction size, but also
on the size of the tree. To verify this, we created for each implementation a heatmap that
indicates the average runtime depending on both the tree size and the restriction size, shown
in Figure 5a. The diagonal pattern shown by SageMath, Reisle, and GraphSet confirms
the dependency on the tree size. All other implementations exhibit vertical stripes, which
shows that their runtime does not depend on the tree size. Finally, Figure 5b shows the
runtime compared to the terminal path length. As expected, all implementations show a
linear dependency on the terminal path length, with comparable results to Figure 4a.

Figure 6 shows the performance on the dataset SER-IMP. The performance is comparable
with that on SER-POS. Noteworthy is that Zanetti performs quite a bit worse, which is due to
its implementation not being able to detect failure during a labeling step. It always performs
updates until a so-called R-node would be generated. Altogether, the data from SER-POS
and SER-IMP shows that the implementations GraphSet, OGDF, Zanetti, HsuPC and UFPC
are clearly superior to the others. In the following, we conduct a more detailed comparison
of these implementations by integrating them into a planarity test and running them on
much larger instances, i.e., the data set DIR-PLAN. In addition to an update method, this
requires a method for replacing the now-consecutive leaves by a P-node with a given number
of child leaves. Adding the necessary functionality would be a major effort for most of the
implementations, which is why we only adapted the most efficient implementations to run
this set. We also exclude GraphSet from this experiment; the fact that it scales linearly
with the tree size causes the planarity test to run in quadratic time. Figure 7 again shows
the runtime of individual restrictions depending on the restriction size. Curiously, Zanetti
produces incorrect results for nearly all graphs with m = 2n in Figure 7a. As the initial tests
already showed, the implementation has multiple flaws; one major issue is already described
in an issue on GitHub and another independent error is described in the full version. Both
plots show that HsuPC is more than twice as fast as OGDF and that UFPC is again close to
two times faster than HsuPC. Zanetti’s runtime is roughly the same as that of HsuPC, while
converting its Java code to C++ brings the runtime down close to that of UFPC.

As OGDF is the slowest, we use it as baseline to calculate the speedup of the other
implementations. Figure 8a shows that the runtime improvement for all three implementations
is the smallest for small restrictions, quickly increasing to the final values of roughly 0.4 times
the runtime of OGDF for HsuPC and 0.25 for both CppZanetti and UFPC. Figure 8b shows
the speedup depending on the length of the terminal path. For very short terminal paths
(which are common in our datasets), both implementations are again close; but already for
slightly longer terminal paths UFPC quickly speeds up to being roughly 20% faster than
CppZanetti. This might be because creating the central node in step 5 is more complicated
for UFPC, as the data structure without edge objects does not allow arbitrarily adding and
removing edges (which is easier for HsuPC) and allowing circular restrictions forces UFPC
to also pay attention to various special cases (which are not necessary for PQ-trees).

5 Conclusion

In this paper we have presented the first fully generic and correct implementations of PC-trees.
One implementation follows the original description of Hsu and McConnell [14, 13], which
contains several subtle mistakes in the description of the labeling and the computation
of the terminal path. This may be the reason why no fully generic implementation has
been available so far. A corrected version that also includes several small simplifications is
described in the full version of this paper.

S. D. Fink, M. Pfretzschner, and I. Rutter 43:11

(a) (b)

Figure 7 Runtime of individual restrictions of DIR-PLAN with OGDF, Zanetti and our implemen-
tations for graphs of size (a) m = 2n and (b) m = 3n − 6.

(a) (b)

Figure 8 Median performance increase depending on (a) the size of the restriction and (b) the
terminal path length, with OGDF as baseline. The shaded areas show the interquartile range.

Furthermore, we provided a second, alternative implementation, using Union-Find to
replace many of the complications of Hsu and McConnell’s original approach. Technically,
this increases the runtime to O((|R| + p) · α(|L|)), where α is the inverse Ackerman function.
In contrast, our evaluations show that the Union-Find-based approach is even faster in
practice, despite the worse asymptotic runtime.

Our experimental evaluation with a variety of other implementations reveals that surpris-
ingly few of them seem to be fully correct. Only three other implementation have correctly
handled all our test cases. The fastest of them is the PQ-tree implementation of OGDF, which
our Union-Find-based PC-tree implementation beats by roughly a factor of 4. Interestingly,
the Java implementation of PQR-trees by Zanetti achieves a similar speedup once ported
to C++. However, Zanetti’s Java implementation is far from correct and it is hard to say
whether it is possible to fix it without compromising its performance.

Altogether, our results show that PC-trees are not only conceptually simpler than PQ-
trees but also perform well in practice, especially when combined with Union-Find. To
put the speedup of factor 4 into context, we compared the OGDF implementations of the

ESA 2021

43:12 Experimental Comparison of PC-Trees and PQ-Trees

planarity test by Booth and Lueker and the one by Boyer and Myrvold on our graph instances.
The Boyer and Myrvold implementation was roughly 40% faster than the one based on Booth
and Lueker’s algorithm. Replacing the PQ-trees, which are the core part of the latter, by
an implementation that is 4 time faster, might make this planarity test run faster than the
one by Boyer and Myrvold. We leave a detailed evaluation, also taking into account the
embedding generation, which our PC-tree based planarity test not yet provides, for future
work.

References
1 S. Benzer. On the topology of the genetic fine structure. Proceedings of the National Academy

of Sciences, 45(11):1607–1620, November 1959. doi:10.1073/pnas.45.11.1607.
2 Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to constrained

embedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46, 2016. doi:10.1145/2738054.
3 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval

graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

4 John M. Boyer, Cristina G. Fernandes, Alexandre Noma, and José C. de Pina. Lempel, Even,
and Cederbaum planarity method. In Experimental and Efficient Algorithms, pages 129–144.
Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-24838-5_10.

5 Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Philip N.
Klein, editor, Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’17), pages 2000–2011. SIAM, 2017. doi:10.1137/1.9781611974782.130.

6 Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten Klein,
and Petra Mutzel. The Open Graph Drawing Framework (OGDF). In R. Tamassia, editor,
Handbook of Graph Drawing and Visualization, chapter 17. CRC Press, 2014.

7 Alex William Cregten and Hannes Kristján Hannesson. Implementation of a planarity
testing method using PQ-trees. Technical report, Reykjavík University, 2017. URL: https:
//skemman.is/bitstream/1946/29618/1/Planarity_testing_with_PQTrees.pdf.

8 Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov. Graph simultane-
ous embedding tool, GraphSET. In Graph Drawing, pages 169–180. Springer Berlin Heidelberg,
2009. doi:10.1007/978-3-642-00219-9_17.

9 Gregory A. Grothaus, Adeel Mufti, and T. M. Murali. Automatic layout and visualization of
biclusters. Algorithms for Molecular Biology, 1(1):15, 2006. doi:10.1186/1748-7188-1-15.

10 Bernhard Haeupler and Robert E. Tarjan. Planarity algorithms via PQ-trees (extended
abstract). Electronic Notes in Discrete Mathematics, 31:143–149, August 2008. doi:10.1016/
j.endm.2008.06.029.

11 Jon Harris. JGraphEd – a java graph editor and graph drawing framework. Technical report,
Carleton University, School of Computer Science, Comp 5901 Directed Studies, 2004. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.5066&rank=1.

12 Wen-Lian Hsu. An efficient implementation of the PC-tree algorithm of Shih & Hsu’s planarity
test. Technical report, Institute of Information Science, Academia Sinica, 2003. URL:
http://iasl.iis.sinica.edu.tw/webpdf/paper-2003-PLANAR_implementation.pdf.

13 Wen-Lian Hsu and Ross McConnell. PQ trees, PC trees, and planar graphs. In Dinesh P.
Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Applications, chapter 32.
Chapman and Hall/CRC, January 2004. doi:10.1201/9781420035179.

14 Wen-Lian Hsu and Ross M. McConnell. PC trees and circular-ones arrangements. Theoretical
Computer Science, 296(1):99–116, March 2003. doi:10.1016/s0304-3975(02)00435-8.

15 Sebastian Leipert. PQ-trees, an implementation as template class in C++. Technical re-
port, University of Cologne, 1997. URL: http://e-archive.informatik.uni-koeln.de/id/
eprint/259.

https://doi.org/10.1073/pnas.45.11.1607
https://doi.org/10.1145/2738054
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1007/978-3-540-24838-5_10
https://doi.org/10.1137/1.9781611974782.130
https://skemman.is/bitstream/1946/29618/1/Planarity_testing_with_PQTrees.pdf
https://skemman.is/bitstream/1946/29618/1/Planarity_testing_with_PQTrees.pdf
https://doi.org/10.1007/978-3-642-00219-9_17
https://doi.org/10.1186/1748-7188-1-15
https://doi.org/10.1016/j.endm.2008.06.029
https://doi.org/10.1016/j.endm.2008.06.029
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.5066&rank=1
http://iasl.iis.sinica.edu.tw/webpdf/paper-2003-PLANAR_implementation.pdf
https://doi.org/10.1201/9781420035179
https://doi.org/10.1016/s0304-3975(02)00435-8
http://e-archive.informatik.uni-koeln.de/id/eprint/259
http://e-archive.informatik.uni-koeln.de/id/eprint/259

S. D. Fink, M. Pfretzschner, and I. Rutter 43:13

16 Wei-Kuan Shih and Wen-Lian Hsu. A new planarity test. Theoretical Computer Science,
223(1-2):179–191, July 1999. doi:10.1016/s0304-3975(98)00120-0.

17 João Paulo Pereira Zanetti. Complexidade de construção de árvores PQR. Master’s thesis,
Universidade Estadual de Campinas, Instituto de Computação, 2012. URL: http://bdtd.
ibict.br/vufind/Record/CAMP_0b551865d78ef032289f17f95e3ccee7.

ESA 2021

https://doi.org/10.1016/s0304-3975(98)00120-0
http://bdtd.ibict.br/vufind/Record/CAMP_0b551865d78ef032289f17f95e3ccee7
http://bdtd.ibict.br/vufind/Record/CAMP_0b551865d78ef032289f17f95e3ccee7

	1 Introduction
	2 The PC-tree
	3 Our Implementations
	4 Evaluation
	4.1 Test Data Generation
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion

