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Abstract
The problem of nearest-neighbor classification is a fundamental technique in machine-learning. Given
a training set P of n labeled points in Rd, and an approximation parameter 0 < ε ≤ 1

2 , any unlabeled
query point should be classified with the class of any of its ε-approximate nearest-neighbors in P .
Answering these queries efficiently has been the focus of extensive research, proposing techniques that
are mainly tailored towards resolving the more general problem of ε-approximate nearest-neighbor
search. While the latest can only hope to provide query time and space complexities dependent
on n, the problem of nearest-neighbor classification accepts other parameters more suitable to its
analysis. Such is the number kε of ε-border points, which describes the complexity of boundaries
between sets of points of different classes.

This paper presents a new data structure called Chromatic AVD. This is the first approach for
ε-approximate nearest-neighbor classification whose space and query time complexities are only
dependent on ε, kε and d, while being independent on both n and ∆, the spread of P .
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1 Introduction

Non-parametric classification is a fundamental technique in machine-learning. In this context,
we are given a training set P consisting of n points in a metric space (X , d), with domain
X and distance function d : X 2 → R+. Additionally, the training set is partitioned into a
finite set of classes C by associating each point p ∈ P with a label l(p), which indicates the
class to which it belongs. Given an unlabeled query point q ∈ X , the goal of a classifier is to
predict q’s label using the training set P .

The nearest-neighbor rule is among the best-known classification techniques [15]. It assigns
a query point the label of its closest point in P according to the defined metric. This technique
exhibits good classification accuracy both experimentally and theoretically [12, 13, 34], but it
is often criticized due to its high space and time complexities. Despite the advent of more
sophisticated techniques (e.g., support-vector machines [11] and deep neural networks [32]),
nearest-neighbor classification is still widely used in practice [9, 22,26], proving its value in
constructing resilient defense strategies against adversarial [27] and poisoning [29] attacks, as
well as in achieving interpretable machine-learning models [28,33].

As mentioned, the criticism towards nearest-neighbor classification lingers on the bases of
exceedingly high query times and space requirements. The standard approach to answering
these queries, even approximately, involves storing the entire training set P or at least a
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sufficiently large part of it. This implies that the time spent to answer such queries depends
to a large degree on the size and dimensionality of the training set of points stored, limiting
the use of nearest-neighbor classification on large-scale applications.

In this paper we explore efficient methods for approximate nearest-neighbor classification.
We are given the training set P and an approximation parameter 0 < ε ≤ 1

2 . The objective
is to construct a data structure so that given any query point q, it is possible to efficiently
classify q according to any valid ε-approximate nearest-neighbor in P . Throughout, we take
the domain X to be d-dimensional Euclidean space Rd, the distance function d to be the L2
norm, and we assume that the dimension d is a fixed constant, independent of n and ε.

1.1 Related Work
In the standard ε-approximate nearest-neighbor searching (ε-ANN), the objective is to
compute a point whose distance from the query point is within a factor of 1 + ε of the true
nearest neighbor. This problem, referred to as “standard ANN” throughout, has been widely
studied. In chromatic ε-ANN search the objective is to return just the class (or more visually,
the “color”) of any such point [6, 18]. We refer to this as ε-classification.

Clearly, chromatic ANN queries can be reduced to standard ANN queries. Hence,
most of the efficiency improvements in nearest-neighbor classification have arisen from
improvements to the standard ANN problem. While standard ANN has been well studied in
high-dimensional spaces (see, e.g., [1]), in constant-dimensional Euclidean space, the most
efficient data structures involve variants of the Approximate Voronoi Diagram (or AVD)
(see [3–5,23]). Arya et al. [6] proposed a data structure specifically tailored for ε-classification.
Unfortunately, this work was based on older technology, and its results are not competitive
when compared to the most recent advances on standard ANN search via AVDs.

All previous results have query and space complexities that depend on n, the total size of
the training set P . In many cases, a much smaller portion of the training set may suffice
to correctly ε-classify queries. Think of the boundaries between adjacent Voronoi cells of
points of different classes (see Figure 1a). The points that define these boundaries are known
as border points. Throughout, let k denote the number of such border points in P (clearly,
k ≤ n, and hopefully, k ≪ n). Furthermore, the notion of border points can be generalized
to the context of ε-classification (see Section 2 for a formal definition). Thus, denote kε as
the number of ε-border points, where k ≤ kε ≤ n. Ideally, we would like the query and space
complexities of answering chromatic ε-ANN queries to depend on kε instead of n.

In order to achieve this goal, previous research has focused on reducing the training set
P by selecting a subset R ⊆ P . Once R is computed, it is assumed that this subset will be
used to build a standard AVD for ε-classification. Research in this area is vast, but there
are two broad approaches, depending on the type and size of the computed subsets, and the
classification guarantees provided.

Heuristics: Most of the work has focused on proposing heuristics to compute smaller training
sets R ⊆ P . These are often known as condensation algorithms, and the literature on
these is extensive (see [25,35] for comprehensive surveys, and [2,7, 8, 21,24,30] for some
of the proposed algorithms). The most recent condensation algorithms [16,17,20] show
that it is possible to compute subsets of P of size O(k) in O(n2) time. However, when
AVDs are built from these subsets, the resulting data structures are likely to introduce
classification errors [19], especially for query points that should be easily ε-classified.
Thus, while often used in practice, these approaches do not guarantee that chromatic
ε-ANN queries are answered correctly.
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Coresets: Recent results propose a technique to compute a coreset for ε-classification [19].
A coreset R guarantees that every query point will be correctly classified when assigning
the class of the point of R returned by the AVD. That is, for any query q ∈ Rd, the
point of R returned by the AVD belongs to the same class as one of q’s ε-approximate
nearest-neighbors in P . Unfortunately, the size of the computed coreset can be as large
as O((k log ∆)/εd−1), where ∆ is the spread1 of P .

1.2 Contributions
From the previous section, we have seen that existing approaches for ε-classification achieve
only one of the following goals:

The size of the resulting data structure is dependent only on ε, kε (the number of ε-border
points) and d, while being independent from n and ∆.
It guarantees correct ε-classification for any query point.

The main result of this paper is an approach that achieves both goals. We propose a new
data structure built specifically to answer chromatic ε-ANN queries over the training set P ,
which we call a Chromatic AVD. Given any query point q ∈ Rd, this data structure returns
the class to be assigned to q, which matches the class of at least one of q’s ε-approximate
nearest-neighbors in P . More generally, our data structure returns a set of classes such that
there is an ε-approximate nearest-neighbor of q from each of these classes.

Therefore, the Chromatic AVD can be used to correctly ε-classify any query point. The
main result of this work is summarized in the following theorem, expressed in the form of a
space-time tradeoff based on a parameter γ.

▶ Theorem 1. Given a training set P of n labeled points in Rd, an error parameter 0 < ε ≤ 1
2 ,

and a separation parameter 2 ≤ γ ≤ 1
ε . Let kε be the number of ε-border points of P . There

exists a data structure for ε-classification, called Chromatic AVD, with:

Query time: O

(
log (kεγ) + 1

(εγ) d−1
2

)
Space: O

(
kεγd log 1

ε

)
.

Which can be constructed in time Õ
((

n + kε/(εγ) 3
2 (d−1)

)
γd log 1

ε

)
.

By setting γ to either of its extreme values, we obtain the following query times and
space complexities.

▶ Corollary 2. The separation parameter γ describes the tradeoffs between the query time
and space complexity of the Chromatic AVD. This yields the following results:

If γ = 2 −→ Query time: O
(

log kε + 1
ε

d−1
2

)
Space: O

(
kε log 1

ε

)
.

If γ = 1
ε

−→ Query time: O
(

log kε

ε

)
Space: O

(
kε

εd

)
.

The approach towards constructing this data structure is hybrid, combining a quadtree-
induced partitioning of space (leveraging similar techniques to the ones used for standard
AVDs), with the construction of coresets for only some cells of this partition. All other cells
can be discarded, and a new quadtree can be built with only the remaining cells. The final
size of the tree is bounded in terms of kε. This technique allows us to maintain coresets in
the most critical regions of space, and thus, avoiding the dependency on the spread of P .

1 The spread of a point set is defined to be the ratio between the largest and smallest pairwise distances.
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(a) Standard AVD [3–5,23]. (b) Chromatic AVD.

Figure 1 Examples of the space partitioning achieved by any standard AVD, compared to the
Chromatic AVD data structure proposed in this paper. Our approach subdivides the space around
the boundaries defined by the ε-border points, while ignoring other boundaries.

2 Preliminary Ideas and Intuition

Preliminaries. First, we need to introduce some preliminary definitions and notations that
are relevant to the results presented in the remaining of the paper. Given any point q ∈ Rd,
denote its nearest-neighbor as nn(q), and the distance between them by dnn(q) = d(q, nn(q)).

Additionally, let’s introduce a few concepts and related properties that will prove useful in
the construction of the Chromatic AVD. These are Well-Separated Pair Decompositions [10]
(WSDPs), Quadtrees [14,31], and Approximate Voronoi Diagrams [3–5,23] (AVDs).

Well-Separated Pair Decompositions: Given the point set P , and a separation factor σ > 2,
we say that two sets X, Y ⊆ P are well separated if they can be enclosed within two
disjoint balls of radius r, such that the distance between the centers of these balls is at
least σr. We say that X and Y form a dumbbell, where both sets are the heads of this
dumbbell. Consider the line segment that connects the centers of both balls, and let z

and ℓ be the center and length of this line segment, respectively (i.e., the center and the
length of the dumbbell). The following properties hold when σ > 4, for x ∈ X and y ∈ Y :

d(x, z) < ℓ ℓ < 2d(x, y) ℓ > d(x, y)/2.

Furthermore, a well-separated pair decomposition of P is defined as a set D = {(Xi, Yi)}i

where every Xi and Yi are well separated, and for every two distinct points p1, p2 ∈ P

there exists a unique pair P = (X, Y ) ∈ D such that p1 ∈ X and p2 ∈ Y , or vice-versa.
It is known how to construct a WSPD of P with O(σdn) pairs in O(n log n + σdn) time.

Quadtrees: These are tree data structures that provide a hierarchical partition of space. Each
node in this tree consists of a d-dimensional hypercube, where non-leaf nodes partition its
corresponding hypercube into 2d equal parts. The root of this tree corresponds to the [0, 1]d
hypercube. We will use a variant of this structure called a balanced box-decomposition
tree (BBD tree) [6]. Such data structure satisfies the following properties:
1. Given a point set P , such a tree can be built in O(n log n) time, having space O(n)

such that each leaf node contains at most one point of P .
2. Given a collection U of n quadtree boxes in [0, 1]d, such a tree can be built in O(n log n)

time, having O(n) nodes such that the subdivision induced by its leaf cells is a
refinement of the subdivision induced by the Quadtree boxes in U .

3. Given the trees from 1 or 2, it is possible to determine the leaf cell containing any
arbitrary query point q in O(log n) time.
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Approximate Voronoi Diagram: Generally, AVDs are quadtree-based data structures that
can be used to efficiently answer ANN queries. The partitioning of space induced by
this data structure is often generated from a WSPD of P . Additionally, every leaf cell
w of this quadtree has an associated set of ε-representatives Rw that has the following
property: for any query point q ∈ w, at least one point in Rw is one of q’s ε-approximate
nearest-neighbors in P .

New Ideas and Intuitions. Consider the space partitioning induced by a standard AVD, as
previously described. By construction, any leaf cell w of this partition has an associated set
of ε-representatives Rw. Evidently, for the purposes of ε-classification, the most important
information related to this leaf cell comes from the classes of the points in Rw, and not
necessarily the points themselves.

This leads to an initial approach to simplify an AVD. We distinguish between two types
of leaf cells, based on the points inside their corresponding ε-representative sets. Any leaf
cell w is said to be:

Resolved: If every point in Rw belongs to the same class.
Ambiguous: Otherwise, if at least two points in Rw belong to different classes.

Clearly, there is no need to store the set of ε-representatives of any resolved leaf cell, as
instead, we can simply mark the leaf cell w as resolved with the class that is shared by all
the points in Rw. This effectively reduces the space needed for such cells to be constant.

Furthermore, it seems that the bulk of the “work” needed to decide the class of a given
query point can be carried out by the ambiguous leaf cells, along with some groupings of
resolved leaf cells. The data structure presented in this paper, called Chromatic AVD, builds
upon this hypothesis.

Additionally, we formally define the set of ε-border points of the training set P . This
set, denoted as Kε, contains any point p ∈ P for which there exist some q ∈ Rd and p̄ ∈ P ,
such that p and p̄ are ε-approximate nearest-neighbors of q, and both belong to different
classes. Denote kε = |Kε| as the number of ε-border points of the training set P . Note that
Kε ⊆ Kε′ if and only if ε ≤ ε′. Additionally, note that K0 defines the set of (exact) border
points of P , where k = k0.

(a) (b)

Figure 2 Intuition to think that Kε (and not K0) is needed to ε-classify some query points.

This generalization of the definition of border points seems better suited to analyze the
problem of ε-classification, as illustrated in Figure 2. Figure 2b shows the ε-approximate
bisectors between the two closest and two farthest points (the first two belong to K0, while
the others belong to Kε but not K0). A hypothetical leaf cell w is sufficiently separated from
the only two exact border points, but intersects the ε-approximate bisectors between the

ESA 2021
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two farthest points. This implies that inside the cell w lie query points that can only be
ε-classified with one class, and others with the other class, forcing this cell to be ambiguous.
This suggests that K0 is insufficient to account for the necessary complexity of ε-classification.

3 Chromatic AVD Construction

In this section, we describe our method for constructing the proposed Chromatic AVD. The
following overview outlines the necessary steps followed to construct this data structure.

The Build step (Section 3.1): Consists of building an initial quadtree-based subdivision
of space, designed specifically to achieve the properties described in Lemma 3.
The Reduce step (Section 3.2): Seeks to identify the leaf cells of the initial subdivision
that are relevant for ε-classification, as well as those that can be ignored or simplified.
This process consists of the following substeps.

Computing the sets of ε-representatives for every leaf cell of the initial quadtree.
Based on these sets, marking the leaf cells as either ambiguous or resolved.
Selecting those leaf cells which are relevant for ε-classification.
Building a new quadtree-based subdivision using the previously selected leaf cells.

3.1 The Build Step
We begin by constructing the tree Tinit using similar methods as the ones used to construct
a standard AVD. Thus, the first step is to compute a well-separated pair decomposition D
of P using a constant separation factor of σ > 4. While the standard construction would
use all pairs in this decomposition, for the purpose of the Chromatic AVD, we filter D to
only keep bichromatic pairs. Denote D′ ⊆ D to be the set of bichromatic pairs in D, where a
pair P ∈ D is said to be bichromatic if and only if the dumbbell heads separate points of
different classes. Note that D′ can be computed similarly to D, using a simple modification
of the well-known algorithm for computing WSPDs [10] (the details are left to the reader).

Next, we compute an initial set of quadtree boxes U(P) for every pair in D′ as follows.
This construction depends on two constants c1 and c2 whose assignment will be described
later in this section. For 0 ≤ i ≤ ⌈log (c1 1/ε)⌉, we define bi(P) as the ball centered at z of
radius ri = 2iℓ. Thus, this set of balls involves radius values ranging from ℓ to Θ(ℓ/ε). For
each such ball bi(P), let Ui(P) be the set of quadtree boxes of size ri/(c2γ) that overlap the
ball. Let U(P) denote the union of all these boxes over all the O(log 1/ε) values of i.

After performing this process on every pair of the filtered decomposition D′, take the
union of all these boxes denoted as U =

⋃
P∈D′ U(P). Finally, build the tree Tinit from the set

of quadtree boxes U , leveraging property 2 of quadtrees described in Section 2. Additionally,
for each class i in the training set, build an auxiliary tree T i

aux from the point set Pi (i.e., the
points of P of that are labeled with class i), using property 1 of quadtrees. These auxiliary
trees will be used together with Tinit in order to build our final tree T , the Chromatic AVD.

While the standard AVD construction satisfies that all resulting leaf cells of the tree have
certain separation properties from the points of set P , the same is not true for tree Tinit.
However, the following result describes a relaxed notion of the separation properties, now
based on the classes of the points, which are achieved by Tinit.

▶ Lemma 3 (Chromatic Separation Properties). Given two separation parameters γ > 2 and
φ > 3, every leaf cell w of the tree Tinit satisfies at least one of the following separation
properties, where bw is the minimum enclosing ball of w:

(i) P ∩ γbw is empty (see Figure 3a), and hence bw is concentrically γ-separated from P .
(ii) The cell w can be resolved with the classes present inside P ∩ φbw (see Figure 3b).
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(a) No points inside γbw. (b) Leaf cell w can be resolved.

Figure 3 Basic separation properties achieved by during the construction of the Chromatic AVD.

Proof. Let w be any leaf cell of Tinit, with center cw and side length sw, where its (minimum)
enclosing ball bw has radius rw =

√
d/2 sw and shares the center cw. Additionally, let

xi ∈ Pi be a 1-approximate nearest-neighbor of cw among the points of P of class i. In other
words, for each class of points we use the auxiliary trees T i

aux to compute a 1-approximate
nearest-neighbor of cw. A few cases unfold from here:

The first case is rather simple. If 4γφbw ∩ {xi}i = ∅, knowing that the points xi are
1-approximate nearest-neighbors of cw, this implies that the ball 2γφbw is empty (i.e., we
know that 2γφbw ∩ P = ∅). Clearly, this means the the first separation property holds for w.

Consider the case when |4γφbw ∩ {xi}i| = 1, and let i be the class of the point that lies
inside 4γφbw. Following similar arguments to the previous case, this implies that only points
of class i could potentially lie inside of 2γφbw. Then, check if xi lies inside the smaller ball
expansion 2γbw. If not, we know that γbw is empty (i.e., γbw ∩ P = ∅), making the first
separation property hold for w. Otherwise, we know that 2γbw contains at least one point
(i.e., xi), and additionally we know that 2γbw is φ-separated from points of all other classes
but i (as 2γφbw only contains points of class i). Given that φ > 3, the nearest neighbor of
every query point inside 2γbw has class i. Therefore, w can be resolved with class i (namely,
Cw = {i}), satisfying the second separation property.

Lastly, it is possible that |4γφbw ∩ {xi}i| ≥ 2. However, it is possible to show that if this
is the case, it immediately implies that every point inside 4γφbw actually lies inside of some
ball b′

w which is β-separated from w (see Figure 5a), where β = 1/ε. The details of this part
of the proof are omitted, and left in the Appendix A, as the arguments are similar to the
ones described in [5]. However, proving this provides insights into how to set constants c1
and c2, where c1 ≥ 3(1 + ε) and c2 ≥ 20φ

√
d.

Finally, if |4γφbw ∩ {xi}i| ≥ 2, we know all points inside 4γφbw are β-separated from w.
We can now proceed similarly to the previous case, by checking if one of the computed 1-
approximate nearest-neighbors lies inside the ball 2γbw. If 2γbw ∩{xi}i = ∅ we know that γbw

is empty (i.e., γbw ∩P = ∅), making the first separation property hold for w. Otherwise, note
that b′

w is completely contained inside 2γ(1 + ε)bw. Given that φ > 3, it is possible to show
that for any query point in w, all points in b′

w are valid ε-approximate nearest neighbors. This
implies that we can resolve w with the class of any of the points inside of b′

w, thus satisfying
the second separation property. In particular, we mark w as resolved with every class present
in the inner cluster b′

w, namely, Cw = {l(p) | ∀ p ∈ b′
w ∩ P} = {i | xi ∈ 4γφbw}. ◀

ESA 2021
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3.2 The Reduce Step
From the initial partitioning as described in Lemma 3, every leaf cell w of Tinit is either
concentrically γ-separated from P (i.e., γbw ∩ P = ∅), or it is already marked as resolved.
For every leaf cell w in the first case, we will compute a set of ε-representatives by leveraging
the concentric ball lemma (see Lemma 5.1 in [5]). It states that there exists a set Rw of
ε-representatives for w of size O(1/(εγ) d−1

2 ), and provides a way to compute such set.
Instead of directly applying this result, we use it to compute a set of ε/3-representatives

for any leaf cell w that is yet unresolved. Essentially, this leads to the same asymptotic
upper-bound on the size of Rw, meaning that |Rw| = O(1/(εγ) d−1

2 ). Once Rw is computed,
we can proceed to mark w as either resolved or ambiguous as follows.

Procedure to Mark Leaf Cells. For every leaf cell w, this procedure marks w as either
resolved or ambiguous, following a few defined cases that unfold from the contents of the set
Rw of points selected as representatives for w. Let r−

w = ε (1−γ) rw/3.

1. If all the points in Rw belong to the same class.
For every point p ∈ Rw and class i ∈ C, compute a 1-approximate nearest-neighbor of p

among the points of Pi, denoted as the point xp,i. If d(p, xp,i) < r−
w , then add xp,i to Rw.

It is easy to show that xp,i would also be an ε-representative for w. Repeat this for every
point originally in Rw, and every class in the training set.
a. If any point xp,i was added to Rw, proceed with Case 2.
b. Otherwise, mark w as resolved with the class of the points in Rw. Namely, let i be the

class of every point in Rw, then Cw = {i}.
2. If Rw contains points of more than one class.

Before proceeding, we will do some basic pruning of the set Rw. For every class i, compute
a net among the points of Rw of class i, using a radius of r−

w to compute the net, and
replace the points of class i in Rw with the computed net. It is easy to see that the
remaining points of Rw are a set of ε-representatives of w, and that every two points in
Rw of the same class are at distance at least r−

w .
a. If the diameter of Rw is less than r−

w , it is easy to prove that all the points in Rw are
ε-representatives of any point inside bw. Therefore, w can be labeled as resolved with
the class of all of the points in Rw. That is, Cw = {l(p) | ∀ p ∈ Rw}.

b. If the diameter is greater than or equal to r−
w , w is marked as ambiguous.

Let A and R be the sets of ambiguous and resolved leaf cells of Tinit, respectively. We
will use some of these cells to build the Chromatic AVD, while ignoring the remaining cells.

Consider the set of resolved leaf cells R, we partition this set into two subsets Rb and Ri

(named boundary and interior resolved leaf cells, respectively). We say a resolved leaf cell w1
belongs to Rb, if and only if there exists another resolved leaf cell w2 adjacent to w1, such
that Cw2 \Cw1 ̸= ∅. Every other resolved leaf cell belongs to Ri (i.e., Ri = R \ Rb). Note
that both sets Rb and Ri can be identified by a simple traversal over the leaf cells of Tinit,
using linear time in the size of the tree2.

Finally, we build a new tree T from the set of ambiguous and boundary resolved leaf cells
A ∪ Rb. By well-known construction methods of quadtrees, as described in Section 2, the leaf
cells of T either belong to A ∪ Rb, or are “Steiner” leaf cells added during the construction
of T that cover the remainer of the space that is uncovered by A ∪ Rb.

2 Two leaf cells are adjacent if and only if a vertex of one of the cells “touches” the other cell. This implies
that the number of adjacency relations (i.e., edges in the implicit graph where the leaf cells are the
nodes) is O(2d m), where m is the number of leaf cells of the tree Tinit.
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▶ Lemma 4. For any leaf cell w in the tree T such that w ̸∈ A ∪ Rb, w must cover a space
that is also covered by a collection of leaf cells of Tinit, all of which are resolved with the same
set of classes Cw.

Proof. This becomes apparent from the construction of T . In the new tree T , consider
any leaf cell w of T that is not part of A ∪ Rb (i.e., a “Steiner” leaf cell added during the
construction of the tree). Now, recall that the leaf cells of both T and Tinit are a partitioning
of (the same) space, which means that we can define Ww = {w′ ∈ Tinit | w ∩ w′ ̸= ∅} as the
collection of leaf cells of Tinit that cover the same space covered by w.

Now, for any fixed w of T , it is easy to see that any two leaf cells w1, w2 ∈ Ww must be
resolved with the same set of classes. Otherwise, at least one of these two would be part of
the set Rb, which would be a contradiction to the fact that w is a “Steiner” leaf cell of T .
Therefore, any query inside w can be answered with the classes Cw = Cw1 = Cw2 , and this
can be determined during preprocessing by a single query on Tinit (e.g., finding the leaf cell
of Tinit that contains the center cw of w is sufficient to know the contents of Cw). ◀

This implies that after building tree T , and with some extra preprocessing to resolve the
“Steiner” leaf cells of the tree, we can use the resulting data structure to correctly answer
chromatic ε-approximate nearest-neighbor queries over the training set P . In other words,
T can be used to answer ε-classification queries over P . We call this data structure T the
Chromatic AVD.

▶ Lemma 5. The construction of T takes Õ
(
nγd log 1

ε

)
time.

Proof. Let’s analyze the total time needed to build our Chromatic AVD, namely the tree T ,
by analyzing the time required to perform each step of the construction.

Building Tinit has essentially the same complexity of building any standard AVD [3–5,23].
This means that constructing Tinit takes O(m log m) time, where m = nγd log 1

ε . Note
that during the construction, while computing the set of ε-representatives of each leaf
cell, each leaf cell can already be marked as either ambiguous or resolved.
Building the auxiliary trees T i

aux for every class i, takes O(n log n) time, as the number
of classes of P is considered to be a constant. Recall that because these trees are only
used to for 1-ANN queries, they only need to be standard Quadtrees, and not AVDs.
Identifying the set Rb requires a traversal over the leaf-level partitioning of the space,
which is linear in terms of the number of cells. Therefore, this step requires O(m) time.
Once the sets of ambiguous and boundary resolved leaf cells are identified, namely, the
sets A and Rb, the final tree T can be built. Roughly, this step takes O(m log m) time.
Finally, we must resolve the “Steiner” leaf cells of T , which can be done by a single query
over Tinit, each taking O(log m) time. Thus, this step takes O (m log m) total time.

All together, the total construction time is dominated by the first step. Therefore, the
time required to construct T is O(m log m) = Õ(m) = Õ

(
nγd log 1

ε

)
. ◀

4 Tree-size Analysis

4.1 Initial Size Bounds
Define the set of important leaf cells I of the tree Tinit as those leaf cells w for which there
exists two ε-border points inside ργbw for some constant ρ, such that the distance between
these points is lower-bounded by Ω(εγrw). Formally, we define this set as I = {w ∈ Tinit |
∃p1, p2 ∈ ργbw ∩ Kε, d(p1, p2) = Ω(εγrw)}.
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▶ Lemma 6. The number of important leaf cells of Tinit is |I| = O
(
kεγd log 1

ε

)
.

Proof. This proof follows from a charging argument on the set Kε of ε-border points of
P . More specifically, consider a well-separated pair decomposition D′′ of Kε with constant
separation factor of σ > 4, the charging scheme assigns every important leaf cell w ∈ I to a
pair of D′′. Recall that D′′ can generally be consider to have O(kε) pairs, where kε = |Kε|.
It is important to note that both Kε and D′′ need not be computed.

Given that w ∈ I, we know there exist two points p1, p2 ∈ ργbw ∩ Kε. Let P ∈ D′′ be the
pair of D′′ that contains both p1 and p2, each in one of its dumbbell heads. We then charge
w to the pair P . Denote z and ℓ to be the center and length of P , respectively, we know the
following. First, note that the distance from cw (the center of w) to z is d(cw, z) ≤ ργrw + ℓ.
Additionally, we know that ℓ ≥ d(p1, p2)/2 = Ω(εγrw) by the properties of WSPDs described
in Section 2. Therefore, this implies that the ratio d(cw, z)/ℓ = O(1/ε).

Finally, fix some pair P ∈ D′′ with center z and length ℓ, and consider all important leaf
cells according to their distance to z. For any value of i ∈ [0, 1, . . . , O(log 1/ε)], consider all
leaf cells that can charge P whose distance to z is between 2iℓ and 2i+1ℓ. From our previous
analysis, rw ≥ d(cw, z)/ργ ≥ 2iℓ/ργ. By a simple packing argument, the number of such leaf
cells is at most O(γd). Thus, a total of O(γd log 1/ε) cells can charge P. Note that no leaf
cell whose distance to z is Ω(ℓ/ε) can charge P , as it would contradict the fact that both p1
and p2 are separated by a distance of Ω(εγrw). Finally, the proof follows by knowing that
there are at most O(kε) pairs in D′′. ◀

▶ Lemma 7. Every ambiguous leaf cell of Tinit is important, namely A ⊆ I.

Proof. Consider any ambiguous leaf cell w ∈ A of the tree Tinit. Knowing that w is ambiguous
implies that there must exist some point q ∈ γ

2 bw for which two of the ε-representatives of w

are valid ε-approximate nearest neighbors for q, both points belong to different classes, and
the distance between them is Ω(εγrw). Formally, denote these points as p1, p2 ∈ P such that
l(p1) ̸= l(p2), d(p1, p2) ≥ ε (1−γ) rw/4, and d(q, p1), d(q, p2) ≤ (1+ε) dnn(q).

We will see now how to bound the distance from cw to any of these points as a constant
factor of rw (recall that rw =

√
d/2 sw). From the proof of Lemma 6.3 in [5], we know that

the ball c3γbw ∩P ̸= ∅, for some constant c3 ≥ 1+2c2/
√

d. In other words, dnn(cw) ≤ c3γ rw.
From this, we can say that dnn(q) ≤ ( 1

2 + c3)γrw. Applying the triangle inequality yields
that d(cw, p1) ≤ d(cw, q) + d(q, p1) ≤

( 1
2 + (1 + ε)( 1

2 + c3)
)

γ rw. Similarly, we can achieve
the same bound for d(cw, p2).

Therefore, both p1, p2 ∈ ργbw for sufficiently large constant ρ (i.e., ρ ≥ ε( 1
2 + c3) + c3 + 1).

Knowing also that d(p1, p2) = Ω(r−
w ) = Ω(εγrw) yields that the leaf cell w ∈ I. ◀

▶ Lemma 8. Every boundary resolved leaf cell of Tinit is important, namely Rb ⊆ I.

Proof. Let w1 ∈ Rb be any boundary resolved leaf cell of the tree Tinit, we know there exists
another leaf cell w2 ∈ Rb adjacent to w1, such that there exists some class i ∈ Cw2 \Cw1 . Let
bw1 and bw2 be the corresponding bounding balls of w1 and w2. By definition, any point
q on the boundary shared by w1 and w2 has at least one ε-representative from each cell,
namely some points p1 ∈ Rw1 and p2 ∈ Rw2 , where l(p1) ̸= i and l(p2) = i. Additionally, by
similar arguments to the ones described in Lemma 7, we know that both p1, p2 ∈ ργbw for
sufficiently large constant ρ.

Now, we proceed to prove that d(p1, p2) ≥ r−
w /2. First, note that if w1 was resolved by

the initial marking of leaf cells as described in Lemma 3, then p2 must lie outside of γbw. In
such cases, clearly d(p1, p2) ≥ r−

w /2. The remaining possibility is that w1 was resolved after
computing the set of representatives. From the described procedure, in Case 1, we know
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that if d(p1, p2) < r−
w /2, the point xp1,i (which is a 1-approximate nearest-neighbor of p1

among points in Pi) would hold that d(p1, xp1,i) < r−
w . Hence, xp1,i should have been added

to the set of representatives of w1, contradicting the assumption that w1 is resolved, or that
Cw1 does not contain i. All together, we have that d(p1, p2) = Ω(r−

w ) = Ω(εγrw). From the
definition of the set of important leaf cells, w ∈ I. ◀

Lemmas 7 and 8 imply that all the leaf cells used to build T belong to the set of important
leaf cells (i.e., A ∪ Rb ⊆ I), whose size is upper-bounded by Lemma 6. All together, and
leveraging construction methods of quadtrees (see Section 2), the size of T is proportional to
the total number of leaf cells used to build it, which we now know is O(kεγd log 1

ε ). However,
we also need to account for the set of ε-representatives stored for each ambiguous leaf cell,
leading to a worst-case upper-bound of O(kεγd log 1

ε · 1/(εγ) d−1
2 ) total space to store T .

4.2 Spatial Amortization
The previous result can be improved by applying a technique called spatial amortization,
described by Arya et al. [5]. That is, we can remove the extra O(1/(εγ) d−1

2 ) factor from the
analysis of the space requirements for T .

This will be twofold process, as in order to successfully apply spatial amortization to the
analysis of the data structure, we first need to further reduce the set of ε-representatives
of every ambiguous leaf cell in the tree. Actually, the new set will no longer be a set of
ε-representatives, but it will just be a weak ε-coreset for query points inside of each leaf cell.

▶ Lemma 9. The total space required to store the ambiguous leaf cells of T is O
(
kεγd log 1

ε

)
.

Consider any ambiguous leaf cell w of T , and in particular, consider the set Rw of
ε-representatives of w. By construction, Rw has the property that every point q ∈ bw has at
least one ε-approximate nearest-neighbor in the set Rw. However, note that the opposite is
not necessarily true, as not every p ∈ Rw is an ε-approximate nearest-neighbor of some point
in bw. Even worst, while the fact the w is ambiguous indicates that at least two points in Rw

belong to Kε, the remaining points of Rw might not, which in turn prevents the application
of a spatial amortization analysis. Overall, this suggests some of the points of Rw might not
be necessary to distinguish between the classes that change the classification of points inside
bw (see Figure 4a).

This can be resolved as follows. Suppose we have access to the Voronoi diagram of the
set of points Rw, and consider the boundaries between adjacent cells of this diagram. Any
boundary that separates two points of Rw of different classes, and that intersects bw, is
relevant to the classification any query point inside bw. Formally, we define the set R′

w ⊆ Rw

of border points of Rw as (see Figure 4b):

R′
w = {p ∈ Rw | ∃ q ∈ bw, p′ ∈ Rw such that l(p) ̸= l(p′) ∧ d(q, p) = d(q, p′)}

This new set R′
w has some useful properties. Note that for any query point q ∈ bw, its

(exact) nearest-neighbor in R′
w belongs to the same class as its (exact) nearest-neighbor in

Rw, which itself is an ε-approximate nearest-neighbor of q among the points of P . In other
words, R′

w is an ε-coreset for any query point in bw. This implies that we can replace the set
of ε-representatives of w with the set R′

w. Moreover, this means that by the definition of
ε-border points, R′

w ⊆ Kε. Note that we don’t need to compute the Voronoi diagram of Rw,
but instead just part of the 1-skeleton. While not immediately evident, the set R′

w can be
computed in time O(|Rw|3), by fixing every two pairs of Rw, and checking whether there
exists a point q ∈ bw with the desired properties. The later step can be solved using Linear
Programming via the lifting transform into a parabola in d + 1 Euclidean space.
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(a) Set of ε-representatives Rw. (b) Set of border points R′
w. (c) Relevant pairs of D′′.

Figure 4 The set Rw of ε-representatives of w can be reduced to the set R′
w. This later set is a

subset of Kε, and can be charged to a proportional number of relevant pairs of D′′.

Now, let’s proceed with the charging argument over the pairs of the same WSPD D′′

used in Lemma 6. Instead of only charging w to a single pair (as described in Lemma 7),
we charge every point stored in R′

w to a pair of D′′. Thus, consider the following procedure
to find a sufficient number of pairs to charge all the points in R′

w, which is derived from a
similar procedure proposed in [5]. See Figure 4c for an illustrative example.

1. Compute a net of R′
w using radius r−

w , and denote this subset R′′
w. Given that all the

points of R′
w that belong to the same class are already separated by a distance of at least

r−
w , we know that |R′′

w| = Θ(|R′
w|), hiding constants3 that depend exponentially on d.

2. Find the two of points of p1, p2 ∈ R′′
w with smallest pairwise distance, and consider the

pair of P ∈ D′′ that contains both points p1 and p2, each in one of its dumbbell heads.
Note that by having computed a net in the previous step, d(p1, p2) ≥ r−

w .
3. Delete one of the two points from R′′

w (without lost of generality, delete p1).
4. Charge every point of R′

w that is covered by p1 (i.e., whose distance to p1 is ≤ r−
w ) to the

pair P . By the arguments described in step 1 on the size of R′′
w, we know that P receives

a charge from O(1) points of R′
w.

5. Repeat steps 2-4 with the remaining points of R′′
w until the set is empty.

Evidently, the number of pairs found (and charged) equals |R′′
w| − 1. All together, we

have that the total space required to store all the ambiguous leaf cells is proportional to the
sum of charges to every pair of D′′. Using the same arguments as Lemma 6, this implies
that the total storage is O(kεγd log 1

ε ). This completes the proof of Theorem 1.
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A Proof Details

(a) (b)

Figure 5 It is possible that points of ≥ 2 classes lie inside of γφbw. However, this case can be
reduced to the two separation properties illustrated in Figure 3.

To finish the proof of Lemma 3, we shall proof the assumption that if |4γφbw ∩ {xi}i| ≥ 2,
then every point inside 4γφbw lies inside the ball b′

w which is β-separated from w.
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Proof. Let x, y ∈ 4γφbw be the two points of different classes inside the ball 4γφbw with
largest pairwise distance. Thus, it is easy to show that all the points inside 4γφbw lie inside
the two balls centered at x and y with radii equal to d(x, y), as shown in Figure 5b. By
definition of the (bichromatic) well-separated pair decomposition D′, there exists a pair
P ∈ D′ that contains x and y each in one of its dumbbells, with length ℓ and center z. Now,
we define the ball b′

w with center at z and radius r′
w = max (d(z, x), d(z, y)) + d(x, y). By

definition of P , we know that d(z, x), d(z, y) ≤ ℓ and d(x, y) ≤ 2ℓ, thus making r′
w ≤ 3ℓ. Let

L be the distance from w to z, we distinguish two cases based on the relationship between L

and ℓ:

L > c1βℓ. Consider the distance that separates the ball b′
w from the cell w.

d(w, b′
w) = L − r′

w > c1βℓ − r′
w ≥ (c1β/3 − 1) r′

w

Since β = 1/ε, for all sufficiently large constants c1 ≥ 3(1 + ε), the distance d(w, b′
w)

exceeds βr′
w which implies that b′

w is concentrically β-separated from w.
L ≤ c1βℓ. We will show that this case cannot occur, since otherwise the dumbbell P
would have caused w to be split, contradicting the assumption that it is a leaf cell of
Tinit. Since x, y, and w are all contained in the ball 4γφbw whose center lies within w, we
have both that d(x, w) ≤ 4γφrw, and ℓ < 2d(x, y) ≤ 2(8γφrw) = 16γφrw. Thus, by the
triangle inequality, we have:

L ≤ d(x, y) + d(x, w) < ℓ + 4γφrw < 16γφrw + 4γφrw = 20γφrw

Because L ≤ c1βℓ, it follows from our construction that there is at least one ball bi(P)
(with 0 ≤ i ≤ ⌈log c1β⌉) that overlaps w. Let b denote the smallest such ball, and
let r denote its radius. By the construction, we have that r ≤ max (ℓ, 2L). Since our
construction generates all quadtree boxes of size r/(c2γ) that overlap b, it follows that
sw ≤ r/(c2γ). Thus, we have:

rw = sw

√
d

2 ≤ r
√

d

2c2γ
≤ max (ℓ, 2L)

√
d

2c2γ
<

20γφrw

√
d

c2γ
= 20φrw

√
d

c2

Choosing c2 ≥ 20φ
√

d yields the desired contradiction.

This completes the proof of Lemma 3. ◀
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