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Abstract
Given a set A of n points in Rd with weight function w : A → R>0, the Fermat distance function is
φ(x) :=

∑
a∈A

w(a)∥x − a∥. A classic problem in facility location dating back to 1643, is to find the
Fermat point x∗, the point that minimizes the function φ. We consider the problem of computing
a point x̃

∗ that is an ε-approximation of x∗ in the sense that ∥x̃
∗ − x∗∥ < ε. The algorithmic

literature has so far used a different notion based on ε-approximation of the value φ(x∗). We devise a
certified subdivision algorithm for computing x̃

∗, enhanced by Newton operator techniques. We also
revisit the classic Weiszfeld-Kuhn iteration scheme for x∗, turning it into an ε-approximate Fermat
point algorithm. Our second problem is the certified construction of ε-isotopic approximations of
n-ellipses. These are the level sets φ−1(r) for r > φ(x∗) and d = 2. Finally, all our planar (d = 2)
algorithms are implemented in order to experimentally evaluate them, using both synthetic as well
as real world datasets. These experiments show the practicality of our techniques.
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1 Introduction

A classic problem in Facility Location, see e.g., [21, 43], is the placement of a facility to
serve a given set of demand points or customers so that the total transportation costs are
minimized. The total cost at any point is interpreted as the sum of the distances to the
demand points. The point that minimizes this sum is called the Fermat Point; see Figure 1.
This is an old geometric problem that has inspired scientists over the last three centuries.

A weighted foci set is a non-empty finite set of (demand) points A = {a1, . . . , an} in Rd

associated with a positive weight function w : A→ R>0. Each a ∈ A is called a focus with
weight w(a). Let W :=

∑
a∈A w(a). The Fermat distance function of A is given by

φ(x) :=
∑
a∈A

w(a)∥x− a∥,
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(a) (b)

Figure 1 The Fermat point of the 28 EU-capitals (pre-Brexit), highlighted with (x), along with
three 28-ellipses of different radii. (a) The foci (capitals) are unweighted. (b) Each focus has the
weight of the country’s population. The source of the map is https://www.consilium.europa.eu.

where ∥ · ∥ is the Euclidean norm in Rd. The global minimum value of φ is called the
Fermat radius of A, denoted by r∗ = r∗(A). Any point x ∈ Rd that achieves this minimum,
φ(x) = r∗, is called a Fermat point, denoted by x∗ = x∗(A). The Fermat point is not unique
if and only if A is collinear and n is even. We can check if A is collinear in O(n) time, and
in that case, the median, which is a Fermat point, can be found in O(n log n) time. So
henceforth, we assume that A is not collinear. In that case φ is a strictly convex function
[35, 37], and x∗ is unique.

We also consider the closely related problem of computing n-ellipses of A. For any
r > r∗(A), the level set of the Fermat distance function is φ−1(r) :=

{
x ∈ Rd : φ(x) = r

}
.

If n = 1, the level set is a sphere; and if n = 2 and d = 2, it is the classic ellipse. When
A has n points, we call φ−1(r) an n-ellipsoid, or an n-ellipse if d = 2; hence the term foci
set. From an application perspective, an n-ellipse of radius r can be viewed as a curve that
bounds the candidate area for facility location [46], such that the total transportation cost
to the demand points is at most r, as in Figure 1.

The question of approximating the Fermat point is of great interest as its coordinates are
roots of polynomials of degree exponential in n [3]. For any ε > 0, an ε-approximation x̃∗ to
the Fermat point x∗ can be interpreted in 3 ways:
(A) Approximate Fermat Point: ∥x̃∗ − x∗∥ ≤ ε;
(B) Absolute Approximate Fermat Radius: φ(x̃∗) ≤ φ(x∗) + ε;
(C) Relative Approximate Fermat Radius: φ(x̃∗) ≤ (1 + ε)φ(x∗).

Thus, we have three ε-approximation problems: (A), (B) and (C). Essentially (B) and
(C) are approximations of the Fermat radius, while (A) is a direct approximation of the
Fermat point. In this paper we consider approximations in the sense of (A); to the best
of our knowledge, only approximations in the sense of (B) and (C), have been considered
before, see e.g., [8, 16]. Below, we show that (B) and (C) are easily reduced to (A) while the
converse reductions are non-obvious (reductions in the sense of complexity theory).

In this work we introduce certified algorithms for approximating the Fermat point and n-
ellipses, combining a subdivision approach with interval methods (cf. [33, 48]). The approach
can be formalized in the framework of soft predicates [56]. Our certified algorithms are fairly
easy to implement, and are shown to have good performance experimentally.

Related Work. The problem we study has a long history, with numerous extensions and
variations. Out of the 15 names found in the literature, see [23], we call it the Fermat point
problem. Other common names are the Fermat-Weber problem and the Geometric median

https://www.consilium.europa.eu
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(a) (b)

Figure 2 The resulting box subdivision of Figure 1(a) for (a) the n-ellipses and (b) the Fer-
mat point.

problem. Apart from the Facility Location application introduced by Weber [57], the problem
is motivated by applications in diverse fields such as statistics and data mining where it is
known as the 1-Median problem, and is an instance of the k-median clustering technique [27].

For d = 2, n = 3, the problem was first stated by P. Fermat (1607 - 1665) and was solved
by E. Torricelli (1608 - 1647) and Krarup and Vajda [30] using a geometric construction. For
n = 4, solutions were given by Fagnano [20] and Cieslik [14]. The first general method, for
arbitrary n, is an iterative scheme proposed by Weiszfeld [58] in 1937. It was later corrected
and improved by Kuhn [32] and Ostresh [43]; see Beck and Sabach [4] for a review. The
method is essentially a gradient descent iterative algorithm. It behaves quite well in practice
and has only linear convergence, with guaranteed convergence from any starting point.

A plethora of approximation algorithms for the Fermat point, in the senses of (B) and
(C), can be found in the literature using various methods. There are algorithms based on
semidefinite programming [45], interior point methods [16, 60], sampling [2, 16], geometric
data structures [8] and coresets [26], among others [13, 22]. Moreover, special configurations
of foci have been considered [7, 15], a continuous version of the problem [21], and also a
generalized Fermat point of planar convex objects [1, 12, 18].

The literature on n-ellipses is smaller but equally old: Nagy [38] proved that n-ellipses are
convex curves, calling them egg curves, and dating them back to Tschirnhaus in 1695 [55,
p. 183]. Further, he characterized the singular points of the n-ellipses as being either foci or
the Fermat point. Another early work is by Sturm in 1884 [53]. Sekino [51] showed that the
Fermat distance function φ is C∞ on R2 \A. So, the n-ellipse is a piecewise smooth curve,
as it may pass through several foci. Nie et al. [42] showed that the polynomial equation
defining the n-ellipses has algebraic degree exponential in n.

Our Contributions. In this paper, we design, implement and experimentally evaluate
algorithms for approximating the Fermat point of a given set of foci in Rd. We also compute
an ε-approximate n-ellipse; a problem not considered in computational literature before.
These are the first certified algorithms [36, 54] for these problems. Our contributions are
summarized as follows:

We design two certified algorithm for the approximate Fermat point: one based on
subdivision, the other based on Weiszfeld iteration [58].
Our notion of ε-approximate Fermat point appears to be new; in contrast, several recent
works focus on ε-approximation of the Fermat radius. The approximate Fermat radius
can be reduced to approximate Fermat point; the converse reduction is unclear.
Based on the PV construction [47, 33], we design an algorithm to compute a regular
isotopic ε-approximation of an n-ellipse. We also augment the algorithm to compute
simultaneous contour plots of the distance function φ, resulting in a useful visualization
tool (see Figure 1).

ESA 2021
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We implement and experimentally evaluate the performance of all our algorithms on
different datasets in the plane, as a function of n and ε.

Various details of the interval primitives and proofs can be found in the full arXiv version.

2 Preliminaries

Vector variables are written in bold font: thus 0 is the origin of Rd and x = (x1, . . . , xd). For
a differentiable function f : Rd → R, let ∂if denote partial differentiation with respect to xi.
The gradient ∇f : Rd → Rd of f is given by the vector ∇f(x) = (f1(x), . . . , fd(x))T where
fi = ∂if . In general, the operator ∇ is partial, i.e., ∇f(x0) might not be defined at a point
x0. A point x0 is a critical point of f if ∇f(x) = 0 or ∇f(x) is undefined.

We consider analytic properties of a scalar function f : Rd → R, mainly from the
viewpoint of convex analysis [35, 39]. In our case, f is the Fermat distance function for some
weighted set A. From an abstract perspective, the Fermat point problem (resp., n-ellipsoid
problem) amounts to computing the critical points of the gradient of f (resp., computing the
level sets of f). The Fermat point is the only critical point of ∇f in Rd \A, assuming A is
non-collinear.

Most of the basic properties regarding the Fermat point are well-known and may be found
in our references such as [32, 35, 39, 43, 58]. To emphasize the foci set A, we explicitly write
φA instead of φ. A focus a ∈ A is the Fermat point of A if and only if

∥∥∇φA\a(a)
∥∥ ≤ w(a).

Testing if the Fermat point x∗ is in A can be done in O(n2d) time. If x∗ is not one of the
foci, then ∇f(x∗) = 0, and the problem can be reduced to general finding real zeros of a
square system of polynomial equations (e.g., [59]). However, the thrust of this paper is to
develop direct methods that exploit the special properties of the Fermat problem.

We formally define the two main problems which we consider:
Approximate Fermat Point: Given a weighted point set A in Rd and ε > 0, compute
a point x̃∗ within ε distance to the Fermat point x∗ of A.
Approximate Isotopic n-Ellipses: Given ε > 0, a weighted point set A in R2 of
size n and a radius r > r∗(A), compute a closed polygonal curve E that is ε-isotopic to
φ−1(r), i.e., there exists an ambient isotopy1 γ : R2 × [0, 1]→ R2 with γ(E, 1) = φ−1(r)
and for any point a ∈ φ−1(r), the parametric curve γ(a, ·) has at most length ε. This
implies a bound of ε on the Hausdorff distance between E and φ−1(r).

Approximation notions. We compare the three different notions of ε-approximation for the
Fermat point. We reduce the approximation problem of notion (C) to (B), and (B) to (A).
An ε-approximation x̃∗ of x∗ in the sense

∥∥x̃∗ − x∗
∥∥ ≤ ε is also a (Wε)-approximation in

the sense φ(x̃∗) ≤ φ(x∗) + Wε, which follows directly from the triangle inequality

φ(x̃∗) =
∑
a∈A

w(a)∥x̃∗ − a∥ ≤
∑
a∈A

w(a)(∥x̃∗ − x∗∥+ ∥x∗ − a∥) = Wε + φ(x∗).

An ε-approximation x̃∗ of x∗ in the sense φ(x̃∗) ≤ φ(x∗) + ε is also a 2ε
φ(g) -approximation

in the sense φ(x̃∗) ≤ (1 + 2ε
φ(g) )φ(x∗). The center of gravity g is a 2-approximation of the

Fermat radius r∗ (see [16]), i.e. φ(x∗) ≥ 1
2 φ(g). Hence

φ(x̃∗) ≤ φ(x∗) + ε =
(

1 + ε

φ(x∗)

)
φ(x∗) ≤

(
1 + 2ε

φ(g)

)
φ(x∗)

1 That is, a continuous map γ : R2 × [0, 1] → R2 such that γ0 = γ(·, 0) is the identity map, and, for all
t ∈ [0, 1], γt = γ(·, t) is a homeomorphism on R2.
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On the other hand, it is not clear how to derive an ε-approximation of type (A) if an
approximation algorithm for type (B) and (C) is at hand, as the following 2 examples show.
Example 1: For any ε > 0 choose c ≤ ε

2
√

2−2 and consider the weighted foci a1 = (1, 0),
a2 = (0, 1), a3 = (−1, 0), a4 = (0,−1) with w(a1) = w(a3) = 1 and w(a2) = w(a4) = c for
which the Fermat point is x∗ = (0, 0) for symmetry reasons, see Figure 3(a). Point p = (1, 0)
is an ε-approximation of x∗ in the sense (B) and (C), but it has a distance of 1 to x∗.
Example 2: For any ε > 0 we choose h > 0 small enough such that: 2

√
4 + h2 + 2h ≤

4
√

1 + h2 + ε. Consider the foci a1 = (0,−h), a2 = (0, h), a3 = (2,−h), a4 = (2, h) with
unit weights. The Fermat point is x∗ = (1, 0) for symmetry reasons, see Figure 3(b). Point
p = (2, 0) is an ε-approximation of x∗ in the sense (B) and (C), but it has a distance of 1 to
x∗.

(a)
x

y

a1 = p

a2

a3

a4

x∗ (b)
x

y

a1

a2

a3

a4

x∗ p
{
{

h

h

︸ ︷︷ ︸
2

Figure 3 (a) Example that a good approximation of the Fermat point in sense (B) does not imply
a good approximation in sense (A). (b) Analogous example for sense (C).

Subdivision Paradigm. The subdivision algorithms presented in this paper take as input an
initial box B0 ⊂ Rd and recursively split it. We organize the boxes in a generalized quadtree
data structure [50]. A box can be specified by d intervals as B = I1 × I2 × · · · × Id. Let
mB denote the center of B, rB the radius of B (distance between mB and a corner), and
ω(B) the width of B (the maximum length of its defining intervals). The term c ·B denotes
the box with center mB and radius c · rB. The function split1 takes a box B and returns
2d congruent subboxes (children), one for each orthant. We use split2 to indicate that we
do two successive levels of split1 operations (i.e., 1 + 2d split1 operations, resulting in
(2d)2 = 4d leaves).

Soft Predicates. Let Rd denote the set of closed d-dimensional boxes (i.e., Cartesian
products of intervals) in Rd. Let P be a logical predicate on boxes, i.e., P : Rd →
{true, false}. For example, the Fermat point predicate is given by Pfp(B) = true if and
only if x∗ ∈ B. Logical predicates are hard to implement, and thus, we may focus on
tests, which are viewed as one-sided predicates. Formally, a test T looks like a predicate:
T : Rd → {success, failure} and it is always associated to some predicate P : call T a
test for predicate P if T (B) = success implies P (B) = true. However, we conclude nothing
if T (B) = failure. Denote this relation by “T ⇒ P”.

Soft predicates [56] are an intermediate concept between a test and a predicate. Typically,
they arise from a partial scalar function f : Rd → R ∪ {↑} where f(x) =↑ means f(x) is not
defined. We then define a partial geometric predicate Pf on boxes B as follows:

ESA 2021
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Pf (B) =


↑ if ↑∈ f(B),
+1 if f(B) > 0,

−1 if f(B) < 0,

0 else.

We can now derive various logical predicates P from Pf , by identifying the values in
the set {−1, 0, +1, ↑} with true or false. For instance, we call P an exclusion predicate
if we associate the 0- and ↑-value with false and the other values with true. For the
inclusion predicate, we associate the 0-value with true, others with false. For example,
a test for the Fermat point predicate Pfp is an inclusion predicate based on the partial
function f(x) =

∑
i(∂if(x))2; the function is partial because f(x) =↑ when x is a focus

point. Although our box predicates P (B) are defined for full-dimensional boxes B, we
can extend them to any point x as follows: P (x) has the logical value associated with the
sign(f(x)) ∈ {↑, +1,−1, 0}.

▶ Definition 1. Let T be a test for a predicate P . We call T a soft predicate (or soft version
of P ) if it is convergent in this sense: if (Bi : i = 0, 1, . . .) is a monotone sequence of boxes
Bi+1 ⊆ Bi that converges to a point a, then P (a) ≡ T (Bi) for i large enough.

Here, “P (a) ≡ T (Bi)” means P (a) = true if and only if T (Bi) = success. A soft
version of P (B) is usually denoted P (B). We note that soft versions of exclusion predicates
are generally easier to construct than inclusion predicates. The former can be achieved by
numerical approximation, while the latter requires some deeper principle such as the Brouwer
fixed point theorem [9].

Interval arithmetic. We construct soft predicates using functions of the form F : Rd →
(R ∪ {−∞,∞}) that approximate the scalar function f : D → R with D ⊂ Rd.

▶ Definition 2. Call F a soft version of f if it is
i) conservative, i.e., for all B ∈ Rd, F (B) contains f(B) := {f(p) : p ∈ B ∩D}, and
ii) convergent, i.e., if for monotone sequence (Bi : i ≥ 0) that converges to a point a ∈ D,

limi→∞ ω(F (Bi)) = 0 holds.

We shall denote F by f when F is a soft version of f . There are many ways to achieve
f . For example, if f has an arithmetic expression E, we can simply evaluate E using

interval arithmetic. More sophisticated methods may be needed for performance. The next
lemma shows how f leads to soft exclusion predicates based on f .

▶ Lemma 3. If P is an exclusion predicate based on f , then the test P (B) : 0 /∈ f(B) is
a soft version of P .

Below, we need a multivariate generalization, to the case where f : Rd → Rm, and the
exclusion predicate P (B) is 0 /∈ f(B). If f : Rd → Rm is a soft version of f , then a
soft version of P (B) is the given by the test T (B) : 0 /∈ f(B). If f = (f1, . . . , fm), then
this reduces to 0 /∈ fi(B) for some i = 1, . . . , m.

3 Approximate Fermat points

We now present three approximation algorithms for the Fermat point x∗. For simplicity, we
assume in our algorithms that the Fermat point is not a focus, i.e. x∗ /∈ A. This assumption
can be easily checked in O(n2d) preprocessing time, or with a more elegant approach, in
O(nd) time during the execution of our subdivision algorithms.
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Figure 4 Different steps during the the execution of Algorithm 1. The dark red boxes cannot
contain the Fermat point, whereas the light green boxes may contain it.

3.1 Using the Subdivision Paradigm
The subdivision paradigm requires an initial box B0 to start subdividing. If B0 is not given,
it is easy to find a box that contains x∗, since x∗ lies in the convex hull of A [32]. We use
a function Initial-Box(A) which, in O(nd) time, computes an axis-aligned bounding box
with corners having the minimum and maximum x, y coordinates.

We define an exclusion and inclusion predicate based on the gradient function ∇φ.

▶ Definition 4. Given a box B, the gradient exclusion predicate C∇
0 (B) is defined by the

condition 0 /∈ ∇φ(B). The gradient inclusion predicate C∇
1 (B) is just the complement of

C∇
0 (B), that is 0 ∈ ∇φ(B).

Under our assumptions that x∗ /∈ A, we have that C∇
1 (B) holds if and only if x∗ ∈ B.

We obtain a soft version of the exclusion predicate C∇
0 (B) by replacing ∇φ in its definition

with any soft version ∇φ, see Lemma 3. But it is not so easy to get a soft version of
C∇

1 (B); we shall return to this when we treat the Newton operator below.
In Algorithm 1, using the exclusion predicate we discard boxes that are guaranteed not to

contain x∗ (red in Figure 4) and we split boxes that might contain x∗ (green in Figure 4).
While subdividing, we test whether we can already approximate x∗ well enough by putting a
bounding box around all the boxes that are not excluded yet, using the following predicate.

▶ Definition 5. Given a set of boxes Q that contains the Fermat point, the stopping predicate
Cε(Q) returns true, if and only if the minimum axis-aligned bounding box containing all
boxes in Q has a radius at most ε.

If Cε returns true, then we can stop. Since the radius of the minimum bounding box is
at most ε, the center of the box is an ε-approximate Fermat point x̃∗.

Algorithm 1 Subdivision for the approximate Fermat point (SUB).

Input : Foci set A, constant ε > 0
Output : Point x̃∗

1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while not Cε(Q) do
3 B ← Q.pop();
4 if not C∇

0 (B) then
5 Q.push(split1(B));
6 return x̃∗ ← Center of the bounding box of Q;

ESA 2021



54:8 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

Regarding the runtime of Algorithm 1, evaluating ∇φ and its soft version takes linear
time in n. The subdivision approach induces an exponential dependency on d, as splitting
a box creates 2d many children. Further, a split1 operation decreases the boxwidth by a
factor of 2, therefore, Algorithm 1 cannot converge faster than linear in ε.

3.2 Enhancing the Subdivision Paradigm
In this section, we augment Algorithm 1 with a speed up based on a Newton operator, which
will ensure eventual quadratic convergence.

The Newton operator. Newton-type algorithms have been considered in the past, usually
independently of other methods, and thus suffer from lack of global convergence. Moreover,
from a numerical viewpoint, such methods face the precision-control problem. Our algorithm
integrates subdivision with the Newton operator (an old idea that goes back to Dekker [17]
in the 1960’s), thus ensuring global convergence.

We want to find the Fermat point, i.e., the root of f = ∇φ. Newton-type operators are
well-studied in the interval literature, and they have the form N = Nf : Rd → Rd. There
are three well-known versions of Nf : the simplest version, from Moore [36] and Nickel [40], is

N(B) = mB − J−1
f (B) · f(mB),

where Jf is the Jacobian matrix of f . Since f = ∇φ, this matrix is actually the Hessian of
φ. The second version by Krawzcyk [31, 52] is:

N(B) = mB −K · f(mB) + (I −K · f(B)) · (B −mB),

where K is any non-singular d×d matrix, usually chosen to be an approximation of J−1
f (mB).

The third version, from Hansen and Sengupta [24, 25], can be viewed as a sophisticated
implementation of the Moore-Nickel operator using an iteration reminiscent of the Gauss-
Seidel algorithm, combined with preconditioning. Later we report on our implementation of
the first two Newton operators. In general, the Newton operator N(B) does not return a box
even if B is a box; so we define N(B) to be a box that contains N(B). For simplicity, we
assume that N(B) is the smallest box containing N(B) with the same aspect ratio as B.

The following three properties of Newton box operators are consequences of Brouwer’s
Fixed Point Theorem [9, 41, 52, 59]:
1. (Inclusion Property) If N(B) ⊆ B then x∗ ∈ N(B).
2. (Exclusion Property) If N(B) ∩B = ∅ then x∗ /∈ B.
3. (Narrowing Operator) If x∗ ∈ B then x∗ ∈ N(B).

Based on these properties, we can define two tests and an operator:

▶ Definition 6. Newton tests for gradient exclusion/inclusion predicates (below we explain
why we use 2B instead of B):

Newton exclusion test:
T N

0 (B) = success iff N(2B) ∩B = ∅. Thus T N
0 (B)⇒ C∇

0 (B).
Newton inclusion test:
T N

1 (B) = success iff N(2B) ⊆ 2B. Thus T N
1 (B)⇒ C∇

1 (2B).
Newton narrowing operator:
N∩(B) returns B ∩N(2B).
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Note that the Newton tests T N
0 (B) and T N

1 (B) are defined using the exact Newton
operator N(B). If we replace it by a soft version N(B) in these definitions, they remain as
inclusion/exclusion tests for C∇

1 (B) and C∇
0 (B); we denote them by C∇

1 (B) and C∇
0 (B).

To compute N(B), we use standard interval arithmetic to evaluate the Newton operators.
We already noted that if N(B) ⊆ B, then x∗ ∈ N(B). But if x∗ is on the boundary of
B, then N(B) ⊆ B might not hold, and this issue persists even after splitting B. We
circumvent this problem by using 2B instead of B in the definition of T N

1 (B).
We enhance Algorithm 1 by the soft inclusion predicate T N

1 (B), as sketched in Algo-
rithm 2. If T N

1 (B) succeeds, we conclude that x∗ is contained in N(2B). In that case,
we can discard all other boxes and initialize a new queue Q on N(2B). In subsequent calls
to T N

1 (B′) for B′ ∈ Q, we conclude that x∗ ∈ 2B′. But to ensure that w(2B′) < w(B) (to
avoid an infinite loop), we initialize the queue Q with the 4d boxes of split2( N(2B)).

Algorithm 2 Enhanced subdivision for the approximate Fermat point (ESUB).

As in Algorithm 1 but replace line 5 with the following:
5.1 if T N

1 (B) then
5.2 Q← Queue(); // initialize a new queue
5.3 Q.push(split2( N(2B)); // 2 split operations
5.4 else
5.5 Q.push(split1(B));

With respect to the runtime of Algorithm 2, we observe that once the soft Newton
inclusion predicate succeeds, then it will also do so for an initial box of the new queue. This,
essentially, divides the algorithm into two phases. The first phase can be basically seen as
Algorithm 1. In the second phase, the Newton test guarantees quadratic convergence in ε.
Getting into the second phase depends on the configuration of the foci set but not on ε,
hence, our approach is of particular interest for small values of ε.

The termination of both subdivision algorithms follows from the soft gradient exclusion
predicate being convergent. The algorithms terminate once the predicate Cε(Q) succeeds,
yielding an ε-approximate Fermat point, so we summarize as follows.

▶ Theorem 7. Both Algorithms 1 and 2 terminate and return an ε-approximate Fermat point.

3.3 Certifying the Weiszfeld method
Weiszfeld’s iterative method [32, 43, 58] describes a sequence pi (i = 0, 1, . . .) of points that
converges to the Fermat point x∗, starting from any initial p0. The recurrence relation is
pi+1 = T (pi), where T (x) is defined by

T (x) =
∑

a∈A,a̸=x w(a) a
∥x−a∥∑

a∈A,a̸=x w(a) 1
∥x−a∥

.

Note that when x is a focus, then T (x) depends just on all other foci.
This simple iterative method is widely used, and although it converges, it does not solve

our ε-approximation problem as we do not know when to stop. To see that this is a real
issue, consider the example in Figure 5.

We augment the Weiszfeld iteration by adding Newton tests during the computation,
turning it into an ε-approximation algorithm. While at the i-th iteration, we define a small
box B with point pi as center, and map it to the box N(B) using the Newton operator;
see Figure 6. If N(B) ⊆ B, then the Fermat point x∗ lies in N(B). On the contrary, if

N(B) ̸⊆ B we move on to the next point pi+1 and adjust the box size as follows.
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Figure 5 An example with 500 foci, showing that Weiszfeld’s scheme does not solve the ε-
approximation problem. The scheme stopped when

∥∥pi−1 − pi

∥∥ ≤ 1/10, after 207 steps (blue
points). The distance ∥x∗ − p207∥ can be arbitrarily big (∥x∗ − p207∥ > 15 in this case).

If B
10 ∩ N( B

10 ) = ∅, then the box B
10 does not contain x∗ and we therefore expand B by

a factor of 10. If B
10 ∩ N( B

10 ) ̸= ∅, then there might be a focus in box B
10 , which hinders

N(B) ⊆ B to succeed. In that case we shrink B by a factor of 10. If a focus is not in B
10 ,

shrinking B does not effect the algorithm negatively, as B can expand again.
Using these tests we augment the point sequence scheme, sketched in Algorithm 3,

with the property that if the Newton test evaluates to true, then we are guaranteed an
ε-approximation of x∗. As a starting point, we choose the center of mass p0 of A, i.e.,
p0 = 1

W

∑
a∈A w(a) a.

With respect to the runtime, the point sequence T (x) converges linearly in ε towards
x∗ [29] but in order for Algorithm 3 to terminate the test N(B) ⊆ B must succeed. Similar
to other Newton operators, N(B) ⊆ B succeeds for boxes in a neighborhood surrounding
x∗. This neighborhood depends only on the configuration of A but not on ε. Further,
evaluating T (x) and N(B) can be done in O(nd2) time. We conclude as follows.

▶ Theorem 8. Algorithm 3 terminates and returns an ε-approximate Fermat point.

Algorithm 3 Certified Weiszfeld for the approximate Fermat point (CW ).

Input : Foci set A, constant ε > 0 Output: Point x̃∗

1 p← p0; l← ε;
2 while True do
3 B ← Box B(mB = p, ω(B) = l);
4 if N(B) ⊆ B then // Figure 6(a)
5 return x̃∗ ← p;
6 else if N

(
B
10

)
∩ B

10 = ∅ then // Figure 6(b)
7 l← min{10 · l, ε};
8 else // Figure 6(c)
9 l← 1

10 · l;
10 p← T (p);

B B
10

pi
pi(a) (b) (c)

piN( B
10
)

N(B) N( B
10
)

B
10

Figure 6 The case analysis of Algorithm 3. (a) N(B) ⊆ B, (b) N( B
10 ) ∩ B

10 = ∅, and
(c) N( B

10 ) ∩ B
10 ̸= ∅.
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4 Approximating n-ellipses

In this section, we describe an algorithm to construct approximate n-ellipses, based on the
subdivision paradigm. Throughout this work we maintain the subdivision smooth, i.e., the
width of any two adjacent boxes, which are leaves of the quadtree, may differ at most by a
factor of 2. Maintaining smoothness is easy to implement and has amortized O(1) cost per
operation [6]. Without maintaining smoothness, the amortized cost can be Ω(log n) [6].

The Plantinga and Vegter (PV) construction [47, 33, 34] approximates the zero set of
a function F : Rd → R where d ∈ {2, 3}. Assuming that S = F −1(0) is regular, i.e., the
gradient ∇F is non-zero at every point of S, this approximation is isotopic to S. Our goal
is to use this construction to approximate the n-ellipse defined by F (p) := φ(p) − r with
r > r∗. For simplicity, we assume all boxes are square; for the construction to succeed, we
only need an aspect ratio ≤

√
2 (see [33]). We use the notation ⟨·, ·⟩ for the scalar product.

The following are the key predicates and tests in the PV construction of the n-ellipse F −1(0).

▶ Definition 9. Fix F (p) = φ(p)− r. Let B be a square box.
1. The fundamental box predicate is the inclusion predicate CF

1 (B) : 0 ∈ F (B), and its
complement, the exclusion predicate CF

0 (B) : 0 /∈ F (B).
2. The (corner) inclusion test Tcor(B) = success iff F , when evaluated at the corners of B,

admits both negative and positive values. Clearly, Tcor(B) is a test for CF
1 (B). (There is

a standard PV trick whereby any 0-value can be arbitrarily made positive.)
3. The normal variation predicate Cnv(B) is defined by the condition ⟨∇F (B),∇F (B)⟩ > 0.

We obtain the soft versions CF
0 (B) and Cnv(B) by the usual device of replacing F (B)

in the definition of the predicates by a soft version F (B). But for the inclusion predicate
CF

1 (B) we have no soft version. Instead, the corner test Tcor(B) is a test for CF
1 (B). To

supplement the corner test, we need the normal variation predicate Cnv(B). This predicate
is equivalent to the condition that the angle between the gradient of any two points in B

is at most 90◦. It implies that the n-ellipse is monotone in either x- or y-direction within
the box. In Figure 7, boxes are: red if they pass the CF

0 (B) test, green if they pass both
Cnv and Tcor, orange if the pass only Cnv, and gray otherwise. Note that orange boxes

may, or may not, contain parts of the approximate n-ellipse.
An n-ellipse is not regular if it passes through some focus [51]; in that case a direct PV

construction is not possible. We develop a variation, sketched in Algorithm 4, where we
simultaneously subdivide boxes and construct pieces of the n-ellipse on the fly, instead of
doing that in the end. Further, boxes in which the n-ellipse may not be regular are treated
differently. During the subdivision part of the algorithm, we classify boxes in three categories:

1. Boxes which satisfy CF
0 (B) (red): These do not contain any piece of the n-ellipse, so

they do not need to be further considered and are discarded.
2. Boxes which satisfy Cnv and have width smaller than ε/2 (green or orange): We

immediately draw edges in each of these boxes, in contrast to the normal PV construction.
Note that at a later stage of the algorithm it might happen that we split one of B’s
neighboring boxes. In that case we need to take into account the sign of F at the new
vertex on B’s boundary. If necessary, the edges in box B then need to be updated.

3. The remaining boxes (gray): Such boxes occur near foci and need more careful attention,
as we cannot apply the standard PV construction. Instead, given a set of gray boxes we
first distinguish them in connected components, using a DFS algorithm. Then, for each
connected component of gray boxes Ki, we check if a set of conditions is satisfied:
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(a) (b)

Figure 7 (a) A 3-ellipse passing through two foci. Components of gray boxes (temporarily)
surround the foci. (b) If a gray component satisfies (B1) - (B3) the two ingoing edges are connected
with an edge (shown dashed).

(B1) Ki contains exactly one focus.
(B2) There are exactly two PV-edges leading to Ki.
(B3) The distance between any two corners of the boxes in Ki is at most ε/2.
If Ki satisfies all (B1) - (B3), then we connect the 2 PV-edges leading to Ki by a line
segment and discard boxes of Ki, see Figure 7(b). Otherwise, the children of the boxes of
Ki are put back in Q for further classification.

Algorithm 4 Approximating an n-ellipse.

Input : Foci set A, radius r, constant ε, box B0 Output: Curve E

1 Q← Queue(); Q.push(B0);
2 while Q ̸= ∅ do
3 Qnew ← Queue();
4 while Q ̸= ∅ do
5 B ← Q.pop();
6 if not CF

0 (B) then // exclude red
7 if Cnv(B) and ω(B) < ε/2 then // green or orange
8 E∩B ← Online-PV(B);
9 else // gray

10 Qnew.push(split4(B));
11 Q← Connected-Components-Analysis(Qnew)
12 return E;

By controlling the size of the boxes containing parts of the output curve, and by the
modification the PV construction we prove the following.

▶ Theorem 10. Algorithm 4 returns an isotopic ε-approximation of the n-ellipse F −1(0).

Interpolating edges. The PV construction creates edges within a box B, which start and
end at midpoints of box edges. One can derive a nicer-looking approximation by using linear
interpolation on the box edges by taking into account the value of F at B’s corners.

Contour Plotting. As an application, we can use the above technique in order to produce a
topologically correct, ε-approximate and visually nice n-elliptic contour plot. To do so, we
first adapt our algorithm in order to simultaneously plot several n-ellipses inside a bounding
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(a) (b)

Figure 8 Two different 3-elliptic contour plots with 10 contour lines, having the same set of foci.
(a) Using radii of equidistant points. (b) Using equidistant radii.

box, corresponding to the same foci but with different radii. Each n-ellipse is a contour line,
and we describe how to plot them visually nice, i.e., the contour lines are roughly equally
distributed in space. See Figure 8 for two different approaches and their visualization effect.

5 Experiments

We implemented our algorithms for R2 and conducted a series of experiments. Our current
software is written in MATLAB (version R2018b), taking advantage of its graphics ability.
The numerical accuracy is therefore IEEE numerical precision. The platform used was
MacOS Big Sur v11.2.3, with 2.5 GHz Quad-Core Intel Core i7 and 16 GB 1600MHz DDR3.

Following, we report on our experiments, discussing some notable points one by one.
We evaluated our algorithms on both synthetic and real-world datasets. For all algorithms
approximating the Fermat point we chose a time limit of 600 seconds. Moreover, for most
experiments we executed 10 different instances for completeness. In the illustrated charts,
the curves pass through the mean of the 10 running times, and additionally we also marked
the minimum and maximum running times. All axes in the charts are of logarithmic scale.

Datasets. We mainly experimented with two different types of synthetic datasets, namely
Unif-1 and Unif-2. In Unif-1 the n foci are sampled uniformly from a disk of radius 1. In
Unif-2 again the n foci are sampled uniformly from a disk of radius 1 and then n/2 foci are
translated by a vector (10, 10), see Figure 9(a) and Figure 9(b). Despite their similarity, the
two datasets present strong differences. As we later see, Unif-2 is significantly more difficult
to solve in comparison to Unif-1, and further Unif-1 resembles nicely real-world datasets.
The foci of Unif-2 lie almost all on a common line, which implies that there are many points
for which the gradient is close to 0. This makes it difficult to find the actual Fermat point,
for which the gradient is exactly 0. We experimented with more types of synthetics datasets,
such as points in convex position, vertices of a regular n-gon, clusters of points, but we do
not report on these results, as they are similar to Unif-1 or Unif-2.

Newton operators. Adding a Newton operator to the subdivision process drastically
improves the running time. We compared Algorithm 1 with two versions of Algorithm 2,
where we once use the Newton operator based on Moore and Nickel and also the operator
by Krawzcyk. The results for various values of n and ε on both Unif-1 and Unif-2 are
summarized in Figure 10. Note that Algorithm 2 initially needs to perform simple splitting
operations until at some point the Newton test succeeds the first time. After that the
algorithm converges quadratically in ε, which explains why the running time of both versions
almost do not increase for decreasing ε. Even though the operator by Krawzcyk returns a
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(a) (b) (c)

Figure 9 A box subdivision for n = 200 foci: (a) Unif-1, (b) Unif-2 and (c) Unif-2 after PCA.

smaller box N(B), i.e. it is more precise, than Moore and Nickel, it performs slower for
Unif-1 as evaluating the operator takes more time. We conclude that using a Newton operator
speeds up the computations, and we use the one of by Moore and Nickel in Algorithm 2.

Principal component analysis. Foci sets like Unif-2 are challenging as all foci are close to
a common line. In this case, the subdivision algorithms can be slow because there are many
boxes for which the gradient ∇φ is close to 0. Our approach to tackle this problem is to use
subdivision with rectangular boxes. In a preprocessing step we do a principal component
analysis (PCA) of the foci as heuristic. Then, we rotate the coordinate system such that the
x-direction is the first principal component. In the box subdivision we use rectangular boxes
with long x-width, see Figure 9(c). Observe in the following table, that for well distributed
foci sets like Unif-1, using the PCA adds only a small overhead to the total running time.

ε = 10−3, n = 10 100 1000 10000
without PCA 0.12 0.31 2.33 23.4
with PCA 0.10 0.30 2.30 23.9

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 0.20 0.30 0.33 0.34
with PCA 0.18 0.30 0.33 0.35

On the contrary, for sets like Unif-2, adding the PCA decreases drastically the running
time, as shown next. Hence, the PCA preprocessing is a useful addition to Algorithm 2,
which we will use also in the following experiments.

ε = 10−3, n = 10 100 1000 10000
without PCA 90.7 48.5 170 timeout
with PCA 0.15 0.40 3.21 32.7

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 37.1 49.2 49.2 49.5
with PCA 0.36 0.40 0.42 0.43

(a) (b) (c) (d)

Figure 10 A comparison of Algorithm 1 (• SUB), Algorithm 2 with the Krawzcyk Newton
operator ( Krawzcyk), and Algorithm 2 with the Nickel and Moore Newton operator (■ Nickel
& Moore). (a),(b) Time as a function of n, with ε = 10−4. (c),(d) Time as a function of ε with
n = 100. (a),(c) Unif-1 datasets. (b),(d) Unif-2 datasets.
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Real Datasets. Inspired by the applications in facility location we chose to experiment with
instances of the well-known Traveling Salesman Person Library [49] or TSPlib. The foci
correspond mostly to location of cities in different areas around the world. It appears that
real-world instances show a similar behavior to Unif-1 datasets; so we infer that Unif-1
are realistic datasets for the evaluation of different algorithms. In our experiments, to verify
that for each TSPlib dataset we created an additional foci set, where we uniformly sampled
the same number of foci in the axis-aligned bounding box. As ε we chose 10−6 times the
width of the corresponding bounding box. These experiments are illustrated in Figure 12(a),
and the similarity of the running time for the two datasets is obvious.

Summary on the Fermat point. We make an overall comparison of Algorithm 1, Algorithm 2
with the PCA, and Algorithm 3, illustrated in Figure 11. The running time of all methods
shows a linear dependency on n, but there are big differences regarding the dependency
on ε. Overall, Algorithm 3 performs well in all cases, but due to the linear convergence of
Weiszfeld’s point sequence, it cannot converge faster as ε decreases. In contrast, Algorithm 2
takes more time in the subdivision phase, but once the Newton tests succeeds, the algorithm
terminates very quickly. So, it does not exhibit almost any changes in the running time for
decreasing ε. This makes it favorable when a high precision approximate solution is required.
It is also very fast in Unif-2 instances and outperforms Algorithm 3. Summarizing, we
suggest to use Algorithm 2 in small dimensional spaces and for small ε due to its eventual
quadratic convergence in ε. On the other hand, the subdivision methods take exponential
time in d, therefore, we suggest to use Algorithm 3 for higher dimensional spaces.

n-ellipses. Finally, we evaluated the runtime of n-ellipses algorithm. In Figure 12(b) we
evaluate the dependency on n. In order to keep the length of the curve almost constant
we choose the radii r = (10

√
2+2)n
2 . The bounding box used is [−2, 12]2. In Figure 12(c) we

analyze the dependency on the length of the n-ellipse. The bounding box is fixed and we
experimented with different radii such that the lengths of the curve differ by a factor of
3/2. The runtime shows a linear dependency on n, as expected, and it also shows a linear
dependency on the length of curve. This can be justified, as covering an n-ellipse of length l

with boxes of width ε takes O(l/ε) many boxes.

(a) (b) (c) (d)

Figure 11 An overall comparison of Algorithm 1 (• SUB), Algorithm 2 with the PCA ( ESUB),
and Algorithm 3 (■ CW). (a),(b) Time as a function of n, with ε = 10−4. (c),(d) Time as a function
of ε with n = 100. (a),(c) Unif-1 datasets. (b),(d) Unif-2 datasets.
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(a) (b) (c)

Figure 12 (a) A comparison of TSP data sets (filled shapes) with Unif-1 (empty shapes, dashed
curve) for both Algorithm 2 (• ESUB) and Algorithm 3 (■ CW). Fermat point with time as a
function of n. (b),(c) n-ellipse on Unif-2 with time as a function of (b) n and (c) the length of the
n-ellipse. Two ε approximations with ε = 0.1 (•) and ε = 0.01 (■) have been computed.

6 Concluding Remarks

In this work, we mainly focused on finding ε-approximate Fermat points, in a strong sense
∥x̃∗−x∗∥ ≤ ε, which had not been considered before. This approximation can also be used to
derive an ε-approximation of the Fermat radius. This was done using a simple-to-implement
subdivision approach. All of our algorithms are certified in the sense of interval arithmetic.
Moreover, we certified the famous point-sequence algorithm of Weiszfeld [58] to guarantee
that it does find an ε-approximate Fermat point. We also designed an algorithm to construct
ε-approximate n-ellipses. The simplicity and efficiency of our algorithms were evaluated
experimentally for d = 2.

There are many directions for further research. One is to derive algorithmic complexity
bounds. Our intuition regarding the time complexity of our algorithms was affirmed by the
experimental runtime evaluation. Such bounds are rare for iterative numerical algorithms.
There has been considerable success in the area of root isolation [10, 11] where the idea
of “continuous amortization” should also apply here. Further, we expect the usage of the
Hansen-Sengupta Newton operator to result in a speedup.

Regarding the construction of n-ellipses, it would be interesting to design an alternative
algorithm based on curve-tracing. This could improve the runtime once a starting point on
the n-ellipse is found.

Another direction is related to Voronoi diagrams. From one perspective, it is interesting
to approximate the Voronoi diagram, where the sites are n-ellipses; so far only 2-ellipses have
been studied [19]. From a different perspective, if the sites are sets of foci (each associated
with a Fermat distance function) it is interesting to compute their Voronoi diagram, defined
as the minimization diagram of the Fermat distance functions. This is a min-sum diagram
in the context of cluster Voronoi diagrams, see e.g., [28, 44]. We believe that subdivision
methods augmented with root boxes, similar to [5], would be applicable to these problems.
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