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Abstract
A hierarchical plane st-graph H can be thought of as a combinatorial description of a planar
drawing Γ of a 2-connected graph G in which each edge is a y-monotone curve and each face encloses
a y-monotone region (that is, a region whose intersection with any horizontal line is a line segment,
a point, or empty). A drawing Γ′ of H is a drawing of G such that each horizontal line intersects
the same left-to-right order of edges and vertices in Γ and Γ′, that is, the underlying hierarchical
plane st-graph of both drawings is H. A straight-line planar drawing of a graph is convex if the
boundary of each face is realized as a convex polygon.

We study the computation of convex drawings of hierarchical plane st-graphs such that the
outer face is realized as a prescribed polygon. Chrobak, Goodrich, and Tamassia [SoCG’96] and,
independently, Kleist et al. [CGTA’19] described an idea to solve this problem in O(n1.1865) time,
where n is the number of vertices of the graph. Also independently, Hong and Nagamochi [J. Discrete
Algorithms’10] described a completely different approach, which can be executed in O(n2) time.

In this paper, we present an optimal O(n) time algorithm to solve the above problem, thereby
improving the previous results by Chrobak, Goodrich, and Tamassia, Kleist et al., and by Hong
and Nagamochi. Our result has applications in graph morphing. A planar morph is a continuous
deformation of a graph drawing that preserves straight-line planarity. We show that our algorithm
can be used as a drop-in replacement to speed up a procedure by Alamdari et al. [SICOMP’17] to
morph between any two given straight-line planar drawings of the same plane graph. The running
time improves from O(n2.1865) to O(n2 log n). To obtain our results, we devise a new strategy for
computing so-called archfree paths in hierarchical plane st-graphs, which might be of independent
interest.
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Figure 1 A y-monotone drawing (left) and a convex drawing of its underlying hierarchical plane
st-graph (right) with a prescribed compatible polygon (middle) as the outer face.
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1 Introduction

A y-monotone drawing Γ is a planar drawing of a 2-connected planar graph G = (V, E)
where each edge is realized as a y-monotone curve and the boundary of each face encloses a y-
monotone region, that is, a region whose intersection with any horizontal line is a line segment,
a point, or empty; for an illustration see Figure 1. Due to the y-monotone edges, the drawing Γ
uniquely determines for each v ∈ V (1) the y-coordinate y(v) of v, (2) a left-to-right ordering
of the edges incident to v that have an endpoint with a y-coordinate larger than y(v), and (3)
a left-to-right ordering of the edges incident to v that have an endpoint with a y-coordinate
smaller than y(v). A plane graph is a combinatorial description of a planar drawing of a
graph that consists of the graph equipped with the so-called combinatorial embedding of
the drawing and a distinguished outer face. Similarly, the underlying hierarchical plane
st-graph H of Γ is a combinatorial description of the y-monotone drawing Γ that consists
of G equipped with the above information (Items (1)–(3)) for each vertex. A drawing Γ′ of H

is a y-monotone drawing of G whose underlying hierarchical plane st-graph is H. A planar
straight-line drawing of a graph is called convex if the boundary of each face is realized as a
simple convex polygon.

This paper is concerned with the computation of convex drawings of hierarchical plane
st-graphs such that the outer face is realized as a prescribed polygon that is, in some sense,
compatible with the given graph; for an illustration see Figure 1. A plane graph admits a
convex drawing if and only if it is a subdivision of an internally 3-connected graph. Hence,
we will assume that our input graphs satisfy this property.

The above problem has applications in graph morphing, as we will discuss next.

Applications. A (planar) morph is a continuous deformation of a graph drawing that
preserves straight-line edges (and planarity) at all times. Graph morphing is motivated by
applications in animation and computer graphics [17]. In computational morphing problems,
one typically seeks “piece-wise linear” morphs, which are composed of a number of linear
morphing steps. In a linear morph, each vertex moves along a line segment at constant
speed (which depends on the length of the segment) such that it arrives at its final position
at the end of the morph. Such a morph is uniquely defined by specifying the initial and the
final drawing. Hence, a morph composed of k linear morphs can be efficiently encoded as a
sequence of k + 1 drawings.

Algorithms to compute convex drawings of hierarchical plane st-graphs such that the
outer face is realized as a prescribed polygon serve as a subroutine in several graph morphing
algorithms [2, 22, 7, 27, 6]. The key observation is that the linear morph from a y-monotone
straight-line drawing to a convex drawing of its underlying hierarchical plane st-graph is
planar, which is not difficult to prove due to the fact that its vertex trajectories are parallel
lines [2]; a linear morph with this property is called unidirectional. The restriction to
y-monotone drawings might seem limiting at first. However, the observation is also useful
in a more general context: let Γ be a straight-line planar drawing. Let Γ′ be a y-monotone
augmentation of Γ created by adding a set A of y-monotone (but not necessarily straight-line)
edges. Finally, let Γ′′ be a convex drawing of the underlying hierarchical plane st-graph
of Γ′. Then the linear morph from Γ to Γ′′ \ A is also planar [22]. Note that all angles of
face boundaries in Γ′′ \A that were not subdivided by edges of A are convex. In this sense,
Γ′′ \A is a simplified version of Γ, which can be exploited algorithmically. We will illustrate
this by discussing an explicit example.
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One of the most basic tasks in graph morphing is the computation of a planar morph
(composed of linear morphing steps) between two given straight-line planar drawings Γ1, Γ2 of
the same plane graph G. Alamdari et al. [2] described an algorithm to compute such a morph
consisting of a linear number of unidirectional steps. They provide a reduction to show that it
suffices to consider the case that Γ1, Γ2, and G are triangulated. For triangulations, the idea
is as follows: find a suitable edge e = {u, v} shrink it to a point in both drawings, thereby
contracting the edge e in G to a new vertex w. Then, recursively compute a morphM of the
reduced graph. Finally, turn the thereby obtained “pseudomorph” of G into an actual morph
by placing u and v very close to the position of w in each of the drawings encoding M. To
find an edge e that can be contracted without violating planarity in either drawing, proceed
as follows: let u be an internal vertex with degG(u) ≤ 5. If the polygon defined by the
neighbors of u is convex in both Γ1 and Γ2, then u can be contracted towards the same
neighbor in both drawings. If this is not the case, the polygon (or some specific angle) can
be made convex using the strategy described in the preceding paragraph.

In other types of morphing problems, the task is to compute planar morphs between
two given drawings while maintaining additional properties such as convexity [7] or upward-
planarity [27], or planar morphs that transform a given drawing in order to achieve a certain
property while being in some sense monotonic [1, 22, 11]. Very recently, the problem of
morphing graphs was also studied on the torus [9].

We remark that the computation of convex drawings of hierarchical plane st-graphs with
a prescribed polygon as the outer face also plays a role when embedding polyhedral graphs
in R3 with a good vertex resolution [10, 29]. The idea is to first find a convex drawing in the
plane where the vertices are placed at, suitably chosen, prescribed small integer y-coordinates.
The drawing is then lifted to R3. However, to ensure this strategy can be carried out, the
constructed plane drawings are also required to be embeddings with so-called equilibrium
stress – the drawings created by the algorithm presented in this paper do not guarantee this
property.

Previous algorithms. An idea for constructing convex drawings of hierarchical plane st-
graphs with a prescribed polygon as the outer face was described already in 1996 by Chrobak,
Goodrich, and Tamassia [10, Section 3] (in the context of realizing polyhedral graphs in R3);
also see [29, Section 4]. The approach was independently rediscovered by Kleist et al. [22]
(in the context of a morphing problem) and is based on using Tutte’s well-known spring
theorem [32, 15, 16]. The main idea is to precompute barycenter weights that force the
vertices to lie at the prescribed y-coordinates before applying Tutte’s algorithm, which
then finds suitable x-coordinates. (Notably, the way in which the barycenter weights are
determined in [22] is quite different from the method used in [10] and [29].) Chrobak et al.
point out that the approach can be implemented in O(nω/2 + n log n) ⊆ O(n1.1865) time by
using the generalized nested dissection method [25, 26, 4], where n is the number of vertices
of the graph and ω < 2.37286 [3, 24] denotes the matrix multiplication exponent.

In 2010, Hong and Nagamochi [20] described a completely different approach, based on a
recursive combinatorial construction. The runtime of their algorithm is O(n2). The idea is to
choose a suitable internal vertex y of the given graph G and compute three disjoint (except
for y) paths from y to the outer face, see Figure 2a. These paths dissect G into three regions,
which are then handled recursively. The outer face of each of the three regions is composed
of two of the three paths, which are prescribed to be realized as straight-line segments, and a
part of the original prescribed polygon, see Figure 2b. To ensure that the thereby described
polygon can be extended to a convex drawing of the entire region, the computed paths need
to be archfree, meaning that they are not arched by an internal face. A path P is arched by
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57:4 Computing Convex Drawings of Hierarchical Graphs in Linear Time

a face f if P contains two distinct vertices a, b that belong to the boundary of f such that
the subpath Pab of P between a and b is not a subpath of the boundary of f , see Figure 2c.
Indeed, such a path P cannot be realized as a straight-line segment in a convex drawing
since in this case the interior of the segment ab has to be disjoint from the realization of f .
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Figure 2 (a–b) The idea of Hong and Nagamochi’s [20] construction. (c) The path P = (x, . . . , y)
is arched by a face f .

We remark that Chrobak et al.’s result [10] does not appear to be widely known: the
morphing papers [2, 7, 27, 6, 22] only refer to the method by Hong and Nagamochi [20].
Moreover, Hong and Nagamochi [20] and Kleist et al. [22] were also unaware of its existence.

Other related work. Pach and Tóth [28] and Eades, Feng, Lin, and Nagamochi [14] studied
the problem of finding (not necessarily convex) straight-line drawings of hierarchical plane
graphs, which can be defined as hierarchical plane st-graphs, except that they describe (not
necessarily y-monotone) planar drawings in which each edge is realized as a y-monotone
curve. Eades et al. [14] provide a linear-time algorithm for this problem that realizes the
outer face as a prescribed polygon.

A graph in which each vertex is equipped with a y-coordinate is sometimes called a level
graph. The central question in the Level Planarity [13, 18, 21] problem and its many
variants [5, 8, 23] is to decide whether a given level graph admits a level planar drawing,
that is, a planar drawing in which each vertex is placed at its prescribed y-coordinate and
each edge is realized as a y-monotone curve. By definition, the underlying level graph of
each hierarchical plane (st-)graph admits a level planar drawing.

Contribution and organization. In Section 4, we describe an optimal linear-time algorithm
for constructing convex drawings of hierarchical plane st-graphs with a prescribed polygon as
the outer face (if possible), thereby improving the previous approaches by Chrobak, Goodrich,
and Tamassia [10], Kleist et al. [22], and Hong and Nagamochi [20].

▶ Theorem 1. There exists an algorithm that, given a subdivision G = (V, E) of an internally
3-connected hierarchical plane st-graph and a convex polygon Γo that is compatible with G,
computes a convex drawing of G with Γo as the realization of the outer face in time O(n)
where n = |V |.

We introduce our notation and terminology (including the definitions of compatible
polygons and internally 3-connected graphs) and the assumed data structures in Section 2.

To obtain Theorem 1, we follow the idea of the recursive combinatorial construction by
Hong and Nagamochi [20]. We observe that the main bottleneck in Hong and Nagamochi’s
algorithm is the computation of archfree paths to the boundary: Hong and Nagamochi obtain
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such a path by computing an arbitrary y-monotone path P which is then modified to obtain
an archfree path P ′. In general, not all vertices of P belong to P ′. Hence, a given vertex
may be involved in the archfree path computation on multiple layers of the recursion. Since
the recursion depth can be linear, the overall runtime of their algorithm is quadratic. In
Section 3, we describe a new efficient algorithm to obtain archfree paths in a more direct
way: the running time of our approach is linear in the sum of the degrees of the internal
vertices visited by the computed path. With this tool at hand, the layers of the recursion
become, in a sense, disjoint (since archfree paths computed on distinct layers of the recursion
are disjoint). This lets us carry out the algorithm corresponding to Theorem 1 in linear time.

▶ Theorem 2. There exists an algorithm that, given an internally 3-connected hierarchical
plane st-graph G and (a pointer to) an internal vertex y of G, computes an archfree directed
path Pyz from y to some outer vertex z of G such that all vertices of Pyz except for z are
internal vertices of G in time O(

∑
i∈V(Pyz)\{z} deg+

G(i)).

Alamdari et al. state in [2] that their morphing algorithm, which was already mentioned
above, can be executed in time O(n3). It uses Hong and Nagamochi’s [20] algorithm for
constructing convex drawings of hierarchical plane st-graphs as a blackbox with running
time O(n2). Kleist et al. [22] observed that by replacing the contents of this blackbox with an
algorithm based on Tutte’s theorem (as described by Chrobak et al. [10]), the running time
can be improved to O(n1+ω/2 + n2 log n) ⊆ O(n2.1865). By plugging in Theorem 1 instead,
we further improve the running time to O(n2 log n). In fact, if the graph is 2-connected, the
running time can be improved to O(n2). [2, Theorem 1.1] and [22, Theorem 2] become:

▶ Theorem 3. There exists an algorithm that, given two straight-line planar drawings of the
same n-vertex plane graph G, computes a planar morph between the two drawings that consists
of O(n) unidirectional morphs in time O(n2 log n), and in time O(n2) if G is 2-connected.

Alamdari et al. [2] proved that the number of linear morphing steps to morph between
two planar straight-line drawings of a path is bounded by Ω(n). This bound easily extends
to the 2-connected case [22, Theorem 3]. Recall that a linear morph is uniquely defined by
the initial and the final drawing. Hence, a natural way to encode a morph composed of k

linear morphing steps is to provide a list of k + 1 drawings. Since the size of each drawing
is Ω(n), the Ω(n) bound for the number of morphing steps implies an output complexity
of Ω(n2) when the morph is assumed to be encoded in this fashion. Hence, in this model,
Theorem 3 is near-optimal, and optimal in the 2-connected case. It is an interesting question
whether allowing some sort of implicit encoding can lead to better running times.

It seems likely that a similar running time improvement can be obtained for other
morphing algorithms (such as the ones stated in [22, 7, 27]), though, we have not analyzed
the respective running times in detail yet. We believe that Theorem 3 might be a useful tool
for designing morphing algorithms in the future.

2 Terminology, data structures, and preliminary results

All graphs in this paper are simple, that is, we do not allow parallel edges or self-loops.
Let G = (V, E) be a graph. We denote by V(G) = V the vertex set and by E(G) = E the
edge set of G. Assume that G is planar and let Γ be a planar drawing of G. The boundary
of each face f of G can be uniquely described by a counterclockwise sequence of edges, or
multiple such sequences if G is disconnected. In the connected case, we use ∂f to denote the
boundary of f . If G is 2-connected, then ∂f is a simple cycle (otherwise, ∂f can visit vertices
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and edges multiple times). The drawing Γ determines a circular ordering of the neighbors
of each vertex. The set of these orderings together with the set of face boundaries is called
the combinatorial embedding of Γ. Two drawings of G may have the same combinatorial
embedding, but different outer faces. A plane graph is a planar graph equipped with a
combinatorial embedding and a distinguished outer face. A plane graph can be efficiently
encoded and traversed by means of the well-known doubly connected edge list (DCEL) [12].

Let H be a hierarchical plane st-graph. We consider each edge of H to be directed from
its lower to its higher endpoint. Note that H has a unique source and sink, which belong
to the outer face. Moreover, the boundary of each face of H has a unique source and sink.
We refer to this as the st-property of H. For a face f of H, we define its peak, denoted by
peak(f), to be the y-coordinate of its sink. The valley of f , denoted by valley(f), is the
y-coordinate of its source. Let v ∈ V(H) such that v is not the source or sink of H. There is
a natural partition of the faces incident to v: a face with two out-edges of v on its boundary
is called an up-face of v. Similarly, a face with two in-edges of v on its boundary is called a
down-face of v. The unique left-face of v has the left-most out-edge and the left-most in-edge
of v on its boundary. The right-face of v is defined analogously. Moreover, we refer to the
collection of the left-, right-, and up-faces of v as its out-faces, and to the collection of the
left-, right-, and down-faces of v as its in-faces. The left-to-right ordering of the out-edges
(in-edges) of H uniquely determines a left-to-right ordering of the out-faces (in-faces) of H.
A hierarchical plane st-graph can be encoded and traversed by means of a slightly augmented
DCEL: for each vertex, one simply has to add its y-coordinate and a pointer to its left-most
out-edge (except for the sink) and a pointer to its right-most in-edge (except for the source).
This augmented DCEL is easily preprocessed in linear time to obtain the peak and valley of
each face. Hence, we may assume that each face is equipped with these values. Moreover,
we may assume (again via preprocessing in linear time) that the vertices of the outer face
are marked, so that it is possible in O(1) time to test whether a given vertex is external or
internal. All hierarchical plane st-graphs in this paper are assumed to be represented by
means of this data structure.

We say that an angle is convex if it is at most π and reflex if it exceeds π. In a convex
polygon, each internal angle is convex. Recall that a planar straight-line drawing of a graph
is called convex if the boundary of each face is realized as a simple convex polygon. A side of
a simple convex polygon is a maximal straight-line segment in its boundary, i.e., a maximal
sequence of collinear edges. It is well known that a planar graph admits a convex drawing if
and only if it is a subdivision of an internally 3-connected graph [31, 30, 20, 19]. There are
multiple well-known equivalent definitions of this property. Each of them provides a different
perspective on the concept and it will be convenient to refer to all of them. Hence, we define
internal 3-connectivity in form of a characterization; a proof of the equivalence of the three
properties can be found in [22].

▶ Definition 4. Let G be a plane 2-connected graph and let fo denote its outer face. Then G

is called internally 3-connected if and only if the following equivalent statements are satisfied:
(I1) Inserting a new vertex v in fo and adding edges between v and all vertices of fo results

in a 3-connected graph.
(I2) From each internal vertex w of G there exist three paths to fo that are pairwise disjoint

except for the common vertex w.
(I3) Every separation pair u, v of G is external, meaning that u and v lie on fo and every

connected component of the subgraph of G induced by V(G) \ {u, v} contains a vertex
of fo.
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Let G be a plane graph and Γo be a convex drawing of the boundary of the outer face
of G. Even if G is internally 3-connected, the drawing Γo cannot necessarily be extended to a
convex drawing of G. Recall that a path P of G is arched by a face f of G if there exist two
distinct vertices a, b ∈ V(P ) ∩V(∂f) such that the subpath of P between a and b is not a
subpath of ∂f , see Figure 2c. Moreover, P is called archfree if it is not arched by an internal
face of G. The drawing Γo can be extended to a convex drawing of G if and only if G is a
subdivision of an internally 3-connected graph and each side of Γo corresponds to an archfree
path of G [31, 30, 20, 19]. Hong and Nagamochi [20] showed that this characterization carries
over to hierarchical graphs: let H be a hierarchical plane st-graph and Λo be a convex drawing
of the restriction of H to the boundary of its outer face. If each side of Λo corresponds to an
archfree path of H, we call Λo compatible with H. The drawing Λo can be extended to a
convex drawing of H if and only if H is a subdivision of an internally 3-connected graph
and Λo is compatible with H [20]. Hong and Nagamochi also proved the following lemma.

▶ Lemma 5 ([20, Lemma 1]). Let G be an internally 3-connected plane graph and let f be
an internal face of G. Any subpath P of ∂f with |E(P )| ≤ |E(∂f)| − 2 is archfree.

3 Computing archfree paths efficiently

In this section, we prove Theorem 2, that is, we describe our algorithm for computing archfree
paths in internally 3-connected hierarchical plane st-graphs. In fact, we prove the following
generalization of Theorem 2, which gives us the freedom to influence the choice of the first
edge of the computed path. This aspect will be useful in our algorithm to create convex
drawings of hierarchical plane st-graphs.

▶ Theorem 6. There exists an algorithm that, given an internally 3-connected hierarchical
plane st-graph G and (a pointer to) an internal vertex y of G, computes an archfree directed
path Pyz from y to some outer vertex z of G such that all vertices of Pyz except for z are
internal vertices of G in time O(

∑
i∈V(Pyz)\{z} deg+

G(i)).
Moreover, the choice of the first edge (y, u) of Pyz may be influenced as follows: let Fy be

the set of out-faces of y, let ky = maxg∈Fy
{peak(g)}, and let Ky = {g ∈ F | peak(g) = k}.

We may choose (y, u) to be the left-most out-edge of v that is incident to the right-most
out-face in Ky; or the right-most out-edge of v that is incident to the left-most out-face in Ky.

Proof. In the following, we describe the idea of our algorithm; for a full pseudocode version,
see Algorithm 1. Suppose we have already computed a directed path P from y to some
vertex v such that all vertices of P are internal (initially v = y). We will extend P by
appending an out-edge e′ of v that is incident to an out-face of v with maximum peak,
for an illustration see Figure 3. More precisely, let F be the set of out-faces of v, let
k = maxg∈F {peak(g)}, and, finally, let K = {g ∈ F | peak(g) = k}.

(R1) We extend P by appending an out-edge e′ of v that is incident to a face f ′ ∈ K.

At each edge of our path, we store a pointer to the face that was the reason why the edge
was chosen, i.e., we associate the edge e′ with the face f ′.

In general, the choice of e′ and f ′ according to Rule (R1) is not unique (see Figure 3),
and computing a path while exclusively relying on Rule (R1) does not necessarily lead to
an archfree result. We introduce two tiebreaking rules that specialize Rule (R1). Assume
for now that v ̸= y and let e be the edge of P whose head is v. Let f be the face that is
associated with e.

ESA 2021



57:8 Computing Convex Drawings of Hierarchical Graphs in Linear Time

Algorithm 1 The procedure corresponding to Theorem 6.

input : an internally 3-connected hierarchical plane st-graph G

an internal vertex y of G

d ∈ {L, R} ▷ initial associated direction
output : a directed archfree path Pyz from y to an outer vertex z of G such that all

vertices of Pyz except z are internal vertices of G

v ←− y ▷ The endpoint of our current path P ,
P ←− ∅ ▷ whose list of edges is initially empty.
e←− nil ▷ The edge that was most recently appended to P

f ←− nil ▷ and the face associated with it.
D ←− d ▷ The direction currently associated with P

while true do
▷ Let F be the set of out-faces of v

k ←− maxg∈F {peak(g)}
K ←− {g ∈ F | peak(g) = k}
if f ̸= nil and additionally peak(f) = k then

e←− the unique edge of ∂f with tail v

else ▷ f = nil; or f ̸= nil and additionally peak(f) < k

if D = L then
f ←− the right-most face in K

e←− the left-most out-edge of v that belongs to ∂f

else ▷ D = R

f ←− the left-most face in K

e←− the right-most out-edge of v that belongs to ∂f

append e to P

v ←− head(e)
if f is to the left of e then

D ←− L

else ▷ f is to the right of e

D ←− R

if v belongs to the outer face of G then
return P

(R2) If v ̸= y and f ∈ K, we choose f ′ = f and e′ to be the unique out-edge of v that is
incident to f .

In other words, we continue to follow the boundary of a face f until we encounter a
vertex v incident to a face with strictly larger peak, see Figure 3a.

It remains to discuss the case where the preconditions of Rule (R2) are not satisfied. We
associate a direction D ∈ {L, R} with P , namely, D = L if f is to the left of e, and D = R

otherwise. Whenever we switch from f to a new face, we also try to switch the direction
associated with our path if possible. That is, if D = L, we try to choose f ′ and e′ such
that f ′ is to the right of e′, see Figure 3b. Note that this is impossible if and only if |K| = 1
and the unique face f ′ ∈ K is the left-face of v, see Figure 3c. Symmetrically, if D = R,
we try to choose f ′ and e′ such that f ′ is to the left of e′, which is impossible if and only
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Figure 3 The choices of (e′, f ′) made according to Rule (R1) are sometimes unique (c), but in
general they are not (a–b). (a) Unique choice of (e′, f ′) according to Rule (R2). (b–c) Unique choice
of (e′, f ′) according to Rule (R3). In (c) it is not possible to switch the direction of the path.

if |K| = 1 and the unique f ′ ∈ K is the right-face of v. In general, this choice of f ′ and e′ is
still not unique. Whenever there are multiple options, we choose f ′ and e′ such that if D = L

(D = R), the face f ′ is the right-most (left-most) out-face of v such that the above properties
are satisfied, see Figure 3b. To streamline the algorithm, the initial path, where v = y (and,
hence, f is undefined), is also associated with a direction L or R. This initial direction may
be freely chosen. The following rule realizes the strategy discussed in this paragraph:

(R3) If v = y or f /∈ K, our choice of f ′ and e′ depends on D: if D = L (D = R),
we choose f ′ to be the right-most (left-most) face in K and e′ to be the left-most
(right-most) out-edge of v that belongs to ∂f ′.

Indeed, whenever we switch to a new face f ′ ̸= f , Rule (R3) ensures that the direction
associated with the path is switched if possible:

▷ Claim 7. If D = L (D = R) and f ′ and e′ are chosen according to Rule (R3), then f ′ is to
the right (left) of e′, unless |K| = 1 and the unique f ′ ∈ K is the left-face (right-face) of v.

Correctness. Since G has the st-property, Algorithm 1 terminates with a directed path Pyz

from y to some outer vertex z of G such that all vertices of P except for z are internal
vertices of G. Since the initial direction may be freely chosen, Rule (R3) guarantees the
choice of the first edge of Pyz as described in the statement of the theorem.

It remains to show that Pyz is archfree. To the contrary, assume that Pyz is arched by
a face A. Without loss of generality, we may assume that A is to the right of Pyz. This
implies the existence of a directed subpath Aab of the left boundary of A that starts at a
vertex a ∈ V(Pyz), ends at a vertex b ∈ V(Pyz) with b ̸= a, and is interior-disjoint from Pyz.
Let Pab denote the subpath of Pyz that leads from a to b. Let Cab denote the simple cycle
formed by Pab and Aab in the underlying undirected graph of G.

In a plane 2-connected graph, every edge belongs to the boundary of at least one internal
face. Consequently, Lemma 5 implies that in internally 3-connected graphs every path of
length 1 is archfree (since each face is bounded by at least three edges). Since G is internally
3-connected, it follows that |E(Pab)| ≥ 2. Let e = (a, w) denote the unique out-edge of a that
belongs to Pab (where w ̸= b since |Pab| ≥ 2). Let f denote the face associated with e. By
the definition of Aab, we have f ̸= A. The face f can be either to the left or the right of e.
Accordingly, we distinguish two cases.

Case 1: f is to the right of e. For an illustration see Figure 4a. This implies that f is interior
to the cycle Cab. Consequently, we have peak(f) ≤ peak(A). Moreover, by Rule (R1), we
have peak(f) = peak(A) since both A and f are out-faces of a. From the fact that f is

ESA 2021



57:10 Computing Convex Drawings of Hierarchical Graphs in Linear Time

interior to the cycle Cab, we can also conclude that a is the (unique) source of f . Therefore,
the face f and the edge e were chosen according to Rule (R3) (rather than Rule (R2)). Due
to the fact that peak(f) = peak(A), Claim 7 implies that the direction associated with the
subpath Pya of Pyz from y to a is L. Consequently, Rule (R3) implies that f is the right-most
out-face of v whose peak is peak(f) (= peak(A)). We obtain a contradiction to the fact
that A is to the right of f . ◁

a

b

w

e
f

A

Aab

Pab

(a)

a

w
e

f

A

Aab

Pab

x, b

(b)

a

w
e

f

A

Aab

Pab

b

x
e′

f ′

(c)

Figure 4 (a) Case 1 and (b–c) Case 2 in the proof of Theorem 6.

Case 2: f is to the left of e. Let Pax denote the unique maximal subpath of Pab such that
all edges of Pax are associated with f .

To the contrary, assume that the endpoint x ̸= a of Pax is b; for an illustration see
Figure 4b. It follows that a and b form a separator in G that separates w (and all other
vertices in the closed interior of Cab except for a and b) from the outer vertices of G.
Consequently, a and b form a nonexternal separation pair; a contradiction to the internal
3-connectivity of G. Therefore, we have x ̸= b.

Let e′ denote the unique out-edge of x that belongs to Pab; for an illustration see Figure 4c.
By Rule (R2), the edge e′ is associated with a face f ′ such that peak(f ′) > peak(f). Therefore,
face f ′ and edge e′ were chosen according to Rule (R3). Since f is to the left of e, each
edge of Pax has f to its left. Therefore the direction associated with the subpath Pyx of Pyz

from y to x is L. By Rule (R1) applied to a, we have peak(f) ≥ peak(A). Moreover, we
have peak(A) > y(x) since x ≠ b. Consequently, peak(f) > y(x), which implies that f is
the left-face of x. Therefore, by Claim 7, the face f ′ is to the right of e′. This implies
that f ′ is interior to Cab and, consequently, peak(f ′) ≤ peak(A). Altogether, we have
peak(f) < peak(f ′) ≤ peak(A) ≤ peak(f); a contradiction. ◁

Running time. The claimed running time of O(
∑

i∈V(Pyz)\{z} deg+
G(i)) of Algorithm 1 is

easy to achieve: the initialization takes O(1) time. The while loop is executed once for
each vertex of Pyz that is an internal vertex of G. For each vertex v, the quantity k can
be computed in time O(deg+

G(v)) by sweeping the linear sequence of out-faces of v once.
With a second sweep of the sequence, we can then determine in time O(deg+

G(v)) the set K.
Actually, it suffices to remember the left-most and the right-most out-face in K. With this
information, the remaining lines in the while loop can be executed in time O(1). ◀
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4 Computing convex drawings of hierarchical graphs in linear time

In this section, we describe our O(n)-time algorithm to create a convex drawing of a
hierarchical plane st-graph. We follow the idea of the recursive combinatorial construction
by Hong and Nagamochi [20]. As discussed in Section 1, the main improvement comes from
using Theorem 6 to compute archfree paths. We also need to make some changes to the
low-level details of the original algorithm and apply a more careful (amortized) analysis
of its running time. The correctness of our algorithm follows for the most part from the
correctness of the algorithm by Hong and Nagamochi.

▶ Theorem 1. There exists an algorithm that, given a subdivision G = (V, E) of an internally
3-connected hierarchical plane st-graph and a convex polygon Γo that is compatible with G,
computes a convex drawing of G with Γo as the realization of the outer face in time O(n)
where n = |V |.

Proof sketch. It suffices to prove the claim for the case that G is internally 3-connected.
The y-coordinate of each vertex in the desired drawing of G is already fixed. Moreover, the
x-coordinates of the vertices of the outer face are also fixed by Γo. Hence, our goal is to
(recursively) compute the x-coordinates of the internal vertices in a convex drawing of G

with Γo as the realization of the outer face.
We assume we are given a cyclic list L that contains the vertices of G corresponding to

the vertices of Γo whose outer angles are reflex in the order in which they appear around Γo.
We refer to L as the corner list of Γo. Initially, we can preprocess G and Γo to obtain L

in O(n) time. When making recursive calls, we will split L appropriately to create a new
corner list for each subproblem in O(1) time. Given the list L, it is possible in O(1) time to
compute a vertex r that corresponds to a vertex of Γo whose outer angle is reflex and such
that r is not the source or sink of G. Without loss of generality, we assume that r belongs to
the right boundary of Γo. We distinguish two cases regarding the degree of r.

Case 1: degG(r) = 2. For an illustration see Figure 5a. Let ra and rb denote the in-neighbor
and out-neighbor of r, respectively. If |L| = 3 and ra is the source of G and rb is the sink
of G, then G has no internal vertices (otherwise, the internal face incident to r would arch
the path corresponding to the side rarb of Γo thereby contradicting the compatibility of Γo).
Hence, we simply report that the coordinates of all internal vertices are already fixed. This
is the base case of our recursion. It can be recognized and dealt with in O(1) time.

So assume that |L| ≥ 4 or that r has a neighbor that is not the sink or source of G. Let Γo
1

denote the simple (convex) polygon obtained from Γo created by replacing the segments rra

and rrb with the segment rarb. The simplicity of Γo
1 is implied by the above assumption.

If (ra, rb) ∈ E we set G′
1 = G. Otherwise, we add the edge (ra, rb) in the internal face incident

to r and call the resulting graph G′
1. We delete r from G′

1 and call the resulting graph G1.
Properties (I1)–(I2) of Definition 4 can be used to show that G1 is internally 3-connected.
Moreover, it can be derived by Lemma 5 that Γo

1 is compatible with G1. We recursively
compute the coordinates of the internal vertices in a convex drawing of G1 with Γo

1 as the
realization of the outer face. These coordinates combined with the coordinates of r correspond
to the desired drawing of G. The graph G and its polygon Γo are easily transformed into G1
and Γo

1 in O(1) time, and L can be transformed into a corner list of Γo
1 in O(1) time. ◁

Case 2: degG(r) ≥ 3. For illustrations see Figures 5b, 5c, and 6a Without loss of generality,
there is an edge whose head is r and whose tail is an internal vertex of G. Let fr denote
the left-face of r and let P ′

r denote the (unique) directed subpath of ∂fr that connects
the source y′ of fr with r. Let y be the first outer vertex of G distinct from r that is
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encountered when traversing P ′
r from r towards y′ – if no such vertex exists, we set y = y′.

We define Pr to be the subpath of P ′
r between y and r. If y and r are nonadjacent, we

have |E(Pr)| ≤ |E(∂fr)| − 2 and hence Pr is archfree by Lemma 5. If y and r are adjacent,
then Pr = (y, r); otherwise, by the definition of fr, the edge (y, r) is to the right of Pr, which
implies that the vertices r, y form a nonexternal separation pair that separates the internal
vertices of Pr from the outer face and, thus, contradicts the internal 3-connectivity of G.
Hence, Pr is again archfree by Lemma 5. So in any case Pr is archfree. Moreover, Pr is easily
computed in O(|E(Pr)|) time.

r

ra

rb

(a) Case 1.

rfr

y
y′

Pr

(b) Case 2.1.

rfr

y

P1

P2

G2

G1

Pr

(c) Case 2.1.

Figure 5 Case 1 and Case 2.1 in the proof of Theorem 1 and [20, Theorem 8]. (b) depicts the
case where y ̸= y′ and Pr ̸= P ′

r, whereas (c) depicts the case where y = y′ and Pr = P ′
r.

We distinguish two cases depending on whether y is an internal vertex or not.

Case 2.1: y is an outer vertex of G. For illustrations see Figures 5b and 5c. The boundary of
the outer face of G contains two interior disjoint paths P1, P2 between r and y. Each of these
two paths forms a cycle together with Pr. The closed interior of each of these two cycles
describes a hierarchical plane st-graph. We denote these two graphs by G1 and G2 such
that Gi, i ∈ {1, 2} has Pi on its outer face. We define Γo

1 to be the polygon resulting from
replacing the part of Γo that corresponds to P2 with Pr drawn as a straight-line segment,
thereby fixing the coordinates of the internal vertices of Pr. The drawing Γo

2 is defined
analogously. Since each side of Γo corresponds to an archfree path in G, it follows that r

and y do not belong to a common side of Γo. Hence, Γo
1 and Γo

2 are simple (convex) polygons.
Moreover, since Pr is archfree, Γo

1 is compatible with G1 and Γo
2 is compatible with G2. By

Property (I2) of Definition 4 for G it easily follows that G1 and G2 are internally 3-connected.
We recursively compute the coordinates of the internal vertices in convex drawings of G1
and G2 with outer face Γ1 and Γ2, respectively. Note that these coordinates combined with
the coordinates of Γo and Pr correspond to the desired drawing of G.

The hierarchical plane st-graphs G1 and G2 can be obtained in O(|E(Pr)|) time by
splitting G along Pr. The polygons Γo

1 and Γo
2 can be obtained in O(|E(Pr)|) time by

splitting Γo and their corner lists can be obtained in O(1) time by splitting L. ◁

Case 2.2: y is an internal vertex of G. For an illustration see Figure 6a. We compute a
directed archfree path Px from a vertex x on the outer face of G to y by using (a symmetric
version of) Theorem 2. The paths Px and Pr are disjoint except for the common endpoint y.
We also compute a directed archfree path Pz from y to a vertex z on the outer face of G by
using Theorem 6. To ensure that Pz is disjoint from Pr (except for the common endpoint y),
we make use of the ability to influence the choice of the first edge (y, u) of Pz as guaranteed
by Theorem 6. Let Fy be the set of out-faces of y, let ky = maxg∈Fy{peak(g)}, and let
Ky = {g ∈ F | peak(g) = k}. If Ky = {fr}, we pick the left-most out-edge of y that is
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incident to the right-most out-face in Ky (which is fr). Since fr is the left-face of r, this
choice guarantees that Pz and Pr are disjoint. Otherwise (if Ky contains at least one face
distinct from fr), we pick the right-most out-edge of y that is incident to the left-most
out-face in Ky. Since fr is the left-face of r, its peak is strictly larger than y(r). Hence, Ky

cannot contain any face that is to the right of fr. Consequently, it contains a face to the left
of fr. Thus, our choice guarantees that Pz is disjoint from Pr since Pr is the left-face of r.

r

y

fr

x

z

Pr

Px

Pz

(a)

r

y

x

z

Pr

Px

Pz

Pzr
Gzr

P ′
zr

Gxz
Grx

(b)

Figure 6 Case 2.2 in the proof of Theorem 1 and [20, Theorem 8].

The boundary of the outer face of G contains two interior disjoint paths from z to r.
Let Pzr denote the path that does not contain x and let P ′

zr denote the path that contains x,
for an illustration see Figure 6b. The closed interior of the cycle formed by Pzr, Pz, and Pr

describes a hierarchical plane st-graph Gzr, which is easily seen to be internally 3-connected
due to Property (I2) of Definition 4. We pick a point p with y(p) = y(y) in the interior of the
triangle formed by the vertices r, x, z. Finally, we create a convex polygon Γo

zr from Γo by
replacing the part corresponding to P ′

zr with the straight-line segments pz and pr, which fixes
the coordinates of the vertices of Pr and Pz. Since Pr and Pz are archfree in G, it follows
that Γo

zr is compatible with Gzr. Analogously, we define two other internally 3-connected
hierarchical plane st-graphs Grx and Gxz that together with Gzr partition the internal faces
of G. We also construct two convex polygons Γo

rx and Γo
xz that are compatible with Grx

and Gxz, respectively, that also use the point p as a corner. We recursively compute the
internal coordinates of convex drawings of Gzr, Grx, and Gxz with Γo

zr, Γr
rx and Γo

xz as the
realization of the outer face, respectively. Note that these coordinates combined with the
coordinates of Γo, Pr, Pz, and Px correspond to the desired drawing of G.

By Theorem 6, the path Px can be computed in O(
∑

i∈V(Px)\{x} deg−
G(i)) time and Pz

can be computed in O(
∑

i∈V(Pz)\{z} deg+
G(i)) time. By splitting G and Γo, we can com-

pute Gzr, Grx, and Gxz and Γo
zr, Γr

rx, and Γo
xz, respectively, in O(|E(Pr)|+ |E(Px)|+ |E(Pz)|)

time. By splitting L, we can compute the corner lists of Γo
zr, Γr

rx, and Γo
xz in O(1) time. ◁

Running time. The preprocessing (computing L) takes O(n) time. Case 1 can be dealt with
inO(1) time. The time to take care of Case 2.1 can be expressed asO(1)+O(|E(Pr)|). Case 2.2
can be taken care of in time O(1)+O(|E(Pr)|+

∑
i∈V(Px)\{x} deg−

G(i)+
∑

i∈V(Pz)\{z} deg+
G(i)).

In all three cases, the nonconstant summands only involve internal vertices of G, that
is, |E(Pr)| is linear in the number of vertices of Pr that are internal vertices of G, and
the expressions

∑
i∈V(Px)\{x} deg−

G(i) and
∑

i∈V(Pz)\{z} deg+
G(i)) only involve the degree of

vertices of Px and Pz, respectively, that are internal to G. The graph G is then split to
obtain up to three hierarchical plane st-graphs in which these internal vertices are external.
Hence, each vertex of G can contribute to the nonconstant part of the running time of at
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most one subproblem in the recursion tree. Therefore, the total sum of these nonconstant
parts is bounded by

∑
v∈V degG(v) ⊆ O(n). It remains to find an upper bound on the total

number of subproblems. The number of subproblems for which Case 1 arises is bounded by
the number of faces of an internal triangulation of G, which is O(n). Each subproblem for
which Case 2 arises splits at least one internal edge, which becomes external in the created
subproblems. Hence, each edge is split at most once and so the number of the subproblems
for which Case 2 arises is O(n). Therefore the total running time is O(n). ◀
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