
The Visibility Center of a Simple Polygon
Anna Lubiw #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Anurag Murty Naredla #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Abstract
We introduce the visibility center of a set of points inside a polygon – a point cV such that the
maximum geodesic distance from cV to see any point in the set is minimized. For a simple polygon
of n vertices and a set of m points inside it, we give an O((n + m) log (n + m)) time algorithm to
find the visibility center. We find the visibility center of all points in a simple polygon in O(n log n)
time.

Our algorithm reduces the visibility center problem to the problem of finding the geodesic
center of a set of half-polygons inside a polygon, which is of independent interest. We give an
O((n + k) log(n + k)) time algorithm for this problem, where k is the number of half-polygons.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Visibility, Shortest Paths, Simple Polygons, Facility Location

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.65

Related Version Full Version: https://arxiv.org/abs/2108.07366

Funding Anna Lubiw: Supported by NSERC.

1 Introduction

Suppose you want to guard a polygon and you have many sensors but only one guard to
check on the sensors. The guard must be positioned at a point cV in the polygon such that
when a sensor at any query point u sends an alarm, the guard travels from cV on a shortest
path inside the polygon to see point u; the goal is to minimize the maximum distance the
guard must travel. More precisely, we must choose cV to minimize the maximum, over points
u, of the geodesic distance from cV to a point that sees u. The optimum guard position cV

is called the visibility center of the set U of possible query points. See Figure 1. We give an
O((n + m) log (n + m)) time algorithm to find the visibility center of a set U of size m in an
n-vertex simple polygon. To find the visibility center of all points inside a simple polygon,
we can restrict our attention to the vertices of the polygon, which yields an O(n log n) time
algorithm.

To the best of our knowledge, the idea of visibility centers is new, though it is a very
natural concept that combines two significant branches of computational geometry: visibility
problems [12]; and center problems and farthest Voronoi diagrams [5].

There is a long history of finding “center points”, for various definitions of “center”. The
most famous of these is Megiddo’s linear time algorithm [20] to find the center of a set of
points in the plane (Sylvester’s “smallest circle” problem).

Inside a polygon the relevant distance measure is not the Euclidean distance but rather
the shortest path, or geodesic, distance. The geodesic center of a simple polygon is a point
p that minimizes the maximum geodesic distance from p to any point q of the polygon, or
equivalently, the maximum geodesic distance from p to any vertex of the polygon. Pollack,
Sharir, and Rote [24] gave an O(n log n) time divide-and-conquer algorithm to find the
geodesic center of a polygon. Our algorithm builds on theirs. A more recent algorithm by

© Anna Lubiw and Anurag Murty Naredla;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 65; pp. 65:1–65:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alubiw@uwaterloo.ca
mailto:amnaredla@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ESA.2021.65
https://arxiv.org/abs/2108.07366
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 The Visibility Center of a Simple Polygon

cV

u1

u2

u3

u4

u5

r1
r2

r3

r4

u6

u1

u2

u3

u4

u5

H(u1,r2)

r1
r2

r3

r4

u6

H(u3,r3)

H(u5,r4)

H(u4,r4)

H(u6,r1)

cV

Figure 1 (left) Point cV is the visibility center of points U = {u1, . . . , u6}. Starting from cV , the
three points we need to travel (equally) farthest to see are u1, u3 and u5. The shortest paths (in
blue) to see these points must reach the half-polygons bounded by the chords (in red) emanating
from the points. (right) Equivalently, cV is the geodesic center of five half-polygons (each shown as
a red boundary chord shaded on one side).

Ahn et al. [1] finds the geodesic center of a polygon in linear time. Another notion of the
center of a polygon is the link center, which can be found in O(n log n) time [10].

Center problems are closely related to farthest Voronoi diagrams, since the center is
(modulo degeneracies) a vertex of the corresponding farthest Voronoi diagram. Finding the
farthest Voronoi diagram of points in the plane takes Θ(n log n) time – thus is it strictly
harder to find the farthest Voronoi diagram than to find the center. However, working
inside a simple polygon helps for farthest Voronoi diagrams: the farthest geodesic Voronoi
diagram of the vertices of a polygon can be found in time O(n log log n) [23]. Generalizing
the two scenarios (points in the plane, and polygon vertices), yields the problem of finding
the farthest Voronoi diagram of m points in a polygon, which was first solved by Aronov et
al. [3] with run-time O((n + m) log(n + m)), and improved in a sequence of papers [23, 6, 22],
with the current best run-time of O(n + m log m) [27].

Turning to visibility problems in a polygon, there are algorithms for the “quickest visibility
problem” – to find the shortest path from point s to see point q, and to solve the query version
where s is fixed and q is a query point [2, 26]. For a simple polygon [2], the preprocessing
time and space are O(n) and the query time is O(log n). We did not find these results useful
in our algorithm to find the visibility center cV , but they are useful afterwards to find the
actual shortest path from cV to see a query point.

A more basic version of our problem is to find, if there is one, a point that sees all
points in U . The set of such points is the kernel of U . When U is the set of vertices, the
kernel can be found in linear time [19]. For a general set U , Ke and O’Rourke [18] gave an
O(n + m log(n + m)) time algorithm to compute the kernel, and we use some of their results
in our algorithm.

Another problem somewhat similar to ours is the watchman problem [9, 11] – to find a
minimum length tour from which a single guard can see the whole polygon. Our first step is
similar in flavour to the first step for the watchman problem, namely, to replace the condition
of “seeing” everything by a condition of visiting certain “essential chords”.

Our Results

The distance to visibility from a point x to point u in P , denoted dV (x, u) is the minimum
distance in P from x to a point y such that y sees u. For a set of points U in P , the visibility

A. Lubiw and A. M. Naredla 65:3

radius of x with respect to U is rV (x, U) := max{dV (x, u) : u ∈ U}. The visibility center cV

of U is a point x that minimizes rV (x, U). Our main result is:

▶ Theorem 1. There is an algorithm to find the visibility center of a point set U in a simple
n-vertex polygon P with run-time O((n + m) log(n + m)) where m is the size of U .

The key to our algorithm is to reformulate the visibility center problem in terms of
distances to certain half-polygons inside the polygon. We illustrate the idea by means of the
example in Figure 1 where the visibility center of the 6-element point set U is the geodesic
center of a set of five half-polygons.

More generally, we will reduce the problem of finding the visibility center to the problem
of finding a geodesic center of a linear number of half-polygons. The input to this problem
is a set H of k half-polygons (see Section 2 for precise definitions) and the goal is to find
a geodesic center c that minimizes the maximum distance from c to a half-polygon. More
precisely, the geodesic radius from a point x to H is r(x, H) := max{d(x, H) : H ∈ H}, and
the geodesic center c of H is a point x that minimizes r(x, H). Our second main result is:

▶ Theorem 2. There is an algorithm to find the geodesic center of a set H of half-polygons
in a simple n-vertex polgyon P with run-time O((n + k) log(n + k)) where k is the size of H.

Our algorithm extends the divide-and-conquer approach that Pollack et al. [24] used to
compute the geodesic center of the vertices of a simple polygon.

Our main motivation for finding the geodesic center of half-polygons is to find the visibility
center, but the geodesic center of half-polygons is of independent interest. Euclidean problems
of a similar flavour are to find the center (or the farthest Voronoi diagram) of line segments
or convex polygons in the plane [7, 17]. These problems are less well-studied than the case
of point sites (e.g., see [4] for remarks on this). The literature for geodesic centers is even
more sparse, focusing almost exclusively on geodesic centers of points in a polygon. It is thus
interesting that the center of half-polygons inside a polygon can be found efficiently. As a
special case, we can find the geodesic center of the edges of a simple polygon in O(n log n)
time.

The reduction from the visibility center problem to the geodesic center of half-polygons is
in Section 3. The run time is O((n + m) log(n + m)). The algorithm that proves Theorem 2
is in Section 4. Together these prove Theorem 1.

2 Preliminaries

We add a few more basic definitions to augment the main definitions given above. We work
with a simple polygon P of n vertices whose boundary ∂P is directed clockwise. A chord of
P is a line segment inside P that intersects ∂P only at its two endpoints. Any chord divides
P into two half-polygons. A half-polygon is specified by its chord (p, q) with the convention
that the half-polygon contains the path clockwise from p to q.

The geodesic distance d(x, y) (or simply, distance) between two points x and y in P is
the length of the shortest path π(x, y) in P from x to y. For half-polygon H, the geodesic
distance d(x, H) is the minimum distance from x to a point in H.

Points x and y in P are visible (x “sees” y) if the segment xy lies inside P . The distance
to visibility from x to u, denoted dV (x, u) is the minimum distance from x to a point y such
that y sees u. If x sees u, then this distance is 0, and otherwise it is the distance from x

to the half-polygon defined as follows. Let r be the last reflex vertex on the shortest path
from x to u. Extend the ray −→ur from r until it hits the polygon boundary ∂P at a point p to

ESA 2021

65:4 The Visibility Center of a Simple Polygon

obtain a chord rp (which is an edge of the visibility polygon of u). Of the two half-polygons
defined by rp, let H(u, r) be the one that contains u. See Figure 1.

▶ Observation 3. dV (x, u) = d(x, H(u, r)).

At their core, our methods depend on convexity properties of the distance functions. A
basic result is the following which is proved in the full version of our paper.

▷ Claim 4. The set of points x with rV (x, U) ≤ k [or with r(x, H) ≤ k] is geodesically
convex, i.e., if two points x, y lie in the set then so does π(x, y).

More detail on convexity properties can be found in the long version of our paper. These
convexity properties allow us to prove that the visibility center of a set of points U and
the geodesic center of a set of half-polygons H are unique except in very special cases. We
explain this for the geodesic center of half-polygons, but the same argument works for the
visibility center (or, alternatively, one can use the reduction from the visibility center to the
geodesic center in Section 3). First of all, if the geodesic radius is 0 then any point in the
intersection of the half-polygons is a geodesic center. So we assume that the geodesic radius
r is positive. Then we have the following (proved in the long version):

▷ Claim 5. There is a set H′ ⊆ H of two or three half-polygons such that the set of geodesic
centers of H is equal to the set of geodesic centers of H′ and furthermore
1. if H′ has size 3 then the geodesic center is unique (see Figure 1)
2. if H′ has size 2 then either the geodesic center is unique or the two half-polygons of H′

have chords that are parallel and the geodesic center consists of a line segment parallel to
them and midway between them.

3 Reducing the Visibility Center to the Center of Half-Polygons

In this section we reduce the problem of finding the visibility center of a set of points U in
a polygon P to the problem of finding the geodesic center of a linear number of “essential”
half-polygons H, which is solved in Section 4.

By Observation 3 (and see Figure 1) the visibility center of U is the geodesic center of the
set of O(mn) half-polygons H(u, r) where u ∈ U , r is a reflex vertex of P that sees u, and
H(u, r) is the half-polygon containing u and bounded by the chord that extends −→ur from r

until it hits ∂P at a point t. Note that finding t is a ray shooting problem and costs O(log n)
time after an O(n) time preprocessing step [16].

However, this set of half-polygons is too large. We will find a set H of O(n) “essential”
half-polygons that suffice, i.e., such that the visibility center of U is the geodesic center of the
half polygons of H. In fact, we give two possible sets of essential half-polygons, Hreflex and
Hhull, where the latter set can be found more efficiently. The bottleneck is still the algorithm
for geodesic center of half-polygons, but it still seems worthwhile to optimize the reduction.

We first observe that any half-polygon that contains another one is redundant. For
example, in Figure 1 H(u4, r4) is redundant because it contains H(u5, r4). At each reflex
vertex r of P , there are at most two minimal half-polygons H(u, r). Define Hreflex to be this
set of minimal half-polygons. Note that Hreflex has size O(nr) where nr is the number of
reflex vertices of P .

Observe that for the case of finding the visibility center of all points of P , Hreflex consists
of the half-polygons H(v, r) where (v, r) is an edge of P , so Hreflex can be found in time
O(n + nr log n).

A. Lubiw and A. M. Naredla 65:5

For a point set U , the set Hreflex was also used by Ke and O’Rourke [18] in their algorithm
to compute the kernel of point set U in polygon P . (Recall from the Introduction that
the kernel of U is the set of points in P that see all points of U .) They gave a sweep line
algorithm (“Algorithm 2”) to find Hreflex in time O((n + m) log(n + m)). To summarize:

▶ Proposition 6. The geodesic center of Hreflex is the visibility center of U . Furthermore,
Hreflex can be found in time O((n + m) log(n + m)).

In the remainder of this section we present a second approach using Hhull that eliminates
the O(n log n) term. This does not change the runtime to find the visibility center, but
it means that improving the algorithm to find the geodesic center of half-polygons will
automatically improve the visibility center algorithm. The idea is that Hreflex is wasteful in
that a single point u ∈ U can give rise to nr half-polygons. Note that we really only need
three half-polygons in an essential set, though the trouble is to find them!

We first eliminate the case where the kernel of U is non-empty (i.e., rV = 0) by running
the O(n + m log(n + m)) time kernel-finding algorithm of Ke and O’Rourke [18]. Next we
find Hhull in two steps. First make a subset H0 as follows. Construct R, the geodesic convex
hull of U in P in time O(n + m log(m + n)) [14, 25]. For each edge (u, r) of R where u ∈ U

and r is a reflex vertex of P , put H(u, r) into H0. Note that H0 has size O(min{nr, m}) so
ray shooting to find the endpoints of the chords H(u, r) takes time O(n + min{nr, m} log n).
Unfortunately, as shown in Figure 2, H0 can miss an essential half-polygon.

Next, construct a geodesic center c0 of H0 using the algorithm of Section 4. (Note that
the geodesic center can be non-unique and in such cases c0 denotes any one point from the
set of geodesic centers.) Then repeat the above step for U ∪ {c0}, more precisely, construct
R′, the geodesic convex hull of U ∪ {c0} in P and for each edge (u, r) of R′ where u ∈ U

and r is a reflex vertex of P , add H(u, r) to H0. This defines Hhull. Again, Hhull has size
O(min{nr, m}) and ray shooting costs O(n + min{nr, m} log n).

Figure 2 The geodesic convex hull of U = {u1, . . . , u5} is shaded grey. H0 consists of the two
half-polygons H(u2, r2) and H(u3, r3) (with solid red chords), but misses H(u1, r1), which is essential
for the visibility center cV . The point c0 denotes a geodesic center of H0.

▶ Theorem 7. Suppose the kernel of U is empty. Then the geodesic center of Hhull is the
visibility center of U . Furthermore Hhull can be found in time O(n + m log(n + m)) plus the
time to find the geodesic center of O(min{nr, m}) half-polygons.

Proof. The run-time was analyzed above. Consider the visibility center cV . By assumption,
rV > 0. We consider the half-polygons H(u, r) ∈ Hreflex such that rV = d(cV , H(u, r)).

ESA 2021

65:6 The Visibility Center of a Simple Polygon

By Claim 5 either there are three of these half-polygons, H1, H2 and H3, that uniquely
determine cV , or there are two, H1 and H2, that determine cV . Then cV is the geodesic
center of Hi i = 1, 2, 3 or i = 1, 2 depending on which case we are in. Let Hi = H(ui, ri).

If all the Hi’s are in H0, we are done. We will show that at least two are in H0 and the
third one (if it exists) is “caught” by c0. See Figure 2. Let hi be the chord defining Hi and
let Hi be the other half-polygon determined by hi.

▷ Claim 8. If U contains a point in Hi then (ui, ri) is an edge of R so Hi ∈ H0.

Proof. Let u be a point in Hi. Observe that π(ui, u) contains the segment uiri. Thus ri is a
vertex of R. Furthermore uiri is an edge of R. (Note that Hi is extreme at r since we picked
it from Hreflex.) Thus Hi is in H0. ◁

▷ Claim 9. At least two of the Hi’s lie in H0.

Proof. First observe that if two of the half-polygons are disjoint, say Hi and Hj , then they
lie in H0, because ui ∈ Hi implies ui ∈ Hj so by Claim 8, Hi ∈ H0, and symmetrically,
Hj ∈ H0.

We separate the proof into cases depending on the number of Hi’s. If there are two then
they must be disjoint otherwise a point in their intersection would be a visibility center with
visibility radius rV = 0. Then by the above observation, they are both in H0.

It remains to consider the case of three half-polygons. If two are disjoint, we are done, so
suppose each pair Hi, Hj intersects. Then the three chords hi form a triangle. Furthermore,
since

⋂
Hi is non-empty (it contains cV), the inside of the triangle is

⋂
Hi. Now suppose

H1 /∈ H0. Then by Claim 8, u2, u3 ∈ H1. This implies (see Figure 2) that u2 ∈ H3 and
u3 ∈ H2, so by Claim 8, H2 and H3 are in H0. ◁

We now complete the proof of the theorem. We only need to consider the case of three Hi’s,
where one of them, say H1, is not in H0. Our goal is to show that c0, the geodesic center of
H0, lies in H1 and thus H1 is in Hhull. Let X = {x ∈ P : d(x, H2) ≤ rV and d(x, H3) ≤ rV }.
Observe that c0 ∈ X (because the radius is non-increasing as we eliminate half-polygons).
Now, cV is the unique point within distance rV of the half-polygons H1, H2 and H3. If
c0 ∈ H1, then c0’s distance to H1 would be 0 which contradicts the uniqueness property of
cV . Thus c0 ∈ H1. By the same reasoning as in Claim 8, this implies that u1r1 is an edge of
R′, the geodesic convex hull of U ∪ {c0}. Thus H1 is in Hhull by definition of Hhull. ◀

4 The Geodesic Center of Half-Polygons

In this section, we give an algorithm to find the geodesic center of a set H of k half-polygons
inside an n-vertex polygon P . We preprocess by sorting the half-polygons in cyclic order of
their first endpoints around ∂P in time O(k log k). We assume that no half-polygon in H
contains another – any non-minimal half-polygon is irrelevant and can be discarded. Note
that the minimal half-polygons can be found in linear time from the sorted order.

We follow the approach that Pollack et al. [24] used to find the geodesic center of the
vertices of a polygon. Many steps of their algorithm rely, in turn, on search algorithms of
Megiddo’s [20].

The main ingredient of the algorithm is a linear time chord oracle that, given a chord
K = ab of the polygon, finds the relative geodesic center, cK (the optimum center point
restricted to points on the chord), and tells us which side of the chord contains the center.
We must completely redo the chord oracle in order to handle paths to half-polygons instead
of vertices, but the main steps are the same. Our chord oracle runs in time O(n + k). Pollack

A. Lubiw and A. M. Naredla 65:7

et al.’s chord oracle was used as a black box in subsequent faster algorithms [1], so we imagine
that our version will be an ingredient in any faster algorithm for the geodesic center of
half-polygons.

Using the chord oracle, we again follow the approach of Pollack et al. to find the geodesic
center. The total run time is O((n + k) log(n + k)).

We give a road-map for the remainder of this section, listing the main steps, which are
the same as those of Pollack et al., and highlighting the parts that we must rework.

§ 4.1 A Linear Time Chord Oracle

1. Test a candidate center point. Given a point x on the chord K = ab, is the relative
geodesic center cK to the left or right of x? Is the geodesic center c to the left or right of
chord K?

2. Find shortest paths from a and from b to all half-polygons. The details of this step are
novel, because we need shortest paths to half-polygons rather than vertices.

3. Find a linear number of simple functions defined on K whose upper envelope is the
geodesic radius function. We must redo this from the ground up.

4. Find the relative center on K (the point that minimizes the geodesic radius function)
using Megiddo’s technique.

§ 4.2 Finding the Geodesic Center of Half-Polygons

1. Use the chord oracle to find a region of P that contains the center and such that for any
half-polygon H ∈ H, all geodesic paths from the region to H are combinatorially the
same. We give a more modern version of this step using epsilon nets.

2. Solve the resulting Euclidean “intersection radius problem” – to find a smallest disk that
contains given disks and intersects given lines. This is new because of the condition about
intersecting given lines.

4.1 A Linear Time Chord Oracle
In this section we give a linear time chord oracle. Given a chord K = ab the chord oracle
tells us whether the geodesic center of H lies to the left, to the right, or on the chord K. It
does this by first finding the relative geodesic center cK = argmin{r(x, H) : x ∈ K}, together
with the half-polygons that are farthest from cK . From this information, we can identify
which side of K contains the geodesic center c in the same way as Pollack et al. by testing
the vectors of the first segments of the shortest paths from cK to its furthest half-polygons.
This test is described in Subsection 4.1.1.

The chord oracle thus reduces to the problem of finding the relative geodesic center and
its farthest half-polygons. The main idea here is to capture the geodesic radius function
along the chord (i.e., the function r(x, H) for x ∈ K) as the upper envelope of a linear
number of simple functions defined on overlapping subintervals of K. In order to find the
simple functions (Section 4.1.3) we first compute shortest paths from a and from b to all the
half-polygons (Section 4.1.2). Finally we apply Megiddo’s techniques (Section 4.1.4) to find
the point cK on K that minimizes the geodesic radius function.

4.1.1 Testing a Candidate Center Point
Given the relative geodesic center cK on chord K and the first edges of the paths from cK to
its farthest half-polygons, we can test in constant time whether the geodesic center is equal
to cK or lies to the left or the right of K. We can also test, given a point x on K and the

ESA 2021

65:8 The Visibility Center of a Simple Polygon

first edges of the paths to its farthest half-polygons, whether cK is equal to x or lies to the
left or right of x. We illustrate the tests in Figure 3, and defer a more rigorous explanation
to the long version of our paper.

Figure 3 Points xi on chord K = ab with directions of paths to farthest half-polygons in dashed
blue and the direction for improvement in dotted red. (a) x1 is not a relative center. x2 is a relative
center but not the true geodesic center. (b,c) x3 and x4 are geodesic centers.

4.1.2 Shortest Paths to Half-Polygons
In this section we give a linear time algorithm to find the shortest path tree from point a on
the polygon boundary to all the half-polygons H. Recall that each half-polygon is specified
by an ordered pair of endpoints on ∂P , and the half-polygons are sorted in clockwise cyclic
order by their first endpoints. From this, we identify the half-polygons that contain a, and
we discard them – their distance from a is 0. Let H1, . . . , Hk′ be the remaining half-polygons
where Hi is bounded by endpoints piqi, and the Hi’s are sorted by pi, starting at a.

The idea is to first find the shortest path map Ta from a to the set consisting of the polygon
vertices and the points pi and qi. Recall that the shortest path map is an augmentation
of the shortest path tree that partitions the polygon into triangular regions in which the
shortest path from a is combinatorially the same (see Figure 4). The shortest path map can
be found in linear time [13]. Note that Ta is embedded in the plane (none of its edges cross)
and the ordering of its leaves matches their ordering on ∂P . Our algorithm will traverse Ta

in depth-first order, and visit the triangular regions along the way.
Our plan is to augment Ta to a shortest path tree T̄a that includes the shortest paths

from a to each half-polygon Hi. Note that T̄a is again an embedded ordered tree. We can
find π(a, Hi) by examining the regions of the shortest path map intersected by piqi. These
lie in the funnel between the shortest paths π(a, pi) and π(a, qi). Note that edges of the
shortest path map Ta may cross the chord piqi. Also, the funnels for different half-polygons
may overlap. The key to making the search efficient is the following lemma:

▶ Lemma 10. The ordering H1, H2, . . . , Hk′ matches the ordering of the paths π(a, Hi) in
the tree T̄a.

Proof. Consider two half-polygons Hi = piqi and Hj = pjqj , with i < j. We prove that
π(a, Hi) comes before π(a, Hj) in T̄a. If Hi and Hj are disjoint, the result is immediate
since the corresponding funnels do not overlap. Otherwise (because neither half-polygon is
contained in the other) piqi and pjqj must intersect, say at point x. See Figure 4. Let ti and
tj be the terminal points of the paths π(a, Hi) and π(a, Hj), respectively. If ti lies in pix

and tj lies in xqj then the result follows since ti and tj lie in order on the boundary of the
truncated polygon formed by removing Hi and Hj . So suppose that tj lies in pjx (the other
case is symmetric). Then π(a, tj) crosses piqi at a point z in pix. From z to tj the path
π(a, tj) lies inside the cone with apex x bounded by the rays from x through z and from x

through tj . Within that cone, the path only turns left. The angle αj at tj is ≥ 90◦ (it may
be > 90◦ if tj = pj), which implies that the angle αi at z is > 90◦. Therefore ti lies to the
left of z, as required. ◀

A. Lubiw and A. M. Naredla 65:9

pi

x
z

pj

qj

qi

a

tj

ti αi

αj

Figure 4 The shortest path map Ta (thin blue) and the augmentation (dashed red) to include
shortest paths to the two half-polygons bounded by chords piqi and pjqj (thick red).

Based on the Lemma, the algorithm traverses the regions of the shortest path map Ta in
depth first search order, and traverses the half-polygons Hi in order i = 1, 2, . . . , k′. It is easy
to test if one region contains the shortest path to Hi (either to pi, or to qi, or reaching an
internal point of piqi at a right angle); if it does, we increment i, and otherwise we proceed
to the next region. The total time is O(n + k).

4.1.3 Functions to Capture the Distance to Farthest Half-Polygons
In this section we give a linear time algorithm to find a linear number of simple functions
defined on the chord K = ab whose upper envelope is the geodesic radius function r(x, H)
for x ∈ K. Specifically, we use the shortest path trees T̄a and T̄b constructed in the previous
section to build a set of O(n + k) pairs f, I where:

I is a subinterval of K and f is a function defined on domain I,
each function has the form f(x) = d2(x, s) + κ where κ is a constant, d2 is Euclidean
distance, and s is a point or a line,
for any point x ∈ K the maximum of f(x) over intervals I containing x is equal to
r(x, H).

For intuition, see Figure 5a, which shows several intervals and their associated functions.
Note that we deal separately with the two pieces of the polygon on each side of K. There is
an obvious set of O(nk) pairs f, I with the above properties, one for each H ∈ H and v ∈ P ,
but we want a set of linear size.

The crucial property is that there are a limited number of farthest half-polygons associated
with each vertex, and we can restrict our attention (mostly) to longest paths in the trees
T̄a and T̄b. In particular, consider a point x ∈ K, a half-polygon H, and the shortest path
π(x, H). Suppose π(x, H) has at least two edges, say π(x, H) = x, u, v, . . . , t, where t is the
terminal point on H. If π(x, H) turns left at u, then the part of the path from u to t is part
of the tree T̄a, and symmetrically for right turns and T̄b. See Figure 5b. Furthermore, if H

is a farthest half-polygon from x, then we can show (in the full version) that the part of the
path from v to t is the longest path in T̄a descending from v to any half-polygon. Note that
using longest paths from u rather than v is not correct – see Figure 5b.

For any node u in T̄a let ℓa(u) be the maximum length of a path in T̄a descending from u

to a node representing a terminal point on some half-polygon. Define ℓb(u) similarly. We can
compute these functions in linear time in leaf-to-root order. In the situation described above,
where H is a farthest half-polygon from x and the path π(x, H) = x, u, v, . . . , t turns left at
u, we have d(x, H) = |xu| + |uv| + ℓa(v), which is a simple function of the desired form.

The algorithm will output these functions for all pairs u, v where the following conditions
hold: u is a vertex visible from a point on the chord ab (equivalently, u has different parents

ESA 2021

65:10 The Visibility Center of a Simple Polygon

u

v

H1

H2

I1 I2 I3

Ka b{ { {

(a)

u

v

x

H2

H1

Ka b

t1

t2

(b)

Figure 5 (a) An illustration of functions and intervals. For x in interval I1, d(x, H1) = d2(x, u)+κ1.
For x in I2, d(x, H1) = d2(x, v) + κ2. For x in I3, d(x, H2) = d2(x, H2). (b) From point x the
farthest half-polygon is H1 via the path x, u, v, t1. This matches the longest path in T̄a descending
from v (which goes to H1) but does not match the longest path descending from u (which goes to
H2).

in T̄a and T̄b); v is a child of u in one of the trees; and x lies in an appropriate interval on ab

such that u, v can be the start of a geodesic path from x. We deal separately with shortest
paths that go from a point x ∈ ab to a half-polygon without going through any vertices.
Observe that the number of such functions is O(n + k).

We defer further details of the algorithm to the long version of our paper. Besides
enhancing the method of Pollack et al. [24] to deal with half-polygons, our aim is to give a
clearer and easier-to-verify presentation.

4.1.4 Finding the Relative Geodesic Center on a Chord

The last step of the chord oracle is exactly the same as in Pollack et al. [24]. Given the set
of O(n + k) simple convex functions whose upper envelope is the geodesic radius function on
chord K (from Section 4.1.3), and given the test of whether the relative center is left/right
of a point on K (from Section 4.1.1) we want to find the relative center, cK , that minimizes
the radius function. Pollack et al. use a technique of Megiddo’s to do this in O(n + k) time.
The idea is to pair up the functions, find the intersection and domain end-points of each
pair, and test medians of those in order to eliminate a constant fraction of the functions in
each round. Further details are in the long version of this paper. Finally, to find the paths
from the relative center cK to its farthest half-polygons, use the linear time shortest path
algorithm (Section 4.1.2) on each side of K.

4.2 Finding the Geodesic Center of Half-Polygons

In this section we show how to use the O(n + k) time chord oracle from Section 4.1 to find
the geodesic center of the k half-polygons in O((n + k) log(n + k)) time. The basic structure
of the algorithm is the same as that of Pollack et al. [24].

In the first step we use the chord oracle to restrict the search for the geodesic center to a
small region where the problem reduces to a Euclidean “intersection radius problem”. In the
second step we solve the resulting problem, which involves some new ingredients to handle
our case of half-polygons. Each step takes O((n + k) log(n + k)) time.

A. Lubiw and A. M. Naredla 65:11

4.2.1 Finding a Region that Contains the Geodesic Center

Triangulate P in linear time [8]. Run the chord oracle on a chord of the triangulation
that splits the polygon into balanced pieces and recurse on the appropriate subpolygon. In
O(log n) iterations, we narrow our search down to one triangle T ∗ of the triangulation. This
step takes O((n + k) log n) time.

Next, we refine T ∗ to a region R that contains the center and such that R is homogeneous,
meaning that for any H ∈ H the shortest paths from points in R to H have the same
combinatorial structure (the same sequence of polygon vertices along the path).

The idea is to subdivide T ∗ by O(n + k) lines so that each cell in the resulting line
arrangement is homogeneous, and then to find the cell containing the center. Construct the
shortest path trees to H from each of the three corners of triangle T ∗ = (a∗, b∗, c∗) using the
algorithm of Section 4.1.2. For each edge (u, v) of each tree, add the line through uv if it
intersects T ∗. (In fact, we do not need all these lines. The situation is similar to that shown
in Figure 5a, with a∗, b∗ in place of a, b. We need the dashed lines shown in the figure. In
particular, it suffices to use tree edges (u, v) such that u is visible from an edge of T ∗.)

We add three more lines for each half-polygon H ∈ H, specifically, the chord h that
defines H, and the two lines perpendicular to h through the endpoints of h.

The result is a set of O(n + k) lines that we obtain in time O(n + k). It is easy to prove
that the resulting line arrangement has homogeneous regions.

All that remains is to find the cell of the arrangement that contains the geodesic center. It
is simpler to state the algorithm in terms of ϵ-nets instead of the rather involved description
of Megiddo’s technique used by Pollack et al. [24]. Informally, to find a homogeneous region,
we will look at a range space on ground set L whose ranges consist of the subsets of L that
intersect some triangle. Such a range space can be shown to have constant sized ϵ-nets [15].
By using the O(n + k) time chord oracle a constant number of times (on a constant sized
ϵ-net) we can restrict the search space to a region that intersects only a fraction of the
original lines. Repeating this step for O(log(n + k)) times, we arrive at a region R with the
required properties. The details are deferred to the long version due to space constraints.
The total runtime for this step is O((n + k) log(n + k)).

4.2.2 Solving an Unconstrained Problem

At this point, we know that the polygonal region R contains a geodesic center of the set H
of half-polygons in P . Furthermore, R is homogeneous. We can pick a point p in R and find
the shortest path tree from p to all half-polygons. If π(p, H) reaches an internal point of
the chord h defining H then d(x, H) = d2(x, h) for all x ∈ R. And if the first segment of
π(x, H) reaches a vertex u, then d(x, H) = d2(x, u) + κ for all x ∈ R, where κ is a constant.
Our goal is to find the point x ∈ R that minimizes the maximum over H ∈ H of d(x, H).
Since this point must lie in the region R (a guarantee we have from the earlier steps), we
can completely disregard the underlying polygon P in solving the problem.

In the Euclidean plane, the problem may be reinterpreted in a geometric manner. We
wish to find the circle of smallest radius that contains O(n) disks and intersects O(k)
lines. The disk constraints in the new interpretation correspond to half-polygons H where
d(x, H) = d2(x, u) + κ – the disk is centered at u with radius κ. The line constraints
correspond to half-polygons H where d(x, H) = d2(x, h).

This is a combination of problems referred to as the spanning circle problem [21] or
the intersection radius problem [7] in the literature. We will call it the intersection radius

ESA 2021

65:12 The Visibility Center of a Simple Polygon

problem for disks and lines, although the name is not entirely accurate. In the long version
of this paper we prove:

▶ Lemma 11. The intersection radius problem for disks and lines can be solved in linear
time.

We outline the method. The problem for disks alone was solved by Megiddo [21] using an
ingenious idea. The two-dimensional problem is modified to a problem in three dimensions
and the constraints modified in such a way that the bisector between the constraints for
two disks becomes a plane in three dimensions. Thereafter, techniques from linear-time
algorithms for linear programming are used to prune away disks that do not define the
final answer [20]. The prune-and-search technique prunes away a constant fraction of those
disks in linear time and repeating the process reduces the number of disks to some constant
number, after which a brute force method may be employed.

To extend this to handle our line constraints, we add constraints that ensure that the
distances to the lines are less than the radius of the final disk. The bisectors between two
lines are an angle bisector pair. These bisectors become vertical planes in the transformed
three dimensional version of the problem. We thus have a set of planes in three dimensions
that are bisectors between pairs of lines or pairs of disks. Using prune-and-search in two
phases per iteration and a few other ideas ([7]), we modify Megiddo’s technique for disks to
solve our problem in linear time.

5 Conclusions

We introduced the notion of the visibility center of a set of points in a polygon and gave an
algorithm with run time O((n + m) log(n + m)) to find the visibility center of m points in
an n-vertex polygon. To do this, we gave an algorithm to find the geodesic center of a given
set of half-polygons inside a polygon, a problem of independent interest. We conclude with
some open questions.

Can the visibility center of a simple polygon be found more efficiently? Note that the
geodesic center of the vertices of a simple polygon can be found in linear time [1]. Our current
method involves ray tracing and sorting, which are serious barriers. A more reasonable goal
is to find the visibility center of m points in a polygon in time O(n + m log m).

Is there a more efficient algorithm to find the geodesic center of (sorted) half-polygons? In
forthcoming work we give a linear time algorithm for the special case of finding the geodesic
center of the edges of a polygon (this is the case where the half-polygons hug the edges).

How hard is it to find the farthest visibility Voronoi diagram of a polygon? Finally, what
about the 2-visibility center of a polygon, where we can deploy two guards instead of one?

References
1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and

Eunjin Oh. A linear-time algorithm for the geodesic center of a simple polygon. Discrete &
Computational Geometry, 56(4):836–859, 2016. doi:10.1007/s00454-016-9796-0.

2 Esther M Arkin, Alon Efrat, Christian Knauer, Joseph S B Mitchell, Valentin Polishchuk,
Günter Rote, Lena Schlipf, and Topi Talvitie. Shortest path to a segment and quickest visibility
queries. Journal of Computational Geometry, 7:77–100, 2016. URL: https://jocg.org/index.
php/jocg/article/view/3001.

3 Boris Aronov, Steven Fortune, and Gordon Wilfong. The furthest-site geodesic Voronoi diagram.
Discrete & Computational Geometry, 9(3):217–255, 1993. doi:10.1145/73393.73417.

https://doi.org/10.1007/s00454-016-9796-0
https://jocg.org/index.php/jocg/article/view/3001
https://jocg.org/index.php/jocg/article/view/3001
https://doi.org/10.1145/73393.73417

A. Lubiw and A. M. Naredla 65:13

4 Franz Aurenhammer, Robert L Scot Drysdale, and Hannes Krasser. Farthest line segment
Voronoi diagrams. Information Processing Letters, 100(6):220–225, 2006. doi:10.1016/j.ipl.
2006.07.008.

5 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay
Triangulations. World Scientific Publishing Company, 2013.

6 Luis Barba. Optimal algorithm for geodesic farthest-point Voronoi diagrams. In 35th
International Symposium on Computational Geometry (SoCG 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019. URL: http://drops.dagstuhl.de/opus/volltexte/2019/
10416.

7 Binay K Bhattacharya, Shreesh Jadhav, Asish Mukhopadhyay, and J-M Robert. Optimal
algorithms for some intersection radius problems. Computing, 52(3):269–279, 1994. doi:
10.1007/bf02246508.

8 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6(3):485–524, 1991. doi:10.1007/bf02574703.

9 Wei-Pang Chin and Simeon Ntafos. Shortest watchman routes in simple polygons. Discrete &
Computational Geometry, 6(1):9–31, 1991. doi:10.1007/bf02574671.

10 Hristo N Djidjev, Andrzej Lingas, and Jörg-Rüdiger Sack. An O(n log n) algorithm for
computing the link center of a simple polygon. Discrete & Computational Geometry, 8(2):131–
152, 1992.

11 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph SB Mitchell. Touring a sequence of polygons.
In Proceedings of the thirty-fifth Annual ACM Symposium on Theory of Computing (STOC
’03, pages 473–482, 2003. doi:10.1145/780542.780612.

12 Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.
13 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E Tarjan. Linear-

time algorithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica, 2(1-4):209–233, 1987. doi:10.1007/bf01840360.

14 Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.
Journal of Computer and System Sciences, 39(2):126–152, 1989. doi:10.1016/0022-0000(89)
90041-x.

15 David Haussler and Emo Welzl. ϵ-nets and simplex range queries. Discrete & Computational
Geometry, 2(2):127–151, 1987.

16 John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. Journal of Algorithms, 18(3):403–431, 1995. doi:10.1006/jagm.1995.1017.

17 Shreesh Jadhav, Asish Mukhopadhyay, and Binay Bhattacharya. An optimal algorithm for the
intersection radius of a set of convex polygons. Journal of Algorithms, 20(2):244–267, 1996.

18 Yan Ke and Joseph O’Rourke. Computing the kernel of a point set in a polygon. In Workshop
on Algorithms and Data Structures, pages 135–146. Springer, 1989.

19 Der-Tsai Lee and Franco P Preparata. An optimal algorithm for finding the kernel of a polygon.
Journal of the ACM (JACM), 26(3):415–421, 1979. doi:10.1145/322139.322142.

20 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
SIAM Journal on Computing, 12(4):759–776, 1983. doi:10.1137/0212052.

21 Nimrod Megiddo. On the ball spanned by balls. Discrete & Computational Geometry,
4(6):605–610, 1989. doi:10.1007/bf02187750.

22 Eunjin Oh and Hee-Kap Ahn. Voronoi diagrams for a moderate-sized point-set in a simple
polygon. Discrete & Computational Geometry, 63(2):418–454, 2020.

23 Eunjin Oh, Luis Barba, and Hee-Kap Ahn. The geodesic farthest-point Voronoi diagram in a
simple polygon. Algorithmica, 82(5):1434–1473, 2020. doi:10.1007/s00453-019-00651-z.

24 Richard Pollack, Micha Sharir, and Günter Rote. Computing the geodesic center of a simple
polygon. Discrete & Computational Geometry, 4(6):611–626, 1989. doi:10.1007/bf02187751.

25 Godfried T Toussaint. Computing geodesic properties inside a simple polygon. Revue
d’Intelligence Artificielle, 3(2):9–42, 1989.

ESA 2021

https://doi.org/10.1016/j.ipl.2006.07.008
https://doi.org/10.1016/j.ipl.2006.07.008
http://drops.dagstuhl.de/opus/volltexte/2019/10416
http://drops.dagstuhl.de/opus/volltexte/2019/10416
https://doi.org/10.1007/bf02246508
https://doi.org/10.1007/bf02246508
https://doi.org/10.1007/bf02574703
https://doi.org/10.1007/bf02574671
https://doi.org/10.1145/780542.780612
https://doi.org/10.1007/bf01840360
https://doi.org/10.1016/0022-0000(89)90041-x
https://doi.org/10.1016/0022-0000(89)90041-x
https://doi.org/10.1006/jagm.1995.1017
https://doi.org/10.1145/322139.322142
https://doi.org/10.1137/0212052
https://doi.org/10.1007/bf02187750
https://doi.org/10.1007/s00453-019-00651-z
https://doi.org/10.1007/bf02187751

65:14 The Visibility Center of a Simple Polygon

26 Haitao Wang. Quickest visibility queries in polygonal domains. Discrete & Computational
Geometry, 62(2):374–432, 2019. doi:10.1007/s00454-019-00108-8.

27 Haitao Wang. An optimal deterministic algorithm for geodesic farthest-point Voronoi diagrams
in simple polygons. In International Symposium on Computational Geometry (SoCG 2021),
2021. URL: https://arxiv.org/pdf/2103.00076.pdf.

https://doi.org/10.1007/s00454-019-00108-8
https://arxiv.org/pdf/2103.00076.pdf

	1 Introduction
	2 Preliminaries
	3 Reducing the Visibility Center to the Center of Half-Polygons
	4 The Geodesic Center of Half-Polygons
	4.1 A Linear Time Chord Oracle
	4.1.1 Testing a Candidate Center Point
	4.1.2 Shortest Paths to Half-Polygons
	4.1.3 Functions to Capture the Distance to Farthest Half-Polygons
	4.1.4 Finding the Relative Geodesic Center on a Chord

	4.2 Finding the Geodesic Center of Half-Polygons
	4.2.1 Finding a Region that Contains the Geodesic Center
	4.2.2 Solving an Unconstrained Problem

	5 Conclusions

