
27th International Conference on
DNA Computing and Molecular
Programming

DNA 27, September 13–16, 2021, Oxford, UK
(Virtual Conference)

Edited by

Matthew R. Lakin
Petr Šulc

LIPIcs – Vo l . 205 – DNA 27 www.dagstuh l .de/ l ip i c s

Editors

Matthew R. Lakin
Department of Computer Science, Department of Chemical & Biological Engineering,
Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, USA
mlakin@cs.unm.edu

Petr Šulc
School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
psulc@asu.edu

ACM Classification 2012
Theory of computation → Models of computation; Applied computing → Molecular structural biology;
Applied computing → Biological networks; Information systems → Information storage systems

ISBN 978-3-95977-205-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-205-1.

Publication date
September, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.DNA.27.0

ISBN 978-3-95977-205-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-8516-4789
mailto:mlakin@cs.unm.edu
https://orcid.org/0000-0003-1565-6769
mailto:psulc@asu.edu
https://www.dagstuhl.de/dagpub/978-3-95977-205-1
https://www.dagstuhl.de/dagpub/978-3-95977-205-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.DNA.27.0
https://www.dagstuhl.de/dagpub/978-3-95977-205-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

DNA 27

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Matthew R. Lakin and Petr Šulc . 0:vii

Organization

Steering Committee
. 0:ix

Program Committee
. 0:x

Additional Reviewers for Tracks A and B
. 0:xi

Organizing Committee for DNA 27
. 0:xii

Sponsors
. 0:xiii

Regular Papers

Robust Digital Molecular Design of Binarized Neural Networks
Johannes Linder, Yuan-Jyue Chen, David Wong, Georg Seelig, Luis Ceze, and
Karin Strauss . 1:1–1:20

Computing Properties of Thermodynamic Binding Networks: An Integer
Programming Approach

David Haley and David Doty . 2:1–2:16

Self-Replication via Tile Self-Assembly (Extended Abstract)
Andrew Alseth, Daniel Hader, and Matthew J. Patitz . 3:1–3:22

Improved Lower and Upper Bounds on the Tile Complexity of Uniquely
Self-Assembling a Thin Rectangle Non-Cooperatively in 3D

David Furcy, Scott M. Summers, and Logan Withers . 4:1–4:18

ENSnano: A 3D Modeling Software for DNA Nanostructures
Nicolas Levy and Nicolas Schabanel . 5:1–5:23

Directed Non-Cooperative Tile Assembly Is Decidable
Pierre-Étienne Meunier and Damien Regnault . 6:1–6:21

Molecular Machines from Topological Linkages
Keenan Breik, Austin Luchsinger, and David Soloveichik . 7:1–7:20

Small Tile Sets That Compute While Solving Mazes
Matthew Cook, Tristan Stérin, and Damien Woods . 8:1–8:20

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Predicting Minimum Free Energy Structures of Multi-Stranded Nucleic Acid
Complexes Is APX -Hard

Anne Condon, Monir Hajiaghayi, and Chris Thachuk . 9:1–9:21

Reactamole: Functional Reactive Molecular Programming
Titus H. Klinge, James I. Lathrop, Peter-Michael Osera, and Allison Rogers 10:1–10:20

Parallel Pairwise Operations on Data Stored in DNA: Sorting, Shifting, and
Searching

Tonglin Chen, Arnav Solanki, and Marc Riedel . 11:1–11:21

Preface

This volume contains the papers presented at DNA 27: the 27th International Conference
on DNA Computing and Molecular Programming. The conference was originally scheduled
to be held at the University of Oxford, but due to the ongoing COVID-19 pandemic it was
changed to an online format. The virtual conference was held during September 13–16, 2021,
and was organized under the auspices of the International Society for Nanoscale Science,
Computation, and Engineering (ISNSCE). The DNA conference series aims to draw together
researchers from the fields of mathematics, computer science, physics, chemistry, biology, and
nanotechnology to address the analysis, design, and synthesis of information-based molecular
systems.

Papers and presentations were sought in all areas that relate to biomolecular computing,
including, but not restricted to: algorithms and models for computation on biomolecular
systems; computational processes in vitro and in vivo; molecular switches, gates, devices, and
circuits; molecular folding and self-assembly of nanostructures; analysis and theoretical models
of laboratory techniques; molecular motors and molecular robotics; information storage;
studies of fault-tolerance and error correction; software tools for analysis, simulation,and
design; synthetic biology and in vitro evolution; and applications in engineering, physics,
chemistry, biology, and medicine.

Authors who wished to orally present their work were asked to select one of two submission
tracks: Track A (full paper) or Track B (one-page abstract with supplementary document).
Track B is primarily for authors submitting experimental or theoretical results who plan
to submit to a journal rather than publish in the conference proceedings. We received 33
submissions for oral presentations: 17 submissions to Track A and 16 submissions to Track
B. Each submission was reviewed by at least three reviewers, with most reviewed by four
or more reviewers. The Program Committee accepted 11 papers for Track A (65%) and 11
papers for Track B (69%). We also received 29 submissions for Track C (poster), of which
five were selected as additional oral presentations by the Program Committee. This volume
contains the papers accepted for Track A.

We express our sincere appreciation to our invited speakers: Michael Brenner, Luca
Cardelli, Chengde Mao, Petra Schwille, Friedrich Simmel, and Reidun Twarock. We thank
all of the authors who contributed papers to these proceedings at a difficult time, and who
presented papers and posters during the conference. Last, but by no means least, the editors
are especially grateful to the members of the Program Committee and the additional invited
reviewers for their hard work in reviewing the papers on a tight deadline and for providing
insightful and constructive comments to the authors.

Matthew Lakin
Petr Šulc

September 2021

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

Steering Committee

Anne Condon (Chair) University of British Columbia, Canada
Luca Cardelli University of Oxford, UK
Masami Hagiya University of Tokyo, Japan
Natasha Jonoska University of South Florida, USA
Chengde Mao Purdue University, USA
Satoshi Murata Tohoku University, Japan
John H. Reif Duke University, USA
Grzegorz Rozenberg University of Leiden, The Netherlands
Rebecca Schulman Johns Hopkins University, USA
Nadrian C. Seeman New York University, USA
Friedrich Simmel Technical University Munich, Germany
David Soloveichik University of Texas at Austin, USA
Andrew J. Turberfield University of Oxford, UK
Erik Winfree California Institute of Technology, USA
Damien Woods Maynooth University, Ireland
Hao Yan Arizona State University, USA

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Organization

Program Committee

Matthew Lakin (Co-chair) University of New Mexico, USA
Petr Šulc (Co-chair) Arizona State University, USA
Stefan Badelt University of Vienna, Austria
Jonathan Bath University of Oxford, UK
Luca Cardelli University of Oxford, UK
Ho-Lin Chen National Taiwan University, Taiwan (R.O.C.)
Yuan-Jyue Chen Microsoft Research, Redmond, USA
Anne Condon University of British Columbia, Canada
David Doty University of California, Davis, USA
Jonathan Doye University of Oxford, UK
Constantine Evans Evans Foundation and Maynooth University, Ireland
Elisa Franco University of California, Los Angeles, USA
Cody Geary Aarhus University, Denmark
Manoj Gopalkrishnan Indian Institute of Technology, Bombay, India
Elton Graugnard Boise State University, USA
Masami Hagiya University of Tokyo, Japan
Lila Kari University of Waterloo, Canada
Titus Klinge Drake University, USA
Satoshi Kobayashi University of Electro-Communications, Tokyo, Japan
James Lathrop Iowa State University, USA
Chenxiang Lin Yale University, USA
Satoshi Murata Tohoku University, Japan
Eyal Nir Ben Gurion University, Israel
Pekka Orponen Aalto University, Finland
Matthew Patitz University of Arkansas, USA
Lulu Qian California Institute of Technology, USA
John H. Reif Duke University, USA
Flavio Romano Ca Foscari University of Venice, Italy
Lorenzo Rovigatti Sapienza University of Rome, Italy
Dominic Scalise California Institute of Technology, USA
Nicolas Schabanel CNRS and École Normale Supérieure de Lyon, France
Joseph Schaeffer Google Health, USA
Robert Schweller University of Texas Rio Grande Valley, USA
Shalin Shah Bloomberg, USA
William Shih Harvard University, USA
David Soloveichik University of Texas at Austin, USA
Darko Stefanovic University of New Mexico, USA
Jaimie Stewart California Institute of Technology, USA
Chris Thachuk University of Washington, USA
Grigory Tikhomirov University of California Berkeley, USA
Andrew Turberfield University of Oxford, UK
Shelley Wickham University of Sydney, Australia
Damien Woods Maynooth University, Ireland
Fei Zhang Rutgers University, USA

Organization 0:xi

Additional Reviewers for Tracks A and B

Andrew Alseth Daniel Hader
David Caballero Jacob Hendricks
Christian Cuba Samaniego Trent Rogers
Timothy Gomez Scott Summers
Leopold Green Xun Tang

DNA 27

0:xii Organization

Organizing Committee for DNA 27

Andrew Phillips (Co-chair) Microsoft Research, Cambridge, UK
Andrew Turberfield (Co-chair) University of Oxford, UK
Claire Garland Institute of Physics, UK

Organization 0:xiii

Sponsors

International Society for Nanoscale Science, Computation, and Engineering
Biological Physics Group, Institute of Physics
Department of Physics, University of Oxford
Microsoft Research

DNA 27

Robust Digital Molecular Design of Binarized
Neural Networks
Johannes Linder #

University of Washington, Paul G. Allen School of Computer Science and Engineering,
Seattle, WA, USA

Yuan-Jyue Chen
Microsoft Research, Redmond, WA, USA

David Wong
University of Washington, Department of Bioengineering, Seattle, WA, USA

Georg Seelig
University of Washington, Paul G. Allen School of Computer Science and Engineering,
Seattle, WA, USA
University of Washington, Department of Electrical and Computer Engineering,
Seattle, WA, USA

Luis Ceze
University of Washington, Paul G. Allen School of Computer Science and Engineering,
Seattle, WA, USA

Karin Strauss
Microsoft Research, Redmond, WA, USA
University of Washington, Paul G. Allen School of Computer Science and Engineering,
Seattle, WA, USA

Abstract
Molecular programming – a paradigm wherein molecules are engineered to perform computation –
shows great potential for applications in nanotechnology, disease diagnostics and smart therapeutics.
A key challenge is to identify systematic approaches for compiling abstract models of computation
to molecules. Due to their wide applicability, one of the most useful abstractions to realize is
neural networks. In prior work, real-valued weights were achieved by individually controlling
the concentrations of the corresponding “weight” molecules. However, large-scale preparation of
reactants with precise concentrations quickly becomes intractable. Here, we propose to bypass this
fundamental problem using Binarized Neural Networks (BNNs), a model that is highly scalable in
a molecular setting due to the small number of distinct weight values. We devise a noise-tolerant
digital molecular circuit that compactly implements a majority voting operation on binary-valued
inputs to compute the neuron output. The network is also rate-independent, meaning the speed at
which individual reactions occur does not affect the computation, further increasing robustness to
noise. We first demonstrate our design on the MNIST classification task by simulating the system
as idealized chemical reactions. Next, we map the reactions to DNA strand displacement cascades,
providing simulation results that demonstrate the practical feasibility of our approach. We perform
extensive noise tolerance simulations, showing that digital molecular neurons are notably more
robust to noise in the concentrations of chemical reactants compared to their analog counterparts.
Finally, we provide initial experimental results of a single binarized neuron. Our work suggests a
solid framework for building even more complex neural network computation.

2012 ACM Subject Classification Theory of computation → Models of computation; Applied
computing

Keywords and phrases Molecular Computing, Neural Network, Binarized Neural Network, Digital
Logic, DNA, Strand Displacement

Digital Object Identifier 10.4230/LIPIcs.DNA.27.1

© Johannes Linder, Yuan-Jyue Chen, David Wong, Georg Seelig, Luis Ceze, and Karin Strauss;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 1; pp. 1:1–1:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jlinder2@cs.washington.edu
https://doi.org/10.4230/LIPIcs.DNA.27.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Robust Digital Molecular Neural Networks

1 Introduction

Computing in molecules is a prerequisite for a wide range of potentially revolutionizing
nanotechnologies, such as molecular nanorobots and smart therapeutics. For example,
molecular “programs” delivered to cells could collect sensory input from gene expression
to determine the prevalence of disease and conditionally release a drug. Molecular disease
classifiers have already been demonstrated outside of cells [1, 18]. Moreover, as researchers
look toward synthetic DNA for storing data [9, 20, 4], it becomes increasingly important to
develop operations that can be executed on data in molecular form.

Bringing such applications closer to reality requires abstractions and programming
languages that can capture the desired molecular behaviors. A methodical way to reason
about chemical computing is through the formalism of chemical reaction networks (CRNs).
A CRN is a collection of coupled chemical reactions, each consuming a set of reactants to
create a set of products. CRNs are Turing universal [27, 12] and any CRN can in principle be
implemented using synthetic DNA molecules, specifically DNA strand displacement [28, 7].

Molecular computing has traditionally been approached from two different design philo-
sophies; in analog computing, the numerical value of each variable is encoded in the concen-
tration of its corresponding molecular species [24, 5, 33]. Conversely, in digital molecular
computing, concentrations of species representing logical values are restricted to “high” or
“low” ranges similar to voltages in digital electronics [13, 19]. Feed-forward neural networks
have previously been demonstrated as analog molecular circuits [34, 23, 6, 8, 32]. While
compact, analog molecular circuits are inherently sensitive to concentration noise, as such
perturbation directly impacts the correctness of the system.

Here, we develop a digital molecular implementation of binarized neural networks, a
class of models where the inputs, weights and activations are constrained to take the
values {+1, −1} [14]. We devise an efficient molecular circuit for computing binary n-input
majority using O(n2) gates and O(logn) (optimal) depth. Each neuron uses this circuit
for their weighted sum and threshold operation. This design offers a uniquely scalable
molecular implementation: while an analog monotonic network requires exponentially large
concentrations of molecular substrates as a function of layer depth to avoid saturation of
outputs (we develop this argument in Section 3), our design uses a constant concentration
across all network layers. We demonstrate our design on the MNIST task, both as idealized
CRNs and as DNA strand displacement cascades. Finally, we compare the digital neuron to
an analog, rate-independent HardTanh-activated neuron and present improved robustness to
concentration noise and leak. We also present initial experimental results of a simple 2-input
binarized neuron.

2 Background

2.1 Binarized Neural Networks
In this paper we focus on deterministic binarized neural networks (BNNs) as described by [14].
If we first consider a single neuron, its inputs xi, weights wi, bias term b and activation y

are binary-valued and constrained to {+1, −1}. We compute neuron activation y as:

y =
{

+1 if b +
∑N

i=1 wi · xi > 0
−1 else

(1)

Binarized neurons are assembled into fully connected neural networks by treating output
y of a neuron i in layer k as the input xi to neuron j of layer k + 1, connected through
weight w

(k)
ij ∈ {+1, −1}. BNNs can be efficiently trained by gradient descent following the

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:3

scheme of the original authors, where a straight-through estimator was used to propagate
gradients through binarized non-linearities. While BNNs usually are less accurate than their
full-precision counterparts, they offer substantial improvements in execution time and storage
space [26]. Since BNN computation can be executed with bitwise operations, they are also
amenable to efficient implementation on FPGAs and ASICs. Recent BNN architectures show
relatively good performance on more complex tasks such as ImageNet classification [10].

2.2 Chemical Reaction Networks
Chemical Reaction Networks (CRNs) are a mathematical formalism traditionally used by
chemists to describe how the concentration or counts of chemical species evolve over time.
Two example reactions are shown below:

A + B → C

C → D + E

Reaction 1 dictates that one molecule each of A and B react to produce C, until A or B are
fully consumed. Reaction 2 consumes one molecule of C to produce one molecule each of D
and E. Commonly, a rate constant that captures how fast an instance of a reaction occurs is
also associated with each reaction. In this paper, we consider reactions with at most two
reactants or two products. When modeling the time evolution of CRNs, we often reason
about concentrations. We denote the concentration of A at time t as a(t). Assuming mass
action kinetics, a(t) can be modeled as an ODE [11].

Analog and Digital CRNs
Molecular programming with CRNs can be approached from different computational models.
Two of the most widely used models are analog CRNs and digital CRNs. In analog CRNs,
any non-negative real-valued variable x ∈ R+ is represented by a corresponding molecular
species X. The value of x is encoded in the concentration x(t) [24]. For example, x = 3.2 is
represented as x(t) = 3.2nM. This convention makes summation trivial to implement; to
compute s =

∑N
i=1 xi, we add N reactions translating species Xi to the same species S:

Xi → S , 1 ≤ i ≤ N

As time progresses, each input Xi accumulates in species S such that t → ∞ s(t) =∑N
i=1 xi(0).
In a digital computing paradigm, we restrict variables to be discrete, such that they can

only take on a finite number of states. Each discrete variable and state is encoded by its
own molecular species (e.g. Boolean variable x is encoded by two species, X(on) and X(off)).
Chemical concentrations represent only high or low signals indicating which state is active.
For example, Boolean variable x is modeled by the following CRN convention (Here T (high) is
a constant representing the signal filter cutoff and the third case represents incorrect states):

x =

on if x(on)(t) ≥ T (high) and x(off)(t) < T (high)

off if x(on)(t) < T (high) and x(off)(t) ≥ T (high)

(undefined) else

Note that N -input summation is more complicated under this paradigm, as inputs can no
longer simply be translated to the same output species to encode logical sum. Instead, proper
digital circuits such as carry adders have been implemented as CRNs [16, 22].

DNA 27

1:4 Robust Digital Molecular Neural Networks

Piecewise Linear CRNs and HardTanh
In analog CRNs, a real-valued variable x ∈ R that can take on negative values is often
represented in dual-rail form by two species X− and X+. The value of x is encoded as
the difference in their concentration, x = limt→∞ x+(t) − x−(t). Using this convention, the
function h = max(x, −k) can be implemented by two reactions [5] (the initial concentration
of K is set to k(0) = k and x+(0), x−(0) are initialized such that x+(0) − x−(0) = x):

X+ → H+ + K

X− + K → H− (2)

Similarly, function y = min(h, m) can be implemented as (here m(0) = m etc.):

H− → Y − + M

H+ + M → Y + (3)

Note that k, m ∈ R+, so dual-rail is not needed to express their values. By stacking these two
sets of reactions and setting k(0) = 1 and m(0) = 1, we can implement a rate-independent,
analog HardTanh function, y = min(max(x, −1), 1). We use this construction below when
comparing the digital neuron developed in this paper to a HardTanh-activated neuron based
on analog CRNs, which is similar to the ReLU (Rectified Linear Unit) network by [32].

2.3 DNA Strand Displacement
Toehold-mediated DNA strand displacement (DSD) is a framework capable of synthesizing
any CRN [28, 7, 30]. Molecular species are compiled into signal strands which react through
synthetic DNA gates as specified by the CRN reactions. In this paper we use the two-domain
architecture from [3], which supports all of the functionality needed to implement our digital
BNN design; the gates can be prepared at large scale from double-stranded DNA by enzymatic
processing and the architecture supports AND-logic, catalytic amplification and fan-out
operations.

Two-domain gates work by exposing a toehold which, when hybridized by an input strand,
triggers a sequence of displacements. These displacements ultimately release the output
strand bound to the gate. As an example, consider the simple CRN reaction A → B. The
corresponding two-domain DSD system is shown in Figure 1. Species A is represented by the
signal strand to the left (domains t and a – abbreviated ta) and B is represented by the strand
with domains b and f (bf). A sequence of displacements mediated by toehold t eventually
releases the output strand from the gate. Specifically, the sequence of displacements are:

1. Input strand ta binds to gate G, displacing strand at and exposing inner toehold t.
(Reversible reaction)

2. Helper strand tb binds to the newly opened toehold, displacing output strand bf and
exposing inner toehold f. (Reversible reaction)

3. Helper strand fw binds to the newly opened toehold, displacing strand w and closing gate
G. (Irreversible reaction)

A promising alternative for synthesizing CRNs is Polymerase-mediated strand displace-
ment (PSD), where polymerase enzymes trigger initially single-stranded DNA gates by
extending hybridized input strands and consequently displacing any output strand [29, 25].
In this paper, we focus solely on implementing the neural network with enzyme-free toehold-
mediated DSD, but we discuss implementation with PSD towards the end.

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:5

Figure 1 Input strand ta releases strand at and exposes new toehold t. Additional steps of strand
displacement (not shown) ultimately release output strand bf. Additional helper strands tb and fw
(not shown) help carry out the sequence of displacement reactions.

3 Related Work

Neural networks with real-valued weights based on analog computation have previously been
built with DNA strand displacement cascades [23, 8, 6]. Non-linear activation was achieved
by introducing threshold gates with much faster reaction rates than gates producing an
output signal. A recent paper by [32] proposed a rate-independent analog CRN to implement
a neural network with binary-valued weights and ReLU activations.

Neural networks based on monotonic analog CRNs may require exponentially large
concentrations of molecular substrates at deeper network layers to avoid saturation. To
see why, assume a binary-weighted, ReLU-activated network consisting of K layers and
N neurons per layer. If we set all weights wk

ij to +1 and all inputs x0
i to +1, then each

activation in the first layer becomes:

x1
j = max

(N∑
i=1

w0
ij · x0

i , 0
)

= N.

To physically implement this computation, we require a DSD gate or other substrate that can
produce the molecular species for x1

j at a concentration N times larger than x0
i . Inductively, at

the final layer, each activation xK
j can be as large as NK , requiring gates with concentrations

proportional to NK to avoid saturation. We can similarly construct a worst-case example
for the HardTanh function from the previous section; by setting half the weights wk

ij to +1
and half the weights to −1, the concentration of output species Y + / Y − of Reaction Set 3
will be N/2. With the same inductive argument as before, we need gate concentrations
proportional to (N/2)K to avoid saturation.

Our design differs from that of [23] and [32] in that the CRN computation is carried out
with digital logic. Since concentrations are used only to represent high or low signals, the
computation remains correct under perturbation, similar in concept to how electronic digital
circuits offer more robust behavior than analog electronic circuits. The digital design also
makes the system rate-independent and allows for a uniform gate concentration across all
network layers.

4 A Digital Molecular Implementation of Binarized Neurons

A binarized neuron with inputs xi ∈ {+1, −1}, weights wi ∈ {+1, −1} and bias b ∈ {+1, −1}
is illustrated in Figure 2A. To simplify the implementation, we assume the number of inputs,
N , is a power of 2. The neuron consists of a sequence of three operations:

1. Weight operations s0
i = wi · xi, where s0

i denotes weighted input i before summation.
2. A sum operation s =

∑N
i=1 s0

i .
3. A sign operation y = sign(s + b), where b breaks ties in the case when s = 0.

DNA 27

1:6 Robust Digital Molecular Neural Networks

Alternatively, steps 2 and 3 may be considered a majority voting operation between positive
and negative inputs. The following sections describe how we implement the computational
graph shown in Figure 2B of a digital neuron with chemical reactions. We only discuss a
single neuron here to keep the notation light, but a generalization to an arbitrarily sized
BNN is described in Appendix A.

4.1 Weight
Each input xi is represented by two CRN species, X+

i and X−
i , corresponding to states

xi = +1 and xi = −1 respectively. We implement the weight operation s0
i = wi · xi as follows

(Figure 2C): If wi = +1, we add catalytic reactions translating the positive-state input
species X+

i to the positive-state weighted species S0,+
i , and we similarly translate X−

i to
S0,−

i .

X+
i → X+

i + S0,+
i

X−
i → X−

i + S0,−
i

If wi = −1, we instead translate X+
i to S0,−

i , and vice versa for the negative-state input
species.

X+
i → X+

i + S0,−
i

X−
i → X−

i + S0,+
i

In practice, the catalytic reactions do not replenish the input species indefinitely, but rather
transform some gate substrate G into waste W (e.g. X + G → X + W + Y for input species
X and output Y), but this does not matter for our theoretical analysis.

4.2 Majority Vote
If there are more weighted species s0

i = wi · xi in a positive state than a negative state, the
circuit should output a positive state, and vice versa. We can easily enumerate every such
rule as a chemical reaction of N-ary AND-clauses, given the CRN species S0,+

i and S0,−
i of

each weighted input. For example, to handle the case s0 = w ∗ x = (+1, +1, +1, −1), we
would add the reaction:

S0,+
1 + S0,+

2 + S0,+
3 + S0,−

4 → Y +

This CRN is problematic for two reasons: First, the number of reactions grows exponentially
with N . Second, the CRN requires arbitrary-length AND-clauses, which is not feasible when
implemented as DNA strand displacement gates. Instead, we here devise an efficient digital
majority voting CRN that requires only a quadratic number of gates and a logarithmic
(optimal) depth. We will compute the sum s =

∑N
i=1 s0

i as a balanced tree of binary additions
using a recursive definition (Figure 2B):

sk
h = sk−1

2h−1 + sk−1
2h

Here k = 1, ..., log(N) and h = 1, ..., N/2k. At level k = log(N), the full sum s is stored
in s

log(N)
1 . For each binary addition performed during the recursion, we will add chemical

reactions translating every possible combination of discrete values of sk−1
2h−1 and sk−1

2h into
the species of sk

h corresponding to their sum. Suppose the summands can take on m discrete

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:7

Figure 2 A Illustration of a binarized neuron. B Computational graph of a binarized neuron.
The binary summation tree (blue) has a depth of log(N). C Chemical reactions which implement
the modules of the computational graph. D Example illustration of the binary addition circuit. A
set of AND rules encode which input states (summands) correspond to what output state (sum).

values, sk−1
2h−1, sk−1

2h ∈ {v1, ..., vm}. We represent these states with species Sk−1,v1
2h−1 , ..., Sk−1,vm

2h−1
and Sk−1,v1

2h , ..., Sk−1,vm

2h . For every combination of values vi, vj , add the following reaction
(Figure 2C):

Sk−1,vi

2h−1 + S
k−1,vj

2h → S
k,vi+vj

h

Example logical circuits are illustrated in Figure 2D for m = 2 and m = 3. In general, if
the input variables have cardinality m, we require m2 reactions and the cardinality of the
output variable becomes 2m − 1. Note that this circuit is more similar to a demultiplexer
than a carry adder.

Since each binary addition has depth 1, and there are log(N) levels of additions, the
total depth is log(N). To calculate the total number of reactions, we first note that, at
level k, there are N/2k additions. Each summand has cardinality m = 2k−1 + 1 (assuming
binary-valued initial inputs). Hence, the total number of reactions across all log(N) levels
can be calculated as a geometric series:

DNA 27

1:8 Robust Digital Molecular Neural Networks

Figure 3 A Example CRN execution of a 4-input neuron. (x1, x2, x3, x4) = (+1, −1, +1, −1) and
(w1, w2, w3, w4) = (+1, −1, +1, −1). B Optimized 4-input neuron (weight reactions are omitted).

log(N)∑
k=1

N · (2k−1 + 1)2

2k
= N ·

log(N)−1∑
k=0

22k + 2k+1 + 1
2k

= N2

2 + N · log(N) + N

2 − 1

= O(N2)

We have thus shown that we can construct a digital sum circuit as a balanced binary tree
of chemical reactions with O(log(N)) depth and O(N2) reactions. We finalize the majority
voting circuit by adding uni-molecular reactions translating every possible state species
S

log(N),−N
1 , ..., S

log(N),+N
1 of the final sum s

log(N)
1 into the correct signed output species Y +

or Y − (N reactions):

S
log(N),v
1 → Y sign(v+b)

4.3 An Illustrative Example: A 4-Input Binarized Neuron
We show the digital CRN of a 4-input binarized neuron in Figure 3A, which carries out the
full sum before applying the sign reaction. However, we are ultimately not interested in
computing the sum of input species, only their majority vote. If the absolute value of the
partial sum in any of the sub trees is greater than N/2, we can stop computing the sum
since the majority is already determined. That is, if |vi + vj + b| > N/2, alter the reaction to
immediately produce the output species Y + or Y −:

Sk−1,vi

2h−1 + S
k−1,vj

2h → Y sign(vi+vj+b)

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:9

Table 1 Number of CRN reactions required to compute N -input digital majority.

N 2 4 8 16 32
Reactions 4 12 50 182 654

Similarly, it is unnecessary to translate the final sums into their corresponding signs with
separate uni-molecular reactions; we can immediately produce the output species Y +, Y −

from the last level of sums. An optimized 4-input binarized neuron is illustrated in Figure 3B.
The optimization reduces the input cardinality of the two summands at the final level by 1.
Using the geometric series defined in Section 4.2, we can calculate the number of removed
reactions at level k = log(N):

N · (2log(N)−1 + 1)2

2log(N) − N · (2log(N)−1)2

2log(N) = N + 1

The optimized circuit thus requires N2

2 + N · log(N) − N
2 − 2 reactions to compute digital

majority. Table 1 lists the number of required reactions up to N = 32 inputs.

4.4 DNA Strand Displacement Design
Here we present the DNA strand displacement (DSD) implementation of the digital BNN
CRN. The implementation is based on the two-domain design of [3]. The complete DSD
schematic is shown in Figure 4. The implementation is described in detail below.

Each activation xl
i in layer l is represented by two input strands, X l,+

i and X l,−
i . For

each weighted connection sl,0
i,j = wl

i,j · xl−1
i , we add four gates. If wl

i,j = +1, we add the
following gates:

1. Gate Gl,+
Weight,i,j , which outputs Kl−1,+

i and Sl,0,+
i,j given the strand X l−1,+

i as input.
2. Gate Gl−1,+

Restore,i, which translates Kl−1,+
i back to X l−1,+

i .
3. Gate Gl,−

Weight,i,j , which outputs Kl−1,+
i and Sl,0,−

i,j given the strand X l−1,+
i as input.

4. Gate Gl−1,−
Restore,i, which translates Kl−1,−

i back to X l−1,−
i .

If wl
i,j = −1, we swap the output strands Sl,0,+

i,j and Sl,0,−
i,j such that they are released

by gates Gl,−
Weight,i,j and Gl,+

Weight,i,j respectively. Next, we add a cascade of AND gates to
implement sl

j =
∑N l−1

i=1 sl,0
i . For each binary addition sl,k

h,j = sl,k−1
2h−1,j + sl,k−1

2h,j , for all M2

combinations of summand values vm1 , vm2 , we add:

1. Gate Gl,k,m1,m2
Sum,h,j , which outputs S

l,k,vm1 +vm2
h,j given S

l,k−1,vm1
2h−1,j and S

l,k−1,vm2
2h,j as input.

However, if k = log(N l−1) (the final tree level), or if |sl,k−1
2h−1,j + sl,k−1

2h,j + bl
j | > N l−1/2, we let

Gl,k,m1,m2
Sum,h,j produce the neuron majority species X l,+

j or X l,−
j .

Note that, since the output strand of each two-domain gate reverses orientation as
compared to its input strand(s) (the toehold moves to the opposite side of the recognition
domain), we have to alternate the orientation of gates at each level in the summation tree.
Also, since the summation can end at either an odd or- even numbered level, we have to add
translator gates which swap the orientation of the final activation species X l,+

j and X l,−
j .

This guarantees that the activation output strands are always in the correct orientation with
respect to the input weight gates of the next layer.

DNA 27

1:10 Robust Digital Molecular Neural Networks

Figure 4 DSD schematic of the binarized neural network implementation, based on the two-
domain architecture of [3].

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:11

Figure 5 A A single-hidden layer network with 4, 8 or 12 neurons was trained to classify MNIST
digits 6 vs. 7. B Example CRN simulation, as a system of ODEs with unit concentrations and
reaction rates. Graph color corresponds to network component. C The network was simulated in
Microsoft’s DSD tool. Signal concentration = 20nM. Shown is the final output strand trajectory.

5 Experiments

5.1 MNIST Simulations
We demonstrate our binarized neural network design on the MNIST digit classification task.
Similar to one of the analyses in [8], we tested the model’s ability to distinguish between
digits 6 and 7. We trained three versions of a single-hidden layer network (Figure 5A),
with 4, 8 and 12 hidden neurons respectively. For the 4 and- 8 hidden neuron networks, we
downsampled the input images to 5 × 5 pixels. For the 12 neuron version, the images were
downsampled to 10 × 10 pixels. The image pixel values were binarized by subtracting the
mean pixel intensity and thresholding at 0. We settled on a sparse connectivity structure,
where neurons were connected to 4 randomly chosen inputs. The networks were trained
following the procedure of [14], using PyTorch [21] and the Adam optimizer [15].

The network with only 4 hidden neurons correctly classified as many as 93% of test
images (Figure 5A, bottom table). Test accuracy increased marginally up to 96% for the
largest network. We translated the 4-hidden neuron network into our digital CRN design,
totalling 192 molecular species and 102 reactions, and simulated the entire system of ODEs
for an example input image (Figure 5B). Finally, we mapped the 4-hidden neuron network
CRN to a DNA strand displacement (DSD) cascade, using the architecture presented in
Section 4.4. The DSD specification was compiled into a system of ODEs using Microsoft’s
DSD tool with default toehold binding rates and “infinite” compilation mode [17]. The ODE
was simulated by Python SciPy’s odeint (Figure 5B).

5.2 Noise Tolerance Simulations
Next, we compared our digital design (d-BNN) to an analog rate-independent design (a-BNN)
with the HardTanh activation function defined in Section 2.2. The designs were compiled
into CRNs using Microsoft’s DSD tool. Each CRN was copied to Python, compiled into
ODEs and simulated by SciPy’s odeint. Keeping the designs as CRNs in Python allows us
to easily add leak pathways. We provide the schematic for the analog HardTanh network as
idealized CRNs in Appendix B and as DNA strand displacement cascades in Appendix C.

DNA 27

1:12 Robust Digital Molecular Neural Networks

Figure 6 A A single 4-input neuron was compiled into DSD (both as a digital circuit – d-BNN,
and as an analog circuit – a-BNN). Shown is the tested input pattern. B Noise- and leak tolerance
simulations. Concentrations varied uniformly between 0.5x-2x or 0.25x-4x. Signal concentration
(1x) = 20nM. Leak reactions were added to DSD gates with rates of 10−8 or 10−7 nM−1s−1. Each
simulation was run 10 times. 95% confidence intervals estimated from 1000-fold bootstrapping.

We compared the effects of concentration noise and gate leak on each respective design
for a single 4-input neuron (Figure 6A). Specifically, we multiplied input strand and gate
concentrations with a uniform random value and added leak reactions to all gates. Four
different conditions were tested, and each condition was simulated 10 times. The results
indicate that the digital binarized neuron is more robust than its analog counterpart (Fig-
ure 6B); in all four conditions, the correct “turned-on” output trajectory is separable from
the “turned-off” (leaked) trajectory up to 3 hours for the digital neuron, whereas the analog
neuron looses separability of the output trajectories almost immediately.

5.3 Physical Experimental Results
We performed wet lab experiments to validate the function of the basic DSD components
used in the BNN. In Figure 7A, we tested a single catalytic two-domain weight gate, which
is used to restore the input signal to the operating concentration (4nM) given different
concentrations of input strand. As can be seen, the gate restores the signal with low levels of
leak, and all conditions reach 75% of the target concentration within 12 hours. In Figure 7B,
we tested the function of a simple 2-input majority voter where the bias term b is set to +1.
The experiment suggests that the system functions correctly with low levels of leak. Note
that there is no catalytic amplification of the majority voting output signal in Figure 7B,
which is why the concentration is not restored to 4nM.

6 Discussion

When comparing digital BNNs to other molecular neural network implementations, our design
offers both advantages and disadvantages. In terms of complexity, our design is less efficient
(compact) than both rate-dependent and rate-independent analog designs [23, 8, 32], which
require O(N) bi-molecular reactions for weighting and only O(1) reactions for majority voting.
However, our simulations indicate that the digital design is more robust to concentration noise
and gate leak compared to analog implementations. Furthermore, since rate-independent
analog CRNs operate on monotonic dual-rail species, any physical implementation of a

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:13

Figure 7 A An amplifier is used to restore the operating concentration (4nM) of the input strand
given different input strand concentrations. B A 2-input majority voting circuit with +1 bias is used
to trigger the output strand only if the positive inputs are in majority. Input concentration is 4nM.

deep, fully connected neural network would require an exponentially large concentration of
molecular substrates at the final network layers (exponential in the network layers). The
digital design, however, allows a constant substrate concentration across all layers.

The DSD architecture of the digital BNN can potentially support even large networks,
since the DNA gates can be enzymatically prepared from a pool of fully double-stranded
DNA [7]. However, it is often difficult in practice to scale up the number of two-domain gates
in a single reaction vessel due to the many possible leak pathways, in particular for catalytic
gates. To reduce noise, we might consider isolating each neuron computation with either
localized reactions [2] or physical separation by microfluidic droplets [31]. Alternatively,
strand-displacing polymerase (PSD) may be a promising option, which leak minimally [29, 25].
Furthermore, all reactions can be implemented with single-stranded PSD AND-gates, allowing
for simple large-scale synthesis. The main caveat is that PSD currently does not support
catalytic reactions. However, we can forego the catalytic reactions and instead start with
exponentially large input concentrations, which may be feasible for 1–2 hidden layers of
computation.

Finally, for future work we wonder whether the gate complexity of O(N2) for digital
majority voting can be reduced by acknowledging that neural networks often behave well
with small errors. We thus ask if we could design an “approximate” majority voter with
O(N) gates. For example, instead of computing exact partial sums on groups of inputs, we
might get approximately correct output using only the signs of the inputs at each level of
the tree.

7 Conclusion

In this paper, we present a digital molecular design of binarized neural networks. We devise
a depth-optimal majority voting circuit that uses O(N2) bi-molecular chemical reactions in
a cascade of depth O(log(N)) to compute N -input majority. Each neuron uses this circuit
to compute its activation function. We demonstrated our molecular implementation on the
MNIST digit classification task, by simulating the ODE of a network with 4 hidden neurons
as a DNA strand displacement cascade. We further demonstrated improved tolerance to
concentration noise compared to analog BNN implementations in simulations.

We hope this paper sparks future research in molecular implementations of machine
learning models. The intersection of digital circuit design, ML techniques and chemical
reaction networks can enable other computational models implemented as molecular circuits
and lead to whole new applications in molecular computing.

DNA 27

1:14 Robust Digital Molecular Neural Networks

References
1 Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular

computer for logical control of gene expression. Nature, 429(6990):423–429, 2004.
2 H. Bui, S. Shah, R. Mokhtar, T. Song, S. Garg, and J. Reif. Localized DNA hybridization

chain reactions on DNA origami. ACS nano, 12(2):1146–1155, 2018.
3 L. Cardelli. Two-domain DNA strand displacement. Mathematical Structures in Computer

Science, 23(2):247–271, 2013.
4 L. Ceze, J. Nivala, and K. Strauss. Molecular digital data storage using dna. Nature Reviews

Genetics, 20(8):456–466, 2019.
5 H.L. Chen, D. Doty, and D. Soloveichik. Rate-independent computation in continuous chemical

reaction networks. In Proceedings of the 5th Conference on Innovations in Theoretical Computer
Science, pages 313–326, 2014 January.

6 S.X. Chen and G. Seelig. A DNA neural network constructed from molecular variable gain
amplifiers. In International Conference on DNA-Based Computers, pages 110–121, 2017
September.

7 Y.J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, and G. Seelig.
Programmable chemical controllers made from DNA. Nature nanotechnology, 8(10):755–762,
2013.

8 K.M. Cherry and L. Qian. Scaling up molecular pattern recognition with DNA-based winner-
take-all neural networks. Nature, 559(7714):370–376, 2018.

9 G.M. Church, Y. Gao, and S. Kosuri. Next-generation digital information storage in DNA.
Science, 337(6102):1628–1628, 2012.

10 S. Darabi, M. Belbahri, M. Courbariaux, and V.P. Nia. BNN+: Improved binary network
training. OpenReview, 2018.

11 I.R. Epstein and J.A. Pojman. An introduction to nonlinear chemical dynamics: Oscillations,
waves, patterns, and chaos. Oxford Univ Press London, page London, 1998.

12 F. Fages, G. Le Guludec, O. Bournez, and A. Pouly. Strong turing completeness of continuous
chemical reaction networks and compilation of mixed analog-digital programs. In International
Conference on Computational Methods in Systems Biology, pages 108–127, 2017 September.

13 A. Hjelmfelt, E.D. Weinberger, and J. Ross. Chemical implementation of neural networks and
turing machines. Proceedings of the National Academy of Sciences, 88(24):10983–10987, 1991.

14 I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks.
In Advances in Neural Information Processing Systems, pages 4107–4115, 2016.

15 D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv, 2014. arXiv:
1412.6980.

16 M.R. Lakin and A. Phillips. Modelling, simulating and verifying turing-powerful strand
displacement systems. In International Workshop on DNA-Based Computers, pages 130–144,
2011 September.

17 M.R. Lakin, S. Youssef, F. Polo, S. Emmott, and A. Phillips. Visual DSD: a design and
analysis tool for DNA strand displacement systems. Bioinformatics, 27(22):3211–3213, 2011.

18 R. Lopez, R. Wang, and G. Seelig. A molecular multi-gene classifier for disease diagnostics.
Nature chemistry, 10(7):746–754, 2018.

19 M.O. Magnasco. Chemical kinetics is turing universal. Physical Review Letters, 78(6):1190,
1997.

20 L. Organick, S.D. Ang, Y.J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, M.Z. Racz,
G. Kamath, P. Gopalan, B. Nguyen, and C.N.etal. Takahashi. Random access in large-scale
DNA data storage. Nature biotechnology, 36(3):242, 2018.

21 A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch, 2017.

22 L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand displacement
cascades. Science, 332(6034):1196–1201, 2011.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:15

23 L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA strand displacement
cascades. Nature, 475(7356):368–372, 2011.

24 P. Senum and M. Riedel. Rate-independent constructs for chemical computation. PloS one,
6(6):e21414, 2011.

25 S. Shah, J. Wee, T. Song, L. Ceze, K. Strauss, Y.J. Chen, and J. Reif. Using strand displacing
polymerase to program chemical reaction networks. Journal of the American Chemical Society,
142(21):9587–9593, 2020.

26 T. Simons and D.J. Lee. A review of binarized neural networks. Electronics, 8(6):661, 2019.
27 D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite stochastic

chemical reaction networks. Natural Computing, 7(4):615–633, 2008.
28 D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for chemical kinetics.

Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.
29 T. Song, A. Eshra, S. Shah, H. Bui, D. Fu, M. Yang, R. Mokhtar, and J. Reif. Fast and

compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase.
Nature nanotechnology, 14(11):1075–1081, 2019.

30 N. Srinivas, J. Parkin, G. Seelig, E. Winfree, and D. Soloveichik. Enzyme-free nucleic acid
dynamical systems. Science, 358(6369), 2017.

31 A. Stephenson, M. Willsey, J. McBride, S. Newman, B. Nguyen, C. Takahashi, K. Strauss, and
L. Ceze. PurpleDrop: A digital microfluidics-based platform for hybrid molecular-electronics
applications. IEEE Micro, 40(5):76–86, 2020.

32 M. Vasic, C. Chalk, S. Khurshid, and D. Soloveichik. Deep molecular programming: A natural
implementation of binary-weight ReLU neural networks. arXiv, 2020. arXiv:2003.13720.

33 M. Vasic, D. Soloveichik, and S. Khurshid. CRN++: Molecular programming language. In
International Conference on DNA Computing and Molecular Programming, pages 1–18, 2018
October.

34 D.Y. Zhang and G. Seelig. DNA-based fixed gain amplifiers and linear classifier circuits. In
International Workshop on DNA-Based Computers, pages 176–186, 2010 June.

A Generalized CRN Definition for Multi-layered Digital BNN

In this appendix, we extend the CRN formalism defined in Section 4 from a single binarized
neuron to an arbitrarily sized network consisting of multiple neurons across many layers.
Let us first extend the notation of the in-silico computational model, which, to remind the
reader, is based on deterministic binarized neural networks (BNNs) as described by [14] with
the added constraint that the number of neurons in any layer is a power of 2.

Let L be the number of network layers and let N l be the number of neurons in layer l.
Define x

(l)
i ∈ {+1, −1} as the binary-valued activation of neuron i in layer l or, if l = 0, let

x
(0)
i be the i:th input to the network. Neuron i in layer l − 1 is connected to neuron j of

layer l through the binary-valued weight w
(l)
i,j ∈ {+1, −1}. Additionally, Neuron j of layer l

has an associated bias term (intercept) b
(l)
j ∈ {+1, −1}. We define activation x

(l)
j of neuron

j recursively as:

x
(l)
j =

{
+1 if b

(l)
j +

∑N l−1

i=1 w
(l)
i,j · x

(l−1)
i > 0

−1 else

CRN Definition
Each neuron activation xl

i is represented by two CRN species X l,+
i and X l,−

i , corresponding
to states xl

i = +1 and xl
i = −1 respectively. For each weight operation sl,0

i,j = wl
i,j · xl−1

i , add
either of the following sets of reactions based on the sign of wl

i,j :

DNA 27

http://arxiv.org/abs/2003.13720

1:16 Robust Digital Molecular Neural Networks

If wl
i,j = +1:

X l−1,+
i → X l−1,+

i + Sl,0,+
i,j

X l−1,−
i → X l−1,−

i + Sl,0,−
i,j

Else if wl
i,j = −1:

X l−1,+
i → X l−1,+

i + Sl,0,−
i,j

X l−1,−
i → X l−1,−

i + Sl,0,+
i,j

The sum operation sl
j =

∑N l−1

i=1 sl,0
i is calculated as a balanced tree of binary additions using

the following recursive definition:

sl,k
h,j = sl,k−1

2h−1,j + sl,k−1
2h,j

Here k = 1, ..., log(N l−1) denotes the current depth in the tree and h = 1, ..., N l−1/2k

denotes the tree node. Assume each summand can take on M discrete values, sl,k−1
2h−1,j , sl,k−1

2h,j ∈
{v1, ..., vM }. The resulting sum can take on 2M−1 values, sl,k

h,j ∈ {v1+v1, v1+v2, ..., vM +vM }.
We represent each discrete state of each variable with a distinct molecular species:

State sl,k
h,j = vm is encoded by species Sl,k,vm

h,j

For each of the M2 combinations of summand values sl,k−1
2h−1,j = vm1 , sl,k−1

2h,j = vm2 , add the
reaction:

S
l,k−1,vm1
2h−1,j + S

l,k−1,vm2
2h,j → S

l,k,vm1 +vm2
h,j

At depth log(N l−1) in the tree, the final weighted sum will be stored in variable s
l,log(N l−1)
1,j .

To compute the binary threshold activation function of neuron j in layer l, which we represent
with species X l,+

j and X l,−
j , add the following reaction for each of the N + 1 possible sum

output species S
l,log(N),−N
1,j , ..., S

l,log(N),+N
1,j (recalling that bl

j is the bias term for neuron j in
layer l):

S
l,log(N),v
1,j → X

l,sign(v+bl
j)

j

B Analog Rate-Independent HardTanh Network CRN

In the main paper, we compare the digital CRN of a binary-threshold neuron to an analog
CRN implementation of a HardTanh-activated neuron. Here, we describe the analog design,
including idealized CRN reactions and the two-domain DSD schematic. The implementation
is based on the rate-independent neural network CRN that was recently proposed by [32],
but with a HardTanh activation function min(max(x, −1), 1) instead of the ReLU function
max(x, 0).

In analog CRN computing, the weight and- sum operations are performed simultaneously.
We implement the weighted sum of neuron j,

sl
j =

N l−1∑
i=1

wl
i,j · xl

i

by adding either of the following two sets of reactions for each input i:

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:17

If wl
i,j = +1:

X
l−1,log(N l),+
i,j → Sl,+

j

X
l−1,log(N l),−
i,j → Sl,−

j

Else if wl
i,j = −1:

X
l−1,log(N l),+
i,j → Sl,−

j

X
l−1,log(N l),−
i,j → Sl,+

j

Note that the molecular species for input xl−1
i are indexed by j. We cannot use catalytic

reactions for rate-independent monotonic CRNs, which means we have to make individual
copies of xl−1

i for each outgoing neuron j. Further down in this text, we will add fan-out
reactions which create as many copies of xl

j as needed by the next layer. This copy operation,
which is implemented as a binary tree, is the reason for having the hard-coded superscript
log(N l) in the species notation. Also note that the bias term bl

j is implemented by setting
the initial concentrations of Sl,+

j and Sl,−
j appropriately; if bl

j = +1, start with sl,+
j (0) = 1,

or if bl
j = −1, start with sl,−

j (0) = 1.
Next, we implement the HardTanh activation function,

xl
j = min(max(sl

j , −1), 1)

by stacking the monotonic, dual-rail reaction set of the two functions hl
j = max(sl

j , −k) and
xl

j = min(hl
j , m) as described by [5]:

Sl,+
j → H l,+

j + Kl
j

Sl,−
j + Kl

j → H l,−
j

H l,−
j → X l,0,−

j,1 + M l
j

H l,+
j + M l

j → X l,0,+
j,1

In order for these reactions to implement clipping of sl
j at [-1, 1], we have to start with initial

concentrations kl
j(0) = 1 and ml

j(0) = 1.
Finally, we fan out activation xl

j to the outgoing N l+1 neurons of the next layer, by
implementing copy operations xl

j,k = xl
j , 1 ≤ k ≤ N l+1. Since we only allow reactions with

at most 2 products, we have to perform the copy in a balanced binary tree of depth of
log(N l+1). Specifically, for d = 1 to log(N l+1) and k = 1 to 2d−1, add the following two
reactions:

X l,d−1,+
j,k → X l,d,+

j,2k + X l,d,+
j,2k+1

X l,d−1,−
j,k → X l,d,−

j,2k + X l,d,−
j,2k+1

To demonstrate the operation of the analog HardTanh CRN, we compiled the same 4-neuron
network that was used in Figure 5 and simulated the resulting system of ODEs when
classifying MNIST digit 7 from 6 (Figure 8A). Here, the monotonic dual-rail computation
of the HardTanh function will make it so that the steady state concentration of the correct
network output species (in this case X2,0,+

1,1) is exactly 1 unit larger than the concentration
of the minority species (X2,0,−

1,1).

DNA 27

1:18 Robust Digital Molecular Neural Networks

Figure 8 A Example CRN simulation, as a system of ODEs with unit concentrations and reaction
rates. Graph color corresponds to network component. B The network was compiled into DSD gates
and simulated in Microsoft’s DSD tool. The graph shows the trajectory of the final output strand.

C Analog HardTanh BNN DSD Schematic

The DSD schematic for the analog HardTanh network is shown in Figure 9. Each activation
xl

i (before fanning out) is represented by two input strands, X l,0,+
i,1 and X l,0,−

i,1 . Immediately
following the network input strands X0,0,+

i,1 and X0,0,+
i,1 , we add a cascade of gates which

create N1 copies of X0,0,+
i,1 and X0,0,−

i,1 . For d = 1 to log(N l) and h = 1 to 2d−1, we add:
1. Gate Gl,d,+

Fanout,i,h, which translates X l,d−1,+
i,h to X l,d,+

i,2h and X l,d,+
i,2h+1.

The N l copies are now stored in the signal strands X
0,log(N1),+
i,j and X

0,log(N1),+
i,j , 1 ≤ j ≤ N1.

Note that we require different orientations for the negative and- positive signal strands; this
is needed to make the Fork and- Join gates of the HardTanh circuit compatible without extra
translators. Next, for each input i in the weighted sum sl

j =
∑N l−1

i=1 wl
i,j · xl

i, we add either
of the following two sets of gates depending on the sign of wl

i,j :
If wl

i,j = −1, we add:

1. Gate Gl,+
Weight,i,j which outputs signal strand Sl,−

j .
2. Gate Gl,−

Weight,i,j which outputs signal strand Sl,+
j .

If wl
i,j = +1, we must add an extra translation step in order to maintain the orientation of

the output strands. We thus add:

1. Gate Gl,+
Weight,i,j which outputs signal strand Dl,+

j .
2. Gate Gl,−

Weight,i,j which outputs signal strand Dl,−
j .

3. Gate Gl,+
Sum-Swap,j which outputs Sl,+

j given Dl,+
j as input.

4. Gate Gl,−
Sum-Swap,j which outputs Sl,−

j given Dl,−
j as input.

The HardTanh circuit is implemented by adding a sequence of 4 gates:

1. Gate Gl
HardTanh1,j , which outputs Kl

j and H l,+
j given Sl,+

j as input.
2. Gate Gl

HardTanh2,j , which outputs H l,−
j given Sl,−

j and Kl
j as input.

3. Gate Gl
HardTanh3,j , which outputs M l

j and X l,0,+
j,1 given H l,−

j as input.
4. Gate Gl

HardTanh4,j , which outputs X l,0,+
j,1 given H l,+

j and M l
j and Kl

j as input.

J. Linder, Y.-J. Chen, D. Wong, G. Seelig, L. Ceze, and K. Strauss 1:19

Figure 9 DSD schematic of the analog HardTanh neural network implementation, based on the
two-domain architecture of [3].

DNA 27

1:20 Robust Digital Molecular Neural Networks

Finally, we add a cascade of fan-out gates which multiplex the neuron activation strands
X l,0,+

j,1 and X l,0,−
j,1 to N l+1 copies, X l,0,+

j,k and X l,0,+
j,k (same set of gates Gl,d,+

Fanout,j,k and
Gl,d,−

Fanout,j,k as previously described). We mind the orientation of positive and- negative signal
strands by alternating gate orientation and add direction swap gates at the final layer in
case the fan-out depth is odd-numbered.

We replicated the DSD simulation of the 4-neuron MNIST classifier of Figure 5C using
the HardTanh circuit. The trajectories of the final output species X2,0,+

1,1 and X2,0,−
1,1 are

shown in Figure 8B. We set the signal unit to 20 nM (same as the digital BNN in Figure 5C),
which means that the final steady state concentrations become 140 nM and 120 nM (Compare
to the unit-less steady-state concentrations of Figure 8A, which were 7 and 6 respectively).

Computing Properties of Thermodynamic Binding
Networks: An Integer Programming Approach
David Haley #

University of California, Davis, CA, USA

David Doty #

University of California, Davis, CA, USA

Abstract
The thermodynamic binding networks (TBN) model [9] is a tool for studying engineered molecular
systems. The TBN model allows one to reason about their behavior through a simplified abstraction
that ignores details about molecular composition, focusing on two key determinants of a system’s
energetics common to any chemical substrate: how many molecular bonds are formed, and how
many separate complexes exist in the system. We formulate as an integer program the NP-hard
problem of computing stable (a.k.a., minimum energy) configurations of a TBN: those configurations
that maximize the number of bonds and complexes. We provide open-source software [13] solving
this integer program. We give empirical evidence that this approach enables dramatically faster
computation of TBN stable configurations than previous approaches based on SAT solvers [3].
Furthermore, unlike SAT-based approaches, our integer programming formulation can reason about
TBNs in which some molecules have unbounded counts. These improvements in turn allow us to
efficiently automate verification of desired properties of practical TBNs. Finally, we show that
the TBN has a natural representation with a unique Hilbert basis describing the “fundamental
components” out of which locally minimal energy configurations are composed. This characterization
helps verify correctness of not only stable configurations, but entire “kinetic pathways” in a TBN.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases thermodynamic binding networks, integer programming, constraint program-
ming

Digital Object Identifier 10.4230/LIPIcs.DNA.27.2

Supplementary Material Software (Source Code): https://github.com/drhaley/stable_tbn

Funding Supported by NSF award 1900931 and CAREER award 1844976.

1 Introduction

Recent experimental breakthroughs in DNA nanotechnology [5] have enabled the construction
of intricate molecular machinery whose complexity rivals that of biological macromolecules,
even executing general-purpose algorithms [23]. A major challenge in creating synthetic
DNA molecules that undergo desired chemical reactions is the occurrence of erroneous “leak”
reactions [16], driven by the fact that the products of the leak reactions are more energetically
favorable. A promising design principle to mitigate such errors is to build “thermodynamic
robustness” into the system, ensuring that leak reactions incur an energetic cost [14, 20, 22]
by logically forcing one of two unfavorable events: either many molecular bonds must break –
an “enthalpic” cost – or many separate molecular complexes (called polymers in this paper)
must simultaneously come together – an “entropic” cost.

The model of thermodynamic binding networks (TBNs) [9] was defined as a combinatorial
abstraction of such molecules, deliberately simplifying substrate-dependent details of DNA
in order to isolate the foundational energetic contributions of forming bonds and separating
polymers. A TBN consists of monomers containing specific binding sites, where binding

© David Haley and David Doty;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:drhaley@ucdavis.edu
mailto:doty@ucdavis.edu
https://doi.org/10.4230/LIPIcs.DNA.27.2
https://github.com/drhaley/stable_tbn
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Computing Properties of Thermodynamic Binding Networks: An IP Approach

site a can bind only to its complement a∗. A key aspect of the TBN model is the lack of
geometry: a monomer is an unordered collection of binding sites such as {a, a, b∗, c}. A
configuration of a TBN describes which monomers are grouped into polymers; bonds can only
form within a polymer.1 One can formalize the “correctness” of a TBN by requiring that its
desired configuration(s) be stable: the configuration maximizes the number of bonds formed,
a.k.a., it is saturated, and, among all saturated configurations, it maximizes the number of
separate polymers.2 See Figure 1 for an example. Stable configurations are meant to capture
the minimum free energy structures of the TBN. Unfortunately, answering basic questions
such as “Is a particular TBN configuration stable?” turn out to be NP-hard [3].

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

saturated stablenot saturated

Figure 1 Example of a simple thermodynamic binding network (TBN). There are four monomers:
m1 = {a∗, b∗}, m2 = {a, b}, m3 = {a}, m4 = {b}, with seven configurations shown: four of these
configurations are saturated because they have the maximum of 2 bonds. Of these, three have 2 polymers
and one has 3 polymers, making the latter the only stable configuration. Despite the suggestive lines
between binding sites, the model of this paper ignores individual bonds, defining a configuration solely
by how it partitions the set of monomers into polymers, assuming that a maximum number of bonds
will form within each polymer. (Thus other configurations exist besides those shown, which would merge
polymers shown without allowing new bonds to form.)

1.1 Our contribution

Our main contribution is a reduction that formulates the problem of finding stable con-
figurations of a TBN as an integer program (IP). Of course, the problem, appropriately
formalized, is “clearly” an NP search problem, so the mere existence of such a reduction
is not particularly novel. However, our formulation is notable in three respects: 1) We
carefully avoid certain symmetries (particularly those present in the existing SAT-based
formulation of Breik et al. [3]), which dramatically increases the search efficiency in practice.
2) We use the optimization ability of IP solvers as a natural way to maximize the number of
polymers in any saturated configuration. 3) Our formulation leads to a natural interpretation
of the Hilbert basis [7] of a TBN as its minimal saturated polymers, which intuitively are
the polymers existing in any local energy minimum configuration. Since highly optimized
software exists for calculating Hilbert bases [1], this expands the range of TBN behaviors
that can be automatically reasoned about.

1 A primary goal of the TBN model is to establish that certain undesired configurations impose an
energetic cost, i.e., to demonstrate impossibility results. From this perspective, the lack of geometric
constraints means that such impossibility results give stronger guarantees than if geometric constraints,
such as unpseudoknottedness of DNA secondary structure, were imposed on the allowable configurations.
For example, “leakless” DNA strand displacement systems [20, 22] retain their leaklessness even if
pseudoknotted structures are permitted.

2 This definition captures the limiting case (often approximated in practice in DNA nanotechnology)
corresponding to increasing the strength of bonds, while diluting (increasing volume), such that the
ratio of binding to unbinding rate goes to infinity.

D. Haley and D. Doty 2:3

This formulation allows us to automate portions of formal reasoning about TBNs, helping
verify their correctness. The TBN model abstracts away the continuous nature of real free
energy into discrete integer-valued steps. In the limit of dilute solutions (bringing together
polymers incurs a large energy cost) and very strong bonds (breaking a bond incurs a huge
energy cost), even one integer step of energy difference is considered significant. Furthermore,
in a catalytic system, the presence (or absence) of even a single polymer may have a very large
impact on the system’s trajectory, an indication that system analyses are very numerically
sensitive, and thus their behavior is not well-described by approximation methods. For these
reasons it is crucial when verifying such systems that we identify the exact solution to the
optimization problem, rather than settling for more efficiently computable approximations
(e.g., via continuous relaxation [6] or local search [18]).

1.2 Related work
Breik, Thachuk, Heule, and Soloveichik [3] characterize the computational complexity of
several natural problems related to TBNs. For instance, it is NP-complete to decide whether
a saturated configuration exists with a specified number of polymers, and even NP-hard to
approximate within any constant factor the number of polymers in a stable configuration
(i.e., the maximum in any saturated configuration).

Breik et al. also developed software using a SAT solver to produce stable configurations
of a TBN. This formulation requires “labelled” monomers (where two different instances
of the same monomer type are represented by separate Boolean variables), which become
nodes in a graph, and polymers are realized as connected components within the graph. By
labelling the monomers they become unique copies of the same monomer type; n copies
of a monomer type increases the size of the search space by factor n! by considering these
symmetric configurations separately. Furthermore, the software explicitly explores all possible
symmetries of bonding arrangements within a polymer. For instance, monomers {a∗, a∗}
and {a, a} can bind in two different ways (the first a∗ can bind either the first or second
a), even though both have the same number of bonds and polymers. This over-counting of
symmetric configurations prevents the software from scaling to efficiently analyze certain
TBNs with large counts of monomers. Our IP formulation avoids both types of symmetry.

2 Preliminaries

2.1 Definitions
A multiset is an unordered collection of objects allowing duplicates (including countably
infinite multiplicities), e.g., v = {2 · a, b, ∞ · d}. Equivalently, a multiset with elements from a
finite set U is a vector v ∈ (N ∪ {∞})U describing the counts, indexed by U ; in the example
above, if U = {a, b, c, d}, then v(a) = 2, v(b) = 1, v(c) = 0, and v(d) = ∞. The cardinality
of a multiset v ∈ NU is |v| =

∑
u∈U v(u); a finite multiset v obeys |v| < ∞. A site type is a

formal symbol, such as a, representing a specific binding site on a molecule; in Figure 1 the
site types are a, a∗, b, b∗. Each site type has a corresponding complement type denoted by a
star, e.g. a∗. Complementarity is an involution: (a∗)∗ = a. A site and its complement can
form an attachment called a bond. We follow the convention that for any complementary
pair of sites a, a∗, the total count of a∗ across the whole TBN is at most that of a, i.e., the
starred sites are limiting. A monomer type is a finite multiset of site types.3

3 Concretely, in a DNA nanotech design, a monomer corresponds to a strand of DNA, whose sequence is
logically partitioned into binding sites corresponding to long (5-20 base) regions, e.g., 5′-AAAGG-3′,
intended to bind to the complementary sequence 3′-TTTCC-5′ that is part of another strand.

DNA 27

2:4 Computing Properties of Thermodynamic Binding Networks: An IP Approach

A thermodynamic binding network (TBN) is a multiset of monomer types; equivalently,
a vector in (N ∪ {∞})m, if m is the number of monomer types and we have fixed some
standardized ordering of them. We allow some monomer counts to be infinite in order to
capture the case where some monomers are added in “large excess” over others, a common
experimental approach [16,17]. A polymer P is a finite multiset of monomer types, equivalently,
a vector in Nm, where m is the number of monomer types in a standardized ordering;4
thus |P| represents the number of monomers in P. Note that despite the suggestive lines
representing bonds in Figure 1, this definition does not track which pairs of complementary
sites are bound within a polymer. Indeed, it is allowable in the model for a polymer to
consist of monomers that cannot be connected by bonds, e.g., the polymer {{a}, {b}} using
monomers from Figure 1. In general we study configurations that minimize the number of
merges necessary to reach them, and merges that create such polymers in general would not
be useful in such a setting.

Given a TBN T , let ST (respectively, S∗
T) be the set of unstarred (resp., starred) site

types of T . For a monomer m and site type s ∈ ST , let m(s) denote the count of s minus
the count of s∗ in m (intuitively, m(s) is the “net count” of s in m, negative if there are
more s∗.) For s∗ ∈ S∗

T let m(s∗) = −m(s). The exposed sites of a polymer P are a finite
multiset of site types that results from removing as many (site, complement) pairs from a
polymer as possible, described by the net count of sites when summed across all monomers in
the polymer. For example, in the polymer {{a∗, b∗, c∗}, {a, c}, {a, b, c}, {c, d∗}}, the exposed
sites are {a, 2 · c, d∗}.

A configuration of a TBN is a partition of the monomers of the TBN into polymers; we
write |γ| to denote the number of polymers in configuration γ. A polymer is self-saturated
if it has no exposed starred sites. A configuration is saturated if all of its polymers are
self-saturated. Since we assume that, across the entire configuration, starred sites are limiting,
this is equivalent to stipulating that the maximum possible number of bonds are formed.
Write ΓT to denote the set of all saturated configurations of the TBN T . A configuration is
stable if it is saturated and has the maximum number of non-singleton polymers among all
saturated configurations.

Since the number of polymers may be infinite, we will use the equivalent notion that stable
configurations are those that can be constructed by starting with the “melted” configuration
whose polymers are all singletons containing only one monomer, performing the minimum
number of polymer merges necessary to reach a saturated configuration. In general this
quantity could be infinite, but we consider only TBNs in which a saturated configuration
is reachable via a finite number of merges. For example, consider the TBN consisting of
monomer types t = {a}, b = {a∗}, with counts ∞·t and 2·b. The unique stable configuration
has polymers {2 · {b, t}, ∞ · t}, since two merges of a b and a t are necessary and sufficient
to create this configuration from the individual monomers.

2.2 Solvers

The problems addressed in this paper are NP-hard. To tackle this difficulty, we cast the
problems as integer programs and use the publicly available IP solver SCIP [11].

4 The term “polymer” is chosen to convey the concept of combining many atomic objects into a complex,
but it is not necessarily a linear chain of repeated units.

D. Haley and D. Doty 2:5

We also use the open-source software OR-tools [15], which is a common front-end for
SCIP [11], Gurobi [12], and a bundled constraint programming solver CP-SAT. Though we
model our problems as IPs, we would also like to be able to solve for all feasible/optimal
solutions rather than just one, which CP-SAT can do. This flexible front-end lets us switch
seamlessly between the two types of solvers without significant alterations to the model.

We use the software package 4ti2 [1] to calculate Hilbert Bases as described in Section 4.

3 Computing stable configurations of TBNs

Section 3.1 formally defines the stable configurations problem. Section 3.2 explains our IP
formulation of the problem. Section 3.3 shows empirical runtime benchmarks.

3.1 Finding stable configurations of TBNs
We consider the problem of finding the stable configurations of a TBN. Given a TBN T , let
ΓT denote the set of all saturated configurations of T .

Recall that a configuration γ ∈ ΓT is defined as a partition of the monomers of T into
polymers, so its elements P ∈ γ are polymers, i.e., multisets of monomers. For any γ ∈ ΓT , we
define the corresponding partial configuration γ = {P ∈ γ : |P| > 1} that excludes polymers
consisting of only a single monomer. Note that in the context of T , the mapping γ 7→ γ is
one-to-one. We consider only partial configurations with finite-sized polymers. The notion of
partial configuration will be useful in reasoning about TBNs with infinite monomer counts
but finite size polymers, since all but finitely many monomers will be excluded from the
partial configurations we consider.

Now we define the number of elementary merge operations required to reach a saturated
configuration γ from the configuration of all singletons. We can calculate this directly as the
difference in the counts of the monomers and polymers in the partial configuration, since
each merge reduces the number of polymers by one:

m(γ) =

∑
P∈γ

|P|

− |γ| (1)

We can then define the stable configurations as those saturated configurations that minimize
the number of merges required to reach them from the all-singletons configuration.

StableConfigs(T) = {γ ∈ ΓT : (∀γ′ ∈ ΓT) m(γ) ≤ m(γ′)}

Note that m(γ) = m(γ). Thus the StableConfigs problem may be equivalently posed as
finding the set of saturated partial configurations γ that minimize m(γ).

We now describe how to handle infinite counts. A configuration is saturated if and only
if none of its starred sites (elements of S∗

T) are exposed. Thus we focus on the subset of
monomers that contain starred sites: the limiting monomers TL = {m ∈ T : m ∩ S∗

T ̸= ∅}.
Limiting monomers are required to have finite count, whereas nonlimiting monomers (those
with all unstarred sites) are allowed to be finite or infinite count. Our IP representation of
a configuration explicitly accounts for all the limiting monomers, but only the nonlimiting
monomers (in T \ TL) in a polymer with some limiting monomer; implicitly every other
nonlimiting monomer is unbound (i.e., in its own singleton polymer). This allows us to
describe infinite configurations where all but finitely many of the infinite count monomers
are unbound, guaranteeing that the number of merges counted in Equation (1) is finite.

DNA 27

2:6 Computing Properties of Thermodynamic Binding Networks: An IP Approach

3.2 Casting StableConfigs as an IP

3.2.1 Finding a single stable configuration

We first describe how to find a single element from StableConfigs(T) by identifying
its partial configuration in T . We begin by fixing an upper bound B on the number of
non-singleton polymers in any partial configuration. If no a priori bound for B is available,
conservatively take B = |TL|, the total number of limiting monomers.

3.2.1.1 Nonnegative integer variables

Assume an arbitrary ordering of the m monomer types m1, m2, Our IP formulation uses
B · m + B nonnegative integer variables describing the solution via its partial configuration:

Count(m, j): count of monomer type m ∈ T in polymer Pj where j ∈ {1, 2, . . . , B}
Exists(j): false (0) if polymer Pj is empty, possibly true (1) otherwise, j ∈ {1, 2, . . . , B}

▶ Remark 1. The constraints described below allow Exists(j) = 0 even if polymer j is nonempty,
even though the variables ultimately aim to count exactly the number of nonempty polymers
(as

∑m
j=1 Exists(j)). A false negative undercounts the number of polymers, overcounting

the number of merges in Equation (1). However, the number of merges is being minimized
by the IP. For a given setting of Count variables, the minimum is achieved (subject to the
constraints) by setting each Exists(j) = 1 if and only if polymer j is nonempty.

▶ Example 2. Recall the TBN of Figure 1. Suppose the TBN has 1 each of m1 =
{a∗, b∗}, m2 = {a, b}, m3 = {a}, m4 = {b}, with upper bound B = 2 on the number of
non-singleton polymers. TL = {m1} since m1 is the only monomer with starred sites. The
linear constraints (see below for details) do not require all copies of m2, m3, m4 ∈ T \ TL

to be included in a polymer. The stable configuration on the right of Figure 1 (partition
{m1, m2}, {m3}, {m4}) is represented in the IP by setting Count(m1, 1) = Count(m2, 1) = 1,

Count(m3, 1) = Count(m4, 1) = 0 (monomers 1 and 2 are in polymer 1, but monomers 3 and
4 are not), and setting Count(mi, 2) = 0 for i = 1, 2, 3, 4 (no monomers are in polymer 2),
Exists(1) = 1 (polymer 1 is non-empty), and Exists(2) = 0 (polymer 2 is empty).

▶ Example 3. Suppose a TBN with the same monomer types as Example 2 has 3 of m1
and infinitely many of the remaining monomers (allowed since they are not limiting), with
B = 4. The partial configuration where two copies of m1 are each bound to a single m2
(forming two polymers with two monomers each, as in the stable configuration of Figure 1),
and the third m1 is bound to an m3 and an m4 (forming one polymer with three monomers,
as in the rightmost non-stable saturated configuration of Figure 1) is represented in the IP
by setting Exists(1) = Exists(2) = Exists(3) = 1 and Exists(4) = 0, and

Count(m1, 1) = 1, Count(m2, 1) = 1, Count(m3, 1) = 0, Count(m4, 1) = 0,

Count(m1, 2) = 1, Count(m2, 2) = 1, Count(m3, 2) = 0, Count(m4, 2) = 0,

Count(m1, 3) = 1, Count(m2, 3) = 0, Count(m3, 3) = 1, Count(m4, 3) = 1,

Count(m1, 4) = 0, Count(m2, 4) = 0, Count(m3, 4) = 0, Count(m4, 4) = 0.

3.2.1.2 Linear constraints

Let T (m) denote the number of monomers of type m in the TBN T . Recall that m(s) is
the net count of site type s ∈ ST in monomer type m (negative if m has more s∗ than s).

D. Haley and D. Doty 2:7

Exists(j) ≤ 1 ∀j ∈ {1, 2, . . . , B} (2)
B∑

j=1
Count(m, j) = T (m) ∀m ∈ TL (3)

B∑
j=1

Count(m, j) ≤ T (m) ∀m ∈ T \ TL (4)

∑
m∈T

Count(m, j) · m(s) ≥ 0 ∀j ∈ {1, 2, . . . , B}, ∀s ∈ ST (5)∑
m∈TL

Count(m, j) ≥ Exists(j) ∀j ∈ {1, 2, . . . , B} (6)

Constraint (2) enforces that Exists variables are Boolean. Constraints (3) and (4) intuit-
ively establish “monomer conservation” in the partial configuration. Constraint (3) enforces
that we account for every limiting monomer in T . Constraint (4) establishes that for non-
limiting monomers, we cannot exceed their supply (trivially satisfied for any infinite-count
monomer); any leftovers are assumed to be in singleton polymers in the full configuration,
but are not explicitly described by Count variables. Constraint (5) ensures that all polymers
are self-saturated. Specifically, the count of site s ∈ ST within polymer j must meet or
exceed that of s∗. Lastly, Constraint (6) enforces that nonempty polymers contain at least
one limiting monomer. Ideally, this constraint should enforce that if a polymer contains no
monomers at all, then it cannot be part of the nonempty polymer tally; however, if the con-
straint were modeled in this way, the formulation would admit invalid partial configurations
that include explicit singleton polymers.

3.2.1.3 Linear objective function

Subject to the above constraints, we minimize the number of merges needed to go from
a configuration where all monomers are separate to a saturated configuration. For finite
count TBNs, this is the number of monomers minus the number of polymers in the partial
configuration. Equivalently (and applying to infinite TBNs), this is the sum over all nonempty
polymers of its number of monomers minus 1. Formally, the IP minimizes (7):

B∑
j=1

[(∑
m∈T

Count(m, j)
)

− Exists(j)
]

(7)

If polymer j is empty (
∑

m∈T Count(m, j) = 0), then constraint (6) forces Exists(j) = 0;
otherwise Exists(j) = 1 minimizes (7). Thus the outer sum is over the nonempty polymers.

3.2.2 Finding all stable configurations

While an IP formulation for finding a single stable configuration is well-defined above, without
modification it is ill-suited as a formulation to find all stable configurations. In addition,
tightening the available constraints (e.g., enforcing Exists(j) ⇐⇒ polymer j is nonempty,
described below) provides a more robust framework to which to add custom constraints (e.g.
specifying a fixed number of polymers).

DNA 27

2:8 Computing Properties of Thermodynamic Binding Networks: An IP Approach

3.2.2.1 IP to find optimal objective value, CP to enumerate optimal solutions

One straightforward improvement is to solve for the optimal value of the objective function
using a dedicated IP solver such as SCIP, whose primal-dual methods exploit the underlying
real-valued geometry of the search space to find an objective value more efficiently than
Constraint Programming (CP) solvers such as CP-SAT. Then, use this optimal value to
bootstrap the CP formulation, which is better suited to enumerating all solutions with a
given objective value. This works particularly well in our experiments: use SCIP to solve the
optimization problem (but SCIP has no built-in ability to enumerate all feasible solutions),
then use CP-SAT (which takes longer than SCIP to find the objective value) to locate all
feasible solutions to the IP obtaining the objective value found by SCIP.

3.2.2.2 Enforcing that Exists variables exactly describe nonempty polymers

Constraint (5) enforces that Exists(j) = 0 if polymer Pj is empty, but it does not enforce the
converse. However, when using CP-SAT with a fixed objective value, we can no longer rely
on the minimization of Equation (7) to enforce that Exists(j) = 1 ⇐⇒ Pj is nonempty.

We add a new constraint to handle this. Let

C = 1 +
∑

s∈ST

∑
m∈T

T (m) · m(s∗). (8)

C is an upper bound on the largest number of monomers in a polymer in any valid partial
configuration of T minimizing Equation (7). This corresponds to the worst case in which a
single polymer contains every limiting monomer, and each starred site is bound to its own
unique monomer. The following constraint enforces that if Exists(j) = 0, then polymer Pj

contains no monomers:∑
m∈TL

Count(m, j) ≤ C · Exists(j) ∀j ∈ {1, 2, . . . , B} (9)

3.2.2.3 Eliminating symmetries due to polymer ordering

In the formulation of Section 3.2, many isomorphic solutions exist in the feasible region. For
instance, one could obtain a “new” solution by swapping the compositions of polymers P1
and P2. The number of isomorphic partial configurations grows factorially with the number
of polymers. Before asking the solver to enumerate all solutions, we must add constraints
that eliminate isomorphic solutions. We achieve this by using the (arbitrary) ordering of the
monomer types to induce a lexicographical ordering on the polymers, then add constraints
ensuring that any valid solution contains the polymers in sorted order.

Sorting non-binary vectors in an IP is generally a difficult task (for instance, see [21]).
The primary reason for this difficulty is that encoding the sorting constraints involves logical
implications (p =⇒ q), which, being a type of disjunction (¬p OR q), are difficult to encode
into a convex formulation described as a conjunction (AND) of several constraints. However,
we do have an upper bound C on the values that the Count variables can take, making
certain “large-number” techniques possible.

Intuitively, when comparing two lists of scalars (i.e., vectors) to verify that they are
correctly sorted, one must proceed down the list of entries until one of the entries is larger
than its corresponding entry in the other list. For as long as the numbers are the same, they
are considered “tied”. When one entry exceeds the corresponding other, the tie is considered
“broken”, after which no further comparisons need be conducted between the two vectors.

D. Haley and D. Doty 2:9

We introduce B · m new Boolean (0/1-valued) variables (Tied(mi, j) for each i = 1, . . . , m

and j = 1, . . . , B), that reason about consecutive pairs of polymers Pj−1, Pj . We describe
constraints enforcing that for each h ≤ i, Tied(mi, j) = 1 ⇐⇒ Count(mh, j − 1) =
Count(mh, j).

Let C be defined as in (8). For simplicity of notation below, define the constants
Tied(m0, j) = 1 for all j = 1, . . . , B. The meaning of the sorting variables is then enforced
by the following constraints, which we define for i ∈ {1, 2, . . . , m} and j ∈ {2, 3, . . . , B}:

Tied(mi, j) ≤ Tied(mi−1, j) (10)
Count(mi, j − 1) − Count(mi, j) ≤ C · (1 − Tied(mi, j)) (11)
Count(mi, j − 1) − Count(mi, j) ≥ −C · (1 − Tied(mi, j)) (12)
Count(mi, j − 1) − Count(mi, j) ≥ 1 − C ·

(
1 + Tied(mi, j) − Tied(mi−1, j)

)
(13)

Intuitively, (10) enforces Tied(mi, j) =⇒ Tied(mi−1, j): a tie in the current entry is only
relevant if the tie was not resolved before. (11) and (12) together enforce Tied(mi, j) =⇒(
Count(mi, j − 1) = Count(mi, j)

)
: ties can only continue for as long as the corresponding

entries are equal.
(13) enforces Tied(mi−1, j) ∧ ¬Tied(mi, j) =⇒

(
Count(mi, j − 1) > Count(mi, j)

)
: ties

can only be broken if the tie was not broken previously and the current entries are ordered
correctly. Thus any solution satisfying these constraints must sort the polymers.

3.3 Empirical running time measurements

For our empirical tests we use as a benchmark the autocatalytic TBN described in [2,
Section 4.2.2 and Fig. 6]. This TBN features two large monomers of size n2 in which n is
a parameter in the design, as well as a variable number of additional monomers (“fuels”)
intended to be present in large excess quantities.

In addition to the formulation we give in this paper, we also tested a number of formu-
lation variants, including the StableGen algorithm originally posed in [3] for solving the
StableConfigs problem, justifying some of our design choices. “No Heuristic” performs a
thorough accounting of all monomers (not just those needed to achieve saturation against the
limiting monomers). “Labelled Monomers” assumes that the monomers are provided as a set,
rather than a multiset. “Network Model” is a modification of StableGen with an alternate
saturation constraint which does not require the explicit invocation of site-level bonds.

Each data point represents the average of three runs, and the solver was allowed to run
for up to 100 seconds before a timeout was forced. Figure 2 (left) shows the runtimes as they
increase with the parameter n, holding the count of each fuel at 2. Figure 2 (right) fixes
n = 3 and shows the runtimes as they increase with the multiplicity of the fuel monomers.
Note that our formulation can solve the case when fuels are in unbounded excess, while the
variant formulations require bounded counts of all monomers.

Figure 2 (bottom) shows the runtime of our formulation in the case of unbounded fuels as
it grows with increasing size parameter n. The rote specification of the benchmark problem
is quadratic in n, and the empirical runtime growth appears polynomial with exponent close
to this lower bound (2.71). However, we note that this is just a single family of problem
instances, and we expect the runtime to be exponential in the worst case, since the problem
is NP-hard.

DNA 27

2:10 Computing Properties of Thermodynamic Binding Networks: An IP Approach

2 4 6 8 10

0.01

0.1

1

10

100

Complexity Parameter n of Benchmark Problem

R
u

n
�

m
e

(s
) Our Formula�on

No Heuris�c

Labelled Monomers

Network Model

StableGen

+

2 4 6 8 10 12

0.01

0.1

1

10

100

Mul�plicity of Fuel Strand in Benchmark Problem

R
u

n
�

m
e

(s
)

+

inf

y = 0.00072x2.71082

R² = 0.99823

10 30 50 70 90 110 130 150

0.1

1

10

100

1000

Complexity Parameter n of Benchmark Problem

R
u

n
�

m
e

(s
)

Figure 2 Empirical tests solving StableConfigs for our benchmark problem based upon its complexity
parameter n (left and bottom), and the multiplicity of the unstarred “fuel” strands (right). Our formulation
is tested against several variations on the approach (which are described in the text) and the StableGen
algorithm from [3]. The TBN is parameterized by n and contains the monomers Gn = {x∗

ij : 1 ≤ i, j ≤ n},
Hi = {xij : 1 ≤ j ≤ n} for all 1 ≤ i ≤ n, and Vj = {xij : 1 ≤ i ≤ n} ∪ {xij : j ≤ i ≤ n} for all 1 ≤ j ≤ n.
See Fig. 6 from [2] for a detailed explanation of this TBN and its operation. The vertical axis is log scale.
Points at the top of the scale timed out after 100 seconds. The alternate formulations cannot solve the
instance in the case of infinite fuel strands.

4 Computing bases of locally stable configurations of TBNs

We now shift attention to locally stable configurations: those in which no polymer can be
split without breaking a bond. Such a configuration may not be stable, but the only paths to
create more polymers, without breaking any bonds, require first merging existing polymers
(i.e., going uphill in energy before going down). The saturated configurations are precisely
those obtained by merging polymers starting from some locally stable configuration. In this
section we describe a technique for computing what we call the polymer basis: the (finite) set
of polymers that can exist in locally stable configurations. In Section 4.1, we show that an
algebraic concept called the Hilbert basis [7] characterizes the polymer basis. In Sections 4.2
and 4.3 we show how the polymer basis can be used to reason about TBN behavior.

4.1 Equivalence of polymer bases and Hilbert bases
We note that the connection between Hilbert bases and polymer bases is not particularly
deep and does not require clever techniques to prove. Once the definitions are appropriately
set up, the equivalence follows almost immediately. (Though we provide a self-contained
proof.) The primary insight of this section is that casting TBNs in our IP formulation sets
up the connection with Hilbert bases. Since highly optimized software exists for computing
Hilbert bases [1], this software can be deployed to automate reasoning about TBNs.

D. Haley and D. Doty 2:11

Let M be a set of monomer types with m = |M |. Let SM denote the TBN schema of M ,
the set of all TBNs containing only monomers from M , such that starred sites are limiting
(i.e., such that saturated configurations have all starred sites bound). Let AM be the matrix
representation of the monomer types in SM , describing the contents of each monomer type:
formally, the row-i, column-j entry of AM is mj(si), the net count of site type si in monomer
type mj (as an example, {a∗, b, a, a, a, c, c∗, c∗} has net count 2 of a, 1 of b, and −1 of c).
Formally, a TBN T ∈ SM if and only if AM T ≥ 0.

Recall that ΓT is the set of saturated configurations of the TBN T , and that a polymer
P is self-saturated if it has no exposed starred sites, i.e., AM P ≥ 0. Define the polymer basis
BSM

to be the set of all polymers P with the following properties:
(∃T ∈ SM)(∃α ∈ ΓT) P ∈ α (i.e., P appears in some saturated configuration of a TBN
using only the monomer types from M .)
There is no partition of P into two (or more) self-saturated polymers.

For example, consider the monomers G = {a∗, b∗, c∗, d∗}, H1 = {a, b}, H2 = {c, d}, V1 =
{a, c}, V2 = {b, d} and let M = {G, H1, H2, V1, V2}. The polymer basis BSM

is { {G, H1, H2},

{G, V1, V2}, {H1}, {H2}, {V1}, {V2} }. All other self-saturated polymers are unions of these.
To show that polymer bases can be characterized by Hilbert bases, we must first define

some additional terms. A conical combination of a set of vectors is a linear combination of
the vectors using only nonnegative coefficients. An integer conical combination of a set of
vectors is a conical combination of the vectors using only integer coefficients. A (polyhedral)
convex cone C = {λ1a1 + · · · + λnan : λ1, . . . , λn ≥ 0} is the space of all conical combinations
of a finite set of vectors {a1, . . . , an} (and is said to be generated by {a1, . . . , an}). C is
pointed if C ∩ (−C) = {0}. A set of the form {x ∈ Rm : Ax ≥ 0 and x ≥ 0} is always a
pointed convex cone [7].

A set is inclusion-minimal with respect to a property if it has no proper subset that
satisfies the same property. The Hilbert basis of a pointed convex cone C is the unique
inclusion-minimal set of integer vectors such that every integer vector in C is an integer
conical combination of the vectors in the Hilbert basis. For example, the Hilbert basis
of the convex cone generated (with nonnegative real coefficients) by (1, 3) and (2, 1) is
{(1, 1), (1, 2), (1, 3), (2, 1)}; note that 2

5 · (1, 3) + 4
5 · (2, 1) = (2, 2), which is not an integer

combination of (1, 3) and (2, 1), but 2 · (1, 1) = (2, 2).
Recall that the matrix-vector product AM P gives the number of exposed sites of each

type in the polymer, so that AM P ≥ 0 iff the polymer is self-saturated (i.e. none of the
starred sites are exposed).

We are then interested in vectors contained in {P ∈ Nm : AM P ≥ 0}. Noting that
Nm = {P ∈ Rm : P ≥ 0} ∩Zm, we can equivalently state that we are interested in all integer
vectors contained in the pointed convex cone {P ∈ Rm : AM P ≥ 0 and P ≥ 0}.

▶ Theorem 4. Let SM be a TBN schema and let AM be the matrix representation of its
monomer types. Then the polymer basis BSM

of SM is the Hilbert basis of {P ∈ Rm : AM P ≥
0 and P ≥ 0}.

Proof. Note that the integer vectors in {P ∈ Rm : AM P ≥ 0 and P ≥ 0} are precisely the
polymers that appear in saturated configurations of TBNs in SM , since AM P ≥ 0 ⇐⇒
polymer P is self-saturated, and SM is defined to have starred sites limiting, so that a
configuration is saturated if and only if each of its polymers is self-saturated.

We must show two properties to establish that BSM
is the Hilbert basis. First we must

show that every polymer in saturated configurations of TBNs in SM is a nonnegative integer
combination of polymers in BSM

. Next, to establish inclusion-minimality, we must show that
no polymer can be removed from BSM

while satisfying the first property.

DNA 27

2:12 Computing Properties of Thermodynamic Binding Networks: An IP Approach

To see the first property, consider a polymer P in a saturated configuration of some
TBN in SM . If it cannot be split into multiple self-saturated polymers, then we are done
since it is in BSM

(it is the integer combination consisting of one copy of itself). Otherwise,
we can iteratively split P into polymers P1, . . . , Pk that themselves cannot be split into
self-saturated polymers. Then P = P1 + · · · + Pk.

To see the second property, suppose for the sake of contradiction that a polymer P ∈ BSM

can be removed while maintaining the first property. By the definition of polymer basis, all
polymers in BSM

are self-saturated, so P is self-saturated. If P can be removed from BSM

while maintaining the first property, then P is the nonnegative integer sum of some polymers
remaining in BSM

\ {P}, and these polymers must also be self-saturated by virtue of being
in BSM

. This means that P can be partitioned into multiple self-saturated polymers, but
then P does not satisfy the second constraint required to be in BSM

to begin with. ◀

4.2 Using the polymer basis to reason about TBN behavior
The complexity of computing the polymer basis in general can be very large; however, once it
is calculated, reasoning about the stable configurations becomes a simpler task. For instance,
in a previous example we had BSM

= { {G, H1, H2}, {G, V1, V2}, {H1}, {H2}, {V1}, {V2} }.
We can see from the above basis that in saturated configurations, G can only be present
one of two unsplittable polymer types: {G, H1, H2} or {G, V1, V2}, and we can optimize the
number of polymers in a configuration by taking the other monomers as singletons (which
is allowed, as these singletons are in the polymer basis). More generally, reasoning about
stable configurations amounts to determining the number of each polymer type to use from
the polymer basis so that the union of all polymers is the TBN, while using the maximum
number of polymers possible. Our software can also solve for stable configurations in this
way; specifically, for a TBN T , it can calculate the polymer basis (abbreviated here as B)
and then solve for the stable configurations using the following IP:

max
c∈N|B|

∥c∥1 subject to
|B|∑
i=1

ciBi = T

Alternately, one can solve for the stable systems via an augmentation approach (see [7]).
If the goal is simply to solve the StableConfigs problem, we do not expect that solving

for the stable configurations in this way will be more efficient than the previous formulation,
as the time spent computing the Hilbert basis alone can require a great deal longer than
solving via the formulation of the previous section. Instead, the true value of the basis is in
its ability to describe all saturated configurations of a TBN.

For instance, in [2], the authors define an augmented TBN model in which a system
can move between saturated configurations by two atomic operations: polymers can be
pairwise merged (with an energetic penalty, i.e., higher energy) or they can be split into two
so long as no bonds are broken (with an energetic benefit, i.e., lower energy; for instance
{a, b}, {a∗, b∗}, {a}, {a∗} can be split into {a, b}, {a∗, b∗} and {a}, {a∗}, whereas {a}, {a∗}
cannot be split). Any saturated polymer not in the basis can split into its basis components
without breaking any bonds. Thus the polymer basis contains all polymers that can form in
a local minimum energy configuration, i.e., one where no polymer can split.

When designing a TBN, the designer will typically have a sense for which polymers are
to be “allowed” in local energy minima. Proving that the system observes this behavior was
not previously straightforward, but we can now observe that the TBN will behave ideally
when its expected behavior matches its polymer basis.

D. Haley and D. Doty 2:13

4.3 A case example: Circular Translator Cascade
We now discuss an example of using the polymer basis to reason about a TBN’s kinetic
behavior, studying a TBN known as a circular translator cascade, first defined in [2]:

{{a, b, c}, {b, c, d}, {c, d, e}, {d, e, f}, {e, f, a}, {f, a, b},

{a∗, b∗}, {b∗, c∗}, {c∗, d∗}, {d∗, e∗}, {e∗, f∗}, {f∗, a∗}}

There are two stable configurations of this TBN, shown in Figure 3.

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*

Figure 3 The two stable configurations of a variant of the circular translator cascade described in [2].
In the left configuration, the unstarred monomers are bound to their “left-side” companions (e.g. {a, b, c} is
bound to {a∗, b∗}), and in the right configuration, the unstarred monomers are bound to their “right-side”
companions (e.g. {a, b, c} is bound to {b∗, c∗}).

We consider now the “pathways” by which one of the stable configurations can “transition”
to another. This process is described formally in [2]; here we give an intuitive description.
Informally, we admit as atomic operations the ability for two polymers to merge or for one
polymer to split into two polymers, so long as the resulting configuration remains saturated.
In essence, these operations are modelling the physical phenomenon of solutes colocalizing
in solution before reactions occur, specifically in dilute solutions in which enthalpic bond
rearrangements occur on a timescale much faster than the timescale for entropic colocalization.
If many polymers must be merged in some intermediate configuration to transition between
stable configurations, then since each merge is individually unlikely, the successive merges
required are exponentially unlikely i.e., a large energy barrier exists to transition between
the configurations.

The design intention of this TBN is to have two stable configurations with a large energy
barrier to transition between them. For the largest possible energy barrier, the transition
should require the simultaneous merging of all of the polymers into a single polymer as an
intermediate step. However, this is not the case for the TBN of Figure 3; the polymer basis
gives insight into why. See [2, Section A.2] for an argument why more domain types and
monomer types are required. We interpret this as a design error. We now explain how the
error can be detected by reasoning about the polymer basis of the system, justifying that
the automated computation of the polymer basis by our software enables one to automate
some reasoning about the correct behavior of TBNs.

If it were true that the polymer basis contained only the 12 polymer types that are present
in the two stable configurations of Figure 3, then that would be sufficient to prove the high
energy barrier. To see why this is true, suppose there were a locally stable intermediate
configuration that is part of a lower barrier transition. Since the configuration is locally stable,
it is saturated, and none of its polymers can be partitioned into self-saturated polymers.
By definition, the polymer basis should then contain all of the polymers present in this

DNA 27

2:14 Computing Properties of Thermodynamic Binding Networks: An IP Approach

intermediate configuration. However, all of the polymers in the basis have exactly two
monomers, and so there must be 6 polymers in the intermediate configuration. The stable
configurations also have 6 polymers, and so the intermediate configuration is also stable, but
this contradicts that there are only two stable configurations.

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*

Figure 4 A counterexample to the claim that transitioning between stable configurations of this
TBN requires the simultaneous merger of all monomers into a single polymer. Starting from the stable
configuration on the left, by merging the four polymers within the red dotted outline, it is possible to
re-arrange bonds and then split to the middle configuration. Then from the middle configuration, by
merging the three polymers in the red dotted online, it is possible to re-arrange bonds and then split
to the stable configuration on the right. Such intermediate configurations are evident by examining the
elements of the polymer basis.

In fact, the polymer basis for this TBN has 57 entries (determined via our software), not
12, and we can use this basis to disprove the high energy barrier, i.e, to show that there
is a sequence of merges and splits that transitions between the two stable configurations,
without all monomers ever being merged into a single polymer. To discover a pathway that
demonstrates the lower energy barrier, consider one unexpected entry in the polymer basis:
P = {{a, b, c}, {d, e, f}, {c∗, d∗}, {f∗, a∗}}. Its existence in the polymer basis tells us that
there must be some saturated configuration that contains it. If we examine where these
monomers were in one of the original stable configurations (Figure 3, left), we see that these
were originally in polymers

{{a, b, c}, {a∗, b∗}}, {{c, d, e}, {c∗, d∗}}, {{d, e, f}, {d∗, e∗}}, {{f, a, b}, {f∗, a∗}}.

From the starting configuration, if only these four polymers were merged, then they could
then iteratively split into P, {{c, d, e}, {d∗, e∗}}, and {{f, a, b}, {a∗, b∗}}. Since the latter
two polymers are part of the target configuration, one could now greedily merge all polymers
except for these latter two and then split into the target configuration. At no point in the
interim were all polymers merged together into a single polymer. The resulting pathway is
illustrated in Figure 4.

The difference between intended and actual barrier in this design becomes more pro-
nounced if it is scaled up to include more site types and monomers. In [2] it is shown that
by modifying the design, it is possible to achieve a linear energy barrier by using a quadratic
number of site types.

5 Conclusion

In our investigation we observed that it was generally more efficient to solve Saturated-
Configs by finding the optimal objective value using an IP solver as a first step, followed by
using a CP solver on the same formulation with the objective value now constrained to the
value found by the IP solver. Are further computational speedups possible by using IP as a
callback during the CP search, instead of only in the beginning? How would one formulate
the subproblems that would need to be solved in these callbacks?

D. Haley and D. Doty 2:15

In this paper we also note the value of polymer bases that are derived from the matrix
containing the monomer descriptions. Such polymer bases can be used to describe all saturated
configurations of a TBN, and so provide a valuable tool for analyzing potential behavior
of a TBN when the model is augmented with rules that allow for dynamics. In practice,
rather than discover unexpected behavior by calculating the polymer basis, a designer would
instead like to begin with a set of behaviors and then create a TBN that respects them. Can
we begin from verifiable polymer/Hilbert bases, encoding desired behavior, and transform
them into TBN/DNA designs?

The full TBN model [2] can also be used to describe the regime in which there is a more
modest tradeoff between the two energetic penalties of breaking bonds and merging complexes
(i.e., saturation is not guaranteed). For example toehold-length binding sites in DNA strand
displacement systems [4, 16,19, 24,25] are intended to dissociate over timescales comparable
to association. Indeed, our software [13] includes an implementation of the StableConfigs
formulation in which this relative weighting factor is included in the objective function.
Under what conditions can a comparable polymer basis for such a system be found? Within
the context of integer programming, it is known that by adding constraints to the design, one
can reduce the complexity of finding/verifying Hilbert bases (and related Graver bases) [10],
but it is not clear how to interpret these numeric constraints within the context of TBNs.

Satisfiability Modulo Theory (SMT) formulations have the ability to express TBN concepts
(such as reachability along kinetic paths) without converting to a linear algebra framework,
and existing solvers can solve SMT instances with surprising efficiency (for example, Z3 [8]).
Can such solvers reason about TBNs directly within a reasonable time frame? Can they
efficiently extract information beyond what is contained in the polymer basis?

References
1 4ti2 team. 4ti2 – A software package for algebraic, geometric and combinatorial problems on

linear spaces. https://4ti2.github.io/hilbert.html. URL: https://4ti2.github.io.
2 Keenan Breik, Cameron Chalk, David Haley, David Doty, and David Soloveichik. Programming

substrate-independent kinetic barriers with thermodynamic binding networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 18(1):283–295, 2021. Special issue
of invited papers from CMSB 2018.

3 Keenan Breik, Chris Thachuk, Marijn Heule, and David Soloveichik. Computing properties
of stable configurations of thermodynamic binding networks. Theoretical Computer Science,
785:17–29, 2019.

4 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

5 Yuan-Jyue Chen, Benjamin Groves, Richard A. Muscat, and Georg Seelig. DNA nanotechnology
from the test tube to the cell. Nature Nanotechnology, 10:748–760, 2015.

6 Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming, volume
271. Springer, 2014.

7 Jesús A De Loera, Raymond Hemmecke, and Matthias Köppe. Algebraic and geometric ideas
in the theory of discrete optimization. SIAM, 2012.

8 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

9 David Doty, Trent A Rogers, David Soloveichik, Chris Thachuk, and Damien Woods. Thermo-
dynamic binding networks. In DNA 2017: Proceedings of the 23rd International Meeting on
DNA Computing and Molecular Programming, pages 249–266. Springer, 2017.

DNA 27

https://4ti2.github.io/hilbert.html
https://4ti2.github.io

2:16 Computing Properties of Thermodynamic Binding Networks: An IP Approach

10 Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Kouteckỳ, Asaf
Levin, and Shmuel Onn. An algorithmic theory of integer programming. arXiv preprint, 2019.
arXiv:1904.01361.

11 Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization
Online, March 2020. URL: http://www.optimization-online.org/DB_HTML/2020/03/7705.
html.

12 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL: http://www.
gurobi.com.

13 David Haley. Stable-TBN – a software package for computing the stable configurations of
thermodynamic binding networks. URL: https://github.com/drhaley/stable_tbn.

14 Dionis Minev, Christopher M Wintersinger, Anastasia Ershova, and William M Shih. Robust
nucleation control via crisscross polymerization of highly coordinated DNA slats. Nature
Communications, 12(1):1–9, 2021.

15 Laurent Perron and Vincent Furnon. OR-tools. URL: https://developers.google.com/
optimization.

16 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, 2011.

17 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

18 Paul Shaw, Vincent Furnon, and Bruno De Backer. A constraint programming toolkit for
local search. In Optimization Software Class Libraries, pages 219–261. Springer, 2003.

19 Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Soloveichik. Enzyme-
free nucleic acid dynamical systems. Science, 358(6369):eaal2052, 2017.

20 Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless DNA strand displacement
systems. In DNA 2015: Proceedings of the 21st International Meeting on DNA Computing
and Molecular Programming, pages 133–153. Springer, 2015.

21 Andrew C Trapp and Oleg A Prokopyev. Solving the order-preserving submatrix problem via
integer programming. INFORMS Journal on Computing, 22(3):387–400, 2010.

22 Boya Wang, Chris Thachuk, Andrew D Ellington, Erik Winfree, and David Soloveichik.
Effective design principles for leakless strand displacement systems. Proceedings of the National
Academy of Sciences, 115(52):E12182–E12191, 2018.

23 Damien Woods†, David Doty†, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik
Winfree. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Nature, 567(7748):366–372, 2019. †joint first authors. doi:10.1038/s41586-019-1014-9.

24 David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature chemistry, 3(2):103–113, 2011.

25 David Yu Zhang and Erik Winfree. Control of DNA strand displacement kinetics using toehold
exchange. Journal of the American Chemical Society, 131(47):17303–17314, 2009.

http://arxiv.org/abs/1904.01361
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.gurobi.com
http://www.gurobi.com
https://github.com/drhaley/stable_tbn
https://developers.google.com/optimization
https://developers.google.com/optimization
https://doi.org/10.1038/s41586-019-1014-9

Self-Replication via Tile Self-Assembly
(Extended Abstract)
Andrew Alseth #

University of Arkansas, Fayetteville, AR, USA

Daniel Hader #

University of Arkansas, Fayetteville, AR, USA

Matthew J. Patitz #

University of Arkansas, Fayetteville, AR, USA

Abstract
In this paper we present a model containing modifications to the Signal-passing Tile Assembly Model
(STAM), a tile-based self-assembly model whose tiles are capable of activating and deactivating glues
based on the binding of other glues. These modifications consist of an extension to 3D, the ability
of tiles to form “flexible” bonds that allow bound tiles to rotate relative to each other, and allowing
tiles of multiple shapes within the same system. We call this new model the STAM*, and we present
a series of constructions within it that are capable of self-replicating behavior. Namely, the input
seed assemblies to our STAM* systems can encode either “genomes” specifying the instructions for
building a target shape, or can be copies of the target shape with instructions built in. A universal
tile set exists for any target shape (at scale factor 2), and from a genome assembly creates infinite
copies of the genome as well as the target shape. An input target structure, on the other hand, can
be “deconstructed” by the universal tile set to form a genome encoding it, which will then replicate
and also initiate the growth of copies of assemblies of the target shape. Since the lengths of the
genomes for these constructions are proportional to the number of points in the target shape, we also
present a replicator which utilizes hierarchical self-assembly to greatly reduce the size of the genomes
required. The main goals of this work are to examine minimal requirements of self-assembling
systems capable of self-replicating behavior, with the aim of better understanding self-replication in
nature as well as understanding the complexity of mimicking it.

2012 ACM Subject Classification Theory of computation → Models of computation; General and
reference → General conference proceedings

Keywords and phrases Algorithmic self-assembly, tile assembly model, self-replication

Digital Object Identifier 10.4230/LIPIcs.DNA.27.3

Related Version Full Version: https://arxiv.org/abs/2105.02914 [2]

Funding Andrew Alseth: This author’s work was supported in part by NSF grant CAREER-1553166.
Daniel Hader : This author’s work was supported in part by NSF grant CAREER-1553166.
Matthew J. Patitz : This author’s work was supported in part by NSF grant CAREER-1553166.

1 Introduction

1.1 Background and motivation
Research in tile based self-assembly is typically focused on modeling the computational and
shape-building capabilities of biological nano-materials whose dynamics are rich enough to
allow for interesting algorithmic behavior. Polymers such as DNA, RNA, and poly-peptide
chains are of particular interest because of the complex ways in which they can fold and
bind with both themselves and others. Even when only taking advantage of a small subset
of the dynamics of these materials, with properties like binding and folding generally being
restricted to very manageable cases, tile assembly models have been extremely successful in
exhibiting vast arrays of interesting behavior [45, 48, 17, 11, 13, 38, 50, 16, 5, 8, 15]. Among

© Andrew Alseth, Daniel Hader, and Matthew J. Patitz;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 3; pp. 3:1–3:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:awalseth@uark.edu
https://orcid.org/0000-0002-0055-0788
mailto:dhader@uark.edu
mailto:patitz@uark.edu
https://orcid.org/0000-0001-9287-4028
https://doi.org/10.4230/LIPIcs.DNA.27.3
https://arxiv.org/abs/2105.02914
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Self-Replication

other things, a typical question in the realm of algorithmic tile assembly asks what the
minimal set of requirements is to achieve some desired property. Such questions can range
from very concrete, such as “how many distinct tile types are necessary to construct specific
shapes?”, to more abstract such as “under what conditions is the construction of self-similar
fractal-like structures possible?”. Since the molecules inspiring many tile assembly models
are used in nature largely for the purpose of self-replication of living organisms, a natural tile
assembly question is thus whether or not such behavior is possible to model algorithmically.

In this paper we show that we can define a model of tile assembly in which the complexities
of self-replication type behavior can be captured, and provide constructions in which such
behavior occurs. We define our model with the intention of it (1) being hopefully physically
implementable in the (near) future, and (2) using as few assumptions and constraints as
possible. Our constructions therefore provide insight into understanding the basic rules under
which the complex dynamics of life, particularly self-replication, may occur.

We chose to use the Signal-passing Tile Assembly Model (STAM) as a basis for our
model, which we call the STAM*, because (1) there has been success in physically realizing
such systems [41] and potential exists for further, more complex, implementations using well-
established technologies like DNA origami [44, 39, 52, 3, 4] and DNA strand displacement [43,
51, 47, 54, 53, 7], and (2) the STAM allows for behavior such as cooperative tile attachment as
well as detachment of subassemblies. We modify the STAM by bringing it into 3 dimensions
and making a few simplifying assumptions, such as allowing multiple tile shapes and tile
rotation around flexible glues and removing the restriction that tiles have to remain on a fixed
grid. Allowing flexibility of structures and multiple tile shapes provides powerful new dynamics
that can mimic several aspects of biological systems and suffice to allow our constructions
to model self-replicating behavior. Prior work, theoretical [36] and experimental [46], has
focused on the replication of patterns of bits/letters on 2D surfaces, as well as the replication
of 2D shapes in a model using staged assembly [1], or in the STAM [27]. However, all of these
are fundamentally 2D results and our 3D results, while strictly theoretical, are a superset
with constructions capable of replicating all finite 2D and 3D patterns and shapes.

Biological self-replication requires three main categories of components: (1) instructions,
(2) building blocks, and (3) molecular machinery to read the instructions and combine
building blocks in the manner specified by the instructions. We can see the embodiment
of these components as follows: (1) DNA/RNA sequences, (2) amino acids, and (3) RNA
polymerase, transfer RNA, and ribosomes, among other things. With our intention to study
the simplest systems capable of replication, we started by developing what we envisioned
to be the simplest model that would provide the necessary dynamics, the STAM*, and
then designed modular systems within the STAM* which each demonstrated one or more
important behaviors related to replication. Quite interestingly, and unintentionally, our
constructions resulted in components with strong similarities to biological counterparts. As
our base encoding of the instructions for a target shape, we make use of a linear assembly
which has some functional similarity to DNA. Similar to DNA, this structure also is capable
of being replicated to form additional copies of the “genome”. In our main construction, it is
necessary for this linear sequence of instructions to be “transcribed” into a new assembly
which also encodes the instructions but which is also functionally able to facilitate translation
of those instructions into the target shape. Since this sequence is also degraded during the
growth of the target structure, it shares some similarity with RNA and its role in replication.
Our constructions don’t have an analog to the molecular machinery of the ribosome, and
can therefore “bootstrap” with only singleton copies of tiles from our universal set of tiles in
solution. However, to balance the fact that we don’t need preexisting machinery, our building
blocks are more complicated than amino acids, instead being tiles capable of a constant
number of signal operations each (turning glues on or off due to the binding of other glues).

A. Alseth, D. Hader, and M. J. Patitz 3:3

1.2 Our results
Beyond the definition of the STAM* as a new model, we present a series of STAM* construc-
tions. They are designed and presented in a modular fashion, and we discuss the ways in
which they can be combined to create various (self-)replicating systems.

1.2.1 Genome-based replicator
We first develop an STAM* tileset which functions as a simple self-replicator (in Section 3)
that begins from a seed assembly encoding information about a target structure, a.k.a. a
genome, and grows arbitrarily many copies of the genome and target structure, a.k.a. the
phenotype. This tileset is universal for all 3D shapes comprised of 1 × 1 × 1 cubes when they
are inflated to scale factor 2 (i.e. each 1 × 1 × 1 block in the shape is represented by a cube
of 2 × 2 × 2 tiles). This construction requires a genome whose length is proportional to the
number of cube tiles in the phenotype; for non-trivial shapes the genome is a constant factor
longer in order to follow a Hamiltonian path through an arbitrary 3D shape at scale factor 2.
This is compared to the Soloveichik and Winfree universal (2D) constructor [49] where a
“genome” is optimally shortened, but the scale factor of blocks is much larger.

The process by which this occurs contains analogs to natural systems. We progress
from a genome sequence (acting like DNA), which is translated into a messenger sequence
(somewhat analogous to RNA), that is modified and consumed in the production of tertiary
structures (analogous to proteins). We have a number of helper structures that fuel both the
replication of the genome and the translation of the messenger sequence.

1.2.2 Deconstructive self-replicator
In Section 4, we construct an STAM* tileset that can be used in systems in which an
arbitrarily shaped seed structure, or phenotype, is disassembled while simultaneously forming
a genome that describes its structure. This genome can then be converted into a linear
genome (of the form used for the first construction) to be replicated arbitrarily and can
be used to construct a copy of the phenotype. We show that this can be done for any
3D shape at scale factor 2 which is sufficient, and in some cases necessary, to allow for a
Hamiltonian path to pass through each point in the shape. This Hamiltonian path, among
other information necessary for the disassembly and, later, reassembly processes, is encoded
in the glues and signals of the tiles making up the phenotype. We then show how, using
simple signal tile dynamics, the phenotype can be disassembled tile by tile to create a
genome encoding that same information. Additionally, a reverse process exists so that once
the genome has been constructed from a phenotype, a very similar process can be used to
reconstruct the phenotype while disassembling the genome.

In sticking with the DNA, RNA, protein analogy, this disassembly process doesn’t have a
particular biological analog; however, this result is important because it shows that we can
make our system robust to starting conditions. That is, we can begin the self-replication
process at any stage be it from the linear genome, “kinky genome” (the messenger sequence
from the first construction), or phenotype. Finally, since this construction requires the
phenotype to encode information in its glues and signals, we show that this can be computed
efficiently using a polynomial time algorithm given the target shape. This not only shows that
the STAM* systems can be described efficiently for any target shape via a single universal
tile set, but that results from intractable computations aren’t built into our phenotype (i.e.
we’re not “cheating” by doing complex pre-computations that couldn’t be done efficiently
by a typical computationally universal system). Due to space constraints we only include a
result about the necessity for deconstruction in a universal replicator in the online version [2].

DNA 27

3:4 Self-Replication

1.2.3 Hierarchical assembly-based replicator

For our final construction, in Section 5, our aims were twofold. First, we wanted to compress
the genome so that its total length is much shorter than the number of tiles in the target
shape. Second, we wanted to more closely mimic the biological process in which individual
proteins are constructed via the molecular machinery, and then they are released to engage
in a hierarchical self-assembly process in which proteins combine to form larger structures.

Biological genomes are many orders of magnitude smaller than the organisms which they
encode, but for our previous constructions the genomes are essentially equivalent in size to the
target structures. Our final construction is presented in a “simple” form in which the general
scaling approximately results in a genome which is length n

1
3 for a target structure of size

n. However, we discuss relatively simple modifications which could, for some target shapes,
result in genome sizes of approximately log n, and finally we discuss a more complicated
extension (which also consumes a large amount of “fuel”, as opposed to the base constructions
which consume almost no fuel) that can achieve asymptotically optimal encoding.

1.2.4 Combinations and permutations of constructions

Due to length restrictions for this version of the paper, and our desire to present what we
found to be the “simplest” systems capable of combining to perform self-replication, there are
several additions to our results which we only briefly mention. For instance, to make our first
construction (in Section 3) into a standalone self-replicator, and one which functions slightly
more like biological systems, the input to the system, i.e. the seed assembly, could instead be
a copy of the target structure with a genome “tail” attached to it. The system could function
very similarly to the construction of Section 3 but instead of genome replication and structure
building being separated, the genome could be replicated and then initiate the growth of a
connected messenger structure so that once the target structure is completed, the genome is
attached. Thus, the input assembly would be completely replicated, and be a self-replicator
more closely mirroring biology where the DNA along with the structure cause the DNA to
replicate itself and the structure. Attaching the genome to the structure is a technicality that
could satisfy the need to have a single seed assembly type, but clearly it doesn’t meaningfully
change the behavior. At the end of Section 5 we discuss how that construction could be
combined with those from Sections 3 and 4, as well as further optimized. This version of
the paper contains high-level overviews of the definition of the STAM* as well as of the
results. Full technical details for each section can be found in the full version online [2] in
the corresponding sections of the technical appendix.

2 Preliminaries

In this section we define the notation and models used throughout the paper.
We define a 3D shape S ⊂ Z3 as a finite connected set of 1 × 1 × 1 cubes (a.k.a. unit

cubes) which define an arbitrary polycube, i.e. a shape composed of unit cubes connected
face to face where each cube represents a voxel (3-D pixel) of S. For each shape S, we
assume a canonical translation and rotation of S so that, without loss of generality, we can
reference the coordinates of each of its voxels and directions of its surfaces, or faces. We
say a unit cube is scaled by factor c if it is replaced by a c × c × c cube composed of c3 unit
cubes. Given an arbitrary 3D shape S, we say S is scaled by factor c if every unit cube of S

is scaled by factor c and those scaled cubes are arranged in the shape of S. We denote a
shape S scaled by factor c as Sc.

A. Alseth, D. Hader, and M. J. Patitz 3:5

2.1 Definition of the STAM*
The 3D Signal-passing Tile Assembly Model* (3D-STAM*, or simply STAM*) is a general-
ization of the STAM [40, 20, 26, 37] (that is similar to the model in [30, 31]) in which (1)
the natural extension from 2D to 3D is made (i.e. tiles become 3-dimensional shapes rather
than 2-dimensional squares), (2) multiple tile shapes are allowed, (3) tiles are allowed to flip
and rotate [11, 28], and (4) glues are allowed to be rigid (as in the aTAM, 2HAM, STAM,
etc., meaning that when two adjacent tiles bind to each other via a rigid glue, their relative
orientations are fixed by that glue) or flexible (as in [18]) so that even after being bound tiles
and subassemblies are free rotate with respect to tiles and subassemblies to which they are
bound by bending or twisting around a “joint” in the glue. (This would be analogous to rigid
glues forming as DNA strands combine to form helices with no single-stranded gaps, while
flexible glues would have one or more unpaired nucleotides leaving a portion of single-stranded
DNA joining the two tiles, which would be flexible and rotatable.) See Figure 1a for a simple
example. These extensions make the STAM* a hybrid model of those in previous studies of
hierarchical assembly [8, 12, 14, 42, 29], 3D tile-based self-assembly [10, 22, 6, 24], systems
allowing various non-square/non-cubic tile types [19, 23, 11, 21, 25, 35], and systems in which
tiles can fold and rearrange [18, 34, 32, 33].

Due to space constraints, we now provide a high-level overview of several aspects of the
STAM* model, and full definitions can be found in the online version [2].

The basic components of the model are tiles. Tiles bind to each other via glues. Each
glue has a glue type that specifies its domain (which is the string label of the glue), integer
strength, flexibility (a boolean value with true meaning flexible and false meaning rigid),
and length (representing the length of the physical glue component). A glue is an instance of
a glue type and may be in one of three states at any given time, {latent,on,off}. A pair
of adjacent glues are able to bind to each other if they have complementary domains and are
both in the on state, and do so with strength equal to their shared strength values (which
must be the same for all glues with the same label l or the complementary label l∗).

A tile type is defined by its 3D shape (and although arbitrary rotation and translation in
R3 are allowed, each is assigned a canonical orientation for reference), its set of glues, and its
set of signals. Its set of glues specify the types. locations, and initial states of its glues. Each
signal in its set of signals is a triple (g1, g2, δ) where g1 and g2 specify the source and target
glues (from the set of the tile type’s glues) and δ ∈ {activate,deactivate}. Such a signal
denotes that when glue g1 forms a bond, an action is initiated to turn glue g2 either on (if
δ == activate) or off (otherwise). A tile is an instance of a tile type represented by its
type, location, rotation, set of glue states (i.e. latent,on or off for each), and set of signal
states. Each signal can be in one of the signal states {pre,firing,post}. A signal which
has never been activated (by its source glue forming a bond) is in the pre state. A signal
which has activated but whose action has not yet completed is in the firing state, and if
that action has completed it is in the post state. Each signal can “fire” only one time, and
each glue which is the target of one or more signals is only allowed to make the following
state transitions: (1) latent → on, (2) on → off, or (3) latent → off.

We use the terms assembly and supertile, interchangeably, to refer to the full set of
rotations and translations of either a single tile (the base case) or a collection of tiles which
are bound together by glues. A supertile is defined by the tiles it contains (which includes
their glue and signal states) and the glue bonds between them. A supertile may be flexible
(due to the existence of a cut consisting entirely of flexible glues that are co-linear and there
being an unobstructed path for one subassembly to rotate relative to the other), and we call
each valid positioning of it sets of subassemblies a configuration of the supertile. A supertile
may also be translated and rotated while in any valid configuration. We call a supertile in a
particular configuration, rotation, and translation a positioned supertile.

DNA 27

3:6 Self-Replication

Each supertile induces a binding graph, a multigraph whose vertices are tiles, with an
edge between two tiles for each glue which is bound between them. The supertile is τ -stable
if every cut of its binding graph has strength at least τ , where the weight of an edge is the
strength of the glue it represents. That is, the supertile is τ -stable if cutting bonds of at
least summed strength of τ is required to separate the supertile into two parts.

For a supertile α, we use the notation |α| to represent the number of tiles contained in
α. The domain of a positioned supertile α, written dom α, is the union of the points in R3

contained within the tiles composing α. Let α be a positioned supertile. Then, for v⃗ ∈ R3, we
define the partial function α(v⃗) = t where t is the tile containing v⃗ if v⃗ ∈ dom α, otherwise it
is undefined. Given two positioned supertiles, α and β, we say that they are equivalent, and
we write α ≈ β, if for all v⃗ ∈ R3 α(v⃗) and β(v⃗) both either return tiles of the same type, or
are undefined. We say they’re equal, and write α ≡ β, if for all v⃗ ∈ R3 α(v⃗) and β(v⃗) either
both return tiles of the same type having the same glue and signal states, or are undefined.

(a) (b)

Figure 1 (a) Example showing flat and cubic tiles, and possible behavior of a flexible glue allowing
the blue tile to fold upward, away from the red cubic tile, or down against it. (b) The glue lengths
in our constructions: (1) length 2ϵ rigid bonds between cubic tiles, (2) length 0 rigid bonds between
flat and cubic tiles (as though one tile’s glue strand binds into a cavity), and (3) length 3

√
2 ϵ/2

flexible glues between flat tiles.

An STAM* tile assembly system, or TAS, is defined as T = (T, C, τ) where T is a finite
set of tile types, C is an initial configuration, and τ ∈ N is the minimum binding threshold
(a.k.a. temperature) specifying the minimum binding strength that must exist over the sum
of binding glues between two supertiles in order for them to attach to each other. The initial
configuration C = {(S, n) | S is a supertile over the tiles in T and n ∈ N ∪ ∞ is the number
of copies of S}. Note that for each s ∈ S, each tile α = (t, l⃗, S, γ) ∈ s has a set of glue states
S and signal states γ. By default, it is assumed that every tile in every supertile of an initial
configuration begins with all glues in the initial states for its tile type, and with all signal
states as pre, unless otherwise specified. The initial configuration C of a system T is often
simply given as a set of supertiles, which are also called seed supertiles, and it is assumed
that there are infinite counts of each seed supertile as well as of all singleton tile types in T .
If there is only one seed supertile σ, we will we often just use σ rather than C.

2.1.1 Overview of STAM* dynamics
An STAM* system T = (T, C, τ) evolves nondeterministically in a series of (a possibly
infinite number of) steps. Each step consists of randomly executing one of the following
actions: (1) selecting two existing supertiles which have configurations allowing them to
combine via a set of neighboring glues in the on state whose strengths sum to strength ≥ τ

and combining them via a random subset of those glues whose strengths sum to ≥ τ (and
changing any signals with those glues as sources to the state firing if they are in state pre),

A. Alseth, D. Hader, and M. J. Patitz 3:7

or (2) randomly select two adjacent unbound glues of a supertile which are able to bind, bind
them and change attached signals in state pre to firing, or (3) randomly select a supertile
which has a cut < τ (due to glue deactivations) and cause it to break into 2 supertiles along
that cut, or (4) randomly select a signal on some tile of some supertile where that signal is in
the firing state and change that signal’s state to post, and as long as its action (activate
or deactivate) is currently valid for the signal’s target glue, change the target glue’s state
appropriately.1 Although at each step the next choice is random, it must be the case that no
possible selection is ever ignored infinitely often.

Given an STAM* TAS T = (T, C, τ), a supertile is producible, written as α ∈ A[T], if
either it is a single tile from T , or it is the result of a (possibly infinite) series of combinations
of pairs of finite producible assemblies (which have each been positioned so that they do not
overlap and can be τ -stably bonded), and/or breaks of producible assemblies. A supertile
α is terminal, written as α ∈ A□[T], if (1) for every β ∈ A[T], α and β cannot be τ -stably
attached, (2) there is no configuration of α in which a pair of unbound complementary glues
in the on state are able to bind, and (3) no signals of any tile in α are in the firing state.

In this paper, we define a shape as a connected subset of Z3 to both simplify the definition
of a shape and to capture the notion that to build an arbitrary shape out of a set of tiles
we will actually approximate it by “pixelating” it. Therefore, given a shape S, we say that
assembly α has shape S if α has only one valid configuration (i.e. it is rigid) and there exist
(1) a rotation of α and (2) a scaling of S, S′, such that the rotated α and S′ can be translated
to overlap where there is a one-to-one and onto correspondence between the tiles of α and
cubes of S′ (i.e. there is exactly 1 tile of α in each cube of S′, and none outside of S′).2

▶ Definition 1. We say a shape X self-assembles in T with waste size c, for c ∈ N, if there
exists terminal assembly α ∈ A□[T] such that α has shape X, and for every α ∈ A□[T],
either α has shape X, or |α| ≤ c. If c == 1, we simply say X self-assembles in T .

▶ Definition 2. We call an STAM* system R = (T, C, τ) a shape self-replicator for shape S

if C consists exactly of infinite copies of each tile from T as well as of a single supertile σ of
shape S, there exists c ∈ N such that S self-assembles in R with waste size c, and the count
of assemblies of shape S increases infinitely.

▶ Definition 3. We call an STAM* system R = (T, C, τ) a self-replicator for σ with waste
size c if C consists exactly of infinite copies of each tile from T as well as of a single supertile
σ, there exists c ∈ N such that for every terminal assembly α ∈ A□[T] either (1) α ≈ σ, or
(2) |α| ≤ c, and the count of assemblies ≈ σ increases infinitely.3 If c == 1, we simply say
R is a self-replicator for σ.

The multiple aspects of STAM* tiles and systems give rise to a variety of metrics with
which to characterize and measure the complexity of STAM* systems, beyond metrics seen
for models such as the aTAM or even STAM. For a brief discussion, please see the online
version [2].

1 The asynchronous nature of signal firing and execution is intended to model a signalling process which
can be arbitrarily slow or fast. Please see the online version [2] for more details.

2 In this paper we only consider completely rigid assemblies for target shapes, since the target shapes are
static. We could also target “reconfigurable shapes, i.e. sets of shapes, but don’t do so in this paper.
Also, it could be reasonable to allow multiple tiles in each pixel location as long as the correct overall
shape is maintained, but we don’t require that.

3 We use ≈ rather than ≡ since otherwise either both the seed assemblies and produced assemblies are
terminal, meaning nothing can attach to a seed assembly and the system can’t evolve, or neither are
terminal and it becomes difficult to define the product of a system. However, our construction in
Section 4 can be modified to produce assemblies satisfying either the ≈ or ≡ relation with the seed
assemblies.

DNA 27

3:8 Self-Replication

2.1.2 STAM* conventions used in this paper
Although the STAM* is a highly generalized model allowing for variety in tile shapes,
glue lengths, etc., throughout this paper all constructions are restricted to the following
conventions.

1. All tile types have one of two shapes (shown in Figure 1a):
a. A cubic tile is a tile whose shape is a 1 × 1 × 1 cube.
b. A flat tile is a tile whose shape is a 1 × 1 × ϵ rectangular prism, where ϵ < 1 is a small

constant.
c. We call a 1 × 1 face of a tile a full face, and a 1 × ϵ face is called a thin face.

2. Glue lengths are the following (and are shown in Figure 1b):
a. All rigid glues between cubic tiles, as well as between thin faces of flat tiles, are length

2ϵ.
b. All rigid glues between cubic and flat tiles are length 0. (Note that this could be

implemented via the glue strand of one tile extending into the tile body of the other
tile in order to bind, thus allowing the tile surfaces to be adjacent without spacing
between the faces.)

c. All flexible glues are length 3
2
√

2ϵ. 4

Given that rigidly bound cubic tiles cannot rotate relative to each other, for convenience
we often refer to rigidly bound tiles as though they were on a fixed lattice. This is easily
done by first choosing a rigidly bound cubic tile as our origin, then using the location l⃗,
orientation matrix R, and rigid glue length g, put in one-to-one correspondence with each
vector v⃗ in Z3, the vector l⃗ + gRv⃗. Once we define an absolute coordinate system in this way,
we refer to the directions in 3-dimensional space as North (+y), East (+x), South (−y), West
(−x), Up (+z), and Down (−z), abbreviating them as N, E, S, W, U, and D, respectively.

3 A Genome Based Replicator

We now present our first construction in the STAM*, in which a “universal” set of tiles will
cause a pre-formed seed assembly encoding a Hamiltonian path through a target structure,
which we call the genome, to replicate infinitely many copies of itself as well as build infinitely
many copies of the target structure at temperature 2. We consider 4 unique structures
which are generated/utilized as part of the self-replication process: σ, µ, µ′, and π. The seed
assembly, σ, is composed of a connected set of flat tiles considered to be the genome. Let π

represent an assembly of the target shape encoded by σ. µ is an intermediate “messenger”
structure directly copied from σ, which is modified into µ′ to assemble π. We split T into
subsets of tiles, T = {Tσ ∪ Tµ ∪ Tφ ∪ Tπ}. Tσ are the tiles used to replicate the genome, Tµ

are the tiles used to create the messenger structure, Tπ are the cubic tiles which comprise
the phenotype π, and Tφ are the set of tiles which combine to make fuel structures used in
both the genome replication process and conversion of µ to µ′. We denote this universal
self-assembling system as R = {T, σ, 2}

The tile types which make up this replicator are carefully designed to prevent spurious
structures and enforce two key properties for the self-replication process. First, a genome
is never consumed during replication, allowing for exponential growth in the number of

4 These glue lengths were chosen so that (1) rigidly bound cubic tiles could each have a flat tile bound to
each of their sides if needed and (2) so that two flat tiles attached to diagonally adjacent rigid tiles
could be attached via a flexible glue.

A. Alseth, D. Hader, and M. J. Patitz 3:9

completed genome copies. Second, the replication process from messenger to phenotype
strictly follows µ → µ′ → π; each step in the assembly process occurs only after the prior
structure is in its completed form. This prevents unexpected geometric hindrances which
could block progression of any further step. Complete details of T are located in [2].

3.1 Replication of the genome
The minimal requirements to generate copies of σ in R are the following: (1) for all individual
tile types s ∈ σ, s ∈ Tσ, (2) the last tile is the end tile E, and (3) the first tile in σ is a start
tile in the set (S+, S−). However, for the shape-self replication of S one additional property
must hold: (4) σ encodes a Hamiltonian path which ends on an exterior cubic tile. We define
the genome to be “read” from left to right; given requirements (2) and (3), the leftmost tile
in a genome is a start tile and the rightmost is an end tile. (4) can be guaranteed by scaling
S up to S2 and utilizing the algorithm in Section 4.3, selecting a cubic tile on the exterior as
a start for the Hamiltonian path and then reversing the result. This requirement ensures the
possibility of cubic tile diffusion into necessary locations at all stages of assembly.

(a) (b)

Figure 2 (a) In step 0 (before replication begins) both fuel and tiles from Tσ bind to σ. Step 1
indicates the fuel tile binding with the leftmost S+ tile in σ′, propagating the binding of tiles
from west to east indicated by blue arrow on the ++ tile. Step 2 begins after all σ′ glues are
bound by strength-1, leading to the propagation of a second glue binding σ′ from east to west.
Additionally, glues on the north face of σ′ tiles are activated and glues on the south face binding to
σ are deactivated once they have a strength-2 connection to. Step 3 demonstrates the detachment –
once the second glue binds to the fuel duple (φ1, φ2) signals propagate to detach from σ and σ′. (b)
Process of translation: the information encoded in σ is copied to µ by a mapping of tiles via glue
domains. Green glues on µ and µ′ are flexible. One kink-ase (red) is used to convert µ to µ′.

Figure 9a (located in A.1) is a template for the tile set required for the replication of an
arbitrary genome. The process of replicating a genome σ into a new copy σ′ demonstrated in
Figure 2a is carried out left to right, initiated by a fuel assembly which is jettisoned after all
tiles in σ′ are connected with strength 2. This allows for the genome σ to be copied without
itself being used up or firing signals, leading to exponential growth. Full detail is available in
the online version [2].

3.2 Translation of σ to µ

Translation is defined as the process by which the Hamiltonian path encoded in σ is built
into a new messenger assembly µ. Since the signals to attach and detach µ from σ are fully
contained in the tiles of Tµ, translation continues as long as Tµ tiles remain in the system.
We note that the translation process can occur at the same time as σ is replicating. This
causes no unwanted geometric hindrances as demonstrated in Figure 9b.

DNA 27

3:10 Self-Replication

3.2.1 Placement of µ tiles

Messenger tiles from the set Tµ attach to σ as soon as complementary glues on the back flat
face of σ are activated after the binding of the fuel duple φ to σ′. The process of building
µ does not require a fuel structure to continue, as the messenger tiles have built-in signals
to deactivate the glues on µ which attach µ to σ. This allows for a genome to replicate the
messenger structure without itself being consumed in any manner. Once a flat tile in µ is
bound to its eastern neighbor, signals are fired from the eastern glues to deactivate the glue
connecting µ to σ. This leaves µ as its own separate assembly when every tile has attached
to its neighbor(s). The example of translation shown in Figure 2b illustrates that the same
information (i.e., sequence of tiles representing a Hamiltonian path) remains encoded in µ,
but allows for new structural functionality that would otherwise not be possible by σ.

3.2.2 Modification of µ to µ′

The current shape of µ is such that it could only replicate a trivial 2D structure; µ must be
modified to follow a Hamiltonian path in 3 dimensions as made possible by a set of turning
tiles. Additionally, in the current state of µ no cubic tiles can be placed as all the glues
which are complementary to cubic tiles are currently in the latent state. Once a glue of
type “p” is bound on the start tile, we then consider µ to have completed its modification
into µ′. The “p” glue on turning tiles can only be bound once they have been turned, and as
such the turning tiles present in µ′ must be turned before assembly of π begins.

Turning tiles modify the shape of µ by adding “kinks” into the otherwise linear structure
by the use of a fuel-like structure called a kink-ase. The kink-ase structure is generated from
a set of 2 flat tiles and 2 cube tiles. The unique form of kink-ase allows for the orientation
of two adjacent tiles to be modified without separating µ, shown by Figure 10 in A.2. The
turning tiles are physically rotated such that the connection between a turning tile and its
predecessor along the west thin edge of the turning tile is broken, and then reattached along
either the up or down thin edge of the turning tile. Each turning tile requires the use of a
single kink-ase, which turns into a junk assembly. Additional detail on this turning process
is found in A.2.

3.2.3 Assembly of π

At the end of translation, the tiles of µ′ have two strength-1 glues exposed which map to a
specific cubic tile in Tπ. The only tile in the the set Tπ which starts with two complementary
glues on is the start cubic tile. Once this cubic tile is bound to the start tile, a strength-1
glue is activated on the cube face adjacent to the next cubic tile in the Hamiltonian path,
allowing for the cooperative binding to the superstructure of both µ′ and the first tile of π.

After this process continues and a cubic tile is bound to its neighbor(s) with strength 2,
the flat tile receives a signal to jettison itself from the remaining tiles of µ′ by deactivating
all active glues, becoming a junk tile. Due to the asynchronous nature of signals, there may
be instances which the addition of cubic tiles of π are temporarily blocked. These will be
eventually resolved, allowing assembly to continue. This process is repeated, adding cube by
cube until the end tile in µ′ is reached – see Figure 3a for a simple example. Once the end
cube has been added to π, it has placed cubic tiles in all locations encoded by σ and µ′ has
been disassembled into junk tiles.

A. Alseth, D. Hader, and M. J. Patitz 3:11

(a) (b)

Figure 3 (a) Building π from µ′ (same as in Figure 2b). After the start cube binds to µ′ in step
A), the process of assembling π successively adds cubic tiles then detaches flat tiles from µ′. Step F)
is phenotype π originally encoded by σ. (b) The inductive steps required in the creation of π which
follows a Hamiltonian path given by a σ. The arrow going into the flat tile is the direction taken by
the Hamiltonian path in the prior tile addition step. The five arrows indicate possible directions for
the direction of the Hamiltonian path after the placement of the transparent cubic tile.

3.3 Analysis of R and its correctness
▶ Theorem 4. There exists an STAM* tile set T such that, given an arbitrary shape S, there
exists STAM* system R = (T, σ, 2) and S2 self-assembles in R with waste size 4.

We provide the main idea of the correctness proof, further described in [2]. We demonstrate
inductively that the construction process of an assembly π correctly generates a structure of
shape S2, as shown in Figure 3b. The intuition is that at each step in the Hamiltonian path,
there exists some combination of flat tiles which can correctly orient the placement of every
cubic tile in the Hamiltonian path. This overall set of tiles are encoded in σ, demonstrating
the ability of R to replicate arbitrarily many copies of S2.

4 A Self-Replicator that Generates its own Genome

In this section we outline our main result: a system which, given an arbitrary input shape, is
capable of disassembling an assembly of that shape block-by-block to build a genome which
encodes it. We describe the process by which this disassembly occurs and then show how,
from our genome, we can reconstruct the original assembly. Here we describe the construction
at a high level. The technical details for this construction can be found in [2]. We prove the
following theorem by implicitly defining the system R, describing the process by which an
input assembly is disassembled to form a “kinky” genome which is then used to make a copy
of a linear genome (which replicates itself) and of the original input assembly.

▶ Theorem 5. There exists a universal tile set T such that for every shape S, there exists
an STAM* system R = (T, σS2 , 2) where σS2 has shape S2 and R is a self-replicator for σS2

with waste size 2.

In this construction, there are two main components which here we call the phenotype
and the kinky genome. The phenotype, which is the seed of our STAM* system, is a scale
2 version of our target shape made entirely out of cubic tiles. These tiles are connected to
one another so that the assembly is τ -stable at temperature 2. We require the phenotype

DNA 27

3:12 Self-Replication

Figure 4 During disassembly, the genome will be dangling off of a single structural tile in the
phenotype. In each iteration, a new genome tile will attach and the old structural tile will detach
along the Hamiltonian path embedded in the phenotype.

to be a 2-scaled version of S since the disassembly process requires a Hamiltonian path
to pass through each of the tiles. This path describes the order in which the disassembly
process will occur. Generally it is often either impossible or intractable to find a Hamiltonian
path through an arbitrarily connected graph; however, using a 2-scaled shape we show that
it’s always possible efficiently. Additionally, the tiles in the phenotype contain glues and
signals that will allow the various attachments and detachments to occur in the disassembly
process. The genome is a sequence of flat tiles connected one to the next, whose glues encode
the construction of the phenotype. In our system, the genome will be constructed as the
phenotype is deconstructed and then will be duplicated or used to make copies of the original
phenotype. Throughout this section, we refer to the cubic tiles that make up the phenotype
as structural tiles and the flat tiles that make up the genome as genome tiles. Additionally,
the tiles used in this construction are part of a finite tile set T , making T a universal tile set.

4.1 Disassembly

Given a phenotype P with encoded Hamiltonian path H, the disassembly process occurs
iteratively by the detachment of at most 2 of tiles at at time. The process begins by the
attachment of a special genome tile to the start of the Hamiltonian path. In each iteration,
depending on the relative structure of the upcoming tiles in the Hamiltonian path, new
genome tiles will attach to the existing genome encoding the local structure of H and, using
signals from these newly attached genome tiles, a fixed number of structural tiles belonging
to nearby points in the Hamiltonian path will detach from P . The order in which these
detachments happen follow the path H and they will also cause all but the most recently
attached genome tile to detach from the structure causing them to dangle, hanging on to the
most recently attached genome tile as illustrated in Figure 5.

To show that the disassembly process happens correctly, we break down each iteration
into one of 6 cases based on the tiles nearby the next in the Hamiltonian path. We show
that these cases are complete and describe the process of disassembly for each one in [2].
Figure 5 illustrates the process and many of the important signals necessary for the most
basic case. In it, a single genome tile attaches causing the previous one to dangle and the
previous structural tile to detach. This new genome tile encodes this detachment so that
reassembly can occur later and the process continues from there in the next iteration.

A. Alseth, D. Hader, and M. J. Patitz 3:13

(a) (b)

Figure 5 (a) A side view of some of example glues and signals firing during disassembly. (b) A
side view of the local structure of nearby tiles for all 6 different cases in the disassembly process.

4.2 Reassembly
Once the genome is built, we show that the original shape can be reconstructed. This occurs
when a special structural tile attaches to the genome. This tile is identical to the last tile
in the Hamiltonian path of the original phenotype and initiates the reassembly process.
The online version [2] contains more details of the reassembly process, but essentially that
reassembly occurs very similarly to disassembly in reverse – still using the same 6 cases as
above and instead of having a new genome tile attach and the old structural tiles detach, the
opposite occurs.

4.3 Generating a Hamiltonian Path
▶ Lemma 6. Any scale factor 2 shape S2 admits a Hamiltonian path and generating this
path given a graph representing S2 can be done in polynomial time.

The algorithm for generating this Hamiltonian path is described in detail in [9] and
was inspired by [50]. At a high level, the process proceeds as follows. First we generate a
spanning tree through the shape S. We then scale the shape by a factor of two, assigning to
each 2 × 2 × 2 block of tiles one of two orientation graphs as illustrated in Figure 6. These
orientation graphs make a path through the 8 tiles making up a tile block. For each edge in
the spanning tree, we connect the corresponding orientation graphs, combining them to form
a single orientation graph. Doing this for all edges will leave us with a Hamiltonian path
through S2. In fact, we actually define a Hamiltonian circuit which guarantees that during
disassembly, the remaining phenotype will always remain connected.

The resulting Hamiltonian path, which we will call H, passes through each tile in the
2-scaled version of our shape and only take a polynomial amount of time to compute since
spanning trees can be found efficiently and only contain a polynomial number of edges.
Additionally, it should be noted that once we generate a Hamiltonian path, an algorithm can
easily iterate over the path simulating which tiles would still be attached during each stage
of the disassembly process. This means such an algorithm can also easily determine the glues
and signals necessary for each tile in the path by considering the appropriate iteration case.

5 Shape Building via Hierarchical Assembly

In this section we present details of a shape building construction which makes use of
hierarchical self-assembly. The main goals of this construction are to (1) provide more
compact genomes than the previous constructions, and (2) to more closely mimic the fact

DNA 27

3:14 Self-Replication

(a) (b)

Figure 6 (a) Each 2 × 2 × 2 block of space is assigned an orientation graph which will be used
to help generate the Hamiltonian path through our shape. Adjacent blocks are assigned opposite
orientation graphs, the edges of which will help guide the Hamiltonian path around the shape. (b)
Orientation graphs of adjacent blocks are joined to form a continuous path.

that in the replication of biological systems, individual proteins are independently constructed
and then they combine with other proteins to form cellular structures. First, we define a
class of shapes for which our base construction works, then we formally state our result.

Let a block-diffusable shape be a shape S which can be divided into a set of rectangular
prism shaped blocks5 whose union is S (following the algorithm in the online version [2])
such that a connectivity tree T can be constructed through those blocks and if any prism is
removed but T remains connected, that prism can be placed arbitrarily far away and move
in an obstacle-free path back into its location in S.

▶ Theorem 7. There exists a tile set U such that, for any block-diffusable shape S, there
exists a scale factor c ≥ 1 and STAM* system TS = (U, σSc , 2) such that Sc self-assembles in
TS with waste size 1. Furthermore, |σS | is approximately O(|S|1/3).

To prove Theorem 7, we present the algorithm which computes the encoding of S into
seed assembly σS as well as the value of the scale factor c (which may simply be 1), and then
explain the tiles that make up U so that TS will produce components that hierarchically
self-assemble to form a terminal assembly of shape S. At a high level, in this construction
the seed assembly is the genome, which is a compressed linear encoding of the target shape
that is logically divided into separate regions (called genes), and each gene independently
initiates the growth a (potentially large) portion of the target shape called a block. Once
sufficiently grown, each block detaches from the genome, completes its growth, and freely
diffuses until binding with the other blocks, along carefully defined binding surfaces called
interfaces, to form the target shape.

It is important to note that there are many potential refinements to the construction
we present which could serve to further optimize various aspects such as genome length,
scale factor, tile complexity, etc., especially for specific categories of target shapes. For ease
of understanding, we will present a relatively simple version of the construction, and in
several places we will point out where such optimizations and/or tradeoffs could be made.
Throughout this section, S is the target shape of our system. For some shapes, it may be
the case that a scale factor is required (and the details of how that is computed are provided

5 A rectangular prism is simply a 3D shape that has 6 faces, all of which are rectangles.

A. Alseth, D. Hader, and M. J. Patitz 3:15

(a) (b)

Figure 7 (a) An example 3D shape S. (b) S split into 4 blocks, each of which can be grown
from its own gene. Note that the surfaces which will be adjacent when the blocks combine will also
be assigned interfaces to ensure correct assembly of S.

(a) (b)

Figure 8 (a) The blocks for the example shape S from Figure 7 with example interfaces
included. (b) View from underneath showing more of the interfaces between blocks. Note that
the actual interfaces created by the algorithm would be shorter, but to make the example more
interesting their sizes have been increased.

in [2]). We will first describe how the shape S can be broken into a set of constituent
blocks, then how the interfaces between blocks are designed, then how individual blocks
self-assemble before being freed to autonomously combine into an assembly of shape S.

5.1 Decomposition into blocks
Since S is a shape in Z3, it is possible to split it into a set of rectangular prisms whose union
is S. We do so using a simple greedy algorithm which seeks to maximize the size of each
rectangular prism, which we call a block, and we call the full set of blocks B.

After the application of a greedy algorithm to compute an initial set B, we refine it by
splitting some of the blocks as needed to form a binding graph in the form of a tree T such
that every block is connected to at least one adjacent block, but also so that each block
has no more than one connected neighbor in each direction in T . This results in the final set
of blocks that combine to define S, can join along the edges defined by T , and each block
has at most 6 neighbors to which it combines. (Figure 7 shows a simple example.)

5.2 Interface design
The blocks self-assemble individually, then separate from the genome to freely diffuse until
they combine together via interfaces along the surfaces between which there were edges
in the binding tree T . Each interface is assigned a unique length and number. The two

DNA 27

3:16 Self-Replication

blocks that join along a given interface are assigned complementary patterns of “bumps”
and “dents” and a pair of complementary glues on either side of those patterns (to provide
the necessary binding strength between the blocks). The number assigned to each interface
is represented in binary and the block on one side of an interface has a protruding tile
“bump” in the location of each 1 bit but not in locations of 0 bits, and for the block on
the other side of the interface 1 bits have single tile “dents” where a tile is missing. The
length of each interface dictates which other interfaces have glues at the correct spacing
to allow binding, and the binary pattern of “bumps” and “dents” guarantees that only the
single, correct complementary half can combine with it.

Depending on the shape S and how it is split into blocks, it is possible that there are
too many interfaces of a given length (> 2(n−2)/2 for an interface of length n) to be able
to assign a unique number to each. Our algorithm will attempt to assign a unique length
and number to an interface for all lengths 2 to n/2 (2 being the minimum since there must
be room for the two glues), but since n is the full length of the surface between a pair of
blocks and each bit of the assigned number is represented by a pair of bits, a greater length
can’t be encoded in the tiles along it. Therefore, if there are too many interfaces for a
unique assignment, the shape S is scaled upward. This is repeated until there can be unique
assignments. (Note that there are many ways in which the algorithm could be optimized to
reduce the number of shapes for which scaling is necessary, and/or the amount of scaling,
especially for particular categories of shapes.) More technical details can be found in [2], and
an example of a few interfaces can be seen in Figure 8.

5.3 Block growth
The growth of each block is initiated by a portion of the linear genome called a gene, which
is merely a line of tiles with glues exposed in one direction that encode all of the information
required for the block to self-assemble to the correct dimensions and with the necessary
interfaces. The techniques used to encode the information and allow the blocks to grow
are very standard tile assembly techniques involving binary counters, zig-zag growth patterns,
and rotation of patterns of information. The information to seed the counters and encode the
interfaces is encoded in the outward facing glues of the gene and can be done so with the
universal tile set U since only a constant amount of information needs to be encoded in any
particular gene glue, due to the design of blocks and the fact that each has at most a single
interface on each side which is no longer than that side. Signals are used for detecting
completed growth of blocks, controlling growth of interfaces so “bump” interfaces can’t
complete before all “bumps” are in place, and “dent” interfaces can grow beyond “dent”
locations and then those tiles can fall out, and also so blocks can dissociate from genes.

5.4 Overview of the hierarchical construction
Once a block is freely diffusing and complete, it can combine along its interfaces with
the blocks that have complementary interfaces since, due to the fact that S is a block-
diffusable shape, free blocks can always diffuse into the proper locations to form the complete
shape. We’ve described a tile set U that can be used to (1) form the linear seed assembly
σS , and (2) to self-assemble the blocks which correctly combine to form the target assembly.
The STAM* system TS = (U, σS , 2) will produce an infinite number of copies of terminal
assemblies of shape S (properly scaled if necessary). The only fuel (a.k.a. consumed, junk
assemblies) will be singleton Dent tiles that attached during block growth then detached.
Note that this construction can be combined with the previous constructions as well, to
create a version of a shape self-replicator. Full technical details of the construction, as well
as a discussion of possible enhancements, can be found in [2].

A. Alseth, D. Hader, and M. J. Patitz 3:17

References
1 Zachary Abel, Nadia Benbernou, Mirela Damian, Erik Demaine, Martin Demaine, Robin

Flatland, Scott Kominers, and Robert Schweller. Shape replication through self-assembly
and RNase enzymes. In SODA 2010: Proceedings of the Twenty-first Annual ACM-SIAM
Symposium on Discrete Algorithms, Austin, Texas, 2010. Society for Industrial and Applied
Mathematics.

2 Andrew Alseth, Daniel Hader, and Matthew J. Patitz. Self-replication via tile self-assembly
(extended abstract). Technical Report 2105.02914, Computing Research Repository, 2021.
arXiv:2105.02914.

3 Ebbe S. Andersen, Mingdong Dong, Morten M. Nielsen, Kasper Jahn, Ramesh Subramani,
Wael Mamdouh, Monika M. Golas, Bjoern Sander, Holger Stark, Cristiano L. P. Oliveira,
Jan S. Pedersen, Victoria Birkedal, Flemming Besenbacher, Kurt V. Gothelf, and Jorgen
Kjems. Self-assembly of a nanoscale dna box with a controllable lid. Nature, 459(7243):73–76,
May 2009. doi:10.1038/nature07971.

4 Robert D. Barish, Rebecca Schulman, Paul W. K. Rothemund, and Erik Winfree. An
information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences, 106(15):6054–6059, April 2009. doi:10.1073/pnas.0808736106.

5 Florent Becker, Ivan Rapaport, and Eric Rémila. Self-assembling classes of shapes with a
minimum number of tiles, and in optimal time. In Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 45–56, 2006. doi:10.1007/11944836_7.

6 Florent Becker, Eric Rémila, and Nicolas Schabanel. Time optimal self-assembly for 2d and 3d
shapes: The case of squares and cubes. In Ashish Goel, Friedrich C. Simmel, and Petr Sosík,
editors, DNA, volume 5347 of Lecture Notes in Computer Science, pages 144–155. Springer,
2008. doi:10.1007/978-3-642-03076-5_12.

7 Hieu Bui, Shalin Shah, Reem Mokhtar, Tianqi Song, Sudhanshu Garg, and John Reif. Localized
dna hybridization chain reactions on dna origami. ACS nano, 12(2):1146–1155, 2018.

8 Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T. Schweller,
and Pablo Moisset de Espanés. Complexities for generalized models of self-assembly. SIAM
Journal on Computing, 34:1493–1515, 2005.

9 Kenneth C Cheung, Erik D Demaine, Jonathan R Bachrach, and Saul Griffith. Programmable
assembly with universally foldable strings (moteins). IEEE Transactions on Robotics, 27(4):718–
729, 2011.

10 Matthew Cook, Yunhui Fu, and Robert T. Schweller. Temperature 1 self-assembly: Determ-
inistic assembly in 3D and probabilistic assembly in 2D. In SODA 2011: Proceedings of the
22nd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2011.

11 E. D. Demaine, M. L. Demaine, S. P. Fekete, M. J. Patitz, R. T. Schweller, A. Winslow,
and D. Woods. One tile to rule them all: Simulating any tile assembly system with a single
universal tile. In Proceedings of the 41st International Colloquium on Automata, Languages,
and Programming (ICALP 2014), IT University of Copenhagen, Denmark, July 8-11, 2014,
volume 8572 of LNCS, pages 368–379, 2014.

12 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T. Schweller, and Diane L. Souvaine. Staged self-assembly: nanomanufacture of
arbitrary shapes with O(1) glues. Natural Computing, 7(3):347–370, 2008. doi:10.1007/
s11047-008-9073-0.

13 Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers,
and Damien Woods. The two-handed assembly model is not intrinsically universal. In 40th
International Colloquium on Automata, Languages and Programming, ICALP 2013, Riga,
Latvia, July 8-12, 2013, Lecture Notes in Computer Science. Springer, 2013.

14 Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers,
and Damien Woods. The two-handed tile assembly model is not intrinsically universal.
Algorithmica, 74(2):812–850, February 2016. doi:10.1007/s00453-015-9976-y.

DNA 27

http://arxiv.org/abs/2105.02914
https://doi.org/10.1038/nature07971
https://doi.org/10.1073/pnas.0808736106
https://doi.org/10.1007/11944836_7
https://doi.org/10.1007/978-3-642-03076-5_12
https://doi.org/10.1007/s11047-008-9073-0
https://doi.org/10.1007/s11047-008-9073-0
https://doi.org/10.1007/s00453-015-9976-y

3:18 Self-Replication

15 David Doty. Randomized self-assembly for exact shapes. In Proceedings of the 50th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 85–94. IEEE, 2009.

16 David Doty, Lila Kari, and Benoît Masson. Negative interactions in irreversible self-assembly.
Algorithmica, 66(1):153–172, 2013. doi:10.1007/s00453-012-9631-9.

17 David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pages 302–310,
2012.

18 Jérôme Durand-Lose, Jacob Hendricks, Matthew J. Patitz, Ian Perkins, and Michael Sharp.
Self-assembly of 3-D structures using 2-D folding tiles. In Proceedings of the 24th International
Conference on DNA Computing and Molecular Programming (DNA 24), Shandong Normal
University, Jinan, China October 8-12, pages 105–121, 2018.

19 Sándor P. Fekete, Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Robert T.
Schweller. Universal computation with arbitrary polyomino tiles in non-cooperative self-
assembly. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), San Diego, CA, USA January 4-6, 2015, pages 148–167, 2015.
doi:10.1137/1.9781611973730.12.

20 Tyler Fochtman, Jacob Hendricks, Jennifer E. Padilla, Matthew J. Patitz, and Trent A. Rogers.
Signal transmission across tile assemblies: 3d static tiles simulate active self-assembly by 2d
signal-passing tiles. Natural Computing, 14(2):251–264, 2015.

21 Bin Fu, Matthew J. Patitz, Robert T. Schweller, and Robert Sheline. Self-assembly with
geometric tiles. In Proceedings of the 39th International Colloquium on Automata, Languages
and Programming, ICALP, pages 714–725, 2012.

22 David Furcy, Samuel Micka, and Scott M. Summers. Optimal program-size complexity for
self-assembly at temperature 1 in 3D. In DNA Computing and Molecular Programming - 21st
International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015.
Proceedings, pages 71–86, 2015. doi:10.1007/978-3-319-21999-8_5.

23 Oscar Gilbert, Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. Computing in
continuous space with self-assembling polygonal tiles. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), Arlington, VA, USA
January 10-12, 2016, pages 937–956, 2016.

24 Daniel Hader, Aaron Koch, Matthew J. Patitz, and Michael Sharp. The impacts of dimen-
sionality, diffusion, and directedness on intrinsic universality in the abstract tile assembly
model. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2607–2624.
SIAM, 2020.

25 Daniel Hader and Matthew J. Patitz. Geometric tiles and powers and limitations of geometric
hindrance in self-assembly. In Proceedings of the 18th Annual Conference on Unconventional
Computation and Natural Computation (UCNC 2019), Tokyo, Japan June 3–7, 2019, pages
191–204, 2019.

26 Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, and Hadley Thomas.
Hierarchical self-assembly of fractals with signal-passing tiles. Submit to Natrual Computing.

27 Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. Replication of arbitrary hole-
free shapes via self-assembly with signal-passing tiles. In Cristian S. Calude and Michael J.
Dinneen, editors, Unconventional Computation and Natural Computation - 14th International
Conference, UCNC 2015, Auckland, New Zealand, August 30 - September 3, 2015, Proceedings,
volume 9252 of Lecture Notes in Computer Science, pages 202–214. Springer, 2015. doi:
10.1007/978-3-319-21819-9_15.

28 Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. Reflections on tiles (in self-assembly).
Natural Computing, 16(2):295–316, 2017. doi:10.1007/s11047-017-9617-2.

https://doi.org/10.1007/s00453-012-9631-9
https://doi.org/10.1137/1.9781611973730.12
https://doi.org/10.1007/978-3-319-21999-8_5
https://doi.org/10.1007/978-3-319-21819-9_15
https://doi.org/10.1007/978-3-319-21819-9_15
https://doi.org/10.1007/s11047-017-9617-2

A. Alseth, D. Hader, and M. J. Patitz 3:19

29 Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. The simulation powers and
limitations of higher temperature hierarchical self-assembly systems. Fundam. Inform., 155(1-
2):131–162, 2017. doi:10.3233/FI-2017-1579.

30 Nataša Jonoska and Daria Karpenko. Active tile self-assembly, part 1: Universality at
temperature 1. International Journal of Foundations of Computer Science, 25(02):141–163,
2014. doi:10.1142/S0129054114500087.

31 Nataša Jonoska and Daria Karpenko. Active tile self-assembly, part 2: Self-similar structures
and structural recursion. International Journal of Foundations of Computer Science, 25(02):165–
194, 2014. doi:10.1142/S0129054114500099.

32 Nataša Jonoska and Gregory L. McColm. A computational model for self-assembling flexible
tiles. In Proceedings of the 4th international conference on Unconventional Computation,
UC’05, pages 142–156, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11560319_14.

33 Nataša Jonoska and Gregory L. McColm. Complexity classes for self-assembling flexible tiles.
Theor. Comput. Sci., 410(4-5):332–346, 2009. doi:10.1016/j.tcs.2008.09.054.

34 Nataša Jonoska and GregoryL. McColm. Flexible versus rigid tile assembly. In CristianS.
Calude, MichaelJ. Dinneen, Gheorghe Păun, Grzegorz Rozenberg, and Susan Stepney, editors,
Unconventional Computation, volume 4135 of Lecture Notes in Computer Science, pages
139–151. Springer Berlin Heidelberg, 2006. doi:10.1007/11839132_12.

35 Lila Kari, Shinnosuke Seki, and Zhi Xu. Triangular and hexagonal tile self-assembly systems. In
Proceedings of the 2012 international conference on Theoretical Computer Science: computation,
physics and beyond, WTCS’12, pages 357–375, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-27654-5_28.

36 Alexandra Keenan, Robert Schweller, and Xingsi Zhong. Exponential replication of patterns
in the signal tile assembly model. Natural Computing, 14(2):265–278, 2014.

37 Alexandra Keenan, Robert T. Schweller, and Xingsi Zhong. Exponential replication of
patterns in the signal tile assembly model. In David Soloveichik and Bernard Yurke, editors,
DNA, volume 8141 of Lecture Notes in Computer Science, pages 118–132. Springer, 2013.
doi:10.1007/978-3-319-01928-4_9.

38 James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers. Computability
and complexity in self-assembly. Theory Comput. Syst., 48(3):617–647, 2011. doi:10.1007/
s00224-010-9252-0.

39 Wenyan Liu, Hong Zhong, Risheng Wang, and Nadrian C. Seeman. Crystalline two-dimensional
dna-origami arrays. Angewandte Chemie International Edition, 50(1):264–267, 2011. doi:
10.1002/anie.201005911.

40 Jennifer E. Padilla, Matthew J. Patitz, Robert T. Schweller, Nadrian C. Seeman, Scott M.
Summers, and Xingsi Zhong. Asynchronous signal passing for tile self-assembly: Fuel efficient
computation and efficient assembly of shapes. International Journal of Foundations of
Computer Science, 25(4):459–488, 2014.

41 Jennifer E. Padilla, Ruojie Sha, Martin Kristiansen, Junghuei Chen, Natasha Jonoska, and
Nadrian C. Seeman. A signal-passing DNA-strand-exchange mechanism for active self-assembly
of DNA nanostructures. Angewandte Chemie International Edition, 54(20):5939–5942, March
2015. doi:10.1002/anie.201500252.

42 Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, and Andrew
Winslow. Resiliency to multiple nucleation in temperature-1 self-assembly. In Proceedings of
the 22nd International Conference on DNA Computing and Molecular Programming (DNA
22), Ludwig-Maximilians-Universität, Munich, Germany September 4-8, 2016, pages 98–113,
2016.

43 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with dna strand displace-
ment cascades. Science, 332(6034):1196–1201, 2011.

44 P. W. K. Rothemund. Design of dna origami. In ICCAD ’05: Proceedings of the 2005
IEEE/ACM International conference on Computer-aided design, pages 471–478, Washington,
DC, USA, 2005. IEEE Computer Society.

DNA 27

https://doi.org/10.3233/FI-2017-1579
https://doi.org/10.1142/S0129054114500087
https://doi.org/10.1142/S0129054114500099
https://doi.org/10.1007/11560319_14
https://doi.org/10.1016/j.tcs.2008.09.054
https://doi.org/10.1007/11839132_12
https://doi.org/10.1007/978-3-642-27654-5_28
https://doi.org/10.1007/978-3-319-01928-4_9
https://doi.org/10.1007/s00224-010-9252-0
https://doi.org/10.1007/s00224-010-9252-0
https://doi.org/10.1002/anie.201005911
https://doi.org/10.1002/anie.201005911
https://doi.org/10.1002/anie.201500252

3:20 Self-Replication

45 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In STOC ’00: Proceedings of the thirty-second annual ACM
Symposium on Theory of Computing, pages 459–468, Portland, Oregon, United States, 2000.
ACM. doi:10.1145/335305.335358.

46 Rebecca Schulman, Bernard Yurke, and Erik Winfree. Robust self-replication of combinatorial
information via crystal growth and scission. Proc Natl Acad Sci USA, 109(17):6405–10, 2012.
URL: http://www.biomedsearch.com/nih/Robust-self-replication-combinatorial-
information/22493232.html.

47 Friedrich C. Simmel, Bernard Yurke, and Hari R. Singh. Principles and applications of nucleic
acid strand displacement reactions. Chemical Reviews, 119(10):6326–6369, 2019.

48 David Soloveichik and Erik Winfree. Complexity of compact proofreading for self-assembled
patterns. In The eleventh International Meeting on DNA Computing, 2005.

49 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007. doi:10.1137/S0097539704446712.

50 Scott M. Summers. Reducing tile complexity for the self-assembly of scaled shapes
through temperature programming. Algorithmica, 63(1-2):117–136, June 2012. doi:
10.1007/s00453-011-9522-5.

51 Boya Wang, Chris Thachuk, Andrew D. Ellington, Erik Winfree, and David Soloveichik.
Effective design principles for leakless strand displacement systems. Proceedings of the National
Academy of Sciences, 115(52):E12182–E12191, 2018.

52 Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from single-stranded
dna tiles. Nature, 485(7400):623–626, 2012.

53 David Yu Zhang and Rizal F. Hariadi. Integrating dna strand-displacement circuitry with dna
tile self-assembly. Nature Communications, 4(6):Art. No. 1965, June 2013.

54 David Yu Zhang and Georg Seelig. Dynamic dna nanotechnology using strand-displacement
reactions. Nature chemistry, 3(2):103–113, 2011.

A Genome Based Replicator

A.1 Replication and translation details
The replication process of σ begins with the attachment of tiles from the set Tσ to σ due to
the two strength-1 glues on the north face of individual tiles comprising σ. We denote the
incomplete copy of σ as σ′. Asynchronously, a fuel tile assembly φ comprised of two subtiles
φ1, φ2 ∈ Tϕ binds to the leftmost tile of σ. Upon the binding of a start tile to the north thin
face of the start tile of σ′, the signal provided by φ begins a chain reaction starting with the
binding to the the active “n” glue on the west thin face of the newly attached tile and the
signal propagates through the chain of connected σ′ tiles. Once the end tile Eσ is bound to
the remainder of σ′ by the active “n” glue, it returns a signal through its newly activated
west glue to fully connect it to the prior tile and then detach from the genome to the south.
This signal cascades back through the remaining tiles of σ′ until reaching φ, at which point
φ deactivates its glues. allowing the newly replicated copy of σ to separate and begin the
process of replicating itself and translating copies of µ.

A.2 Turning Tile and Kink-ase
This section describes in detail how µ is converted to µ′ utilizing the kink-ase structure, and
an example is shown in Figure 10.
A) Kink-ase attaches to a turning tile and the predecessor which will be re-oriented in

µ. Simultaneously, glues are activated on the kink-ase cube structure attached to the
turning tile to bind the turning tile face and to the kink-ase cube structure attached to

https://doi.org/10.1145/335305.335358
http://www.biomedsearch.com/nih/Robust-self-replication-combinatorial-information/22493232.html
http://www.biomedsearch.com/nih/Robust-self-replication-combinatorial-information/22493232.html
https://doi.org/10.1137/S0097539704446712
https://doi.org/10.1007/s00453-011-9522-5
https://doi.org/10.1007/s00453-011-9522-5

A. Alseth, D. Hader, and M. J. Patitz 3:21

(a) (b)

Figure 9 (a) Initial genome replicator tiles. Note that ⊗⊗ represents two strength 1 glues
which are on the full face of the seed tiles opposite from the reader (b) Illustration of an arbitrary
translation process occurring at the same time as genome replication. Red tiles are representative of
φ, gold tiles are representative of σ and σ′, and blue tiles are representative of µ.

the predecessor tile to enable the folding of the cube structure in step D). Note – glues
connecting tiles in µ may be either rigid or flexible depending upon the Hamiltonian
path generated for π. This does not effect any intermediate steps presented.

B) The turning tile’s rear face binds to the kink-ase due to random movement allowed by
the flexible glues which attach the kink-ase to the turning and predecessor tiles, i.e. the
flexible bond allows the tile to rotate and randomly assume various relative positions.
When it enters the correct configuration, the glues bind to “lock it in”.

C) Upon connection of the turning tile face to the kink-ase cube, a signal deactivates the
rigid glue attaching the predecessor tile to the turning tile. A signal activates glues on
the exposed face of the kink-ase tile attached to cube and turning tile structure. The
flexible connection between the predecessor tile and kink-ase ensures µ does not split
into two pieces.

D) The kink-ase cube and kink-ase tile with activated glue bind on faces when they rotate
into the correct configuration, bringing the turning tile into correct alignment with the
predecessor tile. The kink-ase cube face adjacent to the predecessor tile activates its
glue, allowing for binding with the face of the two. The flexible glue allows for random
movement for the complementary glues to attach and bind. Concurrently, the flexible
glue on the turning tile is deactivated and a rigid glue of similar type to the turning tile
glue deactivated in step C) is activated.

E) A rigid glue between the turning tile and predecessor tile binds, leading to re-connection
between both prior detached portions of µ. Activation of the final glue leads to the
turning tile signaling to kink-ase to detatch from µ.

F) This structure represents µ after one turning tile has been resolved. A completion signal
is passed through glues attaching the turning tile and predecessor tile. This process
continues for all turning tiles serially, working backwards from the termination tile. This
is to prevent any interference between structures incurred by multiple adjacent turning
tiles.

DNA 27

3:22 Self-Replication

Figure 10 Conversion of one turning tile. Blue tiles indicate µ, whereas the red indicate the
kink-ase.

Improved Lower and Upper Bounds on the Tile
Complexity of Uniquely Self-Assembling a Thin
Rectangle Non-Cooperatively in 3D
David Furcy #

Computer Science Department, University of Wisconsin Oshkosh, WI, USA

Scott M. Summers #

Computer Science Department, University of Wisconsin Oshkosh, WI, USA

Logan Withers #

Computer Science Department, University of Wisconsin Oshkosh, WI, USA

Abstract
We investigate a fundamental question regarding a benchmark class of shapes in one of the simplest,
yet most widely utilized abstract models of algorithmic tile self-assembly. More specifically, we study
the directed tile complexity of a k × N thin rectangle in Winfree’s ubiquitous abstract Tile Assembly
Model, assuming that cooperative binding cannot be enforced (temperature-1 self-assembly) and that
tiles are allowed to be placed at most one step into the third dimension (just-barely 3D). While the
directed tile complexities of a square and a scaled-up version of any algorithmically specified shape
at temperature 1 in just-barely 3D are both asymptotically the same as they are (respectively) at
temperature 2 in 2D, the (nearly tight) bounds on the directed tile complexity of a thin rectangle at
temperature 2 in 2D are not currently known to hold at temperature 1 in just-barely 3D. Motivated
by this discrepancy, we establish new lower and upper bounds on the directed tile complexity of
a thin rectangle at temperature 1 in just-barely 3D. The proof of our upper bound is based on
the construction of a novel, just-barely 3D temperature-1 self-assembling counter. Each value of
the counter is comprised of k − 2 digits, represented in a geometrically staggered fashion within k

rows. This nearly optimal digit density, along with the base of the counter, which is proportional to
N

1
k−1 , results in an upper bound of O

(
N

1
k−1 + log N

)
, and is an asymptotic improvement over

the previous state-of-the-art upper bound. On our way to proving our lower bound, we develop
a new, more powerful type of specialized Window Movie Lemma that lets us bound the number
of “sufficiently similar” ways to assign glues to a set (rather than a sequence) of fixed locations.
Consequently, our lower bound, Ω

(
N

1
k

)
, is also an asymptotic improvement over the previous

state-of-the-art lower bound.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Self-assembly, algorithmic self-assembly, tile self-assembly

Digital Object Identifier 10.4230/LIPIcs.DNA.27.4

1 Introduction

A key objective in algorithmic self-assembly is to characterize the extent to which an algorithm
can be converted to an efficient self-assembling system comprised of discrete, distributed and
disorganized units that, through random encounters with, and locally-defined reactions to
each other, coalesce into a terminal assembly having a desirable form or function. In this
paper, we study a fundamental theoretical question regarding a benchmark class of shapes in
one of the simplest yet most popular abstract models of algorithmic self-assembly.

Ubiquitous throughout the theory of tile self-assembly, Erik Winfree’s abstract Tile
Assembly Model (aTAM) [26] is a discrete mathematical model of DNA tile self-assembly [23]
that augments classical Wang tiling [25] with a mechanism for automatic growth. In the

© David Furcy, Scott M. Summers, and Logan Withers;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 4; pp. 4:1–4:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:furcyd@uwosh.edu
mailto:summerss@uwosh.edu
mailto:withel75@uwosh.edu
https://doi.org/10.4230/LIPIcs.DNA.27.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

aTAM, a DNA tile is represented by a unit square (or cube) tile type that may neither
rotate, reflect, nor fold. Each side of a tile type is decorated with a glue consisting of both a
non-negative integer strength and a string label, the symbols of which are drawn from some
fixed alphabet. A tile set is a finite set of tile types, from which infinitely many tiles of each
type may be instantiated. If one tile is positioned at an unoccupied location Manhattan
distance 1 away from another tile and their opposing glues are equal, then the two tiles bind
with the strength of the adjacent glues. A special seed tile type is designated and a seed
tile, which defines the seed-containing assembly, is placed at some fixed location. During the
process of self-assembly, a sequence of tiles bind to and never detach from the seed-containing
assembly, provided that each one, in a non-overlapping fashion, binds to one or more tiles
in the seed-containing assembly with total strength at least a certain positive integer value
called the temperature. If the temperature is greater than or equal to 2, then it is possible
to enforce cooperative binding, where a tile may be prevented from binding at a certain
location until at least two adjacent locations become occupied by tiles. Otherwise, only
non-cooperative binding is allowed (temperature-1 self-assembly). A fundamental theoretical
question in tile self-assembly is determining the effect of the value of the temperature on the
computational and geometric expressiveness of tile self-assembly.

To that end, temperature-1 self-assembly has been shown to hinder the efficient self-
assembly of shapes when tile assemblies are required to be fully connected [22] or contain no
glue mismatches [16]. Temperature-1 self-assembly is also neither intrinsically universal [17,19],
nor capable of bounded Turing computation [19]. Recently and quite remarkably, Meunier,
Regnault and Woods [18] established a general pumping lemma for temperature-1 self-
assembly, nearly proving a conjecture by Doty, Patitz and Summers [6] on the computational
weakness of temperature-1 self-assembly.

Interestingly, temperature-1 self-assembly does not limit the computational or geometric
expressiveness of generalizations of the aTAM [4,5, 7, 8, 12]. This is also true even when the
generalization only adds a small number of additional features to the model, like a single
negative glue [20], duple tiles [13], or another plane in which (cubic) 3D tiles are allowed to be
placed [3,9–11]. The latter variant is colloquially known as “just-barely” 3D self-assembly. In
this paper, we study the limitations of temperature-1 self-assembly for unique shape-building
in the just-barely 3D aTAM. We are specifically interested in studying the directed tile
complexity of a given target shape, or the size of the smallest tile set that, regardless of the
order in which tiles bind to the seed-containing assembly, always self-assembles into a unique
terminal assembly of tiles that are placed on and only on points of a given target shape.

Although temperature-1 self-assembly cannot enforce cooperative binding, there is a
striking resemblance of its computational and geometric expressiveness in just-barely 3D,
to that of temperature-2 self-assembly in 2D, with respect to the directed tile complexity
of two benchmark shapes: a square and a scaled-up version of any algorithmically specified
shape. Adleman, Cheng, Goel and Huang [1] proved, using optimal base conversion, that the
directed tile complexity of an N ×N square at temperature 2 in 2D is O

(
log N

log log N

)
, matching

a corresponding lower bound for all Kolmogorov-random N and all positive temperature
values, set by Rothemund and Winfree [22]. The lower bound also holds in just-barely
3D. An O

(
log N

log log N

)
upper bound for the directed tile complexity of an N × N square at

temperature 1 in just-barely 3D was established by Furcy, Micka and Summers [9] via a
just-barely 3D, optimal encoding construction at temperature 1. Just-barely 3D, optimal
encoding at temperature 1 was inspired by, achieves the same result as, but is drastically
different from the 2D optimal encoding at temperature 2 developed by Soloveichik and
Winfree [24], who proved that the directed tile complexity of a scaled-up version of any

D. Furcy, S. M. Summers, and L. Withers 4:3

algorithmically specified shape X at temperature 2 is Θ
(

K(X)
log K(X)

)
, where K(X) is the size

of the smallest Turing machine that outputs the list of points in X. This tight bound for
temperature-2 self-assembly in 2D was shown to hold for temperature-1 self-assembly in
just-barely 3D by Furcy and Summers [10].

Another benchmark shape, for positive integers k, N , is the k × N rectangle, where
k < log N

log log N−log log log N , making it “thin”. A thin rectangle is an interesting testbed because
its restricted height creates a limited channel through which tiles may propagate information,
for example, the current value of a self-assembling counter. In fact, Aggarwal, Cheng,
Goldwasser, Kao, Moisset de Espanés and Schweller [2] used an optimal, base-

⌈
N

1
k

⌉
counter

that uniquely self-assembles within the restricted confines of a thin rectangle to derive an
upper bound of O

(
N

1
k + k

)
on the directed tile complexity of a k × N thin rectangle at

temperature 2 in 2D. They then leveraged the limited bandwidth of a thin rectangle in a

counting argument for a corresponding lower bound of Ω
(

N
1
k

k

)
.

The previous theory for a square and an algorithmically specified shape would suggest
that these thin rectangle bounds should hold at temperature 1 in just-barely 3D. Yet, we
currently do not know if this is the case. Thus, the power of temperature-1 self-assembly
in just-barely 3D resembles that of temperature-2 self-assembly in 2D, with respect to the
directed tile complexities of a square and a scaled-up version of any algorithmically specified
shape, but not a thin rectangle.

Motivated by this theoretical discrepancy, we prove new lower and upper bounds on the
directed tile complexity of a thin rectangle at temperature 1 in just-barely 3D, where R3

k,N

is a just-barely 3D k × N rectangle if it satisfies {0, 1, . . . , N − 1} × {0, 1, . . . , k − 1} × {0} ⊆
R3

k,N ⊆ {0, 1 . . . , N − 1} × {0, 1 . . . , k − 1} × {0, 1}. See Tables 1 and 2 for a quick summary
of our results and how they compare with previous state-of-the-art results.

Table 1 State-of-the-art directed tile complexity for benchmark shapes in the aTAM, where
K(X) is the size of the smallest Turing machine that outputs the list of points in X.

2D Temperature 2 Just-barely 3D Temperature 1
Lower bound Upper bound Lower bound Upper bound

N × N Square Θ
(

log N
log log N

)
Same as 2D Temperature 2

Algorithmically-defined shape X Θ
(

K(X)
log K(X)

)
Same as 2D Temperature 2

k × N rectangle Ω
(

N
1
k

k

)
O

(
N

1
k + k

)
Ω

(
N

1
2k

k

)
O

(
N

1

⌊ k
3 ⌋ + log N

)

Table 2 In this table, we highlight our improved lower and upper bounds on the directed
tile complexity of rectangles, the two main contributions of this paper, and compare them with
corresponding bounds in 2D at temperature 2. Note that, for thin rectangles, the additive logarithmic
term disappears, since, for a thin rectangle, k < log N

log log N−log log log N
, which implies that log N <

N
1
k < N

1
k−1 , for sufficiently large k and N .

2D Temperature 2 Just-barely 3D Temperature 1
Lower bound Upper bound Lower bound Upper bound

k × N rectangle Ω
(

N
1
k

k

)
O

(
N

1
k + k

)
Ω

(
N

1
k

)
O

(
N

1
k−1 + log N

)

DNA 27

4:4 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

First, we have our upper bound:

▶ Theorem 1. The directed tile complexity of a just-barely 3D k ×N rectangle at temperature
1 is O

(
N

1
k−1 + log N

)
.

Theorem 1 is an asymptotic improvement over the previous state-of-the-art upper bound:

O

(
N

1

⌊ k
3 ⌋ + log N

)
[11]. The latter bound is based on the self-assembly of a just-barely

3D counter that uniquely self-assembles at temperature 1, but whose base M depends on
the dimensions of the target rectangle, where each digit is represented geometrically and in
binary within a just-barely 3D region of space comprised of Θ(log N) columns and 3 rows.
In a construction like this, the number of rows used to represent each digit affects the base of
the counter, which, for a thin rectangle, turns out to be the asymptotically-dominating term
in the tile complexity. For example, in the Furcy, Summers and Wendlandt construction,

the number of rows per digit is 3, so the base is set to Θ
(

N

1

⌊ k
3 ⌋

)
. Intuitively, “squeezing”

more digits into the counter for the same rectangle of height k will result in a decrease in the
base and therefore the tile complexity.

Our construction for Theorem 1 is based on the self-assembly of a just-barely 3D counter
similar to the Furcy, Summers and Wendlandt construction, but the geometric structure
of our counter is organized according to digit regions, or just-barely 3D regions of space
comprised of k rows and Θ

(
N

1
k−1

)
columns, in which k − 2 base-Θ

(
N

1
k−1

)
digits are

represented in a staggered fashion. This increase in digit density is the main reason why the
“
⌊

k
3
⌋
” term from the Furcy, Summers and Wendlandt upper bound is replaced by a “k − 1”

term in Theorem 1. Finally, we have our lower bound:

▶ Theorem 2. The directed tile complexity of a just-barely 3D k ×N rectangle at temperature
1 is Ω

(
N

1
k

)
.

Theorem 2 is an asymptotic improvement over the previous state-of-the-art lower bound:

Ω
(

N
1

2k

k

)
. Technically, the latter bound is not explicitly proved (or even stated) and therefore

cannot be referenced, but it can be derived via a straightforward application of the standard
Window Movie Lemma introduced in [17]. On our way to proving Theorem 2, we prove
Lemma 5, which is essentially a new, more powerful type of Window Movie Lemma technique,
specifically designed for temperature-1 self-assembly within a just-barely 3D, rectangular
region of space. We conjecture that the conclusion of Lemma 5 can be generalized to give
a powerful tool for proving even better lower bounds on the directed tile complexity of 3D
non-rectangular shapes at temperature-1 than what would otherwise be possible with the
standard Window Movie Lemma. Lemma 5 lets us develop a more refined counting argument
based on upper bounding the number of “sufficiently similar” ways for an assembly sequence
to assign glues to a fixed set of locations abutting a plane. Intuitively, two assignments are
sufficiently similar if, up to translation, they respectively agree on: the set of locations to
which glues are assigned, the local order in which certain consecutive pairs of glues appear,
and the glues that are assigned to a certain set (of roughly half) of the locations.

D. Furcy, S. M. Summers, and L. Withers 4:5

2 Formal definition of the abstract Tile Assembly Model

In this section, we briefly sketch a strictly 3D version of Winfree’s abstract Tile Assembly
Model (see also [14,21,22]).

All logarithms in this paper are base-2. A grid graph is an undirected graph G = (V, E),
where V ⊂ Z3, such that, for all

{
a⃗, b⃗

}
∈ E, a⃗ − b⃗ is a 3-dimensional unit vector. The

full grid graph of V is the undirected graph Gf
V = (V, E), such that, for all x⃗, y⃗ ∈ V ,

{x⃗, y⃗} ∈ E ⇐⇒ ∥x⃗ − y⃗∥ = 1, i.e., if and only if x⃗ and y⃗ are adjacent in the 3-dimensional
integer Cartesian space.

A 3-dimensional tile type is a tuple t ∈ (Σ∗ × N)6, e.g., a unit cube, with six sides, listed
in some standardized order, and each side having a glue g ∈ Σ∗ × N consisting of a finite
string label and a nonnegative integer strength. We assume a finite set of tile types, but an
infinite number of copies of each tile type, each copy referred to as a tile. A tile set is a set
of tile types and is usually denoted as T .

A configuration is a (possibly empty) arrangement of tiles on the integer lattice Z3, i.e.,
a partial function α : Z3 99K T . Two adjacent tiles in a configuration bind, interact, or are
attached, if the glues on their abutting sides are equal (in both label and strength) and have
positive strength. Each configuration α induces a binding graph Gb

α, a grid graph whose
vertices are positions occupied by tiles, according to α, with an edge between two vertices if
the tiles at those vertices bind. An assembly is a connected, non-empty configuration, i.e., a
partial function α : Z3 99K T such that Gf

dom α is connected and dom α ̸= ∅. Given τ ∈ Z+,
α is τ -stable if every cut-set of Gb

α has weight at least τ , where the weight of an edge is the
strength of the glue it represents. When τ is clear from context, we say α is stable. Given
two assemblies α, β, we say α is a subassembly of β, and we write α ⊑ β, if dom α ⊆ dom β

and, for all points p⃗ ∈ dom α, α(p⃗) = β(p⃗).
A 3-dimensional tile assembly system (TAS) is a triple T = (T, σ, τ), where T is a tile

set, σ : Z3 99K T satisfying |dom σ| = 1 is the seed assembly (trivially τ -stable), and
τ ∈ Z+ is the temperature. Given two τ -stable assemblies α, β, we write α →T

1 β if α ⊑ β

and |dom β\dom α| = 1. In this case we say α T -produces β in one step. If α →T
1 β,

dom β\dom α = {p⃗}, and t = β(p⃗), we write β = α + (p⃗ 7→ t). The T -frontier of α is the
set ∂T α =

⋃
α→T

1 β(dom β\dom α), i.e., the set of empty locations at which a tile could
stably attach to α. The t-frontier of α, denoted ∂T

t α, is the subset of ∂T α defined as{
p⃗ ∈ ∂T α

∣∣ α →T
1 β and β(p⃗) = t

}
.

Let AT denote the set of all assemblies of tiles from T , and let AT
<∞ denote the set of

finite assemblies of tiles from T . A sequence of k ∈ Z+ ∪ {∞} assemblies α⃗ = (α0, α1, . . .)
over AT is a T -assembly sequence if, for all 1 ≤ i < k, αi−1 →T

1 αi. The result of an assembly
sequence α⃗, denoted as res(α⃗), is the unique limiting assembly (for a finite sequence, this is
the final assembly in the sequence). We write α →T β, and we say α T -produces β (in 0 or
more steps), if there is a T -assembly sequence α0, α1, . . . of length k = |dom β\dom α| + 1
such that (1) α = α0, (2) dom β =

⋃
0≤i<k dom αi, and (3) for all 0 ≤ i < k, αi ⊑ β. We say

α is T -producible if σ →T α, and we write A[T] to denote the set of T -producible assemblies.
An assembly α is T -terminal if α is τ -stable and ∂T α = ∅. We write A□[T] ⊆ A[T] to
denote the set of T -producible, T -terminal assemblies. If |A□[T]| = 1 then T is said to be
directed. We say that a TAS T uniquely self-assembles a shape X ⊆ Z3 if A□[T] = {α} and
dom α = X.

The directed tile complexity of a shape X at temperature τ is the minimum number of
distinct tile types of any TAS that uniquely self-assembles (USA) X, denoted by Kτ

USA(X) =
min {n | T = (T, σ, τ) , |T | = n and T uniquely self-assembles X }.

DNA 27

4:6 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

3 The upper bound

In this section, we prove Theorem 1, our upper bound, namely that K1
USA

(
R3

k,N

)
=

O
(

N
1

k−1 + log N
)

. In order to do so, we construct a TAS that uniquely self-assembles a
sufficiently large rectangle (of any height k ≥ 3) R3

k,N . Specifically, we construct a TAS
T = (T, σ, 1) so that it simulates a base B =

⌈
N

1
k−1

⌉
, W = k − 2 digit counter, henceforth

referred to as the counter, that starts counting at a specified starting value and stops after
the maximum value is incremented, before rolling over to 0. In the remainder of this section,
we will describe the self-assembly of the counter.

Each W -digit, base-B value of the counter is represented in a corresponding just-barely
3D rectangular region of space called a digit region. There are two types of digit regions, one
for each type of counter step: copy and increment. The former duplicates the value from the
previous increment region and the latter increments the value from the previous copy region.
The counter alternates between increment and copy steps.

Counter digits are represented geometrically and in binary, using the bit bump technique
by Cook, Fu and Schweller [3]. Each digit is comprised of b + 2 = ⌈log B⌉ + 2 bit bumps
that protrude from a row of tiles. Each bit bump geometrically encodes one bit. The two
most significant (westernmost) bits of a digit are its indicator bits: 10 – most significant,
01 – least significant, 00 – neither, 11 – both. The rest of the bits represent a base-B value.
Bumps of a digit in increment (copy) regions protrude to the south (north). If the bump is
in the z = 0 (z = 1) plane, then it represents a 0 (1). The W digits in a digit region are
staggered like the steps of a staircase, descending (ascending) in a copy (increment) region.
Figure 1 shows the layout of the two types of digit regions, positioned consecutively as they
would be in the counter, which is self-assembling to the east.

0 1
0 0

1 0

0 0
0 0

1 001
0 0

0 1

0
1 0

01

1

d1 d3

d3 d2 d1 5 3(b + 2) 9 9 1

1 10 10 4

3(b + 2) 3(b + 2)

e d213(b + 2) 3(b + 2) 3(b + 2)

Figure 1 A copy region (west) and an increment region (east). The numeric quantities below and
above each region indicate a number of columns. Note that W = 3, so k = 5 (not drawn to scale).

Digit regions (Figure 1): We assume that the most significant bit of a digit is represented
by the westernmost bit bump (to the east of the indicator bits), which means that we have
d1 = 2 (least significant digit), d2 = 2 and dW = d3 = 1 (most significant digit). Thus, the
base-3 value 122 in the copy region is incremented to 200 in the increment region. The
orange column represents a variable number of e = B − (2W (3(b + 2)) + 50) extra columns.
The extra columns ensure that the combined width of two consecutive digit regions is B.
The idea is that the terminal assembly of T is a sequence of copy-increment digit region
pairs with one pair per value of the counter. Since each value of the counter corresponds to a
pair of consecutive digit regions and e is such that the width of two consecutive digit regions
is B columns, assuming the counter starts counting at 0, the width of the k-row terminal
assembly that T will produce is B · BW =

⌈
N

1
k−1

⌉
·
⌈
N

1
k−1

⌉k−2
≥ N

1
k−1 · N

k−2
k−1 ≥ N . Then,

T can be modified to produce a unique terminal assembly of height k and width N , by using
a positive starting value and O (N mod B) additional tile types.

D. Furcy, S. M. Summers, and L. Withers 4:7

Figures 2 through 10 illustrate the self-assembly of an increment step for an artificial
example with B = 3, k = 5 and starting value 122.

Figure 2 The initial value assembly.

The initial value (Figure 2): The initial value is represented inside a copy region. The
green tile is the seed tile. We use big (small) squares to represent tiles placed in the z = 0
(z = 1) plane. A glue between a z = 0 tile and z = 1 tile is denoted as a small disk. Glues
between z = 1 (z = 0) tiles are denoted as thin (thick) lines. Each three-tile-wide bit bump
geometrically encodes one bit. The bits of a digit are comprised of white tiles. In every copy
region, the bump in the z = 1 plane immediately east of digit di for i > 1 does not represent
a bit, but rather a portion of the assembly that will eventually block the self-assembly of a
subsequent path of repeating tiles (for example, the path of red tiles in Figure 6). The two
easternmost tiles in the z = 0 plane will also block the self-assembly of a subsequent path of
repeating tiles (for example, the path of blue tiles in Figure 4). The tiles that traverse the
orange column represent paths of e tiles. In general, we can hard-code a path of tiles that
uniquely self-assembles a corresponding initial value assembly, from the seed to the z = 0
purple tile, where the glues of each tile type along the path encode the relative location of
the tile in the path. In general, such a path contributes O(e + kb) = O(B + log N) tile types
to T . After the initial value self-assembles, the counter executes an increment step. A bit
indicating the presence of an arithmetic carry, the carry bit, initially set to 1, is introduced
in the east-facing glues of both purple tiles that specifically start reading d1 for an increment
step. The purple tiles that start reading di for i > 1 propagate the carry bit.

Figure 3 The purple tiles are reading d1 from most to least significant bit (west to east).

Read digit (Figure 3): The purple tiles are reading the four bits of d1 in the copy region,
starting with its most significant (westernmost) bit. In general, the counter reads the value
of a digit as follows. Below the westernmost purple tile in the z = 1 plane, another purple
tile attaches in the z = 0 plane (see also the purple tiles in Figure 2) and they both have
east-facing glues. The east-facing glue on the z = 1 (z = 0) tile encodes 0 (1), but, due
to the presence of the westernmost bit bump, only one is exposed. For each 1 ≤ i < b + 2
and x ∈ {0, 1}i−1, there corresponds a reader gadget that reads a 0 in bit position i (for
notational convenience, i = 1 is the position of the most significant bit of a digit). Such a
reader gadget self-assembles a horizontal path of three tiles in the z = 1 plane and a tile
below the easternmost z = 1 tile (in the z = 0 plane), such that, the west-facing input glue
of its westernmost tile encodes x0, the east-facing output glue of its easternmost z = 0 tile
encodes x01 and the east-facing output glue of its easternmost z = 1 tile encodes x00. A
reader gadget that reads a 1 is defined similarly. All reader gadgets also propagate the carry
bit. A reader gadget that reads the bit in position b + 2 is similar to previous reader gadgets
but has only one output glue, which is on a tile in the z = 0 plane and encodes the value
of its input glue. It also initiates the self-assembly of a path of repeating tiles, along which

DNA 27

4:8 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

the value of the digit that was just read, the carry bit and a bit indicating whether d1 was
just read are propagated. The presence of all b + 2 bit bumps ensures a unique assembly
sequence of b + 2 corresponding reader gadgets. In general, for each 1 ≤ i ≤ b + 2, we need
O

(
2i

)
reader gadgets that read a bit in position i. Thus, in general, all the reader gadgets

contribute O
(
2b

)
= O(B) tile types to T . Our reader gadgets are inspired by the simulation

macro tiles depicted in Figures 3 and 6 of [3].

Figure 4 The path of repeating blue tiles propagates d1 and the carry bit to the increment region.

Propagate digit (Figure 4): After the bits of any digit in a copy region are read, a blue
tile type with equal west and east glues self-assembles in a path of repeating tiles to the east,
propagating the value of the digit that was just read and the carry bit. A previous portion
of the assembly blocks the self-assembly of this path, at which point the south-facing glue of
the easternmost blue tile in the path is exposed, from which a fixed size, hard-coded path of
gray tiles self-assembles to the location immediately west of the most significant bit of d1 in
the increment region. The path of repeating blue tiles, all of the same type, propagate the
value of a base-B digit, the carry bit and a bit indicating whether d1 was just read, thus,
in general, contributing O(B) tile types to T . Similarly, the hard-coded path, in general,
contributes O(B) tile types to T . We use two different types of hard-coded paths: one for
d1 and another for di for i > 1. The latter self-assembles a bump in the z = 1 plane that
eventually blocks a subsequent path of repeating tiles.

Figure 5 The bits of d1, read in Figure 3, are written.

Write digit (Figure 5): In this example, the value of d1 is incremented from 2 and rolls
over to 0, resulting in a carry out. The bits are written using fixed size writer gadgets, that
work in a fashion similar to the reader gadgets, where we have a corresponding writer gadget
for each bit position and each one propagates the carry bit (the first writer gadget receives
the carry bit, updates it accordingly and propagates it). Thus, just like the reader gadgets,
the writer gadgets contribute O(B) tile types to T . The two easternmost z = 0 tiles will
eventually block the self-assembly of a subsequent path of repeating blue tiles (for example,
the blue tiles in Figure 4 but after reading a different digit). The path of tiles, starting with
the gray tile immediately east of the least significant bit and ending at the westernmost
z = 1 black tile is hard-coded and propagates the carry bit, thus, in general, contributing
O(b) = O(log N) tile types to T . Note that, in general, the same tile types are used for the
self-assembly of similar paths that self-assemble after writing every digit except dW in an
increment region.

Figure 6 Return to the copy region to read the next digit, d2.

D. Furcy, S. M. Summers, and L. Withers 4:9

Return to read another digit (Figure 6): We use a red tile type with equal west and east
glues to self-assemble a path of repeating tiles to the west, starting six tiles to the west
of the most significant bit of the digit that was just written in the increment region. A
previous portion of the assembly, namely the bump in the z = 1 plane that is east of the
least significant bit of each digit di for i > 1 in a copy region blocks the self-assembly of the
path of repeating red tiles, at which point the south-facing glue of the westernmost red tile
in the path is exposed, from which a hard-coded path of tiles self-assembles, ending at the
z = 0 purple tile. The red tile types propagate the carry bit, thus, in general, contributing
O(1) tile types to T . The hard-coded path also propagates the carry bit, thus, in general,
contributing O(b) = O(log N) tile types to T . Note that the same tile types are used for the
self-assembly of similar paths that self-assemble after writing every digit except dW in an
increment region.

1 0
0 0

0 1

0
1 0

01

1

0 1
0 0

1 0

0
0

01

0
0

Figure 7 A conceptual depiction of the complete self-assembly of an increment region (bottom),
given the initial value copy region (top).

Increment step high-level assembly sequence and corresponding full assembly (Figures 7
and 8): The assembly sequence begins at the location of the green seed tile in the copy
region. The gray (black) lines are hard-coded paths of tiles in the z = 0 (z = 1) plane.
The blue (red) lines are paths of repeating tiles in the z = 0 (z = 1) plane. The purple
zig-zag lines represent the reader gadgets. A corresponding full assembly is shown in Figure 8.
The counter concludes an increment step after it writes dW in the increment region. The
purple zig-zag line through dW in the increment region represents the first sequence of tile
placements for the next copy step. Note that if the carry bit is 1 after writing dW in the
increment region, then the counter can stop counting.

Figure 8 The full assembly of the initial value copy region is on the top and the next increment
region is on the bottom. A producible, non-terminal assembly results when the latter is translated
so that its westernmost column is immediately east of the easternmost column of the former.

Copy step high-level assembly sequence: (Figures 9 and 10): After an increment step
concludes, a copy step is executed. A copy step is carried out in a fashion similar to an
increment step, using a specific set of tile types. In a copy step, the digits are read from the
previous increment region and written in the next copy region in the order dW to d1 (reverse

DNA 27

4:10 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

of an increment step). Regardless, the tile types for a copy step, in general, contribute
O(B + log N) tile types to T . Moreover, all the tile types used for an increment step are
defined to be disjoint from those for a copy step, which has no effect on the asymptotic size
of T .

0 1
0 0

1 0

0
0

01

0
0

1 0
0 0

0 1

1
0 0

00

0

Figure 9 A conceptual depiction of the self-assembly of a copy region (bottom) from a given
increment region (top), which begins at the most significant bit of dW in the increment region
(outlined in green). A copy step concludes after the self-assembly of the hard-coded path of tiles,
starting at the least and ending at the most significant bit of d1 (copy region). This hard-coded
path contributes O(e) tile types to T .

Figure 10 The full assembly of the completed increment region is on the top (see also the bottom
assembly of Figure 8) and the next copy region is on the bottom. A producible, non-terminal
assembly results when first the latter is translated so that its westernmost column is immediately
east of the easternmost column of the former and then this assembly is translated so its westernmost
column is immediately east of the easternmost column of the top assembly shown in Figure 8.

Tile complexity and correctness: From the preceding discussion, generalized to arbitrary
k and N , we have |T | = O(B + log N) = O

(
N

1
k−1 + log N

)
, from which the bound for

Theorem 1 follows. Formal correctness can be shown using the method of Conditional
Determinism by Shutters and Lutz [15].

4 The lower bound

In this section, we prove Theorem 2, our lower bound, namely that K1
USA

(
R3

k,N

)
= Ω

(
N

1
k

)
.

We first give some notation that will be used throughout the remainder of this section. Let
T = (T, σ, τ = 1) be a 3D TAS with α ∈ A□ [T]. Assume s = (x⃗0, x⃗1, . . . , x⃗m) is a simple
path in Gb

α, such that, x⃗0 = dom σ. We say that α⃗ follows s if there is a T -assembly
sequence α⃗ = (αi | 0 ≤ i < m + 1) that satisfies the next two conditions: α0 = σ, and for all
0 < i ≤ m, dom αi\dom αi−1 = {x⃗i}.

This paragraph contains definitions that were taken directly from [17]. A window w is
a set of edges forming a cut-set of the full grid graph of Z3. Given a window w and an
assembly α, a window that intersects α is a partitioning of α into two configurations (i.e.,
after being split into two parts, each part may or may not be disconnected). In this case

D. Furcy, S. M. Summers, and L. Withers 4:11

w

(a) A subassembly of
α and a window w
induced by a transla-
tion of the y-axis.

(b) A portion of
the simple path s
through Gb

α.

~v2

~v3~v4

~v5

w

~v1

~v6 ~v7

~v8~v9

~v10

~v11 ~v12

~v13

(c) The glue window
movie Mα⃗,w.

w

�v
′

2

�v
′

3
�v

′

4

�v
′

1

�v
′

5
�v

′

6

�v
′

7
�v

′

8

�v
′

9
�v

′

10

(d) The restricted
glue window sub-
movie Mα⃗,w ↾ s.

Figure 11 An assembly, a simple path, and two types of glue window movies in 2D. Here, we
have Mα⃗,w = (v⃗1, g1), (v⃗2, g2), (v⃗3, g3), (v⃗4, g4), (v⃗5, g5), (v⃗6, g6), (v⃗7, g7), (v⃗8, g8), (v⃗9, g9), (v⃗10, g10),
(v⃗11, g11), (v⃗12, g12), (v⃗13, g13), where g1 = g2, g3 = g4, g6 = g7, g8 = g9, g11 = g12 and g13 = g10.
Note that Mα⃗,w ↾ s only includes the location-glue pairs where the glues actually form bonds between
locations in s. For example, v⃗10 and v⃗13 are excluded from Mα⃗,w ↾ s because the glues that connect
them are not part of the path of glue that follow s.

we say that the window w cuts the assembly α into two non-overlapping configurations αL

and αR, satisfying, for all x⃗ ∈ dom αL, α(x⃗) = αL(x⃗), for all x⃗ ∈ dom αR, α(x⃗) = αR(x⃗),
and α(x⃗) is undefined at any point x⃗ ∈ Z3\ (dom αL ∪ dom αR). Given a window w, its
translation by a vector ∆⃗, written w + ∆⃗ is simply the translation of each one of w’s elements
(edges) by ∆⃗. All windows in this paper are assumed to be induced by some translation of
the yz-plane. Each window is thus uniquely identified by its x coordinate. For a window w

and an assembly sequence α⃗, we define a glue window movie M to be the order of placement,
position and glue type for each glue that appears along the window w in α⃗, regardless of
whether the glue (eventually) forms a bond. Given an assembly sequence α⃗ and a window w,
the associated glue window movie is the maximal sequence Mα⃗,w = (v⃗1, g1) , (v⃗2, g2) , . . . of
pairs of grid graph vertices v⃗i and glues gi, given by the order of appearance of the glues
along window w in the assembly sequence α⃗. We write Mα⃗,w + ∆⃗ to denote the translation
by ∆⃗ of Mα⃗,w, yielding

(
v⃗1 + ∆⃗, g1

)
,
(

v⃗2 + ∆⃗, g2

)
,

If α⃗ follows s, then the notation Mα⃗,w ↾ s denotes the restricted glue window submovie
(restricted to s), which consists of only those steps of Mα⃗,w that place glues that immediately
form positive-strength bonds that cross w at locations belonging to the simple path s. Let v⃗

denote the location of the starting point of s (i.e., the location of σ). Let v⃗i and v⃗i+1 denote
two consecutive locations in Mα⃗,w ↾ s that are located across w from each other. We say
that these two locations define a crossing of w, where a crossing has exactly one direction.
We say that this crossing is away from v⃗ (or away from σ) if the x coordinates of v⃗ and v⃗i

are equal or the x coordinate of v⃗i is between the x coordinates of v⃗ and v⃗i+1. In contrast,
we say that this crossing is toward v⃗ (or toward σ) if the x coordinates of v⃗ and v⃗i+1 are
equal or the x coordinate of v⃗i+1 is between the x coordinates of v⃗ and v⃗i. See Figure 11 for
2D examples of Mα⃗,w and Mα⃗,w ↾ s, where σ is located west of w and the locations v⃗1 and
v⃗2 form an away crossing, whereas the locations v⃗3 and v⃗4 form a crossing toward σ.

We say that two restricted glue window submovies are “sufficiently similar” if they have
the same (odd) number of crossings, the same set of crossing locations (up to horizontal
translation), the same crossing directions at corresponding crossing locations, and the same
glues in corresponding “away crossing” locations.

DNA 27

4:12 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

▶ Definition 3. Assume: T = (T, σ, 1) is a 3D TAS, α ∈ A[T], s is a simple path in Gb
α

starting from the location of σ, α⃗ is a sequence of T -producible assemblies that follows s,
w and w′ are windows, σ is not located between w and w′, ∆⃗ ̸= 0⃗ is a vector satisfying
w′ = w + ∆⃗, e and e′ are two odd numbers, and M = Mα⃗,w ↾ s = (v⃗1, g1) , . . . , (v⃗2e, g2e)
and M ′ = Mα⃗,w′ ↾ s = (v⃗′

1, g′
1) , . . . , (v⃗′

2e′ , g′
2e′) are both non-empty restricted glue window

submovies. We say that M and M ′ are sufficiently similar if the following are satisfied:
1. same number of crossings: e = e′,
2. same set of crossing locations (up to translation):{

v⃗i + ∆⃗
∣∣∣ 1 ≤ i ≤ 2e

}
=

{
v⃗′

j

∣∣ 1 ≤ j ≤ 2e
}

,
3. same crossing directions at corresponding crossing locations:{

v⃗4i−2 + ∆⃗
∣∣∣ 1 ≤ i ≤ e+1

2

}
=

{
v⃗′

4j−2
∣∣ 1 ≤ j ≤ e+1

2
}

, and
4. same glues in corresponding “away crossing” locations:

for all 1 ≤ i, j ≤ e+1
2 , if v⃗′

4j−2 = v⃗4i−2 + ∆⃗, then g′
4j−2 = g4i−3.

See Figure 12 for an example of two restricted glue window submovies that are sufficiently
similar. The following result basically says that we must examine only a “small” number
of distinct restricted glue window submovies in order to find two different ones that are
sufficiently similar.

▶ Lemma 4. Assume: T = (T, σ, 1) is a 3D TAS, G is the set of all glues in T , k, N ∈ Z+,
s is a simple path starting from the location of σ such that s ⊆ R3

k,N , α⃗ is a sequence of
T -producible assemblies that follows s, m ∈ Z+, for all 1 ≤ l ≤ m, wl is a window, for
all 1 ≤ l < l′ ≤ m, ∆⃗l,l′ ̸= 0⃗ satisfies wl′ = wl + ∆⃗l,l′ , and for all 1 ≤ l ≤ m, there is an
odd 1 ≤ el < 2k such that Mα⃗,wl

↾ s is a non-empty restricted glue window submovie of
length 2el. If m > |G|k · k · 16k, then there exist 1 ≤ l < l′ ≤ m such that el = el′ = e and
Mα⃗,wl

↾ s = (v⃗1, g1) , . . . , (v⃗2e, g2e) and Mα⃗,wl′ ↾ s = (v⃗′
1, g′

1) , . . . , (v⃗′
2e, g′

2e) are sufficiently
similar non-empty restricted glue window submovies.

To prove Lemma 4, we first count the number of ways to choose the set {v⃗1, . . . , v⃗2e}.
Then, we count the number of ways to choose the set

{
v⃗4i−2

∣∣ 1 ≤ i ≤ e+1
2

}
. Finally, we

count the number of ways to choose the sequence
(
gx⃗i

∣∣ i = 1, . . . , e+1
2

)
. After summing over

all odd e, we get the indicated lower bound on m that notably neither contains a “factorial”
term nor a coefficient on the “k” in the exponent of “|G|”. The full proof of Lemma 4 is
omitted from this version of the paper.

The following result is the cornerstone of our lower bound machinery. It basically says that
if, for some directed TAS T , two distinct restricted glue window submovies are sufficiently
similar, then T does not self-assemble R3

k,N .

▶ Lemma 5. Assume: T is a directed, 3D TAS, k, N ∈ Z+, s ⊆ R3
k,N is a simple path,

in the full grid graph of R3
k,N , from the location of the seed of T to some location in the

furthest extreme column of R3
k,N , α⃗ is a T -assembly sequence that follows s, w and w′ are

windows, such that, ∆⃗ ≠ 0⃗ is a vector satisfying w′ = w + ∆⃗, and e is an odd number
satisfying 1 ≤ e < 2k. If M = Mα⃗,w ↾ s = (v⃗1, g1) , . . . , (v⃗2e, g2e) and M ′ = Mα⃗,w′ ↾ s =
(v⃗′

1, g′
1) , . . . , (v⃗′

2e, g′
2e) are sufficiently similar non-empty restricted glue window submovies,

then T does not self-assemble R3
k,N .

See Figures 12 and 13 for a 2D example of Lemma 5. We now give some notation that
will be useful for proving Lemma 5. The definitions and notation in the following paragraph
are inspired by notation that first appeared in [17].

D. Furcy, S. M. Summers, and L. Withers 4:13

w w ′
= w + �∆

�α

�∆ �= �0

Rk,N

�v2�v1

�v17 �v18

�v14�v13

�v4 �v3

�v5 �v6

�v10�v9

�v12 �v11

�v16 �v15

�v8 �v7

σ

�v ′

6
�v ′

5

�v ′

17
�v ′

18

�v ′

2
�v ′

1

�v ′

8
�v ′

7

�v ′

9
�v ′

10

�v ′

14
�v ′

13

�v ′

16
�v ′

15

�v ′

12
�v ′

11

�v ′

4
�v ′

3

a b

c d

e f

g h

Figure 12 A 2D example of the hypothesis of Lemma 5 for k = 10 and e = 9. Since the example
is 2D, we use Rk,N = {0, 1, . . . , N − 1} × {0, 1, . . . , k − 1}, rather than R3

k,N . Note that α⃗ follows a
simple path s from the location of σ to a location in the furthest extreme column. The restricted
glue window movies are sufficiently similar because their glues are at the same locations (up to
translation), oriented in the same direction (away or toward σ), and each pair of glues that are
placed by α⃗ at an “away crossing” of one of the windows is equal to its translated counterpart in
the other window, e.g., the two topmost glues that touch w and w′ are both light gray. The same
constraint holds for all glue pairs shown with a solid shade of gray or a striped pattern. On the
other hand, the glues adjacent to w′ that are placed by α⃗ at a “toward crossing”, for example g′

11
and g′

12, are decorated with a letter in order to represent the fact that we do not assume that these
glues are equal to their translated counterparts that touch w (i.e., g15 and g16).

w w ′
= w + �∆

�β

�∆ �= �0

Rk,N

�v2�v1

�v17 �v18

�v14�v13

�v10�v9

�v12 �v11

�v16 �v15

�v8 �v7

σ

�v ′

17
�v ′

18

�v ′

2
�v ′

1

�v ′

14
�v ′

13

�v ′

16
�v ′

15

�v ′

12
�v ′

11

c

a a

g g g

Figure 13 A 2D example of the conclusion of Lemma 5, corresponding to example of the
hypothesis from Figure 12. Given the fact that T is directed and the way β⃗ is defined, every pair of
glues that touch w must be equal to the corresponding pair of glues that touch w′ (if any). Thus,
e.g., the glue pairs labelled b and h in Figure 12 must really be equal to the glue pairs a and g,
respectively. After β⃗ places a tile at location v⃗ ′

17, it will mimic how α⃗ got from v⃗18 to the tile in the
extreme column of Rk,N , as depicted in Figure 12. Since ∆⃗ ̸= 0⃗, this always results in at least one
tile placement outside of Rk,N . In this example, β also happens to exit Rk,N earlier in its assembly
sequence, i.e., in the sub-path from v⃗ ′

14 to v⃗ ′
15.

DNA 27

4:14 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

For a T -assembly sequence α⃗ = (αi | 0 ≤ i < l), we write |α⃗| = l. We write α⃗[i] to
denote x⃗ 7→ t, where x⃗ and t are such that αi+1 = αi + (x⃗ 7→ t). We write α⃗[i] + ∆⃗, for some
vector ∆⃗, to denote

(
x⃗ + ∆⃗

)
7→ t. If αi+1 = αi + (x⃗ 7→ t), then we write Pos (α⃗[i]) = x⃗ and

Tile (α⃗[i]) = t. Assuming |α⃗| > 0, the notation α⃗ = α⃗ + (x⃗ 7→ t) denotes a tile placement
step, namely the sequence of configurations (αi | 0 ≤ i < l + 1), where αl is the configuration
satisfying, αl (x⃗) = t and for all y⃗ ̸= x⃗, αl (y⃗) = αl−1 (y⃗). Note that the “+” in a tile
placement step is different from the “+” used in the notation “β = α + (p⃗ 7→ t)”. However,
since the former operates on an assembly sequence, it should be clear from the context which
operator is being invoked. The definition of a tile placement step does not require that
the sequence of configurations be a T -assembly sequence. After all, the tile placement step
α⃗ = α⃗ + (x⃗ 7→ t) could be attempting to place a tile at a location that is not even adjacent
to (a location in the domain of) αl−1. Or, it could be attempting to place a tile at a location
that is in the domain of αl−1, which means a tile has already been placed at x⃗. So we say
that such a tile placement step is correct if (αi | 0 ≤ i < l + 1) is a T -assembly sequence.
If |α⃗| = 0, then α⃗ = α⃗ + (x⃗ 7→ t) results in the T -assembly sequence (α0), where α0 is the
assembly such that α0 (x⃗) = t and α0 (y⃗) is undefined at all other locations y⃗ ̸= x⃗.

Algorithm 1 The algorithm for β⃗.

1 Initialize j = 1, n = 0 and β⃗ = ()
2 while Pos (α⃗[n]) ̸= v⃗′

4j−2 do /* Loop 1 */
3 β⃗ = β⃗ + α⃗[n]
4 n = n + 1
5 while v⃗′

4j−2 ̸= v⃗2e + ∆⃗ do /* Loop 2 */
6 Let i be such that 4i − 2 is the index of v⃗′

4j−2 − ∆⃗ in M

7 Let n be such that Pos (α⃗[n]) = v⃗4i−2
8 while Pos (α⃗[n]) ̸= v⃗4i do /* Loop 2a */

9 β⃗ = β⃗ +
(

α⃗[n] + ∆⃗
)

10 n = n + 1
11 Let j′ be such that 4j′ is the index of v⃗4i + ∆⃗ in M ′

12 Let n be such that Pos (α⃗[n]) = v⃗′
4j′

13 while Pos (α⃗[n]) ̸= v⃗′
4j′+2 do /* Loop 2b */

14 β⃗ = β⃗ + α⃗[n]
15 n = n + 1
16 j = j′ + 1
17 Let n be such that Pos (α⃗[n]) = v⃗2e

18 while n < |α⃗| do /* Loop 3 */

19 β⃗ = β⃗ +
(

α⃗[n] + ∆⃗
)

20 n = n + 1
21 return β⃗

The proof of Lemma 5 relies on Algorithm 1 that uses α⃗ to construct a new assembly
sequence β⃗ such that the tile placement steps by β⃗ on the far side of w′ from the seed mimic
a (possibly strict) subset of the tile placements by α⃗ on the far side of w from the seed.

When β⃗ is on the near side of w′ to the seed, it mimics α⃗, although β⃗ does not necessarily
mimic every tile placement by α⃗ on the near side of w′ to the seed. When β⃗ crosses w′, going
away from the seed, by placing tiles at v⃗′

4j−3 and v⃗′
4j−2 in this order, then the tile it places

D. Furcy, S. M. Summers, and L. Withers 4:15

w w
′
= w + �∆

�β

�∆ �= �0

Rk,N

�v2�v1

σ

�v ′

1

(a) Right after Loop 1 has completed: The α⃗ sub-
path from σ to v⃗ ′

1 was used to initialize β⃗.

w w
′
= w + �∆

�β

�∆ �= �0

Rk,N

�v2�v1

σ

�v ′

2
�v ′

1

�v ′

11

(b) Right after Loop 2a has completed for the
first time: The α⃗ sub-path from v⃗14 to v⃗15 was
translated by ∆⃗ and appended to β⃗.

w w
′
= w + �∆

�β

�∆ �= �0

Rk,N

�v2�v1

�v10�v9

�v8 �v7

σ

�v ′

2
�v ′

1

�v ′

13

�v ′

12
�v ′

11

c

a

(c) Right after Loop 2b has completed for the
first time: The α⃗ sub-path from v⃗ ′

12 to v⃗ ′
13 was

appended to β⃗.

w w ′
= w + �∆

�β

�∆ �= �0

Rk,N

�v2�v1

�v10�v9

�v8 �v7

σ

�v ′

2
�v ′

1

�v ′

14
�v ′

13

�v ′

15

�v ′

12
�v ′

11

c

a

g

(d) Right after Loop 2a has completed for the
second time: The α⃗ sub-path from v⃗10 to v⃗11 was
translated by ∆⃗ and appended to β⃗.

w w ′
= w + �∆

�β

�∆ �= �0

Rk,N

�v2�v1

�v17 �v18

�v14�v13

�v10�v9

�v12 �v11

�v16 �v15

�v8 �v7

σ

�v ′

17

�v ′

2
�v ′

1

�v ′

14
�v ′

13

�v ′

16
�v ′

15

�v ′

12
�v ′

11

c

a a

g g g

(e) Right after Loop 2b has completed for the
second time: The α⃗ sub-path from v⃗ ′

16 to v⃗ ′
17 was

appended to β⃗.

w w ′
= w + �∆

�β

�∆ �= �0

Rk,N

�v2�v1

�v17 �v18

�v14�v13

�v10�v9

�v12 �v11

�v16 �v15

�v8 �v7

σ

�v ′

17
�v ′

18

�v ′

2
�v ′

1

�v ′

14
�v ′

13

�v ′

16
�v ′

15

�v ′

12
�v ′

11

c

a a

g g g

(f) Right after Loop 3 (and the algorithm) has
completed: The α⃗ suffix starting with v⃗18 was
translated by ∆⃗ and appended to β⃗.

Figure 14 The trace of Algorithm 1 when applied to the assembly sequence α⃗ shown in Figure 12.
In each sub-figure, the new sub-path is bolded and is a continuation of the sub-path in the previous
one. The last sub-figure above shows the same assembly sequence β⃗ depicted in Figure 13.

DNA 27

4:16 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

at v⃗′
4j−2 is of the same type as the tile that α⃗ places at v⃗4i−2 = v⃗′

4j−2 − ∆⃗. After β⃗ crosses
w′ by placing a tile at v⃗′

4j−2, β⃗ places tiles that α⃗ places along s from v⃗4i−2 to v⃗4i−1, but the
tiles β⃗ places are translated to the far side of w′ from the seed. When β⃗ is about to cross w′,
going toward the seed, by placing a tile at v⃗′

4j−1, then, since T is directed, the type of tile
that it places at this location is equal to the type of tile that α⃗ places at v⃗′

4j−1. This means
that β⃗ may continue to follow s but starting from v⃗′

4j . Eventually, β⃗ will finish crossing w′

going away from the seed for the last time by placing a tile at v⃗2e + ∆⃗. Then, β⃗ places tiles
that α⃗ places along s, starting from v⃗2e, but the tiles that β⃗ places are translated to the
far side of w′ from the seed. Since ∆⃗ ̸= 0⃗, β⃗ will ultimately place a tile that is not in R3

k,N ,
which means T does not self-assemble R3

k,N .
We illustrate the behavior of this algorithm in Figure 14, where we apply it to the

assembly sequence α⃗ shown in Figure 12. The full proof of Lemma 5 is omitted from this
version of the paper. The following result combines Lemmas 4 and 5 and we will use its
contrapositive to prove our main lower bound.

▶ Lemma 6. Assume: T = (T, σ, 1) is a 3D TAS, G is the set of all glues in T , k, N ∈ Z+,
s ⊆ R3

k,N is a simple path, in the full grid graph of R3
k,N , from the location of σ to some

location in the furthest extreme column of R3
k,N , α⃗ is a T -assembly sequence that follows

s, m ∈ Z+, for all 1 ≤ l ≤ m, wl is a window, for all 1 ≤ l < l′ ≤ m, ∆⃗l,l′ ̸= 0⃗ satisfies
wl′ = wl + ∆⃗l,l′ , and for all 1 ≤ l ≤ m, there is an odd 1 ≤ el < 2k such that Mα⃗,wl

↾ s is a
non-empty restricted glue window submovie of length 2el. If m > |G|k · k · 16k, then T does
not self-assemble R3

k,N .

The proof of Lemma 6 is omitted from this version of the paper. Here is our main lower
bound:

▶ Theorem 2. K1
USA

(
R3

k,N

)
= Ω

(
N

1
k

)
.

Proof. Assume T = (T, σ, τ = 1) is a directed, 3D TAS that self-assembles R3
k,N . Assume

α ∈ A□[T] with dom α = R3
k,N . Let s = (x⃗0, x⃗1, . . . , x⃗m) be a simple path in Gb

α, such that,
x⃗0 = dom σ and x⃗m is in the furthest extreme (westernmost or easternmost) column of
R3

k,N from the location of σ, in either z plane. Since τ = 1, there is a T -assembly sequence
α⃗ that follows s. Assume N ≥ 3. Since s is a simple path from the location of the seed
to some location in the furthest extreme column of R3

k,N , in either z plane, there is some
positive integer m ≥

⌊
N
2

⌋
≥ N

3 such that, for all 1 ≤ l ≤ m, wl is a window that cuts
R3

k,N , for all 1 ≤ l < l′ ≤ m, there exists ∆⃗l,l′ ̸= 0⃗ satisfying wl′ = wl + ∆⃗l,l′ , and for each
1 ≤ l ≤ m, there exists a corresponding odd number 1 ≤ el < 2k such that Mα⃗,wl

↾ s is
a non-empty restricted glue window submovie of length 2el. Since T self-assembles R3

k,N ,
(the contrapositive of) Lemma 6 says that m ≤ |G|k · k · 16k. We also know that N

3 ≤ m,
which means that N

3 ≤ |G|k · k · 16k. Thus, we have N ≤ 3 · |G|k · k · 16k and it follows that
|T | ≥ |G|

6 ≥ 1
6

N
1
k

(3·k·16k)
1
k

≥ 1
6

N
1
k

(3k·2k·16k)
1
k

= 1
6

N
1
k

96 = Ω
(

N
1
k

)
. ◀

Lemma 5, upon which our proof of Theorem 2 crucially depends (via Lemma 6), assumes
that T is directed. If T is not assumed to be directed, then it is possible to construct an
undirected 3D TAS T that satisfies all the other conditions of the hypothesis of Lemma 5,
but T self-assembles R3

k,N . The full construction of such an undirected T is omitted from
this version of the paper.

D. Furcy, S. M. Summers, and L. Withers 4:17

5 Conclusion

In this paper, we gave improved lower and upper bounds on K1
USA

(
R3

k,N

)
, namely Ω

(
N

1
k

)
and O

(
N

1
k−1 + log N

)
. We leave open the question of determining tight bounds for

K1
USA

(
R3

k,N

)
as well as for K1

SA

(
R3

k,N

)
.

References
1 Leonard M. Adleman, Qi Cheng, Ashish Goel, and Ming-Deh A. Huang. Running time and

program size for self-assembled squares. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing (STOC), pages 740–748, 2001.

2 Gagan Aggarwal, Qi Cheng, Michael H. Goldwasser, Ming-Yang Kao, Pablo Moisset de Espanés,
and Robert T. Schweller. Complexities for generalized models of self-assembly. SIAM Journal
on Computing (SICOMP), 34:1493–1515, 2005.

3 Matthew Cook, Yunhui Fu, and Robert T. Schweller. Temperature 1 self-assembly: Determin-
istic assembly in 3D and probabilistic assembly in 2D. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 570–589, 2011.

4 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T. Schweller, and Diane L. Souvaine. Staged self-assembly: nanomanufacture of
arbitrary shapes with O(1) glues. Natural Computing, 7(3):347–370, 2008. doi:10.1007/
s11047-008-9073-0.

5 David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, and Scott M. Summers.
Strong fault-tolerance for self-assembly with fuzzy temperature. In Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pages 417–426,
2010.

6 David Doty, Matthew J. Patitz, and Scott M. Summers. Limitations of self-assembly at
temperature 1. Theoretical Computer Science, 412:145–158, 2011.

7 Sándor P. Fekete, Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Robert T.
Schweller. Universal computation with arbitrary polyomino tiles in non-cooperative self-
assembly. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 148–167, 2015.

8 Bin Fu, Matthew J. Patitz, Robert T. Schweller, and Robert Sheline. Self-assembly with
geometric tiles. In Automata, Languages, and Programming - 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 714–725, 2012.

9 David Furcy, Samuel Micka, and Scott M. Summers. Optimal program-size complexity for
self-assembled squares at temperature 1 in 3D. Algorithmica, 77(4):1240–1282, 2017.

10 David Furcy and Scott M. Summers. Optimal self-assembly of finite shapes at temperature 1
in 3D. Algorithmica, 80(6):1909–1963, 2018.

11 David Furcy, Scott M. Summers, and Christian Wendlandt. Self-assembly of and optimal
encoding within thin rectangles at temperature-1 in 3D. Theoretical Computer Science,
872:55–78, 2021.

12 Oscar Gilbert, Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. Computing in
continuous space with self-assembling polygonal tiles (extended abstract). In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 937–956, 2016.

13 Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Scott M. Summers. The power
of duples (in self-assembly): It’s not so hip to be square. Theoretical Computer Science,
743:148–166, 2018.

14 James I. Lathrop, Jack H. Lutz, and Scott M. Summers. Strict self-assembly of discrete
Sierpinski triangles. Theoretical Computer Science, 410:384–405, 2009.

DNA 27

https://doi.org/10.1007/s11047-008-9073-0
https://doi.org/10.1007/s11047-008-9073-0

4:18 Tile Complexity of Uniquely Self-Assembling Thin Rectangles

15 Jack H. Lutz and Brad Shutters. Approximate self-assembly of the sierpinski triangle. Theory
Comput. Syst., 51(3):372–400, 2012.

16 Ján Manuch, Ladislav Stacho, and Christine Stoll. Two lower bounds for self-assemblies at
temperature 1. Journal of Computational Biology, 17(6):841–852, 2010.

17 P.-E. Meunier, M. J. Patitz, S. M. Summers, G. Theyssier, A. Winslow, and D. Woods. Intrinsic
universality in tile self-assembly requires cooperation. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 752–771, 2014.

18 Pierre-Étienne Meunier, Damien Regnault, and Damien Woods. The program-size complexity
of self-assembled paths. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 727–737, 2020.

19 Pierre-Étienne Meunier and Damien Woods. The non-cooperative tile assembly model is not
intrinsically universal or capable of bounded turing machine simulation. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 328–341, 2017.

20 Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and Turing
universality at temperature 1 with a single negative glue. In Proceedings of the 17th international
conference on DNA computing and molecular programming, DNA’11, pages 175–189, Berlin,
Heidelberg, 2011. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=2042033.
2042050.

21 Paul W. K. Rothemund. Theory and Experiments in Algorithmic Self-Assembly. PhD thesis,
University of Southern California, December 2001.

22 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In The Thirty-Second Annual ACM Symposium on Theory of
Computing (STOC), pages 459–468, 2000.

23 Nadrian C. Seeman. Nucleic-acid junctions and lattices. Journal of Theoretical Biology,
99:237–247, 1982.

24 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing (SICOMP), 36(6):1544–1569, 2007.

25 Hao Wang. Proving theorems by pattern recognition – II. The Bell System Technical Journal,
XL(1):1–41, 1961.

26 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

http://dl.acm.org/citation.cfm?id=2042033.2042050
http://dl.acm.org/citation.cfm?id=2042033.2042050

ENSnano: A 3D Modeling Software for DNA
Nanostructures
Nicolas Levy # Ñ

École Normale Supérieure de Lyon, LIP (UMR 5668, Équipe MC2), France

Nicolas Schabanel # Ñ

CNRS, École Normale Supérieure de Lyon, LIP (UMR 5668, Équipe MC2) and IXXI, France

Abstract
Since the 1990s, increasingly complex nanostructures have been reliably obtained out of self-assembled
DNA strands: from “simple” 2D shapes to 3D gears and articulated nano-objects, and even computing
structures. The success of the assembly of these structures relies on a fine tuning of their structure
to match the peculiar geometry of DNA helices. Various softwares have been developed to help
the designer. These softwares provide essentially four kind of tools: an abstract representation of
DNA helices (e.g. cadnano, scadnano, DNApen, 3DNA, Hex-tiles); a 3D view of the design (e.g.,
vHelix, Adenita, oxDNAviewer); fully automated design (e.g., BScOR, Daedalus, Perdix, Talos,
Athena), generally dedicated to a specific kind of design, such as wireframe origami; and coarse grain
or thermodynamical physics simulations (e.g., oxDNA, MrDNA, SNUPI, Nupack, ViennaRNA,...).
MagicDNA combines some of these approaches to ease the design of configurable DNA origamis.

We present our first step in the direction of conciliating all these different approaches and
purposes into one single reliable GUI solution: the first fully usable version (design from scratch to
export) of our general purpose 3D DNA nanostructure design software ENSnano. We believe that
its intuitive, swift and yet powerful graphical interface, combining 2D and 3D editable views, allows
fast and precise editing of DNA nanostructures. It also handles editing of large 2D/3D structures
smoothly, and imports from the most common solutions. Our software extends the concept of
grids introduced in cadnano. Grids allow to abstract and articulated the different parts of a design.
ENSnano also provides new design tools which speeds up considerably the design of complex large 3D
structures, most notably: a 2D split view, which allows to edit intricate 3D structures which cannot
easily be mapped in a 2D view, and a copy, paste & repeat functionality, which takes advantage
of the grids to design swiftly large repetitive chunks of a structure. ENSnano has been validated
experimentally, as proven by the AFM images of a DNA origami entirely designed in ENSnano.

ENSnano is a light-weight ready-to-run independent single-file app, running seamlessly in most of
the operating systems (Windows 10, MacOS 10.13+ and Linux). Precompiled versions for Windows
and MacOS are ready to download on ENSnano website. As of writing this paper, our software is
being actively developed to extend its capacities in various directions discussed in this article. Still,
its 3D and 2D editing interface is already meeting our usability goals. Because of its stability and
ease of use, we believe that ENSnano could already be integrated in anyone’s design chain, when
precise editing of a larger nanostructure is needed.

2012 ACM Subject Classification Computer systems organization → Molecular computing; Com-
puting methodologies → Molecular simulation; Applied computing → Molecular structural biology

Keywords and phrases Software, DNA nanostructure, Molecular design, molecular self-assembly

Digital Object Identifier 10.4230/LIPIcs.DNA.27.5

Supplementary Material Software (Source Code): https://github.com/thenlevy/ensnano
archived at swh:1:dir:0569f133306e7972335c4600d2be5794f467c0ba

Funding Nicolas Schabanel: this work was supported in part by ENSL emergence “Algorithmes en
ADN”, CNRS MITI “NoPrExProgMol”, “AMARP” and “Scalable DNA algorithms”, and CNRS
INS2I “Algadène” grants.

Acknowledgements We want to thank Damien Woods, Pierre-Étienne Meunier, Pierre Marcus,
Octave Hazard, Constantine Evans, Trent Rogers, and Dave Doty for fruitful discussions about
this project. We would also like to thanks the students who followed the lecture CR11 on DNA
computing at the ÉNS de Lyon in 2020 for their contribution to the rocket design in ENSnano.

© Nicolas Levy and Nicolas Schabanel;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 5; pp. 5:1–5:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.levy@ens-lyon.fr
http://perso.ens-lyon.fr/nicolas.levy/
mailto:nicolas.schabanel@ens-lyon.fr
http://perso.ens-lyon.fr/nicolas.schabanel/
https://doi.org/10.4230/LIPIcs.DNA.27.5
https://github.com/thenlevy/ensnano
https://archive.softwareheritage.org/swh:1:dir:0569f133306e7972335c4600d2be5794f467c0ba
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 ENSnano: A 3D Modeling Software for DNA Nanostructures

1 Introduction

DNA nanostructures design. Since the 1990s, increasingly complex nanostructures have
been reliably obtained out of self-assembled DNA strands: from “simple” 2D shapes [2, 26] to
3D gears and articulated nano-objects (e.g. [38, 8]) and even computing structures [27, 28, 35].
The success of the assembly of these structures relies on a fine tuning of their structure to
match the peculiar geometry of DNA helices. Various softwares have been developed to help
the designer.

A tour of existing softwares. These softwares provides essentially four kind of tools:
an abstract representation of DNA helices, e.g.: cadnano [5], scadnano [4], DNApen [10],
3DNA [11], Hex-tiles [23];
a 3D representation of the design, e.g.: vHelix [1], Tiamat [32], Adenita [3], oxDNAviewer [25];
a fully automated design, e.g.: BScOR [1], Daedalus [30], Perdix, Talos, Athena [16, 14, 15].
These are generally dedicated to a specific kind of design, such as wireframe origami;
coarse grain or thermodynamic physics simulation, e.g.: oxDNA [6], MrDNA [21], Snupi [18],
Nupack [37], ViennaRNA [20],...

Recently, the software MagicDNA [12] proposed to combine some of these approaches to ease
the design of configurable DNA origamis. The recent article [9] presents a very detailed
survey of all these solutions with their pros and cons. Here is a list of the features of interest
found in these softwares:

High-level description: DNA geometry is very peculiar and hard to grasp. The seminal
cadnano interface allowed to abstract from it and focus on the relevant aspects of DNA
helices: it provides a framework to place DNA helices next to each other, as well as guides
to connect them using crossovers, together with an easily-understandable and printable
blueprint of the resulting design. In spite of its imperfection in terms of DNA geometry
(incorrect turn/bp [34] and absence of roll of helices), cadnano is still the reference for
fine tuning a design.
Live (editable) 3D view: With the raise of 3D complex designs involving DNA helices
pointing in various directions or even making curves, various softwares proposed 3D
rendering of a design. A notable software in this category is Tiamat [32] which introduced
a 3D interface capable of fine tuning and editing of the design. Unfortunately, 3D views
are not always the best solution to edit a design beyond placing properly DNA helices
in space. Indeed, 3D views are often jammed, even for simple design, and the 3D→2D
parallax effect makes it hard to evaluate the length of a crossover, especially because its
direction, and thus its apparent length, changes when it is moved around.
Fine tuning and editing: As mentioned above, 3D views are not well adapted for editing or
fine tuning [9], especially when the 3D view is provided by a “mother” software (Matlab,
Maya, or Samson) which was not designed for the specific needs of DNA nanostructures.
As it turns out, almost all the softwares, including the all-automated ones, e.g. [12],
recommend to export to (s)cadnano for checking and fine tuning their designs. As a
matter of fact, the 2D representation of a helix as a double array, initially proposed in
cadnano, remains the most practical for editing. Rotating the array representations as
in [38, 4] allows an even more convenient rendering of the design. 3D complex designs
however cannot be faithfully mapped to 2D, and, no matter what, some helices that are
close to each other in 3D, will be mapped at distant locations in a 2D representation. As
a result, many crossovers overlay the design and make it confusing to read and edit.

N. Levy and N. Schabanel 5:3

Design versatility: Most softwares focus on a specific class of design: DNA origami,
wireframe origami or DNA tiles (SST). Only a few provide an abstraction for dealing with
all of them, e.g.: MagicDNA [12] proposes a common framework for classic and wireframe
DNA origami. The most versatile remain (s)cadnano (for 2D editing) and Tiamat (for
3D editing). (s)cadnano make it possible to work with any class of designs, but provides
almost no specific automation. It should however be noted that Tiamat comes with an
integrated sequence generator.
Automation: When designing a DNA origami, many tasks are repetitive and dull, such
as “stapling” a rectangle. On the opposite, some tasks require a high technical level, such
as routing a scaffold in a wireframe design, or designing 3D staples in a 3D bulk. Both of
these types of tasks benefit a lot from automation. Algorithms have been designed to
complete these tasks and designers can save a lot of time and avoid mistakes by using
them, e.g. [1, 30, 14, 12].
Programmable designs: Many designs gain to be specified as the output of a program:
either because they are very big and repetitive (e.g., SST designs); or because they require
specific angles and lengths (e.g. quasi-crystals in [38]); or because they sometimes require
many trials-and-errors to be properly configured, for instance to match the length of
the holy M13mp18 scaffold strand. To achieve this goal, scadnano [4] and the prototype
codenano [7] define a programming framework consisting of various function calls (in
python or rust) to describe helices and strands positions. MagicDNA [12] proposes an
interesting, user-friendlier, alternative approach, generalizing the wireframe approach,
which consists in describing the design as graph embedded in space, whose edges are
replaced by configurable chunks of parallel helices, along which the routing of the scaffold
and its staples is algorithmically computed.
Simulation: 3D views of a design are only a wishful representation of the design, as strands
may not self-assemble as forseen by the designer. If 3D views are essential to choose the
right crossovers to bind strands together in order to achieve the desired assembly, they
offer no guarantee in the resulting shape. Coarse grained physics simulation [6, 21, 18] and
thermodynamic binding estimation [37, 20] softwares allow a much more precise feedback
on the feasibility and stability of a design. Their predictions are now considered good
enough to demonstrate the validity of a design, e.g. [12]. However, they are computer-
intensive and furthermore require a high level of competency to interact with. They can
hardly produce a fast-enough feedback to be use during the design process. They are
thus usually used at the end of the design chain. Design softwares usually offer to export
the design into the sophisticated file format of these simulation softwares for validation.
Intuitive fast-responding interface: Various directions have been explored for designing a
adequate graphic user interface for designing DNA nanostructure. As mentioned earlier,
3D views did not improve, and in many cases, arguably deteriorated the usability of the
interface. This is particularly true when the software is embedded in a mother software
in charge of the 3D rendering, which offers, most of the time, only slow or little-to-no
editing capacities. As a consequence, (s)cadnano remains the most practical interface so
far and this is no wonder it is still intensively used, in spite of its limited ergonomics.
Reliability: Designing complex DNA nanostructures requires focused attention and
unfortunate failures or slowness in softwares add considerable stress to the designer.
Software reliability can only be ensured by developing them in a safe programming
language, that is, whose compiler imposes rigorous safeguards to the programmers and
checks their code in depth to avoid as much as possible bugs at runtime. Untyped
programming languages should thus be ruled out to develop reliable design softwares.

DNA 27

5:4 ENSnano: A 3D Modeling Software for DNA Nanostructures

Figure 1 ENSnano interface: the 3D and 2D views of a design.

Distribution: The most commonly cited softwares, namely cadnano, oxDNA, oxDNAviewer,
MrDNA, Nupack and ViennaRNA, are the easiest to install (they are distributed either
as an independent, python packages or web-based app), and are available for the most
commonly used operating systems (Windows, MacOS and Linux). We have had varying
experience with installing and using softwares embedded into a generic-purpose mother
application. Cross-platform distribution, either as an independent or a web-based app,
seems thus to be an important usability criteria.

Our contribution. In this paper, we present our software ENSnano which introduces a 3D
editable view working together with a (s)cadnano-like 2D view. As in cadnano, our helices are
attached to grids organizing the helices, next to each other, in parallel subsets. We extend
this grid concept in three ways:

first, the grids are now freely and precisely placed and oriented in space in the 3D view;
second, grids can be any 1D or 2D lattice, for now: the classic square and hexagonal
grids, but also circular lattices to design nanotubes;
third, we take advantage of this lattice structure to introduce a geometry-aware copy-
paste-&-repeat process.

▶ 2D and 3D live views working together. 2D and 3D views are illustrated in Fig. 1. The
main purpose of the 3D view is to position the grids and helices, from which the coordinates
of each nucleotide is deduced. These coordinates are used to suggest crossover positions (see
Sec. 3.5). Crossovers can be created indifferently in the 2D or the 3D view. The 3D view
provides also indications on the length of the crossovers: crossovers of excessive length are
highlighted in black. The 2D view is pretty similar to the standard (s)cadnano view with
three important differences:

the design of the strands in the 2D view has been drastically simplified;
the 2D view can be freely organized with few mouse clicks (see Sec. 3.3);
the 2D view can be split into two interacting views focusing on different parts of the 2D
map of the design, as explained next.

The 2D and 3D views are synchronized: modifications of the designs made in one interface
is immediately visible in the other one. Moreover hovering a design element (strand, helix
or nucleotide) with the mouse cursor in one interface will highlight it in both views, which
makes the correspondence between the two representations easier to grasp.

N. Levy and N. Schabanel 5:5

Figure 2 Editing with the 2D split view. (left) Building a crossover between “2D-distant” helices
by dragging the mouse from one split view to the other. (right) In a single 2D view, the zoom
factor required to see both ends of the crossover (highlighted in red) would be so small that precise
editing would be impractical.

▶ The 2D split view. As mentioned above, 3D complex structures cannot be faithfully
mapped into 2D: some parts of the design that are close in 3D, will, no matter what, be
mapped far apart from each other in the 2D view. The 2D split view of ENSnano allows
to edit parts of the design that are mapped far apart from each other in the 2D view, as
if they were next to each other, see Fig. 2. This is particularly useful for creating, moving
or deleting a crossover between parts that are mapped across the 2D view. Furthermore,
the 3D view interacts naturally with this feature by switching automatically to the 2D split
view, when we double-left-click on a crossover that binds nucleotides that cannot be shown
together in 2D view at its present zoom factor. Double-clicking on an element allows to
switch easily back and forth between its locations in the 3D view and 2D view (or the 2D
split view, when needed), see Sec. 3.3.

▶ Natural swift point-and-click editing in the 2D view. As shown in Fig. 3, the interface of
ENSnano is organized so that most of the editing in the design can be made by clicking directly
at the wanted location: the action applied is deduced from the natural mouse movement
associated to the desired action together with the local configuration at the click location
(see Sec. 3.3).

▶ Geometry aware copy/pasting. ENSnano introduces a geometry-aware copy/pasting of
strands and crossovers across the 3D structure, regardless of the actual numbering of the
helices and of their arrangement in the 2D view. This allows to build in the blink of a eye a
complete set of staples by duplicating repetitively the selected pattern (a subset of strands or
crossovers) according to the initial translation, along the helices and across the grid lattice,
of the firstly pasted copy (see Fig 9 in Section 3.4).

▶ File format, import and export. ENSnano file format is pretty similar to scadnano and
codenano. It consists in a human readable and editable json file (see Sec. B). Currently,
ENSnano imports files from scadnano and cadnano (with similar limitations as scadnano).
ENSnano also exports designs to oxDNA for precise physics simulation.

We do not provide yet any python framework to generate ENSnano designs. However,
ENSnano files can be generated by a python program with moderate efforts. This issue will
be resolved in an upcoming version of ENSnano.

DNA 27

5:6 ENSnano: A 3D Modeling Software for DNA Nanostructures

Create

a crossover

Create

a crossover

Cut

Ligate

Double

Delete

Move a

crossover

Move a

crossover

Elongate

Shorten

Elongate

Shorten

Create

a strand
(A)

(B)

(C)

(D)

(E)

(F)

Figure 3 Swift strand editing in the 2D view. (A) Create a strand: Left click on an empty
position and drag. (B) Extend a domain: Left click on an end of a domain and drag. Note that the
helix automatically extends if needed. (C) Cut & ligate a strand: A left click in the middle of strand
cuts the strands. A left click on the end of a strand next to another ligates them. (D) Create a
crossover: A left click and drag up-/down-wards on a strand initiates the creation of a crossover that
will bind the initial click position to the position where the mouse is dragged to. (E) Double/Delete a
crossover: A left click on an unconnected end of a strand next to a crossover will double the crossover.
A left click on one end of a crossover will break it. (F) Move a crossover: A left click-and-drag at
one end of a crossover will move this crossover. Note that the possibly neighboring crossover will be
pushed and pulled back during the dragging until the final position is set.

▶ Sequences export. ENSnano is presently fully functional to design and edit precisely
complex DNA origami and to export its staple sequences for ordering.

▶ DNA parameters. ENSnano uses the DNA helix physical data collected from [34, 29].
They are presented in appendix in Sec. B.2. They can easily be edited to fit specific needs,
directly in ENSnano file format (a json text file) as explained in Sec. B.

Distribution and Installation. ENSnano is developed in the high performance safe pro-
gramming language Rust [22]. We rely on the cross platform libraries winit, wgpu and
iced [33, 31, 13] to produce an identical and highly responsive interface across all commonly
used operating systems. ENSnano is distributed as a single-file app for Windows and MacOS,
as well as an open source repository, ready to be cloned and compiled, for Linux and the
brave ones. It can be downloaded directly from ENSnano website [19].

N. Levy and N. Schabanel 5:7

2 ENSnano concepts

2D and 3D live editable views. ENSnano combines two graphical interfaces to visualize
and edit DNA nanostructures, each of them serving different purposes:

the 3D view helps to visualize and arrange precisely the different elements composing the
design in space. It enables to navigate inside the nanostructure, to ensure, for instance,
that the crossovers that bind it together, are not too short nor too long. It also allows
to arrange complex structures where helices are not parallel. It also provides new 3D
tools that helps, for instance, to find suitable positions for crossovers between any kind of
helices.
the 2D view presents the blueprint of the design in a streamlined manner, similar to the
one initially proposed in cadnano. This linear representation of the helices is easy to read
and arguably more ergonomic for most editing task.

As we will see later, both views work together to facilitate the work of the designer. A
particular care was given to provide a homogeneous visual experience for both views, with
matching color codes between the views, for instance.

Grids. In ENSnano, like in several other nanostructure design softwares, the strands compos-
ing a nanostructure are positioned on helices that are assumed to be rigid shapes – currently,
rigid cylinders. The 3D shape of the design is greatly influenced by the relative positions
and orientations of these helices. In cadnano, the helices are all parallel and their positions
are given by a point on a grid. In ENSnano helices are also positioned on a grid, but several
grids can coexist in a design, and these grids can have different orientations, which makes it
possible to create designs in which all helices point in different directions.

By grouping helices together on a grid, one can organize their design into bulk components
made of parallel helices. Each of this component can be thought as a separated cadnano design.
As pointed out in the introduction, the 2D view is typically more ergonomic to edit those
components. Connecting two non-parallel components in a 2D interface is however a
challenging task. This is where the 3D editing of crossovers and the crossover suggestions
based on the 3D positions of the nucleotides are useful.

At the moment, ENSnano offers squared and hexagonal grids, as well as nanotubes made
of 5 to 60 helices. Grids are internally implemented as a mapping Z2 7→ R2. This flexible
representation makes it easy to add new grid types in the future, and could be easily extended
to arbitrary Cayley graphs.

Group-based organization of the design. Elements of the designs can be grouped in named
groups. These groups can be used to quickly select one part of the design, or to adjust
altogether the properties of the elements in the set. Groups can for instance be used to
quickly set the color of all the helices of a groups for crossover suggestion. They can also be
used to hide or show temporarily parts of the design. Groups will have extended capabilities
in upcoming versions of our software. Note that the group structure in ENSnano does not
requires the groups to be disjoint. This is typically useful in the case where one wants
to visualize the interface between two components linked together by a set of crossovers.
One can create two groups, each of them containing one of the components and the set of
crossovers. Using these groups one can chose to hide everything in the design but one of the
components and the crossovers at the interface, as illustrated in Fig. A.1.

DNA 27

5:8 ENSnano: A 3D Modeling Software for DNA Nanostructures

Figure 4 Crossover suggestions. As none of the three helices are parallel, finding crossover
positions may be difficult. We thus assign the helices 1 and 2 (the orange and green stranded) to
the green family and helix 3 (the blue stranded) to the red (note that the color family is displayed
as the background color of their identifier disc in the 2D view). In the 3D view, the suggested
crossovers are indicated by a translucent purple connection between two nucleotides. In the 2d view,
the nucleotides that could be bound by a crossover are indicated by pairs of dots of matching color.

Design helpers. When designing a DNA nanostructure, special care must be given when
choosing the positions of the crossovers. Indeed, the length and orientation of a crossover
between two points of two neighboring helices can vary greatly, because of the spiraling
nature of DNA helices. For this reason, DNA nanostructure design softwares often offer a
feature that suggests positions at which crossovers between two helices are possible.

▶ Crossover suggestions. In ENSnano, one can assign to each helix a color family: none,
red or green. Crossover suggestions will be made between helices of color families red and
green: purple translucent clues will show up in the 3D view to indicate possible crossover
positions, based on the distance between the nucleotides. Dots of matching colors indicates
these same locations in the 2D view. Fig. 4 illustrates this feature.

▶ Crossover length color shading. In addition to the suggestion for creating new crossovers,
ENSnano also offers visual clues for assessing the length of the existing crossovers. In the
3D interface the crossovers are displayed as cylinders, whose color depends on the distance
between their extremities. Short crossovers have the same color as the strand they belong to,
while crossover of excessive length are shaded from light grey to dark, where a darker color
indicates a longer crossover, see Fig. 5.

▶ Helices (auto)roll. Rolling a helix around its axis shifts its strands forward or backward
and thus has a huge impact on the position of its possible crossovers with neighboring helices.
Reciprocally, placing some crossovers will have an impact on its optimal roll which will in
turn impact all the crossovers around it. Choosing the roll of the helices gives more freedom
in a design, and improves its feasibility. cadnano for instance ignores this factor. ENSnano
enables to either input the value of the helix roll or to run a simple physics simulator which
will auto-roll the selected helices according to the torsion forces applied by their crossovers,
where each crossover is considered as a spring with free length 0.7nm, the expected length of
a crossover. This allows a simple and almost instantaneous sanity check of a design as it is
being built. Typical use of the auto-roll feature is when we want a specific crossover between
a newly created helix and an other one: we first add this crossover regardless of its length

N. Levy and N. Schabanel 5:9

→

Figure 5 Length color shading of the crossover in the 3D view. (left) In this example, several
crossovers of various lengths are visible. Crossovers that are short and don’t require the designer’s
attention are displayed in the same color as their strand. Some crossovers are displayed in light-grey
indicating that their moderately excessive length may only represents a minor problem in the design.
However, one pair of crossovers is displayed in black. This should catch the designer’s eyes and
indicates that this pair of crossovers should be rearranged. (right) After correcting the two faulty
crossovers, they are now shorter and appear in a lighter shade. This indicates that the design on the
right panel is more likely to be feasible.

and then we auto-roll the newly created helix so that it adjusts its roll to satisfy this desired
crossover; the crossover suggestion feature will then adapt and indicate where to place the
other crossovers according to the initial one.

Basic stability testing. Dependable physics engines such as oxDNA and MrDNA are computer
intensive and cannot provide a fast enough feedback for a user in doubt while building up
a large design. As pointed out in [9], these softwares tend to be used at the end of the
design chain, to validate a complete design, before ordering the corresponding strands. In
ENSnano, we propose to give up on dependable physics simulations of the resulting shape of a
design, but just to focus on its immediate stability. Indeed, the commonly accepted motto of
DNA nanostructures design is that DNA helices can be abstracted as rigid shapes (cylinder
or curves) if correctly tied up together. Dependable physics engines are used to check the
correctness of this assumption. But, during the whole design process, we take it for granted,
because its correctness relies on it. What we need is thus a fast regular feedback on whether
the current (assumed to be) rigid helices are “tied up” satisfyingly to keep the desired shape.
For this purpose, ENSnano includes a very basic rigid body physics simulator in which:

each crossover is modelled as a spring with free length 0.7nm, the expected length of a
covalent bond;
each contiguous double-stranded part of a helix is modelled as an independent rigid
cylinder;
each single stranded part of an helix is considered as a chain of isolated points connected
by crossovers (modelled as spring as above);
Brownian motion is emulated by jiggling the isolated points (or not), with an adjustable
intensity;
the stiffness of the spring, ambient friction and mass of the nucleotide can be configured
live as the simulation runs; we usually recommend to start with a high friction and to
lower it slowly as the simulation progresses.

This very basic model has no other ambition than to provide a quick feedback on the stability
of the currently developed design and may not always produce correct results. In particular,
we need to review in depth the volume exclusion procedure. Some perfectly valid design may
converge to a spaghetti mess.

To get a definitive assessment of the physical viability of their design, users are invited to
export it to oxDNA.

DNA 27

5:10 ENSnano: A 3D Modeling Software for DNA Nanostructures

3 Graphical User Interface and tools

3.1 Getting started

The interface of ENSnano is designed so that every action is only one click away: editing
either grids, helices, strands, crossovers, 5’ or 3’ ends of domains,... do not require any edition
mode switching; the intended action is naturally guessed by the program. The interface is
divided in four area (see Fig. 1):

the top bar consists of the Open/Save/Export buttons, the view selector (3D and/or
(split) 2D), the zoom fitting button , the undo/redo buttons, and the help & tutorials
buttons;

the left bar consists of four panels, from top to bottom: the tool panel, the camera
shortcuts, the contextual panel, and the organizer;

the main view(s) represent(s) the design in 2D and/or 3D;

and the status bar at the bottom is currently essentially unused.

The camera panel gathers buttons that set the camera in standard positions, which is
useful to align the design with the axis. The contextual panel displays and allows to edit
information on the current selection. It also displays the help when nothing is selected. The
organizer allows to group the design into (non-disjoint) sets as already discussed in Sec. 2.

The tool panel is composed of six tabs:

the grid tab gathers the tools to create grids and add helices to them;

the edit tab gathers the tools to edit nucleotides, strands and helices;

the camera tab presents the visualization parameters;

the rigid body engine tab presents the (very basic) available physics simulation tools;

the sequence tab allows to set and export the sequences of the strands;

and the parameters tab allows to change the font size and the scrolling sensitivity.

What is selected or edited when clicking in the views is determined by the selection mode
and by the action mode in the two editing tabs and :

the selection modes are: for nucleotides and crossovers, for strands, for helices;

the action modes are: to edit objects, to translate objects, to rotate objects, and
to add helices to a grid.

Grids are added to the design using the buttons: for square grid, for hexagonal
grid, and for nanotubes. Helices are added to a grid by clicking on the desired position on
the grid. One can chose to equip a helix with a double strand at its creation: just set the
starting position and length of the strands in the text fields bellow. By default a phantom
helix is displayed when an helix is created, this can be switched off in contextual panel after
selecting the grid.

Building a first design. Fig. 6 presents step-by-step how to build a very simple design in
ENSnano.

N. Levy and N. Schabanel 5:11

(A) Create a square grid (B) Left-click to create two helices

(E) Left-click-drag to
create four strands

(F) Left-click in
the middle of a strand

(I) Left-click on the neighboring
nucleotide to double the crossover (J) A first design in ENSnano

(G) Left-drag downwards to
initiate a crossover

(C) Right-click on the grid to place the
pivot and right-click-drag to rotate

(H) Release the mouse on the strand
bellow to create the crossover

Figure 6 Step-by-step construction of a first design in ENSnano.

3.2 The 3D view
The main purpose of the 3D view is to visualize and organize the components in space.

The camera. The camera can be: translated (using the mouse left- or middle-click, or the
keyboard arrows), rotated freely (using the mouse right-click or Ctrl/ +middle-click), and
zoomed in and out (using the mouse wheel). Rotations and zooms are performed around the
pivot point which is highlighted by a yellow ball. The pivot point is set by right-clicking on
an element of the design. The button in the top bar allows to auto-adjust the zoom to fit
the whole design in the views. Right-double-clicking on an element in the 2D view centers
this element in the 3D view. Left-double-clicking on an element in the 3D view centers this
element in the 2D view.

3D arrangement. The grids and helices can be rearranged by selecting them and choosing
the action mode or . Handles appear to be pulled in the three possible directions.
Handles are either aligned with the current orientation of the object, or with canonical axes
of the design, see Fig. A.2. The latter choice is preferred to align different components
precisely. Clicking again on the action mode or switches from one handles alignment
to the other.

Fog. Sometimes, the 3D view can be confusing. The fog feature in the tab allows to
display only the part of the design within a given radius around the pivot or the camera,
fading the rest progressively to invisible, see Fig. 7.

DNA 27

5:12 ENSnano: A 3D Modeling Software for DNA Nanostructures

Figure 7 The fog feature. (left) no fog: the background is jammed with strands, and it is hard
to focus on the crossovers between the two layers; (right) with fog: the background is cleared and
the crossover is now clearly visible, ready to be adjusted if needed.

Rendering style. By default, the background of the 3D view is a landscape gradient, which
is convenient to keep track of the current camera orientation. It can be replaced by a white
background (e.g., for publication) in the rendering section of the tab . One can also opt
there for a cartoon rendering, where each object is outlined in black (e.g., for printing).

Editing in the 3D view. Sometimes, it is easier to edit directly in the 3D view. Left-click-
and-drag on an end of a strand or a crossover allows to translate it along the helix.1 One
can build a crossover by a long-press left-click on a nucleotide (longer than 250ms): a blue
ball appears, and dragging to another nucleotide creates the crossover.

3.3 The 2D view
The 2D view is the blueprint of the design. It follows and extends the streamlined interface
of cadnano and scadnano by adding a list of features that improves its ergonomics:

Creation and edition of strands, creation and translation of crossovers, cutting and ligating
strands are all done in the same edition mode, using only the mouse left-click, as shown
in Fig. 3. Note that the selection in the 2D view is accomplished by right-clicking.
The 2D and 3D views work together: a translucide green ball indicates in the 3D view
which nucleotide is hoverred by the mouse in the 2D view (e.g., see Fig. 3F and 3H). Also,
double-right-clicking a nucleotide in the 2D view centers it in the 3D view.
The helix representations automatically extend when needed, e.g. when elongating a
strand. The helix representations can be tighten back using the buttons “All/Selected”
under “Tighten 2D helices” in the edition tab , or simply by clicking on their handles.
Any helix representation can be translated and rotated arbitrarily in the 2D view, to
match as closely as possible the 3D arrangement of design, or serve any other purposes,
e.g. Fig. A.3. Left-clicking on their number will translate the selected helices, while
right-clicking will rotate them.
Moving is the 2D view is done by middle- or Alt/ +left-click-and-drag. Zooming in and
out is done by scrolling the mouse wheel.

The 2D split view. As mentioned earlier, 3D complex structures cannot be faithfully
mapped into 2D, and some parts that are next to each other in space, will inevitably be
mapped far apart in any 2D view. This usually makes 2D representation of 3D DNA
nanostructures complex to read and even more to edit. For instance, very long crossovers

1 Cutting and ligating a strand by left-click are disabled in the 3D view because it is too error-prone.

N. Levy and N. Schabanel 5:13

Figure 8 Grid geometry-aware copy and paste of strands and crossovers. (left) Duplication of a
strand: the red strand gets duplicated on other helices of the grid. One can check in the 3D interface
that the path of the strand is correctly being copied, even if the 2D view could be reorganized to
present a clearer representation of the strand. (right) Duplication of crossovers: four crossovers are
being copied at once on existing strands.

cross each other in every possible direction in the cadnano representation of the double-layer
origami in [29], and make it almost impossible to edit. ENSnano’s 2D split view solves this
issue elegantly by allowing to zoom and to act seamlessly on two distant parts of the 2D
view, as if they were next to each other. Indeed, one can build a crossover from one split
view to the other just as if it was one single 2D view, see Fig. 2. Moreover, crossovers whose
ends are in opposite sides of the split view, are drawn across the views, making them easy to
read and edit.

Note that left double-clicking on a crossover in the 3D view, splits the 2D view as soon
as both of its ends do not fit in the 2D view. We thus recommend to 1) create the desired
crossover approximately in the 3D view and then 2) to double-click on it, so that it gets
focused and drawn across the split view, where the user can then edit it comfortably.

3.4 Grid-aware copy, paste & repeat
Grid geometry-aware copy & paste. Many DNA nanostructure designs consist of repeating
the same pattern over and over, e.g.: SST nanotubes [36, 35], rectangular DNA origami [34],
or SST 3D assemblies [17, 24]... and many more contains many repeating crossover patterns.
A designer can thus save a lot of time by copying and pasting patterns, as proposed for
instance in scadnano. ENSnano extends with capacity by using the grid structure to compute
the 3D path followed by the pattern copied, to paste the same path at a different location,
regardless of the numbering of the helices and of their relative positions in the 2D view.
Arbitrarily complex strands can thus be copied and pasted across the design, as shown on
Fig. 8. For instance, a strand binding two consecutive helices in a nanotube can be copied all
around the nanotube: ENSnano will automatically loop the strand around the nanotube from
its last to its first helix. In addition to copying strands on empty positions, it is also possible
to copy crossovers on existing strands, see Fig. 8. The basic copy and paste functionality
if performed by pressing Ctrl/ +C after selecting the source strands/crossovers and then
Ctrl/ +V and click to place a copy.

Paste & repeat. In addition to the classic copy and paste feature. ENSnano features
a geometry-aware paste and repeat which remembers as well the translation (in the grid
and along the helices) between the original and the first pasted pattern, and keeps pasting
the pattern with the same translation over and over. This is particularly useful for large
repetitive designs such as rectangular part of an origami or SST nanotubes. After copying

DNA 27

5:14 ENSnano: A 3D Modeling Software for DNA Nanostructures

Figure 9 Paste & repeat: Starting from the green strand made of two domains of 56 nucleotides
each on helices 0 and 1 of a 8-helices nanotube, this strand is copied with Ctrl/ +C and pasted
with Ctrl/ +J, one helix below and 7 nucleotides forward. Repeating Ctrl/ +J compulsively 7
more times creates automatically the other strands, applying repetitively the same translation and
thus filling the nanotube with strands in no time. Note that ENSnano is aware of the nanotube-grid
geometry and places the 7th pasted olive strand appropriately, binding helices 7 and 0.

the strands or crossover pattern with Ctrl/ +C, the first duplication is made by pressing
Ctrl/ +J. Once the first copy is positioned, the path from the original to the copy is
memorized. Pressing Ctrl/ +J repetitively, will copy over and over the pattern with the
same offset as long as there are helices to support them, as illustrated in Fig. 9.

3.5 Crossover suggestions
Crossover suggestions are currently done by assigning helices to either the green or the red
family. Color family are assigned in the organizer, by clicking on the family button which
displays either: ∅ for none, R for red, and G for green. The easiest is to create a group for
each family of helix and to set the color family for each group at once by clicking on the
family button of the group, see Fig. 10. Crossover suggestion is enabled as soon as there are
helices of the red and green families. Setting all the families back to ∅ disable the crossover
suggestion.

3.6 The basic 3D rigid body physics engine
The tab presents the three possible modes of our rigid body physics engine:

the “Roll” button executes a simple roll of all the helices (see Sec. 2). This is a good
way to check the quality of the crossovers. Note that the roll of each helix can be set
individually in the tab .
the “Rigid grid” button runs the physics engine considering that all the helices belonging
to the same grid act as one rigid body. This allows to evaluate the interactions between
the various components of a design, in particular, the balance of the crossovers between
them.
the “Rigid helices” button runs the physics engine as explained in Sec. 2. In this mode,
several parameters can be tuned live: the stiffness of the crossovers, the ambient friction
(we recommend to start the simulation with a higher friction and to decrease it with time),
and the mass of the nucleotides (beware that tuning this parameter live may explode the
design as it will apply some rocket effect). We strongly recommend not to use the volume
exclusion option which is inefficient and slow right now. Note that opting for “jiggling
unmatched nucleotides”, simulates Brownian motion by adding constantly a random noise
to their positions (the rate and amplitude of the noise can be tuned as well).

N. Levy and N. Schabanel 5:15

Figure 10 Crossover suggestions between red and green color families. The helices are partitioned
into two groups in the organizer: “Frame” and “Rocket” assigned resp. to the red and green families.
On can see the pair of matching dots in the split view marking recommended positions for crossovers.

The two last modes are still at their infancy. The “Rigid grid” mode is useful when
combined with the “Guess grid” feature in the tab , when importing a design from (s)cadnano
which has no grid and no 3D embedding. Because the volume exclusion implementation
is right now inefficient, the “rigid helices” mode should only be considered as a stability
indicator, as it may converge to unrealistic configurations. Note that running the rigid body
engine can be undone with Ctrl/ +Z or the Undo button.

3.7 Sequences export and scaffold sequence optimization
The tab gathers the sequence-related tools. As far as sequences are concerned, ENSnano
is, for now, “DNA origami-oriented” (this will change in the future). This sequence tab
allows to chose the scaffold strand and to assign its sequence. One can load any text file
containing a long enough sequence for that purpose. The default scaffold sequence is the
M13mp18. In ENSnano, the user can either set the starting position of the cyclic scaffold
sequence, or let ENSnano optimize it. When asked to optimize, ENSnano tries to minimize
the risk of error in the strand synthesis, by finding the position that minimizes the number
of problematic patterns such as Cn⩾4, Gn⩾4 or (A|T)n⩾7. The higher the n, the heavier
the weight of the problem. Once optimized, ENSnano reports on the number of remaining
problematic patterns as shown in Fig. A.4. This position is retained and saved for later reuse.
This optimization phase allows usually to avoid any C5+ or G5+ pattern in no time.

Note that nucleotides that are not matched with the scaffold are given a ? symbol in the
exported excel file.

4 Experimental validation

We have already annealed successfully several DNA origami designed with ENSnano. We
present here one of them designed together with the students of the class CR11 on Molecular
computing at the ÉNS de Lyon in December 2020: a rocket DNA origami consisting of two
layers made of parallel helices making an odd angle. Please refer to ENSnano website [19]
for the full design and staple sequences. Designing this origami was particularly easy with

DNA 27

5:16 ENSnano: A 3D Modeling Software for DNA Nanostructures

Figure 11 AFM images of our rocket design. These were obtained on a JPK Fastscan Nanoworld
4 equipped with a Nanoworld USC-F0.3-k0.3 tip in tapping mode – 20µL sample of: m13mp18
scaffold at 1nM with staples at 10nM in 1× TAE buffer with 12.5mM magnesium.

ENSnano thanks to the crossover recommendation and grid systems. We were able to place
the crossovers between the two layers, where the strands of the top and bottom layers were
the closest, painlessly, and without any calculation. Splitting the 2D view was of great help
as well. The possibility to arrange freely the helices in the 2D view allowed to check readily
the design in the 2D view as well as in the 3D view.

The computed strands were annealed at 10nM together with the m13mp18 scaffold at
1nM in 1× TAE buffer with 12.5mM magnesium: starting from 95◦C and decreasing to 55◦C
at −1◦C/min and then from 55◦C to 45◦C at −1◦C/15min and then hold at 25◦C. AFM
images of the resulting DNA origami are presented in Fig. 11.

5 Conclusion and upcoming features

With this first version of ENSnano, its 3D and 2D fast, precise, and versatile editing capacities,
and its stability, we have set the basis for an upcoming complete, GUI based, cross-platform,
DNA nanostructure design suite. This software will evolve at a fast pace in the upcoming
months. Here is a short list of features, we plan to develop next:

Versatility: presently the design is limited to straight DNA helices. We plan to add soon
curved double strands and free single strands to the toolbox. We also plan to add soon
“decorations” (fluorophores, biotin,...). We also plan to extend our concept of grid to
more complex structures (2D as well as 3D).
Sequences: ENSnano is presently limited to DNA origami in terms of sequence export.
We are currently working on an interface to set the sequences for the parts of the design
which are not matched with a scaffold.
Programmability: ENSnano file format is a standard json dictionary, very similar to
scadnano file format. Its complete structure is described in appendix B. Even if it is fairly
easy to develop a python code to produce ENSnano file, we plan to propose as soon as
possible, a python framework to produce ENSnano design file programmatically.
Automation: Designing the staples is a tedious task. Adding auto-stapling algorithms
will be of great help to the designer. Automatic scaffolding will however require a new
kind of abstraction of a DNA design.
Simulation: improving the rigid body physics engine will probably require a lot of work.
Adding a proper volume exclusion is certainly the most interesting direction to follow.

N. Levy and N. Schabanel 5:17

References
1 Erik Benson, Abdulmelik Mohammed, Johan Gardell, Sergej Masich, Eugen Czeizler, Pekka

Orponen, and Björn Högberg. DNA rendering of polyhedral meshes at the nanoscale. Nature,
523(7561):441–444, 2015. doi:10.1038/nature14586.

2 Junghuei Chen and Nadrian C. Seeman. Synthesis from DNA of a molecule with the connectivity
of a cube. Nature, 350(6319):631–633, 1991. doi:10.1038/350631a0.

3 Elisa de Llano, Haichao Miao, Yasaman Ahmadi, Amanda J Wilson, Morgan Beeby, Ivan Viola,
and Ivan Barisic. Adenita: interactive 3D modelling and visualization of DNA nanostructures.
Nucleic Acids Research, 48(15):8269–8275, July 2020. doi:10.1093/nar/gkaa593.

4 David Doty, Benjamin L Lee, and Tristan Stérin. scadnano: A Browser-Based, Scriptable
Tool for Designing DNA Nanostructures. In Cody Geary and Matthew J. Patitz, editors, 26th
International Conference on DNA Computing and Molecular Programming (DNA 26), volume
174 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:17, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DNA.
2020.9.

5 Shawn M. Douglas, Adam H. Marblestone, Surat Teerapittayanon, Alejandro Vazquez,
George M. Church, and William M. Shih. Rapid prototyping of 3D DNA-origami shapes with
caDNAno. Nucleic Acids Research, 37(15):5001–5006, June 2009. doi:10.1093/nar/gkp436.

6 Jonathan P. K. Doye, Thomas E. Ouldridge, Ard A. Louis, Flavio Romano, Petr Šulc, Christian
Matek, Benedict E. K. Snodin, Lorenzo Rovigatti, John S. Schreck, Ryan M. Harrison, and
William P. J. Smith. Coarse-graining DNA for simulations of DNA nanotechnology. Physical
Chemistry Chemical Physics, 15(47):20395–20414, 2013. doi:10.1039/C3CP53545B.

7 Pierre Étienne Meunier, Nicolas Levy, and Damien Woods. Codenano: a code-based tool
for designing DNA nanostructures. https://dna.hamilton.ie/2019-07-18-codenano.html,
2020.

8 Thomas Gerling, Klaus F. Wagenbauer, Andrea M. Neuner, and Hendrik Dietz. Dynamic DNA
devices and assemblies formed by shape-complementary, non–base pairing 3D components.
Science, 347(6229):1446–1452, 2015. doi:10.1126/science.aaa5372.

9 Martin Glaser, Sourav Deb, Florian Seier, Amay Agrawal, Tim Liedl, Shawn Douglas, Manish K.
Gupta, and David M. Smith. The art of designing DNA nanostructures with CAD software.
Molecules, 26(8), 2021. doi:10.3390/molecules26082287.

10 Arnav Goyal, Dixita Limbachiya, Shikhar Kumar Gupta, Foram Joshi, Sushant Pritmani,
Akshita Sahai, and Manish K Gupta. Dna pen: A tool for drawing on a molecular canvas,
2013. arXiv:1306.0369.

11 Shikhar Kumar Gupta, Foram Joshi, Dixita Limbachiya, and Manish K. Gupta. 3DNA: A
tool for DNA sculpting. CoRR, abs/1405.4118, 2014. arXiv:1405.4118.

12 Chao-Min Huang, Anjelica Kucinic, Joshua A. Johnson, Hai-Jun Su, and Carlos E. Castro.
Integrated computer-aided engineering and design for DNA assemblies. Nature Materials,
2021. doi:10.1038/s41563-021-00978-5.

13 iced repository. https://github.com/hecrj/iced.
14 Hyungmin Jun, Tyson R. Shepherd, Kaiming Zhang, William P. Bricker, Shanshan Li, Wah

Chiu, and Mark Bathe. Automated sequence design of 3d polyhedral wireframe DNA origami
with honeycomb edges. ACS Nano, 13(2):2083–2093, February 2019. doi:10.1021/acsnano.
8b08671.

15 Hyungmin Jun, Xiao Wang, William P. Bricker, Steve Jackson, and Mark Bathe. Rapid
prototyping of wireframe scaffolded dna origami using athena. bioRxiv, 2020. doi:10.1101/
2020.02.09.940320.

16 Hyungmin Jun, Fei Zhang, Tyson Shepherd, Sakul Ratanalert, Xiaodong Qi, Hao Yan, and
Mark Bathe. Autonomously designed free-form 2D DNA origami. Science Advances, 5(1),
2019. doi:10.1126/sciadv.aav0655.

17 Yonggang Ke, Luvena L. Ong, William M. Shih, and Peng Yin. Three-dimensional structures
self-assembled from dna bricks. Science, 338(6111):1177–1183, 2012. doi:10.1126/science.
1227268.

DNA 27

https://doi.org/10.1038/nature14586
https://doi.org/10.1038/350631a0
https://doi.org/10.1093/nar/gkaa593
https://doi.org/10.4230/LIPIcs.DNA.2020.9
https://doi.org/10.4230/LIPIcs.DNA.2020.9
https://doi.org/10.1093/nar/gkp436
https://doi.org/10.1039/C3CP53545B
https://dna.hamilton.ie/2019-07-18-codenano.html
https://doi.org/10.1126/science.aaa5372
https://doi.org/10.3390/molecules26082287
http://arxiv.org/abs/1306.0369
http://arxiv.org/abs/1405.4118
https://doi.org/10.1038/s41563-021-00978-5
https://github.com/hecrj/iced
https://doi.org/10.1021/acsnano.8b08671
https://doi.org/10.1021/acsnano.8b08671
https://doi.org/10.1101/2020.02.09.940320
https://doi.org/10.1101/2020.02.09.940320
https://doi.org/10.1126/sciadv.aav0655
https://doi.org/10.1126/science.1227268
https://doi.org/10.1126/science.1227268

5:18 ENSnano: A 3D Modeling Software for DNA Nanostructures

18 Jae Young Lee, Jae Gyung Lee, Giseok Yun, Chanseok Lee, Young-Joo Kim, Kyung Soo
Kim, Tae Hwi Kim, and Do-Nyun Kim. Rapid computational analysis of dna origami
assemblies at near-atomic resolution. ACS Nano, 15(1):1002–1015, January 2021. doi:
10.1021/acsnano.0c07717.

19 Nicolas Levy and Nicolas Schabanel. Ensnano: A software for designing 3d DNA/rna nanos-
tructures, May 2021. URL: http://www.ens-lyon.fr/ensnano/.

20 Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA package 2.0. Algorithms Mol.
Biol., 6:26, 2011.

21 Christopher Maffeo and Aleksei Aksimentiev. MrDNA: a multi-resolution model for predicting
the structure and dynamics of DNA systems. Nucleic Acids Research, 48(9):5135–5146, March
2020. doi:10.1093/nar/gkaa200.

22 Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):103–104, 2014.
doi:10.1145/2692956.2663188.

23 Michael Matthies, Nayan P. Agarwal, Erik Poppleton, Foram M. Joshi, Petr Šulc, and
Thorsten L. Schmidt. Triangulated wireframe structures assembled using single-stranded dna
tiles. ACS Nano, 13(2):1839–1848, February 2019. doi:10.1021/acsnano.8b08009.

24 Luvena L. Ong, Nikita Hanikel, Omar K. Yaghi, Casey Grun, Maximilian T. Strauss, Patrick
Bron, Josephine Lai-Kee-Him, Florian Schueder, Bei Wang, Pengfei Wang, Jocelyn Y. Kishi,
Cameron Myhrvold, Allen Zhu, Ralf Jungmann, Gaetan Bellot, Yonggang Ke, and Peng
Yin. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique
components. Nature, 552(7683):72–77, 2017. doi:10.1038/nature24648.

25 Erik Poppleton, Joakim Bohlin, Michael Matthies, Shuchi Sharma, Fei Zhang, and Petr Šulc.
Design, optimization and analysis of large DNA and RNA nanostructures through interactive
visualization, editing and molecular simulation. Nucleic Acids Research, 48(12):e72–e72, May
2020. doi:10.1093/nar/gkaa417.

26 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006. doi:10.1038/nature04586.

27 Paul W. K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biology, 2:2041–2053, 2004.

28 Anupama J. Thubagere, Wei Li, Robert F. Johnson andZibo Chen, Shayan Doroudi, Yae Lim
Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, Erik Winfree, and Lulu
Qian. A cargo-sorting DNA robot. Science, 357(6356), 2017. doi:10.1126/science.aan6558.

29 Anupama J Thubagere, Wei Li, Robert F Johnson, Zibo Chen, Shayan Doroudi, Yae Lim Lee,
Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, et al. A cargo-sorting DNA
robot. Science, 357(6356), 2017.

30 Rémi Veneziano, Sakul Ratanalert, Kaiming Zhang, Fei Zhang, Hao Yan, Wah Chiu, and
Mark Bathe. Designer nanoscale DNA assemblies programmed from the top down. Science,
352(6293):1534, June 2016. doi:10.1126/science.aaf4388.

31 wpgu repository. https://github.com/gfx-rs/wgpu-rs.
32 Sean Williams, Kyle Lund, Chenxiang Lin, Peter Wonka, Stuart Lindsay, and Hao Yan. Tiamat:

A three-dimensional editing tool for complex DNA structures. In Ashish Goel, Friedrich C.
Simmel, and Petr Sosík, editors, DNA Computing, pages 90–101, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

33 winit repository. https://github.com/rust-windowing/winit.
34 Sungwook Woo and Paul WK Rothemund. Programmable molecular recognition based on the

geometry of DNA nanostructures. Nature chemistry, 3(8):620, 2011.
35 Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik

Winfree. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Nature, 567(7748):366–372, 2019.

36 Peng Yin, Rizal F. Hariadi, Sudheer Sahu, Harry M. T. Choi, Sung Ha Park, Thomas H.
LaBean, and John H. Reif. Programming dna tube circumferences. Science, 321(5890):824–826,
2008. doi:10.1126/science.1157312.

https://doi.org/10.1021/acsnano.0c07717
https://doi.org/10.1021/acsnano.0c07717
http://www.ens-lyon.fr/ensnano/
https://doi.org/10.1093/nar/gkaa200
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1021/acsnano.8b08009
https://doi.org/10.1038/nature24648
https://doi.org/10.1093/nar/gkaa417
https://doi.org/10.1038/nature04586
https://doi.org/10.1126/science.aan6558
https://doi.org/10.1126/science.aaf4388
https://github.com/gfx-rs/wgpu-rs
https://github.com/rust-windowing/winit
https://doi.org/10.1126/science.1157312

N. Levy and N. Schabanel 5:19

37 Joseph H. Zadeh, Conrad D. Steenberg, Justin S. Bois, Brian R. Wolfe, Marshall B. Pierce,
Asif R. Khan, Robert M. Dirks, and Niles A. Pierce. NUPACK: Analysis and design of nucleic
acid systems. Journal of Computational Chemistry, 32:170–173, 2011.

38 Fei Zhang, Shuoxing Jiang, Siyu Wu, Yulin Li, Chengde Mao, Yan Liu, and Hao Yan.
Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature
Nanotechnology, 10(9):779–784, 2015. doi:10.1038/nnano.2015.162.

A Omitted figures

This section gathers the figures cast away in the appendix due to space constraints.

Figure A.1 Using ENSnano’s groups to hide elements of the design. (left) The two layers
of the rocket design which are spread apart to ease the reading of the crossovers in the figures.
Two overlapping heterogeneous groups, gathering helices and crossovers, have been created in the
organizer, and can be shown or hidden on demand in the 3D view: (middle) A first group gathering
the helices in the rectangular base, and the crossovers between the two layers; (right) A second
group gathering the helices of the rocket and the crossovers between the two layers.

(A) Translation handles aligned
with the canonical axes

(B) Translation handles aligned
with the object axes

(C) Rotation handles aligned
with the canonical axes

(D) Rotation handles aligned
with the object axes

Figure A.2 The move and rotate handles to rearrange grids and helices in 3D.

DNA 27

https://doi.org/10.1038/nnano.2015.162

5:20 ENSnano: A 3D Modeling Software for DNA Nanostructures

Figure A.3 Comparison between the 2D and 3D interfaces. The 3D interface shows the shape,
that we wish that our design will adopt. Since this design is made of two layers making an odd angle.
It cannot be faithfully represented in 2D. By separating the helices of the two layers, and adjusting
the orientation of the helices composing the rocket layer, one can build a 2D representation of the
design that is as close as possible to its intended 3D structure.

Figure A.4 Report on scaffold sequence position optimization.

B ENSnano File format

B.1 Top-level structure
In ENSnano, designs are loaded from a json file. Here are the top-level element:

helices: a dictionary that maps positive integer to Helix object (see the definition of
Helix object in B.3).
strands: a dictionary that maps positive integer to Strand object (see the definition of
Strand objects in B.4).
dna_parameters: (optional) contains the geometric DNA parameters used for the design.
If this field is omitted, default values will be used. The members of this field, and their
default values are given in B.2.

N. Levy and N. Schabanel 5:21

grids: an array containing the GridDescriptor objects, that represent the grids of the
design.
scaffold_id: (optional) the id of the scaffold strand.
scaffold_sequence: (optional) the sequence of the scaffold.
scaffold_shift: (optional) the starting position of the scaffold sequence.
groups: (optional) a dictionary mapping integers (identifier of helices) to a boolean
indicating in which group they belong for the cross-over suggestion.
small_spheres: (optional) a set containing identifiers of the grids whose helices do not
display their nucleotides as spheres.
no_phantoms: (optional) a set containing identifiers of the grids that do not display
phantom helices.

B.2 DNA parameters
The members of the field dna_parameters are:

z_step: the distance in nanometers between two consecutive bases along the axis of an
helix. The default value is 0.332nm.
helix_radius: the radius of an helix in nanometers. The default value is 1nm.
groove_angle: the small angle between paired nucleotides. The default value is 2π · 12

12+22 .
This values comes from the fact that the width of the major groove is 22 Å and the width
of the minor groove is 12 Å.
inter_helix_gap: the distance between two neighbouring helices on a grid. The default
value is 0.65nm as suggested in [34, 29].
bases_per_turn: the number of base pairs per full turn of an helix. The default value is
10.44 bases per full turn as suggested in [34].

These parameters are illustrated in Figure B.5. The coordinates of a nucleotide at index
i on an helix, in the helix referential are:

x = i · z_step, y = sin(θi), and z = cos(θi)

and

θi = ρ−i· 2π

bases_per_turn
+ π

2 +
{

groove_angle if the nucleotide is on the forward strand

0 otherwise

where ρ is the roll of the helix. A shift of π
2 is added so that the nucleotide at index 0 on the

backward strand of an helix is at the top position, following the cadnano convention.
Note that θi decreases as index i increases. This is because strands turn clockwise when

going from 5’ to 3’.

B.3 Helix Object
The field of an helix object are

position: a 3D point giving the origin of the helix.
orientation: a Rotor2 giving the orientation of the helix. See Subsection B.5 to see how
to obtain a rotor from a direction vector.
roll: an additional roll performed on the helix.

2 https://docs.rs/ultraviolet/0.8.0/ultraviolet/rotor/index.html

DNA 27

https://docs.rs/ultraviolet/0.8.0/ultraviolet/rotor/index.html

5:22 ENSnano: A 3D Modeling Software for DNA Nanostructures

Figure B.5 The configurable DNA geometric parameters: R: the radius of an helix, labelled
helix_radius; r: the distance between two neighbour helices on a grid, labelled inter_helix_gap;
α: the minor groove angle, labelled groove_angle; β: the angle between two consecutive base-pairs.
This angle can be obtained by the formula β = 2π

bases_per_turn ; z: the distance in nanometers between
two consecutive bases along the axis, labelled z_step; G: the length of the major groove; g: the
length of the minor groove; G, g and α are related to each other by the formula α = 2π g

G+g
.

grid_position: (optional) the position of the helix on the grid it is attached to. This
field override the position and orientation fields.
isometry2d: (optional) an isometry3 that determines the position and orientation of the
helix representation in the 2D view.

B.4 Strand Object
The field of a strand object are:

domains: the (ordered) vector of domains, where each domain is either an insertion or a
directed interval of a helix.
color: an integer encoding the color of the strand with the formula
c = 65536 × R + 256 × G + B where R, G, B ∈ {0, . . . , 255} are its red, green and blue
components.
junctions: (optional) an array of objects representing the junctions between the strand’s
domains.
cyclic: a boolean indicating whether the strand is cyclic or not.

B.5 A word about rotors
In ENSnano’s file format, rotations are represented by rotors.

A 3-dimensional rotor has a scalar part s ∈ R and a bivector part bv ∈ R3. A rotor can
be obtained by taking the geometric product of two vectors. The geometric product of a and
b is defined by ab = (a · b + a ∧ b), i.e. it is a rotor with scalar s = a · b and bivector bv = a ∧ b.

By properties of the scalar and exterior product of vectors, one can write

ab = cos(θ) + Ω sin(θ)

where Ω = a∧b
∥a∧b∥ is the axis of the rotation that transforms a in b and θ is the angle between

a and b.

3 https://docs.rs/ultraviolet/0.8.0/ultraviolet/transform/struct.Isometry2.html

https://docs.rs/ultraviolet/0.8.0/ultraviolet/transform/struct.Isometry2.html

N. Levy and N. Schabanel 5:23

Applying the rotor ab to a vector u will rotate the vector u in the oriented plane defined
by a and b by twice the angle between a and b.

Obtaining a rotor from a direction vector. For the reader who would like to write a
program to output a design in ENSnano file format, we provide the following procedure that
produces a rotor from a direction vector.

def to_rotor (v):
""" Transform a vector v = (x, y, z) to a rotor
describing the rotation from the x-axis
to the vector
"""
x, y, z = v
norm = (x*x + y * y + z*z)**0.5
x = x/norm
y = y/norm
z = z/norm
s = 1. + x
norm_bv = (z * z + y * y)**0.5
if norm_bv < 1e -5:

if x > 0:
return (1., (0., 0., 0.))

else:
return (0., (1., 0., 0.))

norm = (z * z + y * y + s*s)**0.5
bv = (-y/norm , -z / norm , 0)
s = s / norm
return (s, bv)

DNA 27

Directed Non-Cooperative Tile Assembly Is
Decidable
Pierre-Étienne Meunier #

Albédo Énergie, Le Bourget-du-Lac, France

Damien Regnault #

IBISC, Université Évry, Université Paris-Saclay, 91025, Evry, France

Abstract
We provide a complete characterisation of all final states of a model called directed non-cooperative
tile self-assembly, also called directed temperature 1 tile assembly, which proves that this model
cannot possibly perform Turing computation. This model is a deterministic version of the more
general undirected model, whose computational power is still open. Our result uses recent results in
the domain, and solves a conjecture formalised in 2011. We believe that this is a major step towards
understanding the full model.

Temperature 1 tile assembly can be seen as a two-dimensional extension of finite automata, where
geometry provides a form of memory and synchronisation, yet the full power of these “geometric
blockings” was still largely unknown until recently (note that nontrivial algorithms which are able
to build larger structures than the naive constructions have been found).

2012 ACM Subject Classification Mathematics of computing; Theory of computation → Models of
computation

Keywords and phrases Self-assembly, Molecular Computing, Models of Computation, Computational
Geometry

Digital Object Identifier 10.4230/LIPIcs.DNA.27.6

Related Version Extended Version: https://arxiv.org/abs/2011.09675

Funding Pierre-Étienne Meunier : Supported by H2020-LC-SC3 award number 957823, H2020-LC-
SC3 award number 953020, H2020-LC-SC3 award number 101033700, H2020-ERC award number
772766 and SFI grant 18/ERCS/5746 (this manuscript reflects only the authors’ view and the
European funding institutions are not responsible for any use that may be made of the information
it contains).

Acknowledgements We thank Damien Woods for his support and advice.

1 Introduction

Self-assembly is the process by which independent, unsynchronised components coalesce into
complex forms and patterns, using geometry and local constraints to exchange information,
and perform different sorts of computations. In particular, self-assembly is the process by
which molecules, and in particular biomolecules, acquire their shape (and therefore their
function).

A computational theory of self-assembly has a wealth of applications in a large range
of fields and scales. At the molecular level, programming molecules would enable us to
interact with living organisms, potentially defeating the geometric strategies used by nasty
viruses to penetrate cells. Smart materials with new properties such as self-reproduction and
self-repairing are another example. At a much larger scale, industrial processes could also
benefit from a better understanding of self-assembly, as it could streamline processes and
make industrial robots simpler.

© Pierre-Étienne Meunier and Damien Regnault;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 6; pp. 6:1–6:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pe@coturnix.fr
mailto:damien.regnault@univ-evry.fr
https://doi.org/10.4230/LIPIcs.DNA.27.6
https://arxiv.org/abs/2011.09675
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Directed Non-Cooperative Tile Assembly Is Decidable

This theory has already yielded experimental realisations such as DNA Origami [24],
allowing anyone to make their own molecules of any prescribed shape of a diameter between
10nm and 500nm. DNA Self-Assembly has also been used to build fractal shapes [26],
information retrieval circuits [23], cyclic machines using DNA as machine material and as
fuel [30]. Another recent application has been the amplification of minuscule concentrations
of a molecular compound in solution, by using it as a “seed” for self-assembling large
structures [21]. DNA storage [2] has also been proposed and implemented as a technique to
store a tremendous amount of information in a tiny space, with millions of years of potential
durability.

These developments have happened in parallel to, and with interactions with work on the
computer science theory of tile assembly. The most studied model in that direction is the
abstract Tile Assembly Model (aTAM), created by Winfree [29, 25] with inspiration from
Wang tilings [28]. This model studies assemblies made of square tiles with colours on their
borders. Using a finite set of tile types, and an assumed infinite supply of each type, the
assembly process starts with an initial “seed” assembly, and proceeds nondeterministically
and asynchronously, one tile at a time. Unlike Wang tilings, which is mostly concerned with
(potentially undecidable) full covers of the plane, the abstract Tile Assembly Model studies
the assembly sequence of an assembly, which is the sequence of binding events necessary to
build a shape.

In the fully general abstract Tile Assembly Model, tile borders have a glue strength on
their border, and the model has a global assembly threshold called the “temperature”: in
order to remain stably attached, the sum of glue strengths on the attached borders of a tile
must be at least equal to the temperature. One of the key complexity measures of this model
is program-size complexity, meaning the number of tile types in the tileset. The fact that this
model can simulate Turing machines has been used to encode complex shapes with a number
of tile types logarithmic in the Kolmogorov complexity of the shapes [27]. Moreover, the
aTAM model is also intrinsically universal, meaning that there is a single finite “universal”
tileset capable of simulating any other tileset up to a constant scaling factor [6]. Over the
years, a number of consequences and extensions of that result have also been studied [7, 4, 5],
and intrinsic universality has also been used to classify models according to their simulation
power [16].

1.1 Noncooperative self-assembly
Noncooperative self-assembly is a restriction of the aTAM to a temperature of 1, meaning
that tiles always attach to an existing assembly as soon as at least one side has its colour
matching the colour of the current assembly. In other words, the assembly cannot “wait”
for two different “branches” to meet at a point in the plane before growing further. The
restriction of this model to one-dimension is exactly equivalent to finite automata, where
tiles map to the edges of the automaton, and border colours to states.

The only form of synchronisation in this model is by geometric “blocking”, where two
branches compete for a position in the plane, and the first one to get there can continue
to grow. The fundamental question of noncooperative self-assembly is whether this rather
weak form of communication is sufficient to achieve synchronisation. This has been an open
problem since the early days of the field, and research in variants of the model has shown
surprising results, in that every variation of the noncooperative model, however minor, seems
to endow it with arbitrary computational capabilities. In the three-dimensional extension,
for example, one can arrange little “bridges” and “tunnels” to block one branch of a test
while allowing the other one to continue, which allows one to read and write bits [3]. In

P.-É. Meunier and D. Regnault 6:3

two dimensions, using random assembly sequences rather than asynchronous ones yields
the same result [3], and so do negative glues [22], polyomino tiles (with at least three unit
squares) [9], polygonal tiles, provided they have at least seven sides [12]. Separating the
assembly process into stages with different sets of tiles available at each stage also makes the
model Turing-universal [1], which is also the case for a model with detachable tiles [13].

On the negative side, no tileset is intrinsically universal at temperature 1 [20], meaning that
no tileset can simulate all temperature 1 tile assembly systems, even when rescaled. Moreover,
it has recently been shown that long enough paths built by a temperature-1 tile assembly
system are pumpable, meaning that their growth can only be controlled within a finite radius,
after which they degenerate into simple periodic paths [19]. Moreover, disallowing mismatches
means that all assemblies are periodic [14] (note that the “no mismatches” condition is not
known to be decidable).

One particularly puzzling fact about 2D noncooperative self-assembly is that even though
it seems computationally weak, a handful of nontrivial algorithms have been designed,
including assemblies of diameter Ω(n log n), produced by a tileset of size n [15, 17]. In
three-dimensions, recent results have also shown how to build thin rectangles [11, 10] with
almost matching upper and lower bounds.

1.2 Main results

Our main result is that the assemblies producible by directed non-cooperative tile assembly
are a finite union of ultimately periodic assemblies. We state this semi-formally here, even
though not all terms have been defined yet:

▶ Definition 1. The complexity of a finite assembly is 0. For i ≥ 1, the complexity of
an assembly α is i if α is either defined as α =

⋃
ℓ∈N(β + ℓ−→v) where β is a assembly of

complexity i − 1, or if α is a finite union of assemblies of complexity at most i.

▶ Theorem 2. Let T = (T, σ, 1) be a noncooperative tile assembly system. If T has a unique
terminal assembly α (or otherwise said, if T is directed), then the complexity of α is less
than 2.

This result implies that a terminal assembly can be described by a finite number of finite
assemblies and vectors. Along the proofs, we distinguish four different cases of terminal
assemblies and for each class, we bound the size of the assemblies and the number of vectors
used to describe a terminal assembly. Moreover, an algorithm which computes this description
can be deduced from our work. Thus, directed tile assembly systems cannot perform Turing
computation.

Our proof uses techniques similar to a theorem from 2011 [8] which achieves a complete
characterisation of producible assemblies, but conditioned on an unproven conjecture (called
the pumpability conjecture). In contrast to that proof, our work does not rely on any unproven
hypothesis, and improve the previous characterisation of producible assemblies which implies
the pumpability conjecture (this point is discussed for each case of the classification later).
In order to do so, we use a result published in [19], showing that long enough paths are
pumpable. That result is itself weaker than the original pumpability conjecture [8], in that
the bound includes the size of the seed, whereas the pumpability conjecture is that any long
enough subpath, even arbitrarily far from the seed, is pumpable. This subtle difference is
important, since without our Theorem 2, seeds could be assumed to encode computation, for
example by using complicated shapes. Theorem 2 shows that this is not the case.

DNA 27

6:4 Directed Non-Cooperative Tile Assembly Is Decidable

2 Definitions

Some of these definitions come from [19]. As usual, let R be the set of real numbers, let Z be
the set of all integers, let N be the set of all natural numbers including 0, and let N∗ be the
set of all natural numbers excluding 0. The domain of a function f is denoted dom(f), and
its range (or image) is denoted f(dom(f)).

2.1 Abstract tile assembly model

A tile type is a unit square with four sides, each consisting of a glue type and a nonnegative
integer strength. Let T be a a finite set of tile types. The sides of a tile type are respectively
called north, east, south, and west.

An assembly is a partial function α : Z2 99K T where T is a set of tile types and
the domain of α (denoted dom(α)) is connected.1 The translation of an assembly α by
a vector −→v , written α + −→v , is the assembly β defined for all (x, y) ∈ (dom(α) + −→v) as
β(x, y) = α((x, y) − −→v). We let AT denote the set of all assemblies over the set of tile types
T . In this paper, two tile types in an assembly are said to bind (or interact, or are stably
attached), if the glue types on their abutting sides are equal, and have strength ≥ 1. An
assembly α induces an undirected weighted binding graph Gα = (V, E), where V = dom(α),
and there is an edge {a, b} ∈ E if and only if the tiles at positions a and b interact, and this
edge is weighted by the glue strength of that interaction. The assembly is said to be τ -stable
if every cut of Gα has weight at least τ .

A tile assembly system is a triple T = (T, σ, τ), where T is a finite set of tile types,
σ is a τ -stable (hence connected) assembly called the seed, and τ ∈ N is the temperature.
Throughout this paper, τ = 1. Note also that the seed may be large, and placed at an
arbitrary position in the plane. And indeed, in this paper, we will sometimes define multiple
“intuitively equivalent” tile assembly systems where only the position of the seed differs.

Given two τ -stable assemblies α and β, we say that α is a subassembly of β, and write
α ⊑ β, if dom(α) ⊆ dom(β) and for all p ∈ dom(α), α(p) = β(p). We also write α →T1 β if we
can obtain β from α by the binding of a single tile type, that is: α ⊑ β, |dom(β)\dom(α)| = 1
and the tile type at the position dom(β) \ dom(α) stably binds to α at that position. We
say that γ is producible from α, and write α →T γ if there is a (possibly empty) sequence
α1, α2, . . . , αn where n ∈ N∪ {∞}, α = α1 and αn = γ, such that α1 →T1 α2 →T1 . . . →T1 αn.
A sequence of n ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is a T -assembly sequence if, for
all 1 ≤ i < n, αi−1 →T1 αi.

Given two τ -stable assemblies α and β, the union of α and β, write α ∪ β, is an assembly
defined if and only if and for all p ∈ dom(α) ∩ dom(β), α(p) = β(p) and either at least one
tile of α binds with a tile of β or dom(α) ∩ dom(β) ̸= ∅. Then, for all p ∈ dom(α), we have
(α ∪ β)(p) = α(p) and for all p ∈ dom(β), we have (α ∪ β)(p) = β(p).

The set of productions, or producible assemblies, of a tile assembly system T = (T, σ, τ)
is the set of all assemblies producible from the seed assembly σ and is written A[T]. An
assembly α is called terminal if there is no β such that α →T1 β. The set of all terminal
assemblies of T is denoted A□[T]. If there is a unique terminal assembly, i.e. |A□[T]| = 1,
then T is directed. In this paper, this unique terminal assembly is denoted α.

1 Intuitively, an assembly is a positioning of unit-sized tiles, each from some set of tile types T , so that
their centers are placed on (some of) the elements of the discrete plane Z2 and such that those elements
of Z2 form a connected set of points.

P.-É. Meunier and D. Regnault 6:5

2.2 Paths
Let T be a set of tile types. A tile is a pair ((x, y), t) where (x, y) ∈ Z2 is a position and t ∈ T

is a tile type. Intuitively, a path is a finite or one-way-infinite simple (non-self-intersecting)
sequence of tiles placed on points of Z2 so that each tile in the sequence interacts with the
previous one, or more precisely:

▶ Definition 3 (Path). A path is a (finite or infinite) sequence P = P0P1P2 . . . of tiles
Pi = ((xi, yi), ti) ∈ Z2 × T , such that:

for all Pj and Pj+1 defined on P it is the case that tj and tj+1 interact, and
for all Pj , Pk such that j ̸= k it is the case that (xj , yj) ̸= (xk, yk).

By definition, paths are simple (or self-avoiding), and this fact will be repeatedly used
throughout the paper. For a tile Pi on some path P , its x-coordinate is denoted xPi

and its
y-coordinate is denoted yPi

. The concatenation of two paths P and Q is the concatenation
PQ of these two paths as sequences, and is a path if and only if (1) the last tile of P interacts
with the first tile of Q and (2) P and Q do not intersect each other.

For a path P = P0 . . . PiPi+1 . . . Pj . . ., we define the notation Pi,i+1,...,j = PiPi+1 . . . Pj ,
i.e. “the subpath of P between indices i and j, inclusive”. Whenever P is finite, i.e. P =
P0P1P2 . . . Pn−1 for some n ∈ N, n is termed the length of P and denoted by |P |. In the
special case of a subpath where i = 0, we say that P0,1,...,j is a prefix of P and when
j = |P | − 1, we say that Pi,...,|P |−1 is a suffix of P . For any path P = P0P1P2, . . . and
integer i ≥ 0, we write pos(Pi) ∈ Z2, or (xPi

, yPi
) ∈ Z2, for the position of Pi and type(Pi)

for the tile type of Pi. Hence if Pi = ((xi, yi), ti) then pos(Pi) = (xPi , yPi) = (xi, yi) and
type(Pi) = ti. A “position of P” is an element of Z2 that appears in P (and therefore
appears exactly once), and an index i of a path P of length n ∈ N is a natural number
i ∈ {0, 1, . . . , n − 1}. For a path P = P0P1P2 . . . we write pos(P) to mean “the sequence of
positions of tiles along P”, which is pos(P) = pos(P0)pos(P1)pos(P2) For a finite path
P = P0P1P2 . . . P|P |−1, we define P← as the path P|P |−1P|P |−2 . . . P0. The vertical height
of a path P is defined as max{|yPi

− yPj
| : 0 ≤ i ≤ j ≤ |P | − 1} and its horizontal width is

max{|xPi − xPj | : 0 ≤ i ≤ j ≤ |P | − 1}.
Although a path is not an assembly, we know that each adjacent pair of tiles in the path

sequence interact implying that the set of path positions forms a connected set in Z2 and
hence every path uniquely represents an assembly containing exactly the tiles of the path,
more formally: for a path P = P0P1P2 . . . we define the set of tiles asm(P) = {P0, P1, P2, . . .}
which we observe is an assembly2 and we call asm(P) a path assembly.

Given a tile assembly system T = (T, σ, 1) the path P is a producible path of T if
asm(P) does not intersect3 the seed σ and the assembly (asm(P) ∪ σ) is producible by T ,
i.e. (asm(P) ∪ σ) ∈ A[T], and P0 interacts with a tile of σ. Consider an assembly α (resp. a
path Q), as a convenient abuse of notation we sometimes write σ ∪ P (resp. P ∪ Q) as a
shorthand for σ ∪ asm(P) (resp. asm(P) ∪ asm(Q)).

Note that producible paths may not necessarily result in producible assemblies: indeed,
in this paper, we will need to reason on multiple translations of a single path, and only later
prove that these translations are actually connected to the seed. Therefore, we must be able
to talk about these “temporarily disconnected” paths, while proving that they actually result
in producible assemblies.

2 I.e. asm(P) is a partial function from Z2 to tile types, and is defined on a connected set.
3 Formally, the non-intersection of a path P = P0P1, . . . and a seed assembly σ is defined as: ∀t such that

t ∈ σ, ∄i such that pos(Pi) = pos(t).

DNA 27

6:6 Directed Non-Cooperative Tile Assembly Is Decidable

Given a directed tile assembly system T = (T, σ, 1) and its unique terminal assembly α,
the path P is a path of α if asm(P) is a subassembly of α. We define the set of paths of α

to be:

P[α] = {P | P is a path and asm(P) is a subassembly of α}

Note that, for any tiles ((x, y), t) ∈ α and ((x′, y′), t′) ∈ α there is a path P ∈ P[α] such that
for some P0 = ((x, y), t) and P|P |−1 = ((x′, y′), t′).

For A, B ∈ Z2, we define −−→
AB = B − A to be the vector from A to B, and for two

tiles Pi = ((xi, yi), ti) and Pj = ((xj , yj), tj) we define −−→
PiPj = pos(Pj) − pos(Pi) to mean

the vector from pos(Pi) = (xi, yi) to pos(Pj) = (xj , yj). The translation of a path P by
a vector −→v ∈ Z2, written P + −→v , is the path Q such that |P | = |Q| and for all indices
i ∈ {0, 1, . . . , |P | − 1}, pos(Qi) = pos(Pi) + −→v and type(Qi) = type(Pi).

2.3 Intersections
If two paths, or two assemblies, or a path and an assembly, share a common position we say
that they intersect at that position. Furthermore, we say that two paths, or two assemblies,
or a path and an assembly, agree on a position if they both place the same tile type at that
position and conflict if they place a different tile type at that position. We say that a path P

is fragile to mean that there is a producible assembly α that conflicts with P . Intuitively, if
we grow α first, then there is at least one tile that P cannot place. In directed tile assembly
systems, which are the subject of our main result, since the terminal assembly is unique
there are no fragile paths in P[α].

Let P and Q be two paths. We say that Q grows from P at index i, if the only intersection
between Q and P occurs at pos(Q0) = pos(Pi) and is an agreement. Note that if α is the
terminal assembly of some tile assembly system T , and P ∈ P[α], the assertions “Q grows
from P” or “Q is an arc of P” do not imply that Q ∈ P[α], since Q might conflict with
the seed. We say that Q is an arc of P between indices i < j if and only if the only two
intersections between Q and P , which occur at pos(Q0) = pos(Pi) and pos(Q|Q|−1) = pos(Pj)
are both agreements and neither Q nor Q← are subpaths of P 4 The width of an arc Q of P

is defined by |j − i|.

2.4 Pumping a path, possibly in both directions
Next, for a path P , we define sequences of points and tile types (not necessarily a path, since
these sequences might not be simple) called the pumping of P or the bi-pumping of P :

▶ Definition 4 (Infinite and bi-infinite pumping of P). Let T = (T, σ, 1) be a tile assembly
system and a path P of length at least 2, such that type(P0) = type(P|P |−1). We say that the
“infinite pumping of P ”, denoted by (P)∗, is the infinite sequence q of elements from Z2 × T

defined by:

qk = Pk mod (|P |−1) +
⌊

k

|P | − 1

⌋
−−−−−−→
P0P|P |−1 for k ∈ N

We say that the “bi-infinite pumping of P”, denoted by ∗(P)∗, is the bi-infinite sequence
q of elements from Z2 × T defined by:

qk = Pk mod (|P |−1) +
⌊

k

|P | − 1

⌋
−−−−−−→
P0P|P |−1 for k ∈ Z

4 The condition that neither Q nor Q← are subpaths of P is only required when |Q| = 2, to avoid the
cases where j = i + 1 or j = i − 1.

P.-É. Meunier and D. Regnault 6:7

In this article, we will only consider cases where q is simple, i.e. where for any s < t,
if P + s

−−−−−−→
P0P|P |−1 intersects with P + t

−−→
PiPj , then t = s + 1 and the only intersection is

an agreement between P0 + t
−−−−−−→
P0P|P |−1 and P|P |−1 + s

−−−−−−→
P0P|P |−1. A sufficient condition for

this is that the only intersection between P and P + −−−−−−→
P0P|P |−1 is an agreement between

P0 + −−−−−−→
P0P|P |−1 and P|P |−1 (folklore, see [19] for example). If this condition is satisfied then P

is called a good candidate and (P)∗ and ∗(P)∗ are both paths. Note that, for all k ∈ N (resp.
k ∈ Z), we have (P)∗k+|P |−1 = (P)∗k + −−−−−−→

P0P|P |−1 (resp. ∗(P)∗k+|P |−1 = ∗(P)∗k + −−−−−−→
P0P|P |−1).

▶ Definition 5 (Pumpable path). Let T = (T, σ, 1) be a directed tile assembly system and let α

be its unique terminal assembly. We say that a good candidate P is pumpable if (P)∗ ∈ P[α]
and bi-pumpable if ∗(P)∗ ∈ P[α]. A good candidate that is pumpable but not bi-pumpable is
called simply pumpable.

An ultimately periodic path P can be written as Q(R)∗ where Q is a finite path and R is
a good candidate. Q is called the transient part of P and (R)∗ is called the periodic part
of P .

In our context, we will use the following version of the pumping lemma of [19] where
there are no fragile path and the bound is replaced by a generic function f(x, y) where x is
the number of tile types and y is the size of the seed (the bound computed in [19] might not
be optimal, and could be improved independently of the results presented here).

▶ Theorem 6. There exists a function f : N2 → N such that for any directed tile assembly
system T = (T, σ, 1) and any of its producible path P , if P has vertical height or horizontal
width at least f(|T |, |σ|), then there exist 0 ≤ i < j ≤ |P | − 1 such that Pi,...,j is pumpable.

Here is the pumpability conjecture which will be a corollary of our result and which was
stated in the study of [8], note that we do not consider here that the size of the seed could
be reduced to 1 and we have to take it into account.

▶ Theorem 7. There exists a function f ′ : N2 → N such that for any directed tile assembly
system T = (T, σ, 1) and a path P of α, if |P | ≥ f ′(|T |, |σ|), then there exist 0 ≤ i < j ≤ |P |−1
such that for all ℓ ∈ N either Pi,...,j + ℓ

−−→
PiPj or Pi,...,j − ℓ

−−→
PiPj is in α.

3 Proof of our main theorem

3.1 Roadmap
An assembly α is −→v -periodic if it is invariant by the translation of vector −→v , i.e. α + −→v = α.
We say that an assembly α is bi-periodic if there exist two non-colinear vectors −→u and
−→v such that α is −→u -periodic and −→v -periodic. An assembly is simply periodic if it is not
bi-periodic and if there exists a vector −→v such that α is −→v -periodic. Assemblies that are
neither bi-periodic nor simply periodic are called nonperiodic. Then, like in the original
paper [8], we decompose terminal assemblies into four classes: finite, infinite with/without
comb, periodic with/without comb and bi-periodic.

The complexity of a finite terminal assembly α of a tile assembly system T = (T, σ, 1)
is 0. Moreover, the pumping lemma (Theorem 6) implies that α fits in a square of width
2f(|T |, |σ|) + |σ| and thus its size is bounded by 4(f(|T |, |σ|) + |σ|)2. In this case, the
pumpability conjecture holds since we can claim that any path of length at least 4f(|T |, |σ|)2 +
|σ| + 1 is pumpable.

DNA 27

6:8 Directed Non-Cooperative Tile Assembly Is Decidable

To deal with the three remaining cases, we first show in Section 3.3 that “α is −→v -periodic”
is equivalent of “there exists a bi-pumpable path P in P[α] such that −−−−−−→

P0P|P |−1 = −→v ”.
Then, we proceed to characterise bi-periodic terminal assemblies in Section 3.4, the infinite
nonperiodic ones in Section 3.5 and finally the simply periodic ones in Section 3.6 (a hybrid
case of the two previous ones). Note that due to space constraint, we omit some details,
in particular details of the original study [8] and focus on improving/patching it. A more
self-contained version of this article is available on arXiv [18].

3.2 Relationship with the pumpability conjecture
The relationship between this result and the pumpability conjecture [8] is a bit subtle and
deserves to be discussed. Indeed, the original statement of the conjecture is that in a directed
tile assembly system, any part of a path long enough to have a repeated tile type is pumpable,
meaning that this part can be repeated infinitely.

In contrast to that statement, [19] proved a weaker statement, namely that only the initial
segment (starting from the seed) can be pumped, if that initial segment is long enough5.

In this paper, we prove that the weaker statement actually implies the stronger one:
indeed, we prove that the only terminal assembly that can be built by a directed system
is made of pumped paths. Therefore, we prove that if a system is directed, any path P

appearing in the terminal assembly is the concatenation of one, two or three (possibly infinite)
fragments of periodic paths, which implies that any long enough segment of P contains at
least one full period of one of these periodic paths, which is exactly the original pumpability
conjecture.

3.3 Link between periodic assembly and bi-pumpable paths
In this subsection, Corollary 9 and Lemma 10 (see Appendix A for the proof of Lemma 10)
show the equivalence between the statement “α is −→v -periodic” and “there exists a bi-pumpable
path P where −→v = −−−−−−→

P0P|P |−1”. Lemma 11 gives a sufficient condition for a pumpable path to
be bi-pumpable. These results and the proofs of this section come from the original paper [8].
We have just reorganize the arguments to show the new stronger Lemma 8 which implies
Corollary 9 (the first direction of the equivalence) and is later useful to improve the precision
of the characterisations of the different classes. It stipulates that we can grow the same
terminal assembly α starting from any tile of ∗(P)∗ as the seed, and that the resulting tile
assembly system is also directed. Later, this lemma will allow us to grow and pump paths
easily. The proof is by contradiction: assuming the assembly weren’t the same, had we
started from a different seed, we show that we can get conflicts, contradicting the assumption
that T is directed.

▶ Lemma 8. Let T = (T, σ, 1) be a directed tile assembly system and α its unique terminal
assembly. If a path P ∈ P[α] is bi-pumpable then for any i ∈ Z, the tile assembly system
(T, ∗(P)∗i , 1) (i.e. T , with the seed σ replaced by the assembly made of a single tile defined as
∗(P)∗i), is directed and its terminal assembly is α.

Proof. Since ∗(P)∗ is in P[α], let β be any finite assembly producible by (T, σ, 1), such that
∗(P)∗i is a tile of β. Since T is directed, ∗(P)∗ and β cannot possibly conflict, hence ∗(P)∗∪β

is producible by (T, σ, 1). Let therefore R be any path producible by (T, ∗(P)∗i , 1). If R does

5 That result also applies to nondirected tile assembly systems, in which case long paths can be either
pumped or blocked, meaning that another assembly can be built first and prevent the path from growing.

P.-É. Meunier and D. Regnault 6:9

not conflict with β nor with ∗(P)∗, then (R ∪ ∗(P)∗ ∪ β) is producible by (T, σ, 1), and hence
R is in P[α]. For the sake of contradiction suppose that such a conflict exists. We assume
without loss of generality that the first such conflict along R happens between R|R|−1 (i.e. at
the last tile of R, which can always be achieved by considering a prefix of R) and either β or
∗(P)∗. There are two cases:

If this conflict is with ∗(P)∗j for j ̸= i, then since β and R are finite and −−−−−−→
P0P|P |−1

is non-null, there exists ℓ ∈ Z such that R + ℓ
−−−−−−→
P0P|P |−1 does not intersect with β.

Note that R0 + ℓ
−−−−−−→
P0P|P |−1 = ∗(P)∗i+ℓ(|P |−1) and that R|R|−1 + ℓ

−−−−−−→
P0P|P |−1 conflicts with

∗(P)∗j+ℓ(|P |−1). By definition of β and P , the assembly γ = β ∪ ∗(P)∗i,...,i+ℓ(|P |−1) (or
γ = β ∪ ∗(P)∗i+ℓ(|P |−1),...,i if ℓ < 0) is producible by (T, σ, 1). By definition of ℓ, the tile
R|R|−1 + ℓ

−−−−−−→
P0P|P |−1 is not a tile of β and since j ̸= i, we have i+ ℓ(|P |−1) ̸= j + ℓ(|P |−1)

thus R|R|−1 + ℓ
−−−−−−→
P0P|P |−1 is not a tile of γ. Therefore, the assembly γ ∪ (R + ℓ

−−−−−−→
P0P|P |−1)

is producible by (T, σ, 1) and is in conflict with ∗(P)∗ ∈ P[α], which is a contradiction.
Otherwise, this conflict occurs with β. Since β and R are finite and −−−−−−→

P0P|P |−1 is not
null, there exists ℓ ∈ N such that neither β + ℓ

−−−−−−→
P0P|P |−1 not R + ℓ

−−−−−−→
P0P|P |−1 intersect with

β. Since ∗(P)∗ is −−−−−−→
P0P|P |−1-periodic then ∗(P)∗ does not conflict with β + ℓ

−−−−−−→
P0P|P |−1

nor with R + ℓ
−−−−−−→
P0P|P |−1. Then the two assemblies (β ∪ ∗(P)∗ ∪ (β + ℓ

−−−−−−→
P0P|P |−1)) and

(β ∪ ∗(P)∗ ∪ (R + ℓ
−−−−−−→
P0P|P |−1)) are both producible by (T, σ, 1), but these two assemblies

conflict, which contradicts the hypothesis that (T, σ, 1) is directed.
Thus, any path R producible by (T, ∗(P)∗i , 1) is producible by (T, σ, 1). Therefore, if two
assemblies producible by (T, ∗(P)∗i , 1) conflicted, then the same conflict can be achieved in
(T, σ, 1), contradicting the hypothesis that (T, σ, 1) is directed. Thus (T, ∗(P)∗i , 1) is directed.
The terminal assembly α contains ∗(P)∗i therefore, α is the unique terminal assembly of
(T, ∗(P)∗i , 1). ◀

As a corollary of this result, any path Q that grows on ∗(P)∗ is in P[α]. Moreover, since
for any ℓ ∈ Z, ∗(P)∗ + ℓ

−−−−−−→
P0P|P |−1 = ∗(P)∗ then Q + ℓ

−−−−−−→
P0P|P |−1 also grows on ∗(P)∗ and is in

P[α] which leads to the following corollary:

▶ Corollary 9. Let T = (T, σ, 1) be a directed tile assembly system and let α be the unique
terminal assembly of T . If P ∈ P[α] is bi-pumpable then α is −−−−−−→

P0P|P |−1-periodic.

▶ Lemma 10. Let T = (T, σ, 1) be a directed tile assembly system and let α be the unique
terminal assembly of T . If α is periodic then there exists a path P ∈ P[α] that is bi-pumpable.

▶ Lemma 11. Let T = (T, σ, 1) be a directed tile assembly system and let α be the unique
terminal assembly of T . Consider a pumpable path P of P[α] and a path Q growing on (P)∗

at index i ≥ |P | − 1 such that Q and Q + −−−−−−→
P0P|P |+1 intersect then P is bi-pumpable.

Proof. Since P is in P[α], there is a finite producible subassembly β of α such that P0 is a
tile of β. For the sake of contradiction suppose that there is a conflict between ∗(P)∗ and β

otherwise P would be bi-pumpable.
Let R be the largest prefix of Q which does not intersect with ∗(P)∗ then for all ℓ ∈ N,

R + ℓ
−−−−−−→
P0P|P |−1 grows on (P)∗. Moreover, if R ̸= Q then R still intersects with R + −−−−−−→

P0P|P |−1.
Indeed, without loss of generality, suppose that Q and ∗(P)∗ agree (the following reasoning
does not rely on the tile type) then there exists j < 0 such that RPj is an arc of ∗(P)∗
of width greater than |P |. Then RPj and Pj,...,i form a cycle which delimits a finite area
of the 2D plane. The arc (RPj) + −−−−−−→

P0P|P |−1 starts in Pi+|P |−1, a tile which is not in the
finite area since i + |P | − 1 > i, and ends in Pj+|P |−1, a tile which is in the finite area since
j < j + |P | − 1 < i. Then R + −−−−−−→

P0P|P |−1 must cross R to reach Pj .

DNA 27

6:10 Directed Non-Cooperative Tile Assembly Is Decidable

Note that R + −−−−−−→
P0P|P |−1 intersects with both R and R + 2−−−−−−→

P0P|P |−1. Moreover all these
intersections are agreements (because for ℓ large enough the translations of these three
paths by ℓ

−−−−−−→
P0P|P |−1 do not intersect with β and thus are in P[α]). Then, the assembly

γ = R ∪ (R1,2,...,|R|−1 + −−−−−−→
R0R|P |−1) ∪ (R + 2−−−−−−→

R0R|R|−1) is well-defined. By definition of
growing, the only intersection between (P)∗ and γ is R0 and R0 + 2−−−−−−→

R0R|R|−1. Thus there
exists an arc A growing on (P)∗ of width 2(|P | − 1) > |P | and such that asm(A) is a
subassembly of γ. By definition of R, for all ℓ ∈ N, the arc A + ℓ

−−−−−−→
P0P|P |−1 also grows on (P)∗.

Since β is finite and −−−−−−→
P0P|P |−1 is not null, there is an integer L ∈ N such that for all ℓ ≥ L,

neither A + ℓ
−−−−−−→
P0P|P |−1 nor β + ℓ

−−−−−−→
P0P|P |−1 intersect β. Since the width of A is strictly greater

than |P |, we can find ℓ, ℓ′ > L and 0 < a < b < c such that A + ℓ is an arc of (P)∗ between
(P)∗c and (P)∗a and there is conflict between β + ℓ′

−−−−−−→
P0P|P |−1 and (P)∗b . Then there exists a

path S such that asm(S) is a subassembly of β + ℓ′
−−−−−−→
P0P|P |−1, S0 = P0 + ℓ′

−−−−−−→
P0P|P |−1 and the

only conflict between (P)∗ and S occurs between S|S|+1 and Pb. By definition of ℓ and ℓ′,
the paths A + ℓ

−−−−−−→
P0P|P |−1 and S0,...,|S|−2 are both in P[α] and thus cannot conflict. Consider

the following assembly δ = β ∪ (P)∗ ∪ (A + ℓ
−−−−−−→
P0P|P |−1) ∪ S0,...,|S|−2. Removing the tile Pb

disconnects (P)∗ in two parts, but adding A + ℓ
−−−−−−→
P0P|P |−1 reconnects them (a<b<c), and it

is therefore possible to remove the tile Pb in δ and to replace it by the tile S|S|−1 which can
bind with S|S|−2 contradicting the hypothesis that T is directed. ◀

3.4 Characterisation of the bi-periodic terminal assemblies
The characterisation of the bi-periodic terminal assemblies does not rely on the pumping
lemma. Thus the result of the original paper [8] still holds for this case. Here is a summary, if
the terminal assembly α of a tile assembly system T = (T, σ, 1) is bi-periodic, by Lemma 10
there exists two paths P of Q of P[α] which are bi-pumpable and such that −−−−−−→

P0P|P |−1 is not
colinear with −−−−−−→

Q0Q|Q|−1. Moreover for all ℓ ∈ Z, ∗(P)∗ + ℓ
−−−−→
Q0Q|Q| and ∗(Q)∗ + ℓ

−−−−→
P0P|P | are in

P[α]. All these paths can be used to “tile the plane” with a periodic grid-like structure (see
Figure B.1). By considering the assembly β which is the restriction of α to a “cell” of this
grid, we obtain that α =

⋃
ℓ,ℓ′∈Z(β +ℓ−→u +ℓ′−→v). For the main Theorem 2, α is an assembly of

complexity 2 defined by the union of the four assemblies of complexity 2:
⋃

ℓ,ℓ′∈N(β+ℓ−→u +ℓ′−→v),⋃
ℓ,ℓ′∈N(β + ℓ−→u − ℓ′−→v),

⋃
ℓ,ℓ′∈N(β − ℓ−→u + ℓ′−→v) and

⋃
ℓ,ℓ′∈N(β − ℓ−→u − ℓ′−→v).

Here we improve this result by introducing paths without redundancy where there are
no repetition of a tile type along the path (except at its extremities), see Definition 12.
Of course, the length of such a path is bounded by |T | + 1. Lemma 8 allow us to extract
bi-pumpable paths without redundancy from bi-pumpable paths and then the size of the cell
(and thus of β) of the periodic grid-like structure becomes bounded by O(|T |2).

▶ Definition 12. A path P is without redundancy if for all 0 ≤ i < j ≤ |P | − 1, type(Pi) =
type(Pj) implies that i = 0 and j = |P | − 1.

▶ Theorem 13. Let T = (T, σ, 1) be a directed tile assembly system, and let α be its unique
terminal assembly. If α is bi-periodic, then there exists an assembly β and two vectors −→u
and −→v such that |β| ≤ 4|T |2 and α =

⋃
ℓ,ℓ′∈Z(β + ℓ−→u + ℓ′−→v).

Proof. If α is bi-periodic then by Lemma 10, there exists a path P of P[α] which is bi-
pumpable. By definition of a bi-pumpable path, P0 and P|P |−1 have the same tile type,
then there exists 0 ≤ i < j ≤ |P | − 1 such that the path R = Pi,...,j is without redundancy.
Consider 0 ≤ i′, j′ ≤ |P | − 1 such that pos(Ri′) = pos(Rj′) + −−−−−−→

R0R|R|−1, since −−−−−−→
R0R|R|−1 is

P.-É. Meunier and D. Regnault 6:11

not null then i′ ≠ j′. By definition, R is in P[α] and by Lemma 8, we can consider that
R|R|−1 is the seed, then R + −−−−−−→

R0R|R|+1 is in P[α] and Ri′ and Rj′ have the same tile type
which implies i′ = 0 and j′ = |R| − 1, i.e. R is a good candidate. Since we can consider that
R|R|−1 is the seed then ∗(R)∗ is a bi-infinite path of P[α] and R is bi-pumpable.

Since α is bi-periodic there exists a non null vector −→v which is not colinear with−−−−−−→
R0R|R|−1 and such that α is −→v -periodic. Then ∗(R)∗ + −→v is a path of P[α] and since R

is without redundancy, by a reasoning similar to the one of the previous paragraph, ∗(R)∗
and ∗(R)∗ + −→v cannot intersect. Then we consider the shortest path Q such that Q0 = R0

and Q|Q|−1 = R0 + −→v + ℓ
−−−−−−→
R0R|R|−1 for some ℓ ∈ Z, i.e. Q|Q|−1 has the same tile type than

R0 and belongs to ∗(R)∗ + −→v . Again, it is possible to find 0 ≤ i′ ≤ j′ ≤ |Q| − 1 such that
S = Qi′,...,j′ is a good candidate without redundancy but proving that S is bi-pumpable is
more tricky. By Lemma 8, we consider that the seed is Q0 = R0. From this seed, we grow
Q1,...,j′ and then we pump S is both direction until either assembling ∗(S)∗ or to obtain a
path S′ whose growth was blocked by Q1,...,j′ . In the second case, the path S′ is in P[α]
and thus cannot conflict with Qi′,...,|Q|−1 and we obtain a contradiction by using Lemma 8
and considering that the seed is Q|Q|−1(a tile of ∗(R)∗ + −→v) this time: from this seed, we
grow Qi′,...,|Q|−1 and S′. In this case, Q0,...,i′−1 is not here to block the growth of S′ and at
least one more tile can be added, creating a conflict with Q0,...,i′−1 which is a contradiction.
Then S is bi-pumpable and for the sake of contradiction, if −−−−−→

S0S|S|−1 and −−−−−−→
R0R|R|−1 are

colinear then α is −−−−−→
S0S|S|−1-periodic and ∗(R)∗ intersect with ∗(R)∗ + −−−−−→

S0S|S|−1, since R

is without redundancy then −−−−−→
S0S|S|−1 = ℓ

−−−−−−→
R0R|R|−1 for some ℓ ∈ N. Using the assembly

asm(Q1,...,i′) ∪ asm(Qj′,...,|Q|−1 −
−−−−−→
S0S|S|−1) we can find a path Q′ such that |Q′| < |Q|,

Q′0 = Q0 and Q′|Q′|−1 = Q|Q|−1 − ℓ
−−−−−−→
R0R|R|−1, contradicting the definition of Q.

As explained in the beginning of this section, these two bi-pumpable paths R and S

create a periodic grid-like structure and α can be characterised by its restriction to a “cell”
of this grid. In our case, the cell is delimited by four paths of length bounded by |T | and
thus the size of the assembly is bounded by 4|T |2. ◀

Any path P of length O(|T |3) would have to pass by at least O(|T |) cells of the periodic
grid-like structure and thus P must intersect the translations of one bi-pumpable path R at
least |R| times, among these intersections two have the same tile type. Using Lemma 10, the
subpath of P between these two tiles can be pumped and the pumpability conjecture holds
in this case.

3.5 Characterisation of the infinite nonperiodic terminal assemblies
We present here a summary of the analysis relying on the pumpability conjecture of the
infinite nonperiodic terminal assemblies done in [8] before explaining how to patch this result
when replacing the pumpability conjecture (Theorem 7) by the pumping lemma (Theorem 6).

Note that if α is nonperiodic then Lemma 10 implies that all pumpable paths of P[α]
are simply pumpable. Any nonperiodic assembly can be decomposed in three parts (see
Figure B.2 for an example): the first part is a finite assembly which contains the seed, the
second part is made of some simply pumpable paths growing from this finite assembly called
combs used to generate periodic paths called the backbone of the combs, and the third part
is made of paths growing on the backbone of a comb called the teeth of the comb. More
formally a comb C is a pumpable path of α which is linked to the seed by a producible path
containing no pumpable subpath, the backbone of C is (C)∗|C|,...,+∞ and a tooth t is a path
growing on the backbone of a comb C. It was shown in [8] that if an infinite ultimately

DNA 27

6:12 Directed Non-Cooperative Tile Assembly Is Decidable

periodic tooth t is in P[α] then for any ℓ ∈ N, t + ℓ
−−−−−−→
C0C|C|−1 also grow on the backbone of

the comb and also belongs to P[α]. Also, only finite path can grow on the periodic part of a
comb. For the simple example of Figure B.2, the path P of Figure B.3 allow us to describe
the terminal assembly with a finite amount of information.

Lemma 11 is the key to obtain this result: a tooth cannot intersect with its translation
by −−−−−−→

C0C|C|−1 otherwise the comb would be bi-pumpable. Moreover, if an infinite ultimately
periodic path P grows on the periodic part of an ultimately periodic tooth t then P would
either intersect t + −−−−−−→

C0C|C|−1 (or t −
−−−−−−→
C0C|C|−1) and C would be bi-pumpable or P would

intersect with one of its copy growing on the periodic part of the tooth t and then the
periodic part of the tooth would be bi-pumpable in this case. Thus only finite path can grow
on the periodic part of a tooth and the pumpability conjecture (Theorem 7) allows us to
bound their size. As stated in [8], the pumpability conjecture is needed only three times: the
first time to locate the combs, the second time to create an ultimately periodic tooth and a
last time to bound the length of the paths growing on the periodic part of a tooth6.

To obtain a similar result we have to explain how to use the pumping lemma instead
of the pumpability conjecture. Consider again the finite producible path P of Figure B.3:
there are five indices 0 ≤ i1 < j1 < t < i2 < j2 ≤ |P | − 1 such that Pi1,...,j1 is a comb, Pk

is the first tile of a tooth, Pi2,...,j2 is pumpable and belongs to the tooth and Pj2+1,...,|P |−1
is a path growing on the periodic part of the tooth. The pumping lemma of [19] is able to
find one pumpable subpath Pi1,...,j1 of P but it may seem too weak to find another, different
pumpable subpath Pi2,...,j2 and too weak to bound the size of Pj2+1,...,|P |−1. However, the
pumping Lemma of [19] can be applied to Pk+1,...,|P |−1 (where Pt is the first tile of the tooth)
considered as a path producible by the directed tile assembly system (T, σ ∪ P0,1,...,k, 1),
whose terminal assembly is also α (see Figure B.4). This remark shows that the following
result is a direct corollary of the pumping lemma of [19].

▶ Corollary 14. There exists a function f : N2 → N such that for any directed tile assembly
system T = (T, σ, 1) and for any producible path P and 0 ≤ i ≤ |P | − 1, if Pi,...,|P |−1 has
vertical height or horizontal width at least f(|T |, |σ| + i), then there exist i ≤ j < k ≤ |P | − 1
such that Pj,...,k is pumpable.

The result of [8] still holds with this corollary and this is why the authors of [19] claimed
that their result allows to solve the conjecture with the proof sketch of [8]. Nevertheless, to
provide a bound on the size of the assemblies needed to characterise α, we need to bound for
a comb where the first ultimately periodic tooth in P[α] appears on the backbone of a comb.
Indeed a tooth growing at the beginning of the backbone may be blocked by the seed or a
previous assembly and will not belong to P[α]. To locate this tooth, we show that there is
an index for any periodic path such that any path growing after this index is in P[α].

▶ Lemma 15. Let T = (T, σ, 1) be a directed tile assembly system whose terminal assembly
is α. If there is a simply pumpable path P in P[α] and a producible finite assembly β such
that P0 is a tile of β, then there is an index i such that any path growing on (P)∗ at index
j ≥ i is in P[α]. Moreover, i only depends on |β|, |P | and |T |.

Proof. Without loss of generality we assume that P0 is the only intersection between β and
(P)∗. Let j = (4|β| + 2)(|P | − 1) + 1 and let γ be the assembly defined as γ = β ∪ (P)∗0,1,...,j ,
note that γ is a subassembly of α. Since β is finite and −−−−−−→

P0P|P |−1 is not null, there is an

6 In the extended version of this article [18], we improve this result and show a more efficient way which
avoid using the conjecture for the last case. This result is omitted due to space constraint.

P.-É. Meunier and D. Regnault 6:13

integer i > j + (|P | − 1) such that the distance between any tile of (P)∗i,i+1,..,+∞ and any
tile of β is at least f(|T |, |γ|) + 1 (see Theorem 6 for the definition of f). Note that i only
depends on |β|, |P | and |T |. See Figure B.5 for an illustration of the following reasoning.

Let Q be a path growing on (P)∗ at position Pk with k ≥ i (Q is in red in Subfigure a
of Figure B.5). For the sake of contradiction, assume that Q is not in P[α], which implies
that Q conflicts with β and by the definition of i the vertical height or the horizontal width
of Q is at least f(|T |, |γ|) + 1. Let m = max{n : Q0,...,n does not intersect with β} and by
definition of m, Q0,1,...,m is in P[α].

Consider the finite area A of 2D plane (in light red in Subfigure b of Figure B.5), whose
border is delimited by (P)∗0,1,...,k, Q0,1,...,m and β. Let R be the translation of Q by ℓ

−−−−−−→
P0P|P |−1

for some ℓ ∈ N such that R0 is a tile of P + −−−−−−→
P0P|P |−1 (R grows on (P)∗ at an index between

|P | and 2|P | − 1). Note that for all 0 ≤ ℓ ≤ 4|β|, the path R + ℓ
−−−−−−→
P0P|P |−1 starts to grow in

the finite area A. Since there are at most 4|β| positions that are neighbors of a tile of β,
this implies that if for all 0 ≤ ℓ ≤ 4|β|, the paths R + ℓ

−−−−−−→
P0P|P |−1 intersect with β then there

exists ℓ ∈ N such that R + ℓ
−−−−−−→
P0P|P |−1 and R + (ℓ + 1)−−−−−−→

P0P|P |−1 intersect each other before
intersecting β, which by Lemma 11 would imply that P is bi-periodic. Therefore, there is
at least one 0 ≤ ℓ ≤ 4|β| such that R + ℓ

−−−−−−→
P0P|P |−1 does not intersect β and thus is in P[α].

Moreover R + ℓ
−−−−−−→
P0P|P |−1 grows on γ, thus we can consider that R + ℓ

−−−−−−→
P0P|P |−1 is producible

by (T, γ, 1) and since the vertical height or the horizontal width of R is at least f(|T |, |γ|),
by the Pumping Lemma (Theorem 6), we can find an ultimately periodic path S of P[α]
growing on (P)∗0,1,...,(4|β|+1)(|P |−1) and which does not intersect with γ.

Since S is infinite, it cannot fit into the finite area A and thus S must either intersect
(P)∗j+1,j+2,...,k or Q0,1,...,m (see Subfigure c of Figure B.5). In the first case, a subpath of S

is an arc of (P)∗ of width at least j − (4|β| + 1)(|P | − 1) > |P | and in the second case an
arc of (P)∗ of width k − (4|β| + 1)(|P | − 1) > |P | is a subassembly of asm(S) ∪ asm(Q0,...,m).
As explained in the proof of Lemma 11, an arc of width at least |P | must intersect with
its translation by −−−−−−→

P0P|P |−1 and then by Lemma 11, P should be bi-pumpable which is a
contradiction. ◀

▶ Theorem 16. Let T = (T, σ, 1) be a directed tile assembly system, and let α be its unique
terminal assembly, if α is nonperiodic then the complexity of α is bounded by 2 and the size
of characterisation depend only of |σ| and |T |.

Proof. The pumping Lemma (Theorem 6) shows that the restrictions of α to a square of
width 2f(|T |, |σ|) + |σ| can contain the seed, all the combs and all the paths linking the seed
to the comb, this finite assembly is of complexity 0.

Let C be a comb. Then its backbone is an assembly of complexity 1, which can be
characterised by C and −−−−−−→

C0C|C|−1. Moreover, let j be the index associated to (C)∗ by
Lemma B.5 (j depends only of |T | and |σ| in this case).

Now, consider a finite tooth t of P[α] growing on (C)∗ at index i > |C|−1. If i ≤ j+|C|−1,
we add t (an assembly of complexity 0) to α. Else, i > j + |C| − 1, and there exists a tooth
t′ in P[α] such that T = T ′ + ℓ

−−−−−−→
C0C|C|−1 for some ℓ ∈ N and T ′ grow on (C)∗k with

j ≤ k ≤ j + |P | − 1. Therefore, by adding
⋃

ℓ∈N(t′ + ℓ
−−−−−−→
C0C|C|−1) to the resulting assembly,

we also add the tooth t, and this union’s characterisation has complexity 1.
Now if the tooth t is ultimately periodic, we can apply the same reasoning. In this case,

we only need to prove that t and all the paths growing on the periodic part of t form an
assembly of complexity 1 (the same reasoning will produce an assembly of complexity 2).
Corollary 14 and Lemma 15 allow us to bound the length of the transient part of t, which

DNA 27

6:14 Directed Non-Cooperative Tile Assembly Is Decidable

depends only on |σ| and |T |. Any path growing on the periodic part of the tooth is finite
and by using the same reasoning with the comb and its finite tooth (which requires using
Corollary 14 and Lemma 15 again), we obtain that the tooth t and all the paths growing on
its periodic part form an assembly of complexity 1 and the length of the finite path growing
on the periodic part of the tooth is bounded by a function depending only of |σ| and |T |. We
do not give the exact characterisation size, since this technique is unlikely to yield a tight
bound. ◀

3.6 The simply periodic terminal assembly
In the original paper [8], the simply periodic terminal assembly were not studied in details.
By Lemma 10, there exists a path P which is bi-pumpable and then ∗(P)∗ cuts the 2D plane
into two parts: its left and right side. Some ultimately periodic paths may grow on ∗(P)∗,
stay in one of the two sides and behave as the teeth of the previous section. This class of
terminal assembly is a mix of the two previous ones.

We go in further details here, as in Section 3.4, we consider bi-pumpable paths without
redundancy (see Definition 12). If P and Q are two bi-pumpable paths without redundancy,
then the following Lemma (see Appendix A for the proof) shows that, by potentially reversing
one of the two paths, we can consider that −−−−−−→

P0PP|P |−1 = −−−−−−−→
Q0QQ|Q|−1 . This remark allow us to

introduce an order on the bi-pumpable paths without redundancy of P[α] in Definition 18.

▶ Lemma 17. Let T = (T, σ, 1) be a directed tile assembly system and let α be its unique
simply periodic terminal assembly, if P and Q are two bi-pumpable paths of P[α] without
redundancy then either −−−−−−→

P0PP|P |−1 = −−−−−−−→
Q0QQ|Q|−1 or −−−−−−→

P0PP|P |−1 = −
−−−−−−−→
Q0QQ|Q|−1 .

▶ Definition 18. If P and Q are two bi-pumpable paths without redundancy of P[α] such that
−−−−−−→
P0PP|P |−1 = −−−−−−−→

Q0QQ|Q|−1 , we say P is greater or equal to Q, denoted by P ≥ Q, if and only
if ∗(P)∗ is inside the left-hand side of the (directed) curve defined by ∗(Q)∗ (as in [19], the
“left-hand side” is considered as if we were walking on the curve). Moreover, if ∗(P)∗ ̸= ∗(Q)∗,
we say that P is strictly greater than Q, denoted by P > Q.

Lemma 19 and Lemma 20 aim to show that there is maximum path P + and a minimum
path P− for the order defined in 18 which means that there is no infinite sequence P (0) <

P (1) < To achieve this goal we show in Lemma 19 that the tile type which appear in
a bi-pumpable path P without redundancy can only appear in ∗(P)∗ otherwise α would
be bi-periodic. We conclude in Lemma 20 by showing that if there would be an infinite
sequence of increasing paths, one of them would have to use again a tile type of a previous
path leading to a contradiction.

Lemma 21 implies that the paths growing in the left side of P + or in the right side of
P− behave as the teeth of Section 3.5 and we conclude in Lemma 22 by showing that a
simply periodic terminal assembly can be described as follow: ∗(P +)∗ and ∗(P−)∗ cut the
2D plane in three parts, one them is a stripe which can be characterised by an assembly of
size O(|T 2|), as in the analysis of bi-periodic terminal assembly, while the paths growing in
the left side of ∗(P +)∗ or the right side of ∗(P−)∗ behave as teeth (Lemma 21), as in the
analysis of nonperiodic terminal assembly.

▶ Lemma 19. Let T = (T, σ, 1) be a directed tile assembly system and let α be its unique
terminal assembly. If there is a tile A of α and a bi-pumpable path P without redundancy of
P[α] such that A is not a tile of ∗(P)∗ and such that A and P0 have the same tile type then
α is bi-periodic.

P.-É. Meunier and D. Regnault 6:15

Proof. If −−→
P0A and −−−−−−→

P0P|P |−1 are colinear, then we have −−→
P0A = ℓ

−−−−−−→
P0P|P |−1 for some ℓ ∈ Z

(see the proof of Lemma 17) and then A is tile of ∗(P)∗ which is a contradiction. If −−→
P0A

and −−−−−−→
P0P|P |−1 are not colinear then consider a path Q of P[α] such that Q0 = P0 and

Q|Q|−1 = A. By Lemma 8, we consider that the seed is P0 and then Q −
−−→
P0A is a path of

P[α] which implies that there is no conflict from Q −
−−→
P0A and ∗(P)∗. Then from P0, the

paths Q followed by ∗(P)∗+ −−→
P0A can grow and these two paths are in P[α]. By iterating this

reasoning, for all ℓ ∈ Z, the path Q + ℓ
−−→
P0A is in P[α] which implies that α is −−→

P0A-periodic
by a reasoning similar to the one of Corollary 9. The assembly α would be bi-periodic which
is a contradiction. ◀

▶ Lemma 20. Let T = (T, σ, 1) be a directed tile assembly system whose terminal as-
sembly α is simply periodic. Then there are two paths P + and P− without redundancy that
are bi-pumpable, such that P + is maximum and P− is minimum for the order defined in
Definition 18.

Proof. Since α is simply periodic then by Lemma 10, there is a bi-pumpable path in P[α]
and one of its subpath is bi-pumpable without redundancy. Then there is at least one
bi-pumpable path P (0) of P[α] without redundancy.

For the sake of contradiction, suppose that there are more than |T |2 bi-pumpable paths
without redundancy of P[α] such that P (0) < P (1) < P (2) < ... < P (|T |2). Let A(0) be
any tile of P (0). Since the length of a path without redundancy is at least 2 and less than
|T | + 1 then the case where for some 0 ≤ i ≤ |T |2, |P (i+1)| < |P (i)| occurs at most |T | times
consecutively. Since we have |T |2 paths, the case where |P (i+1)| ≥ |P (i)| occurs at least |T |
times. In such a case, since ∗(P (i))∗ ̸= ∗(P (i+1))∗ there exists a tile of P (i+1) which is not
a tile of ∗(P (i))∗ and which is in the left side of ∗(P (i))∗ and thus this tile is not a tile of
∗(P (0))∗, ∗(P (1))∗, . . . , ∗(P (i))∗. Then we can create a sequence of tiles A(0), A(1), ... A(|T |+1)

such that each tile of the sequence belongs to a bi-pumpable path without redundancy whose
pumping does not pass by the other tiles. Two tiles of this sequence share a common tile type
which by Lemma 19 means that α is bi-periodic. Then the sequence P (0) < P (1) < P (2) < ...

is finite and let P + be the last bi-pumpable path without redundancy of this sequence and
P + is maximum. A similar reasoning shows that there is a minimum path P−. ◀

▶ Lemma 21. Let T = (T, σ, 1) be a directed tile assembly system whose terminal assembly
α is simply periodic. If there is a bi-pumpable path P ∈ P[α] without redundancy, and an arc
Q that grows in the left (resp. right) side of P , then there exists a bi-pumpable path R ∈ P[α]
without redundancy such that R > P (R < P).

Proof. If Q and Q + −−−−−−→
P0P|P |−1 intersect, both paths are in P[α] (since α is −−−−−−→

P0P|P |−1-periodic
by Corollary 9) and then the tiles at their intersection have the same tile type. Since
−−−−−−→
P0P|P |−1 is not null, there are two indices 0 ≤ i < j ≤ |Q| − 1 such that R = Qi,i+1,...,j is
a path without redundancy. By Lemma 8 and since Q0 and Q|Q|−1 are tiles of ∗(P)∗, we
can consider that either Q0,...,i or Qj,...,|Q|−1 is the seed and if R would not bi-pumpable, we
can obtain a conflict with one of these two paths as done in the proof of Theorem 13. By
Lemma 17, we can consider that −−−−−−→

P0P|P |−1 = −−−−−−→
R0R|R|−1 and hence, since Q grows in the left

side of ∗(P)∗, R and ∗(R)∗ are in the left side of ∗(P)∗. Therefore, R ≥ P but ∗(P)∗ = ∗(R)∗
would contradict the definition of an arc. Hence, R > P .

In the second case, Q and Q + −−−−−−→
P0P|P |−1 do not intersect which implies that the width

of Q is less than |P | − 1 (an arc of width greater than |P | intersect with its translation
by −−−−−−→

P0P|P |−1). Without loss of generality we can assume that there are two indices 0 ≤
i < j ≤ |P | − 1 such that Q starts at Pi and ends at Pj . Let R be the path defined by

DNA 27

6:16 Directed Non-Cooperative Tile Assembly Is Decidable

R = P0,1,...,iQ1,2,...,|Q|−2Pj,j+1,...|P |−1. By definition of an arc, R ̸= P . If R has a redundancy,
there are two integers 0 ≤ k ≤ |P | − 1 and 1 ≤ k′ ≤ |Q| − 2 such that type(Pk) = type(Qk′).
By definition of an arc, Qk′ is not a tile of ∗(P)∗, and hence, by Lemma 19, α is bi-periodic,
which contradicts the hypotheses of this lemma. Therefore, R is without redundancy,
moreover since Q does not intersect with Q + −−−−−−→

P0P|P |−1 then R is a good candidate. Since
−−−−−−→
R0R|R|−1 = −−−−−−→

P0P|P |−1 and α is −−−−−−→
P0P|P |−1-periodic then R is bi-pumpable. By definition of

R and Q, R and ∗(R)∗ is in the left side of ∗(P)∗ and by definition of an arc R ̸= P , thus
R > Q. ◀

▶ Theorem 22. Let T = (T, σ, 1) be a directed tile assembly system, and let α be its unique
terminal assembly, if α is simply periodic then its complexity is bounded by 2 and the size of
characterisation depend only of |σ| and |T |.

Proof. By Lemma 20, there exists two bi-pumpable paths without redundancy P + and P−

of P[α] which are maximum and minimum for the order defined in 18. By Lemma 21, the
paths growing in left side of ∗(P +)∗ cannot intersect with their translation by

−−−−−−→
P +

0 P +
|P |−1 ,

then they behave as the teeth of Section 3.5. Let C be the union of a ultimately periodic
tooth t and the paths growing on its periodic part, then C admits a characterisation of
complexity 1 (see the proof of Theorem 16). By adding all the translations by ℓ

−−−−−−→
P +

0 P +
|P |−1 for

ℓ ∈ N to a copy of C and adding all the translations by −ℓ
−−−−−−→
P +

0 P +
|P |−1 for ℓ ∈ N to an other

copy, all the translations of t and the paths growing on its periodic part are an assembly of
complexity 2. Thus, all the paths growing on left side of ∗(P +)∗ is an assembly of complexity
2. A similar reasoning holds for the right side of ∗(P−)∗.

Consider the shortest path between a tile of ∗(P +)∗ and a tile of ∗(P−)∗ (Q is empty
if the two paths intersect). If there exist 0 ≤ i < j ≤ |Q| − 1 such that R = Qi,...,j is
without redundancy then R is bi-pumpable (with a reasoning similar to the proof of 13,
since both Q0 and Q|Q|−1 belong to bi-pumpable path). By Lemma 17, we can consider that
−−−−−−−→
P +

0 P +
|P +|−1 = −−−−−−→

R0R|R|−1 =
−−−−−−−→
P−0 P−|P −|−1 and we can find a path strictly shorter than Q which

is a subassembly of asm(Q0,...,i) ∪ asm(Qj,...,|Q|−1 −
−−−−−−→
R0R|R|−1) with the same property than

Q which is a contradiction. The paths P +,Q, P− and Q +
−−−−−−−→
P +

0 P +
|P +|−1 define a cycle and let

the finite assembly β be the restriction of α to the finite area of this cycle. The restriction
of α to the “stripe” defined by the intersection of the right side of P + and the left side of
P− is

⋃
ℓ∈Z β + ℓ

−−−−−−−→
P +

0 P +
|P +|−1 which is an assembly of complexity 1. Note that if Q is not the

empty path then by Lemma 19, P +, P− and Q cannot share a common tile type except at
the extremities of Q, then the periodic assembly ∗(P +)∗ ∪ ∗(P−)∗ ∪ (

⋃
ℓ∈Z Q + ℓ

−−−−−−−→
P +

0 P +
|P +|−1)

that delimits the stripe can be described by a path of length less than |T |. 7 ◀

References
1 B. Behsaz, J. Maňuch, and L. Stacho. Turing universality of step-wise and stage assembly at

Temperature 1. In DNA18: Proc. of International Meeting on DNA Computing and Molecular
Programming, volume 7433 of LNCS, pages 1–11. Springer, 2012.

2 L. Ceze, J. Nivala, and K. Strauss. Molecular digital data storage using DNA. Nat Rev Genet,
20(8):456–466, August 2019.

7 The same reasoning could be done for the bi-periodic terminal assembly and the 2D periodic grid can be
described by a path of length less than |T |: there is no other way than to hardcode the 2D periodic grid.

P.-É. Meunier and D. Regnault 6:17

3 Matthew Cook, Yunhui Fu, and Robert T. Schweller. Temperature 1 self-assembly: determ-
inistic assembly in 3D and probabilistic assembly in 2D. In SODA: Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 570–589, 2011. Arxiv preprint:
arXiv:0912.0027.

4 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz, Robert T.
Schweller, Andrew Winslow, and Damien Woods. One tile to rule them all: Simulating any tile
assembly system with a single universal tile. In ICALP: Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming, volume 8572 of LNCS, pages 368–379.
Springer, 2014. Arxiv preprint: arXiv:1212.4756.

5 Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Sum-
mers, and Damien Woods. The two-handed tile assembly model is not intrinsically univer-
sal. In ICALP: Proceedings of the 40th International Colloquium on Automata, Languages,
and Programming, volume 7965 of LNCS, pages 400–412. Springer, 2013. Arxiv preprint:
arXiv:1306.6710.

6 David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In FOCS: Proceedings of
the 53rd Annual IEEE Symposium on Foundations of Computer Science, pages 439–446. IEEE,
2012. Arxiv preprint: arXiv:1111.3097.

7 David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, and Damien Woods.
Intrinsic universality in self-assembly. In STACS: Proceedings of the 27th International
Symposium on Theoretical Aspects of Computer Science, pages 275–286, 2009. Arxiv preprint:
arXiv:1001.0208.

8 David Doty, Matthew J. Patitz, and Scott M. Summers. Limitations of self-assembly at
temperature 1. Theoretical Computer Science, 412(1–2):145–158, 2011. Arxiv preprint:
arXiv:0903.1857v1.

9 Sándor P. Fekete, Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Robert T.
Schweller. Universal computation with arbitrary polyomino tiles in non-cooperative self-
assembly. In SODA: ACM-SIAM Symposium on Discrete Algorithms, pages 148–167. SIAM,
2015. arXiv:1408.3351.

10 David Furcy and Scott M Summers. Optimal self-assembly of finite shapes at temperature 1
in 3D. Algorithmica, 80(6):1909–1963, 2018.

11 David Furcy, Scott M Summers, and Christian Wendlandt. New bounds on the tile complexity
of thin rectangles at temperature-1. In DNA25: International Conference on DNA Computing
and Molecular Programming, pages 100–119. Springer, 2019.

12 Oscar Gilbert, Jacob Hendricks, Matthew J Patitz, and Trent A Rogers. Computing in
continuous space with self-assembling polygonal tiles. In SODA: ACM-SIAM Symposium on
Discrete Algorithms, pages 937–956. SIAM, 2016. Arxiv preprint: arXiv:1503.00327.

13 Natasa Jonoska and Daria Karpenko. Active tile self-assembly, part 1: Universality at temper-
ature 1. Int. J. Found. Comput. Sci., 25(2):141–164, 2014. doi:10.1142/S0129054114500087.

14 Ján Maňuch, Ladislav Stacho, and Christine Stoll. Two lower bounds for self-assemblies at
Temperature 1. Journal of Computational Biology, 17(6):841–852, 2010.

15 Pierre-Étienne Meunier. Non-cooperative algorithms in self-assembly. In UCNC: Unconven-
tional Computation and Natural Computation, volume 9252 of LNCS, pages 263–276. Springer,
2015.

16 Pierre-Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew
Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires cooperation.
In SODA: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 752–771,
2014. Arxiv preprint: arXiv:1304.1679.

17 Pierre-Étienne Meunier and Damien Regnault. Non-cooperatively assembling large structures.
In DNA Computing and Molecular Programming - 25th International Conference, DNA 25,
Seattle, WA, USA, August 5-9, 2019, Proceedings, 2019.

DNA 27

https://arxiv.org/abs/0912.0027
https://arxiv.org/abs/1212.4756
https://arxiv.org/abs/1306.6710
https://arxiv.org/abs/1111.3097
https://arxiv.org/abs/1001.0208
https://arxiv.org/abs/0903.1857v1
http://arxiv.org/abs/1408.3351
https://arxiv.org/abs/1503.00327
https://doi.org/10.1142/S0129054114500087
https://arxiv.org/abs/1304.1679

6:18 Directed Non-Cooperative Tile Assembly Is Decidable

18 Pierre-Etienne Meunier and Damien Regnault. On the directed tile assembly systems at
temperature 1. arXiv preprint, 2020. In submission with title “Directed non-cooperative tile
assembly is decidable”. arXiv:2011.09675.

19 Pierre-Étienne Meunier, Damien Regnault, and Damien Woods. The program-size complexity
of self-assembled paths. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 727–737. ACM,
2020. Arxiv preprint: arXiv:2002.04012 [cs.CC]. doi:10.1145/3357713.3384263.

20 Pierre-Étienne Meunier and Damien Woods. The non-cooperative tile assembly model is
not intrinsically universal or capable of bounded Turing machine simulation. In STOC:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
328–341, Montreal, Canada, 2017. ACM. Arxiv preprint with full proofs: arXiv:1702.00353v2
[cs.CC].

21 Dionis Minev, Christopher M. Wintersinger, Anastasia Ershova, and William M. Shih. Robust
nucleation control via crisscross polymerization of dna slats. bioRxiv, 2019. doi:10.1101/
2019.12.11.873349.

22 Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and Turing
universality at Temperature 1 with a single negative glue. In DNA 17: Proceedings of the
Seventeenth International Conference on DNA Computing and Molecular Programming, LNCS,
pages 175–189. Springer, 2011. Arxiv preprint: arXiv:1105.1215.

23 Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with DNA strand
displacement cascades. Nature, 475(7356):368–372, 2011.

24 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, March 2006. doi:10.1038/nature04586.

25 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In STOC: Proceedings of the thirty-second annual ACM Sym-
posium on Theory of Computing, pages 459–468, Portland, Oregon, 2000. ACM. doi:
10.1145/335305.335358.

26 Paul W.K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biology, 2(12):2041–2053, 2004.

27 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007. doi:10.1137/S0097539704446712.

28 Hao Wang. Proving theorems by pattern recognition – II. The Bell System Technical Journal,
XL(1):1–41, 1961.

29 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

30 Bernard Yurke, Andrew J Turberfield, Allen P Mills, Friedrich C Simmel, and Jennifer L
Neumann. A DNA-fuelled molecular machine made of DNA. Nature, 406(6796):605–608, 2000.

A Omitted Proof

Here is the proof of Lemma 10.

Proof. By hypothesis, there exists a non-null vector −→v such that α is −→v -periodic. Let A

be any tile of α, then A + −→v is also a tile of α (because α is −→v -periodic) and there exists a
finite path P ∈ P[α] such that P0 = A and P|P |−1 = A + −→v .

Let Q be the shortest such path of P[α], i.e. the shortest path such that Q0 +s−→v = Q|Q|−1
for s = 1 or s = −1. The path Q exists since P itself satisfies the criterion P + s−→v = P for
s = 1. Since α is −→v -periodic, then for ℓ ∈ Z, Q + ℓ−→v is in P[α]. There are two cases:

If Q and Q + −→v intersect only in one point at their ends (either at Q|Q|−1 and Q0 + −→v
or at Q0 and Q|Q|−1 + −→v , depending on whether s = 1 or s = −1), then Q is a good
candidate and ∗(Q)∗ is a simple bi-infinite path, and is in P[α], meaning that Q is
bi-pumpable, which is our conclusion (with P = Q).

http://arxiv.org/abs/2011.09675
https://arxiv.org/abs/2002.04012
https://doi.org/10.1145/3357713.3384263
https://arxiv.org/abs/1702.00353v2
https://doi.org/10.1101/2019.12.11.873349
https://doi.org/10.1101/2019.12.11.873349
https://arxiv.org/abs/1105.1215
https://doi.org/10.1038/nature04586
https://doi.org/10.1145/335305.335358
https://doi.org/10.1145/335305.335358
https://doi.org/10.1137/S0097539704446712

P.-É. Meunier and D. Regnault 6:19

Otherwise, there exists another intersection between Q and Q + −→v , i.e. there exists
0 ≤ i, j ≤ |Q|−1 such that Qi = Qj +−→v and if j > i (resp. i > j) then (i, j) ̸= (0, |Q|−1)
(resp. (j, i) ̸= (0, |Q| − 1)). Thus, Qi,...,j (resp. Qj,...,i) contradicts our assumption that
Q is the shortest path intersecting Q + s−→v . ◀

Here is the proof of Lemma 17.

Proof. By Corollary 9, α is −−−−−−→
P0P|P |−1-periodic and −−−−−−→

Q0Q|Q|−1-periodic then both vectors
are colinear since α is simply periodic. Then ∗(P)∗ + −−−−−−→

Q0Q|Q|−1 intersects with ∗(P)∗ and
since P is without redundancy, we have −−−−−−→

Q0Q|Q|−1 = ℓ
−−−−−−→
P0P|P |−1 for some ℓ ∈ Z. Similarly

−−−−−−→
P0P|P |−1 = ℓ

−−−−−−→
Q0Q|Q|−1 for some ℓ ∈ Z and then either −−−−−−→

P0PP|P |−1 = −−−−−−−→
Q0QQ|Q|−1 or −−−−−−→

P0PP|P |−1 =
−

−−−−−−−→
Q0QQ|Q|−1 . ◀

B Omitted Figures

Figure B.1 Illustration of a bi-pumpable terminal assembly. We consider two bi-pumpable paths
P and Q such that −−−−−−→

P0P|P |−1 is not colinear with −−−−−−→
Q0Q|Q|−1. The 2D plane is filled by these paths

and α can be characterised by its restriction to the red area and the vectors −−−−−−→
P0P|P |−1 and −−−−−−→

Q0Q|Q|−1.

Figure B.2 An aperiodic terminal assembly α: the seed is in black, a comb and its backbone are
in light red, a finite path linking the seed to the comb is in dark red, a comb and its translation
are in blue (dark blue for the transient part and light blue for the periodic part) and a finite path
growing on the periodic part of the tooth is in yellow. Note that the first comb cannot fully grow.

DNA 27

6:20 Directed Non-Cooperative Tile Assembly Is Decidable

Pi1 Pj1

Pi2

Pj2

Figure B.3 The producible path P (the tiles which does not belong to P are in white).

Pi1 Pj1 Pt

Pi2

Pj2

Figure B.4 The path P[t+1,...,|P |−1] is producible by (T, σ ∪ P[0,...,t]). The terminal assembly is
still α, the new seed is in black.

P.-É. Meunier and D. Regnault 6:21

P0

P|P |−1 Pj Pi

. . .

. . .

. . .
. . .

a) The seed σ is in black, P (in dark grey) is simply pumpable and the pumping of P is in
light grey up to index j, and in white afterwards. Assembly β is the union of the seed and
the blue path. γ is the union of β and the gray paths. Path Q0,...,m is in red and intersects

the seed.

P0

P|P |−1 Pj Pi

. . .

. . .

. . .

. . .
. . .

b) All the translations of Q growing on the light gray part of (P)∗ start in the red area of
the grid. If β blocks them all, some of the translations of Q must intersect with each other

before intersecting β. Thus, one of the translations must fully grow.

P0

P|P |−1 Pj Pi

. . .

. . .

. . .
. . .

c) The path S is ultimately periodic and grows on (P)∗|P |,...,j−|P |−1. There is two examples
of S in orange, one leaves the red area by intersecting Q0,...,m and the other one by
intersecting Pj+1,...,k. In both cases, we can find an arc of (P)∗ of width at least |P |.

Figure B.5 Illustration of Proof 15.

DNA 27

Molecular Machines from Topological Linkages
Keenan Breik
The University of Texas at Austin, TX, USA

Austin Luchsinger
The University of Texas at Austin, TX, USA

David Soloveichik
The University of Texas at Austin, TX, USA

Abstract
Life is built upon amazingly sophisticated molecular machines whose behavior combines mechanical
and chemical action. Engineering of similarly complex nanoscale devices from first principles
remains an as yet unrealized goal of bioengineering. In this paper we formalize a simple model of
mechanical motion (mechanical linkages) combined with chemical bonding. The model has a natural
implementation using DNA with double-stranded rigid links, and single-stranded flexible joints and
binding sites. Surprisingly, we show that much of the complex behavior is preserved in an idealized
topological model which considers solely the graph connectivity of the linkages. We show a number
of artifacts including Boolean logic, catalysts, a fueled motor, and chemo-mechanical coupling, all
of which can be understood and reasoned about in the topological model. The variety of achieved
behaviors supports the use of topological chemical linkages in understanding and engineering complex
molecular behaviors.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Computational geometry

Keywords and phrases chemical computation, mechanical computation, bioengineering, models of
biochemistry, molecular machines, mechanical linkages, generic rigidity

Digital Object Identifier 10.4230/LIPIcs.DNA.27.7

Funding This work was supported by NSF grant CCF-1901025.

Acknowledgements We thank Tosan Omabegho for introducing us to chemical linkages and for
extensive discussions.

1 Introduction

Living cells, by far, show the most complex chemical behavior known. Their primary
functional parts are molecular machines that derive their behavior from internal mechanical
motion [2]. There are large gaps in our understanding of how function originates from
mechanical reconfiguration, and engineering such machines from scratch stands as the grand
challenge of bioengineering.

Even simple chemistry involves intricate physics, which makes it a challenge to model
molecular machines. But we may not need that intricacy to capture their rich behavior.
It would be interesting if the essence of their behavior could be reproduced by a simple
mechanical model. But how simple can the model be, what features should it include, and
how should its parts be assembled?

We look to linkages, a simple tool from mechanical engineering. A linkage is a set of
rigid rods (called links) connected at rotary joints. This well-studied tool has been shown to
be capable of very complex motion, such as tracing any arbitrary curve [9, 8]. Reference [4]
provides an excellent overview of the capabilities of linkages. Linkages have also found use in
studying biological mechanisms. In reference [14], linkages are used to model the mechanical
behavior of proteins. Most closely related to this paper, however, is Omabegho’s work

© Keenan Breik, Austin Luchsinger, and David Soloveichik;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Petr Šulc; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DNA.27.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Molecular Machines from Topological Linkages

introducing chemical linkages where joints can form chemical bonds [12]. There, chemical
linkages are used to model the role of allostery in enzyme behavior. Motivated by the above
work, we reimagine chemical linkages as a basic model for rich chemical behavior, and explore
the variety of behaviors that can be captured by the model.

Linkages seem like a minimal mechanical model of biochemistry, but we show how to
simplify them further and still produce complex behavior. The link lengths in a linkage
determine how the linkage can move. This in turn controls which joints can chemically bind.
Surprisingly, in many cases which joints can bind could be fully determined by just the
topology of the underlying graph. Focusing on simple graphs makes systems easier to design
and analyze.

On top of having interesting behavior theoretically, chemical linkages could also lead
to real molecular machines, like artificial enzymes. Their rich behavior comes from simple
parts: links, joints, binding sites. These may be possible to build directly. Double-stranded
DNA may be rigid enough to act as a link. Single-stranded DNA might implement a joint
as a so-called compliant mechanism. Orthogonal DNA sequences could act as binding sites.
However, this work does not further explore practical implementation.

The contributions of this work are as follows. We formalize chemical linkages, previously
described only informally in [12]. We also introduce a new topological model, which bases
bond formation on simple graph topology. To articulate our new model, we expand on
traditional characterizations of graph rigidity given by Laman [10] and Henneberg [5]. We
design artifacts (which work in both models) showing that surprisingly complex behavior
can be developed from first principles. The constructions include Boolean logic and signal
propagation, catalytic splitting reminiscent of ATP hydrolysis, fueled directed cycles, and
chemo-mechanical coupling. The latter constructions are motivated by the coupling of fuel
consumption with other processes prevalent in biological molecular machines such as kinesin,
myosin, and dynein [1, 3].

2 Examples

Mechanical linkages are well studied and common in mechanical engineering. Even one of
the most basic linkages, the lever, is found as a component in countless machines and tools.
Linkages have also been shown to be capable of very complex motion [11]. Adding binding
sites makes linkages interesting as a model of chemical machines. This section shows how
chemical linkages work by example, while Section 3 defines them formally.

In this work we consider a single-copy regime where, unless otherwise stated, a single
copy of each linkage is present in a given system (see Conclusion for additional discussion).

▶ Example 1 (Binding sites). As the following example shows, joints can have binding sites.
The star ∗ means a (solid dot) and a∗ (hollow circle) are complements and so can bind. For
their sites to bind, joints have to overlap. When an a and a∗ overlap, we may label them
together with just a. Unless noted otherwise, we consider strong bonds which may not break.
(Appendix A discusses the approximation of strong bonds using bonds that may break.)
Although bonds are strong, joints with the same binding sites may displace one another. So
to get from the left bound state to the right bound state, the right a∗ joint must colocalize
and displace the left a∗ joint. The four possible states of the system are the following.

K. Breik, A. Luchsinger, and D. Soloveichik 7:3

We consider a state to change only when the set of bonds changes. Physically, the shape
of a linkage can move among an infinite continuum of conformations. But it would move
rapidly and randomly among the conformations allowed by its bonds as Brownian motion
and low Reynolds number dominate molecular dynamics. This is why we say this example
has four discrete states and not an infinite continuum of states.

▶ Example 2 (Allostery). The following example shows that geometry can prevent comple-
ments from binding. There are two bonds that can form, the a bond and the b bond. But
after one forms, the other can no longer reach to overlap.

Note that links are allowed to cross over each other. Allowing link crossing simplifies the
mathematical model and is standard in the analysis of mechanical linkages. In a physical
realization, the links might be offset at different heights to allow such crossing.

▶ Example 3 (Simple catalysis). The following example is a system where there are two
states, left and right, that cannot reach each other. For each state, two of its (infinitely
many) conformations are shown with ≈ between them. The link lengths keep the small red
linkage from getting close enough to the opposite joint to displace onto it. (A small flag
represents irrelevant omitted parts, so the red linkage shown could be a portion of a larger
linkage that includes the joint with the flag.) So the red linkage stays bound to whichever
joint it starts bound to.

But we can add a linkage that allows the states to reach each other. In the following
example, consider adding the blue linkage at the top to mediate the state change. The blue
linkage with binding site c∗ can enter and displace the center bond. This allows the red
linkage to reach the opposite joint. Afterward, the blue linkage is displaced by the center
bond and leaves. Thus the blue linkage is unchanged, but the black linkage has changed
state. The blue linkage acts as a catalyst.

DNA 27

7:4 Molecular Machines from Topological Linkages

▶ Example 4 (Compound catalysis). The following is a catalytic system that involves three
catalysts, or one compound catalyst, depending on the reader’s perspective. The linkage can
again be in one of two states unable to reach each other. But when all three of the catalytic
linkages are present, the state can change. The intermediate displacement states are left out.

▶ Example 5 (Many binding sites). While each joint may only have one binding site, the effect
of multiple binding sites per joint may be achieved via zero-length edges. Below, zero-length
edges between joints are indicated by dashed lines. We omit these edges for visual clarity
but instead rely on color to disambiguate which binding sites are connected together with
zero-length edges. (Although some information is lost going from the top to bottom figure,
the bottom notation will be sufficient for our purposes.)

This effectively allows a joint to form multiple bonds at the same time.

▶ Example 6 (Signal cascade). The following is a system that transmits the signal of whether
a bond is formed. The signal travels along a sequence of links. The effect is that the flag
with binding site a and the flag with binding site c can never be free at the same time.
By repeating this pattern, we can get this effect across any number of links. Since signal
cascading is useful as a modular gadget, we abstract it with visual notation using blue arcs
as shown in the bottom half of the figure.

▶ Example 7 (Advanced cascades). The following systems show how cascades can be combined
for various effects. By combining two signal cascades with a common joint, signal cascades
may behave like a logical OR. The rightmost flag may be freed after either of the leftmost
flags have bonded.

K. Breik, A. Luchsinger, and D. Soloveichik 7:5

a' b'
b'

a

b

c
c c

b

A logical AND may be achieved with signal cascades as well. Both of the leftmost flags (a and
a′) must bond to the linkage before the d flag can be freed. Using the notation introduced in
Example 5, directly adjacent binding sites indicate a single joint with multiple binding sites.

a'

a

b'

b

c'

c

c'

c
d d

By reversing the AND mechanism shown above, we can effectively implement a fanout.

▶ Example 8 (Active/inactive signal receptors and sequential AND gate). We now show a
construction for intermolecular signals and their corresponding receptors, with both capable
of activation and inactivation by other signals. In particular, we show an example which
mimics the sequential AND gates of reference [15] operating via DNA strand displacement.

In our construction, whether signals and their receptors are active depends on whether
their three binding sites can be simultaneously bound or not (shown below). We later refer
to such complete binding as docking. Docking is prevented by geometrical constraints if
either the signal (blue) or receptor (orange) is inactive. Intuitively, the distance between
the joints within signals and receptors needs to match exactly for them to dock. But this
cannot happen when either the signal or receptor has a joint distance that is fixed by another
linkage. In the figure, the green linkage fixes the distance between the a and b joints (or b∗

and c∗ for the receptor) to a length that is too short. So only active signals and receptors
may dock.

a b ca b c

receptorsignal

active inactive active inactive

The following figure shows a modification of the orange receptor which holds the output
(purple) signal linkage inactive until the input (blue) docks with it. Here, the blue triangular
symbol represents a cascade combination of an AND and a fanout. All three signal cascades

DNA 27

7:6 Molecular Machines from Topological Linkages

entering the top of the triangle must fire before the two signals on bottom can fan out. This
gadget ensures that all three bonds a, b, and c must form between the signal and receptor
before the purple linkage is released. Notice that the output signal linkage can be an input
to another receptor downstream, and so such systems are composable.

a b c ba c

Modifying this scheme further, the following example shows a composable sequential
AND gate.

a cb

i j k

ba c

i j k

Written in terms of abstract chemical reactions, the above system implements the following
behavior:

X1 + G ⇌ W1 + H

X2 + H ⇌ W2 + Y

where X1 and X2 are the input signal linkages and Y is the output signal linkage. Observe
that the purple output signal linkage and the orange receptor are initially both in their
inactive states. The red input linkage must dock with the green receptor first in order to
activate the orange receptor (splitting complex G in the process). Then the blue input signal
linkage docks with the now active orange receptor, displacing and activating the purple
output signal linkage. Appendix B shows the state-change details for this construction.

Note that DNA strand displacement cascades are based upon the toehold sequestering
mechanism which allows activating and inactivating both signals and their displacement
targets. Targets (receptors) are activated by opening their toehold domains, while signals
are activated by opening their toehold binding domains. The above construction shows one
way in which signal and receptor activation can be recapitulated by chemical linkages.1

1 In the toehold sequestering mechanism, activation is a kinetic effect: toehold binding increases the
effective local concentration of the signal strand near the target, which promotes displacement. Dis-
placement can still occur without preceding toehold binding, but is much slower. Our chemical linkages
implementation does not attempt to capture such physical details of toehold sequestering but rather
the higher-level activation/inactivation behavior. The physical correlate for activation in our model is
geometric compatibility rather than an increase in local concentration. (Although beyond the scope of
this paper, a kinetic model of chemical linkages, for example operating via Gillespie kinetics, with weak
bonds representing toeholds (see Appendix A) is needed to capture the kinetic mechanism of toehold
sequestering.)

K. Breik, A. Luchsinger, and D. Soloveichik 7:7

Figure 1 (Left) A chemical linkage and a conformation p of that linkage. (Right) A motion q

of conformation p. Left to right: conformation q(0) of q, conformation q(t) where 0 < t < 1, and
conformation q(1). Notice q is a binding motion that forms a new bond.

3 Formal model

The previous section relied on intuitive explanations of chemical linkages, as does prior
work [12]. It would be useful to have a precise, general definition. This would support
engineering, guide simulations, and enable proofs. This section formally defines chemical
linkage systems and their state space.

3.1 Chemical linkages
A mechanical linkage is a pair (G, ℓ). G is a connected graph with vertices V and edges
E. We also call vertices joints and edges links. ℓ : E → R≥0 is a map that gives each link
a length. Link lengths alone are not enough to define how the graph sits in space. So to
uniquely determine the shape of a linkage, we use conformations.

A conformation of a linkage (G, ℓ) is a map p : V → R2 where |pu − pv| = ℓ(u, v) for each
pair u and v of linked joints.2 Intuitively, a conformation is a drawing of a linkage in the
plane with the right link lengths. In some drawings, joints may overlap. The overlap of a
conformation is the partition of its joints where each element is a set of joints that overlap.
For example, the partition {{u, v}, {w}, {x}} of {u, v, w, x} would mean that joints u and v

overlap while no joint overlaps w and no joint overlaps x.
A chemical linkage is a mechanical linkage with a function d : V → Σ that puts a binding

domain on each joint. Σ is an alphabet of starred and unstarred symbols called domains.
Domains x and x∗ are said to be complementary and thus capable of binding. Intuitively,
this evokes a chemistry where opposites bind like complementary DNA domains.3 Note that
we use the phrase “multiple binding sites” to refer to zero-length edges effectively allowing a
joint to have more than one binding domain (see Example 5). In this paper we use the word
linkage to refer to mechanical or chemical linkage if clear from context.

A matching of a conformation is a set of unordered pairs of its joints such that (1) each
pair consists of overlapping joints which have complementary domains and (2) no two pairs
share a common joint. A matching of a conformation is a binding if it is not a subset of any
other matching of that conformation (i.e. it is a maximal matching). Intuitively, elements of
the binding represent a bond between two joints. Since a binding is a maximal matching,
we consider bonds to form as soon as joints become overlapping. In the case where three or
more joints overlap, a conformation could have multiple bindings (for example consider the
lower middle state in Figure 3).

2 For simplicity, we focus on two dimensions in this work. It is an open question how some of this work
generalizes to three dimensions (see also Conclusion).

3 Other choices of domain chemistry are of course possible, where binding might be like-like. Such binding
rules are not explored in this work.

DNA 27

7:8 Molecular Machines from Topological Linkages

b

a

a

b

Figure 2 This figure illustrates why bindings alone do not sufficiently capture the behavior of
chemical linkages. Middle left: a state where bonds a and b can form. If a bonds first, it can lead
to two different states. In one state (left), the binding of a prevents the binding of b due to link
lengths. In the other state (middle right), the green link can still reach a state where b is bonded
(right). Notice the left and middle right conformations have the same binding, but the conformation
geometry dictates which states can be reached.

The natural notion of motion captures how transformations may be applied to con-
formations. Let [0, 1] be the interval of real numbers from 0 to 1. A reconfiguration of
a conformation p is a map q : V → ([0, 1] → R2) where each q(t) is a conformation and
q(0) = p. Note that for convenience, q(t) = u 7→ qu(t) is the conformation at time t, and
qu = t 7→ qu(t) is the trajectory of joint u. A motion of a conformation p is a reconfiguration
q where each qu is continuous. Intuitively, this means a motion preserves link lengths and
never flips parts of a linkage: for example in Figure 2, transitioning from the left state to the
middle right state, without breaking bonds, is not a motion.

A motion q is a step motion if there exists a same binding of conformation q(t) for all
t ∈ [0, 1). A step motion is a binding motion if conformation q(0) has some binding that
is a subset of a binding of conformation q(1). Intuitively, a step motion maintains the
overlap of bound joints and a binding motion only ever (potentially) creates more bonds.
For conformations x and y, we write x → y if there exists a binding motion from x to y. We
write →∗ to mean the reflexive, transitive closure of →. We write x ↔ y if x → y and y → x.
Similarly, we write x ↔∗ y if x →∗ y and y →∗ x.

Although this work only uses binding motions, we can also define motions which are
allowed to reduce the number of bonds – for completeness. A step motion is a breaking
motion if conformation q(0) has a binding that is a superset of a binding of conformation
q(1).

3.2 Chemical linkage states and systems
Binding motions fully capture the behavior of chemical linkages. But most binding motions
do not lead to interesting changes in a given conformation. Such changes arise when a
conformation’s binding is altered by the binding motion (e.g., see Figure 2). In a sense, some
conformations are equivalent, while others are not. We use the notion of states to capture
conformation equivalence and identify the significant binding motions.

A state is an equivalence class of conformations defined as follows. Two conformations
are in the same state if they can both reach all of the same conformations through a binding
motion. Formally, two conformations x and y are in the same state if for every other
conformation z, x → z if and only if y → z. State b is directly reachable from a, written
a ⇀ b, if there exist conformations x in state a and y in state b such that x → y. If a ⇀ b

and b ⇀ a, we write a ⇌ b. We say state b is reachable from a, written a ⇀... b, if x →∗ y. If
a ⇀... b and b ⇀... a, we write a ⇌... b. Figure 3 (bottom) shows an example of state reachability.

We can treat a set of linkages exactly like a single linkage by forming the disjoint union
of its linkages. Intuitively, we pretend all its linkages are one big linkage. This way we
can use all the vocabulary of linkages for a set of linkages. We refer to sets of chemical
linkages as a system. Formally, a chemical linkage system is a pair (C, s) where C is a set of

K. Breik, A. Luchsinger, and D. Soloveichik 7:9

Figure 3 (Top) A chemical linkage c and two conformations of c which may be transformed into
one another via a sequence of binding motions. (Bottom) Three distinct states of c. In the middle
state, both of the two a binding sites and the a∗ binding site overlap. The left and middle states are
directly reachable from one another via the binding motion shown in red. Likewise, the middle and
right states are directly reachable from one another via the blue binding motion. The left and right
states are reachable from one another, but not directly reachable (since the binding changes in the
middle state).

chemical linkages and s is an initial state. As Figure 2 shows, the initial state is important
for determining state reachability for a given chemical linkage system. In a conformation of
a linkage system, we often call a set of linkages a complex if there exists a binding which
makes that set of linkages connected.

3.3 Complexity of simulation
With the formal model established, we now have a notion of how to describe the behavior
of chemical linkages. To understand and predict this behavior, we need to know a given
linkage’s state space. Computing the entire state space for a system is certainly a hard
problem. But being able to easily check if one state is directly (one step) reachable from
another would make it easier to design and analyze chemical linkage systems.

Unfortunately, the problem of deciding direct reachability between two states is PSPACE-
hard because the subproblem of finding a motion between conformations is PSPACE-hard [6]4.
This does not bode well for the future development of simulation tools for this model. For
such simulation tools, we would want to have a fast algorithm to check direct reachability.
This is part of our motivation for introducing the topological linkages model described in the
next section.

4 Topological linkages

Linkages provide a model of physical constraints that seems minimal. They involve only
two simple physical parts, links and joints, neither of which can be removed. Despite that
intuition, this section describes a surprising new simpler model that still has interesting
complex behavior. In fact, our simpler model captures the behavior of all of the examples in
Section 2.

4 While the general mover’s problem (reachability) was shown to be PSPACE-hard in [13], we can more
easily adopt the formulation of [6] by fixing some joints’ relative positions to each other via a rigid
“frame.” A study of motion planning can be found in [11].

DNA 27

7:10 Molecular Machines from Topological Linkages

To distinguish the two models, we call the original metric and the simpler topological.

4.1 Topological motivation
In this section we build the case for a version of the chemical linkages model which ignores
link lengths. The utility of such a model may seem surprising given that the constructions
developed in previous sections relied on some joint being able or not being able to “reach” to
another joint in metric space. Rather than fixing link lengths beforehand and asking whether
a joint can reach another, we instead ask how constrained must the link lengths be for such
reach to be possible.

Recall Examples 2 and 3 from Section 2 and how certain states were not reachable due to
the choices of link lengths. We present these two examples again below, along with a third
example.

In each example, we consider the potential bonding of the b and b∗ joints. Without link
lengths being previously fixed, observe the link length constraints implied for each edge.
Once the lengths of the black links are fixed, we ask how constrained the red link lengths are.

In the right example, a range of lengths for the red link will allow bond b to form (as
long as the link has sufficient length). On the other hand, in the two examples on the left,
bond b may be formed only if the red links happen to be the exact right length. Assuming
link lengths are somehow “generically” chosen, bond b will not form in the left two examples
because the red link lengths will not reach. Note that from a practical perspective, avoiding
such exact-length coincidences is easy. Contrarily, setting lengths exactly in a molecular
implementation may be onerous.

Our key observation is that this exact-length constraint arises in these examples because
the forming of bond b would cause the red link to connect two joints which are already rigidly
connected (we refer to this later as overbracing). Note that we say two joints are rigidly
connected if their distance is fixed for every motion. In the left example it is clear that the
top-most link already fixes the distance of its two joints. In the middle example the rigidity
of the linked rhombus fixes the distance of the bottom-left and top-right joints.

Each of the constructions presented in Section 2 exhibit the behavior of these left two
examples. We will define the topological linkage model with regard to overbracedness, rather
than metric lengths. To formally define overbracing edges we must first discuss the notion of
rigidity.

4.2 Rigidity
Intuitively, a graph is rigid if all of its joints have to move together. A rigid graph is minimally
rigid if removing any edge results in a non-rigid graph. These properties naturally generalize
to subgraphs as well.

We provide a definition of graph rigidity based on the characterization captured by
Henneberg operations [5, 4]. Henneberg characterized minimally rigid graphs as the graphs
which can be constructed, starting from a single edge, by executing some sequence of two
types of operations. A V operation adds a new node u and two new edges that connect u to
two existing nodes in the graph. A T operation adds a new node u that splits an existing
edge and adds a new edge from u to an existing node. Figure 4 shows an example.

K. Breik, A. Luchsinger, and D. Soloveichik 7:11

Figure 4 A sequence of Henneberg operations. An edge to start, then two V operations, then
two T operations. The graph produced at each step is minimally rigid.

Figure 5 An overbraced graph (left) and its overbracing edges (dashed). If we remove an
overbracing edge (red), this graph happens to become minimally rigid (center). We can verify this
with Henneberg operations. If we remove a non-overbracing edge (blue), the graph is no longer
minimally rigid (right). We can verify this with Laman’s theorem.

So we say a graph G is minimally rigid if some sequence of Henneberg operations turns
a single edge into G. We build upon this definition to formalize overbracing discussed
previously. A graph G is overbraced if it has a subgraph H that is minimally rigid and G

contains an additional edge between two nodes of H . This edge is called an overbracing edge.
Figure 5 shows an example.

Naturally, these Henneberg operations are useful in verifying if a given graph is minimally
rigid. What they do not do, however, is provide an easy method for showing a graph is not
minimally rigid.

Luckily, when a graph is not rigid, Laman’s theorem [10] guarantees there is a simple
proof. To state this powerful theorem, say the excess of a graph with v vertices and e edges
is e − (2v − 3). Recall that for a graph G, an induced subgraph I is a graph formed from a
subset of vertices from G taking all edges connecting pairs of vertices in that subset.

▶ Theorem 9 (Laman’s theorem). A graph G is minimally rigid iff (1) the excess of G is 0,
and (2) the excess of any induced subgraph of G is at most 0.

Laman’s theorem lends itself to proving that a graph is not minimally rigid. We just show
that the graph has non-zero excess, or we give an induced subgraph with positive excess.

We now want to transition from checking minimal rigidity to checking overbracedness,
which is the real object of our attention since we use overbracedness as a substitute for
“being unable to reach”. First, the following corollary formally confirms our intuition that
a minimally rigid graph cannot be overbraced. Via this corollary, we can use Henneberg
operations or Laman’s theorem to show that a graph is not overbraced.

▶ Corollary 10. If a graph G is overbraced, then G is not minimally rigid.

Proof. Let G be an overbraced graph. By definition of overbraced, G has some minimally
rigid subgraph H = (V, E) and some additional edge e between two nodes of H. By
Theorem 9, the excess of H is 0. Let I = (V, E′) be the induced subgraph of G on nodes
V . Since e ∈ E′ and e ̸∈ E, the excess of I must be greater than 0. So, G is not minimally
rigid. ◀

Our constructions may not be minimally rigid as a whole (may have non-rigid parts)
as in Figure 5 (right). In this case, to argue that a graph is not overbraced we rely on the
following Lemma.

DNA 27

7:12 Molecular Machines from Topological Linkages

▶ Lemma 11. If a graph G is a subgraph of some minimally rigid graph M , then G is not
overbraced.

Proof. We prove this by contrapositive. Let G be an overbraced graph. By definition of
overbraced, if we add edges and/or vertices to an overbraced graph it will still be overbraced.
This means that any graph M which has G as a subgraph must also be overbraced. By
Corollary 10, M is not minimally rigid. ◀

For the examples in Section 4.1, we relied on mechanical intuition to see that the endpoints
of the red edge are rigidly connected. We are now ready to show how formal rigidity arguments
can be used to show this.

The figure above shows the linkage from Example 2 (left) and its three states (middle).
We can prove that none of the three states are overbraced using Henneberg operations
and Lemma 11. Two minimally rigid graphs are shown (right), constructed via Henneberg
operations. The edge shading shows the order of the operations. This shows that each of
the three states is a subgraph of a minimally rigid graph. Thus, by Lemma 11, they are not
overbraced. However the following would-be state, not shown in the example, is prevented
not just by reach, but by mere rigidity.

This figure shows that the state (left) has a minimally rigid subgraph H and an edge between
two vertices in H (right). By definition, this state is overbraced.

The figure below shows similar analysis of the prevented state from Example 3.

Example 3 (left) and its prevented state (right). The state on the right is shown to be
overbraced, as it has a minimally rigid subgraph (solid black edge) and an edge connecting
two vertices from that subgraph (dashed edge). In fact, any graph with multiple edges
between vertices is overbraced by our definition. However, in the presence of the catalyst
no state in the transition sequence is overbraced. The reader can verify this again using
Henneberg operations. In fact, this kind of analysis may be applied to all the examples in
Section 2, verifying that the topological behavior of each follows the metric behavior.

Finally, we touch upon the computational complexity of checking overbracedness. Recall
that one of the motivations for the topological linkages model is that checking direct (one-
step) reachability in our original metric model was PSPACE-hard. Can we improve upon
this with the simplification of the topological model? Laman’s Theorem does not suggest
a fast algorithm since there might be exponentially many induced subgraphs. However,
a well-known algorithm called the pebble game does just that [7]. The algorithm runs in
quadratic time and reports whether the given graph is rigid, what its rigid components are if
it is not, and where it is overbraced.

K. Breik, A. Luchsinger, and D. Soloveichik 7:13

2v{ { 3v{ { 4v{ {v1 5v 6v 7v{ {, , ,{ {, ,,

v1 7v 5v 6v{ , ,{ {{, {{

2v 3v 4v

v1
a*

6v
b*

7v
a

5v
b

Figure 6 A topological linkage (left). Note that zero-length edges are denoted by adjacent
same-colored joints. An overlap and a binding for the given linkage (middle). The collapse of the
given overlap (right). Notice that the collapse is not overbraced, so it is a state.

4.3 Formal model

We define a kind of chemical linkage that completely ignores lengths. Figure 6 illustrates
these definitions. A topological linkage is a triple (G, d, ℓ). G is a connected graph with
vertices V and edges E. d : V → Σ is a map that puts a binding domain on each joint and
ℓ : E → {0, +} is a map that labels each edge as a zero-length edge or positive-length edge.
Recall that the use of zero-length edges in the metric model effectively describes multiple
binding sites on one joint. We distinguish between zero-length and positive-length edges for
the same effect here. A topological linkage has no other specified lengths or geometry. Its
only structure comes from the topology of its graph.

We define the state space of a topological linkage with no appeal to motion or conforma-
tions. Instead, we use a partition of the topological linkage’s joints that represents which
joints are meant to overlap. An overlap of a topological linkage is a partition of its joints such
that (1) no two joints are in the same partition part if they are connected by a positive-length
edge and (2) any two joints connected by a zero-length edge are in the same partition part.
Intuitively, joints connected by a zero-length edge already overlap, while joints connected by
a positive-length edge cannot overlap. A matching of an overlap is a set of unordered pairs
of its joints such that (1) each pair consists of joints from the same part of the overlap and
which have complementary domains and (2) no two pairs share a common joint. A matching
of an overlap is a binding if it is not a subset of any other matching of that overlap. Note
that an overlap may have multiple bindings. The collapse of a topological linkage relative to
an overlap is the graph that results from the following operations: (1) remove all zero-length
edges, and (2) perform vertex contraction on the vertices in each part of the overlap.5 A
state is an overlap whose collapse is not overbraced.6

Similar to metric linkages, we define a notion of reachability for topological linkage states.
State b is directly reachable from a, written a ⇀ b, if a has a binding that is a subset of a
binding of b. If a ⇀ b and b ⇀ a, we write a ⇌ b. We define ⇀... to be the reflexive, transitive
closure of ⇀ and say state b is reachable from a if a ⇀... b. If a ⇀... b and b ⇀... a, we write
a ⇌... b. Also similar to metric linkages, we define a topological linkage system as a pair (T, s),
where T is a set of topological linkages, and s is an initial state for that set of linkages.

5 We consider vertex contraction that may lead to a multigraph in cases where two vertices to be
contracted, vi and vj , are both adjacent to some other vertex w.

6 Another reasonable approach may be to allow a system’s initial state to be overbraced but to disallow
forming bonds that lead to additional overbracing. However, without loss of generality overbracing
edges could be removed from the initial state without affecting the behavior.

DNA 27

7:14 Molecular Machines from Topological Linkages

5 Fueled machines

One of the goals of this paper is to recreate some of the rich behavior of molecular machines.
Thus far, we have presented constructions in the metric model (Section 2) and have shown that
these constructions also work in the topological model (Section 4.2). This section develops
additional complex behavior abstracting the ability of biological machines to consume fuel
and couple this consumption with driving other processes. These constructions, although
explained in the topological model, can also be understood in the metric model.

5.1 Hydrolysis
The molecular machines in living cells are fueled largely by ATP hydrolysis. We can imagine
the molecule ATP as composed of two parts, ADP and Pi. For our purposes, we write this
as ATP ⇌ ADP + Pi. The forward reaction is hydrolysis, which splits ATP. Normally,
hydrolysis and its reverse are slow, which makes ATP stable in isolation. But if ATP docks
with certain catalysts, both directions become fast. To make sure that hydrolysis happens
more than its reverse, cells keep the concentration of the wastes ADP and Pi low.

It is not clear how to engineer systems to turn hydrolysis into work. But we can start by
figuring out how to do so with linkages. The following linkage system abstracts a hydrolysis-
like splitting event. The top red bar plays the role ATP. The two small linkages below it
represent the catalyst that docks with it. Once the catalyst docks, the red bar can split.

For now, we will take these splitting pseudo-linkages as a primitive, as does prior work [12],
and we will focus on a construction that uses it.

5.2 Motor
Mechanical work can be coupled to the motion of the catalyst if the catalyst undergoes an
overall cyclic motion. A catalyst for binding and splitting ATP is shown below.

While we discuss the example in terms of topological states, we continue to use a visual
notation which contains implicit link lengths. In this way our visual representation shows a
particular metric implementation which remains compatible with the metric model.

K. Breik, A. Luchsinger, and D. Soloveichik 7:15

The catalyst is asymmetric in a way that yields the following behavior. If the catalyst
first binds ATP on the left (state B above), then it can subsequently bind on the right (state
D). However, if the catalyst first binds the ATP on the right (state C), it is prevented from
subsequently binding it on the left because that displacement passes through an overbraced
state (not shown). After ATP splits into ADP and Pi (state E), the catalyst can unbind in
any order (since the two binding sites are now split, no overbracing occurs).

Observe that the catalyst itself is always in one of three distinct states. The motion of
the catalyst is determined by the order of detachment for ADP and Pi. Shown below is a
depiction of how mechanical work is coupled to the motion of the catalyst from state to state.

If the catalyst unbinds on the right and then on the left, which is in the opposite order of
binding, then it undoes any mechanical work done in the process of binding. However, half
the time, the catalyst unbinds on the left and then on the right. This results in an overall
biased work cycle, capable of driving mechanical work.

5.3 ATP from linkages
The following construction shows that we do not need to assume ATP hydrolysis as a
primitive. Instead, here we present a pure linkage system that behaves from the outside just
like the primitive. So we can actually treat the primitive not as an assumption, but as an
abstraction.

The two states, whole (left) and split (right), cannot reach each other. Recall that a
dashed arc represents the gadget from Example 6. At least one of the binding sites at its
endpoints must be bound. The gadget does not physically attach the halves, so the split
state is two separate parts, despite a dashed arc appearing to connect them.

To go from whole to split, the long green link bound at the joint marked c would have to
relocate to the unbound joint marked c∗. That would have to break a bond, which is not
possible. But by adding the following catalyst, the long link can relocate.

When bound to the whole, the catalyst enables the following path between whole and split.

DNA 27

7:16 Molecular Machines from Topological Linkages

It might seem that the above ATP construction and the motor construction of Section 5.2
require different parities for the ATP-catalyst interaction. In the motor, the ATP displaces
joints in the catalyst. In the ATP in this section, the catalyst displaces joints in the ATP.
Luckily, the two displacements can be combined as shown in Appendix C.

5.4 Chemo-mechanical coupling
Chemical coupling is a powerful tool. By chemical coupling we mean a reaction like A + B ⇌
C + D with no side reactions like A ⇌ C or B ⇌ D. Such a coupling allows a high
concentration of A to behave as fuel to drive B into D, even when B turning into D is
thermodynamically unfavorable.

Here we will develop a construction that achieves chemical coupling. The following
abstract diagram illustrates the target behavior. When the two linkages meet, they can only
dock if their states are complementary. While docked they can switch states as long as they
stay complementary. Otherwise, there is no docking and no state change.

The following are two simple linkages each with two states, left and right. For each
linkage, there is a barrier between its two states. The left state cannot reach the right state.

We can remove the barrier if we add an internal catalytic part. The following construction
shows an example of this. It adds an arm with two links. The new arm can displace the
matching domain of the original arm and carry it to the opposite side.

We can also allow the two linkages to interact by docking. The following construction
shows an example of this. It adds matching domains, a, x, c, to three joints on each linkage.
The dashed circle indicates a joint with two domains. The two linkages dock when the three
joints all bind their partner. Notice that the two linkages can dock only when their states
are complements since the result would be overbraced otherwise.

K. Breik, A. Luchsinger, and D. Soloveichik 7:17

The following construction shows how we can prevent catalysis unless docked. Recall
that the dashed lines represent the AND gadget from Example 7. So the internal catalytic
arm can come free only when all of the docking sites are bound. This way the following two
system states can reach each other, but only because their linkage states are complements.

The following figure shows the sequence of system states that flips the linkage states
atomically, as a unit. This implements the chemo-mechanical coupling A + B ⇌ C + D that
we had as our goal.

6 Conclusion

Along with defining the metric and topological chemical linkage models, we have provided
several examples of the complex behavior captured by them.

Throughout this work we have assumed a single-molecule regime where exactly one copy
of the linkages shown is present in the system. Indeed, having multiple copies introduces
potential problems. For example, in Example 3, two copies of the system can catalyze each
other’s state change even in the absence of the blue catalyst. Nonetheless, we imagine that an
implementation of a chemical linkage would utilize other kinds of geometry to prevent such
issues (e.g., through volume exclusion not captured by our linkage model). Indeed, linkages
have a history of being used as a small part of a whole system (e.g., the steam engine is not
entirely a linkage system, but the linkage model provided valuable insight into its function).

Some important theoretical and practical questions remain. One of the most immediate
questions is whether or not the topological model captures the full power of the metric model.
Are some behaviors easier to achieve when using explicit edge lengths? Also, this work
considered two-dimensional linkages. Can this be generalized to three dimensions? Note that
minimal rigidity can be generalized to 3D via Henneberg-like operations [16].

While the topological model simplifies the design and analysis of chemical linkages, what
about their actual construction? The lengths that were removed for topological analysis will
have to be added back in the real world. For this, we give the following conjecture:

▶ Conjecture 12. Given any topological chemical linkage system, there exists a metric
chemical linkage system which has the same reachable state space.

Ultimately, we believe that chemical linkages and other simple chemo-mechanical models
hold promise. Maybe they can help us understand the behaviors we see in living cells. And
maybe they can help us mimic them.

DNA 27

7:18 Molecular Machines from Topological Linkages

References
1 R. Dean Astumian, Shayantani Mukherjee, and Arieh Warshel. The physics and physical

chemistry of molecular machines. ChemPhysChem, 17(12):1719–1741, 2016.
2 E. Branscomb, T. Biancalani, N. Goldenfeld, and M. Russell. Escapement mechanisms and

the conversion of disequilibria; the engines of creation. Physics Reports, 677:1–60, 2017.
3 Aidan I. Brown and David A. Sivak. Theory of nonequilibrium free energy transduction by

molecular machines. Chemical Reviews, 120(1):434–459, January 2020.
4 Erik D. Demaine and Joseph O’Rourke. Geometric folding algorithms: linkages, origami,

polyhedra. Cambridge university press, 2007.
5 Lebrecht Henneberg. Die graphische Statik der starren Systeme, volume 31. BG Teubner,

1911.
6 John Hopcroft, Deborah Joseph, and Sue Whitesides. Movement problems for 2-dimensional

linkages. SIAM journal on computing, 13(3):610–629, 1984.
7 Donald J. Jacobs and Michael F. Thorpe. Generic rigidity percolation: the pebble game.

Physical review letters, 75(22):4051, 1995.
8 Michael Kapovich and John J. Millson. Universality theorems for configuration spaces of

planar linkages. Topology, 41(6):1051–1107, 2002.
9 Alfred B. Kempe. On a general method of describing plane curves of the nth degree by

linkwork. Proceedings of the London Mathematical Society, pages 213–216, 1875.
10 Gerard Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering

mathematics, 4(4):331–340, 1970.
11 Steven M. LaValle. Planning algorithms. Cambridge university press, 2006.
12 Tosan Omabegho. Allosteric linkages that emulate a molecular motor enzyme. bioRxiv, 2021.

URL: https://www.biorxiv.org/content/10.1101/2021.04.20.440673v1.
13 John H. Reif. Complexity of the mover’s problem and generalizations. In 20th Annual

Symposium on Foundations of Computer Science (sfcs 1979), pages 421–427, 1979.
14 Jason W. Rocks, Nidhi Pashine, Irmgard Bischofberger, Carl P. Goodrich, Andrea J. Liu, and

Sidney R. Nagel. Designing allostery-inspired response in mechanical networks. Proceedings of
the National Academy of Sciences, 114(10):2520–2525, 2017.

15 Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid
logic circuits. Science, 314(5805):1585–1588, 2006.

16 Tiong-Seng Tay and Walter Whiteley. Generating isostatic frameworks. Structural Topology
1985 Núm 11, 1985.

A Weak bonds

In the work above, we rely on strong unbreakable bonds. We can extend consideration to
weak bonds which may break and reform. Indeed, we could consider weak bonds as a starting
point of our model and construct strong bonds from weak bonds. The following example
shows how a group of weak bonds (indicated as a diamond rather than a circle) can mimic
strong bond displacement.

https://www.biorxiv.org/content/10.1101/2021.04.20.440673v1

K. Breik, A. Luchsinger, and D. Soloveichik 7:19

This example combines three weak bonds. Each can break individually, but they are
unlikely to all break at the same time. So the only way the bottom blue linkage is likely to
replace the top red linkage is by gradually displacing it. Note that this is very similar to
DNA strand displacement. The bottom of the figure shows our standard representation of
strong bond displacement.

B Sequential AND details

Here we show the state change sequence for the sequential AND construction.

a cb i j k

ba c

i j k

In the initial system state (top left), the red linkage and blue linkage are separate from
the green, orange, and purple linkages (which are all bonded to one another). Since the red
signal and the green receptor are both active, they may dock with one another (top center).
This bonding triggers the AND/FANOUT gadget, displacing the linkage pair and activating
the orange receptor (top right). With the blue signal and the orange receptor both active
(bottom left), they may dock to trigger the displacement mechanism (bottom center). This
results in the purple signal linkage becoming active (bottom right) only when the red and
blue signal links have bonded with their corresponding receptors (in the correct order).

C Modified ATP and catalyst

In order to apply the ATP from Section 5.3 to the motor from Section 5.2, we need to ensure
that binding of the ATP and the catalyst results in displacement of joints both in the ATP
and the catalyst. We can achieve this by splitting the original binding sites x and z into
two different binding sites each of opposite complementarity allowing for a separation of

DNA 27

7:20 Molecular Machines from Topological Linkages

responsibility. As shown below with respect to the x binding site, one site (x1) would be
responsible for triggering the signal cascades within the ATP linkage. The other (x2) would
similarly displace the black joint in the motor.

2

1 2

1

Small Tile Sets That Compute While Solving
Mazes
Matthew Cook Ñ

Institute of Neuroinformatics, University of Zürich and ETH Zürich, Switzerland

Tristan Stérin # Ñ

Hamilton Institute, Department of Computer Science, Maynooth University, Ireland

Damien Woods # Ñ

Hamilton Institute, Department of Computer Science, Maynooth University, Ireland

Abstract
We ask the question of how small a self-assembling set of tiles can be yet have interesting compu-
tational behaviour. We study this question in a model where supporting walls are provided as an
input structure for tiles to grow along: we call it the Maze-Walking Tile Assembly Model. The
model has a number of implementation prospects, one being DNA strands that attach to a DNA
origami substrate. Intuitively, the model suggests a separation of signal routing and computation:
the input structure (maze) supplies a routing diagram, and the programmer’s tile set provides the
computational ability. We ask how simple the computational part can be.

We give two tiny tile sets that are computationally universal in the Maze-Walking Tile Assembly
Model. The first has four tiles and simulates Boolean circuits by directly implementing NAND,
NXOR and NOT gates. Our second tile set has 6 tiles and is called the Collatz tile set as it
produces patterns found in binary/ternary representations of iterations of the Collatz function.
Using computer search we find that the Collatz tile set is expressive enough to encode Boolean
circuits using blocks of these patterns. These two tile sets give two different methods to find simple
universal tile sets, and provide motivation for using pre-assembled maze structures as circuit wiring
diagrams in molecular self-assembly based computing.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Computational geometry

Keywords and phrases model of computation, self-assembly, small universal tile set, Boolean circuits,
maze-solving

Digital Object Identifier 10.4230/LIPIcs.DNA.27.8

Related Version Full Version: https://arxiv.org/abs/2106.12341

Supplementary Material Software (Source Code): https://github.com/tcosmo/mawatam
archived at swh:1:dir:b7eca563fe310db9000aae3a6e2ede44fc1df99c

Funding Research of Woods and Stérin supported by European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 772766,
Active-DNA project), and Science Foundation Ireland (SFI) under Grant number 18/ERCS/5746,
both to D Woods.

Acknowledgements We thank Trent Rogers, Niall Murphy, Pierre Marcus and Nicolas Schabanel for
useful discussions on the Maze-Walking Tile Assembly Model.

1 Introduction

We can think of solving a maze as performing computation: the input is a maze, some
starting location(s) and an ending location, and the answer to the computation is a yes/no
answer signifying whether the exit is reachable from the start, or even an explicit path from
start to exit. Figure 1(a,b) shows how a maze encodes a circuit of OR gates: solving the maze

© Matthew Cook, Tristan Stérin, and Damien Woods;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://co2.ini.uzh.ch/Home/index.php
mailto:tristan.sterin@mu.ie
https://dna.hamilton.ie/tsterin
https://orcid.org/0000-0002-2649-3718
mailto:tristan.sterin@mu.ie
https://dna.hamilton.ie/woods
https://orcid.org/0000-0002-0638-2690
https://doi.org/10.4230/LIPIcs.DNA.27.8
https://arxiv.org/abs/2106.12341
https://github.com/tcosmo/mawatam
https://archive.softwareheritage.org/swh:1:dir:b7eca563fe310db9000aae3a6e2ede44fc1df99c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Small Tile Sets That Compute While Solving Mazes

directed maze OR maze circuit(b)(a) arbitrary maze circuit(c)
0

AB
Q0 0

x

y

z

A
B

Q
A
B

Q

0
0

0

A
B

Q

A B
Q

A
B

Q

AB
Q

0
1 0

x

y

z
1
0

0

A B
Q

Figure 1 Mazes, computation and Boolean circuits. Solving (a) a directed maze, where paths
have directions, is formally equivalent to executing (b) an OR circuit if we ask: are any of the input
bits that are set to 1 connected to the output gate? The example in (b) accepts any 3-bit input
x, y, z that sets x or y to 1, irrespective of z; equivalently the maze is solvable from the top two
inputs only. Even such a simple setup, allowing for arbitrary mazes, can compute by solving any
suitably-encoded problem in the class nondeterministic logspace (NL) [1, 29]. (c) We generalise this
notion of “computation via maze-solving” in a natural way by having the maze specify arbitrary
Boolean gates along the route that need to be evaluated. In the Maze-Walking Tile Assembly Model
defined in Section 3.1, tiles flow through the maze, building paths from the entrances to the exit,
evaluating the circuit as they go.

is equivalent to executing the OR circuit with all inputs set to bit 1; and asking about paths
in the maze is equivalent to setting some inputs to 1 and seeing which paths have 1 flowing
all the way through them. It then becomes meaningful to ask about the computational power
of systems capable of solving mazes [1, 29], for example molecular walker-based systems.

The difficulty of maze-solving varies with the complexity of the maze, such as number
of dimensions, grid layout versus more general graph, degree of nodes, or whether graph
edges are directed or undirected. In computational complexity theory terminology, solving
mazes and more general graph reachability problems lie within the class NL [1, 28, 29],
i.e. problems solvable on a nondeterministic Turning machine that uses temporary workspace
only logarithmic in input length. At the simplest level, and perhaps counter-intuitively, a
system that solves a directed maze consisting of (a number of possibly disconnected) straight
line segments has enough computational power to solve any problem in L, the deterministic
version of NL [22].1 Thus maze-solving lies between L and NL, depending on the complexity
of the setup.

Here, we suggest two modifications to the maze-solving problem, which are expressive
enough to endow maze solvers with significant computational power (their prediction problem
becomes P-complete), yet, we contend, simple enough to be experimentally feasible using
DNA engineering and computing principles. The first, and most important, is that we
generalise mazes to have paths patterned with logic gates that must be solved in order to
pass by them (Figure 1(c)). For a maze-walker this would mean it should be able to input
one or two bits of information from the site it stands upon, compute, and then output one
or two bits to adjacent sites. The second, mainly to keep things simple, is that we assume
mazes are directed (meaning a pair of adjacent positions have one directed edge between

1 The PathReachability problem is L-complete: given a directed graph whose edges form a set of
disconnected line segments (in- and out-degree ≤ 1), and two nodes s and t, is t reachable from s? A
deterministic Turing machine can start at s and walk along the graph use only logarithmic workspace
(in input length) to keep track of the current node, answering “yes” if it reaches t and “no”, if it instead
reaches a dead-end. Hence the problem is in L. Conversely, the set of configurations of a deterministic
logspace Turing Machine can be encoded as a polynomial-sized instance of PathReachability making
that problem L-complete [22].

M. Cook, T. Stérin, and D. Woods 8:3

1

0

1

0

0

0

1

1

1

1

0

1

0

1

1

0
A

1

0

1

0

0

0

1

1

1

1

0

1

0

1

1

0
B

1

0

1

0

0

0

1

1

1

1

0

1

0

1

1

0

C1

0

1

0

0

0

1

1

1

1

0

1

0

1

1

0

D

1

0

1

1 3

0

0

0

0 0

1

1

0

2 4

0

1

1

0 1

1

2

1

2 5

0

2

0

1 2

1

0

1

1 3

0

0

0

0 0

1

1

0

2 4

0

1

1

0 1

1

2

1

2 5

0

2

0

1 2

1

0

1

1 3

0

0

0

0 0

1

1

0

2 4

0

1

1

0 1

1

2

1

2 5

0

2

0

1 2

1

0

1

1 3

0

0

0

0 0

1

1

0

2 4

0

1

1

0 1

1

2

1

2 5

0

2

0

1 2

1

0

1

1 3

0

0

0

0 0

1

1

0

2 4

0

1

1

0 1

1

2

1

2 5

0

2

0

1 2

1

0

1

1 3

0

0

0

0 0

1

1

0

2 4

0

1

1

0 1

1

2

1

2 5

0

2

0

1 2(a) NAND-NXOR (b) Collatz

Figure 2 Two small tiles sets. (a) NAND-NXOR tile set with 4 tile types. The south side
computes the NAND of north and east, and west computes the NXOR of north and east. (b) Collatz
tile set with 6 tiles, named for its relationship to the Collatz problem.

them that dictates the direction of information flow) and have no cycles. Since we allow
for fanout of 0, 1 or 2 per site, one needs to generalise the typical notion of maze-solving
somewhat: Are walkers replicating themselves to handle fanout of 2? Or are they leaving
little bit-encoding messages for other walkers/themselves to pick up later? How do they
handle fanin of 2? These considerations lend themselves to various models, however here
we focus on having information-manipulating tiles flow through the maze, much like lava
flowing down a complex volcanic hillside, but clever lava that computes as it moves. Our
model is called the Maze-Walking Tile Assembly Model, or Maze-Walking TAM.

The programmer specifies a set of square tiles, with glues on the sides. A problem
instance, or maze, is a set of polyominos, painted with information-encoding glues. Starting
at special input locations, tiles attach one at a time, asynchronously and in parallel, wherever
they match glues on two sides.2 A typical maze can be thought of as sending a unary
(“route finding”) signal, whereas our mazes send bits and allow them to meet, interact and
be changed.

In this setting, if we allow arbitrary numbers of tiles (or a clever enough walker, or
a complex enough asynchronous cellular automaton rule) it is not difficult to see how to
simulate arbitrary Boolean circuits. Take a circuit, make it planar by replacing each wire
crossing with a crossover gate, then lay the circuit out on a maze-like grid with input gates
on the east, and the output gate on the west. Then simply build a maze with walls tracing
out the circuit wiring diagram and painted with arrows (wire directions) and logic gates, and
require the output bit(s) to satisfy the circuit logic. The question we ask is: How clever does
the maze-solver need to be in this computational setting? More precisely, we ask how many
tile types are needed to execute any Boolean circuit in the Maze-Walking TAM?

1.1 Main results
Our first main result is for the NAND-NXOR tile set shown in Figure 2(a). In the theorem
statement, by simulated we mean that the function computed by the circuit c is also computed
by an instance of the Maze-Walking TAM (see Section 3.1).

2 The model is equivalent to the abstract Tile Assembly Model [39, 52, 35, 16], with multiple disconnected
seed assemblies, and where we have all tile bindings are by attachment to an assembly by two matching
glues.

DNA 27

8:4 Small Tile Sets That Compute While Solving Mazes

▶ Theorem 1. Any Boolean circuit c is simulated by the 4-tile NAND-NXOR tile set in the
Maze-Walking TAM using assemblies containing ≤ 6 tiles per gate and 34 tiles per crossover
gate in a planarisation of c.

Our second main result is for the Collatz tile set which has 6 tiles (Figure 2(b)) and is
so-named because of its ability to embed iterations of the Collatz function (see Appendix A).

▶ Theorem 2. Any Boolean circuit c is simulated by the 6-tile Collatz tile set in the Maze-
Walking TAM using assemblies containing ≤ 14 tiles per gate and 33 tiles per crossover gate
in a planarisation of c.

We finish this section with a discussion of our two tile sets and some future directions.
Section 2 sets these results in the context of other theoretical results and experimental
directions. Section 3 defines the Maze-Walking TAM. We prove our two main theorems in
Sections 4 and 5. Appendix A gives some background on the Collatz tile set.

1.2 Discussion: the NAND-NXOR and Collatz tile sets
Theorems 1 and 2 place focus on the size of assemblies that simulate gates. They omit
estimates of the additional tiles (assemblies) required for the circuit wiring diagram, which
warrants comment. Our work is partially motivated by a desire to build instances of the
Maze-Walking TAM, and in doing so we would highly optimise any implemented circuit
wiring diagram. Example circuit implementations, that recognise 3-bit prime numbers, are
shown in Figures 3(j3) and 5(j1), both of which are optimised for short wire length. If we
want to have a general wiring procedure for all circuits, and thus not optimised for particular
classes of circuits, the overhead incurred will be rather large, typically O(s2) space for a
circuit with s gates [9]. In practice we would not use such overly-bloated constructions.

The NAND-NXOR tile set was found by explicitly trying to find a small tile set: hence
its use of a universal gate (NAND) on the south side (output). The NXOR gate (west side)
helps with wire routing allows for even smaller gates than going via NAND-only-based circuit
simulation. The Collatz tile set came out of thinking about iterations of the Collatz function
in a local digit-by-digit, or tile-by-tile, way. In [46] a cellular automaton-like model is shown
to simulate instances of the Collatz function – assemblies of our Collatz tile set show up in
iterations (configurations) of that model. The Collatz tile set, along with the non-local rule
in [46] (which can be simulated by the addition of two additional tile types, see Appendix A),
is expressive enough to run Collatz. Here we applied computer search to the Collatz tile set
to search for seed structures and assemblies that could be used to compute more generally.
We leave as an open question as to what extent such structures, or other computational
structures, naturally appear during iterations of the Collatz function – something the Collatz
tile set might help us see.

For running Boolean circuits, if the only metric we cared about was tile set size, the
NAND-NXOR tile set wins. However, looking beyond circuits, the Collatz tile set is capable
of directly implementing certain arithmetical operations, such as computing powers of 2,
powers of 3, and converting from base 3 to base 2 [46] (see Appendix A). These constructions
use much simpler connected seeds than those given in the proof of Theorem 2, and lead to
more efficient (smaller) assemblies than computing via tiles-simulating-circuits, for these
kinds of arithmetical problems. In this paper, we used computer search to find that tiles
capable of such arithmetical operations are also capable of running circuits, we leave it as
future work to discover what other operations they are efficiently capable of.

M. Cook, T. Stérin, and D. Woods 8:5

Theorems 1 and 2 prove that the problem of predicting a tile at distance n from a size n

connected seed, is P-hard (and in fact it is also P-complete if we assume directed/deterministic
growth [43] since a deterministic Turing Machine simulates the entire assembly process in
time polynomial in n). It is natural to ask if having maze-like (i.e. disconnected) seeds is
necessary for such computational efficiency: we conjecture “yes”. That is, for both tile sets,
we conjecture that prediction of the tile type that goes at a given position, at distance n

from a size n connected seed and assuming directed growth, is in the complexity class NL.
In particular this would mean that simulation of arbitrary Boolean circuits in the direct
manner shown here is impossible, assuming the widely-believed conjecture NL ̸= P. For the
Collatz tile set, and for connected seeds of a certain form, we know that prediction is in NL
(Appendix A). If one could show that prediction is P-hard, for seeds/inputs that represent
natural numbers that occur during iterations of the Collatz function, one could in fact show
that the Collatz process embeds rather powerful computational capabilities. Certainly a
result of that form would change the perspective on the Collatz conjecture itself.

Our results were developed with assistance of a simulator: https://github.com/tcosmo/
mawatam. The reader is invited to experience the results of this paper through the simulator.

1.3 Future work

Experimentally, future work involves implementing instances of the Maze-Walking TAM
in the wet-lab, for instance, using a DNA origami as the underlying structure to encode
maze seeds [7], building on the systems discussed in Section 2.2. One experimentally-relevant
criticism of this work could be to ask why we focus on such small tile sets when we know
that with DNA it is possible to build systems with hundreds of algorithmic DNA tiles [57].
First, we would say that no algorithmic system of such a high tile complexity, and that runs
on the back of a DNA origami, has been engineered to date. Secondly, and of more relevance
to this work, is that we are exploring the fundamental boundary and complexity trade-offs
between computational power and systems size.

Theoretically, our work leaves open the following questions:
Can Boolean circuit simulation, or any kind of universal computation, be achieved in the
Maze-Walking TAM using tile sets with less than 4 tiles?
Can interesting behaviour occur in the Maze-Walking TAM with just 1 tile? (At first
sight, this question may look odd, however one could imagine encoding a bit by the
absence or presence of a tile at a given position in the final assembly, leaving room for
expressiveness in the Maze-Walking TAM with 1 tile.)
Is the Maze-Walking TAM, with ≤ 4 tiles, intrinsically universal [17, 56] for the aTAM?

2 Related work: theoretical and experimental

2.1 Other routes to finding small universal tile sets

Existing small/simple universal models of computation [58] include the efficiently universal [11,
30] 2-state one-dimensional cellular automaton Rule 110, as well as universal Turing machines
with just 22 instructions (5 states & 5 symbols, or 4 states & 6 symbols) [31, 38] or even just
with 8 instructions (3 states, 3 symbols, but with the tape input embedded in an infinitely
repeated pattern) [32].

DNA 27

https://github.com/tcosmo/mawatam
https://github.com/tcosmo/mawatam

8:6 Small Tile Sets That Compute While Solving Mazes

In the context of the theory of molecular computing, and algorithmic self-assembly in
particular, the smallest computationally universal self-assembling tile set to date seems to
be a 7-tile system that can be derived from [57].3 However, that construction leads to large
spatial blowup via Rule 110 simulation of O(s4 log2 s) for circuits of size s (Corollary S1.3,
SI-A [57]). Another construction uses O(w2d) tile types (for a depth d, width w circuit),
essentially by hardcoding the routing of the circuit diagram in tile types (Theorem S1.5, SI-
A [57]). Even direct implementation of a small universal Turing machine as a self-assembling
tile set, using known methods, although presumably achievable with a few dozen tile types,
would require large input encodings [58]. Other methods to obtain a single universal, or
intrinsically universal, tile set, or even a single tile, also use indirect and large, albeit
constant-factor in some cases, encoding methods [17, 15, 14, 43].

By allowing for more tile types than our constructions, one could have a maze with glues
that explicitly encode gate type (one of sixteen), as well as glues encoding two bits at a time:
that way a single tile attachment event could read two bits and a gate type simultaneously.
This idea yields a constant-size tile set with perhaps a few dozen tile types. Although larger
than ours, such an approach would have experimental merit. Cantu, Luchsinger, Schweller,
and Wylie simulate Boolean circuits with tiles in a covert manner [5].

2.2 DNA-based implementations and related models
As future work we plan to give DNA-based designs and implementation for the Maze-Walking
TAM. We imagine a 2D information-encoding structure that provides the maze pattern, for
example a single flat DNA origami [40], or several DNA origamis tiled together [55, 27, 48, 49],
or perhaps even a suitable DNA DX-tile, or single-stranded tile, structure [50, 53, 59, 57].
DNA-based systems for maze-solving have been implemented experimentally: using DNA
origami (for the maze) along with hairpin activation [7] or controlled opening of track
locations [51] for movement. The phenomenon of DNA condensation was also used for
maze exploration [34]. Computation via tile-attachment in the Maze-Walking TAM could be
implemented using design principles from algorithmic DNA self-assembly [57, 19], DNA-based
molecular walkers that walk on 1D tracks and 2D DNA origami surfaces [60, 42, 41, 33, 20, 47],
and other DNA systems that compute on surfaces [3, 4, 44, 6, 8]. Finally, there has been some
theoretical and simulation-based analyses of molecular walkers [13, 37, 26, 12] including maze-
solving walkers [45], as well as papers that study computation on surfaces [36, 10, 2] using a
similar setup to ours but without molecular orientation and using different rule formats. All
of these models (and ours) describe sub-classes of asynchronous cellular automata.

3 Definitions

3.1 Maze-Walking TAM definition
A maze is collection of non-intersecting polyominos positioned on Z2 where each exterior
unit-length square-side polyomino edge is labeled with a glue g = (g′, p) where g′ ∈ G is
from a finite set of glue types G, that includes the null glue, and p ∈ {z + 0.5 | z ∈ Z}2 is a
glue position. An instance of the Maze-Walking TAM T = (T, M) has a set of tile types T ,
where each t ∈ T is a unit-sized square whose four sides labelled with four glue types from

3 In Figure S4(b), SI A, [57], gates g and f can be used to simulate Rule 110, and that in turn can be
simulated by 4 tiles each. These 8 tiles can be further optimised to 7 tiles by sharing one glue type
between both half-layers.

M. Cook, T. Stérin, and D. Woods 8:7

G, and a maze M . The process of self-assembly proceeds by tiles (instances of tile types)
attaching asynchronously, and one at a time, wherever they match non-null glues on two sides
(i.e. two-sided cooperative binding in the abstract Tile Assembly Model [52, 39, 35, 16]). An
assembly is a maze with tiles attached (thus, assemblies may be connected or disconnected in
2D), and a terminal assembly is an assembly such that no tile can be attached.

The tile set T is said to compute the function f : {0, 1}n → {0, 1} in the Maze-Walking
TAM if there is a maze M ′ with n empty (no tile) tile positions p0, p1, . . . , pn−1 ∈ Z2 and an
empty (no glue) output glue position o ∈ {z + 0.5 | z ∈ Z}2, such that adding n input tiles
at p0, p1, . . . , pn−1 to M ′ is the new maze called Mx where the process of self-assembly on
Mx yields a set of terminal assemblies that each have the bit f(x) encoded by the glue at
position o. (Here, we imagine a many-one encoding function from glue types to bits.)

Maze-Walking TAM systems may be directed (one terminal assembly), or undirected
(several terminal assemblies). In this paper the systems we study are directed, which is
equivalent to saying that, for all sequences of tile additions, at each position p ∈ Z2, there is
at most one choice for what tile appears at p. Thus, in this paper, for a function f , for each
x ∈ {0, 1}n there is an associated maze Mx such that Tx = (T, Mx) has a single terminal
assembly that is said to compute f(x). Finally, a Boolean circuit c (defined below) is said to
be simulated by a tile set if the tile set computes the same function as c.

3.2 Boolean circuit definition

A Boolean circuit is a directed acyclic graph, where edges are called wires, and nodes are
called gates and are labelled. In this paper, gates have out-degree 1 or 2, except for output
gates that have out-degree 0. Also, a node’s label is one of: input (with in-degree 0),
output (with in-degree 1, out-degree 0), constant 0 or constant 1 (in-degree 0), fanout gates
(in-degree 1, out-degree 2; makes two copies of its input), or is one of the compute gates (¬,
NOT of in- and out-degree 1, or any of the in-degree 2 out-degree 1 gates that compute
functions on bits, e.g. OR, AND, NAND, NXOR,4 etc.). Also, we define an additional gate
called a crossover gate (in- and out-degree of 2) which swaps its inputs, used to planarise a
non-planar circuit (see below). Circuits compute, from the input gates and constant gates to
the output gate, by modifying bits according to the functions specified by gate labels.

The size of a circuit is its number of gates, and its depth is the length of the longest path
from any input gate to the output gate. A circuit c computes a Boolean (no/yes) function
f : {0, 1}n → 0, 1 on n ∈ N Boolean variables, by its gates computing the bit value at the
output in the usual way from the n input bits. A circuit is said to be planar if its graph is
planar (can be laid out in the plane without wire crossings).

A planarisation of a Boolean circuit c is another Boolean circuit ĉ where ĉ computes the
same function as c, has a planar embedding in R2, and ĉ has exactly the gates of c plus zero
or more 2-in 2-out crossover gates (that allow crossing of signals between a pair of wires
that would otherwise intersect in the plane). In other words, c is converted to ĉ by adding
crossover gates so that ĉ has a planar embedding. An example is shown in Figure 3(j2). A
planar Boolean circuit c is a Boolean circuit where ĉ = c, i.e. ĉ has zero crossover gates.

DNA 27

8:8 Small Tile Sets That Compute While Solving Mazes

Figure 3 Circuit-simulating gadgets for the NAND-NXOR tile set. In all parts of the construction
growth proceeds to the west and south (and never north nor east). (a) NAND-NXOR tile set. Seed
structures to implement (b) horizontal west-growing and (c) vertical south-growing wires. Examples
of communicating of 0 and 1 are shown for each. Vertical wires are of even length; in cases where
odd length is required we use a horizontal NOT gates during a turn from south-to-west (see proof
of Theorem 1). (d) Turn west-to-south, (e) turn south-to-west, (f) fanout west-to-south, and (g)
fanout south-to-west. The two isolated unit-size squares in (f,g) are there only to prevent unintended
cooperative growth after a fanout. (h1–5) Various logic gates (full set in Figure 4). (i1) Crossover
gate with an example in (i2) with design based on the 3 XOR gates construction given in [5]. (j1) An
example Boolean circuit that decides whether a 3-bit number is prime. (j2) Circuit converted to
a grid layout and (j3) implemented using NAND-NXOR tile gadgets. The implementation in (j3)
is somewhat optimised for space efficiency. (j4) The terminal assembly (execution) for the circuit
example on non-prime input 610 = 1102.

M. Cook, T. Stérin, and D. Woods 8:9

4 Four tiles: the NAND-NXOR tile set

The NAND-NXOR tile set is depicted in Figure 3(a). One of the ideas underlying all of the
constructions in this paper can be understood by the way horizontal wires are implemented
with the NAND-NXOR tile set, Figure 3(b). A specific n × 1 polyomino seed advertises
“1” glues along its south side, which facilitates propagation to the west of any bit presented
as a glue coming from the east, following the assembly rules prescribed by the tile set.
As described in the proof of Theorem 1, the implementation of Boolean circuits using the
NAND-NXOR tile set is based on canonical constructions of logic gates exploiting NAND,
NOT and NXOR functions as primitive building blocks, Figure 3(h1–h5).

▶ Theorem 1. Any Boolean circuit c is simulated by the 4-tile NAND-NXOR tile set in the
Maze-Walking TAM using assemblies containing ≤ 6 tiles per gate and 34 tiles per crossover
gate in a planarisation of c.

Proof. A circuit is simulated by appropriately placing gadgets together to form a maze.

Tiles simulating wires and gates. We will show that the gadgets in Figure 3 are building
blocks (for a maze) that advertise glues designed to force directed growth when given
appropriate bit-encoding glue input(s).

Figure 3(b,c) details how the NAND-NXOR tile set simulates horizontal and vertical wires.
Vertical tile-wires have a parity constraint: in a vertical wire carrying the bit x ∈ {0, 1}, every
second tile correctly advertises x to the south, and every other tile advertises its negation ∼x.
If the circuit’s layout requires a turn from south-to-west, from an odd length vertical wire
(advertises ∼x) then a single horizontal negation gadget (Figure 3(h1, right)) is placed at
the bottom of the wire to change the signal to x (correct the “error”). With that correction,
vertical and horizontal wire segments can be used to send a signal from the origin to any
location in the south-west quadrant of Z2.

Figure 3(d–g,h1–h5,i1) shows two turns (south-to-west and west-to-south) and two kinds
of fanout-2 gates, as well as a number of compute gates and a crossover gate. In addition
NAND, and NXOR, gates are shown in Figure 3(a): present inputs x, y at North and East,
and read NXOR(x, y) on West and/or NAND(x, y) on South. (For completeness, Figure 4
gives direct simulations of all 16 possible gates with 1 or 2 inputs and one output.) No gate
is larger than NOR (see Figure 3(h5) and Figure 4), which uses 6 tiles. The crossover gate
is simulated using 34 tiles (intuitively, it uses a well-known idea of implementing crossover
with three XOR gates and three fanout gates). This gives the size bounds on tiles per gate
and crossovers in the theorem statement.

We claim that each gadget in Figures 3(b–g,h1–h5,i1) and Figure 4 is directed, meaning
that after input glue(s) are given to the gadget, then for each unit-sized outlined/dotted
empty square region in the gadget there is exactly one tile type that can be placed. This can
be seen by noting that (i) for all gadgets, and all inputs to a gadget, tiles attach using their
North and East sides only, and by (ii) the fact that the NAND-NXOR tile set is deterministic
on North and East sides.

Laying the circuit out on a grid. For the Boolean circuit c, let ĉ be its planarisation as
defined in Section 3.2; a planarisation always exists – just draw the circuit on the plane
replacing each of the s′ ∈ N wire crossings with a crossover gate (various planarisations may
be used to optimise s′, or other circuit parameters).

4 In this paper we use the notation NXOR(x, y) = NOT(XOR(x, y)) (and read “NOT exclusive OR”) to
denote what is more commonly, but confusingly, written XNOR (read “exclusive NOR”).

DNA 27

8:10 Small Tile Sets That Compute While Solving Mazes

Second, we layer c: meaning that we organise gates (including crossover gates) of c into
consecutive layers with layer 0 containing all input and constant gates, and so that layer i

contains gates that take their inputs from the outputs of gates in layers < i. The number of
layers is equal to the depth d of c, with the output gate being the sole gate in layer d − 1.
More precisely, layer i is located at x-coordinate −i (our convention is to draw circuits from
right to left).

Third, we increase the height between gates, and width between layers, so that there is
enough room to draw all wires so that they are composed of horizontal and vertical segments
only (where information flows to the west and to the south, respectively), that meet at
right angles (thus wires have south-to-west and west-to-south turns, only). We call the
resulting circuit a grid-layout circuit, and an example given in Figure 3(j2). Using the gadgets
described above, the maze/seed structure traces out the wires and gate locations according
to the south-west grid-layout circuit, leaving enough room so that gates and wires to not
intersect.

Computation. For any circuit c we have described (at a high level) how to lay out a
maze M ′, in the notation of Section 3.1. We next need to encode circuit inputs, as follows.
Since input gates are instances of gates, we assume that in M ′ there are n tile positions
that are empty and positioned adjacent to wires (so that their bit values will feed into a
layer of gates via horizontal wire gadgets). Let n be the number of inputs to c and let
x = x0x1 · · · xn−1 ∈ {0, 1}n denote an input to c. To the maze M ′ we add n more tiles so
that the n input glue positions of the maze are of respective types x0x1 · · · xn−1, to give an
maze Mx that encodes x (the example in Figure 3(j4) has 3 encoded input bits).

Assembly proceeds, starting at each of the n input glues in parallel (and at any positions
that encode 0/1 constant bits), according to the Maze-Walking TAM definition (Section 3.1).
Throughout the entire self-assembly process, at each position there is exactly one tile type
that can be placed (this is because it is true for individual gadgets as already argued). Also,
the self-assembly process terminates, for the simple reason that no tile can attach outside of
the bounding box of the maze Mx. Thus one terminal assembly is eventually produced, that
by its definition, encodes an execution of the circuit c with the output bit presented at the
glue position that represents the simulated circuit output gate (labeled “out” in the example
in Figure 3(j3)). ◀

▶ Example 3. Figure 3(j1-j4) illustrates the general construction described in Theorem 1 in
the context of a circuit that recognises prime numbers on 3 bits, i.e. the circuit will output 1
if and only if xyz ∈ {010, 011, 101, 111} which are the binary encodings of numbers {2, 3, 5, 7}.
The circuit implements the formula: (((NOT x) AND y) OR (x AND z)) and uses one
crossover as well as one fanout gate, Figure 3(j1). To facilitate the final Maze-Walking TAM
implementation, the circuit is laid out on a grid using only south-to-west and west-to-south
turns, Figure 3(j2). Then, the circuit is implemented with tiles, Figure 3(j2), using the
gadgets of Figure 3 and finally, the circuit executes on input 1102 = 6 and outputs 0 as 6
is not prime, Figure 3(j4). Note two details: (1) The implementation of the crossover gate,
Figure 3(i1), contains three embedded XOR gadgets and three embedded fanout gadgets –
using tiles to implement a known construction to simulate crossover with XORs. (2) The
way the OR gate is implemented in Figure 3(j3) (yellow overlay) is slightly different than
Figure 3(h3) as the negation of the east-coming input is performed vertically instead of
horizontally; this is an optimisation that exploits the difference in length parity of the two
vertical wires coming in to the gate.

M. Cook, T. Stérin, and D. Woods 8:11

0

0000

0

0001

AND

0010 0100 0101

Y

0110

XOR

0111

OR

0011
X

1000

NOR

1001

NXOR

1010

~Y

11011100

~X

1110

NANDX YXY

1111
1

1011

0

0

Figure 4 Implementation of all 2-input 1-output Boolean gates using gadgets over the NAND-
NXOR tile set in the Maze-Walking TAM. The gadgets are ordered with respect to their truth table,
which refers to the 4-bit output of the 4 respective inputs 00, 01, 10, 11; i.e. the canonical truth-table
definition of a 2-in 1-out gate (we use the same notation for gates with one (NOT, identity) or
zero inputs (constants)). For instance, the truth table 1101 encodes gate g such that g(00) = 1,
g(01) = 1, g(10) = 0 and g(11) = 1. The common English name of the gate is also given when there
is one. The constant gadgets (0000 and 1111) are used to simulate constant gates (0/1) and circuit
input gates xi ∈ {0, 1}, and require the presence of an additional glue (not shown) to trigger growth,
e.g. by being placed next to a wire gadget as shown in Figure 3(j4).

5 Six tiles: the Collatz tileset

In this section, we illustrate efficient Boolean circuit simulation in the Maze-Walking TAM
with the Collatz tile set which consists of of 6 tile types and 3 glues and is shown in
Figure 2(b).

On the one hand, the NAND-NXOR tile set was explicitly designed to compute, via the
placement of a single tile, the universal NAND function. From there it was augmented (with
bits on the west sides) that facilitate simulation of circuit wiring, and efficient simulation (few
tiles) of non-NAND gates. On the other hand, the Collatz tile set came about from studies
on the Collatz problem. Specifically, glue patterns in some tiled regions (e.g. rectangles)
relate to notoriously hard mathematical problems such as the Collatz conjecture [46] or an
open problem of Erdös’ [18, 25]: Is it the case that for all n > 8 there is at least one 2 in
the ternary representation of 2n? For more details see Appendix A. We noticed that this
pattern complexity could be leveraged, with the aid of computer search5, to build gadgets
for computation in the Maze-Walking TAM (Figure 5).

▶ Theorem 2. Any Boolean circuit c is simulated by the 6-tile Collatz tile set in the Maze-
Walking TAM using assemblies containing ≤ 14 tiles per gate and 33 tiles per crossover gate
in a planarisation of c.

5 Computer search was performed through the Maze-Walking TAM simulator: https://github.com/
tcosmo/mawatam

DNA 27

https://github.com/tcosmo/mawatam
https://github.com/tcosmo/mawatam

8:12 Small Tile Sets That Compute While Solving Mazes

Figure 5 Circuit-simulating gadgets for the Collatz tile set. Growth proceeds to the west and
south exclusively. (a) the Collatz tile set. Seed structures to implement (b) horizontal west-growing
and (c) vertical south-growing wires. Horizontal wires are of even length. When turning to the
south the appropriate turn can be used to transmit the signal (d1) or its negation (d2). (e) Fanout
gadgets depending on the parity of the incoming horizontal wire, if the length is odd, the gadget
also negates the west-going signal. (f) The smallest crossover gate found by computer search. (g)
Common Boolean gates, also found by computer search. (h) The buffer gadget is used to change the
parity of an horizontal wire. (i) Turn south-to-west. (j1) Collatz-tileset implementation of the 3-bit
prime recognition circuit and (j2) execution of the circuit on 710 = 1112 which is prime.

M. Cook, T. Stérin, and D. Woods 8:13

Proof.
Tiles simulating wires and gates. We will show that the gadgets in Figure 5 can be used
to build mazes that simulate arbitrary Boolean circuits and that the growth triggered by the
placement of input tiles is directed, which in turn implies that the correct bit is output by
the simulation of c on some binary input word x.

Figure 5(b,c) details how the Collatz tile set simulates horizontal and vertical wires.
Horizontal tile-wires have a parity constraint: in a horizontal wire carrying the bit x ∈ {0, 1},
every second tile correctly advertises x to the west, and every other tile advertises its
negation ∼x. To handle this, there are two west-to-south turns, one for turning from even
length, and one for turning from odd length, horizontal wires Figure 5(d1). Only west-to-
south fanout is used in the constructions with this tileset, Figure 5(e). This fanout gate
comes in two variants whether it is applied at an even or an odd horizontal wire position. If
the gadget is applied at an odd wire position, it has the particularity of negating the output
west-going signal.

Negating a signal (either to correct a horizontal parity effect, or to simulate a NOT gate)
can be achieved in several ways. If the signal ever turns south, this can easily be done thanks
to Figure 5(d2) which implements both a turn and a negation at the same time. If the signal
never turns south, the programmer can use an odd-length horizontal wire which implements
a negation. If using an odd-length horizontal wire is not possible given the constraints on
circuit layout, the programmer can use the horizontal buffer gadget Figure 5(h) which has
the effect of copying the incoming signal to the next immediate column to the west which
inverts the parity constraint of the horizontal wire and allows it to reproduce the behavior
of an odd-length horizontal wire. This method is used in Figure 5(j1), for instance on the
horizontal wire which connects the input Z to its target AND gate.

Glue labelled polyominos, or seed structures, for south-to-west turns is shown in Figure 5(i).
Notably, a growth stopper (1 × 1 polyomino, with four null glues) is used to prevent spurious
growth that would happen in the north-west direction otherwise.

A crossover gadget seed structure is given in Figure 5(f), it was the smallest found by
computer search and it costs 33 tiles. The gate preserves the horizontal alignment of the
incoming northern bit: it exits at the south of the gate at the same x-position that it entered.
However, the incoming eastern bit is deviated three units to the south.

Seed (polyomino) structures that simulate Boolean (compute) gates are rectangular and
were found by computer search using the input convention that signals come from the east
and, if there are two of them the inputs should be one vertical block apart6. Figure 5(g1,g2)
gives the seed structure of an OR gate and an AND gate. For completeness, Figure 6 gives
the implementation of all Boolean gates, the biggest of them is NOR with a cost of 14 tiles.
This gives the tiles bounds per gate and crossover in the theorem statement. Remarkably,
seed structures for AND, OR, NAND, NOR are very similar in the sense that they differ by
at most 2 glues.

We claim that each gadget in Figure 5 and Figure 6 is directed, meaning that after input
glues are supplied to the gadget then for each dotted region in the gadget there is exactly one
tile type that can be placed. This can be seen by noting that (i) all gadgets use either North
and East sides to attach or South and East sides to attach (South and East attachments
are only used for horizontal wires and turn south-to-west gadgets, Figure 5(b,i)), (ii) North

6 Using computer search, we were able to find rectangular seed structures of Boolean gates corresponding
to all the input conventions that we experimented with. This leads us to believe that the ability of the
Collatz tileset to simulate Boolean gates is not tied to a particular input convention.

DNA 27

8:14 Small Tile Sets That Compute While Solving Mazes

and East attachments cannot compete with South and East attachments because all signals
travel in the south-west direction and South and East constraints are never given directly by
the seed but occur after tiles attach, and (iii) the Collatz tile set is deterministic on North
and East sides and South and East sides.

Laying the circuit out on a grid. We use the same circuit layout technique given in the
the proof of Theorem 1.

Computation. Similarly to the proof of Theorem 1, throughout the entire assembly process,
because of the directedness of all the gadgets that we use, at each position there is exactly
one tile type that can be placed. Thus one final assembly is produced, that encodes an
execution of the circuit, and in particular outputs the same bit as the n-bit circuit c on any
input word x ∈ {0, 1}n. ◀

▶ Example 4. The 3-bit prime recognition circuit in Figure 3(j1,j2) is implemented using
the Collatz tile set in Figure 5(j1,j2).

0000

0

0001

AND

0010 0100 0101

Y

0110

XOR

0111

OR

0011
X

0

0

0

0

0

Y

X X

Y

0

0

0

0

1

0

0

0

0

Y

X
1

YY
1 1

0

X
0

0

Y

0

0

0

Y

X

1

0

1000

NOR

1001

NXOR

1010

~Y

11011100

~X

1110

NAND

1111
1

1011

0

0

0

Y

X

1

X YXY

X
0

0

Y

1
Y

1

1

0

0

0

Y

X

1

1

0

X
1 0

0

Y

X

1

0

0

0

Y

X
1

Figure 6 Implementation of all 2-input 1-output Boolean gates using gadgets over the Collatz
tile set in the Maze-Walking TAM. The gadgets are ordered with respect to their truth table which
refers to the 4-bit output of the 4 respective inputs 00, 01, 10, 11; i.e. the canonical truth-table
definition of a 2-in 1-out gate (we use the same notation for gates with one (NOT, identity) or
zero inputs (constants)). For instance, the truth table 1101 encodes gate g such that g(00) = 1,
g(01) = 1, g(10) = 0 and g(11) = 1. The common English name of the gate is also given when there
is one. The constant gadgets (0000 and 1111) are used to simulate constant gates (0/1) and circuit
input gates xi ∈ {0, 1}, and require the presence of an additional glue (not shown) to trigger growth,
e.g. by being placed next to a wire gadget as shown in Figure 5(j2).

M. Cook, T. Stérin, and D. Woods 8:15

References
1 Eric Allender, David A Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha

Roy. Planar and grid graph reachability problems. Theory of Computing Systems, 45(4):675–
723, 2009.

2 Tatiana Brailovskaya, Gokul Gowri, Sean Yu, and Erik Winfree. Reversible computation using
swap reactions on a surface. In Chris Thachuk and Yan Liu, editors, DNA Computing and
Molecular Programming, pages 174–196, Cham, 2019. Springer International Publishing.

3 Hieu Bui, Vincent Miao, Sudhanshu Garg, Reem Mokhtar, Tianqi Song, and John Reif. Design
and analysis of localized DNA hybridization chain reactions. Small, 13(12):1602983, 2017.

4 Hieu Bui, Shalin Shah, Reem Mokhtar, Tianqi Song, Sudhanshu Garg, and John Reif. Localized
DNA hybridization chain reactions on DNA origami. ACS Nano, 12(2):1146–1155, February
2018.

5 Angel A Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Covert computation in
self-assembled circuits. Algorithmica, 83(2):531–552, 2021. arXiv preprint: arXiv:1908.06068.

6 A. R. Chandrasekaran, O. Levchenko, D. S. Patel, M. MacIsaac, and K. Halvorsen. Addressable
configurations of DNA nanostructures for rewritable memory. Nucleic Acids Res, 45(19):11459–
11465, November 2017.

7 Jie Chao, Jianbang Wang, Fei Wang, Xiangyuan Ouyang, Enzo Kopperger, Huajie Liu, Qian Li,
Jiye Shi, Lihua Wang, Jun Hu, Lianhui Wang, Wei Huang, Friedrich C. Simmel, and Chunhai
Fan. Solving mazes with single-molecule DNA navigators. Nature Materials, 18(3):273–279,
March 2019.

8 Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig. A
spatially localized architecture for fast and modular DNA computing. Nature Nanotechnology,
12(9):920–927, September 2017.

9 Marek Chrobak and Thomas H Payne. A linear-time algorithm for drawing a planar graph on
a grid. Information Processing Letters, 54(4):241–246, 1995.

10 Samuel Clamons, Lulu Qian, and Erik Winfree. Programming and simulating chemical reaction
networks on a surface. Journal of The Royal Society Interface, 17(166):20190790, 2020.

11 Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15, 2004.
12 Neil Dalchau, Harish Chandran, Nikhil Gopalkrishnan, Andrew Phillips, and John Reif.

Probabilistic analysis of localized DNA hybridization circuits. ACS synthetic biology, 4(8):898–
913, 2015.

13 Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J. Turberfield. DNA
walker circuits: Computational potential, design, and verification. In David Soloveichik and
Bernard Yurke, editors, DNA Computing and Molecular Programming, pages 31–45, Cham,
2013. Springer International Publishing.

14 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz, Robert T.
Schweller, Andrew Winslow, and Damien Woods. One tile to rule them all: Simulating any tile
assembly system with a single universal tile. In ICALP: Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming, volume 8572 of LNCS, pages 368–379.
Springer, 2014. Arxiv preprint: arXiv:1212.4756.

15 Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Sum-
mers, and Damien Woods. The two-handed tile assembly model is not intrinsically univer-
sal. In ICALP: Proceedings of the 40th International Colloquium on Automata, Languages,
and Programming, volume 7965 of LNCS, pages 400–412. Springer, 2013. Arxiv preprint:
arXiv:1306.6710.

16 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55(12):78–88,
2012.

17 David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In FOCS: Proceedings of
the 53rd Annual IEEE Symposium on Foundations of Computer Science, pages 439–446. IEEE,
2012. Arxiv preprint: arXiv:1111.3097.

DNA 27

https://arxiv.org/abs/1908.06068
http://arxiv.org/abs/1212.4756
http://arxiv.org/abs/1306.6710
http://arxiv.org/abs/1111.3097

8:16 Small Tile Sets That Compute While Solving Mazes

18 Paul Erdös. Some unconventional problems in number theory. Mathematics Magazine,
52(2):67–70, 1979. doi:10.1080/0025570X.1979.11976756.

19 Constantine Evans. Crystals that count! Physical principles and experimental investigations
of DNA tile self-assembly. PhD thesis, Caltech, 2014.

20 Hongzhou Gu, Jie Chao, Shou-Jun Xiao, and Nadrian C Seeman. A proximity-based program-
mable DNA nanoscale assembly line. Nature, 465(7295):202–205, 2010.

21 William Hesse, Eric Allender, and David A Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System Sciences,
65(4):695–716, 2002.

22 Neil Immerman. Descriptive Complexity. Springer, 1999.
23 Jeffrey C. Lagarias. The 3x + 1 problem and its generalizations. The American Mathematical

Monthly, 92(1):3–23, 1985. URL: http://www.jstor.org/stable/2322189.
24 Jeffrey C. Lagarias. The 3x + 1 problem: An annotated bibliography (1963–1999) (sorted by

author), 2003. arXiv:math/0309224.
25 Jeffrey C. Lagarias. Ternary expansions of powers of 2. Journal of the London Mathematical

Society, 79(3):562–588, 2009. doi:10.1112/jlms/jdn080.
26 Matthew R Lakin, Rasmus Petersen, Kathryn E Gray, and Andrew Phillips. Abstract modelling

of tethered DNA circuits. In International Workshop on DNA-Based Computers, pages 132–147.
Springer, 2014.

27 Wenyan Liu, Hong Zhong, Risheng Wang, and Nadrian C Seeman. Crystalline two-dimensional
DNA-origami arrays. Angewandte Chemie International Edition, 50(1):264–267, 2011.

28 Cristopher Moore and Stephan Mertens. The nature of computation. Oxford University Press,
2011.

29 Niall Murphy and Damien Woods. AND and/or OR: Uniform polynomial-size circuits. In
MCU 2013: Machines, Computations and Universality. Electronic Proceedings in Theoretical
Computer Science (EPTCS), volume 128, pages 150–166, 2012. arXiv:1212.3282v2.

30 Turlough Neary and Damien Woods. P-completeness of cellular automaton Rule 110. In
ICALP: International Colloquium on Automata, Languages, and Programming, volume 4051,
part 1 of LNCS, pages 132–143. Springer, 2006.

31 Turlough Neary and Damien Woods. Four small universal Turing machines. Fundamenta
Informaticae, 91(1):123–144, 2009.

32 Turlough Neary and Damien Woods. Small weakly universal Turing machines. In International
Symposium on Fundamentals of Computation Theory, pages 262–273. Springer, 2009.

33 Tosan Omabegho, Ruojie Sha, and Nadrian C Seeman. A bipedal DNA brownian motor with
coordinated legs. Science, 324(5923):67–71, 2009.

34 Günther Pardatscher, Dan Bracha, Shirley S Daube, Ohad Vonshak, Friedrich C Simmel, and
Roy H Bar-Ziv. DNA condensation in one dimension. Nature nanotechnology, 11(12):1076–1081,
2016.

35 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13(2):195–224, 2014.

36 Lulu Qian and Erik Winfree. Parallel and scalable computation and spatial dynamics with
DNA-based chemical reaction networks on a surface. In Satoshi Murata and Satoshi Kobayashi,
editors, DNA Computing and Molecular Programming, pages 114–131, Cham, 2014. Springer
International Publishing.

37 John H. Reif and Sudheer Sahu. Autonomous programmable DNA nanorobotic devices using
dnazymes. Theoretical Computer Science, 410(15):1428–1439, 2009. Aspects of Molecular
Self-Assembly.

38 Yuri Rogozhin. Small universal turing machines. Theoretical Computer Science, 168(2):215–240,
1996.

39 Paul W K Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In STOC: Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 459–468. ACM, 2000.

40 Paul WK Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

https://doi.org/10.1080/0025570X.1979.11976756
http://www.jstor.org/stable/2322189
http://arxiv.org/abs/math/0309224
https://doi.org/10.1112/jlms/jdn080
https://arxiv.org/abs/1212.3282v2

M. Cook, T. Stérin, and D. Woods 8:17

41 Sudheer Sahu, Thomas H LaBean, and John H Reif. A DNA nanotransport device powered
by polymerase phi29. Nano letters, 8(11):3870—3878, November 2008.

42 William B Sherman and Nadrian C Seeman. A precisely controlled DNA biped walking device.
Nano letters, 4(7):1203–1207, 2004.

43 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007. doi:10.1137/S0097539704446712.

44 Tianqi Song, Shalin Shah, Hieu Bui, Sudhanshu Garg, Abeer Eshra, Daniel Fu, Ming Yang,
Reem Mokhtar, and John Reif. Programming DNA-based biomolecular reaction networks
on cancer cell membranes. Journal of the American Chemical Society, 141(42):16539–16543,
October 2019.

45 Darko Stefanovic. Maze exploration with molecular-scale walkers. In Adrian-Horia Dediu,
Carlos Martín-Vide, and Bianca Truthe, editors, Theory and Practice of Natural Computing,
pages 216–226, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

46 Tristan Stérin and Damien Woods. The Collatz process embeds a base conversion algorithm. In
Sylvain Schmitz and Igor Potapov, editors, RP2020: 14th International Conference on Reach-
ability Problems, volume 12448 of LNCS, pages 131–147. Springer, 2020. arXiv:2007.06979
[cs.DM].

47 Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi, Yae Lim
Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, Erik Winfree, and
Lulu Qian. A cargo-sorting DNA robot. Science, 357(6356), 2017.

48 Grigory Tikhomirov, Philip Petersen, and Lulu Qian. Fractal assembly of micrometre-scale
DNA origami arrays with arbitrary patterns. Nature, 552(7683):67–71, 2017.

49 Grigory Tikhomirov, Philip Petersen, and Lulu Qian. Programmable disorder in random DNA
tilings. Nature nanotechnology, 12(3):251, 2017.

50 Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from single-stranded
DNA tiles. Nature, 485(7400):623–626, 2012.

51 Shelley F. J. Wickham, Jonathan Bath, Yousuke Katsuda, Masayuki Endo, Kumi Hidaka,
Hiroshi Sugiyama, and Andrew J. Turberfield. A DNA-based molecular motor that can
navigate a network of tracks. Nature Nanotechnology, 7(3):169–173, March 2012. doi:
10.1038/nnano.2011.253.

52 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
1998.

53 Erik Winfree, Furong Liu, Lisa A Wenzler, and Nadrian C Seeman. Design and self-assembly
of two-dimensional DNA crystals. Nature, 394(6693):539–544, 1998.

54 Günther J. Wirsching. The dynamical system generated by the 3n + 1 function. Springer,
Berlin New York, 1998.

55 Sungwook Woo and Paul WK Rothemund. Programmable molecular recognition based on the
geometry of DNA nanostructures. Nature chemistry, 3(8):620, 2011.

56 Damien Woods. Intrinsic universality and the computational power of self-assembly. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
373(2046):20140214, 2015.

57 Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik
Winfree. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Nature, 567(7748):366–372, 2019.

58 Damien Woods and Turlough Neary. The complexity of small universal Turing machines: A
survey. Theoretical Computer Science, 410(4-5):443–450, 2009.

59 Hao Yan, Thomas H. LaBean, Liping Feng, and John H. Reif. Directed nucleation assembly
of DNA tile complexes for barcode-patterned lattices. Proceedings of the National Academy of
Sciences, 100(14):8103–8108, 2003.

60 P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield, and J. H. Reif. A unidirectional DNA walker
that moves autonomously along a track. Angewandte Chemie, 43(37):4906–4911, September
2004.

DNA 27

https://doi.org/10.1137/S0097539704446712
https://arxiv.org/abs/2007.06979
https://doi.org/10.1038/nnano.2011.253
https://doi.org/10.1038/nnano.2011.253

8:18 Small Tile Sets That Compute While Solving Mazes

A Origins of the Collatz tile set

The Collatz problem is a notoriously hard open problem which lies at the intersection of
mathematics and computer science [23, 54, 24]. Formulated in the 30s, the Collatz problem
is dauntingly simple to express: consider the Collatz map T : N → N defined by T (x) = x/2
if x is even and T (x) = (3x + 1)/2 if x is odd. The Collatz conjecture states that iterating T ,
starting from any n ∈ {1, 2, 3, . . .}, eventually yields 1.

The Collatz tile set consists of six tiles, named “0” to “5”, which are depicted in
Figure 7(a1). Vertical glues (north and south) are binary digits (0 and 1) while horizontal
glues (east and west) are ternary digits (0, 1 and 2). Each tile is uniquely identified by its
north-east corner (pair of glues) or its south-east corner or its south-west corner. Tile names
are linked to the tile’s glues by the following arithmetical relation: for the tile named x (with
0 ≤ x < 6) we have:

x = 3N + E = 2W + S (1)

where N, E, W and S respectively denote the values of the North, East, West and South glues.
This tile set, among all tile sets which use binary (0, 1) vertical glues and ternary (0, 1, 2)
horizontal glues, is the largest tile set for which (1) holds, by the following argument. Indeed,
(1) corresponds to the Euclidean division of x by 3 and by 2, meaning that, for a given pair
(N, E) ∈ {0, 1} × {0, 1, 2} there is a unique corresponding pair (S, W) ∈ {0, 1} × {0, 1, 2}.
Since there are 6 different (N, E) pairs we deduce that there are exactly 6 different tiles with
binary vertical glues and ternary horizontal glues that satisfy (1). Moreover, analogous tile
sets can be generated for any relatively prime p, q (not only p = 2, q = 3), further suggesting
its naturalness as an object of study.

Computing Collatz trajectories with the Collatz tile set plus two more tiles. Together
with the two extra tiles depicted in Figure 7(a2), the Collatz tile set is able to assemble
Collatz trajectories starting from a straightforward north-east L-shaped seed as depicted in
Figure 7(b). Input to the Collatz iterations are given in binary on the north-most glues (with
LSB to the east). If the binary input x is of size n, we place n “S” on the vertical portion of
the seed (to the east). The assembly process is directed (i.e. deterministic in these sense of
which tile type is placed where) and, after it is finished, the nth Collatz iterate of the binary
input x, that is T n(x), will be written in ternary along the west-most glues of the assembly
(ignoring “S” glues). In the example of Figure 7(b) we read T 7(10010112) = 1213 meaning
that, in base 10, T 7(75) = 16. This phenomenon can be proven using the results of [46], more
precisely by identifying the Collatz tile set to the local rule of the CA-like system introduced
in [46] and the two additional tiles to the non-local rule in Figure (1a)[right] of [46]). In
practice, the two additional tiles are merely responsible for deleting trailing 0s in binary
(which corresponds to the /2 part of the Collatz map) while the Collatz tile set does the
heavier work of computing 3x + 1 in binary while maintaining a correspondence between
base 2 and base 3 encodings.

Predicting patterns produced by the Collatz tile set. The computational complexity of
predicting what tile will be placed at a given position of the square area defined by the
north-east L-shaped seed in Figure 7(b) is an open question [46]. However, if we restrict
ourselves to using the Collatz tile set alone, without the two additional tiles, the prediction
problem is in NL for each of the three L-shaped seeds: north-east, south-east and south-west
(for any length n ∈ N). That is because the relationship between pairs of tile sides, expressed

M. Cook, T. Stérin, and D. Woods 8:19

Figure 7 The Collatz tile set and its relationship with the Collatz problem and Erdös’ conjecture.
(a1) The Collatz tile set. (a2) Two additional tiles which allow to assemble Collatz trajectories
from simple north-east L-shaped seeds. (b) Assembling the first 7 steps of the Collatz trajectory
of 75 = 10010112. The output, T 7(75) can be read in base 3 on the west-most glues of the final
assembly (ignoring “S” glues). Here, T 7(10010112) = 1213 meaning, in base 10, T 7(75) = 16. (c)
Constructing successive powers of 2 in base 3: the column marked with arrow number n encodes 2n

in base 3. Erdös’ conjecture states that, for n > 8, 2n contains at least one 2 in base 3 [18].

DNA 27

8:20 Small Tile Sets That Compute While Solving Mazes

in (1), can be generalised to any rectangular assembly to give a simple arithmetical formula
computable in nondeterministic logspace [46, 21] (3hN +E = 2wW +S, where now N, E, W, S

denote binary/ternary numbers written in glue sequences along the respective North, East,
West and South sides of a w × h rectangle). This fact means that, assuming a widely-believed
conjecture in complexity theory (namely, NL ̸= P), it is not possible to simulate arbitrary,
polynomial size, Boolean circuits using the 6-tile Collatz tile set with those simple L-shaped
connected seeds (within area polynomial in circuit size).

Although rectangular assemblies made with the Collatz tile set are simple to predict, they
also relate to hard open questions in number theory. Notably to the following conjecture by
Erdös [18]: For all n > 8, there is at least one digit 2 in the ternary representation of 2n.
Indeed, starting from the straightforward south-west L-shaped seed of Figure 7(c), consisting
of m vertical 0s and a horizontal 1 followed by m − 1 horizontal 0s, an induction proves that
consecutive columns of the assembly will encode successive powers of two in ternary. For
instance, on the first 4 columns pointed by an arrow in Figure 7(c) we can successively read:
“1”, “2”, “11”, “22” which are the ternary encodings of 1, 2, 4 and 8, the four first powers of 2.
Erdös conjecture then becomes: any column to the east of the 10th column of the assembly
(counting from the easternmost input column of vertical 0s), will contain a glue “2” (in red).
This problem can be seen as a potentially simpler conjecture than the Collatz conjecture [25].

Predicting Minimum Free Energy Structures of
Multi-Stranded Nucleic Acid Complexes Is
APX-Hard
Anne Condon #

The University of British Columbia, Vancouver, Canada

Monir Hajiaghayi #

The University of British Columbia, Vancouver, Canada

Chris Thachuk #

The University of Washington, Seattle, WA, USA

Abstract
Given multiple nucleic acid strands, what is the minimum free energy (MFE) secondary structure that
they can form? As interacting nucleic acid strands are the basis for DNA computing and molecular
programming, e.g., in DNA self-assembly and DNA strand displacement systems, determining the
MFE structure is an important step in the design and verification of these systems. Efficient dynamic
programming algorithms are well known for predicting the MFE pseudoknot-free secondary structure
of a single nucleic acid strand. In contrast, we prove that for a simple energy model, the problem of
predicting the MFE pseudoknot-free secondary structure formed from multiple interacting nucleic
acid strands is NP-hard and also APX-hard. The latter result implies that there does not exist
a polynomial time approximation scheme for this problem, unless P = NP, and it suggests that
heuristic methods should be investigated.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Applied computing → Chemistry

Keywords and phrases Nucleic Acid Secondary Structure Prediction, APX-Hardness, NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.DNA.27.9

Funding Anne Condon: Supported by an NSERC Discovery Grant.
Monir Hajiaghayi: Supported by an NSERC Discovery Grant.
Chris Thachuk: Supported by a Banting Fellowship, ERC AdG VERIWARE, NSF-CCF-1213127,
and NSF-CCF-2106695.

Acknowledgements We thank Erik Winfree for helpful discussions and proposing the problem and
we also thank DNA 27 reviewers for their feedback.

1 Introduction

Computational methods are widely used to help understand the structure and function of
DNA and RNA molecules. A central challenge has been reliable prediction of nucleic acid
secondary structure. In both biological and molecular computing contexts, thermodynamic
analyses are widely used for this purpose. Much work has focused on prediction of pseudoknot-
free secondary structures, since such structures are common in both biological and designed
systems and since pseudoknot-free structures are easier to handle algorithmically [12, 9, 15]. In
this paper, we show that, while efficient thermodynamics-based approaches are well known for
prediction of pseudoknot-free secondary structures of single strands, the problem of predicting
pseudoknot-free secondary structures of multiple interacting strands is computationally
intractable unless P = NP. Here and throughout, we consider a method to be efficient if its
running time is bounded by a fixed polynomial in the total length of the strands.

© Anne Condon, Monir Hajiaghayi, and Chris Thachuk;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:condon@cs.ubc.ca
https://orcid.org/0000-0003-1458-1259
mailto:monirh@cs.ubc.ca
mailto:thachuk@cs.washington.edu
https://orcid.org/0000-0001-5913-1732
https://doi.org/10.4230/LIPIcs.DNA.27.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Hardness of Predicting MFE Multi-Stranded Complexes

In what follows, we briefly summarize significant contributions on development of algo-
rithms for predicting the pseudoknot free secondary structure of a single nucleic acid strand,
or of multiple interacting strands. Table 1 also presents a summary of the time complexity of
pseudoknot-free secondary structure and partition function prediction. When the input has
multiple strands, we separate the cases where the number of strands is bounded by a fixed
constant c, and when the number of strands is unbounded, i.e., can grow with the input size.
Throughout this work, we focus on the latter case.

Table 1 Computational complexity of predicting nucleic acid MFE pseudoknot-free secondary
structures and partition functions, when the input is a single strand, multiple strands with a constant
bound c on the number of strands, and multiple strands where the number of strands can grow with
the input length n. In each case, n is the total number of bases in the input strand(s). We note
that, for a single strand, a work by Bringmann et al. [3] presents an exact sub-cubic algorithm using
a simple base pair model. The bold term shows our contribution and the question marks show that
the complexity of the corresponding problems is as yet unresolved.

Input Type MFE Partition Function

Single Strand P[O(n3)] [17, 18, 24] P[O(n3)] [16]

Multiple Strands, Bounded (≤ c) ? P[O(n3(c − 1)!)] [4]

Multiple Strands, Unbounded APX-hard [this work] ?

For single strands with length n, dynamic programming algorithms with O(n3) run time
have long been used to efficiently predict minimum free energy (MFE) pseudoknot-free
secondary structures, first for a simple “base pair” thermodynamic [17, 18, 24] model in
which the free energy of a secondary structure is only dependent on the number of its base
pairs, and later for more sophisticated energy models that account for entropic loop penalties,
stacked pairs and other structural features. However, very recently, Bringmann et al., [3]
proposed a truly sub-cubic algorithm to predict MFE secondary structures for a simple base
pair energy model. Dynamic programming methods can also be used to efficiently calculate
the partition function for a given strand, making it possible to compute the probability of
base pair formation in equilibrium [16].

In addition to prediction of secondary structure of single strands, there has also been much
interest in prediction of complexes that result when base pairs form between two or more
strands. Such predictions can be used to understand the affinity of binding between a nucleic
acid oligonucleotide and its potential target in biological processes such as RNA interference.
Prediction of multi-stranded secondary structures is also important because methods for
biomolecular programming and construction of nano-devices, such as self-assembly of complex
DNA shapes and DNA strand displacement systems, are based on the formation of such
complexes [20, 6]; prediction methods such as that provided by NUPACK [22, 5] can guide
the design of such programs and devices.

An energy model for single-stranded secondary structure formation can be extended to
obtain a model for multi-stranded complex formation by (i) charging an additional strand
association penalty, typically a constant times the number of strands involved in the complex,
and (ii) accounting for rotational symmetries [4]. Predicting MFE pseudoknot-free secondary
structures formed from two (or any constant number) of strands with respect to a model
that only accounts for strand association penalties is a straightforward extension of dynamic
programming algorithms for single strands [23, 21, 2]. However, it is not clear how such
algorithms can efficiently account for rotational symmetries that can arise when two or
more indistinguishable strands interact [4]. Nevertheless, Dirks et al. [4] showed how to

A. Condon, M. Hajiaghayi, and C. Thachuk 9:3

efficiently calculate the partition function for a constant number of interacting molecules that
form pseudoknot-free structures, by showing how rotational symmetry could be accounted
for, while simultaneously addressing algorithmic overcounting issues that arise in partition
function calculation. However, the partition function calculation method of Dirks et al. [4]
requires a separate dynamic programming computation on all possible orderings of strands
that interact to form a single complex. As a result, the method does not run in polynomial
time when the number of participating strands grows with the overall input size (total length
of strands). This situation can arise, for example, in DNA strand displacement systems. Also,
surprisingly, while the partition function for a constant number of interacting strands can be
calculated efficiently, it is not known how to efficiently calculate the MFE pseudoknot-free
secondary structure of a constant number of interacting strands.

Thus, a basic open question is: can we efficiently compute the MFE pseudoknot-free
secondary structure for a multi-set of DNA or RNA strands?

In this paper, we provide a negative answer to this question. Given a set of nucleic acid
strands and a positive integer k, let Multi-Pkf-SSP be the problem of determining whether
the strands can form a pseudoknot-free secondary structure with at least k base pairs. We
show that Multi-Pkf-SSP is NP-hard, meaning that the existence of an efficient method
for MFE pseudoknot-free secondary structure prediction of a multi-set of strands would
imply all problems in the complexity class NP, which includes problems that are widely
believed to be intractable, would have polynomial time algorithms. The hardness result holds
whether or not rotational symmetries are accounted for in the energy model. Our proof uses
a reduction from a variant of 3-dimensional matching (3DM), already known to be NP-hard,
and employs code word designs with high pairwise edit distance [19].

In light of this NP-hardness result, another natural question is whether there is an efficient
method to find a pseudoknot-free secondary structure whose energy is a close estimate of
the energy of the MFE structure. We also provide a negative answer to this approximation
question, by showing a limit to the accuracy of any such method, assuming that NP ≠ P.
Specifically, if there is a polynomial time approximation scheme (PTAS) that could find
a pseudoknot-free secondary structure whose free energy closely approximates that of the
MFE for any given multi-set of strands, then again NP = P. A PTAS is a polynomial time
algorithm that receives as input an instance of an optimization problem and an arbitrary
parameter ϵ > 0, and returns an output whose value (in our case, the number of base pairs
in the MFE structure) is within a factor 1 − ϵ of the value of the optimal solution. The
running time of a PTAS could be dependent on ϵ, but it must be polynomial in the input
size for every fixed ϵ. Formally, we show that the optimization problem of finding the MFE
structure for a multi-set of nucleic acid strands is hard for the complexity class APX, the
class of NP optimization problems that have constant factor approximation algorithms. We
show this result by establishing that our reduction from 3-dimensional matching to MFE
structure prediction is an approximation-preserving reduction.

We note that hardness results have already been proved for variants of pseudoknotted
secondary structure prediction. While dynamic programming can be used to predict MFE
structures and partition functions for certain restricted classes of pseudoknotted structures,
the general problem of predicting MFE pseudoknotted structures is NP-hard, even for a
single strand [1, 14, 13]. The first two NP-hardness results, [1, 14] also use a simple energy
model called stacking where only consecutive base pairs forming a stack contribute to the
free energy of a strand. Hardness results can be valuable even with simple energy models; it
would seem unlikely that the prediction problem becomes easier if the energy model is more
sophisticated.

DNA 27

9:4 Hardness of Predicting MFE Multi-Stranded Complexes

The rest of the paper is organized as follows. We provide preliminary definitions, problem
statements and an overview of some useful theorems in Section 2. We outline the string
properties and designs required for our reduction, in Section 3. We provide a polynomial-time
reduction from a variant of 3DM to Multi-Pkf-SSP in Section 4, and prove its correctness
in Section 5. In Section 6, we also infer that an optimization version of the problem is hard
for the complexity class APX. This implies that there is no PTAS for approximating the
optimal secondary structure of multi-stranded systems, unless NP = P. The proofs of some
lemmas have been moved to Appendix A.

2 Preliminaries

We review some basic terminology and prior work in order to precisely formulate the problem
description and proof techniques.

A single DNA or RNA strand is a sequence of nucleotide bases, which we represent using
the character set {A, C, G, T} or {A, C, G, U} respectively, with the left end of the sequence
corresponding to the 5′ end of the strand and the right end corresponding to the 3′ end.
Bonds can form between Watson-Crick base pairs, namely C–G and A–U for RNA and C–G
and A–T for DNA [4].

We assume that consecutive bases within a sequence cannot pair with each other. This is
consistent with actual structures, where there are typically at least three bases separating
any two bases that are paired with each other. If sequences are numbered consecutively
starting from 1, we can represent a base pair as a tuple (i, j), such that i < j − 1, which
specifies that the base at position i in the sequence is paired with the base at position j

and j is not consecutive with i. A secondary structure is a set of base pairs such that no
base is in two pairs. That is, if (i, j) and (i′, j′) are in the structure then i, j, i′ and j′ are all
distinct.

Base pairing between two strands occurs in an antiparallel format. That is, the Watson-
Crick complement of strand x = 5′-x1 · · · xn-3′ is the strand 3′-x̄1 · · · x̄n-5′ ≡ 5′-x̄n · · · x̄1-3′,
where (xi, x̄i) is a Watson-Crick base pair. For example, the Watson-Crick complement of 5′-
ACTCG-3′ is 5′-CGAGT-3′. Throughout we will use the term complement to mean Watson-Crick
complement and denote the complement of x by x̄.

Similar to the single-stranded model, the secondary structure formed by m interacting
strands is a set of Watson-Crick base pairs. To specify the secondary structure, we assign
identifiers from 1 to m to the strands, and each base is named by a strand identifier and
a position on the corresponding strand. For instance if base i in strand s pairs with base
j in strand t, where s ≤ t and i < j − 1 if s = t, the base pair is denoted as (is, jt). A
multi-stranded secondary structure can be represented as a polymer graph by ordering and
depicting the directional (5′ to 3′) strands around the circumference of a circle, with edges
along the circumference representing adjacent bases, and straight line edges connecting paired
bases. Each such ordering of m strands is a circular permutation of the strands, and there
are (m − 1)! possible orderings. A secondary structure consists of one or more complexes
that correspond to the connected components in the polymer graph representation. If the
polymer graph of any one of these possible orderings has no crossing lines, then the secondary
structure is called pseudoknot-free [4]. For example, Figure 1 shows the two possible circular
permutations for three strands 1, 2, and 3, and the connected polymer graphs for the same
secondary structure. Since Figure 1(a) has no crossing lines, the structure is pseudoknot-free.

A. Condon, M. Hajiaghayi, and C. Thachuk 9:5

1

2

3

1

2

3

(a) (b)

Figure 1 a) A polymer graph representation of a pseudoknot-free secondary structure for the
strand set {1, 2, 3} with ordering 123. b) A second polymer graph for the same structure, with
strand ordering 132.

2.1 The simple energy model
Here, we employ a very simple extension of the “base pair free energy” model for secondary
structures [18]. In that model, the score of each base pair is −1 and the overall score (free
energy) of a single-stranded secondary structure is its total number of base pairs. So, the
more base pairs in a secondary structure of a single strand, the lower its score.

Where there are multiple interacting strands, there is an entropic penalty for strands
to associate via base pairing, i.e., a penalty for reducing the number of complexes [4]. In
our simplified model, we define the strand association penalty to be Kassoc ≥ 0. Thus, for a
pseudoknot-free secondary structure S consisting of m strands, l (≤ m) complexes, and p

base pairs, the overall score, or free energy, of S is

E(S) = p(−1) + (m − l)Kassoc.

For example, the secondary structure in Figure 1(a) has score 21(−1) + (3 − 1)Kassoc =
−21 + 2Kassoc. For strands s1, . . . , sm, an optimal pseudoknot-free secondary structure Sopt

satisfies E(Sopt) ≤ E(S) for any pseudoknot-free secondary structure S of s1, . . . , sm.
Since there can be a tradeoff between the number of base pairs and the number of

complexes, then it is possible under this model for an optimal pseudoknot-free secondary
structure to have less than the maximum number of possible base pairs. However, our
proofs have been constructed so that pseudoknot-free MFE secondary structures will have
a maximum number of base pairs for any reasonable value of the constant Kassoc. We will
proceed with our problem definitions under the assumption that Kassoc = 0 and formally
argue later that the results hold for all constants Kassoc ≥ 0.

2.2 Problem definitions
We now formally define the main problem of interest in this paper as a decision problem.

▶ Problem 1 (Multi-Pkf-SSP).
Instance: m nucleic acid strands and a positive integer k.
Question: Do the m strands form a pseudoknot-free secondary structure containing at least
k base pairs?

DNA 27

9:6 Hardness of Predicting MFE Multi-Stranded Complexes

x1 y1 z1

x2 y2 z2

x3 y3 z3

X Y Z

(a)

x1 y1 z1

x2 y2 z2

x3 y3 z3

X Y Z

(b)

Figure 2 An instance of the restricted 3-dimensional matching problem, 3dm(3), where
X = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3}. (a) The set of permitted triples, T =
{(x1, y2, z2), (x2, y1, z1), (x2, y3, z2), (x3, y3, z3)}. (b) A valid matching M ⊆ T .

We will describe a polynomial-time reduction from a restriction of the NP-hard 3-
dimensional matching problem to Multi-Pkf-SSP. A 3-dimensional matching is defined
as follows. Let X, Y , and Z be finite, disjoint sets, and let T be a subset of X × Y × Z.
That is, T consists of triples (x, y, z) such that x ∈ X, y ∈ Y , and z ∈ Z. Now M ⊆ T is a
3-dimensional matching if the following holds: for any two distinct triples (xi, yj , zk) ∈ M
and (xa, yb, zc) ∈ M, we have xi ̸= xa, yj ̸= yb, and zk ̸= zc.

For convenience in our construction, we use a restriction of the 3-dimensional matching
problem, called 3dm(3), that requires each element to appear in at most three triples of T .

▶ Problem 2 (3dm(3)).
Instance: A set T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n and each element of X, Y and
Z appears in at most 3 triples of T .
Question: Does there exist a matching M ⊆ T , with |M | = n?

▶ Theorem 1 (Garey & Johnson (1979) [7]). 3dm(3) is NP-complete.

Next we define an optimization version of the Multi-Pkf-SSP decision problem:

▶ Problem 3 (Max-Multi-Pkf-SSP).
Instance: A set of m nucleic acid strands.
Optimization Problem: Determine a pseudoknot-free secondary structure of the m strands
with maximum number of base pairs.

An optimization problem is in APX if it has a constant factor approximation algorithm,
i.e., an efficient method that can determine a solution whose score is within some fixed
multiplicative factor of that of an optimal solution. A problem is APX-hard if for some
constant c, a c-approximation algorithm for the problem would imply that NP = P. One
way to prove a problem is APX-hard is to show an approximation-preserving reduction from
a known APX-hard problem. A problem is APX-complete if it is APX-hard and is in APX.
We derive our hardness result for the Max-Multi-Pkf-SSP problem by a reduction from
the Max-3dm(3) problem, an optimization version of the 3dm(3) problem:

A. Condon, M. Hajiaghayi, and C. Thachuk 9:7

▶ Problem 4 (Max-3dm(3)).
Instance: A set T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n and each element of X, Y and
Z appears in at most 3 triples of T .
Optimization Problem: Find a maximum size 3-dimensional matching M ⊆ T .

Kann [11] showed that Max-3dm(3) is MaxSNP-complete and thus APX-complete. Hard-
ness of approximation was established by demonstrating that it is NP-hard to decide whether
an arbitrary instance of the problem has a matching of size n or a matching of size at most
(1 − ϵ0)n, for some ϵ0 > 0.

▶ Theorem 2 (Kann (1994) [11]). Max-3dm(3) is APX-complete.

3 String designs and their properties

In this section we show how to design strings with properties that are useful in our reduction.
We follow standard string notation: for a string a = a1 . . . an we denote its ith character
(or symbol) by ai and its length by |a| = n; for any symbol B, we let Bl denote a string
of length l consisting of only B’s. The following related string properties are of particular
interest to us.

1. A pairwise sequence alignment, or simply alignment, of strings a and b is a pair of
strings (a′, b′) with |a′| = |b′|, where a′ and b′ are obtained from a and b respectively
by the insertion of zero or more copies of a special gap symbol. Moreover, for any i,
a′

i and b′
i are not both gap symbols and if neither a′

i nor b′
i is the gap symbol then

a′
i = b′

i. The alignment can alternatively be considered as a sequence of aligned pairs
(a′

i, b′
i), 1 ≤ i ≤ |a′|. A pair is a gap pair if either a′

i or b′
i is a gap symbol. We also define

an optimal alignment of a and b as a pairwise alignment of a and b with a minimum
number of gap pairs, amongst all possible alignments.

2. A longest common subsequence between strings a and b is a longest subsequence common
to the two strings. Note that a subsequence of a string results from the deletion of zero
or more of its characters. We denote the length of such a subsequence by LCS(a, b).
A longest common subsequence corresponds to an optimal alignment of a and b and
LCS(a, b) is equal to the total number of gap-free pairs of symbols in the alignment.

3. The insertion-deletion distance dLCS(a, b) between strings a and b is the minimum
number of insertions and deletions of symbols needed to convert a into b (or equivalently
to convert b to a). Equivalently, the insertion-deletion distance between a and b is equal
to the number of gap pairs in an optimal alignment of a and b.

The insertion-deletion distance and length of the longest common subsequence of two
strings are related by the following known result.

▶ Theorem 3 ([8]). Given two strings a and b, where |a| = n and |b| = n′, then dLCS(a, b) = k

if and only if LCS(a, b) = (n+n′−k)
2 .

Note that if a and b are equi-length strings, then k is an even number.
In the next theorem, we show how to efficiently construct a “large” set of relatively

short, equi-length strings that have high pairwise insertion-deletion distance. The con-
struction employs a greedy codeword design used also in Justesen [10] and Schulman and
Zuckerman [19].

DNA 27

9:8 Hardness of Predicting MFE Multi-Stranded Complexes

▶ Theorem 4. Let w > 0 and δ > 0. For any n, a set of at least wn equi-length strands
over the alphabet {A, T}, each of length k log n for some constant k (that depends on w and
δ), can be designed in 2O(log n) time, such that the insertion-deletion distance between any
pair in the set is at least δ log2 n. Moreover, all strands in the set have at least ⌈δ log2 n/2⌉
A’s and at least ⌈δ log2 n/2⌉ T’s.

Proof. We construct the desired set using a greedy algorithm that is specified in terms of a
quantity t = Θ(log2 n) that we determine in the penultimate paragraph of this proof. From
{A, T}t, first put the two strings At and Tt in the set. Once i ≥ 2 strings are in the set, choose
any string from {A, T}t whose insertion-deletion distance from all i strings already in the set
is at least δ log2 n, and add it to the set. Continue until no more strings can be chosen with
the desired insertion-deletion distance. Finally, remove the strings At and Tt. This algorithm
runs in time 2O(log n). The number of strings in {A, T}t that have insertion-deletion distance
at most 2d from a given string s in {A, T}t is at most

(
t
d

)22d (see proof of Lemma 2 of
Schulman and Zukerman [19]). If d = ⌈δ log2 n/2⌉, then our set has the desired property that
the insertion-deletion distance between any pair in the set is at least δ log2 n. Furthermore
all strings in the set, once At and Tt are removed, must have at least ⌈δ log2 n/2⌉ A’s and at
least ⌈δ log2 n/2⌉ T’s; otherwise, their insertion-deletion distance from At and Tt, would be
less than δ log2 n.

The number of strings in the set before removal of At and Tt is at least wn + 2 if we
choose t so that

2t/(
(

t

d

)2
2d) ≥ 2t/2 ≥ wn + 2.

These inequalities hold if t is a sufficiently large constant times log2 n. For the first in-
equality, from Stirling’s formula we have that

(
t
d

)
< (t e/d)d, and so the inequality holds

if 2d log2(t e/d) + d ≤ t/2. This in turn holds if t = ηd (= η⌈δ log2 n/2⌉) where we
choose constant η so that ηe ≤ 2η/4−1/2. For the second inequality, we simply need that
t ≥ 2 + 2 log2 w + 2 log2 n.

Finally, since the strings At and Tt are removed and all other strings have insertion-deletion
distance at least δ log2 n from strings At and Tt, all strands in the set have at least δ log2 n

A’s and at least δ log2 n T’s. ◀

Our design also makes use of a padding function. Let ρi denote the padding function
that, applied to a string, inserts i A’s (called padded A’s) at the start of, and between every
pair of symbols in, the string.

▶ Definition 5 (padding function ρi). Let a = a1a2 . . . an be a string. Then ρi(a) =
Aia1Aia2 . . . Aian.

If dLCS(a, b) = k then dLCS(ρi(a), ρi(b)) may be less than k. To illustrate why, first
consider the function ρ1, defined as ρ1(a1a2 . . . an) = A1a1A1a2 . . . A1an. If we choose a =
AATATT, and b = TTATAA, then dLCS(a, b) = 6 whereas dLCS(ρ1(a), ρ1(b)) = 4, as shown in
Figure 3. This appears to contradict the assertion in Lemma 2 of Schulman and Zukerman [19]
that dLCS(ρ1(a), ρ1(b)) ≥ dLCS(a, b). Adapting this example, if

a′ = A5A5T5A5T5T5 and b′ = T5T5A5T5A5A5,

then dLCS(a′, b′) = 30, while dLCS(ρ5(a′), ρ5(b′)) = 20.
We next show a lower bound on dLCS(ρi(a), ρi(b)) in terms of dLCS(a, b).

A. Condon, M. Hajiaghayi, and C. Thachuk 9:9

A ATATT A A AAATAAATAT
TTATA A ATATAAATAAA A

(a) (b)

Figure 3 Padding can reduce insertion-deletion distance. (a) The ATA substrings of the two
strings of length 6 forms a LCS, leaving a total of six symbols unmatched. (b) When the strings are
1-padded, the leftmost A of the first string and the rightmost A of the second string, plus the padded
A’s, become part of the LCS.

▶ Lemma 6. Let a and b be equi-length strings over {A, T}. Then

dLCS(ρi(a), ρi(b)) ≥ dLCS(a, b)/2.

Let a and b be strands and let S(a) and S(a, b) be secondary structures for strand a and
pair (a, b) respectively. The base pairs of (a, b) may be inter-molecular and/or intra-molecular.
We define the unpairedness of S(a) or S(a, b) to be the number of bases that are not paired
in S(a) or S(a, b), respectively. The next lemma provides lower bounds on the unpairedness
of structures formed from padded strings.

▶ Lemma 7. Let a′ and b′ be any strands over the alphabet {A, T}, let a = ρ5(a′), let
b = ρ5(b′), and let s be any substrand of a or a. Let S(s), S(a, b), S(a, b) and S(a, b) be any
pseudoknot-free secondary structures for s, (a, b), (a, b) and (a, b), respectively. Then
1. The unpairedness of S(s) is at least 1

3 |s|.
2. The unpairedness of S(a, b) is at least 2

3 (|a| + |b|).
3. The unpairedness of S(a, b) is at least 2

3
(
|a| + |b|

)
.

4. The unpairedness of S(a, b) is at least 1
3 dLCS(a, b).

▶ Definition 8. A set S of strands is k-robust if the following properties hold:
1. All strands of S have the same length.
2. All strands of S have at least k A’s and at least k T’s.
3. For any a and b in the set, the unpairedness of optimal structures for a, ā, (a, b), (ā, b̄),

and (a, b̄) is at least k.

▶ Theorem 9. Let w > 0. For any n, a log2 n-robust set of at least wn strands, each of
length p log2 n for some constant p, can be designed in 2O(log n) time.

Proof. Using Theorem 4, for any w > 0 and δ = 6 we can obtain, in time 2O(log n), a
set S ′ of at least wn strands, each of length k log2 n for some constant k, such that the
insertion-deletion distance between any pair of strands in S ′ is at least 6 log2 n. Moreover, all
strands in S ′ have at least 3 log2 n A’s and at least 3 log2 n T’s. This latter property implies
that the strands in S ′ have length at least 6 log2 n.

Apply the padding function ρ5 to strands in S ′ to obtain a new set S. The strands
in S have length 6k log2 n, which must be at least 36 log2 n. Lemma 6 shows that the
insertion-deletion distance between any pair of strands in S is at least δ log2 n/2 = 3 log2 n.
Lemma 7 then shows that if a and b are any two strands in the set S, the unpairedness
of the optimal structure of a, or its complement, or of (a, b), (a, b) or (a, b), is at least
min{ 1

3 |a|, 2
3 (|a| + |b|), 1

3 dLCS(a, b)}. Given that |a| and |b| are at least 36 log2 n and that
dLCS(a, b) = 3 log2 n, this lower bound is at least log2 n. Therefore, the unpairedness of the
set S is at least log2 n, as desired. ◀

DNA 27

9:10 Hardness of Predicting MFE Multi-Stranded Complexes

x1 y2 z2 z2 y2 x1

(Triple-strands: t1 , t2 , t3 , t4) Template strand:
t1 t2 t3 t4

xyz-support strands:
x1 ,

x2 ,
x3 ,

y1 , ...
z3,

, , , , ... ,
z3y1x3x2x1

Trim-complement strands:

Separator-complement strands:

,trm

septrmtrm trm

trmtrm trm trm trm trm

trm trm trmsepsepsep

x2 y1 z1 z1 y1 x2 x3 y3 z3 z3 y3 x3

x2 y3 z2 z2 x2y3

Separator strands:
sep sep

,

sep

,
sep

,
sep sep

,,
sep

,, , ,,

sepsepsepsep sep sep sep sep

sep sep sep sep

sep sep sep sep sep

,trm ,trm ,trm ,trm trm , ,trm ,trm ,trm ,trm trm

(a)

P
er

fe
ct

 t
ri

p
le

5'

3'

tr
m

 x
1

 s

ep

 y
2

 s

ep

 z 2

trm
 z 2

se
p

 y 2

sep
 x1 trm

 _

 __

_

__

 _

 _ __ _ __ _ T
ri

m
-d

ep
ri

v
ed

 t
ri

p
le

__
 _

_

 _

__

_
__

trm x2 sep y3 sep z2 trm
 z2 sep y3 sep x2 trm

trm x1 sep y2
 t

rm

 y
2

 s
ep

 x
1

tr
m

(b)

Figure 4 Example of the reduction from the 3dm(3) instance of Figure 2. (a) Strands of the
resulting Multi-Pkf-SSP instance, specified at the domain level. (b) Partial MFE structure of the
strands. Here, the structure involving triple-strand t1, labeled as perfect triple, indicates that the
triple (x1, y2, z2) is in the solution of the 3dm(3) instance. Triple-strand t4 is a trim-deprived triple
since there are no bonds to bases in the middle trim domain. This structure indicates that triple
(x2, y3, z2) isn’t selected in the solution.

A. Condon, M. Hajiaghayi, and C. Thachuk 9:11

4 The reduction

We show a polynomial time reduction from 3dm(3) to Multi-Pkf-SSP. Given an instance
I = (X, Y, Z, T) of 3dm(3), where m = |T | and n = |X| = |Y | = |Z|, we construct an
instance I ′ of Multi-Pkf-SSP as follows.

Domains used in strands of I′

The strands of I ′ contain the following domains.

One domain for each x ∈ X, y ∈ Y , and z ∈ Z and one domain for each complement.
Where no confusion arises, we use x, x̄, y, ȳ, z, and z̄ to refer to these domains.
A separator and a separator-complement domain, denoted by Sep and Sep.
A trim domain and a trim-complement domain, denoted by Trm and Trm respectively.

Strands of I′

Instance I ′ consists of the following strands, where each strand is a sequence of domains.

Template strand: One strand that is the concatenation of triples. There is one triple for
each (x, y, z) ∈ T , which is the following concatenation of domains:

Trm x Sep y Sep z Trm z̄ Sep ȳ Sep x̄ Trm
We call the substrands x Sep y Sep z and z̄ Sep ȳ Sep x̄ of a triple the 5′ and 3′ flanks,
respectively. We call the Trm domains at the ends of the triple the end-trims and the
middle Trm domain the center-trim.
Separator (-complement) support strands: 2n Sep strands and another 2n Sep strands.
xyz-support strands: For each x, y and z domain, one strand consisting of just that
domain and one for its complement, for a total of 6n strands.
Trim-complement strands: 2m + n copies of Trm, which is the complement of the trim
domain Trm.

We refer to the xyz-support strands and the separator and separator-complement support
strands collectively as the support strands.

▶ Lemma 10. The total number of support strands is 10n.

Proof. This follows immediately from the fact that there are 6n xyz-supports and 4n

separator and separator-complement strands in total. ◀

This completes the description of the reduction at the domain level of detail. Figure 4
(a) shows the resulting Multi-Pkf-SSP instance, specified at the domain level, after a
reduction from the 3dm(3) instance of Figure 2.

The MFE structure of the resulting set of strands is partially depicted in Figure 4 (b).
All domains of the substrand labeled as “perfect triple” are bound to their complements,
indicating that the triple (x1, y2, z2) is selected in the solution of the 3dm(3) instance,
consistent with the solution shown in Figure 2 (b). The other triple that is depicted is a
“trim-deprived triple”. This is a triple in which at least one trim domain is unbound. The
corresponding triple (x2, y3, z2) does not appear in the solution from Figure 2 (b). Intuitively,
there is a trim-complement strand available to bind with each of the 2m end-trim domains
at the ends of all triples, and in addition the number of xyz-support, separator supports and
additional trim-complement strands is necessary and sufficient to have n “perfect triples” in
an optimal secondary structure when the 3dm(3) instance has a perfect matching of size n.

DNA 27

9:12 Hardness of Predicting MFE Multi-Stranded Complexes

Sequence design for I ′

To complete the reduction, we specify a sequence design for each domain of I ′. For the
x, y, and z domains, we use the set of sequences of Theorem 9 with w = 3, since we need
3n domains (plus their complements) in total. Let E (= Θ(log2 n)) be the length of these
domains. The trim domain Trm = GE , i.e., consisting of E copies of G, and Trm = CE . The
Sep domain is A6E , and the Sep domain is the complement of the Sep domain, namely T6E .

The sequence design has the property that there are an equal number of A and T bases
overall, since for every x, y, z or separator domain there is a corresponding complementary
domain. The total number of C’s in trim-complement strands is (2m + n)E. The total
number of G’s in end-trims and center-trims is 3mE. Since m ≥ n, the total number of G’s
is at least as great as the total number of C’s. Therefore, under the assumption that only
Watson-Crick base pairs can form, the maximum number of base pairs is limited to the total
number of A (or T) bases plus the total number of C bases. Let P denote this quantity.

The instance I ′ is comprised of the strands of I ′ and the positive integer P .

▶ Lemma 11. Instance I ′ can be constructed in time polynomial in n.

5 Reduction correctness

We show that if the given instance I of 3dm(3) has a perfect matching then the optimal
secondary structure formed from strands in I ′ is a single complex that has the maximum
possible number P of base pairs. We also show that if the optimal matching of I has size
n − i then the optimal structure has only P − Ω(iE) base pairs.

▶ Lemma 12. If I has a perfect matching, then the strands of I ′ can form a pseudoknot-free
secondary structure, consisting of a single complex and P base pairs, with n perfect triples.

Proof. Here, in the reduced instance I ′, bases in the n triples corresponding to the perfect
matching can be bound to the corresponding support strands, to form n perfect triples.
The end-trims of the remaining triples can also be bound to two trim-complement strands,
while their complementary 5′ and 3′ flanks are paired together to make trim-deprived triples.
Therefore, as all A’s and C’s are paired in this single (connected) complex, the number of
base pairs is P . ◀

We next consider the case that the optimal matching of I has size at most n − i. Let
Opt(I ′) denote an optimal pseudoknot-free structure of the reduced instance I ′. We establish
properties that must hold true of Opt(I ′) and conclude that when the optimal matching of I

has size at most n − i, then Opt(I ′) has P − Ω(iE) base pairs.
With respect to a given structure, we say that a domain is bound if at least one of its

bases forms a base pair. A domain d in a triple (as part of the template strand) is connected
to a non-template strand s if there is a sequence of non-template strands s1, s2, . . . , sj where
sj = s, such that d forms a base pair with s1, s1 forms a base pair with s2, and so on up to
sj−1 forming a base pair with sj = s.

We partition the triples into four types, depending on the structure they form in Opt(I ′).

Perfect triples: The triple binds to the set of non-template strands that are complementary
to the triple domains. (This set of non-template strands contains two Sep’s, two Sep’s,
three Trm’s and six xyz-support strands in total.) The set of perfect triples corresponds
to a matching of instance I.
Trim-deprived triples: At least one trim of a triple is unbound.

A. Condon, M. Hajiaghayi, and C. Thachuk 9:13

Hogger triples: These are triples which are not trim-deprived, and moreover, the ten
domains in the flanks of a hogger triple are bound to, or connected to, at least eleven
support strands in total.
Flawed triples: None of the above. In particular, flawed triples are not trim-deprived.

Since neither hogger nor flawed triples are trim-deprived, the support domains that are
bound to or connected to either their 5′ or 3′ flanks cannot bind to other domains on the
template strand, or a pseudoknot would form.

▶ Lemma 13. The total number of trim-deprived and flawed triples in Opt(I ′) is at least
(m − n) + i/11.

▶ Lemma 14. Either Opt(I ′) has at least m − n + i/22 trim-deprived triples, or at least i/22
flawed triples.

Proof. By Lemma 13, the total number of trim-deprived and flawed triples is at least
(m − n) + i/11. So if the number of trim-deprived triples is less than m − n + i/22, then the
number of flawed triples must be at least i/22. ◀

We now adapt our notion of unpairedness from Section 3 to ACT-unpairedness. Let a and
b be strands and let S(a) and S(a, b) be secondary structures for strand a and pair (a, b)
respectively. The ACT-unpairedness of S(a) or S(a, b) is the number of A, C and T bases that
are not paired in S(a) or S(a, b), respectively.

▶ Lemma 15. If the number of trim-deprived triples in Opt(I ′) is at least m − n + i/22,
then at least iE/22 C’s are unpaired in Opt(I ′), and so Opt(I ′) has ACT-unpairedness Ω(iE).

In order to show that many flawed triples cause Opt(I ′) to have high ACT-unpairedness,
we first derive some useful properties about flawed triples. In what follows, we let F5′ =
x Sepxy y Sepyz z and F3′ = z̄ Sepyz ȳ Sepxy x̄ denote the sequences on the 5′ and 3′ flanks
of a given flawed triple. Let S5′ and S3′ be the sets of support strands that are bound to,
or connected to, domains of F5′ and F3′ respectively, in the structure Opt(I ′). The sets
F5′ and F3′ are disjoint, since something is bound to the middle trim in Opt(I ′), and the
structure has no pseudoknots. Since a flawed triple has at most ten support strands bound
to it, either |S5′ | ≤ 5 or |S3′ | ≤ 5. In the following lemmas, for concreteness, we suppose that
|S5′ | ≤ 5; the argument when |S3′ | ≤ 5 is obtained by replacing domains and strands with
their complements and bases A and T with each other. Let Opt(F5′) be the substructure of
Opt(I ′) formed by the bases in F5′ and the strands in S5′ .

▶ Lemma 16. Suppose that there are l ≥ 2 bonds between one of the x, y or z domains of
F5′ and either Sepxy or Sepyz. Then Opt(F5′) has ACT-unpairedness at least 5(l − 1).

▶ Lemma 17. Suppose that in Opt(F5′), |S5′ | ≤ 5 and the ACT-unpairedness of F5′ is less
than (log2 n)/3. Then the following must hold.
1. Each Sep domain of F5′ is bound to a Sep-support domain.
2. Each x, y and z domain of F5′ is bound to an xyz-support domain.
As a consequence, each x, y, and z domain of F5′ is bound to a distinct xyz-support of S5′ ,
each Sep domain of F5′ is bound to a distinct Sep support of S5′ , and S5′ contains exactly
three xyz-supports and two Sep supports.

▶ Lemma 18. Let F5′ = x Sepxy y Sepyz z be the left flank of a flawed triple. Suppose that
in Opt(F5′), |S5′ | ≤ 5. Then for any constant α < 1/7, the ACT-unpairedness of Opt(F5′) is
at least α log2 n.

DNA 27

9:14 Hardness of Predicting MFE Multi-Stranded Complexes

▶ Lemma 19. If the optimal matching of I has size at most n− i, then Opt(I ′) has P −Ω(iE)
base pairs.

Proof. By Lemma 14, Opt(I ′) either has at least m − n + i/22 trim-deprived triples, or at
least i/22 flawed triples.

First suppose that Opt(I ′) has at least m − n + i/22 trim-deprived triples. Then by
Lemma 15, Opt(I ′) has ACT-unpairedness Ω(iE). Similarly, if Opt(I ′) has at least i/22 flawed
triples, then by Lemma 18, each flawed triple has ACT-unpairedness Ω(log n) = Ω(E), since
E = Θ(log n). Again, the total ACT-unpairedness is Ω(iE).

Recall that all A’s, C’s and T’s must be paired in order for the total number of base pairs
to be P . Since the total ACT-unpairedness is Ω(iE), it must be that the number of base pairs
in Opt(I ′) is at most P − Ω(iE). ◀

▶ Theorem 20. Multi-Pkf-SSP is NP-complete.

Proof. Let I be any instance of Multi-Pkf-SSP, i.e, m nucleic acid strands and a positive
integer k. Given a certificate for I, which includes a secondary structure S and an ordering
of the m strands, we can check in time polynomial in the total length of the strands whether
S is a valid, pseudoknot-free secondary structure and whether it has k base pairs. Therefore,
Multi-Pkf-SSP is in NP.

Moreover, in the last section we provided a polynomial time reduction from any instance
I of 3dm(3) to an instance I ′ of Multi-Pkf-SSP. The optimal structure Opt(I ′) has P

base pairs if I has a perfect matching, by Lemma 12, and Opt(I ′) has less than P base pairs
if I does not have a perfect matching (by Lemma 19), where P is the total number of A, T
and C bases of the strands of instance I ′.

Putting these together, we conclude that Multi-Pkf-SSP is NP-complete. ◀

Until now, we have only considered the number of base pairs in the MFE structure
under the assumption that there is no penalty for strand association, i.e., Kassoc = 0. Our
construction has the property that structure Opt(I ′) is a single complex when I has a
perfect matching. When Kassoc > 0 the penalty to bring the 2m + 11n + 1 strands into a
single complex is (2m + 11n)Kassoc. However, the number of base pairs formed between
complementary domains of distinct strands is at least E, where E = Θ(log n). Thus, for any
positive constant Kassoc the value of E can be scaled by a constant to ensure that a single
domain binding is always favourable, even when decreasing the number of complexes by one.

6 Approximability

We proved that the Multi-Pkf-SSP problem is NP-complete in Theorem 20. Given this
result, it is natural to investigate whether there is a polynomial time algorithm to approximate
the optimal secondary structure of multi-stranded systems. We show in Theorem 22 that
the Max-Multi-Pkf-SSP problem is in fact APX-hard. This result asserts that there is no
polynomial time approximation scheme (PTAS) for this problem, unless P = NP.

We first note in Lemma 21 that our reduction of Section 4 is approximation-preserving,
transforming one optimization problem into another one. We then prove that this construction
also maps a solution of Max-Multi-Pkf-SSP to a solution of Max-3dm(3).

▶ Lemma 21. Our reduction from an instance I of Max-3dm(3) to an instance I ′ of
Max-Multi-Pkf-SSP has the following properties:

If I has a matching of size n then |Opt(I ′)| = P .
If I has a matching of size at most (1 − ϵ0)n then |Opt(I ′)| ≤ P − αϵ0nE, for some
constant α > 0.

A. Condon, M. Hajiaghayi, and C. Thachuk 9:15

Proof. This lemma directly follows from Lemmas 12 and 19. ◀

▶ Theorem 22. Max-Multi-Pkf-SSP is APX-hard.

Proof. Let I ′ be an instance of Max-Multi-Pkf-SSP obtained from an instance I of
Max-3dm(3) where the size of the three sets is n and there are m total triples. First, we
review the quantities E and P of the reduction of Section 4. Recall that E = Θ(log n)
specifies the lengths of xyz-support domains in instance I ′ obtained from instance I. Our
sequence design and Lemma 11 ensure that instance I ′ has Θ(n) + Θ(m) domains of length
Θ(E). Recall that P is the total number of base pairs in an optimal structure for I ′ if I

has a perfect matching. A perfect matching for I would have n triples. It follows that
P = Θ(n log2 n).

We now apply Lemma 21 to show APX-hardness of Max-Multi-Pkf-SSP. Suppose to the
contrary that for some ϵ > 0, there is a (1 − ϵ)–approximation algorithm for this problem.
Then, the following hold:

If I of Max-3dm(3) has a matching of size n, then on instance I ′ the algorithm returns
a solution with value at least (1 − ϵ)|Opt(I ′)| = (1 − ϵ)P .
If instance I has a matching of size at most (1 − ϵ0)n, then on instance I ′ the algorithm
returns a solution with value at most |Opt(I ′)| ≤ P − αϵ0nE.

Therefore, if P − αϵ0nE < (1 − ϵ)P the algorithm can distinguish between the cases where
I has a matching of size n or of size at most (1 − ϵ0)n. By our current assumptions about
P and E, the above inequality holds if ϵ < αϵ0nE/P . This contradicts Theorem 2, on the
APX-hardness of Max-3dm(3). ◀

7 Conclusions

This work resolves an open question on algorithms for pseudoknot-free secondary structure
prediction of nucleic acids: Can we efficiently compute the minimum free energy (MFE)
pseudoknot-free secondary structure for a multi-set of DNA or RNA strands? We have shown
that this problem is NP-hard, and is therefore computationally intractable, unless P = NP.
A natural question then is whether solutions to the problem can be efficiently approximated,
if P ̸= NP. Unfortunately, there is a limit to the accuracy of any such method. We have
shown that the optimization problem of finding the MFE structure for a multi-set of nucleic
acid strands is hard for the complexity class APX, the class of NP optimization problems
that have constant factor approximation algorithms. The result implies that there does not
exist a polynomial time approximation scheme for this problem, unless P = NP. Given these
results, it suggests that heuristic methods, such as stochastic local search, and randomized
algorithms should be investigated for structure prediction of multiple interacting strands.

References
1 Tatsuya Akutsu. Dynamic programming algorithms for RNA secondary structure prediction

with pseudoknots,. Discrete Applied Mathematics, 104(1-3):45–62, August 2000.
2 Mirela Andronescu, Zhi Chuan Zhang, and Anne Condon. Secondary structure prediction of

interacting RNA molecules. Journal of Molecular Biology, 345(5):987–1001, February 2005.
3 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly Sub-

cubic Algorithms for Language Edit Distance and RNA-Folding via Fast Bounded-Difference
Min-Plus Product. SIAM Journal on Computing, 48(2):481–512, 2019.

4 Robert M. Dirks, Justin S. Bois, Joseph M. Schaeffer, Erik Winfree, and Niles A. Pierce.
Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev., 49(1):65–88, 2007.
doi:10.1137/060651100.

DNA 27

https://doi.org/10.1137/060651100

9:16 Hardness of Predicting MFE Multi-Stranded Complexes

5 Mark E Fornace, Nicholas J Porubsky, and Niles A Pierce. A unified dynamic programming
framework for the analysis of interacting nucleic acid strands: Enhanced models, scalability,
and speed. ACS Synthetic Biology, 9(10):2665–2678, 2020.

6 Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree, and Satoshi Murata. Toward
reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern.
Nano Letters, 8(7):1791–1797, July 2008.

7 Michael R Garey and David S Johnson. Computers and Intractability: A guide to NP-
completeness, 1979.

8 Dan S Hirschberg. Pattern matching algorithms, chapter Serial computations of Levenshtein
distances, pages 123–142. Oxford university press, 1997.

9 J. A. Jaeger, D. H. Turner, and M. Zuker. Predicting optimal and suboptimal secondary
structure for RNA. Methods in Enzymology, 183:281–306, 1990.

10 J. Justesen. A class of constructive asymptotically good algebraic codes. Information Theory,
IEEE Transactions on, 18(5):652–656, 1972.

11 Viggo Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information
Processing Letters, 37(1):27–35, 1991.

12 Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F Stadler, and Ivo L Hofacker. ViennaRNA package 2.0. Algorithms for
Molecular Biology : AMB, 6:26, November 2011.

13 R. B. Lyngsøand C. N. Pedersen. RNA pseudoknot prediction in energy-based models. Journal
of Computational Biology, 7(3-4):409–427, 2000.

14 Rune B. Lyngsø. Complexity of pseudoknot prediction in simple models. In Josep Diaz,
Juhani Karhumäki, Arto Lepistö, and Donald Sannellã, editors, Proceedings, Automata,
Languages and Programming 31st Internationa l Colloquium, ICALP, volume 3142 of Lecture
Notes in Computer Science, pages 919–931. Springer Berlin/Heidelberg, January 2004. doi:
10.1007/b99859.

15 David H. Mathews and Douglas H. Turner. Prediction of RNA secondary structure by free
energy minimization. Current Opinion in Structural Biology, 16(3):270–278, 2006. doi:
10.1016/j.sbi.2006.05.010.

16 J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for
RNA secondary structure. Biopolymers, 29(6-7):1105–1119, June 1990.

17 R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure of
single-stranded RNA. Proceedings of the National Academy of Sciences of the United States of
America, 77(11):6309–6313, November 1980.

18 R. Nussinov, G. Pieczenik, J. Griggs, and D. Kleitman. Algorithms for loop matchings. SIAM
Journal on Applied Mathematics, 35(1):68–82, 1978.

19 L.J. Schulman and D. Zuckerman. Asymptotically good codes correcting insertions, deletions,
and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557, 1999. doi:
10.1109/18.796406.

20 Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from single-stranded
DNA tiles. Nature, 485(7400):623–626, 2012.

21 S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete suboptimal folding of RNA
and the stability of secondary structures. Biopolymers, 49(2):145–165, February 1999.

22 Joseph N. Zadeh, Brian R. Wolfe, and Niles A. Pierce. Nucleic acid sequence design via
efficient ensemble defect optimization. Journal of Computational Chemistry, 32(3):439–452,
2011. doi:10.1002/jcc.21633.

23 M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermody-
namics and auxiliary information. Nucleic Acids Research, 9(1):133–148, January 1981.

24 Michael Zuker and David Sankoff. RNA secondary structures and their prediction. Bulletin of
Mathematical Biology, 46(4):591–621, July 1984. doi:10.1007/BF02459506.

https://doi.org/10.1007/b99859
https://doi.org/10.1007/b99859
https://doi.org/10.1016/j.sbi.2006.05.010
https://doi.org/10.1016/j.sbi.2006.05.010
https://doi.org/10.1109/18.796406
https://doi.org/10.1109/18.796406
https://doi.org/10.1002/jcc.21633
https://doi.org/10.1007/BF02459506

A. Condon, M. Hajiaghayi, and C. Thachuk 9:17

A Technical Appendix

A.1 Proof of Lemma 6
Proof. Let dLCS(a, b) = k. We suppose that dLCS(ρi(a), ρi(b)) < k/2 and obtain a contra-
diction. Let A be an optimal alignment of ρi(a) and ρi(b). Throughout, when referring to
characters in ρi(a) and ρi(b), we denote the characters of the original strings a and b by Ao

and To and the padded A’s by Ap. Each pair of characters in alignment A has one of four
types: original, with two original characters; padded, with two padded characters; mixed,
with one Ao and one Ap, or gap, with one gap symbol. Let n be the length of a and b, and
let #orig, #pad and #mix denote, in order, the counts of original, padded and mixed pairs,
respectively. To prove the lemma, we establish various bounds on these counts, as a function
of n and k.

First, note that any alignment of ρi(a) and ρi(b) has at most n − k
2 original pairs:

Otherwise, we could use the alignment to obtain an alignment of a and b with less than k

gap pairs, which is not possible since dLCS(a, b) = k. Therefore,

#orig ≤ n − k
2 . (1)

Second, using Theorem 3 and our assumption that dLCS(ρi(a), ρi(b)) < k
2 , we have that

LCS(ρi(a), ρi(b)) ≥ (i + 1)n − ⌊ k
4 ⌋, and so

#orig + #pad + #mix = LCS(ρi(a), ρi(b)) ≥ (i + 1)n − ⌊ k
4 ⌋. (2)

Third, we’ll obtain a lower bound on #orig. Note that 2#pad + #mix is upper bounded
by the total number of Ap characters, and so is at most 2in. Therefore #pad + ⌈ #mix

2 ⌉ ≤ in.
Substituting this inequality into Equation 2, we have that

#orig ≥ n − ⌊ k
4 ⌋ − ⌊ #mix

2 ⌋. (3)

Finally, from inequalities 1 and 3 we have #mix ≥ k/2.
We now partition the mixed pairs into two types: sloppy and tight.
A mixed pair p of alignment A is sloppy if, among the first i pairs to the right of p, there
is at least one gap pair containing a To or Ap character. Mixed pairs must be separated
by at least i pairs since there are at least i Ap’s between any two Ao’, and so the gap
pairs corresponding to each of the sloppy mixed pairs are distinct. From property (3)
above, dLCS(ρi(a), ρi(b)) is equal to the number of gap pairs in A. Since we are assuming
that dLCS(ρi(a), ρi(b)) < k

2 , the alignment A has less than k
2 gapped pairs, and thus has

less than k
2 sloppy mixed pairs.

If p is not sloppy, we call it tight. Since less than k
2 of the mixed pairs are sloppy, at least

#mix − k
2 + 1 of the mixed pairs are tight.

If p is tight, let p′ be the first pair to the right of p that is not a padded pair. Such a pair p′

must exist, since our padding function is such that any Ap character is eventually followed by
an original character. Pair p′ is either a gap pair containing Ao or is a mixed pair, in which
case it also contains Ao. In either case, because exactly i Ap’s separate any two original
characters, if the Ao character of pair p is in string a then the Ao character of pair p′ is in
string b and vice versa. In what follows, we refer to p′ as p’s partner. Note that p′ may itself
be a tight pair.

Using these #mix − k
2 + 1 tight pairs, we now convert alignment A to another alignment

A′ with at least n− k
2 +1 original pairs, obtained as follows; see example in Figure 5. Starting

from the leftmost pair of alignment A and working towards the right, find the first tight

DNA 27

9:18 Hardness of Predicting MFE Multi-Stranded Complexes

p p′

. . . Ao Ap Ap Ap Ap Ap To Ap Ap . . .

. . . Ap Ap Ap Ao Ap Ap Ap Ap . . .

(a) Alignment A.

. . . Ao Ap Ap Ap Ap Ap To Ap Ap . . .

. . . Ap Ap Ap Ao Ap Ap Ap Ap . . .

(b) Alignment A′.

Figure 5 Illustration of the construction of Lemma 6. In alignment A, the pair at position p is a
tight pair; its partner is at position p′ and is a sloppy pair. Alignment A′ has one more original
pair, indicated in bold, than does alignment A.

mixed pair p of A and its partner p′. Remove p, p′ and all of the intervening (padded) pairs
between them from the alignment, and instead pair each padded character from the removed
pairs with a gap, and pair the Ao character of p with the Ao character of p′ (recall that one
of these Ao characters is in string a and the other is in string b). Repeat, starting from the
pair just to the right of p′, until the rightmost end of A is reached.

The number of new original pairs obtained in this manner is at least ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1.

To see why:
If #mix − k

2 + 1 is odd, then the number of new original pairs is at least

(#mix − k
2)/2 + 1 ≥ ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1.

This lower bound is achieved when all but one of the tight mixed pairs are partners.
If #mix − k

2 + 1 is even, then the number of new original pairs is at least

(#mix − k
2 + 1)/2 = ⌊(#mix − k

2)/2⌋ + 1/2 + 1/2 = ⌊ #mix

2 ⌋ − ⌊ k
2 /2⌋ + 1.

This lower bound is achieved when all partners are themselves tight mixed pairs.
Therefore, the number of original pairs in alignment A′ is

#orig+ ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1

≥ n − ⌊ k
4 ⌋ − ⌊ #mix

2 ⌋ + ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1 (using inequality 3)

= n − k
2 + 1.

But as noted earlier, any alignment of ρi(a) and ρi(b) has at most n − k
2 original pairs, and

so we have our contradiction. ◀

A.2 Proof of Lemma 7
Proof. To show part 1, first suppose that s is a substrand of a = ρ5(a′). If |s| ≤ 2, then
no bases of s are paired in S(s), given our assumption that consecutive bases in a strand
cannot form a base pair, and so part 1 holds. If |s| ≥ 3, the number of (intra-molecular) base
pairs of S(s) is at most the number of T’s in s. If 3 ≤ |s| ≤ 6 then s can have at most one
T, and thus at most one base pair, so s has at least |s| − 2 unpaired bases and again part 1
holds. Suppose that |s| ≥ 7. Because s is a substrand of a padded strand, the number of
T’s in s is at most ⌈2|s|/7⌉: this maximum is achieved if |s| = 7 and s both starts and ends
with a T. Even if all of the T’s of s are paired to A’s, the number of unpaired A’s is still at
least ⌊3|s|/7⌋ ≥ |s|/3 since |s| ≥ 7. The argument when s is a substrand of a is obtained by
replacing A’s with T’s in the argument for a substrand of a.

A. Condon, M. Hajiaghayi, and C. Thachuk 9:19

Similarly, the total number of T’s in S(a, b) is at most (|a|+ |b|)/6 and so the unpairedness
is at least 4(|a|+ |b|)/6. The argument for the unpairedness of S(a, b) is obtained by replacing
A’s with T’s in the argument for {a, b}.

Finally, the inter-molecular base pairs of S(a, b) correspond to a common subsequence of
strands a and b, and thus the number of such base pairs is at most LCS(a, b) = n − dLCS(a,b)

2
by Theorem 3. Therefore the total number of bases in both a and b that do not form
inter-molecular base pairs of S(a, b) is at least dLCS(a, b). Now consider any substructure of
S(a, b) within some maximal substrand s of either a or b̄ that has no inter-molecular base
pairs. The unpairedness of this substructure is at least 1

3 |s|, by part 1 of this Lemma. Thus,
over all substrands that do not contain inter-molecular base pairs, at least a fraction 1

3 of
bases are unpaired (not involved in intra-molecular base pairs). Since the total length of such
substrands is at least dLCS(a, b), the unpairedness of S(a, b̄) is at least 1

3 dLCS(a, b). ◀

A.3 Proof of Lemma 11
Proof. Instance I ′ has one template strand, 2n separator supports, 2n separator-complement
supports 6n xyz-support strands, and 2m + n trim-complement strands, for a total of
2m + 11n + 1 strands. The template strand has 13m domains and the other strands have
one domain each, for a total of 15m + 11n domains.

Since every domain in the construction has length Θ(log2 n), instance I ′ is of size
polynomial in n overall. The sequences can also be designed in polynomial time: The
sequence design of separator and trim domains is trivial, and the sequences for the x, y, z

domains can be designed in time polynomial in n by Theorem 9. ◀

A.4 Proof of Lemma 13
Proof. The number of trim-deprived and flawed triples is m − p − h, where m, p, and h are
the number of triples, perfect triples, and hogger triples, respectively.

Perfect triples and hogger triples are not trim-deprived. Therefore, any support strand
connected to a perfect triple or a hogger triple cannot also be connected to another triple
without creating a pseudoknot. Each perfect triple has 10 support strands bound to it, and
each hogger triple has at least 11 connected support strands. From Lemma 10, there are 10n

support strands in total, so 10p + 11h ≤ 10n and

h ≤ 10(n − p)/11.

Since the optimal matching of I has size at most n − i, the number of perfect triples p must
be at most n − i and so n − p ≥ i. Therefore, the total number of trim-deprived and flawed
triples is

m − p − h ≥ m − p − 10(n − p)/11 = m − n + (n − p)/11 ≥ (m − n) + i/11. ◀

A.5 Proof of Lemma 15
Proof. Each trim-deprived triple forms at most 2E CG base pairs, with the G’s being in the
trims (center-trim and end-trims) of the triple and the C’s being in trim-complement strands.
Triples that are not trim-deprived form at most 3E CG base pairs. There are no other CG
base pairs. So, the total number of CG base pairs is at most

(m − n + i/22)2E + (m − (m − n + i/22))3E = (2m + n − i/22)E.

The total number of trim-complement strands is 2m + n, each containing E C’s. So, the
number of unpaired C bases in trim-complements is at least iE/22. ◀

DNA 27

9:20 Hardness of Predicting MFE Multi-Stranded Complexes

A.6 Proof of Lemma 16
Proof. Suppose that there are l bonds between x and Sepxy; the other cases are similar.
Since Sepxy contains only A’s, only T’s of x can bind with Sepxy. Our sequence design ensures
that there are at least five padded A’s between any two successive T’s of x. Therefore, in order
to avoid pseduoknots, if there are l bonds between x and Sepxy, at least 5(l − 1) padded A’s
remain unpaired. ◀

A.7 Proof of Lemma 17
Proof. Suppose to the contrary that the first condition does not hold, i.e., one of F5′ ’s Sep
domains is not bound to a Sep support. The total number of T’s that can bind to the Sep
domain is at most 5.5E, accounted for as follows. There are at most 3E/6 T’s in the x, y,
and z domains of F5′ plus at most 5E in the remaining support strands, if there are five
xyz-support strands. Thus at least E/2 of the 6E A’s in the Sep domain are unpaired. Since
E ≥ log2 n, we get a contradiction to the hypothesis of the lemma. Thus the first condition
must hold.

Next suppose that the first condition holds but that the second does not; specifically that
the x domain of F5′ is not bound to an xyz-support domain (the argument is similar for
the y or z domains). Recall that domain x contains at least log2 n T’s, since by design the
domains comprise a log2 n-robust set. At least 2(log2 n)/3 of the T’s must be paired, or the
hypothesis of the lemma that the ACT-unpairedness of F5′ is less than (log2 n)/3 would not
be true. Since the first condition of the lemma holds, the Sep domain adjacent to x on the
5′ flank is bound to a Sep strand. Therefore domain x cannot have bonds to domain y or z,
or to the Sep domain between y and z, or a pseudoknot would form. Also, the T’s in domain
x cannot bind to Sep strands, since Sep’s are composed only of T’s. If there were at least
(log2 n)/3 bonds between x and Sepxy, Lemma 16 would imply that x has ACT-unpairedness
at least 5((log2 n)/3 − 1) ≥ log2 n, again contradicting the hypothesis of the lemma.

Therefore, at least (log2 n)/3 T’s of x must form intramolecular bonds with A’s that are
also in the x domain. The total length of substrands of x that have either unpaired bases or
intramolecular base pairs must be at least 3(log2 n)/3: this lower bound is met if each T, say
at position i of x is bound to an A that is either at position i − 2 or i + 2 (since we assume
that no base pair can form between consecutive bases). Part 1 of Lemma 7 therefore implies
that x has ACT-unpairedness at least (log2 n)/3, once again contradicting the hypothesis of
the lemma. We conclude that the second condition of the lemma must hold.

Since both conditions hold, it cannot be that two of the x, y, and z domains of F5′ are
bound to the same xyz-support of S5′ , or a pseudoknot would form with bonds between a
Sep of F5′ and a Sep support. Similarly, it cannot be that both Sep’s have bonds to the
same Sep. Hence, each Sep domain of F5′ is bound to a distinct Sep support of S5′ , and
S5′ contains exactly three xyz-supports and two Sep supports, completing the proof of the
Lemma. ◀

A.8 Proof of Lemma 18
Proof. Let α < 1/7. Suppose to the contrary that the ACT-unpairedness of Opt(F5′) is less
than α log2 n. By Lemma 17, S5′ must contain three xyz-supports, say a, b, and c, with a

bound to x, b bound to y, and c bound to x.
We first show that in Opt(F5′), there can be at most α log2 n/5 bases between a Sep

domain of F5′ and one of the domains x, y, or z adjacent to the Sep domain. Otherwise,
by Lemma 16, at least α log2 n bases of a would be unpaired, and we get a contradiction.
Similarly, there can be at most α log2 n/5 bases between a Sep domain of F5′ and one of the
domains a, b, or c adjacent to the Sep domain.

A. Condon, M. Hajiaghayi, and C. Thachuk 9:21

Since F5′ is the flank of a flawed triple, either a ̸= x̄, b ̸= ȳ, or c ̸= z̄. First suppose that
a ̸= x̄. Since the set of domains is log2 n-robust, there can be at most E − log2 n base pairs
between a and x. By the argument in the previous paragraph, x has at most α(log2 n)/5 bases
to Sepxy. Similarly, if Sepab is the separator complement between a and b, then a has at most
α(log2 n)/5 bases to Sepab. If a has base pairs with Sepxy, then x cannot have base pairs
with Sepab and vice versa, in order to avoid pseudoknots. Therefore, either a or x has at least
log2 n − α(log2 n)/5 ≥ 34(log2 n)/35 bases that are either unpaired or form intramolecular
bonds. By Lemma 7, either a or x has unpairedness at least 11(log2 n)/35 ≥ (log2 n)/4,
proving the lemma. The argument when c ̸= z̄ is similar to that when a ̸= x̄.

Finally, suppose that a = x̄ and c = z̄ but b ̸= ȳ. As noted earlier, b has at most
α(log2 n)/5 bonds with each Sep adjacent to it. Also, at least log2 n bases of b are not
paired with y, since the set of domains is log2 n-robust. Of these, at most α log2 n can be
unpaired, or again we get a contradiction. Therefore, b has at least log2 n − 2α(log2 n)/5 −
α log2 n = log2 n − 7α(log2 n)/5 bonds to the Sep’s adjacent to y, and so b has at least
1
2 (log2 n − 7α(log2 n)/5) bonds to Sepxy.

Moreover, Sepab must have at least 6E − 12α(log2 n)/5 base pairs with Sepxy. This is
because Sepab has at most α(log2 n)/5 bases with each of a and b, and Sepab has at most
3α log2 n bases paired with x. To see why the latter assertion holds, note that otherwise at
least 3α log2 n bases of a are not paired with any strand other than a and thus by Lemma 7,
at least α log2 n bases of a are unpaired, which again is a contradiction. Therefore, Sepab has
at most (2/5 + 3)α log2 n pairs in total with a, x, and b, and since at most α log2 n bases of
Sepab can be unpaired, Sepab has at least 6E − (2/5 + 3 − 1)α log2 n = 6E − (12/5)α log2 n

base pairs with Sepxy.
Therefore the total number of bases that are paired with bases of Sepxy is at least

1
2 (log2 n − 7α(log2 n)/5) (with b) plus 6E − (12/5)α log2 n (with Sepab). The total is

6E + (1/2 − 7α/10 − α(12/5)) log2 n ≥ 6E + (1/2 − α(31/10)) log2 n.

Since α ≤ 1/7, this quantity is greater than 6E, again a contradiction since the length of
Sepxy is 6E. ◀

DNA 27

Reactamole: Functional Reactive Molecular
Programming
Titus H. Klinge #

Drake University, Des Moines, IA, USA

James I. Lathrop #

Iowa State University, Ames, IA, USA

Peter-Michael Osera #

Grinnell College, Grinnell, IA, USA

Allison Rogers #

Grinnell College, Grinnell, IA, USA

Abstract
Chemical reaction networks (CRNs) are an important tool for molecular programming, a field that
is rapidly expanding our ability to deploy computer programs into biological systems for a variety of
applications. However, CRNs are also difficult to work with due to their massively parallel nature,
leading to the need for higher-level languages that allow for easier computation with CRNs. Recently,
research has been conducted into a variety of higher-level languages for deterministic CRNs but
modeling CRN parallelism, managing error accumulation, and finding natural CRN representations
are ongoing challenges.

We introduce Reactamole, a higher-level language for deterministic CRNs that utilizes the
functional reactive programming (FRP) paradigm to represent CRNs as a reactive dataflow network.
Reactamole equates a CRN with a functional reactive program, implementing the key primitives
of the FRP paradigm directly as CRNs. The functional nature of Reactamole makes reasoning
about molecular programs easier, and its strong static typing allows us to ensure that a CRN is
well-formed by virtue of being well-typed. In this paper, we describe the design of Reactamole
and how we use CRNs to represent the common datatypes and operations found in FRP. We also
demonstrate the potential of this functional reactive approach to molecular programming by giving
an extended example where a CRN is constructed using FRP to modulate and demodulate an
amplitude modulated signal.

2012 ACM Subject Classification Software and its engineering → Functional languages; Software
and its engineering → Data flow languages

Keywords and phrases Chemical Reaction Network, Functional Reactive Programming, Domain
Specific Language

Digital Object Identifier 10.4230/LIPIcs.DNA.27.10

Supplementary Material Software (Source Code): https://github.com/digMP/haskell-reactamole
archived at swh:1:dir:9f8a912be45038fedf03c9dd6bf74a6a20f29aff

Funding James I. Lathrop: This research was supported in part by NSF grants 1545028, 1900716,
and 1909688.
Peter-Michael Osera: This research was supported in part by NSF grants 1651817 and 2049911.

Acknowledgements We thank the four anonymous reviewers for their feedback on this paper and
Noah Susag for his contributions to the Reactamole code.

1 Introduction

Molecular programming harnesses computer science towards designing programmable struc-
tures at the nanoscale, unlocking the potential to execute programs in biological systems.
This emerging arena holds significant potential for innovations in medicine, nanofabrication,
and synthetic biology. One prominent molecular programming language is chemical reaction

© Titus H. Klinge, James I. Lathrop, Peter-Michael Osera, and Allison Rogers;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:titus.klinge@drake.edu
mailto:jil@iastate.edu
mailto:osera@cs.grinnell.edu
mailto:rogersal@grinnell.edu
https://doi.org/10.4230/LIPIcs.DNA.27.10
https://github.com/digMP/haskell-reactamole
https://archive.softwareheritage.org/swh:1:dir:9f8a912be45038fedf03c9dd6bf74a6a20f29aff;origin=https://github.com/digMP/haskell-reactamole;visit=swh:1:snp:831beb6312245410e7e422356887f5db8834356c;anchor=swh:1:rev:184d4cd6877d9fb7a260c8526668e1f3d8acd630
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Reactamole

networks (CRNs), abstractions of chemical reactions [8, 5, 10]. CRNs are Turing-complete
and act as an unstructured assembly language for molecular programming, which can then
be assembled into DNA to perform computation at the nanoscale [9, 1].

However, the characteristics of CRNs create substantial challenges for general programma-
bility. Due to the nature of chemical reactions, CRNs are massively parallel, with all reactions
active at the same time depending on the availability of the reactants. This creates race
conditions that can make coding in this framework more difficult and error-prone [22]. CRNs
are also unstructured and not easily composed; adding a single reaction can easily have
global side effects to its behavior. This is strong motivation for the creation of a high-level
programming language to abstract away these barriers.

Consequently, recent research has been conducted into high-level languages for molecular
programming such as CRN++ [22] and Kaemika [4]. CRN++ enables programming in
a familiar, imperative style that compiles to deterministic CRNs (DCRNs), marking a
significant advancement in this realm but also leaving room for continued improvement.
Vasic et al. say that CRN++ could be improved by addressing inefficiencies caused by
careful avoidance of the inherent parallelism of CRNs, as well as reducing errors accumulated
over time [22]. Kaemika supports specifying CRNs in a functional style, including support
for high-order functions and recursion [4]. Both CRN++ and Kaemika allow side effects,
with Kaemika depending on these side effects for the generation of new species within
functions. Additionally, these implementations leave room to improve the synchronicity
between language structure and CRN behavior.

We address these downsides by exploring the use of functional reactive programming
(FRP) for developing CRNs. Functional reactive programming is a paradigm primarily
characterized by its reactive nature, responding to stimuli through continuous and discrete
time-dependent inputs [2]. In FRP, systems are modeled as graphs where nodes are operations
and edges indicate how data flows between these operations, with a particular focus on
how change is propagated through this graph. We observe a close correspondence between
CRNs and functional reactive programs. The chemical concentrations of a CRN react to
changes in their environment similarly and can thus be thought of as signals, time-varying
data streams, in a functional reactive program. Consequently, CRNs themselves transform
these concentrations and can, therefore, be thought of as functions over signals, i.e., signal
functions. These correspondences make FRP a natural choice to express computation within
a CRN.

We use this correspondence to design a functional reactive molecular programming
(FRMP) language for deterministic CRNs. The heart of this language is the expression
of the core constructs of FRP directly in terms of CRNs, gaining the benefits of program
composability afforded by the functional reactive paradigm. We explore this approach
to molecular programming with Reactamole, an embedded domain specific language
(eDSL) for FRMP modeled after Yampa, a prominent functional reactive programming
DSL [14]. Furthermore, by combining FRP and CRNs, we open the door for applying recent
advancements in programming language theory towards the development of CRNs. For
example, in this FRMP paradigm, we can now consider integrating type systems that verify
safety properties of functional reactive programs [18] or program synthesizers for functional
reactive programs [11].

In Section 2, we review the basic definitions of chemical reaction networks as well as
introduce the necessary components of the Haskell programming language and functional
reactive programming needed to understand Reactamole. We introduce Reactamole by
way of example in Section 3 and describe the design and implementation of Reactamole in
Section 4. Finally, we demonstrate the potential of Reactamole by way of a case study –
implementing amplitude modulation over real-valued signals – in Section 5.

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:3

2 Background

In this section, we review the two main topics that we combine in Reactamole: chemical
reactions networks (Subsection 2.1) and functional reactive programming (Subsection 2.2).
Throughout the remaining sections, we assume familiarity with the basic syntax and semantics
of the Haskell programming language. We provide a walkthrough of the parts of Haskell
necessary to understand our presentation in Appendix A.

2.1 Chemical Reaction Networks
Scientists and researchers often utilize models to describe the complex interactions of molecules
and matter. These models simplify molecular interactions in order to allow algorithms and
software to simulate the outcomes of chemical systems. Even though these models make
simplifying assumptions, they are still a powerful tool for designing and testing these systems.
A chemical reaction network (CRN) is one such model that is often used to model molecule
interactions in a well-mixed solution. Even though assumptions are made in each of the
many variants of the CRN model, almost all of them retain the power to facilitate general
computing.

We adopt much of the notation used by Klinge, Lathrop, and Lutz [20] to formalize the
CRN model used here. A CRN is a pair N = (S, R), where S is a set of species (molecules)
and R is a set of reactions that operate over those species. Reactions are a triple ρ = (r, p, k),
where r ∈ NS , p ∈ NS , and k ∈ (0, ∞). Note that NS is the set of functions mapping
species to non-negative integers, and we do not allow r = p. The constant k represents the
rate constant for the reaction. In this paper we usually represent CRNs simply as a set of
reactions that implicitly define a set of species. For example, the reaction

X + U
k−−−→ 2X

can be interpreted as the CRN N = (S, R) with S = {X, U} and R consisting of only the
given reaction.

In this paper, we focus on the deterministic mass-action model of chemical reaction
networks, where species are represented by concentrations of molecules. This is in contrast
to the stochastic mass-action model, which uses the number of molecules for this purpose.
The deterministic mass-action model describes interactions with molecules using polynomial
autonomous differential equations, and the semantics relate concentrations of species through
the reactants, products, and rate constants of all reactions in the system. The single reaction
above yields the set of ordinary differential equations (ODEs):

dx

dt
= x · u · k

du

dt
= −x · u · k.

Intuitively, since an X and a U react together to produce an additional X in the system, the
instantaneous rate of X gained is proportional to the product of the instantaneous amounts
of the reactants and the rate constant. Simultaneously, the loss of U occurs at the same rate.
Note that we use x(t) or x to denote the concentration of species X.

Similar to Klinge, Lathrop, and Lutz [20], we define an input/output CRN (I/O CRN)
as a tuple N = (S, R, I, O), where S is a set of species, R is a set of reactions, I ⊆ S is the
set of input species, and O ⊆ S is the set of output species. I/O CRNs require that the
input species are only used as a catalyst in any reaction, a critical feature that allows us to
compose CRNs in Reactamole safely.

DNA 27

10:4 Reactamole

2.2 Functional Reactive Programming
Many classes of computation can be expressed as programs that propagate change in response
to external stimuli. For example, with:

Graphical user interfaces (GUIs), interface elements update in response to user input,
e.g., mouse movement.
Spreadsheets, cells that are related via (potential cyclic) references update whenever the
user modifies their contents.
Circuits, input signals propagate through interconnected electrical components.

We could model these phenomena with mutable state. The resulting program would then
bear the responsibility of orchestrating how the different pieces of state change in response
to the outside world. However, by doing so, we would lose the benefits of composability, a
hallmark of the functional style of programming [17].

Functional Reactive Programming (FRP) [6] purifies this stateful situation by modeling
values that react with the outside world as signals:

type Signal a = Time -> a

That is, a signal of some arbitrary type a is a time-varying value, i.e., a function from time
to a. For example, an electrical pulse that we might measure using two states, on and off,
could be represented as a Bool. In an FRP setting, this pulse would be represented as a type,
Signal Bool, a function describing how the pulse changes over time.

Within FRP, there are a multitude of approaches and variations to address implementation
concerns such as space efficiency or design constraints such as modeling discrete versus
continuous time and static versus dynamic dependencies between components. In this work,
we focus on arrowized FRP, which uses the arrow abstraction of Hughes [16], a generalization
of composable computation. These arrows take the form of signal functions in arrowized
FRP, i.e., transformers over signals:

type SF a b = Signal a -> Signal b

For example, a function not that inverts an electrical pulse would have the type SF Bool Bool,
a signal function that takes a Boolean signal as input and produces a Boolean signal as
output.

Some of these signal functions, like not, transform our time-varying values directly. Other
signal functions are higher-order signal functions which take other signal functions as input
and produce them as output. These signal function combinators allow us to build up
more complex signal functions from simpler ones. The most common of these is function
composition, traditionally written in the arrow style as the binary operator (>>>):

(>>>) :: SF a b -> SF b c -> SF a c

f >>> g is the composition of signal functions f and g where the output of f (of type b) is fed
into g as input. The resulting signal function takes an input for f (of type a) and produces
an output from g (of type c) as its result. Other common signal function combinators that
we will use in the subsequent sections include:

The split operator (***) :: SF a b -> SF c d -> SF (a, c) (b, d) which takes two in-
put signal functions f and g and creates a signal function whose inputs and outputs are
pairs drawn from f and g.
The fanout operator (&&&) :: SF a b -> SF a c -> SF a (b, c) which takes two input
signal functions f and g that take a common input type a and creates a new signal
function that pipes its input independently through both f and g and produces their
outputs as a pair.

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:5

3 Introducing Reactamole

In this section, we give a brief summary of Reactamole and its uses. Note that many of the
Reactamole primitives discussed in this section are further explained later in the paper.

Klinge, Lathrop, and Lutz [20] regarded a chemical reaction network as a device that
transforms an input signal into an output signal. The authors defined an input/output
chemical reaction network (I/O CRN) to be a CRN with some species reserved as “inputs”
that can only be used catalytically and some species labeled “outputs.” These I/O CRNs
are literally signal functions in the functional reactive programming sense. As a result, I/O
CRNs are specified using the arrow combinators that we introduced in Subsection 2.2. Below,
we demonstrate the expressive power of these arrowized I/O CRNs.

We begin with I/O CRNs that produce real numbers. Since species concentrations are
non-negative, we encode a real number as the difference between two species. (This is a
common technique and was used to show that CRNs are equivalent to the general purpose
analog computer (GPAC) [13]). Thus, a real-valued signal x(t) is encoded as x+(t) − x−(t)
where X+ and X− are two species.

One of the simplest I/O CRN operations is the integrator. An integrator takes a real-
valued signal x(t) and produces the real-valued output signal y(t) =

∫ t

0 x(s)ds + y0. In
Reactamole, we provide an integrator as an I/O CRN primitive:

integrate :: Double -> CRN Double Double

integrate is a function that takes a real-valued parameter y0 and returns a signal function
that performs integration. The parameter y0 corresponds to the constant y(0) in the solution
to y(t). We implement the integrate function, with parameter y0, using an I/O CRN
consisting of the three reactions:

X+ 1−−−→ X+ + Y + X− 1−−−→ X− + Y − Y + + Y − 1−−−→ ∅

The third reaction is an annihilation reaction that has no effect on the encoded value of
y(t) but ensures that concentrations of Y + and Y − remain close to zero. We can verify the
correctness of the above CRN by examining the induced ODEs according to the law of mass
action:

dy+

dt
= x+ − y+y−,

dy−

dt
= x− − y+y−.

Since the functions are dual-rail, we know that x(t) = x+(t)−x−(t) and y(t) = y+(t)−y−(t).
Thus, we can rewrite the above ODEs in terms of x and y directly:

dy

dt
= dy+

dt
− dy−

dt
= x+ − x− = x.

By integrating both sides, we obtain the solution y(t) =
∫ t

0 x(s)ds + y0.
Other primitives we implement in Reactamole include the following.
neg :: CRN Double Double performs numerical negation by reversing the roles of X+ and
X−. Note that this primitive does not generate additional reactions. Instead, it simply
reinterprets the output species of the CRN.
id :: CRN a a, the identity signal function, produces its inputs as outputs without
modification.
proj1 :: CRN (a, b) a and proj2 :: CRN (a, b) b take pairs of signals as inputs and
project out the individual components of those pairs as output.

DNA 27

10:6 Reactamole

NEG
Input

(ignored) Output
×

Figure 1 Visual representation of the arrowized sin implementation.

dup :: CRN a (a, a) produces a pair where each component is a “copy” of the input.
However, in reality, we don’t make a copy of the input species. Multiple consuming CRNs
can use the components of the resulting pair because I/O CRNs are catalytic in their
inputs.
loop :: CRN (a, c) (b, c) -> CRN a b creates a feedback loop where the second compo-
nent of the output of the CRN is given to itself as input.

Using these primitives, it is already possible to specify complex signals such as sine and
cosine. We can define sin in the following way which is also illustrated in Figure 1:

sin :: CRN a Double
sin = loop (proj2 >>> neg >>> integrate 1 >>> integrate 0 >>> dup)

This definition exploits the fact that the sine function satisfies the second-order differential
equation x′′(t) = −x(t). Since the output of sin does not depend on its input, the type
signature of sin has an abstract input type a, meaning that it can receive any input. The
loop combinator creates a feedback loop that allows the signal x(t) to depend on itself. Since
sin uses two applications of integrate, Reactamole generates the following six reactions:

X+
1

1−−−→ X+
1 + X−

2

X−
1

1−−−→ X−
1 + X+

2

X+
2

1−−−→ X+
2 + X+

1

X−
2

1−−−→ X−
2 + X−

1

X+
1 + X−

1
1−−−→ ∅

X+
2 + X−

2
1−−−→ ∅

We can verify the correctness of the sin definition by observing that the ODEs associated
with the reactions satisfy

dx1

dt
= dx+

1
dt

− dx−
1

dt
= x+

2 − x−
2 = x2

dx2

dt
= dx+

2
dt

− dx−
2

dt
= x−

1 − x+
1 = −x1

and therefore x1(t) = sin(t) and x2(t) = cos(t).
We now turn our attention to I/O CRNs that produce Booleans. Similar to real numbers,

we encode a Boolean signal using a pair of species (X, X) while maintaining the invariant
that x(t) + x(t) = 1. When species X is high, the Boolean is interpreted as true; similarly,
when X is high, the Boolean is interpreted as false.

The elementary Boolean signal functions in Reactamole are not :: CRN Bool Bool and
nand :: CRN (Bool, Bool) Bool. Similar to neg, the not signal function “crosses the wires”
of X and X without adding any additional species or reactions. The nand signal function
consists of five reactions, using the implementation provided by Ellis, Klinge, and Lathrop [7]
and visualized in Figure 2.

Using these two primitives, we can define the other elementary gates as follows.

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:7

Figure 2 Reactamole nand and srLatch implementations.

or, and, nor, xor, xnor :: CRN (Bool, Bool) Bool
or = (not *** not) >>> nand
and = nand >>> not
nor = or >>> not
xor = (nand &&& or) >>> and
xnor = xor >>> not

Note that not does not introduce additional overhead, so the signal functions or, and and
nor are no more complex than nand.

We can also use the loop combinator to create sequential logic gates such as a set-reset
latch which is visualized in Figure 2.

srLatch :: CRN (Bool, Bool) (Bool, Bool)
srLatch = loop (crossWires >>> (nand *** nand) >>> dup)

Here, crossWires is a simple signal function that “rearranges the wires” so that the outputs
are looped back into the appropriate nand gates. Since srLatch has two Boolean inputs and
is implemented with two nand gates, the resulting I/O CRN consists of eight species and nine
reactions1.

Finally, we can create signal functions that employ both real-valued signals and Boolean
signals. For example, we include a primitive isPos :: CRN Double Bool that tests if a real-
valued input is positive. Note that isPos is a continuous approximation of a discontinuous
function, so its Boolean output is undefined if the input signal is close to zero.

Using isPos and the previously defined sin signal, we can easily create a clock signal
that could be employed in clocked sequential circuits.

clock :: CRN a Bool
clock = sin >>> isPos

1 Reactamole automatically optimizes the final I/O CRN by combining reactions together when possible.
Thus, srLatch consists of nine reactions instead of ten because two reactions can be safely combined
into one without affecting the underlying ODEs of the CRN.

DNA 27

10:8 Reactamole

-- Algebraic structures
(>>>) :: CRN a b -> CRN b c -> CRN a c
(***) :: CRN a b -> CRN c d -> CRN (a, c) (b, d)
(&&&) :: CRN a b -> CRN a c -> CRN a (b, c)
first :: CRN a b -> CRN (a, c) (b, c)
second :: CRN a b -> CRN (c, a) (c, b)
-- Booleans
not :: CRN Bool Bool
nand :: CRN (Bool, Bool) Bool
arr1Bl :: (Bool -> Bool) -> CRN Bool Bool
-- Reals
integrate :: Double -> CRN Double Double
neg :: CRN Double Double
add :: CRN (Double, Double) Double
mult :: CRN (Double, Double) Double
isPos :: CRN Double Bool

-- Switching
(+++) :: CRN a b -> CRN c d

-> CRN (Either a c)
(Either b d)

(|||) :: CRN a c -> CRN b c
-> CRN (Either a b) c

left :: CRN a b
-> CRN (Either a c)

(Either b c)
right :: CRN a b

-> CRN (Either c a)
(Either c b)

entangle :: CRN (Bool, (a,b))
(Either a b)

Figure 3 Functional reactive molecular programming core combinators.

4 Functional Reactive Molecular Programming

The following equivalences form the heart of the functional reactive molecular programming
(FRMP) style epitomized by Reactamole:

Signals, time-varying values, are interpretations of collections of species’ concentrations
as values.

Signal functions are typed chemical reaction networks, a CRN equipped with extra
information identifying the species that serve as the inputs and outputs to the function.

Higher-order signal functions, i.e., signal functions that take other signal functions as
input, are CRN transformers which produce new CRNs from old ones.

Furthermore, we take inspiration from the arrowized FRP approach of Hughes and thus
specify the constructs of FRMP as a collection of combinators, higher-order signal functions
that users combine to build more complex CRNs from smaller ones.

The heart of FRMP is a compilation pass that transforms these FRP combinators into
a CRN that realizes the computation in (abstract) chemistry. We augment the output
CRN with species tags, additional static information necessary for interpreting the relevant
species of the CRN as inputs and outputs to the computation. We call the combination of
a CRN with its species tags a typed chemical reaction network, formally, a tuple of a CRN
N and species tags describing how to interpret its inputs and outputs, written (N, pin, pout).
We represent the compilation process as an interpretation function over signal functions
JfK = (N, pin, pout) which denotes that signal function f compiles to typed CRN (N, pin, pout).

In the following section, we describe this translation for our core combinators. We
organize the various combinators by the types that they operate over, recalling that the type
CRN a b represents a CRN (dually, a signal function) that takes a signal of type a as input
and produces a signal of type b as output. Figure 3 gives an overview of these combinators
by category.2

2 We approximate real values using finite-sized Haskell Double values.

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:9

Species Tags and Signals

We provide one tag for each possible type that we can represent in our implementation. The
tags identify the type of signal that the CRN outputs as well as the relevant species that
encode that signal.

The unit signal tag, (), represents a signal that generates the unit value. This is an
arbitrary, unique value of that type (written as () in Haskell) that acts effectively as a
constant that carries no information. Because of this, a unit signal will not be acted on
by any reactions and thus does not need an explicit runtime representation in a CRN.
A Boolean signal tag, (X, X), denotes a Boolean value represented by a pair of species X

and X in a dual-rail construction based on Ellis et al.’s method [7]. These species exhibit
an inverse relationship maintained by the constructed CRN as an invariant – when one
species has a high concentration, the other has a low concentration. The two species in
this dual-rail construction represent True and False, respectively.
A real number tag, (X+, X−), denotes a real value represented by a pair of molecules
X+ and X−, where we take the value of the real to be the difference between the
concentrations of X+ and X−.
A pair signal tag, (p1, p2), denotes the “gluing” together of two signals that operate
independently of each other. The components of the tag pair are the tags of the individual
signals.
An either signal tag, (X, X, p1, p2), represents a time-varying discriminated union used
in FRMP to achieve dynamic switching. Such a signal is made up of a Boolean signal
indicated by species X and X as well as two component signals with tags p1 and p2. The
Boolean species indicates which of the two signals is currently active.

4.1 Algebraic Structures
The core of FRP is composing signal functions together. Suppose that we compose together
two signal functions, written f1 >>> f2. In FRMP, this amounts to composing the two I/O
CRNs representing f1 and f2, call them N1 and N2, respectively, by feeding the outputs of
N1 as inputs to N2. Because the input species of I/O CRNs are catalytic, i.e., the net rate of
the input species to N1 and N2 is zero, we achieve composition by simply taking the union
of the species and reactions of each CRN (⊔) and then substituting all the input species of
f2 with all the output species of f1 in the resulting CRN, written [pout

1 7→ pin
2].

Jf1 >>> f2K = ([pout
1 7→ pin

2](N1 ⊔ N2), pin
1 , pout

2) where Jf1K = (N1, pin
1 , pout

1)
Jf2K = (N2, pin

1 , pout
2).

This is safe because N2 has no observable effect on the outputs of N1.
The only caveat we must consider is that the species of the two CRNs are disjoint.

Otherwise, unioning their reactions might cause unintended side-effects to their rates. We
guarantee this by ensuring that species names are disjoint between CRNs via renaming
whenever combining CRNs in this fashion. This is analogous to the notion of α-equivalence
in programming languages, where programs are considered equivalent up to renaming of
their bound variables.

As a simple example of composition, consider f1 = (N1, (X+, X−), (Y +, Y −)) and f2 =
(N2, (A+, A−), (B+, B−)) where N1 is the network:

X+ 1−−−→ X+ + Y + X− 1−−−→ X− + Y − Y + + Y − 1−−−→ ∅,

and N2 is the network:

DNA 27

10:10 Reactamole

A+ 1−−−→ A+ + B+ A− 1−−−→ A− + B− B+ + B− 1−−−→ ∅.

N1 and N2 each independently perform an integration of their arguments. The composition
of these two CRNs f1 >>> f2 = (N3, (X+, X−), (B+, B−)) where N3 is the network:

X+ 1−−−→ X+ + Y + X− 1−−−→ X− + Y − Y + + Y − 1−−−→ ∅

Y + 1−−−→ Y + + B+ Y − 1−−−→ Y − + B− B+ + B− 1−−−→ ∅.

N3 is precisely the union of the reactions of N1 and N2 but with the input species of N2,
A+ and A− replaced by the output species of N1, Y + and Y −. Observe that, by virtue of
composing two integration functions together, N3 performs two integrations on its input.

Aggregate data types are represented in Reactamole through product types, i.e., tuples.
The elements of tuples are, by definition, independent values. Because we maintain disjointness
of species names between CRNs, we form tuples by taking the union of these CRNs directly.
The split operator between two CRNs, written f1 *** f2, unions the species and reactions of
the two input CRNs together and creates a new output species tag that identifies the output
of the CRN as a tuple.

Jf1 *** f2K = (N1 ⊔ N2, (pin
1 , pin

2), (pout
1 , pout

2)) where Jf1K = (N1, pin
1 , pout

1)
Jf2K = (N2, pin

2 , pout
2).

For our example, Jf1 *** f2K = (N4, ((X+, X−), (A+, A−)), ((Y +, Y −), (B+, B−))) where N4
is simply the union of the unmodified reactions from N1 and N2.

In contrast, the fanout operator between two CRNs, written f1 &&& f2, transforms two
CRNs that expect the same input type into a single CRN that sends a single input to the
two CRNs. The operator has type (&&&) :: CRN a b -> CRN a c -> CRN a (b, c). We can
implement the fanout operator in terms of composition, split, and a dup combinator that
produces a signal pair where each component is simply the input species.

Jdup fK = (N, pin, (pout, pout)) where JfK = (N, pin, pout).

We can then define fanout directly as f &&& g = dup >>> (f *** g). Again, this is all safe
because CRNs are catalytic in their inputs. Thus, the duplication of the input signal will
not lead to interfering behavior between f and g.

Finally, we can also create CRNs that involve feedback, i.e., the CRN depends on its own
output, with the loop combinator. To understand how loop is implemented, it is useful to
first analyze its type:

loop :: CRN (a, c) (b, c) -> CRN a b

loop takes in a CRN that expects a pair signal and produces a pair signal. The result is a new
CRN where the second component of the input pair is “patched” by the second component
of the output pair, both of type c. This leaves behind a CRN that expects an a as input and
produces a b as output.

Jloop fK = ([pout
c 7→ pin

c]N, pin
a , pout

b) where JfK = (N, (pin
a , pin

c), (pout
b , pout

c))

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:11

4.2 Booleans

Booleans in FRMP are represented by a dual-rail encoding, where one species indicates the
True value and the other False. These species exhibit a strictly inverse relationship (i.e.,
when one has a low concentration the other has a high concentration) and the value of
the Boolean is given by the high species. This dual-rail construction is based on Ellis et
al.’s method [7] and is necessary for the result to be measurable by reporter molecules in a
biological system, since it is difficult to detect the absence of a species.

Boolean Negation

FRMP supports negation through a reinterpretation of this Boolean encoding. Negation is
achieved by swapping the Boolean value that each dual-rail chemical species represents. This
allows for efficient negation in a manner that does not require creating an additional CRN.

Jnot bK = (N, pin, (X, X)) where JbK = (N, pin, (X, X))

NAND and Other Logic Gates

The foundation for FRMP’s support of Boolean circuits and functions is the robust NAND
gate introduced by Ellis et al. [7], as shown in Figure 2. This gate is included as the signal
function nand :: CRN (Bool, Bool) Bool. All other basic logic gates are implemented using
nand along with neg as described in Section 3.

Lifting

We can also lift (i.e., translate) arbitrary pure Boolean functions into CRNs, which allows
us to write Boolean functions in a more natural style, e.g., with variables and conditionals.
This is possible because any Boolean function can be represented by a finite number of gates.
For example, consider the following Haskell function which determines if a decision between
three parties is unanimous:

unanimous :: Bool -> Bool -> Bool -> Bool
unanimous x y z = if x then (y && z) else not (y || z)

We can lift this function into a CRN using the three-input lifting function:3

arr3Bl :: (Bool -> Bool -> Bool -> Bool) -> CRN (Bool, Bool, Bool) Bool

arr3Bl unanimous produces a CRN that computes unanimous. This CRN is constructed using
a series of signal function gates that mirror the given Haskell function’s sum of products. The
sum of products is found by first constructing a matrix of all possible combinations of inputs
to the Haskell function and the resulting outputs. All instances with output value False are
then filtered out, and the signal function is then constructed using the corresponding series
of AND, OR, and NOT gates that represent the sum of products given by the matrix. This
lifting process is a useful mechanism to quickly create a complex CRN directly from Haskell
code.

3 The name arr comes from the Haskell Arrow typeclass that defines arr as its own lifting function.

DNA 27

10:12 Reactamole

4.3 Real Numbers
We have already demonstrated our ability to compute over real numbers with CRNs in Sec-
tion 3. For example, the integrate and sin signal functions correspond to straightforward
CRN implementations. The neg combinator is a simple reinterpretation of the input CRN’s
species tag because X − Y = −(Y − X):

Jneg fK = (N, pin, (X−, X+)) where JfK = (N, pin, (X+, X−))

What about other operations, for example, adding together two real signals? It turns out
that we cannot craft a CRN that captures the addition of two abstract real signals. But, in
our deterministic context, we know that a CRN can be interpreted as an ODE describing
the rates of change of each of the species in the system. Under this interpretation, addition
of real signals is precisely addition of their respective ODEs.

However, this implementation strategy is fundamentally different than the other CRN
operations we have discussed so far. Unlike integrate, which treats its input signal as a black
box, performing addition and multiplication requires knowing the input signal’s ODEs in order
to be exact. To prevent unnecessary dependencies, the add :: CRN (Double, Double) Double
and mult :: CRN (Double, Double) Double signal functions in Reactamole are implemented
lazily. This means that the creation of new species and reactions is delayed until absolutely
necessary. In fact, when adding or multiplying real-valued signals, the intermediate sum or
product species may be optimized away entirely. For example, in Section 5, we construct a
CRN using one application of add, two applications of mult, and one application of integrate,
which only generates one pair of species and five reactions. (See Figure 4 for more details.)

Currently, our approach to FRMP does not support lifting real-valued functions to CRNs.
However, a large class of functions are known to be produced by analog computers [3], and
new techniques are emerging for lifting various real-valued functions to CRNs [12]. We hope
to incorporate these ideas into FRMP in the future.

4.4 Switching
An important capability of a functional reactive program is changing the topology of its
components at runtime, i.e., dynamically switching between different signals. A simple way
to encode the behavior is through a conditional, if t then s1 else s2, where s1 and s2 are
arbitrary signals and t is a Boolean signal. As t transitions between truth values, the overall
conditional signal transitions between s1 and s2. From Subsection 4.1, we know that we can
carry t, s1, and s2 as a triple of signals. We give this aggregate signal the type Either a b,
where a and b are the types of s1 and s2, respectively. This choice of type comes from the
Either type in Haskell which encodes a discriminated union – a pair of potential values with
a tag that says which of the two values are present.

However, because the reactions of a CRN are fixed at compilation time, we don’t have
a built-in mechanism by which a consuming signal can “change” its reactions to go from
consuming s1 to consuming s2 during runtime. To solve this problem, we then entangle the
components of the Either signal, t, s1, and s2, to produce a single signal with our desired
conditional semantics. The entangle :: CRN (Bool, (a,b)) (Either a b) signal function
creates these entanglements and the fanin operator creates a signal function that merges two
entangled values into one. The fanin operator has the following type signature:

(|||) :: CRN a c -> CRN b c -> CRN (Either a b) c

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:13

f1 ||| f2 takes two signal functions that take arbitrary types a and b as input and produce
a common output type c. Fanin will join the signal functions f1 and f2 into an Either signal
and then merge their outputs to produce a unified signal of type c. The Boolean component
of the Either signal then controls whether the output signal is generated from f1 or f2.

This is necessarily a type-directed process; how we combine s1 and s2 depends on their
encodings and thus their types. For example, consider the case where s1 and s2 are both
Boolean signals. We can now combine our Either signal by observing that:

if t then s1 else s2 ≡ (t ∧ s1) ∨ (t ∧ s2).

We can also entangle Either signals when s1 and s2 are real signals. To do so, we observe a
similar equation for reals, recalling that the Boolean signal t is really a pair of species, b and
b, interpreted in a dual-rail style:

if (b, b) then s1 else s2 ≈ b · s1 + b · s2.

Note that because b and b only approximate 0 and 1, the resulting signal is an approximation
of the appropriate output of either s1 or s2. Such an approximation is necessary because a
CRN cannot have a discontinuity in its solution. Finally, with primitives defined, we can
entangle aggregate signals such as pairs by simply entangling their components and then
pairing together the resulting signals.

Below is a definition of a rectify, a signal function that passes through only the positive
component of a signal.
rectify :: CRN Double Double
rectify = isPos &&& dup >>> entangle >>> (id ||| constRl 0)

Here, the sub-expression id ||| constRl 0 defines a signal function that is either the identity
function or the constant zero. Thus, rectify is a signal function that behaves like the identity
function if the input is positive and otherwise behaves like the constant zero.

The Reactamole Implementation
Reactamole is an implementation of this approach to functional reactive molecular pro-
gramming as an embedded domain-specific language (eDSL) within Haskell.4 By embedding
Reactamole in Haskell, we can take direct advantage of Haskell’s existing facilities –
language constructs, the type system, and its tooling support – in developing CRNs. To
maximize the benefits of this embedding, we choose a different, yet equivalent, adaption of
FRP into CRNs. We define signal functions to be genuine Haskell functions between signal
values, i.e., data SF a b = SF (Signal a -> Signal b), where the Signal type corresponds
to a CRN. This change in encoding allows us to use Haskell’s rich higher-order programming
facilities to be able to express combinators more concisely. For example, consider the com-
position of two CRNs with the composition operator f1 >>> f2. In Reactamole, because
f1 and f2 are now Haskell functions, the composition operator between CRNs is simply the
composition operator between Haskell functions, (.).
(>>>) :: SF a b -> SF b c -> SF a c
(SF f) >>> (SF g) = SF (g . f) -- N.B., (.) composes right-to-left

Other combinators enjoy simpler implementations than what was presented in this section
due to the embedded nature of Reactamole.

4 Reactamole is available at https://github.com/digMP/haskell-reactamole.

DNA 27

https://github.com/digMP/haskell-reactamole

10:14 Reactamole

+
+

a

-b

Output

Input
+
+

+
+

a

-c

-b

Output

Input

Figure 4 Visualization of the low-pass (left) and band-pass (right) filters in Reactamole. The
boxes containing constants a, b, and c correspond to constant multiplier signal functions.

5 Case Study: Amplitude Modulation

We now demonstrate Reactamole’s expressiveness via a case study: implementing chemical
reaction networks to perform amplitude modulation [19]. Amplitude modulation (AM) is a
common technique for sending multiple signals through a shared medium. Intuitively, an AM
modulator combines a signal u(t) with a sinusoidal carrier signal s(t) via multiplication. Many
signals u1(t), u2(t), . . . can then be simultaneously transmitted through a shared medium
m(t) by superimposing the modulated signals. In CRNs, modulated signals need only be
added into a single signal, represented by a pair of species (M+, M−). This is analogous to
radio stations transmitting modulated signals at specified frequencies, which all combine in
the atmosphere.

We previously saw how to specify a sine wave in Reactamole. It is not difficult to
extend this example in order to generate a carrier signal with a given frequency. We first
define a helper signal function called constMult that multiplies a signal by a constant.

constMult :: Double -> CRN Double Double
constMult d = (constRl d &&& id) >>> mult

Here, constRl d produces a signal function CRN a Double that ignores its input and emits a
signal with the constant d. Using constMult, we can now specify a CRN that generates a
sine wave with a given frequency.

carrier :: Double -> CRN a Double
carrier w = loop (proj2 >>> constMult (-w) >>> integrate 1

>>> constMult w >>> integrate 0
>>> dup)

Note that this implementation is nearly identical to that of sin, defined in Section 3.
However, by adding the constant multipliers, carrier 5 will produce a signal s(t) = sin(5t).
The constant w is incorporated into the rate constants of the reactions, so carrier w also
consists of four species and six reactions.

One common component used to implement AM modulation and demodulation is the
low-pass filter. A simple first-order low-pass filter is realized by integrating the sum of the
input and output multiplied by specific parameters a and b, as shown in Figure 4. By
choosing the appropriate parameters, we can generate a low-pass filter with a specific cut-off
frequency. For example, if we choose a to be 0.0001, then the cut-off frequency will be 0.01
radians per second. The low-pass filter presented in [19] can be specified as follows:

lowPass :: Double -> Double -> CRN Double Double
lowPass a b = loop (constMult a *** constMult (-b) >>> add >>> integrate 0 >>> dup)

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:15

The I/O CRN generated by lowPass a b consists of the following five reactions:

X+ a−−−→ X+ + Y +

X− a−−−→ X− + Y −

Y + b−−−→ Y + + Y −

Y − b−−−→ Y − + Y + Y + + Y − 1−−−→ ∅

where (X+, X−) comprise the input signal. The CRN satisfies the ODE dy
dt = ax − by where

y(t) = y+(t) − y−(t) and x(t) = x+(t) − x−(t).
Another common AM component is the band-pass filter, which can be used to select a

specific carrier frequency from the medium species and attenuate all other carrier signals
present in the medium species. Below is the implementation of the band-pass filter presented
in [19], which is also included visually in Figure 4.
bandPass :: Double -> Double -> Double -> CRN Double Double
bandPass a b c = loop (first (constMult a)

>>> second (constMult (-c) &&& (integrate 0 >>> constMult (-b)) >>> add)
>>> add >>> integrate 0 >>> dup)

The I/O CRN generated by bandPass a b c consists of the reactions

X+ a−−−→ X+ + Y +

X− a−−−→ X− + Y −

Y + 1−−−→ Y + + Z+

Y − 1−−−→ Y − + Z−

Z+ b−−−→ Z+ + Y −

Z− b−−−→ Z− + Y +

Y + c−−−→ Y + + Y −

Y − c−−−→ Y − + Y +

Z+ + Z− 1−−−→ ∅

Y + + Y − 1−−−→ ∅

and satisfies the ODEs dy
dt = ax − bz − cy and dz

dt = y. Note that the species (Z+, Z−) are
internal species to the I/O CRN that are not communicated in its output.

We now show how to modulate and demodulate signals using a carrier frequency. We
use the technique in [19] that has the medium species M+ and M− and can be specified in
Reactamole with:
modulate :: Double -> CRN Double Double
modulate w = loop (first (id &&& carrier w >>> mult)

>>> second neg >>> add >>> integrate 0 >>> dup)

Here, modulate f produces a pair of species representing the medium m(t) that satisfies
dm
dt = u(t) · sin(ft) − m(t) where u(t) is the input signal. Klinge and Lathrop [19] also

proposed a method to superimpose multiple modulated signals through a single medium
m(t), which can be easily accomplished in Reactamole with add :: CRN Double Double.

Given a signal m(t) that may carry several modulated signals, we now use the same
methods in [19] to retrieve a signal. A simple AM demodulator is realized with a band-pass
filter to select the desired carrier frequency followed by a function to pass only the positive
parts of the signal. A low-pass filter may then be used to remove the carrier frequency to
recover an approximation to the original signal.

We can use the bandPass and lowPass filters, along with rectify defined in Subsection 4.4,
to extract a signal from a desired carrier frequency.
demodulate :: Double -> Double -> CRN Double Double
demodulate w q = bandPass (w/q) (w/q) (w*w) >>> rectify >>> lowPass w w

Here, demodulate w q generates a CRN that demodulates a signal that has been modulated
on a carrier signal at frequency w. The parameter q is used to determine the bandwidth of
the band-pass filter, which determines how close two different carriers may be in frequency.
Also note that low-pass and band-pass filters may be cascaded to create higher order filters
by composing them with the >>> combinator.

DNA 27

10:16 Reactamole

6 Conclusion

Reactamole unveils new possibilities for the future of molecular programming through
exploration of a novel paradigm for the field: functional reactive programming. The language
uses typed CRNs – CRNs with extra information about how their chemical species map to
Haskell types – to enable complex computation. In particular, Reactamole introduces
combinators that allow for computation over basic primitives types as well as the safe
manipulation and composition of CRNs.

The representation of CRNs as signal functions in FRP allows for efficient construction
of a variety of CRNs using a minimal numbers of species. For example, the NOT gate
for Booleans and negation for real values are both achieved through “rewiring” of a signal
function (reinterpreting the species’ types) and do not require any additional chemical species.
This results in OR and AND gates that use the same number of species as the NAND gate
they are built from. Additionally, the use of ODEs to represent CRNs enables addition for
some CRNs. We also provide a formal construction of the representations of various Haskell
types as CRNs, including Booleans, Reals, Pairs, and Eithers. All of these features make
Reactamole a useful tool for safe, robust and automated construction and composition of
CRNs for a variety of uses.

Future Work

There are four main areas for further improvement that we hope to pursue for Reactamole.
First, there is potential for expanding Reactamole’s lifting support, including optimizing
the construction of lifted Boolean functions, enabling lift for multi-output Boolean functions,
and adding support for lifting certain real functions using Either. Lifting for reals will require
some constraints, as it is not possible to lift real functions whose input signals are not known.

We would also like to improve the handling of approximations and delays. Currently,
nand and Either are approximations because there is some unavoidable delay when working
with chemical reactions. In the future, it would be helpful to build out support for tracking
approximation margins and specifying additional guarantees. Similarly, composing NAND
gates propagates delay and this is currently not controllable by the user because the rate
constants are hard-coded. Ellis et al. specify a method for converting a τ value to a rate
constant [7] which could be leveraged to allow the user to specify a rate constant for the
NAND gates in Reactamole.

It would also be useful to expand the back-end options for Reactamole. Currently, the
language interacts directly with MATLAB to simulate CRNs, but this could be expanded
by allowing options to export to other tools, such as SimBiology, or through building an
embedded ODE solver.

Finally, Reactamole may be a good candidate for a standalone language. In particular,
we can move beyond the limitations of Haskell and specialize the language features to
the molecular programming setting. With this change, we can consider adding a strong,
linear temporal logic-based type system to Reactamole to capture fine-grained correctness
properties of our CRNs [18]. Such a type system can, in turn, enable the efficient automatic
generation of CRNs from specification, i.e., program synthesis [11].

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:17

References
1 Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, and Erik

Winfree. A General-Purpose CRN-to-DSD Compiler with Formal Verification, Optimization,
and Simulation Capabilities. In Robert Brijder and Lulu Qian, editors, DNA Computing and
Molecular Programming, pages 232–248, Cham, 2017. Springer International Publishing.

2 Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn Mostinckx, and
Wolfgang de Meuter. A Survey on Reactive Programming. ACM Comput. Surv., 45(4), 2013.
doi:10.1145/2501654.2501666.

3 Olivier Bournez, Daniel Graça, and Amaury Pouly. On the functions generated by the
general purpose analog computer. Information and Computation, 257:34–57, 2017. doi:
10.1016/j.ic.2017.09.015.

4 Luca Cardelli. Kaemika App: Integrating Protocols and Chemical Simulation. In Alessandro
Abate, Tatjana Petrov, and Verena Wolf, editors, Computational Methods in Systems Biology,
pages 373–379, Cham, 2020. Springer International Publishing.

5 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
Chemical Reaction Networks. In Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and
Erik Winfree, editors, Algorithmic Bioprocesses, pages 543–584. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009. doi:10.1007/978-3-540-88869-7_27.

6 Conal M. Elliott. Push-Pull Functional Reactive Programming. In Proceedings of the 2nd
ACM SIGPLAN Symposium on Haskell, Haskell ’09, pages 25–36, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1596638.1596643.

7 Samuel J. Ellis, Titus H. Klinge, and James I. Lathrop. Robust chemical circuits. Biosystems,
186:103983, 2019. doi:10.1016/j.biosystems.2019.103983.

8 Irving Robert Epstein and John Anthony Pojman. An Introduction to Nonlinear Chemical
Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, 1998.

9 François Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly. Strong turing
completeness of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In Jérôme Feret and Heinz Koeppl, editors, Computational Methods in Systems
Biology, pages 108–127, Cham, 2017. Springer International Publishing.

10 Martin Feinberg. Foundations of chemical reaction network theory. Springer, 2019.
11 Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. Synthesizing Functional

Reactive Programs. arXiv:1905.09825 [cs], 2019. arXiv:1905.09825.
12 Mathieu Hemery, François Fages, and Sylvain Soliman. Compiling Elementary Mathematical

Functions into Finite Chemical Reaction Networks via a Polynomialization Algorithm for
ODEs. working paper or preprint, 2021. URL: https://hal.inria.fr/hal-03220725.

13 Xiang Huang, Titus H. Klinge, and James I. Lathrop. Real-time equivalence of chemical
reaction networks and analog computers. In Chris Thachuk and Yan Liu, editors, DNA
Computing and Molecular Programming, pages 37–53, Cham, 2019. Springer International
Publishing.

14 P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, Robots, and Functional Reactive
Programming. In Advanced Functional Programming, 2002.

15 Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es):196–es, 1996. doi:10.1145/242224.242477.

16 John Hughes. Generalising monads to arrows. Science of Computer Programming, 37(1):67–111,
2000. doi:10.1016/S0167-6423(99)00023-4.

17 John Hughes and John O’Donnell. Expressing and reasoning about non-deterministic functional
programs. In Kei Davis and John Hughes, editors, Functional Programming, pages 308–328,
London, 1990. Springer London.

18 Alan Jeffrey. LTL types FRP: linear-time temporal logic propositions as types, proofs as
functional reactive programs. In Proceedings of the sixth workshop on Programming languages
meets program verification - PLPV ’12, page 49, Philadelphia, Pennsylvania, USA, 2012. ACM
Press. doi:10.1145/2103776.2103783.

DNA 27

https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1016/j.ic.2017.09.015
https://doi.org/10.1016/j.ic.2017.09.015
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1016/j.biosystems.2019.103983
http://arxiv.org/abs/1905.09825
https://hal.inria.fr/hal-03220725
https://doi.org/10.1145/242224.242477
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/2103776.2103783

10:18 Reactamole

19 Titus H. Klinge and James I. Lathrop. Modulated signals in chemical reaction networks.
CoRR, abs/2009.06703, 2020. arXiv:2009.06703.

20 Titus H. Klinge, James I. Lathrop, and Jack H. Lutz. Robust Biomolecular Finite Automata.
CoRR, abs/1505.03931, 2015. arXiv:1505.03931.

21 Simon Marlow. Haskell 2010 language report.
22 Marko Vasic, David Soloveichik, and Sarfraz Khurshid. CRN++: Molecular Programming

Language. arXiv:1809.07430 [cs], 11145, 2018. doi:10.1007/978-3-030-00030-1.

A Haskell

Haskell is a statically-typed, lazy, pure functional programming language [21] used both in
industry for its strong correctness guarantees and in academia as a testbed for programming
languages research. Reactamole is an embedded domain-specific language [15] within
Haskell and as such, writing programs in Reactamole is equivalent to writing Haskell
programs. Through this embedding, Reactamole enjoys the benefits of Haskell’s strong
static type system to ensure the well-formedness of chemical reaction networks. Here we review
the salient features of Haskell necessary to understand our presentation of Reactamole.

A.1 Bindings and Type Signatures
Like other languages, a Haskell program is composed of a collection of top-level bindings,
usually function declarations. For example, here is a function that computes a simple numeric
result:

cToF :: Double -> Double
cToF c = c * 9.0/5.0 + 32

A binding typically possesses a type signature associated with it that describes the static
type of the value bound to that name. In this example, the binding cToF has a function type
Double -> Double. The type of value that cToF takes as input is given to the left of the arrow
(->) and the type of its output is given to the right of the arrow. Here, cToF is a function
that takes a Double as input and produces a Double as output. If a function takes multiple
inputs, we separate each input type by an arrow. For example, the less-than comparison
operator has the (simplified) type (<) :: Int -> Int -> Bool. In other words, less than is a
function that takes two arguments, both Ints, and produces a Bool as output.

The definition of the binding follows the type signature. Above, we declare cToF as a
function, specifying the parameter to the function c after the binding’s name but before the
equals sign. The function body is a single expression (c * 9.0/5.0 + 32) whose resulting
value is returned when the function is evaluated.

A.2 Polymorphism
Haskell’s rich type system allows the programmer to write down functions that take values
of any type, a feature called parametric polymorphism. This is commonly implemented as
generic types in other languages, such as Java or C#. In Haskell, any name that appears in
a type signature that starts with a lowercase letter is assumed to be a type variable. For
example, this binding:

id :: a -> a
id x = x

http://arxiv.org/abs/2009.06703
http://arxiv.org/abs/1505.03931
https://doi.org/10.1007/978-3-030-00030-1

T. H. Klinge, J. I. Lathrop, P.-M. Osera, and A. Rogers 10:19

implements the identity function that takes a value of some arbitrary type a and returns a
value of that same type. id can be passed any value and the type variable a is instantiated
to the type of that value, e.g., id 5 instantiates the a to be Int.

Type variables also commonly appear as arguments to other types. The canonical example
of such a parameterized type is the list type, written [a], which corresponds to values that
are lists whose elements are all of type a. More commonly, you will see parameterized types
like the standard data type Maybe a, which is, conceptually, a box that potentially contains a
value of type a.

A.3 Functions as Values
Finally, an important concept when working in the abstract setting of functional reactive
programming is functions as first-class values. Functions can be passed as input to other
functions and produced as output. An example of such a higher-order function is the
composition operator (.) which operates analogously to mathematical function composition.
We can use composition to “glue” together functions, sending the outputs of one as the
inputs of another. For example, here is a simple function that defines isOdd by composing
an even-testing function and Boolean negation:

isEven :: Int -> Bool
isEven x = x ‘div’ 2 == 0

isOdd :: Int -> Bool
isOdd x = (not . isEven) x

Note that the output of (.) here will be a function that takes an Int, feeds it through
isEven, then takes that resulting Bool and feeds it through not. However, because this result
is a function, it is superfluous to write the argument x in the definition of isOdd because all
we do is pass it to the result of the composition. Instead, we can define isOdd directly in
terms of the composition:

isOdd’ :: Int -> Bool
isOdd’ = not . isEven

When a function is defined directly without the need to reference its argument, we call such
a function point-free. Much of the code we write in Reactamole consists of manipulating
polymorphic function-like objects in this higher-order, point-free style.

A.4 Example: Interpreting Functional Reactive Code
As an example of applying these concepts toward understanding Reactamole code, let us
revisit the sin function from Section 3 and analyze how its type relate to its implementation.

sin :: CRN a Double
sin = loop (proj2 >>> neg >>> integrate 1 >>> integrate 0 >>> dup)

In doing so, we will effectively walk through the process of type checking the code, ensuring
that the implementation of sin is consistent with its stated type.

Immediately, we can see that sin is defined in terms of a call to the loop function which
has type loop :: CRN (a, c) (b, c) -> CRN a b. Without understanding the particulars of
loop, we can see that loop takes a CRN as input and produces a CRN as output. This is
good because sin is suppose to be a CRN! Furthermore, we can observe that the type of sin
is CRN a Double and the output type of loop is CRN a b. This means that the type variable b

DNA 27

10:20 Reactamole

will be instantiated to Double. Consequently, this means that the output of loop has type
CRN a Double, which is consistent with the declared type of sin. Now, we must check that
the value passed to loop has type CRN (a, c) (Double, c), i.e., a CRN that takes a pair of
an a and a c as input and produces a pair of a Double and a c as output.

Next, let’s look at the argument to loop and work through its type. The composition
operator (>>>) has type:
(>>>) :: CRN a b -> CRN b c -> CRN a c

Intuitively, we can think of (>>>) as chaining together the output of one CRN of type b with
a CRN expecting that same type as input. The result is a CRN that takes as input the
intended input of the first CRN and produces as output the intended output of the second
CRN.

Furthermore, (>>>) is left-associative, so the argument is really parenthesized as:
((((proj2 >>> neg) >>> integrate 1) >>> integrate 0) >>> dup)

Because of this, we first look at the type of the CRN produced by proj2 >>> neg. proj2 and
neg have the following types:

proj2 :: CRN (a, c) c
neg :: CRN Double Double

The composition operator feeds the output of proj2 as the input of neg, and so it must be
the case that the type variable c is instantiated to Double. Therefore, the type of the overall
subexpression is:
proj2 >>> neg :: CRN (a, Double) Double

In other words, so far, we have a CRN that takes a pair of an unknown type a and a Double
as input and produces a Double as output.

Next, we compose this CRN with the CRN produced by integrate of type
integrate :: Double -> CRN Double Double

In other words, integrate is a function that, when given a Double, produces a CRN that
takes a Double as input and produces a Double as output. Thus, the expression integrate 1
has type CRN Double Double. If we compose this CRN with proj2 >>> neg, we obtain a CRN
with type:
proj2 >>> neg >>> integrate 1 :: CRN (a, Double) Double

Furthermore, chaining the second integrate call preserves this type, yielding:
proj2 >>> neg >>> integrate 1 >>> integrate 0 :: CRN (a, Double) Double

Now we need to compose this whole expression with the last call in the chain, dup. The
function dup has type dup :: CRN d (d, d) for some unknown type d. When we compose
this with our result, we take the output of our built-up expression, Double, and feed it to dup.
This leads to a final type for the sub-expression of loop:
proj2 >>> neg >>> integrate 1 >>> integrate 0 >>> dup

:: CRN (a, Double) (Double, Double)

Finally, we need to reconcile this type with loop. Above, we determined that loop expects
a value of type CRN (a, c) (Double, c). Through our derivation, we have concluded that
the argument has type CRN (a, Double) (Double, Double). Consequently, we know that the
argument type matches the expected type of the function as long as we instantiate c to
Double!

Parallel Pairwise Operations on Data Stored in
DNA: Sorting, Shifting, and Searching
Tonglin Chen # Ñ

Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA

Arnav Solanki # Ñ

Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA

Marc Riedel1 # Ñ

Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA

Abstract
Prior research has introduced the Single-Instruction-Multiple-Data paradigm for DNA computing
(SIMD DNA). It offers the potential for storing information and performing in-memory computations
on DNA, with massive parallelism. This paper introduces three new SIMD DNA operations: sorting,
shifting, and searching. Each is a fundamental operation in computer science. Our implementations
demonstrate the effectiveness of parallel pairwise operations with this new paradigm.

2012 ACM Subject Classification Computing methodologies → Parallel computing methodologies;
Applied computing → Computational biology

Keywords and phrases Molecular Computing, DNA Computing, DNA Storage, Parallel Computing,
Strand Displacement

Digital Object Identifier 10.4230/LIPIcs.DNA.27.11

Funding The authors are funded by DARPA grant #W911NF-18-2-0032.

Acknowledgements We thank David Soloveichik, Olgica Milenkovic, Boya Wang, and Cameron
Chalk.

1 Introduction

Beginning with the seminal work of Adelman a quarter-century ago [1], DNA computing has
promised the benefits of massive parallelism in operations. More recently, there has been
considerable interest in DNA storage [3, 4]. A particularly promising approach is to encode
data by “nicking” DNA with editing enzymes such as PfAgo and CRISPR-Cas9 [9, 12]. A
novel paradigm that combines this form of data storage with computation, dubbed “SIMD
DNA”, was introduced in 2019 [13]. Data is stored on potentially long DNA strands, divided
into “cells”, each storing a single bit. Nicks and denaturing create open toeholds in each
cell. Toehold-mediated strand displacement [10, 14] is used to implement computation on
the stored values.

This paper first proposes a new encoding system for SIMD DNA computation, suitable for
general pairwise operations. Then it presents three novel applications using the new encoding
system. The first is a binary bubble sorting algorithm (equivalent to rule 184 with elementary
cellular automata [7, 8]). We show that sorting can be performed in only N parallel steps,
where N is the number of bits to be sorted. The second application is a left-shifting operation
(equivalent to rule 170 with elementary cellular automata), performed in a single parallel step.
The third application is a parallel search algorithm that returns an answer as to whether a

1 corresponding author

© Tonglin Chen, Arnav Solanki, and Marc Riedel;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Šulc; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chen5202@umn.edu
http://mriedel.ece.umn.edu/wiki/index.php/Tonglin_Chen
mailto:solan053@umn.edu
http://mriedel.ece.umn.edu/wiki/index.php/Arnav_Solanki
https://orcid.org/0000-0003-4039-2814
mailto:mriedel@umn.edu
http://mriedel.ece.umn.edu/wiki/index.php/Marc_Riedel
https://orcid.org/0000-0002-3318-346X
https://doi.org/10.4230/LIPIcs.DNA.27.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Sorting, Shifting, and Searching in DNA

query substring is present in a target string. In principle, the algorithm can return an answer
in log(n) steps, but our implementation requires between log(n) and n steps to complete,
depending on the problem size and implementation constraints, where n is the length of the
query string. Note that the parallelism is still impressive, assuming that the query string
length n is much smaller than the target string length m. All three applications are of
immediate practical interest, as many forms of computation on stored data entail some form
of sorting, shifting, and searching.

2 Background

2.1 Parallel computation using SIMD
SIMD is a computer engineering acronym for Single Instruction, Multiple Data [6], a form of
computation in which multiple processing elements perform the same operation on multiple
data points simultaneously. It contrasts with the more general class of parallel computation
called MIMD (Multiple Instructions, Multiple Data), where multiple processing elements
can perform completely different operations on multiple data points simultaneously. While
general MIMD parallelism might be desirable, it is often not practical. Much of the modern
progress in electronic computing power has come by scaling up SIMD computation with
platforms such as graphical processing units (GPUs).

2.2 SIMD DNA structure
SIMD implemented on DNA is intriguing. It provides a means to transform stored data,
perhaps large amounts of it, with a single parallel instruction. We will review the paradigm
as we introduce our new encoding scheme and our new applications; of course, we do not
claim credit for the original concepts. The reader is referred to [13].

SIMD DNA computation is predicated on the encoding scheme for data. Conceptually, we
divide stretches of double-stranded DNA into “domains”, where each domain is a contiguous
sequence of nucleotides of some small specified length (typically 5 to 20). A sequence of
several (typically 5 to 7) domains maps to a “cell” storing one binary bit. Whether a cell
stores a 0 or a 1 depends upon topological variations, specifically the location of nicks, i.e.,
breaks in the DNA backbone. The nicks always occur on one strand of a double-stranded
complex (generally the top strand in our examples); the other remains untouched.

The computation is carried out by a sequence of “instructions”, where each instruction
implements DNA strand displacement reactions on cells. Instructions are initiated by single-
stranded “instruction strands” added to the solution. After the strand displacement cascades
complete, any single-strand fragments in the solution are washed away; the original strand
is kept and separated via a magnetic bead. After a sequence of instructions, the data is
transformed to its final state. The readout can be performed via fluorescence or with Oxford
nanopore devices [2], [9].

The general flow of SIMD DNA computation is summarized as follows and illustrated in
Figure 1.
1. Design an encoding structure that best suits the algorithm.
2. Encode the data at specific locations, using enzymes to nick corresponding targets.
3. Gently denature the DNA, allowing segments between adjacent nicks to detach, exposing

toeholds.
4. Execute instructions, implemented as strand-displacement operations.
5. Finally, read out data using fluorescence or with nanopores.

T. Chen, A. Solanki, and M. Riedel 11:3

1. Design
Encoding
Scheme

2. Encode
Data

3. Perform
Computation

4. Read out

Nanopores

1 2 3 4 5 6 7

Toehold ToeholdNick Nick

Bit 0 Bit 1

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 1 General Outline of SIMD DNA Computations. Arrowheads represent “nicks”: breaks
in the DNA backbone, performed with gene editing techniques. Integers represent “domains”:
contiguous sequences of nucleotides of some small, specified length. For convenience, we use the
numbers 1 through 7 repeatedly; however, each copy of a number represents a distinct domain,
consisting of a unique nucleotide sequence. Stage 1 shows the encoding of binary bits 0 and 1, based
of different locations of toeholds and nicks. Note that domain 1 is always “exposed”: the DNA
backbone of the top strand is nicked, and the DNA is gently denatured until this segment falls
off, exposing a toehold at this domain. Stage 2 shows an example of encoding the bits 010. Stage
3 illustrates the step in which computation is performed with strand displacement, in a general
sense. Details of this step will be provided for specific algorithms in later sections. Note that, in
this generic example, the location of nick in the second cell has changed at the end of stage 3. Stage
4 illustrates how nanopore sequencing could be used to perform readout.

3 Design of Encoding System

Several schemes for encoding binary data were proposed in prior work [13], each chosen to
minimize the number of operations for a specific algorithm. Here we propose a new encoding
scheme that works well for the broad class of algorithms that consist of parallel, pairwise
operations. A requirement for running these algorithms is that the encoding scheme should
allow the algorithm to recognize any combination of adjacent bits. This specification comes
at the expense of more complexity for some algorithms, i.e., more operations per step than
possible with a customized encoding.

The encoding scheme is shown in Figure 2. Each cell stores a single binary value (a “bit”).
Each cell consists of 7 domains. We do not specify the actual nucleotide sequence of the
domains here for simplicity. While preparing this cell, the top DNA strand must be nicked
before and after domain 1. This strand can then be displaced by denaturing, creating an
exposed toehold. Domain 1 is always exposed as a toehold in this representation. Domains 2
through 7 are covered. When storing a bit 0, we will nick the top strand between domains 3
and 4; when storing a bit 1, we will nick between domains 5 and 6. There are four possible

DNA 27

1 1: 4 S or ti n g, S hif ti n g, a n d S e ar c hi n g i n D N A

1 2 3 4 5 6 7

T o e h ol d T o e h ol dNi c k Ni c k

Bit 0 Bit 1

1 2 3 4 5 6 7

Fi g ur e 2 Bi t r e p r e s e nt a ti o n i n t h e e n c o di n g s c h e m e. H o ri z o nt al li n e s r e p r e s e nt s D N A s t r a n d s.

I nt e g e r s r e p r e s e nt “ d o m ai n s ”: s p e ci fi c s e q u e n c e s of n u cl e o ti d e s. A r r o w h e a d s r e p r e s e nt ni c k e d

p o si ti o n s: pl a c e s w h e r e t h e p h o s p h o di e s t e r b o n d i n t h e b a c k b o n e of t h e D N A s t r a n d h a s b e e n

b r o k e n, vi a g e n e- e di ti n g t e c h ni q u e s. C ell s s t o r e bi n a r y v al u e s. E a c h c ell c o n si s t of 7 d o m ai n s.

D o m ai n 1 i s al w a y s e x p o s e d, f o r mi n g a t o e h ol d.

p airi n g s f or t w o a dj a c e nt c ell s. E a c h will b e d et e ct e d u si n g di ff er e nt d o m ai n c o m bi n ati o n s:

f or (0, 0) , d o m ai n s 1, 2 a n d 3; f or (0, 1) , d o m ai n 1 o nl y; f or (1, 0) , d o m ai n s 6 t hr o u g h 3 wit h

w r a p pi n g at d o m ai n 7 a n d 1; a n d f or (1, 1) , d o m ai n s 6, 7 a n d 1.

B ef o r e d e s cri bi n g t h e i m pl e m e nt ati o n of s p e ci fi c al g orit h m s f or s orti n g, s hifti n g, a n d

s e ar c hi n g, w e will pr e s e nt s o m e g e n er al al g orit h mi c st e p s u s ef ul i n i m pl e m e nti n g all of t h e s e.

3. 1 I d e n tif yi n g Bi t P air s

A c o m m o n t a s k i n o ur al g orit h m s i s “i d e ntif yi n g ” p air s of a dj a c e nt bit s, i. e., r e c o g ni zi n g t h e

s p e ci fi c p air of c ell s at a l o c ati o n of i nt er e st. We will e x pl oit t h e f a ct t h at d o m ai n 1 i s al w a y s

e x p o s e d t o i d e ntif y t h e s e s p e ci fi c p air s. Fi g ur e 3 ill u str at e s o ur a p pr o a c h o n t h e stri n g 1 1 0 0 1 ,

w hi c h c o nt ai n s all 4 p o s si bl e a dj a c e nt p air s: 0 0 , 0 1 , 1 0 a n d 1 1 .

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S 1 6 7 1 2 3 S 1 6 7 1 2 3 S 1 6 7 1 2 3 S 1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S 1 S 1 S 1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S 1

S 2 6 7 1

S 3 1 2 3

S 2 6 7 1

S 3 1 2 3

S 2 6 7 1

S 3 1 2 3

S 2 6 7 1

S 3 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S 1 S 3S 2

Original: 1 1 0 0 1

Ins 1: Identifying pair (1, 0)

Ins 2: Detaching S 1 on all other pairs

Ins 3: Identifying pair (0, 0) and (1, 1)

Result

Fi g ur e 3 E x a m pl e of I d e ntif yi n g Di ff e r e nt P ai r s of A dj a c e nt Bi t s.

I d e nti fi c ati o n i s p erf or m e d wit h t hr e e i n str u cti o n s. I n i n str u cti o n 1, t h e str a n d s (S 1 6 7

1 2 3) a r e i s s u e d t o all p air s of bit s. T hr o u g h t h e t o e h ol d at d o m ai n 1 b et w e e n e a c h p air,

t h e str a n d S 1 bi n d s t o d o m ai n s 6, 7, 1 i n t h e p air (1 , 1) , l e a vi n g d o m ai n s S 1 , 2, 3 o p e n. I n

T. Chen, A. Solanki, and M. Riedel 11:5

the pair (0, 0), the strand S1 binds to domains 1, 2, 3, leaving domains S1, 6, 7 open. The
strand S1 binds to domains 6, 7, 1, 2, 3, in the pair (1, 0). The strand S1 does not bind to
the pair (0, 1) since the only exposed toehold is domain 1. We can then distinguish the pair
(1, 0) from the open domains on strand S1.

In instruction 2, using the complementary strands (6* 7* 1* 2* 3*), the strand S1 that
attaches to the pairs (0, 0) and (1, 1) is pulled out. This is done through the open domains
2, 3 in the pair (0, 0) and the open domains 6, 7 in the pair (1, 1) on strand S1. After this
instruction, strand S1 remains only in the pair (1, 0).

In instruction 3, two instruction strands are issued at the same time: (S2 6 7 1) and (S3
1 2 3). Here (S2 6 7 1) will bind to the pair (1, 1) and (S3 1 2 3) will bind to the pair (0, 0).
They will not bind with any other pairs since the only exposed toehold for binding would be
domain 1; they will prefer the locations with more exposed domains.

The result is that the adjacent bit pairs (1, 1), (1, 0) and (0, 0) are each labeled with
strands S2, S1 and S3 respectively. Pairs (0, 1) are labelled with an exposed toehold at
domain 1. This toehold could be replaced by a strand (Sx 4 5 6 7 1) or a strand (Sx 1 2 3 4
5); the choice would be made depending on the use case.

3.2 Rewriting a cell

S 2 3 4 5 6 7 S* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7

S 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 4 Example of Rewriting in Three Steps.

By exposing toeholds across domains 2 through 7 in a cell, we can rewrite the content of that
cell – so change a 1 to 0 or a 0 to 1 – with three instructions. The idea is that, since there
are exposed domains, we can displace the content of the cell with a single strand covering all
these domains. Then we can remove the covering strand through the exposed “tag” domain
(S in Figure 4) using a complementary strand. The cell is now completely exposed. We can
write a new bit to it by hybridizing the strands according to our encoding scheme, leaving
domain 1 as a toehold and placing the nick at the desired location.

4 Parallel Binary Bubble Sorting

Sorting is a simple yet fundamental operation in computer science. Here we consider sorting
binary values.2 Sorting can be used to determine the “weight” of a vector of 0’s and 1’s:
the count of the number of 1’s relative to the length of the vector. It can also be used to
compute the majority function: whether there are more 1’s than 0’s or not in the input set.
Majority is a fundamental operation for many machine-learning algorithms.

Our SIMD DNA implementation performs parallel bubble sorting on binary bits [5]. It
can be expressed as a pairwise operation in the form of f(a, b) = (c, d), where (a, b) is the
value of the input bit pair, and (c, d), the outputs, represent the action we take, whether to
rewrite or to leave it as it is. The outputs can be 0 or 1, which means that we can arbitrarily
change the value of the cell. They can also be X, meaning they remain unchanged. We
discuss what kind of pairwise operations can be performed on our encoding in Section 7.1.

2 Perhaps counter-intuitively, sorting binary values in hardware is as difficult algorithmically as sorting
arbitrary values such as integers or real numbers [5].

DNA 27

11:6 Sorting, Shifting, and Searching in DNA

The sorting operation can be expressed in the following pairwise operation,

f(0, 0) = (X, 0) f(0, 1) = (X, X) f(1, 0) = (0, 1) f(1, 1) = (1, X).

Algorithmically, the following “bit swapping” is performed:
If the current bit is 1, it changes it to 0 if and only if its right neighbor is 0.
If the current bit is 0, it changes it to 1 if and only if its left neighbor is 1.

We argue that repeatedly performing such bit swapping will sort the entire sequence of binary
values.

▷ Claim 1. Bit swapping will never happen more than once for any consecutive sequence of
three bits. Such a sequence consists of two consecutive pairs, sharing the middle bit.

Proof. The only pair of consecutive bits that ever gets rewritten is the pair (1, 0) to (0, 1). It
is impossible to have two consecutive, overlapping pairs (1, 0) sharing a common middle bit.

◁

Accordingly, bubble sorting binary values in parallel does not require an odd and even index
addressing scheme, as does bubble sorting arbitrary values.

▷ Claim 2. Sorting completes in at most (N − 1) parallel steps where N is the total number
of bits.

Proof. Suppose we have a sequence of binary bits of length N , in which all bits except the
first are 0. When applying the algorithm, the 1 located at the start will be pushed back one
position at a time with the f(1, 0) = (0, 1) bit swap operation. Fully sorting the sequence,
i.e., moving the 1 to the last position, requires N − 1 total swaps. Now suppose we are
sorting an arbitrary bit sequence. We argue that, after N − 1 swaps, all the 1’s will be at the
end of the sequence. To see why, note that an f(1, 0) = (0, 1) operations moves a 1 forward,
while an f(1, 1) = (1, 1) operation does not affect adjacent 1’s. Thus, in N − 1 steps, all 1’s
will have moved to end of the sequence. ◁

4.1 Implementation
Here we give an instruction set for performing parallel binary bubble sort with SIMD DNA,
using the encoding in Figure 2. It consists of 12 individual instructions. These are summarized
as follows.

1. Label pairs (1, 0).
2. Uncover these, leaving domains 6 and 7 for the bits 1 and domains 2 and 3 for the bits 0

open in these pairs.
3. Protect the bits 0 of these pairs by covering the corresponding toehold at domains 2 and 3.
4. Flip the bits 1 to 0 in these pairs.
5. Release the protective covers; flip the bits 0 to 1 in these pairs.

For the initialization, we can use the first two instructions described in Section 3.1, with
an additional instruction to fix open domains for bits that do not change. We can use
the rewriting method described in Section 3.2 to flip the bits. A full description of the
implementation of sorting is provided in Appendix B.

T. Chen, A. Solanki, and M. Riedel 11:7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) Initial Sequence 0110.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

(b) After Recognizing (1, 0).

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

(c) Protection on Bit 0.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(d) Flipped third bit to 0, Protection Removed.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(e) Flipped fourth bit to 1, Result 0101.

Figure 5 Outline of the SIMD DNA parallel binary sorting algorithm.

5 Parallel Left Shifting

We propose a SIMD DNA implementation of shifting, another fundamental operation in
computer science. Shifting left corresponds to multiplying a binary number by 2; shifting
right corresponds to dividing it by 2. It is a useful operation in general for aligning data in a
variety of algorithms [5]. We present a left shift algorithm, one that shifts all N binary bits
one position to the left, with the Least Significant Bit (LSB) remaining unchanged. This
operation is, of course, a parallel left shift, moving all bits simultaneously in lockstep. Our
implementation requires 11 instructions per shift. Note that unlike usual arithmetic or logical
left shift that inserts a bit 0 to the LSB, the left shift operation described here keeps the
original LSB, thereby duplicating the LSB. The usual left shift could be implemented by
adding instructions rewriting the LSB to 0 after the instructions we provide here.

We describe the shift operation using the following pairwise operation as:

f(0, 0) = (0, X) f(0, 1) = (1, X) f(1, 0) = (0, X) f(1, 1) = (1, X)

Here X means a value that does not change. For each bit pair, the operation writes the
value of the right bit to the left bit. Since only the value of the left bit is changed in each bit
pair, the operation is non-overlapping and can be implemented using the encoding scheme
we propose. We illustrate with the example of shifting 11001 to 10011, shown in Figure 6.

1. Label all the bit pairs. Cover the toeholds for the pairs (0, 0) and (1, 1).
2. For the pairs (1, 0), flip the bits 1 to 0.
3. For the pairs (0, 1), flip the bits 0 to 1.
4. Finally, uncover all the toeholds for the pairs (0, 0) and (1, 1).

A full description of the implementation of shifting is given in Appendix C.

DNA 27

11:8 Sorting, Shifting, and Searching in DNA

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) Initial Sequence 11001.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S3S2 S4

(b) After identifying all pairs.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4S5

(c) Release S1 from Pair (1, 0).

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

(d) Rewrite bit 1 in the previous pair with 0.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(e) Release S2, S3 and S4 then write 1, Result 10011.

Figure 6 Outline of the SIMD DNA parallel left shift operations. The initial sequence S is 11001
and the result sequence T is 10011. The operation shift each bit to left one position (T[5:1]=S[4:0]),
while keeping the Least Significant Bit unchanged.

6 Parallel Search Algorithm

Searching is fundamental to all branches of computer science that involve data storage and
retrieval. We consider the problem of deciding whether a given substring exists in a stored
string of bits. We first discuss a general algorithm that returns an answer to such a question
in log(n) parallel steps, where n is the substring length. We then propose an implementation
in SIMD DNA. Due to practical constraints, the time complexity of the implementation
is not O(log(n)); it is closer to O(n), depending on the problem size and implementation
details. We note that a requirement of our algorithm is that the length of the query string is
a power of 2. We discuss the time complexity and constraints in detail in Section 7.3.

6.1 Algorithm

Suppose we have a query substring Q of a length n and we would like to search whether it
appears in a much longer target string A. Pseudo-code for our approach is given as Listing 1.
We will elucidate the pseudo-code by stepping through examples.

6.1.1 Parallel search procedure

We illustrate searching for a query string Q = 1101 in the following target string A:

A0 = 10101010110110100011110101000100
A1 = a2a2a2a2a3a1a2a2a0a3a3a1a1a0a1a0

A2 = b0b0b1b0b2b1b3b3 (1)

T. Chen, A. Solanki, and M. Riedel 11:9

Listing 1 Pseudo-code for Parallel Search Algorithm. Note that the operations inside the two
foreach loops can be performed in parallel since they are independent. The pair operation here is
to find a corresponding symbol that replaces the two symbols in the lookup table, and the identity
operation is to look up the symbol that represents the query string.
S = Query String
T = Target String
n = length of S
for i in range (0,n -1):

T_i = T
truncate first i characters of T_i
p = 1
while p <= n:

j = 0
while j < (length (T_i) -1):

a = T_i[j]
b = T_i[j+1]
c = pair(a,b) # Pair 2 consecutive cells
if c. identity (S): # Check if new pair is the query

return True
replace a,b in T_i with c
j += 1

p = 2*p
return False

The original string is A0. In each step, two consecutive symbols are read and replaced with a
single symbol. Here a0 = 00, a1 = 01, a2 = 10, a3 = 11, b0 = a2a2, b1 = a3a1, b2 = a0a3, b3 =
a1a0. Note that Q = 1101 = a3a1 = b1. After three steps, we conclude that the query string
exists in the target string, since there are two matches in the string A2.

6.1.2 Search procedure with offset
It is possible that the query string does not align with divisions of length n in the target
string. Thus we need to repeat the operation with offsets. The following example illustrates
the operation with an offset of 2 bits.

A0 = 10101011010110000011110001000100
A1 = 10a2a2a3a1a1a2a0a0a3a3a0a1a0a1a0

A2 = 10b0b1b2b3b4b5b5a0 (2)

Here, the replacement is given by the aggregated pairs a0 = 00, a1 = 01, a2 = 10, a3 = 11,

b0 = a2a2, b1 = a3a1, b2 = a1a2, b3 = a0a0, b4 = a3a3, b5 = a0a1. Again, an instance of the
query string is found in the target string.

Searching for a query string with a given offset requires at most log(n) steps. In general,
for an arbitrary query string of a length n (a power of 2), the search must be performed
n times with offsets ranging from 0 to n − 1. In principle, all of these searches could be
performed in parallel, as none would interfere with any other. Accordingly, our parallel
implementation of searching completes in log(n) steps.

Note that the number of aggregated pair identifiers needed – the a’s and b’s in the
example above – grows exponentially with the length of the target string. However, these
can be synthesized once and reused for every query. If we consider the restricted problem of
searching for a specific query string, meaning that we only use pair identifiers for matching
pairs, then the number of identifiers needed is

∑log(n)
i=1 2i = n − 1.

DNA 27

11:10 Sorting, Shifting, and Searching in DNA

6.2 Implementation

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) Initial Sequence 1011.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2

(b) Identifier A2 captures first pair 10, A3 captures second pair 11.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2'

(c) covering the domain 1 between the two bit pairs.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3'A2'

(d) Rewrite the content in the pair so that new identifiers are close to the middle.

B11

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(e) Two identifier strands replaced by a single identifier if there is a perfect match.

B11

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A0

(f) Initial sequence is 0011. It will result in an open domain 4 in the cell left to the identifier.

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11 A1

(g) Initial sequence is 1010. It will result in an open domain 4 on the identifier itself.

Figure 7 Example implementation of search algorithm on target sequence 1011.

To implement the algorithm in SIMD DNA, we do not issue instruction strands to each
pair of overlapping bits. Instead, we consider the non-overlapping bit pairs. In the example
shown in Figure 7, for the bit sequence 1011, we would consider operations on bit pair 10
and 11, but not on bit pair 01.

Figure 7 shows the critical steps on searching a target sequence 1011. It provides an
example of a successful search and also the potential outcome of two failed searches. To
implement the search operation with an offset, we can simply skip the number of bits
according to the offset. We use the word symbol to represent the consecutive cells that we
search for on a certain level. For example, in the first level, the symbols are 10 and 11. We
can use the bit identifying steps described in Section 3.1 to recognize these symbols. We use
identifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11 to represent symbols in this level. We then
move on to the next level, searching for consecutive symbols A2A3, which corresponds to the
target string 1011.

T. Chen, A. Solanki, and M. Riedel 11:11

In the first step of the second level, we first rewrite the topological structure at symbols
that appear to be a query result. In this example, A2 should be found as the left symbol, and
A3 should be found as the second symbol. We pull identifier A2 out from every odd symbol
(we only look at the first, third, fifth, etc.) and rewrite the entire symbol with the technique
described in Section 3.2. After rewriting, we have the identifier A′

2 that covers domains (5 6
7) in the right most cell, as seen in Figure 7c. For the second symbol A3, we repeat the step
described, except we pull the identifier out from every even symbol and the new identifier A′

3
covers domains (2 3 4) in the left most cell. Through these steps, we have essentially “moved”
the identifier of the matching symbols to the middle. In the final step, we issue the new
identifier strand (B11 5 6 7 1 2 3 4) to the location between every two symbols. It will result
in a perfect binding only if there is a match at the current symbol level. Figure 7e shows the
example of a matching result. Figure 7f and 7g show two potential examples of imperfect
binding, indicating a non-matching result. We can pull them out through the open domains
either on the identifier itself or a nearby open domain on the base strand. Therefore, the
presence of the identifier B11 indicates a successful match.

We can repeat the process to recognize multiple symbols at the same level. When we
move to the next level l + 1, we can use the identifiers from this level l as a starting point for
rewriting. To identify a symbol Sl+1,c = Sl,aSl,b at level l + 1, we simply pull out identifiers
for Sl,a at odd symbols and Sl,b at even symbols at level l. Then we “move” the identifier to
the middle. Finally, we give identifiers for Sl+1,c to the middle of each pair and identify the
symbol.

A possible weakness of our implementation is that the strand used for rewriting could
potentially be very long. This could cause problems when performing these operations in
vitro due to branch migration complications. Lastly, this search operation can handle multiple
overlapping queries within the reference string, but this requires careful consideration of the
base-pair sequence of the cells in designing identifier strands.

7 Discussion

We discuss the features and implementation constraints of the proposed algorithms.

7.1 Ability to compute any non-conflicting pairwise operation
In Section 4 and Section 5, we presented examples of algorithms that perform pairwise
operations, namely sorting and shifting, respectively. Given the ability to identify pairs of
bits and a universal way to rewrite a cell, we can readily implement any algorithm that
performs non-conflicting pairwise operations. Such operations only entail rewriting pairs of
adjacent bits. The result of the operation on a specific sequence should always be the same,
irrespective of the execution order. To illustrate, consider the following operation:

f(0, 0) = (X, X) f(0, 1) = (X, 1) f(1, 0) = (X, X) f(1, 1) = (0, X)

Here X indicates a value that does not change. This operation is conflicting. To see why,
consider its effect on the sequence 011. The second bit should change to 1 when the operation
is applied to the first pair. However, this bit should change to 0 when the operation is applied
to the second pair. Depending on the order of execution, the final result will be different. To
ensure an operation is non-conflicting, for every three adjacent bits that two operations are
performed on, the middle bit should be set to the same value.

DNA 27

11:12 Sorting, Shifting, and Searching in DNA

Non-conflicting operations can be performed in parallel on all bit pairs. In the first step,
we identify the four bit pairs described in 3.1. After this step, we supply strands with four
labels covering the four bit pairs. Then, we release strands with specific labels one at a time
to obtain write access to specific bit pairs. (Write access refers to a domain being exposed.)
We rewrite these cells with the operation described in Section 3.2. The full operation requires
rewriting all four bit pairs.

We conclude that our encoding scheme and design method are generally applicable to
parallel bitwise algorithms, provided that they can be expressed in terms of such non-conflicted
pairwise operations.

7.2 Converting to Different Encoding Schemes

S1 1 2 3

Bit 0 Bit 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 8 One strand could be used to differentiate two bits.

A benefit of the encoding scheme that we are proposing is that it can easily be converted to
any other similar scheme since each cell always has an exposed domain 1. In the original
SIMD DNA scheme proposed in [13], the authors designed two specific encoding schemes
for the two applications proposed (rule 110 and a binary counter). We suggest that our
encoding scheme could be used as an intermediate form when converting to other encoding
schemes, designed for particular algorithms. Figure 8 illustrates how we can use a single
strand (S1 1 2 3) to differentiate bit values of 0 from bit values of 1. We can use the technique
discussed in 3.2 to re-write the data with a different encoding scheme, so long as the scheme
also encodes each bit with 7 domains. Complete instructions for performing such encoding
changes are given in Appendix A.

7.3 Time Complexity of Parallel Search
While the time complexity of the proposed parallel search is O(log(n)) in principle, where
n is the query substring length, the time complexity of our SIMD DNA implementation
is somewhat worse. While the abstract search algorithm finds the query in the reference
string by pairing individual characters in parallel, and thus completes in O(log(n)) steps,
our implementation searches for and identifies distinct symbols sequentially, that is to say, it
first searches for a specific symbol across all possible locations at once, then it searches for
the next symbol across all locations at once, and so on.

The abstract algorithm assumes all symbols are identified in one pass to allow for further
pairing. If we consider all the different symbols in a query string, counting repeated symbols,
n
2i symbols must be searched sequentially at level i in our implementation. Accordingly, the
total number of sequential search steps could be as high as O(n). However, at each level, all
the occurrences of a specific symbol are identified simultaneously. At level i, each symbol
represents a binary string with a length of 2i, so there are at most 22i distinct symbols at
level i. For example, in the first level, instead of searching for n

2 symbols, we only search for
four distinct symbols. In the second level, there are only 16 distinct symbols. Since we only
search for distinct symbols, the number of steps in the first few levels will be greatly reduced.

T. Chen, A. Solanki, and M. Riedel 11:13

Our parallel search algorithm currently only works on query strings having a length that
is a power of two. However, we believe that our implementation could be modified to allow
for arbitrary-length query strings. We do not provide details here, as they are cumbersome,
but we outline the method as follows.

Note that, in parallel search, the query string is searched reductively: at each level, two
symbols are reduced to one symbol. When working with query strings having any arbitrary
length, there might be an odd number of symbols in the current level, meaning that the last
symbol cannot be reduced for the next level. In this case, we can add a method to identify
the trailing odd symbol at the current level and replace it in the next level. The reduction
can still be completed in a logarithmic number of levels.

8 Conclusion

We have presented algorithms for basic parallel operations within the SIMD DNA framework.
We note that there are, in fact, two layers of parallelism possible:

1. Bit-level Parallelism: instructions applied to all bits in an array at once.
2. Data-level Parallelism: the same instructions applied to multiple arrays at once.

While operations on DNA are slow and error-prone, with these levels of parallelism, perhaps
DNA computation could scale to a truly impressive regime. Consider the following back-of-
an-envelop estimates. Suppose:

we have 1012 independent cells in parallel in a single test tube;
a single operation takes approximately 10 minutes to complete.
different cells use the same DNA sequence. Using distinct sequences for different cells, as
in our search operation, can result in a solution with multiple competing DNA molecules.
At larger scales, this would result in an increase in reagent volume and could diminish
reaction rates.

This means that we can perform approximately 109 operations per second in a single test
tube, already impressive. Now suppose that:

we have 100 test tubes.

This means we can compute at 100,000 MIPS (million instructions per second). This is
comparable to what very respectable existing silicon systems can achieve. The key conceptual
difference between the SIMD DNA approach and other forms of DNA computing is that it
exploits a substrate on which data is stored. This enables the SIMD parallelism.

Many experimental hurdles remain in demonstrating and deploying this paradigm. DNA
synthesis remains prohibitively expensive. A possible alternative is to use gene-editing
techniques to encode data on naturally occurring DNA [11].

References
1 Leonard M Adleman. Molecular computation of solutions to combinatorial problems. Science,

pages 1021–1024, 1994.
2 Nagendra Athreya, Olgica Milenkovic, and Jean-Pierre Leburton. Detection and mapping of

dsDNA breaks using graphene nanopore transistor. Biophysical Journal, 116(3):292a, 2019.
3 Luis Ceze, Jeff Nivala, and Karin Strauss. Molecular digital data storage using DNA. Nature

Reviews Genetics, 20(8):456–466, August 2019. doi:10.1038/s41576-019-0125-3.
4 George Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information storage in

DNA. Science (New York, N.Y.), 337:1628, August 2012. doi:10.1126/science.1226355.

DNA 27

https://doi.org/10.1038/s41576-019-0125-3
https://doi.org/10.1126/science.1226355

11:14 Sorting, Shifting, and Searching in DNA

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

6 M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, C-21(9):948–960, 1972.

7 Joachim Krug and Herbert Spohn. Universality classes for deterministic surface growth.
Physical Review A, 38(8):4271, 1988.

8 Wentian Li. Power spectra of regular languages and cellular automata. Complex Systems,
1(1):107–130, 1987.

9 Ke Liu, Chao Pan, Alexandre Kuhn, Adrian Pascal Nievergelt, Georg E Fantner, Olgica
Milenkovic, and Aleksandra Radenovic. Detecting topological variations of DNA at single-
molecule level. Nature communications, 10(1):1–9, 2019.

10 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010. doi:
10.1073/pnas.0909380107.

11 S. Tabatabaei, Boya Wang, Nagendra Athreya, Behnam Enghiad, Alvaro Hernandez, Chris-
topher Fields, Jean-Pierre Leburton, David Soloveichik, Huimin Zhao, and Olgica Milenkovic.
DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nature
Communications, 11, December 2020. doi:10.1038/s41467-020-15588-z.

12 S Kasra Tabatabaei, Boya Wang, Nagendra Bala Murali Athreya, Behnam Enghiad, Al-
varo Gonzalo Hernandez, Christopher J Fields, Jean-Pierre Leburton, David Soloveichik,
Huimin Zhao, and Olgica Milenkovic. DNA punch cards for storing data on native DNA
sequences via enzymatic nicking. Nature communications, 11(1):1–10, 2020.

13 Boya Wang, Cameron Chalk, and David Soloveichik. SIMD||DNA: Single instruction, multiple
data computation with DNA strand displacement cascades. In Chris Thachuk and Yan Liu,
editors, DNA Computing and Molecular Programming, pages 219–235, Cham, 2019. Springer
International Publishing.

14 Bernard Yurke. A DNA-fuelled molecular machine made of DNA. Nature, 406(6796: 605),
2000.

A Instructions for Converting to Another Scheme

Instruction 1 identifies and distinguishes the two different bits. In instruction 1, strand (S1 1
2 3) is issued. In bit 0, the strand will displace the short strand over domains 2 and 3 but
does not edit bit 1 since domain 1 is the only open domain for binding. In instruction 2,
all domains in bit 1 are replaced by a single strand covering all domains with identifier Sa.
Then in instruction 3, the strand S1 is detached, so domains 1, 2, and 3 on bit 0 are exposed.
In Instruction 4, all domains in bit 0 are replaced by a single strand covering all the domains
with the identifier Sb. Then any encoding scheme with 7 domains in 1 cell could be written
to the bits by first detaching strand Sa and writing the encoding for bit 1, then detaching
strand Sb and writing the encoding for bit 0.

B Detailed Implementation of Each Step for Parallel Sorting

Here we give an instruction set for parallel binary bubble sort with the previously defined
encoding scheme. We can implement each step of the sorting algorithm in 12 individual
operations. Details of the design are shown in Figure 10.

The 12 instruction falls to 2 stages. The first stage is “identifying.” During instructions
1–4, all the pairs (0, 1) are identified, and in both bit 0 and 1, a toehold is exposed for
writing new data. More specifically, Instructions 1 and 2 identify the combination of (1, 0).
In instruction 1, (S1 6 7 1 2 3) is issued to each pair of bits. In pair (0, 0), S1 and domains 6,

https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1038/s41467-020-15588-z

T. Chen, A. Solanki, and M. Riedel 11:15

S1 1 2 3

Bit 0 Bit 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 1: Distinguish 0, 1

Ins 2: Replace Bit 1 with Strand Sa

S1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sa 1 2 3 4 5 6 7 Sa 1 2 3 4 5 6 7

Ins 3: Detach S1

S1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1* 1* 2* 3* S1* 1* 2* 3*

Sa

Ins 4: Replace Bit 0 with Strand Sb

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sa

Sb 1 2 3 4 5 6 7 Sb 1 2 3 4 5 6 7

Result

1 2 3 4 5 6 7 1 2 3 4 5 6 7

SaSb

Figure 9 Current coding scheme could be converted to other coding scheme.

7 are exposed. In pair (0, 1), since the only open domain is 1, it will not form a strong enough
bind. In pair (1, 0), only S1 is exposed. In pair (1, 1), S1 and domains 2, 3 are exposed. In
instruction 2, strand (6* 7* 1* 2* 3*) is issued to each pair of bits. Since pair (1, 0) is the
only pair that does not have exposure 5 or 2, this strand will detach strand S1 in each pair
except pair (1, 0). After Instruction 2, the toehold between a bit value of 1 and a bit value of
0 in the pair (1, 0) is replaced by a strand with an identifier of S1. Instruction 3 seals off the
domain exposed in the other pairs during Instruction 1 and 2 so that it will not be edited
later. In instruction 4, the strand with identifier S1 is detached, exposing domains 6 and 7 in
the left cell containing bit 1, or domains 2 and 3, in the right cell containing bit 0. After
this instruction, toeholds are exposed only in the 1s and 0s in pair (1, 0). Other bits are not
affected.

The second stage is flipping the bits in the pair (1, 0). In instruction 5, in the case of a
bit value of 0, domains 2 and 3 are temporarily covered by a strand with identifier S2 so that
the writing process will not interfere with the identified 0s at this moment. In instruction 6,
a bit value of 1 is replaced by a strand with identifier S3 via the open toehold at domains 6
and 7. The strand is then detached in instruction 8, exposing all the domains of that bit.
Then, the bit value of 0 is written to the location of a bit value of 1 in instruction 8. In
instruction 9, the temporary cover for a bit 0 is lifted. Then, in instructions 10 through 12,
a bit 1 is written to the location of a bit value of 0 using the same scheme as instructions
6 through 8. Throughout the process, only bits identified in the first stage with toeholds
exposed are affected.

DNA 27

11:16 Sorting, Shifting, and Searching in DNA

C Detailed Implementation of Each Step for Parallel Left Shift cell

The instructions are shown as followed, with an example of shifting 11001 to 10011.
The first three instructions are exactly the same as those for identifying bit pairs in

Section 3.1. In instruction 1, the strand (S1 6 7 1 2 3), which identifies the different patterns
of two bits, is issued to each pair of bits. In instruction 2, strand (6* 7* 1* 2* 3*) is issued,
detaching strands with open domains 6 and 7, or 2 and 3. After this instruction, strands
with identifier S1 only remain at pair (1, 0). In instruction 3, we issue two species of strands
at the same time: (S2 6 7 1) and (S3 1 2 3). (S2 6 7 1) will bind with pair (1, 1) and (S3
1 2 3) will bind with pair (0, 0). S2 will not form a stable binding with pair (0, 0) or (0, 1)
because the binding area is only one domain. Same goes with S3 and pair (1, 1) or (0, 1).
After this instruction, only domain 1 between pair (0, 1) is still exposed. In instruction 4,
strand (S4 4 5 6 7 1) is issued. Through the open domain 1 between pair (0, 1), the strand in
bit 0 is replaced by S4. After this step, the first bit in pair (1, 0) is identified with the strand
S1, and the first bit in pair (0, 1) is replaced with the strand S4.

Instructions 5 to 9 rewrite the first bit in pair (1, 0) to 0. In instruction 5, the strand S1
is detached, exposing domains 6, 7, 1, 2 and 3. The exposed domains 2 and 3 are sealed off
in instruction 6 to not interfere with subsequent instructions. In instruction 7, strand (S5 2
3 4 5 6 7) is issued through the open toehold on domains 6 and 7 in the bit 1 in pair (1, 0),
and displaces the strand in that bit. Since domains 2 and 3 are sealed off, bit 0 will not be
modified in this instruction. In instruction 8, strand S5 is detached, leaving the domains in
the bit open. In instruction 9, strands (2 3) and (4 5 6 7), which represent 0, are written to
the bit containing open domains.

In the final two instructions, we write 1 to the first bit in pair (0, 1). In instruction 10, 3
strands are issued to each pair of bits: (S2* 6* 7* 1*), (S3* 1* 2* 3*) and (S4* 4* 5* 6* 7*
1*). S2, S3 and S4 are detached through these strands. Since S4 covers the bit 0 in pair (0,
1), after this step, domain 3 and 4 are exposed in these bits, ready to be written to 1. In the
final step, strands (2 3), (2 3 4 5), and (6 7) are issued to each cell. Strand (2 3) and (6 7)
will fix the exposed domains from strand S2 or S3, and strand (2 3 4 5) will write bit 1 to
the bit with domain 3 and 4 exposed. Details of the design are shown in Figure 11.

For all the pairs of (0, 0) and (1, 1), the first bit in those pairs will not be modified since
the toehold 1 will be covered with S2 or S3 in the process.

D Detailed Implementation of the Second Level in Parallel Search

Here we discuss the second level of the parallel search operation. The first level of search
operation uses the instructions that were described in Section 3.1, except we now only issue
strands to non-overlapping bit pairs. We use identifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11
to represent symbols in this level. For instance, to search for the target string 1011, we
search for the symbol A2 in odd symbols and A3 in even symbols. The cases of A2 in even
symbols and A3 in odd symbols are covered by searching with offset.

In the first instruction of the second level, we uncover the A2 in the odd symbols, creating
an open region. In instruction 2, we use a long strand to cover the entire right half of
the symbol, from the start of identifier A2 to the rightmost cell. This strand is pulled out
in instruction 3. In instruction 4, we use an identifier A′

2 to cover domains 5, 6, 7 in the
rightmost cell while covering all other domains.

Instructions 5 to 8 are essentially the same as instructions 1 to 4, but with two significant
differences. Firstly, since A3 is the second symbol in the current level of query, we only
search for even-numbered symbols (2, 4, 6, etc.). Secondly, instead of rewriting the right half

T. Chen, A. Solanki, and M. Riedel 11:17

of the symbol, we write the left half. We make the new identifier A′
3 to cover domains 2, 3, 4

in the left-most cell. In instruction 9, we use identifier (B11 5 6 7 1 2 3 4) to recognize the
two consecutive symbols A2 and A3. Since, in the regular encoding, no strand starts from
domain 5 or ends at domain 4, it will only form a perfect binding with a matched result.

After the identifier B1 1 binds, we also need to clean up the imperfect bindings in case
of a mismatch. Figure 12 shows the instructions for the cleanup process. In instruction
10, we first use the complementary strand (5* 6* 7* 1* 2* 3* 4*) to pull out the imperfect
bond identifier B11. Then we issue strands covering the exposed domain. We first issue
strands covering fewer domains, then in following instructions, we issue strands covering
more domains. As a result, we always obtain a perfect fit; the strands will not be pulled out
in potential unrelated rewriting processes.

DNA 27

11:18 Sorting, Shifting, and Searching in DNA

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 6 7 1 2 3S1 6 7 1 2 3S1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1S1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3*6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

6 72 3 6 72 3 6 72 3 6 72 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2 2 3 S2 2 3 S2 2 3 S2 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

S3 2 3 4 5 6 7 S3 2 3 4 5 6 7S3 2 3 4 5 6 7 S3 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2 S3

S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 2 3 4 5 6 7

S2

S2* 2* 3*S2* 2* 3*S2* 2* 3*S2* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3 2 3 4 5 6 7S3 2 3 4 5 6 7S3 2 3 4 5 6 7S3 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3

S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

2 3 4 5 6 72 3 4 5 6 72 3 4 5 6 72 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 1: Identify the pair (1, 0)

Ins 2: Detach Strand on other pairs

Ins 3: Seals off region exposed previously

Ins 4: Expose Toehold on pair (1, 0)

Ins 5: Temporarily cover toehold on bit 0

Ins 6: Identify bit 1

Ins 7: Expose all domain in bit 1 identified earlier

Ins 8: Rewrite 0 to exposed bit

Ins 9: Remove the Protection Strand

Ins 10: Identify Bit 0

Ins 11: Expose all domain in bit 0 identified earlier

Ins 12: Rewrite Bit 0 to exposed bit

Result

Original

Figure 10 Instructions for Parallel Sorting.

T. Chen, A. Solanki, and M. Riedel 11:19

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 6 7 1 2 3 S1 6 7 1 2 3 S1 6 7 1 2 3 S1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S1 S1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1
S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S3S2

S4 4 5 6 7 1S4 4 5 6 7 1S4 4 5 6 7 1S4 4 5 6 7 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S3S2 S4

S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3* S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

S5 2 3 4 5 6 7S5 2 3 4 5 6 7 S5 2 3 4 5 6 7S5 2 3 4 5 6 7 S5 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4S5

S5* 2* 3* 4* 5* 6* 7* S5* 2* 3* 4* 5* 6* 7*S5* 2* 3* 4* 5* 6* 7* S5* 2* 3* 4* 5* 6* 7* S5* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original: 11001

Ins 1: Identifying pair (1, 0)

Ins 2: Detaching S1 on all other pairs

Ins 3: Identifying pair (0, 0) and (1, 1)

Ins 4: Identifying bit 0 in pair (0, 1)

Ins 5: Detach S1

Ins 6: Sealing off exposed region 2 and 3

Ins 7: Displacing bit 1 in pair (1, 0) with S5

Ins 8: Detaching S5, emptying location

Ins 9: Write 0 to empty location

Ins 10: Detaching S2 S3 and S4

Ins11: Writing 1 to location with region 4 and 5 exposed, fix exposed 2,3 and 6,7

Final: 10011

Figure 11 Instructions for the Left Shift cell.

DNA 27

11:20 Sorting, Shifting, and Searching in DNA

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2
Initial state: Sequence 1011, Symbols is already identified in previous level

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3
A2* 6* 7* 1* 2* 3*

A2

Ins 1: Uncover Symbol A2 for every odd numbered symbol

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3
S 6 7 1 2 3 4 5 6 7

Ins 2: Cover the entire half of symbol for the odd A2 symbols

Ins 3: Remove the cover

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3S

S*

Ins 4: Write: A new identifier A2' covers domain 5, 6, 7 in right most register, cover the rest

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3

A2'

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2'

A3* 6* 7* 1*
Ins 5: Uncover Symbol A3 for every even numbered symbol

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2'
S 2 3 4 5 6 7 1

Ins 6: Cover the entire half of symbol for the even A3 symbols

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2' S

S*Ins 7: Remove the cover

Ins 8: Write: A new identifier A6' covers domain 2, 3, 4 in left most register, cover the rest

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2'

A3'

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2' A3'

B11Ins 9: Add identifier for current level

Result

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11

Figure 12 Instructions for a search operation of target sequence 1011.

T. Chen, A. Solanki, and M. Riedel 11:21

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11 A1
Initial state: Sequence 1010, After the identification step

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11 A1

5* 6* 7* 1* 2* 3* 4*
Ins 10: Pull out identifier B11 in an imperfect fit

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A1

Ins 11: Cover the open domains 6, 7 or 2, 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 12: Cover the open domains 5, 6, 7 or 2, 3, 4

A1

A3'A2'

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 13: Cover the open domains 4, 5, 6, 7 or 2, 3, 4, 5

A1A2'

Figure 13 Instructions for the clean up process for a failed searching, these instructions won’t
affect the result of a successful search.

DNA 27

	p000-Frontmatter
	Preface
	Organization

	p001-Linder
	1 Introduction
	2 Background
	2.1 Binarized Neural Networks
	2.2 Chemical Reaction Networks
	2.3 DNA Strand Displacement

	3 Related Work
	4 A Digital Molecular Implementation of Binarized Neurons
	4.1 Weight
	4.2 Majority Vote
	4.3 An Illustrative Example: A 4-Input Binarized Neuron
	4.4 DNA Strand Displacement Design

	5 Experiments
	5.1 MNIST Simulations
	5.2 Noise Tolerance Simulations
	5.3 Physical Experimental Results

	6 Discussion
	7 Conclusion
	A Generalized CRN Definition for Multi-layered Digital BNN
	B Analog Rate-Independent HardTanh Network CRN
	C Analog HardTanh BNN DSD Schematic

	p002-Haley
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Preliminaries
	2.1 Definitions
	2.2 Solvers

	3 Computing stable configurations of TBNs
	3.1 Finding stable configurations of TBNs
	3.2 Casting StableConfigs as an IP
	3.2.1 Finding a single stable configuration
	3.2.2 Finding all stable configurations

	3.3 Empirical running time measurements

	4 Computing bases of locally stable configurations of TBNs
	4.1 Equivalence of polymer bases and Hilbert bases
	4.2 Using the polymer basis to reason about TBN behavior
	4.3 A case example: Circular Translator Cascade

	5 Conclusion

	p003-Alseth
	1 Introduction
	1.1 Background and motivation
	1.2 Our results
	1.2.1 Genome-based replicator
	1.2.2 Deconstructive self-replicator
	1.2.3 Hierarchical assembly-based replicator
	1.2.4 Combinations and permutations of constructions

	2 Preliminaries
	2.1 Definition of the STAM*
	2.1.1 Overview of STAM* dynamics
	2.1.2 STAM* conventions used in this paper

	3 A Genome Based Replicator
	3.1 Replication of the genome
	3.2 Translation of sigma to mu S
	3.2.1 Placement of mu tiles
	3.2.2 Modification of mu to mu prime
	3.2.3 Assembly of pi

	3.3 Analysis of R and its correctness

	4 A Self-Replicator that Generates its own Genome
	4.1 Disassembly
	4.2 Reassembly
	4.3 Generating a Hamiltonian Path

	5 Shape Building via Hierarchical Assembly
	5.1 Decomposition into blocks
	5.2 Interface design
	5.3 Block growth
	5.4 Overview of the hierarchical construction

	A Genome Based Replicator
	A.1 Replication and translation details
	A.2 Turning Tile and Kink-ase

	p004-Furcy
	1 Introduction
	2 Formal definition of the abstract Tile Assembly Model
	3 The upper bound
	4 The lower bound
	5 Conclusion

	p005-Levy
	1 Introduction
	2 ENSnano concepts
	3 Graphical User Interface and tools
	3.1 Getting started
	3.2 The 3D view
	3.3 The 2D view
	3.4 Grid-aware copy, paste & repeat
	3.5 Crossover suggestions
	3.6 The basic 3D rigid body physics engine
	3.7 Sequences export and scaffold sequence optimization

	4 Experimental validation
	5 Conclusion and upcoming features
	A Omitted figures
	B ENSnano File format
	B.1 Top-level structure
	B.2 DNA parameters
	B.3 Helix Object
	B.4 Strand Object
	B.5 A word about rotors

	p006-Meunier
	1 Introduction
	1.1 Noncooperative self-assembly
	1.2 Main results

	2 Definitions
	2.1 Abstract tile assembly model
	2.2 Paths
	2.3 Intersections
	2.4 Pumping a path, possibly in both directions

	3 Proof of our main theorem
	3.1 Roadmap
	3.2 Relationship with the pumpability conjecture
	3.3 Link between periodic assembly and bi-pumpable paths
	3.4 Characterisation of the bi-periodic terminal assemblies
	3.5 Characterisation of the infinite nonperiodic terminal assemblies
	3.6 The simply periodic terminal assembly

	A Omitted Proof
	B Omitted Figures

	p007-Breik
	1 Introduction
	2 Examples
	3 Formal model
	3.1 Chemical linkages
	3.2 Chemical linkage states and systems
	3.3 Complexity of simulation

	4 Topological linkages
	4.1 Topological motivation
	4.2 Rigidity
	4.3 Formal model

	5 Fueled machines
	5.1 Hydrolysis
	5.2 Motor
	5.3 ATP from linkages
	5.4 Chemo-mechanical coupling

	6 Conclusion
	A Weak bonds
	B Sequential AND details
	C Modified ATP and catalyst

	p008-Cook
	1 Introduction
	1.1 Main results
	1.2 Discussion: the NAND-NXOR and Collatz tile sets
	1.3 Future work

	2 Related work: theoretical and experimental
	2.1 Other routes to finding small universal tile sets
	2.2 DNA-based implementations and related models

	3 Definitions
	3.1 Maze-Walking TAM definition
	3.2 Boolean circuit definition

	4 Four tiles: the NAND-NXOR tile set
	5 Six tiles: the Collatz tileset
	A Origins of the Collatz tile set

	p009-Condon
	1 Introduction
	2 Preliminaries
	2.1 The simple energy model
	2.2 Problem definitions

	3 String designs and their properties
	4 The reduction
	5 Reduction correctness
	6 Approximability
	7 Conclusions
	A Technical Appendix
	A.1 Proof of Lemma 6
	A.2 Proof of Lemma 7
	A.3 Proof of Lemma 11
	A.4 Proof of Lemma 13
	A.5 Proof of Lemma 15
	A.6 Proof of Lemma 16
	A.7 Proof of Lemma 17
	A.8 Proof of Lemma 18

	p010-Klinge
	1 Introduction
	2 Background
	2.1 Chemical Reaction Networks
	2.2 Functional Reactive Programming

	3 Introducing Reactamole
	4 Functional Reactive Molecular Programming
	4.1 Algebraic Structures
	4.2 Booleans
	4.3 Real Numbers
	4.4 Switching

	5 Case Study: Amplitude Modulation
	6 Conclusion
	A Haskell
	A.1 Bindings and Type Signatures
	A.2 Polymorphism
	A.3 Functions as Values
	A.4 Example: Interpreting Functional Reactive Code

	p011-Chen
	1 Introduction
	2 Background
	2.1 Parallel computation using SIMD
	2.2 SIMD DNA structure

	3 Design of Encoding System
	3.1 Identifying Bit Pairs
	3.2 Rewriting a cell

	4 Parallel Binary Bubble Sorting
	4.1 Implementation

	5 Parallel Left Shifting
	6 Parallel Search Algorithm
	6.1 Algorithm
	6.1.1 Parallel search procedure
	6.1.2 Search procedure with offset

	6.2 Implementation

	7 Discussion
	7.1 Ability to compute any non-conflicting pairwise operation
	7.2 Converting to Different Encoding Schemes
	7.3 Time Complexity of Parallel Search

	8 Conclusion
	A Instructions for Converting to Another Scheme
	B Detailed Implementation of Each Step for Parallel Sorting
	C Detailed Implementation of Each Step for Parallel Left Shift cell
	D Detailed Implementation of the Second Level in Parallel Search

