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Abstract
We ask the question of how small a self-assembling set of tiles can be yet have interesting compu-
tational behaviour. We study this question in a model where supporting walls are provided as an
input structure for tiles to grow along: we call it the Maze-Walking Tile Assembly Model. The
model has a number of implementation prospects, one being DNA strands that attach to a DNA
origami substrate. Intuitively, the model suggests a separation of signal routing and computation:
the input structure (maze) supplies a routing diagram, and the programmer’s tile set provides the
computational ability. We ask how simple the computational part can be.

We give two tiny tile sets that are computationally universal in the Maze-Walking Tile Assembly
Model. The first has four tiles and simulates Boolean circuits by directly implementing NAND,
NXOR and NOT gates. Our second tile set has 6 tiles and is called the Collatz tile set as it
produces patterns found in binary/ternary representations of iterations of the Collatz function.
Using computer search we find that the Collatz tile set is expressive enough to encode Boolean
circuits using blocks of these patterns. These two tile sets give two different methods to find simple
universal tile sets, and provide motivation for using pre-assembled maze structures as circuit wiring
diagrams in molecular self-assembly based computing.
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1 Introduction

We can think of solving a maze as performing computation: the input is a maze, some
starting location(s) and an ending location, and the answer to the computation is a yes/no
answer signifying whether the exit is reachable from the start, or even an explicit path from
start to exit. Figure 1(a,b) shows how a maze encodes a circuit of OR gates: solving the maze
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Figure 1 Mazes, computation and Boolean circuits. Solving (a) a directed maze, where paths
have directions, is formally equivalent to executing (b) an OR circuit if we ask: are any of the input
bits that are set to 1 connected to the output gate? The example in (b) accepts any 3-bit input
x, y, z that sets x or y to 1, irrespective of z; equivalently the maze is solvable from the top two
inputs only. Even such a simple setup, allowing for arbitrary mazes, can compute by solving any
suitably-encoded problem in the class nondeterministic logspace (NL) [1, 29]. (c) We generalise this
notion of “computation via maze-solving” in a natural way by having the maze specify arbitrary
Boolean gates along the route that need to be evaluated. In the Maze-Walking Tile Assembly Model
defined in Section 3.1, tiles flow through the maze, building paths from the entrances to the exit,
evaluating the circuit as they go.

is equivalent to executing the OR circuit with all inputs set to bit 1; and asking about paths
in the maze is equivalent to setting some inputs to 1 and seeing which paths have 1 flowing
all the way through them. It then becomes meaningful to ask about the computational power
of systems capable of solving mazes [1, 29], for example molecular walker-based systems.

The difficulty of maze-solving varies with the complexity of the maze, such as number
of dimensions, grid layout versus more general graph, degree of nodes, or whether graph
edges are directed or undirected. In computational complexity theory terminology, solving
mazes and more general graph reachability problems lie within the class NL [1, 28, 29],
i.e. problems solvable on a nondeterministic Turning machine that uses temporary workspace
only logarithmic in input length. At the simplest level, and perhaps counter-intuitively, a
system that solves a directed maze consisting of (a number of possibly disconnected) straight
line segments has enough computational power to solve any problem in L, the deterministic
version of NL [22].1 Thus maze-solving lies between L and NL, depending on the complexity
of the setup.

Here, we suggest two modifications to the maze-solving problem, which are expressive
enough to endow maze solvers with significant computational power (their prediction problem
becomes P-complete), yet, we contend, simple enough to be experimentally feasible using
DNA engineering and computing principles. The first, and most important, is that we
generalise mazes to have paths patterned with logic gates that must be solved in order to
pass by them (Figure 1(c)). For a maze-walker this would mean it should be able to input
one or two bits of information from the site it stands upon, compute, and then output one
or two bits to adjacent sites. The second, mainly to keep things simple, is that we assume
mazes are directed (meaning a pair of adjacent positions have one directed edge between

1 The PathReachability problem is L-complete: given a directed graph whose edges form a set of
disconnected line segments (in- and out-degree ≤ 1), and two nodes s and t, is t reachable from s? A
deterministic Turing machine can start at s and walk along the graph use only logarithmic workspace
(in input length) to keep track of the current node, answering “yes” if it reaches t and “no”, if it instead
reaches a dead-end. Hence the problem is in L. Conversely, the set of configurations of a deterministic
logspace Turing Machine can be encoded as a polynomial-sized instance of PathReachability making
that problem L-complete [22].
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1 2(a) NAND-NXOR (b) Collatz

Figure 2 Two small tiles sets. (a) NAND-NXOR tile set with 4 tile types. The south side
computes the NAND of north and east, and west computes the NXOR of north and east. (b) Collatz
tile set with 6 tiles, named for its relationship to the Collatz problem.

them that dictates the direction of information flow) and have no cycles. Since we allow
for fanout of 0, 1 or 2 per site, one needs to generalise the typical notion of maze-solving
somewhat: Are walkers replicating themselves to handle fanout of 2? Or are they leaving
little bit-encoding messages for other walkers/themselves to pick up later? How do they
handle fanin of 2? These considerations lend themselves to various models, however here
we focus on having information-manipulating tiles flow through the maze, much like lava
flowing down a complex volcanic hillside, but clever lava that computes as it moves. Our
model is called the Maze-Walking Tile Assembly Model, or Maze-Walking TAM.

The programmer specifies a set of square tiles, with glues on the sides. A problem
instance, or maze, is a set of polyominos, painted with information-encoding glues. Starting
at special input locations, tiles attach one at a time, asynchronously and in parallel, wherever
they match glues on two sides.2 A typical maze can be thought of as sending a unary
(“route finding”) signal, whereas our mazes send bits and allow them to meet, interact and
be changed.

In this setting, if we allow arbitrary numbers of tiles (or a clever enough walker, or
a complex enough asynchronous cellular automaton rule) it is not difficult to see how to
simulate arbitrary Boolean circuits. Take a circuit, make it planar by replacing each wire
crossing with a crossover gate, then lay the circuit out on a maze-like grid with input gates
on the east, and the output gate on the west. Then simply build a maze with walls tracing
out the circuit wiring diagram and painted with arrows (wire directions) and logic gates, and
require the output bit(s) to satisfy the circuit logic. The question we ask is: How clever does
the maze-solver need to be in this computational setting? More precisely, we ask how many
tile types are needed to execute any Boolean circuit in the Maze-Walking TAM?

1.1 Main results
Our first main result is for the NAND-NXOR tile set shown in Figure 2(a). In the theorem
statement, by simulated we mean that the function computed by the circuit c is also computed
by an instance of the Maze-Walking TAM (see Section 3.1).

2 The model is equivalent to the abstract Tile Assembly Model [39, 52, 35, 16], with multiple disconnected
seed assemblies, and where we have all tile bindings are by attachment to an assembly by two matching
glues.

DNA 27
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▶ Theorem 1. Any Boolean circuit c is simulated by the 4-tile NAND-NXOR tile set in the
Maze-Walking TAM using assemblies containing ≤ 6 tiles per gate and 34 tiles per crossover
gate in a planarisation of c.

Our second main result is for the Collatz tile set which has 6 tiles (Figure 2(b)) and is
so-named because of its ability to embed iterations of the Collatz function (see Appendix A).

▶ Theorem 2. Any Boolean circuit c is simulated by the 6-tile Collatz tile set in the Maze-
Walking TAM using assemblies containing ≤ 14 tiles per gate and 33 tiles per crossover gate
in a planarisation of c.

We finish this section with a discussion of our two tile sets and some future directions.
Section 2 sets these results in the context of other theoretical results and experimental
directions. Section 3 defines the Maze-Walking TAM. We prove our two main theorems in
Sections 4 and 5. Appendix A gives some background on the Collatz tile set.

1.2 Discussion: the NAND-NXOR and Collatz tile sets
Theorems 1 and 2 place focus on the size of assemblies that simulate gates. They omit
estimates of the additional tiles (assemblies) required for the circuit wiring diagram, which
warrants comment. Our work is partially motivated by a desire to build instances of the
Maze-Walking TAM, and in doing so we would highly optimise any implemented circuit
wiring diagram. Example circuit implementations, that recognise 3-bit prime numbers, are
shown in Figures 3(j3) and 5(j1), both of which are optimised for short wire length. If we
want to have a general wiring procedure for all circuits, and thus not optimised for particular
classes of circuits, the overhead incurred will be rather large, typically O(s2) space for a
circuit with s gates [9]. In practice we would not use such overly-bloated constructions.

The NAND-NXOR tile set was found by explicitly trying to find a small tile set: hence
its use of a universal gate (NAND) on the south side (output). The NXOR gate (west side)
helps with wire routing allows for even smaller gates than going via NAND-only-based circuit
simulation. The Collatz tile set came out of thinking about iterations of the Collatz function
in a local digit-by-digit, or tile-by-tile, way. In [46] a cellular automaton-like model is shown
to simulate instances of the Collatz function – assemblies of our Collatz tile set show up in
iterations (configurations) of that model. The Collatz tile set, along with the non-local rule
in [46] (which can be simulated by the addition of two additional tile types, see Appendix A),
is expressive enough to run Collatz. Here we applied computer search to the Collatz tile set
to search for seed structures and assemblies that could be used to compute more generally.
We leave as an open question as to what extent such structures, or other computational
structures, naturally appear during iterations of the Collatz function – something the Collatz
tile set might help us see.

For running Boolean circuits, if the only metric we cared about was tile set size, the
NAND-NXOR tile set wins. However, looking beyond circuits, the Collatz tile set is capable
of directly implementing certain arithmetical operations, such as computing powers of 2,
powers of 3, and converting from base 3 to base 2 [46] (see Appendix A). These constructions
use much simpler connected seeds than those given in the proof of Theorem 2, and lead to
more efficient (smaller) assemblies than computing via tiles-simulating-circuits, for these
kinds of arithmetical problems. In this paper, we used computer search to find that tiles
capable of such arithmetical operations are also capable of running circuits, we leave it as
future work to discover what other operations they are efficiently capable of.
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Theorems 1 and 2 prove that the problem of predicting a tile at distance n from a size n

connected seed, is P-hard (and in fact it is also P-complete if we assume directed/deterministic
growth [43] since a deterministic Turing Machine simulates the entire assembly process in
time polynomial in n). It is natural to ask if having maze-like (i.e. disconnected) seeds is
necessary for such computational efficiency: we conjecture “yes”. That is, for both tile sets,
we conjecture that prediction of the tile type that goes at a given position, at distance n

from a size n connected seed and assuming directed growth, is in the complexity class NL.
In particular this would mean that simulation of arbitrary Boolean circuits in the direct
manner shown here is impossible, assuming the widely-believed conjecture NL ̸= P. For the
Collatz tile set, and for connected seeds of a certain form, we know that prediction is in NL
(Appendix A). If one could show that prediction is P-hard, for seeds/inputs that represent
natural numbers that occur during iterations of the Collatz function, one could in fact show
that the Collatz process embeds rather powerful computational capabilities. Certainly a
result of that form would change the perspective on the Collatz conjecture itself.

Our results were developed with assistance of a simulator: https://github.com/tcosmo/
mawatam. The reader is invited to experience the results of this paper through the simulator.

1.3 Future work

Experimentally, future work involves implementing instances of the Maze-Walking TAM
in the wet-lab, for instance, using a DNA origami as the underlying structure to encode
maze seeds [7], building on the systems discussed in Section 2.2. One experimentally-relevant
criticism of this work could be to ask why we focus on such small tile sets when we know
that with DNA it is possible to build systems with hundreds of algorithmic DNA tiles [57].
First, we would say that no algorithmic system of such a high tile complexity, and that runs
on the back of a DNA origami, has been engineered to date. Secondly, and of more relevance
to this work, is that we are exploring the fundamental boundary and complexity trade-offs
between computational power and systems size.

Theoretically, our work leaves open the following questions:
Can Boolean circuit simulation, or any kind of universal computation, be achieved in the
Maze-Walking TAM using tile sets with less than 4 tiles?
Can interesting behaviour occur in the Maze-Walking TAM with just 1 tile? (At first
sight, this question may look odd, however one could imagine encoding a bit by the
absence or presence of a tile at a given position in the final assembly, leaving room for
expressiveness in the Maze-Walking TAM with 1 tile.)
Is the Maze-Walking TAM, with ≤ 4 tiles, intrinsically universal [17, 56] for the aTAM?

2 Related work: theoretical and experimental

2.1 Other routes to finding small universal tile sets

Existing small/simple universal models of computation [58] include the efficiently universal [11,
30] 2-state one-dimensional cellular automaton Rule 110, as well as universal Turing machines
with just 22 instructions (5 states & 5 symbols, or 4 states & 6 symbols) [31, 38] or even just
with 8 instructions (3 states, 3 symbols, but with the tape input embedded in an infinitely
repeated pattern) [32].
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8:6 Small Tile Sets That Compute While Solving Mazes

In the context of the theory of molecular computing, and algorithmic self-assembly in
particular, the smallest computationally universal self-assembling tile set to date seems to
be a 7-tile system that can be derived from [57].3 However, that construction leads to large
spatial blowup via Rule 110 simulation of O(s4 log2 s) for circuits of size s (Corollary S1.3,
SI-A [57]). Another construction uses O(w2d) tile types (for a depth d, width w circuit),
essentially by hardcoding the routing of the circuit diagram in tile types (Theorem S1.5, SI-
A [57]). Even direct implementation of a small universal Turing machine as a self-assembling
tile set, using known methods, although presumably achievable with a few dozen tile types,
would require large input encodings [58]. Other methods to obtain a single universal, or
intrinsically universal, tile set, or even a single tile, also use indirect and large, albeit
constant-factor in some cases, encoding methods [17, 15, 14, 43].

By allowing for more tile types than our constructions, one could have a maze with glues
that explicitly encode gate type (one of sixteen), as well as glues encoding two bits at a time:
that way a single tile attachment event could read two bits and a gate type simultaneously.
This idea yields a constant-size tile set with perhaps a few dozen tile types. Although larger
than ours, such an approach would have experimental merit. Cantu, Luchsinger, Schweller,
and Wylie simulate Boolean circuits with tiles in a covert manner [5].

2.2 DNA-based implementations and related models
As future work we plan to give DNA-based designs and implementation for the Maze-Walking
TAM. We imagine a 2D information-encoding structure that provides the maze pattern, for
example a single flat DNA origami [40], or several DNA origamis tiled together [55, 27, 48, 49],
or perhaps even a suitable DNA DX-tile, or single-stranded tile, structure [50, 53, 59, 57].
DNA-based systems for maze-solving have been implemented experimentally: using DNA
origami (for the maze) along with hairpin activation [7] or controlled opening of track
locations [51] for movement. The phenomenon of DNA condensation was also used for
maze exploration [34]. Computation via tile-attachment in the Maze-Walking TAM could be
implemented using design principles from algorithmic DNA self-assembly [57, 19], DNA-based
molecular walkers that walk on 1D tracks and 2D DNA origami surfaces [60, 42, 41, 33, 20, 47],
and other DNA systems that compute on surfaces [3, 4, 44, 6, 8]. Finally, there has been some
theoretical and simulation-based analyses of molecular walkers [13, 37, 26, 12] including maze-
solving walkers [45], as well as papers that study computation on surfaces [36, 10, 2] using a
similar setup to ours but without molecular orientation and using different rule formats. All
of these models (and ours) describe sub-classes of asynchronous cellular automata.

3 Definitions

3.1 Maze-Walking TAM definition
A maze is collection of non-intersecting polyominos positioned on Z2 where each exterior
unit-length square-side polyomino edge is labeled with a glue g = (g′, p) where g′ ∈ G is
from a finite set of glue types G, that includes the null glue, and p ∈ {z + 0.5 | z ∈ Z}2 is a
glue position. An instance of the Maze-Walking TAM T = (T, M) has a set of tile types T ,
where each t ∈ T is a unit-sized square whose four sides labelled with four glue types from

3 In Figure S4(b), SI A, [57], gates g and f can be used to simulate Rule 110, and that in turn can be
simulated by 4 tiles each. These 8 tiles can be further optimised to 7 tiles by sharing one glue type
between both half-layers.
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G, and a maze M . The process of self-assembly proceeds by tiles (instances of tile types)
attaching asynchronously, and one at a time, wherever they match non-null glues on two sides
(i.e. two-sided cooperative binding in the abstract Tile Assembly Model [52, 39, 35, 16]). An
assembly is a maze with tiles attached (thus, assemblies may be connected or disconnected in
2D), and a terminal assembly is an assembly such that no tile can be attached.

The tile set T is said to compute the function f : {0, 1}n → {0, 1} in the Maze-Walking
TAM if there is a maze M ′ with n empty (no tile) tile positions p0, p1, . . . , pn−1 ∈ Z2 and an
empty (no glue) output glue position o ∈ {z + 0.5 | z ∈ Z}2, such that adding n input tiles
at p0, p1, . . . , pn−1 to M ′ is the new maze called Mx where the process of self-assembly on
Mx yields a set of terminal assemblies that each have the bit f(x) encoded by the glue at
position o. (Here, we imagine a many-one encoding function from glue types to bits.)

Maze-Walking TAM systems may be directed (one terminal assembly), or undirected
(several terminal assemblies). In this paper the systems we study are directed, which is
equivalent to saying that, for all sequences of tile additions, at each position p ∈ Z2, there is
at most one choice for what tile appears at p. Thus, in this paper, for a function f , for each
x ∈ {0, 1}n there is an associated maze Mx such that Tx = (T, Mx) has a single terminal
assembly that is said to compute f(x). Finally, a Boolean circuit c (defined below) is said to
be simulated by a tile set if the tile set computes the same function as c.

3.2 Boolean circuit definition

A Boolean circuit is a directed acyclic graph, where edges are called wires, and nodes are
called gates and are labelled. In this paper, gates have out-degree 1 or 2, except for output
gates that have out-degree 0. Also, a node’s label is one of: input (with in-degree 0),
output (with in-degree 1, out-degree 0), constant 0 or constant 1 (in-degree 0), fanout gates
(in-degree 1, out-degree 2; makes two copies of its input), or is one of the compute gates (¬,
NOT of in- and out-degree 1, or any of the in-degree 2 out-degree 1 gates that compute
functions on bits, e.g. OR, AND, NAND, NXOR,4 etc.). Also, we define an additional gate
called a crossover gate (in- and out-degree of 2) which swaps its inputs, used to planarise a
non-planar circuit (see below). Circuits compute, from the input gates and constant gates to
the output gate, by modifying bits according to the functions specified by gate labels.

The size of a circuit is its number of gates, and its depth is the length of the longest path
from any input gate to the output gate. A circuit c computes a Boolean (no/yes) function
f : {0, 1}n → 0, 1 on n ∈ N Boolean variables, by its gates computing the bit value at the
output in the usual way from the n input bits. A circuit is said to be planar if its graph is
planar (can be laid out in the plane without wire crossings).

A planarisation of a Boolean circuit c is another Boolean circuit ĉ where ĉ computes the
same function as c, has a planar embedding in R2, and ĉ has exactly the gates of c plus zero
or more 2-in 2-out crossover gates (that allow crossing of signals between a pair of wires
that would otherwise intersect in the plane). In other words, c is converted to ĉ by adding
crossover gates so that ĉ has a planar embedding. An example is shown in Figure 3(j2). A
planar Boolean circuit c is a Boolean circuit where ĉ = c, i.e. ĉ has zero crossover gates.

DNA 27



8:8 Small Tile Sets That Compute While Solving Mazes

Figure 3 Circuit-simulating gadgets for the NAND-NXOR tile set. In all parts of the construction
growth proceeds to the west and south (and never north nor east). (a) NAND-NXOR tile set. Seed
structures to implement (b) horizontal west-growing and (c) vertical south-growing wires. Examples
of communicating of 0 and 1 are shown for each. Vertical wires are of even length; in cases where
odd length is required we use a horizontal NOT gates during a turn from south-to-west (see proof
of Theorem 1). (d) Turn west-to-south, (e) turn south-to-west, (f) fanout west-to-south, and (g)
fanout south-to-west. The two isolated unit-size squares in (f,g) are there only to prevent unintended
cooperative growth after a fanout. (h1–5) Various logic gates (full set in Figure 4). (i1) Crossover
gate with an example in (i2) with design based on the 3 XOR gates construction given in [5]. (j1) An
example Boolean circuit that decides whether a 3-bit number is prime. (j2) Circuit converted to
a grid layout and (j3) implemented using NAND-NXOR tile gadgets. The implementation in (j3)
is somewhat optimised for space efficiency. (j4) The terminal assembly (execution) for the circuit
example on non-prime input 610 = 1102.
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4 Four tiles: the NAND-NXOR tile set

The NAND-NXOR tile set is depicted in Figure 3(a). One of the ideas underlying all of the
constructions in this paper can be understood by the way horizontal wires are implemented
with the NAND-NXOR tile set, Figure 3(b). A specific n × 1 polyomino seed advertises
“1” glues along its south side, which facilitates propagation to the west of any bit presented
as a glue coming from the east, following the assembly rules prescribed by the tile set.
As described in the proof of Theorem 1, the implementation of Boolean circuits using the
NAND-NXOR tile set is based on canonical constructions of logic gates exploiting NAND,
NOT and NXOR functions as primitive building blocks, Figure 3(h1–h5).

▶ Theorem 1. Any Boolean circuit c is simulated by the 4-tile NAND-NXOR tile set in the
Maze-Walking TAM using assemblies containing ≤ 6 tiles per gate and 34 tiles per crossover
gate in a planarisation of c.

Proof. A circuit is simulated by appropriately placing gadgets together to form a maze.

Tiles simulating wires and gates. We will show that the gadgets in Figure 3 are building
blocks (for a maze) that advertise glues designed to force directed growth when given
appropriate bit-encoding glue input(s).

Figure 3(b,c) details how the NAND-NXOR tile set simulates horizontal and vertical wires.
Vertical tile-wires have a parity constraint: in a vertical wire carrying the bit x ∈ {0, 1}, every
second tile correctly advertises x to the south, and every other tile advertises its negation ∼x.
If the circuit’s layout requires a turn from south-to-west, from an odd length vertical wire
(advertises ∼x) then a single horizontal negation gadget (Figure 3(h1, right)) is placed at
the bottom of the wire to change the signal to x (correct the “error”). With that correction,
vertical and horizontal wire segments can be used to send a signal from the origin to any
location in the south-west quadrant of Z2.

Figure 3(d–g,h1–h5,i1) shows two turns (south-to-west and west-to-south) and two kinds
of fanout-2 gates, as well as a number of compute gates and a crossover gate. In addition
NAND, and NXOR, gates are shown in Figure 3(a): present inputs x, y at North and East,
and read NXOR(x, y) on West and/or NAND(x, y) on South. (For completeness, Figure 4
gives direct simulations of all 16 possible gates with 1 or 2 inputs and one output.) No gate
is larger than NOR (see Figure 3(h5) and Figure 4), which uses 6 tiles. The crossover gate
is simulated using 34 tiles (intuitively, it uses a well-known idea of implementing crossover
with three XOR gates and three fanout gates). This gives the size bounds on tiles per gate
and crossovers in the theorem statement.

We claim that each gadget in Figures 3(b–g,h1–h5,i1) and Figure 4 is directed, meaning
that after input glue(s) are given to the gadget, then for each unit-sized outlined/dotted
empty square region in the gadget there is exactly one tile type that can be placed. This can
be seen by noting that (i) for all gadgets, and all inputs to a gadget, tiles attach using their
North and East sides only, and by (ii) the fact that the NAND-NXOR tile set is deterministic
on North and East sides.

Laying the circuit out on a grid. For the Boolean circuit c, let ĉ be its planarisation as
defined in Section 3.2; a planarisation always exists – just draw the circuit on the plane
replacing each of the s′ ∈ N wire crossings with a crossover gate (various planarisations may
be used to optimise s′, or other circuit parameters).

4 In this paper we use the notation NXOR(x, y) = NOT(XOR(x, y)) (and read “NOT exclusive OR”) to
denote what is more commonly, but confusingly, written XNOR (read “exclusive NOR”).
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Second, we layer c: meaning that we organise gates (including crossover gates) of c into
consecutive layers with layer 0 containing all input and constant gates, and so that layer i

contains gates that take their inputs from the outputs of gates in layers < i. The number of
layers is equal to the depth d of c, with the output gate being the sole gate in layer d − 1.
More precisely, layer i is located at x-coordinate −i (our convention is to draw circuits from
right to left).

Third, we increase the height between gates, and width between layers, so that there is
enough room to draw all wires so that they are composed of horizontal and vertical segments
only (where information flows to the west and to the south, respectively), that meet at
right angles (thus wires have south-to-west and west-to-south turns, only). We call the
resulting circuit a grid-layout circuit, and an example given in Figure 3(j2). Using the gadgets
described above, the maze/seed structure traces out the wires and gate locations according
to the south-west grid-layout circuit, leaving enough room so that gates and wires to not
intersect.

Computation. For any circuit c we have described (at a high level) how to lay out a
maze M ′, in the notation of Section 3.1. We next need to encode circuit inputs, as follows.
Since input gates are instances of gates, we assume that in M ′ there are n tile positions
that are empty and positioned adjacent to wires (so that their bit values will feed into a
layer of gates via horizontal wire gadgets). Let n be the number of inputs to c and let
x = x0x1 · · · xn−1 ∈ {0, 1}n denote an input to c. To the maze M ′ we add n more tiles so
that the n input glue positions of the maze are of respective types x0x1 · · · xn−1, to give an
maze Mx that encodes x (the example in Figure 3(j4) has 3 encoded input bits).

Assembly proceeds, starting at each of the n input glues in parallel (and at any positions
that encode 0/1 constant bits), according to the Maze-Walking TAM definition (Section 3.1).
Throughout the entire self-assembly process, at each position there is exactly one tile type
that can be placed (this is because it is true for individual gadgets as already argued). Also,
the self-assembly process terminates, for the simple reason that no tile can attach outside of
the bounding box of the maze Mx. Thus one terminal assembly is eventually produced, that
by its definition, encodes an execution of the circuit c with the output bit presented at the
glue position that represents the simulated circuit output gate (labeled “out” in the example
in Figure 3(j3)). ◀

▶ Example 3. Figure 3(j1-j4) illustrates the general construction described in Theorem 1 in
the context of a circuit that recognises prime numbers on 3 bits, i.e. the circuit will output 1
if and only if xyz ∈ {010, 011, 101, 111} which are the binary encodings of numbers {2, 3, 5, 7}.
The circuit implements the formula: (((NOT x) AND y) OR (x AND z)) and uses one
crossover as well as one fanout gate, Figure 3(j1). To facilitate the final Maze-Walking TAM
implementation, the circuit is laid out on a grid using only south-to-west and west-to-south
turns, Figure 3(j2). Then, the circuit is implemented with tiles, Figure 3(j2), using the
gadgets of Figure 3 and finally, the circuit executes on input 1102 = 6 and outputs 0 as 6
is not prime, Figure 3(j4). Note two details: (1) The implementation of the crossover gate,
Figure 3(i1), contains three embedded XOR gadgets and three embedded fanout gadgets –
using tiles to implement a known construction to simulate crossover with XORs. (2) The
way the OR gate is implemented in Figure 3(j3) (yellow overlay) is slightly different than
Figure 3(h3) as the negation of the east-coming input is performed vertically instead of
horizontally; this is an optimisation that exploits the difference in length parity of the two
vertical wires coming in to the gate.
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Figure 4 Implementation of all 2-input 1-output Boolean gates using gadgets over the NAND-
NXOR tile set in the Maze-Walking TAM. The gadgets are ordered with respect to their truth table,
which refers to the 4-bit output of the 4 respective inputs 00, 01, 10, 11; i.e. the canonical truth-table
definition of a 2-in 1-out gate (we use the same notation for gates with one (NOT, identity) or
zero inputs (constants)). For instance, the truth table 1101 encodes gate g such that g(00) = 1,
g(01) = 1, g(10) = 0 and g(11) = 1. The common English name of the gate is also given when there
is one. The constant gadgets (0000 and 1111) are used to simulate constant gates (0/1) and circuit
input gates xi ∈ {0, 1}, and require the presence of an additional glue (not shown) to trigger growth,
e.g. by being placed next to a wire gadget as shown in Figure 3(j4).

5 Six tiles: the Collatz tileset

In this section, we illustrate efficient Boolean circuit simulation in the Maze-Walking TAM
with the Collatz tile set which consists of of 6 tile types and 3 glues and is shown in
Figure 2(b).

On the one hand, the NAND-NXOR tile set was explicitly designed to compute, via the
placement of a single tile, the universal NAND function. From there it was augmented (with
bits on the west sides) that facilitate simulation of circuit wiring, and efficient simulation (few
tiles) of non-NAND gates. On the other hand, the Collatz tile set came about from studies
on the Collatz problem. Specifically, glue patterns in some tiled regions (e.g. rectangles)
relate to notoriously hard mathematical problems such as the Collatz conjecture [46] or an
open problem of Erdös’ [18, 25]: Is it the case that for all n > 8 there is at least one 2 in
the ternary representation of 2n? For more details see Appendix A. We noticed that this
pattern complexity could be leveraged, with the aid of computer search5, to build gadgets
for computation in the Maze-Walking TAM (Figure 5).

▶ Theorem 2. Any Boolean circuit c is simulated by the 6-tile Collatz tile set in the Maze-
Walking TAM using assemblies containing ≤ 14 tiles per gate and 33 tiles per crossover gate
in a planarisation of c.

5 Computer search was performed through the Maze-Walking TAM simulator: https://github.com/
tcosmo/mawatam
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Figure 5 Circuit-simulating gadgets for the Collatz tile set. Growth proceeds to the west and
south exclusively. (a) the Collatz tile set. Seed structures to implement (b) horizontal west-growing
and (c) vertical south-growing wires. Horizontal wires are of even length. When turning to the
south the appropriate turn can be used to transmit the signal (d1) or its negation (d2). (e) Fanout
gadgets depending on the parity of the incoming horizontal wire, if the length is odd, the gadget
also negates the west-going signal. (f) The smallest crossover gate found by computer search. (g)
Common Boolean gates, also found by computer search. (h) The buffer gadget is used to change the
parity of an horizontal wire. (i) Turn south-to-west. (j1) Collatz-tileset implementation of the 3-bit
prime recognition circuit and (j2) execution of the circuit on 710 = 1112 which is prime.
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Proof.
Tiles simulating wires and gates. We will show that the gadgets in Figure 5 can be used
to build mazes that simulate arbitrary Boolean circuits and that the growth triggered by the
placement of input tiles is directed, which in turn implies that the correct bit is output by
the simulation of c on some binary input word x.

Figure 5(b,c) details how the Collatz tile set simulates horizontal and vertical wires.
Horizontal tile-wires have a parity constraint: in a horizontal wire carrying the bit x ∈ {0, 1},
every second tile correctly advertises x to the west, and every other tile advertises its
negation ∼x. To handle this, there are two west-to-south turns, one for turning from even
length, and one for turning from odd length, horizontal wires Figure 5(d1). Only west-to-
south fanout is used in the constructions with this tileset, Figure 5(e). This fanout gate
comes in two variants whether it is applied at an even or an odd horizontal wire position. If
the gadget is applied at an odd wire position, it has the particularity of negating the output
west-going signal.

Negating a signal (either to correct a horizontal parity effect, or to simulate a NOT gate)
can be achieved in several ways. If the signal ever turns south, this can easily be done thanks
to Figure 5(d2) which implements both a turn and a negation at the same time. If the signal
never turns south, the programmer can use an odd-length horizontal wire which implements
a negation. If using an odd-length horizontal wire is not possible given the constraints on
circuit layout, the programmer can use the horizontal buffer gadget Figure 5(h) which has
the effect of copying the incoming signal to the next immediate column to the west which
inverts the parity constraint of the horizontal wire and allows it to reproduce the behavior
of an odd-length horizontal wire. This method is used in Figure 5(j1), for instance on the
horizontal wire which connects the input Z to its target AND gate.

Glue labelled polyominos, or seed structures, for south-to-west turns is shown in Figure 5(i).
Notably, a growth stopper (1 × 1 polyomino, with four null glues) is used to prevent spurious
growth that would happen in the north-west direction otherwise.

A crossover gadget seed structure is given in Figure 5(f), it was the smallest found by
computer search and it costs 33 tiles. The gate preserves the horizontal alignment of the
incoming northern bit: it exits at the south of the gate at the same x-position that it entered.
However, the incoming eastern bit is deviated three units to the south.

Seed (polyomino) structures that simulate Boolean (compute) gates are rectangular and
were found by computer search using the input convention that signals come from the east
and, if there are two of them the inputs should be one vertical block apart6. Figure 5(g1,g2)
gives the seed structure of an OR gate and an AND gate. For completeness, Figure 6 gives
the implementation of all Boolean gates, the biggest of them is NOR with a cost of 14 tiles.
This gives the tiles bounds per gate and crossover in the theorem statement. Remarkably,
seed structures for AND, OR, NAND, NOR are very similar in the sense that they differ by
at most 2 glues.

We claim that each gadget in Figure 5 and Figure 6 is directed, meaning that after input
glues are supplied to the gadget then for each dotted region in the gadget there is exactly one
tile type that can be placed. This can be seen by noting that (i) all gadgets use either North
and East sides to attach or South and East sides to attach (South and East attachments
are only used for horizontal wires and turn south-to-west gadgets, Figure 5(b,i)), (ii) North

6 Using computer search, we were able to find rectangular seed structures of Boolean gates corresponding
to all the input conventions that we experimented with. This leads us to believe that the ability of the
Collatz tileset to simulate Boolean gates is not tied to a particular input convention.
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and East attachments cannot compete with South and East attachments because all signals
travel in the south-west direction and South and East constraints are never given directly by
the seed but occur after tiles attach, and (iii) the Collatz tile set is deterministic on North
and East sides and South and East sides.

Laying the circuit out on a grid. We use the same circuit layout technique given in the
the proof of Theorem 1.

Computation. Similarly to the proof of Theorem 1, throughout the entire assembly process,
because of the directedness of all the gadgets that we use, at each position there is exactly
one tile type that can be placed. Thus one final assembly is produced, that encodes an
execution of the circuit, and in particular outputs the same bit as the n-bit circuit c on any
input word x ∈ {0, 1}n. ◀

▶ Example 4. The 3-bit prime recognition circuit in Figure 3(j1,j2) is implemented using
the Collatz tile set in Figure 5(j1,j2).
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Figure 6 Implementation of all 2-input 1-output Boolean gates using gadgets over the Collatz
tile set in the Maze-Walking TAM. The gadgets are ordered with respect to their truth table which
refers to the 4-bit output of the 4 respective inputs 00, 01, 10, 11; i.e. the canonical truth-table
definition of a 2-in 1-out gate (we use the same notation for gates with one (NOT, identity) or
zero inputs (constants)). For instance, the truth table 1101 encodes gate g such that g(00) = 1,
g(01) = 1, g(10) = 0 and g(11) = 1. The common English name of the gate is also given when there
is one. The constant gadgets (0000 and 1111) are used to simulate constant gates (0/1) and circuit
input gates xi ∈ {0, 1}, and require the presence of an additional glue (not shown) to trigger growth,
e.g. by being placed next to a wire gadget as shown in Figure 5(j2).
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A Origins of the Collatz tile set

The Collatz problem is a notoriously hard open problem which lies at the intersection of
mathematics and computer science [23, 54, 24]. Formulated in the 30s, the Collatz problem
is dauntingly simple to express: consider the Collatz map T : N → N defined by T (x) = x/2
if x is even and T (x) = (3x + 1)/2 if x is odd. The Collatz conjecture states that iterating T ,
starting from any n ∈ {1, 2, 3, . . .}, eventually yields 1.

The Collatz tile set consists of six tiles, named “0” to “5”, which are depicted in
Figure 7(a1). Vertical glues (north and south) are binary digits (0 and 1) while horizontal
glues (east and west) are ternary digits (0, 1 and 2). Each tile is uniquely identified by its
north-east corner (pair of glues) or its south-east corner or its south-west corner. Tile names
are linked to the tile’s glues by the following arithmetical relation: for the tile named x (with
0 ≤ x < 6) we have:

x = 3N + E = 2W + S (1)

where N, E, W and S respectively denote the values of the North, East, West and South glues.
This tile set, among all tile sets which use binary (0, 1) vertical glues and ternary (0, 1, 2)
horizontal glues, is the largest tile set for which (1) holds, by the following argument. Indeed,
(1) corresponds to the Euclidean division of x by 3 and by 2, meaning that, for a given pair
(N, E) ∈ {0, 1} × {0, 1, 2} there is a unique corresponding pair (S, W ) ∈ {0, 1} × {0, 1, 2}.
Since there are 6 different (N, E) pairs we deduce that there are exactly 6 different tiles with
binary vertical glues and ternary horizontal glues that satisfy (1). Moreover, analogous tile
sets can be generated for any relatively prime p, q (not only p = 2, q = 3), further suggesting
its naturalness as an object of study.

Computing Collatz trajectories with the Collatz tile set plus two more tiles. Together
with the two extra tiles depicted in Figure 7(a2), the Collatz tile set is able to assemble
Collatz trajectories starting from a straightforward north-east L-shaped seed as depicted in
Figure 7(b). Input to the Collatz iterations are given in binary on the north-most glues (with
LSB to the east). If the binary input x is of size n, we place n “S” on the vertical portion of
the seed (to the east). The assembly process is directed (i.e. deterministic in these sense of
which tile type is placed where) and, after it is finished, the nth Collatz iterate of the binary
input x, that is T n(x), will be written in ternary along the west-most glues of the assembly
(ignoring “S” glues). In the example of Figure 7(b) we read T 7(10010112) = 1213 meaning
that, in base 10, T 7(75) = 16. This phenomenon can be proven using the results of [46], more
precisely by identifying the Collatz tile set to the local rule of the CA-like system introduced
in [46] and the two additional tiles to the non-local rule in Figure (1a)[right] of [46]). In
practice, the two additional tiles are merely responsible for deleting trailing 0s in binary
(which corresponds to the /2 part of the Collatz map) while the Collatz tile set does the
heavier work of computing 3x + 1 in binary while maintaining a correspondence between
base 2 and base 3 encodings.

Predicting patterns produced by the Collatz tile set. The computational complexity of
predicting what tile will be placed at a given position of the square area defined by the
north-east L-shaped seed in Figure 7(b) is an open question [46]. However, if we restrict
ourselves to using the Collatz tile set alone, without the two additional tiles, the prediction
problem is in NL for each of the three L-shaped seeds: north-east, south-east and south-west
(for any length n ∈ N). That is because the relationship between pairs of tile sides, expressed
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Figure 7 The Collatz tile set and its relationship with the Collatz problem and Erdös’ conjecture.
(a1) The Collatz tile set. (a2) Two additional tiles which allow to assemble Collatz trajectories
from simple north-east L-shaped seeds. (b) Assembling the first 7 steps of the Collatz trajectory
of 75 = 10010112. The output, T 7(75) can be read in base 3 on the west-most glues of the final
assembly (ignoring “S” glues). Here, T 7(10010112) = 1213 meaning, in base 10, T 7(75) = 16. (c)
Constructing successive powers of 2 in base 3: the column marked with arrow number n encodes 2n

in base 3. Erdös’ conjecture states that, for n > 8, 2n contains at least one 2 in base 3 [18].

DNA 27
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in (1), can be generalised to any rectangular assembly to give a simple arithmetical formula
computable in nondeterministic logspace [46, 21] (3hN +E = 2wW +S, where now N, E, W, S

denote binary/ternary numbers written in glue sequences along the respective North, East,
West and South sides of a w × h rectangle). This fact means that, assuming a widely-believed
conjecture in complexity theory (namely, NL ̸= P), it is not possible to simulate arbitrary,
polynomial size, Boolean circuits using the 6-tile Collatz tile set with those simple L-shaped
connected seeds (within area polynomial in circuit size).

Although rectangular assemblies made with the Collatz tile set are simple to predict, they
also relate to hard open questions in number theory. Notably to the following conjecture by
Erdös [18]: For all n > 8, there is at least one digit 2 in the ternary representation of 2n.
Indeed, starting from the straightforward south-west L-shaped seed of Figure 7(c), consisting
of m vertical 0s and a horizontal 1 followed by m − 1 horizontal 0s, an induction proves that
consecutive columns of the assembly will encode successive powers of two in ternary. For
instance, on the first 4 columns pointed by an arrow in Figure 7(c) we can successively read:
“1”, “2”, “11”, “22” which are the ternary encodings of 1, 2, 4 and 8, the four first powers of 2.
Erdös conjecture then becomes: any column to the east of the 10th column of the assembly
(counting from the easternmost input column of vertical 0s), will contain a glue “2” (in red).
This problem can be seen as a potentially simpler conjecture than the Collatz conjecture [25].


	1 Introduction
	1.1 Main results
	1.2 Discussion: the NAND-NXOR and Collatz tile sets
	1.3 Future work

	2 Related work: theoretical and experimental
	2.1 Other routes to finding small universal tile sets
	2.2 DNA-based implementations and related models

	3 Definitions
	3.1 Maze-Walking TAM definition
	3.2 Boolean circuit definition

	4 Four tiles: the NAND-NXOR tile set
	5 Six tiles: the Collatz tileset
	A Origins of the Collatz tile set

