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Abstract
Given multiple nucleic acid strands, what is the minimum free energy (MFE) secondary structure that
they can form? As interacting nucleic acid strands are the basis for DNA computing and molecular
programming, e.g., in DNA self-assembly and DNA strand displacement systems, determining the
MFE structure is an important step in the design and verification of these systems. Efficient dynamic
programming algorithms are well known for predicting the MFE pseudoknot-free secondary structure
of a single nucleic acid strand. In contrast, we prove that for a simple energy model, the problem of
predicting the MFE pseudoknot-free secondary structure formed from multiple interacting nucleic
acid strands is NP-hard and also APX-hard. The latter result implies that there does not exist
a polynomial time approximation scheme for this problem, unless P = NP, and it suggests that
heuristic methods should be investigated.
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1 Introduction

Computational methods are widely used to help understand the structure and function of
DNA and RNA molecules. A central challenge has been reliable prediction of nucleic acid
secondary structure. In both biological and molecular computing contexts, thermodynamic
analyses are widely used for this purpose. Much work has focused on prediction of pseudoknot-
free secondary structures, since such structures are common in both biological and designed
systems and since pseudoknot-free structures are easier to handle algorithmically [12, 9, 15]. In
this paper, we show that, while efficient thermodynamics-based approaches are well known for
prediction of pseudoknot-free secondary structures of single strands, the problem of predicting
pseudoknot-free secondary structures of multiple interacting strands is computationally
intractable unless P = NP. Here and throughout, we consider a method to be efficient if its
running time is bounded by a fixed polynomial in the total length of the strands.
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9:2 Hardness of Predicting MFE Multi-Stranded Complexes

In what follows, we briefly summarize significant contributions on development of algo-
rithms for predicting the pseudoknot free secondary structure of a single nucleic acid strand,
or of multiple interacting strands. Table 1 also presents a summary of the time complexity of
pseudoknot-free secondary structure and partition function prediction. When the input has
multiple strands, we separate the cases where the number of strands is bounded by a fixed
constant c, and when the number of strands is unbounded, i.e., can grow with the input size.
Throughout this work, we focus on the latter case.

Table 1 Computational complexity of predicting nucleic acid MFE pseudoknot-free secondary
structures and partition functions, when the input is a single strand, multiple strands with a constant
bound c on the number of strands, and multiple strands where the number of strands can grow with
the input length n. In each case, n is the total number of bases in the input strand(s). We note
that, for a single strand, a work by Bringmann et al. [3] presents an exact sub-cubic algorithm using
a simple base pair model. The bold term shows our contribution and the question marks show that
the complexity of the corresponding problems is as yet unresolved.

Input Type MFE Partition Function

Single Strand P[O(n3)] [17, 18, 24] P[O(n3)] [16]

Multiple Strands, Bounded (≤ c) ? P[O(n3(c − 1)!)] [4]

Multiple Strands, Unbounded APX-hard [this work] ?

For single strands with length n, dynamic programming algorithms with O(n3) run time
have long been used to efficiently predict minimum free energy (MFE) pseudoknot-free
secondary structures, first for a simple “base pair” thermodynamic [17, 18, 24] model in
which the free energy of a secondary structure is only dependent on the number of its base
pairs, and later for more sophisticated energy models that account for entropic loop penalties,
stacked pairs and other structural features. However, very recently, Bringmann et al., [3]
proposed a truly sub-cubic algorithm to predict MFE secondary structures for a simple base
pair energy model. Dynamic programming methods can also be used to efficiently calculate
the partition function for a given strand, making it possible to compute the probability of
base pair formation in equilibrium [16].

In addition to prediction of secondary structure of single strands, there has also been much
interest in prediction of complexes that result when base pairs form between two or more
strands. Such predictions can be used to understand the affinity of binding between a nucleic
acid oligonucleotide and its potential target in biological processes such as RNA interference.
Prediction of multi-stranded secondary structures is also important because methods for
biomolecular programming and construction of nano-devices, such as self-assembly of complex
DNA shapes and DNA strand displacement systems, are based on the formation of such
complexes [20, 6]; prediction methods such as that provided by NUPACK [22, 5] can guide
the design of such programs and devices.

An energy model for single-stranded secondary structure formation can be extended to
obtain a model for multi-stranded complex formation by (i) charging an additional strand
association penalty, typically a constant times the number of strands involved in the complex,
and (ii) accounting for rotational symmetries [4]. Predicting MFE pseudoknot-free secondary
structures formed from two (or any constant number) of strands with respect to a model
that only accounts for strand association penalties is a straightforward extension of dynamic
programming algorithms for single strands [23, 21, 2]. However, it is not clear how such
algorithms can efficiently account for rotational symmetries that can arise when two or
more indistinguishable strands interact [4]. Nevertheless, Dirks et al. [4] showed how to
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efficiently calculate the partition function for a constant number of interacting molecules that
form pseudoknot-free structures, by showing how rotational symmetry could be accounted
for, while simultaneously addressing algorithmic overcounting issues that arise in partition
function calculation. However, the partition function calculation method of Dirks et al. [4]
requires a separate dynamic programming computation on all possible orderings of strands
that interact to form a single complex. As a result, the method does not run in polynomial
time when the number of participating strands grows with the overall input size (total length
of strands). This situation can arise, for example, in DNA strand displacement systems. Also,
surprisingly, while the partition function for a constant number of interacting strands can be
calculated efficiently, it is not known how to efficiently calculate the MFE pseudoknot-free
secondary structure of a constant number of interacting strands.

Thus, a basic open question is: can we efficiently compute the MFE pseudoknot-free
secondary structure for a multi-set of DNA or RNA strands?

In this paper, we provide a negative answer to this question. Given a set of nucleic acid
strands and a positive integer k, let Multi-Pkf-SSP be the problem of determining whether
the strands can form a pseudoknot-free secondary structure with at least k base pairs. We
show that Multi-Pkf-SSP is NP-hard, meaning that the existence of an efficient method
for MFE pseudoknot-free secondary structure prediction of a multi-set of strands would
imply all problems in the complexity class NP, which includes problems that are widely
believed to be intractable, would have polynomial time algorithms. The hardness result holds
whether or not rotational symmetries are accounted for in the energy model. Our proof uses
a reduction from a variant of 3-dimensional matching (3DM), already known to be NP-hard,
and employs code word designs with high pairwise edit distance [19].

In light of this NP-hardness result, another natural question is whether there is an efficient
method to find a pseudoknot-free secondary structure whose energy is a close estimate of
the energy of the MFE structure. We also provide a negative answer to this approximation
question, by showing a limit to the accuracy of any such method, assuming that NP ≠ P.
Specifically, if there is a polynomial time approximation scheme (PTAS) that could find
a pseudoknot-free secondary structure whose free energy closely approximates that of the
MFE for any given multi-set of strands, then again NP = P. A PTAS is a polynomial time
algorithm that receives as input an instance of an optimization problem and an arbitrary
parameter ϵ > 0, and returns an output whose value (in our case, the number of base pairs
in the MFE structure) is within a factor 1 − ϵ of the value of the optimal solution. The
running time of a PTAS could be dependent on ϵ, but it must be polynomial in the input
size for every fixed ϵ. Formally, we show that the optimization problem of finding the MFE
structure for a multi-set of nucleic acid strands is hard for the complexity class APX, the
class of NP optimization problems that have constant factor approximation algorithms. We
show this result by establishing that our reduction from 3-dimensional matching to MFE
structure prediction is an approximation-preserving reduction.

We note that hardness results have already been proved for variants of pseudoknotted
secondary structure prediction. While dynamic programming can be used to predict MFE
structures and partition functions for certain restricted classes of pseudoknotted structures,
the general problem of predicting MFE pseudoknotted structures is NP-hard, even for a
single strand [1, 14, 13]. The first two NP-hardness results, [1, 14] also use a simple energy
model called stacking where only consecutive base pairs forming a stack contribute to the
free energy of a strand. Hardness results can be valuable even with simple energy models; it
would seem unlikely that the prediction problem becomes easier if the energy model is more
sophisticated.

DNA 27



9:4 Hardness of Predicting MFE Multi-Stranded Complexes

The rest of the paper is organized as follows. We provide preliminary definitions, problem
statements and an overview of some useful theorems in Section 2. We outline the string
properties and designs required for our reduction, in Section 3. We provide a polynomial-time
reduction from a variant of 3DM to Multi-Pkf-SSP in Section 4, and prove its correctness
in Section 5. In Section 6, we also infer that an optimization version of the problem is hard
for the complexity class APX. This implies that there is no PTAS for approximating the
optimal secondary structure of multi-stranded systems, unless NP = P. The proofs of some
lemmas have been moved to Appendix A.

2 Preliminaries

We review some basic terminology and prior work in order to precisely formulate the problem
description and proof techniques.

A single DNA or RNA strand is a sequence of nucleotide bases, which we represent using
the character set {A, C, G, T} or {A, C, G, U} respectively, with the left end of the sequence
corresponding to the 5′ end of the strand and the right end corresponding to the 3′ end.
Bonds can form between Watson-Crick base pairs, namely C–G and A–U for RNA and C–G
and A–T for DNA [4].

We assume that consecutive bases within a sequence cannot pair with each other. This is
consistent with actual structures, where there are typically at least three bases separating
any two bases that are paired with each other. If sequences are numbered consecutively
starting from 1, we can represent a base pair as a tuple (i, j), such that i < j − 1, which
specifies that the base at position i in the sequence is paired with the base at position j

and j is not consecutive with i. A secondary structure is a set of base pairs such that no
base is in two pairs. That is, if (i, j) and (i′, j′) are in the structure then i, j, i′ and j′ are all
distinct.

Base pairing between two strands occurs in an antiparallel format. That is, the Watson-
Crick complement of strand x = 5′-x1 · · · xn-3′ is the strand 3′-x̄1 · · · x̄n-5′ ≡ 5′-x̄n · · · x̄1-3′,
where (xi, x̄i) is a Watson-Crick base pair. For example, the Watson-Crick complement of 5′-
ACTCG-3′ is 5′-CGAGT-3′. Throughout we will use the term complement to mean Watson-Crick
complement and denote the complement of x by x̄.

Similar to the single-stranded model, the secondary structure formed by m interacting
strands is a set of Watson-Crick base pairs. To specify the secondary structure, we assign
identifiers from 1 to m to the strands, and each base is named by a strand identifier and
a position on the corresponding strand. For instance if base i in strand s pairs with base
j in strand t, where s ≤ t and i < j − 1 if s = t, the base pair is denoted as (is, jt). A
multi-stranded secondary structure can be represented as a polymer graph by ordering and
depicting the directional (5′ to 3′) strands around the circumference of a circle, with edges
along the circumference representing adjacent bases, and straight line edges connecting paired
bases. Each such ordering of m strands is a circular permutation of the strands, and there
are (m − 1)! possible orderings. A secondary structure consists of one or more complexes
that correspond to the connected components in the polymer graph representation. If the
polymer graph of any one of these possible orderings has no crossing lines, then the secondary
structure is called pseudoknot-free [4]. For example, Figure 1 shows the two possible circular
permutations for three strands 1, 2, and 3, and the connected polymer graphs for the same
secondary structure. Since Figure 1(a) has no crossing lines, the structure is pseudoknot-free.
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Figure 1 a) A polymer graph representation of a pseudoknot-free secondary structure for the
strand set {1, 2, 3} with ordering 123. b) A second polymer graph for the same structure, with
strand ordering 132.

2.1 The simple energy model
Here, we employ a very simple extension of the “base pair free energy” model for secondary
structures [18]. In that model, the score of each base pair is −1 and the overall score (free
energy) of a single-stranded secondary structure is its total number of base pairs. So, the
more base pairs in a secondary structure of a single strand, the lower its score.

Where there are multiple interacting strands, there is an entropic penalty for strands
to associate via base pairing, i.e., a penalty for reducing the number of complexes [4]. In
our simplified model, we define the strand association penalty to be Kassoc ≥ 0. Thus, for a
pseudoknot-free secondary structure S consisting of m strands, l (≤ m) complexes, and p

base pairs, the overall score, or free energy, of S is

E(S) = p(−1) + (m − l)Kassoc.

For example, the secondary structure in Figure 1(a) has score 21(−1) + (3 − 1)Kassoc =
−21 + 2Kassoc. For strands s1, . . . , sm, an optimal pseudoknot-free secondary structure Sopt

satisfies E(Sopt) ≤ E(S) for any pseudoknot-free secondary structure S of s1, . . . , sm.
Since there can be a tradeoff between the number of base pairs and the number of

complexes, then it is possible under this model for an optimal pseudoknot-free secondary
structure to have less than the maximum number of possible base pairs. However, our
proofs have been constructed so that pseudoknot-free MFE secondary structures will have
a maximum number of base pairs for any reasonable value of the constant Kassoc. We will
proceed with our problem definitions under the assumption that Kassoc = 0 and formally
argue later that the results hold for all constants Kassoc ≥ 0.

2.2 Problem definitions
We now formally define the main problem of interest in this paper as a decision problem.

▶ Problem 1 (Multi-Pkf-SSP).
Instance: m nucleic acid strands and a positive integer k.
Question: Do the m strands form a pseudoknot-free secondary structure containing at least
k base pairs?

DNA 27
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x1 y1 z1

x2 y2 z2

x3 y3 z3

X Y Z

(a)

x1 y1 z1

x2 y2 z2

x3 y3 z3

X Y Z

(b)

Figure 2 An instance of the restricted 3-dimensional matching problem, 3dm(3), where
X = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3}. (a) The set of permitted triples, T =
{(x1, y2, z2), (x2, y1, z1), (x2, y3, z2), (x3, y3, z3)}. (b) A valid matching M ⊆ T .

We will describe a polynomial-time reduction from a restriction of the NP-hard 3-
dimensional matching problem to Multi-Pkf-SSP. A 3-dimensional matching is defined
as follows. Let X, Y , and Z be finite, disjoint sets, and let T be a subset of X × Y × Z.
That is, T consists of triples (x, y, z) such that x ∈ X, y ∈ Y , and z ∈ Z. Now M ⊆ T is a
3-dimensional matching if the following holds: for any two distinct triples (xi, yj , zk) ∈ M
and (xa, yb, zc) ∈ M, we have xi ̸= xa, yj ̸= yb, and zk ̸= zc.

For convenience in our construction, we use a restriction of the 3-dimensional matching
problem, called 3dm(3), that requires each element to appear in at most three triples of T .

▶ Problem 2 (3dm(3)).
Instance: A set T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n and each element of X, Y and
Z appears in at most 3 triples of T .
Question: Does there exist a matching M ⊆ T , with |M | = n?

▶ Theorem 1 (Garey & Johnson (1979) [7]). 3dm(3) is NP-complete.

Next we define an optimization version of the Multi-Pkf-SSP decision problem:

▶ Problem 3 (Max-Multi-Pkf-SSP).
Instance: A set of m nucleic acid strands.
Optimization Problem: Determine a pseudoknot-free secondary structure of the m strands
with maximum number of base pairs.

An optimization problem is in APX if it has a constant factor approximation algorithm,
i.e., an efficient method that can determine a solution whose score is within some fixed
multiplicative factor of that of an optimal solution. A problem is APX-hard if for some
constant c, a c-approximation algorithm for the problem would imply that NP = P. One
way to prove a problem is APX-hard is to show an approximation-preserving reduction from
a known APX-hard problem. A problem is APX-complete if it is APX-hard and is in APX.
We derive our hardness result for the Max-Multi-Pkf-SSP problem by a reduction from
the Max-3dm(3) problem, an optimization version of the 3dm(3) problem:
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▶ Problem 4 (Max-3dm(3)).
Instance: A set T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n and each element of X, Y and
Z appears in at most 3 triples of T .
Optimization Problem: Find a maximum size 3-dimensional matching M ⊆ T .

Kann [11] showed that Max-3dm(3) is MaxSNP-complete and thus APX-complete. Hard-
ness of approximation was established by demonstrating that it is NP-hard to decide whether
an arbitrary instance of the problem has a matching of size n or a matching of size at most
(1 − ϵ0)n, for some ϵ0 > 0.

▶ Theorem 2 (Kann (1994) [11]). Max-3dm(3) is APX-complete.

3 String designs and their properties

In this section we show how to design strings with properties that are useful in our reduction.
We follow standard string notation: for a string a = a1 . . . an we denote its ith character
(or symbol) by ai and its length by |a| = n; for any symbol B, we let Bl denote a string
of length l consisting of only B’s. The following related string properties are of particular
interest to us.

1. A pairwise sequence alignment, or simply alignment, of strings a and b is a pair of
strings (a′, b′) with |a′| = |b′|, where a′ and b′ are obtained from a and b respectively
by the insertion of zero or more copies of a special gap symbol. Moreover, for any i,
a′

i and b′
i are not both gap symbols and if neither a′

i nor b′
i is the gap symbol then

a′
i = b′

i. The alignment can alternatively be considered as a sequence of aligned pairs
(a′

i, b′
i), 1 ≤ i ≤ |a′|. A pair is a gap pair if either a′

i or b′
i is a gap symbol. We also define

an optimal alignment of a and b as a pairwise alignment of a and b with a minimum
number of gap pairs, amongst all possible alignments.

2. A longest common subsequence between strings a and b is a longest subsequence common
to the two strings. Note that a subsequence of a string results from the deletion of zero
or more of its characters. We denote the length of such a subsequence by LCS(a, b).
A longest common subsequence corresponds to an optimal alignment of a and b and
LCS(a, b) is equal to the total number of gap-free pairs of symbols in the alignment.

3. The insertion-deletion distance dLCS(a, b) between strings a and b is the minimum
number of insertions and deletions of symbols needed to convert a into b (or equivalently
to convert b to a). Equivalently, the insertion-deletion distance between a and b is equal
to the number of gap pairs in an optimal alignment of a and b.

The insertion-deletion distance and length of the longest common subsequence of two
strings are related by the following known result.

▶ Theorem 3 ([8]). Given two strings a and b, where |a| = n and |b| = n′, then dLCS(a, b) = k

if and only if LCS(a, b) = (n+n′−k)
2 .

Note that if a and b are equi-length strings, then k is an even number.
In the next theorem, we show how to efficiently construct a “large” set of relatively

short, equi-length strings that have high pairwise insertion-deletion distance. The con-
struction employs a greedy codeword design used also in Justesen [10] and Schulman and
Zuckerman [19].
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9:8 Hardness of Predicting MFE Multi-Stranded Complexes

▶ Theorem 4. Let w > 0 and δ > 0. For any n, a set of at least wn equi-length strands
over the alphabet {A, T}, each of length k log n for some constant k (that depends on w and
δ), can be designed in 2O(log n) time, such that the insertion-deletion distance between any
pair in the set is at least δ log2 n. Moreover, all strands in the set have at least ⌈δ log2 n/2⌉
A’s and at least ⌈δ log2 n/2⌉ T’s.

Proof. We construct the desired set using a greedy algorithm that is specified in terms of a
quantity t = Θ(log2 n) that we determine in the penultimate paragraph of this proof. From
{A, T}t, first put the two strings At and Tt in the set. Once i ≥ 2 strings are in the set, choose
any string from {A, T}t whose insertion-deletion distance from all i strings already in the set
is at least δ log2 n, and add it to the set. Continue until no more strings can be chosen with
the desired insertion-deletion distance. Finally, remove the strings At and Tt. This algorithm
runs in time 2O(log n). The number of strings in {A, T}t that have insertion-deletion distance
at most 2d from a given string s in {A, T}t is at most

(
t
d

)22d (see proof of Lemma 2 of
Schulman and Zukerman [19]). If d = ⌈δ log2 n/2⌉, then our set has the desired property that
the insertion-deletion distance between any pair in the set is at least δ log2 n. Furthermore
all strings in the set, once At and Tt are removed, must have at least ⌈δ log2 n/2⌉ A’s and at
least ⌈δ log2 n/2⌉ T’s; otherwise, their insertion-deletion distance from At and Tt, would be
less than δ log2 n.

The number of strings in the set before removal of At and Tt is at least wn + 2 if we
choose t so that

2t/(
(

t

d

)2
2d) ≥ 2t/2 ≥ wn + 2.

These inequalities hold if t is a sufficiently large constant times log2 n. For the first in-
equality, from Stirling’s formula we have that

(
t
d

)
< (t e/d)d, and so the inequality holds

if 2d log2(t e/d) + d ≤ t/2. This in turn holds if t = ηd (= η⌈δ log2 n/2⌉) where we
choose constant η so that ηe ≤ 2η/4−1/2. For the second inequality, we simply need that
t ≥ 2 + 2 log2 w + 2 log2 n.

Finally, since the strings At and Tt are removed and all other strings have insertion-deletion
distance at least δ log2 n from strings At and Tt, all strands in the set have at least δ log2 n

A’s and at least δ log2 n T’s. ◀

Our design also makes use of a padding function. Let ρi denote the padding function
that, applied to a string, inserts i A’s (called padded A’s) at the start of, and between every
pair of symbols in, the string.

▶ Definition 5 (padding function ρi). Let a = a1a2 . . . an be a string. Then ρi(a) =
Aia1Aia2 . . . Aian.

If dLCS(a, b) = k then dLCS(ρi(a), ρi(b)) may be less than k. To illustrate why, first
consider the function ρ1, defined as ρ1(a1a2 . . . an) = A1a1A1a2 . . . A1an. If we choose a =
AATATT, and b = TTATAA, then dLCS(a, b) = 6 whereas dLCS(ρ1(a), ρ1(b)) = 4, as shown in
Figure 3. This appears to contradict the assertion in Lemma 2 of Schulman and Zukerman [19]
that dLCS(ρ1(a), ρ1(b)) ≥ dLCS(a, b). Adapting this example, if

a′ = A5A5T5A5T5T5 and b′ = T5T5A5T5A5A5,

then dLCS(a′, b′) = 30, while dLCS(ρ5(a′), ρ5(b′)) = 20.
We next show a lower bound on dLCS(ρi(a), ρi(b)) in terms of dLCS(a, b).
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A ATATT A A AAATAAATAT
TTATA A ATATAAATAAA A

(a) (b)

Figure 3 Padding can reduce insertion-deletion distance. (a) The ATA substrings of the two
strings of length 6 forms a LCS, leaving a total of six symbols unmatched. (b) When the strings are
1-padded, the leftmost A of the first string and the rightmost A of the second string, plus the padded
A’s, become part of the LCS.

▶ Lemma 6. Let a and b be equi-length strings over {A, T}. Then

dLCS(ρi(a), ρi(b)) ≥ dLCS(a, b)/2.

Let a and b be strands and let S(a) and S(a, b) be secondary structures for strand a and
pair (a, b) respectively. The base pairs of (a, b) may be inter-molecular and/or intra-molecular.
We define the unpairedness of S(a) or S(a, b) to be the number of bases that are not paired
in S(a) or S(a, b), respectively. The next lemma provides lower bounds on the unpairedness
of structures formed from padded strings.

▶ Lemma 7. Let a′ and b′ be any strands over the alphabet {A, T}, let a = ρ5(a′), let
b = ρ5(b′), and let s be any substrand of a or a. Let S(s), S(a, b), S(a, b) and S(a, b) be any
pseudoknot-free secondary structures for s, (a, b), (a, b) and (a, b), respectively. Then
1. The unpairedness of S(s) is at least 1

3 |s|.
2. The unpairedness of S(a, b) is at least 2

3 (|a| + |b|).
3. The unpairedness of S(a, b) is at least 2

3
(
|a| + |b|

)
.

4. The unpairedness of S(a, b) is at least 1
3 dLCS(a, b).

▶ Definition 8. A set S of strands is k-robust if the following properties hold:
1. All strands of S have the same length.
2. All strands of S have at least k A’s and at least k T’s.
3. For any a and b in the set, the unpairedness of optimal structures for a, ā, (a, b), (ā, b̄),

and (a, b̄) is at least k.

▶ Theorem 9. Let w > 0. For any n, a log2 n-robust set of at least wn strands, each of
length p log2 n for some constant p, can be designed in 2O(log n) time.

Proof. Using Theorem 4, for any w > 0 and δ = 6 we can obtain, in time 2O(log n), a
set S ′ of at least wn strands, each of length k log2 n for some constant k, such that the
insertion-deletion distance between any pair of strands in S ′ is at least 6 log2 n. Moreover, all
strands in S ′ have at least 3 log2 n A’s and at least 3 log2 n T’s. This latter property implies
that the strands in S ′ have length at least 6 log2 n.

Apply the padding function ρ5 to strands in S ′ to obtain a new set S. The strands
in S have length 6k log2 n, which must be at least 36 log2 n. Lemma 6 shows that the
insertion-deletion distance between any pair of strands in S is at least δ log2 n/2 = 3 log2 n.
Lemma 7 then shows that if a and b are any two strands in the set S, the unpairedness
of the optimal structure of a, or its complement, or of (a, b), (a, b) or (a, b), is at least
min{ 1

3 |a|, 2
3 (|a| + |b|), 1

3 dLCS(a, b)}. Given that |a| and |b| are at least 36 log2 n and that
dLCS(a, b) = 3 log2 n, this lower bound is at least log2 n. Therefore, the unpairedness of the
set S is at least log2 n, as desired. ◀
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Figure 4 Example of the reduction from the 3dm(3) instance of Figure 2. (a) Strands of the
resulting Multi-Pkf-SSP instance, specified at the domain level. (b) Partial MFE structure of the
strands. Here, the structure involving triple-strand t1, labeled as perfect triple, indicates that the
triple (x1, y2, z2) is in the solution of the 3dm(3) instance. Triple-strand t4 is a trim-deprived triple
since there are no bonds to bases in the middle trim domain. This structure indicates that triple
(x2, y3, z2) isn’t selected in the solution.
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4 The reduction

We show a polynomial time reduction from 3dm(3) to Multi-Pkf-SSP. Given an instance
I = (X, Y, Z, T ) of 3dm(3), where m = |T | and n = |X| = |Y | = |Z|, we construct an
instance I ′ of Multi-Pkf-SSP as follows.

Domains used in strands of I′

The strands of I ′ contain the following domains.

One domain for each x ∈ X, y ∈ Y , and z ∈ Z and one domain for each complement.
Where no confusion arises, we use x, x̄, y, ȳ, z, and z̄ to refer to these domains.
A separator and a separator-complement domain, denoted by Sep and Sep.
A trim domain and a trim-complement domain, denoted by Trm and Trm respectively.

Strands of I′

Instance I ′ consists of the following strands, where each strand is a sequence of domains.

Template strand: One strand that is the concatenation of triples. There is one triple for
each (x, y, z) ∈ T , which is the following concatenation of domains:

Trm x Sep y Sep z Trm z̄ Sep ȳ Sep x̄ Trm
We call the substrands x Sep y Sep z and z̄ Sep ȳ Sep x̄ of a triple the 5′ and 3′ flanks,
respectively. We call the Trm domains at the ends of the triple the end-trims and the
middle Trm domain the center-trim.
Separator (-complement) support strands: 2n Sep strands and another 2n Sep strands.
xyz-support strands: For each x, y and z domain, one strand consisting of just that
domain and one for its complement, for a total of 6n strands.
Trim-complement strands: 2m + n copies of Trm, which is the complement of the trim
domain Trm.

We refer to the xyz-support strands and the separator and separator-complement support
strands collectively as the support strands.

▶ Lemma 10. The total number of support strands is 10n.

Proof. This follows immediately from the fact that there are 6n xyz-supports and 4n

separator and separator-complement strands in total. ◀

This completes the description of the reduction at the domain level of detail. Figure 4
(a) shows the resulting Multi-Pkf-SSP instance, specified at the domain level, after a
reduction from the 3dm(3) instance of Figure 2.

The MFE structure of the resulting set of strands is partially depicted in Figure 4 (b).
All domains of the substrand labeled as “perfect triple” are bound to their complements,
indicating that the triple (x1, y2, z2) is selected in the solution of the 3dm(3) instance,
consistent with the solution shown in Figure 2 (b). The other triple that is depicted is a
“trim-deprived triple”. This is a triple in which at least one trim domain is unbound. The
corresponding triple (x2, y3, z2) does not appear in the solution from Figure 2 (b). Intuitively,
there is a trim-complement strand available to bind with each of the 2m end-trim domains
at the ends of all triples, and in addition the number of xyz-support, separator supports and
additional trim-complement strands is necessary and sufficient to have n “perfect triples” in
an optimal secondary structure when the 3dm(3) instance has a perfect matching of size n.
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Sequence design for I ′

To complete the reduction, we specify a sequence design for each domain of I ′. For the
x, y, and z domains, we use the set of sequences of Theorem 9 with w = 3, since we need
3n domains (plus their complements) in total. Let E (= Θ(log2 n)) be the length of these
domains. The trim domain Trm = GE , i.e., consisting of E copies of G, and Trm = CE . The
Sep domain is A6E , and the Sep domain is the complement of the Sep domain, namely T6E .

The sequence design has the property that there are an equal number of A and T bases
overall, since for every x, y, z or separator domain there is a corresponding complementary
domain. The total number of C’s in trim-complement strands is (2m + n)E. The total
number of G’s in end-trims and center-trims is 3mE. Since m ≥ n, the total number of G’s
is at least as great as the total number of C’s. Therefore, under the assumption that only
Watson-Crick base pairs can form, the maximum number of base pairs is limited to the total
number of A (or T) bases plus the total number of C bases. Let P denote this quantity.

The instance I ′ is comprised of the strands of I ′ and the positive integer P .

▶ Lemma 11. Instance I ′ can be constructed in time polynomial in n.

5 Reduction correctness

We show that if the given instance I of 3dm(3) has a perfect matching then the optimal
secondary structure formed from strands in I ′ is a single complex that has the maximum
possible number P of base pairs. We also show that if the optimal matching of I has size
n − i then the optimal structure has only P − Ω(iE) base pairs.

▶ Lemma 12. If I has a perfect matching, then the strands of I ′ can form a pseudoknot-free
secondary structure, consisting of a single complex and P base pairs, with n perfect triples.

Proof. Here, in the reduced instance I ′, bases in the n triples corresponding to the perfect
matching can be bound to the corresponding support strands, to form n perfect triples.
The end-trims of the remaining triples can also be bound to two trim-complement strands,
while their complementary 5′ and 3′ flanks are paired together to make trim-deprived triples.
Therefore, as all A’s and C’s are paired in this single (connected) complex, the number of
base pairs is P . ◀

We next consider the case that the optimal matching of I has size at most n − i. Let
Opt(I ′) denote an optimal pseudoknot-free structure of the reduced instance I ′. We establish
properties that must hold true of Opt(I ′) and conclude that when the optimal matching of I

has size at most n − i, then Opt(I ′) has P − Ω(iE) base pairs.
With respect to a given structure, we say that a domain is bound if at least one of its

bases forms a base pair. A domain d in a triple (as part of the template strand) is connected
to a non-template strand s if there is a sequence of non-template strands s1, s2, . . . , sj where
sj = s, such that d forms a base pair with s1, s1 forms a base pair with s2, and so on up to
sj−1 forming a base pair with sj = s.

We partition the triples into four types, depending on the structure they form in Opt(I ′).

Perfect triples: The triple binds to the set of non-template strands that are complementary
to the triple domains. (This set of non-template strands contains two Sep’s, two Sep’s,
three Trm’s and six xyz-support strands in total.) The set of perfect triples corresponds
to a matching of instance I.
Trim-deprived triples: At least one trim of a triple is unbound.
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Hogger triples: These are triples which are not trim-deprived, and moreover, the ten
domains in the flanks of a hogger triple are bound to, or connected to, at least eleven
support strands in total.
Flawed triples: None of the above. In particular, flawed triples are not trim-deprived.

Since neither hogger nor flawed triples are trim-deprived, the support domains that are
bound to or connected to either their 5′ or 3′ flanks cannot bind to other domains on the
template strand, or a pseudoknot would form.

▶ Lemma 13. The total number of trim-deprived and flawed triples in Opt(I ′) is at least
(m − n) + i/11.

▶ Lemma 14. Either Opt(I ′) has at least m − n + i/22 trim-deprived triples, or at least i/22
flawed triples.

Proof. By Lemma 13, the total number of trim-deprived and flawed triples is at least
(m − n) + i/11. So if the number of trim-deprived triples is less than m − n + i/22, then the
number of flawed triples must be at least i/22. ◀

We now adapt our notion of unpairedness from Section 3 to ACT-unpairedness. Let a and
b be strands and let S(a) and S(a, b) be secondary structures for strand a and pair (a, b)
respectively. The ACT-unpairedness of S(a) or S(a, b) is the number of A, C and T bases that
are not paired in S(a) or S(a, b), respectively.

▶ Lemma 15. If the number of trim-deprived triples in Opt(I ′) is at least m − n + i/22,
then at least iE/22 C’s are unpaired in Opt(I ′), and so Opt(I ′) has ACT-unpairedness Ω(iE).

In order to show that many flawed triples cause Opt(I ′) to have high ACT-unpairedness,
we first derive some useful properties about flawed triples. In what follows, we let F5′ =
x Sepxy y Sepyz z and F3′ = z̄ Sepyz ȳ Sepxy x̄ denote the sequences on the 5′ and 3′ flanks
of a given flawed triple. Let S5′ and S3′ be the sets of support strands that are bound to,
or connected to, domains of F5′ and F3′ respectively, in the structure Opt(I ′). The sets
F5′ and F3′ are disjoint, since something is bound to the middle trim in Opt(I ′), and the
structure has no pseudoknots. Since a flawed triple has at most ten support strands bound
to it, either |S5′ | ≤ 5 or |S3′ | ≤ 5. In the following lemmas, for concreteness, we suppose that
|S5′ | ≤ 5; the argument when |S3′ | ≤ 5 is obtained by replacing domains and strands with
their complements and bases A and T with each other. Let Opt(F5′) be the substructure of
Opt(I ′) formed by the bases in F5′ and the strands in S5′ .

▶ Lemma 16. Suppose that there are l ≥ 2 bonds between one of the x, y or z domains of
F5′ and either Sepxy or Sepyz. Then Opt(F5′) has ACT-unpairedness at least 5(l − 1).

▶ Lemma 17. Suppose that in Opt(F5′), |S5′ | ≤ 5 and the ACT-unpairedness of F5′ is less
than (log2 n)/3. Then the following must hold.
1. Each Sep domain of F5′ is bound to a Sep-support domain.
2. Each x, y and z domain of F5′ is bound to an xyz-support domain.
As a consequence, each x, y, and z domain of F5′ is bound to a distinct xyz-support of S5′ ,
each Sep domain of F5′ is bound to a distinct Sep support of S5′ , and S5′ contains exactly
three xyz-supports and two Sep supports.

▶ Lemma 18. Let F5′ = x Sepxy y Sepyz z be the left flank of a flawed triple. Suppose that
in Opt(F5′), |S5′ | ≤ 5. Then for any constant α < 1/7, the ACT-unpairedness of Opt(F5′) is
at least α log2 n.
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▶ Lemma 19. If the optimal matching of I has size at most n− i, then Opt(I ′) has P −Ω(iE)
base pairs.

Proof. By Lemma 14, Opt(I ′) either has at least m − n + i/22 trim-deprived triples, or at
least i/22 flawed triples.

First suppose that Opt(I ′) has at least m − n + i/22 trim-deprived triples. Then by
Lemma 15, Opt(I ′) has ACT-unpairedness Ω(iE). Similarly, if Opt(I ′) has at least i/22 flawed
triples, then by Lemma 18, each flawed triple has ACT-unpairedness Ω(log n) = Ω(E), since
E = Θ(log n). Again, the total ACT-unpairedness is Ω(iE).

Recall that all A’s, C’s and T’s must be paired in order for the total number of base pairs
to be P . Since the total ACT-unpairedness is Ω(iE), it must be that the number of base pairs
in Opt(I ′) is at most P − Ω(iE). ◀

▶ Theorem 20. Multi-Pkf-SSP is NP-complete.

Proof. Let I be any instance of Multi-Pkf-SSP, i.e, m nucleic acid strands and a positive
integer k. Given a certificate for I, which includes a secondary structure S and an ordering
of the m strands, we can check in time polynomial in the total length of the strands whether
S is a valid, pseudoknot-free secondary structure and whether it has k base pairs. Therefore,
Multi-Pkf-SSP is in NP.

Moreover, in the last section we provided a polynomial time reduction from any instance
I of 3dm(3) to an instance I ′ of Multi-Pkf-SSP. The optimal structure Opt(I ′) has P

base pairs if I has a perfect matching, by Lemma 12, and Opt(I ′) has less than P base pairs
if I does not have a perfect matching (by Lemma 19), where P is the total number of A, T
and C bases of the strands of instance I ′.

Putting these together, we conclude that Multi-Pkf-SSP is NP-complete. ◀

Until now, we have only considered the number of base pairs in the MFE structure
under the assumption that there is no penalty for strand association, i.e., Kassoc = 0. Our
construction has the property that structure Opt(I ′) is a single complex when I has a
perfect matching. When Kassoc > 0 the penalty to bring the 2m + 11n + 1 strands into a
single complex is (2m + 11n)Kassoc. However, the number of base pairs formed between
complementary domains of distinct strands is at least E, where E = Θ(log n). Thus, for any
positive constant Kassoc the value of E can be scaled by a constant to ensure that a single
domain binding is always favourable, even when decreasing the number of complexes by one.

6 Approximability

We proved that the Multi-Pkf-SSP problem is NP-complete in Theorem 20. Given this
result, it is natural to investigate whether there is a polynomial time algorithm to approximate
the optimal secondary structure of multi-stranded systems. We show in Theorem 22 that
the Max-Multi-Pkf-SSP problem is in fact APX-hard. This result asserts that there is no
polynomial time approximation scheme (PTAS) for this problem, unless P = NP.

We first note in Lemma 21 that our reduction of Section 4 is approximation-preserving,
transforming one optimization problem into another one. We then prove that this construction
also maps a solution of Max-Multi-Pkf-SSP to a solution of Max-3dm(3).

▶ Lemma 21. Our reduction from an instance I of Max-3dm(3) to an instance I ′ of
Max-Multi-Pkf-SSP has the following properties:

If I has a matching of size n then |Opt(I ′)| = P .
If I has a matching of size at most (1 − ϵ0)n then |Opt(I ′)| ≤ P − αϵ0nE, for some
constant α > 0.
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Proof. This lemma directly follows from Lemmas 12 and 19. ◀

▶ Theorem 22. Max-Multi-Pkf-SSP is APX-hard.

Proof. Let I ′ be an instance of Max-Multi-Pkf-SSP obtained from an instance I of
Max-3dm(3) where the size of the three sets is n and there are m total triples. First, we
review the quantities E and P of the reduction of Section 4. Recall that E = Θ(log n)
specifies the lengths of xyz-support domains in instance I ′ obtained from instance I. Our
sequence design and Lemma 11 ensure that instance I ′ has Θ(n) + Θ(m) domains of length
Θ(E). Recall that P is the total number of base pairs in an optimal structure for I ′ if I

has a perfect matching. A perfect matching for I would have n triples. It follows that
P = Θ(n log2 n).

We now apply Lemma 21 to show APX-hardness of Max-Multi-Pkf-SSP. Suppose to the
contrary that for some ϵ > 0, there is a (1 − ϵ)–approximation algorithm for this problem.
Then, the following hold:

If I of Max-3dm(3) has a matching of size n, then on instance I ′ the algorithm returns
a solution with value at least (1 − ϵ)|Opt(I ′)| = (1 − ϵ)P .
If instance I has a matching of size at most (1 − ϵ0)n, then on instance I ′ the algorithm
returns a solution with value at most |Opt(I ′)| ≤ P − αϵ0nE.

Therefore, if P − αϵ0nE < (1 − ϵ)P the algorithm can distinguish between the cases where
I has a matching of size n or of size at most (1 − ϵ0)n. By our current assumptions about
P and E, the above inequality holds if ϵ < αϵ0nE/P . This contradicts Theorem 2, on the
APX-hardness of Max-3dm(3). ◀

7 Conclusions

This work resolves an open question on algorithms for pseudoknot-free secondary structure
prediction of nucleic acids: Can we efficiently compute the minimum free energy (MFE)
pseudoknot-free secondary structure for a multi-set of DNA or RNA strands? We have shown
that this problem is NP-hard, and is therefore computationally intractable, unless P = NP.
A natural question then is whether solutions to the problem can be efficiently approximated,
if P ̸= NP. Unfortunately, there is a limit to the accuracy of any such method. We have
shown that the optimization problem of finding the MFE structure for a multi-set of nucleic
acid strands is hard for the complexity class APX, the class of NP optimization problems
that have constant factor approximation algorithms. The result implies that there does not
exist a polynomial time approximation scheme for this problem, unless P = NP. Given these
results, it suggests that heuristic methods, such as stochastic local search, and randomized
algorithms should be investigated for structure prediction of multiple interacting strands.
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A Technical Appendix

A.1 Proof of Lemma 6
Proof. Let dLCS(a, b) = k. We suppose that dLCS(ρi(a), ρi(b)) < k/2 and obtain a contra-
diction. Let A be an optimal alignment of ρi(a) and ρi(b). Throughout, when referring to
characters in ρi(a) and ρi(b), we denote the characters of the original strings a and b by Ao

and To and the padded A’s by Ap. Each pair of characters in alignment A has one of four
types: original, with two original characters; padded, with two padded characters; mixed,
with one Ao and one Ap, or gap, with one gap symbol. Let n be the length of a and b, and
let #orig, #pad and #mix denote, in order, the counts of original, padded and mixed pairs,
respectively. To prove the lemma, we establish various bounds on these counts, as a function
of n and k.

First, note that any alignment of ρi(a) and ρi(b) has at most n − k
2 original pairs:

Otherwise, we could use the alignment to obtain an alignment of a and b with less than k

gap pairs, which is not possible since dLCS(a, b) = k. Therefore,

#orig ≤ n − k
2 . (1)

Second, using Theorem 3 and our assumption that dLCS(ρi(a), ρi(b)) < k
2 , we have that

LCS(ρi(a), ρi(b)) ≥ (i + 1)n − ⌊ k
4 ⌋, and so

#orig + #pad + #mix = LCS(ρi(a), ρi(b)) ≥ (i + 1)n − ⌊ k
4 ⌋. (2)

Third, we’ll obtain a lower bound on #orig. Note that 2#pad + #mix is upper bounded
by the total number of Ap characters, and so is at most 2in. Therefore #pad + ⌈ #mix

2 ⌉ ≤ in.
Substituting this inequality into Equation 2, we have that

#orig ≥ n − ⌊ k
4 ⌋ − ⌊ #mix

2 ⌋. (3)

Finally, from inequalities 1 and 3 we have #mix ≥ k/2.
We now partition the mixed pairs into two types: sloppy and tight.
A mixed pair p of alignment A is sloppy if, among the first i pairs to the right of p, there
is at least one gap pair containing a To or Ap character. Mixed pairs must be separated
by at least i pairs since there are at least i Ap’s between any two Ao’, and so the gap
pairs corresponding to each of the sloppy mixed pairs are distinct. From property (3)
above, dLCS(ρi(a), ρi(b)) is equal to the number of gap pairs in A. Since we are assuming
that dLCS(ρi(a), ρi(b)) < k

2 , the alignment A has less than k
2 gapped pairs, and thus has

less than k
2 sloppy mixed pairs.

If p is not sloppy, we call it tight. Since less than k
2 of the mixed pairs are sloppy, at least

#mix − k
2 + 1 of the mixed pairs are tight.

If p is tight, let p′ be the first pair to the right of p that is not a padded pair. Such a pair p′

must exist, since our padding function is such that any Ap character is eventually followed by
an original character. Pair p′ is either a gap pair containing Ao or is a mixed pair, in which
case it also contains Ao. In either case, because exactly i Ap’s separate any two original
characters, if the Ao character of pair p is in string a then the Ao character of pair p′ is in
string b and vice versa. In what follows, we refer to p′ as p’s partner. Note that p′ may itself
be a tight pair.

Using these #mix − k
2 + 1 tight pairs, we now convert alignment A to another alignment

A′ with at least n− k
2 +1 original pairs, obtained as follows; see example in Figure 5. Starting

from the leftmost pair of alignment A and working towards the right, find the first tight
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p p′

. . . Ao Ap Ap Ap Ap Ap To Ap Ap . . .

. . . Ap Ap Ap Ao Ap Ap Ap Ap . . .

(a) Alignment A.

. . . Ao Ap Ap Ap Ap Ap To Ap Ap . . .

. . . Ap Ap Ap Ao Ap Ap Ap Ap . . .

(b) Alignment A′.

Figure 5 Illustration of the construction of Lemma 6. In alignment A, the pair at position p is a
tight pair; its partner is at position p′ and is a sloppy pair. Alignment A′ has one more original
pair, indicated in bold, than does alignment A.

mixed pair p of A and its partner p′. Remove p, p′ and all of the intervening (padded) pairs
between them from the alignment, and instead pair each padded character from the removed
pairs with a gap, and pair the Ao character of p with the Ao character of p′ (recall that one
of these Ao characters is in string a and the other is in string b). Repeat, starting from the
pair just to the right of p′, until the rightmost end of A is reached.

The number of new original pairs obtained in this manner is at least ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1.

To see why:
If #mix − k

2 + 1 is odd, then the number of new original pairs is at least

(#mix − k
2 )/2 + 1 ≥ ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1.

This lower bound is achieved when all but one of the tight mixed pairs are partners.
If #mix − k

2 + 1 is even, then the number of new original pairs is at least

(#mix − k
2 + 1)/2 = ⌊(#mix − k

2 )/2⌋ + 1/2 + 1/2 = ⌊ #mix

2 ⌋ − ⌊ k
2 /2⌋ + 1.

This lower bound is achieved when all partners are themselves tight mixed pairs.
Therefore, the number of original pairs in alignment A′ is

#orig+ ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1

≥ n − ⌊ k
4 ⌋ − ⌊ #mix

2 ⌋ + ⌊ #mix

2 ⌋ − ⌈ k
4 ⌉ + 1 (using inequality 3)

= n − k
2 + 1.

But as noted earlier, any alignment of ρi(a) and ρi(b) has at most n − k
2 original pairs, and

so we have our contradiction. ◀

A.2 Proof of Lemma 7
Proof. To show part 1, first suppose that s is a substrand of a = ρ5(a′). If |s| ≤ 2, then
no bases of s are paired in S(s), given our assumption that consecutive bases in a strand
cannot form a base pair, and so part 1 holds. If |s| ≥ 3, the number of (intra-molecular) base
pairs of S(s) is at most the number of T’s in s. If 3 ≤ |s| ≤ 6 then s can have at most one
T, and thus at most one base pair, so s has at least |s| − 2 unpaired bases and again part 1
holds. Suppose that |s| ≥ 7. Because s is a substrand of a padded strand, the number of
T’s in s is at most ⌈2|s|/7⌉: this maximum is achieved if |s| = 7 and s both starts and ends
with a T. Even if all of the T’s of s are paired to A’s, the number of unpaired A’s is still at
least ⌊3|s|/7⌋ ≥ |s|/3 since |s| ≥ 7. The argument when s is a substrand of a is obtained by
replacing A’s with T’s in the argument for a substrand of a.
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Similarly, the total number of T’s in S(a, b) is at most (|a|+ |b|)/6 and so the unpairedness
is at least 4(|a|+ |b|)/6. The argument for the unpairedness of S(a, b) is obtained by replacing
A’s with T’s in the argument for {a, b}.

Finally, the inter-molecular base pairs of S(a, b) correspond to a common subsequence of
strands a and b, and thus the number of such base pairs is at most LCS(a, b) = n − dLCS(a,b)

2
by Theorem 3. Therefore the total number of bases in both a and b that do not form
inter-molecular base pairs of S(a, b) is at least dLCS(a, b). Now consider any substructure of
S(a, b) within some maximal substrand s of either a or b̄ that has no inter-molecular base
pairs. The unpairedness of this substructure is at least 1

3 |s|, by part 1 of this Lemma. Thus,
over all substrands that do not contain inter-molecular base pairs, at least a fraction 1

3 of
bases are unpaired (not involved in intra-molecular base pairs). Since the total length of such
substrands is at least dLCS(a, b), the unpairedness of S(a, b̄) is at least 1

3 dLCS(a, b). ◀

A.3 Proof of Lemma 11
Proof. Instance I ′ has one template strand, 2n separator supports, 2n separator-complement
supports 6n xyz-support strands, and 2m + n trim-complement strands, for a total of
2m + 11n + 1 strands. The template strand has 13m domains and the other strands have
one domain each, for a total of 15m + 11n domains.

Since every domain in the construction has length Θ(log2 n), instance I ′ is of size
polynomial in n overall. The sequences can also be designed in polynomial time: The
sequence design of separator and trim domains is trivial, and the sequences for the x, y, z

domains can be designed in time polynomial in n by Theorem 9. ◀

A.4 Proof of Lemma 13
Proof. The number of trim-deprived and flawed triples is m − p − h, where m, p, and h are
the number of triples, perfect triples, and hogger triples, respectively.

Perfect triples and hogger triples are not trim-deprived. Therefore, any support strand
connected to a perfect triple or a hogger triple cannot also be connected to another triple
without creating a pseudoknot. Each perfect triple has 10 support strands bound to it, and
each hogger triple has at least 11 connected support strands. From Lemma 10, there are 10n

support strands in total, so 10p + 11h ≤ 10n and

h ≤ 10(n − p)/11.

Since the optimal matching of I has size at most n − i, the number of perfect triples p must
be at most n − i and so n − p ≥ i. Therefore, the total number of trim-deprived and flawed
triples is

m − p − h ≥ m − p − 10(n − p)/11 = m − n + (n − p)/11 ≥ (m − n) + i/11. ◀

A.5 Proof of Lemma 15
Proof. Each trim-deprived triple forms at most 2E CG base pairs, with the G’s being in the
trims (center-trim and end-trims) of the triple and the C’s being in trim-complement strands.
Triples that are not trim-deprived form at most 3E CG base pairs. There are no other CG
base pairs. So, the total number of CG base pairs is at most

(m − n + i/22)2E + (m − (m − n + i/22))3E = (2m + n − i/22)E.

The total number of trim-complement strands is 2m + n, each containing E C’s. So, the
number of unpaired C bases in trim-complements is at least iE/22. ◀
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A.6 Proof of Lemma 16
Proof. Suppose that there are l bonds between x and Sepxy; the other cases are similar.
Since Sepxy contains only A’s, only T’s of x can bind with Sepxy. Our sequence design ensures
that there are at least five padded A’s between any two successive T’s of x. Therefore, in order
to avoid pseduoknots, if there are l bonds between x and Sepxy, at least 5(l − 1) padded A’s
remain unpaired. ◀

A.7 Proof of Lemma 17
Proof. Suppose to the contrary that the first condition does not hold, i.e., one of F5′ ’s Sep
domains is not bound to a Sep support. The total number of T’s that can bind to the Sep
domain is at most 5.5E, accounted for as follows. There are at most 3E/6 T’s in the x, y,
and z domains of F5′ plus at most 5E in the remaining support strands, if there are five
xyz-support strands. Thus at least E/2 of the 6E A’s in the Sep domain are unpaired. Since
E ≥ log2 n, we get a contradiction to the hypothesis of the lemma. Thus the first condition
must hold.

Next suppose that the first condition holds but that the second does not; specifically that
the x domain of F5′ is not bound to an xyz-support domain (the argument is similar for
the y or z domains). Recall that domain x contains at least log2 n T’s, since by design the
domains comprise a log2 n-robust set. At least 2(log2 n)/3 of the T’s must be paired, or the
hypothesis of the lemma that the ACT-unpairedness of F5′ is less than (log2 n)/3 would not
be true. Since the first condition of the lemma holds, the Sep domain adjacent to x on the
5′ flank is bound to a Sep strand. Therefore domain x cannot have bonds to domain y or z,
or to the Sep domain between y and z, or a pseudoknot would form. Also, the T’s in domain
x cannot bind to Sep strands, since Sep’s are composed only of T’s. If there were at least
(log2 n)/3 bonds between x and Sepxy, Lemma 16 would imply that x has ACT-unpairedness
at least 5((log2 n)/3 − 1) ≥ log2 n, again contradicting the hypothesis of the lemma.

Therefore, at least (log2 n)/3 T’s of x must form intramolecular bonds with A’s that are
also in the x domain. The total length of substrands of x that have either unpaired bases or
intramolecular base pairs must be at least 3(log2 n)/3: this lower bound is met if each T, say
at position i of x is bound to an A that is either at position i − 2 or i + 2 (since we assume
that no base pair can form between consecutive bases). Part 1 of Lemma 7 therefore implies
that x has ACT-unpairedness at least (log2 n)/3, once again contradicting the hypothesis of
the lemma. We conclude that the second condition of the lemma must hold.

Since both conditions hold, it cannot be that two of the x, y, and z domains of F5′ are
bound to the same xyz-support of S5′ , or a pseudoknot would form with bonds between a
Sep of F5′ and a Sep support. Similarly, it cannot be that both Sep’s have bonds to the
same Sep. Hence, each Sep domain of F5′ is bound to a distinct Sep support of S5′ , and
S5′ contains exactly three xyz-supports and two Sep supports, completing the proof of the
Lemma. ◀

A.8 Proof of Lemma 18
Proof. Let α < 1/7. Suppose to the contrary that the ACT-unpairedness of Opt(F5′) is less
than α log2 n. By Lemma 17, S5′ must contain three xyz-supports, say a, b, and c, with a

bound to x, b bound to y, and c bound to x.
We first show that in Opt(F5′), there can be at most α log2 n/5 bases between a Sep

domain of F5′ and one of the domains x, y, or z adjacent to the Sep domain. Otherwise,
by Lemma 16, at least α log2 n bases of a would be unpaired, and we get a contradiction.
Similarly, there can be at most α log2 n/5 bases between a Sep domain of F5′ and one of the
domains a, b, or c adjacent to the Sep domain.
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Since F5′ is the flank of a flawed triple, either a ̸= x̄, b ̸= ȳ, or c ̸= z̄. First suppose that
a ̸= x̄. Since the set of domains is log2 n-robust, there can be at most E − log2 n base pairs
between a and x. By the argument in the previous paragraph, x has at most α(log2 n)/5 bases
to Sepxy. Similarly, if Sepab is the separator complement between a and b, then a has at most
α(log2 n)/5 bases to Sepab. If a has base pairs with Sepxy, then x cannot have base pairs
with Sepab and vice versa, in order to avoid pseudoknots. Therefore, either a or x has at least
log2 n − α(log2 n)/5 ≥ 34(log2 n)/35 bases that are either unpaired or form intramolecular
bonds. By Lemma 7, either a or x has unpairedness at least 11(log2 n)/35 ≥ (log2 n)/4,
proving the lemma. The argument when c ̸= z̄ is similar to that when a ̸= x̄.

Finally, suppose that a = x̄ and c = z̄ but b ̸= ȳ. As noted earlier, b has at most
α(log2 n)/5 bonds with each Sep adjacent to it. Also, at least log2 n bases of b are not
paired with y, since the set of domains is log2 n-robust. Of these, at most α log2 n can be
unpaired, or again we get a contradiction. Therefore, b has at least log2 n − 2α(log2 n)/5 −
α log2 n = log2 n − 7α(log2 n)/5 bonds to the Sep’s adjacent to y, and so b has at least
1
2 (log2 n − 7α(log2 n)/5) bonds to Sepxy.

Moreover, Sepab must have at least 6E − 12α(log2 n)/5 base pairs with Sepxy. This is
because Sepab has at most α(log2 n)/5 bases with each of a and b, and Sepab has at most
3α log2 n bases paired with x. To see why the latter assertion holds, note that otherwise at
least 3α log2 n bases of a are not paired with any strand other than a and thus by Lemma 7,
at least α log2 n bases of a are unpaired, which again is a contradiction. Therefore, Sepab has
at most (2/5 + 3)α log2 n pairs in total with a, x, and b, and since at most α log2 n bases of
Sepab can be unpaired, Sepab has at least 6E − (2/5 + 3 − 1)α log2 n = 6E − (12/5)α log2 n

base pairs with Sepxy.
Therefore the total number of bases that are paired with bases of Sepxy is at least

1
2 (log2 n − 7α(log2 n)/5) (with b) plus 6E − (12/5)α log2 n (with Sepab). The total is

6E + (1/2 − 7α/10 − α(12/5)) log2 n ≥ 6E + (1/2 − α(31/10)) log2 n.

Since α ≤ 1/7, this quantity is greater than 6E, again a contradiction since the length of
Sepxy is 6E. ◀
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