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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 121171 “Temporal
Graphs: Structure, Algorithms, Applications”. The seminar was organized around four core
areas: models, concepts, classes; concrete algorithmic problems; distributed aspects; applications.
Because of the ongoing pandemic crisis, the seminar had to be held fully online, with talk and
open problems sessions focussing on afternoons. Besides 19 contributed talks and small-group
discussions, there were lively open-problem sessions, and some of the problems and research
directions proposed there are part of this document. Despite strongly missing the usual Dagstuhl
atmosphere and personal interaction possibilities, the seminar helped to establish new contacts
and to identify new research directions in a thriving research area between (algorithmic) graph
theory and network science.
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Traditionally, graphs (composed of vertices and edges) are used to abstractly model diverse
real-world systems, where vertices and edges represent elementary system units and some
kind of interactions between them, respectively. However, in modern systems this modeling
paradigm using static graphs may be too restrictive or oversimplifying, as interactions often
change over time in a highly dynamic manner. The common characteristic in all these
application areas is that the system structure, i.e., graph topology, is subject to discrete
changes over time. In such dynamically changing graphs the notion of vertex adjacency needs
to be revisited and various graph concepts, e.g., reachability and connectivity, now crucially
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depend on the exact temporal ordering of the edges’ presence. Furthermore, the rate and/or
degree of the changes is generally too high to be reasonably modeled in terms of network
faults or failures: in these systems changes are not anomalies but rather an integral part of
the nature of the system.

A temporal graph is a graph which changes over time. Although many different variations
for the model of temporal graphs exist, the most common one concerns graphs whose vertex
set is fixed while the edge set changes over time. According to this model, given a static
underlying graph G, a temporal graph is obtained by assigning to every edge of G a set of
nonnegative integer time-labels, indicating the discrete time steps in which this edge is active.
Many notions and algorithms on static (i.e., non-temporal) graphs can be transferred in a
natural way to their temporal counterpart, while in other cases new approaches are needed to
define the appropriate temporal notions. In most cases, the existence of the time dimension
adds some degree of freedom in defining a specific temporal variant of a static problem.

The purpose of this one-week seminar was to present and discuss recent advances in the
area of temporal and dynamically changing graphs, and to identify and highlight some of
the current key challenges to better understand the multiple facets of the computational
complexity of temporal graph problems. The seminar was mostly rooted in the rich and
mature experience with algorithmic problems on static (i.e., traditional) graphs and in
the general quest to understand the computational complexity of temporal versions of
fundamental graph problems and algorithms.

Four key areas had been identified, which constituted the backbone of the seminar:
Models, Concepts, Classes. Transferring problems from static to temporal graphs in
a meaningful way is a challenging task, with potentially several well-motivated models in
the temporal setting corresponding to the same static graph problem. Since temporal
graph problems are notoriously hard, a natural way to approach this issue is to restrict
input instances. One of the most immediate ways to restrict inputs (which originates
in the static algorithmic graph theory) is to restrict the family of underlying graphs G.
However, in temporal graphs, the temporal dimension offers so much structure that one
can encode hard problems without the need of a sophisticated structure in the underlying
graph or in any single layer. This observation suggests that restrictions of the “temporal
pattern”, i.e., of the way in which the time-labels appear (either alone or in combination
with the above mentioned restrictions) can often help to identify tractable special cases
of temporal graph problems.
Concrete Algorithmic Problems. There are many examples of canonical generaliza-
tions from classic optimization problems on static graphs to temporal graphs. The most
meaningful way in which a temporal version of a classic optimization problem may be
defined crucially depends on the underlying application domain. Generally, temporal
variants tend to become computationally harder than the corresponding classic optimiza-
tion problem. Canonical ways to tackle the computational hardness are to (i) restrict the
input instances to certain graph classes that allow for efficient (exact) algorithms or find
parameters that allow for fixed-parameter algorithms, (ii) aiming for polynomial-time
approximation algorithms where a certain level of solution quality is guaranteed, or (iii)
combining (i) and (ii).
Distributed Aspects. A common approach to analyzing distributed algorithms is the
characterization of necessary and sufficient conditions to their success. These conditions
commonly refer to the communication model, synchronicity, or structural properties of
the network (e.g., is the topology a tree, a grid, a ring, etc.) In a highly-dynamic network,
the topology changes during the computation, and this may have a dramatic effect on
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computation. The study of this impact has led the distributed algorithms community to
define a number of classes of temporal graphs that capture various levels of regularities a
graph may satisfy over time, regardless of its structure at any single instant. It turns out
that some of these properties – in particular the ones pertaining to finite time – are also
relevant in a (centralized) algorithmic setting and have an impact on the computational
complexity (or feasibility) of classic problems. In particular, properties like periodicity,
temporal connectivity, and bounded temporal diameters have been considered both in the
distributed and in the non-distributed settings. The seminar played here a crucial role in
allowing the different communities to meet and share their complementary experience of
temporal properties, as well as to converge on terminology and modeling aspects.
Applications. Whenever there is a situation with pairwise interactions and information
about the time point when these interactions happen, the framework of temporal graphs
offers a natural mathematical model. This is especially the case in applications where the
time information is critical. Examples include traffic and transportation networks, social
network analysis (especially when analyzing disease or rumor spreading phenomena),
biological networks, mobile sensor networks, and neural networks. All these application
areas have their own problem settings and problem instances with specific properties
and, in order to apply the fast-developing theory of algorithms for temporal graphs, it is
essential to identify and formalise the properties of temporal graphs derived from data
sets in these application areas, with the goal of obtaining application-driven restrictions of
the input instances that allow for efficient algorithms. Among other application-oriented
talks, the seminar included two highly topical talks relating to the role of temporal graphs
in pandemic modelling.

The Dagstuhl Seminar 21171 “Temporal Graphs: Structure, Algorithms, Applications”
brought together 53 participants from 13 different countries in Europe, USA, Japan, and
Israel. The list of participants and speakers contained international experts in algorithms and
complexity, social networks and computational social choice, complex systems, distributed
algorithms, and parameterized algorithmics. We had in total 21 talks, each of approximately
30 minutes duration, and two sessions where open problems were proposed and discussed.

As this Dagstuhl Seminar was held entirely online (which would be unheard of a few
years ago), we provided access to all participants to the online platform GatherTown which
enabled us to virtually interact in a way which simulated (very satisfactory) physical meetings
and interaction (e.g., also having virtual boards at our disposal). We had the GatherTown
platform open every day all day (from the morning until the night), while we specified slots
of 2-hours daily where everybody was expected to come to GatherTown. The rest of the day,
GatherTown was there to facilitate all people who wanted to have extended physical-looking
scientific meetings. During the Seminar, collaborative work was encouraged over all formal
and informal scientific discussions. By building on the pre-existing synergies between the
participating researchers, new collaborations have been initiated and old ones have been
reinforced, and this across all all the communities which were represented in the Seminar.

To conclude, this Seminar has been successful in bringing together scientists from different
backgrounds and initiating or strengthening research collaborations on the wide topic of
temporal and dynamically changing graphs. Last, but not least, these collaborations and
scientific discussions presented a fruitful mix between young researchers, such as PhD students,
with older and established researchers in the general field of temporal graphs.

We would like to express our special gratitude to the team of Schloss Dagstuhl who were
extremely supportive and also flexible on how to organize a virtual Dagstuhl Seminar during
these unprecedented times of the pandemic, without compromising the scientific quality and
the overall participation experience of the Seminar.
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3 Overview of Talks

3.1 k-Edge-Connectivity Models in Temporal Graphs
Prithwish Basu (BBN Technologies – Cambridge, US)

License Creative Commons BY 4.0 International license
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Joint work of Prithwish Basu, Amotz Bar-Noy, Feng Yu, Ram Ramanathan, Dror Rawitz

We extend the notion of k-edge-connectivity from static graphs to temporal graphs. A
connected static graph is k-edge-connected if it remains connected after the removal of any
subset of fewer than k edges; it also means that k edge-disjoint paths exist between each pair
of vertices. Temporal graphs can be represented as a temporally ordered sequence of static
snapshots of graphs (or graphlets) containing edges in the spatial dimension, and each vertex
in time slot j is connected by a temporal (directed) edge to its future counterpart in time
slot j + 1. In such graphs, we give multiple interpretations of k-edge-connectivity, which we
refer to as T -k-edge-connectivity, depending on the different degrees of overlap experienced
by multiple source-to-target or (s, t) paths.

We introduce the following three models for measuring T -k-edge-connectivity between a
given (s, t) pair of vertices:
1. Resource overlap model: no two (s, t)-paths can traverse a common spatial edge in any

graphlet or a common temporal edge connecting consecutive graphlets, although they are
allowed to traverse different instances of any spatial edge in multiple graphlets.

2. Resource and wait overlap model: this is the same as model 1 except that multiple
(s, t)-paths are allowed to pass through a common temporal edge connecting two nodes
in consecutive graphlets, which denotes waiting or buffering.

3. No overlap model: no two (s, t)-paths can traverse more than one instance of any spatial
edge in multiple graphlets.

While models 1 and 2 capture the impact of congestion or failure of certain spatial edges
or buffers at vertices, model 3 captures the scenario when a path may traverse a single use
on-demand edge.

We show that in the resource overlap models, T -k-edge-connectivity can be computed
in polynomial time by solving the Maximum Flow problem on a directed spatial-temporal
graph with unit capacities on all edges (for model 1) and with infinite capacities on temporal
edges (for model 2). In contrast, computing T -k-edge-connectivity for model 3 is NP-hard,
which we show by reduction from the Maximum Independent Set problem. We simulate
random temporal Erdos-Renyi graphs and random temporal graphs embedded on lattices and
characterize how T -k-edge-connectivity varies with the number of vertices in each graphlet
(N), the edge probability (p) and the number of graphlets (T ). We also show that not
surprisingly, the k-edge-connectivity of the union of T static graphs severely overestimates
the T -k-edge-connectivity for most regimes of N , p, and T .

https://creativecommons.org/licenses/by/4.0/
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3.2 Interval-membership-width: dynamic programming on temporal
graphs

Benjamin Bumpus (University of Glasgow, GB)

License Creative Commons BY 4.0 International license
© Benjamin Bumpus

Joint work of Benjamin Bumpus, Kitty Meeks
Main reference Benjamin Merlin Bumpus, Kitty Meeks: “Edge exploration of temporal graphs”, CoRR,

Vol. abs/2103.05387, 2021.
URL https://arxiv.org/abs/2103.05387

We introduce a natural temporal analogue of Eulerian circuits and prove that, in contrast
with the static case, it is NP-hard to determine whether a given temporal graph is temporally
Eulerian even if strong restrictions are placed on the structure of the underlying graph
and each edge is active at only three times. However, we do obtain an FPT-algorithm
with respect to a new parameter called interval-membership-width which restricts the times
assigned to different edges; we believe that this parameter will be of independent interest for
other temporal graph problems. Our techniques also allow us to resolve two open question
of Akrida, Mertzios and Spirakis [CIAC 2019] concerning a related problem of exploring
temporal stars.

3.3 An overview on Dynamic community detection
Rémy Cazabet (University of Lyon, FR)

License Creative Commons BY 4.0 International license
© Rémy Cazabet

Joint work of Rémy Cazabet, Giulio Rossetti
Main reference Rémy Cazabet, Souâad Boudebza, Giulio Rossetti: “Evaluating community detection algorithms for

progressively evolving graphs”, J. Complex Networks, Vol. 8(6), 2021.
URL https://doi.org/10.1093/comnet/cnaa027

Community detection is one of the most famous problem of graph analysis. In recent years,
many works have focused on the discovery of communities in dynamic/temporal networks.
This problem raises new challenges, such as the tracking of the evolution of those communities,
including community events (merge, split, etc.), temporal smoothing, ship of Theseus paradox,
etc.

In this presentation, I summarize 3 recent publications [1, 2, 3] by Giulio Rossetti and
myself on this topic, to give an overview of the state of the art and challenges to work on.

References
1 Rossetti, G., Cazabet, R. (2018). Community discovery in dynamic networks: a survey.

ACM Computing Surveys (CSUR), 51(2), 1-37.
2 Cazabet, R., Rossetti, G. (2019). Challenges in community discovery on temporal networks.

In Temporal Network Theory (pp. 181-197). Springer, Cham.
3 Cazabet, R., Boudebza, S., Rossetti, G. (2020). Evaluating community detection algorithms

for progressively evolving graphs., Journal of Complex Networks, Volume 8, Issue 6, 1
December 2020, cnaa027, https://doi.org/10.1093/comnet/cnaa027
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3.4 Reachability and Distances in Temporal Graphs
Pierluigi Crescenzi (Gran Sasso Science Institute, IT)

License Creative Commons BY 4.0 International license
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Joint work of Pierluigi Crescenzi, Marco Calamai, Clémence Magnien, Andrea Marino

In the last ten years, I get acquainted with some techniques which have been developed
for computing reachability properties and distance-based measures in (static) graphs. In
particular, these techniques are (1) the sketch techniques (one very popular algorithm based
on sketches is the ANF algorithm for approximating the neighbourhood function [1]), (2)
sampling (applied, for instance, for computing an approximation of the closeness centrality
measure [2]), and (3) techniques based on iteratively update lower and upper bounds on
specific graph measures (as in the case of the iFUB algorithm for computing the diameter [3]).
Can we apply these techniques to temporal graphs? Indeed, we can, and this is the main
motivation behind this presentation, which is based on the results contained in [4, 5, 6].

References
1 C.R. Palmer, P.B. Gibbons, C. Faloutsos: ANF: a fast and scalable tool for data mining in

massive graphs. KDD 2002: 81-90.
2 D. Eppstein, J. Wang: Fast Approximation of Centrality. J. Graph Algorithms Appl. 8:

39-45 (2004).
3 P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, A. Marino: On computing the diameter of

real-world undirected graphs. Theor. Comput. Sci. 514: 84-95 (2013).
4 P. Crescenzi, C. Magnien, A. Marino: Approximating the Temporal Neighbourhood Function

of Large Temporal Graphs. Algorithms 12(10): 211 (2019).
5 P. Crescenzi, C. Magnien, Andrea Marino: Finding Top-k Nodes for Temporal Closeness in

Large Temporal Graphs. Algorithms 13(9): 211 (2020).
6 M. Calamai, P. Crescenzi, A. Marino: On Computing the Diameter of (Weighted) Link

Streams. SEA 2021: to appear.

3.5 How can we help in rapid infectious disease modelling?
Jessica Enright (University of Glasgow, GB)

License Creative Commons BY 4.0 International license
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How can we help in rapid infectious disease modelling?
Network modelling of human and animal and movements have play a major role in

modelling of infectious disease, including in modelling the ongoing Covid-19 pandemic. In
many cases these models have incorporated information that could be viewed as a temporal
graph. In this talk I outlined some of my experiences in modelling of this kind as well as
examples from the work of others that I have seen. I focused on two challenges: first, how
to best model temporal graphs that underlie models from data, and secondly the general
question of interventions on temporal graphs to limit disease spread.

When discussing modelling of temporal graphs from data, I looked at volume-change
plots of human mobility over the pandemic provided e.g. by national transport agencies or
Google Community Mobility Reports, and gave examples from work on livestock movement
networks e.g. [1].

https://creativecommons.org/licenses/by/4.0/
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When discussing interventions, I focussed in particular on the problem of assigning times
to classes of edges so as to minimise the maximum reachability within a temporal graph, as
in [2].

References
1 Ruget, AS., Rossi, G., Pepler, P.T. et al. Multi-species temporal network of

livestock movements for disease spread. Applied Network Science 6, 15 (2021).
https://doi.org/10.1007/s41109-021-00354-x

2 Enright, J. Meeks, K., Skerman, F. Assigning times to minimise reachability in tem-
poral graphs. Journal of Computer and System Sciences, 115: 169-186 (2021). ht-
tps://doi.org/10.1016/j.jcss.2020.08.001

3.6 Temporal Graph Exploration
Thomas Erlebach (University of Leicester, GB)

License Creative Commons BY 4.0 International license
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Main reference Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, Jakob T. Spooner: “Two Moves per

Time Step Make a Difference”, in Proc. of the 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, LIPIcs, Vol. 132,
pp. 141:1–141:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

URL https://doi.org/10.4230/LIPIcs.ICALP.2019.141

A temporal graph is a sequence of static graphs that all have the same vertex set, but the
edge set in each step can be different. An agent can in each step either stay at its current
vertex or move over an incident edge that is present in that step. The goal is to let the agent
visit all vertices of the temporal graph as quickly as possible. While it is easy to visit all
vertices of a static graph with n vertices in O(n) steps (e.g., by using depth-first search),
the exploration of temporal graphs may require a much larger number of steps: We show
that even if the temporal graph is a connected graph in each step and the dynamics are fully
known in advance, exploration may require a quadratic number of steps. We also present
upper and lower bounds on the worst-case exploration time of temporal graphs for various
restricted cases (e.g., restrictions on the underlying graph or on the maximum degree of
the graph in each step), outlining the main techniques that have been used to obtain these
bounds and highlighting the many cases with large gaps between the known upper and lower
bounds.

References
1 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner. Two

Moves per Time Step Make a Difference. In 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of LIPIcs, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2019, pages 141:1–141:14.

2 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On Temporal Graph Exploration.
Journal of Computer and System Sciences, 119:1–18, 2021.

3 Thomas Erlebach and Jakob T. Spooner. Exploration of k-Edge-Deficient Temporal Graphs.
In 17th International Symposium on Algorithms and Data Structures (WADS 2021), LNCS,
Springer, 2021. To appear.
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3.7 Approximation Algorithms for Multistage Problems
Bruno Escoffier (Sorbonne University – Paris, FR)

License Creative Commons BY 4.0 International license
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In the considered multistage setting, we are given a temporal graph G1, ..., GT , seen as a
sequence of instances of a given optimization problem (matching, spanning tree,...). The goal
is to compute a sequence S1, ..., ST of feasible solutions of the problem (St begin feasible
for Gt), while trying to minimize: - the (sum of) costs of individual solution - the (sum of)
transition costs, which occurs when moving from solution St to solution St+1. In this talk
we review some recent results, dealing with computational complexity and approximation
algorithms, obtained on several graph multistage problems, such as matching, spanning tree,
min cut, vertex cover,...

3.8 Temporal Graph Problems From the Multistage Model
Till Fluschnik (TU Berlin, DE)

License Creative Commons BY 4.0 International license
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Joint work of Till Fluschnik, Rolf Niedermeier, Valentin Rohm, Carsten Schubert, Philipp Zschoche
Main reference Till Fluschnik, Rolf Niedermeier, Valentin Rohm, Philipp Zschoche: “Multistage Vertex Cover”, in

Proc. of the 14th International Symposium on Parameterized and Exact Computation, IPEC 2019,
September 11-13, 2019, Munich, Germany, LIPIcs, Vol. 148, pp. 14:1–14:14, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.
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In the multistage model, roughly speaking, we are given a sequence of τ instances (stages)
of the same problem, and the task is to find good solutions for each instance such that any
two solutions to consecutive instances differ little. As a concrete example, in the Multistage
Vertex Cover problem, given τ instances of Vertex Cover – over the same vertex set and each
with the same integer k – and an integer ℓ, the question is whether there is a sequence of
k-sized solutions to the instances such that the symmetric difference of any two solutions
to consecutive instances is of size at most ℓ. This is a temporal graph problem: Given a
temporal graph with lifetime τ , integers k and ℓ, is there a k-sized vertex cover for each layer
such that the symmetric difference of any two vertex covers to consecutive layers is of size at
most ℓ.

In this talk, we consider temporal graph problems derived from the multistage model.
We give a brief introduction for multistage problems, sketch their history, and outline their
relation to temporal graphs. We then present two multistage graph problems: Multistage
Vertex Cover and Multistage s-t Path (finding a short s-t path in each layer). We present
results for the two problems and given some algorithmic detail; In particular, we demonstrate
the usability of concepts regarding static graphs (problems) when lifted to temporal graphs
(problems). Finally, we reflect and discuss further research directions, models, and variations
regarding multistage problems.
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3.9 Parameterized complexity of temporal domination and related
problems

Hans L. Bodlaender
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Joint work of Hans Bodlaender, Carla Groenland, Jesper Nederlof, Celine Swennenhuis
Main reference Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, Céline M. F. Swennenhuis: “Parameterized

Problems Complete for Nondeterministic FPT time and Logarithmic Space”, CoRR,
Vol. abs/2105.14882, 2021.

URL https://arxiv.org/abs/2105.14882

Several parameterized problems are known to belong in XP and hard for a class in the
W-hierarchy, e.g., hard for W[t], for all positive integers t. In this talk, we discuss for several
such problems completeness for a relatively little studied class: the class of problems that
can be solved with a non-deterministic algorithm in f(k)poly(n) time and f(k) log n space,
with f a computable function, k the parameter, n the input size, and poly a polynomial. An
example is the maintenance of dominating sets of size k on temporal graphs, where at each
step in time, we want a dominating set of size at most k, and want to minimize the number
of times we change a vertex from the dominating set.

3.10 The Computational Complexity of Finding Temporal Paths under
Waiting Time Constraints

Hendrik Molter (Ben-Gurion University, IL)

License Creative Commons BY 4.0 International license
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Joint work of Hendrik Molter, Arnaud Casteigts, Anne-Sophie Himmel, Philipp Zschoche

Computing a (short) path between two vertices is one of the most fundamental primitives in
graph algorithmics. In recent years, the study of paths in temporal graphs, that is, graphs
where the vertex set is fixed but the edge set changes over time, gained more and more
attention. A path is time-respecting, or temporal, if it uses edges with non-decreasing time
stamps. We investigate a basic constraint for temporal paths, where the time spent at
each vertex must not exceed a given duration ∆, referred to as ∆-restless temporal paths.
This constraint arises naturally in the modeling of real-world processes like packet routing
in communication networks and infection transmission routes of diseases where recovery
confers lasting resistance. While finding temporal paths without waiting time restrictions is
known to be doable in polynomial time, we show that the “restless variant” of this problem
becomes computationally hard even in very restrictive settings. For example, it is W[1]-hard
when parameterized by the distance to disjoint path of the underlying graph, which implies
W[1]-hardness for many other parameters like feedback vertex number and pathwidth. A
natural question is thus whether the problem becomes tractable in some natural settings.
We explore several natural parameterizations, presenting FPT algorithms for three kinds
of parameters: (1) output-related parameters (here, the maximum length of the path), (2)
classical parameters applied to the underlying graph (e.g., feedback edge number), and (3) a
new parameter called timed feedback vertex number, which captures finer-grained temporal
features of the input temporal graph, and which may be of interest beyond this work.
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3.11 Multistage Graph Problems on a Global Budget
Frank Kammer (THM – Gießen, DE)
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Joint work of Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, Andrej
Sajenko

Main reference Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, Andrej
Sajenko: “Multistage graph problems on a global budget”, Theor. Comput. Sci., Vol. 868, pp. 46–64,
2021.

URL https://doi.org/10.1016/j.tcs.2021.04.002

Time-evolving or temporal graphs gain more and more popularity when exploring complex
networks. In this context, the multistage view on computational problems is among the most
natural frameworks. Roughly speaking, herein one studies the different (time) layers of a
temporal graph (effectively meaning that the edge set may change over time, but the vertex
set remains unchanged), and one searches for a solution of a given graph problem for each
layer. The twist in the multistage setting is that the solutions found must not differ too
much between subsequent layers. We relax on this already established notion by introducing
a global instead of the local budget view studied so far. More specifically, we allow for few
disruptive changes between subsequent layers but request that overall, that is, summing over
all layers, the degree of change is moderate. Studying several classical graph problems (both
NP-hard and polynomial-time solvable ones) from a parameterized complexity angle, we
encounter both fixed-parameter tractability and parameterized hardness results. Surprisingly,
we find that sometimes the global multistage versions of NP-hard problems such as Vertex
Cover turn out to be computationally more tractable than the ones of polynomial-time
solvable problems such as Matching. In addition to time complexity, we also analyze the
space efficiency of our algorithms.

3.12 Efficient limited time reachability estimation in temporal networks
Mikko Kivelä (Aalto University, FI)
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Main reference Arash Badie-Modiri, Márton Karsai, Mikko Kivelä: “Efficient limited-time reachability estimation in

temporal networks”, Phys. Rev. E, Vol. 101, p. 052303, American Physical Society, 2020.
URL https://doi.org/10.1103/PhysRevE.101.052303

Time-limited states characterise several dynamical processes evolving on the top of networks.
During epidemic spreading infected agents may recover after some times, in case of information
diffusion people may forget news or consider it out-dated, or in travel routing systems
passengers may not wait forever for a connection. These systems can be described as limited
waiting-time processes, which can evolve along possible network paths strongly determined by
the time-limited states of the interacting nodes. This is particularly important on temporal
networks where the time-scales of interactions are heterogeneous and correlated in various
ways. The structure of the temporal paths has previously been studied by finding the
reachability from a sampled set of sources or by simulating spreading processes. Recently
temporal event graphs were proposed as an efficient representation of temporal networks
mapping all time-respecting paths at once so that one could study how they form connected
structures in the temporal network fabric. However, their analysis has been limited to their
weakly connected components, which only give an upper bound for their physically important
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in- and out-components determining the downstream outcome of any dynamical processes.
Here we propose a probabilistic counting algorithm, which gives simultaneous and precise
estimates of the in- and out-reachability (with any chosen waiting-time limit) for every
starting event in a temporal network. Our method is scalable allowing measurements for
temporal networks with hundreds of millions of events. This opens up the possibility to
analyse reachability, spreading processes, and other dynamics in large temporal networks
in completely new ways; to compute centralities based on global reachability for all events;
or to find with high probability the exact node and time, which could lead to the largest
epidemic outbreak.

3.13 Nearly optimal spanners in quite sparse random simple temporal
graphs

Michael Raskin (TU München, DE)
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Joint work of Michael Raskin, Arnaud Casteigts, Malte Renken, Victor Zamaraev

A graph whose edges only appear at certain points in time is called a temporal graph. The
addition of this temporal aspect fundamentally changes the notion of connectivity, as paths
in temporal graphs can traverse edges only in chronological order. Whereas every static
connected graph contains a spanning tree with linear number of edges, analogous statement
about temporal spanners, i.e., temporal subgraphs providing universal connectivity, have
turned out to be false [Axiotis, Fotakis 2016]. Nevertheless, by taking a probabilistic point of
view, we are now able to prove that any temporally connected temporal graph asymptotically
almost surely contains a temporal spanner with 2n + o(n) edges, which closely matches a
long-known lower bound of 2n − 4.

3.14 Connectivity Thresholds in Random Temporal Graphs
Malte Renken (TU Berlin, DE)
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Main reference Arnaud Casteigts, Michael Raskin, Malte Renken, Viktor Zamaraev: “Sharp Thresholds in Random
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URL https://arxiv.org/abs/2011.03738

A graph whose edges only appear at certain points in time is called a temporal graph. The
addition of this temporal aspect fundamentally changes the notion of connectivity, as paths in
temporal graphs can traverse edges only in chronological order. We consider a simple model
of a random temporal graph, obtained by assigning to every edge of an Erdős–Rényi random
graph Gn,p a uniformly random presence time in the real interval [0, 1]. It turns out that this
model exhibits a surprisingly regular sequence of thresholds related to temporal reachability.
In particular, we show that at p = log n/n any fixed pair of vertices can asymptotically
almost sureley (a.a.s.) reach each other, at 2 log n/n at least one vertex (and in fact, any
fixed node) can a.a.s. reach all others, and at 3 log n/n all the vertices can a.a.s. reach each
other (i.e., the graph is temporally connected). All these thresholds are sharp and also hold
in a random temporal graph model where edges appear according to independent Poisson
processes.
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3.15 Exploration of k-edge-deficient temporal graphs
Jakob Spooner (University of Leicester, GB)
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An always-connected temporal graph G = ⟨G1, ..., GL⟩ with underlying graph G = (V, E)
is a sequence of graphs Gt ⊆ G such that V (Gt) = V and Gt is connected for all t. This
paper considers the property of k-edge-deficiency for temporal graphs; such graphs satisfy
Gt = (V, E − −Xt) for all t, where Xt ⊆ E and |Xt| ≤ k. In this talk I’ll discuss the the
Temporal Exploration problem (compute a temporal walk that visits all vertices v ∈ V

at least once and finishes as early as possible) restricted to always-connected, k-edge-deficient
temporal graphs. I’ll sketch constructive proofs that show that k-edge-deficient and 1-edge-
deficient temporal graphs can be explored in O(kn log n) and O(n) timesteps, respectively.
In the paper, a lower-bound construction of an infinite family of always-connected k-edge-
deficient temporal graphs for which any exploration schedule requires at least Ω(n log k)
timesteps is also given.

3.16 Alternative Routes in Time-Dependent Networks
Christos Zaroliagis
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We present a new method for computing a set of alternative origin-to-destination routes in
road networks with an underlying time-dependent metric. The resulting set is aggregated
in the form of a time-dependent alternative graph and is characterized by minimum route
overlap, small stretch factor, small size and low complexity. To our knowledge, this is the
first work that deals with the time-dependent setting in the framework of alternative routes.
Based on preprocessed minimum travel-time information between a small set of nodes and all
other nodes in the graph, our algorithm carries out a collection phase for candidate alternative
routes, followed by a pruning phase that cautiously discards uninteresting or low-quality
routes from the candidate set. Our experimental evaluation on real time-dependent road
networks demonstrates that the new algorithm performs much better (by one or two orders
of magnitude) than existing baseline approaches. In particular, the entire alternative graph
can be computed in less than 0.384sec for the road network of Germany, and in less than
1.24sec for that of Europe. Our approach provides also “quick-and-dirty” results of decent
quality, in about 1/300 of the above mentioned query times for continental-size instances.
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3.17 Flooding and Self-Healing for Temporal Networks?
Amitabh Trehan (Durham University, GB)
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We explore the connections between distributed algorithms and temporal graph theory. We
look at some possible extensions and interesting questions with respect to temporal graph
theory.

In particular, Amnesiac Flooding [1] is among the simplest algorithms for information
dissemination on a network. The basic algorithm is to forward a message to every node
except the ones you just received the message from. This algorithm is ’stateless’ and uses no
additional memory. However, with such loss of history, it is possible that the messages could
be regenerated ad-infinitum and circulated forever on the network. In practice, “memory”
flags are used explicitly to make sure a message is not circulated again. However, surprisingly
and despite its simplicity, it turns out that amnesiac flooding terminates on every graph i.e.
message circulation stops in a finite number of rounds. How would this behave for temporal
graphs i.e. graphs whose edges may change over time?

Another interesting question is “self-healing” – i.e. fault-tolerance by quick local repair
of a system under adversarial attack to another good but possibly degraded state [2]. One
version that can be imagined is playing a round-based game on a graph where one player
(adversary) can remove or add one node per round with the other player (healer) adding or
removing edges in the locality of the attack with the aim of preserving certain invariants
throughout the history of the attacks and repairs. Can this inspire extensions of temporal
graph theory in presence of churn (node additions/deletions)? How does one even state
results when node additions are permitted?

References
1 Walter Hussak and Amitabh Trehan. On the Termination of Flooding. 37th International

Symposium on Theoretical Aspects of Computer Science STACS 2020, March 10-13, 2020,
Montpellier, France. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 2020.

2 Amitabh Trehan. Algorithms for self-healing networks. Dissertation, University of New Mex-
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3.18 Persistent connected components on dynamic graphs
Mathilde Vernet (University of Le Havre, FR)
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This work focuses on connectivity in a dynamic graph. An undirected graph is defined on
a finite and discrete time interval. Edges can appear and disappear over time. The first
objective of this work is to extend the notion of connected component to dynamic graphs in
a new way. Persistent connected components are defined by their size, corresponding to the
number of vertices, and their length, corresponding to the number of consecutive time steps
they are present on. The second objective of this work is to develop an algorithm computing
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the largest, in terms of size and length, persistent connected components in a dynamic
graph. PICCNIC algorithm (PersIstent Connected CompoNent InCremental Algorithm) is
a polynomial time algorithm of minimal complexity. Another advantage of this algorithm
is that it works online: knowing the evolution of the dynamic graph is not necessary to
execute it. PICCNIC algorithm is implemented and experimented in order to carefully study
the outcome of the algorithm according to different input graph types, as well as real data
networks, to verify the theoretical complexity, and to confirm its feasibility for graphs of
large size.

3.19 Modelling of interactions over time and the stream isomorphism
problem

Tiphaine Viard (Telecom Paris, FR)
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Interactions are everywhere. Be it people meeting in a room, individuals phoning each
other or sending emails, machines exchanging IP packets over the network, we are faced
with a massive intake of data that can be modelled as two entities u and v interacting at
a time t. Being able to model and formally describe these real-world objects is of crucial
importance from both a theoretical and applicative standpoint: they raise interesting formal
and algorithmic questions, and can be applied for mining patterns, anomaly detection,
community detection, among others.

Stream graphs, along with temporal networks and time varying graphs, are a formal
model for these streams of interactions. In our talk, we present the core elements of the
stream graph formalism, stating with streams, substreams, neighbourhoods, degrees and
density and building gradually towards more complex notions, such as paths and reachability,
notions of centrality or the clique enumeration problem. We show how these notions are
both rooted in real-world data analysis and a generalization of the existing graph analysis
concepts. We also show that what is picked up by these notions on real-world datasets is
typically different than what can be seen through the graph, shedding light on the data in a
complementary way.

We then spend some time introducing and proposing solutions to the stream isomorphism
problem. We show that, for a stream graph with n nodes and m interactions, in somes
cases, it is possible to reduce the problem to the graph isomorphism problem, by building
a time-directed graph that has 2m nodes and 3m edges. We also discuss the fact that the
problem is significantly more complex if one cannot reduce to the graph case, for example
when nodes appear and disappear in time, or when interactions have durations. We outline
some potential solutions in that case, and briefly discuss possible applications.
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4 Open problems

4.1 Temporal matching in O∗(2n) FPT time?
Binh-Minh Bui-Xuan, (LIP6,CNRS – Sorbonne Université)
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A temporal graph is a sequence of graphs over the same vertex set: G = (Gi)i∈T with T ⊆ N
a finite interval and Gi = (V, Ei) a graph for every i ∈ T . Given an integer ∆ ∈ N, we
address the problem of finding a maximum set of independent sequences, each composed of
exactly ∆ edges: find M = {(t, uv) : uv ∈

⋂
t≤i<t+∆ Ei} such that |M| is maximum and the

following hold: (t, uv) ∈ M ∧ (t′, uw) ∈ M ∧ |t − t′| < ∆ ⇒ v = w.
This is an NP -hard problem for ∆ > 1, where any greedy algorithm is also a 2-

approximation [1]. The problem stays NP -hard even on very restricted instances of temporal
graphs [3]. On the positive side, the greedy approach performs very well on temporal
graphs collected under geometric constraints, where the approximation ratio in these datasets
averages at 1.02, not 2 [2, 4].

Taking n = |V | as an FPT parameter, there exists a dynamic programming solving
optimally the problem in time O∗((∆ + 1)n) [4]. The dynamic programming exploits the
total order of the time dimension T ⊆ N: here, a sliding time window of size ∆ + 1 would
record all possibilities of “boundaries” of a current candidate for being a future optimal
solution.

Open question: Is there an O∗(2n) dynamic programming finding such a maximum
independent ∆-edge set?
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1 J. Baste and B.M. Bui-Xuan. Temporal matching in link stream: kernel and approximation.

In 16th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, 2018.
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4 T. Picavet, N.T. Nguyen, and B.M. Bui-Xuan. Temporal matching on geometric graph
data. In 12th International Conference on Algorithms and Complexity, volume 12701 of
LNCS, pages 394–408, 2021.

4.2 Degenerate and slowly evolving dynamic networks
Rémy Cazabet (Université de Lyon, FR)
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Many formalisms exist to represent dynamic/temporal networks. Among the most famous
ones, we can cite link streams, interval graphs, snapshot sequences, time varying graphs, etc.

However, in recent studies, I’ve noted that there exist at least two very different types of
dynamic networks, that I’ll call degenerate and slowly evolving dynamic networks.
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The difference between the two can be expressed intuitively as follows: a dynamic
network is degenerate if we consider that it is not meaningful to observe the network at an
instantaneous point in time t. On the contrary, in a slowly evolving network, the network is
considered a meaningful graph at any t of its period of evolution.

Typical examples of a degenerate graph would be a collection of collected interactions,
such as instantaneous messages sent in a social network platform. On the contrary, the
relations of friends/followers in the same network would form a slowly evolving network.

My observation is that, although most authors are aware of such a distinction, it is barely
ever discussed in the literature, so that when authors present a new algorithm or a new
method, they do not specify if its adapted to one or the other of these networks.

My question relates to the fact that, although both categories of networks seem very
different at first sight, many real networks do actually fall somewhere in-between the two. I
gave as example the data from the Sociopatterns project, in which face-to-face interactions
between individuals were automatically collected using wireless sensors every 20s. Although
one might think at first that this data belongs to the slowly evolving network, when studying
the data, it is clear that it rather belongs to the degenerate category. I subsequently argued
that the problem also arises as soon as we aggregate interaction data: at which aggregation
level do the dynamic networks shift from one category to the other, and thus methods designed
to work with one type can be applied or not? What I wanted to discuss were therefore the
existing methods, algorithms, discussion papers or definitions that could help researchers to
identify, formally or intuitively, the type of dynamic networks they are confronted with.

4.3 Distances in temporal graphs
Pierluigi Crescenzi (Gran Sasso Science Institute, IT)
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Two problems were posed by Pierluigi Crescenzi regarding the time and space complexity of
determining distances in temporal graphs under various assumptions on the ordering of the
input.

These problems were later solved as the result of a discussion with Michael Raskin.

4.4 Minimal complexity of MaxFlow on dynamic graphs
Eric Sanlaville (University of Le Havre, FR)
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Dynamic Model.
Discrete model: T time steps
Dynamic Graph G = (V, E) composed of a sequence of t-graphs (or snapshot graphs)
G1, . . . , GT

Each t-graph Gθ = (V, Eθ)
Each time-arc e = uvθ ∈ Eθ has a capacity cθ(uv)
There are two special nodes s the source and t the sink
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Figure 1 An example of a compact representation. Capacities are represented as time vectors
along the arcs. In this simple example capacities are unitary.

Max Flow problem on the dynamic graph (simplest version).
Send the maximum amount of flow from s to t during these T time steps.
There is no travel time for the arcs
Infinite storage is allowed on the nodes.

Complexity of classic static algorithms

As a short reminder, efficient algorithms are based on the following two ideas:
1. SSP: compute a Sequence of augmenting paths in the residual graph (choice of Shortest

Paths).
2. PF: compute Pre-Flows, try to remove excess by local operations

We now give an incomplete summary of results for the static case (see [1]) with a focus
on complexity independent of capacities.

algorithm idea complexity

(static)
SSP Edmonds Karp n2m

Generic pre flow PF n2m

FIFO Preflow PF, FIFO order n3

HL Preflow PF, Highest distance order n2√m

Expanded graphs

Building the extended graph.
A super-source and a super-sink are added
Storage arcs are added as horizontal links, with infinite capacity

Size of the expanded graph.
Number of nodes: nT + 2 = Θ(nT )
Number of arcs: mT + (n − 2)T + 2T

= Θ(mT ) if n = O(m).
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Figure 2 An example of the sequence of snapshots representation where arcs without capacity
are omitted.

s

1

2

3

t

G1 G2 G3

+ infty

Sup s

Sup t

+ infty

Figure 3 Example of the expanded graph of the temporal graph from Figure 2.

Complexity for the dynamic Max Flow using expanded graph

The following table shows direct use of classical algorithms on expanded graph

algorithm idea complexity complexity

(static) (expanded)
SSP Edmonds Karp n2m n2mT 3

Generic pre flow PF n2m n2mT 3

FIFO Preflow PF, FIFOorder n3 n3T 3

HL Preflow PF, Highest distance order n2√m n2√mT 2
√

T

All algorithm complexity have a T 3 factor, except for the Highest Label (distance to the
sink) first implementation of Pre-Flow : T 2

√
T .

Question. Can we do better than T 5/2?

Hopes.
The expanded graph is not any directed graph
Compact representation with capacity vectors allows for other algorithms?
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s

1

2

3

t

G1 G2 G3

+ infty

Sup s

Sup t

+ infty

Figure 4 Example of successive shortest paths. In the image above there are three successive
shortest paths:

path P1 = s, 2, 3, t

path P2 = s, 1→ 1→ 1, t

path P3 = s, 2, 3, 1← 1, 2, 3, t.

Wrong tracks.
No direct result with structural consideration on expanded graph
Examples can be built, for which augmenting paths are arbitrary long
No optimum algorithm (so far) keeping compact representation (upper bounds using
aggregated capacities)
Maybe the answer is NO ? And that’s why there is no work on this in the literature ?

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows – theory,

algorithms and applications. Prentice Hall, 1993.

4.5 Three open problems pertaining to self-preserving communities,
meta-theorems for multistage problems, and influence of burstiness
on the computational complexity

Manuel Sorge (TU Wien, AT)
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Self-preserving communities

In their recent work [8] put forward a definition of what a biological individual is, based
on information-theoretic measures. Essentially, they propose that individuals are subsets of
the environment that represent local maxima in the so-called mutual information between
consecutive time steps. In plain words, the mutual information of some subset between two
time steps is large, if there are many possible states of this subset and the states are strongly
correlated between time steps. Even simpler, an individual is lively and it preserves itself.
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As [8] briefly alluded to, this notion also applies in other contexts, such as communities in
social networks. The advantage of looking at communities in social networks is that there is
ample data to test [8] hypothesis modified to this context. However, we lack the algorithmic
research to do this. What is a concrete formulation as a computational problem to test [8]’s
hypothesis and what is the computational complexity of solving this problem?

Meta-theorems for multistage problems

The general aim in multistage problems is to find solutions, e.g. independent sets, for each
snapshot of a given temporal graph such that the solutions satisfy some quality measure,
e.g. an upper bound on the independent set size, and such that the solutions have some
temporal relationship, such as differing in few vertices between consecutive snapshots. Several
authors studied the computational complexity of concrete multistage problems, see e.g. [1, 3]
and references therein. Perhaps time is rife to study the complexity of common problem
formulations more generally. A somewhat informal common problem formulation is the
following. Given a temporal graph (Gi)i∈[τ ] on vertex set V and integers k, ℓ ∈ N, we want
to decide whether the following formula holds:

∃(xi,j)i∈[k],j∈[τ ] ∈ V k+τ : ∀j ∈ [τ−−1] : similarj((xi,j , xi,j+1)i∈[k], ℓ)∧∀j ∈ [τ ] : propertyj((xi,j)i∈[k]).

E.g. to solve a recently studied multistage path problem [3], set propertyj to a function
that checks whether the sequence of k variables given as an argument is the sequence of
vertices of a path in Gj and set similarj to a formula that checks whether the two sequences
of vertices given as an argument differ by at most ℓ vertices when interpreted as a set. An
example of the type of results that this formulation affords is the following. We may consider
a temporal graph as a structure from formal logic, whose domain contains the vertex set
and whose signature contains equality and the adjacency relation for each snapshot Gi.
If the maximum degree in each snapshot is bounded by ∆, and if propertyj and similarj

are expressible in first-order logic, then from Seese’s theorem [9] it follows that that the
above problem is solvable in f(τ, ∆, ζ)n where ζ is the quantifier depth of propertyj and
similarj (trivially upper bounded by their length), and f is an exponential function. The
(exponential) dependency on τ is not nice and there are nontrivial examples for which it can
be avoided, such as the above mentioned multistage path problem [3]. An open question is for
example to explore and characterize the formulas for propertyj and similarj such that dropping
exponential dependency on τ is possible. Another direction is to consider generalizations
of Seese’s theorem for structures of bounded local treewidth or other structural sparsity
measures [4] and properly adapt them to the multistage setting.

Burstiness

Burstiness refers to the temporal clustering of activity, such as in sending emails, where it can
be observed that users have short periods of activity followed by long periods of inactivity.
In particular, such clustering results in distributions of inter-interaction times that roughly
follow a power law [10]. It is not far-fetched to assume that such structure can be used
algorithmically. For example, a simple measure of the degree distribution of a graph is the
h-index. The h-index is the largest integer h such that there are at least h vertices of degree
at least h. This parameter is a small constant in real world networks [2], which often have
degree distributions similar to power laws. It is not hard to show then, that the in general
NP-hard Independent Set problem is solvable in O(2h · (n + m)) time. Similar results
hold for other problems including various dense-subgraph problems [7, 6]. The only research
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in the direction of measuring and exploiting burstiness algorithmically that I am aware of is
when we think of burstiness as a kind of temporal sparsity. [5] looked at unions of intervals of
snapshot graphs and computed their so-called degeneracy, a measure of sparsity, and showed
that it is a small constant in real-world temporal graphs, much smaller than the degeneracy
of the union of all snapshots. However, this is not a first-principles approach and with this
method we do not learn or exploit, for example, whether (and how many) bursts temporally
overlap. What is a good combinatorial measure of burstiness? Is there one that can be
exploited algorithmically, for example, in algorithms enumerating dense temporal subgraphs?
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Figure 5 Preliminary step from [1] on an arbitrary temporal clique of size 5. One label per edge
is sufficient to maintain temporal connectivity. (Details concerning strict or non-strict journeys are
omitted in this document.)

1,3 2

Figure 6 Trivial counterexample showing that one label per edge is not sufficient to maintain
temporal connectivity in general temporal graphs.

4.6 The number of labels per edge maintaining temporal connectivity
Jason Schoeters (University of Bordeaux, FR)
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Introduction

In [1], the authors are interested in removing labels from temporal cliques, without breaking
temporal connectivity. The remaining structure is called a spanner. They succeed in removing
a significant amount of labels from any given initial temporal clique through their proposed
algorithm, obtaining a sparse spanner of size O(n log n), with n the number of vertices of the
temporal graph. As a preliminary step (see Figure 5, the authors reduce any given temporal
clique to one with only one label per edge. In other words, independent from the labelling,
it is sufficient to keep only one label per edge of a temporal clique to maintain temporal
connectivity.

As a quick motivation for this document, if the temporal graph represents a network in
which messages are sent, one may be interested in knowing how many messages may need to
pass through any given link so as to keep the network up to date (whereas in [1], the authors
would be interested in knowing how many messages in total are needed to stay up to date).

These notes, and the presentation during the open problem session, are an attempt to
extend this preliminary step to other classes of temporal graphs. We present preliminary
results and open problems surrounding this topic, as well as mention a result obtained during
the Dagstuhl.

Preliminary results

In general temporal graphs, it is quickly clear that one label per edge may not be sufficient
to maintain temporal connectivity (see Figure 6).

So maybe two labels would suffice? The idea being that one label allows messages going
through in one way, and the other in the other way. Indeed, for some specific edges (and
graphs) this idea holds.
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t0, t1, ..., tk−1, tk
G1 G2

e

G

u v

Figure 7 Sketch of a temporal graph with a bridge edge.

▶ Lemma 1. Two labels are sufficient for bridge edges to maintain temporal connectivity.

Proof. Consider Figure 7, a sketch of a temporal graph G with bridge edge e having k labels
t0, t1, ..., tk, separating G into temporal graph G1 and G2. Define t−

u the earliest time at which
all vertices in G1 are able to reach u. Similarly, define t+

v to be the latest time at which
all vertices in G2 can be reached by v. Since G is temporally connected, there exists some
label ti of e such that t−

u < ti < t+
v . Keeping ti is thus sufficient for maintaining temporal

connectivity from G1 to G2. A symmetrical argument can be used to find tj for maintaining
temporal connectivity from G2 to G1. Together, ti and tj maintain temporal connectivity
in G. ◀

Since trees contain only bridge edges, we have the following corollary.

▶ Corollary 2. Two labels per edge are sufficient for maintaining temporal connectivity in
temporal trees.

Now one may ask the question whether two labels per edge could be sufficient for
maintaining temporal connectivity in general temporal graphs. Indeed, maybe these last
results can be generalized in some manner? Unfortunately, this is not the case.

▶ Lemma 3. Two labels per edge are not sufficient for maintaining temporal connectivity in
some temporal graphs.

Proof idea. Consider the temporal graph given in Figure 8. The idea is to force the need of
the three labels on the top edge, so as to maintain temporal connectivity from all ui towards
vi. With this in mind, we complete the temporal graph so as to make it temporally connected
(see Figure 9). Now, removing any of the three labels breaks temporal connectivity (from
the corresponding ui to vi). ◀

In fact, the construction from Figures 8 & 9 can be easily extended, adding more rows of
ui and vi couples with arcs such as the other ui and vi, so as to force even more labels on
the top edge.

▶ Corollary 4. Any constant number of labels per edge are not sufficient for maintaining
temporal connectivity in some temporal graphs.
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Figure 8 Construction of a temporal graph needing three labels on an edge to maintain temporal
connectivity (Incomplete version).
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Figure 9 Construction of a temporal graph needing three labels on an edge to maintain temporal
connectivity (Temporally connected version).

Open questions

Does there exist other classes of graphs in which the number of labels per edge can be
bounded?
Is computing this number NP -hard?
Can one force more labels on an edge than in Figures 8 & 9 (approx. n

3 )?

The first of these open questions was partially treated during the Dagstuhl. Considering
cycles graphs, a nice example needing n

4 labels per edge to maintain temporal connectivity
was given by Malte Renken (see Figure 10). A bound on the number of labels per edge for
cycles is thus at least n

4 , establishing a large gap between tree graphs and cycles graphs.
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Figure 10 Temporal cycle needing n
4 labels per edge to maintain temporal connectivity.

4.7 Obtaining tighter bounds on the arrival time of non-strict
exploration schedules in temporal graphs of temporal diameter 2

Jakob T. Spooner (University of Leicester, GB)
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We present two open problems (originally posed in [2]) concerned with obtaining improved
asymptotic bounds on the arrival time of non-strict exploration schedules for non-strict
temporal graphs with temporal diameter 2. The overall goal is to close, as much as possible,
the gap between an existing Ω(

√
n) lower bound and O(

√
n log n) upper-bound. Non-strict

temporal walks can be viewed as temporal walks that are allowed to make an unbounded
but finite number of edge traversals in any given timestep, and have been studied within
a variety of settings, see [1, 4, 3, 2] for examples. Temporal diameter as a temporal graph
parameter is introduced by Definition 3, although we mention now that it is a relatively
straightforward adaptation of diameter in static graphs.

Throughout the following we denote by [n] the set of integers {1, 2, ..., n} and by [x, n]
(x ≤ n) the set of integers [n] − {1, 2, ..., x − 1}. We begin with a formal definition of a
non-strict temporal graph:

▶ Definition 1 (Non-strict temporal graph, G). A non-strict temporal graph G = ⟨G1, ..., GL⟩
with vertex set V := V (G) and lifetime L is an indexed sequence of partitions Gi =
{Ci,1, ..., Ci,si

} of V , with i ∈ [L]. For all i ∈ [L], every v ∈ V satisfies v ∈ Ci,ji
for a unique

ji ∈ [si]. We denote by |Gi| the number of components in layer Gi.

▶ Definition 2 (Non-strict temporal walk, W ). A non-strict temporal walk W with dur-
ation k ∈ [L] through a non-strict temporal graph G = ⟨G1, ..., GL⟩ is a sequence W =
Ct,j1 , Ct+1,j2 , ..., Ct+k−1,jk

(with t ∈ [L − k + 1]) of components Ci,ji
such that:

(1) Ct+i−1,ji ∈ Gt+i−1 and ji ∈ [st+i−1] (i ∈ [1, k])
(2) Ct+i−1,ji

∩ Ct+i,ji+1 ̸= ∅ (i ∈ [1, k − 1])
We say W has duration k, and that it starts in timestep t and finishes in timestep t + k − 1.
Furthermore, W visits the set of vertices

⋃
i∈[0,k−1] Ct+i,ji+1 , and is called a non-strict

exploration schedule of G if
⋃

i∈[0,k−1] Ct+i,ji+1 = V (G). The timestep t′ ∈ [t, t + k − 1],
during which W reaches the component that contains the final vertex v ∈ V (G) such that v

is contained in no component previously visited by W , is known as the arrival time of W .
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We say that a pair of vertices u, v ∈ V (G) are connected by a temporal walk W =
Ct,j1 , Ct+1,j2 , ..., Ct+k−1,jk

iff u ∈ Ct,j1 and v ∈ Ct+k−1,jk
; u and v are disconnected if

no such walk exists.
Let G = ⟨G1, ..., GL⟩ be a non-strict temporal graph and let sw(u, v, t) denote the length

of a minimal duration non-strict temporal walk W in G that starts at timestep t ∈ [L] and
connects u, v ∈ V (G). The following temporal graph parameter is a straightforward temporal
analogue of the diameter of a static graph, and is central to our open problems of interest:

▶ Definition 3 ((Non-strict) temporal diameter). A non-strict temporal graph G has diameter
bounded by d if

max
u,v∈V (G),t∈[L−d+1]

sw(u, v, t) ≤ d

Note the restriction on the range of t in the above maximisation function; this ensures
that the temporal diameter condition holds for every length-d time interval throughout G’s
lifetime.

It was shown by the authors in [2] that there exists an infinite family of non-strict temporal
graphs with diameter d ≥ 3 and lifetime ≥ d(n − 1), for which all exploration schedules for
any graph in the family have arrival time Ω(n). This yields a tight asymptotic bound of
Θ(n) on the amount of time required to explore arbitrary non-strict temporal graphs when
d ≥ 3, since any temporal graph with constant diameter d ≥ 3 can be explored easily in
O(n) timesteps. On the other hand, for the case in which d = 2 it was shown (also in [2])
that exploration schedules with duration O(

√
n log n) are guaranteed to exist, and an infinite

family of non-strict temporal graphs for which any exploration schedule has duration Ω(
√

n)
was also constructed. This leaves a gap of Θ(log n) between the current best-known upper
and lower bounds for the case when d = 2. We now state formally our open problems:

Open problems.
(1) Find a function f(n) = ω(

√
n) such that there exists an infinite family F of non-strict

temporal graphs with temporal diameter d = 2 and lifetime L ≥ 2(n − 1) such that, for
any graph G ∈ F , all exploration schedules of G have arrival time Ω(f(n)).

(2) Find a function f ′(n) = o(
√

n log n) such that any non-strict temporal graph G with
diameter d = 2 and lifetime L ≥ 2(n − 1) admits an exploration schedule with arrival
time O(f ′(n)).

Finding a function g(n) that satisfies the requirements of both (1) and (2) would then
provide an asymptotically tight bound on the arrival time of exploration schedules for
arbitrary non-strict temporal graphs of diameter d = 2 and with lifetime L ≥ 2(n − 1), and
the problem would be resolved entirely.

Finally, we sketch the proofs of the known upper and lower bound. For the lower bound,
let n be a square number and imagine the numbers from 1 to n arranged in a square grid
with

√
n rows and

√
n columns. In odd time steps, the partition consists of the rows of

the grid, and in even steps, it consists of the columns. This defines a temporal graph with
temporal diameter 2. As each set in each partition has size

√
n, it is clear that Ω(

√
n) steps

are needed in an exploration schedule. For the upper bound, we observe that there cannot be
two consecutive partitions that both have more than

√
n sets: If the first of the two partitions

has more than
√

n sets, the smallest of those sets has size smaller than
√

n, and since that
set must intersect all sets of the next partition, that next partition must contain less than√

n sets. In the partition that has at most
√

n sets, we can visit the set that contains the
most unvisited vertices, which must be at least a 1/

√
n fraction of the unvisited vertices.

After O(
√

n log n) iterations of this operation, all vertices are visited.
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4.8 The cover time of random walks on temporal graphs
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Graph Model: Sequence of graphs G = G1, G2, . . . on the same set of n vertices, such that
each Gi is connected and has a loop at each vertex.

Simple Random Walk (SRW): Start at some vertex. Then at each time step choose a
neighbour of the current vertex uniformly at random.

Problem: Can we get a tight bound on the expected time for a SRW to visit all vertices
(cover time) of any G? We note that G is fixed in advance; it cannot be adapted based on
the trajectory of the walk.

Question: Can we close the gap for general case?

What is known?
In [1] an example is given with cover time 2Ω(n).
A simple upper bound of nO(n) = 2O(n log n) is given in [1].
If if we take an “ultra lazy walk” [1], or a lazy random walk on a graph sequence where
the stationary distribution π is static [2], then the cover time is Õ(n3).
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